CHAPTER 3

3. MEASURES OF CENTERAL TENDENCY

Introduction

$>$ When we want to make comparison between groups of numbers it is good to have a single value that is considered to be a good representative of each group. This single value is called the average of the group. Averages are also called measures of central tendency.
$>$ An average which is representative is called typical average and an average which is not representative and has only a theoretical value is called a descriptive average. A typical average should posses the following:

- It should be rigidly defined.
- It should be based on all observation under investigation.
- It should be as little as affected by extreme observations.
- It should be capable of further algebraic treatment.
- It should be as little as affected by fluctuations of sampling.
- It should be ease to calculate and simple to understand.

Objectives:

To comprehend the data easily.
∞ To facilitate comparison.
© To make further statistical analysis.

The Summation Notation:

- Let $X_{1}, X_{2}, X_{3} \ldots X_{N}$ be a number of measurements where N is the total number of observation and X_{i} is $i^{\text {th }}$ observation.
- Very often in statistics an algebraic expression of the form $X_{1}+X_{2}+X_{3}+\ldots+X_{N}$ is used in a formula to compute a statistic. It is tedious to write an expression like this very often, so mathematicians have developed a shorthand notation to represent a sum of scores, called the summation notation.
- The symbol $\sum_{i=1}^{N} X_{i}$ is a mathematical shorthand for $\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\ldots+\mathrm{X}_{\mathrm{N}}$

$$
\sum_{i=1}^{N} X_{i}=X_{1}+X_{2}+\ldots+X_{N}
$$

The expression is read, "the sum of X sub i from i equals 1 to N ." It means "add up all the numbers."

Example: Suppose the following were scores made on the first homework assignment for five students in the class: $5,7,7,6$, and 8 . In this example set of five numbers, where $\mathrm{N}=5$, the summation could be written:

$$
\sum_{i=1}^{5} X_{i}=X_{1}+X_{2}+X_{3}+X_{4}+X_{5}=5+7+7+6+8=33
$$

The " $\mathrm{i}=1$ " in the bottom of the summation notation tells where to begin the sequence of summation. If the expression were written with " $\mathrm{i}=3$ ", the summation would start with the third number in the set. For example:

$$
\sum_{i=3}^{N} X_{i}=X_{3}+X_{4}+\ldots+X_{N}
$$

In the example set of numbers, this would give the following result:

$$
\sum_{i=3}^{N} X_{i}=X_{3}+X_{4}+X_{5}=7+6+8=21
$$

The " N " in the upper part of the summation notation tells where to end the sequence of summation. If there were only three scores then the summation and example would be:

$$
\sum_{i=1}^{3} X_{i}=X_{1}+X_{2}+X_{3}=5+7+7=21
$$

Sometimes if the summation notation is used in an expression and the expression must be written a number of times, as in a proof, then a shorthand notation for the shorthand notation is employed. When the summation sign " Σ " is used without additional notation, then $\mathrm{i} \mathrm{i}=1$ " and " N " are assumed.

For example:

$$
\sum X=\sum_{i=1}^{N} X_{i}=X_{1}+X_{2}+\ldots+X_{N}
$$

PROPERTIES OF SUMMATION

1. $\sum_{i=1}^{n} k=n k \quad$ where k is any constant
2. $\sum_{i=1}^{n} k X_{i}=k \sum_{i=1}^{n} X_{i}$ where k is any constant
3. $\sum_{i=1}^{n}\left(a+b X_{i}\right)=n a+b \sum_{i=1}^{n} X_{i}$ where a and b are any constant
4. $\sum_{i=1}^{n}\left(X_{i}+Y_{i}\right)=\sum_{i=1}^{n} X_{i}+\sum_{i=1}^{n} Y_{i}$

The sum of the product of the two variables could be written:

$$
\sum_{i=1}^{N}\left(X_{i} * Y_{i}\right)=\left(X_{1} * Y_{1}\right)+\left(X_{2} * Y_{2}\right)+\ldots+\left(X_{N^{*}} * Y_{N}\right)
$$

Example: considering the following data determine

\mathbf{X}	\mathbf{Y}
5	6
7	7
7	8
6	7
8	8

a) $\sum_{i=1}^{5} X_{i}$
b) $\sum_{i=1}^{5} Y_{i}$
c) $\sum_{i=1}^{5} 10$
d) $\sum_{i=1}^{5}\left(X_{i}+Y_{i}\right)$
e) $\sum_{i=1}^{5}\left(X_{i}-Y_{i}\right)$
f) $\sum_{i=1}^{5} X_{i} Y_{i}$
g) $\sum_{i=1}^{5} X_{i}{ }^{2}$
h) $\left(\sum_{i=1}^{5} X_{i}\right)\left(\sum_{i=1}^{5} Y_{i}\right)$

Solutions:
a) $\sum_{i=1}^{5} X_{i}=5+7+7+6+8=33$
b) $\sum_{i=1}^{5} Y_{i}=6+7+8+7+8=36$
c) $\sum_{i=1}^{5} 10=5 * 10=50$
d) $\sum_{i=1}^{5}\left(X_{i}+Y_{i}\right)=(5+6)+(7+7)+(7+8)+(6+7)+(8+8)=69=33+36$
e) $\sum_{i=1}^{5}\left(X_{i}-Y_{i}\right)=(5-6)+(7-7)+(7-8)+(6-7)+(8-8)=-3=33-36$
f) $\sum_{i=1}^{5} X_{i} Y_{i}=5 * 6+7 * 7+7 * 8+6 * 7+8 * 8=241$
g) $\sum_{i=1}^{5} X_{i}^{2}=5^{2}+7^{2}+7^{2}+6^{2}+8^{2}=223$
h) $\left(\sum_{i=1}^{5} X_{i}\right)\left(\sum_{i=1}^{5} Y_{i}\right)=33 * 36=1188$

Types of measures of central tendency

There are several different measures of central tendency; each has its advantage and disadvantage.

- The Mean (Arithmetic, Geometric and Harmonic)
- The Mode
- The Median
- Quantiles (Quartiles, Deciles and Percentiles)

The choice of these averages depends up on which best fit the property under discussion.

The Arithmetic Mean

- Is defined as the sum of the magnitude of the items divided by the number of items.
- The mean of $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \ldots \mathrm{X}_{\mathrm{n}}$ is denoted by A.M , m or \bar{X} and is given by:

$$
\begin{aligned}
& \bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n} \\
& \Rightarrow \bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}
\end{aligned}
$$

- If X_{1} occurs f_{1} times, if X_{2} occurs f_{2} times, \ldots, if X_{n} occurs f_{n} times

Then the mean will be $\bar{X}=\frac{\sum_{i=1}^{k} f_{i} X_{i}}{\sum_{i=1}^{k} f_{i}}$, where k is the number of classes and $\sum_{i=1}^{k} f_{i}=n$
Example: Obtain the mean of the following number

$$
2,7,8,2,7,3,7
$$

Solution:

$\mathbf{X}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{X}_{\mathbf{i}} \mathbf{f}_{\mathbf{i}}$
2	2	4
3	1	3
7	3	21
8	1	8
Total	7	36

$$
\bar{X}=\frac{\sum_{i=1}^{4} f_{i} X_{i}}{\sum_{i=1}^{4} f_{i}}=\frac{36}{7}=5.15
$$

Arithmetic Mean for Grouped Data

If data are given in the shape of a continuous frequency distribution, then the mean is obtained as follows:

$$
\bar{X}=\frac{\sum_{i=1}^{k} f_{i} X_{i}}{\sum_{i=1}^{k} f_{i}} \text {, Where } \mathrm{X}_{\mathrm{i}}=\text { the class mark of the } \mathrm{i}^{\text {th }} \text { class and } \mathrm{f}_{\mathrm{i}}=\text { the frequency of the } \mathrm{i}^{\text {th }}
$$

class
Example: calculate the mean for the following age distribution.

Class	Frequency

$6-10$	35
$11-15$	23
$16-20$	15
$21-25$	12
$26-30$	9
$31-35$	6

Solutions:

- First find the class marks
- Find the product of frequency and class marks
- Find mean using the formula.

Class	f_{i}	X_{i}	$\mathrm{X}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$
$6-10$	35	8	280
$11-15$	23	13	299
$16-20$	15	18	270
$21-25$	12	23	276
$26-30$	9	28	252
$31-35$	6	33	198
Total	100		1575

$$
\bar{X}=\frac{\sum_{i=1}^{6} f_{i} X_{i}}{\sum_{i=1}^{6} f_{i}}=\frac{1575}{100}=15.75
$$

Exercises:

1. Marks of 75 students are summarized in the following frequency distribution:

Marks	No. of students
$40-44$	7
$45-49$	10
$50-54$	22
$55-59$	f_{4}
$60-64$	f_{5}
$65-69$	6
$70-74$	3

If 20% of the students have marks between 55 and 59
i. Find the missing frequencies f_{4} and f_{5}.
ii. Find the mean.

Special properties of Arithmetic mean

1. The sum of the deviations of a set of items from their mean is always zero.
i.e. $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)=0$.
2. The sum of the squared deviations of a set of items from their mean is the minimum.
i.e. $\sum_{i=1}^{n}(X i-\bar{X})^{2}<\sum_{i=1}^{n}\left(X_{i}-A\right)^{2}, A \neq \bar{X}$
3. If \bar{X}_{1} is the mean of n_{1} observations, if \bar{X}_{2} is the mean of n_{2} observations, \ldots, if \bar{X}_{k} is the mean of n_{k} observation, then the mean of all the observation in all groups often called the combined mean is given by:

$$
\overline{\mathbf{X}}_{\mathrm{c}}=\frac{\overline{\mathbf{X}}_{1} \mathbf{n}_{1}+\overline{\mathbf{X}}_{2} \mathbf{n}_{2}+\ldots+\overline{\mathbf{X}}_{k} \mathbf{n}_{\mathrm{k}}}{\mathbf{n}_{1}+\mathbf{n}_{2}+\ldots \mathbf{n}_{k}}=\frac{\sum_{i=1}^{k} \overline{\mathbf{X}}_{i} \mathbf{n}_{i}}{\sum_{i=1}^{k} \mathbf{n}_{i}}
$$

Example: In a class there are 30 females and 70 males. If females averaged 60 in an examination and boys averaged 72 , find the mean for the entire class.

Solutions:

Females
$\bar{X}_{1}=60$
$n_{1}=30$

$$
\begin{aligned}
& \bar{X}_{c}=\frac{\bar{X}_{1} n_{1}+\bar{X}_{2} n_{2}}{n_{1}+n_{2}}=\frac{\sum_{i=1}^{2} \bar{X}_{i} n_{i}}{\sum_{i=1}^{2} n_{i}} \\
& \Rightarrow \bar{X}_{c}=\frac{30(60)+70(72)}{30+70}=\frac{6840}{100}=68.40
\end{aligned}
$$

4. If a wrong figure has been used when calculating the mean the correct mean can be obtained with out repeating the whole process using:
CorrectMean $=$ WrongMean $+\frac{(\text { CorrectValue }- \text { WrongValue })}{n}$
Where n is total number of observations.
Example: An average weight of 10 students was calculated to be 65 .Latter it was discovered that one weight was misread as 40 instead of 80 kg . Calculate the correct average weight.

Solutions:

CorrectMean $=$ WrongMean $+\frac{(\text { CorrectValue }- \text { WrongValue })}{n}$
CorrectMean $=65+\frac{(80-40)}{10}=65+4=69 \mathrm{k} . \mathrm{g}$.
5. The effect of transforming original series on the mean.
a) If a constant k is added/ subtracted to/from every observation then the new mean will be the old mean $\pm k$ respectively.
b) If every observations are multiplied by a constant k then the new mean will be k^{*} old mean

Example:

1. The mean of n Tetracycline Capsules $X_{1}, X_{2}, \ldots, X n$ are known to be 12 gm . New set of capsules of another drug are obtained by the linear transformation $\mathrm{Y}_{\mathrm{i}}=2 \mathrm{X}_{\mathrm{i}}-0.5(\mathrm{i}=1,2, \ldots, \mathrm{n})$ then what will be the mean of the new set of capsules
Solutions:
NewMean $=2 *$ OldMean $-0.5=2 * 12-0.5=23.5$
2. The mean of a set of numbers is 500 .
a) If 10 is added to each of the numbers in the set, then what will be the mean of the new set?
b) If each of the numbers in the set are multiplied by -5 , then what will be the mean of the new set?
Solutions:
a). NewMean $=$ OldMean $+10=500+10=510$
b). NewMean $=-5 *$ OldMean $=-5 * 500=-2500$

Weighted Mean

When a proper importance is desired to be given to different data a weighted mean is appropriate.
Weights are assigned to each item in proportion to its relative importance.
∞ Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ be the value of items of a series and $\mathrm{W}_{1}, \mathrm{~W}_{2}, \ldots \mathrm{~W}_{\mathrm{n}}$ their corresponding weights, then the weighted mean denoted \bar{X}_{w} is defined as:

$$
\bar{X}_{w}=\frac{\sum_{i=1}^{n} X_{i} W_{i}}{\sum_{i=1}^{n} W_{i}}
$$

Example:
A student obtained the following percentage in an examination:
English 60, Biology 75, Mathematics 63, Physics 59, and chemistry 55.Find the students weighted arithmetic mean if weights $1,2,1,3,3$ respectively are allotted to the subjects.
Solutions:
$\bar{X}_{w}=\frac{\sum_{i=1}^{5} X_{i} W_{i}}{\sum_{i=1}^{5} W_{i}}=\frac{60 * 1+75 * 2+63 * 1+59 * 3+55 * 3}{1+2+1+3+3}=\frac{615}{10}=61.5$

Merits and Demerits of Arithmetic Mean

Merits:

- It is based on all observation.
- It is suitable for further mathematical treatment.
- It is stable average, i.e. it is not affected by fluctuations of sampling to some extent.
- It is easy to calculate and simple to understand.

Demerits:

- It is affected by extreme observations.
- It can not be used in the case of open end classes.
- It can not be determined by the method of inspection.
- It can not be used when dealing with qualitative characteristics, such as intelligence, honesty, beauty.

The Geometric Mean

© The geometric mean of a set of n observation is the $\mathrm{n}^{\text {th }}$ root of their product.
∞ The geometric mean of $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \ldots \mathrm{X}_{\mathrm{n}}$ is denoted by $\mathrm{G} . \mathrm{M}$ and given by:

$$
G . M=\sqrt[n]{X_{1} * X_{2} * \ldots * X_{n}}
$$

∞ Taking the logarithms of both sides

$$
\begin{aligned}
& \log (\mathbf{G} . \mathbf{M})=\log \left(\sqrt[n]{\mathbf{X}_{1} * \mathbf{X}_{2} * \ldots * \mathbf{X}_{\mathrm{n}}}\right)=\log \left(\mathbf{X}_{1} * \mathbf{X}_{2} * \ldots * \mathbf{X}_{\mathrm{n}}\right)^{\frac{1}{n}} \\
& \Rightarrow \log (\mathbf{G} . \mathbf{M})=\frac{1}{\mathbf{n}} \log \left(\mathbf{X}_{1} * \mathbf{X}_{2} * \ldots * \mathbf{X}_{\mathrm{n}}\right)=\frac{1}{\mathbf{n}}\left(\log \mathbf{X}_{1}+\log \mathbf{X}_{2}+\ldots+\log \mathbf{X}_{\mathrm{n}}\right) \\
& \Rightarrow \log (\mathbf{G} . \mathbf{M})=\frac{1}{\mathbf{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \log \mathbf{X}_{\mathrm{i}}
\end{aligned}
$$

\Rightarrow The logarithm of the G.M of a set of observation is the arithmetic mean of their logarithm.
\Rightarrow G.M $=$ Anti $\log \left(\frac{1}{n} \sum_{i=1}^{n} \log X_{i}\right)$

Example:

Find the G.M of the numbers $2,4,8$.

Solutions:

$$
\text { G. } M=\sqrt[n]{X_{1} * X_{2} * \ldots * X_{n}}=\sqrt[3]{2 * 4 * 8}=\sqrt[3]{64}=4
$$

Remark: The Geometric Mean is useful and appropriate for finding averages of ratios.

The Harmonic Mean

The harmonic mean of $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \ldots \mathrm{X}_{\mathrm{n}}$ is denoted by H.M and given by:

$$
H \cdot M=\frac{n}{\sum_{i=1}^{n} \frac{1}{X_{i}}} \text {, This is called simple harmonic mean. }
$$

In a case of frequency distribution:

$$
H . M=\frac{n}{\sum_{i=1}^{k} \frac{f_{i}}{X_{i}}}, n=\sum_{i=1}^{k} f_{i}
$$

If observations $X_{1}, X_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ have weights $\mathrm{W}_{1}, \mathrm{~W}_{2}, \ldots \mathrm{~W}_{\mathrm{n}}$ respectively, then their harmonic mean is given by

$$
H . M=\frac{\sum_{i=1}^{n} W_{i}}{\sum_{i=1}^{n} W_{i} / X_{i}} \text {, This is called Weighted Harmonic Mean. }
$$

Remark: The Harmonic Mean is useful and appropriate in finding average speeds and average rates.

Example: A cyclist pedals from his house to his college at speed of $10 \mathrm{~km} / \mathrm{hr}$ and back from the college to his house at $15 \mathrm{~km} / \mathrm{hr}$. Find the average speed.

Solution: Here the distance is constant
\rightarrow The simple H.M is appropriate for this problem.
$\mathrm{X}_{1}=10 \mathrm{~km} / \mathrm{hr} \quad \mathrm{X}_{2}=15 \mathrm{~km} / \mathrm{hr}$
$H . M=\frac{2}{\frac{1}{10}+\frac{1}{15}}=12 \mathrm{~km} / \mathrm{hr}$

The Mode

- Mode is a value which occurs most frequently in a set of values
- The mode may not exist and even if it does exist, it may not be unique.
- In case of discrete distribution the value having the maximum frequency is the modal value.

Examples:

1. Find the mode of $5,3,5,8,9$

Mode =5
2. Find the mode of $8,9,9,7,8,2$, and 5 .

It is a bimodal Data: 8 and 9
3. Find the mode of $4,12,3,6$, and 7 .

No mode for this data.

- The mode of a set of numbers $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ is usually denoted by \hat{X}

Mode for Grouped data

If data are given in the shape of continuous frequency distribution, the mode is defined as:

$$
\hat{X}=L_{m o}+w\left(\frac{\Delta_{1}}{\Delta_{1}+\Delta_{2}}\right)
$$

Where:

$$
\begin{aligned}
& \hat{X}=\text { the mod e of the distribution } \\
& w=\text { the size of the mod al class } \\
& \Delta_{1}=f_{m o}-f_{1} \\
& \Delta_{2}=f_{m o}-f_{2} \\
& f_{m o}=\text { frequency of the mod al class } \\
& f_{1}=\text { frequency of the class preceeding the mod al class } \\
& f_{2}=\text { frequency of the class following the mod al class }
\end{aligned}
$$

Note: The modal class is a class with the highest frequency.
Example: Following is the distribution of the size of certain farms selected at random from a district. Calculate the mode of the distribution.

Size of farms	No. of farms
$5-15$	8
$15-25$	12
$25-35$	17
$35-45$	29
$45-55$	31
$55-65$	5
$65-75$	3

Solutions:

$45-55$ is the \bmod al class, \sin ceit is a class with the highest frequency.
$L_{\text {mo }}=45$
$w=10$
$\Delta_{1}=f_{m o}-f_{1}=2$
$\Delta_{2}=f_{m o}-f_{2}=26$
$f_{\text {mo }}=31$
$f_{1}=29$
$f_{2}=5$

$$
\begin{aligned}
\Rightarrow \hat{\mathrm{X}} & =45+10\left(\frac{2}{2+26}\right) \\
& =45.71
\end{aligned}
$$

Merits and Demerits of Mode

Merits:

- It is not affected by extreme observations.
- Easy to calculate and simple to understand.
- It can be calculated for distribution with open end class

Demerits:

- It is not rigidly defined.
- It is not based on all observations
- It is not suitable for further mathematical treatment.
- It is not stable average, i.e. it is affected by fluctuations of sampling to some extent.
- Often its value is not unique.

Note: being the point of maximum density, mode is especially useful in finding the most popular size in studies relating to marketing, trade, business, and industry. It is the appropriate average to be used to find the ideal size.

The Median

- In a distribution, median is the value of the variable which divides it in to two equal halves.
- In an ordered series of data median is an observation lying exactly in the middle of the series. It is the middle most value in the sense that the number of values less than the median is equal to the number of values greater than it.
-If $X_{1}, X_{2}, \ldots X_{n}$ be the observations, then the numbers arranged in ascending order will be $\mathrm{X}_{[1]}, \mathrm{X}_{[2]}, \ldots \mathrm{X}_{[\mathrm{n}]}$, where $\mathrm{X}_{[\mathrm{i}]}$ is $\mathrm{i}^{\text {th }}$ smallest value.
$\Rightarrow \mathrm{X}_{[1]}<\mathrm{X}_{[2]}<\ldots<\mathrm{X}_{[\mathrm{n}]}$
-Median is denoted by \hat{X}.

Median for ungrouped data

$$
\tilde{X}= \begin{cases}X_{[(n+1) / 2]} & , \text { If } n \text { is odd } . \\ \frac{1}{2}\left(X_{[n / 2]}+X_{[(n / 2)+1]}\right), \text { If } n \text { is even }\end{cases}
$$

Example: Find the median of the following numbers.
a) $6,5,2,8,9,4$.
b) $2,1,8,3,5,8$.

Solutions:
a) First order the data: $2,4,5,6,8,9$

Here $\mathrm{n}=6$

$$
\begin{aligned}
\widetilde{\mathrm{X}} & =\frac{1}{2}\left(\mathrm{X}_{\left[\frac{\mathrm{n}]}{2}\right.}+\mathrm{X}_{\left[\frac{\mathrm{n}}{2}+1\right]}\right) \\
& =\frac{1}{2}\left(\mathrm{X}_{[3]}+\mathrm{X}_{[4]}\right) \\
& =\frac{1}{2}(5+6)=5.5
\end{aligned}
$$

b) Order the data :1, 2, 3, 5, 8

Here $\mathrm{n}=5$

$$
\begin{aligned}
\widetilde{\mathbf{X}} & =\mathbf{X}_{\left[\frac{n+1}{2}\right]} \\
& =\mathbf{X}_{[3]} \\
& =3
\end{aligned}
$$

Median for grouped data

If data are given in the shape of continuous frequency distribution, the median is defined

$$
\widetilde{X}=L_{\text {med }}+\frac{w}{f_{\text {med }}}\left(\frac{n}{2}-c\right)
$$

Where:

$$
L_{\text {med }}=\text { lower class boundary of the median class. }
$$

as: $\quad w=$ the size of the median class
$n=$ total number of observations.
$c=$ the cumulative frequency (less than type) preceeding the median class.
$f_{\text {med }}=$ thefrequency of the median class.

Remark:
The median class is the class with the smallest cumulative frequency (less than type) greater than or equal to $\frac{n}{2}$.
Example: Find the median of the following distribution.

Class	Frequency
$\mathbf{4 0 - 4 4}$	7
$45-49$	10
$\mathbf{5 0 - 5 4}$	22
$\mathbf{5 5 - 5 9}$	15
$\mathbf{6 0 - 6 4}$	12
$\mathbf{6 5 - 6 9}$	6
$70-74$	3

Solutions:

- First find the less than cumulative frequency.
- Identify the median class.
- Find median using formula.

Class	Frequency	Cumu.Freq(less than type)
$40-44$	7	7
$45-49$	10	17
$50-54$	22	39
$55-59$	15	54
$\mathbf{6 0 - 6 4}$	12	66
$65-69$	6	72
$70-74$	3	75

$\frac{\mathrm{n}}{2}=\frac{75}{2}=37.5$
39 is the first cumulative frequency to begreater than or equal to 37.5
$\Rightarrow 50-54$ is the median class.
$L_{\text {med }}=49.5, \quad \mathbf{w}=5$
$\mathrm{n}=75, \quad \mathrm{c}=17, \quad \mathrm{f}_{\text {med }}=22$
$\Rightarrow \widetilde{\mathbf{X}}=\mathrm{L}_{\text {med }}+\frac{\mathbf{w}}{\mathbf{f}_{\text {med }}}\left(\frac{\mathbf{n}}{\mathbf{2}}-\mathrm{c}\right)$
$=49.5+\frac{5}{22}(37.5-17)$
$=54.16$

Merits and Demerits of Median

Merits:

- Median is a positional average and hence not influenced by extreme observations.
- Can be calculated in the case of open end intervals.
- Median can be located even if the data are incomplete.

Demerits:

- It is not a good representative of data if the number of items is small.
- It is not amenable to further algebraic treatment.
- It is susceptible to sampling fluctuations.

Quantiles

When a distribution is arranged in order of magnitude of items, the median is the value of the middle term. Their measures that depend up on their positions in distribution quartiles, deciles, and percentiles are collectively called quantiles.

Quartiles:

- Quartiles are measures that divide the frequency distribution in to four equal parts.
- The value of the variables corresponding to these divisions are denoted Q_{1}, Q_{2}, and Q_{3} often called the first, the second and the third quartile respectively.
- Q_{1} is a value which has 25% items which are less than or equal to it. Similarly Q_{2} has 50% items with value less than or equal to it and Q_{3} has 75% items whose values are less than or equal to it.
- To find $\mathrm{Q}_{\mathrm{i}}(\mathrm{i}=1,2,3)$ we count $\frac{i N}{4}$ of the classes beginning from the lowest class.
- For grouped data: we have the following formula

$$
Q_{i}=L_{Q_{i}}+\frac{w}{f_{Q_{i}}}\left(\frac{i N}{4}-c\right), i=1,2,3
$$

Where:

$$
\begin{aligned}
& L_{Q_{i}}=\text { lower class boundary of the quartile class. } \\
& \begin{array}{l}
w=\text { thesize of the quartile class } \\
N=\text { total number of observations. } \\
c=\text { the cumulative frequency(less than type) preceeding the quartile class. } \\
f_{Q_{i}}=\text { thefrequencyof thequartile class. }
\end{array}
\end{aligned}
$$

Remark:

The quartile class (class containing Q_{i}) is the class with the smallest cumulative frequency (less than type) greater than or equal to $\frac{i N}{4}$.

Deciles:

- Deciles are measures that divide the frequency distribution in to ten equal parts.
- The values of the variables corresponding to these divisions are denoted $\mathrm{D}_{1}, \mathrm{D}_{2}, . . \mathrm{D}_{9}$ often called the first, the second,..., the ninth deciles respectively.
- To find $\mathrm{D}_{\mathrm{i}}(\mathrm{i}=1,2, . .9)$ we count $\frac{i N}{10}$ of the classes beginning from the lowest class.
- For grouped data: we have the following formula
$D_{i}=L_{D_{i}}+\frac{w}{f_{D_{i}}}\left(\frac{i N}{10}-c\right) \quad, i=1,2, \ldots, 9$
Where:
$L_{D_{i}}=$ lower class boundary of the decile class.
$w=$ the size of the decileclass
$N=$ total number of observations.
$c=$ the cumulative frequency (less than type) preceeding the decile class.
$f_{D_{i}}=$ thefrequency of the decile class.

Remark:

The deciles class (class containing D_{i}) is the class with the smallest cumulative frequency (less than type) greater than or equal to $\frac{i N}{10}$.

Percentiles:

- Percentiles are measures that divide the frequency distribution in to hundred equal parts.
- The values of the variables corresponding to these divisions are denoted $\mathrm{P}_{1}, \mathrm{P}_{2}, . . \mathrm{P}_{99}$ often called the first, the second,..., the ninety-ninth percentile respectively.
- To find $\mathrm{P}_{\mathrm{i}}(\mathrm{i}=1,2, . .99)$ we count $\frac{i N}{100}$ of the classes beginning from the lowest class.
- For grouped data: we have the following formula

$$
P_{i}=L_{P_{i}}+\frac{w}{f_{P_{i}}}\left(\frac{i N}{100}-c\right) \quad, i=1,2, \ldots, 99
$$

Where:

$$
\begin{aligned}
& L_{P_{i}}=\text { lower class boundary of the percentile class. } \\
& w=\text { the size of the percentile class } \\
& N=\text { total number of observations. } \\
& c=\text { the cumulative frequency (less than type) preceeding the percentile class. } \\
& f_{P_{i}}=\text { thefrequency of the percentile class. }
\end{aligned}
$$

Remark:

The percentile class (class containing P_{i}) is the class with the small cumulative frequency
(less than type) greater than or equal to $\frac{i N}{100}$.
Example: Considering the following distribution
Calculate:
a) All quartiles.
b) The $7^{\text {th }}$ decile.
c) The $90^{\text {th }}$ percentile.

Values	Frequency
$140-150$	17
$150-160$	29
$160-170$	42
$170-180$	72
$180-190$	84
$190-200$	107
$200-210$	49
$210-220$	34
$220-230$	31
$230-240$	16
$240-250$	12

Solutions:

- First find the less than cumulative frequency.
- Use the formula to calculate the required quantile.

Values Frequency Cum.Freq(less than type)
$\begin{array}{lll}140-150 & 17 & 17\end{array}$
150-160 $29 \quad 46$
160-170 42 88
170-180 $72 \quad 160$
180-190 $84 \quad 244$
190-200 $107 \quad 351$
200-210 $49 \quad 400$
210-220 $34 \quad 434$
220-230 $31 \quad 465$
230-240 $16 \quad 481$
240-250 $12 \quad 493$
a) Quartiles:
i. $\quad \mathrm{Q}_{1}$

- determine the class containing the first quartile.
$\frac{\mathrm{N}}{4}=123.25$
$\Rightarrow 170-180$ is the class containing the first quartile.

$$
\begin{aligned}
& \qquad L_{Q_{1}}=170, \quad w=10 \\
& N=493, \quad c=88, \quad f_{Q_{1}}=72 \\
& \Rightarrow Q_{1}=L_{Q_{1}}+\frac{w}{f_{Q_{1}}}\left(\frac{N}{4}-c\right) \\
& =170+\frac{10}{72}(123.25-88) \\
& =\underline{\underline{174.90}} \\
& \text { ii. } \quad Q_{Q_{2}} \\
& - \text { determine the class containing the second quartile. } \\
& \frac{2 * N}{4}=246.5 \\
& \Rightarrow 190-200 \quad i s \text { the class containing the sec } \text { ond quartile. } . \\
& \quad L_{Q_{2}}=190, \quad w=10 \\
& N=493, \quad c=244, \quad f_{Q_{2}}=107 \\
& \Rightarrow Q_{2}= \\
& =L_{Q_{2}}+\frac{w}{f_{Q_{2}}}\left(\frac{2 * N}{4}-c\right) \\
& =170+\frac{10}{72}(246.5-244) \\
& =\underline{\underline{190.23}}
\end{aligned}
$$

iii. Q_{3}

- determine the class containing the third quartile.

$$
\frac{3 * N}{4}=369.75
$$

$\Rightarrow 200-210$ is the class containing the third quartile.

$$
\begin{array}{ll}
L_{Q_{3}} & =200, \\
N=493, & w=10 \\
N=351, \quad f_{Q_{3}}=49
\end{array}
$$

$$
\begin{aligned}
\Rightarrow Q_{3} & =L_{Q_{3}}+\frac{w}{f_{Q_{3}}}\left(\frac{3^{* N}}{4}-c\right) \\
& =200+\frac{10}{49}(369.75-351) \\
& =\underline{203.83}
\end{aligned}
$$

b) D_{7}

- determine the class containing the $7^{\text {th }}$ decile.
$\frac{7 * N}{10}=345.1$
$\Rightarrow 190-200$ is the class containing the seventh decile.
$L_{D_{7}}=190, \quad w=10$
$N=493, \quad c=244, \quad f_{D_{7}}=107$
$\Rightarrow D_{7}=L_{D_{7}}+\frac{w}{f_{D_{7}}}\left(\frac{7 * N}{10}-c\right)$
$=190+\frac{10}{107}(345.1-244)$
$=\underline{\underline{199.45}}$
c) P_{90}
- determine the class containing the $90^{\text {th }}$ percentile.
$\frac{90 * N}{100}=443.7$
$\Rightarrow 220-230$ is the class containing the $90^{\text {th }}$ percentile.
$L_{P_{w}}=220, \quad w=10$
$N=493, \quad c=434, \quad f_{P_{0}}=3107$
$\Rightarrow P_{90}=L_{P_{90}}+\frac{w}{f_{P_{90}}}\left(\frac{90 * N}{100}-c\right)$
$=220+\frac{10}{31}(443.7-434)$
$=\underline{\underline{223.13}}$

