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Part I
Introduction and Prior Art



Chapter 1
Timing Closure for Multi-Million-Gate
Integrated Circuits

Sophisticated integrated circuits (ICs) can be classified as processors (CPUs),
application-specific integrated circuits (ASICs) or systems-on-a-chip (SoCs), which
embed CPUs and intellectual property blocks into ASICs. Mass-produced on silicon
chips, these circuits fuel consumer and industrial electronics, maintain national and
international computer networks, coordinate transportation and power grids, and
ensure the competitiveness of military systems. The design of new integrated cir-
cuits requires sophisticated optimization algorithms, software and methodologies—
collectively called Electronic Design Automation (EDA)—which leverage synergies
between Computer Science, Computer Engineering and Electrical Engineering. From
the algorithmic perspective, a number of NP-hard problems need to be solved quickly
in practice, while their instances grow year after year with Moore’s law. From the
software perspective, multiple optimizations must operate on sophisticated design
databases and coordinate to ensure consistent results over a large variety of chip
designs. Electrical-engineering aspects of EDA emphasize physical characteristics
of integrated circuits, such as speed-of-light limitations observed in large, high-speed
chips manufactured at sub-65 nm technology nodes.

1.1 Challenges in Physical Synthesis

State-of-the-art automated IC design flows begin at a planning stage with rough
estimates of chip performance and cost. During this stage, a block-level layout or
floorplan of the chip is determined. Next, designers describe the function of the chip
using a hardware description language (HDL), such as Verilog or VHDL. A logic
synthesis tool is run on the HDL code to create a mapped netlist that implements the
design in the target standard-cell library. Timing analysis can then calculate crude,
optimistic estimates of chip performance, and the HDL code can be improved until
it passes this sanity check.

D. A. Papa and I. L. Markov, Multi-Objective Optimization in Physical 3
Synthesis of Integrated Circuits, Lecture Notes in Electrical Engineering 166,
DOI: 10.1007/978-1-4614-1356-1_1, © Springer Science+Business Media New York 2013
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The physical synthesis stage begins after logic synthesis produces a gate-level
netlist that meets agreed performance targets under optimistic timing conditions.
A physical synthesis tool reads the netlist, creates an overlap-free placement of
gates, and proceeds to optimize circuit performance. During physical synthesis, the
availability of gate locations enables more accurate interconnect-delay modeling in
timing analysis. Common physical synthesis operations include inserting or remov-
ing buffers and inverters, resynthesizing small windows, increasing and decreasing
gate sizes, as well as relocating gates. When a design meets its performance con-
straints, it is said to have closed on timing. When physical synthesis is unable to
achieve timing closure, designers must study the tool’s logs and the optimized cir-
cuit then manually generate additional constraints to guide the optimization process.
More substantial timing-closure difficulties can cause an expensive return to the
logic synthesis stage, necessitate floorplanning changes or even require changes in
the HDL code.

Designs that have passed timing checks during physical synthesis, transition into
the routing stage, where more accurate timing models are available and new timing-
closure problems may arise. Failure to route or meet timing constraints at this stage
can again cause a return to earlier stages and further iterations. Finally, post-routing
optimizations address any timing-closure issues that remain after routing, such as
changing wire layers to reduce variability, moving detailed routes to reduce cross-
talk, or adding redundant vias to improve manufacturing yield.
Challenges Aggressive scaling of transistor dimensions according to Moore’s Law
has historically driven performance improvements of CMOS-based integrated cir-
cuits (ICs). This trend has been so successful that now the greater part of critical
path delay is no longer in the transistors that compose logic gates—delay through
signal nets and repeaters now dominates [1]. As a result, logic synthesis can no
longer estimate design performance effectively without physical information. A rela-
tively recent solution, physical synthesis optimization algorithms employ a complex,
multi-phase process that combines netlist optimization, placement, routing and tim-
ing analysis [2–4]. Physical synthesis optimization algorithms are primarily designed
to achieve timing closure, but there are other important objectives such as reducing
wirelength, area and power consumption while maintaining routability.

Another consequence of technology scaling trends gives IC designers more tran-
sistors at their disposal, which leads to increased design size and complexity. Today’s
ICs have tens of millions of gates and each design has its own performance require-
ments, which include reducing power consumption, satisfying area bounds and
increasing manufacturing yield. A physical synthesis tool must accommodate these
requirements as well as ensure that basic physical constraints are met, such as pro-
ducing a legal, routable placement. As a result, throughout the physical synthesis
flow multiple objectives are always present and must be optimized simultaneously.

Several prior publications formulate non-linear, multi-objective optimization
problems and solve them with some success [5], but these algorithms typically
exhibit super-linear runtime complexity and do not scale well enough to optimize
an entire modern VLSI design at once. Other approaches focus on a handful of
gates, and apply more time-consuming algorithms to relocate several gates at once,
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increase drive strength, or insert buffers to improve performance [2, 6, 7]. However,
these approaches are limited in scope and only near-linear-time algorithms such as
wirelength-driven placement can be applied at a truly global scope. For example, the
scope of timing-driven gate relocation is typically limited to finding new positions for
a handful of gates so as to improve the delay of incident paths.1 Few techniques are
available between the global and local scopes, but resynthesis is a notable exception.
While logic synthesis techniques are applied to more than a few gates at once, the
delay estimations considered at that scale do not typically utilize all of the physical
information available and are therefore less accurate [8]. Consequently, in state-of-
the-art physical synthesis tools there is a large gap between the scope of accurate,
local transformations and coarse, global transformations.

More recently, a trend toward integration of such point optimizations as
repowering, buffering, and timing-driven detailed placement has gained strength.
Increasing the scope of such compound transformations to close the aforemen-
tioned gap while maintaining acceptable runtime and accuracy remains a challenging
research problem. It is unclear a priori if established techniques based on static timing
analysis and single-objective optimizations remain sufficient in the context of phys-
ical synthesis for sub-45 nm ICs. To this end, Chap. 9 reports successful experiments
with 32 nm and 22 nm designs.

1.2 Our Contributions

In this book, we make several contributions that advance the capabilities and strength
of modern software tools for physical synthesis, with the ultimate goal to improve the
quality of leading-edge semiconductor products. In so doing, we broaden the scope
of physical synthesis optimization in two distinct ways: (i) we integrate related
transformations to break circular dependencies and find optimization synergies and
(i i) we increase the number of objects that can be jointly optimized to escape local
minima.

Integrated transformations in this book are developed by first considering a suc-
cessful optimization and identifying obstacles to its further application. We then
derive methods to overcome those obstacles that call for integration. Integration
is achieved through mapping multiple operations to rigorous mathematical opti-
mization problems and solving them simultaneously. We achieve scalability in our
techniques by leveraging analytical delay models and restricting consideration to
carefully selected regions of the chip. In particular, we make extensive use of a linear
interconnect-delay model that accounts for the impact of subsequent repeated inser-
tion. We also demonstrate that bottom-up clustering and top-down partitioning can

1 This is in contrast to timing-driven placement, which in previous literature usually refers to the
application of net weights during placement that are based on timing information. Here we are
referring to the detailed placement of a small number of gates while interacting incrementally with
a timing analysis engine.

http://dx.doi.org/10.1007/978-1-4614-1356-1_9
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be used to select small regions of large circuits on which our optimizations have a
large impact.

Simultaneous placement and buffering

At advanced technology nodes multiple cycles are required for signals to cross the
chip, making latch placement critical to timing closure. The problem is intertwined
with buffer insertion because the placement of such latches depends on the location
of buffers on adjacent interconnect. In Chap. 3 we broaden the scope of timing-driven
latch placement by integrating it with buffer insertion. We enhance computational
scalability by employing analytical delay models and optimizing delay using state-
of-the-art linear programming software.

Bounded transactional timing analysis

As local circuit optimizations become increasingly multi-objective in modern physi-
cal synthesis flows, a tighter interaction between optimization algorithms and timing
analysis is necessary. Such optimizations must employ heuristics to search for good
implementations of subcircuits, but many main stream timing analysis tools offer no
support for retracting circuit modifications. In Chap. 4 we describe an extension to
traditional static timing analysis that records a history of incremental network delay
computations in a stack-based data structure, so that the timing can be returned to
a previously-known state upon retraction of a circuit modification. It also explicitly
bounds the scope of propagation to a local window in anticipation of retraction. These
extensions form a necessary infrastructure for modern physical synthesis optimiza-
tions and greatly improve the performance of static timing analysis for local circuit
modifications in the presence of retraction.

Simultaneous placement and gate sizing in a discrete domain

Gate locations that optimize timing depend on boundary timing conditions in the
local subcircuit. Similarly, the optimal drive strength of a gate depends on the input
slew rate and output capacitance. But these two problems are related because the
output capacitance of a gate depends upon the length of interconnect it drives. In
Chap. 5 we describe our pairwise delay model that allows us to analyze the impact
of these optimizations simultaneously. Integrating gate sizing as well as threshold
voltage assignment with timing-driven detailed placement allows our algorithm to
explore a broader range of solutions and ultimately improve the most critical paths
in the circuit.

http://dx.doi.org/10.1007/978-1-4614-1356-1_3
http://dx.doi.org/10.1007/978-1-4614-1356-1_4
http://dx.doi.org/10.1007/978-1-4614-1356-1_5


1.2 Our Contributions 7

Timing-driven gate cloning for interconnect optimization

In a complete physical synthesis flow, optimization transformations that can improve
the timing on critical paths that are already well-optimized by a series of powerful
transformations (timing driven placement, buffering and gate sizing) are invaluable.
We develop an innovative gate cloning technique that integrates placement and buffer
insertion to improve interconnect delay on critical paths during physical synthesis.
Our polynomial-time algorithm simultaneously finds locations for the original and
copied gates and assigns sinks to one of the copies so as to minimize interconnect
delay. Our algorithm leverages analytical delay models developed in Chap. 3 and
thereby accounts for the impact of future buffer insertion.

Performance-driven retiming, placement, buffering and logic cloning

One of the most common situations in which the latch placement techniques of
Chap. 3 are insufficient is a critical path wherein moving a gate immediately next to
its most-critical input is the optimal solution but does not meet timing constraints.
For example, when relocating the latch adjacent to its only input still violates a
setup time constraint, placement is insufficient to further improve timing. In order to
remove this barrier, we develop SPIRE, a new physical synthesis transformation that
integrates retiming with gate relocation and buffer insertion. To broaden the scope of
retiming, we extend this transformation with gate duplication designed to create new
retiming opportunities. We demonstrate the need for this transformation by example,
motivating the integration of all considered techniques to meet timing constraints.

Broadening the scope of physical-synthesis optimization using partitioning

The optimizations developed in this book extend physical-synthesis transformations
beyond a handful of gates. Unfortunately, the computational complexity of such
optimizations makes them too inefficient to apply to entire netlists of large ASIC
and SoC designs. Therefore, we develop a technique to identify appropriately-sized
subsets of large designs on which our transformations can be applied efficiently.
Our method utilizes existing hypergraph partitioning algorithms to divide the circuit
in a top-down fashion until the subsets reach the desired size. We show that this
technique can work in practice and demonstrate a run-time solution quality trade-off
for SPIRE, the transformation developed in this book that can optimize subcircuits
with thousands of standard cells.

Co-optimization of latches and clock networks in large-block physical synthesis

Optimizations developed in this book affect nearly every stage of a typical indus-
trial state-of-the-art physical-synthesis flow. In order to obtain synergies between

http://dx.doi.org/10.1007/978-1-4614-1356-1_3
http://dx.doi.org/10.1007/978-1-4614-1356-1_3
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them, we explore the infrastructure for physical synthesis used by IBM for large
commercial microprocessor designs. We focus our attention on a very challenging
high-performance design style called large block synthesis (LBS). In such designs
the placement of the latches is particularly critical to the performance of the clock
network, which in turn affects timing and power. Our research uncovers deficiencies
in the state-of-the-art physical synthesis flow vis-à-vis latch placement that result
in timing disruptions and hamper design closure. We introduce a next-generation
physical synthesis methodology that seeks a more graceful timing-closure process.
This is accomplished through careful latch placement and clock-network routing
to (i) avoid timing degradation where possible, and (i i) immediately recover from
unavoidable timing disruptions.

1.3 Organization of the Book

The rest of the book is organized as follows.

• Part I introduces our work in this chapter, and outlines relevant background on
physical synthesis in Chap. 2.

• Part II covers local transformations and necessary timing analysis techniques for
physical synthesis. Chapter 3 describes a method for simultaneous placement of
sequential gates and buffering of incident interconnect. Chapter 4 describes a tim-
ing analysis technique that is necessary for the efficient implementation of com-
pound transformations such as the one described in Chap. 5. Chapter 5 describes
an abstract model for circuit timing under movement and repowering that can be
solved optimally using branch and bound.

• Using the timing models developed in Part II, Part III develops new transformations
that significantly extend the scope of existing physical synthesis optimization.
Chapter 6 describes a new physical synthesis optimization for gate cloning that
improves worst slack by estimating interconnect delay using the linear delay model
described in Chap. 3. Chapter 7 integrates retiming, placement, cloning and static
timing analysis into a unified mixed integer-linear program (MILP) that scales to
circuits over 10 times larger than those presented in Chaps. 3 and 5. We apply
the techniques in these chapters to larger circuits using partitioning in Chap. 8. In
Chap. 9, we combine these techniques into a single methodology for application
to large, high-performance designs.
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Chapter 2
State of the Art in Physical Synthesis

Physical synthesis is a multi-phase optimization process performed during IC design
to achieve timing closure, though area, routability, power and yield must be opti-
mized as well. Individual steps in physical synthesis, called transformations are
invoked by dynamic controller functions in complex sequences called design flows
(EDA flows). Transformations rely on abstract delay models to analyze timing
requirements and guide optimization, as illustrated in Sect. 2.3. Finally, we describe
recent evolution of requirements for physical synthesis and discuss current trends.

2.1 Progression of a Modern Physical-Synthesis Flow

The physical design of a semiconductor chip begins when the design’s architect
formalizes plans for different components. This plan may include partitioning the
functionality into hierarchical blocks, setting performance constraints, or counting
the occurrences of particular functional units such as memories. Designers then write
hardware description language (HDL) code to describe the behavior of the chip in
a manner that can be synthesized in hardware. Logic synthesis is responsible for
translating the HDL code into a gate-level netlist for the next stage. With input from
the early planning stage and the netlist produced by logic synthesis, floorplanning
begins to define the area of the chip and embed the circuit blocks into those physical
boundaries. Figure 2.1 illustrates this process in a flow chart. After floorplanning, the
design enters the physical synthesis phase, beginning with global placement. Recent
publications [1, 2] describe the major phases of physical synthesis which can be
briefly summarized as follows.

1. Global placement Computes non-overlapping physical locations for gates. Typ-
ically optimizes half-perimeter wirelength (HPWL) or weighted HPWL. During
this phase, usually some amount of detailed placement is done, and legalization
is called to ensure a legal optimization result.

D. A. Papa and I. L. Markov, Multi-Objective Optimization in Physical 11
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Fig. 2.1 Major stages of physical design include floorplanning and logic synthesis, followed by
physical synthesis beginning with global placement, and finishing with routing and design for
manufacturing. Physical synthesis can be iterated with modified parameters to improve the result,
however, this flow does not always converge to an acceptable solution

2. Electrical correction Fixes capacitance and slew rate violations using gate sizing
and net buffering.

3. Legalization An incremental placement capability that removes overlaps caused
by circuit optimization with minimal disturbance to placement and timing.

4. Timing analysis Assesses the speed of the design and determines if performance
targets are met. Among other metrics, this phase determines the slack of every
path in the circuit, which is the difference between the clock period and how long
it takes a signal to traverse the path.

5. Detailed placement Moves gates to further reduce wirelength and improve tim-
ing. In this phase it is possible to do timing-driven detailed placement wherein
timing information is explicitly considered when optimizing gate placements.

6. Critical-path optimization At this point one can identify most-critical paths
and can invoke a variety of techniques to increase the slack of the worst timing
violations. These techniques include buffering, gate sizing, logic restructuring,
etc. [3]. Figure 2.2 illustrates critical path optimization with an arrow pushing the
worst paths toward increasing slack.

7. Slack-histogram compression When improvements on most-critical paths are
no longer possible, one can improve the other paths that are less critical, but
still violate timing constraints. The goal is to compress the slack histogram by
reducing the total number of paths that fail to meet timing constraints. Figure 2.2
illustrates slack-histogram compression by a series of arrows pushing the his-
togram downward.
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Fig. 2.2 During physical
synthesis refinement, opti-
mization is first applied to
most-critical paths, then
different optimizations are
used to reduce the total
number of critical paths
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The flow can be repeated with net weighting and timing-driven placement for the
first stage to potentially improve results.

With any particular flow of optimizations, at a high level, one can think of physical
synthesis as progressing with increasing detail and accuracy over time, but with
reduced scope and magnitude of change, as shown in Fig. 2.3. For example, during
global placement, physical synthesis changes the location of all movable cells in a
design but usually optimizes weighted wirelength, which is a crude model of circuit
timing. Later in physical synthesis, buffers may be inserted to optimize a long wire
using an Elmore interconnect-delay model with Steiner-tree estimates. As the design
starts to converge, one can apply fine-grained buffering along actual detailed routes
using a statistical timing model.

After physical synthesis, clock networks are formed by inserting clock buffers
and routing clock nets. Next, signal nets are routed, first by global routing then by
detailed routing. After routing, some optimization is usually necessary to fix any
timing degradations. Finally, the design is optimized for the manufacturing process
to increase the yield of functional chips.

2.2 The Controller/Transformation Approach

With a trend toward larger fractions of critical path delay in interconnect rather
than in gates, it is essential for logic synthesis to be aware of physical information.
A recent development, physical synthesis optimization flows address this challenge
with an approach that integrates logic synthesis and physical design optimizations
into a single tool.

Physical synthesis tools read a circuit that satisfies timing constraints assuming
optimistic timing estimates, based on zero wire load models. The first step is to
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Fig. 2.3 In physical synthesis flows, the amount of change to the design is large in early phases and
reduces quickly in later phases. Timing models become more accurate as the flow progresses. This
trade-off is necessary because using the highest accuracy of analysis while making large changes
to the design is too expensive. a An ideal physical synthesis flow that gradually reduces the size
of changes as it increases accuracy. b A more realistic example flow with two global placement
steps that move every gate in the design, and refinement stages that apply local optimizations to
one object at a time. Accuracy is increased in discrete steps

run global wire-length driven placement, followed by the other steps introduced in
Sect. 2.1. In each of the remaining phases, local transformations are applied to the
netlist. Transformations such as buffer insertion, gate resizing, and detailed placement
are applied to improve performance metrics such as timing, power consumption
and yield. The decision as to which part of the netlist will be optimized is left to
a controller, which has a focus such as the most critical nets, all critical nets, or
non-critical gates. As the controller proceeds, it can call a timing analysis tool for
incremental updates to provide the transformation with fresh timing data to guide its
progress. In this way one can target optimizations to problem areas and produce a
flow which converges on a well optimized design.

2.3 Circuit Delay Estimation

Historically, wirelength was used as a coarse metric for optimizing timing and
routability during layout synthesis. Efficient algorithms have been developed to com-
pute and optimize many different wirelength calculations, including half-perimeter
wirelength (HPWL), quadratic net length, rectilinear Steiner-minimal tree (RSMT)
length [4–6]. At technology nodes larger than 250 nm interconnect delay was a negli-
gible fraction of total path delay, and merely minimizing wirelength was suitable for
optimizing design performance, but this has changed. It is now necessary to consider
the delay of connected wires when choosing the location of a gate. Similarly, when
estimating the delay of a gate, one must consider the capacitance of nets it drives in
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addition to the gates, as well as the slew rate of the input signals. Various models are
used to abstract these delay calculations into an analytical form so that they can be
efficiently optimized. We discuss several such abstractions in the following sections.

Elmore Delay

Elmore delay is a simple and efficient way to find the delay through a net. To compute
Elmore delay of a net proceed from the sinks of a net toward the root, summing the
resistance of the current segment times the downstream capacitance. This approach
assumes the net is has a tree topology, which is true for virtually every signal net in
digital logic. An RSMT of a net will be computed for the purposes of finding the
Elmore delay through the net. This model is known to have some pessimism, but
provides suitable accuracy to guide optimization in the sense that reducing Elmore
delay usually results in a reduction in actual delay [7]. For example, this model
could be used to efficiently estimate the delay impact of moving a gate during detailed
placement. More recent works have improved upon the accuracy of the Elmore delay
model. The authors of [8] improve the accuracy of Elmore delay by fitting curves
to HSpice data with technology-specific parameters while maintaining a closed-
form equation for delay. In addition, several technology-independent, closed-form
equations for computing RC network delay were shown to have a low error while
being relatively easy to implement [9, 10].

Buffered Path Delay

Buffering has become indispensable in timing closure and cannot be ignored during
interconnect delay estimation [11–13]. Therefore to calculate new locations of mov-
able gates, one must adopt a buffering-aware interconnect delay model that accounts
for future buffers. We found that the linear delay model described in [13, 14] is
suited to physical synthesis applications. In this model, the delay along an optimally
buffered interconnect is

delay(L) = L(RbC + RCb + √
2RbCb RC) (2.1)

where L is the length of a 2-pin buffered net, Rb and Cb is the intrinsic resistance
and input capacitance of buffers and gates while R and C are unit wire resistance
and capacitance respectively. This model is described in more detail in Chap. 3.

Empirical results in [13] indicate that Eq. 2.1 is accurate up to 0.5% when at least
one buffer is inserted along the net.

Slew Rate Propagation

One of the most costly computations in timing analysis is propagating the slew rate of
a signal through the circuit. However, changes in slew rate typically do not propagate

http://dx.doi.org/10.1007/978-1-4614-1356-1_3
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beyond a small number of logic levels. In order to mitigate the runtime expense of
accurate slew rate computation, an abstraction called pin-slew mode can be used.
In em path-slew mode, all slew rates are propagated through all wires and logic to
compute the slew rate at a given point in the circuit. In pin-slew mode, the slew rate
at a given point is computed by looking at the previous logic stage, and asserting
a default slew rate on its input signals. The slew rate is then propagated through
that gate and its output net to find the slew rate at the given point. The default slew
rate may be provided as input, or computed as the average slew rate throughout the
circuit. Leveraging pin-slew mode, one can create models which are accurate, but
also smaller in scope.

2.4 Current Trends in Physical Synthesis

Physical synthesis is transitioning from a novelty into a mature and highly-integrated
capability required of industrial EDA flows. During this transition, the challenges
in physical synthesis and greatest possibilities for improvement correspond to the
following key trends.

Increased Interaction with Timing

With advancing technology nodes, increasingly aggressive and complex transfor-
mations are prone to cause inadvertent timing degradations. An increasing number
of transformations have been developed that are aware of their impact on timing,
congestion, wirelength, and other design performance metrics, and are capable of
reversing actions that do unwanted harm.

Transformations already exist in state-of-the-art physical synthesis flows to opti-
mize the performance of a handful of gates and nets under several known timing
models, including black-box models and exhaustive search. One consequence of this
level of maturity is that it is not likely, for example, that adding a new algorithm to
repower one gate at a time while considering its neighbors’ timing will improve the
results of a modern physical synthesis flow. However, improvement is possible by
increasing the scope or accuracy of such optimizations. This includes increasing the
number of objects optimized simultaneously, increasing the number of objectives
in the optimization, and improving the delay models used. Making these extensions
affordable by decreasing their computational complexity is a key challenge addressed
in this work.

Early, Accurate Analysis

Nearly every physical design objective entails a chicken-and-egg problem between
analysis and optimization. For example, placement must choose non-overlapping
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locations for gates such that worst slack is optimized but accurate static timing
analysis (STA) requires the locations of gates to compute timing slack. This pattern
repeats with such top-tier physical design metrics as timing, power, routability and
yield. Traditionally, iteration-based flows have been used to break the chicken-and-
egg cycle, leveraging the previous analysis to drive the subsequent optimization.
This approach consumes considerable runtime, requires consistency of results from
algorithms and is not guaranteed to converge to an acceptable solution. Instead,
iteration cycles can be reduced or eliminated by creating fast analysis tools that
accurately estimate key performance metrics during optimization and can quickly
adjust estimates after incremental changes. Such an approach presumes a high level
of integration between analysis and optimization tools, which requires a carefully
designed software infrastructure. Improving the accuracy of such predictors and esti-
mators as well as creating new ones presents a challenge in physical synthesis. Our
work leverages accurate analysis techniques in new physical synthesis transforma-
tions that perform more comprehensive optimization of large, complex designs than
existing transformations.

Large, Complex Designs

Moore’s law describes the periodic doubling of transistor density in integrated cir-
cuits due to rapid improvements in manufacturing technology. At each new technol-
ogy node, there are more transistors available in the same chip area and individual
transistors are smaller than before. As of the writing of this book, 32 nm CPUs are
widespread, 32 nm ICs are commercially available, and 22 nm designs are in early
stages of development. New challenges stem from these trends as semiconductor
technology approaches fundamental limits to circuit operation.

Some modern ICs contain over a billion transistors. Designing such a complex
system presents enormous challenges in physical design. Perhaps the most obvious
challenge is the overbearing amount of design effort required to complete such a
design. Improvements in productivity due to automation have not kept pace with
the rate of growth in the number of transistors on-chip. Hence, this productivity gap
is a growing problem—fundamental improvements in automation or an increasing
number of engineers will be required to complete the largest designs in future tech-
nologies. Our research will develop new transformations and new automation to
improve the productivity of designers and address this key bottleneck.
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Chapter 3
Buffer Insertion During Timing-Driven
Placement

Physical synthesis tools are responsible for achieving timing closure. Starting with
130 nm designs, multiple cycles are required to cross the chip, making latch place-
ment critical to success. We present a new physical synthesis optimization for latch
placement called Rip up and move boxes with linear evaluation (RUMBLE) that
uses a linear timing model to optimize timing by simultaneously re-placing multiple
gates. RUMBLE runs incrementally and in conjunction with static timing analysis to
improve the timing for critical paths that have already been optimized by placement,
gate sizing, and buffering. The contributions in this chapter improve the detailed
placement and critical path optimization stages of physical synthesis as illustrated in
Fig. 3.1.

3.1 Introduction

Physical synthesis is a complex multi-phase process primarily designed to achieve
timing closure, though power, area, yield and routability also need to be optimized.
Starting with 130 nm designs, signals can no longer cross the chip in a single cycle,
which means that pipeline latches need to be introduced to create multi-cycle paths.
This problem becomes more pronounced for the 90-, 65- and 45-nanometer nodes,
where interconnect delay increasingly dominates gate delay [1]. Indeed, for high-
performance ASIC scaling trends, the number of pipeline latches increases by 2.9×
at each technology generation, accounting for as much as 10 % of the area of 90 nm
designs [2] and as many as 18 % of the gates in 32 nm designs [3]. Hence, the proper
placement of pipeline latches is a growing problem for timing closure.

The choice of computational techniques for latch placement depends on where
this optimization is invoked in a physical synthesis flow. In Chap. 2 we described the
major phases of physical synthesis: global placement, electrical correction, legaliza-
tion, timing analysis, detailed placement, critical-path optimization and compression,
which may be iterated with timing-driven placement to improve solution quality.

D. A. Papa and I. L. Markov, Multi-Objective Optimization in Physical 21
Synthesis of Integrated Circuits, Lecture Notes in Electrical Engineering 166,
DOI: 10.1007/978-1-4614-1356-1_3, © Springer Science+Business Media New York 2013
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Fig. 3.1 The contributions in this chapter improve the state of the art in critical path optimization
and timing-driven detailed placement

We argue that pipeline latches should be placed only after some amount of timing
analysis and optimization.

Figure 3.2a–d illustrates the complications of using existing global placement
techniques to solve the latch placement problem for a single two-pin net. Assume
that, for all four figures, the source A and sink B are fixed in their respective locations,
and that global placement must find the correct location for the latch. This example
is representative of situations in which a fixed block in one corner of the chip must
communicate with a block in the opposite corner, but signal delay inevitably exceeds
a single clock period. All four placements have equal wirelength, therefore unless
global placement is timing driven, the placement of the latch between A and B is
arbitrary. Consider the following scenarios:

• Suppose the placement tool chooses (a), which is the worst location for the latch.
In this case, the latch is so far from B that the timing constraint at B cannot be met.
This results in a slack on the input net (n1) of +5 ns and a slack on the output net
(n2) of −5 ns (even after optimal buffering).1

• With a second iteration of physical synthesis, timing-driven placement could try
to optimize the location of this latch by adding net weights. Any net weighting
scheme will assign a higher weight to net n2 than n1, resulting in a placement
where the latch is very close to B, as in (b). While the timing is improved, there
now is a slack violation on the other side of the latch with −3 ns of slack on n1
and +3 ns on n2.

1 The nets in each scenario could include buffers without changing the trends discussed.
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Fig. 3.2 The placement of a pipeline latch impacts the slacks of both input and output paths.
A wirelength objective does not capture the timing effects of this situation, and with equal net
weights a placer may choose the configuration in a. In trying to fix this path, timing-driven net
weighting would increase the weight on net n2, and placement would then choose the configuration
in b. Placing the latch in the center as in c is also not an optimal approach. There may be only a
single optimal location as shown in d

• A global or detailed placer could use a quadratic wirelength objective to handle
these kinds of nets, giving the location (c), which, while better than (a) and (b), is
suboptimal.
• To achieve the optimal location with no critical nets (0 slack on n1 and n2), the

latch must be placed as shown in (d). In this case, there is only one location that
meets both constraints.

This example suggests that wirelength optimization is not well-suited for latch
placement, especially when there is little room for error. Instead, one must be able to
couple latch placement with timing analysis and model the impact of buffering. The
problem is more complex in practice, and some aspects are not illustrated above. In
particular, many latches have buffer trees in the immediate fanin and fanout. Such
complications pose additional challenges that we address in this work. We make the
following contributions.

• We show that a linear-wire-delay model is sufficient to model the impact of buffer-
ing for the latch placement problem.
• We develop RUMBLE, a linear-programming-based, timing-driven placement

algorithm which includes buffering for slack-optimal placement of individual
latches under this model and show its effectiveness experimentally.
• We extend RUMBLE to improve the locations of individual logic gates other

than latches. Further, we show how to find the optimal locations of multiple gates
(and latches) simultaneously, with additional objectives. Incremental placement of
multiple cells requires additional care to preserve timing assumptions, optimizing
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a set of slacks instead of a single slack, while also biasing the solution towards
placement stability. We describe how RUMBLE handles these situations.
• We empirically validate proposed transformations and the entire RUMBLE flow.

We show how these techniques can be used to significantly improve initial latch
placement in a reasonably optimized ASIC design. Our do-no-harm acceptance
criteria reject solutions if any quality metrics are degraded. This key feature facil-
itates the use of RUMBLE later in physical synthesis.

The remainder of this chapter is organized as follows. Section 3.2 discusses back-
ground and previous work. Section 3.3 describes the timing model we use in this work.
Section 3.4 describes how RUMBLE performs timing-driven placement. Section 3.5
describes the RUMBLE algorithm. Section 3.6 shows experimental results. Conclu-
sions are drawn in Sect. 3.7.

3.2 Background

Several approaches improve IC performance by modifying wirelength-driven global
placement through timing-based net weights [4–9]. Such algorithms are generally
referred to as timing-driven placement, but the literature has not yet considered the
impact of buffering on latch placement during global placement. Due to the lack
of such algorithms, it is inevitable that some latches will be suboptimally placed
during global placement. Therefore, new algorithms are needed for post-placement
performance-driven incremental latch movement.

We introduce a high-level description of the incremental latch placement problem
below, and elaborate on its multi-move formulation in Sect. 3.4. Given an optimized
design and a small set of gates M , e.g., a single latch, find new locations for each
gate in M and new buffering solutions for nets incident to M such that the timing
characteristics of the design are improved.

While moving a poorly placed cell can improve adjacent interconnect delay, mov-
ing a latch has special significance since it facilitates time-borrowing: reallocating
circuit delay from a longer (slow) combinational stage to a shorter (fast) combina-
tional stage. This fact offers a particularly significant boost to our basic approach,
and is enhanced even further when surrounding gates are also free to move.

An optimization that performs operations such as moving a gate or latch is called
a transformation using the terminology of [10]. Transformations are designed to
incrementally improve design objectives such as timing. Other examples of trans-
formations include buffering a single net, resizing a gate, cloning a cell, swapping
pins on a gate, etc. The way transformations are invoked in a physical synthesis flow
is determined by the controllers. For example, a controller designed for critical path
optimization may attempt a transformation on the 100 most critical cells. A controller
designed for the compression stage (see Sect. 3.1) may attempt a transformation on
every cell that fails to meet its timing constraints.
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Fig. 3.3 A poorly-placed latch with buffered interconnect. In this case, the buffer must be moved
or removed in order to have the freedom to move the latch far enough to fix the path

A controller has the option of avoiding transformations that may harm the design
(e.g., generating new buffering solutions inferior to the original) and can then reject
this solution. This do no harm philosophy of optimization has received significant
recognition in recent work [11, 12]. The RUMBLE approach adopts this same con-
vention which makes it more trustworthy in a physical synthesis flow.

While no previous work has attempted to solve this particular problem, other
solutions do exist that may be able to help with the placement of poorly placed
latches. The authors of [13] propose a linear programming formulation that mini-
mizes downstream delay to choose locations for gates in field-programmable gate
arrays (FPGAs). The authors of [14] model static timing analysis (STA) in a linear
programming formulation by approximating the quadratic delay of nets with a
piecewise-linear function. Their formulation’s objective is to maximize the improve-
ment in total negative slack of timing end points. The authors of both approaches
conclude that the addition of buffering would improve their techniques [13, 14].
When these transformations are applied at the same point in a physical synthe-
sis flow that we propose, they will be restricted by previous optimizations. When
applied somewhat earlier (e.g., following global placement) they are incapable of
certain improvements. Namely, downstream optimizations, such as buffer insertion,
gate sizing, and detailed placement may invalidate the optimality of latch placement.
Therefore our technique focuses on the bad latch placements that we observed in large
commercial ASIC designs after state-of-the-art physical synthesis optimizations.

3.3 The RUMBLE Timing Model

We now introduce the timing model critical to RUMBLE’s success.
Figure 3.3 shows an intuitive example of the problem when we try to find new

locations for movable gates. Similar to Fig. 3.2, the latch has to be moved to the
right to improve timing. However, since the latch drives a buffer which is placed
next to it, we must move the buffer in order to improve the slack of the latch. Other
challenges in latch placement are illustrated by Fig. 3.4. At the same time, the optimal
new location of the latch depends on how the input and output nets are buffered.
As a result, the optimal approach is to simultaneously move the latch and perform
buffering, but this is computationally prohibitive because a typical multiple-objective
buffering algorithm runs in exponential time. As mentioned in Sect. 3.1, we propose
a sequential approach in which we first compute the new locations for a selected set
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(a) (b) (c) (d)

Fig. 3.4 The layout in a has a poorly-placed latch, and existing critical path optimizations do not
solve the problem. Repowering the gates may improve the timing some in b, but if it cannot fix the
problem, the latch must be moved. Moving the latch up to the next buffer, shown in c, does not give
optimization enough freedom. If we move the latch but do not re-buffer in d, timing may degrade.
Figure 3.12d shows the ideal solution to this problem

of movable gates based on timing estimation considering buffers. Then, buffering is
applied to the input and output nets of the selected movable gates. Being practical,
effective and efficient, this approach can be integrated into a typical VLSI physical
synthesis flow. The calculation of optimal movement uses a simple but effective
buffered-interconnect delay model, which is discussed next.

Linear Buffered-Path Delay Estimation

Buffering has become indispensable in timing closure and cannot be ignored during
interconnect delay estimation [3, 15, 16]. Therefore to calculate new locations of
movable gates, one must adopt a buffering-aware interconnect delay model that
accounts for future buffers. Consider the problem of estimating the delay of an
optimally-buffered net of arbitrary length L . We briefly review an analytical delay
model that is well-suited to this purpose [15, 17]. Consider the delay of a long chain
of buffers as shown in Fig. 3.5a. Suppose there are k buffers driving wire segments
each of which are length �. The model is simplified by assuming the size of a buffer
is negligibly small, then � = L

k . Assume that each buffer and wire segment it drives
is modeled by the RC-network in Fig. 3.5b. Then the delay of the whole chain of
buffers of length L is computed as k times the delay through each segment.

delay(L) = k

[
Rb

(
L

k
C

)
+ RbCb +

(
L

k
R

) (
L

k
C

)
+

(
L

k
R

)
Cb

]
(3.1)

Where L is the length of a 2-pin buffered net, Rb and Cb are the intrinsic resistance
and input capacitance of buffers and gates while R and C are unit wire resistance
and capacitance respectively.

The model is further simplified by assuming continuous gate sizes and placement
sites. Then optimal buffering solutions minimize the delay function as follows.
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Fig. 3.5 a A model for buffered interconnect. � describes the optimal distance between buffers on
a two-pin net. b A corresponding RC-network of a single buffer driving a wire segment. Rb and
Cb represent the intrinsic resistance and gate capacitance of the buffer while R and C represent the
per-unit resistance and capacitance of a metal wire

δ(delay(L))

δk
= 0 (3.2)

Which leads to this relation on the optimal buffering solution.

L

k
=

√
RbCb

RC
(3.3)

By subtituting Eq. 3.3 into 3.1 we can simplify the calculation of delay to the follow-
ing.

delay(L) = L(RbC + RCb +√2RbCb RC) (3.4)

Note that this equation is linear in terms of L .
Empirical results in [15] indicate that Eq. 3.4 is accurate up to 0.5 % when at

least one buffer is inserted along the net. Furthermore, our own empirical results in
Sect. 3.6 suggest a 97 % correlation between this linear delay model and the output
of an industry timing-analysis tool.

The Timing Graph

In RUMBLE, a set of movable gates is selected, which must include fixed gates
or input/output ports to terminate every path. Fixed gates and I/Os help formulate
timing constraints and limit the locations of movables. In Fig. 3.6a, we assume that
new locations have to be computed for the latch and the two OR gates, while all
NAND gates are kept fixed.
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(a) (b)

Fig. 3.6 a An example subcircuit and b corresponding timing graph used in RUMBLE. The AATs
or RATs of unmovable objects (squares) are considered known. STA is performed on movable
objects (round shapes)

In the timing graph, each logic gate is represented by a node, while a latch is
represented by two nodes because the inputs and outputs of a latch are in different
clock cycles and can have different slack values. Each edge represents a driver-sink
path along a net and is associated with a delay value which is linearly proportional
to the distance between the driver and the sink gate. In other words, we decompose
each multi-pin net into a set of two-pin edges that connect the driver to each sink of
the net. This simplification is crucial to our linear delay model and is valid because
the linear relationship can be preserved for the most critical sinks by decoupling
less-critical paths with buffers [15]. Therefore the two-pin edge model in the timing
graph can guide the computation of new locations for the movable gates.

In the timing graph, an edge which represents a timing arc is created only for
(1) each connection between the movable gates, and (2) each connection between a
movable gate and a fixed gate. This is because we only care about the slack change
due to the displacement of movable gates. For the subcircuit in Fig. 3.6a, the resultant
timing graph is shown in Fig. 3.6b.

For each fixed gate, we assume that the required arrival time (RAT) and the actual
arrival time (AAT) are fixed. The values of RAT and AAT are generated by a static
timing analysis (STA) engine using a set of timing assertions created by designers.
An in-depth exposition of STA can be found in [18, 19] along with algorithms to
generate RAT and AAT. A movable latch corresponds to two nodes in the timing
graph, one for the data input pin and one for the output pin. For the input pin, the
RAT is fixed based on the clock period. Similarly, the AAT is fixed for the latch’s
output pin. Based on all the fixed RAT and AAT at fixed gates and latches, the AAT
and RAT are propagated along the edges according to the delay of the timing arcs.
The values of AAT are propagated forward to fanout edges, adding the edge delay
to the AAT. On the contrary, RATs are propagated backward along the fanin edges,
subtracting the edge delay from the RAT values. Details of edge delay, RAT and
AAT calculation in our algorithm are covered in Sect. 3.4.
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3.4 Timing-Driven Placement with Buffering

The goal of RUMBLE is to find new locations for movable gates in a given selected
subcircuit such that the overall circuit timing improves. Therefore we maximize the
minimum (worst) slack of source-to-sink timing arcs in the subcircuit. In contrast
to other objectives used in previous work, we select this objective because we are
targeting critical-path optimization. Hence, we prefer 1 unit of worst-slack improve-
ment over 2 units of slack improvement on less-critical nets. Below we introduce the
timing-driven placement technique in RUMBLE that directly maximizes minimum
slack. In the following placement formulation we account for the timing impact of
our changes by implicitly modeling static timing analysis in our timing graph. In
this work, we estimate net length by the half-perimeter wirelength (HPWL) and then
scale it to represent net delay. More accurate models are possible, but may complicate
optimization.

Problem Formulation

Consider the problem of maximizing the minimum slack of a given subcircuit G
with some movable gates and some fixed gates, or ports. Let the set of nets in the
subcircuit be N = n0, n1, . . . , nh . Let the set of all gates in the subcircuit (movable
and fixed) be G = g0, g1, . . . , g f . Let the set of movable gates in the subcircuit
(a subset of G) be M = m0, m1, . . . , mk . τ is a technology-dependent parameter
that is equal to the ratio of the delay of an optimally-buffered, arbitrarily-long wire
segment to its length

τ = delay(wire)

length(wire)
(3.5)

The following equations govern static timing analysis and are used in the next section.
A timing arc is specified for a given net n driven by gate u and having sink v as nu,v ,
as illustrated by Fig. 3.7a. The delay of a gate g is Dg .

The calculation of Required Arrival Time (RAT) and Actual Arrival Time (AAT)
of a gate for combinational circuits shown in Fig. 3.7 are computed as follows. The
RAT of a combinational gate g

Rg = min
o j :0≤ j≤m

{Ro j − τ ∗ HPWL(ng,o j )− Dg} (3.6)

The AAT of a combinational gate g is

Ag = max
i j :0≤ j≤l

{Ai j + τ ∗ HPWL(ni j ,g)+ Dg} (3.7)
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(a) (b) (c)

Fig. 3.7 a A timing arc nu,v connecting an arbitrary gate u to an arbitrary gate v. b The RAT of
a gate g is the minimum of RATs of the outputs of g. c The AAT of a gate g is the maximum of
AATs of the inputs of g

Given a clocked latch r , we assume for simplicity that the RAT (Rr ) and AAT (Ar )
are fixed and come from the timer. Unclocked latches are treated similarly to the
combinational gates above.

The slack of a timing arc n p,q connecting two gates (combinational or sequential,
movable or fixed) p and q is

Sn p,q = Rq − Ap − τ ∗ HPWL(n p,q) (3.8)

The RUMBLE Linear Program

We now define a linear program that maximizes the minimum slack S of a subcircuit
as follows.
Variables:

For each movable object m in M we define two independent variables represent-
ing the location (x, y) of m: βm

x , βm
y .

In terms of these locations, we define the bounding box of each net n using four
new variables representing lower-left coordinate: Ln

x , Ln
y

as well as the upper-right coordinate: U n
x , U n

y .

Given a gate m, the actual arrival time at the output of m is defined using the
variable: Am .

The required arrival time at the input of the gate m is similarly defined using the
variable: Rm .

The slack of each net n is defined using the variable: Sn .

The minimum slack of all Sn variables is computed using the variable: S.
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Objective: Maximize S
Constraints: For every gate g j on net ni

U ni
x ≥ β

g j
x , U ni

y ≥ β
g j
y (3.9)

Lni
x ≤ β

g j
x , Lni

y ≤ β
g j
y (3.10)

For every movable gate mi and sink it drives g j via net nk

Rmi ≤ Rg j − τ ∗ (U nk
x − Lnk

x +U nk
y − Lnk

y )− Dg (3.11)

For every movable gate mi and gate g j that drives one of its inputs via net nk

Ami ≥ Ag j + τ ∗ (U nk
x − Lnk

x +U nk
y − Lnk

y )+ Dg (3.12)

For every timing arc in the subcircuit n p,q associated with net ni

Sni ≤ Rq − Ap − τ ∗ (U ni
x − Lni

x +U ni
y − Lni

y ) (3.13)

For each net ni :

S ≤ Sni (3.14)

Extensions to Minimize Displacement

The linear program of RUMBLE is defined to maximize the minimum slack of a
subcircuit. Additional objectives can be considered as well, such as total cell displace-
ment, which sums Manhattan distances between cells’ original and new locations. We
subtract the minimum slack objective from a weighted total cell displacement term
to avoid unnecessary cell movement. The weight Wd for the total cell displacement
objective is set to a small value. Therefore the weighted total displacement com-
ponent is used as a tie-breaker and has little impact on worst-slack maximization.
Instead, the combined objective is maximized by a slack-optimal solution closest to
cells’ original locations. During incremental timing-driven placement, minimizing
total cell displacement encourages higher placement stability and often translates
into fewer legalization difficulties.

Figure 3.8 shows an example of the RUMBLE formulation with and without the
total displacement objectives. The only movable object in Fig. 3.8a is the latch. An
input net n1 and an output net n2 are connected to the latch with slacks −2 and +2
respectively. Figure 3.8b shows the optimal LP solution without the total displace-
ment objective. The Manhattan net length of n1 is reduced from 20 to 18, and the net
length of n2 is increased from 20 to 22. This improves the worst slack of the subcir-
cuit from −2 to 0. However, the latch moves a large distance. Figure 3.8c illustrates
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Fig. 3.8 In many subcircuits there are multiple slack-optimal placements. In RUMBLE we add
a secondary objective to minimize the displacement from the original placement. This helps to
maintain the timing assumptions made initially and reduces legalization issues. a shows the initial
state of and example subcircuit, b a slack-optimal solution commonly returned by LP solvers,
all optimal solutions lie on the dotted line and c a solution given by RUMBLE that maximizes
worst-slack then minimizes displacement

that including the total displacement objective may preserve optimal slack, while
minimizing latch displacement.

In order to minimize displacement by adding a new objective, we introduce the
following variables and constraints to the linear program.

Displacement variables:
Given a gate m, define the upper bounds on the new and original coordinates in the
x and y dimensions using two new variables: φm

x , φm
y .

Similarly define the lower bounds on the new and original coordinates in the x and
y dimensions for the gate m using two new variables: ωm

x , ωm
y .

Then, in terms of φ and ω we define the displacement of the gate m in the x and y
dimensions using two variables: δm

x , δm
y .

Displacement constraints:
For every movable gate mi , α

mi
x and α

mi
y denote the original x and y coordinates.

The upper and lower bounds of the new and original coordinates φ and ω in each
dimension are:

φmi
x ≥ βmi

x , ωmi
x ≤ βmi

x

φmi
y ≥ βmi

y , ωmi
y ≤ βmi

y

φmi
x ≥ αmi

x , ωmi
x ≤ αmi

x

φmi
y ≥ αmi

y , ωmi
y ≤ αmi

y

(3.15)

The displacements δmi for a movable gate mi are defined as

δmi
x = φmi

x − ωmi
x , δmi

y = φmi
y − ωmi

y (3.16)
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Fig. 3.9 a An example subcircuit with an imbalanced latch whose worst-slack cannot be improved.
Nevertheless, it is possible to improve timing of the latch while maintaining slack-optimality. By
including a TNS component in the objective, the total negative slack can be reduced, as shown in b

Extensions to Improve the Slack Histogram

The minimum slack is the worst slack in a subcircuit. For two subcircuits with
identical worst slack, it is possible that one subcircuit has few critical paths with
worst slack while the other one has many. A timing optimization has to improve
both the worst slack and the overall total threshold slack (TTS) in a subcircuit. TTS
is defined as the sum of all slacks below a threshold. If the slack threshold is zero,
TTS is equivalent to the total negative slack. With the minimum slack as the only
objective, a small improvement in the worst slack may cause a large TTS degradation.
Therefore we must add a TTS component to the optimization objective. The balance
between the minimum slack and the TTS is controlled by a parameter W f , which is
set to a relatively small value because the worst slack objective is more important.

Figure 3.9 shows another scenario where the TTS component may help. During
optimization, it may not be always possible to improve the minimum slack of the
subcircuit. In that case, we can still reduce the number of critical cells by improving
the TTS. In Fig. 3.9, there are three movables in the subcircuit. The minimum slack
of the subcircuit is −20, and it is not possible to improve the minimum slack by
moving any of the gates. With the additional TTS component in the objective, the
TTS of the subcircuit is improved from −90 to −85, as shown in Fig. 3.9b.

Let Sn denote the slack on net n, then the combined objective has the displacement
and TTS components
Maximize:

S −Wd
[ ∑

m∈M

(δm
x + δm

y )
]+W f

[ ∑

n:n∈N ,Sn<Ts

Sn
]

(3.17)

where Ts is the small slack threshold used to compute the TTS. We have earlier
assumed W f and Wd to be small, with Wd < W f . In our implementation we set W f

to 0.005 times the absolute value of the average slack in the subcircuit, and we set Wd

to 10−6. These additional terms change the optimal region, but because the weights
are so small the combined optimal region is very near the slack-optimal region.
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Preserving the TTS Objective

The primary goal of the RUMBLE linear program as presented in previous sections is
to maximize the worst slack of the subcircuit. We define two additional objectives—
one preserves the initial solution as much as possible, the other can improve the
slack histogram when the worst slack cannot be further improved. However, it is
possible that in order to improve a single worst slack path, multiple paths may
degrade to the point of being critical. If RUMBLE is deployed late enough in a
physical synthesis flow, the corresponding TTS degradation may be undesirable. To
address this problem, we have devised an additional constraint that can prevent this
type of TTS degradation, but may restrict improvement in worst slack. When TTS
should not be degraded, we add the following constraints to the RUMBLE linear
program to preserve TTS.

For each net nk whose slack is greater than the slack threshold Ts , add the following
constraint.

Snk ≥ Ts (3.18)

This addition may over-constrain the linear program, in which case it is not possible
to improve the worst slack without harming TTS.

3.5 The RUMBLE Algorithm

In this section we discuss the details of the RUMBLE algorithm, which employs
the linear program from the previous section to incrementally improve the timing of
poorly placed latches.

Subcircuit Selection

RUMBLE identifies imbalanced latches, which we define as those that exhibit
positive slack on their inputs and negative slack on their outputs (or vice versa).
As illustrated in Fig. 3.2, the movement of any such imbalanced latch has the poten-
tial to improve timing, even if all surrounding cells are held fixed. More generally,
however, the neighbors and extended neighbors of the targeted latch may also be
included to form a set M of movable cells. In our technique, shown in Fig. 3.11,
we adopt a basic N -hop neighborhood approach, where any gate within N steps of
the imbalanced latch is included in the set of movable cells. This requires both a
forward sweep (to collect sinks) and a backward sweep (to collect sources), which
are performed in tandem. Those cells that are N + 1 steps away from the latch form
a set P of fixed peripheral nodes.2

2 Variations on this theme, such as metrics that incorporate the degree of neighbors’ criticality
[13, 20] and the size of the subcircuit bounding box are also possible.
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Fig. 3.10 Modeling feedback paths within logic requires a new type of gate. Pseudomovable gates
have timing values that depend on the timing values of neighboring gates, but they cannot be moved.
a Ignoring the presence of feedback paths is overly pessimistic, and it appears that the timing of the
latch cannot meet its constraints. b Making the fixed gates along a feedback path pseudomovable
allows the latch to meet its timing constraints, but doing only this can lead to the wrong placement. c
Including all gates connected to pseudomovables as fixed timing points properly models the problem
as a convex subcircuit

In contrast to prior work that has assumed operation within a pre-buffering stage,
our subcircuit selection algorithm must address the presence of buffers. These buffers
will be encountered in our neighborhood selection algorithm, as they are part of the
current logic; however, since it is presumed that they would be ripped up when new
locations are determined (a critical assumption that makes our linear-delay model
possible), we must prevent their inclusion in our model of the subcircuit. Therefore,
when fetching adjacent gates, we transparently skip these buffers and omit them
from the set M . The recursive functions TRUE-SOURCE() and TRUE-SINK() in Fig. 3.11
provide this additional level of indirection, returning only those combinational gates
that reflect the logical structure of the subcircuit. Buffers are removed and reinserted
on adjacent nets by a state-of-the-art buffer insertion algorithm after RUMBLE moves
gates.

Feedback Paths

As noted in [13], the process of extracting gates to form a subcircuit may suffer
from complications when subpaths of combinatorial logic between peripheral nodes
are not modeled. These subpaths introduce additional timing constraints that, if left
absent from the model, could invalidate the optimality of the solution.

To illustrate, consider the example in Fig. 3.10, in which a single latch has been
selected as a movable gate. After collecting its inputs and outputs, a simple subcircuit
is constructed as shown in Fig. 3.10a, with the two endpoints shown selected as fixed
gates. With the timing constraints as given in the figure, an optimal solution to this
problem will place the latch equidistantly from both endpoints to ensure that the
slacks on either side are balanced. However, consider a scenario where a feedback
path exists from the output to the input, as shown in Fig. 3.10b; in such an event,
the RAT of the output and the AAT of the input are dependent on the location of
the latch. If this dependency is modeled, the solution may be biased toward one
of the two neighbors. We loosely refer to these neighbors as pseudomovable gates.
Although timing must be propagated through them (as it is for movable gates), their
physical locations may be fixed.
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Fig. 3.11 Subcircuit selection transparently skips buffers when building a neighborhood of movable
gates, and requires detection of pseudomovables

Pseudomovables are collected by intersecting the transitive cones of logic between
inputs and outputs to detect feedback paths, as shown in the pseudocode of Fig. 3.11.3

To ensure accuracy, the inputs and outputs of pseudomovables themselves must be
bounded by fixed endpoints, as shown illustrated in Fig. 3.10c. These fringe nodes
completely isolate the timing of the resulting convex subcircuit from outer cones of
logic.

3 To improve runtime, one can limit the depth of these cones to a reasonably small constant, as
opposed to the exhaustive expansion in [11].
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The do-no-harm Philosophy

After gates are moved, it is likely that timing has degraded due to, for example, a
capacitance violation on a long wire. The subcircuit must be examined, and its inter-
connect improved through physical synthesis optimizations, which might include
gate-sizing and buffer-insertion for delay or electrical considerations on nets.

Even though the linear program of Sect. 3.4 can be solved optimally, it does not
account for all the complexities of interconnect optimization. The linear program is
an abstraction of the subcircuit timing that models physical synthesis optimizations
(e.g., virtual buffering) by prorating wire delay constants based on upcoming phys-
ical synthesis optimizations. Despite the high correlation to more accurate timing
models in experimental results, the RUMBLE model ignores certain constraints and
legalizing its solution might result in a timing degradation. For example, nets can
cross blockages or congested regions with no nearby legal locations. As a result,
legalization could create a timing degradation.

When running RUMBLE in our physical synthesis flow, we mitigate the harmful
effects of legalization by finding legal locations for gates and buffers when moving
or inserting them. Insisting on legal locations can also contribute to a degradation not
anticipated by the RUMBLE model. Fortunately, RUMBLE can examine the timing
implications of its changes before committing to them. It simply stores the initial
state of the subcircuit, and restores it if a timing degradation occurs. In this way,
RUMBLE will do no harm to the circuit by ensuring that whatever solution it keeps
is no worse than what existed before. Such safe delay optimizations are more easily
inserted into physical synthesis flows [11, 12].

The RUMBLE Algorithm

Figure 3.13 shows pseudocode for the RUMBLE algorithm, which assumes a set of
movable gates given at input, and Fig. 3.12 illustrates the process. First, the subcir-
cuit that is necessary for incremental placement is extracted (for a single movable,
we extract its one-hop neighborhood of input gates). During this process, buffers
are ignored (viewed as wires) as described in Sect. 3.5. Next, RUMBLE performs
timing analysis so as to measure timing improvement later. Line 3 stores the state
of the circuit (gates and nets) so as to possibly undo most recent transformations
we are considering. Once the initial state is safely stored, lines 4–6 use the linear
program of Sect. 3.4 to compute new gate locations, followed by buffer removal.
If the model shows improvement we continue. Buffers are inserted on line 8, and
other physical synthesis optimizations could also be applied here (e.g, repowering,
V th assignment, etc.). Lines 9–12 measure improvement, and in the case of timing
degradation, restores the initial solution.
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(a) (b) (c) (d)

Fig. 3.12 The RUMBLE algorithm proceeds by a selecting a subcircuit to work on. An LP is
formulated and solved, with movable gates being relocated as shown in b. Existing repeater trees
are no longer appropriate, and are subsequently removed in c. Finally, the nets are re-buffered,
forming the final subcircuit shown in d

Fig. 3.13 The RUMBLE
algorithm for moving one
latch

3.6 Empirical Validation

RUMBLE is implemented in C++ (compiled with GCC 4.1.0) and integrated into
an industrial physical synthesis flow. For our experiments, we examined an already
optimized 130 nm commercial ASIC with clock period 2.2 ns and 3 million objects.
We first examined the most critical latches and then filtered out the ones where the
latch was already well placed. We use the algorithm from [21] to perform buffering
after the cells have been moved. In practice, the LP-solving technique from RUMBLE
requires only 17 ms; the buffering algorithm dominates the runtime (over 75 %). Since
the overall runtime is dependent on the choice of the buffering algorithm we omit the
(trivial) runtimes from our tables. Note that the do-no-harm approach of Sect. 3.5 is
applied to all experiments, preventing timing degradation in our tables (i.e., a value
of 0 appears in the imprv. column).

Re-Buffering in RUMBLE

Previously published LP techniques for timing-driven placement do not allow for
re-buffering during optimization. Instead, they are either applied before buffers have
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Table 3.1 Keeping buffers instead of reinserting them degrades RUMBLE’s performance
Implications of keeping buffers

KEEP-BUFFERS RUMBLE
Slack (ps) Slack (ps)

Subcircuit Orig New Imprv. Orig New Imprv.

latch A0 −1480 −1318 162 −1480 26 1506
latch A1 −1268 −1066 202 −1268 186 1454
latch A2 −1020 −939 80 −1020 −791 229
latch A3 −953 −766 187 −953 −390 563
latch A4 −897 −677 220 −897 356 1253
latch A5 −848 −746 101 −848 −278 570
latch A6 −690 −690 0 −690 395 1085
latch A7 −645 −586 59 −645 −19 626
latch A8 −633 −560 74 −633 290 923
latch A9 −610 −466 144 −610 262 872
avg −904 −782 123 −904 4 908

been inserted, or they do not differentiate the buffers from other gates. Our first
experiment is designed to show how important it is to rip up buffers before replacing
gates and subsequently rebuffering.

We modified our pseudocode in Fig. 3.11 so that the function IS-BUFFER() always
returns false. The effect of this is to stop seeing through the buffers, and instead to
consider them fixed timing endpoints. This configuration models the work of [13].
We then calculate a new location for each latch with the LP in Sect. 3.4. The final
change is to skip line 8 of Fig. 3.13, i.e., do not re-buffer. We call this algorithm
KEEP-BUFFERS.

Table 3.1 shows the results of RUMBLE on a single latch compared with KEEP-
BUFFERS. Column 1 shows the name of the benchmark and columns 2 and 5 show
worst-slacks in picoseconds before optimization. Columns 3 and 6 show the slacks
after optimization of KEEP-BUFFERS and RUMBLE respectively. Columns 4 and
7 show the improvements of each technique.

From the table we observe the following:

• Despite preserving buffers, KEEP-BUFFERS is still able to improve solution qual-
ity for nine out of ten testcases, though the improvement is never more than 220 ps.
• When re-buffering is allowed, RUMBLE is able to significantly outperform KEEP-

BUFFERS for all ten testcases. On average the improvement is 7.4× greater.
• While KEEP-BUFFERS improves slack by an average of 123 ps, RUMBLE

improves slack by 908 ps, which confirms how important it is to rip-up buffers
so that they do not anchor the latch into an artificially small region.
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Table 3.2 The RUMBLE model accurately predicts the solution quality improvements in the
reference timing model

Model timing versus reference timing
Model slack (ps) Subcircuit slack (ps)

Subcircuit Orig New Imprv. Orig New Imprv.

latch A0 −1799 −48 1751 −1480 26 1506
latch A1 −1509 65 1574 −1268 186 1454
latch A2 −1113 −868 245 −1020 −791 229
latch A3 −1147 −527 620 −953 −390 563
latch A4 −1090 180 1269 −897 356 1253
latch A5 −945 −295 650 −848 −278 570
latch A6 −920 320 1241 −690 395 1085
latch A7 −886 49 935 −645 −19 626
latch A8 −913 213 1126 −633 290 923
latch A9 −800 397 1198 −610 262 872
avg −1112 −51 1061 −904 4 908

Accuracy of the RUMBLE Timing Model

Theoretical results published by Otten [17] and discussed in Sect. 3.3 indicate that
optimal buffer insertion on a two-pin net results in a wire delay that is linearly-
proportional to its length. The RUMBLE model heavily relies on these results.

Table 3.2 compares the model-predicted values for subcircuit slack to values mea-
sured by running a commercial static timing analyzer. Measurements are taken after
the RUMBLE LP is solved, the latches are moved and connected nets are buffered.
Columns 2–4 report the initial, final, and improvement in worst-slack of the subcir-
cuit measured by the timing model presented in Sect. 3.3. Columns 5–7 report the
same metrics measured by the STA engine.

We make the following observations:

• On average, the RUMBLE model overestimates the actual timing improvement
by about 15 %. This makes sense since it assumes an optimal ideal buffering will
be achievable, but this is not always the case, especially for multi-sink nets.
• However, if one compares actual improvement to model improvement, there is

a 97 % correlation, suggesting that the model is reasonable enough to justify the
latch location.

We now show how RUMBLE actually improves the design’s timing characteristics.

RUMBLE on a Single Latch

Given that we are solving a new physical synthesis problem, existing solutions are
scarce. Therefore we first consider straightforward approaches to solve this problem.
One possibility is to take the center-of-gravity (COG) of adjacent pins. A timing-
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Table 3.3 Comparison of RUMBLE’s LP to a slack-weighted center-of-gravity technique
Center-of-gravity versus RUMBLE

COG RUMBLE
Slack (ps) Slack (ps)

Subcircuit Orig New Imprv. Orig New Imprv.

latch A0 −1480 −527 953 −1480 26 1506
latch A1 −1268 −203 1065 −1268 186 1454
latch A2 −1020 −800 219 −1020 −791 229
latch A3 −953 −615 338 −953 −390 563
latch A4 −897 −78 819 −897 356 1253
latch A5 −848 −319 529 −848 −278 570
latch A6 −690 −690 0 −690 395 1085
latch A7 −645 −645 0 −645 −19 626
latch A8 −633 −633 0 −633 290 923
latch A9 −610 67 677 −610 262 872
avg −904 −444 460 −904 4 908

driven improvement of the center-of-gravity technique weights each pin by its slack.
A reasonable version of this heuristic works in the following way. For a slack thresh-
old Ts (see Sect. 3.4), let the weight w of a pin p with slack Sp be:

wp =
{

1+ |Sp − Ts | Sp < 0
max(0.1, 1− |Sp − Ts |) Sp ≥ 0

(3.19)

Then we compute the x coordinate of movable gate m as the weighted average of
the x coordinates of the set of neighboring pins P .

mx =
∑

p∈P wp px
∑

p∈P wp
(3.20)

and similarly for the y coordinate.
We implemented the above COG technique within the RUMBLE framework in

place of the LP solver presented in Sect. 3.4. We still allow COG the benefits of
ripping up buffers, and reinserting them after the latches are moved. Table 3.3 shows
a comparison between RUMBLE and slack-weighted COG on 10 latches. Column
1 shows the same latches as reported in Table 3.2. Columns 2–4 show the initial and
final slacks, and improvement for COG. Columns 5–7 show the same for RUMBLE.

We observe the following:

• For all ten cases, RUMBLE generates a better solution than COG. For three of
the cases, COG could not improve the latch placement. These new solutions are
rejected by the controller so as not to make the design worse.
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• On average, COG improves slack by 20.9 % of the 2.2 ns cycle time, whereas
RUMBLE improves slack by 41.3 %. This shows that one must incorporate slack
constraints on cells incident on the latch to achieve the most balanced solution.

Optimizing Multiple Gates Simultaneously

For this experiment, we show how an even better solution can be obtained when one
allows cells close to the latch to move. We show the effectiveness of this technique
on two sets of circuits.

• One-hop subcircuits include every gate (while ignoring buffers and inverters)
incident to the latch of interest that shares an incident net with the latch. Typically
this results in 4 or 5 gates being moved.
• Two-hop subcircuits in addition include all non-buffer and inverter cells incident to

cells in the one-hop neighborhood. These subcircuits range from 11 to 18 movables
with a mean of 14.8 movables.

We compare this technique to iterated single-move RUMBLE, where we pick each
cell in the neighborhood and solve the LP for that particular cell, fix it, and then
move to the next cell. The experiment is designed to show that multiple cells need
to be optimized simultaneously to obtain the best results.

To measure the improvement one must now consider the slacks of all cells that
may be moved, and the objective becomes to improve the worst slack of the entire
subcircuit. However, when one cannot improve the most critical path, the other paths
may have room for improvement. We use TTS to measure the total improvement of
all the slacks in the subcircuit.

Tables 3.4 and 3.5 compare iterating RUMBLE over each gate one at a time versus
RUMBLE moving multiple gates simultaneously. Columns 2–4 show the original
and final slack, and the slack improvement for iterated single-move RUMBLE, while
columns 5–7 show the corresponding TTS measurements for a zero-slack threshold.
Columns 8–13 show the same measurements for multi-move RUMBLE. We make
the following observations:

• Multi-move RUMBLE is clearly more effective than iterative RUMBLE both for
one- and two-hop neighborhoods. In fact, for six out of ten one-hop subcircuits
and for seven out of ten two-hop circuits, multi-move actually brought the TTS
down to zero, meaning it fixed all the timing violations. Iterative single move was
able to fix two and four respectively.
• On average, the worst-slack improvements were 849 and 673 ps respectively for

one- and two-hop subcircuits. The diminished improvement for larger subcircuits
is likely because we are including more nets, some of which cannot be improved
as much as those connected to the imbalanced latch (Fig. 3.9 has an example).
• Solving the LP takes 53 ms for one-hop subcircuits and 325 ms for two-hop

subcircuits, on average.
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Table 3.4 RUMBLE simultaneously moving a one-hop neighborhood compared to iteratively
moving the same gates individually

Iterated RUMBLE versus RUMBLE: 1-hop
Iterated single-move RUMBLE Multi-move RUMBLE
Slack (ps) TTS (ps) Slack (ps) TTS (ps)

Subcircuit Orig New Imp. Orig New Imp. Orig New Imp. Orig New Imp.

subckt B0 −1542 −1542 0 −6091 −6091 0 −1542 −130 1412 −6091 −130 5962
subckt B1 −1501 −277 1223 −5924 −277 5647 −1501 55 1556 −5924 0 5924
subckt B2 −1240 −1240 0 −4354 −4354 0 −1240 −980 261 −4354 −4044 310
subckt B3 −848 −278 569 −2523 −812 1710 −848 −279 569 −2523 −813 1709
subckt B4 −690 −79 612 −4090 −79 4011 −690 202 893 −4090 0 4090
subckt B5 −690 48 739 −2053 0 2053 −690 290 980 −2053 0 2053
subckt B6 −645 −18 627 −1921 −32 1889 −645 301 945 −1921 0 1921
subckt B7 −595 86 681 −1937 0 1937 −595 503 1098 −1937 0 1937
subckt B8 −444 −444 0 −889 −889 0 −444 −92 352 −889 −191 698
subckt B9 −418 −46 372 −857 −46 811 −418 6 424 −857 0 857
avg −861 −379 482 −3064 −1258 1806 −861 −12 849 −3064 −518 2546

Table 3.5 RUMBLE simultaneously moving a two-hop neighborhood compared to iteratively
moving the same gates individually

Iterated RUMBLE versus RUMBLE: 2-hop
Iterated single-move RUMBLE Multi-move RUMBLE

Slack (ps) TTS (ps) Slack (ps) TTS (ps)
Subcircuit Orig New Imp. Orig New Imp. Orig New Imp. Orig New Imp.

subckt C0 −719 −719 0 −8313 −8313 0 −719 −675 44 −8313 −5028 3285
subckt C1 −719 −719 0 −8004 −8004 0 −719 −653 66 −8004 −4386 3617
subckt C2 −690 −79 612 −4090 −79 4011 −690 314 1004 −4090 0 4090
subckt C3 −690 −79 612 −4090 −79 4011 −690 337 1027 −4090 0 4090
subckt C4 −681 −349 333 −3865 −349 3516 −681 −158 524 −3865 −158 3707
subckt C5 −645 −91 554 −3767 −306 3462 −645 371 1015 −3767 0 3767
subckt C6 −645 −33 612 −3767 −52 3716 −645 324 969 −3767 0 3767
subckt C7 −318 −318 0 −940 −940 0 −318 531 848 −940 0 940
subckt C8 −490 227 716 −966 0 966 −490 466 956 −966 0 966
subckt C9 −217 −217 0 −652 −652 0 −217 60 277 −652 0 652

avg −581 −238 344 −3846 −1877 1968 −581 92 673 −3846 −957 2888

RUMBLE in a Physical Design Flow

In the experiments presented so far, we have compared the effects of RUMBLE to
those of other techniques on the most critical latches of the design. Due to the high
runtime of buffering all of the nets in multi-move subcircuits, multi-move RUMBLE
for every critical latch in the design is expensive. Consequently, in this subsection,
we demonstrate the cumulative effect of single-move RUMBLE when deployed in
our physical synthesis flow on all latches with a critical pin. Table 3.6 shows two
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Table 3.6 RUMBLE deployed in a physical design flow on circuits that have pipeline latch place-
ment problems. ckt1 has 2.92M objects and 629k latches and ckt2 has 4.74M objects and 247k
latches. “old” reports values before RUMBLE “new” reports results after and “diff” reports their
difference. FOM is reported in nanoseconds

Imb. Imb. FOM Crit. Crit. FOM TTS

old 102768 −21855 7912 −2798 −22448
ckt1 new 93736 −19400 7775 −2644 −20511

diff −9032 2455 −137 154 1937
old 12151 −3080 3206 −1783 −19211

ckt2 new 11037 −2351 2997 −1667 −18170
diff −1114 271 −209 116 1041

circuits that each contain a significant number of poorly placed latches. For each
circuit, we report 5 statistics. An imbalanced latch is defined as one that has slack
on the input pins that is greater than the slack threshold, Ts (see Sect. 3.4), and slack
on the output pins that are lower than Ts , or vice versa. The Imb. column reports the
number of imbalanced latches found in the design. Let the set of imbalanced latches
be I , and for each latch l let ws(l) be the worst slack of any pin on l. We define
imbalance FOM to be ∑

l∈I

Ts − ws(l) (3.21)

The Imb. FOM column reports this value. A critical latch is defined as one that has
pins on both sides that are below Ts . The Crit. column reports the number of critical
latches found in the design. Similarly to imbalance FOM, if C is the set of critical
latches and for each latch c let ws(c) be the worst slack of any pin on c, then we
define the critical FOM to be ∑

c∈C

Ts − ws(c) (3.22)

The Crit. FOM column reports this value.
Finally, the TTS column reports the TTS for the entire design. We make the

following observations:

• RUMBLE reduces the number of imbalanced latches by 8.8 and 9.2 % on ckt1 and
ckt2, respectively.
• RUMBLE has a harder time optimizing critical latches than imbalanced ones.
• RUMBLE reduces circuit TTS by 8.6 and 5.4 % on ckt1 and ckt2, respectively.
• RUMBLE improves the characteristics of all columns, and does no harm to the

circuit metrics.

In addition to these observations, we point out that the two most common reasons for
being unable to fix a particular latch are (1) there is a high-fanout net in the subcircuit,
which would degrade the performance of buffering, and we therefore skip this case
or (2) the gates are moved to a fixed endpoint, which indicates that RUMBLE does
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not have enough freedom to solve the problem entirely. The addition of RUMBLE
to our design flow adds about 4 % to the total runtime in these experiments.

3.7 Conclusions

In this work we observe that wirelength-driven placement leads to particularly
poor timing of pipeline latches in modern physical design flows, which is espe-
cially problematic at sub-130 nm technology nodes. To address this challenge, we
developed RUMBLE–a linear-programming based, incremental physical synthesis
algorithm that incorporates timing-driven placement and buffering. The latter justifies
RUMBLE’s linear-delay model which exhibited a 97 % correlation to the reference
timing model in our experiments. Empirically this delay model is accurate enough
to guide optimization; RUMBLE improves slack by 41.3 % of cycle time on average
for a large commercial ASIC design.

The linear program (LP) used in RUMBLE is general enough to optimize multiple
gates and latches simultaneously. However, when moving multiple gates considering
only the slack objective, we encountered two challenges: placement stability and TTS
degradations. We present our extensions to address these problems directly in our
LP objective. With these additions, moving several gates simultaneously improves
upon RUMBLE used iteratively on the same movables.
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Chapter 4
Bounded Transactional Timing Analysis

Modern physical synthesis flows operate on very large designs and perform
increasingly aggressive timing optimizations. Traditional incremental timing analy-
sis now represents the single greatest bottleneck in such optimizations and is lacking
in features necessary to support them efficiently. We describe a paradigm of transac-
tional timing analysis, which, in addition to incremental updates, offers an efficient,
nested undo functionality that does not require significant timing calculations. This
paradigm extends traditional incremental Static timing analysis (STA) and enables
necessary infrastructure for multiple physical synthesis optimizations in this book.

Transactions offer significant performance benefits when working with highly-
optimized netlists, where most candidate transformations are retracted after eval-
uation. Another context, where our techniques offer speed-ups of two orders of
magnitude, is compound optimizations where incremental updates are amortized
over a tree of further possible optimizations. We describe efficient implementations
of update, begin, commit and undo functionalities by bounding their impact through-
out the netlist.

4.1 Introduction

Achieving timing closure for large modern ASIC designs requires the use of physical
synthesis—a series of performance-driven optimizations that simultaneously alter the
layout, the netlist and electrical parameters of logic gates.

Physical synthesis tightly couples analysis with optimization in an automated flow
that iteratively improves design parameters. Such flows rely on Static Timing Analysis
(STA) in two essential ways. First, STA identifies the sections of the design that are
most critical to the overall performance. Second, STA assesses the impact of every
potential change on circuit performance, before the change is committed. Circuit
optimizations are bundled into transformations that implement common operations
such as relocating a gate, buffering a net, etc. [1]. Recent state-of-the-art design
methodologies consider compound transformations to simultaneously perform many
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Fig. 4.1 This chapter improves the results of timing analysis as it is used in physical synthesis

simpler transformations that would not have improved overall performance if applied
individually [2] (Fig. 4.1).

Advanced technology nodes require complex timing models that cannot be cap-
tured analytically with sufficient accuracy, often making timing analysis the single
major bottleneck in physical synthesis. Therefore we take a closer look at the con-
ceptual role of STA and its interfaces with optimization. Mathematically, circuit opti-
mizations often interact with STA by obtaining arrival times and required arrival
times at timing points throughout the design [3, 4]. However, running STA on the
entire design to evaluate each potential change is impractical. Therefore, STA can
be used (i) in batch mode to evaluate the compound impact of many changes, (ii)
in incremental mode, where the impact of a single change is efficiently propagated
through the netlist, and (iii) with lazy updates, where timing data are propagated only
in response to queries, batching the changes that occur between queries.

Multi-objective optimizations now increasingly rely on do-no-harm methodolo-
gies that carefully evaluate each change and commit only those that provide tangible
improvements [5–7]. The more aggressive algorithms have very high rejection rates
in this loop, making the speed of incremental STA a major factor in improving phys-
ical synthesis. However, batched mode and lazy updates are of limited use when
evaluating individual impact of multiple candidate changes.

The major impact of STA on overall runtime tempts physical synthesis developers
to assume the responsibility for some aspects of timing analysis and shortchange STA
engines for handcrafted local delay models, which offer significant opportunities
for runtime improvement. However, this practice risks subtle timing mistakes and
also increases the development effort by lowering reuse. Therefore, we propose
improvements to reusable STA engines that better account for the bounded scope of
physical-synthesis transformations.
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We present an extension to the interface of static timing analysis to accommodate
transaction histories. Our technique employs a timing change history datastructure
that stores changes to the timing graph to support an efficient restore operation in
the event of a retraction. This approach is specifically designed to allow nesting
events that spur timing changes. To further improve worst-case complexity, we limit
changes to the timing graph by way of bounded timing analysis, an enhancement
that works in conjunction with transactional timing analysis to allow for the rapid
exploration of circuit search space. Finally, we provide an empirical evaluation of
bounded transaction histories for both classical and lazy STA, demonstrating an
improvement in performance by up to two orders of magnitude.

The remainder of this chapter is organized as follows. In Sect. 4.2 we describe the
state of the art in timing analysis as it applies to physical synthesis and transformation-
driven optimization. We go on to classify several types of physical synthesis transfor-
mations that pose problems to existing timing analysis engines. Section 4.3 presents
bounded transactional timing analysis, along with appropriate details for embedding
it into modern static timing analysis. Section 4.4 provides empirical evidence demon-
strating that bounded transactional timing analysis greatly improves the speed of
transformations that rely on repeated retractions. Conclusions are drawn in Sect. 4.5.
A review of static timing analysis appears in the appendix.

4.2 Background

Timing analysis and its integration into the physical design flow have long been key
topics in design automation. To this end, we review the basics of STA in this section.
Modern static timing engines are products of sophisticated engineering, and have
evolved substantially over recent decades. Yet, dramatic changes to basic timing
models continue to drive the need for further innovation. For instance, multi-mode
timing has become increasingly popular—wherein several timing points are main-
tained at each node of the global timing graph, each corresponding to a different
corner of design operation. While these corners enable modern optimization tech-
niques to evaluate the effect of their actions on many scenarios at once, they also
serve as a multiplier of basic computation that the timing engine must perform.
Statistical timing engines that reflect the variance of design performance require
the maintenance of complex distribution models that also significantly expand the
amount of work placed on the timing engine. These elaborate models, in conjunction
with a stronger emphasis on local transformation-driven operations, have increased
the responsibility of timing engines to provide a much higher degree of incremental
maintenance of internal timing state.

Previous Work

The problem of updating only a subset of timing analysis values in response to a local
change is explored in [8], where a depth-first propagation of timing values is executed
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until no change is observed. This process was later refined [9], to reduce the amount
of incremental recalculation needed. A distinction between the propagation cost of
positive delay changes and negative delay changes is described in [10], demonstrating
that the expense of executing an operation may differ from that of its inverse. The
algorithm of [11] avoids excessive computation by propagating only along paths
that are influenced by altered inputs. A query language based on temporal logic is
proposed in [12], along with an algorithm to efficiently retrieve answers to those
queries. Algorithms for incremental timing analysis [13] and incremental criticality
updates [14] have been proposed in the context of FPGAs. The authors of [15] explore
an extension of static timing analysis to model coupling, and exploit circuit structure
to find a good node ordering during incremental iterative analysis.

Relatively little attention has been given to the explicit support for the retraction
of local design changes. The recent work of [16] provides support for transactional
operations such as begin, commit, and undo. However, these operations are restricted
only to the resurrection of previously cached routing data, and are not communicated
to the timing engine. Indeed, the decision to revert one or more timing properties to
their original state is typically cast as just another sequence of incremental changes
to the system; this forces the wasteful recomputation of timing data, which may be
exacerbated when an inverse operation takes much longer to execute than the original
operation [10]. Other choices in the design flow—such as the decision to compute
Steiner trees for delay estimation—also compound the effort required to restore
timing information to a previously known state. The savings, that can be achieved
by efficiently rolling back recent changes, are likely to escalate in coming years, as
compound transformations become increasingly dominant in physical synthesis and
routinely thrash the timer with multiple hypothetical changes.

Incremental Static Timing Analysis

In static timing analysis [17], a timing graph G = (V, E) is extracted from a com-
binational logic circuit. Each vertex v ∈ V is a timing point, and corresponds to an
input or output pin of a gate or a global input or output pin. A pair of vertices, u, v
∈ G, are connected by a directed edge e(u, v) ∈ E if there is a timing relationship
(i.e., a connection) between the pins u and v. This connection can occur within a
gate, as in between an input pin and an output pin, or it can correspond to a wire
connecting two gates. Each edge has an associated delay δ(u, v) indicating the delay
between u and v.

To determine the worst path of the circuit, a topological traversal is performed on
the graph beginning at the sources. The actual arrival time AAT (v) at a timing point
v in the circuit is the latest arrival time of any of its predecessors after considering
delay:

AAT(v) = max{u|e(u,v)} (AAT(u)+ δ(u, v)) (4.1)
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The required arrival time R AT (u) at a timing point u in the circuit is computed in a
similar fashion, traversing backwards from the primary outputs of the circuit:

RAT(u) = min{v|e(u,v)} (RAT(v)− δ(u, v)) (4.2)

A pair of topological traversals are made to determine these values, after which the
slack of any timing point v is calculated as the difference between required arrival
time and actual arrival time:

slack(v) = RAT(v)− AAT(v) (4.3)

Early STA engines always processed an entire design, which is impractically
expensive when evaluating optimization transformations [18]. This expense can be
avoided by using stale timing information or crude estimations, neither of which are
acceptable in modern high-precision physical synthesis [6]. Another alternative is
to maintain accurate timing information throughout the automated flow, but to do
so in an incremental fashion. Research in incremental static timing analysis aims
to provide efficient techniques for the updating of values within a timing network
in response to local and partial modifications. Several varieties of incremental STA
have appeared over the past decade, and are responsible for decreasing timing runtime
from hours to minutes following incremental circuit changes on large ASICs [19].

Further extensions to incremental analysis include level-limited and dominance-
limited schemes to reduce the amount of work performed [20, 21]. Lazy evaluation
[9, 22], in which propagation is delayed until triggered by a relevant query, represents
a particularly important improvement in throughput of static timing analysis engines.

The boost in throughput offered by incremental analysis allows an optimization
algorithm (as well as a designer) to explore several hypothetical (or “what-if”) scenar-
ios, a task unaffordable in earlier tools [19]. Such hypothetical scenarios are typically
communicated to the timing engine as if committing changes. If the results are unac-
ceptable and the scenarios are rejected, another set of changes must be committed.
This requires new timing calculations, even though the needed timing values have
previously been known. While a single layer of “what-if” support can be added to
STA easily, this is insufficient to handle the evaluation of multiple nested scenarios
and their retraction. Detailed use cases for retraction are discussed in the following
section.

Types of Transformation-Driven Optimization

Recall that timing-driven placement and synthesis seek non-overlapping locations
for all cells such that the performance of the design meets objectives [23]. Tim-
ing optimization during physical synthesis is typically accomplished by gradually
modifying and refining an initial netlist and placement image [24].
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Table 4.1 Types of transformations with embedded retraction. Illustrative values in the “Undo
frequency” column suggest that some cases require many more retractions that other cases

Type Undo frequency Undo purpose

Bind & test (0.1) Already optimal Return to initial state
Fallible (0.1) Upon degradation Error correction
Candidate (1.0) For each candidate Metric-indep. changes
Compound (10.0) Nested candidates Joint evaluation

We distinguish controllers and optimization transformations. A transformation
applies a particular local optimization to gates and/or nets selected by a controller.
For instance, IBM’s Placement Driven Synthesis (PDS) [1] makes use of several
transformation templates, including buffering, re-powering, connection reordering,
cloning, etc. A controller selects nets and/or gates for optimization, ordering them
and judging the impact of optimizations. Both controllers and transformations can
query timing engines. For example, transformations often make several queries to
STA, not only to construct a basic model of the neighboring region (with appro-
priate arrival times and required arrival times), but also to verify improvement after
optimization is complete. Controllers implement optimization strategies with sophis-
ticated reasoning to handle the feedback received from STA.

Despite extensive support for incremental propagation and lazy evaluation,
existing timing engines often perform unnecessary computation in the context of
sophisticated optimizations. In this section we illustrate several opportunities for
improvement that motivate our research, and summarize them in Table 4.1.

Case 1: Inefficiencies in Fallible Transformations

The simplest transformations first identify feasible changes and then rely on the timer
to evaluate the impact on performance. For example, a cell-movement transformation
trying to relocate a cell on a critical path may identify several vacant nearby loca-
tions, and a repowering transformation may bind a critical cell to every power level
available in the cell library. In either case, a timing query must be independently exe-
cuted after each change is made, to select the one with greatest slack improvement.
We term such methods bind-and-test transformations.

More advanced transformations attempt to predict the impact of their changes in
advance, so as to quickly weed out unpromising options, then use the timer to select
among few finalists, and verify improvement. In the case of a repowering transforma-
tion, the slew rate at input pins and the load capacitance offer sufficient information
to estimate slack at the output pin for each power level. Such a transformation could
guestimate the best power level, bind it, then verify its slack improvement. If the
estimate is too inaccurate, the new power level may worsen slack, requiring the
change to be rolled back. In other words, such transformations sometimes fail, and
we therefore term them fallible. Aggressive use of fallible transformations requires
error correction in the form of an undo functionality.
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Fig. 4.2 Evaluating the timing impact of the physical synthesis transformation in Fig. 4.3 (output
side only). a Traditional static timing analysis with lazy evaluation will mark the fanout cone of the
change dirty. b If the change is found to have a negative impact on timing, it will be reversed. This
reversal will be treated as another change, and the fanout cone will be marked dirty for a second
time

Though simple, both fallible and bind-and-test transformations are inherently
slow because repeated changes and timing queries require laborious propagation
and updates of timing information. In our example of bind-and-test repowering, the
evaluation of each power level triggers timing updates for the fanin cones (for AATs)
and fanout cones (for RATs) of the gate. As we point out next, some of this effort
could be deferred and ultimately avoided if the timing engine adopts a philosophy of
lazy evaluation. Namely, after forward-propagating AATs to evaluate the impact of
a change, there is no need to back-propagate RATs, unless the change is committed.

A stand-alone reusable STA engine must ensure consistency of its database with-
out necessarily trusting its clients. Therefore, AATs whose values are not current,
would be marked as dirty. Timing propagation to update dirty data would be invoked
only in the event of a query (and even then, only to the portion of logic needed to
answer the query). However, if the original location (or power level) is optimal—as
it is likely to be if estimation routines and detailed placement have done their job
properly—the demarcation of these cones as dirty is unnecessary, since the orig-
inal arrival times stored within these cones are in fact a correct representation of
the current state. Figure 4.2 illustrates the work performed by traditional static tim-
ing analysis with lazy evaluation when a transformation is applied to a circuit and
subsequently retracts its changes.

Case 2: Candidate Selection Transformations

Are those that employ multiple strategies to generate several alternatives, or candi-
date solutions. In doing so, they try each optimization, and select the best candidate,
rejecting the rest. Such transformations leverage the fact that different strategies work
well in different contexts. For example, consider a transformation that generates can-
didates by repowering as well as moving a gate. Often, moving a gate has greater
impact, but if the design has too little whitespace, there may be no open location
where the gate can move to improve timing. Instead, a higher power level may be
available for the same footprint, or enough whitespace may be available nearby to
increase the footprint.
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(a) (b)

Fig. 4.3 A physical synthesis transformation improves the subcircuit in a by resynthesizing the
logic, resulting in the circuit shown in b. The traditional way of evaluating the timing impact of
such transformations can be improved considerably

While fallible transformations may occasionally invoke undo for correction (e.g.,
when they degrade circuit performance due to approximation inaccuracy), a candi-
date selection transformation requires undo by construction—after each candidate
is computed, the initial state must be restored so that the next candidate can be gen-
erated independently based on the initial conditions. In the example of repowering
or moving a gate, retraction must restore the gate to its original power level after
repowering so that the movement decision can be based on the timing of the initial
power level. Timing queries for interrogating initial conditions of each candidate
generation strategy can avoid the unnecessary work of timing updates if undo can
restore the initial timing state.

Case 3: Compound Transformations

Not only consider multiple strategies for generating candidates, but also do so for
multiple objects. Such transformations may even consider composing overlapping
optimizations to generate a single candidate. For example, consider simultaneously
moving and/or repowering two connected gates in a discrete domain [2, 5]. In this
situation, a very large number of candidates can be generated and evaluated, where
each successive decision may depend on the previous. For example, the resynthesis
transformation illustrated in Fig. 4.3 can be thought of as a compound transformation
consisting of merging the inverter gates with the OR gate followed by swapping
logically equivalent pins.

The increasingly popular compound transformations stress timing analysis tools
much more heavily than other use cases, in that the construction of a local model
requires the search of a large, conditional solution space. Modifications are typically
made in nested pairs to generate appropriate timing arcs; indeed, the authors of [2]
observe that the expense of generating their disjunctive timing graph is often more
costly than the branch-and-bound search used to solve it optimally, a consequence
of the propagation efforts of the timer. When undo can efficiently restore the previ-
ous timing state, combinatorially many timing updates can be saved in compound
transformations.
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4.3 Transactional Timing Analysis

In the presence of retractions, the state-of-the-art STA engines perform a large amount
of unnecessary work, as we have demonstrated in Sect. 4.2. In this section, we present
the details of bounded transactional timing analysis, which serves to substantially
reduce the computation needed to support undo functionality. We first consider its
application to classical STA, and then to the more advanced version that supports
lazy evaluation.

Support for Transactions

By definition, a retraction restores the design to a previously known state. Current
techniques (which view retraction as a separate incremental change) discard the
original timing values during propagation. In contrast, transactional timing analysis
caches timing data that becomes invalidated during the execution of a change.

Specifically, when a modification is made to the design, the timer is notified
through a monitoring mechanism that the delay at a particular timing point has
changed. That notification triggers a corresponding propagation to the transitive fanin
and fanout cones. During transactional timing analysis propagation, prior values are
not simply overwritten (as is commonly done within STA engines), but are rather
stored in a change stack as new values are written in their place. Therefore, if and
when change is retracted, the old values may be restored by “replaying” the timing
updates in reverse.

In the case that a sequence of nested transactions are executed (as may occur
with compound transformations), each individual change stack serves as a distinct
checkpoint of the design state. These checkpoints are themselves stored on a trans-
action stack of all change stacks. A new change stack is pushed onto the transaction
stack when a transformation requests a new checkpoint. The current state of tim-
ing is stored in the timing graph as usual. When a transformation backtracks and
retracts its circuit modifications, changes to the timing graph may be rolled back to
the most recent checkpoint by copying all values in the current head of the transaction
stack back into the timing graph. Changes may be committed simply by clearing the
transaction stack.

Figure 4.4 illustrates one possible implementation of transactional timing analysis.
Several variations of this code are useful in different circumstances. For instance, if
a change is likely to have significant impact on the state of the design, the caching of
old timing values could be performed once, prior to rather than during propagation.

Integrating these ideas into a high-performance timing engine requires a sophis-
ticated interface for optimization transformations. In particular, transformations are
required to communicate their intent, e.g., whether a change request is truly new or
seeks to restore a previous state. This information allows the timer to take appropriate
actions on behalf of each transformation for each change.
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(a) (b)

Fig. 4.4 One possible implementation of transactional timing analysis. The functions Propagate-

Forward and Propagate- Backward shown here using recursion for brevity are best imple-
mented without recursion

Ensuring Consistency and Compatibility

As noted earlier, it is common for static timing engines to defer timing updates until
needed by a relevant timing query. In many cases, this avoids work when timing
values are invalidated multiple times before they are actually used. The notification
of a change in delay during such lazy execution will not trigger timing propagation;
instead, the fanin and fanout cones of a modified edge are simply marked dirty,
indicating that they must be recomputed.

To accommodate transactional timing analysis with lazy execution, dirty bits must
also be considered as part of the state of a timing point. Whereas traditional engines
will leave nodes marked as dirty in the event of a retraction, bounding timing analysis
will revert them back to their state prior to the change. Though not shown in Fig. 4.4,
this extension is relatively straightforward: all actions that alter the dirty bit of a
timing point are recorded, and are subsequently restored if a retraction is issued by
the transformation.

Finally, support for transaction histories in the presence of logic changes (such as
in our example) requires the careful caching of topological modifications to the graph
itself (in addition to the timing values associated with these elements). The creation,
deletion, and modification of graph connectivity can be achieved though a reference
labeling of timing points; changes to structural elements, such as edges and nodes,
are recorded with respect to these unique identifiers, and thus may subsequently be
restored. While the implementation required to properly maintain this bookkeeping
is complex and nuanced, the basic framework we outlined so far encounters no
substantial obstacles.

Bounded Timing Windows

When evaluating the impact of a transformation, it is common to query timing at
specific relative locations to the change. For example, one can query the slack of the
output pin of a gate after repowering, or the slack of an input pin at the next circuit
level after moving a gate. When possible query points can be limited to a window of
interest known in advance, one can reduce the maintenance requirements for timing
information and the update effort. This window may be expanded slightly for safety,
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and we call the resulting local region a bounded timing window.1 Limiting propa-
gation to such windows provides cost savings, as it is only necessary to propagate
arrival times (and/or dirty bits, in the case of lazy evaluation) to the boundaries of the
window. Likewise, in the event of a rollback, the data required to restore the graph
to its original state is also reduced. Since immediate timing queries are assumed
to be made within the timing window, all values outside the region are considered
to be fixed timing endpoints. Bounded transactional timing analysis of an example
transformation is illustrated by Fig. 4.5.

Selecting an appropriate window size for a particular transformation may require
some care. The effect on timing of an optimization depends on the nature of the
optimization; therefore, choosing a static window size is best done when the trans-
formation is designed and tested. In particular, differences in slew rate can greatly
affect timing for the whole path in ways that are difficult to predict while only con-
sidering slack [25]. For this reason, timing analysis tools support a mode to limit slew
rate propagation to a constant number of levels. This mode provides a convenient
way to limit the scope of timing changes and improves the speed of timing analysis
in physical synthesis tools. Any window larger than the scope of slew rate propaga-
tion can provide faster queries with no accuracy loss. Furthermore, in the context of
bounded transactional timing analysis, timing queries are only required to decide if
a retraction is necessary. Typically, the effect of an optimization on the timing of a
path is known with enough accuracy to make a decision to retract or not after a signal
is propagated through only a few levels of logic. An additional dynamic approach
runs a small number of trial transformation applications and samples several win-
dow sizes to determine how much accuracy is lost for various window sizes. It then
chooses the smallest window size with tolerable error to be used on the majority of
transformation applications.

Facilitating Parallelism

Since a bounded timing window delimits the scope of a local change, it also provides
a guarantee of the mutual independence of disjoint timing islands. This independence
meets the requirements set forth for distributed static timing analysis [26, 27] and
could, in theory, be exploited to easily decompose timing optimization into several
parallel processes. Although we do not evaluate such a parallel architecture in this
work, we emphasize that significant runtime savings could be gained if these tech-
niques are integrated with other components of the design flow, e.g., the placement
engine, the data model, etc.

1 Some static timing engines—such as IBM’s EinsTimerT M —provide similar level-limiting features
that serve to circumscribe the scope of local changes; they are not, however, integrated with any
form of transaction management.
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Fig. 4.5 Evaluating the timing impact of the physical synthesis transformation in Fig. 4.3 (output
side only). a Bounded transactional timing analysis will not propagate the change outside of a
specified window. b In the event of a reversion, gates with dirty timing will have their timing data
restored

Complexity Analysis

Let C denote a fanout cone affected by a given logic transformation, and let W
represent the bounded timing window used in bounded transactional timing analysis
for that change. In traditional incremental static timing analysis with lazy evaluation,
all of the timing points in C are marked dirty upon the change. If the change is
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Table 4.2 Performance of bounded transactional timing analysis, with and without lazy evaluation

P[undo] (%) Window Nodes expanded Runtime (seconds)
Size

Classical STA Lazy STA Classical STA Lazy STA

w/o tr w/ tr w/o tr w/ tr w/o tr w/ tr w/o tr w/ tr

0 ∞ 12638 12638 22905 22905 0.28 0.33 (0.8×) 2.09 2.36 (0.8×)
40 12638 12638 19356 19356 0.32 0.33 (0.9×) 1.65 1.86 (0.8×)
20 10186 10186 7400 7400 0.25 0.26 (0.9×) 0.41 0.47 (0.8×)
10 3641 3641 1967 1967 0.08 0.08 (1.0×) 0.1 0.11 (0.9×)

10 ∞ 346170 12646 22895 22605 14.5 0.32 (45.3×) 2.07 2.29 (0.9×)
40 202821 12646 19346 19056 6.65 0.32 (20.7×) 1.69 1.82 (0.9×)
20 41251 10194 7380 7013 1.3 0.25 (5.2×) 0.41 0.43 (0.9×)
10 5957 3649 1955 1793 0.14 0.07 (2.0×) 0.09 0.1 (0.9×)

30 ∞ 1124067 12693 22888 21960 46.66 0.32 (145.8×) 1.98 2.28 (0.8×)
40 510642 12693 19339 18320 14.84 0.32 (46.3×) 1.63 1.76 (0.9×)
20 75128 10233 7353 6282 2.13 0.25 (8.5×) 0.39 0.37 (1.0×)
10 8716 3649 1948 1599 0.19 0.07 (2.7×) 0.1 0.09 (1.1×)

50 ∞ 1733287 12693 22886 9939 73.11 0.32 (228.4×) 2 0.67 (2.9×)
40 799207 12693 19335 9405 24.5 0.32 (76.5×) 1.62 0.63 (2.5×)
20 105003 10233 7351 4012 3.12 0.25 (12.4×) 0.41 0.25 (1.6×)
10 11570 3649 1944 1085 0.26 0.08 (3.2×) 0.09 0.06 (1.5×)

70 ∞ 1855924 12705 22872 6483 76.47 0.31 (246.6×) 2.02 0.48 (4.2×)
40 913461 12705 19321 5848 27.52 0.32 (86.0×) 1.65 0.44 (3.7×)
20 133800 10245 7339 1882 4.12 0.25 (16.4×) 0.4 0.14 (2.8×)
10 15257 3661 1932 397 0.34 0.07 (4.8×) 0.1 0.03 (3.3×)

90 ∞ 1947548 12705 22850 5551 76.81 0.33 (232.7×) 2.11 0.4 (5.2×)
40 995711 12705 19299 4769 29.02 0.33 (87.9×) 1.62 0.36 (4.5×)
20 157328 10245 7315 1078 4.51 0.25 (18.0×) 0.4 0.07 (5.7×)
10 17019 3661 1910 173 0.37 0.07 (5.2×) 0.09 0.02 (4.5×)

retracted, all of the timing points in C are again marked dirty. Subsequent queries
in the area may need to recompute previously known timing data for those timing
points that are left dirty. When using bounded transactional timing analysis, |C ∩W |
nodes are marked dirty upon a change. If the change is retracted, no more timing
points are recomputed, but |C ∩ W | timing points are copied back into the timing
graph. No timing points are left dirty.

We use the following notation to estimate the impact of proposed techniques.
Let L be the depth of a fanout cone C . Let LW denote the depth of C in the
window W . Let B be the average branching factor of C and let R be the average
reconvergence factor. Then |C | is approximately (B − R)L . The size of the fanout
cone within the window |C∩W | is approximately (B−R)LW . Therefore, the number
of timing points that do not need to be marked dirty due to bounding is approximately
(B − R)L − (B − R)LW . The number of timing points restored upon a retraction
when using bounded transactional timing analysis is approximately (B − R)LW ,
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versus approximately (B − R)L timing points left dirty in traditional incremental
static timing analysis.

4.4 Empirical Validation

In order to evaluate the computational benefits of bounded transactional timing analy-
sis, we have implemented the aforementioned techniques in a new static timing analy-
sis tool that supports both classical STA (i.e., the academic variety that immediately
performs propagation of modified timing values) and lazy evaluation (e.g., the more
popular variety that performs propagation only on demand). For evaluation of the
former, we discount the runtime required for initial propagation of a change, as that
time is shared by “with-transaction” and “without-transaction” runs. All incarnations
of our timing engine employ some form of incremental propagation.

We modified a simple timing-driven gate movement transformation within a state-
of-the-art industrial physical synthesis flow to query our static timing analyzer when
deciding whether or not to retract the change. Changes to delay values in the timing
graph of a real 65nm design were simulated and profiled to determine the runtime
incurred by STA. Two parameters were adjusted in these experiments; first, the
probability that a delay change is retracted (P(undo)), and the size of our bounded
timing window (where a size of∞ indicates the absence of this technique). Since
the frequency of finding timing-driven placement improvements strongly depends
on the circuit and the state of optimization, our experimental transformation uses
the P(undo) parameter to determine when to retract changes. Thus, we can vary
P(undo) independently to study the impact on runtime of any retraction frequency.

In experiments, we exercised established physical synthesis transformations that
introduced changes in delay values of the timing graph. We then profiled those
changes in an STA engine to compare several configurations of timing analysis and
measure runtime savings. Two parameters were varied in these experiments:

• P(undo), the probability that a delay change is retracted.
• LW , the number of levels of logic, both upstream and downstream, in the bounded

timing window W , where a size of∞ indicates the absence of this technique.

The results of these tests are presented in Table 4.2. For each setting of P(undo)

and LW , we report the number of nodes expanded and runtime incurred by all solver
variants. Please note that for evaluation of classical STA, we discount the runtime
required for initial propagation of a change, as this time will be incurred by “with-
transaction” and “without-transaction” runs.

We observe the following:

• Transactioning is at a slight disadvantage due to the overhead of state-recording.
As one would expect, benefit is observed only when retractions are performed.
The worst overhead is about 20 % and occurs when using large windows with no
chance of undo. In practice, such a transformation should not enable transaction
histories.
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• For classical STA, a speedup of up to 246× is observed. The greatest speedups
occur for the largest windows and greatest probability of undo.
• For lazy evaluation, a speedup of up to 5.2× is achieved. Compared to classi-

cal STA without transaction histories, lazy evaluation improves runtime in all
configurations that have a non-zero chance of undo. When transaction histories
are introduced to both, the runtime improvement of lazy evaluation is reduced. In
several cases, classical STA with transaction histories is faster than lazy STA with
transaction histories.
• The use of bounded windows dramatically reduces the amount of work, especially

when lazy evaluation is disabled. For example, runtime goes from 76.81 to 0.37s
for P(undo) = 90 %.
• For all parameter settings and STA variants, when transaction histories are used,

higher frequencies of retraction generally lead to stronger improvements in runtime
and nodes expanded.

These results confirm that even with a moderate amount of undo, the computa-
tional savings can be substantial. It can also be observed that bounded timing win-
dows (which can be exploited independently of transaction histories) are generally
effective at reducing runtime. Indeed, best results are achieved when both transaction
histories and bounding approaches are used in concert.

While the use of lazy evaluation alone prevents a fair amount of thrashing (hence
its adoption in all modern timing engines), its performance can nevertheless be further
improved with these techniques. We expect that most physical synthesis flows will
realize the combined benefits of lazy evaluation, transaction histories, and bounded
timing windows.

4.5 Conclusions

In this chapter, we have presented bounded transactional timing analysis, described
our implementation, and validated it in a production physical synthesis flow.

Our work has been motivated primarily by deficiencies in static timing analysis
that result in poor runtime for several common physical synthesis operations. Specif-
ically, we have categorized several types of physical synthesis transformations that
utilize retraction in different ways. Then we have presented an extension to static
timing analysis to accommodate transaction histories, in which a history of network
delay propagations is tracked and cached so that the state of the timing graph may be
efficiently restored in the event of a retraction. This approach was further generalized
to allow for the nesting of timing changes. Changes to the timing graph were limited
by way of bounded timing analysis, an enhancement that works in conjunction with
transactional timing analysis to allow for the rapid exploration of circuit search space.
The incremental timing concepts presented in this paper are not unique to physical
synthesis; they are equally applicable to the efficient support of logic synthesis trans-
formations, and some of them may have been in use for this purpose since the mid
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90s. However, conventional logic synthesis does not stress timing infrastructure as
much as modern physical synthesis does, therefore relevant techniques were not
given as much attention and, to this day, remain poorly documented. We conclude
that as transformation-driven optimizations in physical synthesis continue to increase
in complexity, the need to efficiently accommodate hypothetical timing queries is
likely to grow.
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Chapter 5
Gate Sizing During Timing-Driven
Placement

A fundamental challenge addressed by physical synthesis is reducing circuit delay by
altering timing-critical paths. Several techniques can be applied to achieve this opti-
mization: buffer insertion, gate sizing, cell movement, etc. In this work, we propose
a powerful new technique that moves and resizes multiple cells simultaneously to
straighten critical paths, thereby reducing delay and improving worst negative slack.
Our approach offers several key advantages over previous formulations, including
the accurate modeling of objectives and constraints in the true timing model, and a
guarantee of legality for all cell locations, thereby avoiding overlap with large fixed
blockages and the need for subsequent legalization. We formulate the path smooth-
ing problem in terms of a disjunctive timing graph, and develop a computation of
optimal locations by incorporating a generalization of static timing analysis into
an efficient branch-and-bound framework. Empirically, our approach consistently
improves solution quality in a large-scale modern industrial benchmark. Experimen-
tal results indicate that the techniques used in this chapter are accurate enough to
improve the critical path optimization and slack-histogram compression stages of
physical synthesis, as illustrated by Fig. 5.1.

5.1 Introduction

Timing-driven placement [1–3] is a critical step in any physical synthesis flow, and
has received steadily increased attention in recent years [4]. Due to its computa-
tional expense and complexity, several algorithms optimize timing objectives indi-
rectly by relying on edge- or net-weighting methods to cast the problem into one of
weighted wirelength-driven placement. Whether such approaches can truly be con-
sidered timing-driven—or instead, merely timing-influenced—remains a matter of
debate.

A great deal of focus has been given specifically to the construction of cheap,
incremental methods for improving timing along critical paths in an optimized design,

D. A. Papa and I. L. Markov, Multi-Objective Optimization in Physical 65
Synthesis of Integrated Circuits, Lecture Notes in Electrical Engineering 166,
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Fig. 5.1 The contributions in this chapter improve the results of the critical path optimization and
slack-histogram compression stages of physical synthesis

a problem we loosely refer to as path-smoothing. Whether a design simply remains
poorly optimized after running existing P&R tools, or whether one needs to close on
timing after the application of ECOs, there remains a high demand for efficient and
automated techniques for timing-driven path smoothing.

Prior work on this topic has varied widely in the treatment of model accuracy,
including various assumptions about physical properties (e.g., gate delay and wire
delay) as well as constraints to be enforced in the solution (e.g., must have a legal
placement, or be subsequently buffered, or repowered, etc.). They also differ in the
specific computational frameworks used to achieve the optimization (e.g., a local
search, greedy algorithm, or dynamic program). These two considerations—choice
of model and choice of algorithm—are strongly coupled, as a particular model often
gives rise to a specific search space or methodology.

One of the more popular approaches to incremental timing-driven placement in
the literature is linear programming (LP) [5]. While several flavors exist, a conven-
tional LP formulation typically involves the association of decision variables with the
coordinate(s) of each gate or pin, and the expression of pairwise timing dependen-
cies between these variables using linear constraints. Since the relationship between
pin-to-pin wire delay and Manhattan distance is quadratic rather than linear, the inac-
curacy of this linear model has been addressed in various ways. For instance, Choi
and Bazargan [6] consider an objective function that minimizes total cell displace-
ment to prevent cases where large cell movement invalidates the linear model. The
model of Wang et al. [7] assumes that LP-based optimization is followed by per-
fect buffer insertion. A piecewise-linear approximation of the quadratic function is
employed by Chowdhary et al. [8]. Luo et al. [9] optimize a weighted slack objective
in which Elmore delays computed from the original placement are scaled linearly by
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a coefficient. Chapter 3 also contains an LP formulation to be used after stripping all
repeaters out from combinational logic and subsequently re-buffering long wires as
a post-processing step.

Despite these efforts, linear programming formulations suffer from additional
complications aside from their inability to capture a faithful delay model. Among
these deficiencies includes the potential to create cell overlap; although several post-
placement legalization techniques have been adopted in academia and industry [10,
11], there is no guarantee that these procedures will preserve improvements made to
timing. Other solutions, including the restriction of cell movement to geometrically
disjoint bounding boxes [9, 12], severely overconstrains the problem by preventing
large and potentially beneficial leaps. Furthermore, a trend in modern ASIC designs
is the presence of large fixed macros that serve as blockages and limit the possible
legal locations for movable logic. For such designs, an accurate model should avoid
solutions that place gates on top of fixed obstacles. Finally, optimizing other dis-
crete design parameters such as gate sizes and placement simultaneously requires an
approach that accounts for decisions with finitely-many alternatives, since solutions
produced by continuous gate-sizing [13] may degrade unacceptably when mapped
to a standard cell library. Such continuous-to-discrete mappings present challenges
for any of the aforementioned mathematical programming approaches.

In this chapter, we introduce a new direction for incremental, timing driven place-
ment under models with high-fidelity to an industrial static timing analysis engine. In
contrast to prior efforts that approximate timing objectives using weighted wirelength
driven metrics (and approximate discrete decision variables using lossy, continuous
models), our approach maintains a high degree of accuracy by explicitly encoding
placement alternatives into a fully discretized graph-based representation, matching
the true timing objectives as computed by an industrial static timing analysis engine.
Specifically, we consider a formulation in which a finite set of pre-legalized candi-
date locations and power levels are identified for each movable gate, allowing a more
faithful and accurate encoding of pairwise delay, as well as enabling the avoidance of
large fixed macros that serve as blockages. This formulation gives way to a disjunc-
tive timing graph, a compact structure that captures all possible conditional timing
arcs for a given problem instance. We then propose a means to compute optimal solu-
tions to this model using an efficient branch-and-bound framework that considers the
simultaneous placement of multiple gates. To obtain upper bounds on worst negative
slack (WNS), we develop a means to perform Generalized Static Timing Analysis
(GSTA), an extension of traditional static timing analysis that produces optimistic
slack values even when only a subset of gates have been assigned to their respective
candidates.

The remainder of this chapter is organized as follows. In Sect. 5.2, we present
a brief review of static timing analysis and timing-driven placement. In Sect. 5.3,
we describe our problem formulation in detail, including the selection of movable
gates and candidate assignments. In Sect. 5.3, we formally define the Disjunctive
Timing Graph, and describe our optimization algorithm in Sect. 5.4. Finally, in
Sect. 5.5, we present experimental results of our system–named RATCHET- followed
by concluding thoughts.

http://dx.doi.org/10.1007/978-1-4614-1356-1_3
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5.2 Background

Timing-driven placement seeks non-overlapping locations of the cells of a circuit
such that the worst slack in the design is maximized. This is in contrast to wirelength-
driven placement wherein the objective is to minimize total half-perimeter wirelength
(HPWL).

The problem that incremental timing-driven placement aims to solve is the fol-
lowing: given an optimized design, select a subset of gates M from G (where M may
just consist of a single gate) and find a new location for each gate in M such that the
worst negative slack (WNS) in the entire subcircuit is improved:

WNS(G) = min
v∈V (G)

(min(0, slack(v))) (5.1)

For tie-breaking, a total negative slack (TNS) component may also be optimized,
which is equal to the sum of all negative slacks:

TNS(G) =
∑

v∈V (G)

(min(0, slack(v))) (5.2)

An algorithm that solves this problem is called a transformation, using the termi-
nology of [14, 15]. More generally, a transformation is any optimization procedure
designed to incrementally improve timing while preserving the logical correctness
of a circuit. Other examples of transformations include: buffering a single net, resiz-
ing a gate, cloning a cell, swapping equivalent pins on a gate, etc. Transformations
are invoked in a physical synthesis flow by controllers. For example, a controller
for critical path optimization may attempt a transformation on the 100 most critical
cells. A controller designed for compression may consider every cell that fails to
meet its timing constraints.

5.3 Problem Formulation

In formulating our problem, we require three steps to be performed in sequence. The
first identifies the set of gate(s) that should be considered for movement, such as the
most critical gates and their adjacent neighbors. Next, a set of candidate assignments
is computed for each movable gate; if desired, these candidates can satisfy current
constraints in the physical synthesis flow, such as avoidance with obstacles, keep-out
regions, etc. Finally, a timing arc is extracted for each pair of candidate assignments.

Selection of Movables

The task of selecting a set of movable gates is shared by many timing-driven place-
ment algorithms. Since our transformation can be enacted by any high-level con-
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troller, we are free to assume that an external mechanism chooses individual gates
for relocation (e.g., such as all imbalanced latches [16]). In expanding the movable
logic to include additional gates, various heuristics have been proposed that incorpo-
rate the degree of neighbors’ criticality [7, 9]. We combine the criticality adjacency
network of [9] with an N -hop neighborhood, in which any gate within N steps of the
targeted gate is included in the set of movable cells; however, we stress that our core
timing-driven placement engine can be parametrized with any well-formed gate-
selection strategy. All peripheral gates connected to the movable logic are collected
to form a set of fixed nodes.

Selection of Candidate Assignments

After the set of movable gates has been determined, we precompute a discrete set of
candidate assignments for each. Our method imposes no restrictions on how these
candidates are obtained, as there are several possible strategies ranging from simple
to exotic. In the case of placement, examples include the following:

• For a gate whose current coordinate is (x, y), consider the candidates:

(x +�x, y)

(x −�x, y)

(x, y +�y)

(x, y −�y)

for a given (�x,�y), in addition to the current coordinate of the gate. Such a set
corresponds to the directions up, down, left, and right.
• The closest feasible locations to each of the candidates in the above set (i.e.,

respecting blockages and large fixed macros).
• The n nearest feasible locations closest to the gate’s current coordinate, for some

specified number n.
• A set of m or more locations obtained by m other incremental timing-driven place-

ment algorithms for single gates.

The precomputation of candidate assignments bears some resemblance to graph-
based approaches to buffer insertion [17]; however, it reflects a significant deviation
from the vast majority of existing incremental timing-driven placement approaches
that assume a continuous (and globally feasible) geometric plane. Refer to Fig. 5.2
for an example in which each of five movable gates (b, c, d, e, and f) has between two
and four candidates each. The presence of a single large macro prevents candidate
locations from appearing toward the center of the subcircuit.

Although our experiments are limited to multi-move placement, it is important to
note that candidate assignments need not necessarily be new physical locations; for
instance, cell f is shown to have two possible sizes, indicating different candidate
power levels for the gate. Similar assignments can be obtained if considering dual
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Fig. 5.2 Gates a and g are fixed. Alternate candidate locations for movable gates b, c, d, e,
and f have been determined. Gate f also has two candidate power levels

threshold voltage (Vt ) levels [18]. As will be demonstrated later, this generalization
permits the simultaneous optimization of placement and other transformations, in a
similar spirit to [13] but imposing discrete (rather than continuous) values.1

Disjunctive Timing Model

The final step in our problem formulation is to construct a conditional timing arc for
each pair (li , l j ) of candidate assignments between source and sink, which specifies
the delay that would occur between them. We refer to the arcs between these nodes
as being conditional since they depend on the chosen candidate(s). Our algorithm
makes no assumptions about the correlation between the values of these timing arcs,
and any delay model may be used. For instance, half-perimeter wirelength (HPWL)
may be used to create a linear-delay model if rebuffering will be performed as a
postprocessing step. In this case, delay is a pure function of geometric location:

delay(li , l j ) = τ ∗ dist(li , l j ) (5.3)

where τ is a technology dependent parameter equal to the ratio of the delay of an
optimally-buffered, arbitrarily-long wire segment to its length:

1 In practice, a discrete set of candidate values is more appropriate when working with a predefined
cell library, and discretization from continuous values is NP-complete in general [19].
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τ = delay(wire)

length(wire)
(5.4)

Alternatively, if rebuffering will not occur, more elaborate and accurate timing models
are appropriate. For instance, the Elmore delay model captures a quadratic function
of wirelength on 2-pin nets:

delay(li , l j ) = K D ∗ r ∗ dist(li , l j ) ∗
(c ∗ dist(li , l j )

2
+ C pin j

)
(5.5)

The delay between gates on higher degree nets may be obtained by querying a full-
blown industrial timing engine, reconstructing Steiner trees from scratch [20] or via
topological repair [21], or instead by cheaper methods of estimation [22].

The Disjunctive Timing Graph

In the previous paragraphs, we identified the three major components in our formula-
tion of incremental timing-driven placement: selection of movable gates, selection of
candidate assignments, and generation of conditional timing arcs. We now formally
define an extension of the classical timing graph that captures these attributes:
Definition: A disjunctive timing graph G is defined by a tuple (V, C, E), where
(as in the traditional timing graph) each element v ∈ V corresponds to a logic gate
in the circuit, and a pair of vertices, u, v ∈ G, are connected by a directed edge
e(u, v) ∈ E if there is a connection from the output of gate u to the input of gate v.
The additional parameter C is a mapping from any gate v ∈ V to a set of candidate
assignments {v1, . . . , vCv}. Each edge has an associated conditional delay function,
δ(ui , v j )→ �+, indicating the delay between any pair of candidates ui and v j . �

The disjunctive timing graph encodes all combinations of pairwise net delays,
with each vertex corresponding to a meta-node representing a set of candidates. See
Fig. 5.3 for an illustration corresponding to our example. In subsequent sections, it
will be useful to refer to a solution to a disjunctive timing graph, which is obtained
by selecting a candidate for each gate and extracting the appropriate timing arcs.
Definition: A solution S to a disjunctive timing graph G is a mapping V → C(V ), in
which a single candidate is selected from the domain of each gate v in V . A solution
corresponds to a traditional timing graph G ′ = (V ′, E ′), in which the vertices V ′
of G ′ correspond to the candidates selected from G, and the weight of each edge
e′(u, v) ∈ E ′ is taken from δ(ui , v j ), where ui and v j are the candidates chosen for
gates u and v (respectively). �

A solution S to a disjunctive timing graph is deemed optimal with respect to an
objective function O (e.g., worst negative slack, or delay) if the value O(S) is as
good or better than O(S′) for every other solution S′. Observe that, in contrast to
a traditional timing graph, a simple longest path calculation through the disjunctive
graph does not suffice, even if optimizing for delay; such a computation maximizes
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Fig. 5.3 The disjunctive timing graph for our running example. Each timing arc between a pair of
candidate assignments has a distinct value; the actual arc between any two meta-nodes in a complete
solution depends on the candidates chosen

the longest path, whereas we instead seek to select a set of candidates such that the
longest path is minimized.

5.4 Our Simultaneous Placement and Gate-Sizing
Algorithm

The previous section alludes to one possible algorithm for the optimization of a dis-
junctive timing graph: generate every possible solution S, evaluate its cost, and return
the best solution, an approach generally referred to as exhaustive enumeration. How-
ever, when considering even moderately-sized problems, the computational expense
of this brute-force procedure may be prohibitively expensive. In particular, given M
movable gates and C candidates per gate, a total of C M solutions will be considered,
with each requiring a full pass of Static Timing Analysis to determine worst negative
slack.
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Of course, if strict optimality is not required, other possibilities exist. A simple
greedy strategy could consider the movement of each gate individually, choosing the
location that maximizes worst slack assuming all other gates are held fixed (requiring
the generation of M × C solutions). However, in many practical cases, it is impos-
sible to improve timing by moving only a single gate. For instance, suppose a large
gate is being driven by a relatively weak driver, in which case neither gate can be
moved a significant distance from the other without imposing an electrical viola-
tion. To accommodate a wide range of instances, our algorithm must consider the
simultaneous movement of multiple gates. In response, we turn to the well-known
algorithmic framework of branch-and-bound.

Recursive Branch-and-Bound Search

Branch-and-bound is a widely-studied, commonly used depth-first-search
optimization technique. Rather than explore all possible combinations of assign-
ments, branch-and-bound prunes partial solutions based on estimates of the objective
function calculated during search. Backtracking occurs whenever the upper bound on
the value of a partial solution is no better than that of the best found. Recent work in
the coupling of graph-based procedures with branch-and-bound have demonstrated
runtime reductions from days to seconds in floorplanning domains [23], although
such advances have yet to be extended toward problems in timing-driven placement.

In Fig. 5.4, we display a possible search tree for our running example that has been
pruned as a result of bounding. The partial solution S = {(b← b1), (c← c1), (d ←
d1)} is eventually extended to form a complete solution; however, in exploring the
partial solution S′ = {(b← b1), (c← c1), (d ← d2)}, search is aborted. By visual
inspection of Fig. 5.2, the distance between candidates c1 and d2 is relatively large,
and contributes to an excessively long delay in S′.

In order to make branch-and-bound effective, one must choose intelligent metrics
to guide the process of node expansion. We identify two selection strategies for the
branching schedule: the gate ordering, used to determine which gates should be
instantiated earliest in search, and the candidate ordering, used to determine which
partial solutions should be attempted before others. For the former strategy, gates
that fall along the critical path are given highest priority; since it is the placement
of these gates that has the highest impact on worst negative slack, their assignment
should not be postponed. For the latter strategy, we order candidates by determining
their effect on the bounding calculation, as described in the next section.

Generalized Static Timing Analysis

One question raised by the backtracking framework is how to compute upper bounds
on worst negative slack when only a subset of candidate assignments have been
chosen. Traditional versions of Static Timing Analysis assume that all timing arcs
have been fixed, whereas in our model, a disjunctive set of choices remains until a
leaf node (i.e., a fully instantiated solution) in search is encountered.
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Fig. 5.4 Branch-and-bound computes an upper bound on the worst negative slack at every node
in search. Any partial solution that cannot improve upon the best known is pruned

We resolve this by performing a generalized version of Static Timing Analysis,
which we call Generalized Static Timing Analysis (GSTA). In GSTA, each edge in
the graph corresponding to a source/sink pair is replaced with the most optimistic
(or least constraining) possible timing arc. These weakened values may be safely
propagated through the graph in place of any particular timing arc. Actual arrival
times, required arrival times, and slacks are computed as is typically done in STA,
using these weakened values during propagation. More formally, the actual arrival
times and required arrival times for a partial solution S are computed by the following
expressions:

AAT(v) = max{u|e(u,v)} (AAT(u)+ min
ui∈C(u),v j∈C(v)

(δS(ui , v j ))) (5.6)

RAT(u) = min{v|e(u,v)} (RAT(v)− min
ui∈C(u),v j∈C(v)

(δS(ui , v j ))) (5.7)
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Fig. 5.5 The delay functions
δ(c, d) and δ(e, f ). Here
we show the case where the
partial solution S includes
the decisions (d ← d1) and
(e ← e1). The weakened
delay values are δS(c, d) = 3
ps and δS(e, f ) = 2 ps

(a) (b)

Since these weakened delay values must hold in any fully instantiated solution,
the soundness of the procedure is preserved. Although the worst slack estimate
calculated from this procedure may not be achievable in any complete solution,2

we are guaranteed that no extension of the partial solution can improve upon it.
If a candidate assignment for one movable gate has been chosen, some entries

in the conditional delay function may be disregarded. For instance, in Fig. 5.5, we
consider the case when the partial solution S includes the decisions {(d ← d1),
(e← e1)}. Since no extension of this particular search node will consider the selec-
tion of candidate d2, an entire column of entries can be ignored, raising the optimistic
delay of the conditional function δS(c, d) up to 3 ps from 2 ps. A similar effect is
observed for δS(e, f ). If both gates have been instantiated with candidate assign-
ments, the actual timing arc between those specific candidates may be used.

To address issues such as resource contention (i.e., when two different gates
attempt to take the same location), one may check for such conflicts during search,
backtracking accordingly. Alternatively, such locations may be pre-processed prior
to search, so that only one location appears as the candidate of any cell.

Observe that in the case that all gates have only a single candidate assignment (or,
equivalently, that a single candidate has been chosen for each movable gate), Gener-
alized STA reduces to traditional STA. It should also be noted that our branch-and-
bound technique is an anytime algorithm, and may be interrupted prior to completion
to obtain a suboptimal solution (e.g., based on a timeout limit, maximal number of
nodes, etc.).

The Complete Flow

In Fig. 5.6, we present the full pseudocode for our algorithm, named RATCHET.
After selecting the targeted gate (line 1) and its surrounding movable neighbors
(line 2), the current location of each gate is stored into the best known solution (Best-
Sol). The algorithm then repeats the remaining steps for a given number of Iterations
(line 4). Within each iteration, candidate assignments for each movable gate are
computed (lines 5–6), as well as the appropriate timing arcs for pairs of candidate

2 Interestingly, for subcircuits whose topology is that of a tree, a slight variation of GSTA can
provide provably achievable upper bounds; however, due to space limitations, we omit the details
in this 6-page submission.



76 5 Gate Sizing During Timing-Driven Placement

Fig. 5.6 Pseudocode for
the RATCHET algorithm.
It begins by exploring a
subcircuit from a seed and
constructing the disjunctive
timing graph. The final step is
to solve for the best solution
in disjunctive timing graph

assignments between adjacent gates (lines 7–10). These data are passed to the recur-
sive function SOLVE(line 11). Upon its return (line 12), the optimized solution will
be stored in BestSol.

Function SOLVE is given the current partial solution of candidate assignments to
gates (S), the unassigned gates (U ), the candidate assignments (C), and the timing
arcs (arcs). If branch-and-bound detects that worst slack cannot be improved in any
extension of this node, search is aborted (lines 1–2). Similarly, if any other termination
criteria have been reached (such as a timeout limit, or a maximal number of search
nodes), the function return as well (lines 3–4). If a leaf node in the search tree has
been reached (line 5), the fully instantiated solution is recorded as the best known
(line 6). Otherwise, a movable gate is selected heuristically (line 7), removed from
the set of unassigned gates (line 8), and each of its candidate assignments is attempted
(line 9). For each location, the partial solution is extended appropriately (line 10),
and the DAG is recomputed to reflect the new assignment (line 11). The function
then recurses (line 12) and returns when all candidates have been attempted.

RATCHET is meant to be applied in an iterative fashion; each call perturbs the
location of movable gates, and a fresh set of candidate assignments are generated
from this new solution. This process continues until a maximal number of iterations
are attempted, or a threshold on minimal improvement cannot be met. In the unlikely
event that a solution is found to degrade timing (for instance, if delay values for the
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Table 5.1 Statistics for path smoothing benchmarks

Name # gates # mov. # nets init slack init FOM

ibm-ps-01 3 1 2 −549 ps −549 ps
ibm-ps-02 4 2 3 −522 ps −801 ps
ibm-ps-03 6 3 5 −260 ps −477 ps
ibm-ps-04 8 4 6 −758 ps −1516 ps
ibm-ps-05 15 7 15 −943 ps −1986 ps
ibm-ps-06 18 9 16 −411 ps −1174 ps
ibm-ps-07 19 10 17 −1171 ps −3513 ps
ibm-ps-08 21 13 18 −288 ps −2537 ps
ibm-ps-09 34 15 33 −307 ps −2726 ps
ibm-ps-10 58 21 57 −782 ps −1863 ps
ibm-ps-11 96 29 103 −297 ps −2927 ps
ibm-ps-12 164 49 205 −252 ps −2149 ps

The # gates and # nets columns shows the total number of gates and nets, while the # mov. column
shows how many of the gates are movable. The init slack column shows the worst initial slack and
init FOM shows the sum of negative slacks

model had been inaccurately estimated), we adopt a do-no-harm philosophy [24, 16]
by reverting the design back to its pre-transformation state.

5.5 Empirical Validation

In order to evaluate the efficacy of RATCHET, we extracted twelve subcircuits from a
large, modern 65nm industrial design that contains several macros, keep-out regions,
and other blockages. A summary of these subcircuits is given in Table 5.1.

Since the disjunctive nature of our problem formulation escapes the expressive
power of LP formulations in previous work, we compare our full implementation of
RATCHET against a simple variation on the aforementioned brute-force approach
of exhaustive enumeration. For this set of experiments, we limit run RATCHET with
a controller that selects imbalanced latches, and vary the number of movable gates to
measure scalability. For candidate selection, we select four locations around the chip
(effectively, the legalized positions corresponding to coordinates to the right, the left,
above, and below each movable gate). Any duplicate locations after the legalization
process are lumped into a single candidate. Exhaustive enumeration is, as expected,
capable of producing optimal solutions, but with a significant runtime penalty. Our
branch-and-bound algorithm is able to improve worst negative slack and TNS on all
subcircuits with comparatively negligible runtime.
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5.6 Conclusions

The path smoothing problem in timing-driven placement is one that fundamentally
admits a discrete solution space, and requires a corresponding methodology to effi-
ciently perform discrete optimization. In response, we have proposed a new direc-
tion for incremental, timing-driven physical synthesis that directly optimizes timing
objectives using accurate, high-fidelity models. RATCHET couples the graph-based
techniques of static timing analysis with a powerful branch-and-bound strategy to
achieve efficient optimization of critical paths in late stages of refinement. In contrast
to prior efforts that approximate timing objectives using weighted-wirelength driven
metrics, our approach maintains a high degree of accuracy by explicitly encoding
placement alternatives into a disjunctive timing graph. We have also developed a
method of Generalized Static Timing Analysis necessary to obtain upper bounds on
worst negative slack (WNS) when only a subset of gates have been assigned to their
respective locations, leading to an efficient branch-and-bound algorithm shown to
improve the solution quality of large industrial designs.
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Part III
Broadening the Scope of
Circuit Transformations



Chapter 6
Physically-Driven Logic Restructuring

In a complete physical synthesis flow, many optimizations are applied to critical paths
that are already optimized by a series of powerful transformations, as described in
Chap. 2. Transforms that can further improve the timing of such paths are invaluable
for timing closure. Finding such transformations and applying them efficiently is
challenging. To this end, we explore new techniques for logic cloning (gate duplica-
tion) to improve timing closure in a physical synthesis environment.

With a buffer-aware interconnect timing model, new polynomial-time optimal
algorithms are proposed for timing-driven cloning, including finding appropriate sink
partitions (fanout identification) for the original and the duplicated gates, as well as
optimized physical locations for both gates. In particular, we present an O(m)-time
optimal algorithm to maximize the worst slack if the original gate is movable, and
an O(m log m)-time optimal algorithm if the original gate is fixed, where m is the
number of fanouts. To the best of our knowledge, this work is the first to consider
the timing-driven cloning problem under a buffer-aware interconnect delay model.

6.1 Introduction

Physical synthesis is a complex process that combines physical design with netlist
restructuring to achieve design closure. As described in Chap. 2, physical synthesis
typically consists of several stages including placement, legalization, critical-path
optimization, etc. Among these stages, the critical-path optimization stage is partic-
ularly important. It takes a design that is legally placed and initially optimized for
timing, and restructures critical paths by applying a multitude of different transfor-
mations, such as gate sizing, Vth tuning, and buffering. It is usually not difficult to
improve timing early in a physical synthesis flow. However, it is more challenging
to improve timing if the circuit has been optimized by a series of powerful transfor-
mations in a physical synthesis flow.

D. A. Papa and I. L. Markov, Multi-Objective Optimization in Physical 83
Synthesis of Integrated Circuits, Lecture Notes in Electrical Engineering 166,
DOI: 10.1007/978-1-4614-1356-1_6, © Springer Science+Business Media New York 2013
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Timing closure requires a variety of netlist transformations, each addressing cer-
tain problematic structures. In this chapter, we design several highly efficient cloning
techniques, also known as cell replication techniques, to improve delay along crit-
ical paths. Cloning is not a new synthesis optimization; Brglez [1] and Hwang et
al. [2] use cloning as a mechanism to reduce net-cut during partitioning, and cloned
gate placement has been studied in the FPGA domain [3, 4]. Since cloning helps in
reducing the total capacitance loading of a high-fanout net, many existing techniques
focus on technology-independent delay optimization [5–7]. A variant cloning prob-
lem that considers a load-dependent gate delay model and zero-wire delay is known
to be NP-complete [7]. Under the same delay model, a cloning in sink-to-source
order can improve the timing of a technology-mapped circuit [8]. Due to the com-
putational complexity of the problem, heuristics are often proposed to speed up the
technique. However, all of these techniques neglect two key features of the problem:
interconnect delay and the placement of the duplicated gate. Thus, these models can
be used in the logic synthesis stage of design but will be less applicable during the
core stages of a physical synthesis flow.

For modern technologies, previous cloning algorithms are largely ineffective for
critical-path optimization because they ignore wire delay, buffering and placement.
This is explained in part by interconnect scaling, which has only recently necessitated
that buffers be inserted on nearly all global nets to overcome wire resistance [9].
Consequently, when one wants to apply cloning to improve path delay, buffers that
have been inserted previously limit the scope of cloning for timing improvement. To
make cloning effective, one must account for buffers by considering only non-buffer
sinks, and re-buffering the resulting circuit.

To the best of our knowledge, the only work which handles both cloning and buffer
insertion in the placement stage is BufDup [10]. Unfortunately, they consider cloning
and buffer insertion separately. In addition, BufDup uses a timing-oblivious, simple
k-means based clustering algorithm to partition the fanout gates. It does contain a
timing-driven post-processing step, but it can only be used to balance the capacitance
loading of the two partitions and is not designed to improve timing. In contrast to
[10], our cloning is based on a linear-delay model [11, 12] with the knowledge that
buffered interconnect delay is linearly-proportional to its length (see Chap. 3). This
model handles simultaneous buffering and cloning in an abstract and unified way.
Adoption of such a delay model also helps to reduce the complexity of the gate
cloning problem. This work reveals that cloning with a buffer-aware linear-delay
model can be accomplished very efficiently (in polynomial time).

Other works on simultaneous timing-driven gate placement and buffering are
related to this problem. RUMBLE (see Chap. 3) uses a linear-delay buffering model
and linear programming techniques to solve the timing-driven latch and gate place-
ment problem considering practical constraints. Pyramids uses computational geom-
etry techniques to efficiently solve a one gate placement problem with a similar
delay model [13]. Note that the timing-driven gate placement problem is subsumed
by the timing-driven gate cloning problem, since a fixed sink partitioning reduces
the cloning problem to the gate placement problem. Thus, the cloning problem is
complicated by the need to find sink partitions and gate placements simultaneously.

http://dx.doi.org/10.1007/978-1-4614-1356-1_3
http://dx.doi.org/10.1007/978-1-4614-1356-1_3
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Fig. 6.1 Example of interconnect-driven cloning. The arrival times of F1 and F2 are 0. The required
arrival times of S1 and S2 are 5. For simplicity, this example uses gate delays of 0. a Original circuit.
b New circuit after cloning leaving buffering intact. c New circuit after cloning considering buffering

An example of simultaneous cloning and buffering is shown in Fig. 6.1. The arrival
times of F1 and F2 are 0, and the required arrival times of S1 and S2 are 5. Consider
the situation in Fig. 6.1a where we consider cloning gate P . There are two sinks S1
and S2 with slacks +1 and −1. The delays from fanins F1 and F2 to P are 1 and 3
respectively, as are the delays from P to S1 and S2, including the delay of buffers
and wires along the path. If we clone P to P ′ while leaving the original buffer trees
intact, we may get the result shown in Fig. 6.1b in which P ′ is placed very close to
P , and the slack only improves to−0.5. Here the new location of P ′ is restricted by
the buffers that must drive both P and P ′. However, if one restructures the buffering
solution to eliminate this constraint, one can obtain the superior solution in Fig. 6.1c
which increases both slacks to+1 and obtains the physically shortest possible paths
from F1 and F2 to S1 and S2. This example suggests that one must consider buffering
and cloning together to effectively reduce delay.

Timing-driven buffering alone can be computationally expensive when used
excessively [14]. It is also difficult to use it to derive any guidance for simulta-
neous cloning and buffering. To be most accurate, one should explore all possible
partitionings of sinks for each net, find gate placements (i.e, with the technique in
Chap. 3), re-buffer with dynamic programming, and legalize the design. The whole
process is too expensive for modern designs with hundreds of thousands of nets. It

http://dx.doi.org/10.1007/978-1-4614-1356-1_3
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may also waste the majority of its runtime, because in many cases the new solution
may be worse than the old solution, and will therefore be retracted.

Unlike the above approach, we use abstract timing models and build a theoretical
guide on top of them. In our approach, the effect of buffering is modeled by a linear-
delay model, introduced in Chap. 3. Our algorithms guarantee optimality under this
delay model, and can also be used as a filter to identify a group of critical gates that
may benefit from cloning. Even if our solution does not fix all timing problems, one
can still apply more accurate gate placement techniques based on our sink partitioning
and re-buffer on a small group of nets. In that way, success rate and the total turn-
around-time will be improved.

The main contributions of this chapter are summarized as follows.

• We propose several polynomial-time optimal algorithms for simultaneous timing-
driven cloning and buffering under a linear-delay model. Our algorithms “see
through” buffer trees in the original circuit.
• For circuits surrounding a movable object, an O(m)-time algorithm to compute the

optimal cloning that maximizes worst slack is proposed, where m is the number
of fanouts.
• For circuits surrounding a fixed object, we present an O(m log m)-time algorithm

to compute the optimal cloning.

For the remainder of this chapter, we assume that load-based cloning techniques
have already been applied during logic synthesis or an early design stage, and we
will not focus on the problem of reducing capacitive load. Also, buffering should
have processed all high-fanout nets before the cloning we propose. The techniques
in this chapter are designed primarily for gates driving substantial interconnect delay
(medium-length and long nets).

6.2 Background and Preliminaries

We outline our problem formulation as follows.
Linear Buffered-Path Delay Model. Recall the linear-delay model introduced

in Chap. 3. The delay along an optimally buffered interconnect of length l is given
by delay(l) = τ · l, where τ is a technology dependent constant. In general, τ

depends on the buffer library size and the input slew rate. In this chapter, we refer to
τ = delay(wire)/length(wire).

Problem Formulation. The circuit for the cloning problem is a directed graph
G = (V, E), where V = {P} ∪ F ∪ S, and E = (F ×{P})∪ ({P}× S). Vertex P is
the target gate to be duplicated, F is the set of fanin gates that drive P with size n,
and S is the set of fanout gates that P drives with size m.1 Every gate g ∈ V is a logic
gate performing certain logic functions, such as AND, OR, XOR but not buffers or

1 Without loss of generality, we assume n and m are of the same order for simplicity of the complexity
analysis.

http://dx.doi.org/10.1007/978-1-4614-1356-1_3
http://dx.doi.org/10.1007/978-1-4614-1356-1_3
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inverters, and is associated with physical coordinates (X (g), Y (g)). If there are any
buffers/inverters in the circuit that are fanins or fanouts of P , we will look through
them to find the first non-repeater logic gate. Each fanout gate Si ∈ S, is associated
with required arrival time R AT (Si ) at its input pin, and each fanin gate Fi ∈ F is
associated with arrival time AAT (Fi ) at its output pin.

The location of each gate in S and F can not be changed in our problem formula-
tion, and we refer them as fixed gates. Note that these gates may be allowed to move
during other transformations (e.g., legalization after cloning) but their locations are
constrained during cloning to simplify the analysis. It may also be the case that they
are fixed by designers who want to keep certain gates in specified locations, or in
a late stage of the design flow, one prefers minimal perturbation to the design for
stability. Gate P may be movable or fixed.

After cloning, we create a duplicated gate for P , denoted by P ′. Finding a location
for P ′ is one objective of this work. The graph G becomes G ′ = (V ′, E ′), where
V ′ = P ∪ P ′ ∪ F ∪ SP ∪ SP ′ , E ′ = (F× P)∪ (P× SP )∪ (F× P ′)∪ (P ′ × SP ′). In
G ′, each fanin gate Fi is also connected to the duplicated gate P ′, but fanout gates S
are divided into two disjoint sets SP and SP ′ such that SP ∪ SP ′ = S, and SP ∩ SP ′ .
SP is the set of fanout gates that P drives, and SP ′ is the set of fanout gates that P ′
drives. We refer to the division of S into SP and SP ′ as a sink partitioning, and SP

and SP ′ as sink partitions. All other notations pertaining to G are valid for G ′.
For each edge e = (g1, g2) in G and G ′, the Manhattan length of edge e is

dis(e) = |X (g1) − X (g2)| + |Y (g1) − Y (g2)|, where g1 ∈ F ∪ P ∪ P ′, and
g2 ∈ P ∪ P ′ ∪ S. Recall that all multi-pin nets will be broken into 2-pin nets with
a linear-delay model. For each edge e, edge delay is D(g1, g2) = τ · dis(e). Each
edge is also referred as a “net” where g1 is the driver, and g2 is the sink.

For gates P and P ′, we denote their gate delays by D(P) and D(P ′), respectively.
In this chapter, we treat these gate delays as constants. This is fairly accurate since
we maintain that buffering must be performed with cloning, and after that, the load
of P and P ′ will remain almost the same. Gate sizing can be performed before or
after cloning if the original driver is too weak or strong, which will further control
the error of this constant gate delay model.

For a gate g in P∪P ′, the required arrival time at the output pin of g is R AT (g) =
min
Si∈S
{R AT (Si ) − D(P, Si )}, where S is the set of its fanout gates. The arrival time

at the output pin of g is AAT (g) = max
Fi∈F
{AAT (Fi )+ D(Fi , P)} + D(g), where F

is the set of its fanin gates. The slack of a gate g is Q(g) = R AT (g)− AAT (g).
Without loss of generality, we set gate delays D(P) and D(P ′) to zero in the

following discussion to simplify the analysis. All algorithms are still valid as long
as gate delays are constants.

It is easy to see that the slack of P and P ′ determines the slack of the circuit
G and G ′. For circuit G, we have Q(G) = Q(P), and for G ′, we have Q(G ′) =
min{Q(P), Q(P ′)}. For each edge (net) e = (g1, g2) ∈ E ∪ E ′, we define the slack
of e as

Q(e) = R AT (g2)− D(g1, g2)− AAT (g1). (6.1)
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Note that Q(G ′) = min
e∈E ′

Q(e) and Q(G) = min
e∈E

Q(e).

Cloning Problem: Given a graph G = (V, E), where P is the target gate, RAT
for all fanouts Si , AT for all fanins Fi , and a linear-delay constant τ , create a cloned
gate P ′ for P , which induces a new graph G ′, find SP , SP ′ and locations of P ′ and
P (if P is movable) such that Q(G ′) is maximized.

In contrast to most previous work which only identifies the partitions SP and SP ′ ,
our algorithms will not only provide a partitioning of fanouts, but also the placement
of P and P ′ [6, 7]. If the solution is worse than the original circuit, no cloning will
be performed.

6.3 Fast Timing-Driven Gate Cloning

In this section, we present our algorithms for the cases where P is movable and P is
fixed. We start with several new concepts.

Best Region and Best Arrival Arc Segment. Recall that the set of fanin gates F
is connected to both the original gate P and the duplicate gate P ′ after cloning. The
set of fanout gates S is split into two disjoint sets (partitions) SP and SP ′ such that
S = SP ∪ SP ′ .

Treat the whole circuit image as a 2D plane H . For each fanin gate Fi in F , the
arrival time at any point v in H is AAT (Fi )+D(Fi , v), and D(Fi , v) = τ ·dis(Fi , v).
Therefore, if we place a gate at v with the fanin set F , according to static timing
analysis

AAT (v) = max
Fi∈F
{AAT (Fi )+ D(Fi , v)}.

Clearly, AAT (v) is a 2D function, parametrized by the location v. Define the set of
points minimizing AAT (v) on the plane H as

K (F) = {a ∈ H |AAT (a) ≤ AAT (v)
∀v∈H

}.

So K (F) is the set of points which have minimum arrival time for all fanins. In the
following, we will show that K (F) is either a single point or a line segment with 45◦
slope. Refer to Figs. 6.2 and 6.3 for examples of K (F).

If there is only a single fanin F , it is obvious that K (F) is the same point as the
location of F itself, with AAT (K (F)) = AAT (F). If there are two fanins F1 and
F2, then there are three cases,

K (F) =

⎧
⎪⎪⎨

⎪⎪⎩

{a ∈ H |AAT (F1)+ D(F1, a) = AAT (F2)+ D(F2, a)},
if |AAT (F1)− AAT (F2)| ≤ D(F1, F2);

vF1 , if AAT (F1) > AAT (F2)+ D(F1, F2);
vF2 , if AAT (F2) > AAT (F1)+ D(F1, F2);
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Fig. 6.2 An example of
arrival time arc K(F).
dis(F1, K(F)) = 4,
dis(F2, K(F)) = 2, τ = 1

F1

F2

AT(F1) = 1

AT(F2) = 3

K(F)

AT(K(F))=5

Here vFi refers to the location of fanin gate Fi . In the first case, where the difference
between the arrival time at F1 and F2 is smaller than D(F1, F2), K (F) is a Manhattan
Arc, which is a segment with slope 45 or −45◦ in the bounding box of F1 and F2.
This slope will always be 45 or −45◦ as long as technology dependent coefficient τ

is a constant. Note that when F1 and F2 are either horizontally or vertically aligned,
K (F) is a point, which is a degenerate case of a Manhattan Arc. For the other two
cases, where one of the arrival times dominates the other, K (F) is at the location of
one of the fanin gates.

Denote the set of points minimizing AAT (v) for fanins F1, . . . , Fi by K (Fi ). If
we have more than two fanins, we will first form K (F2) for F1 and F2, and then
merge K (F2) with F3 to get K (F3). K (F3) will be another Manhattan Arc or a
single point, depending on the relationship among AAT (K (F2)), AAT (F3), and
dis(K (F2), F3) which is the shortest Manhattan distance between F3 and K (F2).
Repeating this procedure for all fanins, we can find the final K (F). This bottom-up
merging process is very similar to the Deferred-Merge Embedding (DME) algorithm
in clock tree construction [15] though the goal there is to get a zero skew arc. With
a similar procedure to the one shown in [15], it is not hard to prove that K (F) is
always a Manhattan Arc or a single point, and our merging process guarantees that
K (F) will have minimum arrival time for all fanins.

In the rest of this chapter, we denote the arrival time arc by K (F) (a point can be
considered a degenerate case of an arc), and the arrival time on this arc as AAT (K (F)).
An example of K (F) for two fanins is shown in Fig. 6.2.

Similarly, we can find K (S), the set of points maximizing R AT (v) on the plane
H , for the set of fanouts S. We denote the required arrival time arc by K (S) and the
required arrival time on this arc by R AT (K (S)). Refer to Fig. 6.3 for an illustration
of K (S) in an example. With a procedure similar to that in [15], it is easy to prove
that computation of K (F) and K (S) takes O(m) time assuming m and n are of the
same order. Also, given any order of fanins and fanouts, denote the arrival time arc
for the set of gates F1, . . . , Fi by K (Fi ), and the required arrival time arc for the
set of gates S1, . . . , Si by K (Si ). We can compute all values of K (Fi ) and K (Si )

in O(m) time with dynamic programming by incrementally updating and storing all
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K(S)

K(F)
B(F,S)

K(S)

K(F)

B(F,S)

K(S)K(F)

B(F,S)

(a) (b) (c)

Fig. 6.3 Examples of the region Z . a Both K (F) and K (S) are −45◦ line segments; b K (F) is a
45◦ line segment and K (S) is a −45◦ line segment; c K (F) is a 45◦ line segment and K (S) is a
single point

arcs. Therefore, the amortized cost for computing each K (Fi ) and K (Si ) is constant.
We introduce the following lemma to be used in Sect. 6.3.

Lemma 6.1 It takes O(m) time to compute K (F), K (S), and all values of K (Fi )

and K (Si ). The amortized cost of computing each K (Fi ) and K (Si ) is O(1).

The next lemma states that for any point in the plane, its arrival time (required
arrival time) can also be represented by the arrival time at K (F) (K (S)) and the short-
est Manhattan distance between the point and K (F) (K (S)). The proof is straight-
forward, it is based on the merging process and the fact that computation of arrival
time (or required arrival time) is a max (min) operation.

Lemma 6.2 For any point v in the plane H, AAT (v) = AAT (K (F)) + τ ·
dis(K (F), v), and R AT (v) = R AT (K (S))− τ · dis(K (S), v).

Now we will introduce the concept of Best Region. Define Z(F, S) as a region
formed by K (F) and K (S),

Z(F, S) = {v ∈ H |dis(v, K (F))+ dis(v, K (S)) = dis(K (F), K (S))},

where dis(v, K (F)), dis(v, K (S)) and dis(K (F), K (S)) are the shortest distances
between a point or Manhattan Arc and another point or Manhattan Arc. When K (F)

and K (S) are both single points, then Z(F, S) is the rectangle bounding box formed
by the two points. Other examples of the region Z(F, S) for different shapes of K (F)

and K (S) are shown in Fig. 6.3.
It is easy to show that for any point v outside region Z , it will have dis(v, K (F))+

dis(v, K (S)) > dis(K (F), K (S)), and no point exists in H with dis(v, K (F)) +
dis(v, K (S)) < dis(K (F), K (S)). Also, all points in region Z will have the same
slack

Q(Z(F, S)) = R AT (K (F))− AAT (K (S))− τ · dis(K (F), K (S)).
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The following theorem states the slack optimality of the region Z(F, S).

Theorem 6.1 Given the location of fanin gates F, fanout gates S, if the gate P
is placed inside a region Z(F, S) formed with the above process, it achieves the
maximum slack.

Proof If P is located outside of region Z with a bigger slack, then based on Lemma
6.2 we have

Q(P) = R AT (P)− AAT (P)

= R AT (K (S))− AAT (K (F))− τ · (dis(K (F), v)+ dis(K (S), v))

< R AT (K (S))− AAT (K (F))− τ · dis(K (F), K (S))

< Q(Z(F, S)),

which contradicts the assumption.

We refer to region Z as the Best Region since it gives the region with the best slack.
We also refer to the above procedure to find Z as Find- Best- Region. The runtime
complexity of Find- Best- Region is O(m) since the only cost is to compute K (F)

and K (S).

Theorem 6.2 Find- Best- Region finds Best Region Z in O(m) time for a net with
m fanouts.

Now we introduce the concept of Best Arrival Time Arc. We define Best Arrival
Time Arc B(F, S) as the intersection of K (F) and Z(F, S). B(F, S) is part of K (F),
while the detailed shape is decided by K (F) and K (S). In examples illustrated in
Fig. 6.3, B(F, S) is K (F) in Fig. 6.3a, a single point in Fig. 6.3b, and a partial segment
of K (F) in Fig. 6.3c. From Theorem 6.1, we know that every point on B(F, S) still
achieves the maximum slack. Define the slack on B(F, S) as Q(B(F, S)), and we
have Q(B(F, S)) = Q(Z(F, S)). In next section, the concept of B(F, S) is used to
design our algorithm.

The case of movable original gate. In this section, we present the algorithm
for the case when the original gate P is movable. The main idea is to limit the
solution search space to K (F), and then find Best Arrival Time Arc B(F, SP ) and
B(F, SP ′) efficiently by dividing the plane into six regions (Fig. 6.4) and using the
unique properties of fanout slack of each region to find the best locations of P and
P ′.

When P is movable, we are free to place both P and P ′. From Sect. 6.3, given
a partitioning SP and SP ′ , we can simply place P and P ′ on the best arrival time
arc B(F, SP ) and B(F, SP ′) to achieve the optimal solution. The goal is to find the
partitioning, SP and SP ′ , which gives best slack among all possible partitionings.
However, without knowing SP and SP ′ , B(F, SP ) and B(F, SP ′) are not apparent.

An important observation is that both arcs must coincide with K (F), which is
known. Therefore, rather than trying all partitionings, we will limit our solution
search space for both P and P ′ to K (F), which enables efficient algorithms. This is
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Fig. 6.4 The region division
for the arrival time arc K (F)
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H6

K(F)

Fan-outs

Fan-ins

the key observation used to derive the partitioning and computation of best arrival
time arcs. By limiting P and P ′ on K (F), we have AAT (P) = AAT (P ′) =
AAT (K (F)).

Lemma 6.3 If arrival time arc K (F) is a single point, no cloning is needed.

Proof If K (F) is a single point, then B(F, SP ) = B(F, SP ′) is a single point. One
can place P at B(F, SP ) and achieve the maximum worst slack without cloning.

As stated in Sect. 6.1, we assume that the capacitive load of the gate is reasonable
and no capacitance-based cloning is needed.

Now we discuss the case when K (F) is a Manhattan Arc. Since both P and P ′
are movable, we use P as an example in the following discussion. Without loss of
generality, we assume K (F) is a 45◦ line segment (analysis for the −45◦ case is
similar), as shown in the Fig. 6.4. Denote the lower-left and upper-right endpoint of
K (F) as i and j , respectively. The plane H is divided into six regions, H1, H2, H3,
H4, H5, and H6, based on i and j as shown in Fig. 6.4. Note that some fanins may
be located outside region H6 as shown in Fig. 6.4 since the arrival time of all fanin
gates could be different. One can also refer Fig. 6.2 as an example. For any fanout
gate Si in each region, we analyze the relation between the slack of the edge (net)
e = (P, Si ) and the location of P on K (F). Note that Q(e) is purely determined by
R AT (Si )− D(P, Si ) since AAT (P) = AAT (K (F)).

Figure 6.5 shows the typical curves of edge slack versus location of P on K (F)

for each region. The horizontal coordinate is the distance along the line segment
from point i to point j . For example, if a fanout is located in region H1, then when P
is located at i , we will get the maximum slack for this net, and when P is located at
j , we will get the minimum slack for this net. When a fanout is located in H2, then
when P is located from i to a certain point on K (F), the slack will stay constant,
and begins to decrease when P moves towards j .

If we intersect all slack curves in the set SP (SP ′ ), a minimum slack curve can
be generated by taking the minimum slack among all slack curves for each point on
K (F). The segment with maximum slack on this new curve will be the best slack
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Fig. 6.5 The slack versus K (F) curves for each region
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Fig. 6.6 Examples of best slack segment

we can achieve for this set of fanouts. This segment is either a level segment or a
single point, as illustrated in Fig. 6.6. Let us refer to this segment as the Best Slack
Segment. Then the corresponding segment for the Best Slack Segment on K (F) is
B(F, SP ) (B(F, SP ′)). Clearly, we seek the partitioning with the greatest Best Slack
Segment, and if we find it, the Best Slack Segment, B(F, SP ) and B(F, SP ′) are also
determined. Two examples of Best Slack Segments are illustrated in Fig. 6.6.

We now consider two cases: fanouts may be present in region H6 or absent.
The case when there are no fanouts in region H6. Consider Fig. 6.5. By putting

all fanout gates from H1 and H2 in one set (say SP ), and all fanout gates from H3
and H4 in another set (say SP ′ ), the Best Slack Segment for each set is the maximized
since it avoids potential intersection (i.e. fanouts from H1 and H3). In that case,
B(F, SP ) is a line segment on K (F) starting from i , and B(F, SP ′) is a line segment
on K (F) starting from j . Fan-out gates from H5 can be put in either set and do not
affect the results since for every point in region H5, the distances to all locations on
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K (F) are equal. This partitioning is one of the best partitionings and achieves the
best slack.

Lemma 6.4 If both P and P ′ are movable, and no fanout gates are located in the
region H6, the cloning problem can be solved optimally in O(m) time.

Proof If we put all fanout gates from H1 and H2 in SP , all fanout gates from H3 and
H4 in SP ′ , and all fanout gates from H5 in either set, we have an optimal partitioning.
One of the optimal placement solutions places P at i and P ′ at j . The time complexity
is O(m), which is the time of computing K (F). The case when the slope of K (F)

is −45◦ can be proved similarly.

From Lemma 6.4, it follows that

Lemma 6.5 If P is movable, and no fanout gates are located in region H6∪H1∪H2
(or H6 ∪ H3 ∪ H4), no clone is needed and optimal slack can be achieved by placing
P at j (or i).

Now we present the general algorithm.
The case when there are fanouts in region H6. A slack curve as shown in Fig. 6.5

for any region H1, H2, H3, H4, H5 and H6 can be regarded as a trapezoid-like curve
(referred to as trapezoids for notational convenience henceforth) or a degenerate
case (e.g., a line segment) of a trapezoid. Consider a graph containing slack curves
corresponding to all fanout gates. In the following, a side of a trapezoid will be called
a line segment. The slope of any such line segment is one of 0◦, τ or −τ . A 0◦ line
segment in a trapezoid is called a level segment. In the degenerate case where the
slack curve is a single line segment, the level segment is defined as the end point
with maximum slack.

In all trapezoids, we first find the rightmost τ -slope line segment and the leftmost
−τ -slope line segment. For example, the left (right) side of the dotted t1 (t2) in
Fig. 6.7a shows the rightmost τ -slope (leftmost −τ -slope line segment). The line
segment of a trapezoid is rightmost (leftmost) if no line segment of the slope is to
the right (left) of the line segment. The leftmost and rightmost line segments can be
found in linear time.

First note that any point in a slack curve for fanout Si refers to the net slack
Q(P, Si ) when placing P along i, j as defined in Fig. 6.4. Given a single slack curve
t1, the best slack it can achieve is the slack corresponding to the level segment. To
achieve it, one can place the gate anywhere along that level segment.

Case 1: When the rightmost τ -slope line segment and the leftmost −τ -slope
line segment do not intersect, as shown in Fig. 6.7b, the lower level segment of all
trapezoids, which is the Best Slack Segment, determine the maximum worst slack and
no gate duplication is needed. Note that in this case, pure line segments in regions H1,
H2, H3 and H4 are considered as well, since they are degenerate cases of trapezoids.
One can just place P anywhere on that level segment and this achieves the best slack.

Case 2: When the rightmost τ -slope line segment and the leftmost τ -slope line
segment intersect, first find the trapezoids that these two line segments belong to.
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Fig. 6.7 Examples of slack curves versus locations: a an example that needs gate duplication; b
an example in which the rightmost and leftmost segments do not intersect; c an example that does
not need gate duplication

Without loss of generality, the identified trapezoids are as t1 and t2, respectively, in
Fig. 6.7a. We compute the intersections of all other trapezoids with t1 and t2, and put
them into the sets SP and SP ′ formed by t1 and t2, respectively. All other trapezoids
can be divided into three groups.

Group A: For any trapezoid intersecting neither t1 nor t2, called a zero-intersecting
trapezoid, we arbitrarily assign it to a set. The zero-intersecting trapezoids will not
impact the worst slack. Note that if all trapezoids other than t1 and t2 are zero-
intersecting trapezoids, the lowest level segment in each of t1 and t2 is the Best Slack
Segment in each set.

Group B: For any trapezoid intersecting only one of t1 and t2, called a one-
intersecting trapezoid, we can always assign it to the opposite set (formed by the
line segment not intersecting with it). For example, the trapezoid t3 in Fig 6.7a only
intersects t2 and it is assigned to SP formed by t1. The one-intersecting trapezoids
will not impact the worst slack as long as they are assigned appropriately. Note that
if all trapezoids other than t1 and t2 are one-intersecting trapezoids, the lowest level
segment in each of t1 and t2 is the Best Slack Segment of each set.

Group C: For any trapezoid intersecting both of t1 and t2, called a two-intersecting
trapezoid, we have two intersecting points. A two-intersecting trapezoid will be
assigned to the set containing the higher intersecting point. For example, both t4 and
t5 are assigned to the SP formed by t1. One then needs to find the two-intersecting
trapezoid with lowest level segment, such as t4 in Fig. 6.7a. Subsequently, the lowest
level segment in t1, t2 and t4 determines the Best Slack Segment. In Fig. 6.7a, the Best
Slack Segment for P is in t2. This means that P can be anywhere between a, b and
P ′ can be anywhere between c, d. For the partitioning of the set of fanout gates S,
P will connect to SP which contains all the trapezoids assigned to SP determined
by t1, and P ′ will connect to SP ′ which contains all the trapezoids assigned to SP ′
determined by t2. Note that the lowest level segment of a two-intersecting trapezoid
can be lower than the intersection of t1 and t2, see, e.g., t5 in Fig. 6.7c. However, it
will not impact our algorithm. This just means that one cannot improve the slack by
gate duplication since the worst slack is determined by the level segment of t5.
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Fig. 6.8 Our simultaneous cloning and placement algorithm for a movable gate

The algorithm is optimal since the above two cases cover all possible situations
and in each situation, it is easy to see that the optimal solution is computed. In the
algorithm, one needs to first compute the rightmost τ -slope and the leftmost −τ -
slope line segment. If they do not intersect, the slack is determined by the lower
level segment. Otherwise, for each of the remaining m − 2 trapezoids, compute its
intersections with t1 and t2. Assign the trapezoids to partitions accordingly based
on their groups. For a two-intersecting trapezoid, one also needs to record its higher
intersection point. Next, find the trapezoid with lowest higher intersecting point (e.g.,
t4 in Fig. 6.7a), which takes linear time. One can then immediately find the maximum
possible worst slack the circuit can achieve by comparing it with the level segment
of t1 and t2. The above algorithm runs in linear time.

Theorem 6.3 The optimal cloning can be computed in O(m) time if the original gate
is movable.

Pseudo-code of the algorithm appears in Fig. 6.8.
The case of fixed original gate. When the original gate P is fixed, the algorithm

in Fig. 6.8 does not work since we can not expect P to be placed on the arrival time
arc K (F). Let us assume all fanouts in S are sorted in a non-increasing order of
R AT (Si )− D(P, Si ).

Lemma 6.6 There are at most m unique Q(P) values if P is fixed.

Proof Since P is fixed, AAT (P) and D(P, Si ) are constant. Then for all possible
partitionings, Q(P) can only be one of the values among R AT (S1) − D(P, S1) −
AAT (P), R AT (S2)−D(P, S2)−AAT (P), . . . , R AT (Sm)−D(P, Sm)−AAT (P).
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Fig. 6.9 Our simultaneous
cloning and placement algo-
rithm for a fixed gate

The above lemma states that if fanout Si is in SP , then we can put all fanouts S j ,
where j < i into SP , and Q(P) does not change. With Lemma 6.6, we can start
with putting S1 in S(P), while putting all other gates in S(P ′), and get the worst
slack of Q(P) and Q(P ′). If Q(P ′) ≥ Q(P), we can stop since we have found the
possible best slack. If not, we can put S1 and S2 in S(P), which will decrease Q(P),
but may increase Q(P ′). Again, if Q(P ′) ≥ Q(P), this will be the best possible
slack since further additions to S(P) can only decrease Q(P). The pseudo-code of
the algorithm is shown in Fig. 6.9.

The sorting of S takes O(m log m) time. After S is sorted, we can compute all
K (SP ′) for all possible m cases in O(m) time based on Lemma 6.1. Each Find-
Best- Region then takes O(1) time since AAT (K (F)) is a constant and K (SP ′)
has been precomputed. The total complexity is O(m log m).

An interesting corollary is that one solution to this problem involves disconnecting
all sinks from P and letting the cloned gate P ′ drive all fanouts, then placing P ′
optimally. If permissible, this case is similar to RUMBLE (see Chap. 3), and we
can compare the solution with the above results and choose the best one. If this is
undesirable behavior, we can constrain the solution to include at least one sink driven
by P .

Theorem 6.4 The optimal cloning can be computed in O(m log m) time if the orig-
inal gate is fixed.

6.4 Empirical Validation

To show the effectiveness of cloning and compare it to other optimizations, we first
create 100 testcases at the 45 nm process node. We randomly created circuits with
different fanins and fanouts and placed them in a region with the bounding box size
ranging from 1 to 15 mm. The number of fanins range from 2 to 4, and the number of
fanouts range from 2 to 8. We choose 16 buffers and inverters for the buffer insertion.

http://dx.doi.org/10.1007/978-1-4614-1356-1_3
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We implemented four different optimizations including cloning as follows, to
show the benefit of our techniques. They are

• Buffering: Timing-driven buffer insertion [16]. This optimization is treated as the
baseline to which all other optimizations are compared.
• RUMBLE: Moving the original gate and rebuffering as described in Chap. 3.
• Clone1: Our cloning algorithm when the original gate is fixed.
• Clone2: Our cloning algorithm when both the original and duplicated gates can

be moved.

Before the optimizations RUMBLE, Clone1, and Clone2, we always perform
buffer insertion to fix slew rate violations and begin with reasonable timing. The
results are also compared to buffer insertion results (which means Buffering is the
baseline). This is to guarantee that any improvement we see from our techniques is
due to cloning instead of merely buffering the original net. In addition, we also use
the RUMBLE algorithm inside our cloning algorithms to determine the best gate
location after a partitioning is fixed. For each partition, we will perform RUMBLE
to find the gate location and slack, and then choose the best solution for all partitions
derived from our algorithm. Note that this is only for comparison purposes, and one
can apply our algorithm first to find the best partitioning and only apply the RUMBLE
algorithm once.

All algorithms including buffering and RUMBLE are implemented in C++ and
tested on an AMD Opteron computer with 2.8 GHz CPU and adequate memory.
For cloning, we apply all optimization steps, including ripping up buffer trees for
the circuits, duplicating and placing the gates, re-buffering and legalization. For
RUMBLE, we also rip up buffer trees and place the original gate in the new location.
We use an industrial static timing analysis (STA) engine for timing analysis. For
rebuffering, we implement the buffering algorithm in [16] to get the best timing-area
trade-off, and the buffer tree is constructed to be placement-congestion aware.

To clearly illustrate the impact of each optimization, we first choose one circuit
and show its layout after each optimization from Fig. 6.10b–d, where Fig. 6.10a
shows the original circuit without buffering. The Manhattan distance between S1
and S2 is 13 mm. The timing information after each optimization algorithm is shown
in Table 6.1. It clearly shows the benefit of the Buffering, RUMBLE, Clone1 and
Clone2 approaches. Clone2 gives the best results in terms of worst slack and total
negative slack. Clone1 is still better than RUMBLE and achieves the same worst slack
as Clone2, but can not do better for S2. RUMBLE achieves better slack than pure
buffering by placing the original gate in the middle, however, it sacrifices the slack at
S1 for S2. Note that the slack of S1 and S2 are not exactly the same for RUMBLE and
Clone2. This is explained by slew rate differences; the buffering topology chosen by
the placement congestion aware buffer-tree algorithm considers placement density,
as well as the order of buffer insertion for all the nets which results in asymmetric
timing constraints.

For the rest of the circuits, we list the top 10 circuits with the best improvement
due to cloning with detailed information. The results are shown in Table 6.2. For all
experiments, we present worst slack (WSLK) improvement over “Buffering”, total

http://dx.doi.org/10.1007/978-1-4614-1356-1_3
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Originalcircuit. Newcircuitafterbufferinsertion.

Newcircuitaftergatereplacing
andbufferinsertion(RUMBLE,see
Chapter3).

Newcircuitaftercloningandre-
placingnewgateonly(Clone1).

Newcircuitaftercloningandre-
placingbothgates(Clone2).

NewcircuitafterClone2with
wirelength-suboptimalsolution.

(a) (b)

(d)

(f)

(c)

(e)

Fig. 6.10 Examples of different optimizations, including buffering, RUMBLE and cloning. F1 and
F2 are fanins with same arrival time and S1 and S2 are fanouts with same required arrival time.
P is the original gate, and P ′ is the new duplicated gate. a Original circuit. b New circuit after
buffer insertion. c New circuit after gate replacing and buffer insertion (RUMBLE, see Chap. 3). d
New circuit after cloning and re-placing new gate only (Clone1). e New circuit after cloning and
re-placing both gates (Clone2). f New circuit after Clone2 with wirelength-suboptimal solution
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Table 6.1 Experimental results comparing cloning to other optimization techniques for the circuit
shown in Fig. 6.10

Optimization Slack at S1 (ns) Slack at S2 (ns)

Buffering (Fig. 6.10b) −2.855 −2.206
RUMBLE (Fig. 6.10c) −2.410 −2.403
Clone1 (Fig. 6.10d) −1.606 −2.076
Clone2 (Fig. 6.10e) −1.606 −1.590

negative slack (TNS, the sum of all negative paths) improvement over “Buffering”,
final area and wirelength, where Buffering serves as the baseline. The area includes
the original fanin gates, fanout gates, cloned gate and buffering area. We also list the
summary results of all 100 circuits in Table 6.2 by averaging all metrics. The runtime
for all testcases is less than 5 s, including all static timing analysis, buffer insertion,
linear programming inside RUMBLE, I/O processing and model build time.

The table clearly shows the same trend as shown in Fig. 6.10. In terms of worst
slack, Clone1 and Clone2 are better than RUMBLE, which is better than buffering.
Clone2 gives the best timing results in general, although with the cost of area and
wirelength increase. We also notice that for all cases, Clone1 and Clone2 both achieve
better TNS improvement than buffering. Note that our algorithms may not get the
best TNS, especially Clone1, which does not entail movement of the original gate.
The summary data show that Clone2 and Clone1 still outperform RUMBLE and
buffering on average.

6.5 Extensions

Our algorithms naturally accommodate several additional objectives that we briefly
summarize in this section.

Wirelength optimization. Note that in our formulation, we do not directly con-
sider wirelength. However, our approach can be extended to consider wirelength
while not sacrificing slack. For example, in the case where both gates are movable
and no gates are placed in region H6, after we determine the partitioning, and put
P at i and P ′ at j , we can still find the best region Z which is bounded by i and
SP for P (similarly for P ′ with a region bounded by j and SP ′ ). When region Z is
not a single point, it may be possible to find a solution with same slack but better
wirelength. We briefly summarize the O(m3)-time algorithm as follows. Consider
the Hanan grid H composed of the coordinates of all fanins and fanouts of some gate
P . Each rectangular region of H will have some distinct function of wirelength in
terms of the location of P . Begin by finding the slack-optimal region Z for the gate
P . Then iterate over all regions R of H and compute the minimum wirelength value
for locations in R ∩ Z . Skip this region if R ∩ Z = ∅. Record the best wirelength for
each region R of H , then choose the best wirelength solution among all recorded.
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Table 6.2 Experimental results comparing cloning to other optimization techniques for 100 circuits

Ckt Transforms WSlk (ns) improvement TNS (ns) improvement Area WL

1 Buffering 0 0 1158 181960
RUMBLE 1.548 3.630 609 117637
Clone1 1.553 3.645 799 117632
Clone2 1.581 3.747 601 141977

2 Buffering 0 0 1110 166546

RUMBLE 1.111 2.895 859 162461
Clone1 1.175 3.091 889 162419
Clone2 1.542 4.660 1026 164254

3 Buffering 0 0 942 142242

RUMBLE 0.956 1.859 722 131794
Clone1 1.030 2.298 850 145908
Clone2 1.073 2.611 765 135896

4 Buffering 0 0 709 95520

RUMBLE 1.050 1.113 636 88441
Clone1 1.022 1.092 636 88441
Clone2 1.050 1.113 636 88441

5 Buffering 0 0 1758 253393

RUMBLE 0.839 6.128 1120 194261
Clone1 0.814 6.262 1109 194260
Clone2 1.028 5.413 1410 241818

6 Buffering 0 0 1604 225577

RUMBLE 0.773 3.282 998 177139
Clone1 1.014 1.041 1529 241626
Clone2 1.017 2.152 1293 233053

7 Buffering 0 0 1781 268237

RUMBLE 0.302 0.189 1583 257903
Clone1 0.830 1.049 1990 315835
Clone2 0.815 1.121 2047 330826

8 Buffering 0 0 1578 227047
RUMBLE 0.262 4.270 1153 195097
Clone1 0.681 2.118 1836 272108
Clone2 0.732 4.866 1633 251854

9 Buffering 0 0 998 140556
RUMBLE 0.685 1.512 861 122344

Clone1 0.687 1.514 848 122411
Clone2 0.718 1.530 871 122360

10 Buffering 0 0 998 159705
RUMBLE 0.269 1.312 831 140127

Clone1 0.672 1.759 916 150529
Clone2 0.673 1.754 899 150490

Average of 100 circuits Buffering 0 0 1407 205891
RUMBLE 0.192 0.797 1337 198247
Clone1 0.279 1.050 1472 216617
Clone2 0.309 1.267 1471 220089

Buffering timing-driven buffering, RUMBLE timing-driven gate placement followed by buffering,
Clone1, gate duplication with the original gate fixed, Clone2 gate duplication with the original gate
movable
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Because this coordinate is within Z it is guaranteed to have the optimal slack, and
because we exhaustively searched H , it is guaranteed to have the best wirelength
of all locations within Z . Note that the wirelength optimal region may be contained
within Z , in which case the wirelength optimal solution is also slack optimal. This
algorithm runs in O(m3)-time because there are O(m2) rectangular regions within
H and evaluating each region requires O(m) time for the wirelength calculation.

A wirelength-suboptimal Clone2 example is shown in Fig. 6.10f. It has the same
slack and TNS as Fig. 6.10e, however, Fig. 6.10e clearly shows smaller wirelength
(and fewer buffers), and it can be proved that the location of P in Fig. 6.10e is a
wirelength optimal solution.

TNS Optimization. Though our algorithms can improve the TNS objective (see
Eq. 5.2) by improving worst slack, our algorithms do not directly optimize the TNS
objective. It can, for example, hurt TNS by reducing slack on two paths, while seeking
to improve the slack on a third worst-slack path. In the late stages of the flow, this
may be unacceptable, and we may wish not to harm TNS, or to directly optimize
TNS or the number of negative paths. When both gates are movable and there is
no fanout in region H6, it is easy to prove that our solution gives the best solution
in terms of TNS. When there are gates in region H6, one can tune the algorithm
Cloning- Movable to be TNS aware. When we assign trapezoids, even if it does
not change worst slack, we can assign based on its own slack and achieve better
TNS. Finally, we can prevent harm to the TNS objective by incorporating it into the
acceptance criteria for any cloning solution.

Placement Blockages. When there are placement blockages in the design, such
as IP, macros, or high-gate-density regions, one may not be able to place gates in
optimal locations. Our algorithms can be extended to handle blockages as follows.
When the best region Z is not a single point, and not completely blocked by placement
blockages, we place P (or P ′) in the region inside Z with free space and still achieve
the optimal slack. If Z is completely blocked, then P is placed at the legal location
with the minimum Manhattan distance to the region Z .

6.6 Conclusions

This chapter revisits timing-driven cloning under a linear interconnect-delay model
that accounts for buffering during physical synthesis. We present several highly
efficient algorithms for timing-driven cloning to optimize the worst slack of a circuit.
The primary contribution of this work is an optimal method for simultaneously
determining which sinks will be driven by the which copy of a gate, as well as the
locations of a gate and its replica under the given delay model. We also describe
several extensions to the algorithm for accommodating additional objectives. Our
empirical results demonstrate improved circuit performance as a result of increased
optimization scope.

http://dx.doi.org/10.1007/978-1-4614-1356-1_5
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Chapter 7
Logic Restructuring as an Aid to
Physical Retiming

The impact of physical synthesis on design performance is increasing as process
technology scales. Current physical synthesis flows generally perform a series of
individual netlist transformations based on local timing conditions. However, such
optimizations lack sufficient perspective or scope to achieve timing closure in many
cases. To address these issues, we develop an integrated transformation system that
performs multiple optimizations simultaneously on larger design partitions than
existing approaches. Our system, SPIRE, combines physically-aware register retim-
ing, along with a novel form of logic cloning and register placement. SPIRE also
incorporates a placement-dependent static timing analyzer (STA) with a delay model
that accounts for buffering and is suitable for physical synthesis.

7.1 Introduction

Recall from Chap. 2 that the physical synthesis process begins by computing a ten-
tative cell placement and proceeds to restructure timing-critical paths. Traditional
physical-synthesis flows in the industry [1, 2] apply a series of local, mostly greedy
transformations such as inserting individual buffers on particular nets, or relocat-
ing individual gates in the limited context of their neighboring gates. Several itera-
tions of such transformations may be required for timing closure [1, 2]. However,
growing reliance on physical synthesis for timing closure motivates the development
of transformations that are more powerful in two specific ways.

• Greater optimization scope: the ability to effect larger changes in the circuit in
terms of simultaneously moving or altering several objects in order to achieve
timing closure.
• Larger optimization window size: the ability to consider temporal and spatial

constraints from partitions of a design.

Increasing the optimization scope and window sizes can help avoid local
minima in the solution space that trap individual, local transformations. Additionally,
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1: CLONING changes the netlist and influences PLACEMENT
2: RETIMING helps select combinational gates for CLONING
3: CLONING creates new opportunities for RETIMING (see Fig. 7.2)
4: RETIMING relocates netlist registers, causing new PLACEMENT
5: PLACEMENT changes interconnect delays used in STA
6: Register PLACEMENT after retiming is performed based on STA
7: RETIMING relocates netlist registers, changing paths in STA
8: STA computes min slack — the optimization goal for RETIMING

Fig. 7.1 Interactions between optimizations in SPIRE’s joint optimization

this circumvents the ordering problem of individual transformations, since different
sequences can yield different results.

We facilitate more powerful optimizations through retiming. Unlike traditional
gate- and net-centric timing optimizations that aim to satisfy given stage-timing
constraints, retiming can optimize the constraints themselves to better fit a given
netlist. Therefore, we propose a System for Physically-aware Incremental Retiming
and Enhancements, or SPIRE, that performs register-retiming with accurate delay
models, buffering, placement, and logic cloning to seamlessly integrate retiming into
physical synthesis. Key features of SPIRE are:

• Multiple degrees of freedom to optimize the circuit, including gate placement,
register retiming, and gate cloning.
• A mixed-integer linear programming (MILP) framework for joint optimization

that emphasizes synergies between point optimizations as shown in Fig. 7.1.
• An embedding of placement-dependent STA computations with virtual buffering

into the MILP, which allows for efficient and accurate consideration of timing
constraints from large design partitions.

SPIRE allows for placement, retiming, and cloning to simultaneously optimize a
circuit, as shown in Fig. 7.1. In physical synthesis, such a joint optimization problem
is often considered intractable. Instead, one chains individual optimizations with
limited scope. However, as shown in Fig. 7.2, such separation of concerns overlooks
opportunities for joint optimization. Therefore, we propose a powerful transformation
that is computationally expensive, but can be applied to sizable circuit windows.
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Window sizes can be selected subject to runtime constraints imposed on the system.
Our experimental results in Sect. 7.4, in fact, show that SPIRE can handle window
sizes of thousands of gates by efficiently encoding the problem as an MILP with
linearly many constraints in the size of the circuit.

Retiming methods based on [3] enforce timing constraints by requiring a
register on every path whose delay exceeds a threshold. However, such methods
require computationally-expensive path enumeration within the linear programming
formulation. We avoid path enumeration by enforcing linearly many conditional
STA-like constraints which determine optimal retiming and placement. Further, dif-
ferent choices for retiming, cloning and gate relocation perturb only a small set of
local constraints directly (those affecting nearby edges). Aside from the system as a
whole, we highlight the following contributions of this work:

• A method for retiming with an accurate embedded STA-like delay computation.
• A novel gate-cloning technique to create opportunities for retiming.
• A simultaneous retiming and re-placement technique.

The remainder of this chapter is organized as follows. Section 7.2 reviews back-
ground and notation. Section 7.3 presents our maximum-slack retiming formulation
that incorporates STA, placement, and cloning. In Sect. 7.4, our methods are vali-
dated on a 45 nm high-performance microprocessor against leading-edge physical
synthesis tools. Section 7.5 outlines additional optimizations that can further increase
the scope of SPIRE. Conclusions are drawn in Sect. 7.6.

7.2 Background, Notation and Objectives

We now review background in static timing analysis and period-constrained retiming.
Static timing analysis with buffered wires. SPIRE depends on the ability to

encode timing constraints efficiently, and in such a way that they can be easily
adjusted to accommodate changes resulting from circuit optimizations. Static timing
analysis relies on models to compute the delays of gates and nets. For example, it
is common to use a look-up table to represent gate delays in terms of its inputs.
In advanced CMOS technologies, buffering is utilized heavily during physical syn-
thesis to reduce wire delay and improve timing. Therefore, it is important to estimate
buffered wire delay in an interconnect delay model. In SPIRE we efficiently accom-
modate these considerations by using constant gate delays that are obtained from
look-up-table-based delay models, and by using a linear interconnect-delay model
introduced in Chap. 3. These assumptions allow the constraints represented in SPIRE
to be in terms of a local neighborhood, and are thus only linear in number (assuming
constant maximum edge and vertex degree).

To compute the initial conditions for SPIRE, the RAT and AAT of all fixed timing
points are generated by an STA engine using very accurate delay models and a set of
timing assertions created by designers [4, 5]. SPIRE considers the timing of register’s

http://dx.doi.org/10.1007/978-1-4614-1356-1_3
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Fig. 7.2 Retiming and gate cloning to improve slack: a Register E cannot be moved past gate C
because of fanout E–F . b If the NAND gate C is cloned, creating a new gate C ′ to drive its two
sinks, it is possible to retime the top register without changing the logic function. c The final result
with register E retimed
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Fig. 7.3 A circuit (a) and its timing graph (b). The square objects have fixed AATs or RATs. STA
is performed only on circular movable objects

input pin fixed and uses a static timing engine to determine its RAT value. Similarly,
the AAT is fixed on output pin of a register. The timing analysis engine includes
considerations of setup and hold time.
The timing metrics that we optimize include the minimum slack of all vertices
(M ), the total negative slack in the circuit (T ), and the total slack below a threshold
(�T ), computed as shown below. Note that T = �0.

M = min
u

S (u) (7.1)

T =
∑

u

min(0,S (u)) (7.2)

�T =
∑

u

min(0,S (u)− T ) (7.3)

In SPIRE, registers are allowed to move, while combinational gates remain fixed
in place; this limitation is not inherent, as discussed in Sect. 7.5. After gate cloning
(Sect. 7.3), the cloned gates can be physically relocated. For efficiency, we restrict our
timing graph edges to those representing (1) each connection between the movable
gates, and (2) each connection between a movable gate and a fixed gate. For the
subcircuit in Fig. 7.3a, the resultant timing graph is shown in Fig. 7.3b.

Register retiming. The original linear programming formulations for minimum-
period and minimum-area retiming were developed by Leiserson and Saxe [3].
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Fig. 7.4 An LP for minimum-
area retiming

Fig. 7.5 An LP for min-area,
period-constrained retiming

In their framework, a circuit is represented by a retiming graph G(V, E), where
each vertex v ∈ V represents a combinational gate, and each edge (u, v) ∈ E rep-
resents a connection between a driver u and sink v. An edge is labeled by a weight
w(u, v), indicating the number of registers (flip-flops) between u and v. The objective
of minimum-area retiming is to determine labels r(v) for each vertex v, denoting the
number of registers that are moved from the outputs to the inputs of v, that minimize
the total sum of edge weights. The weight of an edge after retiming is given by:

wr (u, v) = w(u, v)− r(u)+ r(v) (7.4)

Therefore, the total number of registers in the retimed circuit can be minimized
in terms of the following expression.

∑

(u,v)∈E

w(u, v)− r(u)+ r(v) (7.5)

Additionally, retiming labels have to meet legality constraints, w(u, v) ≥ r(u)

− r(v) for each edge, to enforce the fact that edges cannot have negative weights.
A linear program for the minimum-area retiming problem is given in Fig. 7.4. Leis-
erson and Saxe [3] observe that this problem is the dual of a min-cost network flow
problem and can therefore be solved in polynomial time.

As shown in Fig. 7.5, the period can be constrained in this formulation by requir-
ing weight ≥1 on every path between two vertices with delay exceeding target
period P . However, this formulation requires �(|V |2) constraints in the form of
matrix D that stores the delay of the longest path between the vertices (u, v) in
D(u, v), and matrix W that stores the weight of that path. Then, a binary search
is performed to determine the minimum achievable clock period. The feasibility of
each period according to the legality constraints is checked using the Bellman–Ford
algorithm [3].
Prior work in retiming also includes the ASTRA [6] algorithm, which is a faster
approach. It relates the problem of clock skew optimization at each flip-flop to a
retiming solution for min-period retiming, and uses the Bellman Ford algorithm
to derive the longest path. Recently, the authors of [7] used program derivation to
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automatically generate an algorithm for min-period retiming. Retiming was also
explored for slack budgeting and power minimization for FPGAs [8].
Challenges in min-period retiming. Algorithms based on techniques from [3]
enforce timing constraints by requiring registers on gate-to-gate paths that exceed
a length threshold. This involves computationally expensive enumeration of such
paths. Therefore, in our approach we avoid path enumeration by using slack, rather
than period as a metric. Slack constraints are linear in the size of the circuit and all
path delays are implicitly encoded through the AAT and RAT constraints.

Other retiming algorithms use network-flow based approaches which are difficult
to extend to a multi-objective optimization [6]. Using interconnect delays instead of
lengths has been a challenge, as wires can be dynamically re-buffered when their
lengths change [9]. Unlike much of past literature, we use a buffered delay model to
account for this.
Inherent limitations of retiming are associated with multi-fanout branches. To move
a register backward through a gate, all fanout branches of the gate must include (or
share) a register, and all these registers must be retimed at once. This constraint
ensures that the number of registers on any PI-to-PO path stays constant during
retiming. Therefore, fanouts can be a bottleneck for retiming. In order to alleviate this
problem, we clone gates within the retiming formulation so as to provide additional
backward-movement opportunities for registers (see Fig. 7.2).

7.3 Joint Optimization for Physical Synthesis

This section introduces the SPIRE system which combines several optimizations
used individually in the past literature. As shown in Fig. 7.6, combining retiming and
placement is better than applying them individually. In this example, only the com-
bined approach closes timing. The main difficulty in combining placement, cloning
and retiming is their inter-dependence—optimal locations and cloned configurations
depend on the timing constraints which are altered by retiming.

Embedding the STA backplane into an ILP. In order to incorporate STA into
SPIRE, we first encode the RAT and AAT variable computations into an MILP, with
constraints corresponding to actual arrival time and required arrival time calculations,
both of which are linear. Then, alternative constraints are introduced to analyze each
timing arc, for the case where a register is between the source and sink of the arc.
Figure 7.7 shows an LP simply for computing the worst-case slack. For circuit C
with gates G = {u1, u2 . . . un}, and registers R = {l1, l2, . . . lm}, the variables in this
program are:

• AAT and RAT for each u ∈ G, denoted Au , and Ru .
• M for the minimum slack.

In other words, for a gate u driven by i1, i2, . . . iS the constraints to enforce Au

are shown below. Here 1 ≤ j ≤ S:
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Fig. 7.6 Advantages
of performance-driven
retiming with simultaneous
re-placement. Timing values
of labeled pins are given, and
physical locations of gates and
ports are shown as (x , y) pairs.
In the original circuit (a), the
timing path feeding the input
of the register has negative
slack. Moving the gate and
register in (b) improves the
slack, but movement alone
does not allow the path to
meet timing constraints. Only
by retiming and movement
can all timing constraints be
met in (c)
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e

Au ≥ Ai j + τ ∗ HPWL(i j , u)+ Du (7.6)

Since Au must actually be equal to one of the values in Eq. 7.6, it is added to the
objective function so that it can be minimized. The constraints guarantee that it will
be greater than any path’s delay. Adding it to the objective guarantees that it will be
no more than the greatest path delay. Similarly for Ru , supposing that u drives gates
o1, o2, . . . oT , then the corresponding constraints are of the form for 1 ≤ k ≤ T :

Ru ≤ Rok − τ ∗ HPWL(g, ok)− Du (7.7)

We subtract RAT(u) from the objective function since this variable is maximized
rather than minimized. The AAT and RAT of registers (and other end points like
primary input and output pins) are simply set according to initial values obtained form
the reference timing model. The term −M is added to the minimization objective.
The total slack T can also easily be computed from the MILP and added as an
objective. In practice, we minimize both. However, for brevity, we drop T from
the MILP formulations for the remainder of the chapter. Note that the number of
constraints in this formulation is proportional to the number of 2-pin arcs in the
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Fig. 7.7 A linear program
that calculates the minimum
slack

circuit and not the number of paths. Further, the number of constraints in which each
gate and 2-pin connection appears is limited, which is key to incorporating retiming,
placement and cloning.

Max-slack retiming. Retiming is the most powerful optimization within SPIRE
because it can effect drastic changes on the timing constraints. For instance, moving
one register past a gate can allow cycle stealing on the order of gate delays along
all paths that cross the register. In order to utilize the STA constraints described
in the previous section, we develop a maximum slack formulation. The key idea
in maximum-slack retiming is that there are two versions of the AAT and RAT
computations on each vertex depending upon whether the vertex drives/is driven by
a register. The constraints that are actually enforced are determined by the retiming.
Therefore, the retiming program seeks a solution in which the values of retiming
variables maximize worst-case slack.

Figure 7.8 shows the MILP that combines the STA constraints with retiming.
During retiming, we only know the contents of the retiming graph (not the tim-
ing graph), because any edge in the retiming graph can include a newly retimed
register. Therefore, STA constraints change depending on the retiming variable val-
ues. However, there are only two possibilities for each retiming arc: either the arc
contains a register after retiming, or it does not (and combinations of arcs are implic-
itly considered). This situation is modeled through IF-THEN logic based on the
retimed weight of the edge. If the weight is greater than zero, then the wirelengths
involved in RAT and AAT computations change to incorporate the newly retimed
register. For simplicity of presentation, we temporarily assume that the new register l
will be placed at the center of gravity (COG) of the neighboring gates of l. Thus, the
net connecting u to l has length HPWL(u, COG(l)) and the net connecting l to v has
length HPWL(COG(l), v). In the next section, we eliminate this simplification and
consider the static timing analysis of nearby gates when calculating slack-optimal
register locations.

if(wr(u, v) == 0)

Ru ≤ Rv − τ ∗ HPWL(u, v)− Du

Av ≥ Au + τ ∗ HPWL(u, v)+ Dv

if(wr(u, v) ≥ 1)

Ru ≤ Rl − τ ∗ HPWL(u, COG(l))− Du

Av ≥ Al + τ ∗ HPWL(COG(l), v)+ Dv

(7.8)
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This IF-THEN logic is incorporated into a linear program using the big-M
formulation. Under this formulation, a constraint v < k takes the form v < k+MvI ,
where M is a large constant. If vI == 0, the constraint reduces to the original, if
vI �= 0 then the constraint simply becomes a bound on the variable v, i.e., v < MvI .
Alternatively, IF-THEN logic can be modeled using indicators—binary variables that
turn constraints on and off.1 In our program, we define an indicator hasReg(u, v) as
follows.

if(wr(u, v) > 0)hasReg(u, v) = 1
if(wr(u, v) ≤ 0)hasReg(u, v) = 0

(7.9)

This variable can be set in a variety of ways. One way is to use the constraint
hasReg(u, v) ≤ wr (u, v) and maximize it. If wr (u, v) == 0 then hasReg(u, v) = 0.
If wr (u, v) ≥ 1 then, since hasReg(u, v) is maximized, it is set to 1. However, max-
imization can sometimes conflict with the objective, therefore we use the following
constraints instead:

hasReg(u, v) ≤ wr (u, v)
if(hasReg(u, v) == 0) wr (u, v) = 0

(7.10)

The second constraint uses the has Reg variable as an indicator. Together, these
two constraints require that hasReg = 0, if and only if wr (u, v) = 0. For simplic-
ity, we omit the setting of this variable from our formulations. As we will see in
Section 7.3, maximization of real and integer variables can also fail when the objec-
tive has conflicting terms. Our formulation uses the constraints below to maximize
general variables (without adding terms to the objective). We constrain the variable
C = max(A, B) as follows.2

C ≥ A, C ≥ B, (C == A)||(C == B) (7.11)

The min function is evaluated similarly. In Fig. 7.8, the slack, RAT, and AAT
variables are real values while the retiming variables must be integer-valued. We
utilize a constant weighting factor K to reconcile area with slack. The constant K
can be adjusted based on the available area.

Note that the formulation in Fig. 7.8 does not require the derivation of the W or D
matrices that were described in Sect. 7.2. Instead, timing calculations are performed
within the MILP. Thus, the number of constraints is only O(|E |) for a retiming graph
with edge set E .

Register placement. Registers have special significance in a timing graph because
their inputs are in a different clock cycle than their outputs. This facilitates time
borrowing—the ability to shift delay from one timing path to another by decreasing
the delay on inputs paths at the cost of increased delay on output paths, and vice

1 Indicators are supported by the commercial MILP engine CPLEX 12.1.
2 The Logic-OR can be implemented using intermediary variables δA, δB and indicator variables IA,
IB with the following constraints: δA = C − A, δB = C − B, IA ≤ δA, if(I _A == 0) δA = 0,
Ib ≤ δB , 6) if(IB == 0) δB = 0, IA + IB ≤ 1.
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Fig. 7.8 Max-slack retiming
with STA embedded

Fig. 7.9 Optimal register
location relative to adjacent
gates

versa. By physically relocating registers, the interconnect delay around registers can
be allocated to either the input or output paths.

In this section, we describe a formulation that integrates register placement with
the retiming described in the previous section. Register locations alter STA con-
straints by changing interconnect length, and therefore, delays. On each edge with a
register, SPIRE chooses the physical location that results in the best possible slack.
The placement also interacts with retiming in that the retiming variables will optimize
the STA constraints while considering register locations for each edge.

In order to perform this integration, we utilize the same type of case-logic as
in the previous section. First we modify constraints so that AATs and RATs on
edges with registers are calculated with respect to the placement. Register sharing
along adjacent edges further complicates the formulation. However, we utilize the
formulation from [10], to refine the placement of the shared register based on related
timing. The retiming variables are, as in the previous section, optimized to activate
the most favorable STA constraints. This interplay between retiming, placement, and
STA is shown in Fig. 7.1.
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Fig. 7.10 Max-slack retiming
with relocation of registers

We first describe an LP formulation for local register relocation based on a sim-
plified form of the LP in [10]. We then incorporate it into our retiming formulation.

Suppose register l can be incrementally placed to improve slack while leaving all
other gates fixed. We define a timing graph Gl = (Vl , El) that consists of vertices
and edges that are adjacent to l. Vl contains the driver u, and sinks v, of l. The edge
set El contains the timing arcs that a re adjacent to l. The LP formulation computes
the variables βl

x and βl
y , the optimal x- and y-coordinates of l. The variables in this

LP are as follows.

• αv
x , α

v
y : fixed x- and y-coordinates of vertices v∈ Vl .

• U e
x , U e

y , Le
x , Le

y : upper and lower bounds for the location of nets e ∈ El . These
upper and lower bounds determine the HPWL of the particular net described by
edge e as follows. HPWL(e) = (U e

x − Le
x + U e

y − Le
y). As the location of the

register changes, these net boundaries also change, and, in turn, change the HPWL.
• Ru, Au : the AAT and RATs of nodes in Vl .
• L : the local worst-case slack (of the worst pin in Vl ).

The MILP to determine optimal register placement is shown in Fig. 7.9. This
program sets the values of βl

x and βl
y such that L is maximized. Here, Au of any

vertex u ∈ Vl that drives register l is fixed. Similarly Rv for any vertex v that is driven
by l is also fixed. The only independent variables are βl

x and βl
y which determine the

U and L variables. These, in turn, determine Av, Ru for all nodes.
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Fig. 7.11 Gate cloning in
max-slack retiming

The program in Fig. 7.9 is modified in Fig. 7.10 to simultaneously incorporate
retiming and placement, and no longer fixes the neighboring RAT and AAT variables.
In this figure, each edge (u, v) on which a register appears constrains the placement
of the register in question. It is assumed that all edges starting at u, i.e., of the form
(u, v), such that hasReg(u, v) = 1 share the same registers. The register is placed
in a location which minimizes the slack of neighboring gates. Since the slacks of
neighboring gates in turn affect those of their neighboring gates, and so forth, a ripple
effect ensues. Therefore, the register is actually placed in an optimal location with
respect to the entire circuit. The key here is to enforce a small set of local constraints
for each edge that interact with each other such that globally optimal solutions are
chosen.

Cloning to increase the scope of retiming. A key insight in our work is that
opportunities for backward register movements are often limited by fanout branches
in combinational circuits. As illustrated in Fig. 7.2, retiming movements are blocked
when fanouts of a gate do not share registers. We hope to increase these opportunities
by cloning fanout branches such that registers can move beyond the cloned gate. We
achieve this by relaxing legality constraints in specific ways that allow extra registers
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to move backwards. In addition, the fanouts of any cloned vertex are divided such
that the STA on some of the edges is computed with respect to the cloned, rather
than original vertex.

The legality constraints in retiming ensure that no edge has negative weight.
With cloning, edges can indeed have negative weight due to registers being retimed
backwards through a cloned gate. However, forward retiming of registers still follows
traditional legality rules.

Suppose node u has fanouts O = {o1, o2, . . . oT } and fanins I = {i1, i2, . . . im}.
We represent this situation by imposing two constraints on the retiming variable r(u)
for a node u: one which is enforced when r(u) is positive, and one which is enforced
when r(u) is negative. If r(u) is positive (i.e., the retiming is backward), then the
maximum number of registers that are allowed to pass backwards is the greatest
number of registers that appear on any fanout branch of u. If r(u) is positive, then
the constraint is the same as before:

maxPull(u) = maxo∈O(w(u, o)+ r(o))

minPush(u) = mini∈I (w(i, u)− r(i))
if(r(u) > 0)r(u) < maxPull(u)

if(r(u) < 0)minPush(u) ≥ −r(u)

(7.12)

Together, these two constraints can completely replace the general legality con-
straints. The presence of registers is indicated by a positive weight on an edge.
Negative weights indicate that the driver of the edge was cloned. The original driver
is connected to the retimed register on the (neighboring) edge(s) with non-negative
weight, and the cloned driver drives the remaining sinks (as identified by edges with
negative weight). We use the additional variable hasClone(u, v) which is set to 1 i f f
the register count on edge (u, v) is negative. These variables can be set in a similar
way as hasReg. Recall that all constraints triggered under logical conditions can be
incorporated into an MILP through indicator variables or big-M formulations.

The MILP incorporating cloning is shown in Fig. 7.11. For clarity, we illustrate
cloning incorporated into the basic STA-based program with COG-based placements.
In practice, we simultaneously place and clone registers and gates.

The slack is computed slightly differently in the presence of clones. New variables
in Fig. 7.11 include indicator variables isCloned(u), Aclone(u), Rclone(u) for each
vertex v. The variable isCloned(u) = 1 if hasClone(u, v) = 1 for one of the edges
of the form (u, v). The computation of Aclone(u), Rclone(u) are:

if(wr(i, u)− r(i) > 0)

Aclone(u) ≥ Ai + τ ∗ HPWL(i, COG(l))+ Du

if(wr(u, i)− r(i) ≤ 0)

Aclone(u) ≥ Ai + τ ∗ HPWL(i, u)+ Du

if(wr(u, i)− r(i) ≤ 0)

Rclone(u) ≤ Ri − τ ∗ HPWL(COG(clone(i)), i)− Du
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STA
STA+Retiming+

Cloning
STA+

Placement
STA+Retiming+

Cloning+Placement

Fig. 7.12 Our SPIRE flow proceeds in phases. First the MILP that represents only static timing
analysis is solved without design changes. The values of relevant variables are saved and passed to
the next stage which runs an MILP that incorporates retiming and cloning. The retiming variables
are saved and fixed in an MILP that allows latches to move. Finally, with known values for latch
locations and retiming variables we run the complete linear program

For the new RAT variable, we assume that a node driven by a clone has no
registers on the connecting edge. As illustrated in Fig. 7.11, the main differences in
slack computation include 1) the additional edge (u, clone(v)) for every edge (u, v)

where v is cloned, 2) the use of the clone’s AAT, Aclone(u), when computing the
AAT of vertices v where (u, v) has a clone. We minimize the number of registers
and clones in the retimed circuit using two variables isCloned and RegCt, which is
computed as follows.

if(wr(u, v) > 0) RegCt(u, v) = wr (u, v) (7.13)

7.4 Empirical Validation

For very small circuits, a single mixed integer linear program implementing all of
the optimizations in SPIRE can be solved in a reasonable amount of time. However,
in order to push the boundaries of the largest circuits that SPIRE can solve, it is
important to solve instances in several phases. Each of the components of SPIRE
can be solved separately before being combined into a single mixed integer linear
program. By saving the partial solutions and using them as a starting point for the
next stage, we are able to achieve a significant speedup for large SPIRE instances
without sacrificing optimality. Figure 7.12 shows the flow we use to improve the
speed of SPIRE. It begins by running STA without any design changes allowed.
The solution of this program is stored and used to seed the next stage, which adds
retiming and cloning but fixes the locations of latches at the center-of-gravity of
connected components. The solution of this program is used to add constraints to the
next program, which allows latches to move, but not be retimed. Finally, the solution
of that program is used to seed the combined program.

Experimental environment. We integrate our optimizations into an industrial
physical synthesis flow. Our benchmarks are the largest functional units of a 45 nm
high-performance microprocessor design. We operate on these benchmarks after
timing-driven synthesis, timing-driven placement, electrical correction, and critical
path optimization (through buffering and gate sizing) are completed [11]. We use
an industrial timing analysis tool to obtain initial conditions for AATs and RATs
throughout the circuit [12]. Our experiments were conducted on an 8-core system
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Table 7.1 Minimum slack (M ) and total negative slack (T ) improvement during simultaneous
retiming+placement on macros of a 45 nm microprocessor (see Eqs. 7.1–7.3). Maximal T improve-
ment (100 %) is reached when design closes on timing. These cases are indicated in bold. %M is
computed as described in Eq. 7.14 with P = 174 ps

#Std. Initial Retiming+Placement Overhead Improvements
Design cells M , ps Regs T , ps M , ps Regs T , ps Time, s % cells % M % T

azure1 536 3.42 41 0.00 10.14 49 0.00 1.19 0.00 3.87 0.00
azure2 1097 −2.53 79 −15.17 2.95 155 0.00 4.46 6.93 3.15 100.00
azure3 1032 −16.22 97 −212.69 −6.49 108 −37.95 0.4 1.07 5.59 82.16
azure4 1125 −2.30 79 −2.30 3.82 96 0.00 7.66 1.51 3.52 100.00
azure5 1140 −13.18 89 −114.54 9.39 161 0.00 40.71 6.32 12.97 100.00
azure6 1156 −10.49 83 −91.39 7.14 149 0.00 10.80 5.71 10.13 100.00
azure7 1198 −29.84 80 −3399.92 −17.02 145 −259.67 20.73 5.43 7.37 92.36
azure8 2578 −38.47 209 −391.03 −28.64 287 −265.68 24.87 3.03 5.65 32.06
azure9 2911 2.56 290 0.00 23.31 318 0.00 7.12 0.96 11.92 0.00
average 3.66 7.73 68.87

with 2.8 GHz AMD Opteron 854 CPUs and 80 GB of memory. Our MILPs were
solved with ILOG CPLEX 12.1 configured to use up to 8 cores in parallel.

Table 7.1 shows a 7.7 % improvement (on average) in worst-case slack (M ) and
a 69 % improvement in total negative slack (T ) when retiming with simultaneous
placement. The slack improvements are reported in terms of the clock period P =
174 ps. T is computed as shown in Eq. 7.3 with threshold of T = 0. Percentage
improvement in min-slack M is computed as follows.

%M = Mnew −Mold

P
∗ 100% (7.14)

In addition, we note that the slack numbers are reported with respect to buffered
wire delay. Past literature reports unbuffered wire delay, where slack may improve
more dramatically, but such improvements may be misleading due to the need for
subsequent buffering. In this experiment, the MILP for retiming with placement was
given initial solution seeds from the max-slack MILP retiming shown in Fig. 7.8.
This helped CPLEX to calculate MILP solutions quickly. The entire optimization
sequence took< 41 s on each benchmark. Since our joint optimization was performed
after several iterations of individual optimizations including placement, buffering,
and gate sizing, and was able to significantly improve the slack, we can conclude
that the individual optimizations were unable to find these solutions.

Table 7.2 evaluates the impact of cloning during retiming. In this experiment, we
measure the total thresholded slack (�T ), as defined in Eq. 7.3, with the threshold
T = 100 ps. The threshold value represents the desired amount of guard-banding
(protection) against process variations and NBTI, which can degrade timing. Empir-
ical results indicate that cloning can improve the �T of the circuit by up to 57 %
over just retiming and placement. Thus, even when opportunities for cloning on the
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Table 7.2 Total thresholded slack (�T ) improvement through simultaneous retiming, cloning and
placement (see Eq. 7.3). Cloning also improved M on azure6 by 3.5%, while on remaining testcases
the most-critical paths were not affected

#std. Initial Retiming+Placement
Design cells Regs �T , ps Regs �T , ps

azure1 536 41 −4521.87 47 −2989.53
azure2 1097 79 −15597.31 153 −4537.57
azure3 1032 97 −15515.34 105 −14333.89
azure4 1125 79 −24206.70 81 −22226.57
azure5 1140 89 −35296.55 148 −18881.61
azure6 1156 83 −32183.65 148 −27566.43
azure7 1198 80 −46265.55 122 −33419.14
azure8 2578 209 −39253.82 296 −26272.53
azure9 2911 290 −13134.72 317 −9539.07

Retiming+Cloning+Placement Overhead Improved
Design Regs �T , ps Time, s % cells % �T

azure1 47 −2989.53 6.28 0.00 0.00
azure2 153 −4537.57 7201.14 0.00 0.00
azure3 110 −12739.10 2252.07 0.48 11.13
azure4 83 −21762.75 3727.78 0.18 2.09
azure5 537 −11333.49 7202.15 34.12 39.98
azure6 588 −11956.50 237.10 38.06 56.63
azure7 620 −17643.49 3741.82 41.57 47.21
azure8 657 −15117.06 7201.70 14.00 42.46
azure9 522 −4096.63 3905.28 7.04 57.05
average 15.05 28.51

critical path are limited, the remainder of the circuit can be improved for increased
resilience.

Unlike previous localized transformations, SPIRE scales to design partitions with
over 1000 cells as shown in the #std cells column in Table 7.1. SPIRE can process
larger circuits by partitioning the design into windows of appropriate size, which can
have overlaps.

7.5 Extensions

SPIRE’s key advantage over existing physical synthesis transformations is the syner-
gistic use of several types of optimizations. Our MILPs are more costly than existing
transformations but also more powerful since they can be applied to larger win-
dows than many of the localized transformations used in the industry today [10, 13].
This flexibility of SPIRE allows one to change size and scope of optimization and
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offers rich trade-off opportunities between runtime and solution quality. However,
increasing optimization strength will likely change the trade-off between runtime
optimization-window size. Additional optimizations can be integrated into SPIRE
as outlined below.

• To relocate combinational gates, create a variable for the x- and y-location for
each gate and write the delay equations as in Sect. 7.3 in terms of those variables.
• To incorporate gate sizing in SPIRE, one must model nonlinear timing character-

istics of individual gates or standard cells. This can be accomplished by precom-
puting the response to a set of discrete sizes (from the library) and selecting them
using conditional constraints. If a particular gate size is selected, a corresponding
gate delay will be used in the STA, as specified by a conditional constraint.
• Similarly, threshold voltage (Vth) assignment is modeled by selecting gate delays

with Boolean variables. As lowering Vth improves speed at the cost of power, the
number of low-Vth assignments must be upper-bounded.
• Common placement constraints including region constraints and obstacles can

be represented in SPIRE. Region constraints are modeled with linear bounds on
the x- and y-coordinates of each gate. To avoid obstacles, the placement region
is divided into allowable regions that hug the obstacles. A disjunctive (OR-type)
constraint is then added to require placement in one of the allowed regions. Routing
congestion can also be represented as an obstacle using this mechanism to prevent
any movable objects from being added in congested regions.

By integrating several optimizations and applying them to windows with thousands
of objects, SPIRE offers a unique physical synthesis optimization that lies between
local optimization of individual objects (which is typical of current tools) and global
optimization of the entire design.

7.6 Conclusions

State-of-the-art physical synthesis methodologies tend to perform a series of local
transformations to achieve a target clock period [11]. However, the persistent diffi-
culty of timing closure in high-performance designs calls for netlist transformations
that can effect more powerful changes in the circuit. To address these issues, we
presented SPIRE, an MILP-based physical synthesis optimization in which dynamic
netlist transformations including retiming, cloning, and placement, can be performed
and co-optimized with respect to an embedded static timing analysis program. We
demonstrated that isolated transformations, such as retiming, often run into obstacles
that can only be resolved by other transformations, such as gate cloning. Empirical
results show that SPIRE is able to significantly improve the worst-case and total slack
in functional units of a 45 nm high-performance microprocessor after an industrial
physical synthesis flow, consisting of several individual optimizations, is performed.
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Chapter 8
Broadening the Scope of Optimization Using
Partitioning

Techniques covered in previous chapters have been developed primarily to operate
in limited optimization windows, ranging from several gates (Chaps. 3, 5 and 6) to
functional units of a CPU (Chap. 7). We extend their scope to a larger context—flat
ASIC and SoC netlists—and facilitate greater parallelism during optimization. To
accomplish this, the designs are divided by netlist partitioning tools into windows
of manageable size, in which our earlier techniques can be applied. We evaluate
window-partitioning in terms of runtime and solution quality as a method to extend
the scope of physical synthesis optimization.

8.1 Introduction

Many important optimizations in physical synthesis are NP-hard, which motivates the
use of high-performance heuristics to achieve timing closure. As outlined in Chap. 2,
efficient (near-linear-time) heuristics, such as methods for large-scale standard-cell
placement, are applied to entire netlists with millions of nets and standard cells.
Alternatively, by limiting optimization to a very local scope, more CPU-intensive
algorithms can be employed, including those that find optimal configurations of
circuit elements. For tasks such as gate sizing, placement optimization within a single
circuit row, and netlist partitioning, exponential-time exhaustive enumeration may
be appropriate at scales of fewer than a dozen gates, with strong branch-and-bound
implementations extending in scope to no more than 30–50 gates. Our techniques
range from applying to a dozen gates, as in interconnect-driven cloning, up to a few
thousand gates in the case of SPIRE (see Table 8.1). Scaling these optimizations to
larger circuits will require applying them selectively within restricted windows of
the design.

The controller/transformation approach to physical synthesis optimization intro-
duced in Chap. 2 does not lend itself naturally to optimizations with large scope such
as the ones proposed in previous chapters. This is because controllers choose single
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Table 8.1 Previously reported transformations and the maximum reported size of subcircuit to
which they are applied

Transformation Max reported
subcircuit size (#
standard cells)

Approximate runtime

RUMBLE (Chap. 3) 18 0.1 s
Ratchet (Chap. 5) 164 10 s
Interconnect-driven cloning (Chap. 6) 13 1 s
SPIRE (Chap. 7) 2911 10 s–2 h

Fig. 8.1 A generic iterative improvement physical synthesis algorithm that applies a transformation
to a window based on bottom-up clustering. The performance of this algorithm can be tuned through
the choice of clustering strategy, the selection of a controller and transformation pair, and through
the runtime solution quality trade-off controlled by S. Chapter 3 explores using an n-hop clustering
strategy and Chap. 5 was applied to windows selected in most-critical-first order

objects to optimize, and sequence such optimizations. However, our optimizations
apply to larger numbers of objects and so there remains a problem of how to enumer-
ate such subsections of the design on which to apply our techniques. In this chapter,
we first describe how this was done for optimizations in Chaps. 3, 5 and 6, then we
propose a strategy for selection of larger subcircuits for optimizations in Chap. 7
using top-down netlist partitioning (Fig. 8.1).

8.2 Background

The state of the art in physical synthesis relies on the controller/transformation
model to select circuit elements to optimize, as introduced in Chap. 2. The most
natural extension of the controller/transformation model to larger windows involves
constructing a window around a given seed object that is designated by existing
controllers. This method is appropriate in the case of a well-optimized design with
relatively few problem areas. In this section, we review several methods to select
windows by expanding a subcircuit around a given seed.
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Breadth-first-search. In several important cases (gate sizing, buffer insertion,
placement), the scope of simultaneous optimization among objects is determined by
the connectivity and distance between the objects. Therefore, we aim to expand the
window with objects that are directly connected to objects already in the window. If
the goal is to optimize the seed, it is also more likely that something connected through
a shorter path of nets and gates will influence the timing of the seed. Therefore, we
consider the n-hop neighborhood as a good baseline strategy for expansion. The
n-hop neighborhood is traversed efficiently in linear time by the breadth-first-search
algorithm, as follows. Begin with a window containing only the seed s. Add all
neighbors of s to a queue q. Dequeue a gate g from q and if it is not visited, add it
to the window and mark it visited. Then add all of the neighbors of g to q. Repeat
this procedure until the window reaches the desired size.

Most-critical-first. In cases where the goal is to fix a critical path, for example,
using the techniques in Chap. 5, it may be advantageous to expand by adding the
most-critical neighbor to the current window. This strategy begins with a window
containing the seed s. Insert into a priority queue q the list of neighbors of s, sorted
by their slack. Dequeue the most critical gate g from q and if it is not visited, add
it to the window and mark it visited. Then add all unvisited neighbors of g to q.
Repeat this procedure until the window is the desired size. Note that while the n-hop
strategy radiates outward evenly around a gate, this strategy is very likely to expand
along a single path and make a long, narrow window.

Slack-improvement order. It some cases an analytical model can be used to
quickly estimate the amount of slack improvement that is possible due to the addition
of the next gate. For example, a linear-delay model and coordinates can be used to
estimate how much is the best-case improvement that can be provided by RUMBLE.
Beginning from a window containing only the seed s. Insert into a priority queue q the
list of neighbors of s sorted by slack improvement. Dequeue the gate g from q with
highest slack improvement and if it is not visited, add it to the window and mark it
visited. Then add all the unvisited neighbors of g to q (sorted by slack improvement).
Repeat this procedure until the window is the desired size. This strategy requires a
good slack improvement estimation technique and is therefore not always available.
However, it provides an efficient trade-off between window size and solution quality.

The window selection strategies discussed in this section were found to work
well in practice. Many other variants exist and, in general, the subcircuit selection
strategy will depend strongly on the transformation it is used with. When coupling
a subcircuit selection algorithm with a transformation, it is important to understand
the effects of the transformation and what scope it needs to perform well.

8.3 Forming Subcircuits Using Top-Down Netlist Partitioning

In the previous section, methods to select subsections of a design based on a seed
object were presented. Which method is appropriate for a particular transformation
depends on its scope. For transformations that operate on a small neighborhood to

http://dx.doi.org/10.1007/978-1-4614-1356-1_5
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improve a target gate or net, bottom-up clustering allows one to easily select the
set of nearby gates that are most likely to facilitate improvement to the target gate.
Techniques of this type were used in Chaps. 3, 5 and 6 and successfully extended
the scope of such physical synthesis optimizations as timing-driven gate movement,
buffering, gate sizing and cloning. However, optimization windows remained rela-
tively small in those cases, usually no more than around a dozen gates, but up to
164 in the case of Chap. 5. For transformations that apply to larger subsets there are
too many combinations of gates for a comprehensive clustering algorithm to explore
practically. In such cases, it is more appropriate to limit interactions with circuit
elements outside of the subcircuit, and therefore partitioning is a good choice.

Netlist partitioning is an essential technique to moderate complexity in physical
design systems. It enables algorithms and methodologies based on the divide-and-
conquer paradigm. The goal of a partitioning algorithm is to divide a netlist into
two or more groups of gates such that every gate is in exactly one group, and some
cost function, such as net-cut, is optimized. Given a hypergraph representation G,
of a netlist, the k-way hypergraph partitioning problem seeks k disjoint partitions of
G. In this work we map the problem of finding subcircuits of a netlist to the k-way
partitioning problem.

The Multilevel Fiduccia-Mattheyses (MLFM) framework is a well-studied
approach to hypergraph partitioning and is presently the dominant technique for
large-scale netlist partitioning [1]. It begins with a coarsening phase during which
vertices of the hypergraph are merged to form a clustered hypergraph which has fewer
vertices, e.g., half as many. The hypergraph is clustered repeatedly until a top-level
hypergraph with 50–200 vertices is found. Then a top-level solution is constructed by
means of a specialized solver designed for problems this size. For example, the Ran-
domized Engineer’s Method places vertices into partitions in largest-first order and
tries to maintain balance as it proceeds. Following top-level solution construction, a
refinement phase begins, wherein the hypergraph is unclustered, and the partitioning
of the clustered hypergraph is projected onto the unclustered hypergraph. From this
projected solution, an iterative improvement algorithm is applied, with the Fiduccia-
Mattheyses (FM) algorithm being the most competitive today. Unclustering and iter-
ative improvement are repeated until a partitioning of the bottom-level hypergraph
(i.e., the input hypergraph) is obtained. Additional passes consisting of alternations
of coarsening and refinement phases can be applied in so-called V-cycles to further
improve results. One popular software implementation of MLFM, hMETIS, can be
obtained from [2].

In order to produce subcircuits of a target size P of a netlist with hypergraph
G = (V, E), we employ balanced k-way partitioning with k = |V|P . We then optimize
each of the k windows individually. Each technique will have a runtime solution
quality trade-off determined by the value of P . Table 8.1 shows a table of techniques
reported in previous chapters and the size of subcircuits they can be applied to.
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8.4 Trade-Offs in Window Selection

In addition to the scope of a given transformation as discussed above, several other
considerations affect the choice of window selection technique, such as the interac-
tions between the windows. Important factors include:

1. How subcircuit optimization is made relevant to the optimization of entire circuits
2. How overlaps between optimization windows affect solution quality and runtime
3. Whether all circuit elements are included in some window
4. The relative sizes of different windows.

We discuss trade-offs in window selection techniques in detail below.
Interactions between transformations and window selection methods. When

the objective of a particular transformation is to minimize area, to fix local constraints
or to repair design rule violations, optimizing subcircuits directly improves the entire
circuit. However, when dealing with non-local timing constraints, relevant optimiza-
tion objectives for a subcircuit must be carefully formulated. For example, when
moving sequential elements in RUMBLE, combinational timing paths that leave the
subcircuit but renter at a different point can strongly affect results. In Chap. 3 we
refer to these types of configurations as pseudomovable feedback paths, and they
must be carefully included into a subcircuit to account for their timing impact on the
solution. More generally, windowing optimizations consider timing values on the
boundaries fixed, while this may not be true in practice. Each transformation must
carefully manage this assumption and include everything into the subcircuit that can
change due to the effects of the transformation. As such, having a smaller boundary
reduces the possibility of changes impacting the quality of optimization. This aspect
of windowing is equally applicable to partitioning and clustering techniques. Trade-
offs between these two window selection techniques are summarized in Table 8.2
and described next.

Window selection through clustering. Clustering techniques per se do not track
overlap between windows, but leave several possibilities. One possibility is to con-
struct optimization windows one by one, optimize the subcircuit in a given window,
and then go on to the next window. Without sufficient care, such a technique is
likely to create significantly overlapping windows, and some circuit elements may
not be covered by any window. Overlaps occur when nearby circuit elements are
used as seeds and expanding windows around them include similar sets of gates.
This increases overall optimization effort by repeating transformations on the same
circuit elements multiple times, but may sometimes improve solution quality by con-
sidering multiple contexts for each circuit element and iterating improvement algo-
rithms on them. Overlapping optimization windows cannot, in general, be processed
in parallel—a serious drawback when a large number of networked workstations
are available. Circuit elements omitted from optimization windows may represent
lost opportunities for optimization, but sometimes one can rule out such opportuni-
ties, e.g., for elements with high slack, low area or electrical parameters that satisfy
relevant constraints (Fig. 8.2).

http://dx.doi.org/10.1007/978-1-4614-1356-1_3
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(a) (b)

(c) (d)

Fig. 8.2 Venn diagrams illustrating different window selection techniques. The outer rectangle in
each image represents the entire design while shaded regions inside represent clusters or partitions.
a Clustering grows windows around a seed object and typically creates overlapping windows that do
not cover the circuit. b Partitioning divides the entire circuit into windows of approximately equal
size that do not overlap. c The windows formed by partitioning can be expanded to deliberately
create overlaps between adjacent partitions. d Partitioning can be performed multiple times to find
orthogonal partitioning solutions. In (d) two independent 4-way partitioning solutions are overlaid,
the solution from (b) is augmented by an additional one with dashed cutlines

Table 8.2 A comparison between window selection techniques

Property Clustering Partitioning

Window isolation Mediocre (optimized indirectly Substantial (captured by the
by greedy algorithms) objective function and optimized

by high-performance algorithms)
Window overlaps Substantial (nearby seeds can None (but can be created through

cause overlapping windows) window inflation or repartitioning)
Circuit coverage Incomplete (requires additional Complete (by construction)

steps to revisit skipped nodes)
Balanced windows Poor (can be widely varying Good (balanced partitioning

depending on adjacent net degree) seeks similarly sized partitions)
Amenability to parallism Mediocre (overlapping clusters Strong (All partitions

cannot be solved simultaneously) can be solved simultaneously)

A second possibility, relevant when overlaps should be limited in order to conserve
runtime, is to mark each circuit element included in some window as visited, so as to
prevent its inclusion in another window; a variant technique does not mark boundary
elements of each window. Thus, it is possible to create (nearly) non-overlapping
windows by clustering. However, in some cases this may leave cells with no unvisited
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neighbors, and such windows may represent lost opportunities for optimization. If
it is important to ensure that optimization windows cover the entire circuit, one can
perform iterations where a new window is started for each circuit element not covered
by earlier windows.

From a solution quality perspective, it is typically advantageous to construct win-
dows of the largest size that can be efficiently processed by a given optimization (e.g.,
see Table 8.1). In such cases, therefore, it is advantageous for windows to be of sim-
ilar size. However, if efficiency concerns dictate that windows cannot overlap, some
windows may have to be smaller. Also, some windows may represent well-formed
clusters of logic (e.g., multipliers or decoders) that are only loosely connected to the
remaining circuit. Such windows can also be smaller than maximal reasonable size.

Window selection through balanced partitioning. Balanced partitioning
addresses concerns about interacting windows effectively. Multilevel Fiduccia-
Mattheyses (MLFM) partitioning exhibits near-linear runtime complexity in the size
of netlists and runs efficiently on the largest VLSI netlists [1]. The most common
objective function of MLFM partitioning is to minimize the number of nets that
cross between two partitions. Therefore, MLFM partitioning minimizes the sizes of
boundaries, and maximizes the isolation of each window. Such isolation helps to
ensure that optimizations found locally will be preserved when taken in the context
of the entire circuit. Partitioning also reduces the total overlap between windows by
construction and is guaranteed to cover all elements in the circuit. Because of balance
constraints in the partitioning formulation, all windows will have similar sizes and
minimizing net cut ensures the logic within each window will be well-connected
on average. These properties suggest that balanced partitioning is better-suited to
identifying minimally-overlapping windows for non-local optimizations.

In cases when some overlap between partitions is desired to improve solution qual-
ity, clustering techniques seem to hold an advantage over partitioning techniques.1 In
particular, clustering techniques are better equipped to combine pairs of connected
circuit elements (e.g., gates) together in at least one common window. Strategies
employing partitioning techniques can address this limitation by performing several
partitioning starts to obtain multiple solutions (increasing the likelihood that two
given connected circuit elements will appear in at least one common optimization
window).

8.5 Empirical Validation

For experiments reported in this section, we used the same computational facili-
ties and EDA infrastructure as in Sect. 7.4, but added a larger design azure10
with 4144 standard cells. For a given design, we partition the netlist into k parti-
tions of approximately equal size using the hMETIS partitioner [2], for values of

1 One hybrid technique begins by partitioning windows to smaller than the desired size then expands
each using clustering to both cover the circuit and create overlap.

http://dx.doi.org/10.1007/978-1-4614-1356-1_7
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Fig. 8.3 An illustration of SPIRE’s effect on T (TNS) versus the number of approximately equal-
size partitions of three industrial microprocessor design blocks generated by the hMETIS partitioner
[2]. a azure08; b azure09; c azure10. The horizontal axis indicates the number of partitions k. The
vertical bars extend to +/− one standard deviation from the mean value of T . The wicks of
candlesticks extend from the min to the max value of T . The baseline indicates the value of T
without changes to the circuit

k = 1, . . . , 30. For each value of k, we solved k separate SPIRE MILP instances,
and combined the solutions into a single solution for the testcase. We measured
circuit-performance parameters after such optimization for each value of k and study
the impact of the size of each partition on the performance of the circuit.

The techniques in Table 8.1 all improve solution quality at the cost of runtime
when called on larger instances. This runtime solution-quality trade-off determines
the best size for subcircuits in practice. In this section we demonstrate a trade-off
between runtime and solution quality by partitioning large netlists and applying
SPIRE (see Chap. 7).

http://dx.doi.org/10.1007/978-1-4614-1356-1_7
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Figure 8.3 shows an experiment incorporating the hMETIS partitioning software
into SPIRE [2]. Each design was divided into 1 ≤ k ≤ 30 partitions using 5 separate
starts of the hMETIS partitioner [2]. SPIRE was invoked on every partition, and
statistics of the resulting values of T are plotted. From this experiment, we observe:

• The best solution quality is obtained when the largest circuits are optimized.
• Using smaller windows sacrifices some solution quality, but it quickly converges

in two of the three cases.
• Additional partitioning produces smaller, faster instances.
• In some cases smaller windows can provide greater improvement. This can be

explained by our use of a time-out. Smaller windows are more completely explored
within the time-out [3].
• Netlist partitioning is fast enough to apply to the largest ASICs and SoCs.
• In some cases the bars indicating +/− one standard deviation can extend beyond

the min or max value of T . This occurs when the distribution of solutions is highly
skewed toward its minimum or maximum.
• Solution quality can be significantly improved by applying several rounds of par-

titioning and selecting the best seen results. Such additional rounds can be per-
formed in parallel. Because the smallest (fastest) windows often provide greater
improvement than mid-size (slower) windows, one good strategy begins by solv-
ing small windows first, then proceeding to larger windows. A time-out or the
runtime solution quality trade-off can be used to determine stopping criteria.

Partitioning and clustering allow one to apply each of the transformations in this
book efficiently to the largest available designs. However, balanced, non-overlapping
partitions are more amenable to parallelism. To this end, we partitioned a design with
102,063 standard cells into 1,000 partitions and ran SPIRE on each of them. SPIRE
was able to find improvement in 119 of the partitions totaling 1.31e6 ns of TNS
improvement. We plotted the amount of improvement in a histogram in Fig. 8.4.
This experiment has been performed on a pool of compute servers because all of the
partitions can be solved in parallel. In addition, each partition is solved using ILOG
CPLEX 12.1 configured to use up to 8 processors in parallel.

8.6 Conclusions

In this chapter we have described a method to scale physical-synthesis optimizations
to the largest commercial ASICs and SoCs. Working with such designs, we have
applied our transformations after commonly used local transformations including
buffer insertion, gate sizing, and detailed placement as follows. We first divide the
entire netlist into windows of appropriate sizes for a particular large-scope optimiza-
tion. We then apply that optimization within each window, leveraging inherent par-
allelism of disjoint windows. We then combine the solutions into a single optimized
result. This method runs in near-linear time in terms of the number of windows and
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Fig. 8.4 A histogram of TNS improvement in partitions of a large ASIC

thus scales to a large number of windows. As long as each window is sized appro-
priately, algorithms with high runtime complexity can be applied while retaining
affordable runtime on large designs. In addition we have identified three sources
of parallelism compatible with our techniques—non-overlapping partitions, using a
multi-core MILP solver, and multiple independent partitioning configurations.

We have shown that while increasing the scope of optimization provides improved
solution quality, a divide-and-conquer framework allows EDA software to broaden
the scope of heavy-weight physical synthesis optimizations and exploit parallelism.
By controlling window size, we provide a trade-off between runtime and solution
quality that can be tuned to make our large-scope transformations practical on the
largest available designs.
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Chapter 9
Co-Optimization of Latches and
Clock Networks

Optimizations developed in earlier chapters affect many aspects of physical
synthesis, but often target sequential elements, which particularly impact circuit per-
formance. In order to obtain synergies between these optimizations, we explore the
infrastructure for physical synthesis used by IBM for large commercial microproces-
sor designs. We focus our attention on a very challenging high-performance design
style called large-block synthesis (LBS). In such designs latch placement is critical
to the performance of the clock network, which in turn affects chip timing and power.
Our research uncovers deficiencies in the state-of-the-art physical synthesis flow vis-
à-vis latch placement that result in timing disruptions and hamper design closure. We
introduce a next-generation EDA methodology that improves timing closure through
careful latch placement and clock-network routing to (i) avoid timing degradation
where possible, and (ii) immediately recover from unavoidable timing disruptions.
When evaluated on large CPU designs recently developed at IBM, our methodology
leads to double-digit improvements in key circuit parameters, compared to IBMs
prior state-of-the-art methodologies.

9.1 Introduction

Design-complexity growth has consistently outpaced improvements in design auto-
mation in the last 30 years. The shortfall is called the design productivity gap and tends
to increase the number of designers per project over chip generations [1]. However,
the economics of the semiconductor industry limits the size of design teams, and the
shortfall must be alleviated through increased design automation.

Modern CPU Design Styles. High-performance microprocessors demand very
labor-intensive IC design styles. In order to cope with the high frequencies of these
designs (3–6 GHz), engineers have traditionally partitioned them into hierarchies,
with bottom-level blocks containing fewer than 10,000 standard cells. This method-
ology requires significant manpower for several reasons (i) the partitioning task is
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performed manually and it requires an experienced design architect, (ii) each designer
can handle only around a dozen blocks; the use of smaller blocks increases their num-
bers and necessitates more designers, and (iii) integrating blocks into higher levels
of the design hierarchy requires a dedicated designer for each unit-level assembly
that combines multiple bottom-level macros.

Large-Block Synthesis. In order to improve the automation of synthesized blocks
in high-performance microprocessor designs, a new design style is being pursued.
Functional units are being flattened and all macros inside are merged into a single
large, flat, high-performance block. The resulting entities are called large-block syn-
thesis (LBS) blocks. The typical LBS testcase will have more than 25,000 thousand
cells and possibly as many as 500,000 cells. The high-performance nature of such
designs makes physical synthesis quite challenging. In particular, existing tools tar-
get high-performance designs (4 GHz or more) with small blocks under 10,000 cells,
or low-power designs (400–800 MHz) with blocks having millions of standard cells.
To improve the performance of the LBS methodology, current tools and techniques
must be revised and extended.

Latch and Clock Network Co-Design Challenges. The large-block synthesis
design style creates several conditions that stress existing physical synthesis flows
in new ways. Like in high-performance small blocks, latches in large blocks must be
placed in clusters near a local clock buffer (LCB) to limit clock skew and power [2].
However, the placement region of a large block leaves significant room for latch to be
displaced by a greater distance. The first major challenge in physical synthesis of
large blocks is limiting the displacement of latches when moving them close to LCBs.
In addition, clock skew at every latch affects timing constraints for combinational
logic. Therefore, critical path optimization—the focus of preceding chapters—must
account for clock skew, but this information is not known until clock networks are
designed. The latter step is commonly referred to as clock insertion. If clocks are
inserted before the latches are properly placed, the timing picture will be overly pes-
simistic. Waiting to consider skew until too late in the flow may result in suboptimal
circuit characteristics. The second major challenge is the fundamental issue of opti-
mizing timing in the presence of clock skew, which requires careful ordering of latch
placement and clock network synthesis operations. Traditional approaches to these
problems suffer from significant timing degradations during sudden changes, e.g.,
moving a latch far across the chip to the location of an LCB. The third major chal-
lenge is avoiding severe timing degradations that harm convergence while managing
latch placement constraints and optimization considering clock skew.

Our contributions. In this chapter we develop specific techniques to address the
challenges above. In particular we note the following contributions.

• A graceful design flow to achieve timing closure by avoiding disruptive changes
through careful reordering of steps. In some cases disruptions could not be avoided,
and in these cases we either revise the offending optimization or mitigate the
amount of disruption immediately after the disruption is detected.
• An algorithm to reduce the maximum latch displacement due to clock skew con-

straints by strategically inserting additional LCBs.
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• A technique to reduce the displacement of combinational logic in response to
moving latches to obey clock skew constraints. Compared to fixing the latches
and rerunning global placement, our technique reduces combinational logic dis-
placement significantly.
• A novel optimization for control signals that drive LCBs following a timing degra-

dation caused by latch clustering.

The remainder of this chapter is organized as follows. Section 9.2 outlines a prior
physical synthesis methodology for high-performance CPU design and the first major
steps we took to cope with the large-block synthesis design style. Remaining specific
problems in the flow that cause timing degradations are described in Sect. 9.3. Our
new graceful physical synthesis flow is detailed in Sect. 9.4. We demonstrate the
empirical improvements in our flow in Sect. 9.5. Conclusions are drawn in Sect. 9.6.

9.2 Background

In order to cope with the concerns of LBS designs, we adapt the typical microproces-
sor flow with several extensions designed for large ASICs. This section describes
existing physical synthesis techniques for multi-million gate designs, and how they
can be applied successfully to high-performance CPU designs.

Force-directed Placement. The current physical-synthesis methodology used
at IBM relies on a quadrisection-based quadratic placement algorithm for high-
performance microprocessor designs [3]. This algorithm works by first solving the
quadratic program that is typical in analytic placement algorithms, then divides the
cells into four groups by drawing cutlines to satisfy a density constraint. Next, it
solves the quadratic program on those regions individually and repeats the process
in a nested fashion until the cells can be placed by an end-case solver. The cut-based
nature of this algorithm can cause small changes in the netlist to translate into large
changes between two successive physical synthesis runs. This behavior exhibited
by a placement algorithm is called instability. To avoid such disruptions, our next-
generation flow incorporates a more stable force-directed approach that generally
also results in better wirelength. The force-directed approach proceeds by an even
spreading of cells after each quadratic solve, and this is the source of the improvement
in stability. Figure 9.1 illustrates the progress of force-directed placement. A more
stable placement process is important to ensure a steady path toward convergence
despite disruptive changes during physical synthesis.

Force-directed placement algorithms are typically geared toward optimizing wire-
length, and do not take clock network synthesis into account. As a result, latches are
likely to be placed far from each other, spread throughout the placeable area. In turn,
clock power and skew budgets can be exceeded when a high-performance clock net-
work is synthesized using such post-placement latch locations. Therefore, metrics
beyond wirelength must be employed during placement to satisfy chip performance
requirements and minimize adverse impact on the clock network [4]. The following
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(a) (b)

Fig. 9.1 The locations of cells during force-directed placement at the clockopt placement stage.
a After one iteration of quadratic programming followed by cell spreading, a graceful spreading of
cells can be observed. b The final placement resulting from repeating these iterations to convergence,
followed by detailed placement and legalization

post-placement optimization problem is designed to mitigate timing degradations by
minimizing latch displacement while creating tight latch clusters that enable reduced
clock network power and skew.

Latch and Clock Co-Design. Latch locations are critically important to chip
timing and dynamic power. We formalize the problem of optimizing latch locations
for timing and power as follows.

Definition 1 (The Latch and Clock Co-Design Problem) Given a placed and opti-
mized circuit layout G with l latches, a local clock buffer standard-cell LC B, a
maximum number C of latches that can be driven by a local clock buffer, and a
maximum distance D > 0 between any latch and the local clock buffer that drives it,
satisfy all of the following constraints and minimize the following objective. Insert
� l

C � copies of LC B into the design, so as to drive at most C latches with each LC B,
and place them to minimize latch displacement. Move any gates necessary so that
latches are located within the required distance D > 0 from the local clock buffer
that drives them. Minimize the sum of displacements of gate locations in the new
circuit layout H as compared to G,

∑
g∈G distance(location(G, g), location(H, g)).

Mercury is a state-of-the-art physical synthesis flow developed and used at IBM
that is optimized for ASIC designs with over a million standard cells. It achieves
a fourfold speed-up over previous approaches on designs that size. However, the
Mercury flow was not designed for high-performance blocks, and is still not used on
small blocks. Instead, the default flow for small blocks is referred to as the Perseus
flow. Because LBS designs are high-performance, we first tried adapting the Perseus
flow, which was designed for high-performance blocks. However, the runtime scal-
ing implied that the largest LBS designs would require over one day of runtime in
physical synthesis alone, while the required turn-around time for the entire flow is
only 12 h. In order to achieve a speed-up on LBS testcases, we applied the Mercury
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flow and enhanced it to deliver acceptable quality of results. The Mercury flow is also
inherently more graceful than the Perseus flow, because directly after global place-
ment, it quickly fixes all electrical violations and returns the timing environment to a
meaningful state. Originally, the Perseus approach to electrical correction alternated
timing-driven buffer insertion and gate sizing. This flow experienced convergence
problems and was ineffective in fixing electrical violations. Placement causes degra-
dations by creating long wires with electrical violations, therefore we conclude that
a next-generation flow must include a post-placement clean-up step that specifically
targets electrical violations, to ensure graceful convergence.

9.3 Disruptive Changes in Physical Synthesis

Recall that physical synthesis begins with a gate-level netlist that is produced by logic
synthesis, then derives an optimized netlist and produces a chip layout A number of
significant changes to the state of the design must occur while it is being processed.
For example, when physical synthesis begins, gate locations are unknown, and a
global placement algorithm must be invoked to find locations for all of the gates in
the design. This is a disruptive change that will create vital new information as well
as invalidate previously held assumptions. Whereas logic synthesis relies on crude
timing models that abstract way interconnect, accurate interconnect delay models
used after placement are likely to increase estimates of path delay. Whereas logic
synthesis relies on crude timing models that abstract way interconnect, accurate
interconnect delay models used after placement are likely to increase estimates of
path delay. How a physical synthesis tool reacts to disruptive changes alters quality of
results significantly. In this section, we discuss several sources of disruptions during
physical synthesis and specific disruptive changes.

Changes in the Accuracy of Interconnect-delay Models. RTL-to-GDSII design
methodologies begin with running logic synthesis on a rough RTL netlist. Then, a
designer inspects the output of the logic synthesis tool vis-à-vis meeting timing con-
straints under a zero wire-load model. This sanity check ensures that physical syn-
thesis is not invoked on a design where gate delays alone violate timing constraints.
Subsequently, the netlist must be placed to facilitate interconnect delay estimation,
e.g., using Elmore-delay formulas. The availability of physical information and the
emergence of interconnect delays introduces a large disruption in timing estimates.

Uncertainties in Global Placement. In the example above, we pointed out that the
input to physical synthesis is unplaced, and thus a global placement algorithm must
be run before physical optimization can begin. From a physical synthesis perspective,
the primary shortfall in state-of-the-art global placement algorithms is that they do
not fully comprehend timing or electrical characteristics of gates and wires. Instead,
they model optimization of these circuit characteristics using wirelength, on the
assumption that good wirelength correlates with other objectives but is easier to
optimize. As a result, timing and electrical characteristics are often undermined by
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global placement, even on an optimized netlist.1 Without improving multi-objective
placement itself, avoiding this disruption in a physical synthesis flow is difficult.

Relocation of Latches Toward Local Clock Buffers. During synthesis, each
clock domain is given a single local clock buffer to drive all the latches in that
domain. However, each LCB is limited by a maximum capacitance that it can drive,
and so later in the flow LCBs must be cloned in order to limit their fanout. This is not
done during synthesis, since latch locations have not yet been determined. We would
like to minimize the total length of clock interconnect between the LCB and the
latches it drives, and this requires placement information. In order to limit the load
driven by the LCB, and also reduce clock skew, we place the latches very close to
the LCBs. During LCB cloning, the latches are grouped together into latch clusters
and moved adjacent to the LCB that drives them. Such latch movement is disruptive
in several ways, especially for the placement and timing of critical paths. It is not
uncommon to see the worst-slack path degrade from around −50 ps to below −1 ns
in response to this step. Minimizing latch movement is a key contribution of this
chapter.

Early Timing Estimates based on Ideal Clocks. Since there is no placement
information available directly after logic synthesis, a clock network cannot yet be
routed. As such, detailed analysis of clock skew is impossible, and we therefore
calculate nominal clock skews at latch pins with idealized clocks. Different method-
ologies synthesize clock networks at different stages. However, in high-performance
methodologies at IBM, we consider the skew caused by the last level of the clock
network after latches are placed and LCBs are inserted. Nets with high load lead to
high clock skew, which can cause a serious disruption in timing, so the placement of
latches and LCBs is critical. However, realistic clock networks are necessary to opti-
mize the latch-to-latch paths while accounting for clock skew. Therefore, our work
seeks to minimize the unavoidable timing disruption from realistic clock networks.

Simplified Slew Propagation. Static timing analysis is one of the largest con-
sumers of runtime during physical synthesis, taking about 40 % of a typical physical
synthesis run. One of the techniques used to mitigate this expense is called pin-
slew propagation. In pin-slew propagation, instead of slew rates being propagated
along paths, the slew rate used at a particular point is computed using a default
slew rate asserted on its fanin gates, and propagated through one level of logic. This
allows changes to timing to propagate only locally, which is considerably faster than
path-slew propagation. However, this is an approximation that results in a loss of
accuracy. In order to compensate, we switch to path-slew propagation during a late
high-accuracy optimization mode. At the switch to path-slew, signal paths can expe-
rience major timing disruptions and become severely critical. We therefore develop
a technique to improve the accuracy of default slew rate to mitigate this disruption.

1 In state-of-the-art flows, placement can be invoked several times following optimization.
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9.4 A Graceful Physical-Synthesis Flow

In this section, we develop a next-generation physical-synthesis flow that reduces or
eliminates many of the disruptions and timing degradations outlined in the previous
section. Our research strategy is based on observing and analyzing specific timing
degradations. After understanding the emergence of such degradations, we first try
to rearrange relevant steps of the design flow and revise individual flow steps so as to
avoid degradations. When avoidance is impossible, we attempt to resolve the degra-
dations immediately after observing them, using specialized design transformations.
In the remainder of this section, we describe the improvements that implement our
general strategy.

Gradual Evolution of Clock Networks is paramount to our next-generation
physical synthesis flow and compliments techniques for latch placement proposed
in previous chapters. To this end, we observe that in order to improve clock skew
in high-performance design blocks, it is important to place latches reasonably close
to driving local clock buffers. This step is performed during a stage of physical
synthesis called clock optimization, during which realistic clock-network models are
generated, LCBs are cloned, and latches are placed close to LCBs. As described
in the previous section, all of these changes are disruptive for timing closure, and
significant care must be taken during this stage to ensure a graceful flow.

The preexisting flow for this stage began by exposing the last level of the clock
network, then performed LCB cloning and latch clustering, calculated net weights,
and finally performed a global placement step called clockopt placement. This version
of the flow is more disruptive than necessary due to the ordering of optimizations.
The main problems are (i) the clocks are unhidden before the LCBs are cloned and
latches are moved close by, and thus the clock skews are very large2 and (ii) the
net weights used for the global placement are based on inaccurate timing estimates
that result from unhiding the clocks before optimization. This flow is illustrated in
Fig. 9.2.

We solve these problems through a careful reordering of optimizations that takes
into account which information is used by which step. In our new flow, which is
shown in Fig. 9.3, the first step is to perform a new kind of LCB cloning and latch
clustering, which is described below under Length-Constrained Latch Clustering. At
this point, we have changed the clock network significantly and this requires timing
assertions to be reread to get meaningful timing information. After that, in keeping
with the philosophy that whenever we cause disruption we should repair it imme-
diately, we introduce a new step following LCB cloning and latch clustering called
LCB fanin optimization. This new step is designed to repair the damage caused by
LCB cloning, and is described below under Local Clock Buffer Fanin Optimization.
The timing should be completely recovered to its previous state following LCB fanin
optimization because the LCB control signals are not high-performance signals. At
this point net weighting is performed on a much more appropriately optimized netlist,

2 Before LCB cloning, all latches on the chip are driven by a single LCB with very high fanout,
resulting in very different latencies between different corners of the chip.
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Fig. 9.2 The preexisting clock optimization flow exhibits several disruptive features. During
Unhide1, the last level of the clock network is exposed to timing analysis, but the latches are
not yet optimized. LCB cloning creates additional LCBs to limit the fanout of each LCB and latch
clustering determines which LCB will drive each latch. Global clockopt placement ignores existing
locations when determining a new location for each gate. Timing is reasserted after placement in
Unhide2. Finally, additional coarse optimization is performed based on new timing conditions

and a novel placement step called incremental clockopt placement is performed as
described below under Incremental Clockopt Placement. Following this placement
step, LCBs are inserted and latches are placed near the LCBs, so as to minimize the
disruption caused by unhiding the clocks (Fig. 9.4).

Idea 1: Length-Constrained Latch Clustering. At the beginning of the clock-
opt stage, latches are placed without any clocking-related constraints using the tech-
niques in Chap. 3. We consider these locations to be the ideal latch locations from
a signal timing perspective, and try our best to preserve these locations through the
clockopt stage. However the LCBs must be cloned to limit the capacitance they drive,
and latches must be placed close to the LCBs to reduce the clock skew. Therefore,
we employ a geometric clustering algorithm called k-means which finds groups of
closely-placed latches to be driven by the same LCB [5]. Pseudocode for our algo-
rithm is given in Fig. 9.5. To reduce the disruption caused by moving latches close
to LCBs, we define a new parameter maximum latch displacement and relax the
constraint on the number of LCBs until no latch is more than this distance from
an its LCB. The result is a tunable trade-off between timing disruption caused by
latch displacement, and additional clock buffers which consume power and area (see
Fig. 9.6). We have found empirically that, at the 32 nm node, latch displacement can
be reduced to <500 routing tracks at the cost of a 25 % increase in LCB count.

http://dx.doi.org/10.1007/978-1-4614-1356-1_3
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Fig. 9.3 Our next-generation clock optimization flow uses careful ordering of steps to avoid the
largest degradations. LCB cloning creates additional LCBs to limit the fanout of each LCB and
latch clustering determines which LCB will drive each latch, this is now done before clock timing is
exposed. After many new LCBs are inserted, the control signals that drive them are traveling over an
unoptimized high-fanout net. We optimize these control signals paths in LCB fanin opt. Incremental
clockopt placement moves gates as little as possible when ensuring that latches are placed close to
LCBs. Clocks timing is only exposed after the LCB to latch load is reduced to acceptable levels.
Finally, coarse optimization based on mercury is performed

Idea 2: Local Clock-Buffer Fanin Optimization. LCBs typically support an
enable signal or other control signals that are used for clock gating. After LCBs are
cloned, all of the new LCBs are connected to the same control signal that was driving
the original LCB. Immediately after LCB cloning, this net often experiences a severe
timing violation caused by the heavy load of the high fanout. In trying to ensure a
graceful design flow, we attempt to fix this unavoidable degradation immediately
after it is created. To this end, we have created a novel LCB fanin optimization step
and apply it immediately after LCB cloning. This step includes: (i) timing-driven gate
placement for any logic in the control of LCBs, (ii) timing-driven buffer insertion to
optimize long nets that may be created and (iii) timing-driven gate sizing to optimize
the power levels of gates in the control logic. We have found empirically that these
three steps are sufficient to restore timing to the level observed before LCBs were
cloned.

Idea 3: Incremental Clockopt Placement. In the process of timing closure intro-
duced in Chap. 2, physical synthesis is composed of iterations of (i) global placement,
(ii) timing optimization, and (iii) per-iteration net weighting guided by timing analy-
sis. However, running a complete global placement algorithm, albeit with new net
weights influenced by the previous optimization, is a powerful disruption to timing

http://dx.doi.org/10.1007/978-1-4614-1356-1_2
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Fig. 9.4 An illustration of the flow in Fig. 9.3. At the beginning of clock optimization in a the clock
is still idealized and latches are placed around the chip. In b local clock buffers (LCBs) are cloned
and used to drive several latches each. To accommodate the timing impact of all the new LCBs,
LCB control signals are optimized in (c). Global placement then moves latches close to LCBs in
(d). Finally, leaf-level clock networks are inserted and clocks are unidealized

closure. In the IBM Physical synthesis flow, the first iteration employs very coarse
models and constraints, e.g., relaxing the legality constraint for placement into looser,
grid-based bin-area constraints. The second iteration uses more realistic models and
requires a legal placement. At the end of the second iteration, a new constraint is
added, the tool must then clone LCBs and move the latches near an LCB. In order to
accomplish this with minimal design disturbance, we temporarily add two-pin nets
with high weights to connect each latch to its driving LCB before global placement.
Then, as global placement seeks to minimize weighted net length, the fake nets cause
it to move each latch closer to the connected LCB, so as to shorten the fake nets.
After placement, the fake nets are removed. The latches must be moved next to an
LCB even if this displacement is very large, however, the bulk of remaining logic
does not need to move far. Therefore, in order to minimize timing disruptions, we
develop a new placement technique called incremental clockopt placement, which
begins with a set of locations and leverages a technique for spreading and detailed
placement called iterative local refinement on it [6–8]. This technique begins with a
placement solution and overlays a gridded tile structure throughout the layout area.
Gates located in a particular tile of this grid can be moved to one of eight neighbor-
ing tiles so as to improve wirelength while maintaining gate density. Crucially, we
add a maximum movement threshold beyond which any displacement causes a high
penalty to be imposed in the wirelength cost function. This allows the placer to bring
the latches close to the LCBs, and allows the rest of the logic to adjust to the new
locations of the latches, but prevents any large displacements in logic that will harm
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Fig. 9.5 An algorithm for length-constrained latch clustering

timing unnecessarily. The result is a significant reduction in total cell movement,
which ensures a more graceful transition to tight latch clusters (Fig. 9.7).

9.5 Empirical Validation

In order to validate our proposed methodology we ran the physical synthesis tool PDS
(commonly used at IBM) in various configurations to isolate individual flow improve-
ments presented in the previous section. We used LBS microprocessor designs being
developed at IBM for 32 and 22 nm technology nodes. Table 9.1 shows that our
benchmarks range in size from 17,322 to 206,369 standard cells before optimization.
Physical synthesis then inserts between 16.52 and 66.14 % more cells during opti-
mization, with a median value of 27.33 %. The increase is mostly due to buffers and
inverters, but specific numbers depend on local resynthesis and technology mapping.
The performance requirements of these blocks are also an important characteristic,
with target clock frequencies ranging from 1 to 4.35 GHz.
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(a) (b) (c)

Fig. 9.6 Adding LCBs (shown by vertical bars) reduces the maximum latch displacement (thin
lines). This behavior is controlled by two parameters (i) maximum increase in the number of LCBs,
as a percentage of the minimum number (ii) maximum latch displacement, with (i) taking precedence
over (ii). a The minimum number of LCBs is 56 and the maximum latch displacement is high. b
By limiting parameter (i) to 12.5 % we get a maximum of 63 LCBs, and this noticeably reduces the
maximum latch displacement. c We limit the maximum latch displacement to a tight limit using
parameter (ii) but relax parameter (i) to get low latch displacement and 100 LCBs

Table 9.1 Large-block synthesis benchmark characteristics

Design Technology node (nm) Initial # gates Final # gates Cycle time (ps) Dimensions (µm)

LBS1 22 206369 251021–255495 1000 1000×900
LBS2 32 190777 234912–248370 328 1498×1930
LBS3 32 51159 64909–74525 230 378×499
LBS4 32 88835 103514–122659 390 1000×800
LBS5 32 22837 28238–29184 230 449×225
LBS6 32 17322 26613–28779 460 180×397

The Final # gates column shows the range of possible gate counts using data from experiments
presented in Tables 9.2 and 9.3

Implementation Insight: Default Slew Percentile. The common practice in
computing a default slew rate is to sample the slew rates of the top critical pins.
For example, one might calculate slew rates of the 800 most critical paths and use
the average as the new default slew rate. Because we observe a degradation when
switching to path-slew mode, we note that this must be an optimistic slew rate for
those paths that are harmed, and we seek to make this estimate more pessimistic.
Taking a larger set of pins to sample from is likely to increase optimism because
we are examining them in most-critical-first order. Reducing the sample set will
likely increase pessimism, but increase sensitivity and uncertainty that will make the
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Fig. 9.7 Using incremental clockopt placement significantly reduces the disruption of the clockopt
placement step. In each plot, a vector indicates the movement of a cell during the clockopt phase.
Red vectors indicate displacements by over 500 tracks. Yellow, green and blue indicate 200, 100 and
50 tracks respectively. a Displacement vectors for all cells resulting from traditional force-directed
placement. b Incremental placement reduces the number of red vectors drastically. Nearly all of the
red vectors in this plot are due to latches which must be moved far to get to the nearest LCB

result unstable. Instead, we propose to automatically set the threshold for slew rate
averaging as a certain percentile of pin slew rates (this threshold can be computed in
linear time using the nth-element algorithm available in the C++ Standard Template
Library). For example, if default slew rate percentile is set to 10 %, and we sample
500 pins, we will take the 50th worst slew rate from the sample set. After studying this
parameter, we have found that 35 % is the best value to eliminate degradations when
switching to path-slew mode. However, this pessimism must not be too great, for
this would cause unexpected timing improvement at the switch to path-slew mode.
This situation is problematic because earlier optimizations work hard to solve timing
problems that disappear upon more accurate analysis, which wastes runtime, area
and power.

Empirical Results. In Table 9.2 we compare the Perseus baseline to the following
additions (i) only Mercury, (ii) only force-directed placement (FDP), and (iii) only
gradual evolution of clock networks. In these designs we compare circuit performance
metrics including the worst slack path in the design, and �, the sum of slacks below
a threshold, which is computed as follows considering every timing endpoint i :

� =
∑

i

min(0, worst_slack(i)− slack_target) (9.1)

where slack-target is an input parameter to physical synthesis.
From the data in Table 9.2 we observe the following:
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Table 9.2 The impact of individual components in the graceful flow. Time is the runtime of physical
synthesis in seconds

Design Mode Time Worstslack � WL Area

LBS3 Baseline 40844 −76.641 −4203 1.43e7 0.5345
Mercury 26578 −25.680 −384 1.45e7 0.4965
FDP 37929 −55.015 −1519 1.32e7 0.5076
Clockopt 37785 −7.536 −1214 1.41e7 0.5693

LBS4 Baseline 54442 −158.345 −81110 2.57e7 0.9942
Mercury 41726 −189.391 −58881 2.47e7 0.9420
FDP 52939 −167.016 −67799 2.41e7 1.0091
Clockopt 56396 −148.050 −53442 2.04e7 0.8838

LBS5 Baseline 15274 −97.544 −6078 6.93e6 0.2382
Mercury 9449 −98.374 −6293 6.98e6 0.2423
FDP 16196 −82.391 −6288 6.87e6 0.2380
Clockopt 13498 −87.287 −6265 6.80e6 0.2373

LBS6 Baseline 18476 −103.142 −16335 5.40e6 0.2218
Mercury 13265 −89.288 −15300 5.74e6 0.2213
FDP 18325 −88.207 −11755 5.14e6 0.2143
Clockopt 19182 −103.682 −13958 5.05e6 0.2167

Average Mercury 1.46X −14.87% −30.27% 1.18% −2.72%
improvement FDP 1.03X −13.19% −26.21% −4.93% −1.75%

Clockopt 1.04X −26.67% −29.18% −7.59% −1.82%

WorstSlack is slack of the worst path in the circuit in picoseconds. � is calculated as in Eq. 9.1
and is expressed in picoseconds. WL is the sum of half-perimeter wirelengths and is expressed in
routing tracks

• Mercury accounts for nearly all of the speed-up of this flow. It does not achieve
the fourfold speed-up observed for million-gate designs, but a 1.42× speed-up is
significant for these designs which can take half a day.
• The use of force-directed placement adds stability to the flow and contributes a

significant improvement in wirelength.
• Gradual clockopt results in a significant wirelength reduction as a result of calcu-

lating net weights based on a netlist optimized for timing after LCB cloning. This
good timing result is a direct consequence of avoiding degradation in our graceful
flow.
• Each component provides a significant overall improvement in terms of timing

and area metrics.

In our next experiment we compare the baseline Perseus flow with our entire
methodology combining all of the features presented in this chapter. The results are
shown in Table 9.3. We observe the following

• Every testcase demonstrates an improvement in worst slack.
• Both worst slack and� average improvements are large, validating that the graceful

methodology is an effective method to improve a timing closure flow.
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Table 9.3 The impact of our graceful flow on key design parameters

Design Mode Time WorstSlack � WL Area

LBS1 Baseline 54105 −76.943 −1635 7.10e7 1.52
Gradual 45753 −72.229 −367 6.73e7 1.55

LBS2 Baseline 41106 −128.605 −2004 8.97e7 1.84
Gradual 42959 −56.667 −2276 9.65e7 1.96

LBS3 Baseline 25906 −28.102 −862 1.39e7 0.52
Gradual 12846 −3.362 −66 1.39e7 0.44

LBS4 Baseline 30691 −153.924 −51674 2.55e7 0.99
Gradual 22281 −70.667 −20025 2.05e7 0.73

Average 1.22X −51.04% −54.39% −12.34% −11.49%
improvement

Time is the runtime of physical synthesis in seconds. WorstSlack is slack of the worst path in the
circuit in picoseconds. � is calculated as in Eq. 9.1 and is expressed in picoseconds. WL is the sum
of half-perimeter wirelengths and is expressed in routing tracks

• Area gains are inconsistent, but reductions of at least 10 % in cell area typically lead
to reduced power, lower routing congestion and the potential for more aggressive
floorplanning in future designs.
• Significant wirelength reductions alleviate demand for routing resources, resulting

in improved routing congestion and improved downstream design closure.
• All metrics show strong improvement as a result of our methodology.

These experiments demonstrate the impact of each component in our methodol-
ogy, and show that they ultimately translate into strong improvements in primary
metrics of circuit performance and cost.

9.6 Conclusions

In this chapter we have introduced a new strategy to mitigate and eliminate disruptive
changes in a physical synthesis flow. In implementing this strategy, we have identi-
fied key timing degradations that occur when new design parameters are introduced
during physical synthesis. We then carefully revised relevant steps of the flow, made
changes to the ordering of steps, and developed new optimization algorithms that
were subsequently integrated into the overall flow. Our contributions are evaluated in
the context of an industrial physical synthesis flow at IBM and several recent, large
commercial IC designs that defied previous-generation physical synthesis tools. On
the most challenging design type available to us, large-block synthesis designs, our
flow achieves double-digit (percentage) improvements in all major circuit metrics
considered.
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Chapter 10
Conclusions

A physical synthesis flow reads a mapped netlist produced by logic synthesis, then
computes physical locations for gates and improves the performance of the circuit,
until timing constraints are met. We observe that state-of-the-art flows consist of a
series of optimizations that operate at two distinct scales, near-linear time algorithms
that apply to the whole netlist, and more expensive transformations that typically
operate on a handful of gates or interconnections. Such a limited view of the solution
space of circuit optimization leaves many transformations vulnerable to becoming
trapped in local minima. We observe this phenomenon on large, high-performance
designs and improve upon the state of the art by integrating optimizations that are tra-
ditionally applied separately. Our novel transformations achieve broad opportunities
for increased circuit performance and can handle larger design subsections than exist-
ing physical-synthesis transformations, thereby extending the scope of optimization.
Given that the placement of sequential elements is a critical factor to the success of
timing closure, we develop a next-generation timing-closure flow that improves the
placement of sequential elements and facilitates the synthesis of high-performance
clock networks.

10.1 Summary of Results

In this book, we describe several contributions that advance the strength and capa-
bilities of modern software tools for IC physical synthesis, with the ultimate goal to
improve the quality of leading-edge semiconductor products (see Fig. 10.1). Starting
with
narrowly-focused optimizations, we identified obstacles to further improvements
in circuit performance and addressed these obstacles with more powerful integrated
transformations that outperform chained individual optimizations. Scalability was
achieved in this approach by mapping circuit transformations to formal mathemat-
ical optimizations and through the use of efficient analytical delay models. To fur-
ther improve the scope and efficiency of such hybrid transformations we developed
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Fig. 10.1 The optimizations in this book improve nearly every stage of a state-of-the-art physical
synthesis flow. For example, we illustrate that Chap. 4 deals with Timing Analysis by a adding a
circled 4 to that step in the flow

robust computational infrastructure and powerful circuit-analysis tools. Despite these
enhancements, hybrid transformations remain somewhat expensive, motivating the
development of divide-and-conquer frameworks that can handle large IC designs.
When integrating our new transformations into the physical-synthesis infrastructure
at IBM, we realized that these optimizations with increased scope tend to introduce
disruptions into the design flow, and these disruptions adversely affect end results. We
therefore developed a next-generation physical-synthesis flow that ensures a graceful
improvement of key design parameters. Specific contributions are itemized below.

Simultaneous Placement and Buffering

At advanced technology nodes, multiple cycles are required for signals to cross
the chip, making latch placement critical to timing closure. The problem is inter-
twined with buffer insertion because the placement of such latches depends on
the location of buffers on adjacent interconnect. In Chap. 3 we detail our linear-
programming-based algorithm to compute the optimal location of pipeline latches
under a linear interconnect delay model [1, 2]. We then extend our algorithm to move
nearby combinational logic gates to improve the effectiveness and applicability of
this approach to simultaneous placement and buffering. Experimental results vali-
date our transformation—our techniques improve slack by 41.3 % of cycle time on
average for a large commercial ASIC design.

http://dx.doi.org/10.1007/978-1-4614-1356-1_4
http://dx.doi.org/10.1007/978-1-4614-1356-1_3
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Bounded Transactional Timing Analysis

As local circuit optimizations become increasingly multi-objective in modern
physical synthesis flows, a tighter interaction between optimization algorithms and
timing analysis is necessary. Such optimizations must employ heuristics to search
for good implementations of subcircuits, but timing analysis offers no support for
retracting circuit modifications [3, 4]. In Chap. 4 we describe our extension to tra-
ditional static timing analysis that records a history of incremental network delay
computations in a stack-based data structure, so that the timing can be returned to
a previously-known state upon retraction of a circuit modification. It also explicitly
bounds the scope of propagation to a local window in anticipation of retraction.
These extensions greatly improve the performance of static timing analysis for local
circuit modifications in the presence of retraction. For the classical variant of STA,
our experimental results demonstrate an improvement of up to 246×, while a factor
of up to 5.2× is achieved as compared to common lazy evaluation techniques.

Simultaneous Placement and Gate Sizing in a Discrete Domain

Gate locations that optimize timing depend on boundary timing conditions in the local
subcircuit. Similarly, the optimal drive strength of a gate depends on the input slew
rate and output capacitance. But these two problems are related because the output
capacitance of a gate depends upon the length of interconnect it drives. Given a set
of discrete candidate locations and power levels, we formulate the path smoothing
problem in terms of a disjunctive timing graph, and develop a computation of optimal
locations by incorporating a generalization of static timing analysis into an efficient
branch-and-bound framework [5]. Empirically, our approach consistently improves
solution quality in a large-scale modern industrial benchmark. Experimental results
in Chap. 5 indicate that the techniques used in this chapter are accurate enough to
improve the critical path optimization and slack-histogram compression stages of
physical synthesis.

Timing-Driven Gate Cloning for Interconnect Optimization

In a complete physical synthesis flow, optimization transformations that can improve
the timing on critical paths that are already well-optimized by a series of powerful
transformations (timing driven placement, buffering and gate sizing) are invaluable.
We develop an innovative gate cloning technique to improve interconnect delay
on critical paths during physical synthesis [6]. Using the buffer-aware interconnect
timing model introduced in Chap. 3, new polynomial-time optimal algorithms are
presented for timing-driven cloning, including finding both optimal sink partitions
(identifying the fanouts) for the original and the duplicated gates, as well as physical
locations for both gates. In particular, for a gate g with m fanouts, Chap. 6 describes
in detail two polynomial-time algorithms. For the case when g is fixed, we present

http://dx.doi.org/10.1007/978-1-4614-1356-1_4
http://dx.doi.org/10.1007/978-1-4614-1356-1_5
http://dx.doi.org/10.1007/978-1-4614-1356-1_3
http://dx.doi.org/10.1007/978-1-4614-1356-1_6
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an O(m)-time optimal algorithm to maximize the worse slack of g. For the case
when the g is movable, and one for the case when g is movable. If g is fixed, our
O(m log m)-time algorithm maximizes the worst-slack of g. For one hundred test-
cases at the 45 nm technology node, we demonstrate significant timing improvement
due to our cloning techniques as compared to other existing timing-optimization
transformations. Extensions to handle other optimizations and constraints, such as
wirelength, total negative slack and placement obstacles are further discussed.

Performance-Driven Retiming, Placement, Buffering and Logic Cloning

One of the most common situations in which the latch placement techniques of
Chap. 3 are insufficient is a critical path wherein moving a gate immediately next to
its most-critical input is the optimal solution but does not meet timing constraints.
For example, when relocating the latch adjacent to its only input still violates a setup
time constraint. We develop SPIRE, a new physical synthesis transformation that
simultaneously incorporates retiming, gate relocation, gate duplication, and buffer
insertion to improve this situation [7]. The need for SPIRE is demonstrated by exam-
ple, motivating the integration of all considered techniques to meet timing constraints.
SPIRE improves the performance of partitions in a high-performance microprocessor
design. Empirical results on 45 nm microprocessor designs show 8 % improvement
in worst-case slack and 69 % improvement in total negative slack after an industrial
physical synthesis flow was already completed.

Broadening the Scope of Physical-Synthesis Optimization using Partitioning

The optimizations described in this book extend physical-synthesis transformations
beyond a handful of gates. Unfortunately, the computational complexity of such
optimizations makes them too inefficient to apply to entire netlists of large ASIC
and SoC designs. Therefore, we develop a technique to identify appropriately-sized
subsets of large designs on which our transformations can be applied efficiently. Our
method utilizes existing hypergraph partitioning algorithms to divide the circuit in a
top-down fashion until the subsets are the desired size. Empirical results demonstrate
that this technique can work in practice and illustrate a run-time solution quality trade-
off for SPIRE, the transformation described in this book that can optimize subcircuits
with thousands of standard cells.

Co-Optimization of Latches and Clock Networks in Large-Block Physical
Synthesis

Optimizations described in this book affect nearly every stage of a typical indus-
trial state-of-the-art physical-synthesis flow. In order to obtain synergies between
them, we explore the infrastructure for physical synthesis used by IBM for large

http://dx.doi.org/10.1007/978-1-4614-1356-1_3
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commercial microprocessor designs. We focus our attention on a very challenging
high-performance design style called large block synthesis (LBS). In such designs
latch placement is critical to the performance of the clock network, which in turn
affects chip timing and power. Our research uncovers deficiencies in state-of-the-art
physical synthesis flows vis-à-vis latch placement that result in timing disruptions
and hamper design closure. We introduce a next-generation EDA methodology that
seeks a more graceful timing-closure process. This is accomplished through careful
latch placement and clock-network routing to (i) avoid timing degradation where
possible, and (ii) immediately recover from unavoidable timing disruptions. Our
methodology leads to double-digit improvements in key circuit parameters of large
CPU designs developed at IBM.

10.2 Opportunities for Further Optimizations

The transformations developed in our work, along with prerequisite circuit
analysis techniques, have significantly improved the quality of modern very large-
scale integrated circuits developed at IBM. Much of this improvement is due to careful
integration into a graceful physical-synthesis flow described in Chap. 9. Further work
can address the following challenges.

Dealing with Modern Interconnect

With the explosion in the number of design rules, metal layers, and different rout-
ing pitches at advanced CMOS technology nodes, routing congestion is an increas-
ing design challenge and layer assignment significantly affects delay estimation.
The use of RUMBLE (Chap. 3) must take into account preexisting layer assign-
ments. Areas with high wiring congestion may necessitate detours of critical inter-
connects, impacting circuit performance and jeopardizing timing closure. There-
fore, routing demand and layer assignment must be analyzed early in physical
synthesis and tracked through the physical synthesis flow in response to certain
types of circuit transformations. We see an opportunity to formalize the handling
ofbreak routing congestion in timing closure and develop effective benchmarks and
algorithmic solutions [8]. As a first step, gate-placement techniques from Chaps. 3
and 7 can be extended to avoid congested areas. More sophisticated methods may
be required in the methodology of Chap. 9 especially when dealing with clock trees
and latch clusters.

Optimizing Power

Observe that in high-performance microprocessor designs, clock distribution is
responsible for a large fraction of power consumption. We believe that our tech-

http://dx.doi.org/10.1007/978-1-4614-1356-1_9
http://dx.doi.org/10.1007/978-1-4614-1356-1_3
http://dx.doi.org/10.1007/978-1-4614-1356-1_3
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niques described in Chap. 9 improve not only circuit performance, but also power
consumption. Configuring an environment for rigorous evaluation of power charac-
teristics is an important direction for future work.

Global Placement to Improve Sequential Slack

Our transformations described in Chap. 7 make heavy use of physical retiming to
improve combinational slack of circuits in question. This optimization was combined
with placement, buffering and logic cloning. A further opportunity is to perform
global placement so as to increase the potential for such improvements. This potential
is expressed by the metric known as sequential slack [9]. Optimizing sequential slack
during placement can provide improved opportunities for clock skew scheduling and
retiming, and thus further broadens the scope of physical synthesis optimization.
We expect that new global placement algorithms that optimize sequential slack can
increase the applicability and effectiveness of retiming transformations developed in
Chap. 4.

Handling of Large Macros and Intellectual Property (IP) Blocks

With billions of transistors integrated into a single chip, design complexity becomes
a major challenge, as it defies the efforts of the best engineers and the capabilities of
most recent software tools. One method to limit that complexity is to reuse design
components in the form of IP blocks, but placement of such blocks is still largely done
manually today. Such blocks typically incorporate latches immediately before and
after primary outputs and inputs. Therefore, one bottleneck in circuit performance is
the slowest sequential path between two such blocks. Incorporating this information
into floorplanning and global placement algorithms is a significant opportunity to
improve the design automation and performance of complex SoC designs [10–12].

Parallel Processing

Parallel processing is currently pursued by most developers of EDA software
tools. Techniques presented in this book lend themselves naturally to such exten-
sions. In particular, Chap. 4 outlines parallel extensions for bounded transactional
timing analysis. Chapter 7 solves MILPs using the CPLEX tool in multi-core mode.
Chapter 8 develops divide-and-conquer techniques for physical synthesis that parti-
tion the netlist and can spawn parallel computing tasks. Further incorporating our
new transforms into physical synthesis tools and exploiting their inherent parallelism
will improve the speed of next generation hardware as well as the physical synthesis
tools used to design them.

http://dx.doi.org/10.1007/978-1-4614-1356-1_9
http://dx.doi.org/10.1007/978-1-4614-1356-1_7
http://dx.doi.org/10.1007/978-1-4614-1356-1_4
http://dx.doi.org/10.1007/978-1-4614-1356-1_4
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http://dx.doi.org/10.1007/978-1-4614-1356-1_8
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Dealing with Process Variability

To account for the impact of variations in the manufacturing process, IBM has devel-
oped a robust statistical timing environment called EinStat [13]. However, statistical
timing analysis is currently only used for sign-off timing, whereas optimization
relies on the more conventional static timing analysis tool EinsTimer. Extending
statistical timing analysis with features from Chap. 4 and incorporating it into
physical-synthesis transformations (e.g., from Chaps. 5 and 6) will likely reduce
pessimism in early design stages, accelerate timing closure, increase chip yield and
reduce manufacturing cost.
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