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Introduction

Royal Skousen

Competing models of language description

Much of the debate in language description involves choosing between alterna-
tive methods of describing language. A number of completely different systems for
predicting language behavior have been developed in the past two decades.

The original, traditional approach (actually centuries old) has been to devise
specific rules. In such a declarative approach, rules are used to divide up the contex-
tual space into distinct conditions and then to specify the corresponding behavior
for each of those conditions. Such a traditional approach seems unavoidable for
telling someone else how something behaves. Although rules may not actually be
used by speakers in producing their own language, we still use rules to tell others
how language works (even when describing the results of analogical modeling). In
general, rule approaches form the basis for most descriptive systems, such as expert
systems for doing medical diagnoses. The idea behind such medical systems is to
specify for a given set of symptoms a corresponding disease or dysfunction.

In contrast to declarative, rule-based approaches, there are two different kinds
of procedural, non-rule systems that have been developed in the last part of the
twentieth century: neural networks and exemplar-based systems. These procedu-
ral approaches have no explicit statement of regularities. They use examples to set
up a system of connections between possible predictive variables or they directly
use the examples themselves to predict behavior. A procedural approach typically
predicts behavior for only a given item. Generally speaking, directly accessible in-
formation about what variables lead to the prediction is not available – thus, the
non-declarative nature of these approaches.

Neural networks had their beginnings in the middle of the twentieth century,
but were then ignored for several decades until researchers realized that output
nodes did not have to be directly predicted from input nodes. Hidden levels of
nodes could be used to represent various levels of activation and thus learn vir-
tually any kind of relationship between variables, providing certain possibilities
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(such as back propagation) were allowed between levels of nodes. Although many
of the kinds of connections between nodes seem impossible from a neurological
point of view, the “neurological temptation” has been strong since the 1980s when
it was shown that neural networks (or connectionism) could make interesting and
robust predictions about language behavior – in contrast to brittle (rigid yet frag-
ile) rule approaches. Rumelhart and McClelland, in particular, argued for “parallel
distributed processing”, with its special emphasis on the non-accessibility of exem-
plars. Exemplars would, of course, be used to train a system, but the specific exem-
plars were not directly stored. Instead, the neural network would discover various
associations and disassociations between the variables of the exemplars. Some con-
nections between combinations of variables would be activated, others deactivated,
or even negatively activated. The notion that the system would be “distributed” was
particularly emphasized. Basically, this meant that the variable relationships would
be spread across the system, and thus the specific ability to recover the original ex-
emplars would be impossible. Rumelhart and McClelland emphasized this prop-
erty as a plus; the distributed characteristic meant that their system would be robust
and could make predictions when the given input was degraded or incomplete.

An opposing procedural approach was also developed in the 1980s, one
that directly stores exemplars and then accesses them to make predictions. Most
exemplar-based or instance-based approaches that were developed made their pre-
dictions in terms of finding the nearest neighbor (or k neighbors) to a given input,
with of course the possibility that the “nearest neighbor” could be identical to the
given input. It was recognized early on that some neighbors were “nearer” to the
given input than other neighbors (even though the number of differing variables
from the given input might be the same). This recognition has led researchers to
try to determine the significance of the variables in predicting the outcome and to
use some weighting of the variables to adjust the nearness of the neighbors.

A different approach to exemplars was taken by analogical modeling, as de-
scribed by Skousen in the late 1980s. His explicit theory of analogical modeling of
language differs considerably from traditional analogical approaches to language.
One major problem with traditional analogy is that it is not explicit. Furthermore,
virtually any item can serve as the exemplar for predicting behavior, although in
practice the attempt is to first look to nearest neighbors for the preferred analog-
ical source. But if proximity fails, one can almost always find some item consid-
erably different from the given item that can be used to analogically predict the
desired outcome. In other words, if needed, virtually any occurrence can serve as
the analogical source.

Analogical modeling, on the other hand, will allow occurrences further away
from the given context to be used as the exemplar, but not just any occurrence.
Instead, the occurrence must occur in what is called a homogeneous supracontext.
The analogical source does not have to be a near neighbor. The probability of an



Introduction 

occurrence further away acting as the analogical model is usually less than that of
a closer occurrence, but this probability is never zero (providing the occurrence is
in a homogeneous supracontext).

Further, the ability to use all the occurrences in homogeneous regions of the
contextual space directly accounts for the gang effects we find when we describe ei-
ther categorical or regular/exceptional behavior. In other words, we are able to pre-
dict “rule-governed” behavior (plus a little fuzziness) whenever the data behaves as
if there is a rule.

Analogical modeling does not require us to determine in advance which vari-
ables are significant and the degree to which these variables determine the out-
come (either alone or in various combinations). Nearest-neighbor approaches are
like traditional analogical practice in that they try to predict behavior by using the
most similar occurrences to the given context. But unless some additional infor-
mation is added, the leakage across categorical boundaries and in regions close to
exceptions will be too large.

As a result, nearest-neighbor approaches frequently try to correct for this ex-
cessive fuzziness by determining the overall importance of each variable. One can
determine, for instance, the information gain (or other measures of reducing en-
tropy) for each variable. Such added information requires a training period to de-
termine this information, and in this regard makes these approaches like connec-
tionism.

Analogical modeling, on the other hand, does not have a training stage ex-
cept in the sense that one must obtain a database of occurrences. Predictions are
made “on the fly”, and all variables are considered apriorily equal (with certain
limitations due to restrictions on short-term memory). The significance of a vari-
able is determined locally – that is, only with respect to the given context. Gang
effects are related to the location of the given context and the amount of resulting
homogeneity within the surrounding contextual space.

We may characterize these different types of language prediction by the follow-
ing categorical representation:

systems of prediction

declarative
(rule)

procedural
(non-rule)

neural networks exemplar

nearest
neighbor

analogical
modeling
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Obviously, this decision tree provides a categorical (rule-based) description! Such
seem unavoidable when we want to tell someone about some behavior.

And as we might expect, various combinations of these possibilities have been
developed. For instance, some researchers have discussed the possibility of using
neural networks to store exemplars – in other words, neural networks may need to
be non-distributed, or at least we may need to allow for that possibility. Therefore
the categorical boundaries between these differing systems of prediction may not
be sharply defined.

Another, even more general combination has been promoted by Steven Pinker
and his colleagues – namely, the dual-route approach to language description.
Pinker argues that speakers of English use both rules and associative networks to
predict the past tense in English: a syntactic-like rule to handle to regular past-tense
form (add d to the verb stem), plus a lexical-based associative network involving
memory of exemplars to predict irregular verbs (thus sang and sung are connected
with sing). In other words, Pinker claims that a dual-route approach (involving
both rules and non-rules) is used to predict language, in contrast to the main ar-
gument of the procedural approaches that all behavior can be predicted without
rules (the single-route approach).

Overview of this book

In addition to its tutorials (one in the first paper, three in the appendix), this
book brings together contributions that reflect current research related to analog-
ical modeling (AM). They are representative of the breadth and the detail with
which analyses can be carried out within the AM paradigm as well as in com-
paring it to other approaches. These contributions should serve to initiate further
research, stimulate thought about new applications, and encourage investigation
into a wider variety of linguistic applications and wider array of languages.

PART I. The basics of Analogical Modeling

We begin the book by covering the basics of analogical modeling (AM). Royal
Skousen provides an overview of how AM works. He gives a succinct description of
AM, then he goes through a simple tutorial of how AM would predict the pronun-
ciation of the letter c in English (at the beginning of a word). The basic terminol-
ogy and methods of AM are described in terms of this artificial example. Skousen
also reviews some of the empirical evidence that supports analogical modeling and
shows how AM differs from other exemplar-based approaches to language.
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This first chapter is followed by one that discusses issues in analogical mod-
eling. In that chapter, Royal Skousen goes over the main points of debate and
discussion in current research on AM. The main issues are:

1. Is the principle of homogeneity actually necessary?
2. Should prediction be restricted to locally significant variables?
3. Should “unimportant” variables be maintained in predicting behavior?
4. What role does imperfect memory play in predicting behavior?
5. What counts as evidence for and against an analogical prediction?
6. Should all variables be given the same weight?
7. Should prediction be based on choosing an exemplar or a pointer to an exem-

plar?
8. How should the outcomes and variables in the dataset be categorized?
9. How do we deal with the exponential explosion that is inherent in analogical

modeling?

In-depth discussion of these issues appears throughout the book.

PART II. Psycholinguistic evidence for Analogical Modeling

In this section, Steve Chandler discusses the psycholinguistic evidence, both for
and against various procedural approaches to language. He reviews numerous psy-
cholinguistic experiments regarding language learning and considers the implica-
tions of these experiments for connectionist approaches (neural networks), pro-
totype theory, nearest-neighbor approaches (instance- or exemplar-based), and
analogical modeling.

PART III. Applications to specific languages

In this section, we have two in-depth analogical analyses of morphology. First,
Doug Wulf applies analogical modeling to the complex problem of plural forma-
tion in German. The complexity of this problem arises, in part, because there are
two inter-related markers of plurality (umlauting and suffixation). Wulf also shows
that by using only the most frequent examples, one can predict adult-like plural
formation in German.

In the second paper, Anton Rytting uses analogical modeling to predict the
/k/-Ø alternation in the Turkish nominal system. He concentrates on the ability of
analogical modeling to predict the behavior of foreign loan words and the results
of experiments with nonce words.
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PART IV. Comparing Analogical Modeling with TiMBL

In this section, we have three papers that compare analogical modeling with a spe-
cific exemplar-based version of nearest-neighbor prediction – namely, the Tilburg
Memory-Based Learner (TiMBL), developed by Walter Daelemans and his col-
leagues at Tilberg University in the Netherlands. TiMBL (as well as a reference
guide to it) is available on the internet at <http://ilk.kub.nl/software.html>.

In the first paper, David Eddington applies both AM and TiMBL to various
problems in Spanish morphology (gender assignment, diminutive formation, and
stress assignment) and generally finds that both approaches behave statistically the
same in their ability to self-predict the behavior of each given dataset. However, in
the case of stress assignment, AM is considerably more successful in predicting the
direction of change – namely, the replacement of irregularly stressed words with
the expected regular stress patterns of the language.

Walter Daelemans then compares AM with various versions of the TiMBL
nearest-neighbor approach. The main goal of these comparisons is to determine
which basic approach (TiMBL or AM) is better able to internally self-predict the
behavior of the language data. In a number of cases, he is able to show that by using
information gain, TiMBL is better able to self-predict the behavior. Of course, the
ultimate question in the debate between AM and TiMBL is an empirical one: which
approach best represents the dynamics of language behavior – that is, which one
can best predict, for instance, the kinds of errors that children make in learning the
language, or the dialectal and historical changes that have occurred in the language.

Finally in this section, Andrea Krott and her colleagues Rob Schreuder and
Harald Baayen discuss compound formation in Dutch, once more testing whether
AM or TiMBL is better at self-predicting which of three linkers (-en-, -s-, and -Ø-)
is selected when forming nominal compounds in Dutch. They determine that both
AM and TiMBL are very helpful in determining which variables correctly predict
the choice of linker.

PART V. Extending Analogical Modeling

In this section, four different papers discuss how analogical modeling might be re-
lated to other approaches to language description. In the first paper, Antal van den
Bosch takes up the question of how a nearest-neighbor approach (such as TiMBL)
might be expanded so that some aspects of AM’s homogeneity might be available
in nearest-neighbor predictions. Van den Bosch considers defining nearest neigh-
bors in terms of instance families of same-class behavior rather than just atomistic
examples.

Mike Mudrow compares AM with various versions of a standard instance-
based learner (the IAC model of Grossberg) and a simple neural network model
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(SimNet). He then applies the SimNet model to basically the same basic dataset
that Skousen developed to predict the past tense in Finnish and finds that for prob-
abilistic predictions SimNet appears to give more accurate transitions in proba-
bilistic behavior. Mudrow also compares the predictions of AM and SimNet with
respect to nominal compounding in Danish.

James Myers considers the possibility of doing optimality theory in terms of
analogical modeling. Recent developments in optimality theory are beginning to
recognize the need for exemplar-based predictions, so Myers investigates the prob-
lems of trying to reformulate optimality theory from an analogical perspective.

Finally, Christer Johansson considers the problem of categorization. All
exemplar-based approaches to language description define datasets in terms of
apriorily defined categories (for both variables and outcomes). Johansson looks
into the possibility of letting the analogical system itself define the categories rather
than simply assuming that the variables and outcomes are essentially innate or
defined from the beginning.

PART VI. Quantum computing and the exponential explosion

In this closing paper, Royal Skousen discusses the problem of the exponential ex-
plosion, an inherent problem in analogical modeling. The current algorithm for
AM becomes inefficient in dealing with large numbers of variables; basically, each
additional variable doubles both the memory and time requirements of the pro-
gram. Skousen further argues that this problem of the exponential explosion can
be found in all theories of language description, although this difficulty is often
disguised by simply assuming that inter-relationships between variables can be
ignored or accounted for otherwise.

Skousen proposes that the ultimate solution to this exponential problem of
language description will involve quantum computing (QC). He first outlines a
number of striking conceptual and mathematical similarities between AM and
quantum mechanics, which imply that the exponential problem in AM may be
treated tractably using QC.

Quantum computing requires reversibility, which means that in applying QC
to language behavior we have to keep track of specific input and that this input
must be fully recoverable at the end of computation. Using QC for language predic-
tion thus implies that such a system will be exemplar-based, even if the exemplars
are somehow used to derive rules or neural-like associations.
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Appendix

The appendix provides help in constructing datasets and running the computer
program for analogical modeling. Deryle Lonsdale first describes how one goes
about setting up an appropriate dataset for analogical prediction. He describes the
kinds of variables that can be specified, as well as the associated outcomes assigned
to those variables.

Dil Parkinson then shows how to run the Perl/C version of the analogical mod-
eling program. In particular, he describes the various parameters that can be set in
order to derive different analogical predictions.

And finally, Theron Stanford provides a description of how the current analog-
ical modeling program works. This program can be downloaded from the internet
at <http://humanities.byu.edu/am/>.
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Chapter 1

An overview of Analogical Modeling

Royal Skousen

. The development of non-rule models to describe language

During the last two decades, as rule approaches have encountered difficulties
in describing language behavior, several competing non-rule approaches to lan-
guage have been developed. First was the development (or rejuvenation) of neural
networks, more commonly known in linguistics as connectionism and best ex-
emplified by the work of McClelland, Rumelhart, and the PDP Research Group
(1986) in what they call “parallel distributed processing” (PDP). More recently,
some researchers (such as David Aha and Walter Daelemans) have turned to
exemplar-based systems (sometimes known as instance-based systems or “lazy
learning”) to describe language behavior (Aha, Kibler, & Albert 1991; Daelemans,
Gillis, & Durieux 1994). These exemplar-based learning systems involve hunting
for the most similar instances (“nearest neighbors”) to predict language behavior.
A more general theory of the exemplar-based approach is Royal Skousen’s ana-
logical modeling of language, which permits (under well-defined conditions) even
non-neighbors to affect language behavior.

These non-rule approaches have several advantages over the traditional rule
approaches. First of all, they can be explicitly defined and are therefore testable.
Second, they are procedurally defined – that is, they predict behavior for a given
input, but do not declare any globally-defined rules. The problem of knowing how
to learn and then use a general rule to predict specific behavior is avoided. Third,
these non-rule approaches are robust in the sense that they can make predictions
when the input is not “well-formed” or when “crucial” variables are missing. In
general, boundaries between different behaviors (or outcomes) do not have to be
precise; fuzzy boundaries and leakage across boundaries are in fact expected.

The fundamental works on analogical modeling (AM) are two books by
Skousen. The first one, Analogical Modeling of Language (Skousen 1989), provides
a complete, but basic, outline of the approach (Chapter 2) and then shows how
the theory can be applied to derive various language properties (Chapter 3) as well
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as deal with several theoretical language issues (Chapter 4). In Chapter 5, Skousen
provides an in-depth analysis of past-tense formation in Finnish. In particular, he
shows how analogical modeling, unlike traditional rule approaches, is able to de-
scribe the complex historical development of the Finnish past tense. The second
book, Analogy and Structure (Skousen 1992), is a mathematical description of both
rule-based and analogical approaches to describing behavior.

. A succinct description of Analogical Modeling

Since analogical modeling is a procedural approach, predictions are always based
on a dataset of occurrences. Each occurrence is specified in terms of a set of vari-
ables and an assigned outcome for that specific assignment of variables. A given set
of variables can occur more than once in a dataset, as can the assigned outcome.
(In fact, such repetition is normal.) For the purposes of discussion, we will assume
that n variables are specified.

In order to make a prediction, we always do it in terms of a given context,
where the variables are specified, but for which no outcome is given. Usually all
n variables are specified in the given context, but this is not necessary. Our task is
to predict the outcome for this given context in terms of the occurrences found in
the dataset. For our purposes here, we will let m stand for the number of specified
variables in the given context, where 0 ≤ m ≤ n.

For each subset of variables defined by the given context, we determine which
occurrences in the dataset occur with that subset. Each of these subsets of variables
is called a supracontext. Given m variables in the given context, we have a total of
2m supracontexts.

Our problem is to determine the homogeneity (or its opposite, the heterogene-
ity) of each supracontext defined by the given context. Basically, a supracontext is
homogenous if all its possible subcontexts behave identically. In predicting the out-
come for the given context, we only apply information found in the homogeneous
supracontexts. All heterogeneous supracontexts are ignored.

We determine whether a supracontext is homogeneous by using a nonlinear
statistical procedure based on measuring the number of disagreements between
different occurrences within the supracontext. We adopt a conceptually simple sta-
tistical procedure for determining the homogeneity of the supracontext – namely,
if no subcontext of the supracontext increases the number of disagreements, the
supracontext is homogeneous. Otherwise, the supracontext is heterogeneous. This
measure ends up minimizing the number of disagreements in the supracontext.

Using this natural statistic, it is easy to show that there are only two types of
homogeneous supracontexts for a given context: (1) the supracontext is determin-
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istic; or (2) the supracontext is non-deterministic but there is no occurrence in the
supracontext that is closer to the given context than any other occurrence in the
supracontext.

These homogeneous supracontexts form what is called the analogical set. The
final step is to randomly select one of the occurrences in the analogical set and make
our prediction based on the outcome assigned to this occurrence. One alternative
to random selection is to select the most frequent outcome. This method is referred
to as selection by plurality.

. A tutorial example of Analogical Modeling

In this introduction, analogical modeling will be described in terms of a simple
example from English spelling. In this example our overall task will be to predict
the pronunciation of the c letter in initial position in words of English.

In analogical modeling, predictions are always based on a dataset of occur-
rences. For our spelling example, we will make our predictions from the following
(simplified) dataset:

outcome variables specification

k–c a k e cake
k–c a l l call
k–c a n 0 can
k–c a r 0 car
k–c a t 0 cat
s–c e l l cell
s–c e n t cent
s–c e r t certain
č–c h e c check
k–c l o s close
k–c l o u cloud
č–c h i n chin
č–c h u r church
s–c i r c circle
s–c i r c circus
s–c i t y city
k–c l a m clam
k–c l e a clear
k–c l o s close
k–c o a t coat
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k–c o i n coin
k–c o l d cold
k–c o m e come
k–c o u n count
k–c o w 0 cow
k–c r e a cream
k–c r o s cross
k–c r y 0 cry
k–c u p 0 cup
k–c u r e cure
k–c u t 0 cut
s–c y c l cycle
s–c y c l cyclone
s–c y m b cymbal

Occurrences in the dataset are specified in terms of a set of variables and an asso-
ciated outcome for each specific assignment of variables. For instance, for the first
occurrence listed (cake), the outcome is k–c, which means for this word that the k
pronunciation is assigned to the initial letter c. Two other possible outcomes are
listed in the dataset, s–c (as in cell) and č–c (as in check). Following the listing of
the outcome, three variables are given – namely, the next three letters in the word
(thus a, k, and e for cake). And finally, we specify the complete spelling of the word
(that is, cake).

In this simple dataset, we restrict our variables to the first three letters after the
initial c. If a word is short (such as can), we fill the empty variables with the null
symbol 0 (a zero). For longer words, subsequent letters in the word are ignored.
Thus for the word certain, the last three letters (ain) are left unspecified.

A given assignment of variables can occur more than once in a dataset, as
can the associated outcome. In fact, such repetition is normal. In general, we will
assume that n variables are specified. In the simple spelling example, n equals 3.

In order to make a prediction, we always do it in terms of a given context,
where the n variables are specified, but for which no outcome is given. For instance,
suppose we wish to predict the pronunciation of the initial c for the word ceiling.
The given context will be the following three letters after the c – that is, e, i, and l.

For each subset of variables defined by the given context, we determine which
occurrences in the dataset occur with that subset. Each of these subsets of variables
is called a supracontext. Given n variables in the given context, we have a total of 2n

supracontexts. Thus the number of supracontexts (2n) is an exponential function
of the number of variables (n).

For the given context ceiling, we have specified the three letters following the
initial c as variables: e, i, and l. This gives us a total of 23 or 8 possible supracontexts:
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supracontexts of ceiling
all three variables: eil
two variables, one ignored: ei-, e-l, -il
one variable, two ignored: e- -, -i-, - -l
all three variables ignored: - - -

For each of these supracontexts we determine which occurrences in the dataset
occur in that supracontext:

k–c s–c č–c

eil – – –
ei- – – –
e-l – 1 – cell
-il – – –
e- - – 3 – cell, cent, certain
-i- 1 – 1 chin, coin
- -l 1 3 – call, cell, cycle, cyclone
- - - 21 9 3 <the whole dataset>

For 3 of the 8 supracontexts, there are no occurrences from the dataset (eil, ei-, and
-il). And for the most general supracontext (namely, when all three variables are
ignored), we get every occurrence in the dataset.

Typically, the whole class of 2n supracontexts can be represented as a partially
ordered lattice:

e i l

e i - e - l - i l

e - - - i - - - l

- - -

By following the connections upward in the lattice, we can determine the subcon-
texts for any particular supracontext in the lattice. Thus we have the following 4
subcontexts for the supracontext e- -:
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e i l

e i - e - l

e - -

By definition, we count the supracontext itself as one of the subcontexts.
Our problem is to determine the homogeneity (or its opposite, the hetero-

geneity) of each supracontext defined by the given context. Basically, a supracon-
text is homogenous if all its possible subcontexts behave identically. In predicting
the outcome for a given context, we use only the occurrences in homogeneous
supracontexts. All heterogeneous supracontexts are ignored.

In analogical modeling, there can be two different types of homogeneous
supracontexts for a given context: either (1) the supracontext is deterministic (only
one outcome occurs), or (2) the supracontext is non-deterministic but all the
occurrences occur within only one subcontext of the supracontext.

When we consider the supracontexts for our example involving ceiling, we note
that there are two deterministic supracontexts, e-l and e- -. The more general supra-
context e- - is homogeneous because it contains only examples of the s–c outcome.
There can be no evidence that any subcontext of e- - behaves any differently be-
cause the behavior of e- - is deterministic. Similarly, the subcontext e-l also acts as
a homogeneous supracontext since it too has only one kind of outcome (even if
there is just one occurrence):

k–c s–c č–c

eil – – –
ei- – – –
e-l – 1 – cell
e- - – 3 – cell, cent, certain

In addition, our example for ceiling has one non-deterministic homogeneous
supracontext, -i-. For this supracontext, more than one outcome is found (thus its
behavior is non-deterministic). Yet every subcontext of this supracontext is either
empty or identical to the supracontext’s behavior, so we can find no subcontext
that behaves differently than the supracontext itself:

k–c s–c č–c

eil – – –
ei- – – –
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-il – – –
-i- 1 – 1 chin, coin

In this case, every subcontext of -i- (except the supracontext itself) is empty.
It is also possible that some of the subcontexts are identical to the supracon-

text, as in the following made-up example from a different dataset that lacks the
occurrences for chin and coin, but instead has chill and coil:

k–c s–c č–c

eil – – –
ei- – – –
-il 1 – 1 chill, coil
-i- 1 – 1 chill, coil

In this example, both non-deterministic supracontexts -il and -i- would be homo-
geneous.

Returning to the supracontexts of ceiling (and our example dataset), we see
that two of the supracontexts are heterogeneous, - -l and - - -. The supracontext - -l
is heterogeneous because its subcontext e-l behaves differently (having only the s–c
outcome) while - -l has both the k–c and s–c outcomes. We mark each heteroge-
neous supracontext with an ×, thus reminding us to exclude such when we come
to predict the outcome for the given context:

k–c s–c č–c
eil – – –
e-l – 1 – cell
-il – – –

× - -l 1 3 – call, cell, cycle, cyclone

In addition to - -l, the general supracontext - - - is also heterogeneous because every
occurring subcontext behaves differently than the supracontext - - -:

k–c s–c č–c
eil – – –
ei- – – –
e-l – 1 – cell
-il – – –
e- - – 3 – cell, cent, certain
-i- 1 – 1 chin, coin

× - -l 1 3 – call, cell, cycle, cyclone
× - - - 21 9 3 <the whole dataset>

It is easy to demonstrate that if any supracontext is heterogeneous, then whenever
this supracontext acts as a subcontext in a more general supracontext, heterogene-
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ity will be implied. For instance, we have already seen that - -l is heterogeneous.
From this we may deduce that the more general supracontext - - - is also heteroge-
neous since - -l is one of its subcontexts. We refer to this deductive kind of hetero-
geneity as inclusive heterogeneity. Thus the general supracontext - - - is inclusively
heterogeneous.

Whenever a given context actually occurs, the predicted behavior is deter-
mined by the behavior of that given context. If the behavior of the occurring given
context is deterministic, then every other deterministic supracontext will also be
homogeneous, as in this example for predicting century:

k–c s–c č–c

ent – 1 – cent
en- – 1 – cent
e-t – 2 – cent, certain
-nt – 1 – cent
e- - – 3 – cell, cent, certain

× -n- 1 1 – can, cent
× - -t 1 2 – cent, certain, coat
× - - - 21 9 3 <the whole dataset>

On the other hand, if the occurring given context is non-deterministic, the only
other homogeneous supracontexts would have to have the exact same number of
occurrences as the given context, as in the following artificial example (not based
on our example dataset):

k–c s–c č–c

elt 5 5 –
× el- 10 10 –
× e-t 5 12 –

-lt 5 5 –
× e- -
× -l-
× - -t
× - - -

We note from this example that we get heterogeneity even if a supracontext (el-)
has exactly the same proportions as a less frequent, closer supracontext (elt):

k–c s–c č–c

elt 5 5 –
× el- 10 10 –
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Only when the frequencies are the same do we get homogeneity for the more
general supracontext:

k–c s–c č–c

elt 5 5 –
-lt 5 5 –

Obviously, the normal use of statistical significance cannot be used to get these re-
sults. In standard statistics, there is no evidence that the behavior is different when
the proportions are the same. We can see this when we consider a chi-squared
analysis of possible 2 × 2 arrays based on the occurrences from the preceding ex-
ample. In the following, the symbol α represents the probability of getting at least
the specified value for χ2:

k–c s–c

elt 5 5 10
5 5 10

× el- 10 10 20 χ2 = 0.00 α = 1.00

When the proportions are exactly the same, the probability of getting χ2 greater
than or equal to zero is, of course, one. Only when the proportions are considerably
different is this probability reduced:

k–c s–c

elt 5 5 10
8 2 10

× el- 13 7 20 χ2 = 1.98 α = 0.15

k–c s–c

elt 5 5 10
10 0 10

× el- 15 5 20 χ2 = 6.67 α = 0.01

Unlike traditional statistics, in analogical modeling the non-deterministic supra-
context el- is heterogeneous in each of these three cases since the frequency of
the supracontext el- is always greater than the frequency of the occurring given
context elt.

Ultimately, whether a supracontext is homogeneous or heterogeneous is deter-
mined by using a nonlinear statistical procedure based on measuring the number
of disagreements between different occurrences within the supracontext. To do this
we connect all the occurrences within a supracontext to each other by means of a
system of pointers. For each pointer from one occurrence to another, we indicate
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whether the pointer points to a different outcome (a disagreement) or to the same
outcome (an agreement). We adopt a conceptually simple statistical procedure for
determining the homogeneity of the supracontext – namely, if no subcontext of the
supracontext increases the number of disagreements, the supracontext is homoge-
neous. Otherwise, the supracontext is heterogeneous. This measure ends up min-
imizing the number of disagreements (that is, the number of pointers to differing
outcomes) in the supracontext. It turns out that this statistic is based on a quadratic
measure of information with its reasonable restriction that language speakers get
only a single chance to guess the correct outcome. This quadratic measure is un-
like Shannon’s logarithmic measure of uncertainty, which is based on the idea that
speakers get an unlimited number of chances to guess the correct outcome. In ana-
logical modeling, homogeneity is defined in terms of minimizing quadratic un-
certainty. This single principle accounts for all the specific cases of homogeneity
and heterogeneity, even the non-deterministic ones with equal proportions but
different frequencies.

The statistical procedure of minimizing the number of disagreements is also
the most powerful statistical test possible. However, by introducing the notion of
imperfect memory, this test can be made equivalent to standard statistical proce-
dures, especially when the probability of remembering a given occurrence is one-
half. This kind of statistic is referred to as a natural statistic since it is psychologi-
cally plausible and avoids any direct consideration of probability distributions, yet
has the ability to predict stochastic behavior as if the underlying probability distri-
bution is known. On the basis of this natural statistic, it can be deduced that there
are only the two types of homogeneous supracontexts – either deterministic ones
or non-deterministic ones with occurrences restricted to a single subcontext.

The homogeneous supracontexts form what is called the analogical set. The
final step in analogical prediction is to randomly select one of the occurrences in
the analogical set and make our prediction based on the outcome assigned to this
occurrence. Theoretically this selection can be done in two different ways: (1) ran-
domly select one of the occurrences found in any of the homogeneous supracon-
texts; or (2) randomly select one of the pointers pointing to an occurrence in any
of the homogeneous supracontexts. In the first case, the probability of selecting a
particular occurrence is based on its frequency of occurrence within the homoge-
neous supracontexts. In the second case, the probability of selecting a particular
occurrence is based on the square of its frequency of occurrence within the ho-
mogeneous supracontexts. This squaring of the frequency is the result of using a
system of pointers (equivalent to the quadratic measure of uncertainty) to select
an occurrence.

There is an alternative to random selection. Instead of randomly choosing one
of the occurrences in the analogical set, one can examine the overall chances for
each outcome under random selection but then select the most frequent outcome.
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This method is referred to as selection by plurality and is used to maximize gain
(or minimize loss).

Returning to our original example for predicting the pronunciation of the
initial c in ceiling, we get the following results in the analogical set:

k–c s–c č–c

eil – – –
ei- – – –
e-l – 1 – cell
-il – – –
e- - – 3 – cell, cent, certain
-i- 1 – 1 chin, coin

× - -l 1 3 –
× - - - 21 9 3

Note that the two heterogeneous supracontexts (- -l and - - -) are excluded; they are
each marked with an x and their occurrences are not listed since they do not occur
as exemplars.

We can predict the outcome by selecting either occurrences (linearly) or point-
ers (quadratically):

k–c s–c č–c linear squared
eil – – –
ei- – – –
e-l – 1 – 0 1 0 0 1 0
-il – – –
e- - – 3 – 0 3 0 0 9 0
-i- 1 – 1 1 0 1 2 0 2

× - -l 1 3 –
× - - - 21 9 3

Totals 1 4 1 2 10 2

Ultimately, the prediction can be made using either random selection or selection
by plurality:

k–c s–c č–c k–c s–c č–c

random selection .17 .67 .17 .14 .71 .14
selection by plurality 0 1 0 0 1 0

As can be seen, the predicted outcome for ceiling always favors the s pronunciation
for the initial c. The closest exemplar to the given ceiling is the word cell (which has
the s–c outcome), yet other words are also found in the analogical set (such as cent
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and certain, which predict the s–c outcome. In fact, a couple of other exemplars
(chin and coin) predict the two other outcomes (k–c and č–c). We note that under
random selection the s–c outcome occurs at least two-thirds of the time, no matter
whether we randomly select one of the occurrences (the linear prediction) or one
of the pointers (the squared prediction). Under selection by plurality, we get of
course only the s–c outcome.

. Empirical validation of Analogical Modeling

Analogical modeling has been applied to a number of specific language problems.
Derwing and Skousen (1994) have used analogical modeling to predict English
past-tense formation, especially the kinds of errors found in children’s speech. Der-
wing and Skousen first constructed a dataset of verbs based on the frequently oc-
curring verbs in grade-school children’s speech and writing. Initially they predicted
the past-tense for verbs in terms of a dataset composed of only the 30 most frequent
verbs (most of which were irregular verbs), then they continuously doubled the size
of the dataset (from 30 to 60, to 122, to 244, to 488, and finally to 976). Derwing
and Skousen discovered that when the dataset was small, the kinds of errors chil-
dren typically make were predicted, but by the time the dataset reached the third
doubling (at 244 verbs) stability had usually set in, and the expected adult forms
(that is, the standard language forms) were predicted more than any other. For
instance, the most common prediction for the verb snow was snew as long as the
dataset had only 30 or 60 verbs, but with 122 verbs (after the second doubling) the
prediction shifted to the regular snowed (with a 90% chance). With the full dataset
of 976 verbs, the probability of predicting the regular snowed reached 99%. Simi-
larly, overflew was most commonly predicted for overflow until the third doubling
(at 244 verbs), and succame for succumb (pronounced succome, of course) until the
fourth doubling (at 488 verbs).

Analogical modeling (along with other exemplar-based systems and connec-
tionism) has been criticized because it proposes a single-route approach to pre-
dicting the past-tense in English (see, for instance, Jaeger et al. 1996:455–457, 477–
478). Prasada and Pinker (1993) have argued, on the other hand, for a dual-route
approach – that is, irregular verbs in English are processed differently than regular
verbs. More specifically, they argue that irregular verbs are predicted in an analog-
ical, lexically-based fashion, but that regular verbs are predicted by rule (namely,
by syntactically adding some form of the regular past-tense ending -ed). Jaeger et
al. 1996 further argued that there is information from neural activity in the brain
for the dual-route approach. The main claim about analogical modeling in Jaeger
et al. 1996 was that analogical modeling could not predict the processing time dif-
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ferences between regular and irregular verbs, and between known and unknown
verbs. In reply, Chandler and Skousen (1997) noted that in Section 16.1 of Anal-
ogy and Structure (under “Efficiency and Processing Time”), the correct processing
times were in fact predicted.

Prasada and Pinker (1993) report on a study in which English speakers pro-
duced past tense forms for various nonce verbs. They found that a subject’s willing-
ness to provide irregular past-tense forms was strongly related to the nonce verb’s
phonological similarity to existing irregular verbs, but for nonce verbs similar to
existing regular verbs, no such correlation was found. Prasada and Pinker took
this basic difference in behavior as evidence that English speakers use a dual-
route approach in forming the past-tense, especially since a single-route con-
nectionist approach failed to predict the basic difference in behavior. But more
recently, Eddington (2000a) has shown that just because a particular implemen-
tation of connectionism fails to make the right prediction does not mean that the
single-route approach is wrong. To the contrary, both analogical modeling and
Daelemans’ instance-based approach (each a single-route approach to describing
English past-tense formation) correctly predict Prasada and Pinker’s experimental
findings.

An important application of analogical modeling is found in Jones 1996. Here
we see analogical modeling applied to automatic translation (between English and
Spanish as well as English and Japanese). Most work done in analogical modeling
has dealt with phonology, morphology, and orthography (the linguistic disciplines
most closely connected to an objective reality), but here Jones shows how ana-
logical modeling can be applied to syntax and semantics. He contrasts analogical
modeling with both traditional rule approaches and connectionism (parallel dis-
tributed processing). In a variety of test cases, he finds analogical modeling more
successful and less arbitrary than parallel distributed processing.

There have also been a number of applications to several non-English language
problems in, for instance, the work of Eddington (Spanish stress assignment) and
Douglas Wulf (German plural formation). Eddington’s work on Spanish (Edding-
ton 2000b) has shown that analogical modeling can correctly predict stress place-
ment for about 95% of the words, but in addition can regularly predict the stress
for nonce words from experiments and for errors that children make. Wulf (1996)
has found that analogical modeling is able to predict cases where an umlauting
plural type has been extended from a frequent exceptional German plural to other
less frequent words.

Daelemans, Gillis, and Durieux (1997) have done considerable work compar-
ing analogical modeling with various instance-based approaches to language. They
have discovered that under regular conditions, analogical modeling consistently
outperforms their own instance-based approaches in predicting Dutch stress (see
their Table 1.3). Only when they add various levels of noise to the system are they



 Royal Skousen

able to get comparable results for analogical modeling and their instance-based ap-
proaches (see their Table 1.4), but their introduction of noise appears irrelevant to
the larger issue of which approach best predicts Dutch stress.

Skousen’s work on the Finnish past-tense has been able to capture the other-
wise unaccountable behavior of certain verbs in Finnish. Of particular importance
is his demonstration (Skousen 1995:223–226) that the verb sorta- ‘oppress’, under
an analogical approach, takes the past-tense form sorti. According to every rule
analysis found in the literature, verbs stems ending in -rta or -rtä should take -si
in the past-tense. Yet speakers prefer sorti, not sorsi (although sorsi does occasion-
ally occur). When we look at the analogical set for sorta- (a relatively infrequent
verb), we discover that for this example only, verbs containing o as the first vowel
(24 of them) almost completely overwhelm verbs ending in -rta or -rtä (only 5 of
these). And each of these verbs with o produce the past-tense by replacing the final
stem vowel a by i (thus giving sorti). This large group of o-vowel verbs just hap-
pens (from an historical point of view) to take this same outcome. Although there
is another group of verbs that take the si outcome, its effect is minor. The resulting
probability of analogically predicting sorti is 94.6%.

More generally, a correct theory of language behavior needs to pass certain em-
pirical tests (Skousen 1989:54–76). In cases of categorical behavior (such as the in-
definite article a/an in English), there should be some leakage (or fuzziness) across
categorical boundaries (such as an being replaced by a). Similarly, when we have a
case of exceptional behavior in a field of regular behavior (such as the plural oxen
in English), we should find that only when a given context gets very close to the
exceptional item do we get a small probability of the given context behaving like
the exception (such as the infrequent plurals axen for ax and uxen for the nonce
ux). And finally, in empty space between two occurrences of different behavior, we
should get transitional behavior as we move from one occurrence to the other.

A theory of language behavior is tested by considering what kinds of language
changes it predicts. The ability to simply reproduce the outcomes for the occur-
rences in the dataset does not properly test a theory. Instead, we try to predict the
outcome for given contexts that are not in the dataset, and then we check these pre-
dictions against the kinds of changes that have been observed, preferably changes
that have been naturally observed. Such data for testing a theory can be found
in children’s language, historical change, dialect development, and performance
errors. Experiments (involving for instance, nonce items) can be helpful if their
results do not inordinately clash with naturally observed changes, but in general,
artificial experiments always run the risk of contaminated results. Experiments can
help us gather additional data, providing their results do not sharply contradict
observations from actual language use.
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. Local versus global significance of variables

This explicit theory of analogical modeling differs considerably from traditional
uses of analogy in language description. First of all, traditional analogy is definitely
not explicit. Related to this problem is that almost any item can serve as the analogy
for predicting behavior, although in practice the attempt is to always look to nearest
neighbors for the preferred analogical source. But if this fails, one can almost always
find some item, perhaps considerably different, that can be used to analogically
predict the desired outcome. In other words, if needed, virtually any occurrence
can serve as the analogical source.

Skousen’s analogical modeling, on the other hand, will allow occurrences fur-
ther away from the given context to be used as the exemplar, but not just any
occurrence. Instead, the occurrence must be in a homogeneous supracontext. The
analogical source does not have to be a near neighbor. The probability of an
occurrence further away acting as the analogical model is nearly always less than a
closer occurrence, but this probability is never zero (providing the occurrence is in
a homogeneous supracontext).

Further, the ability to use all the occurrences in all the homogeneous supra-
contexts of the contextual space directly accounts for the gang effects we find when
we describe either categorical or regular/exceptional behavior. In other words, we
are able to predict “rule-governed” behavior (plus a little fuzziness) whenever the
data behaves “regularly”.

Analogical modeling does not require us to determine in advance which vari-
ables are significant and the degree to which these variables determine the outcome
(either alone or in various combinations). Nearest-neighbor approaches are like
traditional analogical practice in that they try to predict behavior by using the most
similar occurrences to the given context. But unless some additional information is
added, the leakage across categorical boundaries and in regions close to exceptions
will be too large. As a result, nearest-neighbor approaches frequently try to correct
for this excessive fuzziness by ranking the statistical significance of each variable.
One can determine, as Daelemans, Gillis and Durieux have (1994:435–436), the
information gain (or other measures of reducing entropy) for each variable. Such
added information requires a training period to determine this information, and
in this regard is like connectionism.

Analogical modeling, on the other hand, does not have a training stage except
in the sense that one must have a dataset of occurrences. Predictions are made “on
the fly”, and all variables are considered apriorily equal (with certain limitations
due to restrictions on short-term memory). The significance of a variable is de-
termined locally – that is, only with regard to the given context. The extent of any
gang effect is determined by the location of the given context and the amount of
resulting homogeneity within the surrounding contextual space.
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Chapter 2

Issues in Analogical Modeling

Royal Skousen

Homogeneity and Analogical Modeling

Analogical modeling is an exemplar-based system that usually includes the nearest
neighbors in the analogical set, but typically the analogical set will also have ex-
emplars that are not particularly near to the given context. One may ask whether
there is much difference in prediction if we avoid looking for more distant ex-
amples. The tremendous advantage of ignoring homogeneity would be that we
would no longer need to test the exponentially increasing number of supracon-
texts for homogeneity. In other words, do we really need to have homogeneity in
analogical modeling?

Let us consider the analogical sets for a number of Finnish verbs for which
the past tense is predicted from the present stem (as discussed in Chapter 5 of
Analogical Modeling of Language, Skousen 1989:101–136). In the examples we will
be considering, there are three possible outcomes, represented as V-i, a-oi, and tV-
si. In each case, we give the full analogical set, but then we identify the nearest
neighbors and redo the prediction in terms of only these nearest neighbors.

In certain cases, we get the same basic prediction, whether or not homogeneity
is invoked. For instance, if the nearest neighbors all have the same behavior, we
get the same virtual prediction with or without homogeneity. For the relatively
rare verb raata- ‘to toil’, we can theoretically get three different past-tense forms:
raati, raatoi, raasi (corresponding respectively to the outcomes V-i, a-oi, and tV-si).
But the nearest neighbors (kaata- ‘to overturn’ and raasta- ‘to grate’, each marked
with an asterisk in the following listing) have the a-oi outcome, so the nearest-
neighbor prediction is a-oi 100% of the time. On the other hand, given the full
analogical set, a-oi is predicted 99.6% of the time. These predictions agree with the
behavior of Finnish speakers, who consistently give raatoi as the past-tense form
for raata-.
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GIVEN CONTEXT

RAVA0=0=TA raata- ‘to toil’

ANALOGICAL SET

outcome variables verb pointers %

a-oi HAVA0=OSTA haasta- 160 17.9
a-oi KAVA0=0=TA *kaata- 192 21.5
a-oi PAVA0=OHTA paahta- 160 17.9
a-oi RAVA0=OSTA *raasta- 216 24.2
tV-si RIVESN0=Ta rientä- 4 0.4
a-oi SAVA0=OTTA saatta- 160 17.9

STATISTICAL SUMMARY
outcome pointers %

a-oi 888 99.6
tV-si 4 0.4
total frequency = 892 pointers

On the other hand, if the nearest neighbors behave differently, then we get com-
petition. For instance, for the infrequent verb saarta- ‘to surround’, there are two
nearest neighbors, saatta- ‘to accompany’ and siirtä- ‘to move’. The first one takes
the a-oi outcome (namely, saattoi for the past tense), the second takes tV-si (thus,
siirsi for the past tense). Analogical modeling, like a nearest neighbor approach,
predicts both saartoi and saarsi fairly equally, although not exactly equally:

GIVEN CONTEXT

SAVASR0=TA saarta- ‘to surround’

ANALOGICAL SET

outcome variables verb pointers %

a-oi AA0=SL0=KA alka- 16 1.2
a-oi AA0=SN0=TA anta- 28 2.1
a-oi HAVA0=OSTA haasta- 80 5.9
tV-si HUVOSL0=TA huolta- 56 4.1
a-oi KAVA0=0=TA kaata- 96 7.0
a-oi KA0=SN0=TA kanta- 28 2.1
a-oi KA0=SROTTA kartta- 26 1.9
tV-si KIVESL0=Ta kieltä- 48 3.5
tV-si KIVESR0=Ta kiertä- 90 6.6
tV-si KUVUSL0=TA kuulta- 56 4.1
tV-si KaVaSN0=Ta kääntä- 48 3.5
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a-oi MA0=SLOTTA maltta- 18 1.3
tV-si MU0=SR0=TA murta- 12 0.9
tV-si MYVoSN0=Ta myöntä- 48 3.5
a-oi PAVA0=OHTA paahta- 80 5.9
tV-si PIVISR0=Ta piirtä- 90 6.6
tV-si PYVoSR0=Ta pyörtä- 90 6.6
a-oi RAVA0=OSTA raasta- 80 5.9
tV-si RIVESN0=Ta rientä- 48 3.5
a-oi SAVA0=OTTA *saatta- 108 7.9
a-oi SA0=0=0=TA sata- 12 0.9
tV-si SIVISR0=Ta *siirtä- 108 7.9
V-i SOVU0=0=TA souta- 2 0.1
tV-si TYVoSN0=Ta työntä- 48 3.5
tV-si VaVaSN0=Ta vääntä- 48 3.5

STATISTICAL SUMMARY

outcome pointers %

V-i 2 0.1
a-oi 572 41.9
tV-si 790 57.9

total frequency = 1364 pointers

These predictions agree with the intuitions of native speakers. (See, for instance,
under saartaa in the Nykysuomen Sanakirja [Dictionary of Modern Finnish] (Sade-
niemi 1973), where both the past-tense forms saartoi and saarsi are listed as equally
possible.)

A similar example occurs with the infrequent verb kaarta- ‘to swerve’. Again
there are two nearest neighbors competing with one another (kaata- ‘to overturn’
and kiertä- ‘to wind’). Both analogical modeling and the nearest neighbor ap-
proach basically predict kaartoi and kaarsi as equally possible, again in agreement
with speakers’ predictions:

GIVEN CONTEXT

KAVASR0=TA kaarta- ‘to swerve’

ANALOGICAL SET

outcome variables verb pointers %

a-oi AA0=SL0=KA alka- 16 1.0
a-oi AA0=SN0=TA anta- 28 1.7
a-oi HAVA0=OSTA haasta- 80 4.8
tV-si HUVOSL0=TA huolta- 56 3.4
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a-oi KAVA0=0=TA *kaata- 178 10.7
a-oi KAVI0=OHTA kaihta- 34 2.1
a-oi KAVI0=0=VA kaiva- 30 1.8
a-oi KA0=SN0=TA kanta- 74 4.5
a-oi KA0=SROTTA kartta- 70 4.2
a-oi KA0=0=OSVA kasva- 14 0.8
a-oi KA0=0=OTTA katta- 24 1.4
tV-si KIVESL0=Ta kieltä- 64 3.9
tV-si KIVESR0=Ta *kiertä- 118 7.1
tV-si KUVUSL0=TA kuulta- 76 4.6
tV-si KaVaSN0=Ta kääntä- 64 3.9
a-oi MA0=SLOTTA maltta- 18 1.1
tV-si MU0=SR0=TA murta- 12 0.7
tV-si MYVoSN0=Ta myöntä- 48 2.9
a-oi PAVA0=OHTA paahta- 80 4.8
tV-si PIVISR0=Ta piirtä- 90 5.4
tV-si PYVoSR0=Ta pyörtä- 90 5.4
a-oi RAVA0=OSTA raasta- 80 4.8
tV-si RIVESN0=Ta rientä- 48 2.9
a-oi SAVA0=OTTA saatta- 80 4.8
tV-si SIVISR0=Ta siirtä- 90 5.4
tV-si TYVoSN0=Ta työntä- 48 2.9
tV-si VaVaSN0=Ta vääntä- 48 2.9

STATISTICAL SUMMARY

outcome pointers %

a-oi 806 48.6
tV-si 852 51.4

total frequency = 1658 pointers

From these examples it might seem reasonable to dispense with homogeneity as a
necessary condition for predicting the behavior of a given context.

In its most primitive form, the nearest neighbor approach can be thought of as
some kind of identification or recognition test. For each given context, we would
first search for that given context in the dataset. If not found, we then assume that
there is some error in the given context and thus look for an item in the dataset that
most reasonably could be considered a mistaken variant of the given context. Thus
raata- could be considered an error for either raasta- or kaata- (similarly, saarta-
could be a mistake for saatta- or siirtä-).



Issues in Analogical Modeling 

In analogical modeling, this kind of simple recognition task is equivalent to
treating each occurrence in the dataset as having its own distinguishing outcome.
The result would be that every distinct occurrence in the dataset would have a
different outcome. This would prevent any substantive use of homogeneity in pre-
dicting the outcome. No groups of distinct occurrences would ever be able to work
together to produce a gang effect. The only occurrences in the analogical set would
therefore be unobstructed. We can see this result in the following schematic, where
the lower-case letters stand for non-repeating outcomes:

b h

a

e

f g

c i

d

The square � stands for the given context. The only unobstructed occurrences
(encircled in the schematic) are a, f , g, and c. These occurrences include the nearest
neighbors, plus any other neighbors with an unobstructed path from the given
context. All other occurrences are further away (b, h, e, i, and d) and are obstructed,
and are therefore prevented from being used as exemplars.

Nonetheless, neither this procedure of perceptual identification nor using only
the nearest neighbors will always work. Consider the past-tense form for the in-
frequent Finnish verb sorta- ‘to oppress’. In this example, the nearest neighbor to
sorta- is the verb murta- ‘to break’. This verb takes the tV-si outcome and thus
predicts the tV-si outcome for sorta- (that is, sorsi). However, speakers prefer the
V-i outcome for sorta- (that is, sorti). Interestingly, the analogical set for sorta-
definitely predicts the V-i outcome, despite the fact that murta- (marked with an
asterisk) is the nearest neighbor:
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GIVEN CONTEXT

SO0=SR0=TA sorta- ‘to oppress’

ANALOGICAL SET

outcome variables verb pointers %

V-i HO0=0=OHTA hohta- 111 5.1
V-i HOVI0=0=TA hoita- 94 4.3
tV-si HUVOSL0=TA huolta- 3 0.1
V-i JO0=0=OHTA johta- 111 5.1
V-i JOVU0=OSTA jousta- 76 3.5
tV-si KIVESR0=Ta kiertä- 20 0.9
V-i KOVI0=OTTA koitta- 76 3.5
V-i KO0=0=0=KE koke- 49 2.2
V-i KO0=0=OSKE koske- 37 1.7
V-i KO0=0=OSTA kosta- 111 5.1
tV-si KUVUSL0=TA kuulta- 3 0.1
V-i LOVI0=OSTA loista- 76 3.5
tV-si MU0=SR0=TA *murta- 37 1.7
V-i NO0=0=OSTA nosta- 111 5.1
V-i NOVU0=0=SE nouse- 32 1.5
V-i NOVU0=0=TA nouta- 94 4.3
V-i OO0=0=0=LE ole- 49 2.2
V-i OO0=0=OSTA osta- 111 5.1
V-i OO0=0=OTTA otta- 111 5.1
tV-si PIVISR0=Ta piirtä- 20 0.9
V-i POVI0=OSTA poista- 76 3.5
V-i PO0=SL0=KE polke- 55 2.5
V-i PO0=SLOTTA poltta- 121 5.6
V-i PO0=0=0=TE pote- 80 3.7
tV-si PYVoSR0=Ta pyörtä- 20 0.9
tV-si SIVISR0=Ta siirtä- 26 1.2
V-i SOVI0=OTTA soitta- 92 4.2
V-i SO0=0=OTKE sotke- 46 2.1
V-i SOVU0=0=TA souta- 117 5.4
V-i SUVI0=OSTA suista- 7 0.3
V-i SU0=0=0=LA sula- 17 0.8
V-i SU0=SL0=KE sulke- 13 0.6
V-i SU0=0=0=RE sure- 9 0.4
V-i Sa0=SR0=KE särke- 17 0.8
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V-i TOVI0=OSTA toista- 76 3.5
V-i VOVI0=OTTA voitta- 76 3.5

STATISTICAL SUMMARY

outcome pointers %

V-i 2051 94.1
tV-si 129 5.9

total frequency = 2180 pointers

When we look at the entire analogical set organized according to distance from
the given context sorta-, we discover that there is a huge gang of o verbs that take
the V-i outcome. Here distance refers to the number of variables in disagreement
between sorta- (the given context) and any particular verb in the dataset.
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Each of the 24 verbs in this large homogeneous space have o as the main vowel
(poltta- ‘to burn’, souta- ‘to row’, osta- ‘to buy’, hoita- ‘to take care of ’, and so on).
There is, to be sure, a competing but smaller gang of five verbs that end in rta or
rtä (including the nearest neighbor murta- ‘to kill’). But the much larger o gang
overwhelms the rta/rtä gang. Because of the strong gang effect for the o vowel,
there are many more pointers to any particular verb in the o gang than to virtually
any other verb elsewhere in the analogical set. For instance, the nearest neighbor
murta- (at a distance of only two from the given context, sorta-) is found in the
weak rta/rtä gang and is accessed by 37 pointers, the same number of pointers
pointing to koske- ‘to touch’ (which is at a much further distance of six from sorta-
and is at the furthest reaches of the o gang).

Local versus global significance of variables

Analogical modeling of the Finnish past tense has been able to capture the other-
wise unexplained behavior of certain verbs in Finnish. Of particular importance
is the verb sorta- ‘to oppress’, which takes the past-tense form sorti. According to
every rule analysis found in the literature, verbs stems ending in -rta or -rtä should
take -si in the past tense. Yet speakers prefer sorti, not sorsi.

In the original dataset of Finnish verbs, there are 24 verbs that have the o vowel.
In Analogical Modeling of Language, Skousen (1989:114–124) correctly predicted
the regularity of the past tense for all 24 of these verbs as well as for two infrequent
verbs with the o vowel – namely, sorta- ‘to oppress’ and jouta- ‘to have time’. By
examining the analogical sets for these 26 verbs, we can determine what fraction of
the verbs in each analogical set is made up of o verbs:

1. for 20 of these o verbs, only 24 out of 117 different verbs in the analogical set
are o verbs;

2. in one case (pote- ‘to be sick’), we get 24 out of 70 verbs;
3. in only five cases do we get a dominance of the o verbs:

hoita- ‘to tend’ 24 out of 27 verbs
*jouta- ‘to have time’ 24 out of 27 verbs
nouta- ‘to fetch’ 24 out of 30 verbs
souta- ‘to row’ 24 out of 34 verbs

*sorta- ‘to oppress’ 24 out of 36 verbs

Two of the last five verbs (jouta- and sorta-, each marked with an asterisk) are not
in the dataset. The three occurring verbs are not determined solely by the o vowel
since they each have six variables in common:
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Variable 2 o the first vowel is o
Variable 3 V the initial vowel is long
Variable 5 Ø the vowel is not followed by a syllable-final sonorant
Variable 7 Ø the vowel is not followed by a syllable-final obstruent
Variable 9 t the second syllable begins with a t
Variable 10 a the stem ends with an a vowel

So for three verbs in the dataset (hoita-, nouta-, and souta-), we have a cluster of six
co-occurring variables that predicts that the final stem vowel will be replaced by i
to form the past tense. In other words, Variable 2 alone (the one that represents the
o vowel) does not predict the outcome. So in trying to predict the past tense for the
only three verbs where the o variable might prove significant, this variable cannot
be separated out from five other variables.

The o vowel is an good example of a locally significant variable in the Finnish
past-tense database. In predicting the past-tense form for all verbs except one, this
o variable is not crucial, no matter how frequent the verb is. It only turns out to
be crucial for the relatively infrequent verb sorta- ‘to oppress’, a verb which is not
in the dataset. In other words, the crucialness of this variable for sorta- cannot be
learned from predicting the past tense of other verbs. This variable only becomes
crucial when the analogical system is asked to predict the past tense for sorta-. In
an analogical approach, the significance of the o variable is locally determined, not
globally. The occurrences in the dataset carry the information necessary to make
predictions, but the significance of a particular variable cannot be determined in-
dependently of the occurrences themselves. Nearest-neighbor approaches, when
they rely on measuring information gain, can never obtain sufficient gain for this
o vowel to be able to predict sorti. It seems that only a local approach will correctly
predict sorti as the preferred past tense.

Including or excluding “unimportant” variables

The sorta- example in Finnish implies that (1) virtually any variable can poten-
tially affect linguistic behavior, and (2) a variable may be locally significant, but
not globally. A variable (or combination of variables) is globally significant if we
can directly determine the statistical significance of that variable (or combination
of variables) from the occurrences in the dataset. Local significance, on the other
hand, means that the statistical significance of a variable (or combination of vari-
ables) only shows up when trying to predict the outcome for a given context. And
usually the given context has an unusual combination of variables, uncharacteristic
of combinations found in the dataset itself.
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The computer implementation of analogical modeling places a limit on the
number of variables for specifying occurrences and given contexts. Because of the
exponential explosion of analogical modeling, not every possible variable can be
included. In Section 3.1 of Analogical Modeling of Language (Skousen 1989:51–54),
the possibilities were restricted by using principles of proximity and lexical dis-
tinguishability, and by limiting phonetic representations to individual sounds and
basic syllable structure. Nonetheless, a number of “unimportant” variables were
always specified for each dataset, and this decision proved to be highly significant.
If the o vowel had not been fully specified for the verbs in the Finnish dataset, the
analogical prediction for sorta- would have been incorrect.

Theoretically, one could use analogical modeling to determine which variables
are globally significant. But this would defeat the real purpose of analogical mod-
eling, which is to predict actual language behavior. Consider, for instance, the in-
definite article a/an in English. In the dataset discussed in Section 3.2 of Analog-
ical Modeling of Language (Skousen 1989:54–59), there are 136 occurrences of a,
each followed by a word beginning with a consonant, and 28 occurrences of an,
each followed by a vowel-initial word. There are no exceptions in the dataset to the
“standard” rule. If we analyzed the dataset globally, we would discover that the a/an
outcome was entirely predictable in terms of a single variable – namely, the syllabic
nature of the first sound in the following word. Given this result, we could argue
for excluding every other variable from the dataset.

But if we did this, then severe difficulties in predicting actual language behavior
would arise. First of all, we would be unable to predict the one-way leakage that
we find in children’s language, adult errors, and dialect development – namely,
the prevalent tendency to replace an by a, but not a by an (thus “a apple”, but
not “an boy”). The only reason we are able to predict the appropriate fuzziness of
a/an usage is because the dataset contains other variables besides the “correct” or
“crucial” one. If only that one variable were given, then we would always “correctly”
predict an for vowel-initial words and a for consonant-initial words, yet speakers
do not behave this “correctly”.

A more serious problem would arise in cases requiring robustness. If the first
segment of the following word were, for instance, obscured by noise, we would be
unable to predict anything since our dataset would only have information about
the first segment. Actual speakers can deal with defective input, which means that
we must specify more than just the significant variables if we want speakers to deal
with cases where the significant variables might be either missing or distorted.
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Imperfect memory and its effects on analogical predication

Daelemans, van den Bosch, and Zavrel (1999) argue that with nearest-neighbor
approaches, predictions are worse if the data is “mined” in advance – that is, if
variables are reduced and “bad” (or “exceptional”) examples are removed. Such
systems tend to collapse or become degraded when memory losses occur. On the
other hand, memory loss is important in analogical modeling, especially since im-
perfect memory results in statistically acceptable predictions (and reduces the ex-
traordinary statistical power of the approach). For instance, randomly throwing
out about half the data leads to standard statistical results (described in Skousen
1998). In analogical modeling, statistically significant results are retained under
conditions of imperfect memory. In fact, a statistically significant result is one that
holds when at least half the data is forgotten. The reason that analogical model-
ing can get away with substantial memory loss is because this approach considers
much larger parts of the contextual space, whereas nearest-neighbor approaches
tend to fail when memory is imperfect.

In analogical modeling, given sufficiently large amounts of data, stability sets
in, with the result that adding more examples in the dataset will have little ef-
fect on predicting behavior. Imperfect memory also shows how less frequent ex-
ceptions tend to be removed from a language, but frequent exceptions are kept.
This agrees with what Bloomfield observed many years ago about historical change
(1933:408–410).

System self-prediction versus dynamic language usage

One important task in analogical modeling is to define exactly what we are trying
to predict. One common task used in exemplar-based systems is to determine how
much of the dataset is self-predicting – that is, for each occurrence in the dataset,
we determine how the rest of the dataset would predict the outcome for that oc-
currence. In analogical modeling, we would make the testset equal to the dataset,
but we would exclude the given context for each item to be tested. For each tested
occurrence in the dataset, we would then compare the predicted outcome with the
actual outcome listed in the dataset. The overall percentage of correctness then
could be interpreted as a measure of accuracy for the exemplar-based system be-
ing used. The goal, it would seem, in system self-predictability is to maximize the
percentage of correctness.

Despite its attractiveness, self-predictability is misguided. In actual fact, all
this approach is doing is measuring the degree of regularity within the dataset.
In Section 3.3 of Analogical Modeling of Language (Skousen 1989:60–71), this very
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method is discussed (and is referred to as “excluding the given context from the
dataset”). The importance of this measure is that it describes how much of the sys-
tem is regular (that is, predictable). If the predicted outcome agrees with the actual
outcome, the occurrence is regular. Otherwise, it is exceptional (according to one
of two definitions of exceptionality). For each case of disagreement, system self-
predictability is simply stating that the outcome for this item must be remembered.
In cases of agreement, the outcome can be forgotten since surrounding exemplars
predict the same (correct) outcome.

For instance, suppose we are trying to predict the plural in English. If the cor-
rect plural for the noun ax is forgotten, the analogical system (even with a rather
small number of the most frequent exemplars) will predict axes, which is the cor-
rect plural. On the other hand, if the plural for the noun ox is forgotten, the correct
plural oxen will never be predicted because all surrounding exemplars take the reg-
ular plural ending. In this case, oxes will be predicted rather than oxen. All this is,
of course, obvious. But we do not penalize the analogical system because it misses
in the case of ox. The reason it misses is because the standard language itself fails to
use the regular oxes. It is not reasonable to view the missing of oxen as somehow a
failure in analogical modeling.

The real power of analogical modeling is that it predicts the appropriate kinds
of fuzziness in the contextual space. For instance, if the plural for ax is forgotten,
axes will be predicted most of the time, but not always. There is a small probability
that axen will be predicted – and of course this leakage towards the -en plural is be-
cause the exceptional plural oxen for ox is near ax. The real advantage of analogical
modeling is in its ability to predict this minor leakage. The word ax is surrounded
by similarly-behaving regular plurals, and the resulting gang effect dilutes the in-
fluence of the isolated, exceptional ox. Even when we are close to an exceptional
item, the regular behavior will still dominate.

So just giving a percentage of system self-prediction is not particularly in-
sightful. What we are really interested in is whether or not errors in system self-
prediction might actually reflect the kinds of errors children make while learning
their native language, or how the language has evolved historically or dialectally.
Perhaps we can find evidence for these errors in adult speech, in new words en-
tering the language, or in experiments involving nonce items. The kind of evi-
dence we are looking for should represent the dynamics and variation of actual
language usage.

In the case of the Finnish past tense (discussed in Chapter 5 of Analogical
Modeling of Language, Skousen 1989:101–136), system self-prediction was actu-
ally very high. But the interesting results were the cases where the system failed to
self-predict correctly (see Section 5.6, Skousen 1989:119–124):
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(1) one infrequent archaic verb

outcome
verb frequency predicted actual

virkka- ‘to utter’ 2 virkki virkkoi

This verb is of quite low frequency, although it did end up in the dataset. It is only
used in archaic-sounding poetic expressions and is readily recognized as coming
from the Finnish national epic, the Kalevala. Historically, the past tense is virkkoi
(the outcome a-oi), but when the past-tense outcome is not remembered, the ana-
logical system predicts virkki. This regularizing past-tense form (using the out-
come V-i) is strongly favored (95.4%). In support of this prediction, we note that
the Kalevala itself sometimes uses virkki, thus showing the analogical tendency to
replace the historical virkkoi (for instance, line 102 of Poem 2; see Lönnrot 1964:8).

(2) five highly frequent, exceptional verbs

outcome
verb frequency predicted actual

taita- ‘to know how’ 125 taitoi taisi
tietä- ‘to know’ 101 tieti tiesi
pyytä- ‘to request’ 63 pyyti pyysi
löytä- ‘to find’ 57 löyti löysi
huuta- ‘to shout’ 29 huuti huusi

Dialectally, the last four verbs are found with the V-i outcome, thus the errors
in system self-prediction are not really errors, but reflect actual language tenden-
cies. Moreover, the role of frequency here shows the long-recognized tendency for
exceptions in a language to be highly frequent. Low frequent exceptions are elimi-
nated over time, which is precisely what the theory of analogical modeling predicts.
In fact, in Section 5.5 of Analogical Modeling of Language (Skousen 1989:114–118),
we discover that all the low frequency verbs (ones that did not make the dataset)
are correctly predicted by the system, including the unexpectedly correct prediction
of sorti for sorta- ‘to oppress’. And in Section 5.6 (which included frequent verbs
in the language), it is only the most frequent verbs that are exceptional (Skousen
1989:119–124). Most of the verbs in the dataset itself are regular, which is what we
historically expect.

Variable weighting

Nearest neighbor approaches frequently add a weighting factor to each variable so
that closeness to the given context (that is, similarity) is determined in terms of
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the more significant variables. This kind of information is determined in advance
of prediction. One motivation for this procedure is to avoid an exponential explo-
sion of possibilities. It is assumed too difficult to determine the possible effect of
each combination of variables in predicting the outcome. As a consequence, some
function of the individual variables is proposed to predict the combined effect of a
group of variables.

In analogical modeling, in principle at least, all variables are given the same
weight. In determining the analogical set for a given context, homogeneity and
the resulting gang effects ultimately account for the statistical significance of any
particular combination of variables.

Some researchers in analogical modeling (such as David Eddington – see his
article in this volume) have experimented with giving extra weight to particular
variables (by repeating the variable a number of times in the data specification).
This may be helpful from a heuristic point of view, although it cannot be correct
in principle, at least for variables of the same type.

But for cases where the variable specification may involve completely different
kinds of variables, the following question thus arises: Should phonological, seman-
tic, social, and syntactic variables all be equally weighted with respect to each other?
It seems quite appropriate that within the same kind of variable, weighting could
be the same for each variable. Thus far in analogical modeling, there has been little
mixing of classes. For instance, in Analogical Modeling of Language, the variables
used to predict the Arabic terms of address (Section 4.5, Skousen 1989:97–100)
are all social variables (gender, age, social class, and familiarity). In predicting the
Finnish past tense (Chapter 5, Skousen 1989:101–136), there are only phonological
variables (specifying phonemes and basic syllabic structure). What would happen
if we had a dataset with specifications involving both a social variable (such as gen-
der) and a phonological variable (whether the initial segment is a vowel or a con-
sonant)? Should both these variables from different classes be equally weighted? It
seems unlikely that they would be, but how to compare their weight seems unclear.
Following Eddington, one could use analogical modeling as a kind of discovery
procedure to see which multiples of variable classes would predict the best results.
Ultimately, such an approach seems problematic.

Another difficulty with weighting deals with the zeros that show up in the
data representations. Some of these zeros are redundantly so. For instance, if we
specify say a third syllable, we could represent the non-occurrence of that syllable
by specifying the vowel as a zero. Surrounding consonants that could occur if the
vowel existed would also be zeros, but redundantly. Typically, in analogical mod-
eling, such redundant zeros have been represented by equal signs. In running the
computer program, one can choose to ignore such redundant zeros, and in fact
nearly all applications of analogical modeling thus far have followed this choice.



Issues in Analogical Modeling 

(Non-redundant zeros, on the other hand, have always been treated as regular
variables.)

Recent research in analogical modeling has suggested there may be cases where
redundant zeros should perhaps be treated the same as non-redundant zeros (that
is, as actual variables). One place where this may be crucial is when we compare
words with a differing number of syllables. Consider, for instance, the two Finnish
verbs kasta- ‘to baptize’ and tarkasta- ‘to examine’. We first line up the two verbs
from the end of each word:

= 0 = k a s t a
t a r k a s t a

The difference between the two is that there is an antepenultimate syllable for the
longer one, but none for the two-syllable one. In terms of variable specification, we
can mark the shorter one as having a non-redundant zero for its antepenultimate
vowel and two redundant zeros for the possible onset and coda for that syllable
(that is, as ‘=0=kasta’). Now the question here is whether the difference between
these two words is just one variable. If we ignore the redundant zeros (the equal
signs), we only have one difference. But if we treat the redundant zeros as actual
zeros, we get three differences:

difference of one difference of three
= 0 = k a s t a 0 0 0 k a s t a
t a r k a s t a t a r k a s t a

It seems quite reasonable that we should somehow count the whole syllable differ-
ence when comparing words with a differing number of syllables. This would mean
that in making predictions, there would be more distance between such words,
which seems more reasonable than always assigning a uniform difference of one.

We can see this difference quite clearly when we compare the verb soitta- ‘to
ring’ with three longer verbs: osoitta- ‘to show’, tasoitta- ‘to level’, and taksoitta-
‘to assess’. If we ignore the redundant zeros, we consistently get a difference of one
between soitta- and each of the three-syllable verbs. But if we count all the zeros,
we get a sequence of verbs that move further and further away from soitta-, which
seems intuitively correct:

redundant zeros no redundant zeros
given verb (soitta-) =0=soitta 000soitta

number of differences:
osoitta- 0o0soitta 1 1
tasoitta- ta0soitta 1 2
taksoitta- taksoitta 1 3
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These results suggest that in comparing words with a differing number of syllables,
redundant zeros may need to be counted as real zeros.

Effects of parameter specification

One important aspect of analogical modeling is that adjusting parameters and con-
ditions doesn’t make much difference in the resulting predictions. This is quite dif-
ferent from neural networks, where there are so many parameters and conditions
to manipulate that almost any result can be obtained. One wonders if there is any
limit to what can be described when so many possibilities are available. Lately, this
same problem seems to be afflicting nearest neighbor systems, especially given all
the different ways of measuring the global significance of each variable (and thus
determining closeness).

Recent work in analogical modeling, on the other hand, suggests that in ana-
logical modeling it is difficult to manipulate parameters to get different predictions.
This is actually a desired result. Consider, for instance, whether random selection
is done by choosing either an occurrence or a pointer (see Skousen 1992:8–9).
The first choice provides a linear-based prediction, the second a quadratic one.
Yet when either method is used in analogical modeling, we get the same basic re-
sults except that under linearity we get a minor increase in fuzziness at category
boundaries and around exceptional occurrences.

We also get the same basic results when we consider the conditions under
which a given outcome can be applied to a given context. This problem first arose
in trying to predict the past tense for Finnish verbs. In Analogical Modeling of
Language (Skousen 1989:101–104), the three possible past-tense outcomes were
narrowly restricted by including a number of conditions:

outcome V-i: replace the stem-final vowel by i
additional conditions: none

outcome a-oi: replace the stem-final a vowel by oi
additional conditions: the first vowel is unround
(i, e, or a)

outcome tV-si: replace the sequence of t and the stem-final non-high
unround vowel (e, a, or ä) by si

additional conditions: the segment preceding the
t is either a vowel or a sonorant (that is, not an
obstruent)

Further, these added conditions had been assumed in all rule analyses of the
Finnish past tense.
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But these added conditions are not part of the actual alternation (which re-
places one sound – or a sequence of sounds – by another). So one obvious exten-
sion of applicability would be to ignore these additional conditions and allow an
outcome to apply only whenever a given verb stem meets the conditions specified
by the actual alternation:

outcome V-i: replace the stem-final vowel by i
outcome a-oi: replace the stem-final a vowel by oi
outcome tV-si: replace the sequence of t and the stem-final non-high

unround vowel (e, a, or ä) by si

The argument for relaxing the conditions is that the analogical model itself should
be able to figure out the additional conditions since they occur in the verbs listed
in the dataset.

But one can even go further and let every outcome apply no matter what the
stem ends in:

outcome V-i: replace the stem-final vowel by i
outcome a-oi: replace the stem-final vowel by oi
outcome tV-si: replace the stem-final sequence of consonant and vowel

by si

The argument here is that the analogical model itself should be able to figure out
the alternation itself.

Applying these different conditions on outcome applicability, the results
were essentially the same. The only difference in prediction (using selection by
plurality) occurred in a handful of cases of nearly equal probability between
competing outcomes.

In other words, analogical modeling doesn’t provide many opportunities for
varying parameters and conditions. We get the same basic results no matter
whether we randomly select from the analogical set by occurrence or by pointer –
and no matter what the degree to which we restrict the conditions on outcome
applicability. The only real way to affect the results is in the dataset itself, by what
occurrences we put in the dataset and how we specify the variables for those occur-
rences. And specifying the dataset is fundamentally a linguistic issue. Thus analog-
ical modeling is a strong theory and is definitely risky. It is not easily salvaged if it
substantially fails to predict the right behavior.

Categorizing the outcomes

In predicting the past tense in English (see Derwing & Skousen 1994), the following
issue comes up: Should the regular past tense be considered a single outcome or
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three different outcomes. From a concrete point of view, we could argue that there
are three different regular past-tense forms in English: -d, -t, and -Ed (where E
stands for the schwa vowel). The distribution of these forms is determined by the
final sound of the present-tense stem:

if the final sound is an alveolar stop (t or d), add -Ed:

-Ed paint painted

otherwise, if the final sound is voiceless (p, f, θ, s, š, č, k), add -t:

-t laugh laughed

otherwise, add -d:

-d use used

On the other hand, one could take an abstract approach and assume that there is
only one past-tense form (namely d) and that the other two pronunciations are
predicted phonologically: when preceded by an alveolar stop, schwa is inserted
before the d suffix; otherwise, d is devoiced to t when preceded by a voiceless
consonant.

A similar underlying assumption of categorization is involved when trying to
predict three past-tense outcomes for Finnish: V-i, tV-si, and a-oi. Two of these out-
comes involve the class symbol V (for vowel), yet in actual fact the morphological
alternations themselves involve specific vowels, and not every possible vowel:

V-i e-i tule- tuli
ä-i pitä- piti
a-i muista- muisti

tV-si te-si tunte- tunsi
tä-si tietä- tiesi
ta-si taita- taisi

a-oi a-oi autta- auttoi

So using specific vowels instead of V , we could break up V-i into three sepa-
rate outcomes (e-i, ä-i, and a-i); similarly for tV-si, we would have te-si, tä-si,
and ta-si. Using such a system with more outcomes, gang effects in the contex-
tual space would be dramatically reduced because similar outcomes would now be
considered different outcomes, thus reducing the amount of homogeneity in the
contextual space.

These problems in categorization consistently show up in analogical modeling
(and every theory of language, for that matter). Whenever we specify the outcomes
for a dataset, we are making decisions about categories. If we combine a number
of specific outcomes into a more general one, the chances are greatly increased
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that our predictions will be less fuzzy and involve considerably stronger gang ef-
fects. One wonders then if there isn’t some way we can let the analogical system
itself determine the outcomes (which, after all, is a problem in categorization).
This question is now beginning to be considered (see Christer Johansson’s article
in this volume).

The exponential explosion

Analogical modeling, as is well-known, tests all combinations of variables. If there
are n variables, we get 2n combinations. Basically, increasing the given context by
one variable doubles the memory requirements as well as the running time (see
Section 6.1 of Analogical Modeling of Language, Skousen 1989:137–139). This ex-
ponential explosion is much like the folk story about the peasant who got his
prince to give him a penny on the first day of the month and agree to double
the amount for each subsequent day of the month. After about half the month
was over, the prince suddenly realized that his little agreement was soon going to
bankrupt him. (On the last day of a 31-day month the prince would have to pay
out 230 = 1,073,741,824 pennies, and the total payment for the whole month would
be 231 – 1 = 2,147,483,647 pennies, over $21 million, given a hundred pennies to
the dollar.)

Our research group has tried several different approaches to dealing with the
exponential explosion. One constant approach has been to fine-tune the computer
program, based on the original Pascal program given in Appendix 3 of Analog-
ical Modeling of Language (Skousen 1989:191–204). The original program could
handle only about 12 variables, but more recent improvements (including a ma-
jor rewriting of the program in Perl) allow us to run over 20 variables. Still, the
exponential effects are there and are ultimately unavoidable.

A few years ago, our research group considered a revised algorithm that does
not keep track of every possible combination of variables, but instead stores in-
formation about certain crucial heterogeneous supracontexts which define the
boundary between homogeneity and heterogeneity in the multi-dimensional con-
textual space. Still, the exponential explosion occurred, sometimes extraordinarily
so, especially if there were supracontexts involving non-deterministic behavior. But
one helpful result was that the exponential explosion occurred only in time, not
in memory.

This last result suggests that perhaps parallel processing might be applied to
this revised algorithm in order to reduce the intractable exponential explosion to a
tractable solution which could perform linearly in time and memory. In Section 6.1
of Analogical Modeling of Language (Skousen 1989:137–139), it was shown that
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applying parallel processing to the original algorithm would reduce the program
to a linear function in time, but the memory requirements would only be reduced
by a factor on the order of 1/

√
n. Since the revised algorithm already reduces the

memory requirements to a linear order, parallel processing would only need to
reduce the running time to linearity.

Quantum Analogical Modeling

Since 1999, Skousen has been working on a completely different approach to deal-
ing with the exponential explosion – namely, by re-interpreting analogical model-
ing in terms of quantum computing. Quantum computing operates on the prin-
ciples of quantum mechanics and can, in theory, simultaneously keep track of an
exponential number of states (such as 2n supracontexts) in terms of n quantum
variables (called qubits, short for quantum bits). With such a quantum approach,
we can potentially reduce intractable exponential problems to tractable ones. This
has been demonstrated by Peter Shor’s 1994 discovery that quantum computing
can reduce the running time for finding the two primes of a long integer (used in
coding and decoding messages) from an intractable exponential processing time
(when run on classical computers) to a tractable polynomial one – if only one had
a quantum computer to run it on. Although there is no practical hardware imple-
mentation yet of a quantum computer, Shor showed in principle there was at least
one important case of exponentiality that could be overcome using quantum si-
multaneity. This result strongly suggests that perhaps the solution to the exponen-
tial explosion in analogical modeling is not to avoid it or try to circumvent it, but
rather to use the inherent parallelism of quantum computing to directly account
for the exponentiality.

The evidence from language behavior continues to support the requirement
that all possible combinations of an unlimited number of variables need to be han-
dled, yet within linear time. Moreover, examples of local predictability (such as
sorta- in Finnish) show that speakers do not determine in advance which combi-
nations of variables are significant. These decisions are always made “on the fly”
and for a specific given context. The exponential explosion is obvious in analogical
modeling (and from the beginning has been recognized as inherent).

Other procedural approaches such as neural networks and nearest neighbor
systems attempt to avoid the exponential explosion by trying to determine (often
indirectly) the “most significant” variables and thus limit the number of possibili-
ties that must be considered. For neural networks and the more sophisticated near-
est neighbor approaches, the attempt to reduce exponentiality occurs in a “training
stage”. This task is a global one and is inherently exponential since ultimately there
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is no effective limit on the number of variables that must be considered and no
principled way to account for any given combination of variables from acting in a
statistically distinct way.

Most recently, working within a model of quantum computing, Skousen has
been able to develop a quantum-based algorithm that deals directly with the expo-
nential explosion and significantly re-interprets the basic approach to determining
the analogical set and selecting an appropriate supracontext for predicting its be-
havior (see his article on quantum analogical modeling in this volume). The origi-
nal description of analogical modeling discovered in the early 1980s (and described
in Analogy and Structure, Skousen 1992, as well as Analogical Modeling of Language,
Skousen 1989) was designed to account for language behavior, yet the fundamental
equivalence between quantum computing and analogical modeling (unknown to
Skousen at the time) was already present in the theory of analogical modeling and
perhaps explains why the fundamental theory itself has remained unchanged since
its first explication.

Theron Stanford, a member of the analogical modeling research group, has
rewritten the basic analogical modeling program to take advantage of the clas-
sical subroutines and procedures in the quantum-computational algorithm. The
new program, running (of course) on a classical, non-quantum computer, demon-
strates substantial improvements in determining the analogical set, although the
exponential explosion still shows up since the classical computer cannot directly
account for quantum simultaneity.

Current work in procedural linguistic approaches has emphasized what one
might call the “neurological temptation” – that is, the desire to remake every lan-
guage problem into one involving neurons (or connections that have the appear-
ance of neurons). Analogical modeling, on the other hand, argues for what one
might call the “quantum temptation”.
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Chapter 3

Skousen’s analogical approach as an
exemplar-based model of categorization

Steve Chandler

This paper continues the effort begun in three earlier papers (Chandler 1993, 1994,
1998) to locate Skousen’s analogical model of language (AM) (Skousen 1989, 1992)
in a larger theoretical and empirical framework within experimental cognitive psy-
chology. Insomuch as possible, I shall not repeat the contents of those earlier pa-
pers, except to correct some errors in them. Instead, I try here to expand upon
those works by fixing Skousen’s analogical model much more explicitly and pre-
cisely into a broader framework of category representation and associated cogni-
tive processes. My goal is to show that the analogical approach provides us with
a powerful, unifying framework for understanding how our brains construct and
use “concepts” or “categories” from our memories for specific experiences, both
linguistic and nonlinguistic.

The overall plan of this paper is first to describe how analogical modeling
functions as a general theory of categorization, second to describe in some detail
the contributions of that framework to our understanding of certain key cogni-
tive processes and behaviors, and finally to conclude with an analogical modeling
account for data said to argue strongly for a symbolic-rule based component for
English past-tense verb morphology. This paper consists of a broad literature re-
view and synthesis interspersed with brief simulations demonstrating the ability of
the analogical approach to model data which have proven problematic for other
approaches.

. Preliminary considerations

Cognitive psychologists often single out categorization, or classification, as per-
haps the most fundamental cognitive act. Over the past quarter century at least
four major kinds of categorization theories (now essentially reduced to three) have
competed with one another for widespread acceptance, each associated with its
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own school of major proponents. Curiously, however, with at least two notable ex-
ceptions to be discussed below, two of those schools of categorization have come to
be studied, tested, and debated most intensely within the field of linguistics, while
the other two have competed almost exclusively within cognitive psychology. I try
to illustrate this curious split in Figure 1.

Admittedly, Figure 1 greatly oversimplifies the situation in both linguistics and
psychology. For each of the four types of models represented in Figure 1, there
are numerous variations not shown, and for virtually every possible pairing of the
four classes of models shown there, there are hybrid models which have been pro-
posed, tested, and discussed. However, following Broadbent’s (1987) suggestion, I
find it more useful heuristically here to compare classes of theories sharing certain
key defining characteristics than to become enmeshed in the details distinguishing
among the alternatives within one class of theories. The one exception to this is my
more detailed comparison of Skousen’s AM with other exemplar-based theories.
Thus, Figure 1 serves more as a schematic representation for the points I want to
make about the study of categorization in linguistics and psychology than it does
an effort to characterize the full range and variety of theories.

Perhaps the single most curious fact about the two academic disciplines repre-
sented in Figure 1 is how rigidly they partition into the two disciplines the types of
cognitive models that they are willing to consider seriously. The bottom line in the
figure represents the two major exceptions to this alignment of disciplines and the-
oretical frameworks, which I discuss below. Thus, within linguistics Steven Pinker
and his colleagues couch the debate almost exclusively in terms of symbolic-rule
systems versus connectionist models (e.g., Pinker & Prince 1988; Prasada & Pinker
1993). On the few occasions that proponents of the symbolic-rule school do allude
to an exemplar-based model such as Skousen’s AM, they lump it together with
connectionist models and dismiss it out of hand with the same arguments used
against the connectionist models. The connectionist linguists, on the other hand,
virtually never consider exemplar-based alternatives to their own approaches ei-
ther. I do not know why connectionist linguists do not consider exemplar-based
models as alternatives to their own approaches, but I surmise that it is at least in
part because they have accepted McClelland and Rumelhart’s claim (1986a:199ff.)
that their PDP connectionist models can account for the instance-based effects said
to motivate exemplar-based models as an alternative model of categorization.

What makes the attitude of the linguists toward instance-based models partic-
ularly curious, indeed even ironic, is the situation represented on the other side of
Figure 1. For almost 30 years now, one of the core debates in psychology has been
exactly the issue of whether exemplar-based approaches (or instance-based, I will
use the terms interchangeably)1 or schema-abstraction models of prototype theory
(including both rule schemas and connectionist representations) better account
for the experimental data on concept learning and categorization. The proponents
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of these two schools of thought certainly see important theoretical and empiri-
cal differences between prototype models and exemplar-based models of cognitive
processes. I have described elsewhere why highly respected observers of the debate
(e.g., Hintzman 1990; Ashby 1992; Estes 1994; Shanks & St. John 1994; Shanks
1995) all conclude that the exemplar-based models are better supported empiri-
cally by the experimental data than are the rule or schema abstraction models –
better supported but not unequivocally supported by the data. Shanks (1995), for
example, despite an apparent preference for exemplar-based models, cites evidence
from artificial grammar learning (AGL) studies which he, and others, see as impli-
cating some sort of rule or schema abstraction process, possibly as part of a dual
representational system analogous to the dual system of verb morphology repre-
sentation posited by Pinker and his associates. Because of its similarity to the lin-
guistic debate and indeed because it has been cited in support of that debate (cf.
Ullman, Corkin, Coppola, Hickock, Growdon, Koroschetz, & Pinker 1997), I will
examine this issue in some detail in Section 3. Nevertheless, Estes (1994:51) charac-
terized as “curious” the fact that the prototype abstraction models, now generally
embodied in connectionist form in the cognitive psychology literature, continue
to be by far the “most visible” variety of categorization theory in the literature al-
though “exemplar-similarity models” have been much more successful empirically
over the previous decade.

With the possible exception of certain researchers within the AGL paradigm,
whose work I discuss in Section 3.1, cognitive psychologists today do not generally
consider explicitly the kinds of symbolic-rule systems assumed by the linguists on
the left side of Figure 1. Apparently, most cognitive psychologists see such rule-
based systems as having gone the way of the information processing models in-
spired by computer programming analogies and popular in the 1970s (e.g., Klatzky
1975; Miller & Johnson-Laird 1976; Lindsay & Norman 1977). In the discussion
which follows, we will see incidental references to rule-based cognition, but what
those researchers call rule-based behavior is nothing like the unconscious gram-
matical systems posited by most theoretical linguists. Instead, the psychologists
appear to mean the strategic, conscious application of algorithmic-like procedures
to the solving of some specific problem. Although I will not consider this kind of
rule-based processing further, it is worth noting that there are models based on ex-
perimental findings which suggest that even such rule-based operations may rely
ultimately on the step-wise application of exemplar-based knowledge in order to
operate and may be replaced by exemplar-based data-bases in memory as people
become more experienced at solving the relevant problems (Logan 1988; Nosofsky
& Palmeri 1997).

Another curious fact represented in Figure 1 – and important for the discus-
sion that follows – is that both many linguists and many psychologists lump con-
nectionist models and prototype models (à la Posner & Keele 1968; Rosch 1973)
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into the same theoretical category. What is curious about this is that there are both
other linguists and other psychologists who identify closely with connectionist ap-
proaches to modeling language and who insist that connectionist models are not
prototype models, but as is so often the case in such disagreements, the difference
appears to lie mostly in the different meanings different researchers assign to the
term prototype. Estes (1994) identified at least four significantly different working
definitions of “prototype” commonly used in the cognitive psychology literature:

1. a cover term for the “prototype effects” described by Rosch (1973) and others
as summarized below;

2. a hypothesized mental representation summarized and schematicized from
perceptual experiences (e.g., Posner & Keele 1968);

3. the “central tendency” of a category of exemplars; it may or may not have its
own structural existence in the brain; it could be just an “effect” of unknown
origin, a prototype effect;

4. a “focal member”, “a highly representative exemplar of a category” which can
stand for the entire category as a default interpretation.

In all fairness, it probably is not appropriate to equate the most familiar con-
nectionist models with Definition (4). Such connectionist models do not nor-
mally store or retain exemplars (that is, individual representations of input
stimuli), McClelland and Rumelhart’s apparent claim (1986a:199ff.) to the con-
trary notwithstanding (see Section 2.2.1). Definition (2) also may not be a fair
characterization of connectionist models. It depends on what one means by “men-
tal representation” of a category. If it is a unique, or mostly unique, ensemble of
neurons dedicated to representing a particular concept, then most connectionist
models clearly are not prototype models of that sort. On the other hand, if one
takes the pattern of weighted connections among units of a trained connectionist
network to be in some sense equivalent to our mental representations of experi-
ences, then such models are fairly called prototype models. Finally, Definitions (1)
and (3), central tendency representations that give rise to the prototype effects (de-
scribed just below), seem properly applicable to connectionist models, and, indeed,
McClelland and Rumelhart (1986a:182ff.) say so quite clearly and explicitly.

The bottom line in Figure 1 represents the final curiosity that I want to com-
ment on, the two major exceptions to the alignment of theories and disciplines just
described and, therefore, major focal points for comparing the adequacy of all four
classes of theories. Reber (1967), a psychologist, has long sought to demonstrate
that people can and do abstract schematicized representations from experiences.
His artificial grammar learning paradigm, motivated originally by theoretical lin-
guistic rules, has become a major focal point in psychology for the debate over
rule-learning versus instance-based theories. I examine this debate too in some de-
tail below. Curiously, in experimental psychology, as in linguistics, the debate that
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began as rule-based systems (specifically finite-state grammars) versus instanced-
based alternatives has also evolved so as to include prototype abstraction in connec-
tionist networks versus instance-based approaches (e.g., McClelland & Rumelhart
1986a; Dienes 1992). Thus, in the AGL debate, we see all four types of models listed
in Figure 1 represented. The other crossover shown in the bottom line of Figure 1 is,
of course, Skousen (1989, 1992) and his analogical approach to modeling language.

. Prototype effects, instance effects and models of categorization

All models of categorization use some measure of “similarity”, either explicitly or
implicitly, to predict behavior on concept learning and categorization tasks, yet
each does so in a different way. It is precisely those differences which allow us
to evaluate those alternative models by comparing their predictions of behavior
with actually observed behavior. In the case of models of categorization, there is
a large and diverse literature confirming many times over a body of robust exper-
imental effects having to do with the basic characteristics of human categoriza-
tions. Any adequate model of categorization will have to account for those effects
as well as sundry other effects seen in such closely related tasks as recognition,
recall, and learning. I will review those key effects before turning to a more de-
tailed comparison of how the different classes of models shown in Figure 1 try to
address them.

First, with respect to the basic characteristics of naturally occurring cate-
gories – by which I mean categories not created artificially by rigid definition or
through the application of formal operations of logic or mathematics, but instead
categories arising spontaneously from our everyday kinds of perceptual experi-
ences – all show the prototype effects demonstrated in such work as Posner & Keele
1968 and summarized in Rosch 1973. These effects include the result that collec-
tively the members of a given category will show a “graded internal structure” in
that some members will seem (that is, be adjudged) “more typical” of the category
than will other members. Categories will show implicational relationships among
the characteristic features of its members. In other words, the presence of some
one or more identifiable features, such as scales and gills, will predict with some
specifiable probability the expected presence of other features such as fins and float
bladders. Finally, categories show “fuzzy boundaries” – that is, for the least typical
members of a category, it may not always be clear (that is, we will judge less reliably)
whether they are members of the given category or members of a different category.
Indeed, many natural categories are apparently nonlinearly separable. This means
that the categories actually overlap in their features and that one or more members
of one category may be more like the members of some other category in some
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respect than they are like the members of their own category. As a consequence,
there is no simple, obvious way to separate the two categories definitively by sim-
ply comparing general features. One may simply have to list some exceptions by
name. The categories of irregular past-tense forms in English illustrate nonlinear
separability well. In standard English bring looks and sounds much more like sing
or swing (which also overlap) than it does like the -ought verb class to which it really
belongs. Nonlinear separability appears to be closely related to what Skousen calls
heterogeneity in supracontexts and will become an important basis for comparing
the empirical adequacy of the various models discussed below.

Lakoff (1987), Comrie (1989), Croft (1991), and Taylor (1995), among others,
have surveyed a wide range of descriptive linguistic categories and have argued that
all of the demonstrated (or at least posited) linguistic categories known to them
show the same prototype effects characteristic of all other naturally occurring cat-
egories known to researchers. (I have added to their lists in my 1994 paper.) This
issue is important for evaluating the theories represented in Figure 1. The symbolic
models do not accommodate these prototype effects without considerable addi-
tional theoretical interpretation and processing apparatus. Such models partition
items deterministically into linearly-separable categories of behavior. One might
argue that language is special in that it is underlain by a competence grammar
that is different in kind from other mental faculties and that in such a competence
grammar the abstract, symbolic category markers operate deterministically with-
out any discernable evidence of internal category structure or content. A noun is a
noun is a noun. A verb is a verb, or, at least, a regular verb is a regular verb is a reg-
ular verb. The problem with this competence view of rules and category symbols
is that ultimately it is empirically wrong. Linguistic categories look and behave like
all other natural categories.2

Thus, within a competence model either the prototype effects summarized by
Lakoff, Taylor, and others show up only in the operations of certain components
of the language system, or they arise from some kind of unspecified “noise” in the
performance embodiment of the competence system. For example, it might be ar-
gued that they show up only when the contentless category symbols of competence
grammar become instantiated in acts of performance. In the past few years, some
proponents of competence models embodied as symbolic-rule systems have opted
for a dual-system interpretation, sometimes linking it to Squire’s (1992) neuropsy-
chological hypothesis of declarative versus procedural memory systems (cf. Ull-
man et al. 1997; Jaeger, Lockwood, Kemmerer, Van Valin, Murphy, & Khalak 1996;
Hagiwara, Sugioka, Ito, Kawamura, & Shiota 1999). In Sections 3.1 and 4 we will
see independent reasons to question these claims.
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. Connectionist models of categorization

The new generation of connectionist models – those inspired by the parallel dis-
tributed processing systems of Rumelhart and McClelland and their colleagues
(Rumelhart & McClelland 1986a; McClelland & Rumelhart 1986b) – have been
designed explicitly to model prototype effects more accurately and in intuitively
more satisfying ways than rule-based systems do (McClelland & Rumelhart 1986a).
Despite the many criticisms leveled against the connectionist simulations of the
English past-tense verb forms by the proponents of symbolic-rule systems (e.g.,
Pinker & Prince 1988, 1994; Prasada & Pinker 1993), ultimately those critics were
compelled by the evidence to adopt something like a connectionist approach to
account for just those verb forms which do not fit readily into a competence gram-
mar. Thus, the heart of the debate in linguistics, which I will return to in the
last section of this paper, has become now whether connectionist models alone
are adequate for accommodating both regular and irregular verb morphology or
whether those processes motivate the dual-route model championed by Pinker and
his associates.

The criticisms leveled against the connectionist models by proponents of the
symbolic-rule systems and others need not be rehashed here in any comprehen-
sive way (see Pinker & Prince 1988, 1994; Chandler 1993, 1994). In general, those
criticisms fall into two groups: relatively minor objections to a particular imple-
mentation and demonstration, many of which have been redressed in subsequent
studies (e.g., failing to use meaning to distinguish between homophonous verbs
such as lie versus lie) and much more serious objections to the framework itself
(e.g., objections to back-propagation as a learning procedure or to the vulnera-
bility of such systems to catastrophic interference or to their failure to model dif-
ferent kinds of probabilistic responses accurately). There are, however, several sys-
temic characteristics of connectionist models as models of categorization which
are worth reviewing in preparation for the comparisons and evaluations to be
presented below.

In their PDP volumes, McClelland and Rumelhart actually describe two differ-
ent types of connectionist models, pattern associators and autoassociators (Rumel-
hart & McClelland 1986a; McClelland & Rumelhart 1986b), commonly repre-
sented as shown in Figure 2.3

It is important to distinguish these two types of networks because their be-
haviors are different in several crucial respects, leading to different strengths and
weaknesses in modeling different kinds of cognitive operations. The pattern asso-
ciator networks (or feedforward networks, as they are also called) learn to associate
different input patterns with different output patterns. In their simplest form, ev-
ery input unit is connected to every output unit. Thus, they are used when one
wants to model the association of patterns of similar input stimuli to particular
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output representations such as alternative category labels or alternative past-tense
forms. These are the types of connectionist systems that have been used to model
past-tense verb form acquisition and use. In the autoassociator, on the other hand,
instead of feeding the input forward to a second set of units, each unit in a com-
mon group of units feeds back to every other unit in the network (but not to itself).
Thus, the network learns, through exposure to many stimuli, to associate the fea-
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tures of those input stimuli into a common representation for them, namely their
central tendencies and deviations from them. After training, the output (stabilized
levels of activations among the units) is a result of an interaction of the input fea-
ture values with the central tendencies (and deviations from them) stored in the
network. Autoassociators are used to model prototype effects and have been used
to model the artificial grammar learning tasks to be described below.

As noted above, connectionist systems were developed in large part to offer
an intuitively more satisfying model of certain prototype effects (McClelland &
Rumelhart 1986a), specifically the typicality effects, the graded internal structure,
the fuzzy boundaries among concepts, and the implicational relationships among
stimulus features. Thus, the pattern associator used by Rumelhart and McClelland
(1986b) to model past-tense verb forms does model graded category membership
well and fuzzy category boundaries, but such systems can only model linearly sepa-
rable (that is discrete, non-overlapping) categories.4 Recall that in nonlinearly sep-
arable categories, a member of one category might actually be more like the pro-
totype of another category than it is like the prototype of its own category. Yet, as
Shanks (1995) points out, not only do humans routinely learn nonlinearly sepa-
rable categories, but under some common circumstances, we actually learn them
faster than we do some similar but linearly separable categorizations (e.g., Medin
& Schwanenflugal 1981).

McClelland and Rumelhart (1986a) note, and subsequent simulations have
confirmed (e.g., Plunkett & Marchman 1991), that pattern associators with so-
called “hidden units”, namely additional layers of units between the input and out-
put layers, can learn nonlinearly separable categorizations. In fact, as McClelland
and Rumelhart (1986a:210) acknowledge, “given enough hidden units”, pattern
associators can learn any arbitrary pairing between input and output, but the sys-
tems can do so only by using externally triggered back-propagation as the learning
mechanism (Shanks 1995). Unfortunately, this sort of back-propagation is not a
neurologically plausible model of learning (Crick 1989; Edelman 1987). Neverthe-
less, Kruschke (1992) developed a hybrid connectionist-exemplar model, alcove,
by assigning a hidden exemplar-representing unit (a type, not a token) to each dif-
ferent stimulus item included in the training set (one meaning of the term “exem-
plar”), but he still used back-propagation as the learning mechanism for adjusting
connection weights. Thus, even though alcove does model nonlinear separabil-
ity well and overcomes catastrophic interference, it still suffers from the theoretical
and empirical problems inherent with back propagation.

Besides not corresponding to any known neurological process, back propa-
gation also encounters several other empirical problems as a learning procedure
due to the delta rule used to implement it. The delta rule is the formula used to
“strengthen” (increase) the connection between units that have both been acti-
vated on a given training trial and to “weaken” (decrease) the connection between
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an activated unit and an inactivated unit on a given training trial. This latter feature
is usually called “decay”, and that is one of the theoretical problems with the delta
rule. As Shanks (1995) noted in passing, there is virtually no empirical justification
for the notion that people forget or weaken a memory trace once it has been laid
down (see also Estes 1994). Certainly memory traces are not intentionally weak-
ened as part of a learning process. On the contrary, the evidence suggests much
more strongly that what we call “forgetting” is better characterized as a problem
of memory access rather than one of actually forgetting something once learned
(see the discussion of proactive memory interference below). Shanks concluded
that any learning model that relies on the notion of memory decay to make its
outcomes come out right is inherently suspect.

The delta rule creates different kinds of empirical problems for pattern asso-
ciators and autoassociators. For example, Shanks (1995) described several sets of
findings that he considers problematic for certain instance-based accounts of as-
sociative learning (specifically, Hintzman’s multiple trace model and Nosofsky’s
generalized context model). Three of those findings – perceptual learning, latent
inhibition, and conditional cue extinction – seem to me to be even more prob-
lematic for the delta rule and connectionist models of learning while not at all
problematic for Skousen’s analogical model.

Perceptual learning refers to the incidental learning about background or con-
textually coincidental features not having any evident significance for the concept
being learned. In a pattern associator, the nonsignificant features would be as likely
to occur with outcome A as with outcome B. Therefore, the decay function would
keep the value of those connections very low, having no real information value.
Meanwhile, in the autoassociators, features occurring incidentally with input ex-
emplars will take on an exaggerated value in the resulting representation. Both
results turn out to be wrong when compared with experimental data. McLaren,
Kaye, and Mackintosh (1989) found that occasional, coincidental exposures to co-
occurring stimuli may enhance the subsequent associative pairing of those stimuli
even if their co-occurrence has not been significant or consistent in the past. Thus,
a pattern associator that reduces their value to chance underestimates their signifi-
cance. Conversely, McLaren et al. (1989) also described what they labeled as “latent
inhibition”, the second finding that is problematic for connectionist models. If a
stimulus is presented on its own with no consequences and no association with an
outcome, later pairing of this stimulus with an outcome on subsequent presenta-
tions will actually retard its association with that outcome when compared with
the learning rate for a new stimulus-plus-outcome pairing.

The third experimental finding that Shanks considered problematic for those
instance-based models that he considered, but which I believe actually to be more
problematic for connectionist models, is the phenomenon of “cue extinction”. Sim-
ply put, cue extinction refers to the empirical observation that if a subject has
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learned to pair a given cue with a given outcome, then presenting that cue on
subsequent trials with no associated outcome will first reduce the probability of
responding to that cue with the previously associated outcome and will lead even-
tually to the apparent “extinction” of the association. The delta rule would appear
to model this accurately. However, Shanks finds “curious” the fact that so-called
“conditional inhibitors” do not extinguish in the same way. For example, if a rat
first learns that a flash of light signals that a shock is to follow and that a light-
plus-a-tone signals that no shock will follow, simply sounding the tone alone with
no associated outcome will neither extinguish nor even reduce the effectiveness
of the light-plus-tone cue as a signal that a shock will not follow. The delta rule
predicts that the effectiveness of the tone as a cue ought to be reduced, as do the
instance-based models considered by Shanks. As I demonstrate below, Skousen’s
analogical model appears to account for all three phenomena (perceptual learning,
latent inhibition, and extinction) easily and naturally within a single mechanism.

Two other important issues with respect to the adequacy of connectionist sys-
tems as learning models are the number of training exposures required to associate
a pattern with a given outcome and then the number of subsequent trials required
to learn a contrasting pattern or to change a previously established response pat-
tern. Connectionist modelers using back propagation rely on hundreds or some-
times even thousands of trials, each causing a tiny, incremental change in the con-
nection weights to “train up” the network. Yet, as Estes (1994) reminds us, real
people can often learn simple concepts in one or two trials, and they can begin to
reflect the objective probability of a variable outcome in as few as ten trials. More-
over, subjects learn a new, different response for an established categorization-plus-
response equally quickly given many previous exemplars (tokens) of the old cate-
gory response or only a few. Theios and Muise (1977), for example, reported a read-
ing latency study in which they compared reading times for real words to reading
times for matched pseudo-spellings (e.g., grene versus green). As one might expect,
they found that the real-word spellings were read aloud about 20 msec. faster than
were the pseudo-spelling homophones. Almost as an afterthought, though, Theios
and Muise had the same subjects repeat the task with the same stimuli. Again as
one would expect, there was a learning effect. Their subjects increased their aver-
age speed by about 26 msec. in reading the pseudo-spellings aloud, which made
their latencies for these spellings just as fast, and sometimes even faster than the
latencies had been for reading the real words aloud on the first pass. Back propaga-
tion cannot replicate learning performances such as these, especially as the subjects
were given no explicit feedback as to which readings may or may not have been
“correct”.

The final issue I will discuss about connectionist models of categorization also
provides a transition into a discussion of exemplar-based models. McClelland and
Rumelhart (1986a:189ff.) claimed that their models can represent in the same net-
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work at the same time both representations of prototypes as well as coexisting rep-
resentations of “particular, repeated exemplars”. The example they describe is a
network that has been trained on repeated exposures to a variety of dogs – all as-
sociated with just the category label “dog” – and repeated exposures to two specific
dogs, one named “Rover” and the other named “Fido”. In time the network asso-
ciates each of the names with specific subpatterns of “dogs”, i.e., specific character-
istics. However, as described in the next section, this is not what the proponents of
the exemplar-based models mean by exemplar-based or instance-based representa-
tions. They are not talking about a mini-prototype created from repeated exposures
to a given individual (a type representation) in which the individual encounters
(tokens) are somehow amalgamated into a generalized schematic memory for the
individual while the details of the separate encounters are discarded or lost. What
we have is not a category-to-exemplar relationship but a category-to-subcategory
relationship.5 The reason this distinction is important will become clear in a mo-
ment when we examine some of the characteristics of exemplars that McClelland
and Rumelhart’s model cannot account for – at least not without adding an actual
exemplar model to their existing connectionist model.

McClelland and Rumelhart (1986a:200ff.) also describe their simulation of
several instance-based effects that Whittlesea (1983) had observed in a series of ex-
periments on the rapid perception of letter strings. The strings represented system-
atic distortions (letter changes) from a “prototype” letter string, some distortions
leaving a string “close” (more similar) to the prototype and some “further” (less
similar) from it. The subjects first trained on the category exemplars, then Whit-
tlesea tested their abilities to read and copy the strings accurately when they were
presented very briefly on a tachistoscope. He was interested in how much string
similarity to the prototype versus similarity to a more distant exemplar would help
string perception. He found that both helped about equally well. McClelland and
Rumelhart did indeed replicate Whittlesea’s basic findings, after a fashion. They
trained an autoassociator network on a set of strings from a single category (one
used in Whittlesea’s study) by giving their network a set of exemplars exhibiting
systematic distortions of that letter-string prototype. The autoassociator, of course,
developed a central-tendencies representation for those exemplars that were close
to the prototype, but the training set also consisted of enough units representing
enough features that it was also able to create localized representations for the out-
lying exemplars of the training set. Thus, when McClelland and Rumelhart tested
the system with new exemplars that were closer to the prototype than to the out-
liers, it activated the units associated with the prototype more strongly, and when
they presented it with a test item that was more similar to one of the outlying mem-
bers of the training set than it was to the prototype, it activated those units more
strongly than it did the prototype.
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While McClelland and Rumelhart did replicate Whittlesea’s results for the out-
lier exemplars and for the prototype, these are not the sorts of instance effects
that have motivated and sustained work on exemplar-based models for over two
decades. The connectionist model did not represent competing prototypes within
the same system, as did Whittlesea (see Whittlesea 1987). Therefore, it did not ad-
dress the key issues of instance-based categorization. For example, it did not have
to decide whether a given exemplar was a member of category A or category B, al-
though it is possible that it could have learned to do so so long as the two categories
were linearly separable, which, as it happened, Whittlesea’s original training sets all
were. Shanks (1995) reports that he has replicated just such instance effects in cate-
gorization (involving genuinely competing categorizations) in a pattern associator,
using back propagation in a network containing enough units to allow the outlying
members of the categories to be represented distinctly. However, they were linearly
separable categories, and, thus, he too did not have to address the issues of over-
lapping, or nonlinearly-separable, categories and the consequent heterogeneity of
form and outcome for those categories.

. Instance-based models of categorization

Virtually all the work in cognitive psychology on instance-based models over the
past twenty years follows either directly or indirectly from Medin & Schaffer 1978, a
paper truly deserving the appellation “seminal”. What Medin and Schaffer were the
first to notice and demonstrate was that all the work up to that time on prototype-
based theories of categorization had confounded similarity to the presumed pro-
totype of a category with similarity to the individual members of the category. The
conventional wisdom of the time was that degree of similarity to a prototype, real
or implied, correlated significantly with such things as recall, recognition, catego-
rization accuracy, and categorization speed. Medin and Schaffer showed that sim-
ilarity to even an outlier member of a category, an instance, creates essentially the
same effects that similarity to a prototype seems to. This includes so-called “gang
effects”. An item close to a cluster of items, whether near the prototype or closer
to a cluster of outliers, will show “gang effects” (that is, a stronger influence from
that nearby cluster). What followed naturally from those findings was the hypoth-
esis that comparison to memories for individual instances of experience was alone
sufficient to account for the observed categorization behavior. Twenty years of sub-
sequent research has continued to debate whether exemplar-based models alone
are always sufficient to account for category learning and classification behavior
or whether there remains any evidence strong enough to compel us to posit addi-
tional neuropsychological processes, whether symbol-rule based or connectionist
based, for abstracting a schematicized category representation of our experience,
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of encoding that schematicized representation as some sort of long-term structural
change in our brain, and then using that schematicized representation to interpret
and respond to new encounters with stimuli.

Psychologists have long recognized that in addition to whatever abstract cate-
gory knowledge people may have, they also have the ability to remember and re-
call episodic memories – that is, memories for specific, biographical experiences
with specific exemplars (tokens) of people, places, and things. Such episodic mem-
ories, however, have generally been seen as some distinct kind of memory ex-
perience or memory system such as encompassed in Tulving’s (1983) semantic
versus episodic memory systems or Squire’s (1992) declarative (episodic) versus
nondeclarative memory systems (the latter comprised of various generalized cog-
nitive skills based on abstracted semantic generalizations). The theoretical claim
for structured knowledge representations is that somehow our brains extract gen-
eralizations from our everyday experiences (and in the process discard or ignore
much of the individualizing detail of the experiences that fed into the general-
ized knowledge structure) and somehow organize those abstracted generalizations
into schematicized knowledge structures that we use subsequently to interpret and
respond to new experiences.

In recent years Pinker and others have associated Pinker’s dual-system model
of linguistic behavior to dual-memory models such as Squire’s (see, for example,
Jaeger et al. 1996; Ullman et al. 1997; Hagiwara et al. 1999). The challenge that
exemplar-based or instance-based models pose to all such dual-system models is
the claim that a system which can account for all the relevant data by comparing
input directly to memory representations for individual episodes of experiences
obviates any empirical justification for a separate system of schematicized knowl-
edge representation, including any schematicized knowledge of language – which
is to say, grammar.

.. Instance-based models versus connectionist models of categorization
In this section I describe in more detail some of the characteristics of exemplar-
based models which make them both theoretically and empirically superior to the
schema abstraction approaches of connectionism (for other discussion of this issue
see Chandler 1994, 1995). Exemplar- or instance-based models are models that do
not posit schematicized representations of knowledge which have been somehow
abstracted away from our episodic memories for the experiences that underlie and
motivate learning. Instead of interpreting new or on-going experiences by compar-
ing current perceptual input to schematicized representations of past experiences,
an exemplar approach posits that we interpret the new input by comparing it di-
rectly to one or more episodes of past experiences evoked collectively into working
memory by experiential (perceptual, motor, affective) similarities between the cur-
rent input – the probe – and those episodic memory representations. Those evoked
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memories provide the basis for interpreting the probable significance of the new
input and for responding to it.

As mentioned earlier, exemplar-based models appear to account for many of
the prototype effects or central-tendency effects seen in concept learning and cate-
gorization studies just as well as the prototype and connectionist models do, mod-
els which were created explicitly for doing so. Thus, Hintzman’s multiple trace
model (1986) replicates closely various sets of human data derived through ex-
perimental studies of categorization, recall, and recognition. Nosofsky, using his
generalized context model (1986, 1990, 1992), has also replicated very closely
(accounting for 97–99% of the variance) a variety of studies on categorization,
recognition, familiarity judgments, and category learning. Nosofsky and Palmeri
(1997) have modeled reaction time changes during learning, and Logan (1988) has
demonstrated an instance-based model of automaticization during learning. That
exemplar-based models account for the prototype effects as well as prototype and
connectionist models do is a necessary but not sufficient prerequisite for theoret-
ically preferring the former class of models over the latter. However, as described
earlier, exemplar-based models also account for experimental data on category out-
liers and the learning of linear versus nonlinear separability that the connectionist
models do not account for, at least not without incorporating memories for in-
stances into the system. However, exemplar-based models also exhibit other im-
portant advantages over the other types of categorization models represented in
Figure 1.

One of the most obvious advantages enjoyed by exemplar-based models of
cognition is that they do not have to posit a separate system for the autobiograph-
ical memories that we all retain for episodes of personal experiences – including
personal experiences of being told something by someone. So far as I know, no
one has ever attempted a connectionist model of episodic memory processes, and
indeed, the general view appears to attribute episodic memory to a different neu-
rological and psychological memory system.6 Unfortunately for the proponents of
a schematic abstraction component in dual-memory systems, there is abundant
evidence that even in seemingly abstract acts of categorization, our brains retain,
have available, and use on demand much presumably irrelevant perceptual infor-
mation about the physical details of our previous experiences (e.g., Alba & Hasher
1983; Kolers & Roediger 1984; Burton 1990). In two recent papers, Barsalou has
summarized evidence for his position that all categorizations, even seemingly very
abstract ones such as “fairness” or “honesty” are perceptually based on episodic
memories for personal experiences (Goldstone & Barsalou 1998; Barsalou 1999).

Kolers and Roediger (1984), for example, noted that repeating in a test such
“non-significant features” as speech cadence, voice pitch, typography, word spac-
ing, modality (written versus oral) and other physical attributes of stimuli all en-
hance subsequent performance on memory and categorization tests. In a study
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of instance-based versus prototype learning effects, Whittlesea and Dorken (1993)
also found evidence that measures of stimulus similarity alone were not adequate to
account fully for his results. He noticed that details about the perceptual context –
the entire episodic context – were important for predicting and accounting fully
for subsequent test behavior. Work such as Kelly 1996 and Peters 1999 continues
to demonstrate that virtually any detectable physical characteristic of words may
contribute to how people interpret them as probes. Word-internal characteristics
such as word length (letters, phonemes, syllables), stress patterns, vowel nuclei, and
syllable structure all contribute to the likelihood that people will categorize a given
nonce word as a noun or a verb. No one of those features alone nor even any collec-
tion of them operates as a “rule”, yet people know intuitively that those differences
in physical characteristics correlate somewhat with lexical category and therefore
all contribute to the probabilities that a test word might be taken as a noun or as a
verb. Such perceptually-based categorizations also appear to play a role in language
change as well as language acquisition (Cassidy & Kelly 1991). Johnson and Mul-
lenmix (1997) have also recently compiled and reviewed evidence that such seem-
ingly nonsignificant perceptual details as voice quality affect speech perception and
processing – that is to say, on line recognition and classification of speech segments.

Research such as that just cited validates Skousen’s (1997) claim that “all vari-
ables of the dataset are considered a priorily equal”; in other words, we cannot de-
termine ahead of time which variables might become important for a subsequent
probe. In small datasets of exemplars, such as often is the case in experiments, and
perhaps in the early stages of language acquisition, stimulus sampling and changes
in attentional focus may show up in experimental effects. Over the long run, how-
ever, the law of large numbers takes over and such effects effectively cancel out one
another except as a more generalized notion of “noise” contributing to “imperfect
memory”. The fact that all perceptual information encoded into memory may re-
main potentially available for subsequent, unanticipated use does not mean that all
features will be used equally. As we will see below, there is evidence suggesting that
subjects do not consider all segments of letter or sound strings as equally important
for arriving at analogical comparisons.

The fact that apparently any perceivable features that are encoded as part of
the memory for an experience may be tapped subsequently as part of the probe
seeking memories for comparison has profound implications for theories of cate-
gory learning and classification behavior. Instead of requiring our brains to try to
anticipate before the fact what perceptual variables and what categories might be
important to us in some future circumstance, exemplar-based systems allow us to
form ad hoc categories on demand. The input probe itself creates the category by
specifying which variables are to be searched for and used to activate a set of expe-
riences from memory. Consider as a thought experiment a room full of a thousand
people.7 We could use many different labels to pick out indefinitely many different
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subsets of the population. We do not know ahead of time what subsets we might
want to identify for some given purpose, and there is no need to, indeed no advan-
tage for trying to (or reason to try to) organize them into a myriad of intersecting
potential categories based on our experiences with some of them as teachers, hus-
bands, wives, Presbyterians, or mathematicians who speak Swahili, etc. Barsalou
(1983, 1989) has studied the effects of just such ad hoc categorizations experimen-
tally and found that ad hoc categories also show the very same prototype effects
and exemplar effects exhibited for allegedly prestructured categorizations, and a
moment’s reflection will confirm that the same effects emerge for the categoriza-
tions named in the above thought experiment. (Consider, for example, Lakoff ’s
1987 discussion of “bachelor”.) This is an important finding because it suggests
that the effects arise from assembling any collection of items sharing any arbitrarily
identified set of features rather than resulting from our brains constructing knowl-
edge structures. Our ability to create ad hoc, perceptually-based categorizations on
demand implies that our memory systems encode a rich store of sensory informa-
tion about our experiences without regard for what information may or may not
be useful to us at some later date.8

Earlier, I described the theoretical and empirical problems that such inci-
dental learning of perceptual features poses for connectionist models. Shanks
(1995) argued that the perceptual learning effects and latent inhibition demon-
strated by McLaren et al. (1989) and the conditional cue extinction demonstrated
by Zimmer-Hart and Rescorla (1974) are all problematic for the exemplar-based
learning models that he examined (i.e., Hintzman’s 1986 multiple trace model
and Nosofsky’s 1986, 1992 generalized context model). As noted earlier, however,
Skousen’s AM suggests a straightforward interpretation of those learning effects in
the form of some further thought experiments.

An analogical account may begin with a learner who is going along blithely lay-
ing down episodic memories rich in perceptual as well as affective, kinesthetic, and
motor features, most likely without any particular regard for which features may or
may not turn out to be important in the future, as proposed by Burton (1990) and
Barsalou (1999). The memories for individual episodes may be filtered through
stimulus sampling (Neimark & Estes 1967) or through selective attention (Nosof-
sky 1986). They may be contaminated with “noise”, all of which contribute to im-
perfect memory, but over the long run, effects such as those will tend to cancel out
one another. These memory instances are available, nonetheless, to become part of
a dataset created on the fly by entering memory with an externally presented probe,
such as occurs in an item discrimination learning task. Any collection of episodic
memories evoked and linked by an input probe are apt to include coincidentally
co-occurring stimuli or stimulus features which will be available to contribute to
any new attempts to link any two of those stimuli as newly paired associates. Thus,
we get the perceptual learning effect observed by McLaren et al. (1989).



Skousen’s analogical approach as an exemplar-based model of categorization 

Now consider the same starting point as before, a learner blithely collecting
episodic memories full of coincidentally occurring and recurring stimuli and stim-
ulus features. This time an experimenter does not want just to teach the associa-
tion of repeatedly co-occurring stimuli but wants to associate a new outcome or
response to some previously recurring stimulus now used as the probe. It is just
because previous representations of the probe stimulus itself are present in the new
data set of memories activated by the probe that one sees a retarded learning curve
compared to control sets in which the cue and the outcome are both new to the
subject. Early in the learning sequence, the familiar probe will access both episodic
memories in which the probe stimulus is not associated with any particular out-
come and episodic memories in which the probe stimulus is paired with such out-
comes. With practice – accumulating episodes – the proportion of memories in the
dataset containing the probe and no outcome, versus those containing the probe
plus the newly modeled outcome, will shift, and with the shift, the probability of
responding to the probe with the associated outcome will also shift.

A parallel process accounts for the extinction of a previously associated cue
and response. Given a memory store that includes episodes of a cue being asso-
ciated with a particular outcome, one can cause that associated outcome to ap-
pear to be extinguished by adding new episodes in which the cue no longer pre-
dicts the outcome. When a probe activates the memories for the cue, some will
have the associated outcome and some will not. As the proportion of no-response
episodes increases, it will eventually overwhelm the number of paired-response
episodes, leading to a decreasing probability of responding until the behavior ap-
pears to be extinguished, even though nothing has really been forgotten or removed
from memory. The “curious” example of the “conditional inhibitor” described by
Shanks (1995:34) actually provides a particularly apt example of such extinctions
and lack of extinction at work in an analogical system. As Shanks describes it, the
subject has already learned – that is, accumulated sufficient episodes of – light→
shock and of light + tone→ no shock. Now, if the experimenter were to change the
trials to light→ no shock, the response to light would begin to extinguish, as just de-
scribed. However, the fact which Shanks finds “curious” is that presenting the tone
alone, with no associated outcome (or information value), apparently has no effect
on the information value of the light + tone cue. The presentations show no evi-
dence of reducing or extinguishing the response. The reason, of course, according
to the analogical model, is that adding the less specific context tone has no effect
on the ability of a more specific probe, e.g., light + tone to activate the episodes
containing the more specific combination of cues. This contrasts, as Shanks rec-
ognized, with the predictions of Hintzman’s (1986) multiple trace model in which
the separate episodic memory representations in memory consolidate with one
another to arrive at a composite interpretation, as we will see below.
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Since exemplar-based models do not try to abstract permanently stored
schematicized representations of knowledge from episodes of experiences, such
models do not need to posit special learning mechanisms beyond those already
required independently for explaining how experiences are encoded into memory
in the first place. The problem of accounting for the learning of such structured ab-
stractions of knowledge has long been a core issue in psychology and linguistics as
theorists have sought to explain how stimulus response contingencies might have
formed or how rules or schematic prototypes for categories might have emerged
from one’s learning experiences. As noted above, learning about our perceivable
world appears to progress with or without explicit feedback, or without overt out-
comes being associated with experiences, yet there is still much to be studied and
understood and described about learning. It is not adequate to say that it is “just
analogy”. For example, we do not know yet what counts as an episode or what
kinds of pieces our brains chunk experiences into, nor do we have any good ideas
about how those pieces of experiences are reconstructed into complex representa-
tions and behaviors (for suggestions, see Hintzman 1986; Burton 1990; Barsalou
1999). Nevertheless, we have identified some characteristics of learning which any
successful model will have to account for and which an analogical model such as
Skousen’s appears to account for more successfully than do connectionist models
or the alternative exemplar-based models discussed below.

Conceptually opposite to learning is forgetting. So ubiquitous is our subjective
experience of forgetting and so commonplace is the observation of it in recognition
and recall experiments that many associative models of learning incorporate some
factor to account for it (e.g., Hintzman 1986; Rumelhart & McClelland 1986a).
Nevertheless, Estes (1994) and Shanks (1995), among others, note that there is
virtually no evidence of normal, healthy brains forgetting experiences once they
have been encoded into long term memory, and, indeed, Shanks goes so far as to
label as suspect any learning model that relies on memory decay to work properly.
Instead, what we take subjectively to be forgetting is probably much more accu-
rately described as “noise” in the system, in the memory forming process in the first
place (stimulus sampling effects, selective attention effects) or as proactive inter-
ference from competing memories which make it difficult or seemingly impossible
for a probe to individuate them sufficiently to evoke a particular episodic memory.
For these reasons, Skousen’s appeal to “imperfect memory” as a modeling device
provides a more apt descriptive term than does “forgetting” or “decay”. We will
examine the effects of “imperfect memory” further in Sections 3 and 4 below.

.. Alternative instance-based models
The exemplar-based models of categorization extant in the literature differ, among
other ways, in how they compare test probes (new input) to remembered episodes
and how the systems choose which exemplars in memory to use as the basis for
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interpreting the probe. These differences turn out to be what, more than anything
else, differentiate the alternative exemplar-based models from one another. I dis-
cuss Hintzman’s (1986, 1988) multiple trace model (implemented in a computer
model as MINERVA), Nosofsky’s (1986, 1990, 1992) generalized context model
(GCM), several nearest neighbor models (NN) compositly, but especially those of
Tversky and Hutchinson (1986) and Aha, Kibler, and Albert (1991), and, finally,
Skousen’s (1989, 1992) analogical model (AM).

Hintzman’s multiple trace model, MINERVA, operates by encoding each en-
counter (episode) with a stimulus as a separate memory trace. (In his simula-
tions, the traces are series of plus or minus values for features.) The accumulating
traces all lie dormant but accessible in a kind of long term memory (LTM) store.
Processing begins when a current input experience, a probe, is presented to the
system. MINERVA compares the probe features (also a series of plus or minus val-
ues for the encoded features) to all of the memory traces in parallel. Each LTM
trace that shares any feature values with the probe becomes activated to a greater
or lesser extent (strength) depending upon how many like feature values the trace
and the probe share. Next, the corresponding features in all the activated traces
are summed algebraically to create an “echo”. In essence an echo is a temporary,
ad hoc schematic representation created by summing the feature values for all of
the memory traces that were activated. Thereafter, the echo functions very much as
would the pattern of units that would have been activated by that same input into
a connectionist system.

MINERVA simulates most prototype effects as well as connectionist systems
do, but because it also retains memory traces for individual exemplars, it can also
reproduce closely within a single system the exemplar effects that are problematic
for connectionist models, such as outlier effects in competing categorizations and
nonlinearly separable categories. However, because it produces a schematicized,
composite “echo” as an intermediary representation of the activated memory traces
rather than responding directly to the information stored in LTM, it also shows
some of the liabilities of schematic representations. For example, it will not accu-
rately model the conditional cue extinction problem, as noted by Shanks (1995)
and described earlier. The memory traces for the new tone→ no outcome exem-
plars will be combined with, and therefore interfere with, the older light + tone→
no shock traces to create a composite echo because both traces contain the feature
tone. For similar reasons MINERVA does not model probabilistic responses. Much
like the winner-take-all interpretation in connectionist systems, MINERVA assigns
a probe to a category on the basis of the algebraic sum of the corresponding feature
values across memory traces. Thus, given the same input to the same system, it will
always return the same response, a response equivalent to what Skousen (1989)
calls the “plurality” decision rule. Actually if the probe happened to activate the
same number of exemplars from category A and from category B equally strongly,



 Steve Chandler

which can happen with probes near outlying exemplars of overlapping categories,
MINERVA may generate an algebraic sum of zero for the category representation,
i.e., no categorization, which is not empirically accurate (cf. Chandler 1994 for a
description of this effect by MINERVA on English past-tense verb morphology).
On the other hand, if the sums happened to come out 51 for category A and 49 for
category B, MINERVA would always assign the probe to category A, also not an em-
pirically accurate response (cf. Estes 1976). Finally, we will see below another case
in which MINERVA did not model accurately human performance on the artificial
grammar task because it sums values across exemplar traces.

Nosofsky’s (1986, 1990, 1992) Generalized Context Model (GCM) is by most
accounts in the literature of experimental cognitive psychology the most successful
exemplar-based model tested to date (cf. Ashby 1992; Estes 1994; Shanks 1995).
The GCM calculates a conditional probability that a subject will assign a stim-
ulus to a given category based on summing the feature-by-feature similarity to
all exemplars in a given category and dividing that value by the summed similar-
ity – again feature-by-feature – to all exemplars in all categories. In most of his
simulations, Nosofsky also factors in a multiplier representing an independently
derived response bias for a given category; in some studies he has used an exemplar-
strength multiplier to represent exemplar frequency (token) values, and in some
studies he uses a stimulus-sensitivity factor to simulate imperfect memory as sen-
sitivity or insensitivity to the training exemplars. In studies in which Nosofsky has
first obtained from subjects subjective measures of how similar or dissimilar they
consider different pairs of stimuli to be, his GCM is able – using those previously
obtained similarity values – to predict very accurately the categorizations or recog-
nition probabilities for individual stimuli, on the order of 99% correct for identi-
fication and 97% correct for classification (Nosofsky 1986). In studies relying on
objective measures of stimulus similarity (e.g., McKinley & Nosofsky 1995; Nakisa
& Hahn 1996), the GCM performed less well, as low as 75% correct.

Although inspired by Medin and Schaffer’s (1978) Context Model, Nosofsky’s
GCM has not been tested strongly on its performance with Medin and Schaf-
fer’s most important contribution: the exemplar effects described earlier. Instead,
Nosofsky and his colleagues have focused on its superior performance in repli-
cating closely the prototype effects. The published studies on it have compared
its behavior with that of real subjects on small, artificial categories which are deter-
ministically separable (e.g., line drawings of faces exhibiting “family resemblances”,
dot patterns sometimes presented as “categories of constellations”, and categories
of arcs plus radii). It is true that some of the test categories (pairs of categories)
have more complex boundaries between them than a simple linear division (e.g.,
McKinley & Nosofsky 1995) and that the GCM has performed well on these, but
they are all deterministically separable categories and do not contain any overlap-
ping, or exceptional, categorizations. Indeed, when applied to language – specifi-
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cally, predicting English past-tense forms (Nakisa & Hahn 1996) – the GCM per-
formed much less well, doing only slightly better that a nearest neighbor model and
actually worse than a connectionist model. The problem appears to be that in sum-
ming feature similarities over all the exemplars of a category, the GCM misses the
role of supracontext heterogeneity, identified by Skousen (1989, 1992) as crucial to
deriving the most accurate behavior in categorization models. Because the GCM
does not take heterogeneity into account, it performs only slightly better than some
nearest neighbor models.

The final class of exemplar-based models of categorization that I will describe
before turning to Skousen’s AM is the nearest neighbor (NN) models (Tversky &
Hutchinson 1986; Aha, Kibler, & Alber 1991; Cost & Salzberg 1993; Nakisa & Hahn
1996). Despite their intuitive appeal, nearest neighbor models have not generally
enjoyed the interest and popularity afforded other exemplar-based approaches.
Most likely this is so because it has been so easy to show empirically that they are
wrong, at least in their simplest, most straightforward instantiations (e.g., Whit-
tlesea 1987; Ashby 1992; Nosofsky 1992). The simple empirical fact is that signif-
icantly often subjects do not choose the exemplar in memory that is most similar
to the input as the basis for their responses. In a study of past-tense forms for
nonce English verbs, I found (Chandler 1998) that subjects frequently did not base
their analogical extensions on the most similar English verbs, and across subjects
almost all of the nonce verbs solicited at least three or four alternative responses,
sometimes more, all based on analogies to common, but different, high frequency
verbs, of which at most one would have been the nearest neighbor candidate to
the target word (and frequently the most common analogies were not to the near-
est neighbor). In a direct comparison of a NN model to Nosofsky’s GCM and to
a connectionist model, Nakisa and Hahn (1996) found the NN model to perform
the least well of the three at predicting German plural forms. Clearly, a simplis-
tic measure of similarity in terms of shared features is not adequate for predicting
analogical behavior.

.. AM as an instance-based model of categorization
In comparing Skousen’s (1989, 1992) analogical approach to the other three
exemplar-based models just described, I shall assume that most readers are already
familiar with the overall framework of his model. (For an overview of AM see the
introductory article by Skousen in this book.) Thus, I will comment only on those
characteristics of it which seem to me to be most important for distinguishing it
from the other models just described. Skousen’s AM exhibits at least three major
improvements over the other exemplar-based models, all in the algorithm that he
describes for choosing a basis for the analogical behavior. One improvement is that
it chooses a specific exemplar in memory to serve as the basis for a response rather
than comparing the similarity of a probe (“the given context” Skousen calls it) to
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some composite representation of the similar items stored in memory. The second
improvement is that Skousen has chosen to compare subsets of features, what he
calls “supracontexts”, as well as individual features. Finally, the third improvement
is to test for heterogeneity within supracontexts.

Hintzman’s multiple trace model and Nosofsky’s GCM, as well as the connec-
tionist models, were designed explicitly to model first and foremost the prototype
effects, effects presumed to arise from the composite structure and organization of
categories in the mind. Thus, those models incorporate frameworks for amalga-
mating information across large sets of exemplars and then using that composite
representation to accomplish whatever further cognitive tasks the designer has in
mind. This works well for replicating central-tendency effects, or even localized-
tendency effects created by subsets of exemplars, but it means that individualizing
information about instances in memory will be obscured and therefore not avail-
able in explicit form for use in those cases when individual differences are most
important – namely in the overlapping regions of nonlinearly separable categories.
These regions will therefore become important for testing the empirical adequacy
of the analogical approach (see my discussion of past-tense verb forms below).

Those approaches that compare inputs to composite representations of cate-
gories also share another weakness not seen in the analogical approach. They do
not deal with unusual novel input well because they create a central-tendency rep-
resentation (explicitly in the case of connectionist models and the multiple trace
model and implicitly in the case of the GCM) based on the large number of ex-
emplars presented to them. They compare an input probe to that central-tendency
representation in order to categorize the probe or to accomplish some other cogni-
tive task. Unfortunately, as Pinker and Prince (1994) have demonstrated for con-
nectionist models, and as Dienes (1992) found for the multiple trace model (I
know of no equivalent test for the GCM), the systems do not respond well when
presented with a test probe very different from the exemplars used to create the
central-tendency representation in the first place. They often return weirdly and
unexpectedly transformed versions of the input or simply do not “know” how to
respond to them. Given an unusual word such as the nonce verb ploamph, used
by Pinker and Prince, Skousen’s AM returns ploamphed unequivocally as the pre-
dicted past tense form from an analogical set that includes plump, clamp, and poach
among others.

The second feature of Skousen’s analogical approach that constitutes a major
improvement over the other exemplar-based models is his decision to compare
subsets of features (supracontexts) as well as individual features among the test
probes and exemplars. The validation of this decision on Skousen’s part has to rest
ultimately on the empirical success of the model, yet there are at least three sets of
independently derived findings which validate his use of additive supracontextual
similarities to arrive at an analogically motivated task response. Two of these find-
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ings I will describe here. The third, chunking effects, I will defer until my discussion
of the artificial grammar learning studies in Section 3. The second and third advan-
tages emerge as unintended consequences of the analogical approach rather than
as features that motivated it in the first place and were designed into it explicitly.

In 1977 Hayes-Roth and Hayes-Roth reported the results of a comparison
of 24 models of concept learning and classification with what they called their
“property-set” model. They compared the performance of those models on a vari-
ety of prototype-based categories. (Their paper was published a year before Medin
and Schaffer’s 1978 paper.) The major distinguishing characteristic of the property-
set model was that it compared not only the individual features of test items to
those of the prototype, but that it also created and compared for each category
and test item a “property set” of their respective features, the property set being
the powerset of all the properties of an exemplar – that is, the features plus all
possible conjunctions of those features and subsets of those features. These are
essentially Skousen’s supracontexts except that the latter can preserve spatial and
temporal order. Hayes-Roth and Hayes-Roth indexed the elements of the property
sets for frequency of occurrence, although records of the individual occurrences of
exemplars were not retained in memory in their model. Nevertheless, Hayes-Roth
and Hayes-Roth found that comparing a probe’s property set (i.e., its supracon-
texts) with the combined tokens of property sets for all of the other items yielded
significantly better predictions of prototype effects on categorization and recogni-
tion than did models that simply compared individual stimulus features. We will
see strong independent confirmation of this effect in the history of the artificial
grammar learning studies reviewed in Section 3.1.

Using supracontexts to construct analogical sets also allows us to account
both for implicational contingencies among the component features of exemplars,
which the other models discussed here also do well, and for spatial or tempo-
ral sequences of features, which is a significant difficulty for connectionist mod-
els, whose proponents have had to resort to ad hoc mechanisms for avoiding the
problem (e.g., McClelland & Rumelhart 1986a; Dienes 1992; McClelland & Elman
1986).9 Comparing supracontexts also suggests more natural procedures for com-
paring items of different length and canonical shape such as a five-letter word and
an eight-letter word.

Skousen’s analogical approach describes an explicit algorithm for identifying
and accumulating an analogical set, the set of candidate exemplars evoked from
memory to serve as the basis for the subsequent analogical process. Skousen de-
scribes two “rules of usage” for choosing one of the exemplars from the analogical
set, (1) random selection or (2) selection by plurality. The former simply selects
any one item from the analogical set at random, but in the latter a person must
examine the analogical set and choose the most frequent outcome. In his book,
Analogy and Structure, Skousen (1992) describes the consequences of using one
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rule rather than the other and suggests some of the considerations that might lead
a person to rely on one rule or the other. (He even cites an eight-year-old child in
a study by Messick and Solley (1957) who chose the plurality rule consciously in
order to maximize her “gain” – pieces of candy – in the study.)

The categorization models described above differ in whether they permit the
alternative decision rules, yet it is just this option which permits a model to repli-
cate the probabilistic behavior characteristic of human subjects. Real people do
not always respond to the same stimulus in the same way. Although the pattern of
unit activation strengths that a connectionist network settles into in response to a
given input probe might reflect the probabilities of alternative outcomes, in prac-
tice the system designers typically take the strongest activation as the response.
This is equivalent to Skousen’s selection by plurality rule. Hintzman’s multiple
trace model also consistently responds with the equivalent of the plurality rule. The
nearest neighbor models identify the one nearest neighbor as the basis for their re-
sponses, although ties may be resolved randomly. Thus, none of these models, as
typically implemented, is genuinely probabilistic. Nosofsky, on the other hand, has
used both kinds of responses (Nosofsky 1986; McKinley & Nosofsky 1995), mod-
eled in this case as a conditional probability versus a plurality rule based on the
most probable outcome.

Estes (1994) and Ashby (1992) have examined what kinds of circumstances –
i.e., experimental tasks and settings – might dispose a subject to respond one way
or the other. Ashby noted that even if a subject were trying to respond determin-
istically that “noise” in the categorization system could cause him to respond dif-
ferently once in a while. Moreover, Ashby continued, probabilistic responses may
typically model group behavior closer than a deterministic response might. In sup-
port of these observations, Ashby cited a survey of categorization studies in which
he found that overall more than 94% of the subjects (all adults) were responding
deterministically (i.e., by plurality). However, perusal of Ashby’s survey reveals that
those studies all involved the conscious forced-choice classification of visual items
into one of two simple categories. Moreover, in several of those studies, the experi-
menters actually offered the subjects a graduated monetary bonus if their response
accuracies exceeded a specified minimum level. These subjects did indeed seek to
maximize their gains.

In contrast to Ashby’s work, in which the procedures motivated use of a plural-
ity decision rule, Estes (1976, 1994) has often emphasized experimental tasks and
materials likely to encourage probabilistic responses. The basic finding of proba-
bility learning is that if during the training phase of a category learning task the
subjects who are trying to learn the category membership of a given stimulus are
told 70% of the time that it belongs to category A and 30% of the time that it be-
longs to category B, those subjects very quickly begin to guess category A as the
answer 70% of the time and category B 30% of the time. In reality there is no evi-
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dent basis for assigning the stimulus to one category or the other. The experimenter
is simply manipulating the re-enforcement schedule, but the subjects’ guesses soon
reflect the re-enforcement schedule very closely. Estes has found from such studies
that when experimental materials lack any obvious distinguishing characteristics
or that when subjects do not know during training that they will later be trying
to categorize new material based on what they are currently seeing, they essen-
tially have no choice but to respond probabilistically, sometimes choosing one out-
come, sometimes choosing another. Moreover, simply telling subjects that data are
probabilistic or asking them to base their responses on their impressions of event
probability also leads to probabilistic responses.

Estes (1976:37) professed not to know what could “explain” probability learn-
ing, yet he noticed that event frequencies were the single best predictor of sub-
jects’ alternative responses. Identifying a plausible basis for probability learning
has long puzzled psychologists (e.g., Hintzman 1988; Shanks 1995). Skousen’s ran-
dom selection from an analogical set provides a simple, elegant, and empirically
accurate explanation of what might underlie probabilistic response learning.

.. Some considerations of AM as a model of cognitive processes
In the previous section, I have described how AM operates as an exemplar-based
model of categorization, and I have alluded to how an AM approach might be ex-
tended to other cognitive operations closely associated with category learning and
classification. I have shown briefly how AM might account for certain data on per-
ceptual learning, latent inhibition, and conditional inhibition, data which Shanks
(1995) found problematic for the exemplar-based models that he considered and
which I find problematic for connectionist models. I have also described how AM
appears to offer a ready, natural account of probability learning as described in
Estes (1976). Although more extensive demonstrations go beyond the scope of
this paper, key components of AM analysis – supracontext comparisons, testing
for heterogeneity, and the decision rules – suggest natural, AM-like extensions to
a number of other cognitive behaviors such as item recall, recognition, similar-
ity judgments, familiarity judgments, word associations, and response latencies in
such categorization tasks as word naming and lexical decision.

AM consists of a procedure for deriving an analogical set of candidate exem-
plars that are to provide the basis for whatever cognitive operation is to follow
on the input probe. The model then uses one of the two decision rules, or “rules
of usage”, to arrive at a particular response. One rule, random selection, simply
chooses one of the candidate forms from the analogical set at random. The other
rule, selection by plurality, chooses the most frequent outcome represented in the
analogical set, a procedure which implies inspection and comparative quantifica-
tion of the items in the analogical set. In my discussion of the artificial grammar
learning task, the next section, I will suggest a third rule which appears to oper-
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ate in certain circumstances. Several of the cognitive behaviors listed above would
appear to be explainable as different kinds of inspections of an analogical set. For
example, Nosofsky (1990) examined how his GCM accounts for categorization,
similarity judgments, identification and recognition as different kinds of compar-
isons of an input probe to a data set of exemplars. Hintzman (1986, 1988) demon-
strated similar extensions of his multiple trace model to the same cognitive ac-
tivities. They both treated recognition as a special case of categorization with a
category of one item whereas similarity judgments were based on comparisons to
all exemplars. Nosofsky noted (citing Shepard 1987) that judgments of similarity
fall off exponentially as “psychological distance” increases in terms of a decreasing
number of shared features. Skousen’s comparisons of supracontexts captures that
behavior accurately in that items (a probe and members of the data set) sharing n
features will share 2n supracontexts and would, therefore, model the relative simi-
larity judgments of pairwise item comparisons accurately as a ratio of the number
of supracontexts shared by two items to the total number comprising the two items.

Whereas a sense of similarity may follow from the number of supracontexts
shared by a probe and its analogical set, a feeling of familiarity might follow from
the relative frequency of an item in an analogical set, influenced also by degree
of similarity (cf. Humphreys, Bain, & Pike 1989). Similarly, recall, free and cued,
involves finding a match between input and items in the data set, or an item suffi-
ciently close to trigger a sense-of-recall threshold (Humphreys, Bain, & Pike 1989).
Stimulus sampling effects (i.e., incomplete or indistinct representations of items
in memory) or imperfect memory effects may lead to over retrieval of items into
an analogical set. For example, apparent free variation in past tense forms for sit
and set might arise because they are not accurately distinguished phonologically in
many exemplars of usage in memory. Such situations, as well as imperfect memory
in general, would give rise to apparent proactive interference.

Word association is another cognitive task commonly used to study lexical
representation and organization (see Clark 1977). Indeed, there are normed lists
of the words most commonly evoked as associations for a given word under dif-
ferent circumstances (e.g., Nelson, McEvoy, & Schreiber 1994). Traditionally such
associations are described and explained in terms of shared semantic features (e.g.,
doctor→ nurse, table→ chair, etc.). However, recent work by Buchanan and her
colleagues has revealed that the frequency with which two words co-occur within
small chunks of text (ten-word chunks in her studies) predicts the strength of their
association better than does analyses into shared semantic features (Buchanan,
Cabeza, & Maitson 1999; Buchanan, Westbury, & Burgess 2001). This finding
suggests an exemplar-based account of word associations rather than a semantic
features account.

Seemingly countless psycholinguistic studies have employed reaction time
(RT) as a dependent variable in such tasks as lexical decision, naming (word and
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picture), semantic verification, and word inflection. Each of these tasks implies its
respective cognitive operations, matching, retrieval, recall, etc., plus time for im-
plementing the appropriate response. Skousen (1992) has described a possible AM
interpretation of RT data from a published word naming task. The number of steps
needed to derive an analogical set for a given input probe correlated well with RT.
More recently, Nosofsky and Palmeri (1997) dipped back into the history of ex-
perimental psychology to apply a “random walk” model of predicting RTs to the
categorization judgments of Nosofsky’s GCM. Once a set of candidate exemplars
has been evoked from memory (into an analogical set in Skousen’s AM), the ran-
dom walk is a mathematical model of a decision mechanism for choosing among
them. A subject is said, metaphorically, to visit the alternative outcomes randomly
until the sampling reaches a confidence threshold that triggers the prevalent re-
sponse. Stimuli evoking alternative responses take longer for the subject to identify
and to confirm at a given level of confidence which response is prevalent. Adapting
a random walk model to AM exceeds the limits of this paper, but it suggests that
RTs may be modeled in AM by applying a random walk model to an analogical set
derived according to the procedures of AM.

. The artificial grammar learning paradigm

If the debate over whether morphological processes are better characterized as dual
system or single system seems to have preoccupied some linguists over the past
decade, certain cognitive psychologists have engaged in a virtually identical debate
for more than 30 years now over how best to explain performance on the artificial
grammar learning (AGL) paradigm. Although there are many variations on the
theme, the basic AGL paradigm dates from Reber (1967). In it a simple finite state
grammar (FSG) is used to generate strings of letters, usually three to eight letters
long, e.g., VXV, XXVTVJ, MVRVVR, etc. The usual task is for the subjects to study
some subset of the strings generated by the grammar as a training set to induce cat-
egory learning. Sometimes subjects are told ahead of time about the existence of a
rule system for generating the strings (the explicit learning condition) and some-
times they are not (implicit learning). After the training presentations, the paradig-
matic task is to view both previously seen strings and newly presented strings and
to judge them (classify them) as members of the studied category (grammatical) or
not (ungrammatical). Subjects are also often asked to identify test strings as “old”
(previously seen) or “new”. Although the details of a given experiment can cause
the results to vary somewhat, the robust finding is that subjects typically identify
whether strings are old or new with better than 90% accuracy (in other words,
they have excellent memory for whether they have seen a given string before) and
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that they judge newly presented strings 60 to 70% accurately for “grammaticality”
(category membership).

Reber (1967, 1989) and others have attributed the better-than-chance cate-
gorization performance of their subjects to their having abstracted the underly-
ing FSG and then using that abstracted knowledge to categorize subsequently seen
strings as “grammatical” (a member of the category defined by the FSG) or “un-
grammatical” (not a member of the defined category). Brooks (1978), and oth-
ers since, have argued that one does not need to posit induction of some unseen
FSG to explain the results. Instead one can explain them equally well by assum-
ing that the subjects remember previously seen strings or at least frequently re-
curring letter sequences in the training set and then used those memories for the
training exemplars to categorize the test exemplars and to rate them as “old” or
“new”. More recently, some researchers have sought to demonstrate that the sub-
jects were abstracting connectionist-like prototype representations of the training
sets and responding to the test items on that basis rather than on the basis of
comparison to some presumed grammar (e.g., Dienes 1992; Altmann, Dienes, &
Goode 1995). In either case, for more than three decades now researchers have de-
bated vigorously whether the data show subjects to be responding on the basis of
comparison to remembered exemplars or on the basis of some sort of schematic
knowledge representation, including rule schema or possibly on the basis of both,
a dual-system account.

To readers familiar with Skousen’s notion of supracontext (see Section 2.2.3
above), much of the history of the AGL research looks like a halting progression
toward an inevitable end. Brooks (1978), for example, showed that fragmentary
memory for frequently recurring letter pairs and triplets predicted actual classifi-
cation performance closely. Reber and Allen (1978) showed that memory for fre-
quently recurring string-initial and string-final letter combinations in the learning
strings served as important “anchor positions” for learning what are permissible
letter sequences and consequently for judging the grammaticality of new strings.
Dulany, Carlson, and Dewey (1984) and Perruchet and Pacteau (1990) also demon-
strated further that subjects based their grammaticality judgments, at least in part
(and possibly in large part), on their memories for frequently recurring bigrams
and trigrams. In 1990 Servan-Schreiber and Anderson consolidated the previ-
ous research into a coherent, and highly predictive, theory of “associative chunk
strength”. They demonstrated that subjects noticed hierarchical arrangements of
frequently recurring chunks (letter string fragments) and used that knowledge to
classify new strings.

In two studies Vokey and Brooks (Brooks & Vokey 1991; Vokey & Brooks
1992) sought very carefully to unconfound overall similarity of test exemplars to
training exemplars from grammaticality. Their multivariate analysis showed that
both grammaticality and similarity to the training exemplars contributed inde-
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pendently to the classification performance (grammaticality judgments) of their
subjects, thus a dual-system model. Unfortunately, in controlling for overall sim-
ilarity between whole training items and whole test exemplars, measured only in
terms of individual letter differences, Vokey and Brooks failed to control adequately
for the associative chunk strength just recently described by Servan-Schreiber and
Anderson, which turned out to be seriously confounded with grammaticality in
their study. Knowlton and Squire (1994) attempted to replicate Vokey and Brooks’
studies while controlling better for surface similarity versus grammaticality, but as
Perruchet (1994) has demonstrated, Knowlton and Squire’s replication was also se-
riously confounded in that the “grammatical” test items shared many more bigram
and trigram letter sequences with the learning strings that did the “ungrammati-
cal” test items. In AM terms, this meant that the grammatical test items shared sig-
nificantly more supracontexts with the training items and generated significantly
larger analogical sets, almost 50% larger (assuming perfect memory), than did the
ungrammatical test items.10

In what appears to be the most carefully controlled study to date, Meulemans
and Van der Linden (1997) presented subjects with four sets of test strings carefully
balanced for associative chunk strength (bigrams, trigrams, and anchor positions)
and grammaticality. Indeed, no test items contained any “illegal” bigrams or tri-
grams. The results were that subjects who had been trained on only a relatively
small subset of the possible letter strings generated by the FSG (the usual practice
in AGL studies) showed a strong bias for judging grammaticality on the basis of
surface similarity to the training strings, i.e., exemplars. On the other hand, for
subjects who were trained on a very large subset of the possible strings generated
by the grammar (virtually the entire set minus the test items), the effect for sur-
face similarity disappeared and underlying grammaticality appeared to be the only
significant basis for their classifications. Unfortunately, as Johnstone and Shanks
(1999) showed, those researchers too had overlooked yet another important dis-
tributional variable. While Meulemans and Van der Linden had controlled well for
anchor positions and for global (i.e., overall) bigram and trigram chunk frequency,
they had not controlled for where in the strings different chunks typically occurred,
and as Johnstone and Shanks showed, the occurrence of chunks in novel positions
in the test items correlated significantly with grammaticality in Meulemans and
Van der Linden’s test items.

In controlling for all the significant variables identified in Meulemans and Van
der Linden, Johnstone and Shanks control essentially for skewed distributions of
supracontexts shared by the test set items and the training set items. Surprisingly,
however, a full comparison of supracontexts reveals a distribution skewed in the
wrong direction. As shown in Table 1, the nongrammatical test items actually share
about 11% more supracontexts with the training items than the grammatical test
items do. However, since the test items contained, by design, no illegal two or three
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Table 1. Supracontext comparisons for AGL

Associated Non-associated Total

Grammatical 284/122 257/148 541/270
Non-grammatical 382/114 218/217 600/321
Total: 666/236 475/365

Each entry denotes shared supracontexts/unattested supracontexts.

(Data from Muelemans & Van der Linden 1997)

letter sequences, the subjects had to be evaluating longer sequences in order to
classify any items correctly, and indeed the ungrammatical test items do contain
significantly more four-letter sequences that are not attested in the training ex-
amples than the grammatical test items do (22 versus 8 respectively). Table 1 also
shows the total numbers of supracontexts occurring in the different test sets but
not attested in the training set. We see that the ungrammatical test items contain
almost 20% more supracontexts that are not attested in the training set than do the
grammatical items. If we focus on the so-called anchor positions, supracontexts
that contain string-initial or string-final segments (thought to be more important
in the AGL tasks), the confound becomes even more severe with the ungrammati-
cal strings having 45% more unattested supracontexts than the grammatical items
do and 100% more supracontexts for which both the initial and final letter strings
are unattested in the training set.

Taken together, Johnstone and Shanks’ “novel chunk position” criterion and
the supracontext distributions just described suggest that the subjects in that par-
ticular experiment (experiment 2b in Meulemans and Van der Linden’s study) were
responding more on the basis of item differences than item similarities. Instead, the
differences in performance between the first set of experiments reported in Meule-
mans and Van der Linden and their second set suggests a change in response strat-
egy – decision rule, we would say – on the part of their subjects. Given a relatively
small training set, the subjects appeared to look for similarities between the test
items and the training set. Given a very large training set, one in which individual
items are necessarily less distinguishable in memory (probably due to proactive in-
terference), subjects appear to focus on looking for unusualness (or unfamiliarity)
in the test data. If confirmed, this suggests the possibility of a third – possibly task
specific – kind of decision rule (in addition to the two described by Skousen) being
applied to an analogical set. The new decision rule, which might apply when the
data set appears to provide exemplars for almost all of a test item’s supracontexts,
would judge the item as not belonging to the category represented most commonly
in the analogical set.11

In their concluding comments on Meulemans and Van der Linden’s study,
Johnstone and Shanks note that all the significant variables identified by them
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(those listed above) together account for at most only about 25% of the variance
in performance and that the performance of only 8 out of 40 subjects in the ex-
perimental groups was predicted by these variables. They call for more research to
identify further what kinds of knowledge and strategies underlie performance on
the AGL tasks. I would submit that the AGL studies are especially vulnerable to
Type I errors, finding a significant effect when in fact none really exists. Random
performance on the classification tasks is 50%. Given 32 items (16 grammatical, 16
ungrammatical), a subject only needs to classify four or five items (13%) correctly
on the basis of remembered knowledge about the learning items while respond-
ing to the others randomly in order to score 65% correct on the test. As Perruchet
(1994) and others have pointed out, even control groups having no training some-
times classify the test items as well as 55% correctly, evidencing an apparent learn-
ing effect during testing. Thus, remembering only a very small subset of training
items for whatever idiosyncratic reasons could prepare a subject to classify four or
five test items correctly. In any case, Johnstone and Shanks concluded that it was
time to rethink the AGL paradigm and to look for evidence other than simple clas-
sification of test strings to try to determine what kind of knowledge base subjects
are using as the basis for their classifications. An AM interpretation does suggest
further tests of the AGL task yet to be conducted, but meanwhile we should con-
sider at least two other aspects of AGL studies which are commonly cited as offer-
ing strong support for the grammar abstraction view: the performance of amnesic
patients and performance on the so-called transfer tasks.

. Performance of amnesic patients on the AGL task

In a series of studies, Knowlton and Squire and their colleagues have reported the
performance of amnesic patients on a variety of classification learning and recogni-
tion tasks, including the artificial grammar learning task just described (Knowlton,
Ramus, & Squire 1992; Knowlton & Squire 1993, 1994, 1996; Squire & Knowlton
1995). Consistently across all these studies, amnesic patients have shown normal
or near normal performance on most classification tasks, classifying exemplars cor-
rectly at least 60% of the time or better. However, in sharp contrast to the normal
control subjects, who typically recognized 60 to 80% of the time whether they had
seen a test exemplar previously in the training set (depending on how large the
training set was), the amnesic patients scored much lower on recognition, suggest-
ing that the amnesic subjects had very poor memory for the individual training
exemplars. Squire and his colleagues took these results as strong evidence that their
subjects were abstracting some sort of schematic representation (whether rules or
a prototype) from the training examples because the major clinical manifestation
of hippocampal amnesia is the inability to learn or recall new episodic memories,
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including memories for the training episode. (Indeed, by the time they did the
test phase, the amnesic patients often did not recall having undergone the train-
ing phase in the experiments.) Thus the performance of these amnesia patients,
he concluded, cannot be attributed to exemplar-based comparisons because the
evidence shows that they did not remember the exemplars, yet they were able to
classify exemplars, both new and old ones, just as accurately as the normal control
subjects could. I examine this claim in some detail in this section because Ull-
man, Corkin, Coppola, Hickok, Growdon, Koroshetz, and Pinker (1997) adopted
a parallel argument to explain a dissociation between regular and irregular past-
tense verb performance seen in patients with a variety of neurological impairments,
and Ullman et al. (1997) attributed that dissociation specifically to differences be-
tween declarative memory for episodic events and procedural memory for implicit
cognitive skills as posited by Squire.

Squire (1992) has long been the major proponent of the neuropsychological
distinction between declarative memory versus procedural memory, a distinction
based mostly on many years of study of memory impairments associated with
damage to the hippocampus. Bilateral injury to the hippocampi typically results
in severe anterograde amnesia, the inability to recall new experiences. Although
the definitions of declarative and procedural memory have evolved over the years,
declarative memory deficits are identified most closely with hippocampal damage
and show up as an inability to recall specific episodic events that have occurred
since the onset of the amnesia and as an inability to learn new factual knowledge
or even new words. Sometimes the working definition of declarative memory is
associated with the conscious recollection of events and other times with just their
implicit, tacit recollection, as in these AGL studies. Procedural memory, on the
other hand, refers to generalized, decontextualized cognitive and motor skills and
a generalized semantic memory (Squire 1992; Knowlton 1997).

Although Squire’s declarative versus procedural memory distinction is widely
accepted in the literature of neuropsychology, it is by no means uncontroversial,
and there are both neurologists and psychologists who question the theoretical
and empirical justification for the dichotomy (e.g., Humphreys, Bain, & Pike 1989;
Hintzman 1990; Cohen & Eichenbaum 1993; Shanks & St. John 1994; Shanks
1995). Critics of the declarative versus procedural memory hypothesis argue on
theoretical grounds that behavioral dissociations on different tasks (e.g., catego-
rization versus recognition) do not warrant logically the conclusion that different
memory systems are being recruited and used because the different tasks may only
indicate that different processes are operating within a common system. They go
on to note that in the case of Korsakoff ’s syndrome (one of the more common
causes of hippocampal amnesia), the neurological deficits are seldom confined to
the hippocampus and often spill over into the frontal areas which are implicated
in the coordination of spatial and temporal contexts in retrieving episodic memo-
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ries, especially of verbal memories (e.g., Buckner 1996; Nyberg, Cabeza, & Tulving
1996). Importantly, brain scan data (MRI) show frontal area activations during the
categorization phase of the AGL tasks, tasks that rely on processing tempero-spatial
sequences of letters (Reber, Stark & Squire 1998).

The neurological evidence aside, other behavioral evidence also suggests that
amnesic patients such as those studied by Squire and his associates actually do
retain at least some of the training episodes in memory, but have difficulty access-
ing them on demand for subsequent comparison (Moscovitch & Umilta 1991).
Graf, Squire and Mandler (1984) and Graf, Shimamura and Squire (1985), for ex-
ample, asked a group of amnesic patients to study lists of words and then tested
their recall for those words in response to different kinds of cues. They found
the amnesic patients responding either near normally to a partial-word cue to be
completed with “whatever word first comes to mind” or very poorly for the same
words when told to complete a word-fragment cue with a specific word from the
training list. This disparity suggests strongly that the words were present in the pa-
tients’ memory, but that they could not isolate on demand a specific word from
the training list to match to a specific word cue, a result that is consistent with
other observations (e.g., Hintzman 1990) that amnesiacs are especially vulnerable
to proactive interference – that is, they have difficulty trying to separate and distin-
guish among different episodic memories with very similar, partially overlapping
contents and contexts.

This information suggests an alternative interpretation for the results of the
AGL studies reported by Squire, Knowlton, and their colleagues. In all of those
studies the amnesic patients categorized the test strings virtually as well as the nor-
mal control subjects did even though their performance on recognizing whether
the test strings were “new” or “old” was significantly worse than that of the normal
control groups, yet although significantly worse, their memory performance was
still significantly above chance. Thus, they actually did show evidence of having
some episodic memory basis for classifying test strings. The question is whether the
degraded performance on the recognition tasks should, in a single process model
such as AM, predict degraded performance on the classification task as Squire,
Knowlton, and others have assumed (e.g., Knowlton, Ramus & Squire 1992).

Three additional observations provide indirect evidence that the amnesic pa-
tients in these studies actually were having difficulty accessing recorded memories
accurately rather than failing to register (at least temporarily) new memories. First,
Knowlton and Squire (1993) reported that a group of amnesic patients who had
seen fewer training items actually performed better on the recognition test than
had a control group of amnesic patients who had seen more training items. Second,
in Knowlton, Ramus, & Squire 1992 both amnesic and normal subjects did worse
on the task after a second pass through the materials. Together these results sug-
gest a reduced opportunity for proactive interference in the first study – and thus
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improved performance – and an increased opportunity for it in the second study –
and thus reduced performance from a kind of interference to which amnesiacs are
known to be especially vulnerable. The third observation is that Nosofsky and Zaki
(1998) first replicated almost exactly Knowlton and Squire’s (1993) methods, ma-
terials, and results for a closely related task (involving learning, recognizing, and
classifying prototypical dot patterns) on a new set of amnesic patients and nor-
mal controls, and then simulated both the near-normal classification performance
and the degraded recognition performance of the amnesic patients with the same
exemplar-based (GCM) framework. The only difference in the formulae used to
derive the control versus amnesic performance were lower settings for the “sensi-
tivity [to a stimulus] parameter” and a different “power exponent” used to model
the “psychological similarity” of exemplars in memory. The effect is “imperfect
memory” and is as if the exemplars are not as distinguishable in memory, resulting
in the functional equivalence of proactive memory interference.

The strongest invalidation of Squire and Knowlton’s argument that the disso-
ciation between recognition and classification performance by amnesic patients on
the AGL task strongly supports their dual memory-system model is the demon-
stration that Skousen’s analogical approach accounts for both sets of data within a
common framework. Again, I shall apply a supracontext analysis to the test items
and training items and compare those results to the performance of the amnesic
and normal subjects in Knowlton and Squire’s various studies.

Knowlton, Ramus and Squire (1992) and Knowlton and Squire (1993, 1994,
1996) all used the finite state grammar borrowed from Vokey and Brooks (1992)
to generate training and test strings. Since Knowlton and Squire trained their sub-
jects on a relatively small number of possible strings, those subjects were probably
responding on the basis of surface similarities, as discussed above for Meulemans
and Van der Linden’s (1997) study. After 1992, Knowlton and Squire were aware of
the confound between grammaticality and surface similarity in Vokey and Brooks’
test materials. They sought to eliminate that confound by controlling for associa-
tive chunk strength in the test sets as described by Servan-Schreiber and Anderson
(1990). Nonetheless, as seen in Table 2, both their earlier effort and the later study
contained a serious confound between supracontext overlap and grammaticality.

As discussed earlier with respect to Johnstone and Shanks’ (1999) discussion
of Meulemans and Van der Linden’s (1997) study, subjects need only be able to
classify 10 to 15% of the test items correctly in addition to an otherwise random
classification in order to achieve the classification scores reported in these AGL
studies. Table 3 shows the results of comparisons between test performance and
training sets adjusted for increasingly imperfect memory effects as recorded in the
recognition scores for the amnesic patients in those studies. Both the amnesic and
control subjects scored from 60 to 65% correctly in classifying test items as gram-
matical or not, but the amnesic patients “recognized” only about 63% of the test
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Table 2. Amnesic performance on AGL

Amnesic Shared Supracontexts Unattested Supracontexts
% correct Grammatical Non-grammatical Grammatical Non-grammatical

Knowlton
& Squire ’93 57 518 437 16 35
Knowlton
& Squire ’96 64 1539 1508 35 81

Table 3. Imperfect memory effects on AGL

Shared Supracontexts Unattested Supracontexts
Grammatical Non-grammatical Grammatical Non-grammatical

100% memory 518 437 16 35
50% memory 254 216 21 38
25% memory 83 66 65 74

(Based on test materials in Knowlton & Squire 1996)

items correctly (still significantly above chance) as “old” (previously seen in the
training set) or as “new”, while the control subjects score from 67 to 85% cor-
rectly on recognition. Table 3 shows how the proportions of supracontext overlap
changes with increasingly imperfect memory for the training set. I simulated in-
creasingly imperfect memory by reducing the training set by 50% (using every
other item) and by 25% (using every fourth item). Also shown in Table 3 are the
changes in proportions of unattested supracontexts derived through applying im-
perfect memory. As Table 3 shows, the predicted classification performance based
on supracontextual comparisons (i.e., an analogical model) does not degrade pro-
portionately to the memory impairment suggested by the recognition scores for
the amnesic test groups. Thus, the dissociation between classification and recog-
nition does not warrant positing different memory systems for the control groups
and amnesic groups.

. The transfer condition in AGL

To many researchers working in the artificial grammar learning (AGL) paradigm,
some of the most convincing evidence that subjects are indeed abstracting some
sort of underlying schematic category structure away from their experiences with
the training strings occurs in what has come to be called the transfer condition
(Mathews, Buss, Stanley, Blanchard-Fields, Cho, & Druhan 1989; Altmann, Dienes,
& Goode 1995; Shanks, Johnstone, & Staggs 1997). The transfer condition involves
training subjects on strings generated using one set of letters and testing them on
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strings in which different letters have been substituted systematically for those used
in the training strings (e.g., VXTTTV might become MPDDDM). The consistent
finding is that although the classification performance of subjects may degrade
somewhat, it is still significantly above chance, suggesting that some abstract basis
for patterning letters has been learned and abstracted away from the specific set of
training exemplars. Knowlton and Squire (1996) found amnesic patients perform-
ing comparably to normal control subjects on the classification of letter-set trans-
fer strings (about 60% correct classification in the same-letter condition and about
55% correct in the changed-letter condition). Altmann, Dienes, and Goode (1995)
have even demonstrated that the structural regularities abstracted from the letter-
set training items can transfer to data types represented in other sensory modalities
such as tone sequences or visual symbols.

The two major unresolved questions regarding the transfer condition studies
are (1) whether subjects really do transfer structural information about the training
set to classification of a changed test set, and (2) if so, whether the transfers repre-
sent knowledge abstracted away from the training set during training or might they
represent local analogies between test items and particular training items whose
retrieval has been triggered by some perceived structural parallel between the test
item and one or more training items. Perruchet and Pacteau (1990), Perruchet
(1994), and Redington and Chater (1996) all argue that the above-chance perfor-
mance seen in classification tasks in the transfer conditions arises as a learning
effect during the test phase of the experiments. They note that subjects start out
responding randomly but improve significantly during the test. This account is
plausible because the test strings, both grammatical and ungrammatical, necessar-
ily share more similarities than differences with the training strings. Otherwise,
there would be no contest in the classification test. Consonant with the learning
effect interpretation is the fact, pointed out by Redington and Chater (1996), that
control groups who have never seen the training strings sometimes classify the test
strings as well as subjects in the transfer conditions do, i.e., about 55% correctly.

Whatever the basis for the transfer condition performance, it apparently is
very limited, only one or two items beyond random guessing. By changing sys-
tematically the location of impermissible letters in their test strings, Shanks, John-
stone and Staggs (1997) found that violations in repeating a letter were the only
errors noticed reliably in changed-letter test strings, yet that information alone was
sufficient to allow their subjects to classify 59% of the test strings correctly.

In conclusion, the AGL studies do not provide any compelling evidence in fa-
vor of the grammar abstraction interpretation of the tasks. In the standard classifi-
cation and recognition tasks, surface similarity measured in terms of shared supra-
contexts and unattested supracontexts appears to be inextricably confounded with
grammaticality. The amnesic studies might appear to argue for distinct memory
systems and therefore different knowledge bases for recognition versus classifica-
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tion performance on test strings, but Skousen’s analogical approach appears ca-
pable of modeling both amnesic and normal control behavior accurately within a
single-process model. Finally, the transfer conditions also do not compel either a
grammar or a prototype abstraction interpretation of AGL.

. Inflectional morphology in special populations

Ever since Pinker and his colleagues proposed their version of a dual-system ap-
proach to explaining regular versus irregular morphological processes (see espe-
cially Pinker 1991; Prasada & Pinker 1993; Pinker & Prince 1994), they and other
proponents have sought to demonstrate theoretical, linguistic, developmental, ex-
perimental, and neurological dissociations confirming their dual-system model. In
particular, Pinker and Prince (1994) have argued that lexical characteristics such
as frequency of occurrence and word similarity would influence performance on
irregular verbs but not regular verbs. The attempts to identify neuropsychological
dissociations between regular and irregular verb processing fall into two groups.
One uses neural imaging to try to identify different areas of brain activation as
subjects process regular versus irregular forms (e.g., Jaeger et al. 1996). This re-
search paradigm in general is encountering increasingly difficult questions about
its validity (e.g., Van Orden & Paap, in press; Paap 1997). The neural imaging study
by Jaeger et al. has been criticized on both theoretical and methodological grounds
as well as for the authors’ interpretation of their results (see Chandler & Skousen
1997; Seidenberg & Hoeffman 1998).12 The other neuropsychological approach to
the study of morphological processing has been to compare the performance of
subjects manifesting a variety of aphasias or other neurological impairments (e.g.,
Ullman et al. 1997; Hagiwara et al. 1999). These latter studies adopt much the same
logic applied by Knowlton and Squire to their studies of amnesic performance on
the AGL task as discussed in the previous section. In the remainder of this section,
I examine the study by Ullman et al. (1997) in some detail and compare their re-
sults to the predictions of an AM simulation using the same test items and memory
variables.

Ullman et al. (1997) reported on the ability of subjects with a variety of neu-
rological impairments to produce orally past tense forms for 16 irregular English
verbs, 20 regular verbs, and 20 ‘novel’ or nonce verbs designed explicitly to elicit
regular past tense endings rather than irregular forms.13 Figure 3 shows the over-
all performance in percentage correct reported by Ullman et al. for the three verb
sets as produced by patients diagnosed with Alzheimer’s disease (AD), posterior
aphasia (PA), Parkinson’s disease (PD), anterior aphasia (AA), and Huntington’s
disease (HD) as well as the performance of matched sets of normal controls (which
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I show collectively in Figure 3). The first bar for each group of subjects is the
group score for an “object [picture] naming task”. The authors took this score as
a rough measure of the subjects’ lexical memory, as will I in the AM simulations
described below.

The central argument of the study by Ullman et al. (1997) is that collectively
the subject groups show strong dissociations between their performance on regular
verbs versus irregular verbs and that their performance on irregular verbs appears
to be linked to their lexical memory, whereas their performance on the regular
and novel-regular verbs does not. Note though that the dual-system model makes
no quantitative predictions about performance on either individual verbs or on
categories of verbs beyond a general dissociation between these two major verb
categories. Finally, the authors correlate the differences in performance to impair-
ments in brain areas thought to underlie declarative (and lexical) memory versus
procedural (rule usage) memory.

In the AM simulations and comparisons that follow, I have chosen not to in-
clude the AA patients reported by Ullman et al. This may appear disingenuous on
my part because those data appear to provide some of the strongest evidence for
the dissociation claimed by Ullman et al. My reasons, however, are briefly these.
The task used with the AA patients was different. Whereas all other subjects heard
and saw the present (stem) form of a verb and then supplied the past-tense form
orally to fill in the blank in a contextualizing sentence, the AA patients saw the past
tense forms printed and simply read them aloud. As has been well attested else-
where, anterior aphasics (more familiarly, Broca’s aphasics) often omit the suffixes
from words that they are reading aloud (e.g., Marin, Saffran, & Schwartz 1976).
Moreover, there is credible evidence that this difficulty is confounded with both
phonological and semantic variables (e.g., cue validity, or information value, in
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a given context) (e.g., Bates, Wulfeck, & MacWhinney 1991) and may represent
a reading error at least as much as an underlying linguistic deficiency, a reading
miscue in which the aphasic subjects simply pronounce the shortest recognizable
word within a letter string (see Chandler 1993 for further discussion of this point).
Indeed, by far the greatest error committed by the AA subjects in the study by Ull-
man et al. was to read 33% of the regular verbs as “unmarked”, that is without a
suffix (for another 6% they read the suffix as -ing, a much more frequent verb suf-
fix in English). Putting the unmarked responses back into the data would bring the
AA performance up (perhaps only coincidently) to almost exactly the same level
as their object naming score and irregular verb score. I will return to this issue of
unmarked responses after describing the performance of the other subject groups.

In the AM simulations used for the comparisons that follow, I used a data
set based on all monosyllabic verbs appearing in Francis & Kučera 1982 (with the
frequency values augmented by one) plus as many additional monosyllabic verbs
as I could identify to arrive at a nearly exhaustive list of 1,617 monosyllabic En-
glish verbs.14 For expediency’s sake, I compared the written (i.e., spelled) forms
of the words, although earlier work by me (Chandler 1998) showed phonological
comparisons to provide more accurate simulations for oral responses than spelling
comparisons do. For each subject group, I set the imperfect memory value in AM
to the score reported by Ullman et al. for that group’s object naming task. Finally,
in comparing the test items to the AM data set, I have used only exact matches
for word length. This practice is probably questionable in a strict sense (i.e., close
matches for length such as swing and sing probably should influence one another),
but possibly correct for a broader view. In their multivariate analysis of factors con-
tributing to correct performance on the AGL task, Johnstone and Shanks (1999)
identified overall item length (in terms of number of letters) as a significant vari-
able. How items of different length ought to be compared in AM is an empirical
issue yet to be answered.

Figure 4 presents the results for the irregular English verbs reported for the
different subject groups (except for AA) in Ullman et al. (1997) compared with
the results of an AM simulation in which imperfect memory is matched to the
appropriate lexical memory score (object naming score). In AM predictions of past
tense forms, including the test item itself in the data set virtually guarantees correct
usage because of the heterogeneity constraint on generating the analogical set. On
the other hand, not including the test item in the data set leads to 13 out of the 16
irregular verbs used by Ullman et al. being regularized, including the most frequent
verbs such as make, come, and give (which have no near neighbors to motivate the
correct analogies for them). Thus, the real issue in performance on irregular verbs
appears to be the probability of that verb being remembered, which is to say that it
is indeed a matter of lexical memory as Ullman et al. claim. Taking item frequency
as a reasonable approximation to the likelihood of a given verb being remembered,
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I divided the 16 test items into groups based on their occurrence in word (not
verb) frequency multiples of 1,000 – that is, the 1,000 most frequent words, second
thousand, third thousand, etc.

In order to simulate the performance of the AD patients on irregular verbs, I
set the imperfect memory factor at 0.25 to match the corresponding object naming
score obtained for that group. I implemented the memory factor in the simulation
by adjusting all Francis and Kučera frequency counts to one fourth their cited val-
ues and using only every fourth word of frequency value one. Assuming that the
subjects remembered at least the thousand most frequent words means that they
would remember, and therefore inflect correctly, the 9 most frequent verbs out of
the 16 test items, plus they would have a 62% chance of inflecting bend correctly
even if they did not remember it. This predicts a score of 10 out of 16 items inflected
correctly or the 63% shown in Figure 4. To simulate the PA group, who scored 58%
on the object naming task, I set the AM memory factor at 0.50 and included the
second thousand most frequent words in the ‘remembered’ set. That combination
predicted a score of 10 out of the 16 test verbs being remembered plus bend being
analogized correctly for a simulated score of 69% correct. For the HD group, with
a 74% object naming score, I set the AM memory factor at 75% and included the
next thousand most frequent words in the ‘remembered’ set, yielding a prediction
of 12 verbs correct, or 75%. Finally, for the PD group, with an 84% object naming
score, and for the control groups, with a composite 94% object naming score, I
included the next thousand words (all test verbs except wring, which at 0.000044 of
the dataset falls well beyond the 6,000 most frequent words), yielding a predicted
score of 94% correct.

Based on the data represented in Figure 4, lexical memory appears to track the
performance on the irregular verbs closely, which is noncontroversial and is what
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we would expect and what both kinds of models predict. Figure 5, on the other
hand, shows the subject performance on regular verbs compared with the perfor-
mance predicted for the respective object naming (lexical memory) scores. In or-
der to provide the strongest test of the model, I assumed that each test verb was not
remembered as part of the dataset (again, ‘remembering’ a verb virtually guaran-
tees that it will be inflected correctly). This means that all inflections were derived
analogically from the comparison to the dataset, not retrieved directly from mem-
ory. Ullman et al. argued that the dissociation that they found between irregular
and regular verbs (linked to object naming scores) and regular verb performance
(independent of object naming) demonstrated the operation of separate morpho-
logical systems. However, as we see in Figure 5, the AM approach also predicts
only very minor differences between performance on regular verbs at 25% mem-
ory, 96.35% correct, and 100% memory (except for the test item itself), 98.90%
correct. Thus, performance on regular verbs is not linked significantly with lexi-
cal memory in AM. The four groups of neurologically impaired patients all scored
consistently below the control group and AM predictions across the board, but for
every group the ‘unmarked’ (stem form) and ‘no response’ errors account for vir-
tually all the difference between the test groups and the control/AM groups. Thus,
the AM approach models within a single process system the dissociations observed
in performance between regular versus irregular verbs.

Figure 6 shows the respective comparisons for performance on the “novel”
verbs, designed by Ullman et al. to solicit regular inflections (in fact, they elicit only
about 90% regular inflections in the AM). Figure 6 shows a considerably less good
looking match between subject performance and AM predictions. The simulation
predictions are much less variable, ranging from 89.15% regular at 25% memory
to 89.55% regular at 100% memory (the AM predictions at 25% and 50% memory
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each include two verbs that show close to a 50–50 split between regular and irreg-
ular inflection). The PA group errors include 13% “unmarked” verbs and the HD
group 11% “unmarked”. AM, of course, does not predict “unmarked” or “no re-
sponse” data, which presumably occur for other, unknown, reasons. AM, after all,
is not a complete model of speech production. Moreover, except for the AA sub-
jects, all of the other subjects in Ullman et al.’s study produced essentially the same
number of “unmarked” and “no response” errors for irregular verbs as for regular
verbs. So the difficulty does not appear to lie in some fundamental difference in the
ease or difficulty of producing past tense forms for one type of verb over another.
Finally, the PD group produced 7% “unmarked” errors and 24% “other” errors.
Thus, again, virtually all the variance seen between the test groups and the AM
predictions appears to be due to other factors outside the scope of either model.
The most important finding, though, is that in no case does regular inflection per-
formance appear to be directly linked to lexical memory even though AM predicts
performance based on frequency of verb usage and similarity to other verbs.

Although the analogical model did an excellent job of replicating the perfor-
mance patterns reported in Ullman et al. (1997) for patients with various neu-
rological impairments, the simulation evidenced, nonetheless, some problematic
behaviors that need to be addressed. As noted earlier, it is not readily clear how
AM ought to compare items of different length. Skousen’s AM algorithm does in-
clude procedures for normalizing words to the vowel nuclei and then comparing
syllables with different numbers of consonants, but we need to ascertain better
what length contributes empirically as a perceptual feature and then consider fur-
ther how to incorporate comparisons among items of different lengths into the AM
formalisms. A second issue is Skousen’s position that all features in a context ought
to be considered equally. It does not seem empirically accurate to claim that all
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positions in a letter string or phonological string are equally salient or contribute
equally to analogical selection. For example, Bybee and Morder (1983) found that
the ends of words such as swing or drink were more important for analogizing to
new forms than were the beginnings of the words. Similarly, numerous studies of
AGL have found that initial and terminal bigrams and trigrams provide important
‘anchor positions’ for comparing strings, more useful to subjects than similarities
and differences in the middle of the strings. In my simulations reported here, the
nonce form cug derived an analogical set 87% in favor of zero marking on analogy
with cut, an intuitively and empirically incorrect result because the word-final t in
cut is the more relevant variable. Similarly, the very high frequency bring incor-
rectly overpowered cling, fling, sting and sling (97% to 2%) as the analogical basis
for wring.

. Discussion and conclusion

In this paper, I have sought to locate Skousen’s analogical approach to modeling
language within the larger context of psychological models of category learning
and representation. AM is an exemplar-based approach to modeling cognitive –
in this case linguistic – behavior. It operates by comparing an item of interest, the
given context or the probe, to remembered instances of experiences with percep-
tually similar items. Therefore, I sought to summarize briefly how instance-based
models in general are like other models of categorization, especially prototype-
connectionist models and how they are different. In particular, I wanted to review
why it is incorrect for linguists not to distinguish between exemplar-based mod-
els and other nondeclarative models, again especially connectionist models. I have
argued in Section 2.1 that, despite McClelland and Rumelhart’s (1986a) claim to
the contrary, connectionist models do not model instance effects naturally, easily
or accurately, at least not without becoming themselves in effect instance-based
models, especially when the instances are distributed across nonlinearly-separable
categories, as is the case with English verb forms.

The next step in my exposition was to compare certain key theoretical features
of four instance-based models: nearest neighbor models, Hintzman’s multiple-
trace model, Nosofsky’s generalized context model, and Skousen’s analogical
model. I tried to show how and why Skousen’s comparison of items in terms
of supracontexts, his test for heterogeneity, and his decision rule for choosing
a specific item as the basis for analogy on a given occasion afford AM a theo-
retical and empirical advantage over the competing models reviewed here, espe-
cially when working with nonlinearly-separable categories such as those found in
natural language.
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In the final two sections of this paper, I have sought to demonstrate empirically
the ability of AM to model accurately categorization behavior in two experimen-
tal paradigms that are widely said to present the strongest evidence in support of
dual-system processing. In the first set of demonstrations, I showed that supracon-
text comparisons not only predict performance on the artificial grammar learning
task by normal subjects at least as well as the dual-system alternative does, but that
the comparison accounts equally well for the performance of amnesic patients, data
said to show a dissociation between exemplar-based comparisons and rule-based
processing. AM accounts for both sets of data within a single-system approach. Fi-
nally, I showed that AM also accounts closely for a similar behavioral dissociation
identified in the inflecting of regular versus irregular verbs by normal versus neuro-
logically impaired subjects. Again AM models the dissociation very closely within
a single-process system.

The success of exemplar-based models, including AM, at modeling behavior
once thought to argue for a schematic knowledge base for category learning and
classification behavior suggests that there are no compelling reasons for believing
that our brains abstract information from our experiences and construct some sort
of separate, structurally autonomous, and schematicized neuropsychological rep-
resentation of categories from those experiences. In short, there is no empirical
evidence that categories exist as long-term knowledge structures in our heads. So,
where do the phenomena of categories and categorization come from? Collectively,
the exemplar-based models imply that they arise spontaneously when a probe en-
ters our working memory and evokes into activation those memories that share ex-
periential features with the probe. Through some process functionally equivalent
to Skousen’s analogical model, our working memory arrives at an interpretation of
that input probe.

However, profound such a change in views may be for psychology and linguis-
tics, it appears to me to have much more profound implications for linguistic the-
ory (cognitive psychology having already moved far towards accepting exemplar-
based models). If categories do not exist as real structures in the brain, then there
are no substantive universals such as noun or verb or clause except as those cat-
egories arise on demand during language comprehension. Linguistic usage cre-
ates grammar, not the other way around. In his 1921 book, Language, Edward
Sapir wrote:

The fact of grammar, a universal trait of language, is simply a generalized ex-
pression of the feeling that analogous concepts and relations are most conve-
niently symbolized in analogous forms (p. 38).

At the dawn of a new century, analogical modeling brings us back to a new begin-
ning for linguistics and asks us to start over in much of our thinking about what
language is.
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Notes

. Although exemplar-based and instance-based are often used as fully synonymous terms,
some researchers prefer the latter because it emphasizes the representation of experiential to-
kens – each encounter – versus the sometimes ambiguous use of exemplar – as in McClelland
and Rumelhart’s usage – to mean either a type or a token representation.

. Newmeyer (1998) objects specifically to the characterization of syntactic categories as
exhibiting prototype effects. He argues that the prototypical syntactic categories alleged by
others actually appear to exhibit nonlinear separability (not his term) rather than the lin-
ear separability that he mistakenly assumes well-formed categories ought to exhibit. His
solution is to posit deterministic category symbols and to transfer the prototype character-
istics from the category symbols to lexical items. Unfortunately, his objections are applica-
ble neither to nonlinearly separable linguistic categories nor to exemplar-based models of
categorization.

. This is a major distinction which I failed to make in my earlier discussions of connec-
tionist systems (Chandler 1993, 1994, 1995).

. In their past-tense simulation Rumelhart and McClelland (1986a) avoided the linear sep-
arability problem by combining both sing type verbs and swing type verbs into the same
category, and they did not attempt to differentiate them in their data analyses or subsequent
discussion. Largely as a consequence of those decisions, these verbs showed the weakest per-
formance in Rumelhart and McClelland’s PDP simulation even though they showed some
of the strongest prototype effects in experimental studies by Bybee and Moder (1983) and
in Chandler (1998).

. The real nature of the relationship becomes readily evident if we simply change the labels
from “dog” to “mammal” and “Rover” to “dog”, etc. A much more realistic simulation would
be to train the network on 50 individual dogs, each with its own name and individuating
characteristics, and see whether the network could both abstract the general characteristics
of “dogs” and retain each individual representation.

. Burton (1990) has described informally a theoretical basis for a model of episodically-
based cognition (although it also includes a hypothesized mechanism and process for ab-
stracting knowledge structures from perceptual experiences). He posits a mechanism for
chunking the continuous perceptual stream of input into “episodes”, possibly one every one
or two seconds, marked off by endogenous eye blinks and triggered by sudden discontinu-
ities in the perceptual input. Perhaps congruent with this is the finding that the number of
times a person fixates on a stimulus (a given token) predicts the likelihood of that stimulus
being recalled or recognized later better than does the duration of an individual eye fixation
(Loftus 1972). In other words, the number of fixations is more important than the duration
of a given fixation.

. This example comes from Rob Freeman and is used with permission.

. Some critics of exemplar-based models find them “implausible” (e.g., McClelland &
Rumelhart 1986a:193), apparently because of what has come to be called the “head-filling-
up problem”, the notion that such models assume an unrealistic episodic memory capac-
ity, but that strikes me as a bogus issue. Burton (1990) has suggested that episodes may
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be chunked at a rate of about once a second or so. Now, a common estimate (Kuffler &
Nicholls 1976) is that the neocortex contains some 28 billion neurons (admittedly perhaps
only a minority of them dedicated to memory). Each of these estimated 28 billion neurons,
and especially those implicated in memory processes, makes several hundred, and many
several thousand, synaptic connections with other neurons (Mountcastle 1998). This works
out to trillions of synaptic connections, and synapses are important information process-
ing units, not just individual neurons. Moreover, the evidence now emerging suggests that
a given synapse can participate in many different patterns of neural ensembles simultane-
ously because the dispersed components of a neural representation appear to be “bound” by
a common frequency of neural spikes across wide regions of the cortex rather than by sim-
ple off/on values (Damasio 1990). This works in much the same way that a single telephone
wire can carry and keep separate several conversations at the same time among multiple
pairs of phone connections. So, how long does it take to fill up a million or a trillion sim-
ple connections at the rate of chunking information every second or so? It takes only 11
days for a million seconds to pass, but it takes about 33 years to live one billion seconds
(hence 900 years for 28 billion seconds). Humans haven’t been on earth long enough yet to
fill up a trillion connections at the rate of one per second, even if we were using them that
way. Now, this somewhat facetious argument aside, there is in fact some evidence that does
suggest, very very slightly, a brain-filling-up phenomenon in parts of the brain of very el-
derly patients, and in cases of neural reorganization following extensive brain injury or after
hemispherectomy in the very young. In all three cases, there is subtle evidence of crowding
in the function of some of the remaining neural areas (Calvin & Ojemann 1994).

. Elman’s (1988) work with recurrent networks was an effort to address this issue, but to
date it has not been applied to any of the data types discussed in this paper. As connectionist
models, however, even recurrent entry networks are susceptible to the general criticisms of
the approach discussed in this paper and elsewhere.

. Strictly speaking these are not analogical sets as Skousen describes them. Since the AGL
tasks never compare competing categories, there is no role for heterogeneity in deriving an
analogical set. Thus, it is simply the set of training items sharing supracontexts with a test
item.

. Skousen, personal communication, has suggested that the same effect may represent a
subject using the plurality decision rule to minimize loss rather than to maximize gain.

. See also the comments on Jaeger et al. by various contributors indexed at <http://lloyd.
emich.edu/archives/info-childes/infochi/PET-fMRI>.

. The forms used by Ullman et al. are (a) regular: chop, cook, cram, cross, drop, flap, flush,
look, mar, rob, rush, scour, scowl, shrug, slam, soar, stalk, stir, tug, walk; (b) irregular: bend,
bite, cling, come, dig, drive, feed, give, keep, make, send, stand, swim, swing, think, wring;
and (c) novel (pseudo-regular): brop, crog, cug, dotch, grush, plag, plam, pob, prap, prass,
satch, scash, scur, slub, spuff, stoff, trab, traf, tunch, vask.

. Limiting the data set to monosyllabic verbs seems reasonable in this case. In a previous
study of nonce-verb inflection (Chandler 1998), the subjects did not return a single multi-
syllabic response in the more than 3,500 responses to the monosyllabic test verbs (except to
append the syllabic regular-past allomorph).
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Chapter 4

Applying Analogical Modeling
to the German plural*

Douglas J. Wulf

. Introduction

As any first-year student of German will attest, it is difficult to perceive a compre-
hensive systematic relationship between German singular nouns and their corre-
sponding plural forms. We may certainly locate islands of predictability, though it
is not apparent how the relationship might be characterized overall. The problem is
obvious upon consideration of even a small sample of German singular and plural
forms, as shown in Figure 1.

As is evident from even this short list of nouns, German plural formation
is distinguished by a wide variety of plural morphology and a high degree of
idiosyncrasy in the distribution of this morphology across the lexicon.

We may identify three major morphological processes in the formation of the
vast majority of German plurals. First of all, the plural may be indicated by um-
lauting. For example, the difference between the singular noun Vater and its plural
Väter is indicated only by fronting the back vowel of the singular form. Indeed,
this plural morphology also occurs in a handful of English nouns (e.g. goose/geese).
Unfortunately, an umlauted vowel is not a reliable marker of plurality in German.
Note that the singular nouns Rücken and Bär also contain umlauted vowels. Sec-
ondly, suffixation is employed to form the plural. A variety of suffixes are used
(e.g. Tag/Tage, Motor/Motoren, Bild/Bilder) and certain suffixes may potentially co-
occur with umlauting (e.g. Gast/Gäste, Mund/Münder). Lastly, a relatively small
number of German plurals involve the replacement of one or more phonemes (e.g.
Ministerium/Ministerien). However, as an additional complication, there is a signif-
icant number of plurals that involve none of these three options so that the singular
and plural pairs are actually identical (e.g. Rücken/Rücken, Berater/Berater). Such
an identity mapping from singular to plural has sometimes been treated formally as
the addition of a null suffix (-Ø). Although such identity plurals occur occasionally
in English (e.g. deer/deer, fish/fish), they are far more common in German.
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Gloss Singular Plural Plural morphology

“back” Rücken Rücken - Ø
“adviser” Berater Berater - Ø
“father” Vater Väter ¨- Ø
“farmer” Bauer Bauern -n
“bear” Bär Bären -en
“motor” Motor Motoren -en
“gate” Tor Tore -e
“day” Tag Tage -e
“guest” Gast Gäste ¨-e
“ministry” Ministerium Ministerien -um→ -en
“picture” Bild Bilder -er
“ribbon” Band Bänder ¨-er
“bond” Band Bande -e
“volume” Band Bände ¨-e
“band” Band Bands -s
“dog” Hund Hunde -e
“association” Bund Bünde ¨-e
“mouth” Mund Münder ¨-er
“guardian” Vormund Vormunde or Vormünder -e or ¨-er

Figure 1. Sample of German singular and plural forms

Besides the phonological form of the singular noun, the choice of plural mor-
phology is also influenced by a number of other considerations. For example, the
plural system in German interacts with the similarly idiosyncratic system of gram-
matical gender (i.e. nouns in German may be masculine, feminine, or neuter).
Thus, a masculine or neuter noun ending in -er typically has a plural form identi-
cal to the singular, whereas a feminine noun ending in -er typically takes the suffix
-n in the plural. Furthermore, semantics certainly plays some role in plural forma-
tion. For example, the singular form Band has four possible plural forms (Bänder,
Bande, Bände, Bands) which correspond to the four separate meanings of the noun
Band (ribbon, bond, volume, band). In addition, although rarely discussed in the
literature, there is a significant number of singular nouns for which the intuitions
of native speakers vacillate between two or more possible plural forms. When na-
tive speakers are asked to supply the plural of Vormund, a noun which occurs in
the plural rather infrequently, there is often uncertainty between Vormunde and
Vormünder. Indeed, many dictionaries list both of these as acceptable alternatives
(e.g. Duden 1989:1684).

In much the same position as students of the language, linguistic scholars have
been frustrated in attempting to dissect the German plural system adequately. In
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this paper, I discuss the results of my investigation of this problem under analogical
modeling (AM), as advanced by Skousen (1989).

. Traditional approaches to the German plural

Before discussing the analogical treatment of the German plural, it is helpful to
provide some background. Many linguists have long assumed the reasoning of
Chomsky and Halle that “regular variations are not matters for the lexicon, which
should contain only idiosyncratic items” (Chomsky & Halle 1968:12). This pic-
ture of mental processes underlying language production has greatly shaped both
linguistic study and language instruction. As a result, inflectional morphology has
traditionally been modeled as assembling morphemes and applying transforma-
tional rules to make adjustments to the form. In German, we might therefore hope
to define a rule to umlaut the internal vowel where necessary. We would want to
predict the plural of Tag as Tage, but the plural of Gast not as *Gaste, but rather
Gäste. However, devising an umlauting rule and the other necessary rules for such
an account has proven extremely problematic. Indeed, there is good evidence from
historical linguistics that determining an umlauting rule is actually impossible. We
have a clear picture of the historical evolution of German inflectional morphol-
ogy and this historical perspective is very telling. What we discover is that the
distribution of umlaut in the plural is fundamentally random.

Old High German had a variety of plural-marking suffixes on nouns. These
were inherited ultimately from old Proto-Indo-European theme vowels found on
nouns in both their singular and plural forms. However, in Proto-Germanic, the
movable stress of Proto-Indo-European became fixed on the root syllable. This sta-
bilizing of the stress accent caused a progressive sloughing off of phonetic elements
in final position (Waterman 1976:23). The various old theme vowels were lost on
singular forms and were therefore eventually reinterpreted as plural-marking suf-
fixes. Old High German had the i-theme plural ending on gást/gásti (guest/guests)
but the a-theme ending on tag/taga (day/days).

Meanwhile, beginning in Old High German and continuing into Middle High
German, a vowel harmony (umlauting) rule came into effect. The result of this rule
for plural nouns was to umlaut plural nouns which happened to be marked with
i-theme vowels, while leaving nouns marked with other theme vowels untouched.
Therefore, the Old High German plural form gásti became gésti, whereas the vowel
in taga did not change.

Finally, in the Middle High German period, the fixed stress continued its in-
fluence by reducing all the old theme vowel endings to schwa (e.g. gésti→ gést6
and taga→ tag6). As a result, the difference in plural suffixes which had been the
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original phonological motivation for the umlauting rule was obliterated. The plu-
ral of the modern German noun Gast therefore inherited an umlauted vowel while
the plural of Tag did not, though the plurals now share the same plural suffix (i.e.
a schwa). We discover that since its original phonological motivation was lost, the
distribution of umlaut in Modern German plural forms is truly random in a fun-
damental way. Each plural form is etymologically based on its earlier form handed
down through the generations. The appearance of umlauted vowels in German
plurals is largely an accident of history.

Although we might thus plausibly conclude that an umlauting rule is not pos-
sible to formulate, linguists working under a variety of frameworks have continued
to try over the years to devise such a rule. The existence of an undiscovered um-
lauting rule has been assumed a priori since speakers of German obviously use
noun plurals productively – that is, when German speakers are presented with an
unfamiliar singular noun or a nonce (i.e. invented) singular form, speakers have
intuitions about how such a word may be pluralized, including the possibility of
umlauting.

A synchronic system of German pluralization thus seems to exist, though it
eludes easy description under a traditional, rule-based framework. As Salmons
(1994:213) writes,

By any standard, the German plural system is highly marked and its con-
nection to umlaut especially problematic . . . The role of umlaut in German
morphology is . . . challenging, bringing forth a range of proposals . . . Mor-
phological uses of umlaut have wrought havoc in such prominent theoretical
frameworks as Lexical Phonology / Lexical Morphology . . . This indicates un-
ambiguously that German plural marking and German morphological uses of
umlaut represent particularly difficult phenomena for linguistic analysis.

Because of such challenges, many traditional accounts amount to little more than
taxonomies. Essentially, whatever plural morphology a particular nominal requires
is just satisfied by assigning it to a class whose principle characteristic is that it
supplies exactly that plural morphology. Such analyses do not reliably explain why
a particular noun might fall into one or another of the classes. Therefore, there
is no ability to predict the plural form given a novel or nonce word without first
being told the class of that word, which is tantamount to being told the plural form
anyway. If such categories exist, how is it that speakers formulate categories and
assign novel/nonce forms to them without being told?

The inability of traditional linguistic approaches to yield a satisfactory account
of German plurals has led to a growing interest in treating this topic under a com-
putational analysis. Expressed in the terminology used by computer scientists, we
may say that although traditional accounts may boast coverage of the data (claim-
ing that each word in the lexicon is assigned to some morphological category),
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they have little or no robustness (the ability to handle novel or unexpected data). As
Nakisa and Hahn (1996:177) write,

The German plural system has become a focal point for conflicting theories of
language, both linguistic and cognitive . . . What is now required is the devel-
opment of explicit computational models which allow quantitative assessment
against real data.

. Computational approaches to the German plural

A recent comparison of computational treatments addressing the German plu-
ral is advanced by Nakisa and Hahn (1996). In their study, they test three simple
approaches to predicting the plural form of a German noun given the singular:
an ordinary nearest-neighbor algorithm, the Generalized Context Model (GCM)
proposed by Nosofsky (1990), and a standard, three-layer back-propagation net-
work. The measures of coverage they have attained with these simple models is
noteworthy.

Nakisa and Hahn drew their data from the 30,100 German nouns in the
CELEX database. Plural categories with a type frequency of less that 0.1% were
discarded, resulting in a database of 24,640 nouns with 15 possible plural forms.
In testing this entire set of nouns with the simple nearest neighbor algorithm, the
predictive accuracy was 72% on novel items. They then tested a subset of 8,598
non-compound nouns, defined as any noun “that did not contain another noun
from the database as its rightmost lexeme” (1996:177). Splitting this subset roughly
in half with a training set of 4,273 words and a testing set of 4,325 words, the near-
est neighbor approach still maintained a predictive accuracy of 71%. Using this
same subset, the GCM approach scored 75% and the network scored 83.5% on
novel items.

Given this level of success with other computational models, I was interested in
contrasting this performance with Skousen’s AM approach. Although my ultimate
aim was a careful, side-by-side comparison with the results obtained by Nakisa
and Hahn, my immediate aims were more modest. In Wulf 1996a and 1996b, I
noted that AM is quite successful in predicting the German plural when given a
dataset numbered in only hundreds of examples rather than thousands. Thus, I
discovered that the AM approach was robust and offered good coverage even with
a dataset of examples drastically smaller than the training sets used for many other
computational models. However, in focusing on AM’s performance with particular
lexical items, my earlier studies had not calculated an overall quantitative measure
of performance with a small dataset, so this is what I set out to measure.
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. Setting up the analogical approach to the German plural

In my most recent investigations of the German plural, I have used the updated
analogical modeling program in Perl (aml10) available for download from the AM
homepage and have run these on a Macintosh. The program itself contains no
rules of German plural formation, but merely compares an input form with those
in the dataset and, according to the principles of analogical modeling, as outlined
in Skousen 1989, makes an “educated guess” at its plural form.

The datasets and test items are drawn from the CELEX database. Three exam-
ples of dataset entries are shown here:

F fb==@-===ts=i-======U+==NC Beziehung/Beziehungen 1245/1061
E fm==i-===n==u+===t==@-===V Minute/Minuten 1428/1039
A n===a+==ng==@-===b==o+==tC Angebot/Angebote 1190/718

The dataset entries are specified in three fields, separated by spaces. The first field
is a one-letter code indicating the plural morphology taken by the noun in the plu-
ral. There are 13 possible options of plural morphology, designated with the letters
A through M. The second field is twenty-six characters long and specifies first the
gender of the noun (m, f , or n) followed by an encoding of three syllables of the
word (discussed below) and then followed by an indication of whether the final
phoneme is a consonant or a vowel (C or V). The third field is a comment field
ignored by the AM program. This simply cites (for a human reader) the singular
and plural forms of the noun as well as the noun’s lemma frequency and the plu-
ral form’s frequency from the CELEX database. The test items are identical to the
dataset items except that the first field indicating the plural morphology has been
removed, as this is what the program attempts to predict.

The codes for the various options of plural morphology are shown in Figure 2.
Also indicated here are the percentages (rounded values) of words from the CELEX
database which take each particular option (as cited in Nakisa & Hahn 1996:179).

These options are the same as those used by Nakisa and Hahn (1996) with
two exceptions. Because of the small size of the datasets used in the tests, there
happens to be no dataset or test item which forms the plural by replacing -um with
-a (approximately 0.5% of the words in the CELEX database), so this possibility
is excluded. Secondly, I group the morphology associated with such lexical items
as Thema/Themen under option E in Figure 2. This is because the final -a in the
singular form is pronounced as a schwa and the ending -en is pronounced as a
schwa plus the consonant n. Thus, it seems reasonable to me that the distinction
may be largely one of spelling convention rather than phonology, though this point
is debatable.

Memory limitations allow only a maximum of approximately 26 variables to
be compared. The description for each word in the data is therefore limited, and it
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Outcome Example % in CELEX Database

A -e Jahr/Jahre 18
B -¨e Kraft/Kräfte 8
C -er Kind/Kinder 1
D -¨er Land/Länder 3
E -n Frage/Fragen 18
F -en Mensch/Menschen 28
G – Leben/Leben 17
H -¨ Schaden/Schäden 1
I -s Auto/Autos 4
J -ten Bau/Bauten 0.1
K -ien Prinzip/Prinzipien 0.1
L -is→ -en Thesis/Thesen 0.4
M -um→ -en Datum/Daten 0.6

Figure 2. Possible outcomes for plural morphology

has been necessary to decide what information should be entered and what with-
held. Nakisa and Hahn (1996) do not include gender in their tests, but since the
plural system obviously interacts with the gender system, I allocate one variable to
its specification, as I had done in my previous studies. Since the suffixation mor-
phology is broadly influenced by whether the word-final phoneme is a consonant
or a vowel, I devote one variable to this distinction as well. This leaves 24 variables
for the specification of three syllables of eight variables each: three for the onset
consonants, two for the vowel, and three for the coda consonants. Onset and coda
consonant variable slots are zero-padded (with =) whenever all three slots are not
filled. For words shorter than three syllables, the unused variables are likewise zero-
padded. For words longer than three syllables, only the first and final two syllables
are specified.

Finally, each vowel is marked as a back vowel (indicated with +) or front
vowel (indicated with –). My reason for this is motivated by the way the analogical
method works. This is best illustrated with an example. Suppose an AM analysis
of the German plural is attempted with a dataset of only two forms Wert (plural-
ity option A: Werte) and Wort (plurality option D: Wörter) and we wish to predict
the plural of Wirt. For purposes of the illustration, we may ignore the contribution
of gender. Without marking explicitly for front/back vowels, AM judges Wert and
Wort to be equally similar to Wirt and predicts each plurality option 50% of the
time. This is because both words in the dataset differ from the test item by just one
variable each (i.e. the vowel). However, as far as the question of umlauting (vowel
fronting) is concerned, Wirt is obviously more similar in an important phonetic
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respect to Wert. The vowels in both of these words are front vowels, whereas Wort
has a back vowel. If this fact is specified, AM predicts the correct plural for Wirt
(option A: Werte) by analogy with Wert with a frequency of 100%. Therefore, it
seems to me that in order to be faithful to the theory of AM, it is reasonable to cite
vowel fronting explicitly.

Which words to include in a dataset is also an important issue. In theory, the
most frequently used words in the language have the greatest analogical effect. For
this reason, the nouns in the CELEX database were first sorted in order of the de-
creasing frequency of their plural forms. Unfortunately, some commonsense edit-
ing was then required in entering the nouns into datasets due to the problem of
homographs. For example, the word Bayern may translate either as the proper
noun ‘Bavaria’ or as the plural common noun ‘Bavarians.’ The frequency of one
use versus the other is not specified in the CELEX database. For this current study,
I therefore eliminated a small number of homographic forms from the datasets,
though this is obviously not an ideal solution.

There are a number of such homographic problems, but obviously the most se-
rious concerns the identity plurals in German. Since the singular and plural forms
are identical, the wordform frequencies for such nouns are inaccurately high since
they record every occurrence of this noun in the plural and the singular. If not ad-
justed in some way, the AM system would tend to overpredict the identity plural.
As a reasonable approximation, since the identity plural is taken by approximately
17% of all nouns in the CELEX database, for every hundred words entered, I simply
included 17 identity plurals, added in their order of frequency. Again, this was not
ideal, but it at least avoids the gross distortion that occurs if the frequency numbers
are used directly.

. Analogical Modeling of the German plural

My study consists of two tests, which I call Test A and Test B. For Test A, I use the
800 most frequent nouns in German. Of these, 700 serve as the analogical dataset
and 100 as the test set. In order to score performance, I select by plurality – that
is, the most frequently selected result is taken as AM’s prediction for a trial. With
the 700-word dataset, the AM approach scores 72% on this test set of 100 items.
For the subsequent trials, I delete sets of 100 words successively from the dataset
and run the same 100 test items against the 600 most frequent words, the 500 most
frequent words, and so forth, down to only the 100 most frequent. Even with a
dataset reduced to only 100 examples, AM still scores 64%. Although the scores
vary somewhat up and down, the general trend is one of a gradual increase in
performance as the size of the dataset is increased, as shown in Figure 3.
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Figure 3. Results of Test A

The results are remarkably good given the small sizes of these datasets. First
of all, without ever being told a morpholexical rule and with very few examples,
the model is able to predict plurals confidently for many forms in German which
behave categorically in their formation of the plural. As it so happens, plural forms
which have traditionally been the easiest to characterize in terms of a rule have
tended to involve forming the plural by adding -n, -en, or the identity plural (op-
tions E, F, and G). Together, these three plural options account for approximately
63% of all plural forms in German. Considering the trial of Test A with 700 words
in the dataset, AM’s accuracy for only these three “regular” (i.e. largely regular)
plural options is 87%.

The scores for the remaining options are somewhat lower, yet this is not par-
ticularly surprising. It is certainly the case that there are a large number of idiosyn-
cratic choices in German plural formation, especially among the most commonly
occurring nouns in the language. Most theories of German plural formation admit
the notion that a greater than average number of exceptional plural forms must
simply be memorized. However, AM demonstrates that if a certain number of reg-
ular forms are also memorized, rule-based behavior may be demonstrated through
analogy alone. Thus, as the dataset is increased, exceptional forms are memorized
and patterns of regular behavior are strengthened.

It is also interesting to note AM’s success in predicting umlauting in the plural
versus suffixation/replacement. The 700-word trial of Test A scores 72% and thus
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Figure 4. Results of Test B

misses the correct form for 28 examples. Of these 28 mistakes, 24 of them involve
selecting an incorrect suffix/replacement, without any error in umlauting. By con-
trast, only three mistakes involve a correct selection of a suffix, but with incorrect
umlauting. In only one example does AM select both the wrong umlauting option
and the wrong suffix. Thus, for this set of one hundred examples, AM has an accu-
racy of 75% in selecting the correct suffix/replacement and an accuracy of 96% in
predicting the umlauting of the vowel in the plural.

Of course, it is important to demonstrate that AM’s performance in Test A is
not simply a lucky occurrence. Test B is designed to do this. I begin with the same
800 words as in Test A. For the first trial, I use the first hundred words as a dataset
and the second hundred words as a test set. Next, I use the first two hundred words
as a dataset and the third hundred words as a test set. I proceed upwards in this
fashion so that each trial involves a new test set of one hundred novel words. Of
course, the final trial of Test B involves a 700-word dataset and is thus identical to
the trial from Test A. The results of Test B are shown in Figure 4.

The performance varies up and down, yet remains fairly close in each case to
the average across these seven trials (namely, 65.3%). This percentage is probably
also reasonably close to the percentage of plurals in these datasets that might be
characterized as “regular,” in the sense that it would be fairly straightforward to
account for them with a morpholexical rule.
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In many cases AM performs much as a nearest neighbor approach. How-
ever, on certain occasions, AM goes well beyond what could be achieved under
a straightforward nearest neighbor algorithm. For example, consider AM’s predic-
tions in Test B for the plurals of die Steuer (‘tax’) and das Steuer (‘control’) as shown
in Figure 5.

Part 1

Project Name: german400B.data
Given Context:
f = = = = = = = = S t = Q - = = = = = = @ - = = r C
S t e u e r / S t e u e r n 2 0 6 / 1 1 6

Include context even if it is in the data file
Number of data points: 400
Probability of including any one data point: 1
Total Excluded: 0
Nulls: exclude
Gang: squared
Number of active variables: 33
Number of active contexts: 8589934592

Statistical Summary
E -n 10076 75.18%
F -en 101 0.75%
G - 3225 24.06%

Part 2

Project Name: german500B.data
Given Context:
n = = = = = = = = S t = Q - = = = = = = @ - = = r C
S t e u e r / S t e u e r 2 0 6/
Include context even if it is in the data file
Number of data points: 500
Probability of including any one data point: 1
Total Excluded: 0
Nulls: exclude
Gang: squared
Number of active variables: 28
Number of active contexts: 268435456

Statistical Summary
E -n 96 9.21%
G - 946 90.79%

Figure 5. Plural forms predicted for die Steuer and das Steuer
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As we see in the first run, given a dataset of 400 words, AM predicts the correct
plural morphology for die Steuer (E -n) with a frequency of about 75%. Next, AM
is required to predict the plural for das Steuer. Because this word in the plural is
slightly less frequent according to the CELEX frequency measures, the dataset for
this test happens to contain 500 examples, including die Steuer. The nearest neigh-
bor of das Steuer in the dataset is obviously die Steuer, so a pure nearest neighbor
algorithm would incorrectly select E -n as the plural morphology of das Steuer.
However, AM looks beyond the nearest neighbor. Even though the presence of die
Steuer in the dataset causes some leakage, AM correctly predicts the identity plural
(G -) for das Steuer with a frequency of about 91%.

Even when AM’s predictions are at variance with the plural forms of Standard
German, there is often something interesting to discover in the results. For exam-
ple, in various runs of the program with small datasets, AM predicts the plural
of die Saison as die Saisonen (F -en) and often with a frequency of 100%. As with
many nouns borrowed from foreign languages into German, however, Saison takes
its plural in -s (i.e. Saisons) in the standard language. Nevertheless, it is interesting
to note that Saisonen is the plural form used in the dialectal variant of German
spoken in Austria. The treatment of German plurals under AM gives us a possible
explanation for this dialectal usage. In cases where AM fails to predict the stan-
dard form, this could provide an indication forms that might be encountered in
non-standard dialects or in production errors in the usage of the standard dialect.

. Goals for further research

Certainly, the next step in studying the German plural under AM is to consider per-
formance with increasingly large datasets. Such trials have already been conducted
by Daelemans (in this volume), who has discovered that, as expected, performance
does climb as the dataset is raised to thousands, rather than hundreds, of examples.
Of particular note, the accuracy in correctly predicting the more uncommon plural
morphology in German should improve. In small datasets, the rarely encountered
morphology may only be represented by a small handful of forms or perhaps even
just a single form. Only in larger datasets do sufficient examples accumulate to
generate small islands of analogical behavior.

In Wulf 1996a and 1996b I discuss at length the intriguing behavior of AM
with an example such as Vormund. When Mund and its plural are left out of the
data set, the program selects the standard plural of Vormunde with some slippage
towards *Vormünde, influenced largely by the presence of Grund/Gründe. How-
ever, when the single entry of Mund (D -¨er) is added to the data set, the effect
on plural selection for Vormund is considerable. Suddenly a major variant form
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in Vormünder appears in the output and in fact is often modeled as the most
popular form.

Of course, the noun Vormund rarely occurs in the plural. Thus, to be in con-
formity with the theory of AM, this plural should be predicted from the combined
analogical effect of all the many thousands of more common plural noun forms in
German. We may then see if the fairly even division between Vormunde and Vor-
münder persists even as the dataset grows, while selection of the incorrect form
*Vormünde declines. When tested with only small datasets, AM does not model
such exact percentages of variation in German usage. Nevertheless, the analogi-
cal model is already able to capture the variation and leakage across categories so
characteristic of infrequently encountered German plurals.

The analogical method can thus give us one possible explanation for the dis-
tribution of umlaut in the German plural which has caused linguists so much diffi-
culty. For the most common words of the language, those handed down over time,
the distribution of the umlaut is essentially random. Thus, forms such as Tage and
Gäste are simply examples in the data set, so to speak, which are given to us as
language learners. These initial examples however, are referred back to again and
again in language use when forming plurals of infrequent words, such as Vormund.
The illusion of the application of rules results from such analogical effects.

. Conclusion

Traditional rule-based systems can be helpful in summarizing language behav-
ior, but sometimes offer little in the way of predictive power. Computational ap-
proaches to such problems as the German plural clearly do much better in making
predictions. Among the variety of computational approaches under consideration,
AM is certainly a promising alternative. AM accounts for the productive use of
German plurals by relying on analogies with given forms to generate novel ones.
The highly marked quality of the dataset results in great variety in the application
of plural markers, such as the umlauted vowel. Even in cases where AM is not suc-
cessful in predicting the standard form, the results may often be significant as they
may correspond to dialectal forms or common production errors. The analogical
approach thus indeed offers hope in disambiguating intricate linguistic patterns
such as the plural in German.
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Note

* The author wishes to thank David Graff of the Linguistic Data Consortium at the Uni-
versity of Pennsylvania for his invaluable assistance in sorting nouns in the CELEX database
by frequency.
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Chapter 5

Testing Analogical Modeling

The /k/∼Ø alternation in Turkish*

C. Anton Rytting

Introduction

Consonantal alternations in Turkish

The final consonants of many Turkish stems display two different forms, depend-
ing on the surrounding phonological context. For example, it is very common for
stem-final voiceless obstruents to become voiced when followed by a vowel-initial
suffix (Lewis 1967; Sezer 1981; Inkelas & Orgun 1995):

a. kalıp ‘mold’ kalıp-lar ‘mold-pl’ kalıb-a ‘mold-dat’
(Inkelas & Orgun 1995)

b. kurt ‘worm’ kurt-tan ‘worm-abl’ kurd-u ‘worm-3sg.poss’
(Sezer 1981)

c. a:č ‘tree’ a:č-ta ‘tree-loc’ a:¦J-ın ‘tree-gen’
(Lewis 1967:31)

However, stem-final velar stops behave quite differently. Final /k/ does voice to /g/
in some borrowed words, but only after /n/:

d. renk ‘color’
denk ‘counterweight’

rengim ‘color-3sg.pred’
dengi ‘counterweight-acc’

In all other stem-final contexts, both /k/ and /g/ either remain as they are or dis-
appear entirely. The typical pattern is for the velar to delete intervocalically:

e. yatak ‘bed’ yatak-lar ‘bed-pl’ yata-ı ‘bed-3sg.poss’
kelebek ‘butterfly’ kelebek-ler ‘butterfly-pl’ kelebe-i ‘butterfly-3sg.poss’
filolog ‘philologist’ filolog-lar ‘philologist-pl’ filolo-u ‘philologist-3sg.poss’
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This conditional deletion of stem-final velars is known in the literature as the
/k/∼Ø alternation (Zimmer & Abbott 1978; Sezer 1981; Van Schaaik 1996; Kibre
1998) or as velar drop (Inkelas & Orgun 1995). There are some known exceptional
cases to the /k/∼Ø alternation, where velar deletion does not apply. The majority
of these cases fall into two categories (see Sezer 1981).1

Exceptional class 1: Monosyllabic stems

The first class of exceptions involve monosyllabic stems of the pattern (C)VC[+velar],
where both voiceless and voiced velar stops are retained intervocalically (Inkelas &
Orgun 1995):2

(1) a. kök ‘root’ kök-e ‘root-dat’ not *kö-e *kög-e
ek ‘affix’ ek-e ‘affix-dat’ not *e-e *eg-e
ok ‘arrow’ ok-um ‘arrow-1sg.poss’ not *o-um *og-um
lig ‘league’ lig-i ‘league-3sg.poss’ not *li-i
füg ‘fugue’ füg-e ‘fugue-dat’ not *fü-e

The same general pattern of exceptions may be observed in monosyllabic roots
of type C0VC[–continuant, –velar], where the voicing does not alternate as noted
above – both with voiceless (1b) and voiced (1c) final consonants (Inkelas & Orgun
1995; Kibre 1998):

(1) b. at ‘horse’ at-ı ‘horse-acc’
sap ‘stem’ sap-ı ‘stem-acc’
koč ‘ram’ koč-u ‘ram-acc’

c. ö¦J ‘revenge’ ö¦J-i ‘revenge-acc’
ud ‘oud’ ud-u ‘oud-acc’

Inkelas and Orgun (1995) report that 87 percent of monosyllabic roots resist final-
consonant alternations. We see, then, that this class of words has a strong tendency
toward exceptionality, but it itself is not a consistent exceptionless subrule.

Exceptional class 2: Words with a long vowel before the final /k/

It seems from (1a) and (1b) that the preservation of the final velar may just be a
special case of a general resistance to alternation in monosyllables. But the situation
is not that simple. There is another class of words, the vast majority of which have
been borrowed from Arabic or Persian sources, that have an “underlyingly” long
vowel before the /k/. This vowel is usually shortened before a consonant in the coda
(as seen here in the base forms), but regains its length when the /k/ is re-syllabified
before a vowel-initial suffix (Sezer 1981):
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(2) merak ‘curiosity’ mera:ki ‘curiosity-3sg.poss’
infilak ‘explosion’ infila:ki ‘explosion-3sg.poss’
ittifak ‘alliance’ ittifa:ki ‘alliance-3sg.poss’
tahkik ‘verification’ tahki:ki ‘verification-3sg.poss’
tetkik ‘investigation’ tetki:ki ‘investigation-3sg.poss’

Various accounts of the /k/∼Ø alternation

The /k/∼Ø alternation and these two classes of exceptions have been accounted
for in several ways. Zimmer and Abbott (1978) and Sezer (1981) postulate a rule
that deletes final /k/ after a vowel in polysyllabic words. I present a modified
version here:

(3) C[+velar]→ Ø/VC0V[–long] + V[+denominal, +native]

Inkelas and Orgun (1995) essentially agree with Sezer’s analysis, but they seek to
provide principled justification for it. For the first class of exceptions, Inkelas and
Orgun cite a language universal proposed by McCarthy and Prince (1986), the bi-
moraic minimal size condition, which prevents C0VC roots from being further
shortened by rules such as velar deletion. Inkelas and Orgun’s analysis does not
explicitly account for Sezer’s second class of exceptions.3

Van Schaaik (1996:113), on the other hand, seems to reject the notion of
“exceptional classes” governed by rules. He argues that the alternation and all
its exceptions may be most elegantly accounted for by means of lexically stored
“archiphonemes” /G/→ {g,Ø}, /K/→ {k,Ø}, which are phonetically underspec-
ified in the lexicon, but are realized in speech according to the phonological
surroundings. All polysyllabic velar-final words are supposed to contain these
archiphonemes; monosyllabic words contain fully specified /k/ or /g/. This analy-
sis avoids the problem of finding theoretically justifiable rules to account for every
word. However, it also fails to account for the productive nature of the /k/∼Ø al-
ternation. Zimmer and Abbott (1978) note that the /k/∼Ø alternation applies not
only to native words, but also to recently borrowed words:

(4) frikik ‘freekick’ friki-i ‘freekick-3sg.poss’
(Zimmer & Abbott 1978)

Furthermore, their experimental evidence suggests that the /k/∼Ø alternation is
both productive and psychologically real. Zimmer and Abbott describe two psy-
cholinguistic surveys testing the productivity of the /k/∼Ø alternation, in which
native speakers were asked to attach the vowel-initial suffix to various nonce-words.
Their surveys included monosyllabic “stems” (Exceptional class 1), and several ex-
amples of “Arabic-sounding” stems, including one example of a long final vowel
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(Exceptional class 2).4 Although their results reveal some variation among speak-
ers, they do show that most speakers tend to behave in accordance with Sezer’s rule
(listed as (3) above). Zimmer and Abbott report a clear correlation, significant to
the .05 level, between the number of syllables and /k/ deletion. Since nonce words
cannot be supposed to exist a priori in a speaker’s lexicon, these data seem to indi-
cate the presence of a word-independent phonological rule or tendency, contrary
to Schaaik’s assertion. Schaaik’s strictly lexical approach therefore seems less plau-
sible from a psycholinguistic standpoint, since it does not account for Zimmer and
Abbott’s data.

Sezer’s rule is, in part, well-supported by Zimmer and Abbott’s experimen-
tal data, and elegantly accounted for within Inkelas and Orgun’s theory. But only
in part. With regard to monosyllables (Exceptional class 1), it provides a bench-
mark by which other approaches may be measured. Any alternate theory must ac-
count for the productive velar-retention of monosyllables, as well as for the normal
case. However, Sezer’s second exceptional class – words with long final vowels be-
fore /k/ – has not been adequately shown to be a productive rule, either in theory
or empirically. The one nonce word of this type in Zimmer and Abbott’s study
was judged to retain the velar by only 55% of the informants. Further data from
the TELL lexicon (see below) also shows considerable variation among words of
this type.

In short, there seem to be two general ways to account for these exceptional
classes. One, represented by Sezer (1981) and Inkelas and Orgun (1995), proposes
more fine-grained rules to handle these exceptions. The other, represented by van
Schaaik (1996), assumes that these exceptions are entirely lexical in nature. We have
seen that both approaches encounter some difficulty. Nicloas Kibre, discussing the
application of the dual-route model to Turkish final-consonant alternations, ob-
serves this same dilemma. The exceptional classes are too regular to be listed as
exceptions, yet too irregular to be fully described by rules. He proposes that only
a system that recognizes a continuum between regularity and irregularity will be
able to account for final consonant deletion (1998).

A number of approaches meet Kibre’s requirement for such a continuum of
regularity. Kibre himself suggests a schema-based model incorporating “family re-
semblance” and other ideas from lexical connectionism (1998). Exemplar-based
approaches constitute another class of alternatives to the “rule-plus-exception-list”
approach and, furthermore, have working implementations that can be empirically
tested. I will here consider an exemplar-based approach known as analogical mod-
eling (Skousen 1989). By it I will show that an exemplar-based model can account
for both the productive regularity of monosyllables (Exceptional class 1) and the
variation in long-voweled polysyllables (Exceptional class 2).
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Analogical Modeling of language

A brief description of the approach

Like other exemplar-based approaches to language, analogical modeling (AM) rests
on the assumption that speakers do not rely on a finite set of rules in order to per-
form some operation on a word, such as attaching a suffix to a word. Instead, a
speaker remembers specific examples of words with that suffix attached, and bases
his performance on the examples in his memory. Usually, an instance of the “tar-
get word” itself will be remembered (if it is a relatively common word), and that
instance will be applied. For example, if I want to add the plural suffix to the word
‘log’, I remember (subliminally) the last time I heard the plural of ‘log’ as [l"gz],
and model my own performance after it. But supposing I should forget the plu-
ral of ‘log’. I could still come up with a good “guess” by remembering that ‘dog’
becomes [d"gz], ‘leg’ becomes [l7gz], etc., and applying the plural selected on the
basis of these neighboring words.

However, suppose I were to forget the plural of ‘ox’. This is unlikely for an adult
speaker, since ‘ox’ is not a very rare word. But if I did, I would probably remember
‘ax’→ [æks6z], ‘box’→ [b"ks6z], etc., and come up with the “wrong” plural –
but the same plural one would expect from applying a rule. As this example sug-
gests, the AM model predicts that sufficiently common exceptional words (like ‘ox’)
will retain their irregular forms, but that rarely used word forms will eventually be
forgotten and re-analyzed by analogy to have regular forms.

Unlike nearest neighbor approaches, which base their predictions on the n
nearest neighbors to the target word in question, AM creates on the fly an “ana-
logical set” of variable size for the target word in its given context, consisting of
(1) classes of examples that are the most similar to the target word (nearest neigh-
bors), and (2) more general classes of examples which behave like those nearest
neighbors. This second class allows for what Skousen calls the gang effect: many
words which are part of a larger regular pattern may be included in the analogi-
cal set – even if they are only marginally similar to the word in question – as long
as there are no intervening words which behave differently. This allows the more
common patterns, such as the regular plural in English, to apply to nearly any
unremembered word, creating a rule-like regularity across the nominal lexicon.

In short, the probability of a word being chosen as an “exemplar” for the target
form in a given context X depends on three properties (Skousen 1989:4):

1. the similarity of the occurrence to the given context X;
2. the frequency of the occurrence;
3. whether or not there are intervening occurrences closer to X with the same

behavior.
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Unlike both rule approaches and connectionist systems, Skousen’s model allows
for multiple possible outcomes for an operation on a word. Each possible out-
come has a probability associated with it, derived from the proportion of exem-
plars in the analogical set which use that outcome. Random selection from a set
of “activated” exemplars accounts for the variation inherent in real-life language.
It also accounts for the possibility of “changing one’s mind”, or producing sev-
eral guesses (see Skousen 1989:84–85). Since the speaker has several possible out-
comes at his disposal, he may try one, decide against it, and then try another. Most
deterministic, rule-based approaches do not allow for such multiple guesses.

The creation of a lexical data set for predicting the /k/∼Ø alternation

Since AM bases its predictions of an operation on the outcomes of similar words,
the application of AM to any particular problem requires the creation of a suitable
model of the mental lexicon – or at least that small subsection applicable to the
problem. In this case, an appropriate subsection of the lexicon would include noun
stems ending in /k/ or /g/. It could also be expanded to include all noun stems end-
ing in any obstruent (/p/, /b/, /t/, /d/, /č/, /¦J/, /k/, /g/), although the words without
final velars would be expected to play a less crucial role.

In order to model a subset of the Turkish mental lexicon, I extracted data from
a lexicon based primarily on spoken Turkish and developed especially for morpho-
logical studies. This lexicon, the Turkish Electronic Living Lexicon (TELL), was de-
veloped by Sharon Inkelas at the University of California, Berkeley. It is a database
of 30,000 Turkish words representing both print dictionaries and actual speaker
knowledge. TELL was compiled from two editions of the Oxford Turkish-English
dictionary, a telephone area code directory, and an atlas of Turkey. The 30,000 re-
sulting lexemes were elicited, in various morphological contexts, from a 63-year old
native speaker of a standard Istanbul dialect. The resulting database contains ortho-
graphic representations of these 30,000 headwords as well as phonemic transcrip-
tions of all elicited forms. The native speaker knew and supplied pronunciations
for some 17,500 of the elicited lexemes.5

The TELL lexicon contains approximately 3000 words ending in the velar stops
/k/ or /g/, of which roughly half are nouns. Most, but not all, of these nouns were
part of the informant’s active vocabulary. Of the 1511 velar-final nouns found in
the lexicon, 1440 are reported as “used” by the informant, and 71 are reported as
“not used” by the informant. Other than this classification, there is no information
regarding word frequency in the TELL database. Nevertheless, the informant’s clas-
sification of words as used and not used provides a simple way of deciding which
words are likely to be common (and therefore likely to be remembered) and which
are likely to be uncommon (likely to be constructed by analogy). Accordingly, those
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items which are labeled used have been used in constructing the lexical dataset.
Those labeled not used were used as test items, to see if the AM algorithm would
predict for them the same outcome as was supplied by the informant. In addi-
tion, two additional word lists were tested: a list of Arabic loan words with long
final vowels, taken from Sezer (1981), and the second nonce test from Zimmer and
Abbott (1978).

The TELL database provides three different types of vowel-initial suffix for
most words: the definite accusative (‘the X.acc’), the first person singular posses-
sive (‘my X’), and the “predicative” or copulative (‘I am an X’). Each word was
saved up to three times in the lexical data set, once for each attested suffix. If an
entry was (for whatever reason) missing one or more of these suffix fields, those
instances of the word were omitted from the database (so as not to invent data not
present). This may have resulted in a word receiving less “weight” than its neigh-
bors, having only one or two instances in the data set instead of three. However,
this weighting seems justifiable, for if the informant is unable to provide a form for
all three fields, it may not be frequently used in all three suffixes, and thus this gap
ought to be reflected in the data set.

Occasionally an entry had two alternate entries for the same suffix (e.g.,
infilak + pred→ infilak-ım, infila-ım), then one of each copy was saved. Essen-
tially, this resulted in a duplicate copy of the same variable set, but with different
values for the outcome, and therefore, “opposing weights”.

The variable encoding scheme

In analogical modeling, the similarity or “nearness” between two words is deter-
mined by the number of variables for which the two words have identical values.
Conversely, the number of non-matching variables determines “distance” from
the given context. Unlike rule-based approaches (and some nearest-neighbor ap-
proaches), AM does not try a priori to determine which variables are “significant”
and which are not. Instead, enough variables are included to give as complete a pic-
ture of the surrounding context as possible, within the constraints of the system.
Although several different variable sets were tested, the basic set of variables was
as follows:

(1) the first phoneme of the word;

(2–4) the onset, nucleus, and coda of the first syllable (for words of two or
more syllables);

(5–7) the onset, nucleus, and coda of the second syllable (for words of three
or more syllables);

(8–10) the onset, nucleus, and coda of the last syllable (not including the /k/ or
/g/);
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(11) the last phoneme of the word stem (for all test items, this was either /k/
or /g/);

(12–14) the vowel-length of the first, second, and last syllables (long or short);

(15) the etymology (if known) of the word stem (Turkish, Arabic, Persian, or
other);

(16) the suffix being added to the stem (accusative, possessive, or predica-
tive).

I will illustrate the encoding of the disyllabic word akik ‘oppression of humidity’,
whose etymology is unlisted in the TELL lexicon. The vowel in the last syllable is
underlyingly long, but it only appears as long with vowel-initial suffixes. In citation
form the vowel is shortened before word-final /k/. This is characteristic of words
in Exceptional class 2. However, the TELL informant seems to have had trouble re-
membering this word’s final vowel length, for he pronounces it long with only two
of the three suffixes listed. Thus the word is borderline between the second excep-
tional class and the normal case. In this particular word (though not in all words,
as shown below), the informant’s decision to retain or delete the velar depends on
the final vowel length, as predicted by Sezer.

The beginning of the line (up to the first comma delimiter) is the “outcome”
of the word, as given by the informant. In this data set there are three possible
outcomes: delete the velar, voice the /k/ to /g/, or leave it the same. The informant
retained the velar (same) with the accusative and predicative suffixes, but deleted it
for the first-person possessive suffix.

The next portion of the encoding contains the sixteen variables. The first
phoneme of the word (1) is /a/; and the onset, nucleus, and coda of the first syllable
(2–4) are null, /a/, and null respectively. The slots for the second syllable (5–7) are
null, since the second syllable is also the last syllable. The onset and coda (5, 7) are
predictably null (=), since the absence of the syllable is already coded in the null nu-
cleus (6). The onset, nucleus, and coda of the last syllable (8–10) is /k/, /i/, and null,
counting the final /k/ (11) as syllabified in the same syllable as the suffix. The vowel
length of the first syllable (12) is short (.), the second syllable’s vowel length (13)
is predictably null (since there is no corresponding syllable), and the final syllable
(14) is long (_) twice and short once. The etymology (15) is unknown (NULL), and
the suffix (16) is either accusative, possessive, or predicative.

The final part of the encoding (listed under Comments) indicates the base
and suffixed forms. It is not used by the algorithm itself, but provides identifying
information to the user.

Outcome 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Comments
same, a 0 a 0 = 0 = k i 0 k . = _ NULL accs, akik–>aki:ki
delet, a 0 a 0 = 0 = k i 0 k . = . NULL poss, akik–>akiim
same, a 0 a 0 = 0 = k i 0 k . = _ NULL pred, akik–>aki:kim
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Tests run on the AM data-set

The first test consisted of the 71 velar-final words which the TELL informant
claimed not to use in everyday speech. These should qualify by definition as “un-
common” words and therefore make excellent test cases, as they are not likely to be
remembered as their own exemplars. In total 199 entries were tested, comprising
all the attested suffix forms.

These 71 words were split into three categories, each of which was tested
separately:

1. words for which all three suffixes uniformly deleted the final velar;
2. words for which all three suffixes uniformly retained the final velar;
3. words where the informant retained the velar on only one or two of the suf-

fixes.

The first subset were all polysyllables ending in VC0V[–long]k, the pattern pre-
dicted by Sezer to always delete. Within the second subset, there were seven mono-
syllabic words: three of the pattern CVC[+velar] (Exceptional class 1), three with
the pattern CVCC[+velar], and one CV[+long]k. As well, there were two polysyl-
labic words with the pattern VC0V[+long]k (Exceptional case 2), and thirteen poly-
syllables ending in V[–long]C0Vk. This retention of the velar is contrary to Sezer’s
predictions; therefore, these words seem to form a third and previously unknown
group of exceptions. The third subset consisted entirely of polysyllables ending in
V[–long]C0Vk. Their behavior (or this informant’s usage) is also wrongly predicted
by Sezer’s rule, since Sezer predicts that all three of these suffixes should behave
identically.

The second test consisted of twelve words taken from Sezer (1981), exempli-
fying Exceptional class 2. All were of Arabic origin and had a long final vowel fol-
lowed by a /k/. These were tested in three ways: treating the final variable as long,
treating it as short, and ignoring the final vowel-length altogether. (The latter two
turned out to have equivalent results.) They were also tested with and without the
etymology variable, to isolate its effect.

The final test run was the second nonce experiment from Zimmer and Ab-
bott. All these words were coined by the experimenters. They include ten ex-
amples of Exceptional class 1 (C0VC[+velar]), one example of Exceptional class
2 (VC0V[+long]k) and three other examples of “Arabic sounding” words. These
last three, and the remainder of the words, are polysyllables of the pattern
VC0V[–long]k. In Zimmer and Abbott’s nonce experiment, each nonce word was
inflected according to Sezer’s predictions by a majority of the subjects.
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Discussion of results

Results of the three tests

In the first test, all of the words with deleted final velars, including all of subset
one, and about half of the items in subset three, were predicted correctly, with
little average leakage. All of the monosyllabic words (Exceptional class 1) also were
predicted correctly. These are the two classes of words where Sezer’s rule was shown
to be productive. Thus, the AM algorithm meets the benchmark set by this portion
of Sezer’s rule.

In the second test, all twelve of Sezer’s examples for Exceptional class 2 were
predicted to retain the velar when the final vowel was treated as long and the etymo-
logical variable was present. Eleven out of twelve (all but ahla:k ‘morals’) were pre-
dicted as velar-retaining without the etymological variable, and nine out of twelve
when the final vowel was treated as short or ignored, with or without the etymo-
logical variable. (Ahlak, infilak ‘explosion’, and ittifak ‘alliance’ were predicted to
delete when final vowels were ignored.) It seems clear that the vowel length does
play a factor in the retention of the /k/, as Sezer predicts. However, it may not be a
crucial variable, for it appears that some of the words can be correctly remembered
as /k/-retaining even without the knowledge of the vowel length. This seems to be
the situation with our informant. He is unsure of the proper vowel length of several
words (e.g., istimlak ‘expropriation’), reporting them as both long and short, but
retains the /k/ in both cases. For him, vowel-length and final-/k/ retention are not
completely connected – both exceptional features are gradually being lost, but the
latter more slowly than the former.

Ten of Sezer’s twelve examples were present in some form in the data set, and
most of these were highly dependent on being “remembered” to retain the /k/.
Only istintak ‘interrogation’, istihkak ‘merit’, and inhimak ‘inclination’ showed a
“stable” final /k/ without the final long vowel, probably due to the number of Ara-
bic loan-words beginning with inC- and isti- that keep the final /k/. Furthermore,
the two “uncommon” words in this category (misak ∼ misa:kım ‘solemn promise,
pact’ and revak ∼ reva:kım ‘porch, pavilion’) failed to be predicted as /k/-retaining
without the long final vowel. Therefore, the AM model predicts that only com-
mon words are likely to remain /k/-retaining in a dialect that has lost vowel length
distinctions. Over time, the words would be regularized to follow the patterns de-
scribed by Sezer. We see that process in action in two of the “missed” words, in-
filak and ittifak. The informant has already lost the long final vowel for both of
these words, reporting them as short. Infilak is present in the database not once
but twice – once with final /k/, and once without – for all vowel-initial suffixes.
Ittifak is reported without the final /k/ in all cases. In light of this data, Sezer’s gen-
eralization describes a constellation of words, but not necessarily a productive rule.
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We see here that in this informant’s idiolect, this exceptional class is gradually be-
ing lost. AM correctly predicts both the direction of the change and its gradual,
word-by-word nature.

In the third and final test, the nonce experiment, twenty-one of the twenty-
four words were predicted “correctly” (i.e. as the majority of the subjects had
them), and three were missed (ruk, müstemek, and mok). This is not remarkable,
for about half of the subjects also “missed” three or more of the twenty-four items.
It seems likely, especially upon inspection of the TELL database, that our infor-
mant would do the same, for his own performance shows significant variation from
Sezer’s predictive rules, as we will see below.

Velar-retaining polysyllables ending in V[–long]C[+velar]:
An unanticipated exception

There is a final category of exceptional words which has not yet been directly ad-
dressed. This “other” category of exceptional words is both the largest and the
least expected, for it violates both Sezer’s rules and the results of Zimmer’s ex-
periment. About 434 out of 3645 instances of commonly used words ending in
VCVC[+velar], or 11.9%, exceptionally retain the /k/ in our informant’s usage.
Unlike all other categories seen so far, these exceptions are numerous – nearly as
numerous as all the rule-predicted /k/-retaining instances combined. Also, these
exceptions are not evenly distributed among the three grammatical cases. Over
half the instances are the “predicative” case; the accusative accounts for roughly
one quarter of the instances and the possessive about one sixth. This is totally un-
accounted for in the above-mentioned rule-based accounts, which predict that all
suffixes of this type should behave the same with respect to retaining or delet-
ing the velar. Yet these trends are even more pronounced among the words not
commonly used.

These “exceptional” words were also incorrectly predicted by the AM algo-
rithm, with very large leakages. These may be true exceptions, but it seems odd that
they should be so numerous, and that so many should all be labeled as “not used”.
There seems to be no common link between them: several, like almanak ‘almanac’
and mihanik ‘mechanics’, are clearly loan words. But others, like benlik ‘egoism’, are
clearly native (though perhaps neologisms). Some are marked as /k/-retaining in
the Oxford Dictionary, others are not. The cause (or causes) of these exceptions is
still unknown. These may be instances of “old-fashioned” or hypercorrect speech,
uncertainty in the face of uncommon words, or just a personal idiosyncrasy on
the part of the informant. They could also be influenced by semantic factors not
considered in this study.6
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Implications of the results: Lexical explanations for the data

Monosyllables (Exceptional class 1)

According to Skousen’s theory, large numbers of similar words grouped “close to-
gether”, as it were, in the lexicon can draw the words around them away from a
more general pattern. All words of the pattern C0VCC[+velar] retain the velar as
a matter of course, by virtue of the consonant adjacent to the velar. Nevertheless,
because they are similar in length and sound to the C0VC[+velar] monosyllables,
they may easily influence them. If this analysis is correct, the number of syllables is
important, not because of a constraint, but because of the distribution of nearby
words. The 159 instances of monosyllabic velar-retaining C0VCC[+velar] stems
form a “gang” sufficiently large to influence the 137 instances of the (phonologi-
cally similar) monosyllabic C0VC[+velar] stems. Thus the C0VC[+velar] stems will
be pulled towards retaining the velar like their C0VCC[+velar] neighbors. However,
the 86 instances of polysyllabic VC0VCC[+velar] stems are too few to influence the
3645 instances of polysyllabic VC0VC[+velar], which remain velar-deleting.

It has been suggested that the “exceptional” retention of velars in CVC[+velar]
monosyllables is due to a bi-moraic minimality constraint (Inkelas & Orgun 1995).
No evidence has been found in this study to refute this position, and I see no reason
to discount it as a possible factor. However, the results obtained from this study
suggest that there are alternate explanations, or at least other possible factors. It is
possible that the “exceptional” behavior of monosyllables simply arises out of the
distribution of words in the lexicon as described above. Alternatively, it may be that
a universal tendency and analogical factors have combined to create and maintain
the current “exceptional” pattern.

Polysyllables with long final vowels (Exceptional class 2)

The explanation for the second exceptional class is not as straight-forward, and
may possibly involve sociolinguistic factors. It may be that the vowel length fills
the coda, making these stems equivalent to the velar-retaining VC0VCC[+velar]
stems. However, Zimmer and Abbott (1978) have suggested that it is not just the
vowel length of the last syllable, but the “Arabic sound” of the whole word which
encourages the retention of the final /k/. Originally, when Arabic was a language of
prestige and culture in Turkey, Arabic words would be pronounced as close to their
original Arabic pronunciation as possible. This conservatism would prevent the
application of “native” sound changes such as the /k/∼Ø alternation. Eventually,
some Arabic words will have been regularized into Turkish pronunciation patterns,
as their origins are forgotten. But since phonemic vowel length is not a feature
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native to Turkish, a phonemically long vowel (if preserved) would signal the foreign
status of the word and encourage the retention of the velar.

Political climates change, and Arabic-like pronunciation of Turkish words is
perhaps no longer a symbol of prestige. However, in those dialects where vowel
length is preserved, a sufficient number of these words have remained in current
use to reinforce one another and retain their velars, regardless of their etymology.
Tests with Skousen’s AM algorithm confirm that, when vowel length is allowed as a
factor, it will predict the preservation of final /k/ for nearly all of Sezer’s examples.
Without vowel length, most of the common words are still correctly predicted. Un-
common words tend to be regularized, unless they contain other salient “Arabic”
features, such as beginning with inC- (as in inhimak) or isti- (as in istimlak, istin-
tak, istihkak). Kibre (1998) suggests that a variety of phonological features, none
obligatory, may serve to identify a word as Arabic. The results generated by AM
seem to confirm his claim.

Velar-retaining polysyllables ending in V[–long]C[+velar]

The last group of exceptions is as yet unaccounted for, both by rule-based ap-
proaches and by AM. A variety of factors may be at play, some of which have
been discussed above. Another possible factor is the influence of consonant-initial
suffixes. Since the velar deletes only between vowels, it is always retained before
a consonant-initial suffix. If these words are used much more frequently with
consonant-initial suffixes than vowel-initial ones, this may cause the generalization
of /k/-retention.

As the TELL lexicon is expanded and refined, these exceptions may prove to
reflect the idiosyncrasies of one speaker, or artifacts of the process of building the
lexicon. But if the same variations are manifest in other speakers also, then more
work will be needed to explain these phenomena.

Conclusion

Skousen’s analogical modeling is seen here to predict the particulars of the /k/∼Ø
alternation in Turkish to a fairly high degree of accuracy. It reaches the “bench-
mark” set by the rule systems proposed by Sezer (1981) and Inkelas and Orgun
(1995) with regard to monosyllables, the first class of exceptional words. This
suggests that rule-based approaches with strict divisions between regular and ir-
regular categories are not necessary to explain certain morpho-phonological pat-
terns. Rather, these patterns may possibly emerge from the lexicon through mutual
analogical influence between lexical items or exemplars.
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AM also provides additional insights into the second class of exceptional
words, polysyllables with final /k/ preceded by a long vowel in the last syllable.
Whereas Sezer’s account made no distinction between the productivity of these
two exceptional classes, AM shows the second class to be much weaker than the
first, and subject to regularization into the velar-deleting norm. This prediction
accords with the variation in the informants’ responses to Zimmer and Abbott’s
nonce examples, as well as the variable data encountered in the TELL lexicon.

However, there is still work to be done. Neither the current model under AM
nor the rule systems proposed to date are adequate to fully describe the perfor-
mance of the TELL informant. On closer examination of the TELL database, a third
class of exceptions was found, as yet unexplained by rule approaches or by AM.
This “class” of exceptional words, if it may be so called, does not appear to have
any distinguishing characteristics that would make it amenable to a rule-based ap-
proach. If similar variations are found in other speakers, then a more refined model
in the AM paradigm will be necessary to capture this type of variation. Neverthe-
less, by accounting for the variation in the second exceptional class, AM comes
closer to descriptive adequacy than deterministic rule-based approaches.

Notes

* I would like to thank Royal Skousen of Brigham Young University for his support of this
research and for continued guidance in the application of his algorithm. I would also like to
thank Kemal Oflazer of Bilkent University for his generosity in sharing his time and expertise
in answering many questions concerning the Turkish language, and for providing a wealth of
data which proved very helpful in the beginning stages of this research. I also thank Sharon
Inkelas and others at the University of California, Berkeley, for use of the Turkish Electronic
Living Lexicon. An earlier version of this research appears in Rytting 2000.

. Sezer also addresses a third exceptional class, roots followed by verbal or “non-native”
affixes:

meslek ‘profession’ mesle-im ‘profession-1sg.poss’ meslek-i: ‘profession-al’
na:zik ‘kind’ na:zi-im ‘kind-1sg.copula’ na:zik-en ‘kind-ly’

I have not addressed this exception in my research to date, although I assume these words are
stored as separate lexical items. For the time being I am restricting my inquiry to inflectional
morphology.

. Lewis (1967) and Sezer (1981) make note of three common lexical exceptions to this
global exception: čok ‘many’, yok ‘there is not’, and gök ‘sky’.

. They account for Sezer’s third exceptional class by assuming that Turkish words go
through multiple levels of representation between the ‘deepest’ lexical level and the phonetic
realization, and that certain rules such as velar drop are only applicable at certain levels. The
suffixes in Exception class 3 attach sooner than the native denominal suffixes, before the
velar drop rule is active. The exceptions in Note 2 are handled by lexical pre-specification.
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. They did not test Exceptional class 3, which they evidently took to be a given.

. Taken from <http://socrates.berkeley.edu:7037/AboutTELL.html> as of 30 July 1999.

. Several of those words which retained the final velar with the copulative suffix only have
semantically odd readings: for example, ıšıldakım ‘(I am a) searchlight’, ondalıkım ‘(I am a)
tithe’, mertekim ‘(I am a) beam of wood’. However, there is no reason to believe that these
are less semantically odd than many words which deleted the /k/ as expected, nor does this
explain cases where the /k/ was retained with two or three suffixes.
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Comparing Analogical Modeling
with TiMBL





Chapter 6

A comparison of two analogical models

Tilburg Memory-Based Learner versus
Analogical Modeling*

David Eddington

Introduction

Linguistics in the latter half of the twentieth century has been largely dominated by
the rule-based paradigm of generativism. However, in the past few years, a num-
ber of non-rule approaches have been proposed and have gained some ground.
Interest in non-rule approaches to linguistics may be the result of several different
factors: disillusion with the generative paradigm, skepticism regarding the psycho-
logical relevance of generative analyses (Eddington 1996), advances in applying
computer technology to questions of language (Natural Language Processing), and
the heightened interest of psychologists in linguistic issues. Connectionism (see
McClelland 1988 for an overview) has surfaced as the most prominent non-rule
rival of the rule-driven orthodoxy, and the ongoing debate between connection-
ists and generativists has been intense (e.g. Clahsen et al. 1992; Daugherty & Sei-
denberg 1992, 1994; Marcus et al. 1995; Pinker 1991, 1997; Pinker & Prince 1994;
Seidenberg 1992; Seidenberg & Bruck 1990).

In spite of its prominence, connectionism is not the sole non-rule model in
existence. The present work compares two non-rule models of linguistic cogni-
tion, namely Analogical Modeling (AM) (Skousen 1989, 1992, 1995), and the near-
est neighbor approach employed by the Tilburg Memory-Based Learner (TiMBL)
(Daelemans et al. 1999). Both of these approaches belong to a family of mod-
els known as analogy-based, exemplar-based, or instance-based models (e.g. Bod
1998; Medin & Schaffer 1978; Nosofsky 1988, 1990; Riesbeck & Schank 1989; see
Shanks 1995 for an overview of exemplar-based models). All of these models as-
sume that previously encountered or processed information is stored in mem-
ory and is accessed and used to predict subsequent language behavior. Since each
instance-based model employs a different algorithm, it is important to determine
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if there are significant empirical differences between the predictions they make.
Therefore, the focus of this paper will be to compare AM and TiMBL in terms of
their performance on a number of different tasks. I will begin by reviewing the
study by Daelemans et al. (1994b) which compares the ability of AM and TiMBL
to assign stress to monomorphemic Dutch words. Next, I compare TiMBL and
AM in terms of their ability to account for Spanish diminutive formation, gender
assignment, and stress assignment.

. The TiMBL algorithm

Before reviewing the evidence from Dutch stress assignment, it is important to un-
derstand how TiMBL calculates nearest neighbors. TiMBL is essentially an expan-
sion of the algorithm developed by Aha et al. (1991). It is designed to take an input
and find its nearest neighbor(s) in a database of exemplars. During the training ses-
sion, the model stores in memory series of variables which represent instances of
words (or some other entity). The words are stored along with their behavior (e.g.,
which syllable is stressed, the word’s gender, etc.). In the case that the same word is
encountered more than once, a count is kept of how often each word is associated
with a given behavior. During the testing phase, when a word is given as input, the
model searches for it in memory and applies the behavior that it has been assigned
in the majority of cases. If the word is not found in memory, a similarity algorithm
is used to find the most similar item in memory – its nearest neighbor. The behav-
ior of the nearest neighbor is then applied to the word in question. If two or more
items are equidistant from the word in question, the most frequent behavior of the
tied items is applied to the word in question.

The TiMBL algorithm contains several variants. For example, it can be set to
determine the behavior on the basis of a single nearest neighbor, or on the basis
of several nearest neighbors. In its basic instantiation, called Overlap, all variables
are weighted equally. However, two extended algorithms are also available. Infor-
mation Gain is a variant of Overlap which precalculates how much each variable
contributes to determining the correct behavior. These variables are weighted ac-
cordingly when calculating similarity and determining nearest neighbors. When a
calculation of similarity is carried out using Overlap, the values of a variable are all
considered equidistant from each other. However, the Modified Value Difference
Metric is also an available option. It is used to precalculate the similarity between
the values of a variable, and to adjust the search for nearest neighbors accordingly.
In effect, this allows certain values to be regarded as more similar to each other
than other values.
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. Dutch stress assignment in TiMBL and AM

Daelemans et al. (1994a) constructed a database consisting of 4860 monomor-
phemic multisyllabic Dutch words. Since stress may fall on any of the final three
syllables, the phonemic content of the final three syllables of each word served as
the variables in the AM and TiMBL comparisons (Daelemans et al. 1994b). Sev-
eral ten-fold cross-validation simulations were performed on the database. This
involved partitioning the database into ten sets of 486 words, and then running ten
simulations for each experimental condition. Each of the ten sets of 486 words had
its turn as a test set in one of the ten simulations; the words in the remaining nine
sets formed the training sets.

Daelemans et al. (1994b) applied the basic Overlap algorithm in which the be-
haviors of one, two, five and ten nearest neighbors were applied to the words in the
test sets. In all four conditions, AM’s success rate (80.5%) was statistically superior
to those produced by TiBML. However, when varying degrees of noise were added
to the four conditions, both models performed equally well (or poorly). When vari-
ables were weighted with the Information Gain (IG) algorithm, the Modified Value
Difference Metric algorithm (MVDM), and both the IG and MVDM algorithms
together, the success rates (81.8%, 79.4%, 81.4% respectively) became statistically
equal to that of AM. In short, the findings from the Dutch stress assignment study
indicate that TiMBL’s modified algorithms are equally adept at correctly assigning
stress as AM. However, it is important to determine if this equivalence will hold
true when other data are considered. If not, it is of interest to know which model is
empirically superior. To this end, data from Spanish were considered.

. Spanish gender assignment

The ability to predict gender seemed an apt task for an analogical model. All Span-
ish nouns belong to either the masculine or feminine gender. In general, words
ending in -o are masculine, while those which end in -a are feminine. However,
there are many exceptions to this generalization, and it is much more difficult to
predict the gender of words ending in other phonemes.

The database for the gender simulation included the 1739 most frequent
nouns in the Spanish language taken from LEXESP (Sebastián, Martí, Carreiras, &
Cuetos 2002).1 Each noun was encoded to include the phonemic make-up and syl-
lable structure of the penult rhyme and final syllable. The nouns were also marked
as to whether they had masculine or feminine gender (for details, see Eddington
2002). Again, both TiMBL’s and AM’s algorithms were put to the task. AM success-
fully assigned gender to 94.5% of the database items.
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Table 1. Success rate on correctly assigning gender to database items

Algorithm # % χ2 p <

AM 1645 94.5
TiBML-no weighting, 3 nn 1563 89.9 2.147 0.25
TiBML-Information Gain, 3nn 1650 94.9 0.005 0.95
TiBML-MVDM, 3 nn 1673 96.2 0.220 0.75
TiBML-MVDM and Info. Gain, 3nn 1668 95.9 0.146 0.75

MVDV = Modified Value Difference Metric; nn = number of nearest neighbors calculated

Given the fact that many nouns have the identical phonological content in
their penult rhyme and final syllable, it was necessary to eliminate exact matches
between the test item and any items in the database. In the AM simulation, this
was done by eliminating any identical given contexts which existed in the database.
In order to achieve the same effect in TiMBL, it was necessary to set the option to
avoid choosing neighbors which are exact matches. This option requires that more
than one nearest neighbor be selected, and in order to avoid ties between neighbors
with different behaviors, the number of nearest neighbors needs to be odd. For this
reason, the analogical influence of three nearest neighbors was considered in the
TiBML simulations. Four different TiMBL simulations were run using the basic
overlap algorithm with no weighting, Information Gain (IG), the Modified Value
Difference Metric algorithm (MVDM), and both the IG and MVDM algorithms
together. As Table 1 indicates, the success rates of all of the TiBML simulations do
not differ significantly from that of AM.

. Gender assignment task2

According to the outcome of the study on the database, no statistically significant
difference was found between the two models. Therefore, each model was tested as
to its ability to predict native speaker’s intuitions about the gender of novel words.

.. Stimulus materials
118 nouns were extracted from Diccionario de la lengua española (Real Academia
Española, 1995). Each of these words is considered antiquated and of infrequent
use (see Appendix). Therefore, they were highly unlikely to be known by the sub-
jects, which also means that their gender would be unknown. Words were chosen
that ended in phonemes other than o and a. In this way, the more obvious gen-
der/phoneme correspondences were eliminated, and the subjects were obliged to
make gender assignments on the more ambiguous cases.
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.. Subjects
31 literate native Spanish speakers from Spain participated in the study, 18 women
and 13 men. The average age of the subjects was 33.4.

.. Procedure
The 118 test items were presented in the form of a written questionnaire. The sub-
jects were asked to circle either the feminine article la or the masculine article el,
which appeared before each test item. They were instructed to choose the article
that was most appropriate for the word that followed. Using the database of 1739
words previously described, the 118 words from the study were assigned gender by
AM and by TiMBL’s most successful algorithm (3nn, MVDM; see Table 1).

.. Results
TiMBL assigned the same gender as the subjects in the study to 67.8% of the test
items. AM scored slightly higher at 71.2%. Nevertheless, the difference is once again
not significant (χ2 = 0.055, p < .5).

. Gender of borrowed words

Another task which analogical models appear to be well suited is predicting the
gender of foreign words adopted into Spanish. Zamora (1975) studied borrow-
ings from English into Puerto Rican Spanish. He asked 13 bilingual speakers to
determine the gender of 20 English words that are commonly used in Puerto Ri-
can Spanish. He also discusses 67 Native American words which were adopted into
Spanish and had to be assigned a gender. Gender predictions were provided by
AM and TiBML for these words based on the phonemic make-up of the penult
rhyme and final syllable of the words’ Spanish adaptation. TiMBL’s most success-
ful algorithm (3nn, MVDM) successfully predicted 86.2% of the 87 borrowings
considered, while AM attained a success rate of 90.8%. The small difference is not
significant (χ2 = 2.157, p < .25).

As far as the data from gender assignment are concerned, both models perform
equally well, and the superiority of one over the other cannot be asserted. Never-
theless, gender is a fairly simple phenomenon since it only entails two possible
outcomes. Differences between the models may be found in predicting behaviors
with many outcomes. To this end, an experiment with diminutive formation was
carried out.
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. Spanish diminutive formation

The formation of diminutive variants of nouns, adjectives and certain adverbs is
a highly productive process in Spanish. Several diminutive suffixes exist (-ito, -illo,
-zuelo, -ico, -uco), but -ito is the most common, which is why only diminutives
ending in -ito/a were considered. All such diminutive forms were extracted from a
number of databases.3

With the exception of a handful of highly irregular items, all diminutives fall
into one of 13 categories. A circled V or s indicates that that element of the base
form does not appear in the diminutive form:

1. - V!ITO(S): -ito(s) is added to the singular base form, replacing the final vowel:
minuto > minutito, elefante > elefantito.

2. - V!ITA(S): -ita(s) is added to the singular base form, replacing the final vowel:
galleta > galletita, Lupe > Lupita.

3. - V!ECITO(S): -ecito(s) is added to the singular base form, replacing the final
vowel: vidrio > vidriecito, quieto > quietecito.

4. - V!ECITA(S): -ecita(s) is added to the singular base form, replacing the final
vowel: yerba > yerbecita, piedra > piedrecita.

5. -CITO(S): -cito(s) is added to the singular base form: traje > trajecito, pastor >
pastorcito.

6. -CITA(S): -cita(s) is added to the singular base form: joven > jovencita, llave >
llavecita.

7. -ITO(S): -ito(s) is added to the singular base form: normal > normalito, Andrés
> Andresito.

8. -ITA(S): -ita(s) is added to the singular base form: nariz > naricita, Isabel >
Isabelita.

9. -ECITO(S): -ecito(s) is added to the singular base form: pez > pececito, rey >
reyecito.

10. -ECITA(S): -ecita(s) is added to the singular base form: flor > florecita, luz >
lucecita.

11. - V! s!ITOS: -itos is added to the singular base form, replacing the vowel and
false plural morpheme: lejos > lejitos, Marcos > Marquitos.4

12. - V! s!ITAS: -itas is added to the singular base form, replacing the vowel and
false plural morpheme: Lucas > Luquitas, garrapatas > garrapatitas.

13. - V!CITA(S): -cita(s) is added to the singular base form, replacing the final
vowel: jamona > jamoncita, patrona > patroncita.

The resulting database contained 2450 diminutive forms. Each base form was
marked as to which of the 13 categories its diminutive belonged to, and the fol-
lowing information about each base form was included: (1) the stressed or un-
stressed status of the final two syllables; (2) the gender of the word: masculine,
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Table 2. Success rate on correctly assigning diminutives to database items

Algorithm # % χ2 p <

AM 2285 93.27
TiBML-no weighting, 3 nn 2238 91.35 0.468 0.5
TiBML-no weighting, 5 nn 2136 87.18 13.604 0.001
TiBML-Information Gain, 3nn 2267 92.53 0.063 0.5
TiBML-MVDM, 3 nn 2271 92.69 0.037 0.9
TiBML-MVDM and Info. Gain, 3nn 2269 92.61 0.049 0.9

MVDV = Modified Value Difference Metric; nn = number of nearest neighbors calculated

feminine or none in the case of adverbs and gerunds; (3) the word’s final phoneme;
(4) the phonological content of the antepenult rhyme and the final two syllables
of the word.

A ten-fold cross-validation simulation was performed using AM’s algorithm,
and several of TiBML’s algorithms. In the no weighting conditions using TiBML,
and in the AM simulation, the gender variable and the word’s final phoneme were
included twice in order to weight them more heavily than any other single variable.
This duplication was removed in the Information Gain and Modified Value Differ-
ence Metric simulations, since these algorithms are designed to calculate the im-
portance of the variables and values on their own. As Table 2 indicates, the TiMBL
simulations performed as well as the AM simulation with the exception of the sim-
ulation calculated without any of TiBML’s weighting algorithms using five nearest
neighbors.

Many of the erroneous diminutives predicted by AM and TiMBL’s most suc-
cessful instantiation appeared to be plausible diminutives. This is evident in the
predictions made on the doublets in the database (e.g. cuentito, cuentecito). In each
case, errors on one member of the doublet always entailed assigning it the diminu-
tive suffix of the other member. This assignment occurred in spite of the fact that,
when tested, both members of a doublet were excluded from the database and were
unable to serve as analogs for each other. In order to determine if other erroneously
predicted forms were actually well-formed diminutives in some dialect of Spanish,
the World-Wide Web was consulted. All erroneous forms, were sought on Span-
ish language pages. Of the 165 errors produced by AM, attested forms of 77 were
found, either as an attested doublet in the database or on a Spanish language web
page. Therefore, only 88 errors involved truly unattested diminutive forms. In the
TiMBL simulation, only 84 errors were unattested.

As far as diminutivization in Spanish is concerned, TiBML and AM are able to
correctly produce the great majority of the tested forms correctly. An inspection of
the errors made by both models does not yield any insight that allows one model
to be declared superior to the other.
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. Spanish stress assignment

Stress in Spanish generally falls on one of the last three syllables. The database cho-
sen for the present study essentially includes the 4970 most frequent words, and
word plus clitic pronoun combinations, from the Alameda and Cuetos frequency
dictionary (1995). (Details about the database and variables are found in Edding-
ton 2000.) As in the Dutch study, the phonemic content of the final three sylla-
bles of each word was used as variables. However, unlike the study on Dutch, both
monomorphemic and polymorphemic words appeared in the Spanish database.
This is a crucial difference since in Spanish stress is often contrastive, especially in
polymorphemic and verbal forms: encontrára ‘s/he found, imperfect subjunctive,’
encontrará ‘s/he will find’; búsco ‘I seek,’ buscó ‘s/he sought.’

Therefore, in addition to the phonemic information, morphological variables
were included. For verbal forms, one variable indicated the person, and three iden-
tical variables indicated the tense form of the verb. Repeating a variable more than
once is the only way to manipulate the weight of one variable or another prior to
running the AM program. In essence, what this implies is that the tense form of
the verb is considered three times more important that any single onset, nucleus
or coda. In the AM simulation, the only significant difference that weighting this
variable made was in the number of errors that occurred on preterit verbs with fi-
nal stress. Fifty errors occurred without the weighting, in comparison to 27 when
it was included three times.

Each word was encoded as a series of 13 variables. In Table 3, hyphens represent
empty categories, ‘0’ indicates that the entry is a non-verb, ‘pt’ designates the verb
is in the preterit tense, and ‘6’ defines the verb as third person plural.

Given the fact that the database contained several inflectional variants of many
words, a possible confound exists. If one of the test items is the adjective rójas,
the chances are quite high that its inflectional variants rójo, rója, and rójos will
be chosen as nearest neighbors and influence it to receive penult stress. This is
an undesirable state of affairs since the purpose of the study is to determine how
successfully the model can assign stress to words that it is unfamiliar with. A simple
way of controlling for this unwanted effect was to alphabetize the database prior to
partitioning it for the ten-fold study. In this way, inflectional variants were grouped
together in the same test set, and were unable to serve as analogs for each other.

Table 3. Examples of variable assignment

Examples Stress Morphological variables Phonemic variables

personal Final – – – 0 p e r s o – n a l
hablaron Penult 6 pt pt pt – a – bl a – r o n
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Table 4. Success rate on correctly assigning stress to database items

Algorithm # % χ2 p <

AM 4693 94.4
TiBML-no weighting, 1 nn 4628 93.1 0.439 0.25
TiBML-no weighting, 2 nn 4565 91.8 1.742 0.25
TiBML-no weighting, 5 nn 4019 80.8 51.989 0.001
TiBML-no weighting, 10 nn 3675 73.9 123.600 0.001
TiBML-Information Gain, 1nn 4643 93.4 0.257 0.75
TiBML-MVDM, 1 nn 4688 94.3 0.002 0.9
TiBML-MVDM and Info. Gain, 1nn 4657 93.7 0.131 0.75

MVDV = Modified Value Difference Metric; nn = number of nearest neighbors calculated

Once the database was partitioned, the stress placement of each word was de-
termined in a ten-fold cross-validation. AM successfully assigned stress to 94.4%
of the words in the database. This success rate is compared with those produced by
TiMBL under the same experimental conditions tested in the study on Dutch stress
assignment. Note that in the no weighting conditions using TiBML, and in the AM
simulation, the tense form variable was included three times. It was only included
once in the Information Gain and Modified Value Difference Metric simulations,
since these algorithms are designed to calculate the importance of the variables and
values on their own. In five of the seven experimental conditions, the success rates
for the AM and TiMBL algorithms were statistically equivalent.

As previously mentioned, the database contained only the most frequently oc-
curring Spanish words. It may be that extremely infrequent words have different
stress patterns. To test this, a set of 497 words was assembled from among the items
in Alameda and Cuetos (1995) that had a frequency of 0.2 per million. The words
in this test set were assigned stress in a ten-fold cross-validation study according
to AM and TiMBL (Modified Value Difference Metric, one nearest neighbor). The
resulting success rates were 91.8% and 90.2% respectively (χ2 = .0603, p < .9). It
again appears that neither model may claim superiority over the other.

. Error analysis

Given the similar success rates of both models, an analysis of the errors made by
each model was performed in order to uncover any telling differences. The anal-
ysis compares AM with TiBML’s most successful simulation (namely, MVDM)
and calculates only one nearest neighbor. Table 5 specifies the number of errors
made in each category, as well as the percentage of database items on which errors
were made.
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Table 5. Errors per category

AM TiMBL-MVDM, 1 nn
# % # % χ2 p <

Penult 41 1.2 122 3.4 39.2638 0.001
Final 72 6.4 59 5.2 1.0992 0.5
Antepenult 164 59.9 101 36.9 14.5056 0.001

Both models fare equally well on predicting final stress. However, TiBML
proves more consistent in predicting antepenult stress, while AM is more adept
at predicting penult stress. In terms of the percentage of errors per category, both
models show the same hierarchy of difficulty: penult < final < antepenult. This
is consistent with the hierarchy of difficulty that native Spanish speaking chil-
dren demonstrated on a number of stress placement tasks (Hochberg 1988), and
provides further evidence that the models’ predictions have empirical value.

One test of the models’ accuracy is the extent to which they have captured
the classes of regularity and irregularity in the Spanish stress system. In Spanish,
penult stress is regular (or unmarked) for words ending in a vowel or /s/; final
stress is regular for words ending in any consonant except /s/; antepenult stress is
always marked (see Eddington 2000). A model which captures this stress system
would be expected to make most of its errors on words with irregular stress. Of the
282 errors made by TiBML, 156 (or 56%) occurred on irregularly stressed words.
On the other hand, 80.1% (222 of 277) of the errors made by AM were made on
irregularly stressed words.

The percentages just cited are interesting, but not indicative of a true differ-
ence between the models. It is important to ascertain, not only how many errors
are made on irregular items, but the direction of the errors. That is, do the er-
rors on the irregular items move stress onto the syllable which regularizes stress, or
onto a syllable that keeps the word stress irregular. A model that correctly captures
Spanish stress should also be expected to commit few errors that assign irregu-
lar stress to a word that is regularly stressed. In Hochberg’s study (1988), children
made more errors that regularized irregularly stressed words compared to errors
that gave regularly stressed words an irregular stress.

Table 6 summarizes the rates of regularization and irregularization produced
by each model. The database contains 649 irregularly stressed words and 4177
words with regular stress. In calculating rates of regularization and irregularization,
all 144 monosyllabic words were excluded.

As is evident in the data, AM appears to have more correctly captured the
Spanish stress system. It imposes regularity on irregular items to a greater extent
than TiBML. In addition, it assigns irregular stress to fewer regular items.
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Table 6. Rates of regularization and irregularization

AM TiMBL χ2 p <

# Regularized 220 155 10.9226 0.001
% Regularized 33.9 23.9
# Irregularized 54 127 28.6408 0.001
% Irregularized 1.3 3.0

. Conclusions

The purpose of this study was to compare TiMBL and AM on a number of differ-
ent tasks. Neither model significantly outperformed the other in the gender assign-
ment and diminutive assignment tasks. In the previous comparison by Daelemans
et al. (1994b), AM outperformed TiMBL on a Dutch stress assignment task, except
than when noise was added to the system they performed equally well. The present
study pitted the two models against each other in terms of their ability to assign
stress to Spanish words. Both models were able to correctly assign stress to the most
frequent 4970 Spanish words with about a 94% degree of accuracy. Their perfor-
mance on highly infrequent words was slightly lower, but neither model was able
to statistically outperform the other on either of these tasks. The only differences
were evident in the error analysis. AM applied the regular stress patterns to irreg-
ularly stressed words to a greater extent than TiMBL. TiBML, on the other hand,
had a higher incidence of misapplying irregular stress patterns to regularly stressed
items. This indicates that AM more successfully captured patterns of regularity and
irregularity in the Spanish stress system.

Notes

* This study was carried out with the help of a grant from the National Science Foundation
(#00821950).

. The current study is based on an earlier pre-print version of LEXESP, a morphologically
tagged frequency dictionary of Spanish of about 3 million words. A more recent printed
version is based on a 5 million word corpus (Sebastián, Martí, Carreiras, & Cuetos 2002).

. I am most indebted to Milagros Malo Fernández and Elías Álvarez Ortigosa who gener-
ously gave of their time to administer the questionnaires.

. Alameda and Cuetos (1995); Sebastián, Martí, Carreiras, and Cuetos (2002); Marcos
Marín (no date a, no date b). In addition to these sources, Mark Davies of Illinois State Uni-
versity graciously provided me with the diminutive forms from his corpus project totaling
39.8 million words: <http://mdavies.for.ilstu.edu/personal/texts.htm>.
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. In some words from groups 11 and 12, s represents what seems to be the plural mor-
pheme since it appears word finally and follows a stressless vowel. In other cases, such as
cumpleaños, the word ends in the plural morpheme derivationally speaking (cumple + años
‘complete + years’), but is used to denote both the plural and singular.
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Appendix

Stimulus materials

abarraz
acates
acemite
acordación
acumen
afer
afice
alancel
alcaduz
alcalifaje
alcamiz
alinde
alioj
alizace
amarillor
anascote
arrafiz
asperez
atarfe
avarientez
azcón
azoche

balizaje
barrunte
beudez
bitumen
bocacín
botor
broznedad

cabción
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Chapter 7

A comparison of Analogical Modeling to
Memory-Based Language Processing*

Walter Daelemans

. Introduction

Memory-Based Language Processing is inspired by the hypothesis that in learn-
ing a cognitive task from experience, people do not extract rules or other abstract
representations from their experience, but reuse their memory of that experience
directly. For language behavior modeling, this means that language acquisition in-
volves the storage of experiences in memory, and language processing is the result of
analogical reasoning on memory structures. Whereas the inspiration and motiva-
tion for our approach to mblp has come mainly from statistical pattern recognition
and Artificial Intelligence, a similar approach has also survived the Chomskyan
revolution in linguistics, most notably in the work of Royal Skousen on Analogical
Modeling. After presenting a short history and characterization of both mblp and
am in this section, we will discuss the main algorithmic differences in Section 2,
and study their effects in Section 3 in a comparative study using the German plural
as a benchmark task. Section 4 discusses theoretical implications of the results.

. Memory-Based Language Processing

As far as the algorithms used in mblp are concerned, nearest neighbor methods
(k-NN), developed in statistical pattern recognition from the 1950s onwards, have
played an important inspirational role (Fix & Hodges 1951; Cover & Hart 1967). In
these methods, examples (labeled with their class) are represented as points in an
example space with dimensions defined by the numeric attributes used to describe
the examples. A new example obtains its class by finding its position as a point
in this space, and extrapolating its class from the k nearest points in its neighbor-
hood. Nearness is defined in terms of Euclidean distance. This literature has also
generated many studies on methods for removing examples from memory either
for efficiency (faster processing by removing unnecessary examples) or for accu-
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racy (better predictions for unseen cases by removing badly predicting examples).
(See Dasarathy 1991 for a collection of fundamental papers on k-NN research.)
However, until the 1980s, the impact of these nonparametric statistical methods
on the development of systems for solving practical problems has remained lim-
ited because of a number of shortcomings: they were computationally expensive in
storage and processing, intolerant of attribute noise and irrelevant attributes, and
sensitive to the similarity metric used; and the Euclidean distance metaphor for
similarity breaks down with non-numeric features or when features are missing.

From the late 1980s onwards, the intuitive appeal of the nearest neighbor ap-
proach has been adopted in Artificial Intelligence in many variations on the ba-
sic nearest neighbor modeling idea, using names such as memory-based reason-
ing, case-based reasoning, exemplar-based learning, locally-weighted learning, and
instance-based learning (Stanfill & Waltz 1986; Cost & Salzberg 1993; Riesbeck &
Schank 1989; Kolodner 1993; Atkeson, Moore, & Schaal 1997; Aamodt & Plaza
1994; Aha, Kibler, & Albert 1991). These methods modify or extend the nearest
neighbor algorithm in different ways, and aim to solve (some of) the problems
with k-NN listed before. Recently, the term Lazy Learning (as opposed to Eager
Learning) has been proposed as a generic term for this family of methods (Aha
1997).

Since the early 1990s, we find several studies using nearest-neighbor tech-
niques for solving problems in Natural Language Processing (Cardie 1996; Daele-
mans, van den Bosch, & Zavrel 1999). The general approach is to define the tasks
as (cascades of) classification problems. For each (sub)problem, instances are col-
lected of input linguistic items and their context, plus an associated output linguis-
tic class. The German plural prediction task to be discussed later adheres to this for-
mat. The spectrum of language processing tasks that has been investigated within
this framework ranges from phonology to semantics and discourse processing (see
Daelemans 1999 for a recent overview).

A related framework is DOP (Data-Oriented Parsing), a memory-based ap-
proach to syntactic parsing (Scha, Bod, & Sima’an 1999), which uses a corpus of
parsed or semantically analyzed utterances (a treebank) as a representation of a
person’s language experience, and analyzes new sentences searching for a recom-
bination of subtrees that can be extracted from this treebank. The frequencies of
these subtrees in the corpus are used to compute the probability of analyses.

In another related tradition, Nagao (1984) proposed Example-Based Ma-
chine Translation (ebmt), an approach to Machine Translation which is essen-
tially memory-based. By storing as exemplars a large set of (analyzed) sentences
or sentence fragments in the source language with their associated translation in
the target language, a new source language sentence can be translated by find-
ing exemplars in memory that are similar to it in terms of syntactic structure
and word meaning, and extrapolating from the translations associated with these
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examples. Especially in the UK and Japan, this approach has become an important
subdiscipline within Machine Translation research.

. Analogical Modeling

Since Chomsky replaced the vague notions of analogy and induction existing in
linguistics in his time (in the work of e.g. de Saussure & Bloomfield) by the clearer
and better operationalized notion of rule-based grammars, most mainstream lin-
guistic theories, even the functionally and cognitively inspired ones, have assumed
rules to be the only or main means to describe any aspect of language.

In contrast, Royal Skousen (1989, 1992) argues for a specific operationaliza-
tion of the pre-Chomskyan analogical approach to language and language learn-
ing called Analogical Modeling (am). He introduced a definition of analogy that
is not based on rules and that does not make a distinction between regular in-
stances (obeying the rules) and irregular instances (exceptions to the rules). To
model language acquisition and processing, a database of examples of language
use is searched looking for instances analogous to a new item, and extrapolating a
decision for the new item from those examples.

Current research on am attempts to solve the computational complexity prob-
lem (the algorithm is exponential in the number of attributes used to describe ex-
amples) and to apply the approach to a wide range of linguistic problems. The
work has also been taken up as a psycholinguistically relevant explanation of
human language acquisition and processing, especially as an alternative to dual
route models of language processing (Eddington 2000; Chandler 1992; Derwing
& Skousen 1989). am has also been used in computational linguistics. Jones
(1996) describes an application of am in Machine Translation, and work by Deryle
Lonsdale includes am implementations of part-of-speech tagging and sentence
boundary detection.

While am is the most salient example of analogy-based theories in linguis-
tics (and the most interesting from a computational point of view), other linguists
outside the mainstream have proposed analogical processing. For example, in dis-
cussion about the storage versus computation trade-off in models of linguistic
processing, linguists like Bybee (1988) and usage-based linguistic theories such as
Cognitive Grammar (Langacker 1991) claim an important role for examples (in-
stances of language use); nonetheless, they still presuppose rules to be essential for
representing generalizations.



 Walter Daelemans

. A comparison of algorithms

Whereas am refers to a single algorithm, there are various possible ways in which
ideas in mblp can be operationalized in algorithmic form. In the remainder of this
text, we will narrow down our discussion of mblp to the specific incarnation of
it that has been used intensively in Tilburg and Antwerp. Although our specific
approach to mblp was developed primarily with language engineering purposes
in mind, its linguistic and psycholinguistic relevance like in am has always been a
focus of attention. As an example, work on word stress acquisition and process-
ing in Dutch has contrasted mblp with metrical phonology and studied correla-
tions between errors made by a memory-based learner and those made by children
producing word stress in a repetition task (Daelemans, Gillis, & Durieux 1994;
Gillis, Durieux, & Daelemans 2000). Many of the properties which make am cog-
nitively and linguistically plausible also apply to mblp: (i) there is no all-or-none
distinction between regular cases and irregular cases because no rules are used; (ii)
fuzzy boundaries and leakage between categories occurs; (iii) the combination of
memory storage and similarity-based reasoning is cognitively simpler than rule-
discovery and rule processing; and (iv) memory-based systems show adaptability
and robustness. Remarkably, seen from the outside, such analogical or memory-
based approaches appear to be rule-governed, and therefore adequately explain
linguistic intuitions as well.

Both approaches are instances of the same general view of cognitive architec-
ture. However, because of the different algorithms used to extrapolate outcomes
from stored occurrences, the properties and behavior of both approaches may
differ considerably in specific cases.

. Similarity in mblp

The most basic metric that works for patterns with symbolic features as well as
for numeric features, is the overlap metric given in Equations (1) and (2), where
∆(X, Y) is the distance between patterns X and Y, represented by n features, and δ
is the distance per feature. The distance between two patterns is simply the sum of
the differences between the features. The k-NN algorithm with this metric is called
ib1(Aha, Kibler, & Albert 1991).1 Usually k is set to 1.

∆(X, Y) =
n∑

i=1

δ(xi, yi) (1)
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where

δ(xi, yi) =




xi – yi
maxi – mini

if numeric, else

0 if xi = yi

1 if xi �= yi

(2)

The distance metric in Equation (2) simply counts the number of (mis)matching
feature-values in both patterns. In the absence of information about feature rele-
vance, this is a reasonable choice. However, we can do better by computing statistics
about the relevance of features by looking at which features are good predictors of
the class labels. Information Theory gives us a useful tool for measuring feature
relevance in this way. Information Gain (IG) weighting looks at each feature in iso-
lation and measures how much information it contributes to our knowledge of the
correct class label (Quinlan 1993). The Information Gain of feature i is measured
by computing the difference in uncertainty (i.e. entropy) between the situations
without and with knowledge of the value of that feature:

wi = H(C) –
∑
v∈Vi

P(v)×H(C|v), (3)

where C is the set of class labels, Vi is the set of values for feature i, and H(C) =
–

∑
c∈C P(c) log2 P(c) is the entropy of the class labels. The probabilities are es-

timated from relative frequencies in the training set. For numeric features, val-
ues are first discretized into a number (the default is 20) of equally spaced inter-
vals between the minimum and maximum values of the feature. These groups are
then used in the IG computation as if they were discrete values. (Note that this
discretization is not used in the computation of the distance metric.) The k-NN
algorithm with this metric is called ib1-ig (Daelemans & van den Bosch 1992).
(For more references and information about the algorithms, refer to Daelemans,
van den Bosch, & Weijters 1997; Daelemans, Zavrel, van der Sloot, & van den Bosch
1998; and Daelemans, van den Bosch, & Zavrel 1999.)

For most of our experiments in the past, ib-ig with extrapolation based on one
nearest neighbor (k = 1) has been the default mblp algorithm. Note that setting
k = 1 may imply extrapolation from more than one exemplar in memory; in case
there is more than one exemplar which is the nearest neighbor, the algorithm uses
all of them for extrapolation and selects the class which appears most often (or
the overall most frequent class in case of ties). In what follows, we will use both
ib1-ig (the particular incarnation) and mblp (the general approach) to refer to our
approach, depending on the context.
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. The AM extrapolation algorithm

The main algorithmic difference between am and mblp is the way the selection
of memory items to extrapolate from is made. In ib1-ig, the different features are
assigned a relative importance, which is used during matching to filter out the in-
fluence of irrelevant features. In am, essentially the same effect is achieved without
precomputing the relative importance of individual features.2 Instead, all features
are equally important initially, and serve to partition the database into several dis-
joint sets of examples. Filtering out irrelevant exemplars is done by considering
properties of these sets rather than by inspecting individual features that their
members may share with the input pattern. To explain how this works, we will
describe the matching procedure in more detail.3

The first stage in the matching process is the construction of subcontexts; sub-
contexts are sets of examples, and they are obtained by matching the input pattern,
feature by feature, to each item in the database, on an equal / not equal basis, and
classifying the database exemplars accordingly. Taking an input pattern ABC as an
example, eight (23) different subcontexts would be constructed, ABC, ĀBC, AB̄C,
ABC̄, ĀB̄C, ĀBC̄, AB̄C̄, and ĀB̄C̄, where the overstrike denotes complementation.
Thus, exemplars in the class ABC share all their features with the input pattern,
whereas for those in ĀB̄C only the value for the third feature is shared. In general,
n features yield 2n mutually disjoint subcontexts. Subcontexts can be either deter-
ministic, which means that their members all have the same associated category, or
non-deterministic, when two or more categories occur.

In the following stage, supracontexts are constructed by generalising over spe-
cific feature values. This is done by systematically discarding features from the in-
put pattern, and taking the union of the subcontexts that are subsumed by this new
pattern. Supracontexts can be ordered with respect to generality, so that the most
specific supracontext contains examples which share all n features with the input
pattern, less specific supracontexts contain items which share at least n – 1 fea-
tures, and the most general supracontext contains all database exemplars, whether
or not they have any features in common with the input pattern. In the table be-
low the supracontexts for our previous example are displayed, together with the
subcontexts they subsume.

Supracontext Subcontexts
A B C ABC
A B – ABC ABC̄
A – C ABC AB̄C
– B C ABC ĀBC
A – – ABC AB̄C ABC̄ AB̄C̄
– B – ABC ĀBC ABC̄ ĀBC̄
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– – C ABC ĀBC AB̄C ĀB̄C
– – – ABC ĀBC AB̄C ABC̄ ĀB̄C ĀBC̄ AB̄C̄ ĀB̄C̄

An important notion with respect to supracontexts is homogeneity. A supracontext
is called homogeneous when any of the following conditions holds:

– The supracontext contains nothing but empty subcontexts (trivial).
– The supracontext contains only deterministic subcontexts with the same cate-

gory.
– The supracontext contains only one non-empty, non-deterministic subcon-

text.

Heterogeneous supracontexts are obtained by combining deterministic and non-
deterministic subcontexts. Going from least to most general, this means that as
soon as a supracontext is heterogeneous, any more general supracontext will be
heterogeneous too.

In the final stage, the analogical set is constructed. This set contains all of the
exemplars from each of the homogeneous supracontexts. Two remarks are in order
here. First, since some exemplars will occur in more than one supracontext, each
exemplar is weighted according to its distribution across different homogeneous
supracontexts. This is accomplished by maintaining a score for each exemplar. This
score (under the choice of linearity) is simply the summed cardinality of each of the
supracontexts in which the exemplar occurs. (Another choice, the quadratic one,
involves multiplying the score by the frequency of the supracontext.) The motiva-
tion for this scoring mechanism is to favor frequent patterns over less frequent ones
and patterns closer to the input pattern over more distant patterns, since the for-
mer will surface in more than one supracontext. Second, banning heterogeneous
supracontexts from the analogical set ensures that the process of adding increas-
ingly dissimilar exemplars is halted as soon as those differences may cause a shift
in category. Exactly when this happens depends on the input pattern and the data.

To finally categorize the input pattern, either the predominant category in the
analogical set (selection by plurality) or the category of a randomly chosen member
of this set is selected.

. am versus mblp

The different way in which ib1-ig and am construct a set of exemplars to extrapo-
late from leads to a number of differences which have sometimes been advanced as
an advantage or disadvantage for one or the other approach (Daelemans, Gillis, &
Durieux 1997). We will list these differences here, and discuss them in the context
of our results in Section 4.

1. Non-neighbors can affect language behavior in am, not in ib1-ig.
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2. Because of the method of constructing contexts, am can locally determine the
significance of groups of variables (feature values), whereas these are lost in
the averaging over values when using information gain in ib1-ig.

3. The feature weighting in ib1-ig constitutes a type of preprocessing or learning
which is unnecessary in am.

4. The natural statistic on which am is based can make possible the use of only a
percentage of the data (imperfect memory) for optimal accuracy and robust-
ness, whereas for ib1-ig “forgetting exceptions is harmful to language learning”
(Daelemans, van den Bosch, & Zavrel 1999).

5. am is exponential in the number of cases to consider, ib1-ig is linear in this
number.

6. am has no natural extension to numeric data (but see Chapter 15 of Skousen
1992), whereas the overlap metric used in ib1-ig can be easily generalized to
different types of feature values (numeric, set-valued).

. A test comparison: German plural

The diachrony of plural formation of German nouns has led to a notoriously dif-
ficult system, which is nevertheless routinely acquired by speakers of German. Be-
cause of the complex interaction (from a synchronic point of view) of regularities,
subregularities, and exceptions, it is to be expected that lexicon-based methods
such as am and ib1-ig do well in this case, and that it is an interesting testing ground
for comparing them.

There is another reason why the German plural is an interesting problem.
Marcus and his colleagues (Clahsen 1999; Marcus, Brinkmann, Clahsen, Wiese, &
Pinker 1995) have argued that this task provides evidence for the dual route model
for cognitive architectures. A dual route architecture supposes the existence of a
cognitively real productive mental default rule, and an associative memory for ir-
regular cases which blocks the application of the default rule. They argue that -s
is the regular plural in German, as this is the suffix used in many conditions as-
sociated with regular inflection (e.g., novel words, surnames, acronyms, etc.). This
default rule is applied whenever associative memory-lookup fails. The case of Ger-
man plurals provides an interesting new perspective to what is regular: in this case,
the default rule (regular route) is less frequent than many of the ‘irregular’ asso-
ciative memory cases. In a plural noun suffix type frequency ranking (see below),
-s comes only in last place. Perhaps the behavior of am and ib1-ig as single route
models offers some additional insight into this phenomenon.

We collected 25,753 German nouns from the German part of the CELEX-2
lexical database.4 We removed from this dataset cases without plurality marking,
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Table 1. Data characteristics of German Plural experiments

Feature Number of values Example: Vorlesung

Onset penultimate 78 l
Nucleus penultimate 27 e
Coda penultimate 85 -
Onset last 84 z
Nucleus last 27 U
Coda last 79 N
Gender 10 F

Class 8 -en

Table 2. Type frequency of pluralization mechanisms in CELEX

Class Frequency Umlaut Frequency Example

(e)n 11920 Abart
e 6656 no 4646 Abbau

yes 2010 Abdampf
- 4651 no 4402 Aasgeier

yes 249 Abwasser
er 974 no 287 Abbild

yes 687 Abgang
s 967 Abonnement

cases with Latin plural in -a, and a miscellaneous class of foreign plurals. From the
remaining 25,168 cases, we extracted or computed for each word the plural suffix,
the gender feature, and the syllable structure of the two last syllables of the word in
terms of onsets, nuclei, and codas (expressed with a phonetic segmental alphabet).
Table 1 gives an overview of the features, values, and output classes considered in
these experiments. The gender feature, apart from masculine (M), neuter (N), and
feminine (F), also has all possible combinations of two genders.

Table 2 lists the possible output classes with their type frequency in the dataset.
There was no further preprocessing of the data. A well-known source of noise in
the celex data are plain mistakes in lexical coding. However, we expect learning
methods to be robust to this type of noise, and did not attempt to find and correct
these coding errors.

In order to compare the accuracy of am and ib1-ig on the German plural task,
we performed several learning experiments. We compared the learnability of the
task, varying the training set size for the complete task and for the different suffixes
separately. We also performed an error analysis and comparison, and we looked at
the influence of some different parameter settings on algorithm accuracy.
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Figure 1. Learnability of German Plural with mblp and am

. Learnability

In an initial learnability experiment, we randomized the dataset, selected a 5,168
word test set, and divided the remaining 20,000 words into 19 training sets with
an incrementally increasing size from 200 to 2,000 in steps of 200, and from 2000
up to 20,000 in steps of 2,000. Each of the algorithms was then trained with each
of the training sets and tested each time on the single test set. Figure 1 shows the
learning curve for both algorithms when using their standard settings, i.e. ib1-ig
with information gain and k = 1 for mblp, and am with perfect memory and with
selection by plurality.

We see that for small training sets, am performs about the same as mblp, but a
statistically significant divergence in favor of mblp starts after 1000 training items.
Although accuracy is still increasing for both algorithms with 20,000 training cases,
learning seems to come near to its upper bound already at around 2,000 training
cases.

In Figures 2 and 3 the learning curves of the individual plural formation classes
are shown for am and ib1-ig, respectively.5 Interestingly, for both algorithms, the
suffixes seem to fall into three classes: those that are learned correctly from the start
(-en and -), those that require longer learning but are learned very well in the end
(-e and -er), and one which is never learned very well at all (-s), although accuracy
is increasing with number of training items. It seems indeed to be the case that -s
behaves differently from the other suffixes, when learned by single-route models
such as am and ib1-ig. However, this does not necessarily lend credence to a dual
route model for the German plural. The learning curves clearly show that the suffix
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Figure 2. Learnability of German Plural classes with am
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Figure 3. Learnability of German Plural classes with mblp

is learned by single route models as well (at least some generalizations about when
to use -s are learned), and 60% accuracy (for ib1-ig) is a respectable result given
the limited information provided in the input representations. It is by no means
inconceivable that additional semantic of syntactic features could further improve
learnability of -s with the single route models discussed here. The only conclusion
that can be drawn from these experiments in this regard is that whereas the other
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suffixes are learnable from syllable structure and gender information, this is not
the case for -s.

For those suffixes which are sometimes accompanied by an umlaut, there is no
marked difference in the speed of learning and accuracy achieved for versions with
and without umlaut. For the different suffixes, we see that am learning is slower
and reaches lower accuracies, except for the -en suffix which is learned very well
from the start by am.

. Error analysis

In order to generate more data for a comparison between am and mblp on the Ger-
man plural data, we performed a leave-one-out experiment using both algorithms.
In such a set-up, each instance in the data file is held out in turn as a test item, and
all remaining instances act as training material to train the classifier. In machine
learning methodology, the leave-one-out method is generally accepted as the best
estimator for the “real” error of a classifier. The advantage of using it in this con-
text, is that we have access to the complete dataset to look for trends or examples.
For both algorithms, we again used the default parameter settings. Table 3 shows
the accuracy on the full dataset using this method for am and mblp distributed
over the different suffixes. For clarity, we repeat the frequencies of Table 2 above on
the first line for each suffix type.

The high accuracies found in both algorithms are partly due to exact matches
in memory: several different words can have the same syllable structure for their
last two syllables and the same gender. Disregarding these cases (i.e., using only

Table 3. Accuracy of AM vs. MBLP on the complete data set using leave-one-out

Suffix mblp Accuracy (%) am Accuracy (%) Frequency

- 96.5 96.1 4651
no umlaut 96.5 96.1 4402
umlaut 96.8 96.4 249

-e 92.5 87.0 6656
no umlaut 92.1 88.2 4646
umlaut 93.3 84.3 2010

-er 92.7 81.5 974
no umlaut 92.7 79.4 287
umlaut 92.7 82.4 687

en 98.3 97.7 11920

s 66.9 46.7 967

Total 95.0 92.0 25168
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unique combinations of feature set and class as data) gives an overall accuracy of
89.7% for mblp and 86.6% for am with roughly the same distribution of accuracies
over the different suffixes. In the remainder of this paper, we will work with the
results for the dataset with duplications of lexical representations.

For 92.5% of the words, both systems agree on the outcome, and assuming the
outcome in the celex database to be correct, for 90% of the words they agree on
the correct class. Of the 555 cases in which both algorithms predict the same but
wrong class, the majority is due to words with plural suffix -s, being assigned to -e
or -(e)n: e.g., Autocar, Bar, Jeep, Sheriff (-e instead of -s); Backhand, Fondue, Tape
(-(e)n instead of -s). But many other confusions occur as well. See Tables 4 and 5
for a complete overview. In these tables, confusion between the different outcomes

Table 4. Confusion matrix for am. Indicates how many times an exemplar of type (as
indicated in the rows) was classified as type (as indicated in the columns). Correct
predictions are on the diagonal.

- U Ue Uer e en er s

– 4191 46 9 3 44 48 5 56 4402
U 78 171 0 0 0 0 0 0 249
Ue 4 0 1893 0 82 26 0 5 2010
Uer 0 0 7 643 31 5 0 1 687
e 33 0 79 30 4318 118 9 59 4646
en 35 13 32 3 103 11708 0 26 11920
er 1 0 0 2 14 0 270 0 287
s 64 1 12 7 153 74 2 654 967

4406 231 2032 688 4745 11979 286 801 25168

Table 5. Confusion matrix for mblp. Indicates how many times an exemplar of type
(as indicated in the rows) was classified as type (as indicated in the columns). Correct
predictions are on the diagonal.

- U Ue Uer e en er s

- 4231 11 7 1 54 74 2 22 4402
U 8 240 0 0 0 1 0 0 249
Ue 31 0 1694 2 113 167 0 3 2010
Uer 15 0 22 566 70 12 0 2 687
e 104 14 139 32 4097 214 11 35 4646
en 62 6 29 3 159 11649 1 11 11920
er 11 0 0 0 34 13 228 1 287
s 73 3 30 5 185 218 1 452 967

4535 274 1921 609 4712 12348 243 526 25168
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(classes) is represented. U means umlaut: e.g., Uer is the class of nouns with plural
in -er and with umlaut; er is the class of nouns with plural in -er without umlaut.

If we compare the confusion matrices of both systems, we see that they are
almost indistinguishable in the confusions made. The Spearman correlation co-
efficient is 0.999 when taking into account all cells (correct predictions as well as
errors). When limited to errors, the correlation is still 0.83 suggesting that both
systems make the same confusions. Nevertheless, some of the error categories indi-
cate more divergence: for the cases of grammatical conversion (no suffix is added;
- and U in the confusion matrices), the errors made by both algorithms differ
more markedly, both the confusion made when assigning an incorrect class to these
cases (Pearson correlation 0.64) and the type of cases to which conversion is incor-
rectly assigned (Pearson correlation 0.41). am especially seems to mistake words
much more often for a - or U case than ib1-ig, especially words which should have
received an -e plural.

For example, Almosenier generates an am analogical set with the distribution
(Uer:0, en:6, Ue:71, -:2880, U:0, er:0, e:834, s:72), whereas ib1-ig finds 3 neighbors
at distance 0.3, all with the correct suffix -e (Harpunier, Pionier, Kanonier; all with
masculine gender and ending in -ier). Clearly, looking at local neighborhood only,
in combination with assigning more weight to the rhyme of the last syllable and
the gender, provides the right sub-generalization here for mblp.

For all other confusions, correlation is near to or much higher than 0.90, in-
dicating very similar language behavior of both algorithms, except that am makes
significantly more errors than ib1-ig in absolute terms.

Moving on to other errors made by the algorithms, we see that there are 499
words where am is correct and mblp wrong, and more than twice that many (1190
words) where the reverse holds. When we look at the clustering of errors in these
sets of words, we see that even here there is a positive correlation between the types
of confusions am and ib1-ig make when their counterpart is correct.

We have to conclude that, at least for this problem, we find no evidence that
the way the am algorithm works leads to qualitatively different language behavior
compared to that when using the conceptually and computationally simpler ib1-ig
algorithm. The former leads to significantly lower accuracy, however, and seems to
miss certain sub-regularities in the data.

. Related research

We are not the first to apply these methods to the German plural problem. In
Nakisa and Hahn 1996 and Nakisa, Plunkett, and Hahn 2000, simulation results
on celex data are reported for nearest neighbour (comparable to ib1, i.e. no fea-
ture relevance weighting), Nosofsky’s Generalized Context Model (GCM), and a
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standard three-layer backprop network. The set-up of the experiment is similar
to ours (predicting plural class from phonology) but not comparable because of
(1) the different data-preprocessing steps resulting in other sets of examples and
classes, (2) a different encoding of the phonology (phonetic features instead of
segmental syllable structure and no gender), and (3) a different methodology, viz.
cross-validation instead of leave-one-out. Results were 70.8% for nearest neighbor,
74.3% for GCM, and 82.7% for backprop.

In Wulf 1996, am is also applied to the German plurals problem. Based on a
dataset of 703 frequent words, with exemplars encoding phonology and gender, he
was able to show gang effects and the results of heterogeneity on selected nouns.
No report was given of the accuracy of how much of the data was accounted for.

Daelemans, Gillis, and Durieux (1997) compared am and several variants of
mblp on the task of main stress assignment for Dutch. They found that whereas
am outperforms ib1, variants such as ib1-ig outperform am and are more insensi-
tive to noise. The only other comparison of am and mblp we know of (Eddington
2000) focused on comparing both as a possible alternative implementation of a
single-route model for past tense morphology to connectionist models, and re-
ported similar results for both when testing on non-words for the past tense, but
found am sometimes working better to predict specific language usage.

. Discussion

In this section, we refer back to the list of differences noted in Section 2, and discuss
these, armed with our new results.

. The effect of non-neighbors

In am, non-neighbors frequently affect the decision of the algorithm, as we have
seen. mblp on the other hand relies on local extrapolation: a small neighborhood
(typically the nearest neighbor only) is used to extrapolate from. We see that for
the German plural at least, the mblp strategy seems fruitful (e.g., in discovering
the subregularity that the plural suffix of masculine nouns in -ier is -e). There are
32 cases like that with only two exceptions: Sire /zi:r/, plural Sires, and Partikulier,
also with plural -s. Of these 32 cases, 28 were classified correctly by ib1-ig (the four
errors being Wesir and Kurier which were pluralized -s, and Sire and Partikulier,
classified as +e). On the other hand am makes these errors as well, and in addition 6
other errors, including “clear” cases of the subregularity, such as Almosenier, Fakir,
Kanonier, Kurier as well as Kashmir, Mudir.
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The problem that the am algorithm tries to solve by permitting the algorithm,
if needed, to look at the complete dataset and by classifying subsets of the data
as homogeneous and heterogeneous, and that ib1-ig tries to solve by estimating
the information gain of each feature, is the problem of representation relevance.
Which features are most relevant for solving the task? ib1-ig reorganizes the exem-
plar space (and therefore the distances in it leading to extrapolation of outcomes)
by feature weighting. In principle, it is possible to extend the ib1-ig algorithm such
that it takes into account all exemplars in memory, by setting the value of k to
the number of exemplars, and using the inverse of their distance to the input item
to weigh their importance in computing the outcome, but this seldomly leads in
practice to better accuracy.

This reliance of ib1-ig on similarity-space reorganization by means of feature
weighting makes the approach of course potentially vulnerable to bad relevance
assignments for some features. For example, a known problem with information
gain is that it computes the relevance of a feature without taking into account the
other features, ignoring possible feature interactions. However, for this problem
(and many other linguistic problems we have investigated), it is an accurate and
robust heuristic method.

Figure 4 shows the relevance assignment of a few different feature weighting
methods on our dataset. Gain ratio is a normalized version of information gain
(boosting the relevance of features with few values); the χ2 method uses statisti-
cal significance testing to compare the observed distributions of values over classes
with their expected distribution (Daelemans, van den Bosch, & Zavrel 1999). Inter-
estingly, while the relevance assignment is roughly similar, there are some marked
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Table 6. Effect of feature relevance assignment
method on accuracy in ib1

Weighting method Accuracy (%)

baseline1 46.3
baseline2 32.1

ib1 92.6

ib1-ig 95.0
ib1-χ2 95.1
ib1-gr 94.9

differences, e.g., gain ratio puts more weight on the gender feature and estimates
the relevance of the segmental information lower than the other two methods.

The effect when using these methods in a k-NN algorithm with k = 1 on
our data (using leave-one-out methodology) is summarized in Table 6. The dif-
ferences are not important, showing that mblp is fairly robust to the details of the
algorithm for this problem. As could be expected, the algorithm using no reorga-
nization of the exemplar space at all (ib1) performs significantly worse than any
of the weighted methods, but it is surprising to see that it outperforms am. This
indicates that all pre-selected features are indeed relevant to solving the task, and
that the role of the feature weighting method is in fine-tuning the organization of
the exemplar space rather than in re-organizing it. The table also lists the baseline
accuracy when always selecting the most frequent suffix -(e)n, and when proba-
bilistically guessing the outcome (knowing only the distribution of the different
classes), called baseline1 and baseline2, respectively.

. Value relevance weighting

Another potential problem for ib1-ig is the frequency-weighted averaging of the
information gain of the different values of a feature to compute the information
gain of the feature. This is a source of robustness (since estimation is on the com-
plete dataset), but may at the same time lead to unwarranted underestimation of
the relevance of some feature values for some inputs, snowed under in the aver-
aging. Because of the way the algorithm works (treating each value as distinct),
am can assign more or less importance to particular values relative to the partic-
ular input it is classifying. In Skousen’s issues article in this volume, an example
from Finnish past tense (sorta- ‘to oppress’) is worked out in detail, and it is indeed
the case that ib1-ig incorrectly handles this item. However, this is a representation
problem more than an algorithmic problem. If a particular value has a high rele-
vance for some types of inputs, it should be assigned a separate feature. It is even
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possible to explode all values of all features into separate binary features, and use
general feature relevance weighting methods on this new representation. This way,
the particular Finnish past tense problem can also be solved by ib1-ig (van den
Bosch, personal communication).

Furthermore, whereas it will probably be possible to find similar cases also
for the German plural, there will be plenty (60% more) errors made by am which
ib1-ig does not make. In the comparison of the linguistic adequacy of algorithms,
the overall accuracy levels are probably more important than explaining individual
cases. This is of course not the case for psycholinguistic models; here the algorithms
and feature relevance metrics should be compared with human performance and
acquisition (see e.g., Eddington 2000), and overall accuracy is no longer the main
evaluation criterion.

. Feature weighting as training

Yet another criticism of ib1-ig (see Section 5 of Skousen’s overview of am in this
volume) is that because of the feature weighting method used, a training period
is needed which makes the approach more akin, in this respect only, to connec-
tionism than to am. The important distinction here is that whereas connectionist
learning methods such as backpropagation of errors are batch-learning methods
(cycling several times through all training items until an equilibrium or desired
error rate is reached), computing information gain is an incremental process and
converges very quickly. For example, Figure 5 illustrates the convergence of the
information gain weights in the differently sized training sets we used to compute
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the learnability results discussed earlier. Already after a few hundred training items,
the information gain values are stable, and already from the very first training set,
the relative ordering of the relevance of the different features remains basically the
same; only the absolute values vary. In addition, the algorithm is very robust to
small variations in the specific values of the information gain weights.

. (Im)perfect memory

In language processing tasks, low-frequency events are pervasive. Due to borrow-
ing, historical change, and the complexity of language, most data sets represent-
ing language processing tasks contain few regularities, but many subregularities
and exceptions. These exceptions and subregularities only concern a limited num-
ber of cases, yet in their small ‘pocket of exceptions’ in exemplar space they are
productive in that they may correctly predict the outcome for a previously un-
seen member of their region. It is impossible for inductive algorithms to reliably
distinguish real noise from these pockets of exceptions, so non-abstracting algo-
rithms like ib1-ig should be at an advantage compared to eager-learning methods
such as decision tree learning or rule induction: ‘forgetting exceptions is harmful’.
In Daelemans, van den Bosch, & Zavrel 1999 results are provided, with theoretical
analysis, supporting this hypothesis.

On the other hand, being based on a minimization of disagreements among
data-items, am is the most powerful statistical test possible, and can be made equiv-
alent to standard statistical procedures by introducing imperfect memory (i.e., in-
troducing a chance that a particular training item is forgotten). Interestingly, and
surprisingly from the point of view of the “forgetting is harmful” hypothesis, for-
getting 25% and 50% of the training data for the German plural problem does not
decrease generalization accuracy for am, which remains at 92%. However, as this
is significantly lower than the generalization accuracy of ib1-ig, it is unclear what
this means. One explanation could be that the way the am algorithm works on
this problem is a form of noise-reduction or smoothing in which the productive
subregularities and pockets of exceptions are lost against the more powerful effect
of the general tendencies in the dataset. (Remember that all data items may influ-
ence the final decision, not only the local context.) The anecdotal evidence about
masculine nouns in -ier seems to support this view, but more analysis is neces-
sary. Forgetting part of the data may counter this hypothesised overregularization
tendency of am.
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. Computational complexity and representational generality

In Daelemans, Gillis, and Durieux 1997 it was argued that an important advantage
of mblp as opposed to the am algorithm is the fact that the former is linear in the
number of features and exemplars, whereas the latter is exponential in the num-
ber of features. Massive parallelism does not effectively eliminate this exponential
explosion. In Skousen’s issues article in this volume it is argued that the informa-
tion gain feature relevance weighting in ib1-ig must take into account all possible
combinations of feature values (if it is to account for all language predictability),
hence there is no escaping from exponential explosion. Computation of informa-
tion gain is linear in the number of data items on which it is computed. (All that
is necessary is a simple computation on a feature-value outcome-class contingency
matrix which can be incrementally collected as experience enters the system.) In-
formation gain does make the (mostly incorrect) assumption that the features are
independent; it is a heuristic. Yet, the tests show that it is an effective and robust
relevance estimator for linguistic problems.

Furthermore, the more general approach to similarity used in mblp allows for
the easy and natural definition of similarity for features with numeric and set val-
ues, as opposed to am practice where usually only symbolic (nominal) and binary
features are used (see Chapter 15 of Skousen 1992). Although most language pro-
cessing representations can be described adequately using nominal features, some
linguistic information (e.g., distances between and lengths of linguistic objects
like words and utterances; and sets of words, phonemes, or letters) can be more
naturally represented using numeric and set valued features.

. Conclusion

am and mblp are similar in spirit, but propose completely different operational-
izations of similarity- or analogy-based language processing on the basis of ex-
emplars. In an earlier comparison between am and mblp (Daelemans, Gillis, &
Durieux 1997) dealing with the task of main stress assignment in Dutch words,
we concluded that for natural language learning tasks there was no clear moti-
vation to use the complex and computationally costly (and with many features
computationally intractable) am algorithm instead of the more general and less
complex class of mblp algorithms. In this paper we added more substance to this
position by analyzing the behavior of am and ib1-ig on the task of German plu-
ral prediction. We found that ib1-ig, a simple mblp algorithm, significantly out-
performs am, and seems to be better at representing the subgeneralizations of the
task. On the other hand, both systems are highly correlated in the errors they make
(i.e., the confusions between outcomes they predict), and have very similar learn-
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ing behavior. Taken together with the additional expressive power and flexibility
mblp offers in handling different types of representations, we stand by our earlier
conclusion.

However, additional research is needed to get more insight into the differ-
ences between both algorithms in terms of psycholinguistic and linguistic rele-
vance. Work by Gert Durieux (e.g., Durieux, Daelemans, & Gillis 1997) suggests
that am is better at learning regularities in the Dutch stress prediction data, whereas
mblp is better at putting to use the predictive power of (small) subregularities.

Notes

* Research partially supported by FWO (Belgium) and NWO (The Netherlands). Many
thanks to the members of ILK and CNTS for providing inspiring working environments,
and to the participants to the Analogical Modeling of Language conference at Brigham
Young University (22–24 March 2000) for useful discussion and comments. Special thanks
to Gert Durieux for sharing his expertise about, and implementation of, am, and for help
with preprocessing the celex data.

. For our experiments we have used TiMBL, available from <http://ilk.kub.nl/>. It is a
Memory-Based Learning software package developed in our group (Daelemans, Zavrel,
van der Sloot, & van den Bosch 1998). TiMBL implements a number of important memory-
based algorithms and metrics. We only describe those here which we used in the experiments
below.

. The specific analogical algorithm employed by Skousen is available in a number of im-
plementations. See the AM group’s homepage at <http://humanities.byu.edu/am/>. For
our experiments, we used an implementation by Gert Durieux, aml 0.1, available from
<durieux@ua.ac.be>.

. This description of the algorithm is taken from Daelemans, Gillis, and Durieux 1997.

. Available from <http://www.ldc.upenn.edu/>

. In these figures, the training set sizes on the x-axis are represented as categorical values,
i.e., the 200 item training sets get as much space on the x-axis as the 2000 item datasets,
hence the less steep learning curve, compared to Figure 1.
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Chapter 8

Analogical hierarchy

Exemplar-based modeling of linkers in
Dutch noun-noun compounds*

Andrea Krott, Robert Schreuder, and R. Harald Baayen

Introduction

Traditionally, formal rewrite rules are understood as the normal way to create novel
words, while analogy is taken as an unformalizable and exceptional way to create
a new word on the basis of an existing word (see e.g., Anshen & Aronoff 1988).
The rule-based approach appears to be adequate for phenomena with strong sys-
tematicities which can be easily captured by deterministic rules. However, the very
same phenomena can often be described equally well by means of formal and com-
putational models of analogy. In the analogical approach, all novel words are mod-
eled on one or more similar existing forms which serve as the analogical set. Espe-
cially in the case of gradual phenomena, where rules often capture only the more
or less deterministic sub-patterns in the data, the rule-based approach becomes
unsatisfactory. It is these phenomena above all which form a testing ground for the
two kinds of approaches.

One of these gradual phenomena is the use of linkers in Dutch noun-
noun compounds. There are two main linkers, -en-1 and -s- (e.g., boek+en+kast,
book+linker+shelf, ‘book shelf ’; dame+s+fiets, woman+linker+bike, ‘woman’s
bike’), which are historically case endings. Synchronically, they are still homo-
graphic with the two nominal plural suffixes. Nevertheless, there are two reasons
why it is inaccurate to describe them as plural markers. First, the linking -s- occurs
in compounds in which it does not form a plural with the first constituent (e.g.,
schaap+s+kooi, sheep+linker+stable ‘sheepfold’; the plural of schaap is schaap+en).
Second, the linking -en-, though being always the appropriate plural suffix of the
first constituent, does not always contribute plural meaning (e.g., pan+en+koek,
pan+linker+cake ‘pancake’).



 Andrea Krott, Robert Schreuder, and R. Harald Baayen

The majority of noun-noun compounds in Dutch do not contain any linker
(e.g., tand+arts, tooth+doctor ‘dentist’). Such compounds resemble English com-
pounds. Nevertheless, linkers appear in 35% of all Dutch compounds in the celex
lexical database (Baayen, Piepenbrock, & Gullikers 1995), and their distribution is
difficult to predict. On the one hand, there are some deterministic patterns. For
instance, bevolking, when it is used as a first constituent in a compound, always
occurs with the linking -s-. celex lists 30 compounds with bevolking as left con-
stituent, all of which are followed by the linker -s- (e.g., bevolking+s+aantal, popu-
lation+linker+number ‘number of population’). On the other hand, there is ram-
pant unpredictable variation. The left constituent getal ‘number’ occurs in celex
equally often with -s- (3 times), -en- (4 times), and -Ø- (3 times). An examination
of celex shows that 89.6% of all first constituents are variable in terms of their
combination with linkers. These variable first constituents account for 25% of all
celex compounds.

Rule-based approaches to the description of the distribution of Dutch linkers
(see e.g., Van den Toorn 1981a, 1981b, 1982a, 1982b; Mattens 1984; ANS 1997) list
phonological, morphological, and semantic factors. An example of a phonological
rule is the claim that first constituents ending in a full vowel are never followed by
any linker (e.g., Van den Toorn 1982a, 1982b; ANS 1997). This rule is not without
exceptions, as the example pygmee+en+volk, pygmy+linker+people ‘pygmy peo-
ple’ shows. Morphologically, constraints on linkers are based on preferences of suf-
fixes that appear at the end of first constituents. For instance, the diminutive suffix
-tje always appears with the linking -s- (e.g., kapper+tje+s+saus, caper+diminutive
suffix+linker+sauce, ‘caper sauce’). In contrast, the suffix -heid (similar to English
‘-ness’) usually occurs with -s-, but also with -Ø- and -en-. One of the semantic
rules claims that linkers never follow mass nouns (e.g., papier+handel, paper+trade
‘paper trade’). This is not true for tabak ‘tobacco’, which always appears with -s-
(e.g., tabak+s+rook, tobacco+linker+smoke, ‘tobacco smoke’).

There are also attempts to explain linkers by the syntactic relation be-
tween the two constituents. If the first constituent is the logical object of the
second constituent, a linking element seems to be absent (counterexample:
weer+s+verwachting, weather+linker+forecast, ‘weather forecast’). Given the large
number of exceptions, Van den Toorn prefers the use of the term ‘tendencies’ rather
than ‘rules’. Combining all phonological and morphological rules described in the
literature,2 and applying them to the compounds in the celex database, we find
that they only apply to 51% of all the noun-noun compounds. Moreover, they
correctly predict only 63% of the linkers in these compounds, which amounts to
only 32% of all celex compounds. Thus, rules do not sufficiently describe the
distribution of Dutch linkers.3

In an earlier study, we show that linkers can be predicted with a high degree
of accuracy on the basis of analogy (Krott, Baayen, & Schreuder 2001). This study
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revealed strong evidence that the choice of linkers in novel compounds is deter-
mined by the distribution of linkers in an analogical set consisting of compounds
sharing the first or second constituent with the novel compound. We will refer
to this set as the constituent family. We also demonstrated that in the case of com-
pounds with suffixed pseudo-words as first constituents, the analogical set contains
all compounds which share the same final suffix of the first constituent. We will re-
fer to this set as the suffix family. In addition to this experimental evidence, the
study also showed that the exemplar-based model TiMBL (Daelemans, Zavrel, Van
der Sloot, & Van den Bosch 2000) can predict the choices of the participants in
off-line production experiments with a high degree of accuracy.

The first goal of the present study is to come to grips with the problem of fea-
ture selection. The experiments reported by Krott, Baayen, and Schreuder (2001)
suggest that different analogical sets are used depending on the input. In the case
of novel compounds with existing first constituents, the selection is based on the
constituent family. In the case of novel compounds with suffixed pseudo-words
as first constituents, the suffix family is relevant. What happens if the first con-
stituent is a pseudo-word which does not contain a suffix? Possibly, the analogical
set for monomorphemic pseudo-words is based on the rime of the pseudo-word.
We will refer to this analogical set as the rime family and we will test its influence
in Experiment 1.

If constituents, suffixes, and rimes of first constituents individually influence
the choice for linkers, the question arises whether these three factors are equally
important. TiMBL provides for each feature (used for the analogical prediction)
an information gain measure (IG) which quantifies how much information the
feature contributes to the knowledge of the correct linker. When taking all com-
pounds with derived nouns as first constituents and comparing the features Con-
stituent and Suffix in terms of their information gain, it turns out that the feature
Constituent has the highest IG value (1.1), while the feature Suffix has a value of
0.8. The feature with the next highest information gain (0.75) is the Rime of the
first constituent. The order of IG values suggests a hierarchy in which the Con-
stituent is a stronger factor than the Suffix, while the Suffix is a stronger factor than
the Rime.

The second goal of this study is to empirically verify this Constituent-Suffix-
Rime hierarchy. This hierarchy implies that lower-ranked features are effective
only when higher-ranked features are absent. We present results of experiments
which test the precedence of the constituent over the suffix (Experiment 2) and
the rime (Experiment 3), as well as the precedence of the suffix over the rime
(Experiment 4).

The third goal of this study is to compare the two state-of-the-art exemplar-
based analogical models, AM (Skousen 1989) and TiMBL (Daelemans, Zavrel,
Van der Sloot, & Van den Bosch 2000) with respect to classification accuracy and
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prediction uncertainty. We will do this by testing how well these models predict
the Dutch compounds in the celex lexicon as well as the responses of the partic-
ipants to Dutch novel compounds in our experiments. We will also compare the
uncertainty of participants with the uncertainty of the models.

In what follows, we first describe simulation studies which model the linkers of
existing Dutch compounds using AM and TiMBL. These simulation studies show
that the feature ‘constituent’ is the best predictor of linkers, although the features
‘suffix’ and ‘rime’ are both strong predictors as well.

In the subsequent section, we present results of simulation studies in which
the prediction accuracies of both models are tested for novel compounds. We refer
to results of previous experiments which test the influence of the first constituent
and the suffix of the first constituent on the choice of the linker. We continue with
presenting Experiments 1–4 and the corresponding simulation studies with AM
and TiMBL.

Predicting existing compounds

In this section, we test how well AM and TiMBL predict the linkers in existing
Dutch noun-noun compounds attested in the celex lexical database. For these
studies, compounds with a token frequency of zero in a corpus of 42 million words
are not included. Ten-fold cross-validation simulation runs over the remaining
22,966 compounds using different analogical sets led to the results summarized in
Table 1. The column Feature lists the different sets of features determining the ana-
logical sets. The columns TiMBL and AM list the classification accuracies for these
sets. The rows Constituent, Suffix, and Rime list the percentage of correctly clas-
sified celex compounds if the model’s training and classification is based on the
analogical set of the first constituent, the suffix, and the rime of the first constituent
respectively. The constituent family provides the strongest analogical set which cor-
rectly classifies about 92% of the compounds in celex.4 This is an extremely high
percentage compared to the 32% that are correctly classified by the phonologi-
cal and morphological rules reported in the linguistic literature. Apparently, the
rule-based approach lacks an extremely important factor. However, when AM and
TiMBL have to classify the compounds on the basis of the suffix or on the basis
of the rime of the first constituent, they already reach an accuracy of 74.6–78.2%,
which suggests that phonological and morphological factors are strong predictors
as well. If the simulation is restricted to compounds that indeed contain a final suf-
fix, then a classification on the feature Suffix leads to an accuracy as high as 92.3%.
Clearly, among the compounds ending in suffixes, the suffix family is an extremely
strong predictor. Combining features for the analogical basis generally leads to bet-
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Table 1. Classification accuracies when training is based on the features Constituent,
Suffix, and Rime for both TiMBL and AM

Accuracy (%)
Feature TiMBL AM

Constituent 92.6 92.2
Suffix 74.6 (92.1)* 74.6 (91.3)*
Rime 78.2 75.6 +
Rime + Suffix 79.5 76.7 +
Rime + Suffix + Constituent 93.4 92.8 +

Note. * marks the classification accuracy when the training is based only on the 3836 first constituents actually ending

in a suffix. + marks the significance of the differences in classification accuracies between TiMBL and AM, evaluated

by means of a χ2 test.

ter results than a classification which is based on only one feature. The row labeled
Rime + Suffix lists the results if the models are trained on the rime and the suffix of
the first constituent simultaneously. In this case, AM and TiMBL correctly classifies
up to 79.5% of all celex compounds. The row labeled Rime + Suffix + Constituent
shows the results if all three features are combined. This combination leads to the
highest classification accuracies of 93.4% (TiMBL) and 92.8% (AM), which are
significantly higher than the accuracies reached by training on only the constituent
(TiMBL: χ2

(1) = 11.08, p < .001; AM: χ2
(1) = 5.80, p = .016).

Comparing the classification accuracies of TiMBL and AM, we find that the
models perform equally well as long as the classification is based on the first con-
stituent or the suffix of the first constituent (Constituent: χ2

(1) = 2.57, p = .11; Suf-
fix, trained on first constituents ending in a suffix: χ2

(1) = 9.58, p = .21). Training
on the rime family, however, leads to a significant higher accuracy for TiMBL than
for AM (χ2

(1) = 43.53, p < .001). This is also true for simulations in which the fea-
ture Rime is combined with other features (Rime + Suffix: χ2

(1) = 52.46, p < .001;
Rime + Suffix + Constituent: χ2

(1) = 6.36, p = .01).
Summing up, classifying existing Dutch compounds on the basis of the analog-

ical sets of the first constituent, the suffix or the rime of the first constituent, leads
to surprisingly high percentages of correct classifications. However, the features are
quite different in strength. The first constituent seems to be the strongest predic-
tor, followed by the rime and the suffix. The best result has been obtained with the
combination of all three features. A comparison of AM and TiMBL revealed that
the models perform equally well as long as the classification is not based on the
rime of the first constituent.
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Predicting novel compounds – influences of individual features

In this section, we test how well AM and TiMBL can predict linking elements that
were chosen by participants for novel compounds. We summarize two previous
studies in which we observed the influence of the constituent family and the suffix
family (Krott, Baayen, & Schreuder 2001). We also present a new experiment which
provides evidence for the influence of the rime family. Simulation studies with AM
and TiMBL reveal that these analogical models accurately predict the choices of
the linkers made by the participants. Both models reveal about the same level of
prediction accuracy.

Constituent and suffix influence

Krott, Baayen, and Schreuder (2001) tested the influence of the distribution of link-
ers in the constituent family in two experiments in which participants had to form
novel compounds from two visually presented nouns. The first experiment focused
on the use of the linking -en- (EN-experiment), the second on the use of the link-
ing -s- (S-experiment). Both experiments tested the influence of the left and right
constituent family. The left constituent family was defined as the set of compounds
which share the left constituent with the novel target compound, and the right
constituent family was defined as the set of compounds which share the right con-
stituent with the target compound. Constituents for the target compounds were
chosen such that the distribution of linkers in the left as well as in the right con-
stituent families varied in their bias for the linker -en- (EN-experiment) and -s-
(S-experiment). The bias was defined as the percentage of compounds in the con-
stituent family which contain -en- (or -s-). The responses of the participants in
both experiments showed a strong effect of the bias of the left constituent fam-
ily and a weaker, but still reliable effect of the bias of the right constituent family.
The strength of the bias for a linker was positively correlated with the number of
responses with this linker.

Krott, Baayen, and Schreuder (2001) also present simulation studies in which
the responses of the participants were modeled with using TiMBL as analogical
model. Because of the variation of the responses for each experimental compound,
the prediction of TiMBL was compared with the majority choice of the participants
for each compound. Using the constituent family of the first constituent, TiMBL
correctly predicted 75.1% of all compounds of the EN-experiment and 82.4% of
all compounds of the S-experiment. Modeling the responses with AM leads to re-
sults which do not differ significantly from the results obtained with TiMBL (EN-
experiment: 82.5%, χ2

(1) = 2.68, p = .10; S-experiment: 82.0%, χ2
(1) = 0, p = 1).

The results of both models do not change if the analogical set is based on the Con-
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stituent, the Suffix, and the Rime. Thus, the constituent family seems to provide
the main analogical basis.

Krott, Baayen, and Schreuder (2001) also investigate whether the suffix of the
first constituent influences the choice of the linker, in an experiment in which all
first constituents were pseudo-words ending in suffixes. The families of these suf-
fixes differed in their bias for the linking -s-. Participants appear to be sensitive to
this bias and used the linking -s- significantly more often in the case of a strong
bias for -s- than in the case of a strong bias against -s-.

The choices of linkers for the experimental compounds can again be simulated
by AM and TiMBL. If we base the classification on the suffix family, the models cor-
rectly predict 70.6% of the majority choices of all compounds of the experiment.
This does not change if the rime is included in the feature set.

We have seen that the first constituent and the suffix of the first constituent
both affect the choice of linkers in novel compounds. AM and TiMBL support
these results in predicting the choices of the participants with a high degree of
accuracy, using the analogical sets of the constituent family and the suffix family.
The prediction accuracies of both models do not differ significantly.

Experiment 1: Rime influence

In this section, we focus on the question whether the choices for linkers in novel
Dutch compounds also depend on another feature with a high information gain,
the rime of the first constituent. If the first constituent is a pseudo-word and does
not contain any suffix, we assume that participants use the rime family to choose
the linker. In addition to the experiment, we will test whether AM and TiMBL are
again capable of simulating the experimental results.

Method
Materials. We constructed three sets of 24 phonotactically acceptable Dutch
pseudo-words (L1, L2, L3) to be used as left constituents. L1 consisted of pseudo-
words with rimes which occur in celex most often with a linker. Of these pseudo-
words, 12 ended in -an (there are 117 compounds in celex ending in -an, 65.0%
of which have a linker) and 12 ended in -eid (254 compounds, 99.6% with linker).
Conversely, L3 consisted of pseudo-words ending in rimes which show a bias
against being combined with a linker. Of these pseudo-words, 6 ended in -el
(553 compounds, 86.3% without linker), 6 in -em (36 compounds, 97.2% with-
out linker), 6 in -ij (158 compounds, 89.9% without linker), and 6 in -a (237
compounds, 100% without linker). The neutral set L2 consisted of pseudo-words
with rimes showing neither a bias for or against a combination with a linker. Of
these pseudo-words, 8 ended in -en (613 compounds, 52.0% with, 48.0% without
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linker), 8 in -oe (25 compounds, 44.0% with, 56.0% without linker), and 8 in -ap
(28 compounds, 25.0% with, 75.0% without linker). Each pseudo-word was bi-
syllabic. Word stress was indicated on the first syllable by using capital letters. To
exclude a possible influence of an existing word, we made sure that none of the
pseudo-words ended in an existing Dutch word.

We combined each pseudo-word with an existing right constituent which can
appear with all three linking possibilities (-s-, -en-, and -Ø-). This resulted in a
factorial design with one factor with three levels: Rime Bias of the first constituent
(Positive, Neutral, and Negative). Appendix A lists all 3 × 24 = 72 experimental
compounds. We constructed a separate randomized list for each participant.

Procedure. The participants performed a cloze-task. The experimental list of items
was presented to the participants in written form. Each line presented a pair of
compound constituents separated by two underscores. We asked the participants
to combine these constituents into new compounds and to specify the most appro-
priate linker, if any, at the position of the underscores, using their first intuitions.
We told the participants that they were free to use -en- or -e- as spelling variants of
the linker -en-. The experiment lasted approximately 10 minutes.

Participants. Twenty participants, mostly undergraduates at Nijmegen University,
were paid to participate in the experiment. All were native speakers of Dutch.

Results and discussion
For one compound, one participant filled in a question mark. This response
was counted as an error. Figure 1 displays the number of responses of linkers
(+LINKER) and of no linkers (–LINKER) for the three experimental conditions:
Positive (POS), Neutral (NEU), and Negative (NEG) Rime Bias. The number of
responses are also listed in Appendix A. As can be seen from this figure, a Positive
Rime Bias for using a linker leads to more responses with a linker than a Neu-
tral or Negative Bias. A by-item logit analysis (see e.g., Rietveld & Van Hout 1993;
Fienberg 1980) of the responses with a linker versus responses without a linker
revealed a main effect of the Rime Bias of the first constituent (F(2, 69) = 22.2,
p < .001). We can therefore conclude that the rime of the first constituent affects
the choice of the linker. Participants responded to a Negative Bias surprisingly often
with a linker. The Negative Rime Bias seems to be less effective. This is remarkable,
since the rimes in this condition have been reported as imposing strong restrictions
against the usage of linkers in Dutch in the linguistic literature (see e.g., Van den
Toorn 1982a, 1982b; ANS 1997). As we will see later, a bias against using a linker
seems to be easy to violate in general.
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Figure 1. Number of responses with linkers (+LINKER) and without linkers
(–LINKER) for the Positive, Neutral, and Negative Rime Bias (POS, NEU, NEG)

In contrast to the experiments which tested the effect of the constituent and
suffix family, participants found this experiment extremely difficult to perform.
This suggests that the phonological rules listed in the literature are not as strong
as assumed and may in fact have no reality for at least some of our participants.5

The difficulties with this experiment cannot be due to a weaker strength of the
bias because in all experiments the bias in the positive and negative condition
was equally strong (EN-experiment: Mean Positive Bias 91%, Mean Negative Bias
100%; S-experiment: Mean Positive Bias 98.7%, Mean Negative Bias 100%; Suffix
Experiment: Mean Positive Bias 91.9%, Mean Negative Bias 83.3%; Rime Experi-
ment: Mean Positive Bias 82.3%, Mean Negative Bias 93.3%).

Given the difficulties experienced by the participants to complete the task, the
uncertainty in their choices (with marginal majority choices) does not come as a
surprise. Interestingly, AM’s and TiMBL’s performance with respect to the effect of
the Rime Bias reveals a high degree of uncertainty as well. Both models correctly
predict about half of the majority choices if they are trained on the rime of the
first constituents of the 22,966 celex compounds (TiMBL: 47.9%; AM: 47.2%;
χ2

(1) = 0, p = 1). However, prediction accuracies increase (TiMBL: 64.8%; AM:
65.3%; χ2

(1) = 0, p = 1) if the training is based not only on the rime but also on the
stress of the last syllable of the first constituent.

If the feature set contains Rime, Stress, and Suffix of the first constituent,
TiMBL’s accuracy drops to 53.4%, while AM’s accuracy stays the same with 65.3%
(χ2

(1) = 1.82, p = .18). The lower accuracy of TiMBL is due to its analogical mecha-
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nism which can lead to level interference of factors. When training is conducted on
Rime and Suffix simultaneously, derived and monomorphemic words build sep-
arate analogical sub-bases. Consequently, generalizations based on rimes can no
longer take priority for the whole dataset.6

The uncertainty of choosing linkers

In all AM and TiMBL simulation studies presented in this paper, we investigate how
well these models predict the linkers in novel compounds, comparing the linker to
which the models assign the highest probability value with the linker which has
been chosen most often by the participants. That means that both the less proba-
ble linkers for the models and the linkers which are chosen less often by the par-
ticipants are not taken into account when evaluating the models’ performance. In
this section, we will focus on the uncertainty in choosing a linker both on the side
of the models and on the side of the participants, addressing the question whether
the participants and the models are unsure or sure about the linkers for the same
kinds of compounds.

We measured the uncertainty of a model for a linker in a particular compound
in terms of the entropy of the distribution of the probabilities the model assigns to
the linkers -en-, -s-, and -Ø- for this compound. The entropy value is the higher the
more equally distributed the linkers are. Similarly, we measured the uncertainty of
the participants in terms of the entropy of the distribution of the probability values
of their choices for a given compound.

Figure 2 shows the entropy for different Left Biases in the experiments test-
ing the influence of the Constituent Bias, the Suffix Bias, and the Rime Bias. The
upper left panel shows the mean entropy for the three Left Bias conditions in the
EN-experiment (Positive, Neutral, and Negative Constituent Bias). The solid line
represents the mean entropy of the distribution of the participants’ responses over
all experimental items in the three conditions of Left Bias. As can be seen from the
slope of the line, the entropy, and therefore the uncertainty, is highest in the case
of a Neutral Left Constituent Bias. This is also true for the entropy of the distribu-
tions of the predictions given by the models. A Spearman correlation test revealed
a significant correlation between the entropy of the participants’ responses and the
entropy of the models’ predictions (rs = 0.30; z = 4.14; p < .001). Interestingly,
for this and the following experiments, AM and TiMBL reveal exactly the same
average entropy per bias condition.

The upper right panel of Figure 2 shows the mean entropy for the three Left
Bias conditions in the S-experiment. Here again, both the models and the par-
ticipants are most uncertain in the condition of a Neutral Constituent Bias, and
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Figure 2. Mean entropy for the distributions of choices for linkers for both the mod-
els (superimposed dashed lines) and the participants (solid lines) for the experiments
testing the influence of the Left Constituent Bias (EN-experiment and S-experiment),
the Suffix Bias (SUFFIX experiment), and the Rime Bias (RIME experiment)

the entropy values of the models’ predictions and the participants’ responses are
significantly correlated (rs = 0.48; z = 6.79; p < .001).

Surprisingly, in both the EN-experiment and S-experiment, the models are
much more certain in their predictions than the participants for the condition
in which the constituent family of the left constituent has a Negative Bias (EN-
experiment: t(124) = 8.68; p < .001; S-experiment: t(124) = 7.19; p < .001).
There are two explanations for this result. First, in the EN-experiment, partici-
pants responded most often with -en- (2254 out of 3778; χ2

(1) = 281.33, p < .001)
and in the S-experiment, they responded most often with -s- (2092 out of 3780;
χ2

(1) = 85.93, p < .001). Thus, there might be an overall bias for using -en- or
-s-. Second, in the condition of a Left Negative Bias, either 50% (EN-experiment)
or 90% (S-experiment) of the left constituents have a bias for -Ø-. Post-hoc anal-
yses revealed that a bias against using a linker can be violated more easily than
a bias for -en- or -s-. In the EN-experiment, 75% of the responses followed the
bias if it was for -Ø-, while 93.2% followed the bias if it was for -en- or -s-
(χ2

(1) = 11.06, p < .001). In the S-experiment, 82.4% of the responses followed
the bias if it was for -Ø-, while 93.5% followed the bias if it was for -en- or -s-
(χ2

(1) = 4.78, p = .003). These results suggest that the -Ø- linker might not have
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the status of a morpheme. A bias for -Ø- would then not be positive evidence for a
zero-morpheme, but rather negative evidence against using a linker. Such negative
evidence might be weaker as an analogical factor than positive evidence for -en- or
-s-. Participants would then follow the negative bias less often, leading to greater
uncertainty about the choice of the appropriate linker.

The lower left panel of Figure 2 shows the mean entropy for the two Suffix
Biases (Positive and Negative) in the experiment testing the influence of the Suffix
Bias. The models are in general less uncertain about the choices than the partic-
ipants (t(124) = –5.29; p < .001). Possibly, using the analogical set of the suffix
family is already more difficult than using the constituent family. There is again a
significant correlation between the entropy values of the participants’ choices and
the models’ predictions (rs = 0.30; z = 3.37; p < .001).

As mentioned above, participants found the experiment in which we tested
the influence of the Rime Bias extremely difficult to perform. Not surprisingly,
the entropy values of the participants’ responses shown in the lower right panel of
Figure 2 are very high. Interestingly, the entropy does not differ across the three
different conditions (Positive versus Neutral Bias: t(46) = 0.66; p = 0.52; Posi-
tive versus Negative Bias: t(46) = 0.95; p = 0.35). There is also no correlation
between the entropy values of the participants’ responses and the models’ pre-
dictions (rs = –.10; z = –.80; p = 0.42). Interestingly, the models are as un-
certain in the condition of a Positive Bias as in the condition of a Neutral Bias
(t(46) = –.12; p = 0.90). This uncertainty is probably due to the quite low bias
(65%) for half of the compounds in this condition. However, most of the responses
do follow the bias (82%). The high degree of uncertainty in the condition of a Neg-
ative Bias can be again explained by the general observation that a bias for -Ø- can
be easily violated.

In sum, we have seen that participants and models tend to be uncertain espe-
cially in the condition of a neutral bias. In all experiments, a negative bias reveals
higher uncertainty on the side of the participants than on the side of the mod-
els. We explained this result by the observation that a bias against using a linker
seems to be more easily violated. This finding suggests that an analogical model for
predicting human performance needs to weight zero-realizations differently than
other realizations.

The feature hierarchy

The experiments testing the influence of the first constituent, of the suffix, and of
the rime have revealed that all three features are effective factors. This does not
mean, however, that these factors are equally effective under the same conditions.
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Participants may activate the constituent family when it is available. If the first
constituent does not have a constituent family, participants base their choice on
either the suffix family or on the rime family of the first constituent. In the case
of a derived first constituent, the suffix is involved, while in the case of a pseudo-
word without any suffix, the rime is crucial. We may be dealing with a fall-back
strategy. In the absence of a higher-order unit, the next lower unit determines the
analogical set. However, what happens if the information given in the input allows
the selection of more than one feature? Are all such features activated simultane-
ously and do they equally affect the choice of the linker? The different information
gains which are provided by TiMBL suggest the hypothesis that the features are
ordered in strength. The influence of the constituent might be stronger than that
of the suffix, while in turn the influence of the suffix might be stronger than that
of the rime. We will test these hypotheses in the following three experiments (Ex-
periment 2–4), and we will use AM and TiMBL to investigate the possible role of
different analogical sets.

Experiments 2 and 3: Constituent preference

Experiments 2 and 3 test whether the first constituent has a stronger influence on
the choice of linkers than the suffix (Experiment 2) or the rime (Experiment 3) of
the first constituent.

Experiment 2: Constituent preference or suffix preference

Method
Materials. For this experiment, we selected a set of 14 derived nouns whose suf-
fixes are mostly combined with the linking -s- (mean: 86.8%; -ing: 91.4%; -ling:
80.9%; -eling: 86.7%; -er: 84.1%). At the same time, these derived nouns, when
used as left constituents in compounds, tend to occur without the linker -s- (mean:
91.7%; range: 75.0% – 100%; 10 had a bias for -Ø- and 4 had a bias for -en-). To
make sure that the bias for -en-, -s-, and -Ø- was equal over the list of experimen-
tal items, we added 10 monomorphemic nouns with a bias for -s- (mean: 98.1%;
range: 83.3% – 100%) and 6 monomorphemic nouns with a bias for -en- (mean:
91.1%; range: 66.7% – 100%), resulting in 30 left constituents. The 10 monomor-
phemic nouns with a bias for -s- served as experimental items for Experiment 3.

In order to avoid an influence of the right constituent, we combined these 30
left constituents with right constituents that appear with all three linking possibili-
ties (-s-, -en-, and -Ø-). Appendix B lists the 16 experimental items. We constructed
a separate randomized list for each participant.
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Procedure. The procedure was identical to the one used in Experiment 1.

Participants. Twenty participants, mostly undergraduates at Nijmegen University,
were paid to participate in the experiment. All were native speakers of Dutch.

Results and discussion
None of the participants’ responses had to be counted as an error. The left bar of
Figure 3 shows the number of responses that follow the bias of the constituent,
the right bar shows the number of responses that follow the bias of the suffix. The
number of responses for the individual compounds are listed in Appendix B. Par-
ticipants responded most often with the linker that one would expect if they follow
the bias of the constituent. Only in 28.6% of all responses was the linker in line with
the bias of the suffix. A paired t-test revealed that Constituent Bias reliably over-
rides Suffix Bias (t(13) = 3.04; p < .01). We conclude that the first constituent has
indeed a stronger effect on the choice of the linker than the suffix of the constituent.

Simulation studies with TiMBL and AM confirm this result. When we train
TiMBL and AM on the first constituents of the 22,966 celex compounds, they
both correctly predict 64.3% of the majority choices for each experimental com-
pound. If the training is based on the suffix, they correctly predict only 21.4%.
Training on the rime, the suffix, and the first constituent simultaneously leads to
the same results as training on only the first constituent. Therefore, it seems to be
mainly the first constituent and its constituent family which is actively used by the
participants.
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Figure 3. Number of responses predicted by the Constituent Bias and Suffix Bias
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In the next section we address the question whether the bias of the constituent
family also overrules the bias of the rime family.

Experiment 3: Constituent preference or rime preference

Method
Materials. We selected from celex a set of 10 monomorphemic nouns which tend
to occur with a linker (mean: 84.4%; range: 66.7%–100%). At the same time, the
rimes of these nouns tend to occur without a linker (mean: 90.6%; -ee: 97.1%;
shwa + l: 87.9%; -ij: 90.6%). Six of these nouns had a bias for a combination with
the linker -en- and four had a bias for -s-. To make sure that the bias for -en-, -s-,
and -Ø- was equal over the list of experimental items, we added ten derived nouns
with a bias against using a linker (mean: 93.9%; range: 63.6%–100%), four derived
nouns with a 100% bias for -en-, and six monomorphemic nouns with a 100% bias
for -s-, resulting in 30 left constituents.

In order to avoid an influence of the right constituent, we combined these 30
left constituents with right constituents which appear with all three linkers (-s-,
-en-, and -Ø-). Appendix B lists the 10 experimental compounds. We constructed
a separate randomized list for each participant.

Procedure. The procedure was identical to the one used in Experiments 1 and 2.

Participants. Twenty participants, mostly undergraduates at Nijmegen University,
were paid to participate in the experiment. All were native speakers of Dutch.

Results and discussion
None of the participants’ responses had to be counted as an error. The left bar of
Figure 4 shows the number of responses that follow the bias of the constituent, the
right bar shows the number of responses following the bias of the rime. The num-
ber of responses of the individual compounds are listed in Appendix B. Figure 4
shows that participants responded mostly with the linker following the bias of the
constituent. Only in 11.5% of all responses was the linker in line with the predic-
tion based on the Rime Bias. A paired t-test by items on the number of participants
following the bias of the constituent and the number of participants following the
bias of the rime confirms that the observed pattern is reliable (t(9) = 8.6, p < .001).
We can therefore conclude that the influence of the first constituent has a stronger
effect on the choice of the linker than the rime of the constituent.

When we train TiMBL and AM on the first constituents of the 22,966 celex
compounds, both correctly predict 10 out of 10 of the majority choices for each
experimental compound. However, when we train on the rime, they correctly pre-
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Figure 4. Number of responses predicted by the Constituent Bias and Rime Bias

dict 0 out of 10. Training TiMBL on the rime, the suffix, and the first constituent
simultaneously leads to the same results as training on only the first constituent,
namely 100% correct predictions. AM’s prediction accuracy in this case drops to
90%, which is not significantly lower (χ2

(1) = 0.002, p = .96). Clearly, participants
base their choices on the constituent family and not on the rime family. In the next
section, we will test whether the Suffix Bias is stronger than the Rime Bias.

Suffix preference

Method
Materials. We constructed a list of 4×3 = 12 phonotactically legal Dutch pseudo-
words which ended in 4 different Dutch suffixes that also appear as word-final
letter combinations in monomorphemic nouns (-er, -aar, -ing, and -ist). When
these letter combinations appear in monomorphemic nouns, they are usually not
combined with a linker (mean: 72.9%; range: 59.4%–93.5%). In contrast, when
they appear as suffixes, they tend to be combined with a linker (mean: 84.0%; -er:
84.1% with -s-; -aar: 66.7% with -s-; -ing: 91.4% with -s-; -ist: 93.8% with -en-).

In order to balance the bias for linkers in the experiment, we also con-
structed 24 filler constituents. Half of these were phonotactically legal Dutch de-
rived pseudo-words ending in suffixes that appear always without any linker (-sel,
-te, -atie, and -nis; 3 pseudo-words for each suffix). The other half of the filler
items were phonotactically legal Dutch monomorphemic pseudo-words ending in
letter combinations that usually appear with a linker (mean: 63.7%; -eid: 86.0%,
-ap: 37.1%, and -an: 67.9%; 4 pseudo-words for each combination). For both the
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12 experimental items and the 24 fillers, stressed syllables were marked by capital
letters.

We constructed two lists of experimental items (List A, List B). Both lists con-
tained the 12 experimental pseudo-words. To List A we added the 12 filler words
which usually appear with a linker. To List B we added the 12 fillers which usu-
ally appear without a linker. Each pseudo-word was embedded in a sentence con-
structed to influence the interpretation of the pseudo-word. For the words of List A,
the sentences promoted a monomorphemic interpretation of the pseudo-word. For
the words of List B, the sentences promoted an affixal interpretation. The following
two examples show one of the experimental pseudo-compounds preceded by the
two contexts.

A. monomorphemic interpretation

Een ‘PLOEver’ is een boomsoort.
“A ‘PLOEver’ is a kind of tree.

PLOEver_gried
PLOEver_gried”

B. derived interpretation

Iemand die graag ‘ploeft’ is een ‘PLOEver’.
“Somebody who likes to ‘ploef ’ is a ‘PLOEver’.

PLOEver_gried
PLOEver_gried.”

In addition, we constructed 12 + 24 = 36 compounds each using a pseudo-word
of Lists A and B as a left constituent and combining it with a right phonotactically
legal pseudo-word that does not appear in Lists A and B. The compounds with the
12 experimental left constituents were identical in both lists. Appendix A lists all
sentences and compounds of both lists. We constructed a separate randomized list
for each participant.

Procedure. The participants performed a cloze-task. The sentences defining the
pseudo-words and the compounds were presented to the participants in written
form. Each line presented a sentence and the pair of compound constituents in
which the first constituent was identical to the defined pseudo-word. The con-
stituents were separated by two underscores. The participants were instructed to
first read the sentence twice in order to understand the meaning of the pseudo-
word. Then they had to combine the two constituents into a new compound and
to specify the most appropriate linker, if any, at the position of the underscores,
using their first intuitions. We told the participants that they were free to use -en-
or -e- as spelling variants of the linker -en-. The experiment lasted approximately
5 minutes.
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Participants. Forty participants, mostly undergraduates at Nijmegen University,
were paid to participate in the experiment. All were native speakers of Dutch. List A
was presented to one half of the participants, List B to the other half.

Results and discussion
All participants provided a linking choice for all items. The left bar of Figure 5
(derivational interpretation) shows the number of responses when the sentence fa-
vors a derivational interpretation. As can be seen from the figure, this condition
mainly led to responses as predicted by the bias of the suffix (mean: 71.5%). The
right bar of Figure 5 (monomorphemic interpretation) shows the number of re-
sponses when the sentence favors a monomorphemic interpretation. The number
of responses for the individual compounds are listed in Appendix C. Paired t-tests
of the number of responses for the two contexts show that participants responded
more often with the predicted linker for a derived first constituent for a sentence
favoring a derivational interpretation than for a sentence favoring a monomor-
phemic interpretation (t(11) = 4.5; p < .001). They also responded more often
with the predicted linker for a monomorphemic first constituent for a sentence
favoring a monomorphemic interpretation than for a sentence favoring a derived
interpretation (t(11) = 2.9; p = .01). However, even in the case of a sentence
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Figure 5. Number of responses predicted by the Suffix Bias (DERIV) or the Monomor-
phemic Bias (MONO), and percentage of other responses (OTHER) in the two experi-
mental conditions of a derivational and monomorphemic interpretation
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favoring a monomorphemic interpretation, more responses are predicted by the
bias of the suffix than by the bias of the rime (t(11) = 3.5; p = .004).

These results lead to two conclusions. First, rimes and suffixes of first com-
pound constituents independently influence the choice of linkers. Second, the in-
fluence of the suffix is much stronger. It is the prominent factor even when the
pseudo-word is introduced contextually as a monomorphemic word.

When we train TiMBL and AM on the suffix of the first constituents of the
22,966 celex compounds, they correctly predict 100% of the majority choices for
each experimental compound in the case of a preceding sentence favoring a derived
interpretation. Their prediction accuracy drops to 83.3% in the case of a preceding
sentence favoring a monomorphemic interpretation. When we train the models on
the rime instead, they predict only 50% in the case of a sentence favoring a derived
interpretation. Their prediction rises to 58.3% in the case of a sentence favoring a
monomorphemic interpretation.

These results support the experimental finding that the behavior of the partic-
ipants is influenced by the context. Participants base their choices more often on
the analogical set of the rime instead of the suffix if the preceding sentence favors
a monomorphemic interpretation. The results also mirror the stronger influence
of the suffix, which seems to easily activate the corresponding suffix family when
it is present in the input, even when the monomorphemic interpretation of the
pseudo-word should inhibit this activation.

General discussion

This study aimed for three goals. First, we tried to come to grips with the prob-
lem of feature selection in the task of choosing the appropriate linkers in Dutch
noun-noun compounds. Second, we tested whether the three main relevant fea-
tures for this task – Constituent, Suffix, and Rime – are hierarchically ordered.
Third, we simulated the choices of participants with AM and TiMBL and compared
these models with respect to their classification accuracies and their prediction
uncertainty.

The first goal, solving the problem of feature selection, has been addressed by
simulation studies focusing on existing compounds in celex and experiments with
novel compounds. Both kinds of studies have shown that the three analogical sets
of the constituent family, the suffix family, and the rime family all influence the
choice of linkers in compounds. However, the three factors are not effective to the
same extent and under the same conditions. The simulation studies with existing
compounds revealed that the constituent family seems to provide the strongest
analogical set. The suffix family is as strong as the constituent family, but only for
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compounds with first constituents which indeed end in a suffix. Otherwise, it is
the least effective one of the three factors. The experiments with novel compounds
suggest that the features Constituent, Suffix, and Rime are selected on the basis of a
fall-back strategy. If a higher-ranked feature is absent in the input, the next feature
down the hierarchy becomes the basis for the analogical choice. This way of feature
selection means for AM and TiMBL that we need a component that is dynamically
tuned to the information in the input.

At the bottom of the feature hierarchy, the rime family emerges as a rather
problematic analogical set. Participants reported extreme difficulties with the ex-
periment testing the influence of the rime. These difficulties were confirmed by the
analyses of the uncertainty in the responses of the participants, which revealed a
high entropy across all conditions of this experiment. Due to this uncertainty, AM
and TiMBL reach a rather low prediction accuracy of maximal 65.3% (AM) and
64.8% (TiMBL), which is less than the accuracies for the experiments testing the in-
fluence of the suffix (TiMBL: 92.1%; AM: 75.4%) and constituent (EN-experiment:
TiMBL: 75.1%, AM: 82.5%; S-experiment: TiMBL: 82.4%, AM: 82.0%). Appar-
ently, choosing linkers on the basis of the rime of the first constituent is an unusual
task. This is not so surprising, considering the fact that for normal compounds
there is usually a constituent family or at least a suffix family available which can
serve as the analogical set.

The second main question of this study was whether the features Constituent,
Suffix, and Rime are hierarchically ordered. We indeed found experimental evi-
dence suggesting that the Constituent Bias overrules both Suffix and Rime Bias.
The Suffix Bias in its turn seems to be stronger than the Rime Bias. These results
suggest that categories with a lower rank in the hierarchy are only effective in case
there is no higher-ranked category available. However, this does not mean that
lower-ranked features are not activated. There are two points we have to men-
tion here. First, including a lower-ranked feature into the feature set on which
AM and TiMBL was trained in order to simulate participants’ choices for linkers
never changed the prediction accuracy reliably. Second, recall that in 10-fold cross-
validation runs over all celex compounds, AM and TiMBL reached the highest
classification accuracies when the training was based on all three features simul-
taneously. The simplest model explaining this finding is an inclusive hierarchy.
Whenever there is evidence for a feature in the input, the corresponding analogical
set is co-activated. It remains crucial, however, that the highest available feature in
the hierarchy is included when training the model.

The third main goal of this study was a comparison of AM and TiMBL with
respect to classification accuracy and prediction uncertainty. Comparing the clas-
sification and prediction accuracies of AM and TiMBL for existing and novel com-
pounds, we can conclude that, all in all, the models perform equally well. A differ-
ence has been found in one case only. Classifying existing compounds taken from
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celex, including the feature Rime in the feature set, led to significantly lower clas-
sification accuracies for AM. In all other cases, the observed differences were not
reliable, although we should mention that we found a problem of level-interference
with TiMBL. When predicting the linkers chosen by participants in the experi-
ment testing the influence of the Rime Bias, including the feature Suffix reduced
the prediction accuracy by approximately 10%.

Analyses of the entropy of the choice-distributions of the participants on the
one hand and of the models on the other hand revealed that uncertainty is corre-
lated with the strength of the bias in a family. In the case of a neutral bias, both the
models and the participants are significantly more uncertain about the appropriate
linker than in the case of a strong bias. The relative high uncertainty of participants
in the case of a negative bias can be explained by an overall bias for the specific
linker for which an experiment is designed, or by a weaker analogical strength of
the bias for -Ø-. The mean uncertainty of the two models across items in a experi-
mental condition turned out to be identical in all the investigated experiments. We
therefore conclude that the models do not differ in their prediction uncertainty.

In this paper, we have focused on the analogical approach to a partly non-
deterministic morphological phenomenon. The standard approach to the analy-
sis of morphological phenomena is to formulate formal rules (e.g., Aronoff 1976;
Selkirk 1982; Lieber 1981). In these rule-based approaches, the aim is to capture the
generalizations that govern the data. Once a formal rule has been formulated on
the basis of inspection of the data, the data themselves become irrelevant, because
the rule operates independently of the data to its input. Various researchers (e.g.,
Clahsen 2000; Marcus, Brinkman, Clahsen, Wiese, & Pinker 1995; Pinker 1991,
1997) argue that these symbolic rules have cognitive reality in the brain.

The standard approach has come under attack from connectionist modelers
(e.g., Plunkett & Juola 1999; Seidenberg 1987; Seidenberg & Hoeffner 1998; Rueckl,
Mikolinski, Raveh, Miner, & Mars 1997), who exchange symbolic for sub-symbolic
representations and merge data instances and rules into the connection weights of
multi-layered artificial neural networks (ANN). Probably, ANN models will be able
to capture the choice of linkers as well. What our simulation results show, how-
ever, is that it is not necessary to give up symbolic representations when the goal
is to model non-deterministic data. The analogical approach, moreover, is sup-
ported by independent psychological evidence that morphological families play
a role in language processing (Schreuder & Baayen 1997; Bertram, Schreuder, &
Baayen 2000; De Jong, Schreuder, & Baayen 2000). In addition, a sketch of a psy-
cholinguistic spreading-activation model for the selection of linkers can be found
in Krott, Baayen, & Schreuder 2001. We conclude that the analogical approach to
morphological rules, in which static symbolic rules abstracted from the data are
replaced by dynamic, analogical rules that are linked to and continuously updated
by the data, is a fruitful area for future research.
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Notes

* This study was financially supported by the Dutch National Research Council NWO
(PIONIER grant to the third author), the University of Nijmegen (The Netherlands), and
the Max Planck Institute for Psycholinguistics (Nijmegen, The Netherlands).

. The -en- has an orthographic variant -e- which, in standard Dutch, does not differ in
pronunciation.

. We did not test any semantic rules because celex does not provide the required semantic
information.

. For a list of all applicable rules see Appendix D.

. All results of TiMBL (version 3.0) in this paper are obtained by using the standard IB1
algorithm, the overlap similarity metric with information gain weighting, and one nearest
neighbor for extrapolation. In our simulation studies, this set of parameters has been proven
to lead to the best results. For AM we excluded ‘=’ as a variable, set the option ‘given’ to
‘exclude’, the option ‘probability’ to unity, and used the option ‘squared’ without specifying
any frequency range.

. Vance (1980) reports similar findings in his study of Lyman’s law which predicts the oc-
currence of rendaku in Japanese compounds. He concludes that rendaku is psychologically
real only for a rather small minority of speakers.

. Using different parameter settings does not enhance performance. Training on con-
stituent, suffix, and rime while using the IGTREE algorithm leads to 30.1% correctly pre-
dicted compounds. With TRIBL we reach 37.0%. If we enhance the number of nearest neigh-
bors for extrapolation to three, both IG and TRIBL reach a prediction accuracy of 30.1%.
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Appendix A

Materials of Experiment 1: left constituent and right constituent (number of re-
sponses with a linker, number of responses without a linker). Capital letters mark
word stress.

L1: Positive Rime Bias
LANtan organisatie (16, 4); VAneid kooi (18, 2); PEUzeid steun (18, 2); KApeid
gedrag (17, 3); HOran oord (16, 4); MOEveid voer (18, 2); NOgan plicht (19, 1);
GOEran probleem (16, 4); VEEpleid milieu (15, 5); BAlan geschiedenis (15, 5);
PLAveid paar (19, 1); LUIsan pensioen (18, 2); MIJstan commissie (18, 2); BOElan
niveau (15, 5); KOlan controle (12, 8); DAkeid republiek (16, 4); LUchan conflict
(15, 5); BOEneid stam (14, 6); TOpleid gezicht (17, 3); ZApleid verzameling (16, 4);
KEEzeid waarde (17, 3); GROtan aanbod (14, 6); VIJzan dienaar (17, 3); POEkeid
hok (18, 2).

L2: Neutral Rime Bias
Oloe corps (12, 8); MARvoe verzekering (13, 7); TOtroe galerij (8, 12); BOdap
regeling (16, 4); KIJdap structuur (13, 7); VEUnen pensioen (9, 11); STIEvap
karakter (15, 5); DROlen oord (16, 4); TAzoe tak (13, 7); PAgoe toestand (13, 7);
BLOstoe hut (8, 12); MIEfap element (14, 6); SCHIJlen middel (10, 10); PLOElen
element (10, 10); BIEvap zone (15, 5); BOEdap middel (19, 1); VILnoe vlees (11,
9); POEnen organisatie (6, 14); KRAzen conflict (10, 10); POERgoe vrouw (11,
9); KOdap beleid (14, 6); ZOzen zone (9, 11); PUIbap rust (19, 1); DULLen rust
(12, 8).

L2: Negative Rime Bias
NApla bond (7, 13); TUIzem dienaar (15, 5); BIEzel waarde (12, 8); SILda tong (13,
7); KLAvij structuur (9, 11); DRAsij regeling (12, 8); WONkel geschiedenis (11, 9);
BRAnij hulp (13, 7); TIKsem aanbod (14, 6); BISSel probleem (12, 8); PLUIvij
karakter (12, 8); PLOdem plicht (16, 4); POEkrij conferentie (10, 10); ARta vel (11,
9); STIJza kas (10, 10); LIEsem niveau (18, 2); TISSel milieu (6, 14); DUISkra zee
(7, 13); STAlem controle (8, 12); DRUImel gedrag (9, 11); SOERkwa kop (10, 10);
VOEnij beleid (12, 8); VAjel gezicht (15, 5); KROEsem commissie (12, 8).

Appendix B

Materials of Experiment 2: left constituent and right constituent (number of re-
sponses according to the constituent, number of responses according to the suffix).
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vluchteling gezicht (20, 0); voorziening regeling (11, 9); belasting kas (13, 7);
vreemdeling republiek (20, 0); tiener gedrag (18, 2); tweeling kop (14, 6); kaper
hulp (3, 17); woning kooi (17, 3); zuigeling probleem (19, 1); luidspreker hok (7,
13); leerling vel (20, 0); klapper galerij (14, 6); veiling commissie (9, 11); waterlei-
ding aanbod (15, 5).

Materials of Experiment 3: left constituent and right constituent (number of re-
sponses according to the constituent, number of responses according to the rime).

handel geschiedenis (20, 0); idee waarde (13, 7); bij controle (13, 7); ezel tong (17,
3); levensmiddel organisatie (19, 1); specerij zee (20, 0); dominee pensioen (16, 4);
engel dienaar (19, 1); schilderij paar (20, 0); duivel plicht (20, 0).

Appendix C

Materials of Experiment 4: List A: definition plus left and right compound con-
stituent (number of responses according to the bias of the suffix, number of re-
sponses according to the bias of the letter combination, number of other re-
sponses).

Een ‘PLOEver’ is een boomsoort. PLOEver_gried (12, 5, 3)
In een glas ‘WILter’ zit veel alcohol. WILter_boest (11, 8, 1)
Een ‘VIEber’ is een blaasinstrument. VIEber_gedij (5, 12, 3)
Een ‘VOEStegaar’ is een verdedigingstactiek. VOEStegaar_sien (9, 7, 4)
Een ‘MOEnaar’ is een visvergunning. MOEnaar_gezoel (9, 2, 9)
Iets wat zeldzaam is noemen we een ‘BOEzaar’. BOEzaar_turei (13, 4, 3)
Mediterrane vegetatie heet ook wel ‘ROEzing’. ROEzing_nast (12, 2, 6)
‘PRIEling’ is een kruidensoort. PRIEling_faren (14, 3, 3)
Een ‘KRONving’ is een muziekstuk. KRONving_doef (11, 1, 8)
‘BinTIST’ is een Oosters gerecht. binTIST_zaste (16, 3, 1)
Een ‘baraFIST’ is een opslagtank. baraFIST_modee (13, 5, 2)
‘GisoFIST’ is een Belgisch biermerk. gisoFIST_buroop (13, 7, 0)

Materials of Experiment 4: List B: definition plus left and right compound con-
stituent (number of responses according to the bias of the suffix, number of re-
sponses according to the bias of the letter combination, number of other re-
sponses).

Iemand die graag ‘ploeft’ is een ‘PLOEver’. PLOEver_gried (17, 3, 0)
Iemand die ‘wilt’ is een ‘WILter’. WILter_boest (14, 5, 1)
Een persoon die goed ‘viebt’ is een ‘VIEber’. VIEber_gedij (13, 6, 1)
Iemand die graag ‘voest’ is een ‘VOEStegaar’. VOEStegaar_sien (10, 5, 5)
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Degene die ‘moent’ is de ‘MOEnaar’. MOEnaar_gezoel (16, 2, 2)
De persoon die ‘boest’ is de ‘BOEzaar’. BOEzaar_turei (9, 4, 7)
Het ‘roezen’ van iets heet de ‘ROEzing’. ROEzing_nast (12, 3, 5)
Het ‘prielen’ van iets is de ‘PRIEling’. PRIEling_faren (15, 2, 3)
Het resultaat van het ‘kronven’ is de ‘KRONving’. KRONving_doef (12, 0, 8)
Iemand die een ‘bint’ bespeelt is de ‘binTIST’. binTIST_zaste (17, 3, 0)
De ‘baraaf ’ wordt bespeeld door de ‘baraFIST’. baraFIST_modee (18, 2, 0)
De ‘gisoof ’ wordt gemaakt door de ‘gisoFIST’. gisoFIST_buroop (19, 1, 0)

Appendix D

Rules applied to the celex compounds. If first constituent

– ends in shwa plus sonorant, use -Ø-.
– ends in a full vowel, use -Ø-.
– has the feature <+human> and ends in -er, -eur, -ier, -aar, or -air, use -s-.
– has the feature <+human> and ends in -ist, -erik, -es, -in, -aan/-iaan, -ling/

-eling, -uur, -ant, -ent, -aat, -iet, -aal, -eel, -iel, -loog, or -graaf, use -e(n)-.
– has the feature <+human> and ends in -ette, use -Ø-.
– has the feature <+human> and ends in -or, use -s- or -e(n)-.
– has the feature <–human> and ends in -uur, in -ant, in -iet, in -aal, in -eel, in

-iel, in -loog, in -graaf, -air, or -or, use -Ø-.
– has the feature <–animate> and ends in -er, -eur, -ier, -ette, or -in, use -Ø-.
– has the feature <–animate> and ends in -er, -eur, -ier, -ette, or -in, use -Ø-.
– has the feature <–countable> and ends in -teit/-iteit, -schap, -ing, or -dom, use

-s-.
– has the feature <+countable> and ends in -teit/-iteit, -schap, -dom, -dij/-erij/

-arij, or -nis, use -e(n)-.
– has the feature <–countable> and ends in -isme, -nis, -ij/-erij/-arij, or -ade/

-ide/-ode, use -s-.
– has the feature <+countable> and ends in -isme, -nis, or -ade/-ide/-ode, use

-n-.
– has the feature <+countable> and ends in -ing, use -Ø-.
– ends in -heid, or -(t)je, use -s-.
– ends in -te/-de, -sel, -sie/-tie, -um, -theek, -aris, or -us, use -Ø-.
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Chapter 9

Expanding k-NN analogy
with instance families*

Antal van den Bosch

. Instance families: An implementation of the analogical set

A marked difference between the k-nearest-neighbor (k-NN) rule (Cover & Hart
1967) on the one hand, and analogical modeling (am) (Skousen 1989) on the other
hand, is their rigid (k-NN) versus dynamic and global (am) bias in collecting evi-
dence from memorized instances for the classification of a new instance. Especially
with k = 1 (a common setting in k-NN) only the set of minimally- and equally-
differing nearest neighbors is used for determining the class of a new instance.
Fixing k ignores the fact that an instance is often surrounded in instance space by
a number of instances of the same class that is actually larger or smaller than k.
We refer to such a variable-sized set of same-class nearest neighbors as an instance
family.

Instance families, when generalized before the actual classification of new in-
stances, can be seen as generalized instances that can be used in the same way
as normal instances in regular k-NN classification. The key difference between
k-NN classification based on instances versus families is that families can match
new instances that contain value combinations that have not been observed in in-
dividual memorized instances. The idea of precompiling an instance base into in-
stance families and then using these families for further k-NN classification has
been implemented in the fambl algorithm (van den Bosch 1999).

The precompilation step within fambl2 is the main difference with analogical
modeling (Skousen 1989); the latter algorithm compiles analogical sets only during
classification. Consequently, in am as many different analogical sets can occur as
there are test instances, and they are not in practice stored in memory.

Precompiling generalized instances has a potential advantage of memory com-
pression; less memory is needed when many instances can be summarized by a
small number of families. Second, there is a potential classification speed advan-
tage, since less memory items need to be traversed in k-NN classification. Never-
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theless, our major interest lies in the effects that generalizing instances may have
on generalization accuracy. The central question addressed in this contribution is
whether fambl2 benefits from its strategy in that respect, when applied to natural
language processing tasks. From the results obtained in a range of experiments, we
conclude that generalizing instances has the prospected effects of memory com-
pression and bringing, implicitly, more than a rigid number of instances in the
nearest-neighbor set. However, the results show that the net effects in generaliza-
tion accuracy are generally small and not significantly different when compared
to standard k-NN classification with information-gain-ratio feature weighting as
implemented in ib1-ig (Daelemans & van den Bosch 1992; Daelemans, van den
Bosch, & Weijters 1997).

In this contribution, we start with a description of the fambl2 algorithm in
Section 2. We then report in Section 3 on experiments on a range of natural lan-
guage processing tasks with fambl2 and standard weighted k-NN. We summarize
our findings and discuss the relation between fambl2 and analogical modeling in
Section 4.

. FAMBL2: Description of algorithm

Memory-based learning, also known as instance-based, example-based, lazy, case-
based, exemplar-based, locally weighted, and analogical learning (Stanfill & Waltz
1986; Aha, Kibler, & Albert 1991; Salzberg 1991; Kolodner 1993; Aha 1997; Atke-
son, Moore, & Schaal 1997), is a class of supervised inductive learning algorithms
for learning classification tasks (Shavlik & Dietterich 1990). Memory-based learn-
ing treats a set of labeled (pre-classified) training instances as points in a multi-
dimensional feature space, and stores them as such in an instance base in memory
(rather than performing some abstraction over them).

An instance consists of a fixed-length vector of n feature-value pairs, and an
information field containing the classification of that particular feature-value vec-
tor. After the instance base is built, new (test) instances are classified by matching
them to all instances in the instance base, and by calculating with each match the
distance, given by a distance function ∆(X, Y) between the new instance X and the
memory instance Y . The memory instances with the smallest distances are col-
lected, and the classifications associated with these nearest neighbors are merged
and extrapolated to assign a classification to the test instance.

The most basic distance function for patterns with symbolic features is the
overlap metric ∆(X, Y) =

∑n
i=1 δ(xi, yi), where ∆(X, Y) is the distance between

patterns X and Y , represented by n features, and δ is the distance between feature
values, δ(xi, yi) = 0 if xi = yi, else 1. Classification in memory-based learning
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systems is basically performed by the k-nearest neighbor (k-NN) classifier (Cover
& Hart 1967; Devijver & Kittler 1982), with k usually set to 1.

Early work on the k-NN classifier pointed at advantageous properties of the
classifier in terms of generalization accuracies, under certain assumptions, because
of its reliance on full memory (Fix & Hodges 1951; Cover & Hart 1967). However,
the trade-off downside of full memory is the resulting computational inefficiency
of the classification process, as compared to parametric classifiers that do abstract
from the learning material. Therefore, several early investigations proposed editing
methods: namely, finding criteria for the removal of instances from memory (Hart
1968; Gates 1972) without harming classification accuracy. Other studies on edit-
ing also explored the possibilities of detecting and removing noise from the learned
data, so that classification accuracy might even improve (Wilson 1972; Devijver &
Kittler 1980). The renewed interest in the k-NN classifier from the late 1980s on-
wards in the ai-subfield of machine learning (Stanfill & Waltz 1986; Stanfill 1987;
Aha, Kibler, & Albert 1991; Salzberg 1991) resulted in several new implementations
for editing, but also other approaches to abstraction in memory-based learning
emerged. We identify three types:

1. Editing (Hart 1968; Wilson 1972; Aha, Kibler, & Albert 1991): removing in-
stances (according to a classification-related utility) that do not reach a given
threshold. Editing is not careful in principle, but the approaches that are dis-
cussed here and that are included in the empirical comparison – i.e. ib2 and
ib3 (Aha, Kibler, & Albert 1991) – collect statistical support for the conclusion
that an editing operation can be harmless.

2. Oblivious (partial) decision-tree abstraction (Daelemans, van den Bosch, &
Weijters 1997): compressing (parts of) instances in the instance base into
(parts of) decision-trees. Part of the motivation to perform top-down in-
duction of decision trees (tdidt) is the presence of clear differences in the
relative importance of instance features, allowing features to be strictly or-
dered in matching (Quinlan 1986). The approach is dependent on the use of a
feature-weighting metric.

3. Carefully merging instances (Salzberg 1991; Wettschereck & Dietterich 1995;
Domingos 1996): merging multiple instances in single generalized instances.
Generalized instances can be represented by conjunctions of disjunctions of
feature values, which is equivalent to rules with wild-cards.

Here we describe fambl2, belonging to the third group of carefully-abstracting
memory-based learning algorithms. fambl2 merges groups of very similar in-
stances (called families) into family expressions. The core idea of fambl2 is to
transform an instance base into a set of instance family expressions. First, we out-
line the ideas and assumptions underlying fambl2. We then give a procedural
description of the learning algorithm.
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. Instance families: Definition

Classification of a new instance in memory-based learning involves a search for the
nearest neighbors of that instance. The value of k in k-NN determines how many of
these neighbors are used for extrapolating their (majority) classification to the new
instance. A fixed k ignores the fact that an instance is often surrounded in instance
space by a number of instances of the same class that is actually larger or smaller
than k. We refer to a varying set of same-class nearest neighbors as an instance’s
family. The extreme cases are, on the one hand, instances that have a nearest neigh-
bor of a different class – i.e. they have no family members and are a family on their
own – and on the other hand, instances that have as nearest neighbors all other
instances of the same class.

Thus families are class clusters, and the number and sizes of families in a data
set reflect the disjunctivity of the data set – that is, the degree of scatteredness
of classes into clusters. In real-world data sets, the situation is generally some-
where between the extremes of total disjunctivity (one instance per cluster) and
no disjunctivity (one cluster per class). Many types of language data appear to be
quite disjunct (Daelemans, van den Bosch, & Zavrel 1999). In highly disjunct data,
classes are scattered among many small clusters, which means that instances have
few nearest neighbors of the same class (on average).

Figure 1 illustrates how fambl2 determines the family of an instance in a sim-
ple two-dimensional instance space. All nearest neighbors of a starting instance
(marked by the black dot) are searched and ranked in the order of their distance to
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Figure 1. An example of a family in a two-dimensional instance space (left). The family,
at the inside of the dotted circle, spans the focus instance (black) and the three nearest
neighbors labeled with the same class (white). When ranked in the order of distance
(right), the family boundary is put immediately before the first instance of a different
class (grey).
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Figure 2. An example of family creation in fambl2. Four grapheme-phoneme in-
stances, along with their token occurrence counts (left), are merged into a family
expression (right).

the starting instance. Although there are five instances of the same class in the ex-
ample space, the family of the starting instance contains only three instances, since
its fourth-nearest instance is of a different class.

Families are converted in fambl2 to family expressions (which are hyperrect-
angles) by merging all instances belonging to that family simultaneously. Figure 2
illustrates the creation of a family expression from an instance family. The gen-
eral modus of operation of fambl2 is that it picks instances from an instance base
one by one from the set of instances that are not already part of a family. For each
newly-picked instance, fambl2 determines its family, generates a family expression
from this set of instances, and then marks all involved instances as belonging to
a family (so that they will not be picked as starting point or member of another
family). fambl2 continues determining families until all instances are marked as
belonging to a family.

The ordering of instances to be picked as centers of new families is important.
Whenever instances are encapsulated in a family, they cannot be the starting point
of another. However, one of these instances could have been a better starting point
(e.g., because it is the central same-class nearest neighbor of a larger group of in-
stances). Intuitively, it would be best to start building families with those instances
that are the middle instances of the largest families. Although this may appear cir-
cular, it is possible to estimate the appropriateness of an instance to be a starting
point for family generation, by computing its class-prediction strength (cps), which
expresses the success of that instance in predicting the class of its surrounding
nearest-neighbor instances. Instances in the middle of large families will have high
class-prediction strengths; when used for classification, these instances will serve as
correct nearest neighbors to a large number of instances surrounding them.
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Class-prediction strength (cps) of an instance i is typically defined (Salzberg
1990; Domingos 1995) as the number of times the instance is a nearest neighbor
of a training instance regardless of its class (N), minus the number of these nearest
neighbors that are of a different class (Nδi), divided by N to express a portion

between 0.0 and 1.0: ei = Ni–Nδi
Ni

. An instance with class-prediction strength e = 1.0
is a perfect predictor of its own class; an e near or at 0.0 indicates that the family is
a bad predictor. As argued in Domingos 1995, this “raw” class prediction strength
has a bias towards low-frequent instances that is sometimes unwanted: it assigns a
maximal score of 1.0 to an instance when it is used correctly as a nearest neighbor
only once. The Laplace correction is a common operation that favors high-frequent
over low-frequent instances with the same raw score. Laplace correction introduces
the number of classes c into the equation:

ei =
(Ni – Nδi) + 1

Ni + c
.

To compute cps, we perform an auto-classification test with standard k-NN plus
(by default) information-gain-ratio feature weighting as implemented in the ib1-
ig algorithm (Daelemans & van den Bosch 1992; Daelemans, van den Bosch, &
Weijters 1997).1 In this experiment, k is set to 3. This means that not only all near-
est (equidistant) neighbors of an instance that differ in one or two features are
taken into account, but also the instance itself. This ensures that all instances re-
ceive some baseline non-null score, reflecting the intuition that in language data,
low-frequent events may also reoccur and thus be a nearest neighbor to a new oc-
currence of themselves unless they are true noise (Daelemans, van den Bosch, &
Zavrel 1999). The same k = 3 limit is used when searching for nearest neighbors
in family creation. This means that family members are allowed to differ in two
features maximally.

In the fambl2 algorithm, instances are ordered by their cps, and are picked
as starting points for new instances beginning with the instance with the highest
cps. This is the key difference with the original fambl algorithm, in which starting
points were selected randomly (van den Bosch 1999). To summarize, a pseudocode
description of the learning phase is given in Figure 3.

After learning, the original instance base is discarded, and further classi-
fication is based only on the set of family expressions yielded by the family-
extraction phase. Classification in fambl2 works analogously to classification in
pure memory-based learning: a match is made between a new test instance and all
stored family expressions. When a family expression records a disjunction of values
for a certain feature, matching is perfect when one of the disjunctive values matches
the value at that feature in the new instance. When two or more family expressions
of different classes match equally well with the new instance, the class is selected
with the highest occurrence summed over the matching expressions. When the tie
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Procedure fambl learning phase:

Input: A training set TS of instances I1...n, each instance being labeled with a family-
membership flag set to FALSE

Output: A family set FS of family expressions F1...m, m ≤ n

i = f = 0

1. Determine the class-prediction strength of all instances I1...n in TS and order them
(largest CPS first)

2. While not all family-membership flags are TRUE, Do

– While the family-membership flag of Ii is TRUE Do increase i
– Compute NS, a ranked set of nearest neighbors to Ii with the same class as Ii, among

all instances with family-membership flag FALSE. Nearest-neighbor instances of a
different class with family-membership flag TRUE are still used for marking the
boundaries of the family.

– Select all members in NS that fall within the 3 closest k buckets (k = 3) and remove
all other instances from NS

– Set the membership flags of Ii and all remaining instances in NS to TRUE
– Merge Ii and all instances in NS into the family expression Ff and store this expres-

sion along with a count of the number of instance merged in it
– f = f + 1

Figure 3. Schematized overview of the learning (family-extraction) phase in fambl.

remains, the class is selected that occurs the most frequently in the complete family
expression set.

We conclude our description of the fambl2 algorithm by noting that fambl2
allows for the inclusion of informational abstraction in the form of feature-
weighting, instance-weighting and value-difference metrics. For comparison with
ib1-ig, as described in the next section, we have included information-gain-ratio
feature weighting in fambl2. Weighting metrics are likely to have a profound effect
on family extraction. For example, a study by van den Bosch (1997) suggests that
using information-gain feature weighting (Quinlan 1986) in pure memory-based
learning (viz. ib1-ig, in Daelemans & van den Bosch 1992), can yield considerably
bigger families.

. Effects of family generalization

In our comparative experiments between fambl2 and standard ib1-ig, we are in-
terested in the differences caused by fambl2’s family generalization stage. Given a
test instance, fambl2 and ib1-ig may assign the same correct or false classification
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based on different classifications (e.g. one family in fambl2 and three instances in
ib1-ig), but they may also disagree – in which case one of them may be right, or
they may be both wrong.

An illustration of a difference that actually occurs between fambl2 and ib1-
ig trained on a dataset of English word pronunciation is the following. Consider
a small family generated by fambl2, from two instances representing the /l/ pro-
nunciation of the “l” in “singularize” and “angularity”, supposing that instances
represent one focus letter and four left and right neighboring letters to represent
the context. This family is generalized in fambl2 as [i or a][ngulari][z or t]. Upon
presentation of the instance representing the unseen word “singularity”, the gener-
alized family expression offers a complete match with the new instance, due to the
disjunction in the [i or a] and [z or t] parts of the expression, producing the correct
/l/ pronunciation. Given the same test word, ib1-ig would yield two best-matching
nearest neighbors with each one mismatching on one feature, while producing the
same correct classification. In general, using family expressions for classification
strengthens the class votes of the instances generalized in families: it can move their
class votes up in the k-ranking (but never down).

To investigate the occurring differences in detail, we have collected results on
datasets representing English grapheme-phoneme conversion, Dutch diminutive
noun formation, German plural noun formation, English part-of-speech tagging,
English base-noun-phrase chunking, and English preposional-phrase attachment.
We briefly describe these six datasets here.

English grapheme-phoneme conversion (henceforth referred to as gp) is the
mapping of English words to their phonemic counterparts, where the classifi-
cation occurs at the letter level: mappings are made between letters in context
and their appropriate phonemes. The grapheme-phoneme conversion data used
in the experiments described here is derived from the CELEX lexical data base
(Baayen, Piepenbrock, & van Rijn 1993). We have used the first of the ten parti-
tionings from the 10% 10-fold cross-validation experiment described in van den
Bosch 1999.

Dutch diminutive formation (henceforth dim) selects the correct diminutive in-
flection to Dutch nouns out of five possibilities (je, tje, pje, kje, and etje) on the
basis of phonemic word transcriptions segmented at the level of syllable onset,
nuclei, and coda for the final three syllables of the word. The data stems from a
study described in Daelemans, Berck, and Gillis 1997.

German plural formation (henceforth plu) predicts the correct plural inflection
(with possible umlaut) out of 8 possibilities, on the basis of singular nouns rep-
resented by their phonemic representation segmented at the level of syllable on-
set, nuclei, and coda for the final three syllables of the word. The data is also
described (and tested on) in Daelemans’s article (in this volume).
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English part-of-speech tagging (henceforth pos) involves the disambiguation of
syntactic classes of words for particular contexts. We assume a tagger archi-
tecture that processes a sentence from a disambiguated left to an ambiguous
right context, as described in Daelemans, Zavrel, Berck, & Gillis 1996. The orig-
inal data set for the part-of-speech tagging task, extracted from the LOB cor-
pus, contains 1,046,151 instances; we have used a randomly-extracted 10% of
this data.

English base-NP chunking (henceforth np) predicts the segmentation of sen-
tences into non-recursive NPs. Veenstra (1998) used the Base-NP tag set as pre-
sented by Ramshaw and Marcus (1995): I for inside a Base-NP, O for outside a
Base-NP, and B for the first word in a Base-NP following another Base-NP. See
Veenstra 1998 for more details, and Daelemans, van den Bosch, & Zavrel 1999
for a series of experiments on the original data set from which we have used a
randomly-extracted 10%.

English PP attachment (henceforth pp) is the attachment of a prepositional
phrase pp in the sequence vp np pp (vp = verb phrase, np = noun phrase,
pp = prepositional phrase). The data consists of four-tuples of words, extracted
from the Wall Street Journal Treebank. From the original data set (Ratnaparkhi,
Reynar, & Roukos 1994; Collins & Brooks 1995; Zavrel, Daelemans, & Veenstra
1997), Daelemans, van den Bosch, and Zavrel (1999) took the train and test set
together to form the particular data used here.

In all experiments, both fambl2 and ib1-ig use information-gain-ratio feature
weighting (Quinlan 1986), which appears crucial in producing adequate k rank-
ings and is an important difference with standard am (Daelemans, van den Bosch,
& Weijters 1997). For each data set we generated a single random partitioning into
a 90% training set and a 10% test set. Classification was done by both algorithms
using k = 1; ib1-ig finds the set of closest nearest neighbors that all differ in the
same zero or more features, and fambl2 does the same for families.

Table 1 displays the overall generalization accuracies yielded by the two algo-
rithms on the six test sets. Accuracy differences are small. Yet, reasonable compres-
sion is obtained in the number of families produced by fambl2 when compared
to the number of instance types (i.e. the number of unique instances, without du-
plicates) maintained in ib1-ig’s memory. These results are in line with the find-
ings reported in van den Bosch 1999: fambl(2) compresses, but does not improve
generalization accuracy as compared to ib1-ig.

There are more differences in the classifications made by the two algorithms
when focusing on the instance level and when looking for differences in the sense
of the “singularize” – “angularity” – “singularity” example given above. In the first
case, Table 2 lists the average distance between a test instance and its nearest neigh-
bors in ib1-ig and fambl2. These results indicate that classifications by fambl2 are
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Table 1. Generalization accuracies in percentages and absolute numbers of correctly
classified test instances for ib1-ig and fambl2 on single partitionings of the six tasks;
numbers of families; and compression rates of fambl2 versus ib1-ig in terms of num-
bers of families versus numbers of instance types.

generalization accuracy number of fam. vs inst.
task ib1-ig fambl2 families compression

gp 88.1% (5975/6781) 87.9% (5962/6781) 31862 41.2%
dim 95.4% (377/395) 96.2% (380/385) 1893 46.3%
plu 94.8% (2385/2517) 94.6% (2377/2517) 4742 61.5%
pos 96.6% (10105/10462) 96.6% (10102/10462) 21802 71.0%
np 97.5% (2448/2512) 97.5% (2448/2512) 17386 22.2%
pp 80.8% (1932/2390) 79.9% (1909/2390) 6980 65.9%

Table 2. Average distance between test instances and their nearest neighbors for ib1-ig
and fambl2, plus the percentage of distance decrease obtained by fambl2, measured
on the six tasks.

average distance
to nearest neighbor %

task ib1-ig fambl2 closer

gp 0.119 0.115 3.3%
dim 0.075 0.071 5.3%
plu 0.028 0.026 5.8%
pos 0.153 0.141 7.8%
np 0.151 0.151 0.1%
pp 0.054 0.052 3.3%

Table 3. Test classification disagreement statistics

total # both ib1-ig right fambl2 right
task disagree wrong further distr. closer distr.

gp 102 15 24 26 17 20
dim 3 0 0 0 0 3
plu 48 8 9 15 1 15
pos 76 9 10 25 5 27
np 0 0 0 0 0 0
pp 131 0 21 56 11 43

total 360 32 64 122 34 108
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indeed based on nearest neighbors at closer distances. As with the “singularity”
example, at least some nearest neighbors are merged and appear as closer families
in fambl2 classification. On average, fambl2 finds nearest neighbors at about 5%
closer distance.

In the second case, Table 3 displays detailed counts of cases in which the two
algorithms disagree on the classification of a test instance. We discern five possible
situations involving disagreements:

1. both algorithms are wrong;
2. ib1-ig is right, although fambl2 found one or more nearest families at a closer

distance;
3. ib1-ig is right, finding nearest neighbors at the same distance as fambl2, but

having a class distribution in which the correct class is the most frequent, while
fambl2 has an incorrect class as the most frequent class (because one or more
families entered the k = 1 nearest-neighbor set, carrying incorrect classes with
them);

4. fambl2 is right, finding one or more nearest families at a closer distance than
the nearest neighbors found by ib1-ig;

5. fambl2 is right, finding nearest neighbors at the same distance as ib1-ig, but
having a class distribution in which the correct class is the most frequent class,
while ib1-ig has an incorrect class as the most frequent class.

The five columns in Table 3 display the absolute numbers within these five out-
come types yielded by the two algorithms on the six tasks. Fambl2 and ib1-ig agree
completely on the np task. In the majority of the disagreements, one of the two
algorithms has the better class distribution, while both have nearest neighbors at
the same close distance (tasks plu and np). Overall, the results confirm that fambl2
does classify differently from ib1-ig, but the net effect as compared to the accuracies
yielded by ib1-ig is slightly negative, but close to zero.

. Discussion

First, we summarize the findings reported in the previous section and draw con-
clusions from them. We then discuss the relation between memory-based learning,
careful abstraction in fambl2, and analogical modeling.

. Summary of findings and conclusions

Merging instances to form families, and then using these precompiled families to
base classifications on, is a close alternative to standard memory-based learning
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as implemented in the ib1-ig algorithm. fambl2 is able to reach comparable lev-
els of generalization accuracy, while obtaining memory compression rates ranging
from 20 to 80%. On the other hand, fambl2’s learning phase is a computationally
costly procedure (though not exponential) as it involves a complete memory-based
classification of the training set.

The effect of merging instances to families (thereby opening up the possibil-
ity that they jointly end up in a less distant k-level of nearest neighbors) has a
negligible net effect on generalization accuracy as compared to standard memory-
based learning. When a family moves its class up a k-level, results show that this
movement improves and deteriorates class distributions roughly equally often.

In sum, pure memory-based learning remains a recommendable choice due
to its simplicity. Unlike fambl2 and am, it bases its classifications only on near-
est neighbors. With natural language processing tasks, this seems to be the best
overall strategy available. No reported results with fambl (van den Bosch 1999)
or fambl2, or results obtained in comparisons between standard memory-based
learning and am (Daelemans, in this volume) show a trend towards an advantage
of using instances further away (i.e. beyond a low, fixed k of nearest neighbors) in
classification.

. Relation with analogical modeling

In terms of the original am algorithm (Skousen 1989), standard k-NN classifica-
tion takes only the instances in no more than the k most specific supracontexts
that contain observations, whether these are homogeneous or not, as the basis for
extrapolating the output class. The lack of a check on homogeneity may be a cause
for the general finding that increasing k is often detrimental to generalization accu-
racy with standard k-NN on language processing tasks (Daelemans, van den Bosch,
& Zavrel 1999). In fambl2, with the same k, generating a disjunction of values in
the generalized family expression entails an explicit union of adjacent homoge-
neous supracontexts that have the same class label. In classification, these joined
supracontexts henceforth act as one, representing a potentially higher number of
instance pointers and hence a higher analogical effect in further classification. A
major difference with am is that fambl precompiles its families, usually down to
a set of family expressions that is (considerably) smaller than the original instance
set. In am, generating the analogical set is done for each test instance. There can be
many more analogical sets than training instances. It would, however, be interest-
ing to explore the possibilities of precompiling within am a limited set of analogical
sets on the basis of the training set, before classification.

To conclude, am strongly suggests that more instances should be encapsulated
in analogical sets than just the k closest matches. Implementing this general idea
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in a strictly limited manner as family generalization appears to be a valid step in
bridging the gap between the k-NN and am approaches and finding the general
class of algorithms that combines the best of both worlds.

Notes

* The author wishes to thank Walter Daelemans, Jakub Zavrel, and the other members
of the ILK (Tilburg) and CNTS (Antwerp) research groups for fruitful discussions and
criticisms. This research has been made possible by a fellowship of the Royal Netherlands
Academy of Arts and Sciences.

. Auto-classification with ib1-ig is performed using the TiMBL software package, version
3.0.2 (Daelemans, Zavrel, van der Sloot, & van den Bosch 1999).
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Chapter 10

Version spaces, neural networks,
and Analogical Modeling

Mike Mudrow

. Introduction

While much of the literature on Skousen’s Analogical Modeling algorithm has been
devoted to showing how this model (Skousen 1989, 1992) is different from other
possible cognitive models, it will be my intention in this paper to bridge some of
the proposed gaps between AM and a few other well established cognitive models.
In doing so, I hope to show that this work is very much in line with mainstream re-
search in cognitive science, while at the same time pointing out some of the unique
advantages of the AM model.

In a way, the recent renaissance of analogical theories is a return to the founda-
tions of linguistic studies in western society. It was, after all, the Greek Analogists
who first supported the idea that languages were regular by nature. This seems
almost ironic, given the way analogy has been viewed in more recent linguistic
movements, but make no mistake: analogy is back. Already in the mid-seventies,
linguists like Ohala (1974) and Anttila (1977) were laying out specific plans for
reintroducing analogy into mainstream linguistics. The mid-eighties saw impor-
tant publications in the area of morphology, such as Bybee (1985) and Rumelhart
and McClelland (1986), whose work has been the inspiration for a new generation
of linguists exploring non-rule alternatives to language modeling.

1989 brought the publication of Skousen’s Analogical Modeling of Language,
which introduced arguably the first new mathematical formalization of pure anal-
ogy since the advent of four-part analogy and which decisively challenged the long-
standing notion that analogy could not be constrained sufficiently to be taken se-
riously as a model for linguistic behavior (cf. Kiparsky 1974, 1978). Around this
same time Spencer (1988) proposed using four-part analogy to handle the genera-
tive problem of bracketing paradoxes, and Becker (1990) also published his mono-
graph, Analogie und morphologische Theorie, in which he successfully united the
worlds of Priscian and Aronoff (1976) by showing that input and output structures
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which are directly related to the bases of a proportional analogy could be thought
of as algebraically formulated word formation rules.

The last decade of the twentieth century has, of course, experienced a literal
explosion in the number of new models based on analogy, either direct or indirect.
Many of these are connectionist models of one kind or another (cf. Daugherty &
Seidenberg 1994; Holyoak & Thagard 1996; Gasser 1997). These also include many,
such as Kruschke (1992), which could be called exemplar-based (cf. Shanks 1995
for an overview). Other such models might include (but are not limited to) Lazy
Learning (Aha et al. 1991), Case-Based Reasoning (Riesbeck & Schank 1989) and
Data-Oriented Parsing (Bod 1998). What all of these models share is a fundamen-
tally non-declarative approach (cf. Chandler 1995) to linguistic analysis. Many of
the exemplar-based models also tend to yield very similar predictions concerning
linguistic behavior, and it is our job to try to understand why this might be the case
and what each model can teach us about the nature of cognition.

. Version spaces

One powerful conceptual learning mechanism based on generalization from exam-
ples involves “version spaces” (Mitchell 1978, 1982). The version space approach
was originally developed to improve the efficiency of heuristic searches1 and can,
in principle, be applied to any induction problem. In fact, VanLehn and Ball (1987)
have demonstrated that a variation of Mitchell’s version space algorithm is even ca-
pable of learning context-free grammars of the sort proposed by Chomsky (1957,
1965). Though very powerful, the concept of a version space is actually quite sim-
ple. Basically, version spaces are sets of structured concepts which are related to
each other by increasing order of generalization. They are most easily illustrated
using a directed acyclic graph such as the one in Figure 1.

This figure shows a graph which represents the sample version space V. Each
node in the graph represents a possible concept that can be described using a
number of variables, much like a word can be described using a sequential list of
phonemes. The total number of possible variables (m) will determine how many
elements (nodes) will be in the version space. In this case there are three variables,
so the total number of elements will be 2m = 8. Each of the three variables can
take on the following values: 1, 2, 3 or – (unspecified). Every version space graph
has a maximal element (the most specific concept) and a minimal element (the
most general concept) and the nodes between them are ordered in the following
manner: each successive row contains concepts with one more unspecified variable
than those in the row above it and there is a line drawn upwards from each con-
cept connecting it to only those concepts in the next highest row which are proper
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Figure 1. The sample version space V

subsets of it.2 Thus, the version space V contains all of the possible supracontexts
of the specific concept “123”, given in order of increasing generality going from top
to bottom.

One of the major advantages of using a version space when doing a heuris-
tic search is that, unlike with many other inductive search methods, one must not
assume that all of the given concepts are available prior to the start of the induc-
tion process, but rather can be added one at a time as they become available, thus
allowing for natural development in the absence of hard-wired knowledge. Ver-
sion space algorithms will “create intermediate hypotheses, and they are capable
of updating these hypotheses to account for each new instance” (Genesereth &
Nilsson 1987:175). Each time a new exemplar is encountered, another set of possi-
ble goal concepts is automatically created (i.e., the nodes of the new version space
graph, bounded minimally by a completely unspecified concept and maximally by
the new exemplar itself). The list of possible goal concepts is then pared down as
positive and negative examples are declared (or discovered) through the process
of candidate elimination. Simply stated, this means that the goal concept cannot
be more specific than any positive example, nor can it be a generalization of any
negative example.

In order to illustrate how this works, let’s put some teeth into our sample ver-
sion space V. Although it is tempting to follow the obvious metaphor and treat
variables like phonemes, they can in fact represent any attribute of any concept.
However, since the realm of phonology is a familiar one to most linguists, let’s
set up our sample version space in terms of phonological variables. For instance,
the first variable could represent the manner of articulation (stop, fricative, nasal),3
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the second the place of articulation (labial, alveolar, velar) and the third the voicing
(voiceless, voiceless aspirated, voiced) of a given consonant, with the parameters in
the parentheses assigned the values 1, 2 and 3 respectively. On this interpretation,
the given concept “123” would represent the phoneme /d/, a voiced alveolar stop.

Now look at the three nodes of the version space graph labeled A, B and C. Let’s
say that the phoneme /t/ is given as a negative example of our goal concept. This
phoneme corresponds to the node labeled A in the graph: an alveolar stop (which
is not necessarily voiced). This would allow us to rule out all of the nodes which
are below this node and connected to it via bold lines as possible goal concepts,
because they are simply generalizations of the negative example. At this point we
have gone from a set of eight possible goal concepts down to four, a fifty percent
reduction. If the phoneme /g/ is now given as a positive example (node B in the
graph: a voiced velar stop), we can further eliminate the maximal node of the set
(connected once again with a bold line) as it is more specific than the positive
example. Finally, we are given that the phoneme /z/ is also a negative example (node
C in the graph: a voiced alveolar fricative), which means we can discount both this
node and the node below, since it is a generalization of it, and now we have whittled
our version space graph down to only one node (node B) which must represent the
goal concept: a voiced stop.

As mentioned before, this is a very simple example of a version space. In prac-
tice, the nodes of a version space graph need not symbolize single concepts and
could even represent complex rules and formulas.

. Analogical Modeling

At the same time that Mitchell was formulating his Version Spaces model, Skousen
(1992) was developing his own model for predicting behavior analogically. Inter-
estingly, Skousen also used this same partial order of generalizations as the basis
for his test for supracontextual homogeneity, which is the linchpin of his model. In
fact, one could say that there is no essential difference between the supracontextual
spaces used in AM and Version Spaces (as defined by Mitchell). However, Skousen’s
model is corpus-based, whereas Mitchell’s model relies on the continuous intro-
duction of (labeled) positive and negative examples. In other words, Skousen de-
cided to relate each supracontextual space in AM to a fixed dataset (which may be
assumed to be gathered through experience).

One (rather obvious, in hindsight) consequence of this decision was that the
space of possible analogical models can be reduced significantly and without any
calculations by simply eliminating those supracontexts which are empty (i.e., those
which have no specific subcontexts actually occurring in the dataset). In practice,
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such reductions can be quite large, given the rather sparse nature of linguistic data.
(The proportion of actual words to possible words in a given language is usually
quite small.) Unfortunately, this still leaves any actually occurring word in a given
dataset which has anything in common with a given context as a possible analogical
model, which implies a vague notion of analogy similar to the one which has been
the focus of so much criticism over the last three decades.

In order to refine this notion and further pare down these supracontextual
spaces, Skousen proposed an algorithm with “three important properties [which]
affect the probability of selecting a particular example as an analogical model”
(1995:217):

proximity: the more similar the example is to the given context, the greater the
chances of that example being selected as the analogical model;

gang effect: if the example is surrounded by other examples having the same be-
havior, then the probability of selecting [one of] these similarly behaving exam-
ples is substantially increased;

heterogeneity: an example cannot be selected as the analogical model if there are
intervening examples, with different behavior, closer to the given context.

All three of these properties are derived from Skousen’s (1992) psychologically
plausible measure of uncertainty, but only the third property is unique to the
AM algorithm. This property could also arguably be the most important of the
three, since not only can it affect the probability of selecting a given example from
a dataset, it can also eliminate certain examples completely in a manner which
drastically affects overall selection probabilities.

Consider the supracontextual space in Figure 2 (adapted from the second
chapter of Skousen’s 1989 book). As was the case for the Version Space discussed
earlier, there are three variables, each of which can take on the values 0, 1, 2 or
3. The sparse dataset used in this example consists of five of the 64 possible oc-
currences: 310e, 032r, 210r, 212r and 311r. The “e” and “r” labels associated with
each of the five occurrences simply stand for exceptional and regular behavior, but
as Skousen is quick to point out, these are used for clarity’s sake and could just
as well have been “x” and “y” or any other arbitrary labels. In fact, one of the
strengths of AM (and other analogy-based approaches) is that it can predict both
regular and exceptional behavior using a single algorithm. Even idiosyncratic data
and data which are otherwise noisy or not completely specified are no problem for
the model. On the other hand, AM does crucially rely on each occurrence in a given
dataset being labeled according to some specific behavior, and this can be shown
to result in some undesirable consequences relating to the model’s psychological
plausibility, as will be discussed in more detail below.

In this graph homogeneous supracontexts (those which can contribute sub-
contexts to the pool of possible analogical models) are surrounded by bold circles.
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Figure 2. Supracontextual space for the context “312”

Two of the supracontexts can be eliminated right away (before heterogeneity is
even considered). This is because the supracontext “3–2” is empty, since none of
its corresponding subcontexts (302, 312, 322, 332) are present in the dataset. This
is a reduction of 2 supracontexts but it does not really represent a reduction in
the number of possible analogical models. This number is, however, cut in half
by virtue of the fact that the supracontext “–1–” shows heterogeneous behavior
(thus eliminating 9 of the 16 possible subcontexts which could potentially serve as
analogical models).

In a small artificial example such as this, testing for homogeneity can be ac-
complished by a simple inspection of the graph. Skousen’s strict definition of
heterogeneity will eliminate any supracontextual node which contains more dis-
agreements than its immediate subcontextual nodes (those situated above it and
connected to it by lines), and since the number of disagreements is simply 2nenr

(Skousen 1989:29), where ne is the number of occurrences labeled “e” and nr the
number of occurrences labeled “r”, it should not be difficult to identify heteroge-
neous supracontexts. In fact, testing for homogeneity is usually even easier than
that. For instance, a supracontext containing more than one outcome will always
be ruled out if one of its occurring subcontexts contains only a single outcome
(e.g. –12), since the number of disagreements in such subcontexts must be zero.
Likewise, if the product of nx and ny for a given supracontext is larger than the
same product for any of its occurring subcontexts (e.g. 31–), the same will be true,
since the number of disagreements is simply this product times two.

The minimal node on the graph, representing the most general (completely
unspecified) supracontext, can further be eliminated using what Skousen calls



Version spaces, neural networks, and Analogical Modeling 

inclusive heterogeneity. This works exactly the same way as Mitchell’s negative
candidate elimination: rule out those nodes which are more general than one
which has already been ruled out (in this case “–1–”). In practice, this supracon-
text is almost never homogeneous anyway and will probably always be eliminated,
since it also contains more subcontexts than any other supracontext and there-
fore it entails more calculations while not really contributing much in the way of
information content.

. Neural networks

In some of his earlier work on analogical modeling, Skousen would simply have se-
lected (usually at random) one of the fully specified subcontexts whose supracon-
texts were not eliminated by his homogeneity constraint, thus making the proba-
bility of selecting a given data occurrence linearly proportional to its frequency in
the dataset (Skousen 1992:8). Later a conceptually simpler basis for selection was
proposed which involved utilizing a network of pointers (which were being used to
measure uncertainty in the model anyway).

In this case, the analogical set (from which a model is chosen) is simply the
group of pointers in the network originating from and leading to the tokens in the
dataset which are contained within each of the non-empty homogeneous supra-
contexts. Using this as the basis for selection has the effect of making the proba-
bility of selecting a given data token proportional to the square of its frequency in
the dataset.

Those familiar with connectionist literature will recognize the network in Fig-
ure 3 as also representing what is called an auto-associative network. This simple
design is the basis for some of the most sophisticated neural networks which have
been developed, yet it is actually “the most general architecture for a connection-
ist system; all other architectures are more restricted subsets of this architecture”
(McClelland & Rumelhart 1989:161). Thus it would be possible to implement the
AM algorithm using neural networks in the following manner: have one network
whose sole purpose it is to determine which supracontexts are non-empty and ho-
mogeneous, and then pass this information on through a buffer to a cleanup auto-
associator such as the one in Figure 3. Next, for each acceptable supracontext as-
sign an activation strength of +1 to each of its subcontextual nodes and +0 to every
other node in the network. Finally, send a single activation pulse into the network
and record the resulting activation values. If we assume a Hebbian update rule,
then this should, in theory, yield the same results as the standard AM algorithm.

There are two major problems with the connectionist implementation just de-
scribed, however. For one, it is uninteresting as a connectionist model. By the time
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Figure 3. Dataset with network of pointers

we insure that the network will behave exactly like the AM algorithm, it no longer
looks much like a typical neural network, since there is practically no learning go-
ing on and the information content of the actual weight matrix is minimalized.
Secondly, this network would not necessarily be any faster than AM, if for no other
reason than because the cleanup auto-associator would have to be activated se-
quentially for each acceptable supracontext and then zeroed before each new ac-
tivation cycle. This is necessary, since each node in the dataset can be (and often
is) associated with more than one supracontext and radically different analogical
effects are predicted when these multiple influences are summed.

But is it necessary to bend over backwards to show that a neural network
model can implement the AM algorithm? As it turns out the answer is no, since
it can be demonstrated that a very simple (and well understood) connectionist
model is capable of making analogical predictions which are already similar to
those of Skousen’s model. Figure 4 represents an Interactive Activation and Com-
petition (IAC) model designed to illustrate the artificial problem described in the
previous section.

The network consists of four subgroups of units. Those subgroups outlined
in rectangles contain visible units which are amenable to input from outside the
network. These three subgroups represent the three possible positions of the vari-
ables in the data cues and each contains four units: one for each possible variant.
The subgroup outlined in a circle contains so-called “hidden units” whose activa-
tions cannot be directly affected from outside of the network and which represent
the individual members of the given dataset. Each unit in every subgroup has neg-
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Figure 4. An Interactive Activation and Competition Network

ative connections with every other unit in the same subgroup, whereas mutually
excitatory connections exist between the hidden units and the visible units which
correspond to their composition. For instance, the hidden unit “310” will excite the
“3” unit in position one, the “1” unit in position two, and the “0” unit in position
three – and vice versa. Such models are discussed in great detail in Grossberg 1978
and McClelland & Rumelhart 1989.

An interesting thing happens when the units corresponding to a given context
in Skousen’s model are exposed to external input: the resulting stable activation
values for the hidden units (those representing the members of the dataset) are vir-
tually equal to the analogical effect that would be predicted for these data members
by the AM algorithm without the homogeneity constraint.4 Recall that Skousen’s
analogical set (the pool from which the actual analogical model is selected) con-
sists of all of the pointers originating from and leading to tokens in the analogical
network associated with any of the homogeneous supracontexts for a given con-
text. If the homogeneity constraint were lifted, then this set would consist of all
of the pointers originating from and pointing to tokens in the analogical network
associated with any non-empty supracontext. Nothing would prevent the model
from essentially determining contextual similarity and this is what the IAC model
does best.

Other similarity-based models, such as TiMBL (Daelemans et al. 1999), also
employ contextual similarity (or nearest neighbor) algorithms sometimes in order
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to select analogical behavioral models when no model identical to the target is
stored in memory. For instance, although the TiMBL model can utilize several dif-
ferent similarity algorithms, its predictions under such circumstances will often
closely resemble those of an IAC network or the AM model described above. (See
Daelemans et al. 1994 for a comparison of AM and the Lazy Learning model of
Aha et al. 1991, which TiMBL is based upon.)

. Analogy without homogeneity

One problem with contextual similarity is that when either random selection or
selection by plurality (choosing the behavior associated with the highest number
of pointers in the analogical set) is used without the homogeneity constraint, there
is no way to guarantee that a member of the dataset will be classified properly if it
is presented as the given context, especially if that member exhibits exceptional be-
havior. For instance, if the context “310e” were presented in the above problem, the
number of pointers leading to its node in the analogical set would be greater than
that of any other single occurrence in the set, but because of the large amount of
leakage the number of pointers leading to occurrences exhibiting regular behavior
would be in the majority. Thus, selecting a pointer at random is actually unlikely
to result in predicting the appropriate behavior in this case.

In order to rectify this situation, we could adopt a third rule of usage which
might be called selection by majority: select as a model the single node in the analog-
ical set with the most pointers leading to it. This selection rule is arguably more psy-
chologically plausible than selection by plurality anyway, since it would not have to
entail any kind of statistical sampling in order to determine what the most frequent
outcome is. When it is applied to analogical sets in a version of AM based on con-
textual similarity (versus supracontextual homogeneity), the resulting predictions
are remarkably close to those of the intact AM algorithm.

In fact, when the predictions of this alternative model were compared to those
of Skousen’s original model for the artificial problem illustrated in Figures 2 and 4
above, an average correlation coefficient r of 0.99 was obtained over the set of 64
possible given contexts, and this result was retained when the identity of the excep-
tionally behaving occurrence(s) was allowed to vary within the dataset. For 54 of
the 64 (84.4%) of the contexts the predictions (in terms of the probability of select-
ing the exceptional behavior) were identical (r = 1.0). The remaining 10 contexts
were also assigned very similar predictions by the two models (the standard devi-
ation being only 0.06). Not surprisingly, these numbers were unchanged when the
predictions of the IAC network were substituted for those of the alternative version
of AM (again assuming selection by majority).
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There are also some important advantages to being able to select analogical
models without first having to determine homogeneity. First of all, this would elim-
inate the need for labeling data. Assuming that we do retain individual occurrences
of behavior in the brain, it is difficult to imagine how each of these occurrences
might be labeled according to an associated outcome, since such labels will always
be task-dependent. That is to say, any single form can be associated with a large
number of different kinds of behavior depending on a given context. Which behav-
iors will be remembered and which forgotten, or are all possible outcomes labeled
at the time of storage? If the latter is the case, how does the algorithm know which
labels to use in determining homogeneity? Until a mechanism is proposed for re-
trieving behavioral labels and assigning them to appropriate data occurrences, we
are left with a serious ambiguity with regard to which behaviors are to be associated
with which data and when.

Removing the test for homogeneity and employing selection by majority
would also eliminate the need for short-term storage of separate analogical sets and
make the number of supracontexts associated with each occurrence in the dataset
directly proportional (anticorrelated) to its distance (in terms of variables) from
the given context. There would still be significant gang effects and the “correct”
analogical model would still retain the highest probability of being selected (rela-
tive to other prospective models), but more importantly, such an alternative model
would not have the exponential explosion problem which has so severely restricted
the application of AM in the past. This is because the number of supracontexts
which would have to be considered could be reduced to simply the number of vari-
ables (m instead of 2m). In the general case, it can be shown that when determining
the analogical set for a given context [a b c], evaluating only the supracontexts
[a - -], [- b -] and [- - c] will result in almost no loss of precision over evaluating all
of the supracontexts [a b c], [a b -], [a - c], [- b c], [a - -], [- b -], and [- - c]. This
may not seem like much of a reduction when there are only three variables, but
even with only twenty variables, this would result in a savings of over one million
supracontexts.

To demonstrate this, the same artificial problem from Skousen (1989) was pre-
sented twice to the alternative AM model without considering homogeneity, once
evaluating 2m – 1 supracontexts (all of the possible supracontexts except the most
general one) and once evaluating only m (in this case 3) supracontexts. The results
were not identical, but the average correlation coefficient r was once again 0.99 over
the 64 possible given contexts. In summary then, it appears that either an IAC net-
work or a version of Skousen’s AM algorithm which does not test for homogeneity
but employs a different selection rule is capable of making predictions which are
very similar to those made by the intact AM algorithm (always assuming the ran-
dom selection rule of usage), but with some important simplifications which may
affect the plausibility and usefulness of the general model.
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. The SimNet model

Having said all that, I would now like to argue that Skousen’s formulation for AM is
still superior to the alternative formulation just described. Thus far, when compar-
ing these two formulations, I have been explicitly assuming that one would use ran-
dom selection as the only rule of usage, much as others have done when comparing
AM to alternative models (cf. Baayen 1995). However, as Skousen quite correctly
argues (1989:82–85), there is evidence that people can and do learn to make differ-
ent predictions according to their particular motivation (Messick & Solley 1957),
and this can be translated into the ability to apply alternate rules of usage. With-
out homogeneity, the AM model would be unable to account for this finding, since
it could only produce acceptable predictions using a single rule of usage, namely
the proposed selection by majority. This predicts behavior which roughly corre-
sponds to standard AM using random selection, but there would be no equivalent
for selection by plurality. This applies to the IAC model as well.

Skousen also points out (1989:85–86) that people can also vacillate between
forms while speaking. This finding would also be difficult to explain using a model
in which the same occurrence (the one with the most pointers in the analogical
set) is predetermined to be selected every time (assuming the dataset remains un-
changed). In the original model one could simply choose among the various oc-
currences in the analogical set, which seems satisfying at first glance, but Skousen
only describes two rules of usage (random selection and selection by plurality), nei-
ther of which can preclude (with any degree of certainty) the selection of the same
model twice in a row, unless we assume that forms can be thrown in and out of
the dataset (or analogical set) at will. In a connectionist model, on the other hand,
one could simply suppress unwanted targets by providing top-down inhibition (or
inhibition from the inside out, if you will) and then feed the given context back
into the network. Since real-time activation would be measured in milliseconds,
this would not preclude speakers from vacillating between targets.

In order to account for both kinds of behavior while still avoiding some of
the pitfalls associated with Skousen’s homogeneity constraint, I developed a some-
what different neural network model. SimNet is an exemplar-based connectionist
model based roughly on a modified version on Grossberg’s (1978) IAC model. Un-
like many of the more common pattern associator models discussed in the con-
nectionist literature, SimNet employs local representations of actual language (or
other behavioral) data in its hidden layer and does not involve any form of ex-
tensive training regimen, yet it is still capable of responding to sequences of in-
put and can readily incorporate newly acquired data. As its name implies, SimNet
selects analogical models based on their contextual similarity to a given set of in-
put, but unlike many other similarity-based models it can also make probabilistic
predictions which appear to employ multiple rules of usage.
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Figure 5. Input to the hidden unit subgroup representing the dataset in SimNet

The model only differs from the IAC model discussed above in that a variation
of a simple circuit, also originally proposed by Grossberg (1976) in his detailed
discussion of competitive learning mechanisms, is employed on each cycle inside
the subgroup of “hidden units” representing the data. This circuit was designed
to select a single winner from a pool of partially activated units – essentially the
same task presented to someone seeking an analogical target to model behavior
after. The basic idea is this: allow every active unit in a given subgroup to excite
itself and at the same time inhibit every other unit in the same subgroup.5 In the
limit this circuit will continually drive the activation of the unit(s) with the highest
initial activation upwards while driving the activation of all other units in the sub-
group down until it reaches its minimum value (selection by majority). But this
architecture also yields some interesting results after a single activation pass.

Figure 5 is a graphic representation of the SimNet architecture using the ar-
tificial dataset discussed at length above. By convention, lines which terminate in
an arrowhead represent excitatory connections while those terminating in a point
represent inhibitory connections. The input from the visible units is shown here
being presented in sequential order, but because of the particular activation func-
tion used, it makes no difference whether the “visible” variable units are activated
in sequence or in parallel. Either way, the activation of each hidden unit will be the
same after all of the variable input has been received. After the activation inside the
hidden unit subgroup has spread, those units whose activation levels are above a
certain threshold will then pass along their newly acquired activation, scaled by a
measure of attention strength, to all of their associated visible units. Then the whole
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process starts over again. Importantly, the set of associated visible units (which
represent characteristics of the data) is by no means restricted to those receiving
external input. For instance, if the data represent words, then activating phonolog-
ical variables associated with one word will not only partially activate other words
(temporarily) but also the semantic and syntactic characteristics associated with
them (and vice versa), in some cases supplying default values for certain kinds
of behavior.

. Three types of behavior

The remainder of this chapter will be devoted to comparing the predictions of the
SimNet model with those of the AM algorithm on various groups of experiments.
The first of these is another artificial problem which was designed to demonstrate
the ability of Skousen’s model to handle three diverse types of linguistic data: cat-
egorical, exceptional/regular and idiosyncratic.6 This problem also involves data
tokens comprised of three variables, except this time the number of possible con-
texts will be only 32 as the first variable is restricted to the smaller set of variants
{0,1}. As before the second and third variables will each have four variants, {2,3,4,5}
and {6,7,8,9} respectively. Three distinct datasets will be extracted from this set of
possible tokens, each one representing a different type of basic linguistic behav-
ior. To test his model in an environment reflecting categorical behavior, Skousen
presented the following dataset:

027x 039x 046x 047x 048x 058x
126o 137o 147o 148o 157o 159o

In this case, the obvious generalization would be that any token beginning with
a “0” should be classified as “x” and any token beginning with a “1” should be
classified as “o” (a simple binary rule). Notice that he intentionally stacked the deck
against his model by using “x” and “o” data tokens which resemble each other in
terms of the remaining two variables. Nonetheless, his model was able to correctly
categorize all 32 contexts after the presentation of only nine of the twelve data
tokens7 with a 99.4% degree of accuracy (Skousen 1989:41), assuming that the
categorical behavior should be extended to all of the possible contexts.

The second dataset looks very much like the first one, except that only one
of the twelve data tokens is labeled “x”, representing an instance of exceptional
behavior surrounded by regularity:

027o 039o 046o 047x 048o 058o
126o 137o 147o 148o 157o 159o
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A rule-based approach would simply memorize the exceptional behavior and as-
sume that the regular behavior applies elsewhere, but we have seen that this is not
an accurate reflection of human categorization (cf. Bybee & Pardo 1981; Johnson
& Venezky 1976). Once again, Skousen’s model is able to “discover” the excep-
tional behavior by the time the twelfth data token is presented, but for three of
the given contexts close to the exceptional “047” context, there is about a 20%
chance that the exceptional behavior will be carried over. Logically speaking, the
analogy model is only 98.3% accurate, but realistically it is this fuzziness near the
exceptional behavior that lends the most support.

The final environment consisted of a dataset with only two members: 047x
and 126o. Here we have two idiosyncratically labeled tokens and precious little in
terms of any pattern to model behavior after. Accordingly, we would expect some
kind of a smooth transition in predicted behavior moving from contexts close to
the first data token to those close to the second (Labov 1973), and this is exactly
what happens. The probability of a predicted behavior {x,o} for each context turns
out to be a function of that context’s variable similarity to the labeled data. Because
there are only three variables with which to measure similarity in this example,
the transition curve is nearly linear, but as the number of variables is increased,
this function begins to look more and more like a threshold (Skousen 1989:49). A
strictly rule-based model would have no basis upon which to classify any of the 32
given contexts, save the two in the dataset.

The graphs in Figures 6 through 8 clearly show how close the predictions of the
two models (AM and SimNet) are to each other, no matter which type of behavior
is presented. Notice particularly that in Figures 6 and 7 all of the leakage occurs in
exactly the same environments. The amount of leakage is higher for SimNet (after
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Figure 6. Predictions based on an environment of categorical behavior
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Figure 8. Predictions based on an environment of idiosyncratic behavior

a single activation pass), but may in fact be more realistic, given the relatively small
dataset and the fact that each occurrence was only described in terms of three vari-
ables. The probability of getting this kind of leakage in a categorical environment
will decrease exponentially as the size of the dataset and the number of variables is
increased.

The SimNet model also allows for an attention strength bias on each of the
variable inputs which was not considered here (all biases were fixed at 1.0). How-
ever, there is ample evidence that human beings can and do employ selective at-
tention strategies when attempting to classify information (Shepard, Hovland, &
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Jenkins 1961; Nosofsky 1984). For example, in the artificial categorical environ-
ment described above, it is not difficult to figure out that the principal consid-
eration for classifying new data should be the value of the first variable. When
the attention bias for the first variable is doubled in this environment, there is a
significant drop in the amount of leakage across the x / o boundary (from 6.9%
down to 0.5%). In fact, this would allow the predicted behavior to be perfectly
segregated according to the value of the first variable at asymptote. The time it
takes the network to settle could be offered as a partial explanation for why more
mistakes are recorded in timed classification experiments than when people have
more time to consider their answers, or for why frequency effects sometimes show
up in speeded lexical decision tasks but not when making acceptability judgments
(Pinker 1999). Also, although these biases must be set by hand in this simple model,
Kruschke (1992) has shown that a more sophisticated neural network employing
back propagation of error is capable of learning attention strengths in the course
of classification.

What about when the data is noisy or incomplete? Just like AM, the SimNet
model is able to “recognize” tokens from the dataset when the first variable has
been masked. When the context “#37” was activated, the model behaved exactly
as if the context “137” had been activated. Likewise, when the context #47 was ac-
tivated, the two hidden units representing the contexts “047” and “147” became
active and the prediction was a toss between the two. On the other hand, when
noisy contexts are presented, the model is forced to lower its affective filter and
treat the distortions as if they were idiosyncratic.8 When the context “1037” is pre-
sented, for instance, all twelve hidden units become active, the degree of their ac-
tivation being dependent upon their similarity to the distorted context. The initial
predictions (in terms of probability Pr) for this context are Pr(o) 55.1% and Pr(x)
44.9% (compared to Skousen’s Pr(o) 53.9% and Pr(x) 46.1%). Due to the lower
inhibition levels, the network will have to cycle a long time before eventually se-
lecting the “o” outcome associated with the token “137”. When the similar context
“1047” is presented, all of the hidden units are again activated, but this time the
initial predictions are Pr(o) 50% and Pr(x) 50% and this result will not change as
the network settles. Both models yield similar predictions for the “#47” and “1047”
contexts, but for very different reasons.

. Finnish verbs revisited

Perhaps one of the most well-known applications of the AM algorithm is Skousen’s
treatment of past tense verbal morphology in standard Finnish (1989:101–136).
This subject provides an abundance of data for those interested in linguistic vari-
ation, and this analysis, more than any other, went a long way toward proving the
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utility of his purely analogical approach. I will not attempt to duplicate the detail of
this analysis here, but rather simply refer the reader interested in a more in-depth
description to Skousen’s book.

By way of introduction, past tense verbs in Finnish are generally marked by
a word-final /i/, but the segments immediately preceding this final vowel differ
widely. Skousen (1989:102) provides a list of six environments which are more or
less amenable to a rule-like description, but there are also many verbs which defy
such description. The group used in the study consisted of two-syllable Finnish
verbs whose second syllable consists of a consonant followed by a single short un-
stressed non-high unround vowel (e, ä, or a). In general, this final vowel would
simply be replaced by /i/ in the past tense form of these verbs, but there are two
somewhat cohesive subgroups within this larger one. For instance, if the final vowel
is immediately preceded by a sequence consisting of a sonorant followed by the
consonant /t/, then the final consonant-vowel sequence tends to be replaced by
/si/. Likewise, if the final vowel is /a/ and the first vowel of the first syllable is an
unround vowel, then the final vowel is most often replaced by /oi/ in the past tense
form. Sound convoluted? It is – and what’s more, there is a considerable amount
of overlap between these three outcomes.

The dataset for this analysis was constructed by extracting 173 two-syllable
verbs ending in a short unstressed non-high unrounded vowel from the Saukkonen
and Suomen Kuvalehti textual studies. Any such verb which had at least one past-
tense occurrence in either of the databases was included in the dataset. Of the verbs
in the dataset, 117 used the V-i past tense form, while 36 used a-oi and only 20
the tV-si form. All of the 173 verbs were then analyzed in terms of ten variables
reflecting each verb’s phonemic and syllabic identity.

Skousen was limited by implementation considerations to using only ten vari-
ables when doing this analysis in the late 1980s. Although the relatively rapid ad-
vance of computer technology would allow us to describe this data using twice as
many variables today, I used a similar set of ten variables for these simulations in
an attempt to keep the comparison as fair as possible.9 The main point is that these
variables are sufficient to distinguish all of the tokens in the respective datasets
and, as Baayen (1995:394) has pointed out, they do not represent an “informed –
‘structuralist’ – selection of the relevant dimensions of variation”.

I will only compare the predictions of the two models for test verbs which
were not in the dataset. Most of these verbs did occur in the two textual stud-
ies, but since they did not occur in the past tense they were not included among
the 173 verbs making up the dataset (Skousen 1989:114).10 Using the Nykysuomen
sanakirja (NSSK) as a reference, Skousen divides these verbs into four subgroups
according to their possible past tense forms and their syllable makeup. First, I will
compare the predictions for three test verbs in each of the first three subgroups,
and then go on to discuss the fourth subgroup in more detail.
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For verbs ending in the syllable -ta and having at least two vowels in the initial
syllable, the first of which is /a/, we find that all three past tense forms are possible:

Pr(V-i) Pr(a-oi) Pr(tV-si)

kaarta- ‘swerve’ 0.0 31.4 68.6 AM
0.0 55.0 45.0 SimNet

saarta- ‘surround’ 0.1 23.7 76.2 AM
5.0 53.6 41.4 SimNet

raata- ‘toil’ 0.0 99.6 0.4 AM
0.0 92.1 7.9 SimNet

All of the predictions for AM were made using the random selection rule of usage.
All of SimNet’s predictions were recorded after a single pass through the network.11

Of course, if the selection by plurality rule of usage were employed in AM, then
only one outcome would be selected. The same would be true for SimNet if the
network were allowed to settle. In fact, there appears to be a high statistical corre-
lation between the predictions of AM using random selection and those of SimNet
after a single activation pass, and another correlation between the predictions of
AM using selection by plurality and those of SimNet at asymptote. This is due to
the fact that in the large majority of cases, the nearest neighbor selected by SimNet
(the token with the highest initial activation) will also exhibit the most frequent
behavior. But not always. In this case the two models would make very different
predictions for the first two verbs using these alternate selection methods. It turns
out that the NSSK lists both the a-oi and the tV-si past tense forms for these two
verbs, but only the a-oi form for raata. It seems to be advantageous for the models
to be able to distinguish those verbs having two vowels plus a sonorant consonant
(VVS) in the first syllable from those which do not.

If the onset of the second syllable is not /t/, then the tV-si outcome is highly
unlikely to be a possibility and we are left with only the a-oi and V-i past tense
forms. Including verbs with a single stressed vowel in the first syllable further de-
creases the statistical probability that verbs in this subgroup will use anything but
the a-oi and V-i forms:

Pr(V-i) Pr(a-oi)

kalva- ‘prey on’ 14.6 85.4 AM
15.2 84.8 SimNet

lappa- ‘haul’ 2.1 97.9 AM
9.9 90.1 SimNet

paukka- ‘crack’ 2.6 97.4 AM
0.0 100.0 SimNet
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Once again, in all three verbs the conditions are met for the general rule which
would select the a-oi outcome and once again both models are able to predict this
behavior without having explicit knowledge of these conditions or the rule itself.

The third subgroup consists entirely of verbs which have only a single stressed
vowel in the first syllable and whose final vowel is something other than /a/. Under
these conditions, the V-i past tense form is highly favored above all others:

Pr(V-i) Pr(tV-si)

kute- ‘spawn’ 99.8 0.2 AM
96.4 3.6 SimNet

päte- ‘be valid’ 100.0 0.0 AM
100.0 0.0 SimNet

syte- ‘chip’ 100.0 0.0 AM
100.0 0.0 SimNet

Note that the probability of selecting the V-i form is very high for both models.
It is especially unusual for the SimNet model to make such one-sided predictions
after only a single activation pass. Skousen (1989:121) lists gang effects of approx-
imately 4.0 for other verbs in this subgroup, and Paunonen (1973:291) suggests
that alternate past tense forms for these verbs are all but impossible, “even as slips
of the tongue”, whereas alternate past tense forms for other verbs did not seem
so abhorrent. This makes sense if verbs associated with alternate past tense forms
never receive any significant degree of activation, and it would follow then that
where such slips of the tongue are possible we should also expect higher levels of
leakage during early stages of activation spread.

The fourth subgroup is basically a miscellaneous category. It consists of verbs
which have heavier first syllables, containing any combination of two or three sono-
rants (vowel, liquid or nasal), the first of which was not /a/. Some of them had ob-
struent codas and some did not. This subgroup always has a final syllable which
has as its onset the consonant /t/ plus any short unstressed non-high unrounded
vowel. Verbs in this subgroup can take only the V-i and the tV-si past tense forms.

Paunonen (1973) describes an experiment in which a list of forty-one of these
verbs was presented to a group of thirty-six university students. The task was to
decide for each verb whether the two alternative past tense forms (V-i and tV-si)
were (1) neither natural nor possible, (2) not very natural but possible or (3) com-
pletely natural and possible. In an effort to account for the intuitions reflected
in Paunonen’s experiment, Skousen (1989:118) compared the predictions of his
model for the 14 verbs from this subgroup which did not occur in the dataset with
the results obtained by Paunonen. This comparison is shown graphically in Fig-
ure 9. The estimated linear correlation between Skousen’s results and Paunonen’s



Version spaces, neural networks, and Analogical Modeling 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ää
n

tä
-

ki
ilt

ä-

h
ie

rt
ä-

pu
ol

ta
-

pu
u

rt
a-

u
u

rt
a-

si
in

tä
-

su
ol

ta
-

hy
yt

ä-

h
ää

tä
-

lii
tä

-

jä
ät

ä-

so
rt

a-

ju
ot

a-

AM

Paunonen

SimNet

P
ro

ba
bi

lit
y 

of
O

u
tc

om
e

V
-i

Figure 9. Comparison of the predictions of AM and SimNet with the acceptability
ratings obtained in Paunonen (1973) for 14 Finnish verbs

composite measure of acceptability was an impressive 0.97, but I believe that
the flexibility of the SimNet model may allow it to account for these intuitions
even better.

The estimated linear correlation between the results obtained using the SimNet
model and the acceptability ratings from Paunonen’s experiment was 0.98. This
same correlation coefficient was obtained when comparing the SimNet results with
those obtained using AM but, as Figure 9 clearly demonstrates, this is not always
the best measure of similarity between two sets of results. The predictions obtained
using the SimNet model are visibly closer to Paunonen’s results12 (linear matched
for comparison), even though its correlation coefficient is only one point higher.
Likewise, although the SimNet predictions tend to respond to similarity relations
in the data in roughly the same way as AM, they are clearly not as close to Skousen’s
results despite the fact that the correlation coefficient is identical for both sets.

Remember that the SimNet results reported here were recorded after only a
single activation pass through the network. In the limit the predictions of this
same model would approximate a threshold function with a sharp (but not ver-
tical) transition in the behavior curve between the verbs “suolta-” and “häätä-”
and no leakage on either side of this transition. In other words, the predictions
recorded after the network is allowed to settle are much closer to those obtained
using AM. This is true regardless of whether the rule of usage employed is random
selection or selection by plurality.
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This is interesting for a number of reasons. For one, it implies that AM’s pre-
dictions using random selection are too close to being categorical to account for the
large amount of variation observed in the acceptability ratings of Finnish speak-
ers. More importantly, it suggests a possible explanation for Paunonen’s own judg-
ment that the disfavored past tense forms of these verbs might slip out accidentally,
whereas the disfavored forms for the verbs in the third subgroup could not. It seems
at least possible that in rapid speech there would be less time spent on deciding
which past tense form to use for verbs which have not been committed to memory.
The SimNet model would in fact predict that the more time a person spends mak-
ing this decision (allowing this decision to take place), the less chance there will
be that a disfavored form will be vocalized. Paunonen’s judgments and the ratings
observed in his study both indicate a difference in the proportional strength of the
predictions for these two subgroups, but this is missing in Skousen’s model.

. Variation in Danish compounds

Predicting the form of compounds in Germanic languages has historically been
perceived to be a very difficult task (cf. Krott et al., in this volume), but I would
agree with Becker (1992) that this is largely a consequence of the fact that linguists
have confined themselves to a syntagmatic approach to compositional morphol-
ogy, rather than allowing for new formations to be derived analogically from exist-
ing compounds. The experiments described in this section were designed to show
that the latter approach can not only account for the attested formations better
than one based on concatenation with inflection or allomorphy, but it is also capa-
ble of accounting for the variation which does occur in a straightforward manner.

Most Danish words have what is called a standard combination form which is
used when the word occurs as the first element of a compound. Augst (1975:134)
put the number at approximately 90% for German, and based on my own lim-
ited research, this seems to be about right for Danish as well. The problem is that
there is no systematic way to relate these forms to other inflected forms of the same
words, and even where systems of rules and subrules for the formation of these
combination forms have been suggested (cf. Hansen 1967; Køneke 1986), there are
always large numbers of exceptions. This can also not be considered a peripheral
phenomenon, since the number of new (recorded) compound formations in Dan-
ish over a twenty year period was shown to be more than twice as high as all other
new word formations put together (Riber Petersen 1984).

While previous studies have attempted to describe the synchronic distribution
of these combination forms based solely on phonological and/or morphological
information about the first constituent, a number of factors could be proposed
which may influence them:
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1. the semantics of the first constituent
2. the semantics of the entire compound
3. the syntactic function of both constituents
4. the structure of the last syllable in the first constituent
5. the structure of the first syllable in the head constituent
6. the phonological structure of both constituents
7. the presence of a derivational suffix on the first constituent
8. the inflectional class of the first constituent
9. the position of stress in and the length of the first constituent:

dag-vagt ‘day shift’ vs. hverdags-tøj ‘everyday clothes’
fart-grænse ‘speed limit’ vs. overfarts-sted ‘ferry’
gang-bro ‘footbridge’ vs. foregangs-mand ‘pioneer’
gård-mand ‘farmer’ vs. urtegårds-mand ‘gardener’
snit-mønster ‘pattern’ vs. gennemsnits-X ‘average X’
tøj-klemme ‘clothes pin’ vs. legetøjs-butik ‘toy store’

An ideal representation (or list of constraints in Optimality Theory) would take
each of these factors into consideration. While hardware limitations and a lack
of fully specified databases still prevented me from doing this, it was nonetheless
possible to find a representation scheme which addressed many of these possible
influences.

Following other work in connectionist modeling (cf. MacWhinney & Leinbach
1991; Daugherty & Seidenberg 1994), I adopted a symmetrical CCCVCCC syllabic
representation for the five syllables closest to the constituent boundary of each
compound13 as indicated in Figure 10. The total number of variable inputs was
thus 35. However, these representations differ from those of previous researchers in
a number of important ways; each merit some discussion, since they provide a use-
ful and easily implemented general measure of edit distance for modeling various
linguistic phenomena in other languages as well.

First of all, as can be seen in the figure, the syllables carrying a main stress are
fixed to the initial slot of each constituent’s subrepresentation. This has the effect of
anchoring the entire compound according to its metrical structure (see Gentner &
Markman 1997 for a discussion of the importance of alignment in measuring sim-

primary
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syllable
2

syllable
3

primary
stress

syllable
5

first constituent of compound head of compound

Figure 10. Overview of variable representation for compound experiments
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ilarity, and Stemberger 1990 for other psycholinguistic evidence concerning the
storage of stress patterns in words). This type of alignment strategy is not only
useful for representing Danish compounds. It also provides a simple explanation
for why the much-discussed denominal verbs derived from existing English com-
pounds like grandstand and highstick are not inflected like the simplex verbs stand
and stick in the past tense (*grandstood, *highstuck): if these stressed monosyllabic
verbs are not mapped onto their unstressed counterparts in the compound, then it
is unlikely that they will provide a useful analogical model.

I also used orthographic (rather than phonemic) features, partially for logis-
tical reasons and partially to rule out effects of dialect. However, these features
were distributed within each syllable according to their level of sonority rather
than simply being left or right aligned. Thus, the first consonant position was re-
served for sibilants, the second for stops and fricatives, the third for liquids, nasals
and semivowels, etc. This further alignment of features allowed the model to make
more fine-tuned similarity judgments in the absence of unlimited variables, espe-
cially when blank feature slots were considered to be meaningful.14 In any event,
this 35 dimensional space was large enough to provide unique feature vectors for
each compound.

The data for these simulations were extracted from three sources: the elec-
tronic version of the Nudansk Ordbog (1986) and two Danish-English dictionaries
(Vinterberg & Bodelsen 1966 and Vinterberg & Axelsen 1979). In all, three datasets
were extracted for each compound tested: one containing all compounds with an
identical head constituent, one containing all compounds with a matching first
constituent, and a third which was a combination of the first two sets. Each dataset
was then further screened to eliminate any homophony or metaphorical extensions
of the target constituent which would probably not be activated when the target is
viewed or when searching for an analogical model. For example, the Danish word
kort can mean both “map” and “card”, the word klippe can mean both “to cut”
and “rock”, whereas jorde can be the first constituent for compounds concerning
“funerals”, “the earth”, and by extension “soil or property”. In larger datasets these
might be considered noise, but in the present case, their inclusion would have been
detrimental, since semantics can affect a compound’s morphology. Finally, follow-
ing Booij 1994 and Baayen, Dijkstra, & Schreuder 1997, plural constituents were
considered to have their own (i.e. opaque) representations, since pluralization can
(at least in some cases) involve concept formation (as opposed to verbal inflection),
and evidence from psycholinguistic studies indicates that plurals also have unique
lemma representations.

The first set of targets was taken from the book Babettes Gæstebud (‘Babette’s
Feast’) by Karen Blixen. 245 compounds were extracted from the book, all of which
had a noun head constituent and a first constituent which was listed in the Nudansk
Ordbog as an independent word. It would be difficult to be more specific than
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this when using Danish data, due to the high degree of overlap between infini-
tive, substantive, and adjectival first constituents. The linking options themselves
(+zero, +s, +(C)e and –(C)e) can further complicate matters, for example, by cre-
ating forms which resemble an infinitive but are not listed independently (bønN

‘prayer’→ bønne-bog ‘prayer book’) or by truncating intuitively verbal forms so
that they are indistinguishable from existing substantives (krybeV ‘creep/crawl’→
kryb-dyr ‘reptile’). This means that adverbs were also admitted as first constituents
(comprising only 13.9% of the targets), all of which have 100% static combina-
tion forms. Nonetheless there was quite a bit of variation: 10% of first constituents
in this group showed nondeterministic behavior with regard to their combination
form. Wherever possible, the representations used were based on listed words and
those which semantically made the compound easiest to interpret.

First, I did a cross validation test for the 245 head-match-only datasets.15 These
results were already quite good: 79.1% correct for AM and 83.9% correct for Sim-
Net. Both models generally chose analogical models which had the same metrical
structure and number of syllables. They also recognized derivational suffixes and
were able to pick up on the generalization, noted in the literature, that the suf-
fixes -dom, -else, -hed, -ing, -ion, -skap and -tet all have combination forms which
use the linking element +s (99% correct for compounds with these suffixes or the
suffix -er). More than that, however, they were able to distinguish between bisyl-
labic words ending in -ng (which normally take the +s linking element) and those
ending in -ig (which often do not take a linking element). First constituents which
ended in a vowel were very unlikely to add anything in their combination form
(never when the final vowel was stressed, yet always after -else), and in general,
monosyllabic constituents were less likely to add anything in their combination
forms as well.

In order to account for the observation (Becker 1992) that the semantics of
the entire compound can influence the the form of the first constituent, I then at-
tempted to split the five head-match-only datasets which had the highest number
of first constituents up into smaller ad hoc classes based upon some salient seman-
tic notion which was observed to bind them together somehow. These five datasets
had the head constituents -bog ‘book’, -dag ‘day’, -mand ‘man’, -mester ‘master’ and
-tid ‘time’. The average size of these datasets before splitting them up was about 145
words. The average size of the ad hoc datasets was about 20.

For example, it was observed that the percentage of correct predictions for
the “man”-compounds (76.7% with AM originally) were much higher when those
compounds referring to naval posts (90%) or to violent/criminal people (100%)
were considered separately. The “day”-compounds (originally 63.6% with AM)
were likewise very consistent when those days referring to various types of weather
(100%) or a typical day in a given month (100%) were considered separately. Simi-
larly, “day”-compounds denoting a celebration, holiday or commemoration, many
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of which were incorrectly classified when lost in the crowd, were correctly predicted
93.5% of the time by both models in isolation.16 These ad hoc categories were also
found to exist for a good many other Danish and German compounds. They are
not necessarily disjunctive and could be as specific as “sports titles” or as vague
as “animals”, but it seems that if no previous compound with the same first con-
stituent exists to model behavior after, then this kind of semantic information must
be crucial for selecting the correct combination form for the novel compound. The
average percentage of correct predictions for this group was 93.1% for AM and
93.6% for SimNet.

Next, I tested the actual compounds which were extracted from the book us-
ing their combined datasets (all listed compounds with either a matching head or
first constituent). On the first run, I allowed both models to remember all of the
data and, not surprisingly, both did a very good job of predicting the combination
form for each first constituent (99.2% for AM and 99.6% for SimNet). While this
may in fact reflect something close to what a native speaker of Danish would do
under identical circumstances, it is nonetheless not very interesting from a mod-
eling point of view. This percentage is a direct result of the fact that 78% of the
target compounds were listed in the sources from which the databases were ex-
tracted. Thus 191 of the targets were predestined to be correctly predicted in both
models, and these same data tokens also severely restricted the predictions for the
remaining targets as well.

Therefore, during the second run it was assumed that the target compound was
not available as a possible analogical model. This time the predictions were more
“interesting”, but also still very impressive. On the second run, AM correctly pre-
dicted the form for 95.9% of the target compounds, while SimNet predicted 97.5%
of the forms correctly. The differences between the two models are instructive in
this case.

Both models missed on the compounds klipfisk, øllebrød, aftensmåltid, landsby
and provstedatter. Klipfisk, as it turns out, was probably borrowed directly from
the Norwegian word klepfisk and has nothing to do with the verb klippe ‘to cut’
at all, even though this is an almost automatic interpretation for the compound
(which means “split and dried codfish”). The word øllebrød, on the other hand,
does not mean “beer bread” as a non-native speaker would be inclined to believe,
but rather a soup-like dish made with (usually non-alcoholic) beer and pieces of
bread. Its most likely etymology is øl+og+brød (‘beer and bread’). This is a semi-
productive pattern in Modern Scandinavian and includes other words like smørre-
brød ‘butter and bread’ and saftevand ‘juice and water’. Both aftensmåltid ‘evening
meal’ and landsby ‘rural town’ are examples of an exceptional linking element be-
ing retained through high frequency while surrounded by different behavior. The
normal combination form for aften is +zero, except when referring to food (see
above), while the word land is used almost exclusively without a linking element
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when it means “rural”. In fact, the +s linking element is strongly associated with
the meaning “national” in Danish. All four of these words are very common in
spoken Danish.

The frequency argument will not work for the next compound, provstedat-
ter ‘rural dean’s daughter’, however. This appears to be the expected form for this
compound formation, but it is not predicted by either model. This linking element
could very well be an epenthetical schwa between the hard consonant cluster at
the end of the first constituent and the stop onset of the head constituent which
matches it in place and manner of articulation. As will be discussed below, this
compound would have been predicted correctly if it had had more support from
other compounds sharing this first constituent or if only first constituent matches
had been used in the dataset.

Of the few compounds that SimNet classified “better” than AM, the first
three are remnants of completely unproductive linking patterns. They would not
have been selected had activation been stopped early on during processing, and
quite simply they receive the correct combination form at asymptote only because
their nearest neighbor in the dataset happens to use the same combination form:
bygmester < brygmester, spørgsmål < søgsmål, bønnebog < børnebog. In the case of
the first two of these compounds, they also happen to be remnants of the same
unproductive linking pattern as the target.

Another two which SimNet predicted correctly were Norgeskort ‘map of Nor-
way’ and jordelivet ‘the earthly life’. Both words are part of small but productive
patterns which received very little support in their respective datasets. Maps of
countries always take the +s linking element, but such compounds only accounted
for 2 out of 17 tokens in that dataset. The word jord, when used metaphorically or
when it can be translated with “earthly” (vs. “earth”), consistently takes the +(C)e
linking element, but this time only 3 of 74 data tokens supported this (sub)pattern.
Again, it is a coincidence that the nearest neighbors (verdenskort and jorderige, re-
spectively) are also a part of these ad hoc groupings. In other words, it is an open
question whether or not we would want a model of language to predict these par-
ticular forms correctly under these circumstances. SimNet took a long time (rel-
atively speaking) to predict both of these forms and it also missed another tar-
get at asymptote, måltid, which despite its age should have been easy to predict
from its phonology/orthography. If selection had been made after a single activa-
tion pass, there would have been a good chance that a correct model would have
been chosen, in fact.

Intuitively, we would expect the first constituent by itself to be a more reli-
able indicator of what the combination form of new compounds should look like,
so the same group of 245 targets were once again tested, this time using the first-
constituent-match-only datasets. All else being equal, AM was able to correctly
predict 97.1% of the targets this time. This is only a 1.2% increase, but a Pear-
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son’s chi-squared test performed on these results indicates that it is a significant
one (χ2(1) = 12.64, p = 0.0004). Unfortunately, SimNet’s predictions were no
better using these datasets than they were using the combined datasets (97.5% for
both). This is because 7 of the 245 targets (including some which were predicted
correctly) could not be tested in this way, since there was not a single listed com-
pound with the same first constituent in the sources used. SimNet also lost 2 other
correct predictions when the head-match tokens were removed from the datasets
(for bygmester ‘master builder’ and spørgsmål ‘question’). In other words, under
this condition the two models functioned almost identically.

I would like to mention just a few examples of more rampant variation involv-
ing Danish compounds now before moving on to the psycholinguistic experiments.
Recall that about 10% of Danish words are not consistent in their combination
forms. In fact, many of them are attested with more than one form within a single
compound type:

svingdør / svingedør ‘swinging or revolving door’
dødedag / dødsdag ‘date of someone’s death’
værtdyr / værtsdyr ‘host animal’

Most often such pairs are functional equivalents, but sometimes they are not:

landmand ‘farmer’ vs. landsmand ‘compatriot’
natravn ‘nighthawk’ vs. natteravn ‘night owl’ (person)

When there is a semantic distinction, then it is possible for ad hoc semantic group-
ings to explain the variation (as in the above examples). Logically, if no such se-
mantic difference is present, it should be more difficult to explain this variation
in this manner. To test this assumption, I looked at 154 compounds whose first
constituent was nat ‘night’. 50 of these (about 1/3) are listed with the combination
form natte- and the rest with the form nat- (none with the form nats-). As expected,
many of these compounds can be grouped into ad hoc semantic categories which
turn out to be quite regular internally. This was attempted for all 154 compounds
in this set; however only 77 of them (50%) were given categorical predictions by
AM and SimNet, thus indicating that we should indeed expect some overlap. In
fact, I found three “night”-compounds listed with both combination forms and
no apparent difference in meaning. The predictions for those three compounds is
given below:

compound AM predictions SimNet predictions

nat(te)kvarter ‘accommodations’ 55.1% / 44.9% 55.4% / 42.0%
nat(te)himmel ‘night sky’ 56.6% / 43.4% 55.8% / 41.1%
nat(te)runde ‘night beat’ 40.9% / 59.1% 37.4% / 62.6%
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Another kind of variation involves deverbal compounds in Danish. There is
a generally accepted rule that deverbal first constituents with simplex morphol-
ogy should use the +(C)e (infinitive) combination form, unless a nonconcatena-
tive substantivized form exists, in which case the latter form should be used. If
a deverbal first constituent shows complex morphology, on the other hand, then
a (longer) substantivized combination form should be used (cf. Køneke 1986).
In other words, a deverbal first constituent should look as much like a noun as
possible and these are the accepted ways of accomplishing this.

Of course, there are many exceptions to both of these generalizations:

be-skære-saks, op-vaske-maskine, und-vige-manøvre (complex +(C)e)
bygnings-måde, åbnings-fest, skærings-dag (simplex +(C)ings)

We also find examples of first constituents following both of these combination
patterns with no apparent rhyme or reason, but just as in the previous examples,
this variation is nontrivial and cannot be attributed to dialect.

One compound family with a particularly high amount of this kind of varia-
tion has a first constituent based on the verb bygge ‘to build’. There were 124 such
compounds listed in my sources, approximately half of which occur with the com-
bination form bygge- and the other half with bygnings-.17 There were also three
remnant forms with the unproductive byg-. There were also 18 of these compounds
listed with nondeterministic behavior. Two of these are regularizations of the un-
productive remnant forms, while the remaining 16 are attested with both the +(C)e
and the +(C)ings forms. Despite this rampant variation, both AM and SimNet were
able to predict the correct behavior (or at least one of them) for each of the 124
compounds in this simulation. Given the above discussion, this is not so surpris-
ing. More interesting are the average results for those 16 compounds listed with
both a +(C)e and a +(C)ings combination form by AM (using random selection)
and SimNet (after a single activation pass):

AM (random selection) SimNet (single pass)

-nings 49.7% -nings 49.9%
-ge 46.7% -ge 45.7%
+zero 03.6% +zero 04.4%

While rule-based approaches to language explanation can sometimes predict con-
flicting outcomes, I do not believe that they can provide quantitative results like this
or predict the amount of variation which is actually attested in the data to this ex-
tent. The simulations using the compounds extracted from the book together with
these results show quite clearly the degree to which very different models of analogy
can approximate each other’s predictions, even using alternate rules of usage.
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. Human classification strategies

Some of the most commonly encountered criticisms of language models based
on pure analogy are that they are not restrictive enough or not reliable enough
as classifiers in a statistical sense. Thus, from a language evolution point of view
they should also predict rates of change across languages which are simply not at-
tested. Certainly the research reported in this volume and elsewhere involving AM
should go a long way towards dispelling the myth that analogy cannot be restric-
tive. Daelemans et al. (1999) have also put forth solid evidence that retention of
specific examples and avoidance of generalization will lead to more realistic results
when modeling language learning phenomena. In general, I believe that such crit-
icism also betrays an underestimation of the role of convention in language (and
perhaps in human cognition), which is also common in linguistics.

We can easily test quantitative analogical models to see how they classify var-
ious data, but how do human beings go about classifying data to which they
have not yet been exposed. In an effort to help answer this question, I conducted
two simple psycholinguistic experiments which were designed to test competing
hypotheses about this important process.

Experiment 1: Numeric data

Materials
The same set of 64 three-digit numbers used in Skousen 1992 and Baayen 1995
was used as the data for this experiment. These numbers each consisted of three
variables which could take on the values 0, 1, 2 or 3. Those whose second variable
had a value of 0 or 1 were assigned the outcome A; those with 2 or 3 were assigned
the outcome B. A group of 16 of these 64 labeled numbers was extracted and used
as a presentation set. The remaining 48 numbers were then randomly divided into
3 groups of 16 test sets. Half of the presentation sets were presented in numerical
order and the other half were presented to a control group in random order. A list
of these presentation and test sets can be found in the Appendix.

Procedures
The participants in the experiment were asked to perform a simple labeling task.
Each participant was given a sheet of paper which contained one of the two labeled
presentation sets at the top and one of the three test sets at the bottom. There were
underscores next to each of the numbers in the test sets and participants were asked
to study the labeled numbers at the top of the paper and then label the numbers
at the bottom of the paper based on what they had seen. These instructions were
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given in written form and verbally at the beginning of the experiment, which lasted
approximately five minutes from the time I finished giving the instructions.

Participants
Forty-six volunteers participated in this experiment. All were undergraduate stu-
dents at Utah State University.

Results
The group which was shown the presentation data in numeric order and the con-
trol group both classified the unmarked tokens equally accurately, the adjusted
average misclassification rate for both groups being 19.3 percent.18 This rate of
misclassification is certainly much better than chance, but it is also a far cry from
the perfect performance of many models which are claimed to be more optimal
in terms of modeling human classification. The analysis of the responses indicated
that only about 20% of the students were able to discover the relatively simple rule
used when originally classifying the presentation set. Many of them were clearly us-
ing analogy based on individual data tokens in the presentation set and not looking
for a rule to apply at all. This analysis was verified by informal questioning after the
task was completed during which some participants reported spending the bulk of
their time looking for similarities between the items in the presentation set and
those in the test set (which is the last thing a rule induction engine would do).

Experiment 2: Language data

Materials
For this experiment another set of 16 data tokens was used for presentation, but this
time they consisted of actual English words. Instead of numbers, the three variables
consisted of graphemes: the first and third variables were all orthographic variants
of the four English voiceless stops /’/, /p/, /t/ and /k/,19 whereas the second variable
was allowed to take on any of the four English vowels “i”, “a”, “o” and “u”. Thus
the dataset was comprised of closed one-syllable English words each containing a
combination of two voiceless stops. Words containing the vowels “i” and “a” (un-
rounded front vowels) were assigned the outcome 1; those containing “o” or “u”
(mid or back vowels) were assigned the outcome 2. Each vowel was directly cor-
related with one of the numbers (0, 1, 2, 3) from the first experiment and their
numbers within the dataset were kept constant as well in an attempt to minimize
the effect of the make-up of the dataset on the resulting predictions. The emphasis
was on using numeric data versus actual language data. Two test sets were used.
The first (T1) consisted of a second group of 16 closed one-syllable English words
similar to those in the presentation set. The second test set (T2) differed from the
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first in that voiced stop consonants were allowed in the first position. Half of the
presentation sets were presented in alphabetical order and the other half were again
presented to a control group in random order. A list of these presentation and test
sets can be found in the Appendix.

Procedures
The procedures for this experiment were identical to those of the first experiment.

Participants
Thirty-eight volunteers participated in this experiment. All were undergraduate
students at Utah State University. All were native speakers of English.

Results
As in the first experiment, the control group classified the test items equally ac-
curately, but this time the adjusted average misclassification rate was about one
quarter of that obtained for the numeric data, namely 5.9% for the T1 condition
and 4.5% for the T2 condition. The presentation and test sets (especially T2) were
constructed in such a way that the participants were likely to concentrate on the
rime of each syllable and ignore the onset – a very common task for most speak-
ers of English, yet an analysis of the responses indicates that half of them still did
not pick up on the categorical rule used to classify the original data. Interestingly,
almost half of the misclassifications were due to the four words in the two test sets
which did not have a rhyme in their dataset: “pip”, “tip”, “bock” and “dock”. On av-
erage, these words were three times more likely to be misclassified than the average
word containing a rhyme in its dataset. This is a strong indicator that once again
analogy to individual items was being used as opposed to the categorical vowel rule.

General discussion

It makes sense that human subjects would perform better on the linguistic labeling
task than on the numeric labeling task. First of all, we have more practice analyzing
words than random strings of numbers. The words also have the additional advan-
tage that they can be associated with sounds which allowed the subjects to compare
the presented data on a dimension which was not available during the numeric la-
beling task. Finally, the task was conceptually simpler as well, since there was an
additional clue as to which variable was likely to be the salient one for the purposes
of this particular classification task: two types of variables (consonants and vowels)
were used in the second experiment, whereas only one type (numbers) was used in
the first one. That the results were slightly better for the T2 condition compared to
the T1 condition also follows from the fact that there were no exact matches in the
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T2 test set for the initial consonant, which was yet another clue that the informa-
tion needed for classification was to be found somewhere in the rime. Yet after all
of these clues, a full half of the participants were still unable to perfectly classify the
test items according to the proposed rule.

How about analogical models like AM and SimNet? It turns out that these
types of models can very closely approximate the behavior of the subjects in these
two experiments. These same data were presented to both models and their respec-
tive predictions are given below:

Misclassification rates
AM SimNet Human data

Numeric data 9.0 13.1 19.3
Language data 1 6.0 5.7 5.9
Language data 2 4.7 4.7 4.5
Combined 1 & 2 5.35 5.2 5.2

It this case, we know that the models are basing their predictions on pure analogy
to the presented data. It is interesting to note that both models not only show simi-
lar overall rates of misclassification (especially for the linguistic tasks), but they also
stumble in similar places. For the T2 test set, both models misclassified only those
items which did not contain a rhyme in the presentation set. Recall that the partic-
ipants were also three times more likely to misclassify these same items, relative to
other items in this test set.

. Conclusion

In this paper we have examined several different types of models based on anal-
ogy which all appear to be related to each other to various degrees. The second
half of the paper was devoted to an in-depth comparison of two specific models,
AM and the localist connectionist model, SimNet. We have seen that both mod-
els are capable of predicting language behavior in a way which seems to be very
consistent with the available evidence from actual language users. SimNet is par-
ticularly good at capitalizing on similarities in a given population of exemplars. It
has the advantage of being able to store information about frequency in terms of
weights and associations and can also retrieve default characteristics of activated
hidden units which are not present in the input. We have also discussed how the
settling of activation in this model closely approximates the different rules of usage
posited for AM.
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On the other hand, AM is clearly better than other exemplar-based models at
learning to predict probabilistic behavior at its attested frequency of occurrence
(Skousen 1989:81). The other models discussed can approximate these predictions
but are rarely as accurate in terms of mirroring the actual level of variation to which
they have been exposed. Even SimNet and TiMBL, which make predictions which
are very close to those of AM, must make use of information weight gain mea-
sures or adjust some parameters in order to account for idiosyncratic or otherwise
deviant data to the same extent. It may be possible to systematically set such param-
eters based on the size and make-up of a given dataset, but this would nevertheless
not be as conceptually attractive as not having to adjust any parameters at all. An-
other apparent advantage of AM is that its predictions are less drastically affected
by imperfect memory than those of other similarity-based models.

Some choose to view these various analogical models as competitors, but I pre-
fer to think of them as being complementary to each other. Becker’s (1990) anal-
ogy model could be viewed as a bridge between formal transformational gram-
mars and the more functionally oriented morphological/phonological models of
Ohala (1974) and Bybee (1985), both of which also share many characteristics with
Skousen’s model. In a similar way, I think AM (and TiMBL and SimNet) could be
viewed as a bridge between more logically oriented models like that of Mitchell
(1982) and more elaborate distributed connectionist models. Neither one of these
model types resembles the other very much, but both have many important fea-
tures in common with the AM model. In a sense, this allows the latter to enjoy the
best of both worlds: better interpretability plus the ability to make useful general-
izations on novel input and, as we have seen, to make human-like classifications,
especially in the domain of language.

Notes

. Mitchell’s 1978 thesis essentially addressed one of the major shortcomings of perhaps the
first viable concept-formation program (Winston 1975), namely that it only maintained one
nondisjunctive hypothesis at any given time (Genesereth & Nilsson 1987:174), and many of
the subsequent concept-formation models can be shown to be special cases of Mitchell’s
original model (Mitchell 1982).

. This formula insures that each concept in the graph will be a generalization of the con-
cepts which are both located above and connected to it. In logic this relationship is referred
to as a partial order of generalizations.

. Of course nasals and stops are not mutually exclusive, but for the sake of this example,
we will pretend that they are. This pretense will have no impact on the theoretical import of
the example whatsoever.
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. All 64 of the possible contexts in the example were presented to both models and the
probability (in percent) of selecting the exceptional outcome (e) was determined for each.
The average correlation coefficient r between the two sets of results is equal to 0.99, but only
when the general context (i.e. “- - -”) is left out in Skousen’s model. This should not be a
problem though, since this supracontext is trivially non-empty and does not reveal anything
about the similarity of the data tokens to the given stimulus. This supracontext would almost
always be heterogeneous anyway in the standard model.

. In my formulation, every hidden unit in the network will excite itself and inhibit every
other hidden unit, with the excitatory force from each hidden unit being directly related to
that unit’s net positive input and the inhibition from each hidden unit relative to a fraction
of that value.

. These experiments were originally reported in Skousen 1989:40–49.

. Skousen uses a strict (and consistent) definition of behavior discovery throughout his
1989 book: a behavior is considered to be discovered when the overall leakage (probability of
predicting the wrong outcome) permanently drops below 2%. For practical purposes, how-
ever, his model will discover categorical behavior as soon as an equal number of differently
labeled tokens are presented.

. This involves lowering one parameter in the model, the inhibition level within the hidden
unit subgroup, to one third of its original value. It is a virtue of AM that no such adjustments
are ever necessary to get similar results, but they do not seem to be completely unmotivated.
It is also important to note that this is also the only parameter adjustment which was ever
necessary during the course of the reported experiments.

. These variables are almost identical to the ones used by Skousen in his analysis, except
that instead of counting the sonorants in the first syllable he specified whether or not there
was a second “vowel” in the first syllable and whether or not there was a liquid or nasal any-
where after the first vowel. After reviewing more extensive lists of Finnish verbs, it appears as
though the information most relevant to the palatalization of the onset of the final syllable
(when this syllable is open, has a /t/ onset and a short unstressed non-high unround vowel)
is the relative length of the word in terms of the number of sonorants, but this was not rep-
resented in the original description. All such two-syllable Finnish verbs with three sonorants
in the first syllable show a preference for palatalization in the past tense, and interestingly,
this preference also holds for most three-syllable Finnish verbs having similar final syllables,
where the sonorants are spread out over two preceding syllables. For most verbs these vari-
ables yield the same results as those used in Skousen’s original analysis and those shifts in
predicted probabilities which do occur are relatively minor.

. If the test verbs were part of the dataset, then the predictions would be dictated by the
outcomes associated with these verbs and thus would be uninteresting, assuming perfect
memory. Although this was not tested specifically, it would also be possible to run these
simulations under conditions of imperfect memory and exclusion of the given context, even
if that context were part of the dataset.

. For all of the tests conducted using the Finnish data, the same parameter settings were
used in the model as before, except that the gamma value was set slightly higher at 1.65α.
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. The results of Paunonen’s experiment are adapted in this figure assuming a linear re-
lationship between his acceptability measure and probabilities. It is also possible that this
functional relationship could be non-linear. It would be interesting to explore this possibil-
ity and also to see how the predictions of both models would be affected by using imperfect
memory.

. Actually, I only used two consonant positions in the coda, since there were only 3 in-
stances in the Danish data which required the use of all three positions. The 7th feature
of each syllabic representation was used to give information about the number of syllables
preceding (or following) a given syllable.

. This is done in AM by setting the “null” parameter to “include”. When empty features
were not considered meaningful, then in general only 10–20 dimensions were evaluated and
the algorithm was much faster but the predictions were not as tight.

. Because the heads were the same within each dataset, only the 21 variables defining
the first constituent of each compound were used in these simulations. The extra variables
would be ignored in both models anyway.

. The two compounds which were missed were Juledag and Påskedag (Christmas and
Easter). Needless to say these are both extremely high-frequency first constituents with
entrenched forms which would be remembered.

. Note that there is a default rule which places an /n/ before the -ing suffix in these for-
mations. Analogy models like AM, SimNet and TiMBL readily provide an intuitive ex-
planation for this phenomenon (both diachronically and synchronically), since a chosen
analogical model will almost always have this same (otherwise meaningless) infix in those
environments where it should be expected.

. The adjusted averages were calculated by averaging the raw misclassification rates and
then discarding those which deviated from this average by more than one standard devia-
tion. The very few results which were discarded included individuals who didn’t finish the
task or classified all items the same. In this case the raw misclassification rate was only 2%
higher than the adjusted rate. This procedure also reduced the variance within the responses
for the second experiment by a factor of 5 or 6.

. The /’/ and /p/ graphemes had only one variant, “Ø” and “p” respectively. The variants
for /t/ were “t” and “tt” while those for /k/ included “c”, “k” and “ck”.
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Appendix

A. Numeric presentation set used with human subjects in Experiment 1:

002-A 011-A 022-B 031-B 103-A 110-A 120-B 201-A
210-A 213-A 230-B 231-B 233-B 300-A 313-A 322-B

B. Test items used with human subjects in Experiment 1:

001__ 130__ 003__ 122__ 013__ 023__ 100__ 131__
111__ 020__ 112__ 320__ 101__ 333__ 301__ 133__
331__ 311__ 232__ 012__ 332__ 202__ 221__ 021__
223__ 200__ 323__ 010__ 220__ 113__ 030__ 303__

312__ 121__ 310__ 033__
102__ 330__ 203__ 123__
222__ 000__ 321__ 302__
132__ 211__ 032__ 212__

C. Language presentation set used with human subjects in Experiment 2 (T1):*

at-1 cap-1 cop-2 kick-1 pack-1 pap-1 pat-1 pick-1
pit-1 pock-2 pop-2 pot-2 puck-2 putt-2 tap-1 up-2

* All words were taken from the American Heritage Dictionary of the English Language, New
College Edition. Boston: Houghton Mifflin, 1979.
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D. Test set used with human subjects in Experiment 2 (T1):

it __ tot __ tat __ tut __ tack __ cot __ tick __ top __
cut __ cat __ cup __ pip __ tuck __ kit __ tock __ tip __

E. Language presentation set used with human subjects in Experiment 2 (T2):

cap-1 cat-1 cop-2 cup-2 cut-2 kit-1 pack-1 pick-1
pit-1 pop-2 tack-1 tap-1 tip-1 top-2 tot-2 tuck-2

F. Test set used with human subjects in Experiment 2 (T2):

dot __ bit __ gut __ bock __ got __ bat __ bop __ duck __
gap __ dock __ back __ buck __ dip __ but __ gat __ guck __

number of average standard variance
samples misclassified deviation

Numeric data
raw 46 .213 .17 .029
adjusted 44 .193 .14 .020

Language 1
raw 19 .112 .17 .030
adjusted 17 .059 .07 .005

Language 2
raw 19 .076 .15 .021
adjusted 18 .045 .06 .004



Chapter 11

Exemplar-driven analogy in
Optimality Theory

James Myers

. Introduction

The term “analogy” may be something of a dirty word for most theoretical lin-
guists, but it shouldn’t be forgotten that it was theoretical linguists who first coined
the term as it applies to language. Of course, when the Neogrammarians wrote
about paradigm leveling or four-part proportional analogy, it was often just in
passing on the way to what really interested them, namely regular rules. The same
has been true for their structuralist and generative descendents, with a major ex-
cuse usually being that analogy was too vague a notion to deal with in a formal
model. While this excuse is no longer valid, a sharp divide nevertheless remains
between the mostly positive attitude of computer modelers and psycholinguists
towards analogical approaches, and the mostly negative attitude of generative
linguists.

Recently this has begun to change. Optimality Theory (or OT, to use its stan-
dard abbreviation; Prince & Smolensky 1993, 1997) is a formal generative model
of language that has certain properties that make it capable of handling true
exemplar-driven analogy (as opposed to earlier generative reanalyses of analogy
using general rules, e.g. Kiparsky 1978, 1988). Recognition of this fact is gradually
filtering through the “mainstream” OT literature, with prominent researchers such
as Kenstowicz (1995, 1997), Steriade (1999a, 1999b, 2000), Burzio (1997a, 1997b,
1999, 2000, 2002), and Hayes (1999b) beginning to peek out of the analogical
closet, along with newer scholars trained in the generative tradition, including Be-
nua (1995, 1997a, 1997b), Alderete (1999), Kirchner (1999), and Albright (2002).
My own contribution has been to try to push the analogical approach as far as it can
go in an OT formalism, in the hope that generative linguists and nongenerativists
working on analogy can better share insights.

To this end, I set myself the goal of building a completely explicit formal model
of the traditional linguistic notion of four-part proportional analogy (focussing on
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phonological analogy), using nothing but devices already found in the OT liter-
ature. In this paper I first review some of this literature to show that my model
is not extremely radical by current generative standards, and then I describe how
my model actually works. Next I prove that it is equivalent to the simplest possible
kind of connectionist network, a linear associator, which has well-known strengths
and weaknesses (see e.g. Anderson 1995). I then compare the explicit quantitative
predictions made by the OT model with those made by Analogical Modeling (AM;
Skousen 1989, 1992). In general, the OT model of analogy performs much worse
than AM, but the fact that it makes quantitative predictions at all, and that these
predictions are far more accurate than chance, convinces me that it is in princi-
ple possible to build a bridge between generative and nongenerative approaches to
analogy. Moreover, I show how insights from AM and connectionism may be used
to improve the quantitative accuracy of the model (though this requires going be-
yond OT formalism). Finally, like traditional generative theories of language, and
unlike AM, my OT model represents both inputs and outputs with features, and it
is also capable of incorporating non-analogical factors. These two properties seem
to give it an advantage in handling certain empirical phenomena, and so I hope
that in building the bridge between OT and AM, the exchange of insights will run
both ways.

. Analogy in Optimality Theory

In this section I discuss some of the properties that make OT more similar to ana-
logical approaches than previous generative models and show how explicitly ana-
logical analyses are becoming more common in the OT literature. This discussion
will then lead to the fully analogical OT model described in the following section.

The most obvious property that makes OT analogy-friendly is that it is non-
derivational and surface-based. This results from its being a descendent both of
standard generative theories of linguistic constraints and of so-called constraint-
satisfaction connectionist networks (see especially Prince & Smolensky 1997).

Another important property of OT is that it makes a foundational distinction
between two kinds of linguistic constraints. So-called Structure constraints include
those like the famous NoCoda, which require output forms to conform to uni-
versal structural principles that may or may not be motivated by extra-linguistic
factors. Such constraints are the clear descendents of generations of generative
constraints, including the syntactic principles of Government and Binding the-
ory. However, OT also posits so-called Faithfulness constraints, whose sole job it
is to require forms to be “faithful” to themselves or to other forms – that is, to
prevent the Structure constraints from doing anything. If OT grammars had only
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Structure constraints, all languages would be reduced to the maximally unmarked
form, which is clearly not the case. With Faithfulness constraints, OT thus makes
it explicit, perhaps for the first time in generative linguistics, that at least half of
the human language faculty involves brute memorization of forms as they are, re-
gardless of how inelegant, costly, or marked they may be. A purely analogical OT
model, then, would be one that is built solely out of Faithfulness constraints.

The fact that exemplar-driven analogy is driven by exemplars may seem to
pose an impossible challenge for OT, since OT constraints are usually described
as completely general, even universal or innate. From the very beginning, how-
ever, it has been recognized that it is often necessary to posit constraints that are
specific to specific classes, or even to particular lexical items. For example, in per-
haps the most famous application of OT, McCarthy and Prince’s (1993a) analy-
sis of Tagalog um infixation, just such a constraint plays a crucial role. The claim
of this analysis is that the distribution of um can be explained if one thinks of it
as being affixed as close to the beginning of the word as possible without creat-
ing a new syllable coda. Disallowing the coda is the responsibility of the universal
Structure Constraint NoCoda, but clearly there is no universal principle requiring
affixes to appear towards the beginning of a word. To account for this fact, Mc-
Carthy and Prince (1993a) propose a universal Faithfulness constraint Edgemost
which is parameterized by word edge (in this case, the left one) and by morpheme
(in this case, um). Hence Edgemost(Left, um) requires the morpheme um to ap-
pear at the left edge of a word, meaning that the further away um is from this
edge, the more it violates this constraint. McCarthy and Prince (1993b) later re-
analyzed Edgemost(Left, um) within the Generalized Alignment approach, now
calling it Align(um, Left, Stem, Left), but it still has to refer specifically to the
morpheme um.

Universal constraints parameterized by lexical item are sometimes called
Parochial constraints (e.g. Hammond 1995), and they are ubiquitous in the OT
literature. For example, to deal with the different phonological behaviors of the
two major classes of English derivational morphology (e.g. the Ø∼[n] alternation
in condemn-condemnation versus no alternation in condemn-condemnable), Benua
(1997a, 1997b) uses parochial constraints parameterized to each class, which then
allows her to rank the constraints separately and derive the phonological differ-
ences (this analysis will be described in more detail below). Some OT researchers
(e.g. Russell 1995, 1999; Hammond 1995, 1997; Golston 1996) have gone much
further, proposing models in which morphemes or words are themselves (sets of)
parochial constraints.

Thus to make analogy exemplar-driven in an OT model, we need parochial
Faithfulness constraints. For the purposes of my model of analogy described in
the next section, I maintain the standard OT assumption that distinguishes inputs
(roughly equivalent to the underlying representations of earlier generative theories
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of phonology) from outputs (i.e. surface forms), and the familiar set of Faithful-
ness constraints called Ident-IO which require input (I) and output (O) forms
to be identical in some feature (McCarthy & Prince 1995). Somewhat new is my
assumption that Ident-IO is parochial rather than general, and that it operates
over whole words, not individual morphemes. The general form of this param-
eterized constraint is Ident-IO(W ;F), where W represents a word, and F a fea-
ture. For example, the constraint Ident-IO(bat;[labial]) would mean that the word
bat cannot change its value of [labial] from input to output. Translated into more
theory-neutral terminology, this kind of constraint has the job of preventing anal-
ogy (or other factors) from affecting one particular phonological property in one
particular word.

The use of the parameters W and F require some brief comments. As is the case
for any model of analogy, the particular representation used may have enormous
consequences for how it works (see e.g. Baayen’s 1995 comments on Skousen 1992,
or Pinker & Prince’s 1988 criticisms of Rumelhart & McClelland 1986). By calling F
a “feature” I don’t necessarily adopt the standard distinctive features of generative
phonology; setting F to /b/ or VOT = 20 msec or even [bæt] may prove to work
better. Likewise, I don’t necessarily follow the linguist’s traditional focus on types
rather than tokens. W thus may be taken to represent a particular token of a word
(as spoken or heard by some individual). Token-based approaches to phonology
are becoming more common (see e.g. Bybee 2000; Kirchner 1999), and I will also
adopt this assumption in this paper, since as we will see, it allows my OT model to
handle lexical frequency effects in a natural way.

Nevertheless, Ident-IO is not the sort of Faithfulness constraint that can itself
give rise to analogy, which of course involves relations between words. Fortunately,
here is where recent developments in OT theorizing become particularly useful for
analogical purposes. Starting with McCarthy and Prince (1995), Faithfulness has
been generalized from involving only inputs and outputs, to involving any pairs of
representations. McCarthy and Prince (1995) applied this new theory (called cor-
respondence theory) to two parts of a single output (stem and reduplicant in redu-
plicated forms), and soon thereafter Kenstowicz (1995, 1997) and Benua (1995,
1997a, 1997b) applied it to pairs of morphologically related output forms.

Output-output (OO) correspondence allows for analyses that are strikingly
different from anything that had previously been allowed in generative theory, and
strikingly similar to traditional theories of analogy. For example, a blatant use of
paradigm leveling forms the basis of Benua’s (1997a, 1997b) analysis of condemn-
condemnation/condemnable alluded to earlier. In essence, her analysis suggests that
while condemn may lose its (supposedly) underlying /n/ due to a Structure con-
straint against syllable-final [mn] sequences, the loss of the /n/ in condemnable is
by analogy: a parochial Faithfulness constraint, specific to the class of morphol-
ogy that includes -able, requires condemn and condemnable to share the property
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of [n]-lessness. Technically this is handled by ranking the anti-[mn] constraint
at the top (it is never violated), then ranking the OO-constraint above the IO-
constraint (i.e. it’s better for condemnable to become similar to condemn than to
keep its underlying /n/). Another parochial OO-constraint for morphology like
-ation is ranked below the IO-constraint (i.e. it’s better for condemnation to keep
its original /n/ than to become similar to condemn).

Without necessarily condoning the particular application of analogy here, it’s
worth noting the important sociological development that such analyses repre-
sent. First, while there are some grumblings about them in the OT literature (e.g.
Booij 1997; Hale, Kissock & Reiss 1998), they are becoming more common; other
examples include Burzio (1997a, 1997b, 1999, 2000, 2002) and Steriade (2000).
Second, these authors openly acknowledge that what they are doing should be
called analogy; Kenstowicz (1995, 1997) makes this particularly explicit. Third,
analogical analyses of this sort have been accepted so rapidly that one has to con-
clude that they are filling a need that has long been felt but could never before
be expressed.

For example, the standard generative phonology textbook Kenstowicz (1994)
(written just before OT came to dominate phonological theory) argues that the
vowel-length differences many speakers show before the flaps in writer and rider
must be due to ordered rules (i.e. vowel-lengthening before flapping), just as ar-
gued in Chomsky and Halle (1968). Ironically, Kenstowicz (1994:71–72) does con-
sider an alternative analysis in which writer contains a short vowel by analogy with
write (more precisely, writer contains the short-vowel allomorph of write), but then
rejects it. With output-output correspondence (developed partly with the help of
Kenstowicz himself), the analogical analysis can now be formalized by positing
a Faithfulness constraint Ident-OO([vowel length]) that outranks the Structure
constraints requiring vowels to be long before voiced consonants. Although I don’t
know of any work in the OT literature that actually presents this analysis, it’s not
difficult to flesh out the details. To illustrate this, and to give readers less familiar
with OT notation a chance to practice before things get more technical later on, I
provide the details here.

First, a Structure constraint requiring consonants to be flapped in certain in-
tervocalic environments (call it Flap) must be ranked higher than the Faithfulness
constraint Ident-OO([vowel length]), which is in turn ranked above the Struc-
ture constraint requiring long vowels only before voiced consonants (call it Long).
Tableaux 1 and 2 (as they are called) then illustrate what happens in the pairs
ride-rider and write-writer.
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(1) Why both ride and rider have long vowels (no analogy)

Input: Flap Ident-OO Long Ident-IO
raid-raidr ([vowel length]) ([vowel length])

raid-raidr * **
ra:id-raidr * * * *
raid-ra:idr * * * *
ra:id-ra:idr * **
raid-raiDr **

ra:id-raiDr * * *
raid-ra:iDr * * *

ra:id-ra:iDr **

(2) Why both write and writer have short vowels (paradigmatic leveling)

Input: Flap Ident-OO Long Ident-IO
rait-raitr ([vowel length]) ([vowel length])

rait-raitr *
ra:it-raitr * * * *
rait-ra:itr * * * *

ra:it-ra:itr * ** **
rait-raiDr *

ra:it-raiDr * ** *
rait-ra:iDr * *

ra:it-ra:iDr * **

As is usual in the OT literature, I list possible outputs in the first column (here, all
possible combinations of vowel length with flapping). Constraints are listed left to
right from highest to lowest rank (an OT grammar is defined by a constraint rank-
ing). Stars indicate violations of a given candidate output by a given constraint;
multiple stars mean multiple violations by the same candidate. The optimal candi-
date (i.e. the one predicted to be grammatical, marked with a pointing finger) is in
the subset of candidates that least violate the highest-ranked constraint, and in this
subset, it is in the subset of candidates that least violate the second-highest-ranked
constraint, and so on. Perhaps a quicker way to spot the optimal candidate is to
mentally translate the stars into digits (* = 1, ** = 2, “ ”= 0, etc.), and the row of
stars for a given candidate into a number (e.g. 1020 for the first row in (1)). The
optimal candidate is then the output associated with the lowest number (e.g. in (1),
the candidate marked with the pointing finger is associated with the number 0002).

Note that in (1), no analogy occurs. The optimal candidate here is simply the
one that obeys both Structure constraints (Flap and Long). By contrast, in (2), the
structurally best candidate is rait-rai:Dr (second from bottom), but that is not the
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one chosen. Instead the optimal candidate is one in which write and writer have
vowels with the same duration, since Ident-OO([vowel length]) outranks Long.

The main point to take away is that by using output-output correspondence,
the traditional generative rule-ordering analysis can be replaced with an analogical
one (specifically, paradigmatic leveling), and this analogical analysis is formally
precise. My proposed OT model of analogy, however, goes much further than the
examples just sketched.

. Four-part proportional analogy in Optimality Theory

To the best of my knowledge, nothing in the OT literature has taken the logical next
step, which is to try to build an OT model of four-part proportional analogy. This
more general form of analogy subsumes paradigm leveling as a special case, and it
is far more powerful. Moreover, as I noted in the introduction, it is something with
a long tradition in linguistics, and thus I hope less threatening to unconditioned
generative linguists than more sophisticated models of analogy like AM. In this
section I show how to bring this kind of analogy into OT, focusing on technical
issues (see Myers 2000a for discussion of the applications of the model to linguistic
data that pose serious problems for traditional generative models without analogy;
also Green 2001).

The first thing to do, it should be clear, is to make output-output corre-
spondence completely parochial, rather than requiring that it only apply within
paradigms. Otherwise we can’t describe the irregularization of dive (past tense
dove) as analogy with drive-drove. Thus I posit OO-constraints of the form Ident-
OO(Wi, Wj;Fk), where Wi and Wj are words (or word tokens) and Fk is some
feature (in the extended sense of “feature” discussed earlier).

But of course analogy does not work to make any random pair of words simi-
lar to each other. To constrain the Ident-OO constraints, we have to go somewhat
beyond the OT mainstream, but only somewhat. The problem is this. In a propor-
tional analogy, there are four items (a, b, c, d) standing in the relation a : b :: c : d.
This is standardly taken to mean that if a shares feature F with c, then b shares
feature G with d. In terms of parochial Ident-OO constraints, this says: if Ident-
OO(a, c;F) then Ident-OO(b, d;G). Is there any way of creating a new constraint
that is violated if and only if this logical implication is false?

As it happens, there is. In the grab bag of OT innovations is the notion of
constraint conjunction, which creates new constraints with Boolean operators (see
Smolensky 1995; Crowhurst & Hewitt 1997; and Balari, Marín, & Vallverdú 2000
for non-analogical applications). It turns out that the constraint we need has the
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form given below (conjoined with the AND operator), which is violated if and only
if at least one of the two component constraints is violated.

(3) Ident-OO(a, c;F)∧ Ident-OO(b, d;G)
[abbreviation: OO∧OO-(a, c;F)(b, d;G)]

That this constraint has the desired behavior can be seen if we consider a toy lexicon
containing four items a, b, c, d. If a and c are already similar, as in (4a below), d will
change its form to conform to b. However, if a and c aren’t already similar, as in (4b
below), d won’t change. (The conjoined constraint is violated in both candidates
since the first component constraint is violated, and hence it has no effect on the
choice of optimal output.)

(4a) a and c are similar

a = [+F], b = [+G], OO∧OO-(a, c;F)(b, d;G) IO-(d;G)
c = [+F], d = [–G]

d = [–G] *
d = [+G] *

(4b) a and c are not similar

a = [-F], b = [+G], OO∧OO-(a, c;F)(b, d;G) IO-(d;G)
c = [+F], d = [–G]

d = [–G] *
d = [+G] * *

While this makes analogical change in d contingent on the properties of a, b, and
c, there is still nothing preventing us from bringing a random quartet of words to-
gether into a spurious proportion. To deal with this, I fall back on the time-honored
generative tradition of positing a universal principle. This principle also explicitly
disallows Ident-OO constraints acting on their own outside of proportions.

(5) Proportion Principle
Given the items a, b, c, d in a language and the features F and G, the
conjoined constraint Ident-OO(a, c;F)∧Ident-OO(b, d;G) is generated
if and only if there exists a single outcome function o such that o(a) = b
and o(c) = d. Ident-OO constraints do not exist outside of such con-
joined constraints.

In justification of this move, I point out that all other models of analogy (in-
cluding traditional notions, AM, and connectionism) tacitly assume something
very much like this principle. For example, if one runs an AM simulation on
data points associated randomly with outcomes (e.g. drive-ate, strive-banana), one
shouldn’t expect to get particularly insightful results. Any theory of analogy thus
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presupposes a theory of “relatedness”; the Proportion Principle merely makes this
presupposition explicit.

This completes the set of supplemental devices needed for the OT model of
analogy. For the remainder of its powers the model relies on nothing more than
the central OT notion of extrinsic constraint ranking. This is all that is needed to
deal with the notoriously capricious nature of analogy (which often fails to apply in
one language in precisely the environment where it readily applies in another). For
example, we can assume that all English dialects have constraints like the following,
which requires the past tense forms of drive and dive to have the same vowel since
the present tense forms have the same rime.

(6) Ident-OO(drive,dive;[ayv])∧ Ident-OO(drivePAST, divePAST ; [o])

In a dialect where dive is regular, this constraint (whose existence is required by the
Proportion Principle) is stripped of all power by being extrinsically ranked below
the IO-constraint that keeps the past tense form of dive in its original form, as in
(7a below). By contrast, in a dialect where dive is irregular, these constraints are
ranked in the reverse order, as in (7b below), and the past tense of dive becomes
dove by analogy with drive-drove.

(7a) a dive-dived dialect

[drayv], [drov], IO-(divePAST ; [ay]) OO∧OO-(drive,dive;[ayv])
[dayv], [dayvd] (drivePAST , divePAST ; [o])

[dayvd] *
[dov] *

(7b) a dive-dove dialect

[drayv], [drov], OO∧OO-(drive,dive;[ayv]) IO-(divePAST ; [ay])
[dayv], [dayvd] (drivePAST , divePAST ; [o])

[dayvd] *
[dov] *

Paradoxically, extrinsic constraint ranking also turns out to provide a neat account
of universal properties of analogy, such as gradient similarity effects, gang effects,
and frequency effects. The explanation for this is that under the null hypothesis, OT
constraints can be extrinsically ranked in every possible way cross-linguistically.
If we examine the quantitative predictions of the completely random ranking of
analogical conjoined constraints, the probability that a given form will be changed
by a given analogy is determined entirely by the number of triggering analogical
constraints. For example, the more similar a target form is to an analogical trigger,
the more features they will share, and thus the more analogical constraints there
will be that are parochial with respect to those words (i.e. one such constraint per
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shared feature). Likewise, the larger the gang of analogical triggers {W1, . . . , Wn}
that are similar to a given target form Wn+1, the more analogical constraints there
will be that are parochial with respect to those words (namely constraints referring
to W1 and Wn+1, W2 and Wn+1, and so on).

The same argument works for frequency effects. To make this completely ex-
plicit, consider the following toy lexicon containing three word types a, b, c, where
a and b are both equally similar to c, but a is twice as frequent as b. The question
concerns which result the OT model predicts to be more likely: c (in its form for
o(c)) analogizing to a or c analogizing to b.

(8) Lexicon: a = [+F], o(a) = [+G],
b = [+F], o(b) = [–G],
c = [+F]

Data set: {a, a, b}
Using constraints that are parochial with respect to tokens rather than types, the
Proportion Principle generates the analogies given in the following tableau (analo-
gies between a and b are left out, since we’re focusing on the behavior of c). Note
that there are two constraints enforcing similarity between a and c, and only one
enforcing similarity between b and c. Note also that there is no claim that these
constraints are extrinsically ranked in any particular way; following the conven-
tion in the OT literature, I indicate the lack of ranking by separating the constraint
columns with dashed lines.

(9) a = [+F], o(a) = [+G], OO∧OO- OO∧OO- OO∧OO-
b = [+F], o(b) = [–G], (a, c;F) (a, c;F) (b, c;F)
c = [+F] (o(a), o(c);G) (o(a), o(c);G) (o(b), o(c);G)

o(c) = [+G] *
o(c) = [–G] * *

The question then becomes a mathematical one: given completely random con-
straint ranking, what is the probability that the candidate output o(c) = [+G] will
be chosen as optimal? While the analogical flavor of this question is new, the is-
sue of variable constraint ranking in OT is not. Going back to Kiparsky (1993),
OT researchers have used variable ranking to deal with variable linguistic phenom-
ena. (Other applications of variable constraint ranking in OT include Anttila 1997;
Anttila & Cho 1998; Nagy & Reynolds 1997; Hayes & MacEachern 1998; Boersma
1998; Boersma & Hayes 2001; and Myers 2000b.) Most useful for our purposes
here, Myers (2000b) proves several theorems for calculating precise probabilities
without having to face the factorial explosion that occurs when all n! rankings of
n constraints are examined. The central result is what Myers (2000b) calls Anttila’s
Theorem (after Anttila 1997), stated here as follows:
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(10) Anttila’s Theorem
If there are only two competing candidates X1 and X2, the probability
that candidate X1 will be chosen as optimal under completely random
constraint ranking is

P(X1) = |CX1| / [ |CX1| + |CX2 | ],

where |CXi
| = number of constraints that evaluate Xi over the alternative

candidate

In other words, if there are only two candidates to consider, the probability that
one will be optimal is just the proportion of constraints that favor it out of all
constraints that favor either candidate. (Constraints that treat all candidates the
same way can be entirely ignored, according to a theorem that Myers 2000b calls
Noncommittal Constraint Irrelevance.)

Specifically, what we find with the analysis in (9) are the following probabili-
ties: P(o(c) = [+G]) = 2/3, P(o(c) = [–G]) = 1/3. (Readers wanting to get a hands-
on feel for Anttila’s Theorem may write out all six (= 3!) constraint rankings im-
plied by the tableau in (9) to confirm that it does indeed work.) Thus c is twice as
likely to conform to the analogy with a as with b. This demonstrates that this OT
model shows one major kind of frequency effect: the more frequent the analogical
trigger, the stronger its analogical force.

The model is also capable of handling the flip side of frequency effects, namely
the more frequent a potential analogical target, the less likely it is to undergo anal-
ogy (as in the blocking of regularization in high-frequency English verbs). To rep-
resent target frequency, we use token-parameterized Ident-IO constraints. Con-
tinuing with the above example, we give word o(c) an initial value of [–G] and a
token frequency of 2, resulting in the following tableau. (The first three constraints
are the same as in (9) above.) Anttila’s Theorem now predicts the probabilities
P(o(c) = [+G]) = 2/5, P(o(c) = [–G]) = 3/5. Thus an increase in the frequency of
an analogical target decreases its likelihood of undergoing an analogy (here, a drop
in P([+G]) from 0.667 to 0.400).

(11)

a = [+F], o(a) = [+G], OO∧OO- OO∧OO- OO∧OO- IO-(o(c);G) IO-(o(c);G)
b = [+F], o(b) = [–G], (a, c;F) (a, c;F) (b, c;F)
c = [+F], o(c) = [–G] (o(a), o(c);G) (o(a), o(c);G) (o(b), o(c);G)

o(c) = [+G] * * *
o(c) = [–G] * *

This, then, is an OT model of true exemplar-driven analogy. It assumes virtually
nothing that has not already been discussed in the OT literature, and its major
technical devices (output-output correspondence and constraint ranking) are en-
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tirely mainstream. To understand precisely where the OT model stands among
nongenerative models of analogy, however, we need to examine the nature of its
quantitative behavior more closely. This is the subject of the following section.

. Analogy in Optimality Theory and connectionism

In this paper I have been using the term “analogy” to refer to an empirical fact that
has been recognized by linguists for almost two hundred years, not just the partic-
ular theory of it provided by AM. Thus I have no qualms in listing connectionism
as an alternative model of analogy. For example, Rumelhart & McClelland 1986,
using a connectionist model, is one possible analogical analysis of English inflec-
tion; Derwing & Skousen 1994, using AM, is another. In this section I show that
the OT model of analogy sits squarely in the connectionist tradition. In fact, under
a reasonable representational assumption (also made in AM), it is exactly equiv-
alent to the simplest kind of connectionist network, a linear associator. If a more
complex representational scheme is used, its behavior is somewhat more complex,
but is still essentially connectionist-like.

The representational assumption just alluded to involves supposing that the
outcomes (i.e. the forms that the function o maps to) are atomic units, rather than
composite forms built out of the same features that compose the data points. AM
makes this assumption quite clearly (as do nearest-neighbor approaches; see else-
where in this volume). For example, in the example in Skousen 1989:23–37, the ba-
sic forms are built out of three four-valued features, giving representations like 310
and 032, but the outcomes are the two distinct atoms e and r. It is not even immedi-
ately obvious how AM could be modified so that the outcomes themselves could be
built out of features in any meaningful way (though I make an explicit suggestion in
this direction in a later section). The atomic nature of the outcomes in AM makes
it eminently suitable for morphological analogy, which involves choosing among
a fixed set of distinct morphemes, but it may cause problems for certain kinds of
phonological analogy, which may affect only part of a form at a time. This possible
weakness of AM will be discussed further below, but first I will adopt the atomicity
assumption and see what consequences it has for the OT model of analogy.

The general situation is as follows. We have a set of words (or word tokens)
W1, . . . , Wn, represented with features F1, . . . , Fm, and an outcome function o
mapping the words onto a set of atomic outcomes X1, . . . , Xa. We want to know
what analogy will do with a new word Wn+1 given all possible rankings of all con-
joined analogical constraints conforming to the Proportion Principle. How can we
calculate the relative probabilities P(o(Wn+1) =X1), . . . , P(o(Wn+1) = Xa)?
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At first this may seem like a very difficult problem. Since more than two candi-
date outputs are being considered, Anttila’s Theorem does not apply. Moreover, the
behavior of the constraints may possibly vary quite unpredictably. This would leave
us with the computationally irritating factorial problem of checking all possible
constraint rankings. As it happens, however, the assumption of atomic outcomes
makes the constraints so well behaved that a slight extension of Anttila’s Theorem
can be used.

First, we can completely ignore all constraints that make no reference to Wn+1

(e.g. those that require identity between W1 and W2). These will be vacuously
obeyed by all possible outputs for Wn+1, and as stated by the theorem of Non-
committal Constraint Irrelevance mentioned earlier, constraints that don’t choose
among any candidates can be removed without affecting probabilities under vari-
able ranking. Now, all analogical constraints that do refer to Wn+1 must have the
following form (see 12 below) if they are to conform to the Proportion Princi-
ple. Note that in accordance with the atomicity assumption, the outputs o(Wi)
and o(Wn+1) in the second component of the conjoined constraint are completely
identical, rather than merely sharing the value for a single feature.

(12) Ident-OO(Wi, Wn+1;Fj) ∧ Ident-OO(o(Wi), o(Wn+1))

Logically there are only four possible behaviors of this constraint. These are rep-
resented schematically in (13), where the stars indicate under what conditions the
constraint is violated.

(13)
Ident-OO(Wi, Wn+1;Fj) ¬ Ident-OO(Wi, Wn+1;Fj)

Ident-OO(o(Wi), o(Wn+1)) *
¬ Ident-OO(o(Wi), o(Wn+1)) * *

Since our candidate outputs consist solely of possible outcomes for Wn+1, with-
out varying the representation of Wn+1 itself, the component constraint Ident-
OO(Wi, Wn+1;Fj) must be either always obeyed or always disobeyed (for any given
i and j) across the whole set of candidate outputs. If it’s disobeyed (i.e. Wi and
Wn+1 are not identical in feature Fj), then the conjoined constraint in (12) will
evaluate all candidate outputs as a violation. In this case, Noncommittal Constraint
Irrelevance means we can ignore this particular conjoined constraint. However, if
this component constraint is obeyed (i.e. Wi and Wn+1 are identical in feature Fj),
then the final decision is left to the other half of the conjoined constraint, namely
Ident-OO(o(Wi), o(Wn+1)).

Under what circumstances is Ident-OO(o(Wi), o(Wn+1)) obeyed? Here is
where the assumption of atomicity is crucial. Given this assumption, this con-
straint is obeyed if and only if the outputs of Wi and Wn+1 are entirely identical,
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which means there is some atomic outcome Xk such that o(Wi) = o(Wn+1) = Xk.
This means that this constraint is violated (along with the entire conjoined con-
straint) whenever o(Wn+1) is some atomic outcome other than Xk. Thus if the
premise is true (i.e. Wi and Wn+1 are identical in some feature), the conjoined con-
straint will be violated by all candidate outputs except one (namely the one where
o(Wn+1) = Xk).

For example, suppose that o(W1) = X1, and that W1 and Wn+1 are identical in
feature F1 (e.g. they both share value [+F1]) but not in feature F2. One corner of
the resulting tableau (14) will thus appear as follows, where the stars in the bottom
row symbolize the consistent violation of these constraints for all candidate outputs
other than o(W1) = X1.

(14)

OO∧OO- OO∧OO-
(W1, Wn+1;F1)(o(W1), o(Wn+1)) (W1, Wn+1;F2)(o(W1), o(Wn+1)) . . .

o(Wn+1) = X1 * . . .
o(Wn+1) = X2 * * . . .

. . . * * . . .

In general, then, these constraints only act in two ways: either they don’t do any-
thing, or they reject all candidate outputs but one. This limitation of winners to
at most one per constraint makes a slightly modified version of Anttila’s Theo-
rem applicable. The proof is virtually the same as that given in Myers 2000b for
Anttilla’s Theorem, and may be informally stated as follows. Given Noncommit-
tal Constraint Irrelevance, we only have to consider constraints that pick a single
winner. The probability that a given candidate will win overall, then, is simply the
probability that a constraint that favors it is ranked at the top (thus making all the
other constraints powerless).

(15) Anttila’s Theorem for constraints that choose at most one winner:
If all constraints evaluate at most one candidate as optimal, then the
probability that candidate X1 is optimal overall, given completely ran-
dom constraint ranking, is

P(X1) = |CX1| / [ |CX1| + |CX2 | . . . + |CXa | ],

where |CXi
| = number of constraints that evaluate Xi over the alternative

candidates

This theorem has a special interpretation in our case, however. The set CXi
(i.e. the

set of all constraints that evaluate Xi over the alternative candidates) contains all
analogical constraints that require Wn+1 to match some analogical trigger word Wk
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in some feature and that require the outcomes for Wn+1 and Wk both to be Xi. Keep
this sentence in mind; a variant of it will return shortly.

Now I proceed to show that this model works precisely the same way as a linear
associator. In this simplest of all connectionist networks (see Anderson 1995 for a
lucid introduction and references), there are two layers of nodes, and each node
is connected to all other nodes in the other layer. In training such a model, two
vectors of node activations are presented to the model, and learning occurs through
a Hebbian rule, i.e. a connection is strengthened if the two nodes that it connects
are simultaneously activated. In our case, node activations during training must
be either 0 or 1, all connection weights are initialized to 0, and the rule increases a
connection weight by adding 1 if and only if both connected nodes have activation
1. Using standard connectionist notation, the rule can be stated as follows:

(16) ∆wij = aiaj,
where wij is the weight of the connection between nodes i and j; ai and aj

are the activations of nodes i and j, respectively; and ∆wij represents the
amount added to wij each time ai and aj are changed.

As for the architecture of the network, one layer will of course consist of a set of
nodes for the atomic outputs X1, . . . , Xa. The other must consist of sets of nodes
representing values of the features F1, . . . , Fm, used for the word forms W1, . . . , Wn.
For example, if these features were binary, the architecture would be as shown in
Figure (17).

(17)

F1

X1 Xa

Fm

+ +– –...

...

To see how the model works, consider the situation illustrated above in (14), where
o(W1) =X1, and W1 and Wn+1 both share value [+F1]. During training, W1 (repre-
sented in features) would be presented to the bottom layer, thus activating the node
[+F1], and o(W1) would be presented to the top layer, thus activating the node X1.
Since these two nodes would be simultaneously activated, the Hebbian learning
rule would add 1 to the weight of the connection between them (highlighted in the
above diagram).

When training is complete, we freeze learning and present the word Wn+1 (rep-
resented in features) to the bottom layer. What we want to know is the relative ac-
tivation of the outcome nodes X1, . . . , Xa, since this indicates how likely it is that
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o(Wn+1) is to be realized as one of these outcomes. As in all connectionist networks,
the activation for each outcome node is derived from the sum of the weights of the
connections leading into it from active nodes. The most commonly used connec-
tionist networks today (e.g. feedforward networks trained with backpropagation,
Hopfield networks, and so on) take this input sum and then run it through a non-
linear function. What makes a linear associator linear is that it does not: the activa-
tion of an output node is directly proportional to the sum of the incoming weights.
Our activation function is thus as follows:

(18) ai =
∑

j ajwij,
where ai and aj are the activations of nodes i and j, respectively, and wij

is the weight of the connection from input node j to output node i.

Surprisingly, perhaps, this architecture and these equations mean that the activa-
tion of outcome node X1, relative to all the other node activations, is calculated
in precisely the same way as the probability P(X1) in the OT model (i.e. in (15)).
Since in our example we know that Wn+1 has feature value [+F1], the weight of the
highlighted connection in (17) between [+F1] and X1 will be added into the activa-
tion of node X1. This weight itself represents the number of instances in which two
things are simultaneously true: a word Wi has the value [+F1] and the outcome
o(Wi) of this word is X1. In general, the activation of Xi will represent the total
number of instances such that Wn+1 matches some analogical trigger Wk word in
some feature and such that the outcomes for Wn+1 and Wk are both Xi. (Here is
the reappearance of the sentence, in modified form, that I asked the reader to keep
in mind earlier.) In other words, the activation of node Xi is precisely identical to
|CXi

| (i.e. total number of Xi-favoring constraints in the OT model). This in turn
means that the proportion of activations represented by Xi is given by the formula
in (15), which divides |CXi

| by the sum of all “non-noncommittal” constraints
(which is equivalent to the sum of all output activations in the network model).
Under the atomicity assumption, then, the OT model of analogy is equivalent to a
linear associator.

Linear associators have very well-understood strengths and weaknesses (see
Anderson 1995 for discussion). Among their strengths is the fact that they are ac-
tually found in the nervous systems of some simple animals, and more to the point
here, that they capture the essential properties needed for analogy (namely, the
properties described in the previous section, such as gradient similarity effects,
gang effects, and frequency effects). Among their weaknesses are technical math-
ematical limitations that may not be relevant here (e.g. they cannot distinguish
nonorthogonal vectors in the training set, and like all two-layer networks they can-
not learn exclusive-or or parity), but they also suffer from a problem that makes
them less than ideal for the quantitative analysis of analogy: they are overly in-
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decisive. Due to the lack of a nonlinear activation function, they tend to waver
between states rather than showing crisp categorical behavior. (Categoricality is
something of a problem for connectionism in general, but linear associators are
absolutely abysmal.)

Before demonstrating these strengths and weaknesses in the next section by
pitting the OT model directly against AM, we should first briefly consider what
happens if we discard the assumption that outcomes must be atomic. Unlike (stan-
dard) AM, the OT model has no problem using featural representations for out-
comes. Consider again the general situation, identical to the one we have been
examining, but where the set of candidate outcomes consists of all possible rep-
resentations generated by the features F1, . . . , Fm. The analogical constraints will
then have the following form, where the second component constraint now refers
to just one feature:

(19) Ident-OO(Wi, Wn+1;Fj) ∧ Ident-OO(o(Wi), o(Wn+1);Fk)

These constraints no longer choose at most one candidate as optimal. Instead, they
either evaluate all candidates the same (namely, as in the previous discussion, if
the words Wi and Wn+1 don’t match in feature Fj), or they accept some of the
candidates (i.e. if o(Wi) matches o(Wn+1) in feature Fk) and reject the rest. If such
a constraint favors any candidates at all, the number of favored candidates will
almost always be greater than one. For example, if there are m features all with the
same valency v, then each non-noncommittal constraint will favor vm–1 candidates.
Tableau (20) illustrates this with three binary features, where vm–1 = 4.

(20)

W1 = [+F,+G,+H], OO∧OO-
Wn+1 = [+F,+G,–H], (W1, Wn+1;F)(o(W1), o(Wn+1);G) . . .
o(W1) = [–F,–G,–H]

o(Wn+1) = [+F,+G,+H] * . . .
o(Wn+1) = [+F,+G,–H] * . . .
o(Wn+1) = [+F,–G,+H] . . .
o(Wn+1) = [+F,–G,–H] . . .
o(Wn+1) = [–F,+G,+H] * . . .
o(Wn+1) = [–F,+G,–H] * . . .
o(Wn+1) = [–F,–G,+H] . . .
o(Wn+1) = [–F,–G,–H] . . .

These considerations show that the versions of Anttila’s Theorem we used earlier
cannot apply here, since no single constraint can alone be responsible for choos-
ing an output candidate as optimal. However, we still don’t have to rank all the
constraints every possible way and tally up the results, because a given outcome
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candidate o(Wn+1) = [α1F1, . . . , αmFm] (where αi represent feature values) can still
only be chosen as optimal under very well-defined circumstances. Namely, in order
for this candidate to be chosen, it must be that for every feature Fi, at least one con-
straint favoring [αiFi] must outrank all constraints that favor [¬αiFi] (i.e. any other
value for this feature); this follows directly from the definition of OT constraints
and constraint ranking (see Samek-Lodovici & Prince 1999 for more on the foun-
dational mathematics of OT). If |C[αiFi]| and |C[¬αiFi]| represent, respectively, the
number of constraints that favor [αiFi] and the number that favor [¬αiFi], we can
use the reasoning behind Anttila’s Theorem to deduce that the probability that the
optimal candidate contains [αiFi] must be as follows:

(21) P(o(Wn+1) = [. . .αiFi. . . ]) = |C[αiFi]| / [ |C[αiFi]| + |C[¬αiFi]| ]

Now, two constraints that refer to different features (i.e. a constraint that favors
[αiFi] and a constraint that favors [αjFj]) do not interact at all. That is, no matter
how they are ranked with respect to each other, the outcome will be the same. In
lieu of a formal proof, I offer Tableau (22) to ponder, where the relative ranking of
the constraints *[+F] and *[–F] (and of *[+G] and *[–G]) does indeed affect which
candidate will win, but not the relative ranking of *[+F] and *[+G] (nor of *[–F]
and *[+G], and so forth). For example, if *[+F] is ranked above *[–F] as shown,
the first two candidates can never win no matter how *[+G] and *[–G] are ranked,
even if one or both outranks *[+F] (try it and see).

(22) *[+F] *[–F] *[+G] *[–G]
[+F, +G] * *
[+F, –G] * *
[–F, +G] * *
[–F, –G] * *

What this means is that the probability that a given ranking chooses a candidate
containing [αiFi] is independent of the probability that this optimal candidate con-
tains [αjFj] as well. In the above tableau, for example, the probability that the op-
timal candidate contains [+F] is 1/2 (by the formula in (21), which can also be
confirmed by hand), and the probability that it contains [+G] is also 1/2. Neither
fact is dependent on the other in any way. This allows us to apply the multiplication
rule from probability theory, deriving the probability P([+F,+G]) = 1/2 · 1/2 = 1/4
(which may be confirmed by examining all 24 possible rankings of the constraints
in (22)). In general, the probability that o(Wn+1) = [α1F1, . . . , αmFm] is given by
the following formula (completing the proof is left as an exercise for the reader):

(23) P(o(Wn+1) = [α1F1, . . . , αmFm]) =
∏

i |C[αiFi]| / [|C[αiFi]| + |C[¬αiFi]|]
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Interpreting this in connectionist terms is more difficult than when we made the
atomicity assumption, but it does seem to have some interesting properties. As
before, the number |C[αiFi]| can be thought of as the sum of all the connection
weights leading into an output node, this time representing the feature value [αiFi].
Now, however, we have something like a nonlinear activation function, or more
properly, a function that takes as arguments the activations, for each feature, of the
feature value node of the target outcome relative to the activations of the nodes for
the other values for that feature. This function may tend to make the model more
decisive, since it involves multiplication rather than merely addition, but since the
multiplication involves fractions less than or equal to 1, it can only work to decrease
activation. Further thought is needed to explore the quantitative implications of
this aspect of the model, and I won’t discuss this further in this paper. The primary
point to note here is that while representing outcomes with features has not been
implemented in AM, it poses no special difficulty in the OT model of analogy (at
least from the theoretical side).

. Analogy in Optimality Theory and AM

Given the lack of sophistication of the OT model beneath all of its complex no-
tation, one might expect it to perform rather poorly when confronted with actual
analogical tasks to carry out. In this section I show that it does indeed perform
much worse than AM. Nevertheless, at a higher level of description, the OT model
actually performs remarkably well given its generative origins: in virtually every
case, it correctly chooses which of the alternative outcomes should be the preferred
one. Its weakness lies solely in the degree of probability it assigns to this outcome
(always much lower than it should). I end the section by suggesting how the quan-
titative predictions of the OT model might be improved by borrowing ideas from
connectionism, and alternatively, how the model could be made into a notational
variant of the AM algorithm, with interesting consequences for AM itself.

Consider first an AM analysis of Finnish past tense ti∼ si allomorphy (namely
the one in Skousen 1992:310–322; more recent AM analyses of this and related
problems in Finnish are found in Skousen 1989 [written after Skousen 1992] and in
this volume). In this analysis, attention was restricted to a small set of two-syllable
verbs ending in tAA (where A represents a low vowel), some of which form the
past tense with the ti allomorph, some with the si allomorph, and some with either
(at particular token frequencies of occurrence that vary word by word). Unpacking
the description in Skousen 1992, the analysis uses seven contextual variables (i.e.
features), listed in the following (with my own labels):
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(24) [±C1]: a binary feature representing the presence or absence of an initial
consonant

[C1 value]: a multivalued feature representing the onset consonant or
the lack thereof

[V1 value]: represents the first vowel
[±V2]: represents the presence or absence of a second vowel
[V2 value]: represents the second vowel or the absence thereof
[±C2]: represents the presence or absence of a stem-final consonant

[C2 value]: represents the stem-final consonant or lack thereof

Skousen (1992) first gives the model a data set of 42 verbs, and then tests it on verbs
not in the data set, including viertää ‘to slope’. AM predicts that the probability of
choosing the allomorph ti for this verb is very low: P(vierti) = 0.00153. The model
therefore both picks up on a real pattern in the data, and is very decisive about its
response. The result is so sharp that it appears as if it’s due to a rule. Based on the
data given, it is tempting for a linguist (e.g. myself) to state such a rule, namely
if the stem is a closed syllable, choose si. Nevertheless, the mechanism used here
is actually analogy, not a general rule; AM even allows one to list forms by their
degree of responsibility for the analogy. Skousen (1992:321) ends his discussion
by pointing out that the three factors affecting the strength of the analogy here are
(using my terminology) gradient similarity effects between analogical trigger and
target, the frequency of the analogical trigger, and (using the original wording) the
“extensiveness of the homogeneity”.

As I’ve shown in previous sections, the OT model captures the first two of
these three factors, but like connectionism and other non-AM models of anal-
ogy, it ignores homogeneity. How far can the OT model get with the same data
set, the same features, and the same test word viertää? To find out, I calculated
the predicted probabilities for the two allomorphs given all possible rankings of
all possible analogical conjoined constraints conforming to the Proportion Prin-
ciple (or equivalently, their relative degree of activation in a linear associator). In
practical terms, what I did was as follows. For each data verb input, I counted
the number of feature values that matched those in the input vier, multiplied this
sum by the number of tokens of ti and si reported for this data verb, and fi-
nally added up the totals for ti and for si. Some of my calculations are shown in
Table (25), which also includes the grand totals of the activations for ti and si given
the input vier.
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(25) a b c d e f g h i j k l
vier +C1 /v/ /i/ +V2 /e/ +C2 /r/ a+. . . +g No. No. h·i h·j

ti si ti si
hoi 1 0 0 1 0 0 0 2 26 0 52 0
i 0 0 1 0 0 0 0 1 2 0 2 0
kiel 1 0 1 1 1 1 0 5 0 22 0 110
kier 1 0 1 1 1 1 1 6 0 16 0 96
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total: 954 1475

The predicted probability is thus P(vierti) = 954/(954+1475) = 0.39275. The fact
that this number is less than 0.5 means that the OT model agrees that the pre-
ferred form should actually be viersi, not vierti. That is, under a winner-take-all
interpretation, the OT model and AM both choose the correct outcome. How-
ever, the probability P(vierti) predicted by the OT model is of course far higher
than the near-zero probability predicted by AM. This may be a consequence of
the OT model’s linear (i.e. indecisive) nature, or it may be related to its ignoring
homogeneity.

Other differences in the behavior of the OT model and AM can be seen if we list
the data verb inputs in order by their relative contribution to the analogical effect.
In the OT model, ranking is by the number of feature matches weighted by token
frequency (i.e. the values listed in the last two columns in (25)). The following
Table (26) lists the ten most influential items according to each model (data for
AM is from Skousen 1992:320).

(26) AM OT
Verb input Outcome Effect Verb input Outcome Effect

kier si 0.270 pi ti 748
piir si 0.258 tie si 432
kiel si 0.169 pyy si 180
siir si 0.086 piir si 120
rien si 0.061 löy si 112
pyör si 0.018 kiel si 110
viil si 0.009 ve ti 100

mur si 0.009 kier si 96
kiil si 0.005 myön si 90

vään si 0.003 kään si 78

Examination of this table shows that whatever the ultimate cause, the proximal
cause of the OT model’s quantitative problems is that it is too easily fooled by
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false analogies. The input pi, for example, has a large influence merely because it
happens to share two features with vier (i.e. [+C1] and [V1=/i/]), and because it is
high in frequency. That’s too bad for the model, since the outcome for pi is ti, not
the desired si. In spite of such problems, the OT model does manage to include in
the top ten some of the items that AM also considers important, namely the inputs
piir, kiel, and kier. Moreover, two other items ranked highly by the OT model (but
not by AM) have the “correct” syllable structure according to the linguistic analysis,
namely the closed-syllable inputs myön and kään (AM instead lists rien, pyör, viil,
mur and vään). This means that fully half of the ten most influential data points
for the OT model are precisely the ones that should have the most influence. Given
the extreme simplicity of the OT model, this is a rather remarkable achievement.

The unimpressive level of quantitative accuracy leaves room for improvement,
of course. One way to improve it is to hand-pick the features in accordance with
the linguistic analysis (mentioned above) that states that the crucial factor is syl-
lable structure alone. This means that we ignore all features except [±C1], [±V2]
and [±C2]. Carrying out the procedure, we end up with the predicted probabil-
ity P(vierti) = 0.07368, which is far closer to zero, as desired. We might be able to
justify this move if it were a cross-linguistic universal that suffix allomorphy is al-
ways sensitive only to syllable structure, thus implying an innate cognitive bias for
some features over others. No such universal exists, however, and this move should
rightly be dismissed as outright cheating.

To help learn how the accuracy of the OT model may be improved in more
appropriate ways, I considered another simple example comparing the OT model
with AM (and also with standard connectionism). This is the toy problem de-
scribed in Baayen 1995:395 (based on an example in Skousen 1992:266–272) in
which there are 22 data points composed of three features (which I will label F1,
F2, and F3). Each feature can take one of four values (0, 1, 2, 3), so the data points
can be represented as strings like 002 or 332. There are two possible outcomes (A
or B) which are purposely chosen to conform to a simple rule: if F2 ∈ {0, 1}, then
the outcome is A, otherwise it is B. The existence of this rule can be seen by the
regular distribution of A’s and B’s in the following Table (27).

(27)

F1→ 0 1 2 3
F2→ 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
F3↓
0 B B A B A B A
1 A B A B B
2 A B A A B B
3 A A B A
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Given these three four-valued features, there are 42 other possible data points (the
empty cells in (27)). AM does not give a strictly categorical response in most of
these cases. For data point 000, for instance, it predicts the probability P(A) =
0.871, rather than P(A) = 1 as required by the rule. (Of course, this begs the
question of how easily human beings could also see this particular pattern as rule-
governed.) Nevertheless, AM is never wrong about which outcome should be more
probable. More importantly, its error rate is very low. This can be calculated with
a number of methods; I used two. In the first method, I took all the data points
for which the rule predicts P(A) = 1 and subtracted from 1 the actual probability
provided by AM (e.g. 0.871 in the above case). The mean error, calculated this way,
was a quite respectably low 0.057 (chance performance of course would be 0.5). As
another measure of error rate, for every test point I calculated the Euclidean dis-
tance (commonly used in studying connectionist models) between AM’s predicted
values for P(A) and P(B) and the correct values. For example, for data point 000,
the correct probabilities for A and B respectively are (1, 0). AM predicted (0.871,
0.129). The Euclidean distance between these two points is 0.182. Here chance per-
formance would be half the length of the diagonal of a unit square (i.e. 0.707); AM’s
mean error value was the still very low 0.081.

How does the OT model fare on the same data? Again, it depends on how you
look at it. Table (28) shows the OT model’s predictions for preferred outcome for
the 42 test points (the original data points are shaded). The model only made one
mistake, incorrectly claiming that P(223A) = P(223B). Given not just the simplicity
of the OT model but also the sparse and scattershot evidence for the AB rule, I
suggest that this should count this as another success.

(28)

A closer look at the results reveals the usual quantitative problems, however. Using
the same measures of accuracy applied to AM, the mean error rate shown by the
OT model’s predictions of P(A) was 0.343 (chance = 0.500), and the mean error
rate by Euclidean distance was 0.486 (chance = 0.707). Both results are statistically
better than chance, but the error rate is still far higher than that for AM.

Earlier I mentioned two possible causes for the quantitative shortcomings of
the OT model: its lack of a nonlinear activation function and its ignoring of ho-
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mogeneity. To better understand which is responsible in this case, I compared the
behavior of the OT model with that of a two-layer connectionist network which
does have a nonlinear activation function, but as with connectionism in general is
not particularly sensitive to homogeneity. Like the linear associator associated with
the OT model, the output layer of this connectionist network consisted of just two
nodes (one for each outcome A and B) and three sets of four input nodes (for the
three four-valued features). The difference was that the network used a sigmoid
(i.e. S-shaped) activation function and was trained using the backpropagation
learning algorithm; since it only had two layers, this made it essentially equivalent
to a perceptron (again I recommend Anderson 1995 for lucid discussion of these
concepts). This model (simulated using the Tlearn software; see Plunkett & Elman
1997) had absolutely no trouble learning the AB rule. I assumed that given any
particular input, the activation of an output node (always between 0 and 1) rep-
resented the degree of probability of the model assigning that outcome given that
input (a commonly made interpretation in the connectionist literature). Its error
rate for P(A) was 0.038 and by Euclidean distance 0.085, roughly as low as for AM.
It appears, then, that at least for this particular simple problem, the accuracy of the
OT model might be improved simply by giving it a nonlinear activation function.

How could this be accomplished? The simplest nonlinear activation function
used in connectionist models is a step function. This is a function that has some
constant value (say 0) for all inputs below some threshold, and some other constant
value (say 1) for all inputs above the threshold. Unfortunately, this idea is doomed
from the start, since the output node activations will now always be just 0 or 1,
which makes it impossible to interpret them as continuously varying probabilities.

The particular sigmoid function used with backpropagation and other con-
nectionist models is unlikely to be coaxed from the simple mathematics underlying
the OT model. Continuous nonlinear effects may arise if outcomes are represented
with features, as discussed at the end of the previous section, but this can’t help
us with the Finnish and e-r problems examined here, which use atomic outcomes.
Moreover, any other attempt to create a continuous sigmoid activation function
must face the problem of where to locate the flexion point (i.e. the threshold). In
most connectionist models, this point is located where the input is 0, but this can’t
work for the OT model as it currently stands. In the linear associator associated
with the model, the input activation nodes and the connection weights are always
nonnegative, making it impossible to have a negative sum feeding into the out-
put node activation function. Thus if we maintain the general structure of the OT
model, the location of the threshold must somehow be made to depend on the size
of the training set (since connection weights increase arithmetically as more items
are trained).

An alternative way to derive a continuous nonlinear activation function might
be to posit “evil twins” for the Ident-OO constraints, that is constraints like Diff-
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OO(Wi, Wj;Fk) that require words Wi and Wj to have different values for feature
Fk. Although there is no precedent for such constraints in the OT literature, by
including measures of difference we would make the model more consistent with
theories of comparison in the cognitive science literature (e.g. Tversky 1977). It is
also possible that Diff-OO constraints could be made to interact with the Ident-
OO constraints in such a way as to create the equivalent of a sigmoid activation
function. This is because there is only one way that two words Wi and Wj can be
completely identical, and only one way they can be completely different (assuming
binary features), but there are many ways that they can be partially similar and
partially different. The resulting binomial distribution is an approximation of the
normal distribution, which in turn approximates the first derivative of the sigmoid
function commonly used in connectionist modeling. Unfortunately, exploring this
intriguing possibility would take us far beyond the scope of this paper.

I showed above that connectionism and AM performed equally well in the e-r
problem. Why not set aside nonlinearity and instead try to incorporate AM’s anal-
ysis of homogeneity into the OT model? Given the connectionist-like nature of the
OT model, this is, unsurprisingly, rather difficult to conceptualize. AM measures
homogeneity by means of overlapping sets and subsets of forms, a device that has
no obvious parallel in connectionism or the OT model. This makes it difficult to
work out a detailed strategy for making OT work like AM without doing undo vi-
olence to its inner OT-nature (and thus possibly alienating the generative linguists
whom I hope to count among my audience).

However, a compromise can easily be reached between OT and AM, albeit at
a rather superficial level. The final step of the standard AM algorithm, after deter-
mining the homogeneous supracontexts and sets of data points (outcome pairs)
with their associated pointers, is the random selection rule of usage. Since some
pointers point to one outcome, others to another, and so on, the rule of usage pre-
dicts relative probabilities that are directly proportional to the number of pointers.
If one were to write a formula for this, it would appear as follows:

(29) P(X1) = |pX1| / [ |pX1| + |pX2| . . . + |pXa| ],

where |pXi
| represents the number of pointers pointing to outcome Xi.

This is of course identical to the formula given earlier in (15) for the probabil-
ities predicted by the OT model (assuming atomic outcomes). This means that if
the AM algorithm is used to generate the proper number of analogical conjoined
constraints, OT can be used to generate the probabilities. For example, consider
the example given in Skousen 1989:22–37, which predicts the probabilities of the
outcomes e versus r for the context 312, given a set of five data points built of
three four-valued features. For each pointer in each homogeneous supracontext
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generated by the AM algorithm (Skousen 1989:36), we posit an OT-like conjoined
constraint as given below (Wt represents the target word, here 312):

(30) Point-OO(Wi, Wj)∧ Ident-OO(o(Wj), o(Wt))

The first component constraint requires that Wi point to Wj (e.g. 310 points to
itself, or 032 points to 212) and the second component requires that the outcomes
for the analogical trigger (i.e. the item that the pointer points to) and the target
312 must be completely identical. The first component thus serves as a counting
mechanism; the total number of the constraints forcing identity between o(Wj)
and o(312) will simply be the number of pointers pointing to Wj, just as in the AM
algorithm. That is, if the first component constraint is violated (i.e. there is no such
pointer), the conjoined constraint will be violated by every candidate output and
so can be ignored (in accordance with Noncommittal Constraint Irrelevance).

Tableau (31) shows these constraints in action. To save space, I’ve left out all
noncommittal constraints (i.e. those where there is no pointer). A simple applica-
tion of Anttila’s Theorem results in the predicted probabilities P(312e) = 4/13 and
P(312r) = 9/13, precisely as in standard AM (unsurprisingly).

(31)

o(312) o(312)o(312) o(312)o(312) o(312) o(312)o(312) o(312) o(312)o(312) o(312)o(312)
= = = = = = = = = = = = =

o(310) o(310)o(310) o(310)o(311) o(311) o(311)o(311) o(212) o(212)o(212) o(032)o(032)
312 * * * * * * * * *
→ e
312 * * * *
→ r

To make this analysis more palatable to a generativist comfortable with OT, we
would need to unpack the constraint Point. There’s no avoiding a full-fledged AM
analysis eventually (nor should we necessarily want to, of course), but we might
be able to put it off somewhat if we let AM provide us just with the homogeneous
supracontexts, and within each, the number of outcomes of each type. Once we
know the size s of each supracontext and the number n of outcomes in it of some
type, the number of pointers for this outcome in this supracontext is just s · n.
The total number of pointers pointing to some outcome (i.e. the activation of the
outcome node in the OT linear associator) is thus

∑
i sini. This is the sort of simple

mathematics that the OT model could perhaps accommodate, but again exploring
this in detail would take us too far afield.

For readers more familiar with AM than with OT, the last part of the above
discussion may seem like a trivial parlor trick, but I think there are serious reasons
for considering it. First, it represents a perhaps surprising point of contact between
two historically different approaches to language, namely those provided by gener-
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ative linguistics and by AM. The first step towards cooperation is communication,
and I hope that by recognizing this point of contact, scholars of different stripes
can learn to use a shared formal language to exchange insights and data. Second, in
the previous section I pointed out that it seems difficult to imagine how AM could
be modified so that it allows outcomes to be represented with features. Translating
the last steps of AM into OT notation serves as a useful aid to the imagination. In
fact, all one has to do is modify the constraint in (30) to that in (32), where the
second component constraint now refers to a specific feature.

(32) Point-OO(Wi, Wj)∧ Ident-OO(o(Wj), o(Wt);Fk)

Making this change would require replacing the standard random rule of usage
with the following probability rule (based on the formula in (23)):

(33) P(o(Wt) = [α1F1, . . . , αmFm]) =
∏

i |p[αiFi]| / [ |p[αiFi]| + |p[¬αiFi]| ],

where |p[αiFi]| represents the number of pointers pointing to an outcome contain-
ing feature value [αiFi], and |p[¬αiFi]| represents the number of pointers pointing
to an outcome containing some other feature value for [Fi].

Again, the consequences of this suggestion are not entirely clear at this point
and would require much more thinking than I have space here to work through. I
hope, however, that this suggestion sparks some productive thoughts in the reader’s
mind as well.

. Beyond analogy

At the end of the preceding section I pointed out one possible way in which the
OT model may inspire researchers working on AM. In this section I describe an-
other, namely the ability of the OT model to accommodate certain kinds of non-
analogical factors that conceivably do play a role in human language. After all, the
OT model of analogy described so far only uses one of the two basic types of OT
constraints, namely Faithfulness constraints (which I suppose could also include
Point). What about Structure constraints, which require forms to meet universal
standards? To a generative linguist, it seems rather foolhardy to claim that all of
language can be handled by analogy alone. There are a number of reasons for this,
the simplest being that analogy can only work to breathe psychological life into a
pattern if there is already something of a pattern there to start with. But where do
linguistic patterns come from in the first place? The traditional answer in generative
linguistics has been that they come from what OT now calls Structure constraints.

There is another answer, of course: history and physics (or more generally, any
set of systematic forces working beyond the confines of a single human brain).
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Over the past few decades, there has been growing acknowledgement of this al-
ternative answer in generative circles, and some work in OT has used Structure
constraints that are explicitly physical in nature (e.g. Flemming 1995; Hayes 1999a;
Jun 1995; Silverman 1996; Kirchner 1997; Myers 1997). There’s something vaguely
disturbing about this, though. Structure constraints are supposed to be (innate)
psychological things, so why should they mirror physical forces so exactly? More-
over, the generativists have never really managed to come up with a convincing re-
ply to critics who suggest that aspects of language (e.g. word-level phonology) are
systematic simply because people memorize things that have been molded by extra-
mentalist forces over generations of speakers. For example, while it may be true that
the [k]∼[s] alternation in electric-electricity is phonetically natural in some sense,
surely this naturalness plays absolutely no role in the minds of modern-day speak-
ers, whose minds are instead occupied with maintaining this pattern through anal-
ogy (to the extent that this pattern is psychologically active at all, of course). This
modular approach to phonology, where separate subtheories handle the ontogen-
esis (e.g. physics) and spread (e.g. analogy) of phonological patterns, is completely
compatible with the AM program, I think.

Nevertheless, there do seem to be cases where linguistic patterns arise within
the minds of speakers, and possibly within the same environment as the mental op-
erations that process analogy. As a case in point, consider patterns that appear to be
motivated by innate restrictions on the access, retrieval, and storage of phonologi-
cal forms. An example of such a pattern is dissimilation. While phonological assim-
ilation can be understood as the semi-fossilization of coarticulation, and hence not
fundamentally a psychological phenomenon, dissimilation does not arise through
the operation of purely physical forces. Instead, as Ohala (1986) has argued, it re-
quires that listeners in some sense mentally undo perceived coarticulations; when
they overshoot, the result is a dissimilation. The generative linguist Kiparsky (1986)
endorses this analysis of dissimilation, since it helps explain why dissimilation rules
are always lexicalized to some extent and never completely automatic. The natu-
ral phonologists Donegan and Stampe (1979) also treat dissimilation as less than
purely physical, counting it among fortitions (as opposed to lenitions), which have
a perceptual (i.e. psychological) rather than articulatory (i.e. physical) teleology.
Taken together, these disparate observers all seem to agree that dissimilations arise
not in the outside physical world, but in the mental lexicon.

But this is precisely where analogy occurs as well. No theory of analogy can
work without a set of memorized exemplars to analogize from, and Skousen (1989,
1992) even makes memory (and its imperfections) an explicit part of the overall
AM approach. In OT terms, this means that there is no theoretical problem with
mixing analogical Faithfulness constraints together with Structure constraints,
as long as these Structure constraints are motivated by lexical processing rather
than physics.
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To see how the OT model would do this, I would like to examine a dissimi-
lation pattern first analyzed by Phillips (1981, 1984, 1994) (see also Myers 2000a
for a briefer discussion of the same pattern). What makes this pattern particularly
interesting is that Phillips (1984) uses it to call attention to an empirical corollary
of the above discussion: phonological patterns that are lexically motivated tend to
target lower-frequency forms first. The more frequently a form is accessed from
memory, the more efficiently it is accessed, and an efficient memory is an accurate
one. Hence we do not expect lexical factors to target higher frequency forms. Lower
frequency forms, being harder to access, are more subject to whatever plausible pat-
terns the memory mechanisms may use to fill in the forgotten holes. This is why
analogies tend to affect lower-frequency forms more readily than higher-frequency
forms, as I discussed earlier.

With this as background, now consider the pattern. Phillips (1981, 1984, 1994)
describes a variable rule in Georgian English whereby the historically older /y/ is
optionally deleted after alveolars (including /n/, /d/, and /t/). Crucial for the dis-
cussion here is that the probability of this occurring is inversely correlated with the
frequency of the word. Table (34) lists an example from each of the five frequency
classes that Phillips considers, along with the mean token frequency of each class
and the mean probability of y-deletion.

(34) Example Mean frequency (tokens) Probability of y-deletion
new 997.290 0.430
knew 358.380 0.545
numeral 30.290 0.601
neutral 3.594 0.718
nude 0.438 0.744

As Phillips (1984) points out, this is precisely the opposite of the pattern found
with phonetically-motivated phonology, which shows positive frequency effects in
rate of application or rate of lexical diffusion. For example, the optional dropping
of /t/ in words like mist during fluent speech, which apparently has an articula-
tory origin (see e.g. Browman & Goldstein 1990), occurs more often in higher-
frequency words than in lower-frequency words (Myers & Guy 1997; Bybee 2000).
Other examples of phonetically-motivated phenomena that occur more readily
in higher-frequency forms are described in Fidelholtz 1975, Phillips 1984, Kaisse
1985, Hammond 1997, and Bybee 2000, among many other places. As Phillips
(1984) and Bybee (2000) have argued, such positive frequency effects are best un-
derstood as resulting mainly from physics, not lexical processing. (Metaphorically
speaking, passing words back and forth through the air tends to wear them out.)
What an analogical model should be able to do, then, is collaborate with lexical
factors to create the negative frequency effect seen in Georgian English, but be in-
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capable of interacting directly with the physical forces giving rise to positive fre-
quency effects (such patterns should instead be ascribed to a separate module in
the more general theory of phonology).

The OT model meets these criteria. As described in an earlier section, it is ca-
pable of describing the fact that lower frequency words make better analogical tar-
gets. This ability can also be used to describe the fact that lower frequency words in
Georgian English are more likely to show y-deletion. Since y-deletion involves dis-
similation, which I argued above is lexically motivated, we may in good conscience
posit a Structure constraint to handle it (below I address the question of whether
this is in fact necessary rather than merely permissible). For the sake of simplicity,
we can use the following constraint (which assumes that alveolars and /y/ are both
coronal, i.e. their articulation crucially involves the tongue blade):

(35) *Cor-Cor: Two adjacent coronals are disallowed (e.g. *[ny]).

Being lexically motivated, this sort of Structure constraint may freely interact with
analogical Faithfulness constraints, since both originate in the processes of lexical
storage and retrieval. This allows for tableaux like (36a, b), which include both this
Structure constraint and a set of Faithfulness constraints that are parochial by to-
kens. Since the phenomenon is variable within a single dialect, I follow the OT lit-
erature on variable phonology (alluded to earlier) and assume that the constraints
are freely ranked.

(36a) (1000 of these)
[nyu] *Cor-Cor IO-new IO-new . . .

[nyu] * . . .
[nu] * * . . .

(36b) (1 of these)
[nyud] *Cor-Cor IO-nude

[nyud] *
[nud] *

Applying Anttila’s Theorem, we derive the probabilities P([nu]) = 0.001 and
P([nud]) = 0.500. While as usual the OT model doesn’t provide us with partic-
ularly accurate numbers, it does capture the essential observation: lower frequency
means a higher rate of y-deletion. Both of these points are driven home in the fol-
lowing graph (37), which shows how far off the OT model is in the specifics while
nevertheless resulting in a curve that curves in the correct direction (here I’ve ad-
justed the token frequencies to get the best possible values for the OT model at the
low end of the frequency distribution).
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In spite of its quantitative inaccuracies, this general approach to structural factors
in phonology is satisfying in an important respect: while it can in principle handle
negative frequency effects like that just described, it is entirely incapable of han-
dling positive frequency effects (e.g. with t-deletion). If a phonetically motivated
Structure constraint were put into an analysis like that sketched in (36), we would
falsely predict the frequency effect to be negative as well. This principled weakness
is just what we want in an analogical model, which by its very nature is not pho-
netically motivated. Instead, as noted above, such cases require a separate module
of the theory, one independent of analogy.

Nevertheless, I have not made the case that a pattern like y-deletion is neces-
sarily due to a Structure constraint. Surely it would be more parsimonious if an
analogical model were always incapable of referring to phonetic entities (like the
tongue blade referred to by *Cor-Cor), regardless of the motivation of the con-
straints involved. In particular, is it really so inconceivable that y-deletion could
itself be due to some lexical process, perhaps even analogy, rather than to a spe-
cific constraint of the grammar? Clearly it is conceivable, since Dilworth Parkinson
(personal communication) has suggested just such a thing, showing me how AM
could derive y-deletion by analogy with higher-frequency words that lack a his-
torical /y/ (e.g. noon). This analysis then predicts the negative frequency effects
we want, just as with analogy generally. A version of this approach is even possi-
ble in the OT model, merely by positing a set of constraints that require new and
nude to share the y-lessness feature with words like noon. In any case, frequency ef-
fects other than the usual positive one are likely have more than one simple cause.
For example, after looking at the same Georgian dialect data, Bybee (2000) came
up with a rather different explanation, namely that y-deletion is actually due to
borrowing or accommodation to the standard dialect; speakers treat less familiar
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words less conservatively, allowing them to be replaced with the invading pronun-
ciations. Moreover, in a study of an on-going lexical diffusion in Montreal French,
Yaeger-Dror and Kemp (1992) have even discovered a case where frequency appears
to play no role at all. Instead the diffusion is affected by semantics (of a curious
sort): words keep the older pronunciation if they refer to the “good old days.”

Regardless of the final verdict on such cases, I want to leave the reader with a
more general lesson: the OT model may represent a case study in how to build a
formal model in which analogy can directly interact with (certain) non-analogical
factors (i.e. lexically motivated Structure constraints). Whether or not this is ul-
timately desirable is an empirical issue, but in the meantime it does seem use-
ful for two reasons. First, generative phonologists have always preferred theories
that put the extragrammatical motivations explicitly into the grammar. I think one
strategy to help generativists move beyond such theories (which I feel are mis-
guided) may be to get them to examine a model in which extragrammatical mo-
tivations (i.e. Structure constraints) are not forbidden a priori, but which predicts
that they will behave in very narrowly prescribed ways. Second, research in AM
has tended to dismiss too quickly one of the generativist’s primary criticisms of
analogy, which is that it cannot explain how systematic linguistic patterns arise in
the first place. Cases like y-deletion should be collected and carefully examined to
determine whether they can all be reanalyzed from a purely analogical perspective,
and if not, whether at least some non-analogical principles of grammar do exist.
If such principles are found, something like the OT model described in this paper
may help in accommodating them within a mostly analogical formalism.

. Conclusions

Things are occurring in the Optimality Theory research community that should
be of great interest to all those studying analogy. No longer is analogy forbidden in
generative linguistics, since there are now widely accepted formal devices that are
capable of capturing its essential nature (i.e. exemplar-driven constraints enforcing
similarity). My own model may or may not represent a step in the development of a
quantitatively successful hybrid between generative and nongenerative approaches
to analogy, but it still seems to me to be a rather remarkable fact that something
equivalent to a connectionist network can actually be built out of nothing but no-
tions already current in the OT literature. At the very least, I hope that my model
inspires generative linguists to learn more about other explicit models of analogy
(especially AM, which deserves far more attention among linguists than it has re-
ceived). At the same time, I think that researchers in AM and other nongenerative
models have something to learn from OT formalism as well, in particular its use of
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features and its ability to integrate analogy with non-analogical factors. Analogy is
one of the central facts of human language, but it’s unlikely to be fully understood
without the collaboration of many scholars with different backgrounds and areas
of expertise. Perhaps we’re now witnessing the beginnings of this collaboration.

References

(References marked [ROA] are available from the Rutgers Optimality Archive <http://
roa.rutgers.edu>.)

Albright, Adam (2002). The lexical bases of morphological well-formedness. In S.
Benjaballah, W. Dressler, O. E. Pfeiffer, & M. D. Voeikova (Eds.), Morphology 2000
(pp. 5–16). Amsterdam: John Benjamins.

Alderete, John (1999). Morphologically governed accent in optimality theory. Ph.D. dis-
sertation, University of Massachusetts. [ROA]

Anderson, James A. (1995). An introduction to neural networks. Cambridge, MA: MIT Press.
Anttila, Arto (1997). Deriving variation from grammar. In F. Hinskens, R. Van Hout, & W.

L. Wetzels (Eds.), Variation, change and phonological theory (pp. 35–68). Amsterdam:
John Benjamins.

Anttila, Arto, & Young-mee Cho (1998). Variation and change in optimality theory. Lingua,
104, 31–56.

Baayen, R. Harald (1995). Review of Analogy and structure. Language, 71, 390–396.
Balari, Sergio, Rafael Marín, & Teresa Vallverdú (2000). Implicational constraints, defaults

and markedness. Manuscript, Universitat Autònoma de Barcelona. [ROA]
Benua, Laura (1995). Identity effects in morphological truncation. In J. Beckman, L.

Walsh Dickey, & S. Urbanczyk (Eds.), University of Massachusetts Occasional Papers in
Linguistics, 18, 77–136.

Benua, Laura (1997a). Affix classes are defined by Faithfulness. University of Maryland
Working Papers in Linguistics, 5, 1–26.

Benua, Laura (1997b). Transderivational identity: phonological relations between words.
Ph.D. dissertation, University of Massachusetts.

Boersma, Paul (1998). Functional phonology: formalizing the interactions between
articulatory and perceptual drives. Doctoral dissertation, University of Amsterdam.
The Hague: Holland Academic Graphics.

Boersma, Paul, & Bruce Hayes (2001). Empirical tests of the gradual learning algorithm.
Linguistic Inquiry, 32, 45–86.

Booij, Geert (1997). Non-derivational phonology meets lexical phonology. In I. Roca (Ed.),
Derivations and constraints in phonology (pp. 261–288). Oxford: Clarendon Press.

Browman, Catherine P., & Louis Goldstein (1990). Tiers in articulatory phonology, with
some implications for casual speech. In J. Kingston & M. E. Beckman (Eds.), Papers
in laboratory phonology 1: Between the grammar and physics of speech (pp. 341–376).
Cambridge: Cambridge University Press.

Burzio, Luigi (1997a). Strength in numbers. In V. Miglio & B. Morén (Eds.), University of
Maryland Working Papers in Linguistics, 5, 27–52.



 James Myers

Burzio, Luigi (1997b). Surface constraints versus underlying representation. In J. Durand &
B. Laks (Eds.), Current trends in phonology: Models and methods (pp. 97–122). Salford:
University of Salford.

Burzio, Luigi (1999). Surface-to-surface morphology: when your representations turn into
constraints. Manuscript, Johns Hopkins University Department of Cognitive Science.
Presented at the 1999 Maryland Mayfest, University of Maryland, College Park. [ROA]

Burzio, Luigi (2000). Cycles, non-derived environment blocking, and correspondence. In
J. Dekkers, F. van der Leeuw, & J. van de Weijer (Eds.), Optimality theory: Phonology,
syntax and acquisition (pp. 47–87). Oxford: Oxford University Press.

Burzio, Luigi (2002). Missing players: phonology and the past-tense debate. Lingua, 112,
157–199.

Bybee, Joan L. (2000). The phonology of the lexicon: evidence from lexical diffusion.
In M. Barlow and S. Kemmer (Eds.), Usage-based models of language (pp. 65–85).
Stanford: CSLI.

Crowhurst, Megan, & Mark Hewitt (1997). Boolean operations and constraint interactions
in optimality theory. Manuscript, University of North Carolina at Chapel Hill and
Brandeis University. [ROA]

Derwing, Bruce L., & Royal Skousen (1994). Productivity and the English past tense: testing
Skousen’s analogy model. In S. D. Lima, R. L. Corrigan, & G. K. Iverson (Eds.), The
reality of linguistic rules (pp. 193–218). Amsterdam: John Benjamins.

Donegan, Patricia J., & David Stampe (1979). The study of natural phonology. In D. A.
Dinnsen (Ed.), Current approaches to phonological theory (pp. 126–173). Bloomington:
Indiana University Press.

Durand, Jacque, & Bernard Laks (Eds.) (1997). Current trends in phonology: models and
methods. Salford: University of Salford.

Fidelholtz, James L. (1975). Word frequency and vowel reduction in English. Chicago
Linguistics Society, 11, 200–213.

Flemming, Edward (1995). Auditory representations in phonology. Ph.D. dissertation,
UCLA.

Golston, Chris (1996). Direct optimality theory: representation as pure markedness. Lan-
guage, 72, 713–748.

Green, Antony D. (2001). The tense-lax distinction in English vowels and the role of
parochial and analogical constraints. Manuscript, University of Rotterdam. [ROA]

Hale, Mark, Madelyn Kissock, & Charles Reiss (1998). What is output in OT phonology? In
Proceedings of WCCFL XVI (pp. 223–236). Stanford: CSLI Publications.

Hammond, Michael (1995). There is no lexicon! Manuscript, University of Arizona. [ROA]
Hammond, Michael (1997). Lexical frequency and rhythm. Manuscript, University of

Arizona. [ROA]
Hayes, Bruce (1999a). Phonetically-driven phonology: the role of optimality theory and

inductive grounding. In M. Darnell, E. Mosorvscik, M. Noonan, F. Newmeyer, &
K. Wheatly (Eds.), Functionalism and formalism in linguistics, Volume 1: General papers
(pp. 243–285). Amsterdam: John Benjamins.

Hayes, Bruce (1999b). On the richness of paradigms, and the insufficiency of underlying
representations in accounting for them. Manuscript, UCLA. <www.humnet.ucla.edu/
humnet/linguistics/people/hayes>



Exemplar-driven analogy in Optimality Theory 

Hayes, Bruce, & Margaret MacEachern (1998). Folk verse form in English. Language, 74,
473–507.

Jun, Jongho (1995). Perceptual and articulatory factors in place assimilation: an optimality
theoretic approach. Ph.D. dissertation, UCLA.

Kaisse, Ellen M. (1985). Connected speech: the interaction of syntax and phonology. Orlando:
Academic Press.

Kenstowicz, Michael (1995). Cyclic vs. non-cyclic constraint evaluation. Phonology, 12, 397–
436.

Kenstowicz, Michael (1997). Base-identity and uniform exponence: alternatives to cyclicity.
In J. Durand & B. Laks (Eds.), Current trends in phonology: models and methods
(pp. 363–394). Salford: University of Salford.

Kiparsky, Paul (1978). Analogical change as a problem for linguistic theory. Reprinted in
P. Kiparsky (Ed.), Explanation in phonology (pp. 217–236). Dordrecht: Foris Publi-
cations, 1982.

Kiparsky, Paul (1986). Commentary on Ohala 1986. In J. S. Perkell & D. H. Klatt (Eds.),
Invariance and variability in speech processes (pp. 400–401). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Kiparsky, Paul (1988). Phonological change. In F. Newmeyer (Ed.), Cambridge survey of
linguistics, Vol. I (pp. 363–410). Cambridge: Cambridge University Press.

Kiparsky, Paul (1993). Variable rules. Handout for Rutgers Optimality Workshop 1.
Kirchner, Robert (1997). Contrastiveness and faithfulness. Phonology, 14, 83–111.
Kirchner, Robert (1999). Preliminary thoughts on ‘phonologization’ within an exemplar-

based speech processing system. Manuscript, University of Alberta. [ROA]
McCarthy, John, & Alan Prince (1993a). Prosodic morphology I: constraint interaction and

satisfaction. MIT Press.
McCarthy, John, & Alan Prince (1993b). Generalized alignment. In G. Booij & J. van Marle

(Eds.), Yearbook of morphology (pp. 79–153). Dordrecht: Kluwer Academic Publishers.
McCarthy, John, & Alan Prince (1995). Faithfulness and reduplicative identity. In J.

Beckman, L. Walsh Dickey, & S. Urbanczyk (Eds.), University of Massachusetts
Occasional Papers in Linguistics, 18, 249–384.

Myers, James (1997). Canadian raising and the representation of gradient timing relations.
Studies in the Linguistic Sciences, 27, 169–184.

Myers, James, & Gregory R. Guy (1997). Frequency effects in variable lexical phonology.
University of Pennsylvania Working Papers in Linguistics, 4, 215–228.

Myers, James (2000a). Analogy and optimality. Manuscript, National Chung Cheng
University.

Myers, James (2000b). Variable constraint ranking in optimality theory. Manuscript,
National Chung Cheng University.

Nagy, Naomi, & Bill Reynolds (1997). Optimality theory and word-final deletion in Faetar.
Language Variation and Change, 9, 37–55.

Ohala, John J. (1986). Phonological evidence for top-down processing in speech production.
In J. S. Perkell & D. H. Klatt (Eds.), Invariance and variability in speech processes
(pp. 386–397, 401). Hillsdale, NJ: Lawrence Erlbaum Associates.

Perkell, Joseph S., & Dennis H. Klatt (Eds.) (1986). Invariance and variability in speech
processes. Hillsdale, NJ: Lawrence Erlbaum Associates.



 James Myers

Phillips, Betty (1981). Lexical diffusion and Southern tune, duke, news. American Speech, 56,
72–78.

Phillips, Betty (1984). Word frequency and the actuation of sound change. Language, 45,
9–25.

Phillips, Betty (1994). Southern English glide deletion revisited. American Speech, 69, 115–
127.

Plunkett, Kim, & Jeffrey L. Elman (1997). Exercises in rethinking innateness: a handbook for
connectionist simulations. Cambridge, MA: MIT Press.

Prince, Alan, & Paul Smolensky (1993). Optimality theory: constraint interaction in gener-
ative grammar. Rutgers University Cognitive Science Center.

Prince, Alan, & Paul Smolensky (1997). Optimality: from neural networks to universal
grammar. Science, 275, 1604–1610.

Russell, Kevin (1995). Morphemes and candidates. Manuscript, University of Manitoba.
[ROA]

Russell, Kevin (1999). MOT: Sketch of an OT approach to morphology. Manuscript,
University of Manitoba. [ROA]

Samek-Lodovici, Vieri, & Alan Prince (1999). Optima. Manuscript, University College,
London, and Rutgers University. [ROA]

Silverman, Daniel (1996). Voiceless nasals in auditory phonology. Proceedings of the Berkeley
Linguistic Society, 22, 364–374.

Skousen, Royal (1989). Analogical modeling of language. Dordrecht: Kluwer Academic
Publishers.

Skousen, Royal (1992). Analogy and structure. Dordrecht: Kluwer Academic Publishers.
Smolensky, Paul (1995). On the internal structure of the constraint component Con of UG.

Paper presented at UCLA. [ROA]
Steriade, Donca (2000). Paradigm uniformity and the phonetics-phonology boundary. In

M. B. Broe & J. B. Pierrehumbert (Eds.), Papers in laboratory phonology V: Acquisition
and the lexicon (pp. 313–334). Cambridge: Cambridge University Press.

Steriade, Donca (1999a). Lexical conservativism in French adjectival liaison. In B. Bullock,
M. Authier, & L. Reed (Eds.), Formal perspectives in Romance linguistics (pp. 243–270).
Amsterdam: John Benjamins.

Steriade, Donca (1999b). Lexical conservativism and the notion base of affixation.
Manuscript, UCLA. <www.linguistics.ucla.edu/people/steriade/steriade.htm>

Tversky, Amos (1977). Features of similarity. Psychological Review, 8, 327–352.
Yaeger-Dror, Malcah, & William Kemp (1992). Lexical classes in Montreal French: the case

of (7:). Language and Speech, 35, 251–293.



Chapter 12

The hope for analogous categories

Christer Johansson

. Introduction

Syntactic and semantic categories may play a major role in language acquisition
and the internal structuring of language. If we have no prior knowledge of what
those categories are, we would hardly recognize them when we see them (a prob-
lem known as Meno’s dilemma). Linguists therefore often assume linguistic cat-
egories to be innate. The radical alternative would be to say that there are no
fixed categories, but a process that gives results as if it worked using underlying
categories.

In analogical modeling, categorial behavior is not seen as primarily caused by
underlying categories, but as an effect of how linguistic units are exemplified in
speech and writing and stored in memory. Thus, individual words are not stored
under an explicit category label, but rather in a context. For example, the category
of ‘can’ is only noticed in a meaningful context such as ‘I can see a can.’ However,
the analogical support for a given context gives cues as to which ‘categories’ could
fit, and naturally the same word would have different defaults depending on the
context.

. Categories

What could we mean by a linguistic category? A possible answer to this question is
that a category is a label used as a stand-in for mutually exchangeable objects dur-
ing processing. A slightly different answer is that a category is just the observation
that some objects are interchangeable without affecting the grammatical status of
the utterance. For example, words that could replace can in a sentence such as the
can exists could be called nouns. Category is thus a dynamic concept that only ex-
ists in a situation. The first kind of category is useful for describing the behavior of
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a collection of individual words, and both types make it possible to generalize from
separate instances.

. Lexical categories and words

Some objects inherently belong to a specific category. For example, buttons with
four holes belong to the category of ‘four-holed buttons.’1 Other categories have
no such defining features. A string of letters gives few clues as to the category of
the string, which is the core of Chomsky’s (1975) critique of analogy in language
processing (Itkonen & Haukioja 1996). However, analogy involves more than phys-
ical resemblance: lexical categories are essentially about relations between words of
grammatical sentences. It would be desirable to find a useful bidirectional one-to-
many mapping between categories and words, but there is little hope for this. Using
an appropriate context is more promising. For example, automatic part-of-speech
tagging is very accurate nowadays (Brill 1994, inter al.). Using information about
the most common tags of a word, and the context in which the word is presented,
automatically delivered tag sequences are typically more than 96% accurate.

. Similarity

An analogical approach depends on noting the similarity between different objects
to predict properties of new objects from knowledge about old objects. For words,
the physical similarity might be misleading. Chomsky (1975:140–142) gives these
two sentences:

(1) John’s friends appeared to their wives to hate one another.

(2) John’s friends appealed to their wives to hate one another.

The change of an /r/ to an /l/ changes the functional roles of who hates who.
Now, we would not like to argue that (1) and (2) have any great analogical sup-
port. Appear and appeal seldom share the same lexical context, let alone functional
context. Itkonen and Haukioja (1996) give the following two sentences in reply:

(3) John appears to be sleeping.

(4) *John appeals to be sleeping.

Sentence four is obviously ungrammatical, but how would we know that if we have
experienced sentences (1) and (2)? (1) and (2) support appear and appeal in the
same category, since two words (and a sentence break) of left context and 7 words
(and a sentence break) of right context are shared, but (3) and (4) show that the
two verbs will not commonly share one syntactic context.
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It is vital that the context support the same functional roles; the lexical material
is of less importance. Thus, similarity is in the meaning of the sentence, which is
not tangible in the same sense that we can point to the physical similarity of /r/
and /l/ in appear and appeal. In sentence (1), the wives are experiencers, while in
sentence (2) they receive an appeal, but to know this the learners must know what
appear and appeal mean before constructing the parses, at least to the extent that
they know which functional roles to expect from either verb.

The argument is obviously a little circular: to form a representation of the
functional roles of a sentence (i.e., to parse the sentence) it is necessary to know
the functional roles of the sentence. We can get such information from previously
experienced sentences, where these ‘functional roles’ were obvious enough to be
perceived in a concrete situation. Categories that are not perceivable, such as the
internal states of living beings, would have to be handled through analogy.

Many examples of analogical modeling are based on support from contexts of
physical units, such as representations of sounds and word forms. In the style of
standard corpus linguistics, frequencies are calculated from data collections that
are taken to be representative of objective units (and not the subjective meaning of
the sentence). Useful analogical support would depend on having correct units of
contexts, and it seems that something like the meaning of the sentence would be
the correct measure (given the previous examples (3) and (4)). Some starting point
must exist for analogy to expand knowledge.

Assuming that we have determined the appropriate units for the task at hand,
there is yet the question about where we find similarity. For example, word sim-
ilarity could be in the global distribution of words (i.e., the data collection is the
categorization), and/or categorial similarity could be locally stored at the lexical
level.

An often used static formalization of similarity is cluster analysis, but such
attempts often fail to establish a valid distance metric and appropriate weights of
relevant features. Such problems of finding objective similarity lead us to accept
that similarity is essentially a dynamic concept, so that the similarity of any two
objects depends on the context in which they are observed.

. Reducing the problem

To get around some of these difficulties, an artificial language was created with a
very limited set of vocabulary items.

Lexical categories are difficult to analyze in typical natural language corpora.
The first reason is that almost all natural words can be used as representatives of
many plausible categories. The second related reason is that even if words were
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assigned multiple categories, it would still be hard to estimate the correctness of
how those categories are distributed in various contexts. The third reason is the dif-
ficulty of finding valuable categories in any collection of grammatical word strings
if the use and reference are excluded. Such collections contain too much irrelevant
information, and at the same time it might not contain the relevant information
for the task (which we suspect to be the functional relations between the words of
the sentence). The following will specify how time and lexical complexity was dealt
with in the computational experiments.

. Reducing time

For an empirical experiment, a five-word window was used, where each context
consisted of four words with the ‘category’ of that context marked by the remaining
fifth word. Time can thus not exceed five consecutive words. The five positions of
the category word were evaluated separately. In the artificial language, subject and
object roles were given indirectly by having different forms for subject and object
pronouns.

. Reducing the vocabulary

There is a need to focus on representatives, at least in the open word classes. Words
of the open word classes (nouns, verbs and adjectives) have low individual frequen-
cies, but high type frequencies. Some type-classification might be possible without
knowing the syntactic class of the word. For example, concrete nouns are observ-
able and might share semantic properties at various levels. It is therefore reasonable
to assume that types, represented by familiar words, syntactically represent (i.e.,
stand in for) open class words. Ignorance of the lexical abundance may be bliss for
the learner, as it greatly reduces learning complexity.

. Constructing a language

Example sentences were constructed using an ‘English’ sentence structure, exem-
plifying subject and object defective relative clauses, as well as center embedded
relative clauses. There were only two nouns that occurred in singular and plural
forms, the ‘blips’ and the ‘blops,’ and there were three verbs with singular and plu-
ral forms and with different transitivity: give (to give something to somebody),
bloop (to bloop something), and bleep, as in ‘The blip that bloops the blops bleeps.’
Subject and object forms of personal pronouns in singular and plural were added
(i.e. he, they, him and them). One preposition (to) was added to make dative shift
possible (He gave blips to the blops. vs. He gave the blops blips.). From the previ-
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ous discussion, we have a chance to detect some regularity within contexts, but we
would have problems finding regularities that go beyond the contexts. One hope
was that the reliance on the subject noun for the correct number of the verb would
make it possible to differentiate nouns from verbs.

The following shows some typical sentences:

‘The nice blop bloops the blops blank’
(e.g. The nice man/bird feeds the birds/men.)

‘The blips that bloop the blop bleep blank’
(e.g. The men that feed the bird sing.)

‘The blip that the blops bloop bleeps blank’
(e.g. The bird that the men feed sings.)

‘The blops that the blip bloops bleep blank’
(e.g. The birds that the man feeds fly.)

‘He gives the blop to them blank’
(e.g. He gives the food to them.)

‘They give him the blop blank’
(e.g. They give him the food.)

The functional roles are not given explicitly, except for subject and object forms of
pronouns. Number agreement is exemplified, but not explicitly forced. Testing the
material showed that any two of the 20 words could satisfy the criteria of being ex-
changeable in some context, with a recursive notion of exchangeable, even with as
much as three words of context. The training set was composed of 440 ‘sentences’,
presented as five word contexts with 5295 nouns (2900 plural, 2395 singular), 4390
verbs (2765 plural, 1625 singular) and 16370 other words.

The test set was composed of 498 novel ‘sentences’ presented as five word
contexts with 5420 nouns (2915 plural, 2505 singular), 1580 verbs (1085 plural,
495 singular) and 16370 other words. These two sets will be used in the following
empirical comparison between two learning mechanisms.

. Justification

The simplifications made in handling time may seem artificial. The general prob-
lem is that it is difficult to find representative data for something as complex as
language, and at the same time provide both a means of evaluation and a task that
is relevant but manageable.

Natural language corpora typically do not reflect spread between individuals,
nor the age of acquisition, and only represent a small part of the distribution of
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the end-result, and are therefore similarly artificial reflections of input to language
learners.

. A simple Memory Based Learner

A problem for memory-based models is to justify the choice of categories. In the
following a mechanism that may use previous experience to find underlying simi-
larities, without using explicit category labels, is sketched. The heart of the mech-
anism is to separate the identity of the item (e.g. its phonetic form) from its sim-
ilarity to other items (in terms of syntactic or phonological properties). Similarity
is considered to be an acquired phenomenon, and thus not inherent in the item
per se. Finding similarities is accomplished by using a context, which is restricted
in this example to neighboring words. Similarity between items is accumulated in
a similarity key, which is separate from the identity of the item. The key becomes
meaningful when it is compared to other keys. We will later compare performance
with another memory-based mechanism, which was provided with category labels.

The memory-based learner presented here is inspired by work on an instance
based learning algorithm that competes with an algorithmic process and eventually
takes over the job of that process (Logan 1988). This model was expanded with the
ability to create its own internal representation of similarity between units of the
process. In contrast to most neural network simulations the identity of the symbols
are represented separately (i.e., as a symbol or index number). Figure 1 shows an
outline of a simple Memory Based Learner2 (sMBL) that creates an internal repre-
sentation for lexeme symbols by utilizing the best match from Long Term Memory
(LTM) to the current five words in Short Term Memory (STM). The representation
of similarity starts as an ordered sequence of random binary values. It is possible
to think of such sequences as a proposal for feature values, therefore a specific po-
sition in the sequence will be referred to as a feature, which may have a value of 0
or 1. Note that the identity of each item never changes.

These features can be used to find best matches, although they lack specific ref-
erence. Initially, best matches will tend to match exact words since that guarantees
that at least those words will have a perfect match. With time, words that are used
in similar contexts may get more similar representations of similarities through the
use of simple learning rules.

A very simple pair of rules acts on the status of the individual feature match
between the input (short term memory) and the retrieved best match from long
term memory. The rule pair statistically reduces the number of missed features in
the future by creating a match with a higher probability than creating a mismatch.
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Rule 1a. If there is a mismatch between a feature in STM and its corresponding
feature in LTM, then with probability 0.5 switch the value of the feature in STM.

Rule 1b. If there is a match between a feature of STM and LTM, then with proba-
bility p switch the value of the feature in STM (p was set to 0.05).

If there were any mismatches, then the content of the STM was novel, and it is
consequently stored after the rules 1a and 1b have been applied to all features of
the ‘similarity key.’ Perfect matches of the whole content of STM are never stored,
but do update a counter of how many times that content has occurred.

These rules cause the similarity key stored in the feature vectors of lexemes to
become more similar for words occurring in similar contexts, while keeping each
word fairly distinct from other words. The rules are guided by random changes
that happen with varying frequencies depending on the match status of individual
features. These features are initially meaningless, and the procedure to change them
does not have any precise plan or goal for making features behave better (unlike
error feedback in connectionist models).

. Results

The memory-based learner was tested with a training and a test set from the con-
structed language described previously. In the test phase, one model word (e.g.,
all ‘blips’) was replaced by an untrained word with a new random signature. The
mechanism was given novel sentences with these new words. The task was to re-
trieve the best matching five word sequence, and thus a previously experienced
word for the new word. This was repeated for six different random signatures, for
each of 8 different model words (4 nouns, 4 verbs).

The model (Johansson & Stowe 2000) was successful at retrieving words of
the same category as the model words for these unknown words. It got 80–100%
correct for unknown words of the noun category, but performance for verbs was
poorer (20–80%, see Figure 2). Verbs were typically confused with words that
would otherwise be in proximity to nouns (e.g., determiners {a,the}, the generic
adjective nice, or the generic preposition to).

. Analogical Modeling

Skousen’s (1989, 1992) Analogical Model (AM) was applied to the same five word
contexts as in the previous experiment. One word was left out and replaced by
its category (Noun, Verb, or Other) making it a slightly easier task than the previ-
ous experiment. Each category has four words of context, and categorization was
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Figure 2. Success of a Memory Based Learner

modeled by how words co-occur within the analogical sets, and how that supports
each of the three categories (N, V, O). The same test set was used as in the previ-
ous example. The category with the highest support was taken to be the category
suggested by this method.

. Lexical contexts and analogy

A lexical context consists of words that occur together with the words of interest.
It is assumed that a stream of words is observed through a (short term) memory
‘window’ which has a limited capacity to hold local contexts. The window gives a
temporal dimension to the possible contexts. In the case that the window contains
two words, the context can occur either to the left, e.g., ‘in← the’, or to the right
of the word, e.g., ‘the→ cat.’ A second word may have a contextual relation with
‘the’ if both left and right contexts are shared, as in ‘in the / in a : the cat / a cat.’

This is more generally expressed as ‘ax/ay : xb/yb’ where a and b are context
words shared by words x and y. Using only two words in the ‘window’ will find
contextual relations between almost any x and y, with different strengths. For sim-
plicity, let us consider three word sequences arranged in positions A, B, and C. Let
such sequences be categorized by the word following. Figure 3 shows the possible
overlaps between word sequences. For example, sub-context A–C is the 3 word se-
quences that have words in the A and C position in common. We may calculate the
analogical support by noting how the categories fall within each of the subsets.

The example of predicting the behavior of pattern 026, given in Skousen
(1989:40), is illustrated in Figure 3. The pattern 026 selects data presented in the
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Skousen 1989: 40

Figure 3. Sub-contexts

figure by partial match. The selected data are plotted by their category (x or o) at
the appropriate place in the diagram.

In order to calculate the probability of category x for pattern 026, (see Table 1)
all possible pairs within each sub-context are investigated. Pairs could either support
the same category, in which case they are counted as one piece of evidence for that
category; or they could support different categories, which cancels the support of
that pair. If the full context is available (i.e., the full context is a member of ABC), it
will be part of all sub-contexts, and consequently form pairs with all contexts, and
therefore have a powerful impact. More information can be found in the works
of Skousen (1989, 1992). In the simulations to follow all calculations have been
performed by a program supplied by Royal Skousen on the internet.3

.. Time and position of context
In a three word window, AB can cooccur with the word of interest in three ways:
ABX, AXB, and XAB, showing that X can be experienced at three temporal posi-
tions. We mark the position of the words used as categories with an X. A three word
memory span would produce the three context arrangements ‘abx/aby : cxd/cyd :
xef/yef.’ For example, ‘in the house / in the garden : the house is / the garden is : house
is nice / garden is nice’ supports a similarity of ‘house’ and ‘garden’. We can repeat
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Table 1. Calculating the analogical support of pattern 026

sub-context support x support o

A – – 6 · 6
A B – 1
A – C 1
– B C 1

TOTAL: 38 (x) 1 (o)
(38 out of 39 predict x)

this procedure for a growing context window, and find candidate pairs sharing
increasingly specific categories.

Assuming that such pairs have the same category, we can form larger categories
by assuming the category equivalent to the connected graphs of the reciprocally
connected word pairs. Say that the pairs ‘apple – banana’ and ‘banana – peach’ have
been supported, then the triplet ‘apple – banana – peach’ is also supported since
‘apple’ can reach ‘peach’ from ‘banana’.

In a corpus test (using the Susanne corpus, Sampson 1994), it was found that
mostly function words were grouped together using this strategy, since only high
frequency words survive a demand of overlap for longer contexts. This means that
classification by analogy is better based on other information than only word form,
as argued previously.

. Results

The following presents the success of AM on the same task given to sMBL. The
results for each context position of the missing word (X) can be seen in Figure 4.
Nouns perform the best when both right context and left context are available,
whereas performance on verbs improves in the complimentary case of exclusive
right or left context.

Overall performance is lower than for sMBL on basically the same task. This is
a little disappointing since the task was made easier for AM. The results in Figure 4
are based on training on three categories only (Noun, Verb, and Other). Using all
20 words was possible (Table 2) but involved some decisions made post-hoc about
which category had been selected, especially in the case of ties. This problem was
not present for sMBL since it always presented the top match, and ties were decided
by giving the most recent match priority.

The quality of pairs of words judged to be in the same category by AM is clearly
better for the ABCXD context (Table 2). These pairs exemplify correct category
and number. Correct number is found in matches between nouns and pronouns
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Figure 4. Success of Analogical Modeling

in subject form. That ‘him’ and ‘them’ match means that number does not matter
grammatically for object pronouns.

It can be noted that verbs are rarely placed in the same category; the example
shows ‘give – bloop’, which are both transitive verbs in the plural number, even
though give can take two objects (the direct and the indirect object). That verbs
do not generally have much support from other verbs is in a sense good since each
verb represents intransitive, transitive and double transitive verbs in the singular
or plural form.

Four general observations can be made. First, all arrangements of temporal
contexts are not equal. Second, contexts may select relevant categories of words
by using co-occurrence within the analogical sets. Third, no feedback is necessary

Table 2. Examples of exchangeable words

XABCD AXBCD ABXCD ABCXD ABCDX

blip nice the a blips blops blips blops blip nice
the a them him to eos blip blop the a
that to that to that to them him that eos
that eos nice the blip nice the a that to
them him blip blops blip blops blops they them him
blip blops blips blops the a give bloop nice the
nice the blips blip them him give eos to eos
blips blops to eos blips blip blips they blips blops
blips blip blip nice give eos eos bloop give bloop
give bloop nice a that eos blips blip blip blops
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about the actual word of the contexts, in either the memory-based learner or the
model of analogical support. Lastly, nouns seem more easily inferred from lexical
context than verbs.

. Discussion

The memory based learner and AM are in fact similar in many respects. First of
all, both models operate without feedback about performance. Secondly, they rely
on a database of saved experience. Thirdly, both models are, in principle, able to
detect when an event has not been experienced before. Lastly, no reason has been
presented so far that would exclude one of the models given the other.

The difference in performance is most likely due to the fact that the memory-
based learner was allowed to create a similarity between appropriate lexical items.
Simple memory based learning operates by selecting a stand-in for the current in-
put, based on previous experience. Another difference is that sMBL was forced
to deliver one alternative only, whereas AM could rate the amount of analogical
support for many alternatives. There is no principled reason why AM cannot be
extended to handle similarity between the symbols of the contexts.

With a realistic vocabulary (105 items), it would be unrealistic to expect exact
matches for any longer contexts. The number of possible 4-tuples would be in the
order of (105)4 = 1020. It would be risky to base an analogy on a few exemplars
in such a vast space, if there were only a few close to identical matches. Given that
there is a lower number of appropriate categories (e.g. 10 functional roles), we
would be more likely to find a more supportive analogical set with a high rate of
highly matching contexts.

. Why is AM performance low?

The performance is visibly lower for AM than for sMBL, but AM is more con-
strained. The first constraint is that AM calculates the objective support for the
category of a new pattern based on the current database as it is. There are no as-
sumptions about the distributions of the alternatives, and there is no attempt to
replace words for each other. Thus, words do not stand-in for each other in the
exemplars (which is one of the ideas about categories presented earlier).

A second constraint is that AM does not have an optimizing strategy. Let me
give an example. Say that two categories, x and o, occur by chance but with different
rates, for example 80% x and 20% o. If we try to model this distribution we would
likely be less than 80% correct. In fact, it is likely that we have 64% (i.e., 80% · 80%)
matches on the x category, and similarly 4% matches on the o category. I am not
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saying that the ‘language’ we used was random, but there were contexts where the
correct category was unpredictable. An optimal strategy to category selection under
uncertainty is to choose the most frequent category. Under the assumption that
the test cases repeat the distribution of the training set, this would guarantee the
success-rate of the most common alternative (in this case 80%). Furthermore, we
would know that 20% of the cases will be missed, and that the category of those
cases will be o.

AM uses a variant of random selection, and it can therefore approximate the
frequency distributions of the given data, which is not possible in some other mod-
els (Skousen 1989:81–86). It could therefore be argued that AM is a suboptimal but
formally correct model of language performance. The emphasis is actually not on
predicting the correct classes, but rather how strongly to expect them in a context.
Skousen cites some supporting research that show that older children can acquire
“selection by plurality” as a strategy for increasing success when a reward is given.
The ability to select between two different strategies show that we are indeed likely
to use separate instances to predict behavior since we can approximate not only the
relative frequencies of items, but also the most common alternative.

The sMBL uses only the best matching instance. This closely approximates im-
plementing a strategy of selecting the most frequent alternative given a context,
since when an ambiguous context occurs it will be more likely to choose the more
frequent (in fact, ties are settled by frequency of the context). Therefore, it is not
so surprising that this learner performs a little better than AM. The second rea-
son that this version of MBL performs better is that it constructs similarity keys
in order to detect words with a similar usage. This ability is currently not present
in AM. Moreover, the sMBL approach makes it possible to select a (best) match
by going through the database once, whereas the AM approach needs to calculate
the support from all combinations selected from the database by the current input,
which is a much tougher computation. The most significant difference, however,
is that sMBL implicitly detects classes from un-classified examples, whereas other
memory-based approaches rely on pre-classified examples.

AM is certainly useful as a benchmark for other learning approaches, as it
quantifies how much you can trust the support in the database given no other
assumptions (e.g. about the distributions in the database). Algorithms that gain
such information from exposure to the database are likely to produce higher per-
formance, but that performance will depend on qualities of that database and the
methods to generalize between items of that database.
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. Why is verb performance poor?

There are several reasons why nouns perform better than verbs. The simplest rea-
son is that there are 20% more nouns than verbs in the training set. A second reason
is that verbs have three degrees of transitivity.

Nouns are more determined by context, since determiners (a, the) always start
a noun phrase, and the end of a noun or verb phrase is often followed by either
the, a, or that. In addition to these distributional factors, a verb is also a relation
between words, whereas nouns can be used as an independent label.

Verbs prove tougher than nouns to learn for human learners as well. Studies
suggest that this may be due to different conceptual requirements between the cat-
egories, or different informational constraints. A summary and some newer results
can be found in Gillette, Gleitman, Gleitman, & Lederer 1999.

. Conclusion

Selecting more appropriate representations and focus on a subset of lower com-
plexity would help ‘categories’ to emerge in the observed behavior. However, there
are still some miles to go before our algorithms show clearly categorial behavior.

In the process of comparing AM with our version of simple MBL, some charac-
teristics of the models were detected and investigated. It could prove helpful to view
AM as the correct measure of analogical support. AM gives the objective support
from the database with very little added assumptions. The success-rate of AM is
therefore a rough measure of the complexity of the database. Models that perform
better on the same task would have to motivate why this is so.

In the case of sMBL, we detected useful similarities between items, which made
it possible to support lexical decisions by approximate categories rather than in-
dividual words. Furthermore, this was accomplished without actually providing
explicit category labels.
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Notes

. This is obviously an allusion to Strindberg’s term ‘buttonology’ for ‘scientific’ categoriza-
tion of uninteresting facts.

. C-source code is available on request to the author on e-mail:
<christer.johansson@lili.uib.no>

. <http://humanities.byu.edu/am/>
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Chapter 13

Analogical Modeling and
quantum computing*

Royal Skousen

The exponential explosion and quantum computing

Analogical modeling, from the very beginning, has proposed that in predicting
behavior all possible combinations of variables should be tested (either directly or
indirectly). If there are n variables for a given context, there will be 2n supracontexts
(or combinations of variables) to consider. Basically, increasing the specification by
one variable doubles the memory requirements as well as the running time (Sec-
tion 6.1 of Skousen 1989; also see Daelemans, Gillis, & Durieux 1997). There have
been numerous attempts to deal with this intractability: fine-tuning the computer
program, revising the algorithm so that it would not have to keep track of every
possible supracontext, and using parallel processing.

A new approach to dealing with the problem of the exponential explosion in
analogical modeling has been to re-interpret analogical modeling in terms of quan-
tum computing. (For a general introduction to quantum computing, see Williams
& Clearwater 1998; Lo, Popescu, & Spiller 1998; Berman, Doolen, Mainieri, &
Tsifrinovich 1998; or Hey 1999.) One distinct theoretical advantage of quantum
computing is that it can simultaneously keep track of an exponential number of
states (such as 2n supracontexts defined by an n-variable given context), thus po-
tentially reducing intractable exponential problems to tractable polynomial anal-
yses (or even linear ones). In certain well-defined cases it has been shown (in
pseudo-code only, since there is no complete hardware implementation of quan-
tum computing thus far) that the exponential aspects of programming can be re-
duced to one of polynomial degree (which entails tractability, unlike exponential
cases). Quantum computing allows for certain kinds of simultaneity or parallelism
that exceeds the ability of normal computing (sequential or parallel). The examples
discussed thus far in quantum computing involve numbers, especially cryptogra-
phy, as in Peter Shor’s algorithm for determining the prime factors of a long integer
(see, for example, Williams & Clearwater 1998:133–137).
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One reason for considering quantum analogical modeling is that the expo-
nential factor seems to be inherent in all approaches to language processing. Thus
far, linguistic evidence argues that virtually all possible combinations of variables
can be used by native speakers in predicting language. The exponential problem is
explicitly required in analogical modeling, and normal kinds of parallel processing
will probably fail to solve this problem. Nor is the exponential explosion in predict-
ing language restricted to analogical modeling. Other exemplar-based approaches
and neural networks (connectionist approaches) also encounter exponential prob-
lems since researchers using these non-declarative approaches must decide how
to limit their predictions to those based on the “most significant” variables. The
difficulty for these other approaches is in the training stage, where the system has
to figure out which combinations of variables are significant, a global task that is
inherently exponential.

In the early 1980s, as Skousen was writing Analogy and Structure (published
later as Skousen 1992) and setting down the basic principles of analogical mod-
eling, he had no idea of its possible connection with quantum mechanics or the
possibility that quantum computing might be used to do analogical modeling.
Of course, at that time there was only the initial formulation of what quantum
computation might involve (for instance, in Feynman’s early ideas and Deutsch’s
universal quantum computer, plus Landauer’s and Bennett’s earlier work on re-
versible computation). Skousen’s motivation for analogical modeling was linguis-
tic, although in its mathematical formulation in Analogy and Structure consider-
able attention was paid to measures of uncertainty and accounting for the general
nature of rule systems.

The original characterization of analogical modeling has surprisingly re-
mained unchanged over the last two decades. Its application to a number of lin-
guistic problems (both general and specific) has shown that analogical modeling
continues to make the right kinds of predictions, perhaps because of its similarity
with quantum mechanics, a theory which has been successfully applied to virtu-
ally all aspects of physical behavior since its first formulation in the 1920s. More
recently, there has been an important realization that quantum reality and infor-
mation theory are closely related, emphasized, for instance, by John Archibald
Wheeler (see his article “Information, Physics, Quantum: The Search for Links”
in Hey 1999:309–336). The close relationship between analogical modeling and
information theory implies that the striking similarities between analogical mod-
eling and quantum mechanics may not be accidental at all – that in actuality the
mechanisms used by speakers of languages to learn and use language may involve
quantum computing.

One advantage of analogical modeling is that no mathematical (or statistical)
calculation is actually used in determining the analogical prediction; instead, there
is just the simple comparison of deterministic and non-deterministic supracon-
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texts. This kind of decision-making process is based on what is referred to as a nat-
ural statistic. Natural statistics are psychologically plausible and avoid any direct
consideration of probability distributions, yet have the ability to predict stochastic
behavior as if some underlying probability distribution were known. The simplic-
ity of analogical modeling suggests that some very basic operators could be used to
determine a quantum analogical set that would then be reduced to a single supra-
context (combination of variables) whenever decoherence (or observation) occurs.

Similarities between analogical modeling and quantum computing

One initial reason for pursuing the possibility of quantum computing of analogical
modeling is that a number of striking similarities have been discovered between
analogical modeling and quantum mechanics:

1. Traditional statistics assume some complicated underlying mathematical func-
tions, but from natural statistics (which involve no direct numerical calcula-
tions) we can derive the results of standard statistics if we assume that the
probability of remembering any given data occurrence equals precisely one-
half. This relationship implies that traditional statistics can be derived from
natural statistics if data occurrences are accessed through, say, a spin-up state
(given two equally probable quantum states, spin-up and spin-down).

2. In both quantum mechanics and analogical modeling, there is an underlying
linearity as well as an observed squaring. In quantum mechanics, prior to ob-
servation, an exponential number of quantum states can be simultaneously ac-
counted for, yet when observed, this superposition of many states is collapsed
into a single one, a process referred to as decoherence. Prior to observation,
each quantum state is assigned an amplitude, but this amplitude is squared
to give a probability when observation occurs. A single observation leads to
this decoherence and squaring of the amplitude. In analogical modeling, there
is an exponential number of supracontexts (combinations of variables) for a
given context. We keep track of the number of occurrences (a linear function)
for each supracontext. When we come to predicting an outcome, one of the
supracontexts is selected and the probability of selecting that supracontext is
proportional to the square of the number of occurrences in that supracontext.
The squaring naturally results from selecting a pointer to an occurrence rather
than directly selecting an occurrence.

3. In analogical modeling, a quadratic measure of agreement is used to measure
certainty. Agreement is based on the idea that one gets a single chance to de-
termine the outcome. This single observation corresponds to the decoherence
that occurs when a quantum system is observed. Moreover, this measure of
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agreement corresponds to Schrödinger’s wave equation, where squaring is used
to determine the probability of occurrence.

In the next three sections, these points are discussed in some detail.

Traditional statistics from natural statistics

While investigating natural statistics, Skousen (1998) discovered that when the
probability of remembering is one-half, we get standard statistical results (includ-
ing the ability to account for the traditional “level of significance” used in statis-
tical decision making). However, there seemed to be no inherent motivation for
why this one-half probability of remembering should lead to traditional statistics.
But the one-half probability can be justified if we interpret it as corresponding to
storing the individual occurrences of a database by means of a vector composed of
quantum bits, each with an equal chance of being accessed or not (much like an
electron’s spin, with its two states of up and down).

There are two specific results from natural statistics that argue for the signifi-
cance of the one-half probability of remembering (Skousen 1998:247–250). First,
consider the task of estimating the probability of occurrence p for an outcome.
Suppose we have two possible outcomes, either s or t. Suppose further that we have
been given the following string of outcome data:

s s s t s t t t t t s t s t t t t s s t

If we have perfect memory (where the probability r of remembering is one), then
in natural statistics, the probability p of predicting the s or t outcome is directly
proportional to the relative frequency of each outcome in the data. So in this string
of occurrences, where there are 8 examples of s and 12 of t, we get the following
predictions under perfect memory (r = 1):

p(s) = 8/20 = 0.4 p(t) = 12/20 = 0.6

When memory is perfect, we always get this same estimated probability p for the
outcome s (namely, 0.4); in other words, there is no variance in our estimate for p:

Var(p) = 0 if r = 1 (perfect memory)

Suppose there are n occurrences in the data and that m occurrences are remem-
bered. We can first show that the expected value E of the probability p of an out-
come is simply the probability of that outcome – that is, we have an unbiased
estimator for p:

E(p) = p (outcome)
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When we consider the variance for this estimator, we get the following relationship
(Skousen 1998:248):

Var(p) = 1/(n – 1) · E(p)(1 – E(p)) · (E(n/m) – 1)

The two expectations, E(p) and Var(p), hold no matter what r, the probability of
remembering, is.

When r = 1/2, a given data occurrence is remembered – or is accessible –
half the time (on the average). Under these conditions and for large n, the number
of remembered occurrences (m) is approximately equal to n/2. Thus the expected
value for the ratio n/m will be approximately equal to 2. This means that for large
n we get the following asymptotic relationship for the variance of p when r = 1/2:

Var(p) ≈ 1/(n – 1) · E(p)(1 – E(p))

Now this asymptotic measure of variance derived from natural statistics (but only
when the memory is 1/2) is precisely the same as the traditional unbiased estimate
of variance (which assumes that the relative frequency is first used to estimate p).

Now consider a second statistical task. Suppose we have some data with the two
outcomes s and t, and we want to predict the most frequent of these two outcomes.
For simplicity of calculation, suppose our outcome data for this example consists
of only the following four occurrences:

s s s t

Now the chances of the s outcome being more frequent than the t outcome is as-
sured if we have perfect memory (when r = 1). Under such conditions, there will
always be three occurrences of s and one of t, so there will be no uncertainty in our
prediction:

p(s > t) = 1 if r = 1

On the other hand, when r = 1/2, each occurrence of the four will be remem-
bered – or accessed – half the time (on the average), which will thus give 16 equally
possible cases (Table 1).

In 11 cases of these 16 cases, the more frequent outcome will be s, while in one
case, t will be the more frequent. In three cases, we get a tie between s and t, so we
split the probability in those cases. And in one case, we forget all four occurrences.
In that case, we are unable to make a prediction. We represent this as the null
outcome (Ø) in the list of possibilities: s, t, and Ø. Given an imperfect memory of
r = 1/2, the overall probability that natural statistics predicts s as the more frequent
outcome therefore equals 25/32.

Natural statistics ends up making predictions that are equivalent to standard
statistical decision theory, which sets up various levels of significance to repre-
sent the probability that a null hypothesis should not be rejected. In this partic-
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Table 1. 16 sets of remembered occurrences

p(s) p(t) p(Ø)

1/16 s s s t 1/16 – –
1/16 s s s - 1/16 – –
1/16 s s - t 1/16 – –
1/16 s - s t 1/16 – –
1/16 - s s t 1/16 – –
1/16 s s - - 1/16 – –
1/16 s - s - 1/16 – –
1/16 s - - t 1/32 1/32 –
1/16 - s s - 1/16 – –
1/16 - s - t 1/32 1/32 –
1/16 - - s t 1/32 1/32 –
1/16 s - - - 1/16 – –
1/16 - s - - 1/16 – –
1/16 - - s - 1/16 – –
1/16 - - - t – 1/16 –
1/16 - - - - – – 1/16

Totals 25/32 5/32 1/16

ular problem, the null hypothesis (from the natural statistics point of view) states
that the more frequent outcome s is not more probable than the less frequent out-
come t. There is more impreciseness in the natural statistics approach since there
is a probability of predicting no outcome (in the above example, p(Ø) = 1/16).
Asymptotically, the same predictions are made as in standard statistics, but only
when the probability of remembering is one-half.

Once more the obvious question is: Why should natural statistics be equivalent
to traditional statistics only when r = 1/2? This result naturally follows if each
exemplar (or occurrence in the data) is accessed via a quantum bit (qubit) which
is in either a spin-up (↑) or a spin-down (↓) state, and for which only one of these
two states will permit accessibility. We suppose that each qubit has an equal chance
of being in one of these two states. The direct asymptotic consequences will be that
(1) the variance for estimating the probability of an outcome will be the standard
unbiased estimate of variance, and (2) predicting the most frequent outcome will
be the same as in standard statistical decision theory.

Accessibility to data also solves another difficult problem, that of random-
ness itself. In simulations of probabilistic behavior, computers can use complicated
pseudo-random functions to produce a sequence of integers. Such a sequence may
appear random for long strings, but ultimately it is not random, but instead is fully
predictable (by the pseudo-random function). It is psychologically implausible that
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these complicated pseudo-random functions might be directly used by humans to
predict non-deterministic language behavior.

On the other hand, true randomness is inherent at the quantum level. By pro-
viding random access to an occurrence (or to a pointer to an occurrence) in terms
of qubits, we get actual randomness. In his descriptions of random selection as
a rule of usage, Skousen never stated how the speaker would in fact be able to
randomly select an occurrence (or a pointer to an occurrence). The problem of
randomness was ignored in his initial work (Skousen 1989:37 and 1992:222). But
by making an occurrence (or its pointer) accessible only when the assigned qubit
is, say, in a spin-up state, actual randomness could be achieved. Furthermore, the
statistical results would be asymptotically the same as standard statistics when we
assume that the chances of the two qubit states (spin-up and spin-down) are equal.

Probabilities in quantum mechanics, pointers in analogical modeling

In analogical modeling, there is a lattice of supracontexts, partially ordered by the
relationship of set inclusion. This lattice is defined by the given context, which is
the set of variables for which we are trying to predict the outcome. Given n vari-
ables in the given context, there are 2n possible (unordered) combinations of those
variables. In analogical modeling, each one of these possible combinations is called
a supracontext. For instance, in attempting to predict the pronunciation of the ini-
tial c of the word ceiling in terms of the 3 letters following the c (namely, eil), we
set up 23 = 8 supracontexts for this given context (eil). For each supracontext we
identify which exemplars belong and note their pronunciation of the initial c letter,
such as the /k/ sound for coin, the /s/ sound for cell, and the ch sound (represented
as /č/) for chin (Table 2).

Table 2.

linear squared exemplars
k–c s–c č–c k–c s–c č–c

eil – – –

ei- – – –
e-l – 1 – 0 1 0 cell
-il – – –

e- - – 3 – 0 9 0 cell, cent, certain
-i- 1 – 1 2 0 2 chin, coin

× - - l 1 3 –

× - - - 21 9 3
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Some of these supracontexts have no occurrences (eil, ei-, and -il). Some have
only one type of outcome (e-l and e- -) and are therefore deterministic in behavior.
One (-i-) is non-deterministic, yet has no subcontext that behaves differently. This
kind of non-deterministic supracontext and the deterministic ones are homoge-
neous in behavior. Finally, there are some supracontexts (- -l and - - -) for which
there is at least one subcontext that behaves differently. Such non-deterministic
supracontexts are heterogeneous. The×’s placed in front of the last two supracon-
texts mark these two supracontexts as heterogeneous.

In quantum computing, we will have n qubits for a given context of n variables,
but these n qubits, unlike n classical bits, will allow us to simultaneously represent
2n states – namely, the superposition of all possible supracontexts. The advantage
of quantum computing is that it allows massive simultaneity.

Each qubit has two states for each variable i:

spin up ↑ 1 variable i in supracontext
spin down ↓ 0 variable i zeroed out

These qubit variables defined by the given context are not assigned their spin-up
and spin-down states independently of each other. Instead, there are important
correlations between the qubits (referred to in quantum mechanics as entangle-
ment). Moreover, each qubit is normally in a probabilistic state, a mixture of spin
up and spin down.

For each of the 2n supracontexts, we assign an amplitude. Ultimately, when
we come to observe our lattice of supracontexts, we can require that the squares
of these supracontextual amplitudes are normed; that is, the sum of the squared
amplitudes equals one. This norming basically requires that for each supracon-
text the squared amplitude represents the probability of selecting that supracon-
text. The norming is really only necessary because probabilities themselves are
mathematically defined as normed – that is, as a measure on the line [0,1].

One important requirement for applying quantum computing to analogical
modeling is that all empty and heterogeneous supracontexts must end up with zero
amplitude (equivalent to zero probability of being selected). We need, of course,
reversible operators to zero out heterogeneous supracontexts and make sure the
empty supracontexts remained zeroed out. The remaining homogeneous supra-
contexts will, of course, show entanglement between the qubits representing the
variables.

The first important connection between analogical modeling and quantum
computing is that the number of occurrences assigned to a given supracontext
is equivalent to the amplitude. In other words, linearity in analogical modeling
corresponds to the amplitude in quantum computing. In our example for ceil-
ing, we have the following amplitudes prior to norming, but after determining
heterogeneity (Table 3).
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Table 3.

k–c s–c č–c amplitude = occurrences

111 ↑↑↑ – – – 0 empty

110 ↑↑↓ – – – 0 empty
101 ↑↓↑ – 1 – 1 deterministic
011 ↓↑↑ – – – 0 empty

100 ↑↓↓ – 3 – 3 deterministic
010 ↓↑↓ 1 – 1 2 non-deterministic
× 001 ↓↓↑ 1 3 – 0 heterogeneous

× 000 ↓↓↓ 21 9 3 0 heterogeneous

The requirement of normality means that the actual amplitude is the frequency
of occurrence divided by the square root of the sum of the squared frequencies
(
√
Σx2) – in this case, the norming fraction is 1/

√
14 since 12 + 32 + 22 = 14.

Thus the number of occurrences in each homogeneous supracontext (the lin-
ear measure) is proportionally related to the amplitude. We can therefore give an
alternative representation using Schrödinger’s wave equation Ψ (in Dirac’s nota-
tion). In the following example, each occurring homogeneous supracontext (101,
100, 010) is represented as a possible state:

|Ψ > = 1/
√

14 | 101 > +3/
√

14 | 100 > +2/
√

14 | 010 >

Now in quantum computing, the probability of occurrence for each homogeneous
supracontext will be the square of the amplitude. In order to predict the behavior
of our system, we need to select a single supracontext from our superposition of
2n supracontexts. In other words, observational decoherence of the superposition
is equivalent to selecting an occurring homogeneous supracontext, but instead of
using occurrences to make the selection, we use pointers to do that. In other words,
the squaring of the amplitude in quantum computing is equivalent to selecting a
pointer to an occurrence rather than selecting an occurrence directly. This means
that if we use quantum computing to do analogical modeling, we will always be
selecting the squaring function of analogical modeling. Earlier work in analogical
modeling allowed either linearity or squaring (Skousen 1992: 8–9), but now the
choice of squaring over linearity is motivated.

In our example, decoherence of the superposition therefore leads to a prob-
ability. The probability of each supracontext is proportional to the square of the
number of occurrences in that supracontext – in other words, proportional to the
number of pointers to occurrences in that supracontext (Table 4).

By norming the number of pointers, we get the following probabilistic predic-
tions using quantum analogical modeling (Table 5).
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Table 4.

k–c s–c č–c probability = pointers

111 ↑↑↑ – – – 0 empty

110 ↑↑↓ – – – 0 empty
101 ↑↓↑ – 1 – 1 deterministic
011 ↓↑↑ – – – 0 empty

100 ↑↓↓ – 9 – 9 deterministic
010 ↓↑↓ 2 – 2 4 non-deterministic
× 001 ↓↓↑ 3 12 – 0 heterogeneous

× 000 ↓↓↓ 693 297 99 0 heterogeneous

Table 5.

probability k–c s–c č–c exemplars

101 (1/
√

14)2 = 1/14 0 1 0 cell
100 (3/

√
14)2 = 9/14 0 9 0 cell, cent, certain

010 (2/
√

14)2 = 4/14 2 0 2 chin, coin

The probabilities, of course, represent the squares of the amplitudes given by
Schrödinger’s wave equation Ψ:

|Ψ > = 1/
√

14 | 101 > +3/
√

14 | 100 > +2/
√

14 | 010 >

Prediction in analogical modeling will also require each supracontext to be linked
to actual exemplars.

Measuring uncertainty in terms of disagreement

The normal approach to measuring uncertainty has been to use Shannon’s “infor-
mation”, which is equivalent to the entropy of classical statistical mechanics. This
measure is a logarithmic measure (of the form Σ p log p, where p is the probability
of a particular outcome). Shannon’s uncertainty is equivalent to the number of yes-
no questions needed (on the average) to determine the outcome. The natural inter-
pretation of this measure is that one gets an unlimited number of chances to dis-
cover the correct outcome, an unreasonable possibility for a psychologically based
theory of behavior. Furthermore, the entropy for continuous probabilistic distri-
butions is always infinite. This last property forced Shannon to come up with an
artificial definition for the entropy of a continuous distribution. (See the discussion
in Sections 1.11 and 3.8 of Analogy and Structure, Skousen 1992:30–37, 89–91.)
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In Chapters 1–3 of Analogy and Structure (written in 1983, published in 1992),
Skousen developed a quadratic measure of uncertainty called disagreement. This
measure was applied to language behavior in Analogical Modeling of Language
(written in 1987 and published in 1989). The measure of disagreement is the
probability of two randomly chosen occurrences disagreeing in outcome (namely,
1 – Σp2, where once more p is the probability of an outcome). There is a corre-
sponding measure of agreement, namely the probability of agreement in outcome
for two randomly chosen occurrences (that is, Σp2). The natural interpretation of
these quadratic measures is that one gets a single chance to guess the correct out-
come. Further, the agreement density for a continuous probabilistic distribution
f (x) is easily and naturally defined as

∫
f 2(x)dx. This measure of agreement almost

always exists. In fact, it is a much better measure of variation for a continuous
distribution than the traditional variance (Skousen 1992:83–84).

This same quadratic measure of agreement is found in Schrödinger’s wave
equation as

∫ |ψ(x)|2dx. In order to get an overall probability of one, the inte-
gral over the entire space is normed, but still it is the squaring function that is
used to determine the probability of a subspace. Analogical modeling uses this
squaring function to measure the agreement density for a continuous probabil-
ity distribution (see Chapter 3 of Analogy and Structure, Skousen 1992:71–91). If
Schrödinger’s wave equation is a real function (rather than the more general case
allowing complex functions), we get the same precise formulation for the den-
sity agreement found in Analogy and Structure, but without the norming (namely,∫
ψ2(x) dx).

Reversible operators

Having determined that there seems to be some extraordinarily close connec-
tions between analogical modeling and quantum computing, we turn to how we
might define appropriate quantum operators for determining the analogical set of
homogeneous supracontexts.

In designing a quantum computational system for analogical modeling, every
operator meets the following two requirements:

1. simultaneity: each operator must be defined so that it can apply simultaneously
to each of the 2n supracontexts;

2. reversibility: each operator must be reversible.

The first requirement allows us to take advantage of the simultaneity of quantum
computing. The second requirement basically means that no erasure of data is per-
mitted prior to observation of the system (that is, prior to decoherence of the su-
perpositioned supracontexts). Each data occurrence, after being read, must be kept.
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Any computational result must be recoverable, and by keeping all the input data,
we insure recoverability.

Let us consider what we mean by a reversible operator. (The discussion in this
section is for readers unfamiliar with quantum computing. The examples follow
the explication in Berman, Doolen, Mainieri, & Tsifrinovich 1998:51–58.) The
basic idea is that after an operator has applied, we are able to determine from
the final (or output) state what initial (or input) state it came from. This require-
ment of recoverability basically means that there is a unique one-to-one connec-
tion between inputs and outputs, that no mergers or splits occur, only a shifting
(or renaming, so to speak) of representations.

One clear example of a reversible operator is negation. An n-gate (where the
n stands for negation) is reversible because we simply switch or flip the polarity
of a state a (true to false and false to true). In the following listing (Table 6), ai

represents the initial state of a, while af represents the final state of a.

Table 6. n-gate

ai af

0 1
1 0

So given a final state af of 0 (false), we know that ai was 1 (true); similarly, af = 1
implies that ai = 0.

On the other hand, the and-operator is not reversible. With an and-gate, the
final state cf is true (or 1) only if ai and bi were both true (or 1). If the final state is
false (or 0), then there are three possible sets of initial states (00, 01, or 10), and we
do not know which set of initial states produced the false output (Table 7).

Table 7. and-gate

ai bi cf

0 0 0
0 1 0
1 0 0
1 1 1

In quantum computing, however, we can construct a reversible gate that can be
used as an and-gate. We do this by constructing what is called a control-control-not
gate (or ccn-gate, for short). In this system, we switch the polarity of an initial state
ci only if two other initial states ai and bi are each true. The initial states ai and bi

act as control states and ci acts as a not state (thus, control-control-not). We get the
following input-output relationships for the ccn-gate (Table 8).
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Table 8. cnn-gate

ai bi ci af bf cf

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Table 9. cnn-gate (ci = 0 checked)

ai bi ci af bf cf

� 0 0 0 0 0 0
0 0 1 0 0 1

� 0 1 0 0 1 0
0 1 1 0 1 1

� 1 0 0 1 0 0
1 0 1 1 0 1

� 1 1 0 1 1 1
1 1 1 1 1 0

For this reversible gate, there are eight possible sets of initial states and eight
possible sets of final states. For the first six cases, the set of final states is identical
to the set of input states (thus 000→ 000, 001→ 001, 010→ 010, 011→ 011,
100→ 100, 101→ 101). For the last two cases, we simply switch the polarity of
the c state (thus 110→ 111 and 111→ 110). This results in a unique one-to-one
function between all the sets of states. No information is lost, and from every set
of output states we can determine the unique set of input states from which it was
derived. We also emphasize here that with a ccn-gate the two control states a and b
make no change whatsoever. In a sense, these two states represent labels.

Now from this ccn-gate, we can define a reversible and-operator by considering
only those cases where the initial state ci equals zero. Given the entire ccn-gate, we
mark these four cases with a check mark (Table 9).

If we isolate these four cases where ci = 0, we can see that we have the
equivalent of an and-gate (Table 10).

The basic difference between a non-reversible and-gate and a reversible ccn-
gate acting as an and-gate is that in the reversible gate the input states a and b
are carried over identically as output states. In other words, the initial information
about the states a and b is kept intact in the reversible gate.
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Table 10. and-gate (a ccn-gate with ci = 0)

ai bi ci af bf cf

� 0 0 0 0 0 0
� 0 1 0 0 1 0
� 1 0 0 1 0 0
� 1 1 0 1 1 1

Reversibility essentially requires that we have to keep track of the input.
Richard Feynman, one of the first who proposed applying quantum mechanics
to computing, realized that reversibility meant that the input would be reproduced
along with the output at the end of the computation (as noted by Richard Hughes
in Hey 1999:196):

But note that input data must typically be carried forward to the output to
allow for reversibility. Feynman showed that in general the amount of extra
information that must be carried forward is just the input itself.

This result is of great significance for analogical modeling and, in fact, for all
exemplar-based systems – namely, reversibility leads to exemplar-based systems.
If some form of quantum computing is used for language prediction, then all the
exemplars used in a computation must be recoverable (at least up until decoher-
ence). Quantum computation of any language-based system will therefore be an
exemplar-based one, even if the system ends up acting as a neural net or as a
set of rules!

Quantum analogical modeling

Within analogical modeling, a supracontext is heterogeneous whenever any sub-
contextual analysis of that supracontext leads to an increase in disagreement
(Skousen 1989:23–37). It turns out that this decision procedure is equivalent to the
most powerful test possible. However, by introducing imperfect memory (equal
to one-half), the power of the test can be reduced to standard statistical testing
(Skousen 1998:247–250).

This single decision procedure can be re-interpreted so that no mathemati-
cal calculation is ever involved; not even a measurement of disagreement between
occurrences is necessary. This reworking of the procedure for determining ho-
mogeneity was discussed in both Analogical Modeling of Language and Analogy
and Structure (Skousen 1989:33–35 and 1992:295–300). There it was shown that
there are two types of homogeneous supracontexts: (1) the supracontext is deter-
ministic in behavior (only one outcome occurs); (2) if the supracontext is non-
deterministic, all its non-deterministic behavior is restricted to a single subcontext
(or subspace). In the original algorithm for analogical modeling, testing for the
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second type of supracontext required the program to do a layered comparison be-
tween adjacent levels of supracontexts (that is, between supracontexts represent-
ing a difference of one variable). Such an algorithm guaranteed an exponential
explosion in running time.

More seriously, from a quantum computing perspective, such an algorithm
could never be re-interpreted in terms of reversible operators applying simultane-
ously to all the supracontexts at once. By shifting the perspective to quantum com-
puting, Skousen was able to discover that by keeping track of only two factors for a
supracontext (the first outcome and the first intersect, to be explained in the next
section), homogeneity could be determined by reversible operators applying si-
multaneously. Moreover, the original algorithm initially assigned each occurrence
to the supracontext closest to the given context. Within the quantum algorithm,
each occurrence is simultaneously assigned to every supracontext that can possi-
bly include the occurrence. This simultaneity avoids the “trickle-down” effect of
the original layered algorithm, which also contributed to the exponential running
time of the original approach.

Quantum computing of analogical modeling

We now see how the principles of quantum computing can be used to solve the
exponential problems (in both memory and running time) for analogical model-
ing. This demonstration will be done in terms of the simple example from section
2.2 of Analogical Modeling of Language (Skousen 1989:23–37). The dataset there
has five occurrences, each specified by three variables (composed of the numbers
0, 1, 2, 3) and an outcome, either e or r:

dataset 310e m(= 5)
032r
210r
212r
311r

We let m represent the number of accessed occurrences in the dataset. We will
assume that these five occurrences were randomly selected from a larger database
at a level of imperfect memory of one-half. This corresponds to the idea that data
occurrences are accessed through, say, a spin-up state (given two equally probable
quantum states, spin-up and spin-down, for database access).

We make predictions in terms of a given context. We let n stand for the number
of variables found in the given context. In the example from Analogical Modeling
of Language, the given context is 312:

given context 312 n(= 3)
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No outcome (e or r) is specified for the given context since that is what we are
trying to predict. Our task then is to predict the outcome, either e or r, in terms of
the three variables 312. In this example, n is three.

For this given context, we now define 2n (= 23 = 8) supracontexts by means
of n (= 3) qubits. The supracontexts specify a powerset – namely, all the possible
groupings of variables that can be theoretically used to predict the outcome for
the given context. Initially, each of these n (= 3) qubits are equally assigned to
two possible random states, one or zero. For a given supracontext, if a variable is
assigned a one (1), this means that that variable is used to help define the contents
of that supracontext. On the other hand, a zero (0) means that that variable will be
completely ignored for that supracontext.

For the given context 312, we therefore have the following 2n (= 23 = 8)
supracontexts:

supracontexts 111 exp(n) = 2n (= 23 = 8)
110
101
011
100
010
001
000

The supracontext 110, for example, means that the first two variables will be con-
sidered, but the third one will be ignored.

As we read each data occurrence, we determine its intersect with the given
context. For instance, the first data occurrence is 310e. When compared with the
given context 312, we see that the first two variables agree, but the last one does
not. The corresponding intersect for 310e and 312 is therefore 110. For our five data
occurrences (310e, 032r, 210r, 212r, and 311r), we have the following five intersects:

intersects 110 310e & 312 m(= 5)
001 032r & 312
010 210r & 312
011 212r & 312
110 311r & 312

For each data occurrence, we also record its outcome, whether it is e or r.
For each supracontext, we need to determine certain kinds of information,

but only using reversible operators that can simultaneously apply to all of the
2n supracontexts. In order to derive the analogical set (a superposition of all the
possible supracontexts), we determine the following information as each data
occurrence is read:
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1. include 5. first intersect
2. sum 6. plurality of intersect
3. first outcome 7. heterogeneity
4. plurality of outcome 8. amplitude

In each case, we assign a qubit or a register of qubits to store this information for
the supracontexts.

We first discuss how we determine the include qubit. As we read each data oc-
currence, we need to determine which of the 2n (= 23 = 8) supracontexts the occur-
rence can be assigned to. We do this by defining a register of n (= 3) qubits, which
we refer to as the contain register. Initially, each qubit in this register is assigned
a one, but when a data occurrence is read, some of these ones will be changed to
zeros, depending on the intersect for that data occurrence. From this evolved con-
tain register of qubits, we can then determine whether we include the occurrence
in each of the supracontexts.

We start out then by determining which supracontexts the first data occurrence
(310e) will be included in. We assign an individual include qubit to 310e, initially
set to ones (Table 11).

As already noted, the intersect for 310e is 110. In our representation (Table 11),
the intersect 110 is placed under the data occurrence 310e, but for convenience’
sake we also take the intersect of the data occurrence being currently considered
and place it right above the eight supracontexts. The intersect 110 is used to deter-
mine which supracontexts will include the data occurrence 310e. This occurrence
310e should be contained in four supracontexts: 110, 100, 010, and 000. We deter-
mine which supracontexts contain this data occurrence by applying the following
reversible operator for each of the n (= 3) variables:

contain
for i = 1 to n

if intersect [i] = 0 and supracontext [i] = 1
then contain [i] = 0

This operator means that when we compare 110 (the intersect for 310e) with the
eight supracontexts, we need only deal with the intersect variables that are zero
(0). Now if the corresponding supracontextual variable is a one (1), we change the
corresponding contain variable from its initial one (1) to zero (0). Reversibility is
obtained because we do not change the actual supracontextual specifications, but
instead use the contain register as “work space”.

Applying this operator simultaneously to all eight supracontexts gives us the
following evolution in the contain register (Table 12).

Now if for a given supracontext the contain register has only ones, then the
data occurrence 310e will be contained within that supracontext. After applying
the contain operator three times (once for each variable), we correctly get 111 for
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Table 11.

supracontext contain include

data occurrence 310e
intersect 110 110

111 111 1
110 111 1
101 111 1
011 111 1
100 111 1
010 111 1
001 111 1
000 111 1

Table 12.

supracontext contain include

data occurrence 310e
intersect 110 110

111 111→110 1
110 111→111 1
101 111→110 1
011 111→110 1
100 111→111 1
010 111→111 1
001 111→110 1
000 111→111 1

the supracontexts 110, 100, 010, and 111. The occurrence 310e will therefore be
included in these four supracontexts, but not the other four.

To determine the actual include qubit for a data occurrence, we need to use the
include operator n (= 3) times, once for each qubit in the contain variable (that is,
once for each variable):

include
for i = 1 to n

if contain [i] = 0
then include = 0

In the example of 310e, of course, only the third qubit of the contain register has
any zeros. So by using the include operator, the include qubit for 310e becomes
correctly set (Table 13).
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Table 13.

supracontext contain include

data occurrence 310e
intersect 110 110

111 110 0
110 111 1
101 110 0
011 110 0
100 111 1
010 111 1
001 110 0
000 111 1

Table 14.

supracontext contain include

data occurrence 310e
intersect 110 110

111 110→111 0
110 111→111 1
101 110→111 0
011 110→111 0
100 111→111 1
010 111→111 1
001 110→111 0
000 111→111 1

In order to continue using the contain register to determine the include qubit
for the next data occurrence, we need to reset the contain register to all ones. We
do this by reversely applying the contain operator:

reverse contain
for i = 1 to n

if intersect [i] = 0 and supracontext [i] = 1
then contain [i] = 1

Applying this reversed operator, we get the original initial state for the contain
register (Table 14).

Before we read the next data occurrence, we determine the amplitude for each
of the possible supracontexts at this stage of the quantum evolution. To do this,
we set up a number of qubit registers that designate the following information
for each supracontext: the sum, the first outcome, the plurality of the outcomes, the
first intersect, the plurality of the intersects, the heterogeneity, and the amplitude.
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Table 15.

supracontext sum outcome intersect hetero ampl
1st plur 1st plur

111 0 – 0 – 0 0 0
110 0 – 0 – 0 0 0
101 0 – 0 – 0 0 0
011 0 – 0 – 0 0 0
100 0 – 0 – 0 0 0
010 0 – 0 – 0 0 0
001 0 – 0 – 0 0 0
000 0 – 0 – 0 0 0

Initially, prior to considering any data occurrence, these qubit registers are all
equally assigned zeros (Table 15).

After we have determined which supracontexts include a particular data occur-
rence, we then apply the following operators simultaneously to each supracontext.
In each case, we give the same name to the operator as the name of the qubit register
that stores the result:

sum
if include = 1 for the current data occurrence
then increment sum by one (that is, sum = sum + 1)

first outcome and plurality of outcome
if first outcome is empty
then store the outcome of the data occurrence in first outcome
otherwise (first outcome is filled)
set plurality of outcome equal to one

first intersect and plurality of intersect
if first intersect is empty
then store the intersect of the data occurrence in first intersect
otherwise (first intersect is filled)
set plurality of intersect equal to one

heterogeneity
if both plurality of outcome and plurality of intersect equal one
then set heterogeneity equal to one

amplitude
if heterogeneity = 1
then amplitude = 0
otherwise (heterogeneity = 0)
set amplitude equal to sum
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Three of these registers can be represented by a single qubit (namely, plurality
of outcome, plurality of intersect, and heterogeneity). The others need to contain
specific qubit representations of various information:

sum zero or a positive integer
first outcome an outcome
first intersect an n-bit representation
amplitude zero or a positive integer

It should be noted that each of these could be accessed by a single qubit plus some
associated informational register whenever the qubit is set to one:

sum 0 if there are no occurrences
1 if there is at least one occurrence

register gives sum

first outcome 0 if no (first) outcome has yet been found
1 if a first outcome has been found

register gives first outcome

first intersect 0 if no (first) intersect has yet been found
1 if a first intersect has been found

register gives first intersect

amplitude 0 if there is no amplitude
1 if there is an amplitude

register gives amplitude
(the same integer as in sum)

It should also be noted here that certain states, once reached for a given supra-
context, are not changed throughout the evolution of the superpositioned system
(up through decoherence or observation). Suppose we use the single-qubit sys-
tem, as just described. Then whenever any of the following qubits is set to one,
that qubit and any associated register will never be changed as long as the super-
position is maintained: first outcome, plurality of outcome, first intersect, plurality
of intersect, and heterogeneity. The value for sum for a given supracontext, on the
other hand, will never decrease. The value for amplitude will also never decrease
except when heterogeneity is achieved, in which case the amplitude will be imme-
diately reduced to zero. And from then on, the amplitude for this supracontext will
always remain at zero.

As long as we keep track of all the data occurrences in the dataset, all these
operators are reversible. This reversibility basically means that our system must be
an exemplar-based system of prediction if we are going to use quantum computing
to determine the analogical set for a given context.

We now read, one at a time, the five data occurrences (310e, 032r, 210r, 212r,
and 311r). For each data occurrence, we first compare it with the given context 312
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and determine the intersect for that occurrence, then apply the sequence of opera-
tors (contain, include, sum, first outcome, plurality of outcome, first intersect, plural-
ity of intersect, heterogeneity, and amplitude) and finally at the end of the sequence
reverse the contain register (that is, apply the operator reverse contain) before read-
ing the next data occurrence. The results of reading these data occurrences and
applying the operators appear in Figure 1.

In quantum mechanics the values of the amplitudes are systematically adjusted
so that their squares sum to one. But as already pointed out, such norming proce-
dures are the result of specifying that probabilities are real numbers from 0 to 1. In
analogical modeling, there are no underlying probabilities, only occurrences and
pointers to occurrences. Under conditions of imperfect memory, analogical model-
ing does produce probabilistic behavior, but without directly learning probabilities
or using them. The amplitude for a homogeneous supracontext is directly propor-
tional to the number of occurrences for that supracontext. Its probability of being
selected is directly proportional to the number of pointers to occurrences in that
supracontext – which is the square of the number of occurrences.

This squaring occurs in quantum computing whenever decoherence occurs.
But in quantum analogical modeling, the squaring does not involve mathematical
calculation. Instead, it is the result of selecting from all the homogeneous supra-
contexts one of the pointers to occurrences. We do not select an occurrence it-
self; that kind of selection would lead to setting the probability of predicted out-
come as proportional to the amplitude. Instead, we select a pointer to an occur-
rence, which gives the probability of predicted outcome as proportional to the
amplitude squared.

Since the supracontexts are the quantum states, decoherence is equivalent to
observing one of the homogeneous supracontexts, then selecting one of the point-
ers to occurrences in that supracontext. Nonetheless, it is worth noting that one
could directly select one of the pointers to occurrences in any of any of the homo-
geneous supracontexts and get the same results – namely, the proportional prob-
ability of random selection defined by the frequency squared. Furthermore, since
we are keeping track of all the data occurrences, we do not really need to keep
track of the sum and amplitude per se, only the information that determines the
heterogeneity of each supracontext.

This view of decoherence rejects Shannon’s unbounded measure of uncer-
tainty, which allows an unlimited number of yes-no questions to guess the correct
outcome. Analogical modeling allows only one guess and is equivalent to a mea-
sure of simple disagreement between pairs of occurrences. Analogical modeling
thus looks at behavior in terms of events and connections between events (that is,
as data occurrences and pointers between those occurrences). In analogical mod-
eling, this measure of disagreement thus shows up directly whenever observation
or decoherence occurs.
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Table 16.

include sum hetero ampl prob

311r 212r 210r 032r 310e
110 011 010 001 110

111 0 0 0 0 0 0 0 0 0
110 1 0 0 0 1 2 0 2 4
101 0 0 0 0 0 0 0 0 0
011 0 1 0 0 0 1 0 1 1
100 1 0 0 0 1 2 0 2 4
010 1 1 1 0 1 4 1 0 0
001 0 1 0 1 0 2 0 2 4
000 1 1 1 1 1 5 1 0 0

Table 17.

include ampl prob pointers

311r 212r 210r 032r 310e e r
110 011 010 001 110

110 1 0 0 0 1 2 4 2 2
011 0 1 0 0 0 1 1 0 1
100 1 0 0 0 1 2 4 2 2
001 0 1 0 1 0 2 4 0 4

In our example, after reading the five data occurrences, we have two (non-
occurring) supracontexts with no occurrences (where the sum equals zero), two
heterogeneous supracontexts, and four occurring (non-zero) homogeneous supra-
contexts. When observation takes place, we randomly select one of these four non-
zero homogeneous supracontexts in proportion to their number of pointers to
occurrences (Table 16).

For each of the occurring homogeneous supracontexts, we can readily de-
termine how many pointers point to each of the two possible outcomes, e and r
(Table 17).

Thus the chances of selecting the outcome e (that is, the chances of selecting a
pointer to an occurrence having the e outcome) is 4 (= 2 + 2), while the chances of
selecting the outcome r (that is, the chances of selecting a pointer to an occurrence
having the r outcome) is 9 (= 2 + 1 + 2 + 4). The probability of the e outcome
is therefore 4/13 (≈ 0.31), and the probability of the r outcome is 9/13 (≈ 0.69).
These are the same results derived in Section 2.2 of Analogical Modeling of Lan-
guage (Skousen 1989:23–37). The approach there, however, is based directly on
the principle of minimizing the quadratic measure of disagreement. The quantum
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computational approach considers the plurality of outcomes and intersects, but
derives the very same analogical set.

We can see from the superposition of 2n supracontexts that the exponential
explosion of analogical modeling is reduced to a polynomial function of n. For
each of m data occurrences accessed from the database, we will need a single in-
clude qubit. In terms of memory requirements, quantum analogical modeling will
require a linear qubit size of O(m + n). On the other hand, the required running
time is be O(m ·n), a multiplicative function. However, for a set number of data oc-
currences, the running time will be a linear function of n, the number of variables.
These results provide the tractability we need for a viable exemplar-based approach
to language prediction.

David Eddington, in a preface to his paper “Analogy and the Dual-Route
Model of Morphology” given at the Conference on Analogical Modeling (the pa-
per is published as Eddington 2000), has compared analogical modeling and its
problem with exponentiality to a heavyweight boxer, very slow but powerful. How-
ever, if quantum computing can be applied to analogical modeling, we may have
a heavyweight that is exponentially faster than anyone conceived of. Up to this
time, we have perhaps worried too much about the exponential explosion, as if
this were a problem that must be solved by any other means. Quantum comput-
ing suggests that we treat the exponentiality of analogical modeling as inherent.
Instead of trying to avoid the exponential explosion, we should embrace it!

Analogical quantum mechanics

It is also worth noting that analogical modeling may provide an interpretative
model for quantum mechanics itself. As many have noted, the problem with quan-
tum mechanics is that it is a formalism in search of an interpretation (see Cushing
1998:271–355, especially Chapter 23).

Analogical modeling does not actually posit underlying probabilities – there
are no inherent probabilities. Instead, analogical modeling proposes occurrences
(or events) and pointers (or connections) between occurrences. The notion of
agreement and disagreement between occurrences leads to a natural measure of
(un)certainty, one that directly models the linear/squared relationship of ampli-
tudes and probabilities in quantum mechanics. The superpositioned supracontexts
in analogical modeling, however, keep track of occurrences, not amplitudes per se.
Decoherence leads to selecting a pointer to an occurrence. The probabilities are
the result of selecting a pointer to an occurrence. Furthermore, the predictions are
based on a single observation, as is analogical modeling (especially given its mea-
sure of disagreement instead of Shannon’s information, which permits any number
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of observations). The norming of probabilities is not inherent to quantum me-
chanics. The real question is whether the results are probabilistic. Setting a norm
on the probability measure is merely a mathematical convention. If one wishes, one
can continually norm the amplitudes to obtain an observed probability between
zero and one.
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Chapter 14

Data files for Analogical Modeling

Deryle Lonsdale

Introduction

This paper is a discussion of how to prepare data for use by the Analogical Model-
ing (AM) system. Given the tutorial aspects of the paper, it assumes that the reader
is already familiar with the overall AM approach, and this paper will therefore not
discuss the background of the theory (see Skousen’s overview article in this vol-
ume). Similarly, it will not give the specifics on how to run the program itself.
(This information is found in the following paper by Parkinson, also in this vol-
ume.) Finally, this paper will not compare the AM approach itself with other types
of data-oriented systems.

Instead, the following topics will be covered:

– the nature of data processed by the AM system
– various means of representing AM data
– special conventions used in encoding AM data

What is data?

We begin with a general discussion of data. Data can be thought of as information
that is helpful in making a decision. We seek data on current and predicted weather
trends when deciding when to schedule a picnic or golf game. Data on recent per-
formance of a given mutual fund is useful when deciding where to invest money.
Information in the form of past evaluations of a course or an instructor can be
invaluable to students interested in enrolling in a given college course.

The nature of the data used in decision-making varies according to the type of
problem to be addressed. In many cases, as in the previous examples, numeric or
arithmetic data (in the form of percentages, temperatures, or values chosen from
a scale) are useful for decisions. On the other hand, sometimes data might not be
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very amenable to characterization in terms of a number. In such cases, we some-
times categorize data or group it into different classes that can then be described
with a label. For example, the color of each crayon in a box of crayons may not
be described very well numerically; instead, it is more useful to use commonly-
defined category labels (or terms) for colors to describe the color of a given crayon:
red, green, blue, etc. In this discussion we will consider both continuous scalar
descriptions of data (the first numeric kind mentioned) and discrete, categorical
descriptions of data (the second kind mentioned here).

Items of data are often not isolated; rather, data is often presented as a collec-
tion, series, or list of several related properties that, taken together, describe some
interesting item. For example, the description of a book might contain several items
of data: its title, the name of its author(s), its publisher, its publication year, the
number of pages, and so on. Numeric data can be used for the publication year
and number of pages, whereas category labels (i.e. names) would be used for the
title, author, and publisher.

Clearly, the type of data to be used in computation should be commensurate
with the operations to be performed on (or with) the data. Category labels such
as “hot”, “cool”, “frigid” may be useful for some purposes in characterizing the
temperature of certain days, but clearly they would be inadequate if one wished to
calculate the average temperature for these days. An important aspect of any com-
putational approach, including AM, is to decide how best to characterize the data
in a way that is amenable to treatment by algorithmic processes used by computers.

Examples of data

In this section we will examine a few types of widely used data to appreciate the
types of information typically encoded for various purposes. They come from a
repository of datasets that have been compiled for use by people who develop and
evaluate machine learning systems and do research in other computational aspects
of data categorization (Blake, Keogh, & Merz 1998).

The Congressional voting record is a dataset that contains information on the
voting record of members of the House of Representatives in the U.S. Congress.
One year’s worth of voting records, namely those taken in 1984, has been made
available for use by the machine learning community. Figure 1 shows an example
of the information that is contained in this dataset.

This figure mentions that there are 435 data instances; specifically, the votes
recorded for 435 members of the House of Representatives (267 members of the
Democratic Party and 168 members of the Republican Party). For each member,
the results of 16 votes have been recorded; for each issue the House voted on, each



Data files for Analogical Modeling 

Number of Instances: 435 (267 Democrats, 168 Republicans)

Number of Attributes: 16 + class name = 17 (all Boolean valued)

Attribute Information:

1. Class Name: 2 (democrat, republican)

2. handicapped-infants: 2 (y,n)

3. water-project-cost-sharing: 2 (y,n)

4. adoption-of-the-budget-resolution: 2 (y,n)

5. physician-fee-freeze: 2 (y,n)

6. el-salvador-aid: 2 (y,n)

7. religious-groups-in-schools: 2 (y,n)

8. anti-satellite-test-ban: 2 (y,n)

9. aid-to-nicaraguan-contras: 2 (y,n)

10. mx-missile: 2 (y,n)

11. immigration: 2 (y,n)

12. synfuels-corporation-cutback: 2 (y,n)

13. education-spending: 2 (y,n)

14. superfund-right-to-sue: 2 (y,n)

15. crime: 2 (y,n)

16. duty-free-exports: 2 (y,n)

17. export-administration-act-south-africa: 2 (y,n)

n,n,y,y,y,y,n,n,y,y,n,y,y,y,n,y,republican.

y,n,y,y,y,y,y,y,n,y,n,y,n,y,y,y,republican.

n,y,y,n,y,u,y,n,n,y,y,n,y,n,y,y,democrat.

y,n,y,n,y,y,n,n,n,n,n,n,n,n,n,y,democrat.

n,y,n,y,y,y,n,n,n,n,y,y,y,y,n,n,republican.

y,y,y,n,y,y,n,y,n,n,y,n,y,n,y,y,democrat.

n,y,y,n,n,n,y,y,y,y,y,n,n,n,y,y,democrat.

n,n,n,n,y,y,y,n,n,n,n,y,y,y,n,y,democrat.

y,y,y,n,n,n,y,y,y,y,y,n,n,n,n,y,democrat.

n,y,y,n,n,y,y,y,n,y,y,n,y,y,n,u,democrat.

n,n,y,y,n,n,y,y,y,y,n,n,n,y,y,y,republican.

Figure 1. Features and sample data instances from the Congressional Voting Record
dataset (Blake, Keogh, & Merz 1998)

member’s vote (y for “yes” or n for “no”) is listed. This dataset therefore consists of
435 lines, one per House member, each of which records a member’s votes and the
party he or she belongs to.

For example, the first data instance in the dataset consists of the line:

n,n,y,y,y,y,n,n,y,y,n,y,y,y,n,y,republican.

Read from right to left, this says that one Republican House member voted “yes” for
the first issue, “no” for the second one, “yes” for the third one, and so on until the
last one, for which a “no” vote was cast. The other 434 data instances are similarly
encoded. This dataset would be useful in many different ways. Machine learning
systems, for example, could use this type of data to arrive at a prediction (called an
outcome in the AM system) for how a given House member might vote for a given
issue, given his or her past voting record and comparing it to other members’ votes.
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Number of Instances: 101

Number of Attributes: 18 (animal name, 15 Boolean attributes, 2 numerics)

Attribute Information: (name of attribute and type of value domain)

1. animal name: Unique for each instance

2. hair Boolean

3. feathers Boolean

4. eggs Boolean

5. milk Boolean

6. airborne Boolean

7. aquatic Boolean

8. predator Boolean

9. toothed Boolean

10. backbone Boolean

11. breathes Boolean

12. venomous Boolean

13. fins Boolean

14. legs Numeric (set of values: {0,2,4,5,6,8})

15. tail Boolean

16. domestic Boolean

17. catsize Boolean

18. type Numeric (integer values in range [1,7])

aardvark,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,1

antelope,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,1

bass,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,4

bear,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,1

boar,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,1

buffalo,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,1

calf,1,0,0,1,0,0,0,1,1,1,0,0,4,1,1,1,1

carp,0,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0,4

catfish,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,4

chicken,0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0,2

chub,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,4

clam,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,7

Figure 2. Features and sample data instances from the Zoo Animals dataset

Another dataset commonly used by the machine learning community is the
zoo dataset. As indicated in Figure 2, it consists of 101 data instances, each de-
scribing a type of animal. The relevant features (of which there are 18) include
descriptions of whether the animal typically has hair, fins, feathers, lays eggs, is a
predator, and so on. The outcome is the animal name.

For one final example of an interesting dataset, consider the mushroom toxic-
ity dataset. Figure 3 shows that this dataset has 8124 instances. Each one consists of
22 features, each describing some attribute of a particular mushroom. Besides these
features, each instance also has a boolean (two-valued) feature that states whether
that particular mushroom is poisonous or edible.
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. Encoding data

In this section we take a closer look at how to encode data. We begin by defining
terms that have been used informally above. A dataset is some amount of informa-
tion that concerns a set or collection of objects. A data instance is the description
of a particular object for which we have some information. Each data instance can
be composed of features or attributes that each describe some property of that data
instance. For example, a dataset could be composed that describes the set of auto-
mobiles in the parking lot outside a given building at a particular time. Typically,
one data instance could be provided for each auto in the lot. For example, if the car
I drove to work was in that lot, a data instance would be provided to account for
that auto. Each auto’s data instance would consist of a description of the properties
of that auto. Salient features that could be used in such a data instance might be its
color, year, model, whether or not it has air conditioning, the license plate number,
whether or not it has a valid parking permit, and so on.

What is an AM data file? First and foremost, it is a collection of data instances
that we want to process with AM. Specifically, it contains one instance per line
(sometimes called the feature vector). Each of these data instances contains, in its
line in the file, several features. Each of the features has its own range of possible
values. In this manner it is possible to give information to the AM system about
data instances. A very important aspect of a data instance is its associated outcome,
which tells us what that data instance represents when it is processed by AM. When
a data instance has an associated outcome, we call it a “labeled instance”. Typically
several dozen, hundred, or thousand related labeled instances are collected in a
data file, which is then given to AM for processing.

In general terms, AM uses the data in a data file to predict the behavior for sim-
ilar instances. The features in each data instance are processed, the combination of
features is related to the specified outcome, and then data instances are compared
and contrasted with each other. It is important that the data file be encoded con-
sistently and correctly, so that the labeled instances can be used properly by the
system. Note that the datasets just mentioned above were not specifically encoded
for AM processing; however, they are consistent in the way they represent each data
instance. Because this is so, it is possible to convert these datasets relatively easily
into the proper AM format.

Besides the data file, another file called the configuration file is used by the
AM system. This file is used to set various processing options that control how AM
processes the data instances. This file also tells the program how the dataset has
been encoded. A brief discussion on how data instances can be encoded will be
given later in this paper.

In addition to the data instances we have just mentioned, one other type of
item is input into the AM system: the test instance. This is how users can ask the
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AM system to guess what the outcome should be for a given set of features. It is
important to note that the test instances are encoded in exactly the same manner
as the data instances are, except that the test instances need not be accompanied by
an outcome.

After reading and processing all the data instances from the data file, the AM
system reads all of the test instances prepared by the user (which are contained in
a test file). The system then determines the probability of the various outcomes for
each test instance and reports the outcome results for each of these instances.

As mentioned above, the encoding of data depends on the nature of the ques-
tion that is being addressed. Since most of the work done in AM concerns nat-
ural language data, we next discuss typical problems in using AM to describe
natural language. Crucial to this discussion will be how to encode the data as
AM-compatible data instances.

. What kinds of language data?

Now that we have discussed the properties of data and datasets, it is possible to
address the types of language data that are typically processed in an AM setting.

Language data of many different types has been treated by researchers in the
natural language processing, speech, and machine learning communities. For ex-
ample, one might want to address a phonological issue such as: when do we pro-
nounce the word “the” with a schwa (as in [ð6]) versus when do we pronounce
it with a high front diphthong (as in [ði])? Morphological issues can also be ad-
dressed, especially when selection of an allomorph is relevant; for example, when
do we say “a” vs. “an”? For an example of a syntactic issue that is relevant to ques-
tions of parsing preferences, one might model how we decide where the preposi-
tional phrase attaches in sentences like “I saw a man with a beard” versus “I saw a
man with a telescope.” Word-sense issues are commonly addressed in the area of
semantics; for example, which sense of “bank” is used in the sentence “I deposited
my money in the bank” versus “I fished along the north bank of the river.” Recent
work in discourse acts and other pragmatic issues leads to research into such ques-
tions as what kind of communication is being used when one says “Close the door”
versus “Push the <PageDown> button.” We will look at each of these kinds of data
in the next few paragraphs in order to sketch how datasets in each of these areas
can be constructed.

Much of the work that has been done in AM has focused on areas related to
phonology, which involves the study of how sounds are interrelated and influence
each other. Traditionally, there have been a few different levels of phonological
analysis, most of which have been investigated to some extent in AM. The basic
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unit of phonological interest is the sound segment or phoneme, which represents
an individual sound that is fundamental to the language’s speech patterns. In most
phonological work, the International Phonetic Alphabet (IPA) or other standard-
ized alphabet is used to represent the separate sounds in a language; fortunately for
those whose language uses the Roman alphabet, many of the sound symbols will
be readily recognizable. Several of the sounds use diacritics (e.g. š, representing the
“sh” sound), and a few use symbols that appear in other languages but are not used
in modern English (e.g. ð, representing the “th” sound in the word “then”). Many
people prefer to represent individual sounds in their AM datasets by only using
the ASCII character set, which is restricted to the characters 0 through 9 as well as
uppercase and lowercase forms of the letters A through Z and the standard punc-
tuation marks. It is common practice in AM work to represent sounds that require
a diacritic or that fall outside the ASCII set in terms of ASCII characters, effectively
recoding them to conform to ASCII codes. For example, Skousen (1989) uses S to
represent the “š” sound, and s to represent the “s” sound. In fact, it is not necessary
to restrict oneself to the ASCII character set; one AM study succeeded in deter-
mining where word-boundary separations should take place in Thai text (which
often is devoid of word-delimiting spaces); in this case the data items consisted of
16-bit characters taken from the Thai character set and encoded directly from the
Thai language.

Besides the sound segment, other levels of structure are also used in phonol-
ogy and lend themselves well to an AM analysis. For example, each sound segment
can be described in terms of binary articulatory features that characterize how the
sound is produced or what the salient properties of its sound wave are. These prop-
erties often spread to neighboring sound segments; this process is called assim-
ilation. Accounting for assimilation and similar effects is possible when relevant
features are appropriately encoded in data instances.

Another level of phonological structure often discussed in phonological re-
search is the syllable. In many languages the syllable is crucial for determining such
properties as stress or accent, vowel length, tone, and so on. Typically the syllable
is sub-divided into the nucleus (which usually contains vowels), the onset (which
precedes the nucleus in a syllable), and the coda (which follows the nucleus in a syl-
lable). For example, the word “computer” can be transcribed as k6m/pju/t6r, with
three syllables; in the first, the onset consists of the sound segment “k”, the nucleus
is the schwa “6”, and the coda is the sound “m”.

Salient phonological properties that lend themselves particularly well to an
AM analysis are those that reflect regular processes, such as word-syllable stress and
aspiration (seen in English in the distinction between the aspirated [p] in “poke”
versus the unaspirated one in “spoke”), voicing (seen in the unvoiced [l] in “plug”
versus the voiced one in “bleed”), and vowel length (long as in “bad” versus short
as in “bat”).
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Consider the problem discussed in Skousen 1989 related to the spelling of the
[h] sound at the beginning of English words. There are three ways such words can
be spelled: with an h, as in “how”, with a wh as in “who”, and with a j as in “jicama”.
To process this three-way distinction in AM, each word is encoded as a separate
data item using twelve variables reflecting phonological features. Each data item
has one outcome associated with it: h, wh, or j. A set of 821 data instances was
collected, and AM did very well in determining when given and novel items should
be spelled with which variant.

Another area of linguistic description commonly used in AM-based model-
ing involves the morphological structure of language. Morphology deals with the
structure of words and usually addresses such issues as the root form of a word, its
part-of-speech category (e.g. verb, noun, adjective, etc.), the affixes it may take (e.g.
prefixes, suffixes, etc.) and the ways it may be used in forming compounds. For ex-
ample, in English the word “fish” may be either a noun or a verb, depending on its
use in a sentence or phrase. From the noun form we may form an adjective “fishy”
and compounds “white-water fish”, “tropical fish”, and so on. Sometimes variant
forms of an affix (called allomorphs) may be observed in a language. For example,
in English the same prefix meaning “not” has four allomorphs (il-, im-, ir-, and in-)
depending on the phonological properties of the first sound of the root it is added
to (illogical, impossible, irreverent, insubordinate). In English, the agentive suffix
varies based on various properties of the verb root: act+or versus read+er. When
compounds are formed in English, sometimes words are separated with hyphens,
sometimes with a space, and sometimes not at all (topsy-turvy, computer screen,
and pancake respectively). Though not a morphological property of English, many
languages divide nouns (and other types of lexical items) into various classes; for
example, French divides its nouns into two genders (masculine and feminine), and
German has three genders (masculine, feminine, and neuter). Sometimes the gen-
der of a word is difficult to determine or remember, even for a native speaker; for
example, the French words “antilope” and “automne” are problematic masculine
and feminine words, respectively. Trying to determine which part-of-speech tag,
allomorphic variant, gender, or compounding connective is appropriate in a given
situation is the type of situation that has been well studied within AM. In many
languages these issues become quite complex, and this volume includes papers that
address morphological issues in various languages.

An example of a dataset that deals with lexical or morphemic variation con-
cerns use of the variant forms of the indefinite determiner (a vs. an) in English.
As explained in Skousen 1989, deciding when to use “a” versus “an” is usually con-
sidered a straightforward problem, though there are instances where this becomes
an interesting issue. Consider how different people select either of the variants in
collocations such as a(n) hypotenuse or a(n) hypothetical. In fact, there are sev-
eral cases that illustrate that this is not a trivial problem; consider the following
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instances extracted from proposal abstracts present in U.S. Department of Energy
documents (ACL/DCI 1991):

alumino silicate fibre holding an helical wire set in grooves inner

e target have been determined. An ytterbium target of 4 g/cm{sup 2} ha

ted receptor with borohydride, an 3H-labeled alcohol is released, sugg

from the deposition chamber to a UHV chamber equipped with Auger spec

king the donor nitrogen atoms. An x-ray diffraction structural analysi

s discussed. An application of an hydrodynamic study in the North Sea

his value is then corrected by an magnification factor called Ke that

es and concludes that they are an wholly inadequate response to the

ron sputtering. Preparation of an Y-Ba-Cu-O film directly on MgAl{sub

s radiographic sign appears as an horizontal line between two soft

onnecting the gas supply lines an gas evacuation lines to each of the

. The burners were fired using a UK coal (pulverised at CERCHAR) and,

e system, octopus rhodopsin is an 11-cis pigment, while the photoprodu

low influenced the mobility of an herbicide which was adsorbed by the

pensation, i.e. <e/h>=0.76, at an hadronic energy resolution of {sigma

he structure of earthen seals. An saturated environment will need to b

ray and gamma-ray observations an substantially underestimate the spec

erature in the same way as for an homogeneous dirty type II supercondu

great reduction in their cost, an great increase in electricity rates,

referred to as {alpha}-phase. A eutectic exists between P and C at 12

information presented here in an historical perspective. 55 refs., 4

revious years theoretical work an space-charge dominated beam dynamics

nd spontaneous cytotoxicity to a established tumor cell line (18 hrs a

Clearly there are some errors as well as instances where usage of “a” or “an” would
vary from speaker to speaker. If one were to code such instances in a dataset for
treatment in AM, the approach as outlined in Skousen 1989 could be followed. In
that dataset Skousen compiles 164 instances, each of which contains 15 variables,
which are all phonological in nature. The outcome is either the word “a” or “an”.

AM datasets have also been compiled to account for higher-level aspects of
language use, ones above the phonological and morphological levels. For exam-
ple, Skousen (1989) discusses a dataset collected by Parkinson to account for
sociologically-conditioned lexical choice in Arabic. In this dataset Skousen looked
at two words that mean “my brother”, ya’axi and yaxuuya, and used these as the
outcomes. There were 8 variables that encoded various sociolinguistic and dis-
course factors (such as the social status and gender of the speaker and of the hearer)
that presumably played a contextual role in determining which variant was se-
lected. 242 data instances, collected from the protocols of actual-use scenarios, were
used by AM to model use of these words. An interesting factor that was included in
this research was that frequency information on the data instances was also taken
into consideration.
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General considerations

There are several questions which must be addressed when compiling datasets for
use by the AM program. In this section we discuss several of these issues.

First of all is the issue of exponentiality. As with many computationally com-
plex systems, the nature of the AM is such that its processing reaches practical
limits. At the present time, for example, there is a limit of about 22 features. If data
instances consist of more than this number of features, processing slows to such an
extent that use of the system is not practical. Work is currently being done to see
whether this exponential problem can be mitigated somewhat (see Stanford’s arti-
cle in this volume). In general, large numbers of data instances can be processed.
The main factor that impacts performance is the number of variables that is used
to encode each data instance.

Much discussion in the machine learning community involves the issue of ro-
bustness. This has to do with whether a system is resilient enough to be able to
handle data that might be only partial, incorrect, or otherwise questionable. The
AM approach is designed to leverage the fact that language use is often prone to
errorful, inconsistent, and incomplete information. To assume that input is always
complete, consistent, and correct would not reflect how language is used. In spite
of these apparent data problems, the human faculty is remarkably resilient in pro-
cessing language. To the extent that this can be shown in AM, a more exact model
of language use is possible. In general, noisy data can and should be included in
language datasets for AM processing, when such data is available.

Contextual effects are important in language use; however, the vast range of
language contextual features introduces a few issues of feature selection. In AM,
one seeks to select and work with variables that are closest to the locus of the
phenomenon that is being investigated. For example, in a phonological dataset,
features involved in phonological processing should be preferred to semantic or
pragmatic features that would likely have little or no bearing on the issues at hand.
The site of a morphophonological change should be described in terms of features
surrounding the site, and not those so far away that they have no relevance to the
site and its change. Along with the issue of feature proximity, another issue is that
of feature differentiation. This means that one should choose enough features so
as to distinguish the different data instances. An encoding scheme where the vast
majority of feature encodings cluster closely in a small region of the space of all pos-
sibilities will not be as successful as a scheme where the features are more evenly
distributed across the space of possibilities.

In summary, there are a few skills that contribute to the successful develop-
ment of a dataset: the choice of the number of variables, identifying those features
most relevant to the issues at hand, and being able to account for data instance



 Deryle Lonsdale

differentiation. Being able to satisfy these desiderata is an art, and is best acquired
through experience.

Another issue with respect to attributes is that no continuous-valued attributes
are currently supported by the system. For example, AM sees 1, 6 and 9 as different
values, but 6 is not any “closer” to 9 than 1 is. In other words, there is no arith-
metic or absolute-valued calculation of these values, other than the fact that they
represent nonequal categories.

Finally, it has been noted that character sets for feature values don’t seem to
pose a problem. As noted earlier, a recent student study encoded data instances
with features from the 16-bit character set for Thai characters, in order to perform
sentence boundary detection in Thai text, and the system performed well.

Note that when working with instances taken from corpora, the type/token
distinction is relevant. Tokens are instances of data (e.g. Mark Twain’s The Ad-
ventures of Tom Sawyer has 71,370 word tokens). Types, on the other hand, are
data instances with redundancy removed (e.g. The Adventures of Tom Sawyer has
8,018 word types). AM work often involves tokens, since frequencies are helpful
and informative in many cases.

True zeros versus nulls

The equal sign has special significance in AM. It fills one of two roles, and there-
fore one can choose to include or exclude it from processing. If it is excluded from
processing, it doesn’t count as an active feature. When it is included in process-
ing, it counts as an active feature. When excluded from processing, the equal sign
usually stands for predictably redundant, non-occurring variables. The equal sign
can therefore be used to represent incomplete data as a kind of template to signify
that relevant information cannot be provided for these variable slots. It can also be
useful when encoding sparse data with many variables. For more discussion of this
point see Sections 3.1–3.2 of Skousen 1989.

Data instance coding options

One other fundamental choice in the encoding of data instances is available to the
user of AM. This centers around how many characters should be used to encode
each feature of a given data instance.

One possibility is to use one character per feature in the data instance. For
example, note this example of a data instance which has an outcome (the charac-
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ter m), and which uses thirteen features encoded in a variable, one character per
feature, followed by a comment:

m CjSeCtRSaCs0= zemetras

Using this type of encoding can sometimes result in data instances that are diffi-
cult to read and understand. Another format is therefore possible, in which each
feature in the data instance is represented by a word, with a space character sepa-
rating the individual feature encodings. For example, the next few examples show
encodings using space-delimited multi-character features, with commas separat-
ing the outcome column from the feature columns, and the features column from
the comment column:

25dec, ham eggs milk, hefty-breakfast

22nov, turkey yams stuffing, what-a-feast

13feb, beans muffins soda, winter-campout

14aug, tofu carrot-stick water, vegan-delight

Here we see an outcome (a date), a comma followed by three feature values
delimited by spaces, and a second comma that defines the last column as the
comment column.

The test file

The test file is a type of file that is mandatory when using the AM system. Basically,
it is used to ask the system to predict the outcome for each test instance in the file.
It uses the same type of feature vectors as the data file, except no outcome need
be specified. Note that any number of test instances can be contained in a file; the
system iterates over them all, processing them one at a time.

Run-time options and data

This section briefly mentions the different types of options that users of the AM
system can select from in order to control how processing is carried out. These will
be explained in further detail in Parkinson’s following article (in this volume).

One option, called imperfect memory or forgetting, controls whether the sys-
tem can remember and have access to every data item in the dataset. Any decimal
number from 0 to 1 can be specified, which in turn is converted by the system to
a percentage of items to be remembered. If forgetting is specified, an appropriate
number of items are randomly selected to be forgotten.
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Another value that the system takes into consideration is the frequency speci-
fication. Each type of data item in the dataset can be ordered in terms of frequency,
with the most frequent listed first. Then, in running the program, we can use only
the first n data items by restricting the frequency to n. In this way the program
makes predictions in terms of the n most frequent data items. This approach means
that each token of data item does not need to be separately listed as a unique data
item in the input.

Finding and coding data items

Usually people who work with AM have their own data which they seek to sub-
mit to an AM analysis. However, there are other resources that can be tapped as
datasets for use in AM. For example, there exist many machine-learning archives
whose purpose is to provide researchers with machine-readable versions of data
that have been previously collected. The congressional voting, mushroom toxicity,
and zoo animal datasets mentioned earlier are examples of data that can be ob-
tained from such repositories. Other datasets useful in modeling language use can
be obtained from organizations that collect and disseminate linguistic data, such as
the Linguistic Data Consortium (LDC) and the Evaluation & Language resources
Distribution Agency (ELDA). Finally, researchers who work in other paradigms
have often collected data related to their own investigations, and are often will-
ing to share their data with other researchers. For example, much work that has
been done in connectionist (parallel distributed processing or neural network) ap-
proaches to natural language processing involve datasets that have been encoded
into feature vectors which can be easily manipulated into AM data format.

Often it is useful to generate one’s own datasets based on pre-existing re-
sources. Several efforts in AM have been carried out on data items extracted from
corpora. Others have used dictionaries and lexical knowledge bases to extract in-
teresting information for data items. Generally, the manipulation of corpus and
lexicon data in order to create AM-type datasets requires some programming abil-
ity. Many Unix commands are available to help in the manipulation of textual
and lexical data (e.g. awk, grep, sed, and tr). A more platform-independent,
though more programmatically structured approach is to use the Perl scripting or
programming language, which is widely used for dataset construction.
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Sample applications

There are several sample applications that have been documented in the growing
AM literature. For example, in Skousen 1989, several datasets are included, such as
the one used to predict Finnish past-tense formation. In his book on NLP applica-
tions of AM, Jones (1996) presents information on how to develop datasets for the
process of analogical cloning, although no complete datasets are presented in the
book. There are also several published papers dealing with AM that include partial
or complete datasets; most papers describe the process used in constructing data
instances as well as the rationale for choosing the number and type of attributes. In
the future it might be possible to collect a few of the most intuitive, commonplace,
and straightforward datasets in an AM data archive.
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Chapter 15

Running the Perl/C version of the
Analogical Modeling program

Dilworth B. Parkinson

Introduction

The Analogical Modeling (AM) program first appeared as Pascal code at the back
of Skousen 1989. This program has undergone a minor correction and a num-
ber of revisions designed to make it run faster, more easily, and with more vari-
ables allowed. Except for the minor correction, the results given by the program
are identical over the various versions.

The version described here was written in July 2001 by Theron Stanford based
on an algorithm suggested by Royal Skousen. It is written in a combination of Perl
and C and appears to be several orders of magnitude faster than earlier versions
as well as less memory-intensive. This version has crunched through datasets with
thousands of datapoints and 24 and more variables in minutes rather than hours.
As currently written, 31 would be the maximum number of variables possible.

One important point to realize at the beginning is that the program does very
little error checking of the data, test, and outcome files. The researcher is respon-
sible for making sure those files are appropriately constructed. When someone
brings me a bizarre looking set of results, the reason can often be traced back to
typos in one of those files or to a mismatch between the configuration file and the
way the files were in fact configured.

. Getting and compiling the program

The assumption is that the user is running either Windows or a Unix-based operat-
ing system such as Unix itself, Linux, or Mac OS X; those running other operating
systems may be able to compile the program themselves by modifying the instruc-
tions given below for Unix-based operating systems. No matter what operating
system is used, Perl must be installed first. The latest version can be downloaded
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from <http://www.cpan.org>. Windows users may find it easier to download from
<http://www.activestate.com>. Version 5.6 or greater must be used for successful
compilation and execution. All AM program files can be downloaded from the AM
homepage at <http://humanities.byu.edu/am/>.

. Running under Windows

The easiest way to run the AM program under Windows is to download the
precompiled executable amc.exe and the Perl script amc.pl from the AM home-
page. This only works, however, if Perl has been installed in the default directory,
C:\Perl; in particular, the file Perl56.dll must reside in directory C:\Perl\bin. The
program can then be run either from the command line or by double-clicking
on the amc.exe icon, assuming all other data files are in the correct places as
described below.

Windows (or DOS) users who wish to compile their own version of amc.exe
can follow the instructions for Unix-based operating systems (given in the next sec-
tion). However, be warned that the Perl library in the Windows port is not named
libPerl56.a but perl56.lib instead, and that this library file has a structure different
from its Unix counterpart. Commercial C compilers should have no problem link-
ing to perl56.lib; users of free C compilers such as gcc will have to use the tools in-
cluded in their environments to create their own libPerl56.a to link to. (The down-
loadable version of amc.exe was in fact compiled this way, using a port of the C
compiler gcc to Windows provided by <http://www.mingw.org>.)

. Running under Unix-based operating systems

In this scenario, there is no other option but to obtain the source code and compile
it oneself. Because of the differences between Unix-based operating systems, it is
impossible to provide an executable that will run on all of them.

The source code consists of the following five files, which must be downloaded
from the AM homepage: amc.pl is Perl code which parses the datasets and eventu-
ally writes the results to a file; amc.c is C code which uses the parsed data to create
the supracontextual lattice and count pointers; progeny.c is C code containing two
helper functions for traversing the lattice; and amc.h and progeny.h are header files
necessary for compilation.

To compile, the user must find out where the Perl header files EXTERN.h and
perl.h as well as the Perl library libPerl.a (or libPerl56.a) reside and modify the
makefile accordingly. The document perlembed that comes with the Perl distribu-
tion can be helpful in finding these files. The C header file iso646.h must reside with
the other standard C header files; if the user’s system is missing this file, it should
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be found and installed prior to attempting compilation. Once the makefile is set
up, typing “make” at the command prompt should be sufficient. The program can
then be run by typing its name (typically “amc”) at the command prompt, assum-
ing that all other data files are in the correct places as described below and that amc
has been given executable permission.

Successful compilation has taken place in a variety of environments, including
Unix, Linux, Mac OS X, and Windows.

. Note for users not running Windows or Unix

For those who cannot use the precompiled Windows version of amc.exe and cannot
compile C programs – for instance, users of older Macintosh operating systems –
versions of the AM program which only require Perl to be installed can be down-
loaded from the AM homepage. These do not have the speed of the latest versions,
and they require larger memory allocations, but they can still handle datasets with
thousands of datapoints and up to 24 variables.

. Overview of AM program

The AM program takes one or more ‘givens’ or tests, and compares them to a set
of data coded for any desired variables. The program uses the data to then predict
an outcome for the test item. The program is controlled with a configuration file
named AM.config. This file must be in the same folder or directory as the AM pro-
gram file. The configuration file lists the name of the dataset and the testset and
allows the user to set a number of other parameters. Once this configuration file
has been filled out and saved, one simply invokes the AM program itself in the
normal way.

In this paper I will be using a small dataset gathered for the prediction of Ara-
bic plurals. The outcomes for the particular forms in this dataset are limited to
two: the feminine sound plural (coded fem) and a particular broken plural pattern
(coded CaCaaCiiC). The dataset encodes a number of singular nouns, along with
an indication of the plural they take. So, for example, the singular taSriiH takes the
feminine sound plural (taSriiHaat), while the singular taqliid takes the broken plu-
ral pattern (taqaaliid). To use the program, one needs to present it with a test item –
in other words, a new Arabic singular noun – and the program will then predict a
plural form for that noun from among the outcomes present in the dataset.
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. Naming convention

All files related to a particular set of data are contained in a subdirectory of the
directory containing the AM program. The name of this subdirectory is then listed
in the file AM.config. This is how the program knows what data and outcomes to
consider, and what tests or ‘givens’ are to be used. The name for the sample dataset
used here is ArPlurals.

. Files provided by researcher

. The data file

The data file must be given the name data. The data file consists only of the data,
with no headers or other information. Each line of the data file represents one data
point, and each line must end with a return, including the last line. The data are
listed in the following order: Outcome, Variables, Specifier.

The outcome represents the result you are trying to predict. In the case of the
Arabic dataset, the outcome would be either fem (representing the sound feminine
plural) or CaCaaCiiC (representing the broken plural pattern). It makes no differ-
ence what you choose to represent the outcomes as long as they are distinctive. You
may choose letter or number identifiers (A and B, 1 and 2) if you want the data to
have a clean look, or you may choose something that reminds you more directly
of what it is you are coding, as I did with the Arabic plural dataset. There is no
practical limit to the number of outcomes a dataset may include.

The variables represent aspects of the input data that you wish to code for (see
Lonsdale, this volume, for suggestions on choosing variables). In general, given
the limitations of the program, one would want to choose fairly high level features
that could conceivably have something to do with the outcome, although it is a
mistake to limit oneself only to features already known to be important. In the
Arabic plurals example, I chose to code for whether or not the root was doubled
or sound, the three letters of the root, and the phonological class of each letter
(labial, affricate, etc.). Since the data all have the same pattern there was no need
to code for the vowels. In other phonologically oriented data, it is common to code
for the vowels, for vowel length, and for aspects of the syllable structure (onset,
coda, etc.). Variables for each data point must, of course, be in the same order
each time.

The specifier at the end of the line is simply a reminder to the user of what the
data actually codes. It is often not intuitively clear what a line of variables refers to,
so the specifier helps the researcher remember what the encoded variables stand
for. The AM program itself simply ignores the specifier. For the Arabic data, the
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specifier is the singular form that takes the plural listed in the outcome and which
is coded in the variables. Some users take advantage of the fact that the program
ignores everything after the variables to add other information to each datapoint,
such as frequency information.

.. Formatting options
... Formatting with spaces only. There are two options for formatting a line
of data, although both options follow the basic pattern mentioned above (Out-
come, Variables, Specifier). In the first option, the variables must be represented
by a single character or digit. They are therefore simply listed in order with no
spaces in between them. The outcome and specifier can be of any length, but
most users who choose this format option want their files to line up nicely, and
one way to make this happen is to have the outcomes also have only one letter
or digit.

Spaces are used to separate the outcome from the variable list, and the variable
list from the specifier. The spaces can include simply the spacebar itself, a tab, or
a combination of spaces and a tab. An example of some Arabic plural data points
coded in this manner is given in Figure 1. Note that I have changed the outcomes
from being reminiscent of what they refer to (fem and CaCaaCiiC) to simply A and
B in order to improve the appearance of the data file.

A SSrHFRG tSryH
A SrtbRSL trtyb
A DHqqGDD tHqyq
A ScdlGSR tcdyl
B SqldDRS tqlyd
A SshlFGR tshyl
B SdbrSLR tdbyr
A SqdrDSR tqdyr
A DhddGSS thdyd

Figure 1. Arabic plural data coded with spaces only, one character outcomes

fem SSrHFRG tSryH 3345
fem SrtbRSL trtyb 1714
fem DHqqGDD tHqyq 1566
fem ScdlGSR tcdyl 1447
CaCaaCiiC SqldDRS tqlyd 1190
fem SshlFGR tshyl 1007
CaCaaCiiC SdbrSLR tdbyr 967
fem SqdrDSR tqdyr 906
fem DhddGSS thdyd 874

Figure 2. Arabic plural data coded with spaces only, multi-character outcomes
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fem SSrHFRG tSryH 3345
fem SrtbRSL trtyb 1714
fem DHqqGDD tHqyq 1566
fem ScdlGSR tcdyl 1447
CaCaaCiiC SqldDRS tqlyd 1190
fem SshlFGR tshyl 1007
CaCaaCiiC SdbrSLR tdbyr 967
fem SqdrDSR tqdyr 906
fem DhddGSS thdyd 874

Figure 3. Arabic plural data coded with spaces only, multi-character outcomes, using
tabs for spaces

Figure 2 shows the same data in the same format but with my original outcome
specifications (and this time with a frequency added to the specifier). Although the
program treats it the same, it is messy to look at and difficult to read.

Figure 3 shows the same data using tabs instead of spaces to separate the
outcome, variables, and specifier, which improves the look.

... Formatting with commas and spaces. The second option for formatting
the data file involves separating the outcome, variables, and specifier with com-
mas, and separating the variables from each other with spaces. This method of
formatting gives the user more flexibility in the naming of variable options, which
can be any number of characters. Again, the spaces separating the variables may
also be tabs.

Figure 4 shows a few lines of the Arabic plural data in this format, with the
names of the variables made to be a little bit more readable for a human (using
Snd and Dbl for ‘Sound’ and ‘Doubled’ respectively, instead of simply S and D, and
the like). Figure 5 shows the data again, this time using tabs to align it more nicely.

fem, Snd S r H Fric Rnl Gut, tSryH
fem, Snd r t b Rnl Stop Lab, trtyb
fem, Dbl H q q Gut Dq Dq, tHqyq
fem, Snd c d l Gut Stop Rnl, tcdyl
CaCaaCiiC, Snd q l d Dq Rnl Stop, tqlyd
fem, Snd s h l Fric Gut Rnl, tshyl
CaCaaCiiC, Snd d b r Stop Lab Rnl, tdby
fem, Snd q d r Dq Stop Rnl, tqdyr
fem, Dbl h d d Gut Stop Stop, thdyd
fem, Hol g y r Gut Vow Rnl, tgyyr

Figure 4. Arabic plural data formatted with commas and spaces
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fem, Snd S r H Fric Rnl Gut, tSryH
fem, Snd r t b Rnl Stop Lab, trtyb
fem, Dbl H q q Gut Dq Dq, tHqyq
fem, Snd c d l Gut Stop Rnl, tcdyl
CaCaaCiiC, Snd q l d Dq Rnl Stop, tqlyd
fem, Snd s h l Fric Gut Rnl, tshyl
CaCaaCiiC, Snd d b r Stop Lab Rnl, tdby
fem, Snd q d r Dq Stop Rnl, tqdyr
fem, Dbl h d d Gut Stop Stop, thdyd
fem, Hol g y r Gut Vow Rnl, tgyyr

Figure 5. Arabic plural data formatted with commas and spaces, using tabs for spaces

Note that these two ways of formatting the data file are not ‘mix and match.’
You must choose one way and stick with it for any particular run.

The choice between these two methods of formatting is made in the con-
figuration file. The operative line of the configuration file says “format with
commas” and the two possible settings are ‘yes’ and ‘no.’ Choosing ‘no’ means
that you are choosing to format with spaces only, no commas, and with no
spacing between single-character variables. Choosing ‘yes’ means that you are
choosing to format with commas between the outcome, variables, and speci-
fier, and to use spaces between the variables themselves. If this seems hard to
remember, just remember that ‘yes’ means ‘use commas’ and ‘no’ means ‘don’t
use commas.’

.. Using ‘=’ in the datafile
The equals sign (=) has a special meaning in an AM data (or test) file. That mean-
ing is that the variable so marked is not applicable to this particular data item. It
is typically used to avoid doubling up zeros in row after row of variables when a
zero in one column implies a zero in one or more other columns. For example, if
a particular variable marks the third vowel of a word, and the word only has one
or two vowels, you would mark a zero for that variable. If the next variable marks
the consonant after the third vowel, you could also mark a zero for that variable.
However, the fact that there is not third vowel already implies that there is no con-
sonant after that third vowel, so if you don’t want the program to ‘overemphasize’
the importance of the presence or absence of the third syllable, you could mark this
variable with ‘=’.

. The Outcome file

The Outcome file must be named outcome. Since it lists the outcomes, it is a com-
mon error to name it outcomes. There is no theoretical or other reason why the
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A. When Outcome and Specifier are different

A fem

B CaCaaCiiC

B. When Outcome and Specifier are the same

fem fem

CaCaaCiiC CaCaaCiiC

Figure 6. Two possible Outcome files

singular is used. It was simply done that way, and no one bothered to change it.
The Outcome file lists the possible outcomes for this dataset. It also allows you to
list a specifier for the outcome in case you want to use something short (like A
and B) to refer to the outcomes in the dataset. There is only one possible format
for the outcome file: Outcome Specifier, with a space in between, with one out-
come/specifier set on each line. If you don’t want to have a separate specifier you
simply list the name of the outcome twice on the line.

Figure 6 shows two different possible outcome files for the Arabic Plurals
dataset, the first for use when the outcomes are listed as A and B in the data, and
the second for use when the whole term is used in the data.

If an outcome that actually appears in the data is not listed in the Outcome file,
results attributed to it will not appear in the results file, so it is important to make
sure your Outcome file is complete. Figure 7 contains two short Perl programs –
one for data files with commas and the other for those without commas – that go
through a data file and pull out all the outcomes listed and print them in the format
of an Outcome file. I recommend using something like this if you have more than
just a few outcomes. It could also be used to error check the outcome portion of
your data file to see if you have any typos.

. The Test file

The Test file must be named test. The Test file lists the test items or ‘givens’ which
you want to present to the program for a prediction. The important thing to re-
member about the test file is that it is in the exact same format as the data file.
This allows you to easily use a copy of the data file as the test file so you can
test the data on itself. If you choose to list an outcome for the test item, the pro-
gram will simply ignore it, read in the variables and make a prediction based on
them. (See Figure 8 for examples.) In the future we are planning to write a kind
of post-processor that will allow the program to check to see if its predicted an-
swer is the same as the outcome you list. However, currently the program sim-
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####For data files with commas and spaces####
#!perl
while (<>) {
chomp;
($outcome,@rest) = split /\s*,\s*/, $_;
$o{$outcome}++;
}
foreach $ot (sort keys %o) {
print "$ot $ot\n";
}

####For data files with spaces only, no commas####
#!perl
while (<>) {
chomp;
($outcome,@rest) = split /\s*/, $_;
$o{$outcome}++;
}
foreach $ot (sort keys %o) {
print "$ot $ot\n";}

Figure 7. Programs for the automatic creation of the Outcome file

ply throws the outcome information on the test items away. If you choose not to
list an outcome with the test item, you must still maintain the formatting. This
means that if you are formatting without commas, each test item would then be-
gin with a space before the list of variables. If you are formatting with commas,
each test item should begin with a comma (or a space and a comma) before the list
of variables. Note that you cannot have the data file configured one way (say with
commas), and the test file configured the other way (say with just spaces). They
must match.

. The AM.config file

Once you have the three files described above ready (data, outcome, and test), put
them in a subfolder or subdirectory inside the folder or directory that contains
the AM program and the file AM.config. Then open up AM.config and choose
the parameters you wish to set. Figure 9 shows AM.config set for some typical
parameters.
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a. Test File with Commas and Spaces, Outcome Specified

CaCaaCiiC, S r b c R L G, trbyc
CaCaaCiiC, S d r b S R L, tdryb
fem, S l q H R D G, tlqyH
fem, S l T p R S F, tlTyp

b. Test File with Commas and Tabs, Outcome Specified

CaCaaCiiC, S r b c Rnl Lab Gut, trbyc
CaCaaCiiC, S d r b Stop Rnl Lab, tdryb
fem, S l q H Rnl Dq Gut, tlqyH
fem, S l T p Rnl Stop Fric, tlTyp

c. Test File with Spaces Only, A/B Outcome Specified

B SrbcRLG trbyc
B SdrbSRL tdryb
A SlqHRDG tlqyH
A SlTpRSF tlTyp

d. Test File with Commas and Tabs, No Outcome Specified (note comma at start of each line)

, S r b c Rnl Lab Gut, trbyc
, S d r b Stop Rnl Lab, tdryb
, S l q H Rnl Dq Gut, tlqyH
, S l T p Rnl Stop Fric, tlTyp

e. Test File with Spaces Only, No Outcome Specified (note space at start of each line)

SrbcRLG trbyc
SdrbSRL tdryb
SlqHRDG tlqyH
SlTpRSF tlTyp

Figure 8. Sample Test files

Project Name : ArPlurals
null : exclude
given : exclude
probability : 1
repeat : 1
format with commas : yes
linear or squared : squared
output to file : no
specify frequency : no

Figure 9. The AM.config file

To set parameters, leave the names to the left (of the colons) unchanged and
replace the settings on the right. Each of these settings is described individually:

a. Project Name. List the name of the project here. This is the name of the sub-
directory containing the files data, outcome, and test. Further, if a results file
is created, it will be created in the same subdirectory and called amcresults. (If
you are using a Perl-only version of the AM program, it will be called results.)
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b. Null. The possible settings are ‘exclude’ and ‘include.’ This refers to how you
want the equals signs treated in the given context. If you want them to be sim-
ply ignored (thus reducing the number of variables) leave the setting ‘exclude.’
If you want them treated as real variables, set this to ‘include.’ This allows
you to run the program both ways without having to change the data in the
data file.

c. Given. Again, the two settings are ‘exclude’ and ‘include.’ The typical setting
here is ‘exclude.’ Excluding the given context means that if the program finds
the given context in the data, it ignores it and runs the prediction based on
the other items. If you choose ‘include,’ and the context is in the data, you will
always get a 100% correct prediction. This is usually not what you want, but it
does allow you to look at the surrounding analogical set if there is one, which
can sometimes be useful. Normally one would want to leave this parameter set
to ‘exclude.’

d. Probability. The setting here must either be ‘1,’ or a decimal fraction between
0 and 1. If the probability is set to 1, the program simply accepts all the data in
the dataset and uses it in its calculations. If the probability is set to less than 1,
the program uses a randomizer to get rid of some of the data randomly. This
is normally used to model the forgetting of data randomly and thereby test the
robustness of the predictions. For example, if the probability is set to ‘0.5’ and
the same given is then run through 10 different times, the program will ran-
domly leave out about half the data each time, so each time the given is being
compared to a considerably different dataset. Comparing the predictions of the
10 runs would then give us an idea of the robustness of a particular pattern.

e. Repeat. The setting here must either be 1 or some whole number greater than
1. There would be no point in having a number greater than 1 if the probabil-
ity is set to 1, since the results would be the same each time. However, if the
probability is set to a value less than 1, then you might want to enter a num-
ber of repeats here to see how consistent the predictions are under imperfect
memory.

f. Format with Commas. The settings here are ‘yes’ and ‘no.’ Put ‘yes’ if you will be
using commas between the fields and spaces between the variables, and ‘no’ if
you will be using spaces between the fields and nothing between the variables.

g. Linear or Squared. Once the program has apportioned the data to its various
contexts and determined the homogeneity of the contexts, it can simply count
the frequency of the items (Linear) or it can count the pointers (Squared). The
results are usually similar, but using the Squared setting often gives a sharper
picture since it emphasizes gang effects.

h. Output to File. The settings here are ‘yes’ and ‘no.’ If you put ‘yes,’ the program
will create a file called amcresults in the same subdirectory with your files data,
outcome, and test. (The file is called results if you use a Perl-only version of the
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AM program.) If you put ‘no’, the results will appear wherever Perl sends its
Standard Output on your installation. In Unix, this would be to the screen. In
Windows, it would be to the DOS Window (probably not a very useful option).
In Macintosh, it would be into a MacPerl window created by the program.

i. Specify Frequency. The settings here are either ‘no’ or some positive integer. If
you set it to a positive integer, say 100, the program will then only read in the
first 100 data points, and ignore the rest. This can be useful if you have a dataset
sorted by frequency and you want to test a given with increasing amounts of
data starting with the most frequent, as Derwing and Skousen (1994) did in
their study of the acquisition of the English irregular verb forms.

Once you have filled out the configuration file, be sure to save it, and then you are
ready to run the program.

. Interpreting the results of a run

The header of the results file includes much of the information from the config-
uration file. This is provided so you can easily remember how the run was set up
when you start to analyze the results. The order of this information is as follows:
the project name; what the given context is (the current test); whether examples
of the given context in the data file will be excluded or included; the number of
data points; the probability that a data item will be included; the total number of
items excluded; whether nulls (=) in the given context will be excluded or included;
whether the counting will be linear or squared; the number of active variables
(given possible exclusions); and the number of active contexts.

After the header, the program then lists the items that ended up in the ana-
logical set for that given, along with their associated outcome and the number of
times they occurred (or the number of pointers to those occurrences if you chose
‘squared’). This allows you to see what items are affecting the prediction made by
the program. Finally, a statistical summary is given in which each outcome is listed
with the number of times it is predicted, along with the relative percentages of each
outcome. Figure 10 shows a typical results file. (These runs should be considered a
kind of ‘toy’ data set since they are based on only 36 data points. They are included
for illustration purposes only.) It is based on running the test words trbyc and tlTyp
against a portion of the Arabic Plurals dataset. The dictionary lists the plural of
trbyc as taraabiic and the plural of tlTyp as tlTypaat, so we are therefore hoping the
program will predict CaCaaCiic for the first and fem for the second.

Notice that the Analogical Set lists the outcomes as they are coded in the
dataset, but that the Statistical Summary also includes the Specifiers for those out-
comes from the outcome file. A look at the results shows that indeed, even with
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Project Name: ArPlurals

Given Context: S r b c R L G, trbyc

If context is in data file then exclude

Number of data points: 36

Probability of including any one data point: 1

Total Excluded: 0

Nulls: exclude

Gang: squared

Number of active variables: 7

Number of active contexts: 128

Analogical Set
Total Frequency = 65

A trtyb 8 12.31%
B tdbyr 15 23.08%
A tTbyq 15 23.08%
A tpryc 4 6.15%
B trxyS 8 12.31%
B tcbyr 15 23.08%

Statistical Summary

A fem 27 41.54%
B CaCaaCiiC 38 58.46%

Project Name: ArPlurals

Given Context: S l T p R S F, tlTyp

If context is in data file then exclude

Number of data points: 36

Probability of including any one data point: 1

Total Excluded: 0

Nulls: exclude

Gang: squared

Number of active variables: 7

Number of active contexts: 128

Analogical Set
Total Frequency = 45

A trtyb 11 24.44%
A tcdyl 9 20.00%
A tqdyr 9 20.00%
A thdyd 5 11.11%
B trxyS 2 4.44%
A tHDyr 9 20.00%

Statistical Summary

A fem 43 95.56%
B CaCaaCiiC 2 4.44%

Figure 10. A typical Results file
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our small dataset, the program correctly predicts the plural form for trbyc, but
with only 58% of the pointers, making it not a very strong prediction. If selection
by plurality is chosen, then one can state that the program predicts CaCaaCiiC for
this noun. If random selection is chosen, then one would predict that 58% of the
time CaCaaCiiC will be chosen over fem. For the second item, a much stronger
correct prediction of the fem plural is obtained (95%).

Figure 11 shows a results file for the given context trbyc when the frequency
has been set to 10 (meaning that the program threw out all data after the first 10
datapoints. Note that with the reduced number of datapoints, the program now
makes an incorrect prediction for the plural of this noun.

Figure 12 shows the same test item run with the setting of ‘linear’ instead of
‘squared.’ Note that as predicted this makes the prediction less sharp, but it still
barely pulls through correctly at 51%.

Figure 13 shows what happens when the test item is in the data file, and you
choose to include rather than exclude that context. Notice that items besides the
given can occur in the analogical set because of homogeneity, but that the result is
always 100% in favor of the outcome of the given in the dataset. In this case, the
given twjyh has 68% of the pointers and thus overwhelms all the other items.

Of course, if the outcome for the given in the dataset is non-deterministic (if
the given occurs more than once with different outcomes), then the percentage
of the prediction will reflect the percentages in the dataset. Figure 14 shows such

Project Name: ArPlurals

Given Context: S r b c R L G, trbyc

If context is in data file then exclude

Number of data points: 10

Probability of including any one data point: 1

Total Excluded: 0

Nulls: exclude

Gang: squared

Number of active variables: 7

Number of active contexts: 128

Analogical Set
Total Frequency = 14

A tSryH 2 14.29%
A trtyb 6 42.86%
B tdbyr 6 42.86%

Statistical Summary

A fem 8 57.14%
B CaCaaCiiC 6 42.86%

Figure 11. A Results file with frequency set to 10
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Project Name: ArPlurals

Given Context: S r b c R L G, trbyc

If context is in data file then exclude

Number of data points: 36

Probability of including any one data point: 1

Total Excluded: 0

Nulls: exclude

Gang: linear

Number of active variables: 7

Number of active contexts: 128

Analogical Set
Total Frequency = 27

A trtyb 4 14.81%
B tdbyr 5 18.52%
A tTbyq 5 18.52%
A tpryc 4 14.81%
B trxyS 4 14.81%
B tcbyr 5 18.52%

Statistical Summary

A fem 13 48.15%
B CaCaaCiiC 14 51.85%

Figure 12. A Results file with counting set to linear

Project Name: ArPlurals

Given Context: S w j h V D G, twjyh

Include context even if it is in the data file

Number of data points: 36

Probability of including any one data point: 1

Total Excluded: 0

Nulls: exclude

Gang: squared

Number of active variables: 7

Number of active contexts: 128

Test item is in the data

Analogical Set
Total Frequency = 183

A tHqyq 6 3.28%
A twjyh 125 68.31%
A tcqyd 11 6.01%
A tfjyr1 19 10.38%
A tCkyd 11 6.01%
A tpkyl 11 6.01%

Statistical Summary

A fem 183 100.00%

Figure 13. A Results file with the given included in the dataset
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Project Name: ArPlurals

Given Context: S c l m G R L, tclym

Include context even if it is in the data file

Number of data points: 36

Probability of including any one data point: 1

Total Excluded: 0

Nulls: exclude

Gang: squared

Number of active variables: 7

Number of active contexts: 128

Test item is in the data

Test item is in the data

Analogical Set
Total Frequency = 352

A tclym 176 50.00%
B tclym 176 50.00%

Statistical Summary

A fem 176 50.00%
B CaCaaCiiC 176 50.00%

Figure 14. A Results file with the given included in the dataset, where the given occurs
more than once with different outcomes

a result. The point of a (somewhat trivial) run like this is to show what happens
when a person remembers the item in question.

Figure 15 shows a run in which the probability has been set to 0.5, and the
repeat has been set to 4. One can then examine the results comparatively to see
how robust the pattern is. With this small dataset it is clear that the pattern is not
very robust, since the results vary widely. On the other hand, 3 out of the 4 runs did
make the correct prediction. Note that the analogical sets of each run are different
because the items left out vary. This changes both what items are available to be in
the analogical set, and what items are available to make those items heterogeneous.
You may want to consider doing runs like this with the given context ‘included’
rather than ‘excluded,’ which would model what might happen when a speaker
alternatively remembers and forgets a particular form.

. Compiling the results of multiple runs

Future versions are planned to allow for the compiling of results from multiple
runs. However, the program does not currently do so. If you want to add such a
capability yourself, you should be aware that the program “collects” the name of
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Project Name: ArPlurals

Given Context: S r b c R L G, trbyc

If context is in data file then exclude

Number of data points: 36

Probability of including any one data point: 0.5

Total Excluded: 18

Nulls: exclude

Gang: squared

Number of active variables: 7

Number of active contexts: 128

Analogical Set
Total Frequency = 56

A tSryH 4 7.14%
A trtyb 12 21.43%
B tdbyr 12 21.43%
A tTbyq 12 21.43%
A twjyh 4 7.14%
B trxyS 12 21.43%

Statistical Summary

A fem 32 57.14%
B CaCaaCiiC 24 42.86%

Project Name: ArPlurals

Given Context: S r b c R L G, trbyc

If context is in data file then exclude

Number of data points: 36

Probability of including any one data point: 0.5

Total Excluded: 18

Nulls: exclude

Gang: squared

Number of active variables: 7

Number of active contexts: 128

Analogical Set
Total Frequency = 66

A tSryH 6 9.09%
A trtyb 12 18.18%
B tdbyr 12 18.18%
A twjyh 6 9.09%
B twryx 6 9.09%
B trxyS 12 18.18%
B tcbyr 12 18.18%

Statistical Summary

A fem 24 36.36%
B CaCaaCiiC 42 63.64%

Figure 15. A Results file with probability = 0.5 and repeat = 4
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Project Name: ArPlurals

Given Context: S r b c R L G, trbyc

If context is in data file then exclude

Number of data points: 36

Probability of including any one data point: 0.5

Total Excluded: 21

Nulls: exclude

Gang: squared

Number of active variables: 7

Number of active contexts: 128

Analogical Set
Total Frequency = 37

A tSryH 2 5.41%
B tdbyr 13 35.14%
B tSmym 3 8.11%
B trxyS 6 16.22%
B tcbyr 13 35.14%

Statistical Summary

A fem 2 5.41%
B CaCaaCiiC 35 94.59%

Project Name: ArPlurals

Given Context: S r b c R L G, trbyc

If context is in data file then exclude

Number of data points: 36

Probability of including any one data point: 0.5

Total Excluded: 13

Nulls: exclude

Gang: squared

Number of active variables: 7

Number of active contexts: 128

Analogical Set
Total Frequency = 51

A tSryH 6 11.76%
A trtyb 12 23.53%
B tdbyr 7 13.73%
A twjyh 6 11.76%
B tSmym 2 3.92%
B twryx 6 11.76%
B trxyS 12 23.53%

Statistical Summary

A fem 24 47.06%
B CaCaaCiiC 27 52.94%

Figure 15. (continued)



Running the Perl/C version of the Analogical Modeling program 

the predicted outcome of the test item when it reads in the test item, so you can use
this variable in adding to the code.

It is also possible to configure the specifier of the test items in such a way that
it would be fairly easy to write a program that compiled and presented results au-
tomatically. The problem with doing this is that AM results have a variety of inter-
pretations. If all you want to know is what prediction ‘won’ (selection by plurality),
then automatic collection of results could be a good idea, but if you are more in-
terested in the details, in multiple predictions, or simply in random selection, then
this method could hide as much as it reveals.

. Conclusion

Running the AM program is not difficult. It does take a certain amount of care
and practice to get good at creating appropriate data and test files and in inter-
preting the results. Readers who get stuck are invited to contact the author at
<dil@byu.edu> for further information.
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Chapter 16

Implementing the Analogical
Modeling algorithm

Theron Stanford

. Introduction

The Analogical Modeling (am) algorithm is quite simple, yet one would not want
to carry it out by hand except for the smallest of data sets. Consequently, it has
been implemented numerous times on computers, first as a Pascal program by
Skousen himself and subsequently as a series of Perl programs by others in his am
research group at BYU. Recently, the group has produced an implementation com-
bining the strengths of Perl (version 5.6) and C, substantially reducing the running
times on data sets with as many as 24 variables. This paper describes the design of
this latest implementation and documents the code, which can be obtained from
<http://humanities.byu.edu/am/>.

. Looking again at am from first principles

Before delving into the code, we first revisit the basic principles of am. As we do so,
it will soon become apparent that this latest implementation of the am algorithm
is perhaps the one closest so far to the original spirit of the method.

. Subcontexts and supracontexts

We begin by looking at a concrete example – namely, the artificial one Skousen
introduces in Analogical Modeling of Language. We consider contexts with three
variables, each of which can take an integer value from 0 to 3. The outcomes are
marked by e and r. There are five occurrences in the data set,1 listed here as ordered
pairs:

(310, e) (032, r) (210, r) (212, r) (311, r)
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The given context will be 312. To make a prediction, we must look at the subcon-
texts and the supracontexts of the given and the relationships between them.

The subcontexts of the given are subsets of the data set, labeled by character
strings consisting of the values of the variables of the given or their negations. An
item in the data set is in a particular subcontext if its variables match those of the
subcontext’s label. In our particular example, there are eight subcontexts, four of
which are nonempty:

subcontext data items
312 –
312̄ (310, e) (311, r)
31̄2 –
3̄12 (212, r)
31̄2̄ –
3̄12̄ (210, r)
3̄1̄2 (032, r)
3̄1̄2̄ –

The supracontexts are unions of the subcontexts. They are labeled by character
strings consisting of the values of the variables of the given or by the symbol –,
signifying that the value of the variable in that position is not considered. There
are eight supracontexts, formed by unions of the subcontexts:

supracontext subcontexts
3 1 2 312
3 1 – 312 312̄
3 – 2 312 31̄2
– 1 2 312 3̄12
3 – – 312 312̄ 31̄2 31̄2̄
– 1 – 312 312̄ 3̄12 3̄12̄
– – 2 312 31̄2 3̄12 3̄1̄2
– – – 312 312̄ 31̄2 3̄12 31̄2̄ 3̄12̄ 3̄1̄2 3̄1̄2̄

Since half of the subcontexts in our example are empty, we can delete them from
the previous table to get the following:

supracontext nonempty subcontexts
3 1 2
3 1 – 312̄
3 – 2
– 1 2 3̄12
3 – – 312̄
– 1 – 312̄ 3̄12 3̄12̄
– – 2 3̄12 3̄1̄2
– – – 312̄ 3̄12 3̄12̄ 3̄1̄2
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Now, we would like to determine which of these supracontexts are homogeneous
and which are heterogeneous. To do so, we replace the labels of the subcontexts
in the previous table with ordered pairs of the form (subcontext, outcome). The
outcome will be that outcome shared by all items in the subcontext, if there is only
one; otherwise, if there is more than one, it will be *. This is our new table:

supracontext nonempty subcontexts
3 1 2
3 1 – (312̄, *)
3 – 2
– 1 2 (3̄12, r)
3 – – (312̄, *)
– 1 – (312̄, *) (3̄12, r) (3̄12̄, r)
– – 2 (3̄12, r) (3̄1̄2, r)
– – – (312̄, *) (3̄12, r) (3̄12̄, r) (3̄1̄2, r)

This table makes it very easy to find homogeneity: the supracontexts with
all outcomes the same (and different from *) exhibit deterministic homogene-
ity, while supracontexts consisting of exactly one subcontext of outcome * ex-
hibit non-deterministic homogeneity. In this example, supracontexts – 1 2 and
– – 2 are deterministically homogeneous, supracontexts 3 1 – and 3 – – are non-
deterministically homogeneous, and supracontexts – 1 – and – – – are hetero-
geneous. We mark each heterogeneous supracontext with an × and ignore what
subcontexts belong to them:

supracontext nonempty subcontexts
3 1 2
3 1 – (312̄, *)
3 – 2
– 1 2 (3̄12, r)
3 – – (312̄, *)
– 1 – ×
– – 2 (3̄12, r) (3̄1̄2, r)
– – – ×

Notice that supracontexts 3 1 – and 3 – – contain the same list of nonempty sub-
contexts. With more active variables, there are usually many supracontexts that
share the same list of nonempty subcontexts. To save space, we combine the lists of
nonempty subcontexts as follows:

supracontexts list of subcontexts
3 1 – 3 – – (312̄, *)

– 1 2 (3̄12, r)
– – 2 (3̄12, r) (3̄1̄2, r)
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3 1 2 3 – 2 empty
– 1 – – – – × (heterogeneous)

We insert a column that counts how many supracontexts share a particular list of
subcontexts:

supracontexts count list of subcontexts
3 1 – 3 – – 2 (312̄, *)

– 1 2 1 (3̄12, r)
– – 2 1 (3̄12, r) (3̄1̄2, r)

3 1 2 3 – 2 2 empty
– 1 – – – – 2 × (heterogeneous)

Then the final tabulation of the analogical set depends only on the last two
columns, coupled with the table listing subcontexts and their data items. (An ex-
ample of the actual tabulation procedure will be shown in Section 2.3.) This paper
describes how these two columns can be found quickly.

. Filling the supracontextual lattice

Although we could do so, we usually don’t completely fill in the entire supracon-
textual lattice before we look for homogeneous contexts and start counting. As
the subcontexts are added one at a time, many supracontexts can be identified
early on as heterogeneous – all they need is at least two subcontexts with con-
flicting outcomes (for this purpose, * counts as an outcome). Once a supracontext
is seen to be heterogeneous, it can be safely skipped as the algorithm continues
to add subcontexts; there is no reason to keep track of subcontexts in a hetero-
geneous supracontext, since they will not affect the analogical set. Furthermore,
once a supracontext is found to be heterogeneous, all more general supracontexts
must be heterogeneous as well; these heterogeneous supracontexts (referred to as
inclusive heterogeneity) can be ignored as subcontexts are added.

Here we give an example of how to fill the lattice, using the same example as
before. We assume that the nonempty subcontexts have already been found and
had their outcomes marked:

subcontext data items
(312̄, *) (310, e) (311, r)
(3̄12, r) (212, r)
(3̄12̄, r) (210, r)
(3̄1̄2, r) (032, r)

We start with an empty supracontextual lattice and accompanying table of lists of
subcontexts (which is also empty), as in Figure 1.
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3 1 2

3 1 –

3 – 2

– 1 2

3 – –

– 1 –

– – 2

– – –

SUPRACONTEXT LIST OF SUBCONTEXTS

Figure 1. The empty supracontextual lattice

It doesn’t matter in which order we fill the lattice, so we’ll just use the subcontexts
in the order listed above. First, we add subcontext (312̄, *); we do this by creating
a list of subcontexts which contains only the subcontext (312̄, *) and pointing to it
all four supracontexts which contain it, as in Figure 2.

3 (31 12 2, *)

3 1 –

3 – 2

– 1 2

3 – –

– 1 –

– – 2

– – –

SUPRACONTEXT LIST OF SUBCONTEXTS

–

Figure 2. Subcontext (312̄, *) is added to the supracontextual lattice. Arrows are drawn
to it from the supracontexts containing it.
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3 (3

(3

1 1

1

2 2, *)

2, )r
3 1 –

3 – 2

– 1 2

3 – –

– 1 –

– – 2

– – –

SUPRACONTEXT LIST OF SUBCONTEXTS

–

–

heterogeneous

Figure 3. Subcontext (3̄12, r) is added to the supracontextual lattice. New arrows from
previously empty supracontexts – 1 2 and – – 2 are drawn to the newly created list.
Supracontexts – 1 – and – – – become hetergeneous; their previous arrows (marked
with a dashed line) are moved to point to the word heterogeneous.

Next, we add (3̄12, r); the result is shown in Figure 3. Two of the four supra-
contexts to which it is added, – 1 2 and – – 2, are empty; we thus create a new list
containing (3̄12, r) and point these two supracontexts to it. However, the other
two supracontexts, – 1 – and – – –, are not empty; they point to a list with shared
outcome *. Adding a subcontext with outcome r introduces heterogeneity, so the
arrows from these two supracontexts are moved to point to the word heteroge-
neous. (We do not need to keep track of the actual subcontexts in heterogenous
supracontexts.)

Notice that during any stage of adding a subcontext, if a supracontext becomes
heterogeneous, all more general supracontexts perforce will become heterogeneous
as well and be marked so during the same stage (if they have not already been).

The next subcontext to be added is (3̄12̄, r). It should be added to supracontext
– 1 – as well as to all more general supracontexts. However, – 1 – was marked as
heterogeneous in the previous step; thus, there is no work to be done, and (3̄12̄, r)
is simply ignored.

The last subcontext to be added is (3̄1̄2, r). Supracontext – – 2 points to a
nonempty list of subcontexts, but since all outcomes in this list are r, heterogeneity
is not introduced; we merely duplicate the list – – 2 points to, append (3̄1̄2, r),
and move the arrow. Supracontext – – – is already heterogeneous, so we can safely
ignore it. The result is Figure 4.
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3 (3

(3

(3 (3

1 1

1

1 1

2 2, *)

2, )r

2, )r 2, )r

3 1 –

3 – 2

– 1 2

3 – –

– 1 –

– – 2

– – –

SUPRACONTEXT LIST OF SUBCONTEXTS

–

–

– –– –

heterogeneous

Figure 4. Subcontext (3̄1̄2, r) is added to the supracontextual lattice. The original arrow
from – – 2 (marked with a dashed line) is moved to point to a new list comprised of
the old list and (3̄1̄2, r), since homogeneity is preserved. Supracontext – – – is ignored,
since it is already heterogeneous.

Now that all subcontexts have been added, we can condense the information
in Figure 4 to the following:

supracontexts count list of subcontexts
3 1 – 3 – – 2 (312̄, *)

– 1 2 1 (3̄12, r)
– – 2 1 (3̄12, r) (3̄1̄2, r)

3 1 2 3 – 2 2 empty
– 1 – – – – 2 × (heterogeneous)

This is the same table as at the end of the previous section.

. Computing the analogical set

Computing the analogical set is straightforward. We start with the last two columns
of the previous table:

count list of subcontexts
2 (312̄, *)
1 (3̄12, r)
1 (3̄12, r) (3̄1̄2, r)
2 empty
2 × (heterogeneous)
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Next, we delete any empty or heterogeneous supracontexts and replace each sub-
context with its list of data items:

count data items
2 (310, e) (311, r)
1 (212, r)
1 (212, r) (032, r)

To count the number of pointers to any given data item, we first find which sub-
context lists it occurs in and consider them one at a time. In the quadratic case,
the number of pointers within a subcontext list is the number of data items in the
list; in the linear case, it is 1. This number must be multiplied by the number of
supracontexts which share this subcontext list; summing over all subcontext lists
gives the total number of pointers.

For our example, if we assume the quadratic case, the analogical set is thus:

occurrence number of pointers
(310, e) 4 (2× 2, from row 1)
(311, r) 4 (2× 2, from row 1)
(212, r) 3 (1× 1 + 1× 2, from rows 2 and 3)
(032, r) 2 (1× 2, from row 3)

The linear case is handled similarly.

. The program files and program flow

There are two ways for Perl and C programs to act in concert. One is to extend Perl
by writing modules which in turn call functions in precompiled C libraries; the
other is to embed Perl by linking C object code with the Perl interpreter – itself a
precompiled C library – and making calls to it from within the C code when neces-
sary to execute Perl code. The implementation of the am algorithm described here
uses the second method, embedding; it is the simpler of the two ways to implement
and ports easily to any operating system with a C compiler and Perl. To invoke the
algorithm, we simply run the C executable.

The main code for the C executable is in amc.c (“analogical modeling in C”),
with data structures declared in amc.h. This code first calls subroutines in the Perl
code amc.pl which read and parse the data, outcome, and test files and convert
the data into a form which the C code can use. Next, the C code locates this data in
memory and processes it as outlined in Section 2.2. Last, the C code calls subrou-
tines in the Perl code which compute the analogical set as outlined in Section 2.3
and write out the results.
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The main task of the C code is to go through the nonempty subcontexts, de-
cide which supracontexts they belong in, and adjust the subcontext lists accord-
ingly. The code for determining which supracontexts a subcontext belongs to is
in progeny.c. It defines an iterator class using two functions: ancestor() to
initialize the iterator with a subcontext, and descendant() to return the supra-
contexts one at a time. When descendant() returns 0, there are no more supra-
contexts to which the subcontext belongs.

. The data structures

. Indexing the subcontexts, supracontexts, and outcomes

A given context with n active variables has 2n subcontexts and 2n supracontexts. In
the example above, the subcontexts were labeled by character strings consisting of
the values of the individual variables of the given context or their logical opposites
(e.g., 31̄2); the supracontexts were labeled by character strings consisting of these
same values or the symbol – (e.g., 3 – 2).

Thus, once we take a context as given, a subcontext or supracontext can also be
labeled by a sequence of n symbols, each one signifying either a “match” with the
corresponding variable of the given or a “no match”. In other words, the subcon-
texts and supracontexts can be indexed by n-digit binary numbers in the range 0 to
2n – 1, using “0” to signify “match” and “1” to signify “no match”. The subcontexts
and supracontexts of the example above would be indexed as follows:

index subcontext supracontext
0002 312 3 1 2
0012 312̄ 3 1 –
0102 31̄2 3 – 2
0112 31̄2̄ 3 – –
1002 3̄12 – 1 2
1012 3̄12̄ – 1 –
1102 3̄1̄2 – – 2
1112 3̄1̄2̄ – – –

Now suppose that, say, subcontext 31̄2 were to be added to the supracontextual
lattice. It would be added to supracontexts 3 – 2, 3 – –, – – 2, and – – –. Using bi-
nary notation, subcontext 0102 would be added to supracontexts 0102, 0112, 1102,
and 1112. It is easy to see a pattern: the indices of the supracontexts can be derived
from the index of the subcontext by considering all combinations of changing the
0s to 1s.
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This is precisely what the subroutines in progeny.c do. Subroutine ances-
tor() is passed the binary value of the subcontext to be added, while each call to
descendant() returns the binary value of a supracontext to be added to. Subrou-
tine ancestor() is also passed the number of active variables; otherwise, upon
receiving the value 2, it could not determine if this represented subcontext 0102

as above or perhaps 102 or 00102 or something else. Subroutine descendant()
never returns the binary value corresponding to the subcontext; it does return 0
when there are no more supracontexts.

So, to add subcontext 31̄2 to the supracontextual lattice, amc.c would first
add it to supracontext 3 – 2 by adding subcontext 0102 to supracontext 0102. Then
it would call ancestor(2,3), since 31̄2 has binary value 0102 = 2 and there are
three active variables. Four calls to descendant() would return the values 3, 7,
6, and finally 0. After each call returning a nonzero value, amc.c would add the
subcontext to the supracontext corresponding to the returned value; in this case,
the nonzero values are binary 0112, 1112, and 1102, corresponding to supracontexts
3 – –, – – –, and – – 2, as expected.

The details of ancestor() and descendant() are left for the appendix to
this paper; suffice it to say here that these functions work very quickly.

In comparison with the foregoing, the indexing of the outcomes is quite sim-
ple; it just starts with 1 and goes to the number of outcomes. These indices are used
to mark not only individual data items, but also a subcontext if all its data items
share the same outcome; otherwise, the subcontext is marked with the number 0,
which corresponds to our use of * in Section 2.2.

. Data structures in amc.c

Header file amc.h contains the type definitions necessary to implement the data
structures used in amc.c. Type AM_OUTCOME must be large enough to hold
the total number of outcomes, and type AM_CONTEXT must be large enough to
hold the total number of subcontexts (or supracontexts). In the standard setup,
AM_OUTCOME is type unsigned char and AM_CONTEXT is type unsigned long,
but these can be modified in the interest of memory usage. For instance, if there
are never more than 16 active variables, AM_CONTEXT could be redefined as type
unsigned short; conversely, if the number of possible outcomes is more than
255, AM_OUTCOMEwould need to be redefined as something larger than unsigned

char. If the sizes of these data types are changed, corresponding changes must be
made in the Perl code amc.pl, or else data passed between the C code and the Perl
code will be garbled (see Section 4.4 for details).

The remaining type, AM_SUPRA, is used to hold a list of subcontexts. It is
defined as follows:
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typedef struct AM_supra {
unsigned short index;
AM_OUTCOME outcome;
AM_CONTEXT *data;
AM_CONTEXT count;
struct AM_supra *next;

} AM_SUPRA;

The components of AM_SUPRA are as follows:

– index is a number which represents the order in which the subcontext lists
are created: the higher the value of index, the later this list was created. The
next available index number is kept in the variable nextindex. The reason for
keeping track of this will be seen later.

– outcome is the index of the outcome shared by all subcontexts in the list, if
there is one; otherwise, it is 0. (Note that the value of outcome can be 0 if all
subcontexts in the list have also been assigned the value 0, which happens if
the data items in each individual subcontext do not share the same outcome.)

– data[] is an array listing the subcontexts. data[0] is the number of subcon-
texts, and data[1], . . . , data[data[0]] contain the indices of the subcon-
texts.

– count’s value is the number of supracontexts sharing this list of subcontexts,
or the number of arrows pointing to it from the supracontexts. We didn’t keep
track of this in our examples; rather, we waited until the end to count. How-
ever, keeping a running count is much more efficient when the algorithm is
implemented as a computer program.

– next is a pointer which makes a circular linked list out of the lists of sub-
contexts. Using a circular linked list allows optimizations that we will see
later.

Recall the table of subcontext lists at the end of Section 2.2:

supracontexts count list of subcontexts
3 1 – 3 – – 2 (312̄, *)

– 1 2 1 (3̄12, r)
– – 2 1 (3̄12, r) (3̄1̄2, r)

3 1 2 3 – 2 2 empty
– 1 – – – – 2 × (heterogeneous)

The third row of this table could be represented as a variable of type AM_SUPRA as
follows:

– index equals 3, because the third row contains the third list of subcontexts.
– outcome equals 2, since all subcontexts share outcome r, the second outcome.
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– data[0] equals 2, since there are two subcontexts in the list. data[1] and
data[2] have the values 4 and 6, since these are just binary 1002 and 1102,
corresponding to subcontexts 3̄12 and 3̄1̄2.

– count equals 1, since only one supracontext (– – 2) shares this list of subcon-
texts.

We say “could be represented” because the actual values depend on the order
in which the subcontexts are added to the supracontextual lattice. Which list of
subcontexts next points to is ignored for now.

The circular linked list of subcontexts always contains a structure with empty
list and index 0. This structure is pointed to by the variable supralist. It is used
to mark starting and ending points when the circular linked list is traversed. It is
also used for other special purposes to be seen later.

The supracontext lattice links up with the subcontext lists via pointers. More
precisely, each supracontext is assigned a pointer to type AM_SUPRA, which points
to the appropriate list of subcontexts.

The list of pointers is kept in the array lattice[]. For each test item,
amc.c allocates (and subsequently deallocates) enough memory for lattice[]
to contain one pointer per supracontext. The array lattice[] is indexed as
explained in Section 4.1. For instance, consider supracontext – – 2, with corre-
sponding binary value 1102 = 6. Then lattice[6] will point to the list of
subcontexts indexed by the number 3, as indicated in our table above. In other
words, lattice[6]->index is 3, lattice[6]->outcome is 2, lattice[6]
->data[0] is 2, and lattice[6]->data[1] and lattice[6]->data[2] are
respectively 4 and 6.

This assumes, of course, that the supracontextual lattice has been completely
filled. When lattice[] is first allocated memory, each element points to the
same empty list of subcontexts that supralist does. As the lattice fills (how
this happens is described in Section 6), these pointers change value until there are
no more subcontexts to be added, at which point computation of the analogical
set begins.

Notice that the actual structure of the lattice is never stored in memory – that
is to say, there are no pointers between elements of the lattice indicating parent-
hood or childhood. The only way to tell that supracontexts indexed by 0102 and
1102 are in a parent-child relationship is by comparing the binary digits. However,
there is no need to store such a relationship because of the iterator class defined in
progeny.c. The functions ancestor() and descendant() take care of deter-
mining what parts of the supracontextual lattice need attention during any stage of
adding a subcontext.

Though it did not happen in the example above, it is often the case that a list
of subcontexts created at an earlier stage may find at a later stage that it has lost
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all supracontexts pointing to it; that is, count is 0. To conserve memory, amc.c
calls cleansupra() after each stage of adding a subcontext to all possible supra-
contexts. cleansupra() removes from the circular linked list all subcontext lists
whose count has decremented to 0 (except, of course, the empty one pointed to
by supralist).

As we saw in Section 2.2, once a supracontext has been deemed heterogeneous,
there is no reason to attempt to add any more subcontexts to it. In amc.c, the
variable HETERO of type AM_SUPRA* is allocated to point to an unused memory
location; when a supracontext is marked as heterogeneous, its associated pointer
in lattice[] is set to the value HETERO.

. Data structures in amc.pl

Two types of data structures occur in amc.pl. One type contains data which are
used throughout the run and are initialized during the subroutine setup(); these
are described in Section 4.3.1. The other type contains data which change with
each test item and are computed in either beginTestItem() or count(); these
are described in Section 4.3.2.

.. Structures maintained throughout the run
Data used throughout the run is obtained from the data, test, and outcome files.
The locations of these files and how they are to be parsed are determined by the
configuration file AM.config. The formats of AM.config and the data, test, and
outcome files are described elsewhere and not repeated here.

Each outcome consists of an abbreviated form, used to mark items in the data
file, and a long form, listed in the “Statistical Summary” printed at the end of each
test run. These two forms are in the arrays @ocl and @outcomelist, respectively.
These two arrays begin with elements with values set to undef, so that each out-
come has a positive integer for an index. There is also a hash %outcometonum

which is used to convert an outcome in abbreviated form to its index.
The data items are parsed into three arrays: @outcome, @data, and @spec.

For the ith data item, $outcome[i] contains the index of its outcome, $data[i]
contains a reference to an array containing the values of the individual variables of
the data item, and $spec[i] contains its specifier.

@testItems is just the contents of the test file, one line per array element, to
be parsed later.

.. Structures which change with each test item
The hashes %subcontext and %subtooutcome contain the information needed
to create the supracontextual lattice and compute the analogical set. The keys of
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%subcontext and %subtooutcome are the string equivalents of the decimal val-
ues of the binary values indexing the various subcontexts. (Recall that in Perl in-
teger values must be converted to strings before they can act as hash keys.) The
values of %subcontext are references to arrays listing the indices of the data items
belonging to the subcontexts. The values of %subtooutcome are the indices of the
outcomes of the subcontexts.

In our example, we have five data items: (310, e) (032, r) (210, r) (212, r)
(311, r); and two outcomes: e, r. The correspondence between the nonempty
subcontexts and the hashes %subcontext and %subtooutcome is given in
Table 1.

Information about the analogical set is contained in the three variables
@datacount, @sum, and $grandtotal. After the analogical set has been com-
pletely determined, $datacount[i] contains the number of pointers to the ith
data item, $sum[i] contains the number of pointers to data items with out-
come of index i, and $grandtotal contains the total number of pointers in the
analogical set.

. Exchanging data between amc.c and amc.pl

The division of labor is such that amc.pl does the parsing and hashing, amc.c
creates the supracontextual lattice and the lists of subcontexts, and together they
do the counting. This requires some data to be passed between the two programs.
Some of the data are single-valued variables, while other data comprise arrays. This
section describes just how this is done.

First, amc.c retrieves the number of test items by finding the last index of
array @testItems in amc.pl and adding 1:

num_test_items
= av_len(get_av("testItems", FALSE)) + 1;

(av_len() is a bit of a misnomer, since it does not return the length of an array
value.)

For scalars in amc.pl with integer values, the call SvIV(get_sv("name",
FALSE)) from amc.c returns the value of $name. This is used to retrieve for each
test item the number of active variables ($activeVar), the size of the supracon-
textual lattice ($activeContexts), and the number of nonempty subcontexts
($numsubcontexts, which is computed in amc.pl by looking at the number of
keys in %subcontext).

The subcontexts and their outcomes are passed as very long C arrays. Each
array is first packed into a Perl string, storing the array elements as binary
data in contiguous memory; calling SvPV_nolen(get_sv("name", FALSE))
from amc.c then returns a pointer to the first element of the array, which
pointer can then be recast accordingly. So, once the hashes %subcontext and
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%subtooutcome are ready, they are packed with the following code at the end
of subroutine beginTestItem() in amc.pl:

my(@subcontexts) = keys %subcontext;
$subcontexts = pack "L*", @subcontexts;
$suboutcomes = pack "C*",

map { $subtooutcome{$_} } @subcontexts;

(map() is used in the last line to ensure that the subcontexts and their outcomes
match up in the right order when read in amc.c.) These arrays are then accessed
in amc.c via

subcontext = (AM_CONTEXT *)
SvPV_nolen(get_sv("subcontexts", FALSE));

suboutcome = (AM_OUTCOME *)
SvPV_nolen(get_sv("suboutcomes", FALSE));

In our example, keys %subcontext returns the list (1, 4, 5, 6), so these last
two lines of code have the same result as if the following initializations had been
made:

AM_CONTEXT subcontext[] = { 1, 4, 5, 6 };
AM_OUTCOME suboutcome[] = { 0, 2, 2, 2 };

(In amc.c, numsubcontexts is added to the pointers subcontext and subout-
come after the assignments are made, because amc.c goes through the subcontexts
in reverse order. Thus, in our example, the subcontexts are added by amc.c in this
order: 6, 5, 4, 1.)

If types AM_CONTEXT and AM_OUTCOME are redefined in amc.h, the first argu-
ments of the calls to pack() in the Perl code ("L*" and "C*") must be changed
accordingly.

When it is time to compute the analogical set, amc.c sends the lists of sub-
contexts back to amc.pl one at a time, along with the number of supracon-
texts pointing to each list. In other words, for each element of type AM_SUPRA
in the circular linked list of subcontext lists, it sends the array data[] and the
scalar count. This is done by the function countsupra(), which is called within
amc.c once all subcontexts have been added. For each list of subcontexts, it
first creates “mortal” variables with the appropriate values and pushes them onto
the Perl argument stack (p is a pointer of type AM_SUPRA* into the circular
linked list):

XPUSHs(sv_2mortal(newSViv(p->count)));
XPUSHs(sv_2mortal(newSVpv(

(char *) (p->data + 1),
p->data[0] * sizeof(AM_CONTEXT))));
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Then it calls count() in amc.pl, which begins as follows:

my $count = $_[0];
@list = ();
foreach (unpack "L*", $_[1]) {

push @list, @{$subcontext{$_}};
}

The call to unpack() returns a list of subcontext indices; the foreach statement
creates an array @list containing the indices of the actual data items in these
subcontexts. (If AM_CONTEXT is redefined in amc.h, the first argument "L*" of
unpack() must be changed accordingly.)

In our example, countsupra() calls count() three times; the variables in
count() take the successive values listed in Table 2.

. Outline of the program

For each test item, three steps take place:

1. Each data item is compared with the test item and placed into the appropriate
subcontext.

2. The subcontexts are placed into the supracontextual lattice one by one; while
this is done, a running count is kept of how many times a given list of subcon-
texts occurs in the lattice.

3. The pointers within the homogeneous supracontexts are tallied to give the
analogical set, which is then printed out or saved to a file.

Step 1 is handled completely by amc.pl in subroutine beginTestItem(), which
is called from amc.pl. Step 2 is performed completely in amc.c, after it has re-
ceived the subcontexts and their outcomes from amc.pl. Step 3 is done primarily
in amc.pl, using data sent to it from amc.c.

The code for Step 1 is quite simple. For each data item, each variable is com-
pared with the corresponding one in the test item, and the index $context of
the data item’s subcontext is computed. The index i of the data item is pushed
onto @{$subcontext{$context}}, creating a hash of arrays, and $subtoout-

come{$context} is computed as explained in Section 4.3.2. When done, the
indices of the subcontexts and their outcomes are passed to amc.c.

For Step 3, function countsupra() in amc.c loops over the subcontext lists,
pushing the contents of each list along with its count onto the Perl argument stack
and calling the Perl subroutine count(), as explained in Section 4.4. Note that the
user can decide whether to count pointers linearly or quadratically. To optimize
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code, amc.pl creates two global variables, @list and $tally, and sets $tally
during setup() with the following:

$linearOrSq eq ’linear’ ?
($$tally = 0) : ($tally = \$#list);

($linearOrSq is set when setup() reads AM.config.) Then once count()
creates the list @list of the indices of data items, they are counted by this routine:

foreach (@list) {
$datacount[$_] += (1 + $$tally) * $count;
$sum[$outcome[$_]] += (1 + $$tally) * $count;
$grandtotal += (1 + $$tally) * $count;

}

For (1 + $$tally) will equal 1 if counting is to be done linearly and will equal
the number of data items in the supracontext if counting is to be done quadrati-
cally.

The analogical set is printed out or saved to a file by the subroutine endTest-
Item() in amc.pl, which is called from amc.c.

All that remains is to describe Step 2: how the lattice is filled. This is the topic
of the following section.

. How amc.c fills the lattice

In Section 2.2, we gave an example of how to fill a supracontextual lattice. When-
ever a new subcontext was to be added to a supracontext, the following steps took
place:

1. If the supracontext was already marked as heterogeneous, it was skipped. If this
heterogeneous supracontext was the first one this subcontext was to be added
to, then by inclusive heterogeneity all other supracontexts to be added to were
also heterogeneous, so this subcontext was skipped entirely.

2. The outcome of the new subcontext was compared with the outcomes of
the subcontexts already in the list pointed to to see whether or not hetero-
geneity was introduced. (If there was no list to be compared with, then the
supracontext was homogeneous trivially.)

3. If heterogeneity was introduced, the supracontext was marked as heteroge-
neous and nothing more was done with it.

4. If heterogeneity was not introduced, the supracontext was reset to point to a
new list of subcontexts, consisting of the new subcontext appended to the list
the supracontext previously pointed to.
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Most of the difficulty in implementing this algorithm as a computer program is in
the last step: amc.c must somehow keep track of all the subcontext lists, creating
new ones only when necessary, and making sure that the right supracontexts point
to them. It must not make duplicate copies of subcontext lists that already exist,
lest memory be wasted (perhaps even to the extent of leading to program failure).
Furthermore, as mentioned in Sections 4.2 and 5, the program maintains a running
count of how many supracontexts point to any given list of subcontexts.

To this end, lists of subcontexts are always added into the circular linked list
in a certain way: whenever a new list of subcontexts is created from an old one by
appending a new subcontext, the new list is put into the circular linked list imme-
diately after the one it is derived from; the old list links forward to the new one.

As mentioned in Section 4.2, the subcontext lists are each labeled with an index
showing the order in which they were created. Right before a new subcontext is
added to its corresponding supracontexts, the variable baseindex is set to the
same value as nextindex. In this way, amc.c can tell which subcontext lists were
added during the current stage and which were added previously just by comparing
index numbers with baseindex.

With this all set up, adding a subcontext to a supracontext is quite simple. We
look at the index of the subcontext list after the one the supracontext points to.
If this index is less than baseindex, we know that it was created in a previous
stage, so the new subcontext list has yet to be created. We create it, place it in the
circular linked list immediately after the one the supracontext currently points to,
set index to nextindex (which is then incremented) and count to 1, and reset
the supracontext to point to it. If the index is not less than baseindex, we know
that this is the new subcontext list we are looking for, so we increment its count by
one and reset the supracontext to point to it – no creation is necessary.

Because this is a circular linked list, we don’t have to worry about following
a pointer that doesn’t go anywhere – the “last” element will always point back to
*supralist. Furthermore, since every supracontext starts out by pointing to the
empty list of subcontexts (that is, *supralist), we don’t have to write special
code to take care of the case of creating a subcontext list with only one subcontext
in it – we just append it to the empty list.

The actual process of adding a subcontext in amc.c essentially follows the five
steps listed above, though in a manner differing in two small respects that help
speed up the program. Recall that when a new subcontext is to be added to the
supracontextual lattice, it is first added to the supracontext which shares its index,
that is, the supracontext which contains the subcontext and is closest to the given.
If this supracontext is already marked as heterogeneous, then by inclusive hetero-
geneity any other supracontext to which this subcontext would be added is also
already marked as heterogeneous. Therefore, this subcontext need not be added
to any supracontexts and is skipped over. Otherwise, amc.c attempts to add this
subcontext to all appropriate supracontexts. This is done in the following code:
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if (lattice[*subcontext] == HETERO) continue;
add(*subcontext, *subcontext, *suboutcome);
ancestor(*subcontext, activeVar);
while (d = descendant()) {

if (lattice[d] == HETERO) continue;
add(d, *subcontext, *suboutcome);

}

The function add() takes three arguments: the supracontext to be added to, the
subcontext to be added, and the outcome of this subcontext; this last is used by
add() to determine heterogeneity. It begins as follows:

void add(AM_CONTEXT supracontext,
AM_CONTEXT subcontext,
AM_OUTCOME outcome) {

AM_SUPRA *p, *c;

p = lattice[supracontext];
if (p->count) --(p->count);

When add() attempts to add a subcontext to a supracontext (note that add() is
called only if the supracontext is currently homogeneous), it does not first decide
whether or not adding the new subcontext will introduce heterogeneity. Instead, it
decides whether or not the list of subcontexts following the one pointed to by the
supracontext was created earlier during this stage. This is determined by comparing
its index with the current value of baseindex; if index is less than baseindex,
add() creates and inserts the new list:

if (p->next->index < baseindex) {
c = (AM_SUPRA *) malloc(sizeof(AM_SUPRA));
c->index = nextindex++;
c->count = 0;
c->next = p->next;
p->next = c;

If it was necessary to create a new list, heterogeneity is determined:

if((outcome and outcome == p->outcome)
or !p->index) {

This line takes a little explanation. The first part means that the subcontext to be
added has all data items sharing the same outcome (i.e., that outcome is nonzero)
and that this common outcome matches the outcome shared by the subcontexts
already in the list (i.e., that outcome == p->outcome). The second part means
that the subcontext list is currently empty: the supracontext points to the empty
list with index 0. These are the only two cases which preserve homogeneity. If
homogeneity is preserved, add() copies the list, increments the count, appends
the new subcontext, and points the supracontext to it:
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c->outcome = outcome;
++(c->count);
c->data = calloc(p->data[0] + 2,

sizeof(AM_CONTEXT));
memcpy(c->data, p->data,

(p->data[0] + 1) * sizeof(AM_CONTEXT));
c->data[++(c->data[0])] = subcontext;
lattice[supracontext] = c;

However, if heterogeneity is introduced, add() does not yet delete this newly cre-
ated list of subcontexts. Instead, it marks it as having no elements and marks the
supracontext as heterogeneous:

} else {
c->outcome = 0;
c->data = calloc(1, sizeof(AM_CONTEXT));
lattice[supracontext] = HETERO;

}

This sets a flag: any supracontext with the same list of subcontexts as that cur-
rently under consideration will become heterogeneous when the new subcontext is
added. This is used to test future cases of possible heterogeneity within the same
stage instead of comparing outcomes.

Now suppose that the list of subcontexts pointed to by the supracontext is
followed by one created previously during this stage. If the following list is non-
empty, all we have to do is repoint the supracontext and update the count:

} else {
if (p->next->data[0]) {

++((lattice[supracontext] = p->next)->count);

If the following list is empty, that is the flag set earlier indicating that adding
the subcontext to the list currently pointed to by the supracontext will introduce
heterogeneity, so the supracontext is marked heterogeneous:

} else {
lattice[supracontext] = HETERO;

}
}

}

After the subcontext has been added to all possible supracontexts, cleansupra()
is called to remove empty subcontext lists.
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Appendix

. The inner workings of ancestor() and descendant()

. The theory

Given a binary number, say 1001011, an algorithm is needed to produce the fol-
lowing:

1001111 1011011 1011111 1101011 1101111 1111011 1111111

There is an obvious one-to-one correspondence between these binary numbers
and those in the range 0012–1112 (underscores indicate affected bits):

001→1001111
010→1011011
011→1011111
100→1101011
101→1101111
110→1111011
111→1111111

An algorithm to produce this list would consist of the following steps:

1. Starting with a binary number of n digits, create a list of binary numbers which
show where the 0s occur. Using the example 1001011 above, one possible list
would be 0000100, 0010000, 0100000.

2. Create a counter going from 1 to 2z – 1 in binary, where z is the number of 0s
in the original binary number.

3. For each value of the counter, compute and return the new binary num-
ber. For instance, 1012 would create the number 10010112 + 1(01000002) +
0(00100002) + 1(00001002) = 11011112. (Instead of adding, bitwise OR oper-
ations could be used.)

Step 3 results in a total of O(z2z) 1-bit shifts to the right and bitwise AND opera-
tions (to ascertain where the 0s and 1s are in the counter) and another O(z2z–1) bit-
wise OR operations (to evaluate the new number). Thus, this algorithm is O(z2z)
in running time.

To improve upon this, recall that it doesn’t matter in what order these binary
numbers are returned. The above list could be reordered as follows:

001→1001111
011→1011111
010→1011011
110→1111011
111→1111111
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101→1101111
100→1101011

The thing to note here is that each row differs from the previous by exactly one
bit. In other words, only one bitwise operation is needed at each step, assuming
the result of the previous step is stored. (In practice, two are actually used: one to
determine the value of the bit, and one to flip it.) However, the entries in the first
column are no longer easily computed by simply adding 1 to the previous value.

To see the pattern of this first column, the previous table is repeated with an
extra column in front. The values of this column represent which bit has been
flipped, 0 representing the least significant:

0 001→1001111
1 011→1011111
0 010→1011011
2 110→1111011
0 111→1111111
1 101→1101111
0 100→1101011

For larger values of z, the sequence is 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, . . . The
pattern of this last sequence becomes obvious when another column containing
the positive binary integers in ascending order is prepended:

001 0 001→1001111
010 1 011→1011111
011 0 010→1011011
100 2 110→1111011
101 0 111→1111111
110 1 101→1101111
111 0 100→1101011

The value in the second column is precisely the number of zeros the binary number
in the first column ends with.

Thus, Step 3 above can be replaced by

3. Find the least significant 1 in the counter. Flip the corresponding bit in the
previously returned number and return the new number.

Finding the least significant 1 in all the counters takes a total of O(2z) 1-bit shifts
and O(2z+1) bitwise ANDs, while computing the new number requires a total of
O(2z–1) additional bitwise operations. Thus, this algorithm is O(2z+1) in running
time, which compared to the earlier O(z2z) is a great improvement.
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. The implementation

The algorithm explained above is handled by two functions. ancestor() creates
the list of Step 1 and the counter of Step 2, which counter is decremented and
used to create the return value as explained in Step 3 through repeated calls to
descendant(). (It can be shown that an increasing counter and a decreasing one
give the same sequence of flip digits.)

ancestor() takes two arguments, the original binary number context

(passed as an integer) and the number of active variables numvar. It then concur-
rently computes the number z of 0s in the binary number, storing it in numgaps,
and produces the list of Step 1 and places it in the array gaps[]. The counter t
is originally set to 1 << numgaps, i.e., 2z, and is decremented at the beginning of
every call to descendant(), as required in Step 2. The variable a keeps track of
the last returned result, the binary number which will have a bit flipped on the next
call to descendant(); its value is first set to that of the original binary number.

The variables t, a, and gaps[] are static with file scope; thus, they are en-
capsulated from the rest of the program, and their values persist over each call to
descendant(), obviating the need to pass any values and speeding up the code.

On each call to descendant(), t is decremented, the least significant place
containing a 1 is computed, and the corresponding bit in a is flipped in these lines:

for(i = 0, tt = t; !(tt & 1); tt >>= 1, ++i);
flip = gaps[i];
a = (a & flip ? a & ~flip : a | flip);
return a;

If decrementing t gives a value of 0, this indicates that there are no more values to
return, and descendant() returns 0 to signify this.

Note

. The word set is not to be taken in its mathematical sense. In am, a set may contain repeated
occurrences of the same element.
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