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Preface

Electrical machines and drive systems account for about 46 % of all global elec-
tricity consumption, resulting in about 6,040 Mt of CO2 emissions. This is by far
the largest portion of electricity use, easily outstripping lighting, which takes up to
19 % of the world’s demand. Therefore, the energy efficiency of electrical drive
systems is very important for the energy conservation, environment and sustainable
development of the world.

Electrical drive systems are key components in many modern appliances, as well
as industry equipment and systems. In order to achieve the best design objectives,
such as high performance and low cost, various optimization methods have been
developed for design optimization of electrical machines and drive systems. The
traditional design optimization is at the component level, e.g. optimization of a
motor design or the parameters of a control algorithm. However, modern appliances
or systems demand that the drive systems be specifically designed and optimized to
provide full support to their best functionalities with multiple performance indi-
cators. For such applications, the authors developed an application-oriented
multi-objective system-level design optimization method. Because of the com-
plexity of drive system design that involves many disciplines, such as electro-
magnetics, materials, mechanical dynamics including structural, thermal, and
vibrational analyses, power electronic convertors, and control algorithms, a
multi-level optimization method was developed by the authors to improve the
effectiveness of the optimization of electrical machines as well as drive systems.

On the other hand, the real quality of motors and drives in mass production
highly depends on the available machinery technology and those unavoidable
variations or uncertainties in the manufacturing process, assembly process and
operation environment. The manufacturing precision and tolerances are two main
issues in the manufacturing process, including mainly the variations of material
characteristics, such as magnetization faults in terms of magnitude and magneti-
zation direction for permanent magnets (PMs), and density and permeability of
soft-magnetic-composite (SMC) stator cores manufactured by powder metallic
moulding technology, and dimensional variations of parts of drive systems, such as
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the rotor, stator, winding and PMs. The assembly process variations mainly include
the lamination of silicon steel sheets and misalignments of stator, rotor and PMs.
The operating uncertainties mainly include the load variations, changes of electrical
and mechanical parameters, such as the changes of resistance and inductance due to
the operational temperature rise, and fluctuations of drive voltage.

Limited by these variations in the practical machinery technology, an aggres-
sively optimized design may be difficult for high-quality batch production and end
up with high rejection rates. Similarly, variations in system parameters and oper-
ational conditions may also lead to sub-optimal performance, and in a severe case,
even instability. To solve this type of problems, the methodology of Six-Sigma
quality control can be adopted to develop a robust design optimization method to
guarantee the high-quality batch production of drive systems.

Based on many years of research experience of the authors, this book aims to
present efficient application-oriented, multi-disciplinary, multi-objective, and
multi-level design optimization methods for advanced high-quality electrical drive
systems. The multi-disciplinary analysis includes materials, electromagnetics,
thermotics, mechanics, power electronics, applied mathematics, machinery tech-
nology, and quality control and management.

This book will benefit both researchers and engineers in the field of motor and
drive design and manufacturing, thus enabling the effective development of the
high-quality production of innovative, high-performance drive systems for chal-
lenging applications, such as green energy systems and electric vehicles.

This book consists of eight chapters, based on our several research projects, and
covering the aspects of electrical machines, drive systems, high-quality mass pro-
duction and application-oriented design optimization methods.

Like most books, this book starts with an introduction in Chap. 1 to provide an
overview of application fields of electrical machines and drives as well as the
state-of-art design optimization methods for electrical machines, drive systems and
high-quality mass production.

Chapter 2 presents an overview of the design fundamentals of electrical
machines and drive systems. Design analysis models in terms of different disci-
plines (domains) are investigated in this chapter, such as the analytical models or
methods for electromagnetic and thermal analyses, magnetic circuit model for
electromagnetic analysis, finite element model (FEM) for all electromagnetic,
thermal and mechanical analyses, and field-oriented control and direct torque
control algorithms for the control systems.

Chapter 3 reviews the popular optimization algorithms and approximate models
used in the optimization of electrical machines as well as electromagnetic devices.
Optimization algorithms include classical gradient-based algorithms and modern
intelligent algorithms, such as genetic algorithms, differential evolution algorithm
and multi-objective genetic algorithms. Approximate models include response
surface model, radial basis function model and Kriging model.

Chapter 4 presents the design optimization methods for electrical machines in
terms of different optimization situations, including low- and high-dimensional,
single and multi-objectives and disciplines. Five new types of design optimization
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methods are presented to improve the optimization efficiency of electrical machines,
particularly those PM-SMC motors of complex structures. They are the sequential
optimization method (SOM), multi-objective SOM, multi-level optimization
method, multi-level genetic algorithm and multi-disciplinary optimization method.

Chapter 5 develops the system-level design optimization methods for electrical
drive systems, including single- and multi-level optimization methods. Not only the
steady-state performance parameters but also the dynamic motor performance
parameters, such as output power, efficiency and speed overshoot are investigated at
the same time.

Chapter 6 presents a robust approach based on the technique of Design for
Six-Sigma for the robust design optimization of high-performance and high-quality
electrical machines and drive systems for mass production. A multi-level opti-
mization framework is presented.

Chapter 7 develops the application-oriented design optimization methods for
electrical machines under deterministic and robust design approaches, respectively.
Applications including home appliance and hybrid electric vehicles are
investigated.

Chapter 8 concludes the book and proposes the future works for further research
and development.

Four electrical machines and several benchmark test functions/problems are
employed throughout the book to verify the efficiency of those proposed design
optimization methods. Those machines are a PM-SMC transverse flux machine, a
PM-SMC claw pole motor, a surface-mounted PM synchronous machine and a
flux-switching PM machine. All the design optimization models including FEM
and thermal network model are validated by experimental results. Therefore, the
proposed methods and obtained optimal solutions are reliable.

This book can be used as a reference for designers and engineers working in the
electrical industry and undergraduate and graduate students majoring in electrical
engineering. Students majoring in automotive engineering and mechanical engi-
neering may also find this book useful when dealing with vehicle motor and drive
related design, optimization and control development.

The authors wish to express their sincere thanks to Prof. Shuhong Wang, Xi’an
Jiaotong University, China, for his contribution on the multi-level genetic algorithm
for electrical machines and drive systems and other contributions to this book. The
authors would also like to acknowledge the contributions of Dr. Yi Wang and Mr.
Tianshi Wang on part of control algorithms, Dr. Wei Xu and Mr. Chengcheng Liu
on part of PM flux-switching machines and multi-disciplinary design analysis of
PM-SMC motors.

The authors would also like to thank their families who have given tremendous
support all the time.

Finally, the authors are extremely grateful to Springer and the editorial staff for
the opportunity to publish this book and help in all possible manners.
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Chapter 1
Introduction

Abstract This chapter presents a brief introduction focusing on various aspects of
electrical machines, drive systems, their applications, energy usage, and the
state-of-art design optimization methods. The design optimization of electrical
machines and drive system is a multi-disciplinary, multi-objective, multi-level,
high-dimensional, highly nonlinear and strongly coupled problem, which has long
been a big challenge in both research and industry communities. The contents of
this chapter form a good foundation for the whole book, and pave a smooth path to
major goal of this book to present efficient design optimization methods for
achieving high-performance high-quality electrical machines and drive systems for
challenging applications, such as green energy systems and electric vehicles.

Keywords Electrical drive systems � Multi-disciplinary design optimization �
Optimization methods � Electrical machines � High quality manufacturing � Mass
production � Efficiency

1.1 Energy and Environment Challenges

In an electrical drive system, the role of electric motor is to convert electrical power
into mechanical power. It is found that electric motors account for about 46.2 % of
all global electricity consumption, leading to about 6,040 Megatons (Mt) of CO2

emissions. This is by far the largest portion of electricity use, as shown in Fig. 1.1.
Around the world, over 300 million motors are being used in industry, large
buildings and infrastructure, and about 30 million new electric motors are sold each
year for industrial purposes alone [1, 2].

Figure 1.2 illustrates the estimated electricity demand for all motors by sector. It
can be seen that the motors used in industry consume about 63.1 % of the total
energy consumption. The corresponding energy costs are estimated to be USD 362
billion per year. In the industrial sector, motors are used primarily for four areas of
applications, namely pumps, fans, compressors, and mechanical movement. These
applications and their respective shares are illustrated in Fig. 1.3 [1].
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In terms of the life cycle cost of motors, the electric energy cost accounts for
more than 90 % of all cost in general, which are much larger than the other two
parts, purchase-price and repair or maintenance cost. As an example, Fig. 1.4
depicts the breakdown of the life cycle cost for an 11 kW motor operated 4000 h per
year, where the electric energy cost accounts for 96.7 % of the total cost [2].
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by application in industrial
motor system energy use
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Therefore, the energy efficiency of motors is a crucial issue for the energy
conservation, environment, and sustainable development of the world, and this is
also the main reason that high efficiency motors have attracted so much attention all
over the world. Even 1 % increase in motor efficiency would save about 20 billion
kWh per year or USD 1.4 billion in electricity and 3.5 million barrels of oil in the
U.S. alone. These savings would be multiplied by about a factor of four on a
worldwide basis [3, 4].

1.2 Introduction of Electrical Machines, Drive Systems,
and Their Applications

1.2.1 General Classification of Electrical Machines

Electrical machines are electromagnetic devices for transforming electricity of one
voltage or current to another voltage or current by the principle of electromagnetic
induction for safe and convenient use (transformers), or electromechanical energy
conversion (generators and motors).

Transformers can be generally classified as

• Power (step-up/down, and isolation) transformers, instrumentation transformers,
and signal transformers by application,

• Three phase and single phase transformers by number of phases,
• Dry type or oil type transformers by cooling method, and
• Power frequency and high frequency transformers by application frequency.

Generators and motors can be classified as

• DC and AC machines by types of electricity they generate or are supplied,
• Rotating and linear electrical machines by motion style,

2.3%1%

96.7%

Motor price
Maintenance cost
Electric energy cost

Fig. 1.4 Life cycle cost
breakdown for an 11 kW
motor operated 4000 h per
year
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• Synchronous and asynchronous/induction machines by operational feature or
principle,

• Round/cylindrical, salient, wound, and squirrel cage rotors by structure,
• Permanent magnet (PM) and high temperature superconductor (HTS) machines

by construction materials,
• Brushless DC motor (BLDC) by combination of structural feature and opera-

tional characteristics, etc.

Since around 69 % of total electricity in industry is consumed by electrical
motors worldwide, it is of great significance to use high efficiency motors and drive
techniques. In a lot of applications, variable speed drive is more efficient than fixed
speed drive.

1.2.2 Electrical Machines and Applications

In general, there are three main kinds of applications for electrical machines, which
are electricity generation, electricity transformation, and electrical drives. The fol-
lowing are some examples.

A. Electricity generation
In most electricity generation systems, except the photovoltaic systems in which the
solar energy is converted directly into DC currents by static solar cells, various
types of energy resources, such as fossil fuels (coal, diesel, and natural gas, etc.),
water, wind, sun light, and atomic energy, etc., are firstly converted into mechanical
energy by rotating turbines and then electricity by AC rotating electrical generators.

Figure 1.5 shows the working principle of a hydroelectric generation with a
synchronous generator. Hydroelectric plants use the energy from water to power a
process that turns water potential energy into electricity. This process involves the
water flowing from the dam, through a tunnel which leads to a turbine. Once the
water reaches the turbine, the force from the water spins a generator to generate
electricity. The generator terminal is connected to a transformer, which is where the
electricity generated is transformed, e.g. to high voltage, and for long distance
transmission [5].

Wind turbines as another application of AC generators have been employed
worldwide. In general, both synchronous and induction machines are commonly
employed for wind power generation. Moreover, various rotating AC generators are
also commonly used for electricity generation from other energy sources, such as
nuclear and solar thermal power plants, gas fired turbines, and diesel/petrol engines,
to meet different needs, such as power supply for grid, air planes, trains, and ships.

B. Electricity transformation
Electricity transformers can be defined as a type of static electrical device which
transfers power from one circuit to another by means of electromagnetic induction.
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Power transformers are used in distribution systems wherever there is a need to
interface between different voltage levels, i.e. to step up and step down voltages. In
order to improve the performance of transformers in renewable generation systems,
some high-frequency transformers with cores of advanced magnetic materials, such
as nanocrystalline and amorphous materials have been investigated recently. This
offers a new route of step-up-transformer-less compact and lightweight direct grid
integration of renewable generation systems [6–9].

C. Electrical drives
Electrical drives are a major application of electrical machines, which have been
widely used in all aspects of our life. The following are some examples mainly
investigated by the Green Energy and Vehicle Innovations Centre (GEVIC, for-
merly known as Centre for Electrical Machines and Power Electronics, or CEMPE)
at the University of Technology Sydney (UTS).

Figure 1.6 shows a high efficiency (>90 %) 4 pole NdFeB PM brushless DC
motor developed jointly by UTS CEMPE and the Commonwealth Scientific and
Industrial Research Organization (CSIRO) for a submersible deep well (>120 m)
mono-pump drive. The motor is filled with water and operated at 3000 rev/min. The
product series has three power ratings of 300, 600, and 1200 W, respectively.

Fig. 1.5 Hydroelectric generation (synchronous generator)
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(a)

(b) (c)

Fig. 1.6 A solar powered deep well submersible pump drive

(a) (b)

Fig. 1.7 a Aurora solar car and b its in-wheel permanent magnet motor
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Figure 1.7 shows a picture of the Aurora solar car and a photo of the in-wheel
permanent magnet motor developed by UTS CEMPE and CSIRO. The ratings of
the motor are 5.5 kW, 50 Nm peak for 72 s, with the maximum efficiency of
98.5 %.

In-wheel motors and other PM motors are widely used as drive machines in
(plug-in) hybrid electric vehicles (HEVs). In a plug-in hybrid car, the battery bank
is charged by the grid power supply when the car is not in use, and the electrical
motor plays the major role of drive. A small internal combustion engine is
employed to provide extra torque when the car accelerates, or to charge the battery
when the state of charge is low. Since the motor controlled by a power electronic
inverter can operate in all four quadrants of the torque-speed plane, the car is able to
retrieve the kinetic energy by regenerative braking when it is decelerating.
Therefore, hybrid electrical cars have much higher energy efficiency than the tra-
ditional internal combustion engine drive cars.

Currently, GEVIC researchers are designing several PM machines including
flux-switching machine for plug-in HEVs. The designed and fabricated machines
will be tested in the powertrain testing facility at UTS Automotive Laboratory, as
depicted in Fig. 1.8. This facility can simulate urban and highway drive cycles and
measure the torque and speed along with the powertrain performance in various
operation modes, including regenerative braking [10].

Figure 1.9 shows the photos of the SolarSailor boat powered by 2 × 40 kW, 400
Nm, 3 phase, 16 pole, 950 rev/min, 100 V, 250 A direct drive high efficiency PM
brushless DC motors and the power electronic controller developed by
UTS CEMPE in 2000.

For propulsion and power supply of large ships, multi-MW electrical machines
are used. In such cases, the efficiency, volume and weight of the electrical machines
become a serious concern. With the technological breakthrough, large capacity
HTS generators and motors are being built around the world for application in large
cargo ships and gun boats.

Fig. 1.8 UTS HEV test
facility
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1.3 The State-of-Art Design Optimization Methods
for Electrical Machines and Drive Systems

1.3.1 Design Optimization of Electrical Machines

The design optimization of electrical machines is a multi-disciplinary,
multi-objective, high-dimensional, highly nonlinear and strongly coupled problem,

(a)

(b) (c)

Fig. 1.9 a The SolarSailor boat, b power electronic converter, and c PM drive motor
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which is a challenge to both research and industry communities. This work consists
of two parts: design analysis and performance optimization.

A. Design analysis
For design analysis, electromagnetic, thermal, mechanical design analyses and
manufacturing design are the main concerns. The electromagnetic design is con-
ducted by using mainly the analytical model, magnetic circuit model, and finite
element model (FEM) to calculate the electromagnetic parameters of the machines
being designed, such as flux linkage, back electromotive force (EMF), inductance
and core losses. These parameters are then used to evaluate the machine perfor-
mance indicators, such as output power and efficiency. The thermal design is
conducted by using mainly the FEM and thermal network model to compute the
temperature-rises in the machine. The mechanical design is often done by stress
and/or modal analyses using the FEM to calculate the maximum stress, deforma-
tion, and resonant frequency of the machine structure under various operating
conditions. In general, the thermal and mechanical analyses are usually conducted
to check the insulation, magnetic strength (e.g. the Curie temperature of PMs), and
mechanical material and structural strengths to ensure the machine’s safety. In
electrical machine design optimization, they are often used as design constraints.

B. Performance optimization
Performance optimization includes two aspects as well, namely optimization
models and optimization methods. There are several popular optimization models.
For example, from the perspective of objective numbers, optimization models can
be classified as single-objective or multi-objective models. Generally, the cogging
torque, torque ripples, material and manufacturing as well as sometimes operating
costs, weight, and energy consumption are the main concerns in the design and
optimization process. From the industrial perspective, the optimization models can
consist of three main types: the deterministic, reliability and robust models.

Regarding the optimization methods, despite many kinds of optimization methods
have been developed, their effective application for design optimization of electrical
machines and systems has always been a research focus in electrical engineering.
Since 1987, it has been selected as one of the most important development directions
in computational electromagnetics by the premier International Conferences on
Magnetics, such as Intermag (International Magnetics Conferences), CEFC
(Conference on Electromagnetic Field Computation) and Compumag (Conference on
the Computation of Electromagnetic Fields). In CEFC 2000, a special academic
lecture about these problems was organized [11]. Electrical machines and drives are
also an important section in several international conferences on electrical machines
and energy systems, such as ICEMS (International Conference on Electrical
Machines and Systems), ECCE (IEEE Energy Conversion Congress and Exposition)
and IECON (Conference of the IEEE Industrial Electronics Society). Recently, the
research interest in electromagnetic optimization design problems, particularly for
electricalmachines, has increased significantly. A special section on optimal design of
electrical machines was presented in the IEEE Transactions on Energy Conversion in
Sep. 2015 [12]. Themain driving forces behind this interest are the rapid development
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of computational techniques and the rapid increase of industrial applications of
electromagnetic devices.

Many electromagnetic optimization problems are solved by means of FEM with
intelligent optimization algorithms. In the past two decades, a number of innovative
intelligent algorithms, such as the genetic algorithm (GA), Tabu search, clonal
selection algorithm, immune algorithm, particle swarm optimization (PSO) algorithm
and differential evolution algorithm (DEA) have been developed [13–15].

The FEM can be accurate and applicable to nonlinear problems as well as
general complex geometrical structures. However, it may not be appropriate to
many design problems of electromagnetic systems because it is relatively complex
and computationally intensive. As an alternative, some approximate models (also
known as surrogate models) are employed in the practical engineering design
problems to ease the computational burden of optimization process, such as
response surface model (RSM), radial basis functions (RBF) model, Kriging model
and artificial neural network model [13, 16–22].

C. Multi-objective optimization
From the perspective of practical engineering applications, the design optimization
of electrical machines is actually a multi-objective problem as there are many
objectives can be defined and one or some of them can be selected for different
applications. For example, for home appliances, such as washing machines and
refrigerators, the motor price and output power may be the two most important
issues, while for hybrid electric vehicles, the volume, power density and torque
ripples are very important. Therefore, multi-objective optimization design problems
of electrical machines as well as other electromagnetic devices have become a topic
of great interest recently. A few bench-mark problems have been proposed, such as
TEAM benchmark problem 22 (superconducting magnetic energy storage: SMES)
and Problem 25 (die-press model) [23–25].

In order to dealwith these problems,manymulti-objective optimization algorithms
developed in the field of evolutionary computation have been employed, such as
multi-objective genetic algorithm, non-dominated sorting genetic algorithm (NSGA)
and NSGA II, and multi-objective particle swarm optimization (MPSO) algorithm.
Meanwhile, some research works have been presented to improve these optimization
algorithms, such as the improved NSGA, and improvedMPSO [26–31]. A state of art
multi-objective optimizationmethods in electromagnetismwas presented recently in a
monograph [32]. Approximate models have been employed to replace the FEM in
multi-objective optimization problems to improve the optimization efficiency.

D. Challenges
For the above optimization methods, the direct optimization method based on FEM
and intelligent algorithms are usually time-consuming and computationally
expensive as a lot of FEM samples are needed in the optimization, especially for
those machines with complex structures requiring 3D FEM and high-dimensional
design parameters, such as the transverse flux machine (TFM) and claw pole motor.
Moreover, premature is still a problem for all these algorithms though a lot of
improvements have been made.
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For example, the optimization process of a motor with 10 parameters (dimension
D = 10) by using the GA and FEM with the population size of 50 (5 × D) and
iteration number of 200 requires about 10,000 (50 × 200) samples, which can be a
huge computational burden for many motors, especially those requiring 3D FEM.

On the other hand, it is impossible to replace the FEM with approximate models,
such as RSM and Kriging model, because they cannot approximate high dimensional
problems with sufficient accuracy by using reasonably small number of samples. For
example, the first step in the construction of approximation models is to use the
design of experiments (DOE) technique to obtain the initial samples. If 5 samples are
required for each parameter, in total, 510 FEM samples are required, which are more
than those required by direct optimization method of GA&FEM [33].

Therefore, the traditional optimization methods based on FEM and the
approximation models cannot solve the high dimensional design optimization
problems. To solve this type of problems effectively, multi-level optimization
methods developed in our previous work will be presented in this book [34–37].
The multi-disciplinary design optimization of electrical machines is still a challenge
problem because of the huge computational cost of the coupled field analysis.
A multi-disciplinary design optimization method will be presented for a PM TFM
with soft magnetic composite (SMC) core in this book [38].

1.3.2 Design Optimization of Electrical Drive Systems

Electrical machines and the corresponding drive systems have a history of over a
century and the design procedure has become almost standard. When designing an
appliance that needs an electrical drive system, the designer firstly selects the motor,
inverter/converter and controller from the existing products. The appliance
designer, on one hand, has to deliver the functions that the appliance is supposed to
have, and on the other hand, has to take into account the availability and perfor-
mance that the existing motor drive can provide. This motor manufacturer-oriented
approach has been the dominant design concept for drive systems for a long time.
However, this approach would apply many constraints to the design and therefore
limit the functions of the appliance [39].

With the fast development of numerical field analysis, CAD software, and
flexible mechanical manufacturing technology, it is possible to design and manu-
facture a motor to meet the special requirements of a particular application such that
the designer can concentrate on pursuing the best appliance functions. Since early
1990s, this application-oriented approach has been gradually becoming a common
practice [40–48]. In many cases, the motor and control electronics are closely
integrated into the appliances.

For example, the solar powered deep well submersible pump drive as shown in
Fig. 1.6 that UTS CEMPE developed in 1991 has an integrated structure. The high
efficiency motor and its electronic controller are packed into the pump and installed
down the deep well. The concept of integrated design can be better illustrated by the
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in-wheel motor for the Aurora Solar Car drive (Fig. 1.7) developed jointly by
UTS CEMPE and CSIRO in 1997. In this drive, to meet the special requirement of
extremely low weight and high efficiency, a core-less in wheel motor topology was
employed.

No doubt, the application-oriented integrated design concept is very advanced,
but the design methodology used in these examples and also by all other motor
designers is still very traditional. As illustrated in Fig. 1.10, the traditional design is
conducted on the component level, i.e. the motor and the electronic controller are
separately designed by the standard procedure. The major part of the motor design
is the electromagnetic design whereas the thermal and sometimes mechanical
analyses are carried out as verification only but not coupled to the electromagnetic
analysis. In the case of design optimization, inaccurate circuit, field, and material
models, and even empirical formulae are commonly used in order to reduce the
computing time. This approach has two problems: (a) the real optimum design is
not possible because of the inaccurate models used, and (b) the system performance
cannot be optimized because the design is on the component level.

Meanwhile, the system performance optimization is becoming essential, espe-
cially when new materials, for example, the SMC, and new topologies are
employed. SMC is a relatively new soft magnetic material developed for extremely
low cost motor manufacturing using the highly matured powder metallurgical
technology [49–53]. However, the magnetic properties of the SMC material are
much poorer than those of the traditionally used silicon sheet steels. In order to
develop low cost high performance SMC motor drive systems, we must explore
new motor topologies of 3D magnetic flux and new drive schemes, and optimize
the design at the system level.

The electric vehicles and HEVs are attracting great attentions and funding from
the governments and general public around the world because of the worldwide
fossil fuel energy crisis and severe greenhouse gas emissions of the conventional
vehicles powered by the internal combustion engines. To improve the efficiency
and drive performance with reduced volume, weight, and cost of novel drive sys-
tems to meet the challenging requirements of hybrid electric vehicles, a great
amount of recent efforts are being directed towards the development and optimum
design of high performance drive systems for (plug-in) HEVs [54, 55].

Through the extensive research practice, it is recognized that when designing
such an electrical drive system, it is important to pursue the optimal system per-
formance rather than the optimal components like motors, because assembling
individually optimized components into a system would not necessarily guarantee
an optimal system performance. The optimal system performance can only be
achieved through a holistic approach of integrated simultaneous optimization of all
components at the system level [39].

Figure 1.11 shows a brief design framework and the coupled relations of an
electrical drive system. As shown, design optimization of such a system is a
multi-disciplinary, multi-level, multi-objective, and high dimensional problem. It
mainly includes electromagnetic, material, mechanical, thermal, and power elec-
tronic designs, which are strongly coupled [38, 39, 56, 57].

12 1 Introduction



Fig. 1.10 Flowchart of traditional motor design procedure
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Although the importance of system-level design optimization of electrical drive
systems is well known, not much work has been reported in the literature [38, 39].
The traditional design and optimization methods are mostly on the component level
of different kinds of motors [13, 16, 17, 34, 36–38].

On the other hand, regarding the controller design, though various control
algorithms have been developed, such as the field oriented control (FOC), direct
torque control (DTC), and model predictive control (MPC) [58–64], the design
optimization remains on the component (controller) level, and is not combined with
the motor design optimization [65].

This component-level-based method may be reasonable for some conventional
motors and drive systems since there are a great amount of design experience and
experimental test results. When designing a novel drive system, however, the
designer does not have much design experience, and a holistic system-level
approach becomes essential [39].

In this book, several types of system-level design optimization methods devel-
oped in our previous work will be presented and discussed for electrical drive
systems.

1.3.3 Design Optimization for High Quality Mass
Production

The design optimization method mentioned above are all deterministic design
optimization approaches which do not take into account the unavoidable variations
(noise factors) in the engineering manufacturing, including mainly the material
diversity, manufacturing error and assembly inaccuracy, and system parameter
variations in practical operation environment [66–68]. The motor and drive system

Fig. 1.11 Multi-disciplinary and multi-level design framework of electrical drive systems
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performance depends highly on the manufacturing quality, which is in turn deter-
mined by the machinery technology or the manufacturing method and conditions.
The variations or noise factors in the manufacturing process will result in big
variation in motor and drive system performance. Limited by the manufacturing
technology, an aggressively optimized deterministic design may be very difficult to
make, and result in high rejection rates in mass production. Some details for the
variations in manufacturing and assembly processes are discussed as follows.

A. Manufacturing process and tolerances
The manufacturing process and tolerances mainly include the material character-
istics and dimensions of all parts of a drive system, such as the rotor, stator,
winding, PMs and insulating material.

The manufacturing quality of PMs, for example, is crucial to the performance of
PM motors. There are at least two kinds of variations in the manufacturing of PMs
[66]. The first one is the dimension, such as the height and width, and the second
one is the magnetization error of magnitude and direction. In [66], a practical
example about the measurement data of PM width for a batch of 2,000 PMs was
presented. These PMs were from three manufacturing groups with the same lower
limit (14.60 mm) and upper limit (14.70 mm). The measurement revealed that the
average of one group (1,000 PMs) is obviously smaller than the lower limit, and
there is about 0.05 mm deviation from the average.

Figure 1.12 shows the manufacturing process of a stator core (one stack)
designed for a claw pole motor made of the SMC material. Compared with the
traditional silicon steel sheets, the motor cores made of SMC material are isotropic

Fig. 1.12 Low cost mold, press, and molded core before and after curing
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both mechanically and magnetically, so that they are natural choices for the design
of motors requiring 3D magnetic flux paths. Unlike the laminated cores made of the
traditional silicon steel sheets, SMC cores can be manufactured by compacting
SMC powders in a mold, and thus suitable for constructing motors of complex
structures.

Figure 1.12 also shows a photo of the mold, press in the lab, and molded core of
a three phase PM claw pole motor before (white) and after (black) thermal curing.
On the other hand, because of specific nature of iron powders, the pressing must be
done in multiple steps in order to obtain uniform powder distribution.

The manufacturing cost of SMC cores is directly related to the size of press used
for the molding, while the productivity is inversely proportional to the press size.
For a given SMC core, it is desirable to choose a smaller press in order to keep the
manufacturing cost low. In the case where the volume of the motor is not a big
problem, in order to reduce further the manufacturing cost, it is possible to use a
low density SMC core. For example, for a 100 ton press, it can produce 500 pieces
per hour with a cost of $ 100, resulting in the manufacturing cost of $ 0.2 per piece.
For a 500 ton press, on the other hand, it can produce only 100 pieces per hour with
a cost of $ 500, and thus the manufacturing cost is $ 5 per piece [34, 69–71].
Therefore, the manufacturing process is a major parameter in design optimization of
SMC motors.

B. Assembly process variations
The assembly process variations mainly include the lamination of silicon steel
sheets and misplacements of stator, rotor and PMs. Severe misplacements can result
in big variations of the motor quality and cause large vibration and excessive
resistive torque and mechanical power loss. Table 1.1 lists several manufacturing
tolerances (such as magnet strength and skew error) and assembly variations (such
as magnet disposition and rotor/stator eccentricity) obtained from industrial motor
manufacturing experiences [66].

In the assembling process, due to the structural asymmetry (such as keyway and
tag hole), non-uniform material quality (such as the thickness or sand hole) and
manufacturing error (such as drill hole and others), and big mechanical disequi-
librium in the rotating parts (such as rotors and fans) may appear, and the rotating
parts will displace from their gravity centre, resulting in unbalanced centrifugal
force and causing the motor to vibrate. Vibration has large negative effects to the
motor, such as extra energy consumption, efficiency reduction, direct damage to the

Table 1.1 Variations for some factors of a PM motor [66]

Factor Description Ideal Variation

1 Magnet strength Nominal Nominal ± 5 %

2 Skew error Nominal Nominal ± 0.6666°

3 Magnetization offset 0° 1.0°

4 Magnet disposition 0° 1.0°

5 Rotor to stator eccentricity 0 mm 0.35 mm

16 1 Introduction



shaft, acceleration of abrasion, which shortens significantly the lifetime of the motor
and drive system.

The assembly of stator cores can also be a big challenge for SMC motors. For
manufacturing convenience, the stator core of an SMC motor is often molded in
separate pieces. Any extra air gap between two pieces of the stator core caused by
poor assembly process will result in large reduction of air gap flux density and in
turn the motor efficiency. Good assembly structures should be investigated in the
design stage of SMC motors.

Figure 1.13 illustrates a multi-disciplinary design framework of electrical motors
and drive systems that we propose to take into account the manufacturing quality in
mass production in the design stage. The first step is to define the acceptable
maximal defect-ratio and system performance. Under these specifications, the
motor types, topologies, materials, inverters, and controllers will be designed and
optimized under the multi-disciplinary design and machinery technology design.

Due to these manufacturing tolerances, the design optimization of electrical
drive systems for mass production is really a challenge in both research and
industrial communities as it includes not only the theoretical multi-disciplinary
design and analysis but also the practical engineering manufacturing of electrical
machines and drive systems. Meanwhile, many new control algorithms, e.g. MPC,
have been proposed for motor control, and in the design optimization stage, various
many algorithm parameters should be optimized for the best drive system dynamic
performance. From the industrial application perspective, it is a natural requirement
that the obtained optimal control algorithm parameters are robust against the
variations of motor parameters. This is a crucial issue for the batch production of
novel drive systems [69–71].

To find effective ways to deal with this problem, several robust design opti-
mization methods have been investigated, such as Taguchi method [72–77] and
Six-Sigma robust optimization method [69–71, 78]. These two methods have been
found useful to optimize motor performances (including torque ripples, cost, and
output power) and quality against the manufacturing tolerances.

Fig. 1.13 Proposed design framework of drive systems for mass production
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In our previous work, several kinds of manufacturing tolerances and assembly
variations have been investigated for reducing the cogging torque and harmonics
for PM motors, and several dimensional variations have been investigated for
optimization of the material cost, output power, and overshoot for an SMC motor
and drive system based on a technique known as Design for Six-Sigma (DFSS)
[69–71, 78, 79]. DFSS is a robust design technique based on the Six-Sigma
methodology. The term Six Sigma is originated from the terminology associated
with high quality manufacturing, based on statistical modeling of manufacturing
processes. The maturity of a manufacturing process can be described by a sigma
rating indicating its yield or the percentage of defect-free products it creates. For the
short term quality control, Six-Sigma quality is equivalent to a probability of
99.9999998 %. However, there is about 1.5σ shift from the mean in the long term
quality control, so that one six sigma process is actually one in which 99.99966 %
of all opportunities to produce some feature of a part are statistically expected to be
free of defects (3.4 defects per million opportunities: DPMO) [78, 79]. By taking
the DFSS, it can be seen that the motor or system reliabilities can be greatly
improved by the proposed methods.

1.4 Major Objectives of the Book

This book presents efficient multi-disciplinary design approaches and
application-oriented system-level optimization methods for advanced high quality
electrical drive systems. The multi-disciplinary analysis includes materials, elec-
tromagnetics, thermotics, mechanics, power electronics, applied mathematics,
machinery technology, and quality control and management. This book will benefit
the researchers and engineers in the field of design and manufacturing of electric
motors and drive systems. The outcomes will enable effective development and
high quality mass production of novel high performance drive systems for chal-
lenging applications, such as green energy systems and electric vehicles. The main
objectives are as follows.

(1) To present a systematic overview of the application-oriented system-level
design optimization methods for high quality mass production of advanced
electrical drive systems. This is a promising as well as challenging research
and application topic in the field of electrical engineering.

(2) To review the popular design optimization methods for electrical machines
and drive systems, including design analysis models and methods, such as
FEM and magnetic circuit model, and optimization models and algorithms,
such as GA and RSM.

(3) To develop novel efficient design optimization methods for electrical machi-
nes, including sequential optimization methods for single- and multi-objective
problems, multi-level optimization methods for high-dimensional problems
and multi-disciplinary design optimization methods for PM machines.
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(4) To present system-level design optimization methods for electrical drive
systems, which will optimize both the steady-state and dynamic performances
of the drive systems, including average output power and material cost of the
motor, and overshoot and settling time of the controller.

(5) To develop system-level robust design optimization methods for improving
the manufacturing quality of electrical machines and drive systems in mass
production.

(6) To present application-oriented design optimization methods for electrical
machines and drive systems, including two different applications, where one is
a home application, and the other is a HEV application.

1.5 Organization of the Book

Chapter 2 presents an overview of the design fundamentals for electrical machines
and drive systems. Design analysis models in terms of different disciplines are
investigated, such as the analytical models or methods for electromagnetic and
thermal analyses, magnetic circuit model for electromagnetic analysis, FEM for
coupled or uncoupled electromagnetic, thermal and mechanical analyses, and FOC
and DTC algorithms for the control systems. All these design analysis models can
be employed for the performance evaluation of electrical machines and drive
systems.

Chapter 3 reviews popular optimization algorithms and approximate models
used in optimization of electrical machines as well as electromagnetic devices. The
optimization algorithms include the classical gradient-based algorithms and modern
intelligent algorithms, such as GA, DEA, and MOGA. Approximate models
mainly include RSM, RBF and Kriging models [4–6].

Chapter 4 presents the design optimization methods for electrical machines in
terms of different optimization situations, including low- and high-dimension, and
single and multi-objectives and disciplines. Five new types of design optimization
methods are presented to improve the optimization efficiency of electrical machines,
particularly those complex structure PM machines, in terms of different optimiza-
tion situations.

Chapter 5 aims to present the system-level design optimization methods for
electrical drive systems, including single- and multi-level optimization methods. Not
only the steady-state but also the dynamic motor performance indicators, such as
output power, efficiency, and speed overshoot, are investigated at the same time [1].

It should be noted that the design optimization methods in Chaps. 4 and 5 are
under the framework of deterministic approach, which means that all material and
structural parameters in the manufacturing process do not have any variations from
their nominal values. However, as aforementioned, there are many unavoidable
uncertainties or variations in the industrial manufacturing process of electrical
machines and drive systems. These variations will affect the reliability and quality
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of electrical machines and drive systems in mass production, which cannot be
investigated by the deterministic approach. Chapter 6 presents a robust design
optimization approach based on the technique of DFSS for high quality mass
production of high-performance electrical machines and drive systems.

On the other hand, from the perspective of engineering applications, these design
optimization methods of electrical machines and drive systems are proposed with
several general requirements and constraints, such as the rated torque and given
volume and mass, for general applications. Chapter 7 aims to develop
application-oriented design optimization methods for electrical machines under
deterministic and robust design approaches, respectively. Two kinds of applications
are investigated. The first one is about the design optimization of PM-SMC motor
for refrigerator and air-conditioner compressors, which can be regarded as home
appliance applications. The second one is about the design optimization of
flux-switching PM machines for plug-in HEVs drives.

Chapter 8 concludes the whole book and proposes future research and
development.
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Chapter 2
Design Fundamentals of Electrical
Machines and Drive Systems

Abstract This chapter presents a brief summary of the design fundamentals
including the analysis models and methods for electrical machines and drive sys-
tems, based on our design experiences, particularly for permanent magnet electrical
machine with soft magnetic composite cores. Because of the multi-disciplinary
nature, these design models and methods will be investigated at the disciplinary
level, including electromagnetic, thermal, mechanical, power electronics, and
control algorithm designs. Several design examples will be presented to illustrate
the corresponding design models and methods based on our research findings, such
as the finite element model for design analysis of motors, and the model predictive
control algorithm and its improvement form for the drive systems. These models
and algorithms will be employed in the design optimization of electrical machines
and drive systems in the following chapters.

Keywords Electrical drive systems � Electromagnetic design � Thermal design �
Mechanical design � Power electronics design � Control algorithms � Finite element
model � Model predictive control

2.1 Introduction

2.1.1 Framework of Multi-disciplinary Design

Figure 2.1 illustrates a general framework of multi-disciplinary design for electrical
machines and drive systems. As shown, three main components, i.e., motor, power
electronics and controller, have to be investigated when designing such electrical
drive systems [1, 2]. The main design procedure includes the following steps.

Firstly, define the specifications of the electrical machine and drive system
required by a given application, which include the steady state specifications, such
as the rated power, speed range, voltage, current, efficiency, power factor (in case of
AC machines), volume and cost, and dynamic performances, such as the maximum
overshoot, settling time, and stability.
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Secondly, select a type of the motor, power electronic converter, and control
algorithm from possible options. The motor options include permanent magnet
(PM) motors, induction machines, synchronous machines, DC machines, and swit-
ched reluctance machines. For servo drives, stepping motors and other types of servo
motors can be considered. In this step, different motor topologies have to be inves-
tigated as well. The power electronic converter options mainly include the different
topologies of AC/DC, DC/DC, and DC/AC converters. The controller design mainly
investigates the control strategies and algorithms, such as field oriented control
(FOC), direct torque control (DTC), and model predictive control (MPC).

Thirdly, based on the selected motor type, converter circuit, and control scheme,
various disciplinary-level analyses should be conducted to evaluate the performance
of the drive system. For example, the motor design analysis consists of mainly the
electromagnetic, thermal and mechanical analyses (the shaded boxes in the figure).
Coupled-field analyses may be required in the design process, such as
electromagnetic-thermal and electromagnetic-mechanical stress analyses.

In summary, the design of electrical machines and drive systems mainly consists
of the analyses of five coupled disciplines or domains: electromagnetic, thermal,
mechanical, power electronics, and controller designs. The following sections will
present the popular design analysis models and methods for each discipline.

2.1.2 Power Losses and Efficiency

Power losses and efficiency are two main issues in the design analysis of electrical
machines and drive systems. The power losses are mainly composed of the copper
loss, core loss, mechanical loss, and stray loss.

Fig. 2.1 Multi-disciplinary design framework of electrical machines and drive systems
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(1) The copper loss or Ohmic loss: PCu ¼ I2R is the power dissipated in stator and
rotor windings due to the resistance of copper wire, where I is the winding
current and R the winding resistance. Normally the DC resistance is used in
the calculation. However, it should be noted that the winding resistance
depends on the operating conditions, i.e., temperature and frequency (due to
the skin effects). In case of the brushes and slip rings/commutator, the effect of
contact resistance is often accounted for by assuming a voltage drop of 2 V.

(2) The core loss is the power dissipated in a magnetic core due to the variation of
magnetic field. This occurs in the stator and/or rotor iron core of an electrical
machine subject to AC excitations. Practically, it can be measured by
open-circuit or no-load tests. When the magnetic material is under an alter-
nating sinusoidal flux excitation, the alternating core loss can be calculated by

Pa ¼ ChafB
h þCeaðfBÞ2 þCaaðfBÞ1:5 ð2:1Þ

where f is the excitation frequency, B the magnitude of sinusoidal magnetic
flux density, and Cha, Cea, Caa, and h are the alternating core loss coefficients.
In case of rotating electrical machines, the rotational core losses have to be
considered. Figure 2.2 plots the average core losses with alternating flux
density from 2 to 2,000 Hz and circular rotating flux density vectors from 5 to
1,000 Hz of a cubic soft magnetic composite (SMC) SOMALYTM 500 sample
[3]. These are the standard core loss data used to identify the core loss model
parameters. The circularly rotational core loss can be calculated by

Pr ¼ Phr þCerðfBÞ2 þCarðfBÞ1:5 ð2:2Þ

where

Phr

f
¼ a1

1=s

ða2 þ 1=sÞ2 þ a23
� 1=ð2� sÞ
½a2 þ 1=ð2� sÞ�2 þ a23

" #

and

s ¼ 1� B
Bs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½1=ða22 þ a23Þ�

q

Bs is the saturation flux density, and Cer, Car, a1, a2 and a3 are the rotational
core loss coefficients.
When the material is under a two dimensional elliptically rotating B excitation,
the core loss can be computed by

Per ¼ RBPr þð1� RBÞ2Pa ð2:3Þ
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where RB ¼ Bmin=Bmaj is the axis ratio, Bmin and Bmaj are the magnitudes of
the minor and major axes of the ellipse, respectively, and Pr and Pa the
corresponding rotational and alternating core losses when B = Bmaj. More
details about the rotational core losses can be found in [3–9].

(3) The mechanical losses are the power losses caused by the friction (brushes,
slip rings/commutator, shaft and bearing), damping, windage, and cooling fan.
It can be approximately determined by no-load test. In design, empirical data
are used.

(4) The stray loss is the power loss caused by stray factors that are hard to
determine separately, such as the non-uniform current distribution in con-
ductors and additional core loss due to distorted magnetic flux distribution for
various reasons. Because it is usually difficult to determine accurately the stray
loss, estimations based on experimental tests and empirical judgment are

Fig. 2.2 Average core losses
under a alternating and
b circular rotating magnetic
fluxes [3]
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acceptable. For most types of machines, this can be assumed to be 1 % of the
output power.

In most electrical machines, the stator and/or rotor cores subject to varying
magnetic fluxes are made of laminated silicon steels, which have low core loss, and
hence the major power loss is the copper loss. Depending on the type of machine,
the copper loss normally accounts for 80–90 % of the total loss.

Based on the above analysis, the efficiency of a machine can be calculated by

g ¼ Pout

Pin
¼ Pin � ðPCu þPCore þPMec þPStrayÞ

Pin
ð2:4Þ

Typical values of full load efficiency for rotating machines are:

• 50 % or less for fractional horse power motors (a few W to a few hundreds of
W),

• 75–85 % for electrical machines of 1 kW to a few tens of kW,
• 85–95 % for electrical machines of 100 kW to 1 MW, and
• 95–98 % or above for electrical machines of 1 MW to a few hundreds of MW

(e.g. 98 % for 100 MVA turbo generator).

2.2 Electromagnetic Design

Since electrical machines are electromagnetic devices for transforming electrical
power at one voltage to another (transformers) or converting electric power into
mechanical power or vice versa (motors or generators) by the principle of elec-
tromagnetic induction, electromagnetic design is a fundamental design stage of
electrical machines and drive systems, and is usually based on the following three
kinds of analysis models: the analytical model, magnetic circuit model, and finite
element model (FEM) [10–20].

2.2.1 Analytical Model

Analytical model is generally used to calculate the performance indicators of
electrical machines, such as the output power, torque, and cogging torque. For
example, the power and sizing equations are the powerful ways to guide the design
of PM motors [10, 11]. By utilizing the current density in the sizing equation, some
basic internal relationships can be found among the main dimensions to maximize
the torque density.

Assuming the flux linkage of stator winding in a PM motor is sinusoidal, and
ignoring the winding resistance, the input power Pin can be expressed by
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Pin ¼ m
T

ZT
0

eðtÞiðtÞdt ¼ m
T

ZT
0

Emsin
2p
T

t

� �
Imsin

2p
T

t

� �
dt ¼ m

2
EmIm ð2:5Þ

where m is the number of phases, Em the peak value of back electromotive force
(EMF), Im the peak value of phase current, and T the electrical time period. The
output torque can be calculated by

Tout ¼ Pout

xr
¼ g

m
2
pkpKsf AsJm ð2:6Þ

where η is the efficiency, p the number of pole pairs, λp the peak value of PM flux
linkage, ωr the mechanical rotary speed, Ksf the slot fill factor, As the slot area, and
Jm the peak of current density. For different kinds of PM motors, λp and As are
related differently to their dimensions [21–23].

2.2.2 Magnetic Circuit Model

The magnetic circuit model acts as a uniform principle in descriptive magneto-
statics, and as an approximate computational aid in electrical machine design. The
model uses the conception of magnetic reluctance to establish an equivalent circuit
for approximate analysis of static magnetic field in electrical machines [24]. To
illustrate this model, a PM transverse flux machine (TFM) designed by SMC
material is investigated.

The SMC material is a relatively new soft magnetic material that has many
advantages over the conventional silicon steel sheets. The main advantages of SMC
material are the magnetic and mechanical isotropy and low cost, high productivity,
and high quality manufacturing capability of complex electromagnetic components
by the matured powder metallurgical molding technology, which will enable low
cost high productivity commercial manufacturing of SMC motors for a great variety
of electrical appliances [24–32].

In our previous work, a 3D flux PM TFM with SMC stator core was developed.
Figure 2.3 shows a photo of the PM-SMC TFM prototype. This machine was
initially designed to deliver an output power of 640 W at 1800 rev/min. It has 20
poles in the external PM rotor, i.e., 120 PMs in the rotor and 60 SMC teeth in the
stator. The stator core is made of SMC SOMALOYTM 500. The operating fre-
quency of this motor is 300 Hz at 1800 rev/min. Table 2.1 tabulates the main design
dimensions for this TFM [24, 25].

In order to briefly predict the performance of this TFM, a sketchy magnetic circuit
model as shown in Fig. 2.4 can be used. Figure 2.4 illustrates the main flux circuit
model and flux path of this TFM, where the resistances represent the magnetic
reluctances and the current source (PhiPM) stands for the magneto-motive forces
(mmfs) of PMs, and thus Rry represents the magnetic reluctance of rotor, Rm the
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magnetic reluctance of PM, Rg the magnetic reluctance of the air gap, Rst1 the
magnetic reluctance of the stator teeth, Rst2 and Rsy stand for the magnetic reluctance
of the stator yoke. By analyzing this model, the main magnetic flux can be calculated.

Meanwhile, the magnetic flux leakage is a serious problem in this TFM, thus it
should be considered in the magnetic circuit model. Several flux leakage models
can be constructed for this TFM. Figure 2.5 illustrates the main flux leakage model.
In this model, the adjacent PM in the one side of the machine is modeled, where
Rry1 represents the magnetic reluctance of rotor, Rg1 and Rg2 represent the magnetic
reluctance of the air gap, Rs1 stands for the magnetic reluctance of the stator.

With the computed flux linkage, the resultant magnetic flux density in the air gap
and the flux per turn of coil can be estimated. After calculation, the obtained flux
per turn of this PM-SMC TFM is 0.32 mWb, which is higher than the calculated
result (0.28 mWb) by using the FEM [24].

This model can be also used to evaluate the performance of the motor. Based on
the calculated magnetic flux of the motor, the flux linkage per phase equals the

(a)    
(b)

Fig. 2.3 Photo of the PM-SMC TFM prototype, a PM rotor, and b 3 stack SMC stator

Table 2.1 Main design
dimensions of PM-SMC TFM

Par. Description Unit Value

– Number of phases – 3

– Number of poles – 20

– Number of stator teeth – 60

– Number of magnets – 120

– Stator outer radius mm 40

– Effective stator axial length mm 93

x1 PM circumferential angle degree 12

x2 PM width mm 9

x3 SMC tooth circumferential width mm 9

x4 SMC tooth axial width mm 8

x5 SMC tooth radial height mm 10.5

x6 Number of turns – 125

x7 Diameter of copper wire mm 1.25

x8 Air gap length mm 1.0
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number of coil turns multiplied by the magnetic flux of each coil turn, and it can be
computed as

kPM ¼ klNcoilpUgap ð2:7Þ

where λPM is the PM flux linkage per phase, kl the leakage coefficient, Ncoil the
number of turns of the phase winding, p the number of pole pairs, and Φgap is flux
per coil turn. The back EMF can be expressed as

(b)

(a)

Fig. 2.4 Main flux circuit and flux path of the PM-SMC TFM, a magnetic circuit model, b flux
path in 2D plane

(a)

(b)

Fig. 2.5 Flux leakage circuit and path of the PM-SMC TFM, a magnetic circuit model, b leakage
path in 2D plane
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Em ¼ xekPM ¼ pxmkPM ð2:8Þ

where ωe = pωm is the electrical angular frequency, and ωm the mechanical angular
speed. The electromagnetic torque Tem can be expressed as

Tem ¼ Pem

xm
¼

ffiffiffi
2

p

2
mpkPMIm ð2:9Þ

After the calculation, the no-load back EMF is 53.26 V at the rated speed of
1800 rev/min. According to (2.9), the electromagnetic torque is 4.66 Nm at the
rated current of 5.5 A (RMS value). Compared to the electromagnetic torque
obtained from FEM, i.e., 4.08 Nm, the relative error is about 0.58/4.08 = 14.21 %.

2.2.3 Finite Element Model

FEM is a widely used analysis model for field analysis in electrical machines as
well as other electromagnetic devices. The theory of FEM can be found in many
books and research papers. The PM-SMC TFM investigated above will be
employed as an example to show the application of FEM for designing electrical
machines.

When analyzing the magnetic field distribution, we used field analysis software
package ANSYS, and taking advantage of the periodical symmetry, we only need
to analyze one pole-pair region of the machine, as shown in Fig. 2.6a. At the two
radial boundary planes, the magnetic scalar potential obeys the periodical boundary
conditions:

umðr;Dh; zÞ ¼ umðr;�Dh; zÞ ð2:10Þ

Fig. 2.6 a One pole pitch of FEM solution region for one phase (stack), and b magnetic field
distribution under no-load
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where Dh ¼ 18� mechanical is the angle of one pole pitch. The origin of the
cylindrical coordinate is located at the center of the stack.

Figure 2.6b illustrates the magnetic field distribution under no-load. Based on
the FEM analysis, the calculated key motor parameters for this machine are listed in
Table 2.2. The measured parameters are also listed in the table to show the effec-
tiveness of the FEM method. As shown, the measured motor back EMF constant is
0.244 Vs, 1 % lower than the calculated value of 0.247 Vs. The calculated phase
resistance and inductance, and maximal cogging torque are 0.310 Ω, 6.68 mH and
0.339 Nm, respectively, which are very close to the measured values (0.305 Ω,
6.53 mH and 0.320 Nm). In summary, the estimated parameters calculated by the
FEM-based method are well aligned with the experimental results. Therefore, FEM
is better than magnetic circuit model, and it is reliable to be used for optimization of
the electromagnetic design of electrical machines.

Moreover, the output performance parameters, such as output power, torque and
efficiency, can be estimated with the calculated electromagnetic parameters men-
tioned above. In the estimation, the control method is assumed to maintain that the
d-axis component of current equals zero. Figure 2.7 shows the per phase equivalent
electric circuit of this motor under the assumed control method.

Based on this per phase equivalent electrical circuit, the main relationships of the
motor can be predicted by

Vin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEa þ IaRaÞ2 þðxeLaIaÞ2

q
ð2:11Þ

Pin ¼ 3VinIa cosu ð2:12Þ

Pout ¼ Pin � Pcore � Pcopper � Pmech ð2:13Þ

Tout ¼ Pout

xr
ð2:14Þ

where Vin is the input voltage, Ea the back EMF, Ia the armature current, ωe the
electric angular frequency, La the inductance, Ra the resistance, φ the angle between
Vin and Ea, Pin the input power, Pout the output power, Pcore the core loss, Pcopper

the copper loss, Pmech the mechanical loss, Tout the output torque, and ωr the
mechanical angular speed.

In motor with SMC cores, unlike the conventional motors made of silicon sheet
steels, the core loss can be a major part among all power losses, and the mechanical

Table 2.2 Key PM-SMC
TFM parameters

Parameter Unit Calculated Measured

Motor back EMF
constant

Vs 0.247 0.244

Phase resistance Ω 0.310 0.305

Phase inductance mH 6.68 6.53

Maximal cogging torque Nm 0.339 0.320
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loss is generally considered as 1–1.5 % of the output power. In general, the core
loss prediction in the TFM should be calculated by using the FEM based on the
multi-frequency core loss characteristic of the material. More comparison results
can be seen in [24, 25].

2.3 Thermal Design

2.3.1 Thermal Limits in Electrical Machines

The rating of an electrical machine gives its working capability under the specified
electrical and environmental conditions. Major factors that determine the ratings are
thermal and mechanical considerations. To obtain an economic utilization of the
materials and safe operation of the motor, it is necessary to predict with reasonable
accuracy the temperature rise of the internal parts, especially in the coils and
magnets.

The temperature rise resulted from the power losses in an electrical machine
plays a key role in rating the power capacity of the machine, i.e., the amount of
power it can convert without being burnt for a specified length of life time. The life
expectancy of a large industrial electrical machine ranges from 10 to 50 years or
more. In an aircraft or electronic equipment, it can be of the order of a few thousand
hours, whereas in a military application, e.g. missile, it can be only a few minutes.

Fig. 2.7 Per phase equivalent
electric circuit and phasor
diagrams of the motor
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The operating temperature of a machine is closely associated with its life
expectancy because deterioration of the insulation is a function of both time and
temperature. Such deterioration is a chemical phenomenon involving slow oxida-
tion and brittle hardening, leading to loss of mechanical durability and dielectric
strength. In many cases the deterioration rate is such that the life of the insulation
can be expressed as

Life Time ¼ AeB=T ð2:15Þ

where A and B are constants and T is the absolute temperature. Roughly, it says that
for each 10 °C temperature rise exceeding the maximum allowable temperature rise,
the life time of insulation is halved.

Insulation materials used in electrical machines are classified by the maximum
allowable temperature rise that can be safely withstood. Table 2.3 lists the classi-
fication of electrical insulation materials by the IEC (International Electrotechnical
Commission).

Generally, there are two kinds of analysis models for thermal analysis in elec-
trical machines, namely the thermal network model and the FEM [14, 15, 20, 25].
The following sections will present examples for the two methods.

2.3.2 Thermal Network Model

Two design examples will be illustrated to show the usage of thermal network
model for the thermal analysis of PM-SMC motors. The first one is a TFM, and the
second is a high speed claw pole motor.

A. Transverse flux machine
In this study, the temperature rise was calculated by using a hybrid thermal network
model with distributed heat sources, as shown in Fig. 2.8.

For high computation accuracy, every part, e.g. the air gap, is divided into two or
more segments. The thermal resistances to heat conduction in the following sections
are calculated: rotor yoke (Rry), magnets (Rm), glue between magnets and rotor yoke

Table 2.3 Classification of electrical insulation materials

Class Maximum temperature rise
(°C)

Materials

O 90 Paper, cotton, silk

A 105 Cellulose, phenolic resins

B 130 Mica, glass, asbestos with organic binder

F 155 Same as above with suitable binder

H 180 Mica, glass, asbestos with silicone binder, silicone
resin, Teflon
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(Rmg), air gap (Rag), stator yoke (RFe1), stator side discs (RFe2), stator teeth (RFe3),
varnished copper wire (Rcu), and insulations (RI1, RI2, RI3) between the winding and
the stator yoke, the stator wall disc, and the air gap, respectively. In addition, the
thermal resistances of the stator shaft (Rss), the aluminum end plates (Ral), and the
stationary air (Rsa) between the side stator discs and the end plates are calculated
separately [25].

The equivalent thermal resistances to the heat convection of the following
sections are calculated: that between the stator tooth surface and the inner air in the
air gap (RFeA), that between the winding and the inner air (RWA), that between the
magnet and the inner air (RmA), that between the rotor yoke and the inner air
(RryA1), and that between the rotor yoke and the outer air (RryA2).

The heat sources include the stator winding copper losses (Pcu), the stator and
rotor core losses (PFes, PFer), and the mechanical losses due to windage and friction
(Pmec). The improved method for core loss calculation can obtain the loss distri-
bution, which is a great advantage for thermal calculation by the hybrid thermal
model.

The temperature rises in the middle of several parts are calculated as 64.9 °C in
the stator winding, 78.6 °C in the stator core, 59.3 °C in the air gap, 36.1 °C in the
magnets, and 25.3 °C in the rotor yoke outer surface. The experimentally measured
results are 66 °C in the stator winding and 27 °C in the rotor yoke, and it can be
seen that the maximum relative error between the calculated and measured results is
only 3 %. Thus, it is reliable to use the thermal network method for design of this
TFM.

Fig. 2.8 Thermal network model of the TFM prototype
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B. High speed claw pole motor
In our previous work, a high speed claw pole motor as shown in Fig. 2.9 with an
SMC stator core was developed [3, 8, 9]. The major motor parameters are tabulated
in Table 2.4, and the structure (one pole pitch of one stack) is shown in Fig. 2.10.

Figure 2.11 illustrates the topology of one of the three stacks. The stator consists
of the claw poles, the yoke, and the phase winding. The rotor is simply made of a
ring PM magnetized in four poles and mounted on the rotor core. The three stator
stacks are shifted for 120o (electrical) apart from each other.

Fig. 2.9 Prototype of a high speed claw pole motor

Table 2.4 Main dimensions
and design parameters

Parameter Unit Value

Number of phases – 3

Rated power W 2000

Rated frequency Hz 666.7

Rated speed rev/min 20,000

Number of poles – 4

Stator outer diameter mm 78

Rotor outer diameter mm 29

Rotor inner diameter mm 18

Airgap length mm 1

Axial length mm 48

Stator core material – SOMALOYTM 500

PM material – NdFeB
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In general, the geometrical complexity of an electrical machine requires a large
thermal network if a high resolution of temperature distribution is required. Instead
of using a whole model, the geometrical symmetries of the machine can be used to
reduce the size of the model. The distributed thermal properties have been lumped
together to form a small thermal network, representing the whole machine. For the
calculation of temperature distribution in the SMC motor, a thermal resistance
network, as shown in Fig. 2.12, is used. It has ten nodes (the outer air, frame, yoke,
and so on). Each node represents a specific part or region of the machine, and the
thermal resistances (Rn, n = 1,…,16) between the nodes include complex processes,

Fig. 2.10 Magnetically
relevant parts of one stack of
three-phase claw pole motor

Fig. 2.11 Structure of a
high-speed claw pole motor
(one pole pitch of one stack)
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such as the 2D and 3D heat flow, convection, internal heat generation, and varia-
tions in material properties. To account for the three dimensional heat flows at a
node, the thermal structure shown in Fig. 2.13 can be employed.

As shown in Fig. 2.13, the thermal resistances of an element are built in three
directions, and the heat source if any can be placed at the center point. In this
model, the thermal conduction equation can be expressed as

Tb � Ta
Rab

þ Tc � Ta
Rac

þ Td � Ta
Rad

þ Te � Ta
Rae

þ Tf � Ta
Raf

þ Tg � Ta
Rag

þ qa

¼ Ca
@ðT 0

a � TaÞ
@t

ð2:16Þ

where Ta, Tb, Tc, Td, Te, Tf, and Tg are the temperatures at nodes a, b, c, d, e, f, and
g, Rab, Rac, Rad, Rae, Raf, and Rag the thermal resistance between nodes a-b, a-c, a-d,
a-e, a-f, and a-g, respectively, qa is the heat source, Ca the heat specific, and T

0
a the

Fig. 2.12 Thermal network
of one stack of a high-speed
claw pole motor
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temperature of node a at the next time instant. The thermal resistance in Fig. 2.13
can be calculated by

Rab ¼ Rac ¼ DX
2kxDYDZ

ð2:17Þ

Rad ¼ Rae ¼ DY
2kyDXDZ

ð2:18Þ

Raf ¼ Rae ¼ DZ
2kzDXDY

ð2:19Þ

where λx, λy and λz are the thermal conductivities in the x, y and z directions,
respectively [8].

The calculation results at no load are 324.6 K in the frame, 326.3 K in the yoke,
330.8 K in the winding, 337.7 K in the claw poles, 334.4 K in the air gap, 331 K in
the magnets, and 324.7 K in the bearing.

2.3.3 Finite Element Model

In the thermal network, the core loss at each node cannot be obtained easily from
the magnetic field calculation. In most cases, the average value is used. Since the
core loss distribution is quite different in different positions of the stator core, 3D
FEM is used to analyze the temperature distribution in this section. Two design
examples investigated in the previous section will be illustrated to show the usage
of FEM for the thermal analysis of PM-SMC motors.

Fig. 2.13 Nodal thermal
structure for 3D heat flow
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Figure 2.14 illustrates the temperature distribution of the PM-SMC TFM based
on FEM. As shown, the average temperature rises in the winding is 62.5 °C, which
is close to the measured value 65 °C.

Figure 2.15 depicts the distributions of core loss and temperature at full load in
the SMC core of the high speed claw pole motor. The temperature is measured by
an infrared temperature probe. At 20,000 rev/min and no load, the frame temper-
ature is 331.4 K and the stator yoke temperature is 333.5 K, respectively. The

Fig. 2.14 Temperature distribution in the PM-SMC TFM obtained by 3D FEM

Fig. 2.15 a Distributions of core loss, and b temperature in SMC core of the high speed claw pole
motor
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measured temperatures are slightly higher than the FEM results, because the actual
loss is greater than the calculation. The FEM method is more accurate than the
thermal network method because there are only ten nodes in the network. The
advantage of the thermal network is the calculation speed, which is much faster than
the FEM method [8, 9].

2.4 Mechanical Design

Mechanical design is another important issue in the design analysis of electrical
machines, especially for high speed motors. Generally, the following three aspects
should be investigated for the mechanical design analysis:

(1) Mechanical structures and materials,
(2) Field of stress and material strength (including elastic and plastic deforma-

tions), and
(3) Modal analysis for vibration and noise.

The first and the second aspects are often noncritical and can be readily satisfied
through empirical design, whereas the third one requires special attention for most
situations, especially those operated at high frequencies. The modal analysis is
generally used to calculate the resonance frequency of the motor in operation.
Enough distance between this frequency and the electromagnetic frequency should
be designed for motors to avoid resonance. The modal analysis is generally con-
ducted by using the FEM. The two design examples used in the previous section
will be employed as follows.

The PM-SMC TFM is operated at 300 Hz, which is relatively high compared
with the conventional motors operated at the power frequency of either 50 or 60 Hz.
From experience, we only need to do the first-order modal analysis and compare the
frequency with the electromagnetic frequency [20]. Figure 2.16 illustrates the
first-order modal analysis for this motor of the electromagnetic optimized design. It
can be seen that the resonance frequency of the optimal motor is about 4,435 Hz,
which is much higher than the electromagnetic frequency of 300 Hz.

Regarding the high speed claw pole motor, because it is operated at high speed,
it is essential to carry out a modal analysis to find and adjust the resonant points, so
that in practical operation, these frequencies can be avoided. Figure 2.17 shows the
vibration patterns and the corresponding resonant frequencies of the rotor structure.
These frequencies are well above the operating frequency and therefore have almost
no influence to the practical operation. Through the analysis and adjustment, it was
found that the bearing stiffness, the shaft length, the shaft diameter and the position
of bearing have significant influence on the rotor natural frequency [3].
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Fig. 2.16 Illustration of first order modal analysis for PM-SMC TFM

Fig. 2.17 Vibration patterns at a 4,102 Hz (Y axis), b 4,102 Hz (X axis), c 9,562 Hz (Z axis), and
d 10,321 Hz (Y axis)
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2.5 Power Electronics Design

The design of power electronics for electrical machines and drive systems is also an
important and complex stage. Among many aspects in power electronics, the
converter/inverter and switching scheme are two main concerns in the design of
electrical machines and drive systems.

The converter/inverter is an important component to drive an electrical machine.
An inverter, for example, is an electronic apparatus that can convert a DC voltage to
an AC voltage of specified waveform, frequency, magnitude, and phase angle.
Among many different topologies, the three phase bridge power circuit as shown in
Fig. 2.18 has become favorite and standard for use in the control systems of
electrical machines. Many different topologies can be obtained from this structure
for different applications. For example, two extra switches can be added to establish
two bridges for the fault tolerant control scheme [33, 34].

For controlling the waveform, frequency, magnitude, and phase angle of the AC
voltage, many switching schemes can be used, such as square wave and sine wave
pulse width modulations (PWMs) and space vector modulation (SVM), as well as
hard and soft switching.

2.6 Control Algorithms Design

Control algorithms play an important role in the determination of dynamic and
state-state performances of electrical drive systems. Various control algorithms
have been developed and employed successfully in commercial drive systems, such
as the six-step control, FOC, DTC and MPC [35–39].

Fig. 2.18 A three-phase
inverter
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While FOC is commonly used in various high performance electrical drive
system, the merits of DTC are simple in structure (thus low cost), fast dynamic
response, and strong robustness against motor parameter variation [40–42]. The
major advantages that affect the commercial application of the conventional DTC
are large torque and flux ripples, variable switching frequency, and excessive
acoustic noises.

To overcome these problems, many methods have been proposed in the litera-
ture. One of them is to apply the technique of SVM to DTC, known as the
SVM-DTC. In the conventional DTC, the switching table only includes a limited
number of voltage vectors with fixed amplitudes and positions. The implementation
of SVM enables the generation of an arbitrary voltage vector with any amplitude
and position [43–48]. In this way, the SVM-DTC can generate the torque and flux
more accurately to eliminate the ripples. Another merit of SVM-DTC is that the
sampling frequency required is constant and lower than that of the conventional
DTC.

Recently, the MPC has attracted increasing attention in industry and academic
communities [49–54]. In the SVM-DTC, the power converter with modulation can
be considered as a gain in controller design. In the predictive control methods, the
discrete nature of power converters is taken into account by considering the con-
verter and the motor from a systemic viewpoint. There are various different versions
of predictive control algorithms, differing in the principle of vector selection,
number of the applied vectors and predictive horizon.

The conventional DTC and MPC are similar in that they both select only one
voltage vector in each sampling period. This can result in overregulation, leading to
large torque and flux ripples and acoustic noise.

As all the design examples used in this book are permanent magnet synchronous
machines (PMSMs), several control algorithms will be presented with details for
PMSMs in the following sections. Numerical and experimental examples will be
presented for some of them.

2.6.1 Six-Step Control

The six-step control method was oriented to drive brushless DC (BLDC) motors
with trapezoidal back EMF waveforms. In many applications, however, the
trapezoidal excitation is also used to drive PMSMs with sinusoidal back EMF
waveforms because the trapezoidal excitation or six-step method based drive is
robust and low cost [35].

In the six-step control scheme, the stationary reference frame is always used to
model the PMSM. The phase variables are used to express the machine equations as
they can account for the real waveforms of the back EMF and phase current.
Assuming that the resistances of three phase stator windings are equal, the three
phase voltage equations of the motor can be written as
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where va, vb, and vc are the phase voltages, ia, ib, and ic the phase currents, ea, eb,

and ec the phase back EMF, Rs is the phase resistance, and
Laa Lba Lca
Lba Lbb Lcb
Lca Lcb Lcc

2
4

3
5 the

inductance matrix, including both the self-and mutual-inductances.
Assuming further that the reluctance is independent of the rotor position, one can

obtain

La ¼ Lb ¼ Lc ¼ Ls
Lab ¼ Lca ¼ Lbc ¼ M

�
ð2:21Þ

As ia + ib + ic = 0 for a symmetric three phase system, the voltage equation can
be simplified as
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Assuming linear system, the machine model in state space form can be expressed
as
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The generated electromagnetic torque is given by

Te ¼ ðeaia þ ebib þ ecicÞ=xm ð2:24Þ

where ωm is the mechanical angular speed of the rotor.
The mechanical equation of the machine is

Te ¼ dxm

dt
JþFxm þ TL ð2:25Þ

where J is the inertia of the machine rotating parts, F the friction coefficient, and TL
the load torque on the rotor shaft.
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Figure 2.19 shows the block diagram of six-step drive scheme. The drive system
is operated with the feedback information of rotor position, which is obtained at
fixed points, typically every 60 electrical degrees for commutation of the phase
currents.

The 120° conduction mode is applied to drive the PMSM. The voltage may be
applied to the motor every 120° (electrical), with a current limit to hold the phase
currents within the motor’s capabilities. Because the phase currents are excited in
synchronism with the back EMF, a constant torque is generated. A simulation
model is built in MATLAB/SIMULINK as shown in Fig. 2.20.

PWM &
Commutation

Inverter

PMSM

iDC

Speed
Controller

Speed
Calculation

+
-

-

+ Current
Controller

Hall
Sensor

θ

DC voltage source or 
rectified from AC power

ω ref

ω r

Fig. 2.19 Block diagram of PMSM six-step drive system

Fig. 2.20 Simulation block diagram of six-step controlled PMSM drive system
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As shown in Fig. 2.20, the rotor position information comes from the Hall effect
sensors, which are integrated in the machine model in MATLAB/SIMULINK. The
resolution of the feedback signals is only 60° (electrical). Since most applications
require a stable speed, a speed feedback loop is employed. The rotor speed infor-
mation can be deduced from the low resolution Hall signals, which is marked as
Speed Calculation in Fig. 2.20. Typically, the average speed in one 60° section is
used as the speed feedback.

However, by using the average speed, there is always a lag when the motor
speed is not constant in accelerating or other dynamic state. To overcome this, the
rotor position can be expressed in Taylor’s series as the following:

hðtÞ ¼ hkðtÞþ hð1Þ1k t � tkð Þþ hð2Þ2k

2!
t � tkð Þ2 þ � � � ð2:26Þ

where tk is the last commutation time, hð1Þ1k ¼ p=3
tk�tk�1

the average speed of last section,

and hð2Þ2k ¼ hð1Þ1k �hð1Þ
1ðk�1Þ

tk�tk�1
the average acceleration of last section.

As shown above, with the higher order calculation, more accurate speed and
position information can be deduced, whereas the computing cost rises. As a
compromise, in some situations, the following equations are used to estimate the
rotor position and speed:

hðtÞ ¼ hkðtÞþ hð1Þ1k t � tkð Þþ hð2Þ2k
2! t � tkð Þ2

xðtÞ ¼ hð1Þ1k ðtÞþ hð2Þ2k t � tkð Þ

(
ð2:27Þ

2.6.2 Field Oriented Control

For a PMSM under sinusoidal excitations, the original voltage equations can be
expressed in the stationary reference frame as the following
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where λa, λb, and λc are the flux linkages of phases a, b, and c, respectively.
Equation (2.28) represents a system of differential equations with time varying

(periodic) coefficients. For sinusoidally distributed windings, a Park-Clark trans-
formation can be used to transform the above equations to a system of differential
equations with constant coefficients, represented in a d-q coordinate frame attached
to the rotor. The reference frames are shown in Fig. 2.21.

The Park-Clark orthogonal transformation can be expressed in the matrix form
as
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where θ is defined as the angle between two reference frames.
The subscripts d, q, and 0 in (2.29) represent some fictitious windings attached to

the rotor. The variables σd, σq, σ0, σa, σb, and σc may represent voltages, currents, or
flux linkages. As a result, the transformed set of electrical equations describing the
behavior of PMSM in the d-q rotating frame become

vd ¼ Rsid þ d
dt kd � kq dh

dt
vq ¼ Rsiq þ d

dt kq þ kd dh
dt

v0 ¼ Rsi0 þ d
dt k0

8<
: ð2:30Þ

where vd, vq, and v0 are the phase voltages, id, iq, and i0 the phase currents, and λd,
λq, and λ0 the phase flux linkages.

For the linear PMSM model, the magnetic saturation saliency is not considered.
The flux linkages of the d- and q-axes can be further expressed as

kd ¼ Ldid þ km
kq ¼ Lqiq

�
ð2:31Þ

where Ld and Lq are the constant d- and q-axes inductances, respectively, and λm is
the flux linkage generated by the rotor PMs.

On the other hand, the voltage equation of the 0 axis in (2.30) is usually ignored
by assuming well-balanced three-phase windings for the controller design.

Fig. 2.21 Stationary and
rotating reference frames
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Therefore, the electrical voltage equations in the rotor reference frame can be
rewritten as

vd ¼ Rsid þ Ld
did
dt � Lqiq dh

dt

vq ¼ Rsiq þ Lq
diq
dt þ Ldid þ kmð Þ dhdt

(
ð2:32Þ

The torque expression after the application of the transformation becomes

Te ¼ 3
2
p kdiq � kqid
� �

¼ 3
2
p kmiq þ Ld � Lq

� �
idiq

� 	 ð2:33Þ

where p is the number of pole pairs.
By this transformation, the flux and torque control of the PMSM are decoupled.

The q-axis current, in the FOC method, is regulated to produce sufficient torque
while the d-axis current is controlled to modify the air-gap flux linkage. For normal
operation, the d-axis current is set to zero to achieve the maximum
torque-to-ampere ratio, and for the flux weakening control, the d-axis current is
modified to weaken the air-gap flux.

The reference speed value is the main input for the drive system, and the
electromagnetic torque and rotor speed are the output. Two feedback loops, current
or torque loop and speed loop, are added to provide desired performance. The
output of the speed controller will be the reference value for the q-axis current while
the d-axis current is set to zero. Both of the d- and q-axes currents are controlled to
generate the torque and achieve the maximum efficiency drive. Figure 2.22 shows
the implementation diagram of the typical FOC scheme, where the traditional PWM
method is applied for the variable speed drive by the vectorial variable voltage and
variable frequency control strategy.
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Fig. 2.22 Block diagram of FOC scheme for PMSM drive
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Similar to the six-step method, a simulation model of the FOC scheme based
PMSM drive is built in MATLAB/SIMULINK. The sinusoidal back EMF machine
model is selected from the SimPowerSystem tool box, in which the current sensors
and rotor position sensor are integrated. The Park and Clark transformations are
synthesized as one ‘abc_to_dq’ block to transfer the variables between the sta-
tionary and rotating reference frames, as shown in Fig. 2.23. Two discrete PI
controllers are used for the speed and current feedback loops.

The traditional triangulation PWM generation technique is applied. A triangular
carrier wave sampling signal is compared directly with a sinusoidal modulating
wave to determine the switching instants, and therefore the resultant pulse widths.

2.6.3 Direct Torque Control

In the DTC strategy, the flux linkage and torque are calculated in the two-phase
stator reference frame, i.e., the α-β frame, which is transformed from the
three-phase a-b-c reference frame by using the Clark transformation. The Clark
transformation can be expressed in the matrix form as

ra
rb


 �
¼

ffiffiffi
2
3

r
1 � 1

2 � 1
2

0
ffiffi
3

p
2 �

ffiffi
3

p
2

" # ra
rb
rc

2
4

3
5 ð2:34Þ

After the measured phase voltages and currents are transformed to the α-β frame,
the flux linkage components of the α- and β-axes can be calculated as

ka ¼
R

va � Rsiað Þdt
kb ¼ R

vb � Rsib
� �

dt

�
ð2:35Þ

Fig. 2.23 Simulation block diagram of typical FOC based PMSM drive system
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The torque observer can then be designed as

Te ¼ 3
2
� pm
2

kaib � kbia
� � ð2:36Þ

Figure 2.24 shows the block diagram of a typical DTC scheme for PMSM drive.
Two hysteresis controllers are applied to the flux linkage and torque control loops.
The calculated flux linkage is also sent to the switching table to identify the current
flux vector position.

From (2.35), the stator flux linkage is

ks ¼
Z

vs � Rsisð Þdt ð2:37Þ

where vs and is are the stator voltage and current spatial vectors, respectively.
In the case of a PMSM, λs always varies even when the zero voltage vectors are

applied because of the rotating rotor magnets, and thus, zero voltage vectors are not
used for DTC driven PMSM. λs should always be in motion with respect to the rotor
flux.

According to (2.36), the electromagnetic torque can be controlled effectively by
controlling the amplitude and rotating speed of λs. For counter-clockwise operation,
if the actual torque is smaller than the reference, the voltage vectors that keep λs
rotating in the same direction are selected. The angle increases as fast as it can, and
the actual torque increases as well. Once the actual torque is greater than the
reference, the voltage vectors that keep λs rotating in the reverse direction are
selected instead of the zero voltage vectors. The angle decreases, so does the torque.
By selecting the voltage vectors in this way, λs will rotate all the time in the
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Fig. 2.24 Block diagram of typical DTC scheme based PMSM drive
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direction determined by the output of the hysteresis controller for the torque. The
switching table for controlling both the amplitude and rotating direction is shown in
Table 2.5, in which the inverter voltage vector and spatial sector definitions are
illustrated in Fig. 2.25.

Figure 2.26 shows the simulation model built based on the typical DTC scheme.
The inverter switching status and DC bus voltage are utilized to calculate the stator
voltage. The stator flux linkage is obtained in the observer. The traditional two-level
hysteresis controllers are applied and the switching table is designed based on
Table 2.5.

2.6.4 Model Predictive Control

The principle of MPC was introduced for industrial control applications in the
1970s after the publication of this strategy in the 1960s. The MPC requires great
computational effort and it has been formerly limited to slowly varying systems,
such as chemical processes. With the availability of inexpensive high computing

Table 2.5 Switching table of typical DTC scheme for PMSM drive

Δeλ ΔeT θ

θ1 θ2 θ3 θ4 θ5 θ6
1 1 V2(110) V3(010) V4(011) V5(001) V6(101) V1(100)

0 V6(101) V1(100) V2(110) V3(010) V4(011) V5(001)

0 1 V3(010) V4(011) V5(001) V6(101) V1(100) V2(110)

0 V5(001) V6(101) V1(100) V2(110) V3(010) V4(011)

Fig. 2.25 Voltage vectors
and spatial sector definition
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power microcomputers and modern digital control techniques, MPC is able to be
applied to electrical drive systems [36, 55, 56].

Different from the employment of hysteresis comparators and the switching table
in conventional DTC, the principle of vector selection in MPC is based on eval-
uating a defined cost function. The selected voltage vector from the conventional
switching table in DTC may not necessarily be the best one for the purposes of
torque and flux ripple reduction. Since there are limited discrete voltage vectors in
the two-level inverter-fed PMSM drives, it is possible to evaluate the effects of each
voltage vector and select the one minimizing the cost function.

The key technology of MPC lies in the definition of the cost function, which is
related to the control objectives. The greatest concerns of PMSM drive applications
are the torque and stator flux, and thus, the cost function is defined in such a way
that both the torque and stator flux at the end of control period are as close as
possible to the reference values. In this book, the cost function is defined as

min: G ¼ jT�
e � Tkþ 1

e j þ k1 jw�
s j � jwkþ 1

s j�� ��
s.t. uks 2 fV0;V1; . . .;V7g ð2:38Þ

where T�
e and w�

s are the reference torque and flux, Tkþ 1
e and wkþ 1

s the predicted
values of torque and flux, respectively, and k1 is the weighting factor. Because the
physical natures of electromagnetic torque and stator flux are different, the
weighting factor k1 is introduced to unify these terms. In this work, k1 is selected to
be Tn=wn, where Tn and wn are the rated values of torque and stator flux, respec-
tively. It should be noted that when a null vector is selected, the specific state (V0 or
V7) will be determined based on the principle of minimal switching commutations,
which is related to the switching states of the previous voltage vector.

The voltage equations in the d-q reference frame are as follows:

Fig. 2.26 Simulation block diagram of typical DTC based PMSM drive system
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ud ¼ Rsid þ Ld
did
dt

� xLqiq ð2:39Þ

uq ¼ Rsiq þ Lq
diq
dt

þxLdid þxwf ð2:40Þ

Given the voltage and current values at sampling instant k, the predicted current,
torque and flux at instant k + 1 can be expressed as follows:

ikþ 1
d ¼ ikd þ

1
Ld

�Rsi
k
d þxkLqi

k
q þ ukd

 �
Ts ð2:41Þ

ikþ 1
q ¼ ikq þ

1
Lq

�xkLdi
k
d � Rsi

k
q þ ukq � xkwf

 �
Ts ð2:42Þ

wkþ 1
s ¼ Ldi

kþ 1
d þwf

� �þ jLqi
kþ 1
q ð2:43Þ

Tkþ 1
e ¼ 3

2
pwkþ 1

s ikþ 1
s ð2:44Þ

where ikþ 1
d and ikþ 1

q are the predicted values of stator current for the sampling

instant k + 1, Ts is the sampling period, Tkþ 1
e and wkþ 1

s are the predicted values of
torque and flux, respectively, which are also the main concerns for the cost function
in the following MPC control scheme [1, 36, 49].

The block diagram of MPC is shown in Fig. 2.27. The inputs of the system are
the reference and estimated values of torque and flux. By evaluating the effects of
each voltage vector when applied to the machine, the voltage vector which mini-
mizes the difference between the reference and predicted values is first selected, and
then it is generated by the inverter.

Fig. 2.27 Block diagram of MPC drive system in MATLAB/SIMULINK

56 2 Design Fundamentals of Electrical Machines and Drive Systems



2.6.4.1 One-Step Delay Compensation

The cost function in (2.38) assumes that all calculations and judgments are
implemented at the kth instant and the selected vector will be applied immediately.
However, in practical digital implementation, this assumption is not true and the
applied voltage vector is not applied until the (k + 1)th instant.

In other words, for the duration between the kth and (k + 1)th instants, the
applied rotor voltage vector uks has been decided by the value in the (k-1)th instant
and the evolutions of ws and Te for this duration are uncontrollable. What is left to
be decided is actually the stator voltage vector ukþ 1

s , which is applied at the
beginning of the (k + 1)th instant. To eliminate this one step delay, the variables of
wkþ 2
s and Tkþ 2

e should be used rather than wkþ 1
s and Tkþ 1

e for the evaluation of the
cost function in (2.38). This fact is clearly illustrated in Fig. 2.28, where x indicates
the state variables of a dynamic system and u is the input to be decided. For PMSM,
x represents torque or stator flux value.

To eliminate the one-step delay in digital implementation, the cost function in
(2.38) should be changed to (2.45) as shown below

min: G ¼ jT�
e � Tkþ 2

e j þ k1 jw�
s j � jwkþ 2

s j�� ��
s.t. uks 2 fV0;V1; . . .;V7g ð2:45Þ

Obtaining wkþ 2
s and Tkþ 2

e in (2.45) requires a two-step prediction. To obtain the
best voltage vector minimizing the cost function in (2.45), each possible configu-
ration for ukþ 1

e will be evaluated to obtain the value at the (k + 2)th instant.

2.6.4.2 Linear Multiple Horizon Prediction

A linear multiple horizon prediction formula is introduced in this section. This
formula incorporates two formulas. The first one is the same as in (2.38). The linear

Fig. 2.28 One-step delay in digital control systems
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multiple horizon prediction formula, which is multiplied by a factor A, considers the
errors in the (k + N)th instant (N > 1). Different from the model-based predictions
for wkþ 1

s and Tkþ 1
e , the stator flux and torque at the (k + N)th instant are predicted

from the value at the kth and (k + 1)th instants using linear extrapolations, which are
expressed as

TkþN
e ¼ Tk

e þðN � 1ÞðTkþ 1
e � Tk

e Þ ð2:46Þ

jwkþN
s j ¼ jwk

s j þ ðN � 1Þ jwkþ 1
s j � jwk

s j
�� ���� �� ð2:47Þ

The expression of the proposed cost function is

min: G ¼ jT�
e � Tkþ 1

e j þ k1 jw�
s j � jwkþ 1

s j�� ��
þA jT�

e � TkþN
e j þ k1 jw�

s j � jwkþN
s j�� ��� �

s:t: uks 2 fV0;V1; . . .;V7g
ð2:48Þ

2.6.5 Numerical and Experimental Comparisons of DTC
and MPC

2.6.5.1 Numerical Simulation

In this section, the simulation tests of DTC and MPC are carried out by using
Matlab/Simulink. The parameters of the motor are listed in Table 2.6. The sampling
frequency of both methods is set to 5 kHz. The values of control parameters are
k1 ¼ 25:4; A ¼ 0:1; and N ¼ 10 [36].

This simulation test combines start-up, steady-state and external load tests. The
motor starts up from 0 s with several reference speeds (500 rev/min, 1000 rev/min,
1500 rev/min and 2000 rev/min). After reaching the reference speed, the motor
maintains the speed for at least 0.2 s and an external load is applied at 0.3 s.
Figures 2.29, 2.30, 2.31 and 2.32 show the combined load test for four control
strategies for one reference speed, 1000 rev/min. From top to bottom, the curves are
the stator current, stator flux, torque, motor speed, and switching frequency,
respectively. The test results for other speed situations can be found in [36].

Table 2.6 Motor parameters Number of pole pairs p 3

Permanent magnet flux wf 0.1057 Wb

Stator resistance Rs 1.8 Ω

d- and q-axis inductance Ld, Lq 15 mH

Rated torque TN 4.5 Nm

DC bus voltage Vdc 200 V
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By comparing Fig. 2.30 with Fig. 2.29, it is shown that the torque and flux
ripples of MPC are lower than that of DTC. In Fig. 2.31, MPC with one-step delay
compensation (indicated as MPC + comp) presents torque and flux ripples even
lower than MPC along with an increase in switching frequency. Figure 2.32
illustrates the responses by using cost function (2.48), where factor A is included in
the simulation. As shown, the introduction of linear multiple horizon prediction
(factor A, and indicated as MPC + A) can greatly reduce the switching frequency
only with a quite limited degradation of torque and flux ripples. As shown, all these
methods present similar dynamic performance and the motor can reach the refer-
ence speed rapidly. When the load was applied, the motor speed returned to its
original value in a very short time period.

The recorded data from 0.1 to 0.3 s are picked to calculate the torque and flux
ripples (obtained by standard deviations). The torque and flux ripples of these
control methods are summarized in Table 2.7. A segment (three periods) of the
stator current of phase A is used to calculate the total harmonic distortion
(THD) and current harmonic spectrum.

As shown, MPC can achieve lower torque ripple than that of DTC as proven.
However, MPC’s characteristic in flux ripple reduction is quite unstable. With the
help of one-step delay compensation, the steady-state performance of MPC is
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improved significantly. It should be noticed that the switching frequency has
increased by almost two times in most tests when one-step delay is compensated.
The introduction of linear multiple horizon prediction can effectively reduce the
switching frequency and flux ripple. However, its ability on torque ripple reduction
is quite insignificant.

2.6.5.2 Experimental Testing

In addition to the simulation study, the control methods mentioned above are
further experimentally tested on a two-level inverter-fed PMSM motor drive. The
experimental setup is illustrated in Fig. 2.33. A dSPACE DS1104 PPC/DSP control
board is employed to implement the real-time algorithm coding using C language.
A three phase intelligent power module equipped with an insulated-gate bipolar
transistor (IGBT) is used as an inverter. The gating pulses are generated in the
DS1104 board and then sent to the inverter. The load is applied using a pro-
grammable dynamo-meter controller DSP6000 (Fig. 2.34). A 2500-pulse incre-
mental encoder is equipped to obtain the rotor speed of PMSM. All experimental
results are recorded by the ControlDesk interfaced with DS1104 and PC at 5 kHz
sampling frequency [36].
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The steady-state responses at 1000 rpm are presented in this section. From top to
bottom, the curves shown are torque, stator flux and switching frequency,
respectively.

Figures 2.35 and 2.36 show the measured steady-state performance at 1000 rpm.
It is seen that the implementation of MPC can reduce the torque ripple, but does not
reduce the flux ripple. When the one-step delay is compensated, a significant
decrease of torque and flux ripples can be found as well as an obvious increase of
switching frequency. When the linear multiple horizon prediction is added to MPC,
it can be seen that the torque and flux ripples are slightly decreased along with a
limited reduction of the switching frequency.

Table 2.8 lists the torque and flux ripples of these control methods in experiment.
As shown, similar conclusions can be obtained as those from Table 2.7. According
to the analysis above, it can be concluded that:

(1) MPC can achieve lower torque ripple than that of DTC whilst
maintaining/reducing the switching frequency as proven in both simulation
and experimental tests. However, MPC’s ability in flux ripple reduction is
insignificant and even unstable.
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(2) When one-step delay is compensated, the steady-state performance of MPC in
terms of torque and flux ripples reduction is significantly improved. It should
be noticed that the performance improvement also comes with a remarkable
switching frequency increase (two times or more).

(3) By introducing linear multiple horizon prediction to MPCs, a significant
switching frequency reduction can be found as well as an obvious decrease in
flux ripple. However, it comes with heavy penalty of torque ripple increasing,
especially at low motor speed.
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Table 2.7 Steady-state
response (simulation)

Method THD
(%)

fav
(kHz)

wripðWbÞ TripðNmÞ

DTC 28.83 1.5972 0.0155 0.6869

MPC 18.55 1.5692 0.0138 0.4952

MPC + comp 8.17 1.5812 0.0059 0.2253

MPC + A 15.52 0.6640 0.0090 0.5102
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2.6.6 Improved MPC with Duty Ratio Optimization

There are many improvements for these control algorithms. One of them known as
MPC with duty ratio optimization will be selected for the control of PM-SMC
TFM. As a general algorithm, the theory and test results will be presented in this
section.

Fig. 2.33 Experimental setup of testing system: a overview of the testing platform and b front
view of the PMSM and inverter control board
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In the conventional MPC, the selected voltage vector works during the whole
sampling period. In many cases, it is not necessary to work for the entire period to
meet the performance requirement of torque and flux. This is one of the main
reasons for the torque and flux ripples. By introducing a null vector to each sam-
pling period, the effects of voltage on torque can be adjusted to be more moderate,
in order to diminish the ripples of torque and flux.

Fig. 2.34 Dynamo-meter controller DSP6000
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Actually, the torque can be changed by adjusting the amplitude and time
duration of us. The amplitude is decided by the DC bus voltage and is usually fixed,
while the time duration of us can be varied from zero to the whole period, which is
equivalent to changing the voltage vector length. The null vector only decreases the
torque, while appropriate non-zero vectors can increase the torque, and it is possible
to employ both null and nonzero vectors during one cycle to reduce the torque
ripple. The appropriate non-zero vectors are also referred as ‘active vector’. The key
issue is how to determine the time duration of the two vectors, or the duty ratio of
the active vector.

The expression of duty ratio for MPC is shown as follows

d ¼ T�
e � Tkþ 1

e

CT

����
����þ w�

s � wkþ 1
e

Cw

����
����; ð2:49Þ
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linear multiple horizon prediction

Table 2.8 Steady-state
response at 1000 rpm
(experimental)

Method fav (kHz) wripðWbÞ TripðNmÞ
DTC 1.2129 0.0167 0.8446

MPC 1.1393 0.0173 0.6394

MPC + comp 2.7335 0.0056 0.2310

MPC + A 0.6045 0.0136 0.4460
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where d is the duty ratio of the active voltage vector, and CT and Cψ are two
positive parameters. The idea of this method is that the larger the difference between
the reference and predicted torque values, the larger is the duty ratio value [36]. On
the other hand, the lower the CT and Cψ values, the quicker is the dynamic response
(e.g. take less time to reach the given speed), but the poorer will be the steady-state
response (e.g. higher torque and flux ripples). Higher values of CT and Cψ could
lead to better steady-state responses, but slower dynamic responses. Therefore, the
determination of these values is a compromise between the steady-state and
dynamic performances. Extensive simulation and experimental results have proven
that the PM flux value and half-rated torque value for CT and Cψ can provide a good
compromise between the steady state performance and the dynamic response. The
block diagram of the proposed improved MPC is shown in Fig. 2.37.

2.6.7 Numerical and Experimental Comparisons of DTC
and MPC with Duty Ratio Optimization

2.6.7.1 Numerical Simulation

The parameters of the motor and control system simulated in this section are listed
in Table 2.9. Similar to the previous test example, this simulation test combines the
start-up, steady-state and external load tests. The motor starts up from 0 s with
several reference speeds (500 rev/min, 1000 rev/min, 1500 rev/min and 2000
rev/min). After reaching the reference speed, the motor maintains the speed for at
least 0.2 s and an external load is applied at 0.3 s. Figure 2.38 shows the combined
load test for one reference speed, 1000 rev/min. From top to bottom, the curves are

Fig. 2.37 Diagram of an improved MPC with duty ratio optimization in MATLAB/SIMULINK
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the stator current, stator flux, torque, motor speed, and switching frequency,
respectively. The test results for other speed situations can be found in [36].

It can be found that the proposed MPC scheme present very low torque and flux
ripples and excellent dynamic response. The proposed MPC scheme also presents
very low stator current THDs and narrow harmonic spectrums with the dominant
harmonics of around 5 kHz.

Table 2.9 Motor and control
system parameters

Parameter Symbol Value

Number of pole pairs p 3

Permanent magnet flux wf 0.1057 Wb

Stator resistance Rs 1.8 Ω

d-axis and q-axis inductance Ld, Lq 15 mH

DC bus voltage Vdc 200 V

Inertia J 0.002 kg �m2

Torque constant gain CT 2

Flux constant gain Cw 0.1

Sampling frequency fsp 5 kHz
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2.6.7.2 Experimental Test

The experimental tests are performed on the same testing platform introduced in the
last section. Figure 2.39 shows the steady-state responses at 1000 rpm for three
control strategies, namely (a) DTC, (b) MPC, and (c) MPC with duty ratio
optimization.
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It can be seen that in MPC with duty ratio optimization, the torque and flux
ripples are reduced significantly compared to other methods. The duty ratio
increases along with the increase in motor speed.

According to the analysis above, it can be concluded that:

(1) MPC with duty ratio optimization can achieve a better performance than DTC
and original MPC in terms of torque and flux ripples reduction;

(2) Under the same system sampling frequency (5 kHz), the switching frequency
of the improved method is much higher than other methods; and

(3) In DTC and MPC, the switching frequency slightly decreases along with the
increase of motor speed. However, the switching frequency is almost stable in
the proposed method.

More experimental results including different speed, dynamic response and data
analysis can be found in [36].

2.7 Summary

This chapter presents the multi-disciplinary design analysis models and methods for
electrical machines and drive systems. All the models and methods are discussed in
terms of the three major parts of electrical drive systems, namely electrical
machines, power electronic converters and controllers. Electromagnetic, thermal
and mechanical analyses based on different models, e.g. FEM, have been investi-
gated for the design of electrical machines with several prototypes developed in our
research center. Various kinds of popular control algorithms have been described
for the controller design. Several examples investigated in our previous work have
been presented to show the effectiveness of the proposed models and analysis
methods.
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Chapter 3
Optimization Methods

Abstract Optimization is an art of searching the best one/ones among a great
number of feasible solutions. The main optimization target of electromagnetic
devices and systems including electrical machines and drive systems is to determine
a set of parameters involving material, topology and structural parameters to satisfy
certain design specifications and constraints, such as output power, efficiency,
volume, and cost. Engineers have been using optimization methods to optimize the
designs of electromagnetic devices, components and systems for decades. This
chapter aims to presents the optimization methods commonly used in the field of
electrical machines and drive systems, as well as computational electromagnetics.
Classic and modern intelligent optimization algorithms will be discussed firstly,
followed by the multi-objective optimization algorithms. Four kinds of approximate
models will be described, and the modelling methods will be discussed with two
numerical examples.

Keywords Optimization methods � Intelligent optimization algorithms �
Approximate models � Multi-objective optimization algorithms

3.1 Introduction

In Chap. 2, the design fundamentals, and various design analysis models for
electrical machines and drive systems have been investigated in terms of different
disciplines or subject domains, such as the analytical models or methods for
electromagnetic and thermal analyses, magnetic circuit model for electromagnetic
analysis, finite element model (FEM) for all electromagnetic, thermal and
mechanical analyses, and field oriented control (FOC), direct torque control (DTC),
and model predictive control (MPC) algorithms for the control systems. While
some of them are physical analysis models which can reveal the basic operational
principles of the electrical machines and drive systems, the FEM is a kind of
numerical analysis model, which is widely used in the design optimization of
electrical machines to get a further understanding and illustrations for the field
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analysis. All these design analysis models can be employed for the performance
evaluation of electrical machines and drive systems.

On the other hand, solving an optimization problem consists of two main issues:
definition of optimization models and selection/development of (new) optimization
methods. Generally, an optimization model for a single-objective with m constraints
can be defined as

min : f ðxÞ
s:t: giðxÞ� 0; i ¼ 1; . . .;m

xl � x� xu
; ð3:1Þ

where x, f and g are the design parameter vector, objectives and constraints,
respectively, xl and xu the lower and upper boundaries of x, respectively, and m is
the number of constraints. Typical optimization objectives for electrical machines
and drive systems are the minimization of cost, cogging torque, torque ripples,
overshoot, and maximization of output power and efficiency. Popular constraints
are volume, mass, current density and temperature rises [1].

Theoretically, the optimization model (3.1) is always a strongly-constrained,
highly- nonlinear and high-dimensional problem for electrical machines and drive
systems. Many kinds of optimization algorithms have been employed to find the
optimum for the above equation, such as the sequential quadratic programming
algorithm, genetic algorithm (GA), differential evolution algorithm (DEA), and
particle swarm optimization (PSO) algorithm [2–5]. Section 3.2 presents an over-
view for the classical and modern optimization algorithms for solving (3.1).

On the other hand, from the perspective of practical engineering applications, the
design optimization of electrical machines is actually a multi-objective problem as
there are many objectives which can be defined and different objectives can be
selected for different applications. For example, for applications in home appli-
ances, such as washing machines and refrigerators, the motor price and output
power may be the two most important issues; while for applications in hybrid
electric vehicles, the volume, power density and torque ripple are very important.
Therefore, multi-objective optimization design problems of electrical machines as
well as other electromagnetic devices have become a topic of much interest recently
[6–8].

Generally, a multi-objective optimization model with p objectives and m con-
straints can be defined as

min : ff1ðxÞ; f2ðxÞ; . . . fpðxÞg
s:t: giðxÞ� 0; i ¼ 1; . . .;m

xl � x� xu
; ð3:2Þ

The solutions of (3.2) are often illustrated by Pareto optimal figure, which can be
obtained by using multi-objective optimization algorithms. Many multi-objective
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optimization algorithms developed in the field of evolutionary computation have
been introduced to the design of electrical machines, such as multi-objective genetic
algorithm (MOGA), non-dominated sorting genetic algorithm (NSGA) and
NSGA II, multi-objective particle swarm optimization (MPSO) algorithm [6–8].
Section 3.3 briefly describes several popular multi-objective optimization algo-
rithms employed in the design of electrical machines.

The above optimization methods (physical models or FEMs plus optimization
algorithms) can be regarded as direct optimization method. Though they are always
of high accuracy, the optimization efficiency is not good for many situations due to
the high nonlinearity of the problem, particularly for the FEMs. Approximate
models (or surrogate models) present an alternative way for the optimization to
increase the optimization efficiency. Section 3.4 presents a summary for four kinds
of widely used approximate models, response surface model (RSM), radial basis
function (RBF) model, Kriging model and artificial neural network (ANN) model.
Section 3.5 presents an introduction of construction and verification of approxi-
mation with example analyses of two classical test functions, followed by the
summary Sect. 3.6.

3.2 Optimization Algorithms

3.2.1 Classic Optimization Algorithms

Many kinds of classic optimization algorithms have been introduced to solve the
constrained and nonlinear optimization problem (3.1). Some are gradient-based
algorithms, such as conjugate gradient algorithm, sequential quadratic program-
ming algorithm and augmented Lagrange multiplier method [5, 9–12]. Generally,
the first or second order derivative or Hessians matrix is required in the imple-
mentation. To use these algorithms efficiently, there are several constraints, such as

(a) The objective functions should be continuous and derivable;
(b) The objective functions and constraints can be expressed analytically; and
(c) The constrained optimization models have to be converted to unconstrained

forms for some initial gradient-based algorithms, e.g. the conjugate gradient
algorithm.

Analytical models or methods for electromagnetic, thermal and other disci-
plinary analyses should be constructed before the optimization. However, many
analysis models for electrical machines are based on FEM, and there is no analytical
expression for the optimization model. Therefore, various intelligent optimization
algorithms using non-analytical machine models have been employed, such as
those based on the GA and PSO algorithms.
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3.2.2 Modern Intelligent Algorithms

In the past several decades, a number of innovative intelligent algorithms, such as
the evolutionary algorithms including GA and DEA, PSO algorithms, immune
algorithm, and ant colony algorithm, have been developed and employed for design
optimization problems [13–18]. Several evolutionary algorithms will be presented
in this chapter due to the wide usage of them. PSO will also be introduced in this
section as an example of different kind of optimization algorithms.

The evolutionary algorithms (EAs) are a kind of heuristic optimization algo-
rithms, which use techniques inspired by mechanisms from biological evolution
such as reproduction, mutation, recombination, natural selection and survival of the
fittest to find an optimal configuration for a specific system. There are four main
branches during the development of EAs: (a) GAs, (b) evolution programming,
(c) evolution strategy, and (d) differential evolution. The general flowchart for EAs
is illustrated in Fig. 3.1.

Fig. 3.1 Flowchart for
general EAs
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In the flowchart of EAs, fitness calculation is related to the objective functions,
which is used to evaluate the performance of each individual in the (initial) pop-
ulation. Then, the algorithm parameters should be defined prior to the implemen-
tation of the optimization, such as the population size, crossover, mutation,
selection and recombination factors, maximal iteration number, and convergence
criteria. Through a broad research, it is found that EAs have the following merits:

(a) They are global optimization methods;
(b) They can be applied to almost any optimization problems and scale well to

higher dimensional problems;
(c) They are robust in terms of noisy evaluation functions;
(d) They are conceptually simple and can easily be adjusted to the problem at

hand; Almost any aspect of the algorithm may be changed and customized;
and

(e) EAs have strong parallel searching capability as evolution is a highly parallel
process.

Several EAs will be introduced as follows with more details, and several of them
will be used as optimization algorithms in this book.

3.2.2.1 GAs

GAs have been employed in science and engineering as adaptive intelligent algo-
rithms for solving practical problems. They are inspired by Darwin’s theory about
evolution. Solution to a problem provided by GAs is evolved. Figure 3.2 illustrates
a general optimization flowchart of GAs. As shown, the algorithm is started with a
set of population (represented by chromosomes). Solutions from one population
(known as parent) are taken and used to form a new population (known as offspring
or children) by three genetic operations, crossover, mutation and selection.
Solutions which are used to generate new solutions (offspring or children) are
selected in terms of their fitness, which means that the more suitable they are, the
more opportunities they have to reproduce in the evolution process [14, 19, 20].
This is repeated until some conditions or criteria are satisfied, for example the
maximal iteration number. The outline of the basic GA is listed as follows.

(a) Start—Generate initial population of NP chromosomes;
(b) Fitness—Evaluate the fitness f(x) of each chromosome x in the initial

population;
(c) New population—Create a new population by repeating following steps;

• Selection—Select two parent chromosomes from a population in terms of
their fitness (the better fitness, the bigger chance to be selected);

• Crossover—Form a new offspring with a crossover probability over the
parents;

• Mutation—Mutate new offspring at each locus (position in chromosome)
with a mutation probability;
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(d) Replace—Use new generated population for a further run of algorithm; and
(e) Test—If the end condition is satisfied, stop, and return the best solution in

current population. Otherwise, go to step (b) and do the optimization loop till
convergence.

In the implementation, there are several algorithm parameters needed to define.
They are the population size (NP), crossover probability (Pc), mutation probability
(Pm) and determination of the type of selection strategies. Generally, the population
size can be defined as 5–10 times of the problem dimension, Pc = 0.6–1.0, and
Pm = 0.005–0.05. For the selection operation (regarding the problem of how to
select parents for crossover), this can be done in many ways. A popular one is to
select the better parents (assuming that the better parents will produce better off-
spring), and this is generally called elitism select strategy. It means that at least one
best solution is copied without changes to a new population, so that the best
solution found can survive to the end of run. Other selection strategies are roulette
wheel selection and rank selection methods [19, 20].

GAs have many advantages. For example, GAs work on the chromosome, which
is an encoded version of potential solutions’ parameters, rather than the parameters
themselves. On the other hand, they use fitness score, which is obtained from

Fig. 3.2 Flowchart for
general GAs

78 3 Optimization Methods



objective functions, without other derivative or auxiliary information. Thus, they
have the ability to avoid to be trapped in local optimal solution unlike the traditional
methods, which search from a single point.

3.2.2.2 DEA

DEA is a relatively new evolutionary optimization algorithm [21–23]. Many studies
demonstrated that DEA converges fast and is robust, simple to implement, requiring
only a few control parameters. The procedure of DEA is almost the same as that of
the GA whose main process has mutation, crossover, and selection. The main
difference between DEA and GA lies in the mutation process.

Figure 3.3 shows the optimization flowchart of DEA. The implementation of
DEA consists of the following five main steps:

Step 1: Population initialization
Assume that fxti; i ¼ 1; 2; . . .;NPg is the population, where NP is the
population size. The initial population can be defined as

x0ji ¼ xðLÞj þ randji½0; 1� � ðxðUÞ
j � xðLÞj Þ; j ¼ 1; 2; . . .;D ð3:3Þ

where xðLÞj and xðUÞ
j are the lower and upper boundaries of x. In details, it

can be expressed as

x01i ¼ xðLÞ1 þ rand1i½0; 1� � ðxðUÞ
1 � xðLÞ1 Þ

x02i ¼ xðLÞ2 þ rand2i½0; 1� � ðxðUÞ
2 � xðLÞ2 Þ

..

.

x0Di ¼ xðLÞD þ randDi½0; 1� � ðxðUÞ
D � xðLÞD Þ

8>>>><
>>>>:

ð3:4Þ

Step 2: Mutation process
Assume that

vtþ i
i ¼ xtr1 þFðxtr2 � xtr3Þ; ð3:5Þ

where r1, r2, and r3 are three different numbers in [1, NP], that are
different from i, and F 2 ½0; 2� is the mutation factor. This mutation
method is called as DE/rand/1. There are several other situations:

DE=best=1 : vtþ i
i ¼ xtbest þFðxtr2 � xtr3Þ ð3:6Þ

DE=best=2 : vtþ i
i ¼ xtbest þFðxtr2 � xtr3 þ xtr4 � xtr5Þ ð3:7Þ
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DE=rand� to� best=1 : vtþ i
i ¼ xtbest þF1ðxtr2 � xtr3ÞþF2ðxtbest � xtr1Þ

ð3:8Þ

where r4 and r5 are two different numbers in [1, NP], and subscript
“best” means the best one in the iteration t.

Fig. 3.3 Flowchart for
general DEA
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Step 3: Crossover process

utþ 1
ji ¼

vtþ 1
ji ; rand½0; 1� �CR

xtji; others

(
ð3:9Þ

where CR 2 ½0; 1� is the crossover factor, and j 2 f1; 2; . . .;Dg .
Step 4: Selection process

xtþ 1
i ¼ utþ 1

i ; f ðutþ 1
i Þ\ f ðxtiÞ

xti; others

(
ð3:10Þ

Step 5: Test process
If the population xtþ 1

i meets the criteria, stop the optimization, and
output the best one in xtþ 1

i as the optimal solution. Otherwise, go to step
2 and do the optimization loop again till convergence.

From the above discussion, it can be seen that there are only 3 algorithm
parameters in the DEA. They are population size (NP), mutation factor (F), and
crossover factor (CR).

3.2.2.3 EDA

Estimation of distribution algorithms (EDAs) are a class of evolution algorithms
based on probability model, sometimes known as probabilistic model-based GAs,
which are an outgrowth of GAs. Figure 3.4 shows the comparison of the main
flowcharts of GAs and EDAs. As shown, the main difference is the generation
methods of the new population. The new population and final solutions of EDAs
are obtained by learning and sampling statistically the probability distribution of the
best individuals of the population in each iteration of the algorithm. The genetic
operators, such as crossover and mutation, used in GAs are not required for this
process in EDAs [24–27]. Therefore, EDAs have introduced a new paradigm for
evolutionary computation without using the conventional evolutionary operators,
and have become a hot topic in the field of evolutionary computation recently.

The most important issue in EDAs is the construction method of the probability
model as shown in Fig. 3.4. According to the complexity of probability models for
learning the interdependencies between the variables, a number of EDAs have been
developed in terms of the interactions between parameters, namely dependency-free,
bivariate dependencies, and multivariate dependencies. The popular one is the
Bayesian optimization algorithm, which uses a probability graph model based on
Bayesian network model to handle the interactions between different parameters.
More information can be found in references [24–27].
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3.2.2.4 PSO

The PSO algorithm is an evolutionary algorithm that simulates the movement of
flocks of birds. In this algorithm, a population of individuals (known as particles)
updates their movements to reach the target point (the optimum) by continuously
receiving information from other members of the flocks [11]. In the classical PSO,
the nth particle velocity and position are updated by

vtþ 1
i ¼ wvti þ c1r1ðpi � xtiÞþ c2r2ðpg � xtiÞ ð3:11Þ

xtþ 1
Di ¼ xtDi þ avtþ 1

Di ð3:12Þ

where w is the inertial weight factor, subscript D the dimension of parameter, pi the
local best vector of the tth particle, pg the global best vector, c1 and c2 are adjustable
social factors, r1 and r2 random numbers between 0 and 1, respectively, and α is the
time step.

Figure 3.5 shows a flowchart of the PSO algorithm. The PSO algorithm has been
used in many applications and has had many improvements. Compared with GAs,
PSO is very much similar in many aspects. It is also a kind of evolutionary tech-
nique with its algorithm starting with a group of a randomly generated population,
using fitness value to evaluate the population, updating the population, and
searching for the optimum with random techniques.

Fig. 3.4 Comparison of GAs and EDAs, a GA, b EDA
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However, PSO does not have genetic operators like crossover and mutation.
Particles update themselves with the internal velocity. They also have memory,
which is important to the algorithm.

The information sharing mechanism in PSO is also significantly different from
that of GAs. In GAs, the chromosomes share information with each other, so that
the whole population moves like a group towards an optimal area. In PSO, only pg
and pi give out the information to others, which is a one-way information sharing
mechanism. The evolution only looks for the best solution. Unlike GAs, in PSO, all
the particles tend to converge to the best solution quickly even in the local version
in most cases [11, 28–30].

Fig. 3.5 Flowchart of PSO
algorithm
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3.3 Multi-objective Optimization Algorithms

3.3.1 Introduction to Pareto Optimal Solution

There are many kinds of multi-objective design optimization problems in the design
of electrical machines and other electromagnetic devices [7, 8, 30–35].
Theoretically, the objectives in multi-objective optimization problems are always
conflicting. The improvement of an objective may result in performance decrease of
the other objectives. For example, the material cost and output power are two
important issues for designing the transverse flux machines. The improvement of
output power is often accompanied by the increase of material cost [7]. Therefore, it
is always impossible to achieve the optimum for each of these objectives, and the
corresponding optimal solutions are actually a compromise between these objec-
tives by making the objectives close to their optimums as much as possible. The
corresponding optimal solutions are called the Pareto optimal solutions.
Theoretically, the Pareto solutions are only acceptable solutions or non-inferior
solutions. The number of these solutions may be very large or even infinite.

There are several conceptions which are widely mentioned in the multi-objective
optimization to define the Pareto optimal solutions [8].

Definition 1 Given two vectors, x; y 2 Rq , we say that x� y if xi � yi for i = 1,…,
q, and that x dominates y (denoted by x � yÞ if x� y and x 6¼ y:

Figure 3.6 shows a particular case of the dominance relation in the presence of
two objective functions for a minimization situation.

Definition 2 We say that a vector of decision variables x 2 X is non-dominated in
X, if there does not exist another x0 2 X such that f ðx0Þ � f ðxÞ:
Definition 3 We say that a vector of decision variables x� 2 F (F is the feasible
region) is Pareto-optimal if it is non-dominated in terms of F:

Definition 4 The Pareto optimal set is defined by

P� ¼ fx 2 Fjx is Pareto-optimalg

Fig. 3.6 Illustration of
dominated solutions
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Definition 5 The Pareto front is defined by:

PF� ¼ ff ðxÞ 2 Rqjx 2 P�g
Figure 3.7 shows a particular case of the Pareto front in the presence of two

objective functions [8].
Different from the single objective optimization algorithms, the multi-objective

optimization algorithms have to provide a set of non-inferior solutions with large
population, and this set approaches the front of the global Pareto optimal solutions.
Those solutions should be uniformly distributed at the front of Pareto solutions as
much as possible.

Based on these basic principles, a number of multi-objective optimization
algorithms have been developed in the field of evolutionary computation and have
been employed for the design optimization of multi-objective problems, such as
MOGA, NSGA and its improvement NSGA II, MPSO algorithm [6, 36–40]. Three
of them, MOGA, NSGA II and MPSO will be introduced in the following sections.

3.3.2 MOGA

Figure 3.8 illustrates a general flowchart for MOGA based on multi-objective
ranking method. The multi-objective ranking method is one of the methods for
evaluating the multi-objectives. Figure 3.9 shows an example of ranking in two
objectives. The rank of an individual is determined as 1 + NP when it is dominated
by other NP individuals [36, 37].

Since there is a toolbox for GA and MOGA in Matlab, it is ready to implement
for practical problems. The following is an example.

Fig. 3.7 Illustration of Pareto
optimal solutions
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The Poloni (POL) function

min :
f1ðx1; x2Þ ¼ 1þðA1 � B1Þ2 þðA2 � B2Þ2

f2ðx1; x2Þ ¼ ðx1 þ 3Þ2 þðx2 þ 1Þ2

(
; ð3:13Þ

A1 ¼ 0:5 sin 1� 2 cos 1þ sin 2� 1:5 cos 2
A2 ¼ 1:5 sin 1� cos 1þ 2 sin 2� 0:5 cos 2
B1 ¼ 0:5 sin x1 � 2 cos x1 þ sin x2 � 1:5 cos x2
B2 ¼ 1:5 sin x1 � cos x1 þ 2 sin x2 � 0:5 cos x2

�p� x1; x2 � p

:

Fig. 3.8 Flowchart of
MOGA
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is a classic test function for multi-objective optimization methods as its Pareto
optimal solutions are not continuous and non-convex [7, 41].

Figure 3.10 illustrates the Pareto optimal solutions obtained from MOGA. As
shown, the Pareto solutions of this function are divided into two parts. It is not
continuous on the whole region. This function will be used to verify the efficiency
of the new proposed multi-objective optimization method in the next chapter.

3.3.3 NSGA and NSGA II

NSGA stands for non-dominated sorting genetic algorithm, which was first pre-
sented by Srinivas and Deb in 1994 [42, 43]. In this NSGA, a new method was
presented to classify individuals in layers before the selection is performed.
Individuals of the first layer have the highest fitness while the members of the last
layer have the smallest fitness. Individuals from the first layer produce more copies
than other layers in the next generation.

Fig. 3.9 Illustration of
Multiobjective ranking
method
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Fig. 3.10 Pareto optimal
solutions for POL function by
using MOGA
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The NSGA II is an improved version of NSGA. It is one of the most efficient and
famous multi-objective evolutionary algorithms and has been widely applied in
many kinds of engineering multi-objective optimization problems. Figure 3.11
shows a flow chart of the algorithm. The method includes two important compo-
nents: the non-dominated sorting approach and the crowd comparison operator.
A detailed description can be found in Ref. [41].

Fig. 3.11 Flowchart of NSGA II
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3.3.4 MPSO

Figure 3.12 shows a general MPSO framework. MPSO has similar optimization
procedures as multiobjective evolution algorithms, such as MOGA and NSGA.
Many successful strategies, for example, external archive, have been introduced to
MPSO. On the other hand, fitness evaluation is not a necessary step in MPSO, so
that the algorithm design can be simplified. However, a global optimal position
should be selected from the external archive for each particle, and this step is not
required for multi-objective evolution algorithms. There are many kinds of
improvements for MPSO, and many of them have been widely employed in the
design optimization of electrical machines. Detail descriptions of them can be found
in references [39, 40, 43].

Fig. 3.12 Flowchart of MPSO algorithm
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3.4 Approximate Models

3.4.1 Introduction

The above contents are about the single- and multi- optimization algorithms. As we
know, they are only one important component in the optimization as well as a direct
factor for the optimization efficiency. Another important issue for the optimization
efficiency is related to the optimization models. FEM has been widely used in the
design optimization of electrical machines. However, as mentioned previously, the
computational cost of FEM is always high, especially for complex structured
electrical machines, such as permanent magnetic (PM) soft magnetic composite
(SMC) machines [1, 7]. As an alternative, some approximate models (or surrogate
models) are employed in the practical engineering design problems to ease the
computational burden of optimization process, such as RSM and Kriging model
[44, 45].

Many research works have found that the optimization design based on
approximate models presents an effective way to solve the aforementioned prob-
lems. By using the design of experiments (DOE) technique and statistical analysis
methods, approximate models can be established as surrogate models for those
physical models, such as FEMs and circuit models, so as to reduce the high sim-
ulation cost in the iterative process of optimization. Meanwhile, approximate
models can degrade the nonlinearity of the practical problems, which can benefit the
finding of the global optimal solution.

Generally, constructing an approximate model consists of the following two
steps.

• Sampling: determine the required samples for constructing the approximate
models by using the DOE technique, X ¼ fx1; x2; . . .; xn xi 2 RDj g and their
responses fy1; y2; . . .; yn yi 2 Rqj g ; and

• Modelling construction or fitting: Fit the samples ðX, yÞ with a suitable
approximate model, and test the model accuracy with some new samples.

There are four kinds of approximate models which have been widely used in
optimization design of electromagnetic devices, namely RSM, RBF model, Kriging
model, and ANN model. While RSM and RBF models are parametric models,
Kriging is a semi-parametric model, and ANN model a non-parametric model.

3.4.2 RSM

RSM is an empirical modeling approach for determining the relationship between
various input variables and responses with various statistical criteria. It is one of the
most widely used models to solve the electromagnetic optimization problems.
Generally, the direct simulation can be too expensive or time consuming to carry
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out. RSM can effectively replace the simulation and rapidly investigate tradeoffs
between various optimization tasks and conditions [46].

Generally, RSM fits the response data to lower-order quadratic polynomials
using the least-square method, and the sample data are usually obtained from the
uniform sampling method. Quadratic polynomials are generally used in electro-
magnetic problems and have been successfully developed for RSM in the form as

ŷðxÞ ¼ b0 þ
XD
i¼1

bixi þ
XD
i¼1

XD
j¼1;i� j

bijxixj ð3:14Þ

where β’s are the regression parameters. To estimate the regression parameters, the
least square method (LSM) is commonly used to minimize the quadratic sum of
residual errors

Se¼
Xn
i¼1

ðyi � ŷiÞ2 ð3:15Þ

Let the partial derivatives for all parameters be zero, and one can obtain a linear
equation system in the matrix form as the following

XTXb ¼ XTy ð3:16Þ

The model parameters can be calculated as

b ¼ ðXTXÞ�1XTy ð3:17Þ

where y ¼ ½y1; . . .; yn�T , b ¼ ½b0; b1; . . .; bm�T , and m is the dimension of
parameter. For quadratic polynomials, m ¼ ðDþ 1ÞðDþ 2Þ=2. The structural
matrix X is

X ¼
1 x11 x1D x211 � � � x1ix1j � � � x21D
1 x21 x2D x221 � � � x2ix2j � � � x22D
..
. ..

. ..
. ..

. ..
. � � � � � � � � � � � �

1 xn1 xnD x2n1 � � � xnixnj � � � x2nD

2
6664

3
7775 ð3:18Þ

However, there is a conflict between the accuracy of fitting value and the step
size of sample data. A smaller step size may induce higher accuracy, but the
structural matrix may be poorly conditioned because the quadratic polynomials are
in general globally supported in LSM. The moving least square method (MLSM)
can overcome this defect. The centers of MLSM are randomly chosen and the
randomness is controlled by the point density and surface geometry [47].

There are two main reasons for why the RSM based on MLSM is better than
LSM. The first one is the construction of fitting functions that consist of a vector
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function with coefficients and a basis function instead of the traditional polyno-
mials. Both are functions of sample points. The second is the introduction of
compactly supported domain in MLSM. Within MLSM, the response of y ¼ f ðxÞ is
only determined by those samples in a small sub-domain around the point x, and
this sub-domain is called the compactly supported domain. Then the samples
outside this sub-domain do not have any effects on the response. Therefore, a
weighting function is defined in this compactly supported domain. If the weight
function is constant in the whole design space, MLSM is the traditional LSM. In
other words, LSM is a special case of MLSM.

In the MLSM, fitting function ŷðxÞ can be approximated as a sum of linearly
independent function as the following

ŷðxÞ ¼
Xm
i¼1

piðxÞaiðxÞ ¼ pTðxÞaðxÞ ð3:19Þ

where aðxÞ ¼ ½a1ðxÞ; a2ðxÞ; . . .; amðxÞ�T is the matrix of unknown coefficients,
which are functions of the spatial coordinates, and m is the sample size in the
fitting domain. If aðxÞ is constant, the LSM can be obtained.
pðxÞ ¼ ½p1ðxÞ; p2ðxÞ; . . .; pmðxÞ�T is a matrix of complete polynomial based func-
tions, and for a two-dimensional optimization problem, it can be expressed as

pðxÞ ¼ ½1; x1; x2�T linear base function
½1; x1; x2; x21; x1x2; x22�T quadratic base function

�
ð3:20Þ

To calculate the coefficient vector, minimize the weighted quadratic sum of
fitting errors below

JðxÞ ¼
Xnp
i¼1

wðx� xiÞ½ŷðxiÞ � yðxiÞ�2

¼
Xnp
i¼1

wðx� xiÞ½pTðxiÞaðxÞ � yðxiÞ�2
ð3:21Þ

where np is the sample size in the compactly supported domain, and wðx� xiÞ a
weighted function for sample xi. By using the LSM, the model parameter matrix
can be calculated as

âðxÞ ¼ ½pTðxÞwðxÞpðxÞ��1pTðxÞwðxÞy: ð3:22Þ

It should be noted that the fitting accuracy highly depends on the selection of
weight functions, which should be equal to 0 outside the compactly supported
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domain. The cube spline function is widely used to get the coefficient matrix by
minimizing the weighted square sum of error, which has the form as

WðsÞ ¼
2=3� 4s2 þ 4s3 s� 1=2
4=3� 4sþ 4s2 � 4s3=3 1=2\s� 1
0 s[ 1

8<
: ; ð3:23Þ

where s ¼ jjx� xijj=s0; and s0 is the radius of the compactly supported domain.
As a summary, the following lists the computational procedure of the RSM

based on MLSM:

(a) Generate samples by DOE technique, and calculate the responses (objectives)
of those samples;

(b) For each new sample x needing evaluation, implement the following steps:

• determine the compactly supported domain for x;
• count the sample size inside the supported domain;
• calculate the model coefficient vector; and
• compute the fitting value of x;

(c) Draw the response surface by connecting all samples.

3.4.3 RBF Model

Compared with the RSM, RBF is also an empirical modeling approach for deter-
mining the relationship between various process parameters and responses with the
various desired criteria. RBF can effectively replace the time consuming simulation
(or measurement) and investigate very rapidly the tradeoffs between conflicting
performance criteria for optimization tasks. RBFs are commonly used in electro-
magnetic problems and have been successfully developed for constructing the
response surface [48–50].

In general, the multivariate functions Hð�Þ : Rd ! R can be efficiently evaluated
if they are expressible as univariate functions Hð�Þ ¼ Hðjj � jjÞ of the Euclidean
norm jj � jj; and such functions are called RBFs. With a set of scattered points
xið1� i� nÞ ,the analytical expression of RBF can be given by

f ðxÞ ¼
Xn
j¼1

bjH x� xj
�� ��� � ð3:24Þ

where HðrÞ ¼ H x� xj
�� ��� �

is the RBF, r ¼ x� xj
�� �� the Euclidian norm, and bj

(j = 1,2,…,n) are the unknown parameters. Three most widely used RBFs in the
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electromagnetic optimization problem are the Gauss, multi-quadrics (MQ) and
inverse multi-quadrics (IMQ), which have the forms as

Gauss : HðrÞ ¼ expð�c2r2Þ ð3:25Þ

MQ : HðrÞ ¼ ðr2 þ c2Þ1=2 ð3:26Þ

IMQ : HðrÞ ¼ ðr2 þ c2Þ�1=2 ð3:27Þ

where r ¼ jjx� xijj; and c is the RBF constant to be determined.
As we have

f ðxiÞ ¼ yi; i ¼ 1; 2; . . .; n ð3:28Þ

Then

b1H x1 � x1k kð Þþ b2H x1 � x2k kð Þþ � � � þ bnH x1 � xnk kð Þ ¼ y1
b1H x2 � x1k kð Þþ b2H x2 � x2k kð Þþ � � � þ bnH x2 � xnk kð Þ ¼ y2

..

.

b1H xn � x1k kð Þþ b2H xn � x2k kð Þþ � � � þ bnH xn � xnk kð Þ ¼ yn

8>>><
>>>:

ð3:29Þ

In matrix form, it is expressed as

Hb ¼ Y ð3:30Þ

where H ¼
H x1 � x1k kð Þ; H x1 � x2k kð Þ; . . .;H x1 � xnk kð Þ
H x2 � x1k kð Þ; H x2 � x2k kð Þ; . . .;H x2 � xnk kð Þ

..

.

H xn � x1k kð Þ; H xn � x2k kð Þ; . . .;H xn � xnk kð Þ

2
6664

3
7775:

When there are no superposition points, H is a positive definite matrix and (3.30)
has an unique solution as

b ¼ H�1Y ð3:31Þ

However, RBFs are generally globally supported and poorly conditioned (sim-
ilar to the LSM). Although there are several remedies for these problems, such as
domain decomposition, preconditioning, and fine tuning of the variable parameter
of RBF, the compactly supported radial basis function (CSRBF) provides a
promising approach.

The centers of CSRBF are randomly chosen from the points and the randomness
is controlled by the point density and surface geometry. When the CSRBFs are
used, the evaluation of (3.31) will not run over the whole set of n summands and the
coefficient matrix will be sparse. The following two classes of CSRBF will be
studied in this book [51, 52]

94 3 Optimization Methods



CSRBF1 : HðrÞ ¼ ð1� rÞ6þ ð6þ 36rþ 82r2 þ 72r3 þ 30r4 þ 5r5Þ; ð3:32Þ

and

CSRBF2 : HðrÞ ¼ ð1� rÞ8þ ð1þ 8rþ 25r2 þ 32r3Þ; ð3:33Þ

where r ¼ jjx� xjjj=r0 , r0 is the radius of the compactly supported domain, and
ð1� rÞþ is given by

ð1� rÞþ ¼ 1� r if 0� r� 1
0 otherwise

�
: ð3:34Þ

3.4.4 Kriging Model

Given n sample points x1; x2; . . .; xnf g and their responses yðx1Þ; yðx2Þ; . . .;f yðxnÞg;
for an input x, the response value y(x) of the Kriging model can be expressed as

yðxÞ ¼ f ðxÞTbþ zðxÞ ð3:35Þ

where f ðxÞTb is a deterministic term for global modeling. f ðxÞ is a known
approximation model, which is generally assumed as a polynomial and has the form
of f ðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . .; fqðxÞ�T , where q is the dimension of polynomial. β is the
model parameter vector to be estimated. z(x) is a random error term used for the
modeling of local deviation. It is usually assumed to be a vector with the mean of
zero, variance of σ2 and covariance matrix of

cij ¼ r2R½Rðxi; xjÞ�; ð3:36Þ

where R is the correlation matrix, and R the user-specified correlation function.
Gaussian correlation functions are most commonly used. More details about
Gaussian correlation functions and the estimation methods for the parameters in
them can be found in references [53–59].

Adopting the Gaussian correlation functions, one can express the correlation
matrix as

R ¼
rðx1; x1Þ rðx1; x2Þ � � � rðx1; xnÞ
rðx2; x1Þ rðx2; x2Þ � � � rðx2; xnÞ

..

. ..
. . .

. ..
.

rðxn; x1Þ rðxn; x2Þ � � � rðxn; xnÞ

2
6664

3
7775 ð3:37Þ
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where

rðxi; xjÞ ¼ expf�
XD
k¼1

akjxik � xjkj2g ð3:38Þ

By using the best linear unbiased estimation in Statistics, the predictor of yðxÞ
and parameter β can be expressed as follows:

ŷðxÞ ¼ f ðxÞT b̂þ rðxÞTR�1ðy� Fb̂Þ ð3:39Þ

b̂ ¼ ðFTR�1FÞ�1FTR�1y ð3:40Þ

where F, r(x) and y are defined as

F ¼
f1ðx1Þ f2ðx1Þ . . . fqðx1Þ

..

. ..
. ..

. ..
.

f1ðxnÞ f2ðxnÞ . . . fqðxnÞ

2
64

3
75; ð3:41Þ

rðxÞ ¼
Rðx; x1Þ

..

.

Rðx; xnÞ

2
64

3
75; ð3:42Þ

and

y ¼ ½yðx1Þ; yðx2Þ; . . .; yðxnÞ�T ; ð3:43Þ

respectively.
By using the maximum-likelihood estimation (MLE) method, the estimation of

r2 can be obtained as

r̂2 ¼ 1
n
ðy� Fb̂ÞTR�1ðy� Fb̂Þ ð3:44Þ

The estimation of ak in correlation function can be obtained from MLE. As zðxÞ
follows a n-dimensional normal distribution with zero 0 and covariance r2R; the
probability density function of error is

pðY; bÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn½detðr2RÞ�

p exp
ðY�HbÞTR�1ðY�HbÞ

�2r2

( )
ð3:45Þ

Substituting the predicted b and r2 , i.e. (3.40) and (3.44), into the above
equation, the only unknown parameter ak can be estimated.
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In summary, implementing the Kriging method consists of estimating the
parameters β in (3.35), r2 in (3.36), and the parameters ak in Gaussian correlation
functions (3.38). All the parameters can be estimated by the software package
DACE (Design and Analysis of Computer Experiments) [59]. Compared with the
parameter model, e.g. RSM, the Kriging model can include not only the mean trend
term but also the variances of the responses. Therefore, it is superior in the mod-
eling of local nonlinearities, and has been widely used in the optimization design of
electromagnetic devices recently.

3.4.5 ANN Model

According to the model classification, the ANN model is a non-parameter model.
Among the various types of network models in this research field [60–62], for data
fitting and forecast, the back propagation (BP) network and RBF network may be
the two most commonly used models. The BP ANN model has the form as

y ¼ f ðWxþ bÞ ð3:46Þ

where x is an input vector, y the output, f a transfer function, W a matrix vector of
weighted value, and b a threshold value vector, respectively. W and b can be
obtained from the model training process with the given sample points and
responses.

The RBF ANN model has the form as

y ¼ f ðjjW� xjj � bÞ: ð3:47Þ

where jj � jj is the Euclid norm. Gaussian function is always used as the transfer
function in this network.

3.5 Construction and Verification of Approximate Models

Figure 3.13 shows the main three design steps for the approximate models. Firstly,
the samples are generated by using the DOE techniques. Then, the approximate
models are constructed, including the selections of model basis functions and fitting
methods. Finally, the effectiveness/accuracy of the constructed approximate models
is verified [63, 64]. While the second step has been discussed previously, this
section presents the first and the last steps.
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3.5.1 DOE Techniques

Many DOE techniques have been developed, such as the full-factor design, Latin
hypercube design, orthogonal design, and central composite design. To improve the
fitting accuracy, the full-factor design has been employed in many situations. For
example, consider an optimization problem with three parameters, and 5 levels are
defined for each parameter. In total, 53 = 125 samples are needed to construct an
approximate model. The Latin hypercube design is a sampling method with con-
straints. It firstly divides the initial design space into a number of non-overlapping
sub-spaces, and then sampling with equal probability is implemented in each
sub-space [57, 63, 64].

Fig. 3.13 Design flowchart
of approximate models
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3.5.2 Model Verification

After the construction of approximate models, the accuracy of effectiveness of the
constructed models should be verified by some new samples. There are several
verification methods as follows:

(a) Root mean square error (RMSE)
Assume that there are Ne new samples fxig and the true responses fyig , and
we also have their fitting values by a kind of approximate model. The RMSE
of this model is then

RMSE ¼ 1
Ne

XNe

i¼1

ðyi � ŷiÞ2
 !1=2

ð3:48Þ

The smaller the RMSE value is, the better the accuracy of fitting model.
(b) Multiple correlation coefficient

The multiple correlation coefficient, R, or the coefficient of multiple correlation
is used to reveal the correlation between one factor/parameter with another one
or several other factors/parameters. It is defined as

R ¼ 1� SSe=SSTð Þ1=2 ð3:49Þ

where SSe ¼
PNe

i¼1 ðyi � ŷiÞ2; SST ¼PNe
i¼1 ðyi � �yÞ2 , and �y ¼PNe

i¼1 ŷi . The
higher the R value is, the stronger the linear correlation is between those
factors or parameters.

(c) Coefficient of determination R2 and adjusted R2
adj

The coefficient of determination is defined as the square of multiple correlation
coefficient, i.e.

R2 ¼ 1� SSe=SST ð3:50Þ

It is a number that indicates how well the data fit a kind of model – sometimes
simply a line or curve. It is one of the indexes for evaluating the modelling accuracy
of approximate models. A high modelling accuracy is achieved when R2 approa-
ches to 1. However, this R2 coefficient can be easily affected by the number of
parameters. To avoid this undesired effect, the adjusted coefficient of determination
defined as

R2
adj ¼ 1� SSe=ðNe � D� 1Þ

SST=ðNe � 1Þ ð3:51Þ

can be employed.
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3.5.3 Modeling Examples

Two examples of classical test functions with multiple local minimums will be
presented as follows to show the verifications for the RSM, RBF (Gauss type) and
Kriging models.

The first one is the Rastrigin function expressed in the form of

f1ðx1; x2Þ ¼
X2
i¼1

½x2i � 10 cosð2pxiÞþ 10�; xi 2 ½�5:12; 5:12� ð3:52Þ

The global minimum of this function is (0, 0), and the objective is 0. There are
99 local minimums around the global minimal point (0, 0). To have a clear illus-
tration, Fig. 3.14 shows the 3D surface profile of this function in a smaller region of
xi 2 ½�2; 2� instead of the whole region [17, 41, 48, 63].

Figure 3.15 illustrates the RMSE curves for this Rastrigin function with the
RSM, RBF, and Kriging models, where the horizontal axis is the sample size for
each parameter. The minimal and maximal sample sizes are 5 and 33, respectively.
For the situation of minimal sample 5, the whole optimization region [−5.12 5.12]
is firstly divided into 4 parts uniformly, and then five points at [−5.12, −2.56, 0,
2.56, 5.12] are sampled with a step size of 2.56. For the situation of maximal
sample 33, the whole optimization region [−5.12 5.12] is divided into 32 parts with
equal length, and 33 points are sampled with a step size of 0.32. Thus, we have in
total 29 situations (from 5 to 33) for each approximate model. To verify the
accuracy of the constructed approximate model, 50 sample points are generated for
each parameter in [−5.12, 5.12], with a step size of 0.21.

As shown in Fig. 3.15, all the three curves oscillate when the sample size is smaller
than 12. When the sample size is larger than 19, the RMSE values of the RBF and
Krigingmodels are smaller than those of the RSM,meaning that the RBF andKriging
models are better than the RSM model in terms of the modelling accuracy.

Fig. 3.14 3D surface profile
of the Rastrigin function
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Figure 3.16 illustrates the curves of adjusted coefficients of these approximate
models for the Rastrigin function. As shown, when the sample size is larger than 19,
the R2

adj values of the RBF and Kriging models approach 1 whereas those of the
RSM model remain around 0.5, showing again that the RBF and Kriging models
are better than the RSM model in terms of the modelling accuracy.

The second test function is defined as

f2ðx1; x2Þ ¼ 0:01
X2
i¼1

½ðxi þ 0:5Þ4 � 30x2i � 20xi�; xi 2 ½�5:12; 5:12� ð3:53Þ

and Fig. 3.17 plots the 3D surface profile of this function.
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Fig. 3.15 RMSE curves of
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This function has four minimal points located in each of the four quadrants,
respectively. The global minimum is −5.23 and is located at [−4.45, −4.45] in the
third quadrant [63, 65–67]. The other minimal points are −3.68 at [3.29, 3.29] (the
first quadrant), −4.46 at [−4.45, 3.29] (the second quadrant), and −4.46 at [3.29,
−4.45] (the fourth quadrant).

Figure 3.18 illustrates the RMSE curves of the RSM, RBF, and Kriging models
for this test function. The horizontal axis is the sample size for each parameter.
Similar to the last example, the minimal and maximal sample sizes are chosen as 5
and 33, respectively. To verify the accuracy of the constructed approximate models,
100 sample points are generated for each parameter. As shown, the RMSE values of
the RBF and Kriging models are significantly smaller than those of the RSM model.
It can also be seen that the Kriging model has fastest convergence and the smallest
RMSE values for almost all sample sizes.

Figure 3.19 illustrates the curves of the adjusted coefficient of these approximate
models for the second test function. As shown, when the sample size is larger than

Fig. 3.17 3D surface profile
of the second test function
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19, the R2
adj values of the RBF and Kriging models approach 1 quickly, whereas

those of the RSM model remain around 0.4, which means the RBF and Kriging
models are better than the RSM model in terms of the modelling accuracy.

As shown by these two examples, the RBF and Kriging models are better than the
RSMmodel in terms of the modelling accuracy, and in both cases, the Kriging model
is better than the RBF model. It can also be seen that the modelling accuracy of these
models for the second test function is higher than that for the first one because of the
stronger nonlinearity and much more number of minimums of the first function.

3.6 Summary

This chapter presents a brief summary of the most commonly used numerical opti-
mization algorithms for electrical machines and drive systems, including the classic
gradient-based algorithms, modern intelligent algorithms, and multi-objective opti-
mization algorithms. Four kinds of approximate/surrogate models, namely RSM,
RBF, Kriging, and ANNmodels, have been presented with details. Two examples are
studied to illustrate the procedure of construction and verification of approximate
models.
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Chapter 4
Design Optimization Methods
for Electrical Machines

Abstract This chapter presents the design optimization methods for electrical
machines in terms of different optimization situations, including low- and
high-dimensional, single- and multi- objectives and disciplines. Firstly, the tradi-
tional design optimization methods are briefly reviewed, and the challenges pre-
sented. Then, five new types of design optimizationmethods are presented to improve
the optimization efficiency of electrical machines, particularly those complex struc-
tured permanent magnet machines, in terms of different optimization situations. They
are (a) a sequential optimization method for design optimization of low-dimensional
problems of electromagnetic devices including electrical machines, (b) a
multi-objective sequential optimization method for engineering multi-objective
problems, (c) a multi-level design optimization method (or sequential subspace
optimization method) for high dimensional problems, (d) a multi-level genetic
algorithm for high dimensional optimization problems as well, and (e) the
multi-disciplinary design optimization method. Design examples with detailed
experimental and optimization results are illustrated for each optimization method.

Keywords Design optimization � Sequential optimization method �Multi-objective
sequential optimization method � Multi-level optimization method � Multi-level
genetic algorithm � Multi-disciplinary optimization method � Permanent magnet
motors

4.1 Introduction

Design optimization methods actually consist of two parts, design methods with
analysis models, and optimization methods with algorithms. In Chap. 2, the popular
design methods and analysis models for electrical machines and drive systems are
reviewed. As shown, the design of electrical machines is a complex
multi-disciplinary or multi-physics problem, including electromagnetics, thermotics,
mechanics and control, and each discipline has its own design methods and analysis
models [1–3]. For example, the electromagnetic design is mainly based on analytical
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model, magnetic circuit model and finite element model (FEM). The thermal design
is mainly based on FEM and thermal network model. The control system design is
mainly based on the topologies of power electronic circuits and control algorithms,
such as the field oriented control algorithm and the direct torque control algorithm.

In Chap. 3, the popular optimization algorithms and approximate models used in
optimization of electrical machines as well as other electromagnetic devices are
discussed. The optimization algorithms include the classical gradient-based algo-
rithms and modern intelligent algorithms, such as genetic algorithms (GA), dif-
ferential evolution algorithm (DEA), and multi-objective genetic algorithms
(MOGA). The approximate models include the response surface model (RSM),
radial basis function (RBF) model, compactly supported radial basis function
(CSRBF) model, and Kriging model [4–6].

The general procedures for design optimization of electrical machines are listed
as follows:

(1) Determine the design analysis model for the investigated machine, including
selection of material, motor type and topology, and develop the
multi-disciplinary analysis model, for example, electromagnetic-thermal cou-
pled model based on FEM.

(2) Establish the optimization model, including the definition of objectives (such
as maximization of output power and efficiency, and minimization of cost),
constraints (such as volume, mass and temperature rises) and design param-
eters (such as material and structural parameters). The optimization regions of
these parameters and their types, such as discrete and continuous, have to be
defined in this step as well.

(3) Select an optimization method and optimize the established optimization
model. There are many kinds of available optimization methods. The most
popular one is the direct optimization method, which uses an optimization
algorithm to optimize the optimization model established on FEM.

(4) Validate the effectiveness of the obtained optimal solutions by experiments or
other ways. If necessary, update the optimization model in terms of the
experimental results and do the optimization again.

4.2 Classical Optimization Methods

In general, there are two kinds of classical optimization methods, and they are

(1) The direct optimization methods, and
(2) The optimization methods based on approximate models.

The direct optimization methods use the optimization algorithms to directly
optimize the physical models, such as the analytical model, magnetic circuit model,
and FEM for the design of electrical machines. For example, the conjugate gradient
algorithm and sequential quadratic programing algorithm have been employed to

108 4 Design Optimization Methods for Electrical Machines

http://dx.doi.org/10.1007/978-3-662-49271-0_3


optimize several kinds of motors based on the analytical models for electromagnetic
analysis. The most popular formula of this type of methods is the combination of
intelligent algorithms and FEM, such as GA&FEM, DEA&FEM and
MOGA&FEM [2, 7–11].

This approach can present global optimal design schemes for electrical machines.
However, the computational cost of this kind of optimization methods is always
huge due to the extensive computational burdens of FEM, practically for some
complex structured electrical machines requiring 3D FEM, such as the transverse
flux machines (TFM) and claw pole motors. Most importantly, the computational
cost will increase greatly with the increase of problem dimension. For example, for a
motor design problem with four parameters, about 4,000 (4 × 5 × 200, where 4 × 5 is
the population size and 200 the general iteration number of GAs) FEM samples are
needed if the GA&FEM method is applied. However, if a motor has 10 design
parameters, about 20,000 (10 × 5 × 200) FEM samples are required, which is a huge
computational burden for many situations.

An effective way to solve this problem is to use the second kind of optimization
method: the optimization based on approximate models. This method replaces the
FEM with a kind of approximate model, such as RSM and Kriging, so as to form
the optimization method, GA&RSM and GA&Kriging. As mentioned in Chap. 3,
the approximate models can degrade the nonlinearity of the optimization problem.
Therefore, the optimization efficiency can be improved significantly.

This method is relatively simple to implement. However, the optimization
accuracy is an important problem for this kind of methods, particularly for high
dimensional problems. Actually, it is very hard or impossible to replace the FEM
with approximate models for high dimensional problems, because they cannot
approximate high dimensional problems with sufficient accuracy by using limited
number of samples. As we know, the first step in the construction of approximation
models is to obtain the initial samples by using the design of experiments
(DOE) technique. If 5 samples are required for each parameter in a design problem
with ten parameters, 510 FEM samples are required in total, which is greater than
that required by direct optimization method of GA and FEM [1].

Therefore, the classical or traditional direct optimization methods based on both
FEM and the approximation models have challenges for the design optimization of
electrical machines, especially for the high dimensional design optimization
problems. The following sections will present several new optimization methods.

4.3 Sequential Optimization Method

4.3.1 Method Description

In the traditional optimization methods, the optimization models and intelligent
algorithms are processed almost separately though the optimization is indeed a
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simultaneous updating process about them. This is one of the main reasons why the
traditional optimization methods cause huge computational costs. To overcome this
problem, a sequential optimization method (SOM) was developed to reduce the
computational cost for single-objective low-dimensional optimization problems of
electromagnetic devices in 2008 [12, 13].

Figure 4.1 illustrates the optimization strategy of SOM. Assume that square
ABCD is the initial design space and point S is the optimal point. The traditional
direct optimization method, e.g. GA&FEM, searches the whole design space for the
optimal point by an iterative process, and many new samples in the population are
required in the whole design space. However, the optimal point is located in a small
subspace (shown as the shaded rectangle) around point S. If we can find this
interested subspace and sample more points in it instead of the whole design space,
the optimization efficiency would be improved greatly. Based on this idea, the main
question is how to find this subspace efficiently. SOM is a method to deal with this
problem. It can reduce the design space step by step. As shown in Fig. 4.1, it
reduces the design space from ABCD to A′B′CD′ in the first step, then to A″B″CD″
in the second step, and so on until the shaded rectangle is reached in the last step.

Figure 4.2 depicts a brief flowchart of SOM. Basically, SOM can be regarded as
a space-to-space optimization strategy compared with the point-to-point optimiza-
tion strategy of the traditional intelligent algorithms, such as GA and DEA. SOM
consists of two optimization processes, coarse and fine optimization processes. The
main aim of the former is to reduce the design space to a small space (the shaded
rectangle as shown in Fig. 4.1). The purpose of the latter is to update the model in
the local space and find the optimal solutions [12, 13].

SOM is conducted in the following six main steps:

Step 1: Define optimization model, such as objectives, constraints and design
parameters. Select the approximate models and optimization algorithms
that will be used in the SOM, and define the algorithm parameters, such as
population, genetic operators and maximal iteration number.

Fig. 4.1 Optimization
strategy for SOM
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Step 2: Use the coarse optimization process (COP) to reduce the design space.
The traditional optimization methods based on approximate models will
be employed in this step. The DOE is required in this method to generate
samples for the construction of approximate models.

In general, one can assume that the design space of the kth COP is ½xðkÞli ; xðkÞui �,
i ¼ 1; 2; . . .;D, where D is the dimension, lðkÞi the interval of the ith variable,

hðkÞi ¼ hðk�1Þ
i =2 the step size, and NðkÞ

i the sample size, respectively. The sample set
S(k) can be obtained by using a DOE technique, e.g. the full-factor design. Based on
these samples, the approximate model can be constructed. Finally, through the

optimization of the model, the current optimal point xðkÞo ¼ fxðkÞoi ji ¼ 1; 2; . . .;Dg
and objective f ðkÞ can be obtained.

Note that the step size must ensure that the minimum number of sample points is
no less than 3. Otherwise, a singular matrix may appear in the matrix inversion
process of model construction.

Fig. 4.2 Flowchart of SOM
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Step 3: Terminate COP by the step size. If hðkÞi =lð1Þi \d, where d is a positive
constant and can be a value in [1 %, 5 %], stop COP and go to step 5.
Otherwise, go to step 4.

Step 4: Reduce the current design space with the obtained optimal value. Under
the boundary condition of design space, the design space of next step can
be updated as follows:

xðkþ 1Þ
li ¼ max xðkÞli ; round xðkÞoi �Dl

Dh

� �
Dh

� �

xðkþ 1Þ
ui ¼ min xðkÞui ; round

xðkÞoi þDl
Dh

� �
Dh

� �
8>>><
>>>:

; ð4:1Þ

where function round(x) rounds x to the nearest integer, Dl ¼ lðkÞi =nl, Dh ¼ hðkÞi =nh,
and nl and nh are the reduction factors.

For a practical problem, three parameters, nl, nh and N, can be used to determine
the construction of an approximate model. nl can be 4, 6 or 8, meaning that the
corresponding intervals of reduced space are 1/2, 1/3 and 1/4 of the former space,
respectively. nh can be 2, 4, or 8, which let function round(x) round x with 1/2, 1/4
and 1/8 of the current step size, respectively, and N can be 3, 4 or 5 for a stan-
dardization space of [0, 1].

To find the best values of these parameters, the Monte Carlo analysis
(MCA) method is employed. Firstly, assume that the initial design space is [0, 1]
and nl is 4. Then, generate 106 random numbers by using the Monte Carlo method
as the optimal results of an approximate model. Thereafter, use these numbers to
reduce the design space under N = {3, 4, 5} and nh = {2, 4, 8}. The target of this
analysis is to compare the mean of the errors between the current optimal results

and the average of the reduced space ðxðkÞli þ xðkÞui Þ
.
2. Table 4.1 lists the MCA

results for the case of nl = 4. Similarly, Tables 4.2 and 4.3 list the results for the
cases of nl = 6 and nl = 8, respectively.

As shown, the mean error decreases with the increase of N and nh for all three
cases. Thus, in the later implementation, the default value of nh is 8 and N is 5. The

Table 4.1 Mean of errors for
space reduction strategy with
nl = 4

N nh = 2 nh = 4 nh = 8

3 0.0625 0.0469 0.0390

4 0.0555 0.0416 0.0364

5 0.0469 0.0391 0.0352

Table 4.2 Mean of errors for
space reduction strategy with
nl = 6

N nh = 2 nh = 4 nh = 8

3 0.0417 0.0260 0.0200

4 0.0417 0.0278 0.0209

5 0.0260 0.0199 0.0168
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factor nl must be selected in terms of the practical problems. If we have some
experience about the problem or the given space is very large and we want to
reduce the design space quickly, nl = 6 or 8 can be selected. Otherwise, nl = 4 may
be a better choice. In the later discussions, the default value of nl is 4 if there is no
further explanation.

Secondly, to illustrate the efficiency of the new method, two examples are shown
below. For the first example, assume that the initialization of design space is [0, 1]
and the step size is 0.2; which means that six sample points are composed of the first
sample data S(1) = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. If the optimal value is 0.35, the next
sample space is [0.1, 0.6], and the new sample data are S(2) = {0.1, 0.2, 0.3, 0.4, 0.5,
0.6}, i.e. three points have been sampled in the last step. In other words, the com-
putational cost is reduced by 50 %. Similarly, if the optimal value is 0.15, the new
sample space is [0, 0.4], and new sample data are S(2) = {0, 0.1, 0.2, 0.3, 0.4}. In this
case, the computational cost is reduced by 60 %.

The second example is about the value of nh. If nh is 2 and the current optimal
value is 0.5, the next sample space is [0.5, 1.0]. If nh is 8, the next sample space is
[0.25, 0.75]. Therefore, we can minimize the distance between the optimal results
and the average of the next design space by using a bigger nh.

Step 5: Use fine optimization process (FOP) to find the final optimal results. To
ensure the accuracy and robustness of optimization process, the local
multipoint sample updating method is proposed here. Given the current
optimal value, the next sample set S(k+1) is updated by

Sðk þ 1Þ ¼ SðkÞ [ fxðkÞo � DxðpÞo jp ¼ 1; . . .;Npg; ð4:2Þ

which is constructed by Np perturbations around the current optimal value, where
Np is the number of new samples, and can be defined as 2D, meaning that two new
points are sampled for each variable.

Step 6: Terminate the optimization process according to predefined error. If
jDf ðkÞ=f ðkÞj\ e, where ε is a small positive constant, and can be a value in
[1, 5 %], stop the optimization process and output the final optimal results;
otherwise go to step 5 until the termination condition is satisfied.

Table 4.3 Mean of errors for
space reduction strategy with
nl = 8

N nh = 2 nh = 4 nh = 8

3 0.0625 0.0313 0.0195

4 0.0243 0.0243 0.0156

5 0.0313 0.0195 0.0137
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4.3.2 Test Example 1—A Mathematical Test Function

A test function shown in Chap. 3 is used here to verify the efficiency of the
proposed SOM [12], which has the form as

f2ðx1; x2Þ ¼ 0:01
X2
i¼1

½ðxi þ 0:5Þ4 � 30x2i � 20xi�; xi 2 ½�5:12; 5:12� ð4:3Þ

The parameters in SOM are δ = ε = 5 % and N(1) = [5, 5]. The DEA is used as
the optimization algorithm in this example [14]. The algorithm parameters are
chosen as 0.8 for the mutation scaling factor, 0.8 for the crossover factor, 1000 for
the maximum number of iteration, and 100 for the maximum stall generation, which
is selected for the stop criterion [12, 13].

Table 4.4 tabulates the optimization results obtained by SOM with five different
approximate models. They are the general RSM model based on least square
method, improved RSM model based on moving least square (MLS) method,
Gauss RBF model, CSRBF 1 model, and Kriging model. As shown, the obtained
optimal solutions by using the SOM are of good accuracy compared with the exact
values.

4.3.3 Test Example 2—Superconducting Magnetic Energy
Storage

Superconducting magnetic energy storage (SMES) is an attractive research area in
application of superconducting materials. Taking advantage of the property of low
power loss and fast response of superconducting magnets, SMES can be employed
as a multi-functional electromagnetic system to store and release electricity for
power systems with the connection of power electronic converters. SMES is able to
store large amount of energy with very low power losses, so as to improve the
power supply quality and enhance the stability and reliability of power systems.

TEAM Workshop Problem 22 deals with the optimization design problem of a
specific SMES, which is often used as a benchmark problem to verify and compare

Table 4.4 Optimization
results of SOM for an analytic
function

Method x1 x2 f

Exact −4.4538 −4.4538 −5.2328

RSM −4.4060 −4.4060 −5.2299

RSM (MLS) −4.4060 −4.4060 −5.2299

RBF (Gauss) −4.4519 −4.4519 −5.2328

CSRBF 1 −4.4567 −4.4567 −5.2327

Kriging −4.4405 −4.4405 −5.2325
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the efficiencies of different optimization methods [12, 13, 15–19]. This problem
consists of several cases, including low and high dimensional, single- and
multi-objective, and discrete as well as continuous parameter optimization cases.
Figure 4.3 illustrates the optimization structure of this SMES. As shown, it consists
of two solenoids and there are eight design parameters.

For this benchmark problem, there are three optimization objectives as listed
below:

(1) The expect value of the stored energy, E, in this SMES is 180 MJ;
(2) The mean stray fields, Bstray, should be as small as possible; The value of Bstray

can be calculated by Bstray ¼
P21
i¼1

jBi
strayj2
21

� �1=2

, where Bi
stray is the magnetic flux

density evaluated along 21 equidistant points on lines a and b, and
(3) The magnetic field should maintain the superconducting condition of the

storage. The superconducting material employed in this SMES is NbTi.
Figure 4.4 illustrates the critical curve of this material. To ensure the super-
conducting condition, the current density, Ji, in the solenoids and magnetic
field density in the storage must follow the following constraint

jJij � � 6:4jBmaxji þ 54:0 ð4:4Þ

In the optimization case of discrete parameters, the dimensions of the inner
solenoid, R1, h1/2, and d1, are fixed at the values as shown in Table 4.5, and the
current densities, J1 and J2, are fixed at 22.5 A/mm2. The dimensions of the outer
solenoid, R2, h2/2, and d2, are to be optimized to reduce the stray fields while
keeping the stored energy close to 180 MJ. The optimization model is defined as

Fig. 4.3 The geometry
configuration of SMES
(axisymmetric)
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min : f ðxÞ ¼ Bstray=Bnorm

s.t.
hðxÞ ¼ jE=180� 1j ¼ 0
gðxÞ ¼ Bmax � 4:92� 0

�
; ð4:5Þ

where Bnorm = 3 mT, hðxÞ and gðxÞ are two constraints, and gðxÞ is an inequality
constraint concerning the quench condition that guarantees superconductivity. As
the current density is fixed at 22.5 A/mm2, the corresponding Bmax is 4.92 T
obtained by (4.4). In the optimization, the constraints are maintained by using a
penalty function defined as

FðxÞ ¼ f ðxÞþ 1000½hðxÞ2 þmaxðgðxÞ; 0Þ2�: ð4:6Þ

Table 4.6 lists the optimization results for this SMES by using different opti-
mization methods, including direct optimization method and SOM based on dif-
ferent approximate models. The parameters used in SOM are d ¼ e ¼ 2:5% and
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Fig. 4.4 Critical curve of
superconducting material

Table 4.5 Design parameters
and values of SMES for
discrete case

Par. Unit Min Max Step size fixed

R1 m – – – 2.0

R2 m 2.6 3.4 0.01 –

h1/2 m – – – 0.8

h2/2 m 0.204 1.1 0.007 –

d1 m – – – 0.27

d2 m 0.1 0.4 0.003 –

J1 A/mm2
– – – 22.5

J2 A/mm2
– – – 22.5
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Nð1Þ ¼ ½5; 5; 3�. The best solution of this problem given by the TEAM workshop is
also listed in the table. Figure 4.5 illustrates the convergence rates of SOM by using
different approximate models. The first three iteration processes are for the COPs.
The last one or two iteration processes are for the FOPs. The following conclusions
can be drawn from the table and figure:

(1) By using the direct optimization method based on FEM and DEA, the obtained
optimal result is 180.00 MJ for the stored energy (slightly better than the TEAM
value, 179.86 MJ), 3.83 T for the maximum magnetic flux density, and
1.0323mT for themean stray flux density (slightly higher than the TEAMvalue,
0.9084 mT). The objective is 0.3441, which is much higher than the TEAM
objective, 0.3034. To obtain this optimal result, 2310 FEM samples are used.

(2) By using the SOM based on RSM, the obtained optimal result is 179.68 MJ
for the stored energy, 0.9051 mT for the mean stray flux density, and 0.3049
for the objective. The obtained objective is lower than that obtained by the

Table 4.6 Optimization results of SMES

Par. R2 h2/2 d2 E Bmax Bstray F FEM

Unit m m m MJ T mT – –

TEAM 3.08 0.239 0.394 179.86 4.73 0.9084 0.3034 –

DEA 3.18 0.428 0.211 180.00 3.83 1.0323 0.3441 2310

RSM 3.08 0.246 0.382 179.68 4.70 0.9051 0.3049 164

RSM-MLS 3.10 0.274 0.337 179.93 4.53 0.9171 0.3058 171

RBF-Gauss 3.16 0.365 0.244 179.95 3.94 0.9573 0.3192 202

CSRBF1 3.11 0.267 0.340 179.94 4.50 0.9431 0.3145 157

Kriging 3.11 0.267 0.340 179.94 4.50 0.9431 0.3145 157
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Fig. 4.5 Convergence rates
of SOM by using different
models
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direct optimization method and close to the TEAM value. Most importantly,
this method requires only 164 FEM samples to obtain the optimal result.
Figure 4.6 depicts these samples using “+”, “×” and “∙” to denote the points
sampled from three COPs, and “o” the points sampled in the FOP. As shown,
the samples are distributed non-uniformly in the whole design space, and the
sampling processes approach the final optimal solutions step by step.

Figure 4.7 illustrates the magnetic flux density distribution in the SMES for this
optimal solution. As shown, the maximal flux density is 4.702 T, which is very
close to 4.70 T, the value listed in Table 4.6.

Therefore, SOM based on RSM has high optimization efficiency while main-
taining the accuracy of optimum.

(3) The detailed optimization results of SOM based on other models are shown in
Table 4.6. As shown, all optimal objectives obtained from SOM with different
models are slightly higher than the TEAM value and smaller than that of DEA.
Both the SOM based on CSRBF1 model and the SOM based on Kriging
model used only 157 FEM samples, which is 6.8 % (=157/2310) of that used
by the DEA method.
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Fig. 4.6 Total FEM samples required by RSM-SOM
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In summary, all solutions obtained by the SOM based on various models are
better than that of the direct optimization or DEA method, and there is not much
difference between the approximate models. In other words, SOM has high opti-
mization efficiency whereas the model type does not affect its optimization accuracy
very much. Unlike the case presented in Chap. 3 that MLS is better than LSE for
RSM and CSRBF is better than RBF, they do not have much difference within the
framework of SOM. On the other hand, the MLS and CSRBF require extra
parameters, which make them more complex compared with RSM, RBF and
Kriging. Therefore, RBF and Kriging are two good models for SOM.

4.3.4 Improved SOM

As mentioned in the above section, space reduction strategy plays an important role
in SOM. The design purpose of the former space reduction strategy is to minimize
the distance between the mean of next design range and the optimal result [12]. It is
accurate from the point of view of distance minimization, but it has not considered
the issue that reduces the number of FEM samples effectively. To make full use of
most points sampled in the last set, we present a new space reduction strategy in this
section.

Assume xðkÞ ¼ ½xðkÞli ; xðkÞui � is the boundary of the ith variable in the kth opti-
mization process, lðkÞ the interval, hðkÞ the step size, NðkÞ the number of sample

Fig. 4.7 Field analysis by ANSYS for SMES
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points, SðkÞ the sample set, and xðkÞo and f ðkÞ are the optimal result and corresponding
function value, respectively. The new space reduction strategy consists of the fol-
lowing two steps.

Reduction step:

x̂ðkþ 1Þ
li ¼ max xðkÞli ; round

xðkÞoi � Dl
Dh

 !
Dh

( )
; ð4:7Þ

x̂ðkþ 1Þ
ui ¼ min xðkÞui ; round

xðkÞoi þDl
Dh

 !
Dh

( )
: ð4:8Þ

Correction step:

xðkþ 1Þ
li ¼ xðkÞli þ round

2ðx̂ðkþ 1Þ
li � xðkÞli Þ

hðkÞi

 !
hðkÞi

2
; ð4:9Þ

xðkþ 1Þ
ui ¼ xðkÞli þ round

2ðx̂ðkþ 1Þ
ui � xðkÞli Þ

hðkÞi

 !
hðkÞi

2
; ð4:10Þ

where round(x) is a function to round x to its nearest integer, Dl ¼ lðkÞi =nl,

Dh ¼ hðkÞi =nh, and nl and nh are the two reduction factors with defaults 4 and 8,
respectively [20].

To check the efficiency of the new method, a comparison with the former space
reduction strategy is conducted.

As an example, assume that the initial design space is [0, 1], N = 6, and the
uniform sampling method is used. The first sample data is then S(1) = {0.0, 0.2, 0.4,
0.6, 0.8, 1.0}, and the optimal value is supposed as 0.35. By the former space
reduction strategy, the next design space is [0.1, 0.6], and the next sample set
S(2) = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. Thus, 3 sample points have been sampled in S(1),
or 50 % computation cost is saved. On the other hand, by the new space reduction
strategy, the next sample space is [0.2, 0.6], and S(2) = {0.2, 0.3, 0.4, 0.5, 0.6},
resulting in a save of 60 % computation cost, which is better than the former
strategy.

As another example, if the optimal value is 0.3, the next sample space is [0.05,
0.55] by the former strategy, and S(2) = {0.05, 0.15, 0.25, 0.35, 0.45, 0.55}. Thus,
no sample point has been sampled. By the new strategy, however, the next sample
space is [0.0, 0.6], and S(2) = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. Thus, 4 sample
points have been sampled in the S(1), resulting in a reduction of 57.14 % compu-
tation cost.

Therefore, the new strategy is more effective than the former one.
Table 4.7 shows mean saving rates of sample points for the former and new

space reduction strategies by using MCA. For each strategy and every sample
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number N, 106 random numbers are generated as the current optimal points by
Monte Carlo method. Then, the mean saving rate is obtained for each case. As
shown, all saving rates by the new strategy are more than 50 %, which are higher
than those obtained by the former strategy [20].

Table 4.8 lists the optimization results of the SMES by using two kinds of RBF
models. As shown, the Gauss RBF model gives the best result, and the
multi-quadrics (MQ) RBF model requires the least number of FEM samples.
Furthermore, either RBF model requires less than 1/10 of the FEM samples needed
by DEA.

4.3.5 A PM Claw Pole Motor with SMC Stator

A three-phase PM claw pole motor is investigated in this section to demonstrate the
efficiency of the improved SOM. Figure 4.8 shows the stator part and FEM region
for this motor [21, 22]. It can be seen that 3D FEM is required for the performance
analysis of this motor. The stator of this motor is made of SMC material. Figure 4.9
shows a molded SMC claw pole disk. This motor was designed to deliver a power
of 60 W at 3000 rev/min to replace an existing single-phase induction motor in a
dishwasher pump. Table 4.9 lists the design dimensions of this motor.

Figure 4.10 illustrates the prototype of this claw pole motor fabricated with the
dimensions shown in Table 4.9. Figure 4.11 shows the measured motor speed
against DC link voltage with different loads. It is found that the estimated perfor-
mance parameters calculated from the FEM-based method agreed well with the
experimental results, for example, the inductance. More details can be found in
[21]. Therefore, it is reliable to use the FEM to optimize the investigated motor.

Table 4.7 Mean saving rates
by two strategies of SOM

N 3 4 5 6

Former 0.2293 0.2531 0.2428 0.2375

New 0.5415 0.5383 0.5334 0.5221

Table 4.8 Optimization
results of SMES by using
improved SOM

Par. Unit DEA Gauss MQ

R2 m 3.18 3.12 3.07

h2/2 m 0.428 0.309 0.295

d2 m 0.211 0.295 0.328

E MJ 180.00 179.94 179.64

Bstray mT 1.0323 0.9300 0.9657

Bmax T 3.83 4.31 4.60

F – 0.3441 0.3101 0.3259

FEM – 2310 214 129
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Regarding the optimization of this motor, the objective is chosen to minimize the
material cost while maximizing the output power or torque at 3000 rev/min. The
outer radius and axial length, or volume, of the motor is fixed in the optimization.
The material cost mainly includes the costs of PM, copper, SMC core, and steel.

(a) (b)

Fig. 4.8 a Molded stator of a PM claw-pole motor, and b FEM region of a pole of a stack

Fig. 4.9 Molded SMC
claw-pole disk

Table 4.9 Main design
dimensions and variables

Par. Description Unit Value

– Number of poles – 12

Rso Stator outer radius mm 33.5

Rsi Stator inner radius mm 21.5

bs Width of side wall mm 6.3

hrm Radial length of magnet mm 3.0

ρ SMC core’s density g/cm3 5.8

g1 Air gap mm 1.0

hp Claw pole height mm 3.0

hsy Stator yoke thickness mm 3.0

Nc Number of winding turns turn 256
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Three constraints are also considered. The optimization model can be defined as the
following

min: f ðxÞ¼Cost
C0

þ P0

Pout
s.t: g1ðxÞ ¼ 0:78� g� 0

g2ðxÞ ¼ 60� Pout � 0
g3ðxÞ ¼ Jc � 4:5� 0

ð4:11Þ

where C0 and P0 are the cost and output power of the initial prototype, 0.78 and 60
the rated values of efficiency (η) and output power (Pout), respectively for the initial
design, and the last constraint is the current density, Jc, of winding, which should be
no more than 4.5 A/mm2 in terms of its specifications [22].

From previous design experience, three parameters Rsi, bs and hrm, are important
to the motor performance. Therefore, they are selected as the optimization variables.
Table 4.10 lists the optimization results by using improved SOM and Kriging
model. As shown, the obtained output power and material cost are 98 W and $8.99,
which are better than those of the initial design (60 W and $14.18). Meanwhile,
only 197 FEM samples are reuqired by improved SOM to obtain the optimal

Fig. 4.10 Experimental setup
for the test of prototype

Fig. 4.11 Speed versus DC
link voltage with constant
torque
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solution. Compared with the samples required by direct optimization method, for
example, DEA requiring about 3 × 5 × 170 or 2550 FEM samples to obtain the
optimization results, where 3 × 5 is the population size and 170 the average iteration
number, 92.27 % of FEM computation cost has been saved. Therefore, the
improved SOM is efficient for low-dimensional electromagnetic design problems.

4.4 Multi-objective Sequential Optimization Method

Multi-objective design optimization problems of electrical machines and electro-
magnetic devices have attracted great amount of research interests recently. Various
design examples and benchmark problems have been proposed, such as TEAM
Problems 22 (SMES) and 25 (die-press model) [17, 23–25]. To deal with these
problems, many evolutionary multi-objective optimization algorithms have been
employed, such as MOGA and multi-objective particle swarm optimization
(MPSO) algorithm.

These algorithms have been proven efficient by many test functions and engi-
neering examples, e.g. the TEAM workshop problems. The greatest advantage of
these methods is that the designer can obtain a set of Pareto optimal solutions by a
single run. For a practical design requirement, one only needs to choose the best
from the obtained Pareto solutions, rather than to run the algorithm again. Thus,
these algorithms can improve the computational efficiency for engineering appli-
cations with the obtained Pareto solutions.

For practical design optimization of industrial electromagnetic devices, the
implementation process can be usually very time-consuming because of the use of
FEM which takes most of the optimization time, especially for some complex
electromagnetic devices, e.g. 3D flux PM motors. Therefore, how to efficiently
employ these algorithms to deal with the multi-objective design problems of
industrial electromagnetic devices of complex structures is still an open problem
[23, 25, 26]; and not much work has been reported in the literature.

To address this problem, an alternative method is to use approximate models.
Many kinds of approximate models, which are widely used in single-objective

Table 4.10 Optimization
results of the SMC claw pole
motor

Par. Unit Initial SOM

Rsi mm 21.50 18.50

bs mm 6.30 4.00

hrm mm 3.00 2.00

η % 78 83

Pout W 60 98

Torque Nm 0.19 0.31

Cost $ 14.18 8.99

fm – 2.00 1.25

FEM – – 197
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optimization, have been investigated in multi-objective optimization problems as
well, such as RBF and Kriging models [25]. For this approach, the optimization
efficiency depends highly on the model accuracy, which in turn depends on the
sampling method and model type. As mentioned previously, the high level and full
factor sampling method has been used in many researches because of its capability
of producing an accurate solution. However, its computational cost may be
expensive in many situations. Meanwhile, it should be noted that there are some
key differences between single- and multi-objective optimizations based on
approximate models. Each objective or constraint in the multi-objective optimiza-
tion has its own characteristic, such as linear or nonlinear, convex or non-convex,
and maximal or minimal value, and thus how to ensure the same modeling accuracy
for all models is a key issue.

A multi-objective sequential optimization method (MSOM) is presented to deal
with these problems in this work. A test function and a 3D PM TFM will be
investigated to show the efficiency of the proposed method.

4.4.1 Method Description

Generally, a multi-objective optimization model has the form as

min : ff1ðxÞ; f2ðxÞ; . . .; fpðxÞg
s.t: giðxÞ� 0; i ¼ 1; 2; . . .;m

xl � x� xu; x ¼ ½x1; . . .; xD�T
; ð4:12Þ

where p, m and D are the numbers of objectives, inequality constraints and vari-
ables, respectively.

In general, the solutions of a multi-objective optimization problem can be
illustrated as a Pareto optimal set, and its front is not a point, but a continuous or
non-continuous curve or surface. Thus, we should pay more attention to the sub-
space as shown in Fig. 4.12 which includes all these Pareto points and seek for a
new method to sample more points in this subspace rather than the total design

(a) (b)Fig. 4.12 Design idea of
MSOM, a 2D illustration,
b 3D illustration
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space. This approach may improve the modeling efficiency because it includes the
investigation of model characteristic.

Figure 4.13 shows the flowchart of MSOM, which mainly includes the following
three steps [23]:

(1) Generate an initial sample set S(0), and construct Kriging models for all FEMs
in the design optimization problem (4.12) to get a Kriging multi-objective
optimization model.

(2) Optimize the Kriging multi-objective optimization model with a
multi-objective optimization algorithm, for example, NSGA II, and get the
Pareto optimal solutions P(k). Then compute the root mean square error
(RMSE) of the obtained Pareto points for each model. If all the RMSEs are no
more than a constant ε, output the solutions; otherwise go to the next step.

(3) Update the sample set S(k) and Kriging model. As the constructed models are
getting more and more accurate through the optimization process, the true
Pareto solutions are probably located around the current P(k). To improve the
modeling efficiency, a modified central composite design (CCD) sampling
method is presented to update the sample sets.

The CCD is a classic sampling method for the construction of RSM. It divides the
samples into two subsets, one for the property estimation of the linear term, and the

Fig. 4.13 Flowchart of MSOM
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other for the curved surface. It is claimed to be superior in the modeling of RSM [27].
Considering that RSM was used as the determined term in the Kriging model, a
modified CCD sampling method has been presented in our previous work.
Figure 4.14 shows two illustrations of the proposed method for (a) a two-variable
case, and (b) a three-variable case. The circle points in the figure are the Pareto points.
The triangle points (with number of 2D) are sampled by the two levels full factor
design method. The square points (with number of 2D) in the axial direction are the
peaks of circumscribed circle or sphere. The relationship between the diameter (d) of
the circle (sphere) and the side length (l) of the square (cube) is d ¼ l

ffiffiffiffi
D

p
. For the kth

optimization step, the side length is defined as half of the step size in the last step.

4.4.2 Example 1—Poloni (POL) Function

POL function investigated in Chap. 3 is a classic test function for multi-objective
optimization methods as its Pareto optimal solutions are not continuous and
non-convex [23, 28]. It is rewritten as (4.13). Figure 4.15 illustrates the two
objectives of this function.

min :
f1ðx1; x2Þ ¼ 1þðA1 � B1Þ2 þðA2 � B2Þ2
f2ðx1; x2Þ ¼ ðx1 þ 3Þ2 þðx2 þ 1Þ2

(
; ð4:13Þ

A1 ¼ 0:5 sin 1� 2 cos 1þ sin 2� 1:5 cos 2
A2 ¼ 1:5 sin 1� cos 1þ 2 sin 2� 0:5 cos 2
B1 ¼ 0:5 sin x1 � 2 cos x1 þ sin x2 � 1:5 cos x2
B2 ¼ 1:5 sin x1 � cos x1 þ 2 sin x2 � 0:5 cos x2

�p� x1; x2 � p

:

In the optimization, a controlled elitist multi-objective genetic algorithm (a
variant of NSGA II) in MATLAB is used in this example. Except for the population
size, all other parameters use the default values, e.g. the default Pareto fraction is
0.35, and the default value of ε in MSOM is 1 %.

(a) (b)Fig. 4.14 Illustrations of the
modified CCD sampling
method, a 2D, and b 3D
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Figure 4.16 illustrates the Pareto optimal solutions obtained by two methods, the
direct function optimization with NSGA II and the proposed MSOM. For the latter
case, only one model updating process is needed to get the final Pareto solutions. As
shown, the Pareto solutions of this function are separated to two parts. It is
non-continuous on the whole. The Pareto front of the 2nd Kriging model (k = 2 in
MSOM) fits that from the true function very well. Figure 4.17 illustrates the total
sample points sampled by MSOM which includes only 109 points. As shown, the
obtained samples are non-uniformly distributed in the whole space and include
more points in the subspace to which the Pareto points belong, so that the sampling
efficiency can be improved by the proposed method.

(a) (b)

Fig. 4.15 POL function: f1 (left) and f2 (right)
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Fig. 4.16 Pareto solutions of
POL function
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4.4.3 Example 2—A PM Transverse Flux Machine

In our previous work, a PM TFM with soft magnetic composite (SMC) stator core
was developed [1, 29–32]. A multi-objective design optimization is conducted here
for the broad industrial applications of this machine. A PM-SMC TFM prototype
was illustrated previously in Fig. 2.3, Chap. 2 This machine was initially designed
to deliver an output power of 640 W at 1800 rev/min. Table 2.1 tabulates the main
dimensions. Figure 2.6 illustrates the FEM model used in ANSYS. The computa-
tion of FEM of this machine is very time-consuming as 3D FEM is required for the
performance evaluation.

To get reliable analysis and optimization results, the analysis model based on
FEM (as shown in Fig. 2.6) should be verified by experimental results. Figures 4.18,
4.19, 4.20 and Table 2.2 show the calculated and measured key parameters for this
machine. Figure 4.18 shows the measured motor speed against output torque with
different DC link voltages. Figure 4.19 illustrates the measured electromotive force
(EMF) waveforms at 1800 rev/min. The measured motor back EMF constant is 0.
244 Vs, which is 1 % lower than the calculated value of 0.247 Vs. The calculated
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updated samples

Fig. 4.17 Sample points by
using MSOM

Fig. 4.18 Speed against
output torque with different
DC link voltages
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phase resistance and inductance, and maximal cogging torque are 0.310 Ω, 6.68 mH
and 0.339 Nm, respectively, which are very close to the measured values of 0.305Ω,
6.53 mH and 0.320 Nm. Figure 4.20 shows the measured curves of the input power,
output power, and efficiency against the output torque. It is found that the estimated
performance parameters calculated from FEM-based method are well aligned with
the experimental results, such as the inductance and cogging torque. Therefore, all
the experimental results have verified the effectiveness of this FEM-based analysis
method, and it is reliable to be used for optimizing the electrical machine under
investigation.

The multi-objective optimization model of this machine can be defined as

min :
f1ðxÞ = Cost(PM) + Cost(Cu)
f2ðxÞ¼ 640� Pout

�

s.t:

g1ðxÞ ¼ 0:795� g� 0;
g2ðxÞ ¼ 640� Pout � 0;
g3ðxÞ ¼ sf � 0:8� 0;
g4ðxÞ ¼ Jc � 6� 0:

8>><
>>:

ð4:14Þ
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where η and Pout are the efficiency and output power of the machine, respectively, sf
is the winding fill factor, and Jc in A/mm2 is the current density of the copper wire.
The first objective cost mainly consists of the costs of PM and copper winding.
Four parameters are selected as the optimization variables in this work. They are
circumferential angle and axial width of PM, and the number of turns and diameter
of copper wire winding. These are the significant parameters for the objectives from
our previous design experience [30].

For this problem, three model updating processes (k = 3 in MSOM) are needed
for the MSOM to get the final Pareto solutions as shown in Fig. 4.21, which
includes the initial and the last Pareto points of MSOM. Figure 4.21 also illustrates
the Pareto points obtained by the direct optimization of FEM with NSGA II. As
shown, the Pareto front from the MSOM fits that from FEM very well. Moreover,
the needed FEM sample points of MSOM are only 556, which is about 6 % that by
the direct multi-objective optimization of FEM, in which about 10,000 FEM
samples are needed [23].

4.5 Sensitivity Analysis Techniques

In high dimensional design optimization problems, some design parameters relate to
the objectives more significantly than others. Ignoring this fact and optimizing all
design parameters in a single level (at the same time) may result in huge computing
cost. For example, the optimization process of a motor with 10 parameters (dimension
D = 10) by using the GA and FEMwith the population size of 50 (5 ×D) and iteration
number of 200 requires about 10,000 (50 × 200) samples, which can be a huge
computational burden for many motors, especially those requiring 3D FEM.
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On the other hand, it is impossible to replace the FEM with approximate models,
such as RSM and Kriging model, because they cannot approximate highly
dimensional problems with sufficient accuracy by using reasonably small number of
samples. For example, the first step in the construction of approximation models is
to use the DOE technique to obtain the initial samples. If 5 samples are required for
each parameter, in total, 510 FEM samples are required, which is greater than those
required by direct optimization method of GA and FEM.

Therefore, the traditional direct optimization method based on FEM and the
approximation models cannot solve the highly dimensional design optimization
problems. To solve these problems, a multi-level optimization method was pre-
sented for electrical machines and drive systems and other electromagnetic devices
in our previous work [22, 33, 34]. The main idea of the multi-level optimization
method is that the high dimensional design space can be divided into two or several
low dimensional design spaces in terms of the order of their sensitivities. The
detailed discussion of multi-level optimization method will be presented in the next
section and Chaps. 5 and 6. This section presents a brief investigation for sensitivity
analysis (SA) techniques. In general, there are four types of techniques for the
significance analysis of parameters in the design of PM motors. They are the sizing
equation [35–37], local sensitivity analysis (LSA) [38], global sensitivity analysis
[39–42], and analysis of variance (ANOVA) [22, 27] techniques, respectively. The
last one, ANOVA, is based on the DOE technique. Two of them, LSA and DOE
will be introduced in the following sections.

4.5.1 Local Sensitivity Analysis

Assume that f(x) is the objective function (such as output power, torque and cost) to
be optimized. Mathematically, the sensitivity of the ith parameter, xi, at the point x0
can be defined as

Si ¼ @f ðxÞ
@xi

����
x¼x0

ð4:15Þ

where Si is the sensitivity. The larger the Sij j, the more sensitive the objective
function f(x) is to the parameter xi [22, 38].

It should be noted that an analytical expression of objective function is required
in (4.15). However, there is no analytic form of objective function if motor’s
performance is calculated by using FEM. In this case, a differential form of (4.15)
should be used to calculate the sensitivity as the following

Si ¼ f ðx0 � DxiÞ � f ðx0Þ
�Dxi

ð4:16Þ
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where Δxi is the increment of parameter xi. In general, there are two methods to
determine this increment. The first one is known as the parameter variation method,
in which Δxi is usually defined as 10, 20 % or both of its initial value. The other
method is known as the deviation variation method, in which Δxi is usually defined
as the standard deviation of xi . In this work, as the parameter’s deviation is not
given, the first method will be used to calculate the sensitivity.

As an example, let us consider the output power as the objective and the
dimensions of PMs, such as width, x1, and height, x2, as the design parameters. The
sensitivity of PM width can be calculated as the following. Firstly, apply ±10 %
perturbations to the PM width, and calculate the objective function (the output
power) corresponding to the two samples, i.e. (1 − 10 %)x1 and (1 + 10 %)x1.
Secondly, calculate the relative errors of these two samples by comparing the
objective function of these two samples to that obtained from the initial reference
point (x0). Finally, the average of absolute values of these two relative errors is
taken as the sensitivity of PM width on the output power.

It should be noted that different parameters have different units. To make the
obtained sensitivity values comparable, a normalization step below is needed

SSi ¼ @f ðxÞ=f ðxÞ
@xi=xi

¼ @f ðxÞ
f ðxÞ

1
d
� Df ðxÞ

f ðxÞ
1
d

ð4:17Þ

where δ is the ratio of changed amplitude of parameter xi. By taking this normal-

ization, only the ratios of Df ðxÞ
f ðxÞ are compared to acquire the sensitivity value for each

of the design parameters.

4.5.2 Analysis of Variance Based on DOE

Basically, DOE is a kind of statistical method which has been widely used in the
design and data analysis of experiments in many areas, such as experiments in
agriculture, chemistry, and industrial design. The main aim of DOE is to arrange an
efficient experiment with smaller number of experiments, shorter experimental
cycle, and lower experimental cost, so as to obtain good experimental results and
scientific analysis conclusions. There are two types of DOE techniques, the full
factor design and partial factor design. The latter includes many further types, such
as orthogonal design and Latin hypercube design [22, 27].

ANOVA is a technique based on DOE, which can be used to determine the
significant factors from all the design parameters. To implement the ANOVA, an
experiment table should be designed firstly by using DOE. The full-factor design
and orthogonal design are the two most popular DOE techniques. Because of the
high dimensional feature of motor design, it is time consuming to use the full-factor
method. For example, a motor design optimization problem of 8 parameters would
need 28 or 256 samples if a two-level full-factor design scheme is used. However,
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only 12 samples are needed if the orthogonal design is used. Similarly, 38 or 6,561
samples are needed if a three-level full-factor design scheme is used, whereas if we
use the orthogonal design, only 27 points are needed. Therefore, orthogonal design
should be a good choice for most motor design optimization problems.

To implement the orthogonal design, the first step is to select an orthogonal
design table from available tables. Table 4.11 shows an orthogonal design table of
L9(3

4), where subscript 9 indicates the number of experiments, and 3 the levels for
each parameter, while superscript 4 indicates that this table can be used for a
problem with no more than 4 design parameters and no interactions between them.
Then, the numbers 1, 2, and 3 in the table are the corresponding levels for each
parameter. Table 4.12 illustrates an orthogonal design table of L12(2

11), which can
be used for a problem with no more than 11 design parameters and no interactions
between them. Similarly, there are many available orthogonal design tables, such as
L12(2

41), L16(4
5), and L27(3

13).

Table 4.11 The orthogonal
design table of L9(3

4)
No of exp. Par. 1 Par. 2 Par. 3 Par.4

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

Table 4.12 The orthogonal design table of L12(2
11)

No of exp. Parameter no.

1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 2 2 2 2 2 2

3 1 1 2 2 2 1 1 1 2 2 2

4 1 2 1 2 2 1 2 2 1 1 2

5 1 2 2 1 2 2 1 2 1 2 1

6 1 2 2 2 1 2 2 1 2 1 1

7 2 1 2 2 1 1 2 2 1 2 1

8 2 1 2 1 2 2 2 1 1 1 2

9 2 1 1 2 2 2 1 2 2 1 1

10 2 2 2 1 1 1 1 2 2 1 2

11 2 2 1 2 1 2 1 1 1 2 2

12 2 2 1 1 2 1 2 1 2 2 1
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After the DOE step, ANOVA can be used to determine the significance of each
parameter. ANOVA is a family of multivariate statistical technique for helping infer
whether there are real differences between the means of three or more groups or
variables in a population, based on the sample data. In order to determine whether
the differences are significant, ANOVA is concerned with differences between the
samples, known as the variance. By comparing the variance among sample mem-
bers, the differences are considered to be significant if the variance is larger between
samples. Therefore, ANOVA can be regarded as a statistical test that looks for
significant differences between means.

The understanding of ANOVA requires the background of multivariate statistics.
Fortunately, its implementation is very simple and can be realized by various
software packages, such as SPSS, Minitab, Matlab, and Excel.

4.5.3 Example Study—A PM Claw Pole Motor

This section presents an example for the sensitivity analysis of a PM claw pole
motor investigated in SOM. Six design parameters listed in Table 4.9 (Rsi, bs, hrm,
g1, hp and hsy) will be investigated for the sensitivity analysis of this motor by using
LSA. Table 4.13 lists the samples needed for the data analysis of LSA. For each
parameter, its initial value and four variation amplitudes, −20, −10, 10, and 20 %
will be considered. Totally, 25 samples are needed for the calculation, which
includes 24 points for those four variations (−20, −10, 10, and 20 %) of six
parameters and 1 initial sample (“0” column in the table).

Table 4.14 tabulates the analysis data obtained from the LSA technique. For the
sake of comparison, an average column, i.e. mean sensitivity, is listed in this table.
The sensitivity order can be obtained from the data in this column as

bsj j[ hrmj j[ Rsij j[ g1j j[ hp
�� ��[ hsy

�� �� ð4:18Þ

To balance the optimization framework, we can take three of them as the sig-
nificant factors, which are Rsi, bs, and hrm. Actually, they are the parameters used
for the analysis of improved SOM in Sect. 4.3.5 [22].

Table 4.13 Samples for LSA Par. Amplitude variations of parameter (δ)

−20 % −10 % 0 10 % 20 %

Rsi 17.2 19.35 21.5 23.65 25.8

bs 5.04 5.67 6.30 6.93 7.56

hrm 2.40 2.70 3.00 3.30 3.60

g1 0.80 0.90 1.00 1.10 1.20

hp 2.40 2.70 3.00 3.30 3.60

hsy 2.40 2.70 3.00 3.30 3.60
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4.6 Multi-level Optimization Method

4.6.1 Method Introduction

Figure 4.22 illustrates the flowchart of the multi-level optimization method or
sequential subspace optimization method. This method is mainly proposed to
improve the optimization efficiency of high dimensional design optimization
problems of electrical machines and other electromagnetic devices. It consists of the
following main steps [1, 22, 33, 34].

Step 1: Define the optimization problems, including objectives, constraints,
design parameters and their ranges.

Step 2: Implement sensitivity analysis for all design parameters, and obtain the
order of sensitivities of them.

Step 3: Divide the initial high dimensional design space into two or three low
dimensional subspaces in terms of the sensitivity order of design param-
eters obtained in Step 2. Consider the situation of three subspaces as an
example. The first subspace (X1) includes all highly significant factors,
and the second subspace (X2) consists of all significant factors, while the
third subspace (X3) all non-significant factors.

Step 4: Optimize the highly significant factor subspace X1. In the implementation,
the initial parameters in X2 and X3 are fixed.

Step 5: Optimize the significant factor subspace X2. In the implementation, the
parameters in X1 are fixed at the solutions from Step 2, and the parameters
in X3 are fixed at those in Step 4.

Step 6: Optimize the non-significant factor subspace X3. In the implementation,
the parameters in X1 and X2 are fixed at the solutions from the last two
steps.

Step 7: If the objective meets the specification, output the optimal solutions.
Otherwise, update the parameters in X2 and X3, and go to Step 4 and
conduct the optimization again till convergence.

Table 4.14 Sensitivity analysis data for claw pole motor

Par. Amplitude variations of parameter (δ) Sensitivity

−20 % −10 % 0 10 % 20 %

Rsi 0.002 −0.012 0 0.027 0.066 0.0267

bs −0.071 −0.045 0 0.079 0.244 0.1095

hrm −0.100 −0.051 0 0.051 0.101 0.0754

g1 −0.018 −0.010 0 0.009 0.020 0.0141

hp 0.011 0.004 0 −0.003 −0.004 0.0053

hsy −0.003 −0.002 0 0.001 0.002 0.0019
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It should be noted that two subspaces maybe reasonable for some problems. In
that case, combine X1 and X2 into one subspace, which may be known as the
significant factor subspace. Meanwhile, the dimension of subspace is much smaller
than that in the initial space. Thus, the traditional direct optimization methods and
approximate models can be used in each of them.

Fig. 4.22 Flowchart of multi-level optimization method
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4.6.2 Example Study—SMES

Figure 4.3 illustrated a benchmark design example about the SMES. A three
parameter discrete optimization case has been investigated in Sect. 4.3.3. This
section will investigate an eight parameter continuous case. Table 4.15 lists the
scope of these eight parameters. From the previous discussion, it can be found that
those eight parameters can be divided into two subspaces in terms of their signifi-
cances. One subspace involves the four parameters of inner coil {R1, h1, d1, J1}, and
the other one includes the other four parameters of outer coil {R2, h2, d2, J2} [33].

Table 4.16 shows obtained optimization solutions for this continuous case of
SMES. As shown, 4720 FEM samples are needed for DEA to get the optimal
solution under the direct optimization framework. The optimal stored energy in
SMES is 178.75 MJ (the error is 1.25 MJ), and mean stray field is 2.27 mT.

By the multi-level optimization method, only 1078 FEM samples are needed for
the optimization, which is less than 1/4 of that by DEA. The resultant optimal mean
stray field is 3.23 mT, slightly higher than that by DEA, and the error of energy is
1.01 MJ which is smaller than that given by DEA. Therefore, the proposed

Table 4.15 Design
parameters of SMES under
continuous case

Parameter Unit Min. Max.

R1 m 1.0 4.0

R2 m 1.8 5.0

h1/2 m 0.1 1.8

h2/2 m 0.1 1.8

d1 m 0.1 0.8

d2 m 0.1 0.8

J1 A/mm2 10.0 30.0

J2 A/mm2 10.0 30.0

Table 4.16 Optimization
results for SMES under
continuous case

Var. Unit DEA Multi-level

R1 m 2.382 2.662

R2 m 3.377 4.015

h1/2 m 1.118 1.049

h2/2 m 0.366 0.421

d1 m 0.188 0.223

d2 m 0.653 0.368

J1 A/mm2 22.57 18.09

J2 A/mm2 11.06 11.08

Bstray mT 2.27 3.23

E MJ 178.75 178.99

FEM – 4720 1078
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multi-level optimization method is more efficient than DEA for high dimensional
design problems of electromagnetic devices. It will be employed to optimize
electrical machines and drive systems in the following two chapters.

4.7 Multi-level Genetic Algorithm

4.7.1 Problem Matrix

The aforementioned multi-level optimization method is based on the space division
strategy. The following multi-level optimization method is mainly based on a kind
of intelligent optimization algorithm called multi-level genetic algorithm (MLGA).
It presents an alternative and efficient way to implement the multi-level optimiza-
tion for electrical machines as well as other electromagnetic devices and systems
[43–46].

In MLGA, the relationship between the design variables, constraints, and
objective functions can be described by the problem matrix, as shown in Fig. 4.23.
The design variables may be assigned into different sub-vectors according to the
relationships between design variables. The variables which have close relationship
should be allocated to the same sub-vector.

In the figure, the symbols Pijði ¼ 0; 1; . . .; n; j ¼ 0; 1; . . .;mÞ are the coefficients
indicating the relative importance between the design variables and objective
functions, as well as constraints in the correlation analysis [44]. The P value tests
whether there is sufficient evidence that the correlation coefficient is not zero. The
greater the P value is, the less the relative importance of the design variable to the
objective function is. The samples of variables are determined by the DOE. Some
commercial statistic software packages, such as SPSS and Minitab, can provide the
modules for relative importance analysis.

According to the P values in the problem matrix, the design variables may be
arranged on diverse levels. For one objective function, the variables possessing
similar P values will be managed on the same level.

Design parameters x1 x2 x3 x4 … xm

Objective function P01 P02 P03 P04 … P0m

Constraint 1 P11 P12 P13 P14 … P1m

Constraint 2 P21 P22 P23 P24 …

…… … … … … …

P2m

Constraint n Pn1 Pn2 Pn3 Pn4 … Pnm

Fig. 4.23 Structure of
problem matrix for MLGA
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4.7.2 Description of MLGA

The traditional GA creates a vector (chromosome) encoded by all the design
variables and then applies evolution operation to all the individuals described as
chromosomes in one population. In MLGA the design optimization variables are
classified and allocated to different levels according to the relative importance
between the variables and objective functions, constraints, as well as the practical
engineering weighting factors and optimization sequence. The variables on different
levels are encoded independently. Each level may have multiple populations and
each of them can adopt different genetic operators and parameters. The relationship
between sub-problems in multi-level problems can be handled by MLGA.

The architecture of MLGA is illustrated in Fig. 4.24. As shown, the upper level
(GA1) is the master GA module. The second (GA2i) and third (GA3i) consist of a
number of modules (or subsystems). The GA in one subsystem will be affected by
other modules. The module in the upper level of the MLGA acts not only as a
solver of the corresponding sub-problem, but also as a coordinator and controller of
the modules on the lower level. This means that the lower level module GAij will be
affected by the upper level module GAi�1;j, and even by the adjacent modules
GAi;j�1 and GAi;jþ 1 on the same level.

The GA can be described as follows:

GA ¼ ðIP; PS; EL; FIT; SO; CO; MOÞ ð4:19Þ

where IP, PS, EL and FIT represent the initial population, population size,
encoding length and fitness value, respectively, SO, CO and MO are the genetic
operations, namely, selection, crossover and mutation operations.

The MLGA can be described as follows.

GAij ¼ ðIPij; PSij; ELij; FITij; SOij; COij; MOijÞ ð4:20Þ

where GAij stands for applying the independent GA to the ith level and the jth
module. With the reaction between different levels and adjacent sub-modules on the
same level, GAij can be described as the following:

GAij ¼ IPi jðGAi ;j�1; GAi�1 ;j; GAi ;jþ 1Þ
�
PSi jðGAi ;j�1; GAi�1 ;j; GAi ;jþ 1Þ

ELi jðGAi ;j�1; GAi�1 ;j; GAi ;jþ 1Þ
FITi jðGAi ;j�1; GAi�1 ;j; GAi ;jþ 1Þ

SOi jðGAi ;j�1; GAi�1 ;j; GAi ;jþ 1Þ
COi jðGAi ;j�1; GAi�1 ;j; GAi ;jþ 1Þ

MOi jðGAi ;j�1; GAi�1 ;j; GAi ;jþ 1Þ
	

ð4:21Þ
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The MLGA can be implemented by the following steps:

Step 1: Determine the objective functions, constraints and design variables.
Step 2: Analyze the relationship of design variables, objective functions and

constraints by using the correlation analysis, and construct the problem
matrix.

Fig. 4.24 Framework of MLGA
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Step 3: Determine the architecture of MLGA, including the number of levels and
the number of modules in each level.

Step 4: Allocate the design variables, objective functions and constraints on dif-
ferent levels according to the problem matrix, and build up the relation-
ships among different levels and different modules on each level. Each
module corresponds to a genetic algorithm module.

Step 5: Implement the MLGA modules of each level from the top to the lowest
level. The upper level module sends control messages and parameter
values to the lower level module. Feedback messages from the lower level
are used as the evaluation function by the upper level.

Step 6: The total solving process ends when the termination criterion of the top
level has been reached. Otherwise, Step 5 will be repeated.

4.7.3 Example Study—SPMSM

4.7.3.1 Optimization Model of SPMSM

In this section, a surface-mounted permanent magnet synchronous machine
(SPMSM) will be optimized by using the MLGA. The motor is rated with an output
power of 950 W (or rated torque of 4.5 Nm) at speed 2000 rev/min and supplied by
the rated line-to-line voltage of 128 V. Figure 4.25 shows two photos of the
commercially manufactured motor and its name plate. Figure 4.26 shows the model
for the 2D finite element analysis of this machine, and Table 4.17 lists the main
structural parameters.

The stator and rotor cores are not permitted to be modified due to manufacture
limitation. The coil pitch, number of parallel branches, and number of wires per
conductor of the 3-phase windings are fixed. The magnet thickness hm and width
bm, the diameter of conductor WindD and the conductors per slot Ns are chosen as
the design optimization variables. The optimization objective is to achieve the
maximum efficiency within reasonable cost of conductors and magnets. The con-
straints are the fill factor and rated output power. The optimization model can be
described as

max f ðxÞ ¼ K
w1

100�g
100 þw2

Cost
Costmax

s.t. P2 [ 945W
sf\78%

ð4:22Þ

where the design variable x ¼ ½hm; bm; Ns; WindD�, Ns and WindD are discrete
variables, η is the efficiency of the SPMSM, P2 the output power, sf the fill factor,
and K, w1 and w2 are the weighting factors specified by the designer [44].
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(a)

(b)

Fig. 4.25 Photos of the SPMSM, a whole motor, b name plate

Fig. 4.26 FEM model for the
SPMSM
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4.7.3.2 Optimization Results and Discussion

A. Determination of multi-level optimization framework
The bi-level optimization model is chosen, with the objective function and con-
straints (4.22) shared by both levels. The fitness functions of both levels are the
same, and the penalty function method is applied to deal with the constraints.

Figure 4.27 shows the problem matrix. According to the theory of correlation
analysis and DOE, the P values which represent the relative importance between
design variables and the objective functions as well as the constraints are analyzed
by Minitab, a commercial statistic software package.

As shown, the P values of Ns and WindD are less than those of hm and bm with
respect to the objective function. Therefore, Ns and WindD are significant to effi-
ciency and costs. hm and bm are regarded as the variables of level 1 and Ns and
WindD are assigned on level 2.

B. Experimental results and FEM for no-load EMF, Lad and Laq

On level 1, to account for the nonlinear characteristics of the core, the quasi-static
FEM is applied to calculate the no-load EMF per turn and the d- and q- axis
components of per turn inductances, i.e. Lad and Laq, to acquire highly accurate

Table 4.17 Main dimensions
of the SPMSM

Parameters Unit Values

Stator Number of slots – 36

Length of stack mm 40.83

Length of slot mm 41.4

Conductors per slot – 72

Diameter of conductor mm 0.5

Rotor Number of poles – 6

Length of PM mm 40.0

Width of PM mm 31.4

Thickness of PM mm 1.8

Number of PMs per pole – 5

Shaft diameter mm 19.0

Air gap Length of air gap mm 1

Fig. 4.27 Problem matrix of MLGA for SPMSM
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parameters when the magnet thickness and width are changed. Table 4.18 lists the
main motor parameters obtained from the experimental results, and the calculated
results based on FEM. Figure 4.28 illustrates the magnetic field distribution when
Lad and Laq are calculated. Figure 4.29 shows the bi-level architecture of opti-
mization for SPMSM [44].

Table 4.18 Experimental
results versus FEM results

Method Unit Experiment FEM

Back-EMF V 74.0 81.0

Lad H 0.015 0.0126

Laq H 0.015 0.0124

(a)

(b)

Fig. 4.28 Magnetic field
distribution for calculation of
a Lad and b Laq
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C. Comparison between MLGA and traditional GA
Both the MLGA and the traditional GA (single-level) are conducted for solving the
optimization problem of SPMSM. The numbers of populations on levels 1 and 2 are
15 and 25, respectively. The number of evolution generations is 20 in each level.
40 populations and 40 evolution generations are defined in the single level GA.
Table 4.19 lists the original design, the optimal results by MLGA and traditional
GA.

As shown, both the MLGA and the traditional GA may achieve higher effi-
ciencies than the original design. The efficiency optimized by the MLGA is higher
than that optimized by the traditional GA. The higher the efficiency is, the higher
the costs of conductors and permanent magnets will be.

Figure 4.30 illustrates the traces of fitness functions of the MLGA and the
traditional GA. It can be seen that the MLGA possesses better optimal fitness values
than the single-level GA. It is suggested that MLGA can provide the better design
solution because the number of populations in each level may be adjusted easily. In
this case study, the GA operators have the same configuration in both MLGA and
single level GA. However, the designer may define appropriate GA parameters in
different levels to find the satisfactory optimum [44].

Fig. 4.29 Optimization
flowchart for SPMSM

Table 4.19 Optimization
results by MLGA and GA

Par. Unit Original MLGA GA

hm mm 1.8 2.3 2.1

bm mm 31.4 30.3 30.3

Ns – 72 67 66

WindD mm 0.5 0.56 0.56

η % 83.7 86.4 86.1

Cost $ 26.1 22.6 21.5

P2 W 946 950 951

sf % 67 78 77
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4.8 Multi-disciplinary Optimization Method

4.8.1 Framework of General Multi-disciplinary
Optimization

Figure 4.31 shows a classic design framework and the coupled relations for elec-
trical machines. As shown, the design optimization is really a multi-domain
problem which includes electromagnetic, material, mechanical, and thermal aspects,
and they can be strongly coupled. In order to achieve high performance, the
multi-disciplinary design optimization (MDO) of electrical machines must be
investigated. It includes the following five main steps [47]:

Step 1: Definition of the motor specifications. It mainly consists of cost, such as
material cost and manufacturing cost, output performance, such as power,
torque, efficiency and speed, and other constraints, such as volume,
weight, temperature rise, mechanical strength and resonance frequency,
etc.

Step 2: Selection of motor type and its topology. For example, for the motor types
of the PM-SMC motor investigated above, there are several options, such
as TFM, claw pole and flux switching motors. The topology options may
include outer rotor, inner rotor and numbers of poles for SMC motors.

Step 3: Initial design. To acquire a possible design scheme, three main
designs/selections in terms of dimensions, materials and manufacturing
methods are required to investigate in this step. For example, for the
materials of PM-SMC motors, PM, steel, SMC and ferrite can be the
options. For the manufacturing method, the press method (the moulding
method) is recommended based on our design and prototyping experi-
ences as it is widely used for batch production of PM-SMC motors.

Fig. 4.30 Traces of fitness
functions of MLGA and GA
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Step 4: Development of multi-disciplinary analysis models for motors. As shown,
three models are generally needed to evaluate the motor performance
parameters. They are electromagnetic model including the core loss
model, thermal model and mechanical model.

Step 5: Performance calculation. If the performances of the designed motor are
satisfactory in terms of design specifications, this motor can be taken as an
initial design scheme and can be used in the later part of optimization.

This section will take the multi-disciplinary analysis and design optimization of
a PM-SMC TFM as an example to illustrate the proposed method. First of all, the
electromagnetic, thermal and modal analyses are investigated for this machine
based on the moulding method of the SMC cores. As modal analysis for this

Fig. 4.31 Multi-domain design framework for electrical machines
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machine has been investigated in Sect. 2.4, the electromagnetic and thermal anal-
yses will be the main contents in this section. Meanwhile, a lumped 3D thermal
network model is developed for the thermal analysis. Then, a multi-disciplinary
optimization model is proposed to minimize the material cost and maximize the
output power based on the proposed thermal network model. Finally, the FEM is
employed to verify the performances obtained from optimal results in terms of
thermal analysis and modal analysis.

4.8.2 Electromagnetic Analysis Based on Molded SMC Core

As mentioned in Chap. 2, the electromagnetic analysis is mainly used to calculate
the characteristic parameters of the machine, such as PM flux, core loss and
inductance, so as to evaluate the performance parameters, such as output power and
efficiency. On the other hand, there are two main issues which are directly related to
the manufacturing of the SMC cores and will affect the electromagnetic analysis
and material cost.

The first one is the mass density of SMC core. The magnetic characteristics of
SMC cores depend highly on its mass density. Figure 4.32 illustrates the magne-
tization curves for four different densities respectively for a low density SMC core.
As shown, there are significant differences between these curves and this will affect
the electromagnetic analysis results.

The second one is the manufacturing cost of SMC cores. As the SMC core is
compressed by a mould, the core mass density is calculated from the compacting
pressure applied on the core surface and the pressure is related to press size in tons.
For a given press size and dimensions of SMC core, the mass density of SMC core
can be determined, and this density is directly related to the B-H curves of that core.
Generally speaking, a press of larger size can produce SMC cores with higher mass
density and better magnetic characteristic, but its cost is higher too. Therefore, the
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Fig. 4.32 B-H curves for
three SMC density values
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manufacturing condition is a very important factor for the design optimization of
PM-SMC motors.

Figure 4.33 shows the manufacturing cost and productivity of SMC cores by
using different sizes of stamping press. It can be seen that the cost is directly
proportional to the press size while the productivity is inversely proportional to the
press size. For example, a 100 ton press can produce 500 SMC cores per hour with
a cost of $100 per hour, i.e. only $0.20 each core, while a 500 ton press can only
produce 100 cores per hour with a cost of $500 per hour, meaning $5 each core.
This is a big difference in industrial mass production.

4.8.3 Thermal Analysis with Lumped 3D Thermal Network
Model

Thermal analysis is used to calculate the temperature rises in winding and PM rotor
for this machine, so as to ensure that the motor works safely [47, 48]. For this
machine, a 2D thermal network model as shown in Fig. 2.8 was developed in our
previous work to simulate the thermal analysis. Considering the thermal isotropy of
SMC material, we developed a 3D thermal network of lumped parameters as it can
provide more accurate results than the 2D network model.
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Fig. 4.33 Manufacturing cost
and productivity for SMC
cores
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Figure 4.34 describes the 3D thermal network model for the middle stack of the
studied PM TFM. The two side stacks can be neglected as the temperature of the
middle stack is higher than those of two side stacks. Therefore, only the middle
stack is investigated in this model. Meanwhile, the major heat dissipates from the
rotor. The resistances to the thermal conduction of the following sections are cal-
culated: two segments of stator yoke (Rsy1and Rsy2), stator side disk (Rsd1 and Rsd2),
coils (Rcu1, Rcu2, and Rcu3), stator teeth (Rst1), air gaps (Rg1, Rg2, Rg3, Rg4 and Rg5),
PMs (Rpm1, Rpm2), rotor in radial direction (Rrt1, Rrt2), rotor in axial direction
(Rry1, Rry2), and shaft (Rsf1 and Rsf2). The equivalent resistances are calculated for

Fig. 4.34 3D thermal network model of the PM-SMC TFM
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thermal convection between the air and stator teeth (Rsta), air and stator disk (Rsda),
air and coil (Rcua), air and PM (Rpm1, Rpm2), air and rotor (Rrta), rotor and outer
ambient air (Rrya), and shaft and air (Rsfa), respectively. The thermal resistances in
the circumferential direction in this motor are calculated for thermal conduction in
the stator yoke (Rsya1 and Rsya2), coil (Rcu3), stator teeth (Rsta1), and rotor (Rra1 and
Rra2).

The heat sources in this model include the stator and rotor core losses, copper
loss, and mechanical loss. In order to gain a relatively high accuracy, each loss is
divided into several parts. The stator core loss is divided into six parts (PFes1), the
copper loss two parts (Pcu1), the rotor core loss four parts (PFer1), and mechanical
loss six parts (Pmech1), respectively.

Based on this 3D thermal network model, it is found that there is 68 °C tem-
perature rise in the coil and 27 °C in the rotor yoke surface for this PM-SMC TFM
prototype. Comparison with experimental results will be shown in Sect. 4.8.5.

4.8.4 Multi-disciplinary Design Optimization

Based on the above analysis methods, a multi-disciplinary optimization model can
be developed for this PM-SMC TFM in the form as the following

min: f ðxÞ¼ Cost
C0

þ P0
Pout

s.t: g1ðxÞ ¼ 0:795� g� 0;
g2ðxÞ ¼ 640� Pout � 0;
g3ðxÞ ¼ sf � 0:7� 0;
g4ðxÞ ¼ TPM � 65� 0;
g5ðxÞ ¼ TCoil � 65� 0;

ð4:23Þ

where x is a vector of design parameters, C0 and P0 are the cost and output power of
the initial design scheme, η and Pout in g1 and g2 the motor’s efficiency and output
power, respectively, sf in g3 is the fill factor, and TPM and TCoil in g4 and g5 are the
temperature rises in the PM and windings, respectively. From our design experi-
ence, six parameters as shown in Table 4.20 are significant to the performance of
this machine. The cost in the objective function mainly includes the material and
manufacturing costs of the SMC core.

Modal analysis is not included in this optimization model. However, to ensure
that the optimized motor has good mechanical performance, modal analysis will be
presented in the next section to verify the performance of the optimized motor. For
the thermal analysis in optimization, the lump 3D thermal network model is used to
replace the FEM analysis to improve the optimization efficiency. Then, a FEM
method will be presented for the thermal analysis of the final optimal scheme in the
next section.
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4.8.5 Optimization Results and Discussion

A. Experimental verification of electromagnetic and thermal analyses
To get reliable optimization results, all analysis models should be verified by
experimental results first. Figures 4.18, 4.19, 4.20 and Table 2.2 compare the
calculated and measured key motor parameters for this machine. As investigated in
Sect. 2.2.3, the calculated motor electromagnetic parameters are very close to the
measured values.

Regarding the thermal analysis, the experimental results has shown that the
temperature rises in the coil and rotor yoke are 66 and 27 °C, respectively.
Compared with the calculated values (68 and 27 °C) obtained from 3D thermal
network model, the maximal relative error is only 3 %. The calculated temperature
rise in the coil by using the FEM method is about 63 °C, resulting in a relative error
of 4.8 % compared with the experimentally measured results.

In summary, it is found that the performance parameters calculated based on
both FEM and 3D thermal network model agree well with the experimental results.
Therefore, these models are reliable for the optimization.

B. Optimization results
Table 4.20 lists the optimization results. By comparing these results, the following
conclusions can be drawn:

(1) By the MDO, the obtained optimal cost is $26.5, the output power 677 W, and
the efficiency 84.3 %, respectively. The obtained output power and efficiency
are higher than those of the initial design scheme, namely 640 W and 79.5 %.

(2) The optimal SMC core density obtained by MDO is 6.39 g/cm3, which is
much smaller than that of the initial one, namely 7.32 g/cm3. Therefore, lower

Table 4.20 Optimization
results of PM-SMC TFM

Par. Description Unit Initial MDO

– PM circumferential angle deg 12 10.02

– PM width mm 9 7.53

– Number of turns of
winding

Turn 125 110

– Diameter of copper wire mm 1.25 1.3

– Air gap length mm 1.0 0.9

ρ Core density g/cm3 7.32 6.39

η Efficiency – 79.5 % 84.3 %

Pout Output power W 640 677

TPM Temperature rise in PM °C 36.1 23.9

TCoil Temperature rise in coil °C 64.9 65.0

– Cost $ 35.8 26.5

4.8 Multi-disciplinary Optimization Method 153

http://dx.doi.org/10.1007/978-3-662-49271-0_2
http://dx.doi.org/10.1007/978-3-662-49271-0_2


manufacturing condition and cost may be requested compared with initial
design.

(3) By the thermal optimization, the temperature rises in the coil and PM from
MDO are 65 and 23.9 °C, respectively.

C. FEM verification for electromagnetic, thermal and modal analyses
As only FEM model was employed for electromagnetic analysis in the optimiza-
tion, FEM verifications are presented in this part for all electromagnetic, thermal
and modal analyses for the obtained optimal design scheme. Figure 4.35 illustrates
the electromagnetic analysis for this motor under the MDO optimum. Figure 4.36
illustrates the thermal analysis for this motor under the MDO optimum. As shown,
the average temperature rise in the coil is around 62.3 °C lower (or 4.6 % relative
error) than that obtained from the thermal network model.

Figure 4.37 illustrates the first-order modal analysis for this motor with MDO
optimum. As shown, the resonance frequency of the optimal motor is about
4,262 Hz, which is much larger than the electromagnetic frequency of 300 Hz.

Fig. 4.35 Filed distribution for the MDO optimum
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Fig. 4.36 Distribution of temperature rise in the coil for MDO optimum

Fig. 4.37 Illustration of first order modal analysis for MDO optimum
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4.9 Summary

For different design optimization problems of electrical machines with various
numbers of objectives, dimensions of design parameters, and numbers of disci-
plines involved, different kinds of optimization methods have been presented in this
chapter.

Firstly, SOM was presented to improve the optimization efficiency of
low-dimensional design problems of electrical machines. Compared to the tradi-
tional direct optimization methods, SOM can be regarded as a “space-to-space”
optimization method, which uses the space reduction technique to reduce the initial
large design space to a small subspace around the optimal point step by step. To
illustrate the optimization efficiency of the proposed method and its improvement, a
standard test function and TEAM Workshop Benchmark Problem 22 (SMES) are
investigated first. As shown, (improved) SOMs are efficient for these standard
examples. The required FEM samples for the SMES by using SOM are less than
10 % that of traditional optimization method. As a conclusion of this section, a PM
claw pole motor was investigated for the application in dishwasher. From the
discussion, it can be found that the optimal solution given by SOM is better than the
traditional direct optimization method in terms of output power, efficiency, material
cost and optimization efficiency. Therefore, SOM is efficient for the design of
low-dimensional electrical machines.

Secondly, MSOM was presented for the situation of multi-objective design
optimization of electrical machines. A mathematical test function was investigated
to verify the efficiency of the proposed method. Then, a design example of
PM-SMC TFM was investigated to maximize the output power and minimize the
material cost. As shown, the obtained Pareto front was well aligned with the one
obtained by the MOGA. Most importantly, the required FEM samples are less than
10 % of that of MOGA based on FEM.

Thirdly, two kinds of multi-level optimization methods are presented for
high-dimensional design optimization problems of electrical machines. The first
one is based on sequential subspace optimization method. It uses the results of
sensitivity analysis to divide the whole high dimensional design spaces into several
low-dimensional design sub-spaces. Then, optimize these subspaces sequentially to
get the final optimal results. To construct the optimization flowchart of this method,
two kinds of sensitivity analysis techniques are discussed. Another kind of
multi-level optimization method is based on the MLGA. It uses the problem matrix
to determine the multi-level optimization framework. MLGA is also employed to
optimize the FEM model of the design problem. From the investigation of a SMES
and a SPMSM, it can be seen that both methods are efficient.

Finally, the MDO method was proposed due to the natural structure of electrical
machines. The MDO of electrical machines mainly includes material, electro-
magnetic, thermal and mechanical analyses. For new kinds of materials and
topologies, new manufacturing method should be investigated as well, which will
affect the material performance of the material and manufacturing cost of the
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components of electrical machines. A design example about the PM-SMC TFM
was investigated to illustrate the efficiency of the proposed optimization method. As
shown, the MDO method can provide good optimal solutions which can satisfy the
multi-disciplinary constraints, which are very important to the safe operation of the
machine, including temperature rise and resonant frequency.

In summary, the proposed new optimization methods are efficient for the design
optimization of electrical machines. It should be noted that the optimization models
for the electrical machines are verified by comparing the FEM calculation results
with experimental results. SOMs for single and multi-objective situations have been
verified by test functions and TEAM Workshop Benchmark Problem 22 as well.
Therefore, the efficiency of the proposed methods has been validated and can be
employed for extensive engineering applications.
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Chapter 5
Design Optimization Methods
for Electrical Drive Systems

Abstract Electrical drive systems are key components in modern appliances,
industry equipment and systems, such as digital machine tools and hybrid and pure
electric vehicles. To obtain the best performance of these drive systems, the motors
and their control systems should be designed and optimized simultaneously at the
system level rather than the component level. This chapter presents system-level
design and optimization methods for electrical drive systems, namely the single-level
optimization method, multi-level optimization method, and multi-level Genetic
Algorithm (MLGA). Two electrical drive systems are investigated to illustrate the
effectiveness of those proposed methods. The performances of two machines are
evaluated by the finite element models, which have been verified by comparing with
the experimental results on prototypes. The proposedmulti-level method can increase
the performance of the whole drive system, such as higher output power, lower
material cost and lower dynamic overshoot, and decrease the computational cost
significantly compared with those of single-level design optimization method.

Keywords Electrical drive systems �System-level design optimization �Multi-level
design optimization � Field oriented control � Finite element methods � Model pre-
dictive control � Transverse flux machine � Permanent magnet synchronous machine

5.1 Introduction

Electrical machines and the corresponding drive systems have a history of over a
century and the design procedure has become almost “standard”. When designing
an appliance that needs an electrical drive system, the designer firstly selects the
motor, inverter/converter and controller from the existing products. The appliance
designer, on one hand, has to deliver the functions that the appliance is supposed to
have, and on the other hand, has to take into account the availability and perfor-
mance that the existing motor drive can provide. This motor manufacturer-oriented
approach has been the dominant design concept for drive systems for a long time.
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However, this approach would apply many constraints to the design and therefore
limit the functions of the appliance [1].

With the fast development of CAD/CAE software, new material, flexible
mechanical manufacturing technology, advanced optimization and control algo-
rithms, it is possible to design a motor to meet the special requirements of a
particular application. Since early 1990s, this application oriented approach has
become a common practice. Nowadays, the motors and their control systems are
generally closely integrated into the appliances. Therefore, more and more holistic
integrated design problems of the electrical drive systems have boomed in industry,
for example, the drive systems for hybrid electric vehicles (HEVs) [2–4].

Through the extensive research practice, it is recognized that when designing
such an electrical drive system, it is important to pursue the optimal system per-
formance rather than the optimal components like motor, because assembling
individually optimized components into a system cannot necessarily guarantee an
optimal system performance. The optimal system performance can only be
achieved through a holistic approach of integrated simultaneous optimization of all
components at the system level [1, 5, 6].

Figure 2.1 illustrated a general design framework and the interactions between
different disciplines/domains for electrical drive systems. As shown, the design
optimization of such a drive system is really a multi-disciplinary problem. It mainly
includes electromagnetic, material, mechanical, thermal and power electronic
designs, which are strongly coupled [7–9]. In order to achieve high system-level
performance, the perfect cooperation of motor and its drive and control systems
must be designed and optimized simultaneously.

Although the importance of system-level design optimization of electrical drive
systems is noted, not much work has been reported in the literature [1, 5, 6].
Traditional design and optimization methods are mostly on the component level of
different kinds of motors [10–16]. Generally, cogging torque, torque ripple, cost,
weight and energy consumption are the main concerns for motors’ performance
parameters in the design and optimization process [17–19]. For the design opti-
mization of these motors, Chap. 4 presented several kinds of optimization methods,
including the combinations of intelligent optimization algorithms and finite element
model (FEM) or approximate models, for example, the differential evolution
algorithm (DEA) plus Kriging model. Approximate models are generally used to
replace the FEM in the performance evaluation of motors so as to reduce the FEM
computational costs [1, 5, 10, 20, 21].

On the other hand, for the controller part, though a lot of control algorithms have
been developed, such as field oriented control (FOC), direct torque control
(DTC) and model predictive control (MPC) [22–26], they are also generally
designed and optimized on the controller level, and have not been combined with
the design optimization of motors [27].

This component-level-based method may be reasonable for some traditional
motors and their drive systems where there is much design experience that can be
used. However, there is not much design experience for novel electrical drive
systems. Furthermore, these methods are not system-level holistic design basically.
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As previously discussed, by this component level approach, one can hardly achieve
the optimal system performance. Therefore, how to design and optimize novel high
performance drive systems is an important problem in both research community
and industrial applications [1, 5].

In order to deal with the above problems, this chapter presents three types of
system-level design optimization methods for electrical drive systems. This chapter
is structured as follows. Section 5.2 presents the system-level design optimization
framework and models for electrical drive systems. Section 5.3 presents a
single-level (only at the system level) optimization method for the design of drive
systems. Section 5.4 presents a multi-level design optimization method for drive
systems, including the investigation of the first design example: a drive system
consists of a permanent magnet (PM) transverse flux machine (TFM) with soft
magnetic composite (SMC) core and an improved MPC system. Section 5.5
introduces the multi-level Genetic Algorithm (MLGA) for the design optimization
of drive systems, including the second drive system example which is composed of
a surface-mounted permanent magnet synchronous machine (SPMSM) and a
classical FOC system, followed by the summary section.

5.2 System-Level Design Optimization Framework

Figure 2.1 briefly illustrated a multi-disciplinary (or multi-domain) design frame-
work for electrical drive systems. However, the design modules are strongly cou-
pled and it is not easy to derive the design and optimization flowchart from this
framework. Figure 5.1 shows a deductive system-level design and optimization
framework for electrical drive systems [1]. It mainly includes five steps, namely
system inputs, selection, design, optimization, and evaluation, as the following:

Step 1 Determination of system’s requirements and specifications. In this step,
system’s design objectives and constraints, such as cost, weight, torque
ripple and motor efficiency, have to be considered and defined.

Step 2 Selection or design of motor type, drive and controller type with respect to
the system specifications. This step can be done through a qualitative
comparison based on literature survey and experience. A drive system in
general consists of two parts, namely motor and controller, and the latter
includes a power electronic converter and drive control algorithm. There
are some interactions between these two parts, e.g. a special type of
controller fits the given type of motor better than the others.

Step 3 Design of motor and controller jointly. The motor design consists of
material selection and modelling, electromagnetic and thermal designs, and
so on [7–9]. The controller design mainly includes the design of control
algorithms and parameters. These two designs are done simultaneously.

Step 4 Construction of design optimization models for the motor, controller and
the whole system. The motor design optimization model can be defined as
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min : fmðxmÞ
s:t: gmiðxmÞ� 0; i ¼ 1; . . .;Nm

xml � xm � xmu
; ð5:1Þ

where xm, fm and gm are the motor design parameter vector, objectives and con-
straints, xml and xmu the lower and upper boundaries of xm, respectively, and Nm is
the number of the constraints. It should be noted that the objectives and constraints

Fig. 5.1 System-level design optimization framework for drive systems
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in (5.1) must be defined in terms of the required system objectives and constraints
in Step 1.

The control design optimization model can be defined as

min : fcðxcÞ
s:t: gciðxcÞ� 0; i ¼ 1; . . .;Nc

xcl � xc � xcu
; ð5:2Þ

where xc, fc and gc are the control design parameter vector, objectives and con-
straints, xcl and xcu the lower and upper boundaries of xc, respectively, and Nc is the
number of controller constraints. Similarly, the objectives and constraints in (5.2)
must also be defined in terms of the required system objectives and constraints.

Combining the motor and controller design optimization models, (5.1) and (5.2),
one obtains the system-level design optimization model as the following:

min : fsðxsÞ ¼ Fðfm; fcÞ
s:t: gmiðxsÞ� 0; i ¼ 1; 2; . . .;Nm

gciðxsÞ� 0; i ¼ 1; 2; . . .;Nc

xsl � xs � xsu

; ð5:3Þ

where xs ¼ ½xm; xc�, xsl and xsu are the lower and upper boundaries of xs, respec-
tively, and fs is the system objective which is generally a function of fm and fc.

Step 5 Evaluation of the system performance. This step consists of two parts. One
is the evaluation of steady performance of motor, such as cost and effi-
ciency. The other is the evaluation of dynamic performance of controller or
the whole drive system, such as overshoot, settling time, torque ripple, and
speed ripple.

5.3 Single-Level Design Optimization Method

Figure 5.2 illustrates the first type of optimization method for electrical drive
systems. It can be seen that the optimization process is implemented at a single level
for the whole system, which is thus known as the single-level design optimization
method [1].

This method mainly includes the following three steps:

Step 1 Determination of system level optimization model (5.3). It includes the
selection of motor and controller for the specific drive system.

Step 2 Selection of an optimization method. As drive systems are always high
dimensional and non-linear design problems, intelligent algorithms, such
as genetic algorithm (GA) and DEA, can be good choices in many situ-
ations. Therefore, the algorithm parameters should be determined in this
step, such as genetic operators in GA and mutation operator in DEA.
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Step 3 Implementation of optimization process. Firstly, generate initial population
of xs. Secondly, evaluate the drive system performance parameters,
objectives, and constraints in (5.3). Thirdly, implement the optimization
algorithm until the convergence criteria are met. Finally, terminate and
output the optimal solutions.

However, the computational cost of this single-level optimization method is
always very high as these design problems are generally high dimensional, non-
linear, and strongly coupled multi-domain design analyses. As different domains
have different analysis techniques and software, the computational cost of whole
system is very expensive. For example, power electronic circuit analysis is needed
in the control design, but the needed characteristic parameters of motor are gen-
erally calculated by FEM in the motor design, i.e. the power electronic circuit
design and electromagnetic design are strongly coupled in electrical drive systems.
The computational cost of finite element analysis is usually very expensive in most
cases, especially for some motors of complex structures. To overcome these
problems, a multi-level design optimization method is presented as follows [1].

5.4 Multi-level Design Optimization Method

5.4.1 Method Flowchart

Figure 5.3 depicts a multi-level design optimization framework for electrical drive
systems. Three levels are considered in this framework, namely the motor, control,
and system levels [1].

Fig. 5.2 Single-level optimization method for electrical drive systems
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This optimization method includes three steps as follows:

Step 1 Determination of optimization models (5.1) and (5.2) for the motor and
control levels, respectively. All the required system objectives and con-
straints should be defined in (5.1) and (5.2), so that only two levels, the
motor and control levels, are needed to be optimized in this framework.

Step 2 Optimization. This step includes the optimization processes for motor and
control levels, respectively.

The motor level—The aim of this level is to optimize the motor model (5.1) and
evaluate the motor steady state performance, such as the cost, weight, output power
and efficiency. The motor characteristic parameters should be calculated in this step,
such as the winding resistance, inductance and magnetic flux for the design opti-
mization of the control level.

Fig. 5.3 Multi-level optimization framework for electrical drive systems
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The control level—The aim of this level is to optimize the control model (5.2) and
evaluate the system dynamic performance, such as the overshoot and settling time.

Step 3 Verification of system level performance (5.3). The aim of this step is to
evaluate the system performance and output the optimization results.

As outlined above, the drive system design optimization is always high
dimensional and nonlinear. The optimization efficiency of multi-level optimization
method mainly depends on two issues. The first one is how to construct an efficient
multi-level optimization framework, especially for high dimensional problems. The
second one is how to reduce the computational cost of optimization models, which
are the main contents of the previous chapter. Therefore, the proposed new opti-
mization methods for electrical machines can be employed for the optimization of
motor and control levels, respectively. For example, if there are seven optimization
parameters for the motor, then the multi-level optimization method presented in
Sects. 4.6 and 4.7 can be introduced to improve the optimization efficiency, and the
sensitivity analysis techniques presented in Sect. 4.5 can be employed to determine
the multi-level optimization framework.

5.4.2 Design Example for a Drive System of TFM and MPC

5.4.2.1 Design Optimization Model for Motor Level

In this example, we will investigate a drive system consisting of a PM-SMC TFM
and an improved MPC control system. More details of this motor can be found in
the previous chapters.

Figure 5.4 shows the structure of one phase of this TFM with main dimensions
shown in Table 2.1. Figure 5.5 shows the FEA model for this TFM, which contains
one pole pitch of a phase because of the symmetry. The main design and opti-
mization parameters are also shown in this figure.

To optimize this machine, eight parameters are considered as the optimization
variables as shown in Table 5.1 (more motor dimensions can be seen in Table 2.1)
and Fig. 5.5. All these parameters should be optimized to minimize the cost of
material and maximize the output power of the motor. The objective cost mainly
includes the material costs of PMs, copper, SMC core and steel. Four constraints are
also considered for this machine. The optimization model can be defined as follows:

min : fmðxmÞ ¼ w1
Cost
C0

þw2
P0
Pout

s:t: gm1ðxmÞ ¼ 0:795� g� 0;
gm2ðxmÞ ¼ 640� Pout � 0;
gm3ðxmÞ ¼ sf � 0:8� 0;
gm4ðxmÞ ¼ Jc � 6� 0;
xml � xm � xmu

ð5:4Þ

168 5 Design Optimization Methods for Electrical Drive Systems

http://dx.doi.org/10.1007/978-3-662-49271-0_4
http://dx.doi.org/10.1007/978-3-662-49271-0_4
http://dx.doi.org/10.1007/978-3-662-49271-0_4
http://dx.doi.org/10.1007/978-3-662-49271-0_2
http://dx.doi.org/10.1007/978-3-662-49271-0_2


where w1 and w2 are weighting factors, C0 and P0 the cost and output power (Pout)
of the initial PM TFM, η, sf and Jc the motor efficiency, winding fill factor, and
current density, respectively [1, 5, 28, 29].

5.4.2.2 Design Optimization Model for Control Level

In Chap. 2, an improved MPC scheme with a duty ratio optimization module was
presented to drive PM motors [30]. It will be used in this chapter as the control
method for the PM-SMC TFM. This control scheme was shown in Fig. 2.37.

Fig. 5.4 Structure of the PM-SMC TFM with SMC stator (one phase)

Fig. 5.5 FEM and optimization parameters for PM-SMC TFM
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As mentioned in Chap. 2, the key issue of MPC is the definition of cost function.
Since the two greatest concerns of a PM motor are the torque and stator flux, the
cost function is defined to ensure that both the torque and stator flux at the end of
control period are as close as possible to the reference values. To illustrate the
optimization parameters of the control level, the cost function is rewritten as

G ¼ jT�
e � Tkþ 1

e j þ k1 jw�
s j � jwkþ 1

s j�� ��
þA jT�

e � TkþN
e j þ k1 jw�

s j � jwkþN
s j�� ��� � ð5:5Þ

where T�
e , w

�
s , T

kþ 1
e and wkþ 1

s are the reference torque and flux, predicted torque
and flux, TkþN

e and wkþN
s the linear predictions of torque and flux at the (k + N)-th

instant, and k1 and A weighting factors, respectively.
The other important part of this improved MPC is the duty ratio module. The

expression of duty ratio optimization module has the form as

d ¼ T�
e � Tkþ 1

e

CT

����
����þ w�

s � wkþ 1
e

Cw

����
����; ð5:6Þ

where CT and Cψ are two positive parameters. The idea of this method is that a
larger difference between the reference and predicted torque values would lead to a
larger duty ratio value [30].

Six parameters should be optimized in the control level. They are A, N, CT, Cψ,
Kp and Ki, where Kp and Ki are the PI controller parameters as shown in Fig. 2.37.
One objective and four constraints are considered for this level. The objective is to
minimize the sum of root mean square errors (RMSE) of torque (T) and speed (n) in
the steady state operation period. At the same time, the speed overshoot should be
minimized for this control system. The optimization model of the control system
can be expressed as

Table 5.1 Main motor design and optimization parameters

Par. Description Unit Value Min. Max. Step size

xm1 θPM PM circumferential angle Deg. 12 9 12 0.05

xm2 WPM PM width mm 9 6 9 0.05

xm3 Wstc SMC tooth circumferential width mm 9 8 10 0.05

xm4 Wsta SMC tooth axial width mm 8 7 9 0.05

xm5 Hstr SMC tooth radial height mm 10.5 9 11 0.05

xm6 Nc Number of turns – 125 110 128 1

xm7 Dc Diameter of copper wire mm 1.25 1.0 1.3 0.01

xm8 lg Air gap length mm 1.0 0.95 1.15 0.01
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min : fcðxcÞ ¼ w3
RMSEðTÞ

Trated
þ w4

RMSEðnÞ
nrated

þw5nos
s:t: gc1ðxcÞ ¼ RMSEðTÞ=Trated � 0:06� 0;

gc2ðxcÞ ¼ RMSEðnÞ=nrated � 0:05� 0;
gc3ðxcÞ ¼ nos � 0:02� 0;
gc4ðxcÞ ¼ ts � 0:02� 0;
xcl � xc � xcu

ð5:7Þ

where w3 to w5 are weighting factors, the subscript rated indicates that the values
are obtained from the motor optimization model (5.4), nos is the speed overshoot,
which should be no larger than 2 % of the rated speed, 1800 rev/min, and ts the
settling time, which should be no larger than 0.02 s after the load is applied to the
control system [1].

5.4.2.3 Optimization Flowchart and Results

A.Multi-level Optimization Flowchart
Firstly, for the eight parameters at motor level, it was found that they can be divided
into two subspaces according to our design experience [1]. The first subspace X1
includes xm1, xm2, xm6 and xm7, which are significant to the cost and output power of
the motor. The second subspace X2 includes xm3, xm4, xm5 and xm8. Therefore, the
optimization flowchart of the motor level has two sublevels.

Secondly, for the six parameters in the control level, after the Design of
experiments (DOE) analysis, it is found that except the third control parameter CT,
the other parameters have the same significant level. Table 5.2 shows the analysis of
variance (ANOVA) results for the control level. As shown, the second column
means the sum of square of deviations, the third column DF the degree of freedom,
the fourth column Var. the variance, and the F column the value of hypothesis
testing with F distribution. Fα is a reference value, and α is significant level for
hypothesis test. 0.01 is a generally used value for α. If the value of F is larger than
Fα, the corresponding factor is a significant factor. Therefore, only the third
parameter is a significant factor for the objective of control level. Theoretically, we
can use multi-level optimization method with two subspaces for the control level.

Table 5.2 DOE and
ANOVA data for control level

Source Sum. DF Var. F Fα Sig.

xc1 0.013 4 0.003 0.80 2.87

xc2 0.015 4 0.004 0.88 2.87

xc3 0.057 4 0.014 3.44 2.87 *

xc4 0.020 4 0.005 1.24 2.87

xc5 0.013 4 0.003 0.76 2.87

xc6 0.022 4 0.006 1.33 2.87

Error 0.083 20 0.004 – – –

Total 0.139 24 – – – –
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However, since the significant space only has 1 factor, we just select all six
parameters as the same level.

In summary, the total optimization framework of this drive system has three
levels as shown in Fig. 5.6. The first and second levels are the subspaces X1 and
X2, respectively, which should be optimized with model (5.4). After the opti-
mization of motor level, the motor characteristic parameters, such as R, L and flux
can be obtained. They will be used as the input parameters of MPC control system
in the control level. The third level is the subspace of all the control parameters in
model (5.7).

B.Optimization Results
First of all, DEA is selected as the optimization algorithm in the multi-level opti-
mization of this drive system. The algorithm parameters include the mutation
scaling factor of 0.8, crossover factor of 0.8, and the maximum number of iterations
of 1000. Then ε in the multi-level optimization method is defined as 1 %. All
weighting factors are assumed to be 1 in this work. Tables 5.3 and 5.4 list the
optimization results of motor and control levels obtained by the single-level and
multi-level optimization methods, respectively. From these tables, the following
conclusions can be drawn:

(1) The motor level. For the initial design scheme, the motor efficiency is 79.5 %,
the output power 640 W, average torque 3.40 Nm, and material cost $35.8.
By the single-level optimization method with DEA and FEM, all the 14
parameters (8 motor and 6 control parameters) are optimized as shown in
Fig. 5.2. The obtained motor efficiency is 81.5 %, output power 658 W,
average torque 3.49 Nm, and material cost $28.3. They are better than those of
the initial design.
For the multi-level optimization method, 3 iteration processes are required to
get the optimal results. Figure 5.7 shows the iteration process of multi-level
optimization for the motor level. As shown, level 1 is optimized twice while
level 2 is optimized only once. After the optimization, the optimal output
power reaches 670 W and the average torque 3.55 Nm while the motor effi-
ciency decreases to 81.3 %. The cost is only $26.9, which is the smallest
among these three designs, and the output power is increased by 4.7 %
(30/640) by using the proposed multi-level optimization method compared
with the initial design.

(2) The control level. As shown in Table 5.4, the relative RMSEs of torque and
speed are 4.17 and 0.10 %, respectively, the speed overshoot is 1.03 % and the
objective 5.30 % for control level by using the single-level optimization
method. After the multi-level optimization, all these objectives have been
increased significantly. For example, the relative RMSE of speed has been
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Fig. 5.6 Multi-level optimization flowchart for PM TFM drive system
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decreased from 0.10 to 0.02 %, and the objective of control level from 5.30 to
4.87 %. Therefore, the dynamic performances have been greatly improved by
using the multi-level optimization method. Figure 5.8 illustrates the dynamic
performance of the drive system obtained by the multi-level method. As
shown, the dynamic performances of speed and torque are very good.

(3) For the computational cost, the cost of FEM analysis at the motor level and the
cost of Simulink simulation calls at control level are the largest computational
burden for the whole optimization process. For the single-level optimization
method with DEA, about 14,000 FEM samples and 14,000 Simulink simu-
lation calls (5 ×14 × 200, where 5 × 14 is the population size and 200 the

Table 5.3 Optimization
results of TFM parameters
(Motor level)

Par. Unit Initial Single-level Multi-level

xm1 Deg. 12 10.65 10.00

xm2 mm 9 8.00 7.65

xm3 mm 9 8.45 8.0

xm4 mm 8 7.65 7.95

xm5 mm 10.5 9.15 10.9

xm6 turn 125 117 110

xm7 mm 1.25 1.23 1.27

xm8 mm 1.0 1.00 0.95

η % 79.5 81.5 81.3

Pout W 640 658 670

sf – 0.56 0.55 0.50

Jc A/mm2 4.72 5.88 5.96

T Nm 3.40 3.49 3.55

Cost $ 35.8 28.3 26.9

fm – – 1.70 1.65

FEM – – 14,000 16,25

Table 5.4 Optimization
results of MPC parameters
(control level)

Par. Single-level Multi-level

xc1 0.320 0.386

xc2 6 7

xc3 0.959 1.17

xc4 0.03427 0.03568

xc5 0.199 0.23

xc6 2.698 1.619

RMSE(T)/Trated 4.17 % 3.95 %

RMSE(n)/nrated 0.10 % 0.02 %

nos 1.03 % 0.90 %

ts 0.01 0.01

fc 5.30 % 4.87 %

Simulation calls 14,000 6,000
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Fig. 5.8 Dynamic performance of TFM with optimized MPC parameters
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average iteration number of DEA) are needed to achieve the optimal results.
Actually, it is hard for an intelligent algorithm to deal with this kind of
high-dimensional and highly nonlinear optimization problem. It is time con-
suming and tends to find a local optimal point.

On the other hand, only 1625 (see Table 5.3) FEM samples are needed for the
motor level optimization by using the proposed multi-level optimization method,
which is about 11.6 % of the direct single-level optimization method. Moreover,
about 6,000 Simulink simulation calls are needed for the control level by using the
multi-level optimization method. This is less than half of the simulation cost of
single level optimization method. Therefore, the proposed multi-level design
optimization method can significantly reduce the computational cost, and produce
better solutions than the single-level optimization method.

In summary, compared with the schemes gained from the initial design and
single-level method, the solutions obtained by the multi-level optimization method
have many improvements, such as larger output power, less material cost, and less
overshoot. As a matter of fact, both the steady state and dynamic performances of
this drive system have been improved by using the multi-level method.

5.5 MLGA for a SPMSM Drive System with FOC

5.5.1 Optimization Model

MLGA was introduced as a kind of optimization method for the high dimensional
optimization problems of electrical machines in Chap. 4. Its efficiency has been
verified by a design example of an SPMSM [31, 32]. MLGA can be applied to
design optimization of electrical drive systems with a similar optimization frame-
work. In this section, MLGA is presented for design optimization of a motor drive
system consisting of a SPMSM and FOC control scheme. The main design
parameters of this SPMSM can be seen in Sect. 4.7, and the FOC control scheme in
Fig. 2.22. As shown, three PI controllers are used for the d- and q-axis components
of stator current, and speed control, respectively.

For the motor level optimization, the objective is to minimize the cost of copper
and permanent magnets, and to maximize the motor efficiency, η. The optimization
model can be expressed as

max : fmðxmÞ ¼ K

w1
100�g
100 þw2

Cost
Costmax

s.t. P2 [ 945W
sf\78%

ð5:8Þ
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where the design variable xm ¼ ½hm; bm;Ns;WindD�, Ns and WindD are discrete
variables, K, w1 and w2 the weighting factors defined by the designer, P2 is the
output power, and sf the fill factor [6].

For the control level optimization, the six integral and proportional gain factors
in the three PI controllers as shown in Fig. 2.22 are chosen as the design
optimization variables. The optimization model can be defined as

min : fcðxcÞ ¼ a1Trip þ a2nos þ a3Id
s.t. Trip � 0:5 Nm

nos � 0:5 %
Id � 0:45 A

ð5:9Þ

where xc stands for the vector of six PI variables, Trip is the torque ripple, nos the
overshoot of speed, Id the d-axis component of stator current, and αi (i = 1, 2, 3) are
weighting factors.

5.5.2 Optimization Framework

As mentioned in Chap. 4, the problem matrix is a method to determine the
multi-level optimization framework for MLGA, which can be conducted by using
the correlation analysis and DOE techniques. Note that the optimization model and
parameters of the motor level of this drive system are the same as those investigated
in the MLGA for SPMSM in Chap. 4. Therefore, the same multi-level optimization
structure obtained in that chapter can be applied to the motor level of this drive
system. That is, hm and bm are the variables of level 1 (indicated as X1), and Ns
and WindD are the parameters in level 2 (indicated as X2). For the control level, all
parameters can be placed into one level, i.e. level 3 (indicated as X3). Therefore, a
three-level optimization framework as shown in Fig. 5.9 can be constructed for this
drive system.

5.5.3 Optimization Results

In the implementation of MLGA, all weighting factors are defined as 1 in this work.
Table 5.5 lists the optimization results obtained by MLGA, and Table 5.6 the
proportional and integral gains calculated on the third level. It can be seen that the
motor efficiency and output power have been increased greatly by using MLGA
compared with the initial design. For example, the motor efficiency after MLGA
optimization reaches 86.4 %, an increase by 2.7 % compared with the initial
83.7 %. Figure 5.10 illustrates the speed responses of SPMSM before and after the
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optimization of PI controller parameters. The speed overshoot is about 0.7 rev/min,
or 0.035 % of the rated speed (2000 rev/min) after the MLGA optimization in
contrast to 6 rev/min, or 0.3 % of the rated speed, in initial design, a significant
reduction of speed overshoot. In summary, the steady state and dynamic perfor-
mances of the whole drive system have been improved greatly by using MLGA.

Fig. 5.9 Three-level optimization structure for a SPMSM drive system

Table 5.5 Optimal results for SPMSM on levels 1 and 2

Par. Description Unit Initial MLGA

hm Thickness of PM mm 1.8 2.3

bm Width of PM mm 31.4 30.3

Ns Conductors per slot turn 72 67

D Diameter of conductor mm 0.5 0.56

Iq q-axis component of current A 4.78 5.27

Id d-axis component of current A 1.60 0.05

η Efficiency – 83.7 % 86.4 %

Cost Cost of PM and winding $ 26.1 22.6

P2 Output power W 946 950

sf Fill factor % 67 78
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5.6 Summary

From the above discussions, it can be seen that the system-level design optimization
method is necessary for electrical drive systems in order to achieve high steady state
and dynamic performances at the system level. The proposed multi-level method is

Table 5.6 Optimal results for
control on level 3

Parameters Initial MLGA

Proportional gain in speed loop 1 18

Integral gain in speed loop 1 0.2

Proportional gain in Id loop 1 20

Integral gain in Id loop 1 0.32

Proportional gain in Iq loop 1 29

Integral gain in Iq loop 1 2

Fig. 5.10 Transient speed
a before and b after
optimization
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efficient for the design optimization of high dimensional drive systems. This
method will build a solid foundation to enable the effective development of novel
high performance drive systems with new materials, low cost and high efficiency
for industrial applications. This method can be also applied to other high dimen-
sional design optimization problems in industrial applications. It will shorten the
design cycle, reduce the design cost and improve the design efficiency for the
industrial products in the early stage of product development.
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Chapter 6
Design Optimization for High Quality
Mass Production

Abstract In the last two chapters, the design optimization methods under the
framework of deterministic approach were presented for electrical machines and
drive systems. By the deterministic approach, all material and structural parameters
in the manufacturing process are exact values that do not have any variations from
their nominal values. However, there are many unavoidable uncertainties or vari-
ations in the industrial manufacturing process of electrical machines and drive
systems, including mainly material diversity, manufacturing errors and assembly
inaccuracy. These will result in big variations affecting the reliability and quality of
electrical machines and drive systems in mass production. These variations are not
investigated in the deterministic approach. The main aim of this chapter is to
present a robust approach based on the technique of design for six-sigma (DFSS)
for the design optimization of high-performance and high-quality electrical
machines and drive systems in mass production. Meanwhile, two multi-level
optimization strategies are presented to improve the optimization efficiency for high
dimensional problems. Through the investigation of several design examples, it is
shown that the reliability and quality of the investigated electrical machines and
drive system can be increased greatly by using the proposed robust approach.

Keywords Design for six-sigma � Electrical drive systems � Model predictive
control � Robust design optimization � System-level design optimization �
Multi-objective optimization � Transverse flux machine � Permanent magnet
motors � Monte carlo analysis

6.1 Introduction

Chapters 4 and 5 presented several design optimization methods for electrical
machines in terms of different optimization situations, including multi-objective and
high dimensional situations, and the system-level design optimization methods for
electrical drive systems, including single- and multi-level optimization methods,
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respectively. Through the investigation of several design examples, it is shown that
these proposed methods are efficient. For example, the multi-level optimization
method can increase the steady-state and dynamic motor performances, such as
higher output power and efficiency, and lower speed overshoot [1].

However, these proposed methods are a kind of deterministic design approach
from the industrial design perspective and have not investigated the unavoidable
variations (similar to the term of noise factors used in communication field) in the
engineering manufacturing, including mainly material diversity, manufacturing
error and assembly inaccuracy, and system parameter variations in practical oper-
ation environment [2, 3].

For example, the manufacturing quality of permanent magnets (PMs) is crucial
to the performance of PM motors. There are at least two kinds of variations in the
manufacturing of PMs. As shown in Fig. 6.1, the first one is the dimension, such as
the height and width, and the second one is the magnetization faults of magnitude
(BR) and direction (θ) [4–6]. In [4], a practical example about the measurement data
of PM width for a batch of 2000 PMs was presented. These PMs were from 3
manufacturing groups with the same lower limit (about 14.6 mm) and upper limit
(about 14.7 mm). After the measurement, it was found that the average of one group
(about 1000 PMs) is obviously smaller than the lower limit, and there is about
0.05 mm deviation from the average.

The problem mentioned above is really a challenge in both research and
industrial communities as it includes not only the theoretical multi-disciplinary
design and analysis (such as electromagnetic, thermal and mechanical analysis and
power electronics), but also the practical engineering manufacturing of electrical
machines and drive systems.

On the other hand, many new control algorithms have been developed for motor
drives, e.g. model predictive control (MPC) and its improvements. Many algorithm
parameters need to be optimized for good dynamic drive system performance. From
the industrial application perspective, it is a natural requirement that the obtained
optimal control algorithm parameters are robust against the variations of motor

Fig. 6.1 Manufacturing
tolerances for PMs,
a dimension, b magnetization
faults of magnitude BR, and
direction θ
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performance parameters due to the variations existing in material characteristics and
manufacturing process. This issue is crucial for the batch production of novel drive
systems [2, 7–9].

In order to find effective ways to deal with this problem, several robust design
optimization methods have been investigated, such as Taguchi method [10–15] and
six-sigma robust optimization method [16–19]. These two methods have been
widely used to optimize the motor performance (including torque ripple, cost and
output power) and quality against the manufacturing tolerances.

In our previous work, a six-sigma robust optimization method was first proposed
to investigate a PM transverse flux machine (TFM) and a surface mounted PM
synchronous machine (PMSM), respectively, by using different optimization
algorithms [17–19]. Meanwhile, a drive system combining a PM TFM with a field
oriented control (FOC) scheme was investigated in [3]. From the discussion, some
interesting results have been obtained and it was that the system reliability has been
improved significantly.

However, that work is only a case study. Only 6 parameters (4 motor structural
parameters plus 2 control algorithm parameters) were investigated, and all of them
are optimized at the same time. This method may be workable for some low
dimensional problems, e.g. dimension D is smaller than 6, but it is very hard or
ineffective for high dimensional problems due to the huge computational cost.
Unfortunately, the practical drive systems are always high dimensional and D is
often larger than 10.

The huge computational cost mentioned above is mainly from two parts. The
first one is the finite element analysis (FEA) of motor and simulation of control
algorithm required by the optimization algorithm. For example, considering a drive
system optimization problem with 14 parameters, about 200*5*14 = 14,000 points
are required if the differential evolution algorithm (DEA) is used as the optimization
algorithm [3], where 5*14 is the population size and 200 is the iteration number of
DEA. The second one is the sample size of Monte Carlo analysis (MCA) used to
obtain the mean and standard deviation terms of objective and constraints in the
robust model (see model (6.3) in the next section). Generally, this sample size is a
large number, e.g. 10,000, which means for each design option in those 14,000
points, 10,000 extra points need to be calculated for MCA. Therefore, robust
optimization for high dimensional problems can be a real challenge.

To solve the aforementioned questions, a systemic study was presented for this
general and fundamental research topic. A design example of an electrical drive
system has been investigated. This chapter also presents a robust approach for the
design optimization of an electrical drive system based on the design for six-sigma
(DFSS) technique. Section 6.2 describes the robust technique of DFSS. Section 6.3
presents two robust optimization methods for electrical machines in terms of single-
and multi-objective situations. Section 6.4 presents the system-level robust design
optimization methods for electrical drive systems, followed by the summary.
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6.2 Design for Six-Sigma

In general, there are three kinds of design approaches from industry perspective,
namely deterministic, reliability and robust approaches. Figure 6.2 illustrates a
general optimization flowchart and features for them.

Figure 6.2a illustrates the optimization solutions obtained from the robust and
deterministic approaches, respectively. As shown, the optimal solution obtained by
deterministic approach (namely function minimum) is smaller than the robust
optimum. However, when a variation or noise Δx happens, the objective’s variation
Δf(x) of the deterministic approach is obviously larger than that of the robust
approach. Most importantly, some variations from deterministic approach violate
the basic constraints of design problem, e.g. lying inside the infeasible domain, and
this is prohibited in engineering design [2].

Fig. 6.2 Illustrations of deterministic, reliability and robust design approaches
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Figure 6.2b illustrates the optimizing flowcharts for these three design approa-
ches. As shown, the distance between constraint boundary and the solution obtained
from robust approach is the furthest one, which means the reliability of the product
is the highest. Meanwhile, the objective’s variance of robust approach is the
smallest, which means that the quality variance of robust approach is also the
smallest and the products’ quality is the highest. Generally, if a design scheme is
not robust, it may be very difficult or even impossible to manufacture (e.g. requiring
extreme material characteristics or unrealistically high manufacturing precision) due
to current manufacturing technology or to operate (e.g. unstable system perfor-
mance in the application environment).

As shown in Fig. 6.2b, the deterministic approach tends to push a design toward
one or more constraint boundaries until those constraints are reached, which pro-
vides a high-risk design to the designer. Furthermore, the deterministic approach
tends to search for the valley solutions or global minimal values from the point of
view of mathematics. However, the valley point is highly sensitive to design
parameter variations, i.e. the product performance will be degraded significantly in
practical industry manufacturing [2]. Therefore, the robust approach is very
important for modern quality control and design and should be taken into account in
the system-level design optimization of drive systems.

Generally, a deterministic design with respect to an objective f(x) and m con-
straints g(x) has the form as

min : f ðxÞ
s:t: giðxÞ� 0; i ¼ 1; . . .;m

xl � x� xu
; ð6:1Þ

where xl and xu are the boundaries of design parameter x which is deterministic and
does not cover any uncertain information. As mentioned above, there are many
unavoidable noise factors in the industrial design and manufacturing process, such
as the assembly tolerances and manufacturing imperfections in mass-production
[4–6, 20–23]. Therefore, reliability design is developed to include the noise factors
in the constraints to improve the reliability of products, in which g(x) is converted
to a probability function as

Pf¼PðgðxÞ[ 0Þ�PU ; ð6:2Þ

where x is a vector of random variables, Pf the failure probability, and PU its upper
bound [2].

However, reliability design just focuses on the constraint boundary, and does not
consider the variations of objectives and constraints in terms of those noise factors.
Therefore, the quality distribution and average product performance cannot be
evaluated. Fortunately, DFSS technique can deal with these problems very well.
Actually, DFSS is a kind of robust design approach which was originated from the
Six-Sigma Methodology developed by MOTOROLA and GE [16]. It is generally
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used to develop products to meet customer needs with very low defect levels. It has
the design form as

min : F½lf ðxÞ; rf ðxÞ�
s:t: : gi½lf ðxÞ; rf ðxÞ� � 0; i ¼ 1; . . .;m

xl þ nrx � lx � xu � nrx

LSL� lf � nrf �USL

; ð6:3Þ

where μ and σ are the mean and standard deviation of the corresponding terms
which are generally estimated by MCA method, LSL and USL the lower and supper
specification limits, n is the sigma level, which is generally equivalent to a prob-
ability of a standard normal distribution as shown in Fig. 6.3.

Table 6.1 tabulates the equivalent percentage/probability for each sigma level.
For example, 3σ means that the probability of Pð�3r� x� 3rÞ is 99.73 %
assuming that x follows a standard normal distribution with mean 0 and variation 1
(r ¼ 1). In other words, 3σ is equivalent to a probability of 99.73 % or the POF is
0.27 %. This probability was deemed acceptable in statistical terms, and this value
can be regarded as the quality control of short term, which means that there are
2,700 defects per million products.

However, with the development of long term quality control and management, this
3σ quality level is insufficient from the manufacturing perspective. From the rich
experience ofMOTOROLA,GE and others, an approximate 1.5 sigma shift in the mean
(as shown in Fig. 6.4)was observed and this has been used to define the long term sigma
quality as opposed to the above short term sigma quality [2, 16–18, 24–27].

For example, if there is a 1.5σ shift for 3σ quality control, the equivalent
probability is

Pð�4:5� x� 1:5Þ ¼ 93:3107% ð6:4Þ

68.27%

99.73% (3 )

99.9999998% (6 )
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Fig. 6.3 Sigma level and its
equivalent probability for a
normal distribution
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Therefore, the failure rate is 6.6803 %, which means that the 3σ quality control is
actually equivalent to 66,803 defects per million products being manufactured in
the long term quality control technique. Obviously, this quality is not acceptable for
the mass production of a product in industry. Similarly, 4σ and 5σ are equivalent to
6,200 and 233 defects per million, respectively, and they are not good choices for
quality control either. To achieve the highest profit, 6σ level should be selected as it
is equivalent to only 3.4 defects per million products, and it has been adopted in
many companies worldwide nowadays.

To compare the product reliability by using different design approaches, a criterion
called product probability of failure (POF)was used inmanyworks. Assuming that all
constraints in (6.3) are independent events, and then according to the Multiplication
Theorem of Probability, the POF of the system described by (6.3) has the form as

POF ¼ 1�
Ym
i¼1

Pðgi � 0Þ ð6:5Þ

where Pðgi � 0Þ means that the probability of event constraint gi is correct for all
samples in the MCA [2].

Table 6.1 Percentages and defects per million in terms of sigma level

Sigma level (σ) Percentage Defects per million (short term) Defects per million (long term)

1 68.26 317,400 697,700

2 95.46 45,400 308,733

3 99.73 2,700 66,803

4 99.9937 63 6,200

5 99.999943 0.57 233

6 99.9999998 0.002 3.4

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

N(0,1)
1.5σ

σ

 shifted N(0,1)

Upper limitLower limit

0.1

0.2

0.3
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1

Fig. 6.4 Illustration of a 1.5σ
shift in the mean for a normal
distribution
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6.3 Robust Design Optimization of Electrical Machines

This section will investigate two optimization situations of single and
multi-objectives, based on example study for the robust design of electrical
machines.

6.3.1 Single Objective Situation with a PM TFM

6.3.1.1 Example on PM-SMC TFM

In this section, a PM TFM with SMC core (PM-SMC TFM) is investigated to
illustrate the performance of the proposed method for electrical machines [28–30].
Figure 2.3 showed the prototype of this machine. It is designed to deliver a power
of 640 W at 1800 rev/min. More details for this machine can be seen in Chaps. 2
and 4. From our design experience, eight structure parameters listed in Table 5.1 are
significant to the performance of this machine [1]. They will be taken as the
optimization parameters as well as variation parameters in the following robust
optimization.

Another issue that has to investigate in the robust design of this PM-SMC TFM
is the manufactuing quality of its SMC stator core. As the SMC core is compressed
by a mould, the core density is related to the press size used. As mentioned in
Sect. 4.8, the electromagnetic performance of this motor highly depends on this
core density as shown in Fig. 4.33. Meanwhile, as shown in Fig. 4.34, the manu-
facturing cost of SMC cores directly depends on the selected press size.
Consequently, the press size is a critical design variable as well as a variation factor
for the evaluating of manufacturing quality of this machine.

Based on the above discussion, the optimization model for this machine can be
defined as,

min : f ðxÞ ¼ Cost=C0 þP0=Pout

s:t:

g1ðxÞ ¼ 0:795� g� 0;
g2ðxÞ ¼ 640� Pout� 0;

g3ðxÞ ¼ sf � 0:8� 0;

g4ðxÞ ¼ Jc � 6� 0:

8>>><
>>>:

ð6:6Þ

where x is a vector of design parameters which include eight structure parameters
and one manufacturing condition (indicated as x9 in Table 6.2), C0 and P0 are the
material cost and output power of the initial design scheme [1], η and Pout the motor
efficiency and output power, sf and Jc the fill factor and current density of the
winding, respectively.
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With the robust optimization framework of (6.3), the robust optimization model
of (6.6) can be expressed as

min : lf ðxÞ
s:t: : lgiðxÞþ 6rgiðxÞ� 0; i ¼ 1; . . .; 4

xl þ 6rx � lx � xu � 6rx
lf � 6rf �LSL
lf þ 6rf �USL

ð6:7Þ

MCA is used to estimate the mean and standard deviation terms in (6.7), and the
sample size is 104. It should be noted that the optimization parameters in (6.6) and
(6.7) are discrete values, and their step sizes are shown in Table 6.2 as well.

6.3.1.2 Optimization Results and Discussions

In the implementation, each parameter is defined to follow a normal distribution
with standard deviation as 1/3 of its manufacturing tolerance. The tolerance values
of the sixth and ninth motor parameters are defined as 1 % of their mean values. The
tolerance values of other parameters are the same as their step sizes as shown in
Table 6.2. To illustrate the performance of different methods, POF defined in (6.4)
is taken as the criterion [17].

Tables 6.2 and 6.3 list the optimization results and the corresponding perfor-
mance parameters obtained by two methods for this TFM, namely the deterministic
design optimization of (6.6) and the robust design optimization of (6.7). Eight
parameters shown in Table 5.1 are selected as the optimization parameters. Table 6.4
lists the robust levels for all constraints, and the POF values for the motor. Based on
these results and comparison, the following conclusions can be drawn.

(1) For the deterministic design optimization, the obtained performance parame-
ters of this machine include the cost of $27.8 and output power of 718 W. For
the robust design optimization, the cost is $28.8 and output power 700 W. As
shown, the robust design scheme has slightly higher cost and lower output
power. Meanwhile, these values are better than those of the initial design
scheme, which are $34.1 and 640 W, respectively.

(2) Considering the manufacturing cost, 200-ton press is suggested by the
deterministic approach, the corresponding manufacturing cost of SMC core is
$0.5/piece, and its density is 7.27 g/cm3. However, 100-ton press is suggested
by the robust approach, the manufacturing cost is only $0.2/piece, and density
6.60 g/cm3. Therefore, lower manufacturing condition and cost are obtained
by the robust method, and this is very important for the mass production.

(3) After MCA, the reliability of constraint g4 is 50.37 % for the deterministic
optimal scheme as shown in Table 6.4, and the corresponding sigma level is
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less than 1. Actually, the current density is 6.00 A/mm2, which is the same as
the limit of this constraint. As a result, the POF of motor is 49.63 %. For the
robust scheme, the sigma levels for all constraints are larger than 6 and the
POF is almost 0.

(4) Figures 6.5, 6.6, 6.7, 6.8 show the distributions of cost, output power, effi-
ciency and current density respectively for both methods. As shown, the
standard deviations of cost and output power of robust optimal scheme are
smaller than those of the deterministic optimization scheme. As shown in
Fig. 6.7, the robust optimal scheme can produce a larger mean and a smaller
standard deviation for the efficiency of this TFM compared with the deter-
ministic scheme.

As shown in Fig. 6.8, all current distribution points of robust design scheme
are satisfied with the condition g4 of “no larger than 6.0 A/mm2. It can also be
seen that many points of deterministic design scheme are not satisfied with
this condition. Therefore, the reliability and sigma level of this constraint of
deterministic method is very low, and the POF of motor is high. Actually, the
lower cost of deterministic optimization is obtained at the cost of low relia-
bility and robustness. This is not acceptable in engineering design.

Table 6.2 Robust optimization results for PM-SMC TFM

Par. xm1 xm2 xm3 xm4 xm5 xm6 xm7 xm8 xm9
Unit Deg. mm mm mm mm turn mm mm ton

Step size 0.05 0.05 0.05 0.05 0.05 1 0.01 0.01 100

Deter. 10.95 7.35 8.00 7.00 9.05 115 1.30 0.95 200

Robust 10.00 8.30 8.15 7.30 9.90 118 1.30 0.97 100

Table 6.3 Performances for PM-SMC TFM after robust optimization

Par. cost η Pout sf Jc ρ

Unit $ − W % A/mm2 g/cm3

Deter. 27.8 0.82 718 60 6.00 7.27

Robust 28.8 0.83 700 59 5.76 6.60

Table 6.4 Sigma levels for constraints and POF for TFM after robust optimization

Par. g1 g2 g3 g4 POF (%)

Deter. 6 6 6 50.37 % 49.63

Robust 6 6 6 6 *0
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6.3.2 Multi-objective Optimization with a PM TFM

6.3.2.1 Multi-objective Robust Optimization Model

Section 6.3.1 presents a robust design optimization for a PM-SMC TFM under
single-objective optimization situation. From the discussion, it can be found that the
manufacturing quality of the motor has been increased significantly. However, two
other issues should be investigated for the industrial applications of PM-SMC
motors besides the robust analysis. Firstly, multi-objective design schemes are
necessary as it is hard to determine the weights for different objectives without
detailed information of industrial applications. Secondly, high computational cost is
also an important issue as this is a high dimensional optimization problem and 3D
finite element model (FEM) is involved. Therefore, this section presents an
improved multi-objective sequential optimization method (MSOM) for the robust
multi-objective design optimization of these PM-SMC motors to improve their
industrial applications. The PM-SMC TFM discussed in the last section will be
investigated here to illustrate the proposed new method.

Considering the manufacturing condition and material characteristic of SMC
cores, the multi-objective design optimization model of PM-SMC motors can be
defined as

min :
f1ðxÞ ¼ Cost
f2ðxÞ ¼ �Pout

�

s:t:

g1ðxÞ ¼ 0:795� g� 0;
g2ðxÞ ¼ 640� Pout � 0;
g3ðxÞ ¼ sf � 0:8� 0;
g4ðxÞ ¼ Jc � 6� 0:

8>><
>>:

; ð6:8Þ
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where xs, xmt, and xmf are the structure, material and manufacturing parameters,
respectively. To achieve the six sigma quality manufacturing, the design model can
be converted into (6.9) within the framework of DFSS [2, 18].

min : Fk ¼ lfk ðxÞ; k ¼ 1; 2
� �

s:t: lgiðxÞþ nrgiðxÞ� 0; i ¼ 1; . . .; 4
: ð6:9Þ

where μ and σ stand for the mean and standard deviation of the corresponding
terms.

6.3.2.2 Improved Multi-objective Sequential Optimization Method

An MSOM has been presented for the multi-objective optimization of electrical
machines in Sect. 4.4. However, it is hard to handle high dimensional problems for
that MOSM. To solve this problem, this section presents an improved MSOM,
which includes the following four steps:

(1) Generate an initial sample set S(0) and obtain an initial Pareto optimal solution
P(0) by using the non-dominated sorting genetic algorithm (NSGA) II [31], a
classical multi-objective optimization algorithm, which can be used to opti-
mize models (6.8), (6.9) and their approximate models. To increase the
optimization efficiency, the Kriging model will be employed to construct the
optimization models of (6.8) and (6.9) in this work.

(2) Update the samples based on the obtained Pareto optimal solutions. Firstly,
find the significant parameters by using the sensitivity analysis techniques
introduced in Sect. 4.5, such as the local sensitivity analysis and design of
experiments (DOE) techniques. Secondly, generate new samples by using a
2-level sampling method. Finally, update all the Kriging models.

(3) Optimize the obtained Kriging model [32–34] by using NSGA II, and get the
updated Pareto optimal solution P(k).

(4) Compute the root mean square error (RMSE) of the obtained Pareto points for
each Kriging model. If all RMSEs are no more than ε, output the solution,
otherwise go to the second step.

6.3.2.3 Optimization Results and Discussion

Figures 6.9, 6.10, 6.11, 6.12 illustrate the optimization results for both deterministic
and robust design approaches. The following conclusions can be drawn:

(1) Figure 6.9 illustrates the Pareto optimal solution obtained from deterministic
model (6.8) and robust model (6.9), respectively. It can be found that the
output power increases with the increase of cost and vice versa. The front of
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Pareto solutions obtained by the robust approach is lower than that by the
deterministic approach, meaning that to achieve the same output power, the
needed cost of robust design approach is higher than that of deterministic one.

(2) Figure 6.10 illustrates the POF values of all Pareto points for both approaches.
It can be found that the POF values of deterministic design approach (or Pareto
points) are unstable and higher than those of robust approach. Some of them
are even over 50 % higher. These are bad designs from the point of view of
high quality industrial design.

For the robust multi-objective design approach, the POF values are almost 0.
Therefore, although the needed cost for the same output power of the deter-
ministic scheme is less than that of the robust approach, its lower cost is
achieved at the cost of lower POF.

(3) Figure 6.11 shows the means of current density (Jc) for all Pareto points. It can
be seen that deterministic designs have higher means of Jc. The means of Jc of
the robust designs are obviously smaller than the limit of 6 A/mm2, and the
average of these means is 5.67 A/mm2. However, many of the deterministic
designs are beyond the limit, and the average is 5.99 A/mm2. Thus, the POF
values of g4 of the deterministic approach are higher than those of the robust
approach. For other constraints, the POFs and means for all Pareto points are
also obtained, but not much difference has been founded. Therefore, the
current density issue is the main reason why the deterministic approach has
higher POFs than the robust approach as shown in Fig. 6.10.

(4) Figure 6.12 illustrates the core density for all Pareto points. It can be found
that the core densities of deterministic designs are around 7.2 g/cm3, which
means that a 200-ton press is needed to compact these cores. On the other
hand, the core densities of all robust designs are around 6.6 g/cm3, and only a
100-ton press is required. Therefore, the robust approach needs lower manu-
facturing condition and cost than the deterministic approach.
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(5) In terms of the computational cost, the direct optimization method (NSGA II
with FEM) requires about 12,000 FEM points, in which half points were
sampled for the no-load analysis and others were used for the operation
analysis of this machine. The proposed method requires only about 3,800
FEM points, which is much less than that required by the direct optimization
method.

In summary, the proposed robust multi-objective optimization method can sig-
nificantly improve the reliability and manufacturing quality of the motor with lower
manufacturing condition and cost. Consequentially, it will promote significantly the
industrial applications of PM-SMC motors.

6.4 Robust Design Optimization of Electrical Drive
Systems

6.4.1 Single-Level Robust Optimization Method

Figure 6.13 illustrates a block diagram of the system-level robust optimization
method for electrical drive systems. Since all parameters are directly optimized at
the system level, it is called the single-level robust optimization method.

It consists of the following three steps:

Step 1: Determination of system-level robust optimization model

Fig. 6.13 Single level robust optimization method for drive systems
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Based on the deterministic form of system-level optimization model (5.3), the
system-level robust optimization model of drive system can be expressed as

min : F½lfsðxsÞ; rfsðxsÞ�
s:t: : lgmiðxsÞþ nrgmiðxsÞ� 0; i ¼ 1; . . .;Nm

lgcjðxsÞþ nrgcjðxsÞ� 0; j ¼ 1; . . .;Nc

xsl þ nrxs � lxs � xsu � nrxs
LSL� lfs � nrfs �USL

: ð6:10Þ

To estimate the mean and standard deviation terms in (6.10), each design
parameter xi in xs is assumed normally distributed as Nðxi; r2xiÞ with rxi ¼ Dxi=3,
where Dxi is the manufacture tolerance of xi.

Step 2: Selection of an optimization method for model (6.10)

As drive systems are always high dimensional and non-linear design problems,
intelligent algorithms can be good choices in many situations, such as the genetic
algorithm (GA) and DEA [1–3, 35–37].

Step 3: Implementation of optimization process

Firstly, determine the manufacture tolerance for xs and obtain the distribution
parameters for each parameter. Secondly, generate an initial population of xs and its
noise population. Thirdly, evaluate the steady-state and dynamic performance
parameters of the drive system. Meanwhile, the objectives, constraints in (6.10),
and their means and standard deviations can be gained by using the MCA method.
Finally, apply the optimization algorithm until the convergence criterion is met.

Because, as mentioned above, the computational cost of this single-level method
is always huge as these design problems are generally high dimensional and non-
linear, the computational cost of whole system optimization is very expensive, in
which the major part is the computational cost of FEM for the motors. To solve this
problem, a multi-level robust optimization method is proposed.

6.4.2 Multi-level Robust Optimization Method

6.4.2.1 Method Description

Figure 6.14 illustrates the framework of multi-level robust optimization method for
drive systems, which consists of three levels, namely the motor, control, and system
levels. In the implementation, the first step is to define the deterministic and robust
optimization models for the motor and control levels, respectively. For the motor
level, its deterministic optimization model has been defined in Chap. 5, and has the
form as
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Fig. 6.14 Multi-level robust optimization framework for drive systems
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min : fmðxmÞ
s:t: gmiðxmÞ� 0; i ¼ 1; . . .;Nm

xml � xm � xmu
; ð6:11Þ

where xm, fm and gm are the design parameter vector, objective and constraint,
and xml and xmu the lower and upper boundaries of xm, respectively.

With the DFSS technique, the corresponding robust model can be expressed as

min : F½lfmðxmÞ; rfmðxmÞ�
s:t: : lgmiðxsÞþ nmrgmiðxsÞ� 0; i ¼ 1; . . .;Nm

xml þ nmrxm � lxm � xmu � nmrxm
LSL� lfm � nmrfm �USL

; ð6:12Þ

where nm is the sigma level specified for the motor level. It should be noted that the
required sigma levels for motor level and control level may be different from that in
system level model, and different symbols are specified for them.

For the control level, its deterministic design optimization model has the form as

min : fcðxcÞ
s:t: gcjðxcÞ� 0; j ¼ 1; . . .;Nc

xcl � xc � xcu
; ð6:13Þ

where xc, fc and gc are the design parameter vector, objective and constraint, and xcl
and xcu the lower and upper boundaries, respectively.

Similarly, its robust model can be expressed as

min : F½lfcðxcÞ; rfcðxcÞ�
s:t: : lgcjðxcÞþ ncrgcjðxcÞ� 0; j ¼ 1; . . .;Nc

xcl þ ncrxc � lxc � xcu � ncrxc
LSL� lfc � ncrfc �USL

; ð6:14Þ

where nc is the sigma level specified for the control level.
Based on the above robust optimization models for motor, control, and system

levels, the proposed multi-level robust optimization method shown in Fig. 6.14 can
be implemented in the following four steps:

Step 1: Determination of the POF values for motor, control and system levels,
respectively, in terms of design requirements and available manufacturing
conditions
Step 2: Optimization of motor level with model (6.12)

Besides the motor performance parameters, such as output power and efficiency,
some characteristic parameters of the motor, such as winding resistance and
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inductance and PM flux, should be calculated at the same time, because they will be
considered as the noise factors in the optimization of control level.

Step 3: Optimization of control level with model (6.14)

The main aim of this step is to evaluate the fluctuations of dynamic performance
with respect to the noise factors from the motor characteristic parameters.

Step 4: Performance evaluation of system level

Here are two remarks for this multi-level robust optimization method. Firstly, if
the dimension of motor level or control level is large, the optimization of corre-
sponding level can be divided into two or three sub-levels. Secondly, as mentioned
before, the optimization process is usually quite time-consuming because of the
huge computational costs of FEM for electromagnetic analysis of the motor and the
MCA process in robust optimization. Approximate models, such as the response
surface model and Kriging model, can be used to replace the FEM [32–34]. The
Kriging model will be employed for the design example in this work.

6.4.2.2 Design Example of a Drive System with TFM and MPC

A. Optimization model for motor level
The optimization objective is to minimize the material cost while still keeping or
improving its performance compared with the initial design. The optimization
model is

min : fmðxmÞ ¼ w1
Cost
C0

þw2
P0
Pout

s:t: : gm1ðxmÞ ¼ 0:795� g� 0;
gm2ðxmÞ ¼ 640� Pout � 0;
gm3ðxmÞ ¼ sf � 0:8� 0;
gm4ðxmÞ ¼ Jc � 6� 0;
xml � xm � xmu

ð6:15Þ

where C0 and P0 are the cost and output power (Pout) of the initial prototype, η is
motor efficiency, sf the winding fill factor, and Jc the current density of copper wire
winding. The optimization parameters are illustrated in Table 5.1 and Fig. 5.5.

B. Optimization model for control level
Figure 2.37 showed a diagram of this improved MPC control scheme. There are
two important modules needed to be designed and optimized in this improved
MPC, namely cost function and duty ratio module [38–40]. Six parameters pre-
sented in Sect. 5.4.2 should be optimized in the control level. They are A, N, CT, Cψ,
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Kp and Ki, where Kp and Ki are the parameters of PI controller. One objective and
four constraints are considered for this level as the following

min : fcðxcÞ ¼ w3
RMSE(TÞ

Trated
þ w4

RMSE(nÞ
nrated

þw5nos
s:t: : gc1ðxcÞ ¼ RMSE(TÞ=Trated � 0:06� 0;

gc2ðxcÞ ¼ RMSE(nÞ=nrated � 0:05� 0;
gc3ðxcÞ ¼ nos � 0:02� 0;
gc4ðxcÞ ¼ ts � 0:02� 0;
xcl � xc � xcu

; ð6:16Þ

where RMSE is the root mean square error of an item in the steady operation
period, ω the motor speed, nos the overshoot of speed, and ts the settling time.

C. Robust optimization models
Firstly, based on (6.15), the robust optimization model for the motor level has the
form as

min : lfmðxmÞ

s:t:

lgmiðxmÞþ nmrgmiðxmÞ� 0; i ¼ 1; . . .; 4
xmlj þ nmrxmj � lxmj � xmuj � nmrxmj ;

j ¼ 1; . . .; 8

8><
>:

: ð6:17Þ

In the implementation, the manufacturing tolerances of motor parameters (xm1 to
xm8) are specified as 0.05 deg., 0.05 mm, 0.05 mm, 0.05 mm, 0.05 mm, 0.5 turn,
0.01*xm7 mm and 0.01 mm, respectively, according to the previous engineering
experience.

Secondly, based on (6.16), the robust optimization model of control level can be
defined as

min : lfcðxcÞ
s:t:

lgciðxcÞþ ncrgciðxcÞ� 0; i ¼ 1; . . .; 4
xclj � xcj � xcuj; j ¼ 1; . . .; 6

�
: ð6:18Þ

It should be noted that the parameters of control level (xc1 to xc6) are digital
parameters and do not have disturbances for the MCA. There are only four robust
constraints in (6.18).

However, there are four random variables in this model, namely the resistance
(R), inductance (L), torque (T), and PM-flux corresponding to the random variables
of all motor parameters xm1 to xm8. After the MCA, the output parameters are the
means and deviations of objectives and constraints of control level. Then, model
(6.18) can be calculated and the POF of control level can be obtained.

6.4 Robust Design Optimization of Electrical Drive Systems 203



D. Optimization flowchart, results and discussion
Figure 6.15 shows the multi-level robust optimization flowchart for this drive
system. It mainly includes the following five steps:

Step 1: Specifying the expected sigma level or POF for the drive system

In this work, 6σ manufacturing quality is the expected quality level. Therefore,
nm and nc are defined as 6.

Step 2: Dividing the initial design space into three subspaces/levels

Empirically, the eight parameters in the motor level can be divided into two
levels. The first one (X1) includes PM parameters (xm1 and xm2) and coil parameters
(xm6 and xm7), which are significant to the optimization objective. The others are
non-significant factors and will be placed in the second level X2. Therefore, the
optimization flowchart of the motor level is defined as two sublevels. In total, a
three-level optimization framework can be obtained for the whole drive system with
control as the third level.

Step 3: Optimizing the motor level

Firstly, let the parameters in X2 be the initial design dimensions and optimize the
parameters in X1. Secondly, optimize the parameters in X2 with the obtained
optimal parameters in X1. If the relative error of the objective is not smaller than a
given value ε (the default is 1 %), update X2 and conduct the optimization again
until DlðfmÞ=lðfmÞ� e is met. After the optimization of motor level, the motor
characteristic parameters, such as R, L and PM-flux, can be obtained as well, and
they will be used as the input parameters in the control level.

Step 4: Optimizing the control level

The input parameters of this level are the algorithm parameters (xc1 to xc6) in
MPC and characteristic parameters obtained from the above motor level opti-
mization. These characteristic parameters are also taken as the noise parameters in
the optimization of this level.

Step 5: Calculating the POF for the whole system and outputting the optimization
results.

Table 6.5 lists the optimization results for the TFM (motor level) obtained from
three approaches, namely the initial, deterministic, and robust design approaches.
Table 6.6 tabulates the optimization results for the improved MPC (control level)
obtained by the deterministic and robust design approaches. Table 6.7 lists the
reliabilities (column p) and robust levels (column σ) for all constraints, and the POF
values for the motor, controller, and drive system, respectively. Based on these
results and a comparison of them, the following conclusions can be drawn:

(1) By the deterministic approach based on models (6.15) and (6.16), the optimum
motor efficiency, output power, and material cost are 81.3 %, 670 W, and
$26.9, respectively. After the MCA, the reliability of constraint gm4 is
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Fig. 6.15 Flowchart for the multi-level robust optimization method
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Table 6.5 Optimization
results of the TFM (motor
level)

Par. Nota. Unit Initial Robust Deterministic

xm1 θPM deg. 12 10.20 10.00

xm2 WPM mm 9 7.90 7.65

xm3 Wstc mm 9 8.15 8.0

xm4 Wsta mm 8 8.05 7.95

xm5 Hstr mm 10.5 10.85 10.9

xm6 Nc turn 125 111 110

xm7 Dc mm 1.25 1.27 1.27

xm8 lg mm 1.0 0.97 0.95

η − 79.5 % 81.1 % 81.3 %

Pout W 640 671 670

sf − 0.56 0.51 0.50

Jc A/mm2 4.72 5.75 5.96

Cost $ 35.8 28.0 26.9

fm $ − 1.68 1.65

Table 6.6 Optimization
results of the improved MPC
(control level)

Par. Nota. Robust Deterministic

xc1 A 0.806 0.386

xc2 N 5 7

xc3 CT 0.882 1.17

xc4 Cψ 0.0366 0.03568

xc5 Ki 0.116 0.23

xc6 Kp 0.725 1.619

RMSE(T)/Trated 4.64 % 3.95 %

RMSE(n)/nrated 0.13 % 0.02 %

nos 1.78 % 0.90 %

ts 0.01 0.01

fc 6.55 % 4.87 %

Table 6.7 Reliability and
robust level of the drive
system

Par. Robust Deterministic

p σ p σ

gm1 1 >6 1 >6

gm2 1 >6 1 >6

gm3 1 >6 1 >6

gm4 1 >6 83.45 % 1.4

gc1 1 >6 1 >6

gc2 1 >6 99.90 % 3.3

gc3 1 >6 1 >6

gc4 1 >6 19.40 % 0.2

POF motor *0.0 % 16.55 %

POF control *0.0 % 80.62 %

POF system *0.0 % 83.83 %
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83.45 %, and the corresponding sigma level is 1.4. As a result, the POF of
motor is 16.55 %. As an example, Fig. 6.16 illustrates the current density
distribution of copper wire corresponding to constraint gm4. As shown, many
points in Fig. 6.16a are beyond the limit of current density, 6 A/mm2.

Meanwhile, the reliabilities of constraints gc2 and gc4 are 99.90 % and 19.40 %, and
the corresponding sigma levels are 3.3 and 0.2, respectively. As a result, the POF of
control level is 80.62 %. As another example, Fig. 6.17 illustrates the distribution of
the settling time corresponding to constraint gc4. As shown, most of the points
violate constraint gc4 of “no more than 0.02 s after the load is applied”. This results
in a high POF for the control level. It should be noted that the last column
(t = 0.14 s) in deterministic figure shows the probability for the issue that settling
times are no less than 0.14 s instead of exactly equaling 0.14 s. Figure 6.18
illustrates the distribution of g2, which is related to speed. As shown, there are also
several points violating the limit “no more than 0.05”.
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Finally, the POF of the whole drive system is 83.83 %. This is absolutely not an
acceptable system design for engineering applications.

(2) By the robust approach, three iteration processes are required to get the
optimal results of the multi-level optimization method. Figure 6.19 shows the
iteration process of multi-level optimization for the motor level. As shown,
level 1 is optimized twice while level 2 is optimized only once. The optimum
motor efficiency is 81.1 %, and output power 671 W, which are close to those
obtained by the deterministic approach, whereas the material cost is $28,
which is bigger than that of deterministic design. Regarding the control level,
as shown in Table 6.6, the dynamic performance of this drive system after
robust optimization is slightly worse than that of the deterministic optimiza-
tion. However, all comply well with those constrains in control level.
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Figure 6.20 illustrates the dynamic performance of drive system by using the
algorithm parameters obtained from the robust optimization approach.

After MCA, the reliabilities of all constraints are 1, and the corresponding sigma
levels are all more than 6. As a result, the POFs for the motor, controller, and whole
system are almost zero. This is much better than those obtained by the deterministic
design approach and satisfies the initial reliability requirements. Therefore, the POF
of deterministic optimization is bigger than the robust optimization. As a matter of
fact, the lower cost of deterministic optimization is obtained at the expense of low
reliability and robustness. This is not acceptable in engineering design.

In summary, compared with the initial design, the solutions of robust opti-
mization have many improvements, such as higher output power and efficiency,
lower cost, and better reliability and robustness. Meanwhile, the objectives obtained
by the deterministic design are smaller than those by the robust design optimization,
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but the reliabilities, robust levels and POFs of the motor, control, and system levels
are obviously worse than the latter. Finally, the obtained control parameters by the
robust multi-level optimization are not sensitive to the disturbances of motor output
parameters. Therefore, the system dynamic performances can be ensured by the
proposed method. This is very valuable for engineering batch production.

6.5 Summary

The manufacturing quality and reliability are two terms used to evaluate the vari-
ations of motor performance against the material variations, manufacturing toler-
ances, and assembling errors, which is very important for the industry. The robust
approach based on DFSS has been presented for the design optimization of elec-
trical machines and drive systems so as to improve their manufacturing quality and
reliability in mass production in this chapter. Several cases of single- and
multi-objective optimization are investigated. The multi-level robust design opti-
mization method has been presented for the system-level design optimization of
electrical drive systems. From the investigation of the design example, it can be
seen that this approach can significantly improve the drive system reliability, which
will benefit the manufacturing of those devices and extent their applications in
industry. Therefore, the robust design optimization is a valuable and necessary step
for design optimization of electromagnetic devices and systems from the perspec-
tive of engineering design, which can improve the product reliability and quality,
and save the design cost and cycle.
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Chapter 7
Application-Oriented Design Optimization
Methods for Electrical Machines

Abstract From the perspective of engineering applications, the design optimiza-
tion of electrical machines and drive systems are generally proposed with several
specific requirements and constraints, such as the rated torque, the rated speed, the
given volume and mass, etc. Therefore, the corresponding design optimization
problems are actually oriented by the applications. This chapter aims to develop an
application-oriented design optimization method for electrical machines by the
deterministic and robust design approaches, respectively. Two kinds of applications
are investigated. The first one is about the design optimization of permanent magnet
soft magnetic composite machines for compressor drives in refrigerators and
air-conditioners. The second one is about the design optimization of flux-switching
permanent magnet machines for hybrid electric vehicle drives.

Keywords Application-oriented design optimization method � Motor topologies �
Hybrid electric vehicles � Transverse flux machine � Flux-switching permanent
magnet machine

7.1 Introduction

With the fast development of CAD/CAE software, new materials, flexible
mechanical manufacturing technologies, and advanced optimization and control
algorithms, it is possible to design a motor to meet the special requirements of a
particular application.

The electric vehicles and hybrid electric vehicles (HEVs) are good examples,
which are attracting great attentions and funding from the governments and general
public around the world because of the worldwide fossil fuel energy crisis and
severe greenhouse gas emissions. To improve the efficiency and drive performance
with reduced volume, weight, and cost of novel electrical machines and drive
systems to meet the challenging requirements of HEVs, a great amount of research
efforts are being directed towards the development of high performance electrical
machines and their drive systems [1–4].
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Since each vehicle company has its own design conception, the requirements for
drive motors of different companies are different. On the other hand, there are many
motor types and design schemes for each application. Therefore, for a given
application, all possible motor topologies and structural parameters should be
investigated to get a globally optimum among different options.

This chapter presents an application-oriented design optimization method for
novel electrical machines for domestic appliances and HEVs, respectively.
Section 7.2 presents the proposed optimization method for electrical machines by
the deterministic approach. Section 7.3 presents a robust approach for the
application-oriented design optimization method with a design example of the
plug-in HEV (PHEV) drive, followed by the remarks and a summary.

7.2 Application-Oriented Design Optimization Method

7.2.1 Method Description

Figure 7.1 illustrates a framework for the proposed application-oriented design
optimization method for electrical machines by the deterministic approach. It
mainly includes the following five steps:

Step 1: Define the specifications in terms of specific applications, such as refrig-
erators and HEVs, including the rated speed, output power, torque and
volume.

Step 2: Determine the design options, such as motor types, topologies and mate-
rials. Even when the motor type is chosen, there could be various different
options, e.g. the flux-switching permanent magnet machine (FSPMM) and
variations of different winding configurations and combination of
stator/rotor poles [5–7]. Also, different materials can be employed to
design the stator cores of permanent magnet (PM) motors, such as silicon
sheet steel and soft magnetic composite (SMC). For PMs, the rear-earth
and ferrite magnets are two popular options. Other options include the
winding type and cooling methods etc. All these are directly related to the
output performance and safe operation of the designed machines, such as
torque and temperature rise.

Step 3: Establish an initial design for each option. This step includes the devel-
opment of multi-disciplinary analysis model, determination of initial
dimension and performance evaluation model for each motor option. The
analysis model mainly includes the finite element model (FEM) for the
evaluation of motor performance, such as electromagnetic torque and
temperature distribution.

Step 4: Develop a uniform optimization model for all options and optimize each
option to acquire its optimal design parameters and performance by using
the optimization methods discussed in Chaps. 3 and 4, such as genetic
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Fig. 7.1 Framework of application-oriented design optimization method for electrical machines
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algorithm (GA) and particle swarm optimization (PSO) algorithm [8, 9],
and response surface model (RSM) and Kriging model [10–12]. It should
be noted that, sequential optimization method can be employed here to
improve the optimization efficiency for the low-dimensional design
problems, and multi-level optimization method can be employed for
high-dimensional design problems [12–17].

Step 5: Compare the optimal results of all options, and output the best one as the
final optimal solution for that specific application.

7.2.2 An Optimal PM-SMC Machine for a Refrigerator

Refrigerators are commonly used domestic appliances, and each has different
specifications for its drive machine. Several popular ones are the cost, output power
and efficiency. Meanwhile, many types of electrical machines have been designed
for driving refrigerators so far. Therefore, in order to achieve a best design, all
possible motor types and structures should be investigated, and each of them should
be optimized for its best performance. The best ones of these motors will be
compared to find the final optimal design.

In our previous work, a PM transverse flux machine (TFM) with SMC core as
shown in Fig. 2.3 has been developed for the drive machine used in a kind of
refrigerator [18, 19]. This refrigerator will be considered as the first application for
the proposed application-oriented design optimization method. Table 7.1 lists some
of the specifications for this application.

This PM-SMC TFM was designed to deliver an output power of 640 W (or
torque of 3.4 Nm) at the rated speed of 1800 rev/min. From the experimental
results, it can be seen that this prototype can present good performance [18, 19].
Meanwhile, this motor was compared with two other commercial motors of lami-
nated cores. One is a high efficiency induction motor with the rated torque of
3.72 Nm at 1410 rev/min, 75 % efficiency and 80°C temperature rise in the coil. Its
outer diameter is 160 mm and total length is 234 mm. The second one is a radial
field NdFeB brushless DC servo motor with rated torque of 3.45 Nm at the rated
speed of 3000 rev/min. Its outer diameter is 100 mm and axial length 217 mm.
Through the comparison, it can be seen that the proposed SMC motor features a

Table 7.1 Main motor
specifications for a
refrigerator

Parameter Unit Value

Number of phases – 3

Rated speed rpm 1800

Rated power W 640

Rated torque Nm 3.4

Motor outer diameter mm 100

Stator axial length mm 93
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torque per unit volume of 4.5 times that of the laminated induction motor.
Meanwhile, it delivers 2.25 times the torque per unit volume of the second
brushless DC servo motor [18]. Therefore, the proposed PM-SMC TFM has better
performances than those two commercial motors.

As shown in Fig. 7.2, only one stator phase stack has been investigated for that
PM-SMC TFM in our previous work. In practice, the PM claw pole motor with
SMC core may have various other kinds of stator phase stack structures besides the
original one shown in Fig. 7.2b. Figure 7.3 shows several possible SMC claw pole
stator topologies. The first one has rectangular-shoe poles, which is derived from
the design of SMC stator for claw pole motors [20, 21]. The second and third are
arc tooth stator. The following work will investigate several stator topologies for
this TFM and present an optimal design by using the proposed application-oriented
design optimization method.

To obtain the optimal SMC core for this PM TFM, all three topology structures
of phase stacks and the dimensions of SMC stator have to be investigated.
Meanwhile, in the manufacturing process, besides the density and dimensions of
SMC stator, the dimensions of PMs are also important to the machine performance.
Therefore, all the factors mentioned above are considered to minimize the material

Fig. 7.2 Analysis model in Ansoft, a one phase motor stack, and b one phase SMC stator stack

Fig. 7.3 Stator claw pole topologies: a rectangular-shoe pole structure, b and c arc pole structures
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cost and maximize the output power of this TFM. Based on the specifications listed
in Table 7.1, the uniform optimization model for these motors can be defined as

min : f ðxÞ ¼ w1
Cost
C0

þw2
P0

Pout

s:t: g1ðxÞ ¼ 0:795� g� 0

g2ðxÞ ¼ 640� Pout � 0

g3ðxÞ ¼ sf � 0:8� 0

g4ðxÞ ¼ Jc � 6� 0

; ð7:1Þ

where w1 and w2 are the weighting factors, C0 and P0 the material cost and output
power of the initial prototype, η, Pout, sf and Jc the motor efficiency, output power,
fill factor and current density, respectively.

Five parameters are selected as the optimization parameters for these three
topology structures of stator phase stacks. Three of them are the circumferential
angle, axial width of PMs, and core density. In the case of rectangular-shoe poles,
the other two parameters are the axial and circumferential widthes of SMC teeth
while the tooth height is fixed as 3 mm. In the case of arc poles, the other two
parameters are the inner and outer circumferential angles of SMC teeth. Excluding
the claw pole part, the other parameters of the three structures are the same.

Tables 7.2,7.3,7.4,7.5 and 7.6 list the optimization results for this motor in terms
of different weighting factors. From the tables, the following conclusions can be
drawn:

Table 7.2 Optimization
results for w1 = 0.3 and
w2 = 0.7

Parameter Unit Original design Arc Rectangular shoe

Cost $ 35.6 40.5 43.6

Pout W 768 870 878

Efficiency % 82.2 80.3 81.6

Density g/cm3 5.84 5.81 5.80

Objective – 0.859 0.829 0.849

Table 7.3 Optimization
results for w1 = 0.4 and
w2 = 0.6

Parameter Unit Original design Arc Rectangular shoe

Cost $ 32.5 35.1 38.4

Pout W 730 781 802

Efficiency % 82.2 79.5 80.6

Density g/cm3 6.15 6.02 5.91

Objective – 0.861 0.855 0.876
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(1) For the situation that w1 = 0.3 and w2 = 0.7 (Table 7.2), TFM with original
design stator has the least material cost of $ 35.6 and the highest efficiency of
82.2 %, TFM with rectangular-shoe stator has the highest output power of
878 W. However, the best topology structure is the TFM with arc-teeth stator.
The objective is 0.829, which is the minimal one among them and the cor-
responding material cost and output power are $ 40.5 and 870 W, respectively.

(2) For the situation that w1 = 0.4 and w2 = 0.6 (Table 7.3), similarly, the best
topology structure is still the arc teeth stator. The objective is 0.855, which is
the minimal one among them and the corresponding material cost and output
power are $ 35.1 and 781 W, respectively.

(3) For the situation that w1 = 0.5 and w2 = 0.5 (Table 7.4), TFM with original
design stator has the least material cost of $ 28.7 and the highest efficiency of
83.0 %, TFM with arc teeth stator has the highest output power of 734 W. The
best topology structure is the TFM with original design stator. The objective is
0.847.

(4) For the situations that w1 = 0.6 (Table 7.5) and w1 = 0.7 (Table 7.6), similarly,
the best topology structure is the TFM with original design stator. The optimal
objectives and other motor performances can be seen in those two tables.

Therefore, the TFM with arc-teeth stator is the best one for the first two situa-
tions of w1 = 0.3 and 0.4, and the TFM of the original stator is the best one for the

Table 7.4 Optimization
results for w1 = 0.5 and
w2 = 0.5

Parameter Unit Original design Arc Rectangular shoe

Cost $ 28.7 32.6 32.4

Pout W 672 734 690

Efficiency % 83.0 79.5 80.0

Density g/cm3 6.27 6.13 6.35

Objective – 0.847 0.858 0.883

Table 7.5 Optimization
results for w1 = 0.6 and
w2 = 0.4

Parameter Unit Original design Arc Rectangular shoe

Cost $ 27.1 32.3 30.1

Pout W 640 726 642

Efficiency % 83.3 79.5 79.5

Density g/cm3 6.33 6.15 6.55

Objective – 0.789 0.848 0.844

Table 7.6 Optimization
results for w1 = 0.7 and
w2 = 0.3

Parameter Unit Original design Arc Rectangular shoe

Cost $ 27.1 32.3 30.2

Pout W 642 726 645

Efficiency % 83.3 79.5 79.5

Density g/cm3 6.31 6.15 6.54

Objective – 0.820 0.853 0.865
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latter three situations of w1 = 0.5, 0.6 and 0.7. The best topology structure and
dimension parameters are related to the weighting factors in the optimization model
chosen according to the applications. In a situation that the cost is more important
than the output power, the TFM with arc teeth stator should be taken as the best
design schemes.

7.3 Robust Approach for the Application-Oriented
Design Optimization Method

7.3.1 Method Description

Figure 7.4 shows the framework for the proposed application-oriented design
optimization method based on the robust approach for PM machines. Compared to
the framework under deterministic approach, there are two main differences.

The first one is the development of robust analysis model for each option. The
robust analysis model mainly includes the determination of variations or noise
factors and the manufacturing tolerances or distribution parameters. The robust
optimization model can be constructed by using the design for Six-Sigma (DFSS)
technique. The second one is that the Monte Carlo analysis (MCA) method is
required in this method to evaluate the manufacturing quality of the motors in mass
production, e.g. one million products per batch, which mainly includes the mean
and standard deviation of variations of motor performance and reliability.

7.3.2 An Optimal FSPMM for a PHEV Drive

7.3.2.1 FSPMMs and Topologies

PHEVs have been developed in many countries due to the shortage of fossil fuels.
The electric drive system as one of key units in the PHEV plays crucial role for its
widely successful commercialization. Figure 7.5 shows a novel PHEV powertrain
dependent on one electric machine has been proposed by the University of
Technology Sydney (UTS) since 2009 [4, 22]. It consists of an energy storage unit
comprising of batteries and super-capacitors, a power control unit including the DC
link, DC/DC converters and a back to back inverter/rectifier, an electric machine,
functioning as either a motor or a generator (M/G), and an internal combustion
engine (ICE) working mainly during fast acceleration to provide the extra torque.

The system operation is governed by a special energy management strategy as
illustrated in Fig. 7.6 [22], where SOC stands for the state of charge of the energy
storage unit, and EM the electric machine. Initially, it is assumed that the battery
and super-capacitor banks are fully charged from the grid, and the capacity of the
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Fig. 7.4 Framework of application-oriented design optimization method based on robust
approach
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energy storage is designed such that the car could cover a reasonable long range. In
the normal operation mode (high SOC and moderate load), the EM works alone as
the prime mover of the car. When it needs extra torque for fast acceleration, the
internal combustion engine (ICE) will provide the assistance. When SOC drops, the
ICE will recharge the battery through EM while the system is idle. If the load is
high and SOC very low, the ICE will work alone to drive the car and recharge
battery through EM. It can be seen that the EM in different working conditions has
to work continuously. Hence, it must have good attributes of high torque density,
high efficiency, strong robustness, and convenience of cooling, etc.

The PHEVs have strict requirements on the drive machine, mainly including
high torque/power density, strong flux weakening ability (wide speed range for
cruising), good mechanical robustness, strong thermal dissipation capability, etc.
[23–26]. Due to these requirements, several FSPMMs with different topology
structures have been investigated for a PHEV system in our previous work.
Figure 7.7a illustrates the structure of an FSPMM with 12 stator poles and 10 rotor
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poles (abbreviated as 12/10 FSPMM). Figure 7.7b shows the structure of the rotor.
Compared with those traditional PM machines, such as rotor surface mounted or
rotor inserted PM machines, FSPMMs have the following main advantages.

(a) Strong thermal dissipation capability—As the PMs are inserted in the stator,
they can have greater cross sectional area and are less likely to suffer the
demagnetization problem. The winding current density can reach 7–8 A/mm2

or even larger. In continuous operation, the stator temperature can be main-
tained well below 125 °C, which is in the range of H-class insulation by water
cooling.

(b) Strong structure robustness—Similar to switched reluctance motors, the rotor
of FSPMM has no PMs or brushes as shown in Fig. 7.7, and therefore is
suitable for high speed operation, e.g. above 20,000 rev/min. For a given
power rating, as the rated speed increases, the machine volume can be reduced
gradually.

(c) Concentrated winding—The edge connection of stator winding is shorter than
distributed ones, which means less copper loss with the same amplitude of
stator current.

(d) High power or torque density—Same as the traditional PM machines, PMs in
the FSPMM are employed to generate the major air gap flux linkage, and the
merit of high power or torque density is retained without extra excited loss
[23, 27, 28].

From the extensive research work, it is found that the combination of stator/rotor
poles is a very important topology issue for the motor performance [5, 6, 29–31].
Generally, there are many feasible options for the combinations of stator and rotor
poles of FSPMMs by the following equation.

Fig. 7.7 Structures for FSPMM with 12/10 poles, a whole motor, and b rotor topology
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Ns ¼ k1m
Nr ¼ Ns � k2

�
ðk1; k2 ¼ 1; 2; 3. . .Þ; ð7:2Þ

where Ns and Nr are the numbers of stator and rotor poles, respectively, and m is the
number of phases. For example, for the FSPMM with 12 stator poles as shown in
Fig. 7.7a, there are several promising numbers of rotor poles, such as 10, 11, 13, 14
and 16 poles, respectively, which have been widely investigated in many research
works [5, 6, 17, 30]. Figure 7.8 shows three other rotor topology structures for this
case. For another example, for the FSPMM with 6 stator poles as shown in Fig. 7.9,
several promising numbers of rotor poles are 5, 7 and 8.

On the other hand, there are also some disadvantages for this kind of machine
compared with the traditional doubly salient structure machines, such as high
cogging torque and odd harmonics in the back electromotive force (EMF). These
will reduce the efficiency and increase the torque ripple [7, 22, 27–29]. To over-
come these disadvantages, many new topology structures including different
combinations of stator/rotor poles, different laminated structures for sheet steels,
such as the traditional radially-laminated and new axially-laminated structures [7],
and different rotor structures, such as the pole-pairing and pole-skewing [30], have
been investigated for the FSPMMs.

Take the FSPMM with 6/7 poles for example. In order to operate at
2000 rev/min, it should be excited by 233 Hz current. As the speed or frequency
goes up, the core loss will increase greatly. To reduce this negative influence, a new
laminated-structure FSPMM (LSFSPMM) as illustrated in Fig. 7.9b has been
proposed in our previous work [7]. Different from the traditional FSPMM,
LSFSPMM is laminated axially in parallel to the shaft. As shown, the stator
includes 6 respective lamination modules, while the rotor involves 7 modules,
which are all made of 0.3 mm high grain oriented silicon steel sheet (HiB). For high
magnetic permeability of HiB, each phase flux linkage loops along the lamination
and make full use of PMs. Figure 7.10 shows the manufacturing modules for rotor
and stator, respectively. Table 7.7 lists the main dimensions for both machines [7].

Fig. 7.8 Rotor structures with different poles: a 11 poles, b 13 poles, and c 14 poles
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Fig. 7.9 Structure diagrams of two machines with 6/7 poles, a traditional FSPMM, and
b LSFSPMM

Fig. 7.10 Manufactured modules for the 6/7 LSFSPMM, a rotor, and b stator

Table 7.7 Main dimensions
of two FSPMMs

Items Unit Value

Outer radius mm 49.9

Stator Yoke height mm 8.8

Pole width mm 21.2

Pole height mm 12.4

Number of turns per pole
winding

mm 72

PM Width mm 5.4

Height mm 19.8

Relative permeability mm 1.03

Magnetic remanence Tesla 1.19

Air gap length mm 0.6

Rotor Pole width mm 11

Pole height mm 13.1

Yoke height mm 5.5

Effective axial length mm 44
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Figure 7.11 shows performance comparisons for radially-laminated FSPMMs
with different topologies. As shown, 6/7 is the best stator/rotor combination for
FSPMM with 6 stator poles, and 12/14 is the best one for FSPMM with 12 stator
poles [7].

It should be noted that the above comparison was carried out mainly by expe-
rience and with similar structure parameters. This is not fair as the comparison is
not based on the optimal design of each combination. Consequently, an interesting
problem arising here is that how to accurately seek for an optimal FSPMM among
several topology structures for a specific application, e.g. for the drive machine of a
specific PHEV/HEV with the given number of stator poles and volume. To solve
this problem, the size equation method and some introductory optimization works
based on one or two design parameters have been employed [29]. By using these
methods, a brief comparison for the performances of different FSPMMs can be
obtained.

However, as aforementioned, it is difficult to fairly compare the performances of
FSPMMs with different topology structures if each option of them is not fully
optimized based on all major structural parameters. The following two sub-sections
present a brief qualitative and a quantitative accurate comparison method to solve
the above problems through an example of designing an optimal 75 kW FSPMM
with 12 stator poles for the drive machine of a PHEV investigated in our previous
work [23]. More design requirements for drive machine can be found in that work.
As an illustration of the proposed method, two rotor topology structures and motor
design parameters are investigated, and their performances are presented and
compared.

0 90 180 270 360
0

1

2

3

4

 Rotor position   r (elec.deg)

 T
or

qu
e 

  T
  (

N
m

)

6/5 poles
6/7 poles
6/8 poles

(a)

0 90 180 270 360
0

1

2

3

4

 Rotor position   r (elec.deg)

 T
or

qu
e 

  T
  (

N
m

)

12/10 poles
12/14 poles
12/16 poles

(b)

θ θ

Fig. 7.11 Torque curves versus different combinations of stator/rotor poles, a 6-pole stators, and
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7.3.2.2 Qualitative Analysis Based on Size Equation

Size equation is a good method to present a qualitative analysis and comparison for
FSPMMs with different rotor topology structures. The effect of the combinations of
stator/rotor poles on electromagnetic torque can be expressed by the sizing equation
as,

Tem ¼
ffiffiffi
2

p
p

4
Nr

Ns
kskdAsBgD2

silacsg ð7:3Þ

where ks and kd are the skew and leakage factors, respectively, As is the armature
current electrical loading, Bg the peak flux density at no-load situation, Dsi the inner
diameter of stator, la the active stack length, cs the stator tooth arc factor, and η the
efficiency of the machine [32].

As shown, the electromagnetic torque is directly proportional to the number of
rotor poles and inversely proportional the number of stator poles. The combinations
of stator/rotor poles have also great impacts on the cogging torque. As stated in
[32], the period number and magnitude of cogging torque in the FSPMMs can be
briefly evaluated by the least common multiple (LCM) and greatest common
divisor (GCD) of Nr and Ns, respectively. A higher LCM and a lower GCD have
been suggested for effective decrease of the cogging torque.

Table 7.8 tabulates the comparison of FSPMMs with two different combinations
of stator/rotor poles based on the size equation. It can be seen that the FSPMM with
12/14 structure has the higher LCM and ratio of Nr over Ns, which can be regarded as
the index of smaller cogging torque and bigger magnitude of electromagnetic torque.

As aforementioned, Table 7.8 only shows a brief comparison for FSPMMs with
different rotor topology structures. Since the efficiency and structural parameters are
involved in (7.3) but not included in the performance evaluation in this table, an
accurate quantitative analysis method involving both topology structures and
structural parameters are required. This is the main aim of the next sub-section.

7.3.2.3 Quantitative Analysis Based on Optimization

The proposed quantitative analysis is based on the proposed application-oriented
design optimization method in Sect. 7.3. It includes three steps, construction of uni-
form optimization model and its robust form for all topology structures of FSPMMs,
development of optimization methods for all design parameters, and quantitative
comparison for all performance parameters. The comparison is based on the optimized

Table 7.8 Qualitative
analysis results for FSPMMs
with 12 stator poles

Ns Nr Nr/Ns LCM GCD

12 10 0.83 60 2

12 14 1.17 84 2
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performances for all topology structure of FSPMMs for the same objectives and
constraints. Therefore, the final optimal FSPMM will possess not only the best
topology but also the optimal structural parameters for this topology structure.

A. Uniform Optimization Model
As an example, a FSPMM with two topology structures will be investigated to
illustrate the efficiency of the proposed method. The FSPMM is designed to deliver
75 kW output power at a rated speed of 3000 rev/min for a drive machine proposed
in the UTS PHEV [23]. For the optimization, objectives are minimizing cogging
torque (Tcog) and torque ripple (Trip) and maximizing average torque (Tave); and
objective function has the form as

min : f ðxÞ ¼ Tcog
Tcog initial

þ Tave
Tave initial

þ Trip
Trip initial

s:t:

g1ðxÞ ¼ 0:9� g� 0

g2ðxÞ ¼ sf � 0:6� 0

g3ðxÞ ¼ 220� Tave � 0

g4ðxÞ ¼ Trip � 25� 0

8>>>><
>>>>:

; ð7:4Þ

where the subscript ‘initial’ means the values calculated from the initial design
scheme as shown in Table 7.9, η is the efficiency, and sf the slot filling factor.

Considering the manufacturing tolerances, the robust optimization model of
(7.4) can be obtained within the framework of design for Six-Sigma (DFSS) shown
in the last chapter, and it has the form as

Table 7.9 Initial dimensions
for FSPMMs with 12 stator
poles

Parameters Unit Value

Stator Yoke height mm 17.5

Pole width mm 23.4

Pole height mm 16.8

Turns of winding turns 6

Slot filling factor % 60

Current density A/mm2 7

PM Width mm 8

Height mm 33.8

Relative permeability – 1.03

Magnetic remanence T 1.19

Air gap length mm 0.6

Rotor Pole width mm 12

Pole height mm 24.1

Yoke height mm 17.5
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min : lf ðxÞ
s:t: lgiðxÞþ nrgiðxÞ� 0; i ¼ 1; . . .; 4

ð7:5Þ

where μ and σ are the mean and standard deviation of the corresponding terms
estimated by MCA, n is the sigma level and is selected as 6 in this work to
guarantee that the obtained optimal design can achieve the Six-Sigma quality in
industry manufacturing, namely 3.4 defects per million products. To obtain the
mean and standard deviation in this equation, the sample size in the MCA is defined
as 10,000 [33–36].

From previous experience, it is found that four parameters including depth of
stator pole, width of rotor pole, height of rotor yoke and width of permanent magnet
are significant to the motor performance. Therefore, they are selected as the opti-
mization parameters in the optimization. For the robust optimization, 0.05 mm was
chosen to be the manufacturing tolerances for all these parameters, which means
that the standard deviations are 0.05/3 mm. To calculate the reliability of different
motors, a term known as probability of failure (POF) will be calculated as follows

POF ¼
Y4
i¼1

Probðgi � 0Þ ð7:6Þ

This POF will be used to calculate the defect rate in the 10,000 products used in
the MCA.

B. Optimization Results and Comparison
Figure 7.12 illustrates the comparison of cogging torque curves of 12/10 and 12/14
FSPMMs after robust optimization of (7.5). As shown, the minimal and maximal
cogging torques for 12/10 FSPMM are –9.27 and 8.95 Nm, respectively, while they
are −6.95 and 8.52 Nm, respectively for 12/14 FSPMM. Therefore, 12/14 has
smaller amplitudes of cogging torques.
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Figure 7.13 shows the comparison of torque curves of 12/10 and 12/14 FSPMMs
at rated speed after robust optimization. As shown, the minimal and maximal
torques for the 12/10 FSPMM are 215.09 and 236.71 Nm, respectively, and
therefore the average torque is 225.90 Nm, the torque ripple is 21 62 Nm (or
9.57 %). The minimal and maximal torques for the 12/14 FSPMM are 230.18 and
244.89 Nm, respectively. Thus, the average torque is 237.54 Nm, and the torque
ripple is 14.71 Nm (or 6.19 %). It can be seen that the average torque of the optimal
12/14 motor is higher than that of the optimal 12/10 motor, while the torque ripple
is smaller than that of 12/10 motor.

Meanwhile, the reliability and POF of both optimal 12/10 and 12/14 FSPMMs
can be calculated by using (7.6) and MCA. It can be found both motors’ reliabilities
are almost 100 % after calculation.

In conclusion, 12/14 FSPMM has better performance parameters compared with
those of 12/10 motor in terms of average torque, torque ripple and cogging torque.
It should be noted that only two rotor topologies were investigated in that example.
However, other topology structures can be easily investigated and compared by
using this method, including different stator/rotor pole combinations and different
laminated structures of the steel sheets.

7.4 Summary and Remarks

This chapter presents an application-oriented design optimization method for PM
motors by the deterministic and robust approaches, respectively. Two practical
applications are investigated as well, namely the drive machines for refrigerators
and the UTS PHEV. In the proposed method, both motor topology structures and
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dimension parameters are investigated to acquire the best performance for each
design option.

On the other hand, several remarks could be presented here for this
application-oriented design optimization method. The first also the most important
one is that only one discipline (electromagnetic analysis) has been investigated for
these examples. However, system-level and integrated design optimizations should
be the starting points of this application-oriented design optimization method,
which means that besides the performance of motor itself, the integrated perfor-
mance of the whole drive system as well as the whole appliance should be
investigated. Therefore, multi-disciplinary design analysis is more important from
the perspective of industry applications, particularly the integration of motor and
control systems, and should be involved for the application-oriented design opti-
mization method.

The second one is that only five structural parameters (TFM example) and four
parameters (FSPMM example) are investigated in this work. For the
high-dimensional optimization situation, the multi-level (robust) optimization
method presented in Chaps. 4−6 should be employed to improve the optimization
efficiency. Due to the high efficiency of the multi-level optimization method, it is
able to efficiently optimize and accurately compare the optimal performances
among several electrical machines and drive systems with different topologies and
parameters.

The third one is that only single objective has been considered in these exam-
ples. For the multi-objective optimization situation, the multi-objective sequential
optimization strategy presented in Chap. 4 can be taken to improve the optimization
efficiency. Therefore, all the developed design optimization methods as shown in
Chaps. 4−6 can be employed for the proposed application-oriented design opti-
mization method.
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Chapter 8
Conclusions and Future Works

Abstract This chapter concludes the book. In summary, this book has focused on
the development of new efficient design optimization methods for novel
high-performance electrical machines and drive systems under two design
approaches, namely the deterministic and robust approaches. These new methods
include sequential optimization method and its multi-objective form, multi-level
optimization method, multi-level Genetic Algorithm, multi-disciplinary design
optimization method and application-oriented system-level design optimization
method. To illustrate the efficiency of those proposed methods, several classical test
functions, a TEAM benchmark problem, and four kinds of motors have been
investigated. As shown, the proposed new design optimization methods can achieve
better design objectives for electrical motors and drive systems, such as higher
output power and lower material cost, with much smaller computational cost than
the traditional methods. The proposed robust design optimization approach can
yield optimal designs of electrical drive systems for high quality and high reliability
mass production. Based on these investigations and outcomes, several directions
have been recommended for the future research.

8.1 Conclusions

After a review of the design fundamentals for electrical machines and drive sys-
tems, this book presents several novel efficient design optimization methods in
terms of different optimization situations including:

(1) Low-dimensional situation: The sequential optimization method (SOM) was
presented for this situation. It consists of two processes, the coarse and fine
optimization processes. The main aim of the first process is to reduce the initial
big design space to a small one by using the space reduction technique. The
main aim of the second process is to find the optimal solution by using local
sample updating method. From the investigation of a test function, a TEAM
Workshop problem (superconducting magnetic energy storage: SMES) and a
permanent magnet (PM) claw pole motor with soft magnetic composite
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(SMC) core, it can be found that SOM and its improved form can present
better optimal solutions while the required computational cost of finite element
analysis (FEA) can be reduced by about 90 %.

(2) Multi-objective situation: The multi-objective sequential optimization method
(MSOM) was proposed for this situation. It uses the strategy of SOM and
improved central composite design technique to reduce the FEA computa-
tional cost. From the investigation of a classic test function and a PM-SMC
transverse flux machine (TFM), it can be seen that the obtained Pareto fronts
are very close to the exact ones.

(3) High-dimensional situation: The multi-level optimization method based on the
sequential subspace optimization strategy and multi-level genetic algorithm
(MLGA) was proposed for this situation. Two popular techniques, the local
sensitivity analysis and the design of experiments (DOE) techniques have been
presented for the sensitivity analysis of design parameters so as to establish the
framework of multi-level optimization method. From the investigation of a
SMES and a surface-mounted permanent magnetic synchronous machine
(SPMSM), it can be found that the multi-level optimization method is efficient
and the obtained optimal solutions are better than those obtained by the tra-
ditional single-level optimization methods.

(4) Multi-disciplinary situation: A multi-disciplinary analysis, design, and opti-
mization framework was presented for PM motors. The multi-disciplinary
analysis includes electromagnetic, thermal, modal and manufacturing analy-
ses. From the investigation of a PM-SMC TFM, it is shown that the obtained
optimal solutions are better than the initial design and those obtained by
non-multi-disciplinary design optimization methods.

(5) Electrical drive systems situation: The system-level design optimization
method based on multi-level optimization strategy and multi-level genetic
algorithm is proposed for this situation. The design parameters in both motor
and control parts have been optimized at the system level rather than the
component level to achieve good steady-state and dynamic performances for
the whole drive systems, including larger output power and higher efficiency,
and lower material cost and dynamic overshoot. Two examples have been
investigated to show the efficiency of the proposed method. The first one is a
drive system consisting of a PM-SMC TFM and an improved model predictive
control (MPC) system. The second example is composed of an SPMSM and a
field oriented control (FOC) system. Through the investigation of these two
drive systems, it is found that both the steady-state and dynamic performances
of the whole drive systems have been greatly improved, and the computational
costs required to obtain the solutions have been reduced significantly.

(6) Mass production situation: The main concerns in mass production of electrical
machines and drive systems are the product quality and reliability. There are
many unavoidable uncertainties or variations in the industrial manufacturing
process of electrical machines and drive systems, including mainly the
material diversity, manufacturing error, and assembly inaccuracy, which can
result in big variations for the reliability and quality of electrical machines and
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drive systems in mass production. The robust optimization approach based on
the technique of Design for Six-Sigma (DFSS) has been presented for different
design optimization situations to achieve optimal designs of high-performance
and high-quality electrical machines and drive systems in mass production.
Two multi-level optimization strategies are presented to improve the opti-
mization efficiency for high dimensional problems. From the investigation of a
PM-SMC machine and a drive system consisting of this machine and the MPC
control scheme, it is found that the reliability and quality level of the inves-
tigated electrical machines and drive system have been increased greatly by
using the proposed robust approach.

(7) Application-oriented situation: This is the ultimate design optimization target
of electrical machines as well as drive systems. The system-level and inte-
grated design optimizations are the two main aspects in this application.
A concise application-oriented design optimization method has been presented
for only electrical machines in this book with two design approaches, the
deterministic and robust approaches. Two examples including an optimal
PM-SMC motor for a refrigerator and an optimal FSPMM for the UTS plug-in
hybrid electric vehicle (HEV) drive have been investigated to show the effi-
ciency and necessity of the proposed method. It is shown that not only the
topology structures but also their dimensional parameters of different motor
designs have to be optimized before the final comparison and conclusion so as
to find an optimal motor for a specific application.

In summary, the proposed new optimization methods are efficient for design
optimization of electrical machines and drive systems. It should be noted that all
optimization models for electrical machines are verified by comparing the FEA
calculations with experimental results. Therefore, the correctness and efficiencies of
the proposed methods have been validated and can be employed for extensive
engineering applications.

8.2 Future Works

The design optimization of electrical machines and drive systems is a
multi-disciplinary, multi-objective, and multi-level problem and an important and
challenging issue in both research and industry communities. In order to find
efficient ways to solve this kind of problems, further efforts are required for
researchers and engineers coming from different disciplines, including mainly
material, electrical engineering, mechanical engineering, quality management and
control, and applied mathematics. This section intends to draw a picture for the
readers about the trends in this research field. The following six aspects are the
recommendations from the authors:
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(1) Novel motors with new materials and topologies
Firstly, as more and more new materials are employed for design and man-
ufacturing of electrical machines, new material models are required, including
the models of core losses, and thermal and manufacturing properties.
Secondly, with these new materials and manufacturing methods, novel
topologies will be possible for some types of electrical machines.

(2) Efficient control circuits and algorithms
New topologies for the control circuits are required, which can reduce the
feedback time and improve the control accuracy. Meanwhile, improved con-
trol algorithms based on current ones are very important for this part,
including the improved MPC.

(3) System-level design optimization models
Firstly, the optimization models based on the component level should be
established based on the new design models mentioned in the above two parts.
Secondly, the system-level multi-disciplinary analysis model should be con-
structed for the whole appliance or system. For example, the models for the
drive systems in HEVs should be integrated with the energy-storage model
and power-train model. Meanwhile, the system-level reliability and lifetime
models should be constructed for evaluation of the reliability of the motors and
drive systems. All these models can be employed to extend the usage and
enhance the significance and value of the application-oriented design opti-
mization method.

(4) New design optimization methods
Firstly, the efficiency of MSOM for the high-dimensional multi-objective
optimization situation has to be improved. The MSOM based on manifold
reduction technique is a promising strategy for this issue.
Secondly, the topology optimization is an important topic in electrical engi-
neering, which should be included in the system-level design optimization.
Thirdly, new modeling methods for high dimensional problems are required,
e.g. high dimensional Taylor model.
Finally, the multi-level optimization is based on a series framework in this
book. It can be used by combining with current parallel optimization frame-
work to improve the multi-disciplinary optimization efficiency. More inter-
actions between motor and control, for example, the feedback from control
system to the motor part, should be investigated as well.

(5) Reliability and quality in mass production
Firstly, the qualitative and quantitative analyses (including probability distri-
butions) of the variations/uncertainties in material modelling, manufacturing
and assembly process and control process, and their effects on the performance
of the whole drive systems, and new equivalent reliability model for drive
systems have to be developed for novel electrical machines and drive systems.
Secondly, some robust control strategies should be investigated for drive
systems, such as robust MPC, H∞ control, and tolerant control, to improve the
reliability of drive systems in the operation environment.
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(6) Application
While there are many sophisticated new optimization methods, each with its
own advantages and disadvantages, a problem we are facing is to decide
which one would be the best for a particular engineering problem. Therefore, a
selection strategy should be established and a design platform is required to
include all these information. The platform will be a powerful tool for
designing and testing novel high performance electrical drive systems with
new materials, novel topologies, low cost, high efficiency, reliability and
robust system performance, and can greatly shorten the design cycles.
Meanwhile, the platform will enable designers to focus their attention on the
system performance which they have the best expertise, rather than the
mathematical algorithms. This will be very valuable for industry mass
production.
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