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CHAPTER 1

Differentiable Manifolds

1. Differentiable maps on Euclidean spaces

Consider a differentiable map f : Rn−→Rm. The derivative of f at x ∈ Rn
is the linear map defined by the Jacobian m × n matrix of first partial
derivatives

df(x) =
(
∂fi
∂xj

)
: Rn −→ Rm ; h = (h1, h2, . . . , hn) −→

df(x)(h) =
(

n∑
j=1

∂f1
∂xj

hj ,
n∑
j=1

∂f2
∂xj

hj , . . . ,
n∑
j=1

∂fm

∂xj
hj

)
.

If g : Rm → Rs is a second differentiable map and gf : Rn → Rs is the
composition then

d(gf) = dg df.

Definition 1. Let f : Rn → Rm be a differentiable map.
(1) A regular point of f is a point x ∈ Rn where the linear map df(x)

is of maximal rank, i.e.

rank(df(x)) = min(m,n) .

(2) A critical point of f is a point x ∈ Rn which is not regular.
(3) A regular value of f is a point in the image y ∈ Rm such that

every x ∈ f−1(y) ⊆ N is regular or f−1(y) is empty.
(4) A critical value of f is a point y ∈ Rn which is not regular.

Theorem 1. (Implicit Function) For any differentiable map f : Rn →
Rm and any regular point x ∈ Rn of f there exist a neighborhood Nx ⊂ Rn
and local coordinates (z1, . . . , zn) in Nx with x at (0, . . . , 0), and a neighbor-
hood Nf(x) ⊂ Rm of f(x) with local coordinates (w1, . . . , wm) with f(x) ∼
(0, . . . , 0), such that :

• if n ≤ m, then

f(z1, . . . , zn) = (z1, . . . , zn, 0, . . . , 0︸ ︷︷ ︸
m−n times

)

• if n ≥ m then

f(z1, . . . , zn) = (z1, . . . , zm) .

1
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Thus, in a neighborhood of a regular point the map either looks like an
embedding or a projection. In particular, the set of regular points is open
in Rn.

As regards the regular and singular values of f we have the fundamental
theorem of Sard :

Theorem 2. (Sard) The set of singular values of f has measure 0 in
Rm for any C∞ map f : Rn → Rm.

In the case where n < m this says that the image of f cannot be some-
thing like a space filling curve. But in the case where n ≥ m it is even more
restrictive. For example the implicit function theorem immediately implies
:

Corollary 1. Let f : Rn → Rn be any C∞ map for which the measure
of im(f) > 0. Then there is a regular value, y ∈ Rn of f , and f−1(y) is a
discrete set in Rn.

In particular, if f : Rn → Rn is such that im(f) contains an open set in
Rn then im(f) has measure > 0.

More generally, the implicit function theorem 1 gives :

Corollary 2. Let f : Rn → Rm be any C∞ map for which the measure
of im(f) > 0, with n ≥ m. Then there is a regular value y ∈ Rm for
f and f−1(y) has the property that for each x ∈ f−1(y) there is an open
neighborhood Nx ⊂ Rn of x and local coordinates (z1, . . . , zn) there so that
f−1(y) ∩Nx = {(z1, . . . , zm, 0, . . . , 0)} with

∑m
1 z2

i < ε.

2. Singular points and Morse functions

In a neighborhood of a singular point things are much more complex.
Indeed, in general the situation is far from being understood. However, in
the extreme case where f is a function f : Rn → R we have a fairly good
understanding of what happens – at least when the singular point is isolated!

The Taylor expansion through degree k of a differentiable function f :
Rn−→R at x ∈ Rn is given by

f(x+ h) = f(x) +
k∑
j=1

1
j!

∑
1≤i1,i2,...,ij≤n

∂jf
∂xi1

∂xi2
...∂xij

hi1hi2 . . . hij

+O(|h|k+1) ∈ R
(x = (x1, x2, . . . , xn), h = (h1, h2, . . . , hn) ∈ Rn) ,

so that
f(x+ h) = f(x) + df(x)(h) + . . . .

The linear term is determined by the gradient vector

df(x) =
(
∂f

∂x1

∂f

∂x2
. . .

∂f

∂xn

)
∈ Rn ,
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corresponding to the linear map

df(x) : Rn → R ; h = (h1, h2, . . . , hn)→
n∑

i=1

∂f

∂xi
hi ,

which is either 0 or has the maximal rank 1. Thus x ∈ Rn is a regular point
of f if and only if df(x) 6= 0, and x ∈ Rn is a critical point if df(x) = 0.
The quadratic term in the Taylor expansion is the quadratic function of the
symmetric bilinear form (Rn, λ) defined by the Hessian matrix of second
partial derivatives

λ =
(

∂2f
∂x1∂x2

)
: Rn × Rn → R ;

(u, v) = ((u1, u2, . . . , un), (v1, v2, . . . , vn))→
∑

1≤i,j≤n
∂2f

∂xi∂xj
uivj ,

namely

µ : Rn → R ;
h = (h1, h2, . . . , hn)→ λ(h, h)/2 = 1

2

∑
1≤i,j≤n

∂2f
∂xi∂xj

hihj .

We say that the critical point x of the function f : Rn → R is non-
degenerate if the determinant of the Hessian matrix

Hf (x) =
(

∂2f

∂xi∂xj

)

x

is non-zero, Det(Hf (x)) 6= 0. Note that if we change coordinates near x so

(x1, . . . , xn) = K(y1, . . . , yn)
= (K1(y1, . . . , yn), . . . ,Kn(y1, . . . , yn))

with dK invertible at x, then

∂2(fh)
∂yi∂yj

=
∑
r,s

∂2f

∂xr∂xs

∂Kr

∂yi

∂Ks

∂yj

since
∂f

∂xi
= 0 at x (1 ≤ i ≤ n). Consequently,

Hfk = (dK)tHfdK

and Hf actually transforms like a symmetric bilinear form. In particular :

(1) non-degeneracy for the critical point x is invariant under local co-
ordinate changes,

(2) since we can diagonalize a symmetric matrix by an orthogonal ma-
trix, T , there is an orthogonal transformation centered at x which
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changes Hf to the diagonal matrix

HfT =




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


 ,

and non-singularity assures us that all the λi are non-zero.

The index of Hf at x, written I(f)x, is the number of negative λi in 2,
and I(f)x is independent of the way in which we diagonalize H, where
H 7→ AtHA with A non-singular.

The following lemma, due to M. Morse, shows that the index of a non-
degenerate critical point completely determines the structure of f in a neigh-
borhood of x.

Lemma 1. (Morse Lemma)
Let x be a non-degenerate critical point of f : Rn → R with index I(f)x = k.
Then there is a coordinate system, (z1, . . . , zn), in a neighborhood of x so
that (0, . . . , 0) ∼ x and with respect to this coordinate system f takes the
form

f(z) = f(x) + z2
1 + · · ·+ z2

n−k − z2
n−k+1 − · · · − z2

n .

(For a proof see e.g., Milnor [43].)

Remark . In particular 1 has the following implications.

(1) Non-degenerate critical points are isolated.
(2) A non-degenerate critical point of index n is a local maximum.
(3) A non-degenerate critical point of index 0 is a local minimum.

Near a non-degenerate critical point where the index I(f)x = k lies
properly between 0 and n the graph looks like a saddle point. It follows
that near x the level surfaces,

f−1(f(x) + ε) ∩N(x)

have the form
{
Sn−k−1 ×Dk for ε > 0
Dn−k × Sk−1 for ε < 0.

Near an isolated critical point the homotopy type of the level space f−1(t)
undergoes a change in homotopy type. Near x, f−1(f(x) + δ) has the prop-
erty that it looks locally like Rn−1 from the implicit function theorem for
δ 6= 0. But it need not be a copy of Rn−1. In any case, the type of f−1(t)
changes near x by removing a copy of Dk × Sn−k−1 (which has boundary
Sk−1×Sn−k−1) from f−1(f(x)− ε) and replacing it by Sk−1×Dn−k (which
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has the same boundary).
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f−1(f(x)− ε)

f−1(f(x) + ε)

The effect on the level surface of
passing through a critical point

To clarify the meaning of 2 assuming that f−1(f(x) − ε) is simply a line
segment near x then the new level surface is given as
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The level surface at f−1(f(x) + ε)

Definition 2. A C∞ function f : Rn → R is Morse if it’s only singu-
larities are non-degenerate critical points.

Morse proved the following result which shows that the Morse func-
tions are generic among all functions.

Lemma 2. (Morse density theorem)
The set of Morse functions is open and dense in the set of all C∞ functions
f : Rn → R.

In particular, given any function f : Rn → R, it can be uniformly ap-
proximated by a Morse function.

The structure of f−1((−∞, t]) for f Morse. Suppose that the num-
ber of singular points of the Morse function f is finite, or more generally
restrict attention to a compact region NL ⊂ Rn, where

NL = {x ∈ Rn | |x| ≤ L} .
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The fact that the singular points are isolated assures that there are only
a finite number of critical points. Hence, there are only a finite number if
t ∈ R, say t1 < t2 < · · · < tk, which are critical values for f .

We consider the spaces Hf (t) = f−1((−∞, t]) and ask how they change
as t passes through the critical values of f . In fact, this is the only time the
Hf (t) can change since we have

Lemma 3. Suppose that there is no critical value of f in the interval
[t1, t2] then Hf (t1) is differentiably homeomorphic to Hf (t2).

Proof. The idea here is that the gradient vector field df defines a flow
on Rn, h(x, t) for which f(h(x, t)) is a monotone increasing function of t and
is stationary only at the critical points of f . Since there are ε1, ε2 > 0 so that
there are no critical values of f in the interval (t1 − ε1, t2 + ε2) we squeeze
the gradient field to zero for f(x) ≤ t1 − ε1 and then use the resulting flow
to expand Hf (t1) to identify it with Hf (t2). ¤

Lemma 4. Suppose that t is a critical value of f and x1, . . . , xr are the
critical points with f(xi) = t. Suppose that the index of f at xi is Ii. Then
Hf (t+ ε) has the homotopy type of Hf (t− ε) with one cell eIj attached for
each critical point xj of index Ij in f−1(t).

Proof. We have that Hf (t + ε) is identified with Hf (t − ε) outside of
sufficiently small neighborhoods of the critical points from the proof of 3.
But in a small neighborhood of xi we have that Hf (t+ ε) is identified with
Hf (t− ε) with the disk

Dk = ( 0, . . . , 0︸ ︷︷ ︸
(n−k) times

, xn−k+1, . . . , xn),
n∑

i=n−k+1

(xi)2 ≤ ε

attached.
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.......................................................................................................................................................

f−1(t− ε)f−1(t− ε)

f−1(t+ ε)

f−1(t+ ε)

as it is fairly direct from the diagram above to see that the left and right
arcs above correspond the the intersection of the level surface Hf (t−ε) with
the neighborhood of the critical point xi, and the entire region deformation
retracts to the disk above union with the original level set. ¤



3. DIFFERENTIABLE MANIFOLDS AND DIFFERENTIABLE MAPS 7

3. Differentiable manifolds and differentiable maps

We now globalize the discussion above. An m-dimensional topological
manifold is a space in which every point has a neighborhood which is home-
omorphic to Rm. The study of topological manifolds requires an immense
background, not the least of which is a thorough understanding of the more
restrictive differentiable manifolds, so in the remainder of this work we con-
centrate on differentiable manifolds.

Definition 3. An m-dimensional differentiable manifold Mm is a
paracompact Hausdorff topological space together with a covering by open
sets U ⊆ M with homeomorphisms φ : Rm−→U , such that the transition
functions

φ′−1φ| : φ−1(U ∩ U ′)→ U ∩ U ′ → φ′−1(U ∩ U ′)
are diffeomorphisms of open subsets of Rm.

A pair such as
(U ⊆M,φ : Rm−→U)

is called a coordinate chart of the manifold M .

Example 1. The simplest examples of compact m-dimensional mani-
folds are the spheres

Sm =

{
(x0, x1, . . . , xm) ∈ Rm+1 |

m∑

k=0

x2
k = 1

}
.

We can cover Sm by two open subsets

U+ = Sm\(1, 0, . . . , 0) , U− = Sm\(−1, 0, . . . , 0) .

Define a homeomorphism φ+ : Rm → U+ by

φ+(x1, . . . , xm) = (f(|x|),
√

1− f(|x|)2 x|x|)

where f(t) is a monotone increasing C∞ function of t with f(0) = −1 and
limt 7→∞(f(t)) = 1. There is a similar homeomorphism φ− : Rm → U−, but
using the function g(t) = −f(t). In this case the intersection of the two
neighborhoods is

U+ ∩ U− = φ+(Rm\{0})
and the transition function

φ+,− = (φ−)−1φ+| :
(φ+)−1(U+ ∩ U−) = Rm\{0} → (φ−)−1(U+ ∩ U−) = Rm\{0}

is given by
φ+,−(x) =

√
t/t̄x

where t = |x| and f(t̄) = −f(t).
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The coordinate charts (U ⊆ M,φ : Rm−→U) allow points x ∈ U to be
expressed in local coordinates as

x = φ(x1, x2, . . . , xm) ∈ φ(Rm) = U ⊆M .

We shall usually suppress (U, φ), writing

x = (x1, x2, . . . , xm) ∈ Rm ⊆M .

The charts also allow us to transport many structures for Euclidean spaces
to manifolds. For example we have the definition of a differentiable map:
f : Mm → Nn: f is differentiable if and only if the composition

ψ−1
j fψi : Ui ∩ ψ−1

i f−1im(ψj)→ Rn

is differentiable for each i, j. Likewise we have the notion of C∞ functions
on Mn. In particular, a C∞ function Mm → R is Morse if the compositions
fψi : Ui → R are Morse functions for each Ui in the covering of Mm.

The set of Morse functions is open and dense in the function space of
all C∞ differentiable functions f : M−→R as was the case for the Morse
functions from Rm. In particular, we have a very useful pasting theorem for
Morse functions.

Theorem 3. (1) If Mm is an m-dimensional differentiable mani-
fold and f : Mm → R is any C∞ differentiable function, then there
is a Morse function g arbitrarily close to f .

(2) Suppose f : Mm → R is a C∞ function which is Morse on an open
set U ⊂Mm. Let W ⊂ U be an open subset such that the closure of
W is contained in U . Then there is a Morse function g : Mm → R
with g = f on W .

Example 2. The height function on the m-sphere Sm is a Morse func-
tion

f : Sm → R ; (x0, x1, . . . , xm)→ xm

with exactly two critical points, the minimum, (0, . . . , 0,−1), of index 0 and
the maximum, (0, . . . , 0, 1), of index m.

Example 3. The real m-dimensional projective space RPm is the m-
dimensional manifold with one point for each 1-dimensional subspace of the
(m+1)-dimensional real vector space Rm+1, as determined by homogeneous
coordinates [x0, x1, . . . , xm]. For any real numbers λ0 < λ1 < · · · < λm there
is defined a Morse function

f : RPm → R ; [x0, x1, . . . , xm]→

m∑
k=0

λk(xk)2

m∑
k=0

(xk)2

with (m+ 1) critical points [0, . . . , 0, 1, 0, . . . , 0] of index 0, 1, . . . ,m.
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Example 4. The complex m-dimensional projective space CPm is the
2m-dimensional manifold with one point for each 1-dimensional subspace
of the (m + 1)-dimensional complex vector space Cm+1, as determined by
homogeneous complex coordinates [z0, z1, . . . , zm]. For any real numbers
λ0 < λ1 < · · · < λm there is defined a Morse function

f : CPm → R ; [z0, z1, . . . , zm]→

m∑
k=0

λk|zk|2
m∑
k=0

|zk|2

with (m+ 1) critical points [0, . . . , 0, 1, 0, . . . , 0] of index 0, 2, . . . , 2m.

4. Differentiable manifolds with boundary

It is essential in studying cobordism, surgery and other subjects re-
lated to the geometry and topology of manifolds, to consider manifolds with
boundary.

............................................................................................................................................................................................................................................................................................
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...........................................................................................................
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........
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A manifold with boundary

Definition 4. An m-dimensional manifold with boundary,

(Mm, ∂M)

is a pair of paracompact Hausdorff topological spaces together with a covering
of M by open sets

Ui
ψi
↪→ Mm

where each Ui is either homeomorphic to Rm or

Rm+ = {(x1, . . . , xm) ∈ Rm |xm ≥ 0} .
The boundary ∂M is the (m− 1)-dimensional manifold without boundary
defined by the union of the images in M of the points with xm = 0 for those
Ui homeomorphic to Rm+ .

One checks directly that ∂M is an (m − 1)-dimensional manifold and
ψ−1
j ψi restricted to ψ−1

i (∂M ∩ ψiRm+ ∩ ψjRm+ ) is contained in the points of
Rm+ with xm = 0. The pair (Mm, ∂M) is a differentiable manifold with
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boundary if the transition functions ψ−1
j ψi are C∞ diffeomorphisms on the

interiors of their domains of definition, and separately on the intersections
with xm = 0 in the regions of the form Rm+ .

(1) If (Mm, ∂M) is a differentiable manifold with boundary then there
is a collar neighborhood of ∂M in Mm. That is to say there
is a neighborhood of ∂M ⊂ M diffeomorphic to ∂M × [0, 1) with
∂M ⊂M identified with ∂M × 0.

(2) If (Mm, ∂M) and (Nn, ∂N) are manifolds with boundary then their
product

(Mm, ∂M)× (Nn, ∂N) = (Mn ×Nn, ∂M ×N ∪M × ∂N)

is an (m+n)-dimensional manifold with boundary. However, even if
the two are differentiable, the boundary of the product has corners.
But it is quite direct to smooth the corners and obtain a canoni-
cal differentiable manifold pair (Mm ×Nn, ∂(Mm ×Nn)) with the
boundary homeomorphic to ∂M ×N ∪MN .

(3) After this smoothing process we have that

((Mm, ∂M) ×(Nn, ∂N))× (P p, ∂P )
= (Mm, ∂M)× ((Nn, ∂N)× (P p, ∂P )) ,

so the process of taking products of differentiable manifolds with
boundary is associative.

Morse functions on manifolds with boundary. Manifolds with
boundary admit special kinds of Morse functions.

Theorem 4. Let (Mm, ∂M) be a differentiable manifold with boundary.
Then there is a function f : Mm → R+ which satisfies

(1) f is Morse on Mm\∂M ,
(2) f−1(0) = ∂M .
(3) In a sufficiently small neighborhood of ∂M , ∂M × [0, ε) with ε > 0

f(x, t) = t.

Proof. We define a continuous function g on Mm as follows:
{

if x = (v, t) ∈ ∂M × [0, 1/2] then g(x) = 2t,
if x ∈M\ {∂M × [0, 1/2)} then g(x) = 1.

Then g can be approximated arbitrarily closely by a C∞ function h which is
equal to g in ∂M × [0, 1/4). Finally, using 3 we can replace h by a function
f which is Morse and in ∂M × (0, 1/8) is just t. ¤

For (M,∂M) and f a Morse function as in 4 then for D > 0 sufficiently
small

f−1(−∞, D] = ∂M × [0, D].
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The Tangent Bundle to a Differentiable Manifold. The differen-
tiable structure allows us to define the tangent bundle to Mm, an invariant
of the differentiable structure which is tremendously useful in understand-
ing the global structure of Mm. In the next chapter we will generalize this
construction considerably.

Definition 5. (1) The tangent bundle of an m-dimensional dif-
ferentiable manifold Mm is the 2m-dimensional manifold

τM =
( ∐

(U,φ)

U × Rm)/ ∼

with ∼ the equivalence relation defined by

(x ∈ U, h ∈ Rm) ∼ (x′ ∈ U ′, h′ ∈ Rm)

if x = x′ ∈ U ∩ U ′ ⊆M and

d(φ′−1φ|)(h) = h′ ∈ Rm .

(2) The tangent space at x ∈M is

τM (x) = {x} × Rm ⊆ τM .

Given any C2 differentiable map f : Nn−→Mm we can extend f to a map
df : τN−→τM called the derivative of f as follows: for any point x ∈ N there
exist coordinate charts

(V ⊆ N, θ : Rn−→V ) , (U ⊆M,φ : Rm−→U)

with
x ∈ V , f(x) ∈ U ⊆M , f(V ) ⊆ U ,

and f extends to τM as the map

df : τN −→ τM ;
(x ∈ V, h ∈ Rn) −→ (f(x) ∈ U, d(φ−1fθ)(θ−1(x))(h) ∈ Rm) .

This is well defined in view of 1. From the definition we have

Proposition 1. The derivative of f : Nn−→Mm restricts to a linear
map of tangent spaces

df(x) : τN (x) −→ τM (f(x))

for each x ∈ N . If f is given in local coordinates by

f : Rn −→ Rm ; x = (x1, x2, . . . , xn) −→ (f1(x), f2(x), . . . , fm(x))

the derivative is given in local coordinates by

df(x) =
(
∂fi
∂xj

)
: τN (x) = Rn −→ τM (f(x)) = Rm .

The implicit function theorem now extends immediately to manifolds in
the following form.
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Theorem 5. Implicit Function Theorem for Manifolds
The inverse image of a regular value y ∈ M of a differentiable map f :
Nn−→Mm is a submanifold P = f−1(y) ⊆ N with

dim(P ) = n−min(m,n) =

{
n−m if m < n

0 if m ≥ n .

We can also extend the definitions of regular value and critical value of
maps Rn−→Rm in 1 to manifolds word for word as in 1.

Thus, suppose f : Mm−→N s is differentiable with s ≤ m and suppose
that n ∈ N is a regular point of f . Then f−1(n) ⊂ Mm is a submanifold
of M of dimension m− s directly from 2.



CHAPTER 2

Bundles

Fibre bundles are maps p : E → X which are locally products. As
particular examples we have vector bundles and coverings. Overall, they
are one of the basic tools for studying manifolds and related spaces as well
as the fundamental source of examples in the theory.

1. Fibre bundles

Definition 6. A fibre bundle E = E(X,E, F, p) over a space X is a
space E, a projection

p : E −−→ X

and a space F such that X has a distinguished covering by open neighbour-
hoods U ⊂ X with homeomorphisms

φU : U × F −−→ p−1(U)

satisfying
pφU = projection : U × F → U .

F is called the fibre, X is called the base, and E is called the total space
of the fibre bundle. Also, the maps φU are called local trivializations of
the fibre bundle.

We usually write F → E
p
→X to denote the fibre bundle p : E → X with

fibre F .

Example 5. A fibre bundle E over a space X is called a covering if F
is discrete.

Example 6. The standard example of a covering is the map

p : S1 → S1 ; z 7→ zn

where S1 is regarded as the complex numbers of norm one. The fibre is the
discrete space with n elements.

Example 7. Given X and F we always have the product or trivial
fibre bundle X × F p1

→X.

Remark . A section of a fibre bundle E is a map s : X → E so that the
composition ps : X → X is the identity. Not all fibre bundles have sections,
for example, the covering in 6 has no sections.

13
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Note that the set of sections of the trivial bundle is identified with the
set (space) of continuous maps f : X → F under the correspondence

f 7→ (sf : X −−→ X × F ), sf (x) = (x, f(x)) .

Proposition 2. Given fibre bundles E1 over X1 with fibre F1 and E2
over X2 with fibre F2 the product map p1 × p2 : E1 ×E2 → X1 ×X2 defines
a fibre bundle, (written E1×E2), with fibre F1×F2, total space E1×E2 and
base X1 ×X2.

Proof. All we need to do is to define the relevant open cover of X1×X2

as the Ui(X1)×Uj(X2) and the maps φUi(X1)×Uj(X2) as φUi(X1)×φUj(X2). ¤
Proposition 3. Let E be a bundle over X and suppose that f : Y → X

is any continuous map. The fibre bundle over Y induced from E by f is
given by

f !(E) = {(y, e) ∈ Y × E | f(y) = p(e)}
with the projection

pf : f !(E)→ Y ; (y, e) 7→ y .

The construction defines a fibre bundle over Y with fibre F , where the Ui(Y )
are the open sets f−1(Ui).

Proof. Define φUi(Y ) : Ui(Y )× F → (pf )−1(Ui(Y )) as

φUi(Y )(y, g) = (y, φUi(g(y), g)) .

The verification that this is a homeomorphism is direct. ¤
Remark . There is also a projection

p2 : f !(E)→ E ; (y, e)→ e

and we have the commutative diagram

f !(E)
p2−−→ Ey

pf

y
p

Y
f−−→ X .

Conversely, if we are given fibre bundles F → E
p
→X and F ′ → E′

p′
→X

together with a map of bundles

E′
g−−→ Ey

p′

yp

Y
f−−→ X
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such that the restrictions g| : F ′x → Ff(x) (x ∈ X) are homeomorphisms
then g : E′ → E is a homeomorphism, and we can identify E ′ = f !(E).

Remark . Define an equivalence relation on fibre bundles by setting

E
p
→X equivalent to E′

p′
→X if and only if there exists a homeomorphism

g : E′ → E such that pg = p′. When we don’t need the explicit construction
of the fibre bundle from a set of local trivializations any mention of a fibre
bundle over X really refers to the equivalence class. However, in actually
working with fibre bundles a system of local trivializations is usually very
helpful. The following constructions will illustrate this.

The homotopy invariance of induced bundles. Suppose that F →
E

p
→X is a given fibre bundle and f : Y → X, g : Y → X are two maps.

Then we have

Theorem 6. Suppose that Y is a simplicial complex and that the maps
f, g : Y → X are homotopic. Then the induced bundle f !(E) is equivalent
to the induced bundle g !(E).

This result, 6, is equivalent to the following more geometric result which
is proved by induction over the skeleta of Y .

Proposition 4. Suppose that F → E
π
→Y × I is a fibre bundle. Let

F → π−1(Y × 0)
π|
→Y × 0

be the restriction of this fibre bundle to Y ×0. Then the original fibre bundle
is equivalent to the product fibre bundle

F −−→ π−1(Y × 0)× I π|×id−−→ Y × I .
These results have the basic role of reducing the classification of the

equivalence classes of induced F -bundles over Y basically to questions in
homotopy theory, and they form the basic geometric input into the con-
struction of classifying spaces for fibre bundles. For example we have :

Corollary 3. Let F → E
p
→X be a fibre bundle with X a contractible

simplicial complex. Then E
p
→X is equivalent to the trivial fibre bundle F →

X × F p1
→X.

Proof. The identity map id : X → X induces the original fibre bundle
E

p
→X from E

p
→X, but, since X is contractible, it follows that id : X → X

is homotopic to the trivial map pt : X → ∗ ↪→ X, and clearly, pt!(E
p
→X) is

the trivial fibre bundle over X. ¤
Corollary 4. Let X be a simplicial complex and suppose that {U} is

the open cover of X by the open stars of the simplices. Then any fibre
bundle F → E

p
→X can be trivialized over each U , so that {U} can be taken

to be the distinguished cover of X by open sets.
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Homotopy lifting and the homotopy exact sequence. The results
above have some strong consequences which enable us to relate the homotopy
groups of the base, fibre and total space. The key result is the following :

Lemma 5. (Homotopy Lifting Lemma). Let Y be a simplicial complex,
F → E

p
→X a fibre bundle and f : Y → E any continuous map. Suppose that

H : Y × I → X is any homotopy of the projection, pf , i.e., H(y, 0) = pf(y)
for all y ∈ Y . Then there is a homotopy L(H) : Y ×I → E with pL(H) = H
and L(H)(y, 0) = f(y) for all y ∈ Y .

Proof. Using the map H we induce a bundle

F → E = H !(E)→ Y × I
over Y × I. From the definition of the induced bundle 3 we have a section
of H !(E) over Y × 0 defined as the set of pairs (y, f(y)) ∈ H !(E). From 4
we have H !(E) = (pf)!E × I with product projection, and we can extend
the section over Y × 0 over H !(E) as (y, t) 7→ ((y, f(y)), t) in the product
structure above. Then use p1 to give the extension. ¤

Remark . The homotopy extension property described in 5 is central in
studying the deeper properties of fibre bundles. Consequently, it has been
isolated out for special treatment.

Definition 7. A Serre fibration (or fibration for short) with total
space E and base space X is a map

p : E −−→ X

which satisfies the homotopy extension property of 5.

It is not hard to see that if X is path-wise connected then the (weak)
homotopy type of p−1(x) is the same as that of p−1(x′) for any x, x′ ∈ X.
Consequently, we define the fibre of a Serre fibration to be any space
having the weak homotopy type of p−1(x) and we denote it F (p). (Note that
any two spaces of the same weak homotopy type have isomorphic homotopy
groups.)

The Homotopy Lifting Lemma has as a direct corollary the following
result

Corollary 5. Let p : E → X be a Serre fibration, with fibre F (p) = F .
Then there are homomorphisms ∂ : πi(X) → πi−1(F ) (i ≥ 1) and a long
exact sequence

· · · −−→ πi(F )
i∗−−→ πi(E)

π∗−−→ πi(X)
∂−−→ πi−1(F ) −−→ · · ·

where i is the inclusion p−1(∗) ⊂ E and ∗ ∈ X is the base point.

The proof of 5 depends on using the homotopy extension theorem to prove
that the projection p∗ : πi(E,F ) → πi(X, ∗) = πi(X) is an isomorphism
for each i. Then this isomorphism is used to replace π∗(E,F ) in the long
homotopy exact sequence of the pair (E,F ).
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Structure maps for fibre bundles. Now we turn to the description
of the local structure of a fibre bundle and how to rebuild the fibre bundle
just using appropriate local data.

Proposition 5. Let F → E
p
→X be a fibre bundle and suppose that Ui,

Uj, Uk are three elements of the distinguished covering, then the maps

φUi∩Uj : (Ui ∩ Uj)× F −−→ (Ui ∩ Uj)× F
defined as φUiφ

−1
Uj

on the indicated domain of definition satisfy

(1) φUi∩Uj is a homeomorphism of the form (x, f) 7→ (x, ψUi∩Uj (x)f)
where ψUi∩Uj : (Ui ∩Uj)→ Homeo(F ) is a continuous map into the
space of homeomorphisms of F to itself.

(2) Over Uj ∩ Ui we have ψUj∩Ui = ψ−1
Ui∩Uj

.
(3) In the triple intersection Ui ∩ Uj ∩ Uk the compatibility conditions

ψUi∩UjψUj∩Uk
= ψUi∩Uk

are satisfied.

Proof. This is a formal consequence of the fact that φUi is a homeo-
morphism, hence a homeomorphism from F to p−1(x) for each x ∈ Ui. The
continuity of the associated map into Homeo(F ) is also clear. ¤

Definition 8. In the situation of 5 the ψUi∩Uj are called the structure

maps of the fibre bundle F → E
p
→X with distinguished cover {Ui} and local

trivializations φUj : Uj × F → E.

Example 8. In the case of a covering with finite fibre F , the group
Homeo(F ) is the symmetric group S|F | and the covering can be described by
specifying continuous maps ψUi∩Uj : X → S|F | which satisfy the two compat-
ibility conditions of 5. In the case of the n-fold covering S1 → S1; z 7→ zn of 6
we can cover S1 by the two neighborhoods U1 = S1\{1} and U2 = S1\{−1}
with intersection U1 ∩ U2 = S1\{±1} consisting of two components, the
open upper and lower semicircles. Moreover, the map U1 ∩U2 → Sn is con-
tinuous, hence constant on the two path components, and can be taken to
be the identity on the upper hemisphere while it is the cyclic permutation
(1, 2, 3, . . . , n) on the lower semicircle.

Actually, the covering {Ui} for X and the structure maps ψUi∩Uj are

sufficient data to rebuild the total space E of the fibre bundle F → E
p
→X.

Indeed we have

Theorem 7. Let X together with an open cover {Uj} be given, and
suppose that we are also given homeomorphisms

ψUi∩Uj : (Ui ∩ Uj)× F −−→ (Ui ∩ Uj)× F
satisfying 5(i), 5(ii), and 5(iii). Then there is a fibre bundle F → E

p
→X

together with local trivializations φUj : Uj × F → E so that the ψUi∩Uj are

the structure maps for F → E
p
→X.
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Proof. Define an equivalence relation on the space H given as the dis-
joint union of the Ui×F by decreeing that (ui, f) ∈ Ui×F shall be equivalent
to (uj , f ′) ∈ Uj × F if and only if ui = uj ∈ Ui ∩ Uj and ψUi∩Uj (f) = f ′.
Let E be the resulting quotient space of H. Note 5(ii) and 5(iii) show the
the resulting relation is symmetric and transitive without introducing any
further relations. Also, 5(i) shows that there are no further identifications
on individual fibres, so that the map sending the points of Ui × F to their
equivalence classes in E gives a homeomorphism onto the inverse image of
Ui under the obvious projection E → X. ¤

2. Vector bundles

A k-plane bundle η over a space X is a fibre bundle

p : E(η)→ X

with fibre the k-dimensional euclidean space Rk and so that the structure
maps

ψUi∩Uj : Ui ∩ Uj → Homeo(Rk)
have image contained in GLk(R). A fibre bundle E over X is called a vector
bundle if it is a k-plane bundle over X for some k.

Example 9. Recall that the real projective space RPn is the n-sphere
Sn factored out by identifying antipodal points,

RPn = Sn/(x ∼ −x) .
It can also be identified with the space of lines through the origin in Rn+1.
From this point of view there is a natural ‘tautological’ 1-plane bundle
γn,1 → RPn, defined as the set of pairs (λ,w) ∈ RPn×Rn+1 with w contained
in the line λ.

Given two vector bundles E(η) and E(τ) over X we define their Whit-
ney sum, E(η) ⊕ E(τ), as the induced bundle ∆ !(E(η) × E(τ)) where
∆: X → X ×X is the diagonal map.

Remark . We denote the product vector bundle X×R→ X as ε. Note
that the Whitney sum ε⊕ ε is the product bundle X × R2 → X, and more
generally, nε = ε⊕ (n− 1)ε is the product bundle X × Rn.

Example 10. For the tautological 1-plane bundle γn,1 → RPn of 9,
from the definition, there is a second bundle ξn → RPn, namely the n-plane
bundle ⊂ RPn ×Rn+1 consisting of all pairs (v, w) with w ⊥ v. Clearly, the
Whitney sum γn,1 ⊕ ξn = (n+ 1)ε.

Remark . Note that every vector bundle has a well defined 0-section, as
homeomorphisms inGLn(R) always preserve the 0-element in Rn. Moreover,
if s1 and s2 are sections of a vector bundle η, then we can multiply them by
scalars r ∈ R or add them (locally) to get well defined sections written rs
or s1 + s2, so the set of sections is a vector space over R.



2. VECTOR BUNDLES 19

Definition 9. (i) A stable isomorphism between a k-plane bundle η
and a k′-plane bundle η′ over the same space X is a bundle isomorphism

η ⊕ εj ∼= η′ ⊕ εj′

for some j, j′ ≥ 0 with j + k = j′ + k′.
(ii) A stable bundle over X is an equivalence class of bundles η over X,
subject to the equivalence relation

η ∼ η′ if there exists a stable isomorphism η ⊕ ε j ∼= η′ ⊕ ε j′
for some j, j′ ≥ 0 .

(iii) A k-plane bundle η is stably trivial if η⊕ εj is trivial for some j ≥ 0.

The tangent bundle of a differentiable manifold. The tangent
bundle of an m-dimensional differentiable manifold Mm is an m-plane bun-
dle τM , an invariant of the differentiable structure which is tremendously
useful in understanding the global structure of Mm.

Definition 10. (1) The tangent bundle of an m-dimensional dif-
ferentiable manifold Mm is the m-plane bundle τM over M with
total space the 2m-dimensional manifold

E(τM ) =
( ∐

(U,φ)

U × Rm)/ ∼

with ∼ the equivalence relation defined by

(x ∈ U, h ∈ Rm) ∼ (x′ ∈ U ′, h′ ∈ Rm)

if x = x′ ∈ U ∩ U ′ ⊆M and

d(φ′−1φ|)(h) = h′ ∈ Rm .

The projection of the tangent m-plane bundle is

p : E(τM )→M ; (x, h) 7→ x .

(2) The tangent space at x ∈M is

τM (x) = p−1(x) = {x} × Rm ⊆ τM .

Example 11. The tangent bundle of Sn is trivial (i.e. τSn = nε) for
n = 1, 3, 7 and non-trivial for n 6= 1, 3, 7, with τSn ⊕ ε = (n+ 1)ε in general.

Example 12. We have an alternative description of the tautological
1-plane bundle γn,1 over RPn (9) as

E(γn,1) = Sn × R/{(v, t) ∼ (−v,−t)} ,
since we can think of (v, w) as ({v}, tv). This implies that we have two
subbundles of

E((n+ 1)γn,1) = Sn × Rn+1/(±1),
the first given as the set of elements (±1)(v, tv), and the second as the
pairs (±1)(v, w) with w ⊥ v. Clearly, the first subbundle is trivial and the
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second is just the tangent bundle of RPn. Thus we have the basic bundle
equivalence

τRPn ⊕ ε = (n+ 1)γn,1
and τRPn is stably equivalent to (n+ 1)γn,1.

The tangent bundle can be used to define the derivative df : τN → τM of
a differentiable map f : Nn →Mm of manifolds, and to extend the implicit
function theorem 1 to such maps.

Given any C2 differentiable map f : Nn → Mm we can extend f to a
bundle map df : τN → τM called the derivative of f as follows: for any
point x ∈ N there exist coordinate charts

(V ⊆ N, θ : Rn → V ) , (U ⊆M,φ : Rm → U)

with
x ∈ V , f(x) ∈ U ⊆M , f(V ) ⊆ U ,

and f extends to τM as the map

df : τN −−→ τM ;
(x ∈ V, h ∈ Rn) −−→ (f(x) ∈ U, d(φ−1fθ)(θ−1(x))(h) ∈ Rm) .

This is well defined in view of 1. From the definition we have :

Proposition 6. The derivative of f : Nn−→Mm is a map of vector
bundles df : τN → τM which restricts to a linear map of tangent spaces

df(x) : τN (x) −−→ τM (f(x))

for each x ∈ N . If f is given in local coordinates by

f : Rn −−→ Rm ; x = (x1, x2, . . . , xn) −−→ (f1(x), f2(x), . . . , fm(x))

the derivative is given in local coordinates by

df(x) =
(
∂fi
∂xj

)
: τN (x) = Rn −→ τM (f(x)) = Rm .

We can also extend the definitions of regular value and critical value of
maps Rn → Rm in 1 to manifolds word for word as in 1.

The implicit function theorem now extends immediately to manifolds in
the following form.

Theorem 8. Implicit Function Theorem for Manifolds
The inverse image of a regular value x ∈ M of a differentiable map f :
Nn−→Mm is a submanifold P = f−1(x) ⊆ N with

dim(P ) = n−min(m,n) =

{
n−m if m ≤ n
0 if m > n

.

In particular, if m ≤ n and x ∈M is a regular value of f then f−1(x) ⊂
Nn is an (n−m)-dimensional submanifold, as is also clear directly from 2.
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Riemannian metrics and the tubular neighbourhood theorem.
It is frequently of importance to be able to put a metric on a vector bundle
η. A metric on η is a continuous map

d : E(η)→ R ; v 7→ d(v)

such that for all v, w ∈ E(η) with p(v) = p(w) and all a ∈ R
• d(v) ≥ 0, with d(v) = 0 if and only if v = 0,
• d(av) = |a|d(v),
• d(v + w) ≤ d(v) + d(w).

When η = εk is the trivial k-plane bundle we obtain a metric on η by simply
taking a metric on Rk. Whenever X is a paracompact Hausdorff space we
can put a metric on η by taking a partition of unity, λ, subordinate to the
open cover Ui associated to η, taking trivial metrics over each Ui and adding
them up by the formula

d(vx) =
∑

Ui,x∈Ui

λUi(x)dUi(ψ
−1
Ui

(vx)) ∈ R+ .

In particular, if X = Mm is a C∞ manifold of dimension m, we can assume
that the vector bundle has a compatible differentiable structure so that the
projection to M and the metric are both C∞ maps. For example, consider
the tangent bundle, τM . If Nn ⊂ M is an n-dimensional submanifold, the
induced map on the tangent bundle injects τN as an n-plane subbundle of
τM . Then, the set of vectors orthogonal to τN in τM give a second bundle
over N , an (m− n)-plane bundle, νN⊂M , called the normal bundle of N
in M . We clearly have

i !(τM ) = τN ⊕ νN⊂M
where i : N ↪→M is the inclusion.

Actually more is true than this.

Theorem 9. [Tubular Neighbourhood Theorem] The inclusion
f : Nn ⊂ Mm of a submanifold extends to a codimension 0 embedding
E(νf ) ⊂Mm of the total space of the normal (m−n)-plane bundle νf , such
that

τN ⊕ νf = f∗τM
with τM , τN the respective tangent bundles.

The stable normal bundle of a manifold. By the Whitney Embed-
ding theorem any (paracompact) differentiable manifold Mm has a differen-
tiable embedding f : Mm ↪→ R2m+1, and any two such embeddings are con-
nected by an embedding H : Mm× I ↪→ R2m+1× I, where H|(Mm×{0}) is
the embedding f1 and H|(Mm×{1}) is the embedding f2. Consequently, us-
ing the tubular neighbourhood theorem, 9, and 4 we see that the normal bun-
dle of the embedding f1 is equivalent to the normal bundle of the embedding
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f2. Moreover, and more generally, let g : Mm ↪→ Rm+j , h : Mm ↪→ Rm+k be
embeddings with k + s ≥ m+ 1. The composite embeddings

M
g
→Rm+j → Rm+j+k , M

h
→Rm+k → Rm+j+k

are related by an embedding Mm × I ↪→ Rm+j+k × I, so that

νg ⊕ kε ∼= νh ⊕ jε
and Mm has a unique stable normal bundle which we call νM . For example,
νSm is the trivial bundle since the normal bundle of the usual embedding
Sm ↪→ Rm+1 is already trivial.

3. Associated bundles

The result of 7 shows that a fibre bundle is entirely determined by its
structure maps. The structure maps ψUi∩Uj : (Ui ∩Uj)×F → (Ui ∩Uj)×F
have the special form of 5(i), and are consequently equivalent to continuous
maps

hUi∩Uj : Ui ∩ Uj −−→ Homeo(F )
which have the adjoint properties:

(1) hUi∩Uj (u)
−1 = hUj∩Ui(u).

(2) hUi∩Uj (u)hUj∩Uk
(u) = hUi∩Uk

(u) for u ∈ Ui ∩ Uj ∩ Uk.
Conversely, given a collection of maps hUi∩Uj satisfying 3(i) and 3(ii) there
are defined structure maps

φUi∩Uj
: (Ui ∩ Uj)×Homeo(F ) −−→ (Ui ∩ Uj)×Homeo(F )

satisfying 5(i), 5(ii), 5(iii), by the rule

ψUi∩Uj
(u, f) = (u, hUi∩Uj (u)f),

The fibre bundle given by 7

Homeo(F ) −−→ E
p−−→ X

is the principal Homeo(F )-fibre bundle associated to the fibre bundle
F → E

p
→X.

Actually, this fibre bundle 3 has an additional property:

Proposition 7. There is a fibre preserving action

µ : E ×Homeo(F ) −−→ E

so that, with respect to the local trivializations above we have the following
commutative diagram

(Ui ×Homeo(F ))×Homeo(F )
id×∗−−→ Ui ×Homeo(F )y

ψUi
×id

y
ψUi

E ×Homeo(F )
µ−−→ E
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where ∗ : Homeo(F )× Homeo(F )→ Homeo(F ) is just multiplication (com-
position of maps).

Proof. This is obvious. ¤

Example 13. From the definition of a k-plane bundle there is an as-
sociated principal GLk(R) bundle GLk(R) → E

p
→X, so it is not always

necessary to take the entire group Homeo(F ).

Example 14. In the covering S1 → S1; z 7→ zn of 5 the group Homeo(F )
is the symmetric group Sn but the subgroup Z/n generated by the cycle
(1, 2, 3, . . . , n) contains all the images of the hUi(u) and so there is an asso-
ciated principal bundle for the group Z/n. In fact, this associated principal
fibre bundle is equivalent to the original covering.

On the other hand, if we are given a principal fibre bundle with group
G and a homomorphism h : G→ Homeo(F ) then we can construct an asso-
ciated bundle with fibre F from a principal G bundle over X by defining

ψUi∩Uj : (Ui ∩ Uj)× F −−→ (Ui ∩ Uj)× F
as ψUi∩Uj (u, f) = (u, hψUi∩Uj

(u)f).

4. Reduction of the group of a fibre bundle

We say that given a fibre bundle F → E
p
→X with structure data {Ui},

ψUi∩Uj , the group of the fibre bundle and structure data is the subgroup of
Homeo(F ) generated by the elements hUi∩Uj (u), u ∈ Ui ∩ Uj .

Remark . The group of a bundle with given structure data is, at best,
only defined up to conjugacy, since, if we replace F by f(F ) where f : F → F
is an element of Homeo(F ), then the hUi∩Uj change to

h′Ui∩Uj
= f−1hUi∩Ujf .

More generally, given any family of continuous maps HUj : Uj → Homeo(F ),
we can change the structure maps by

h′Ui∩Uj
(u) = H−1

Uj
(u)hUi∩UjHUi(u) .

In any case, we say the the group of the bundle F → E
p
→X reduces

to G ⊂ Homeo(F ) if and only if there is an equivalent bundle where the
structure maps hUi∩Uj (u) ∈ G for all u ∈ Ui ∩ Uj , and all intersections

Ui ∩ Uj . It is evident that if F → g!(E)
p1
→Y is induced from F → E

p
→X by

the map g : Y → X, then the group of g!E is contained in the group of E.

Example 15. Let E1 be an F1-fibre bundle over X1 with group G1 and
E2 be an F2-fibre bundle over X2 with group G2. Then the group of the
product bundle is a subgroup of G1×G2. In particular, the Whitney bundle
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sum ηk ⊕ νs of a k-plane bundle and an s-plane bundle over X has group
GLk ×GLs thought of as the subgroup of matrices

(
Ak 0
0 Bs

)
∈ GLk+s(R) .

Example 16. Let a Riemannian metric d : E(η) → R be given on the
k-plane bundle η. Then d defines a reduction of the group from the general
linear group GLk(R) to to the orthogonal group Ok(R), by noting first that
the structure maps must preserve d. Consequently, at each point the struc-
ture map hUi∩Uj lies in the isotropy group of d at that point. Second, we can
assume given reductions to Ok(R) over each Ui. Then, the homeomorphisms
Ui × Rk → p−1Ui define a map

κi : Ui → GLk(R)/Ok(R),

the space of distinct metrics on Rk, by comparing metrics. But
(1) There is a fibre bundle

Ok(R) −−→ GLk(R)
π−−→ GLk(R)/Ok(R)

(2) The quotient space GLk(R)/Ok(R) is contractible, in fact convex
since, given two Riemannian metrics d1, d2 on Rk then the family
td1 + (1− t)d2, 0 ≤ t ≤ 1, lies in this quotient.

Consequently, the κi’s all lift to maps

κ̃i : Ui −−→ GLk(R)

and κ̃i(x)(κ̃i(x))t gives the metric d(x) for each x ∈ Ui. Then replacing the
structure maps φi by φiκ̃i gives an explicit reduction of the group to Ok(R).

Definition 11. Let GL+
n (R) be the (index 2) subgroup of GLn(R) con-

sisting of all matrices A ∈ GLn(R) with Det(A) > 0. Then we say that the
k-plane bundle η over X is orientable if the group of the bundle reduces to
GL+

n (R). A particular reduction of the group will be called an orientation
of η.

Example 17. The tangent bundle of a manifold Mm is orientable if and
only if the manifold is orientable in the usual sense.

Example 18. A 1-plane bundle R → E
p
→X is orientable if and only

if it is trivial. This can be seen as follows. The group GL1(R) is just the
non-zero reals and GL+

1 (R) is convex. Hence, by the argument in 16, if the
bundle, E

p
→X reduces to GL+

1 (R) then it reduces to the trivial group {1}
and is, consequently, trivial.

5. Classifying spaces for fibre bundles

The universal bundles over Grassmannians. The Grassmannian
manifold Gn,k is the space of all n-planes through the origin in Rn+k. It is
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given as the quotient GLn+k(R)/GLn,k(R) where GLn,k(R) is the subgroup
of matrices of the form (

A N
0 B

)

with A ∈ GLn(R) and B ∈ GLk(R). GLn,k(R) is exactly the subgroup of

GLn+k(R) which takes the n-plane consisting of all vectors
(
a
0

)
to itself,

where a is a 1 × n-tuple. It is well known that Gn,k is a closed, compact
manifold of dimension nk.

Example 19. A metric on Rn defines a correspondence between k-planes
and (n − k)-planes, v ↔ v⊥, which induces diffeomorphisms, Gn,k ↔ Gk,n.
As a special case Gn,1 = G1,n = RPn.

As was the case with RPn and the vector bundle νn, there is a natural
n-plane bundle over Gn,k:

Definition 12. Universal n-Plane Bundle The n-plane bundle γn,k over
Gn,k is given by

E(γn,k) = {(v, w) ∈ Gn,k × Rn+k |w ∈ v} .
There is a natural inclusion in,k : Gn,k ↪→ Gn,k+1 defined by v 7→ v, and

i!n,k(γn,k+1) = γn,k. There is also an inclusion jn,k : Gn,k → Gn+1,k defined
by v 7→ 〈v, en+k+1〉, the n + 1-dimensional subspace of Rn+k+1 spanned by
v ⊂ Rn+k and the last vector in a basis for Rn+k+1 where the first n+ k are
contained in Rn+k. In this case

j!n,k(γn+1,k) = γn,k ⊕ ε .
The total space of the associated principal GLn(R)-fibre bundle over

Gn,k(R) is just GLn+k(R)/H where H ⊂ GLn,k(R) ⊂ GLn+k(R) is the
subgroup of matrices (

I A
0 B

)

with B ∈ GLk(R), and the GLn(R) action is just given by right multiplica-

tion by elements
(
C 0
0 I

)
with C ∈ GLn(R).

Lemma 6. The total space of the principal fibre bundle over Gn,k,

GLn(R) −−→ GLn+k(R)/H
p−−→ Gn,k

associated to γn,k is (k − 2)-connected.

Proof. First, H is homotopy equivalent to GLk(R) via the projection
(
I A
0 B

)
→ B



26 2. BUNDLES

since this is a fibre bundle with fibre Rnk which is contractible. Second, the
fibre bundles

GLj(R) ↪→ GLj+1(R)
p−−→ GLj+1(R)/GLj(R) = Rj+1\{0} ' Sj

and the homotopy exact sequence of the fibre bundle show that the inclusion
GLj(R) ⊂ GLj+1(R) induces isomorphisms in homotopy,

πl(GLj(R))→ πl(GLj+1(R))

for l < j − 1. Thus, the iterate inclusion GLk(R) ↪→ GLn+k(R) induces
isomorphisms in homotopy, πl(GLk(R)) → πl(GLn+k(R)), for l < k − 1.
Third, using the homotopy exact sequence of the fibre bundle

GLk(R)→ GLn+k(R)→ E(γn,k)

we see that πj(E(γn,k)) = 0 for j ≤ k − 2 as asserted. ¤
Classifying spaces. Let η be a (differentiable) k-plane bundle over a

manifold Mm. Using the Whitney embedding theorem, E(η) – thought of
as a differentiable manifold – embeds in R2m+2k+1, and using the Tubular
Neighbourhood Theorem 9 we see that we have νM = η ⊕ χ where χ is the
normal bundle of E(η) restricted to the 0-section M . Consequently, since
νM ⊕ τM is trivial, there is an embedding E(η) ↪→ M × R2m+2k+1, which
has the property that the fibre Rkx over the point x ∈M embeds linearly as
a k-dimensional vector subspace

e(x) ⊂ {x} × R2m+2k+1 ⊂M × R2m+2k+1 .

It follows that there is a well defined map

uη : Mm → Gk,2m+k+1 ; x 7→ e(x)

such that
u!
η(γk,2m+k+1) = η .

More generally, suppose that E(η)
p
→X is any k-plane bundle η over the

space X so that there is an s-plane bundle µ over X with η ⊕ µ = (k + s)ε.
Then, the identification E(η ⊕ µ) = X × Rn+s embeds η as points of the
form (x,w) where the vectors w lie in a k-plane wx, depending only on x,
and once more we have a map

h : X → Gk,s ; x 7→ wx

such that
h!(γk,s) = η .

More generally yet, we have the following theorem of Milnor:

Theorem 10. Given a topological group G there exists a space BG and
a principal G fibre bundle with total space EG,

G −−→ EG
π−−→ BG,

so that the following properties hold.
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(1) If G → E → X is any principal G-fibre bundle over a finite di-
mensional CW complex X then there is a unique homotopy class
of maps

f : X → BG

so that f ! induces the given bundle over X.
(2) Given a (continuous) homomorphism h : G1 → G2 there is a map

of fibre bundles

G1 −−→ EG1

π−−→ BG1yh
yEh

yBh

G2 −−→ EG2

π−−→ BG2

extending h.
(3) If h above embeds G1 as a closed subgroup of G2 so that

G1 → G2 → G2/G1

is a principal fibre bundle then Bh in (2) is a fibre bundle with fibre
G2/G1.

Any principal fibre bundle G → E → X which has the property in 10
is called G-classifying, and the base space X is written BG and called a G-
classifying space, or classifying space for short when G is understood. BG
has the property that, for X a finite dimensional CW complex or simplicial
complex, then the set of homotopy classes of maps [X,BG] is identified with
the set of equivalence classes of principal G-bundles over X.

There is a direct method for determining whether a given principal G-
fibre bundle is a G-classifying space :

Theorem 11. Steenrod Recognition Principle The principal bundle

G −−→ E
p−−→ X

is a G-classifying space if and only if E is contractible.

Thus, applying 6 to the limit space, the Grassmannian of n-planes in
R∞,

Gn = lim−→ k Gn,k

we have

Corollary 6. The space BGLn(R) above can be identified with Gn.
Consequently, the set of isomorphism classes of n-plane bundles over any
finite dimensional CW complex X is identified with the set of homotopy
classes [X,Gn].

Every finite CW complex is paracompact so that k-plane bundles on
X automatically admit metrics. Consequently, they all reduce to Ok(R)-
bundles and it follows that [X,BGLk(R)] = [X,BOk(R)], so we can restrict
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attention to the classifying space for this smaller group. Note that a map
f : V → W is a weak equivalence if and only if f induces isomorphisms of
homotopy sets

f∗ : [X,V ]
∼=−−→ [X,W ]

for each finite CW complexX, and, when V , W also have the homotopy type
of CW complexes then weak equivalence implies equivalence. In particular
BGLk(R) ' BOk(R).

Classification of stable vector bundles. LetBGL(R) = lim−→ nBGLn(R)
and BO = lim−→ nBOn(R). As above BO ' BGL(R).

The stable bundles over a finite CW complex X are in one-one corre-
spondence with the homotopy classes of maps X −−→ BO to the classifying
space BO.

Remark . The homotopy groups π∗(BO) are 8-periodic by the Bott
periodicity theorem, and are given byÄ:

n(mod 8) 0 1 2 3 4 5 6 7

πn(BO) Z Z2 Z2 0 Z 0 0 0

Proposition 8. If k > m then two k-plane vector bundles η, η′ over an
m-dimensional finite CW complex X are isomorphic if and only if they are
stably isomorphic.

Proof. The inclusion BOk −−→ BOk+1 fits into a fibre bundle sequence

Sk −−→ BOk −−→ BOk+1 ,

the sphere bundle of the tangent bundle of the (k + 1)-sphere

τSk+1 : Sk+1 −−→ BOk+1 .

(See 3 for some discussion of sphere bundles and spherical fibre bundles).
Thus the pair (BOk+1, BOk) is k-connected, with

πj(BOk+1, BOk) = πj−1(Sk) = 0 for j ≤ k .

It follows that for k > m each map

[X,BOk] −−→ [X,BOk+1] −−→ . . . −−→ [X,BO]

is a bijection. ¤
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The relation between stable and unstable bundles. An n-plane
bundle, Ω, on an n-dimensional complex, Xn, which is stably trivial can, by
8, be assumed to be trivial and trivialized (this means a particular homotopy
of the classifying map is given) on the (n − 1)-skeleton Xn−1. Hence the
classifying map BΩ : X → BOn can be assumed to factor in the form

X −−→ X/Xn−1 =
∨

i∈I
Sni

W
µi−−→ BOn,

where the µi : Sn → BOn represent bundles over Sn which, together, induce
stably trivial bundles over X.

In particular, the stably trivial n-plane bundles over Sn are given by the
kernel of the map of homotopy groups

πn(BOn)
(in)∗−−→ πn(BO)

induced by the inclusion in : BOn ↪→ BO. The structure of this kernel is
well known.

Theorem 12. (1) Suppose that n is odd, n 6= 1, 3, 7. Then the
kernel of the map (in)∗ in (5) is a copy of Z/2 with the non-zero
element given as the tangent bundle of Sn.

(2) Suppose that n is even. Then the kernel of the map (in)∗ in (5) is
a copy of the integers with the element n generated by the following
composition

Sn
n−−→ Sn

Bτ−−→ BOn

where n : Sn → Sn is the map of degree n from Sn to itself, and Bτ
is the classifying map for the tangent bundle of Sn.

(3) Suppose that n = 1, 3, or 7. Then the kernel of (in)∗ in (5) is 0.

6. Thom spaces and transversality

Definition 13. The Thom space of a k-plane bundle η is the pointed
space

T (η) = E(η)/E1(η)

defined by the quotient of the total space E(η) by the subspace E1(η) ⊂ E(η)
of vectors of length ≥ 1 with respect to some metric. The zero section gives
a well defined inclusion X ↪→ T (η). Moreover, by rescaling we can easily
show that the pair X ↪→ T (η) is independent of the choice of metric.

This construction is natural for induced bundles in the sense that given
f : Y → X, then the pair of maps

(p2, f) : (f !(η), Y ) −−→ (η,X)

gives a map of Thom complexes T (f) : T (f !(η))→ T (η)



30 2. BUNDLES

Remark . Note that if we have a product bundle

Rk × Rs → E(η × ζ) p×p−−→ X × Y
then

E1(η)× E(ζ)
⋃
E(η)× E1(ζ) ⊂ E1(η × ζ),

with the inclusion on a single fibre having the form
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where the exterior of the circle represents E1(η × ζ) and the exterior of the
square represents E1(η) × E(ζ) ∪ E(η) × E1(ζ). In particular, there is an
evident radial deformation retraction from E1(η×ζ) to E1(η)×E(ζ)∪E(η)×
E1(ζ) and

T (η × ζ) ' E(η × ζ)/(E1(η)× E(ζ) ∪ E(η)×E1(ζ) = T (η) ∧ T (ζ).

where the base point of T (η) is ∗ = {E1(η)}, so that the ∧ makes sense.
This has the basic corollary

Corollary 7. The Thom space of the sum η ⊕ ε of a vector bundle η
and the trivial bundle ε is the suspension of the Thom space of η,

T (η ⊕ ε) = ΣT (η) .

Similarly, but more directly from the definition we have

Corollary 8. The Thom space of the trivial bundle ε over X is T (ε) =
ΣX+, the suspension of X with a disjoint basepoint attached.

Example 20. In the case of γ1,n over G1,n = RPn we have that the
Thom space is exactly RPn+1. This can be seen as follows. First consider
the usual inclusion RPn ↪→ RPn+1, (j1,n in the discussion after 12). We
may write Sn+1 as the join of Sn and S0 where the S0 lies along the line
associated to en+1. Here, recall that the join X ∗ Y is the quotient of the
disjoint union

X tX × I × Y t Y
by the relations (x, 0, y) ∼ x, (x, 1, y) ∼ y, and the lines in Rn are indexed
by the points of Sn while the line through en+1 is indexed by S0. The
intermediate lines corresponding to t 6= 0, 1 are indexed by the points γ1,n of
length < 1, where (v, w)↔ {w/|w|, |w|} with the obvious identification with
RPn in the extreme case w = 0, and, for |w| = 1 we identify with {en+1}.
But this is, as asserted the Thom space of γ1,n.
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Example 21. Analogous to the bundle γ1,n there is the complex line
bundle ζn over CPn, consisting of pairs (v, w) where v represents a complex
line through the origin in C n+1, and w is a vector contained in v. An
argument totally analogous to the above, using the representation of S2n+1

as S2n−1 ∗ S1 shows that T (ζn) = CPn+1.

The Pontrjagin-Thom construction. One of the main uses of the
Thom complex is in the context of the Tubular Neighborhood Theorem,
9. Suppose that we have an embedded submanifold Mm ⊂ Nm+k with
normal k-plane bundle νk. Then we may identify a sufficiently small open
neighborhood of M ⊂ N with the vectors of length < 1 in νk. Consequently,
collapsing the complement of this open neighborhood to a single point gives
a map of Nn+k to the Thom space of the normal bundle,

pM : Nm+k −−→ T (νk) .

This map is called the Pontrjagin-Thom construction and is one of the
fundamental tools in differential and geometric topology.

A special case involves the embeddings Mm ↪→ Sm+k for k ≥ n + 1
given by the Whitney 2n + 1-embedding theorem 10 where Mm is closed
and compact. In this special case it states that up to isotopy an embedding
Mn ↪→ R2n+2 exists and is unique.

In this case the normal bundle is of the form

νk(M) = (k −m− 1)ε⊕ νm+1(M)

with the Thom space of the form

T (νk(M)) = Σk−m−1T (νm+1(M))

(by 7). The Pontrjagin-Thom construction now gives a map

pM : Sm+k → Σk−m−1T (νm+1(M))

and since any two embeddings in this range are isotopic (there is an embed-
ding

Mm × I ⊂ Sm+k × I ; (x, t) 7→ (ft(x), t) .

it follows that pM is well defined up to homotopy for each k. Moreover, by
looking at the particular embedding Mm ↪→ Sm+k given by the composition

Mm ↪→ S2m+1 ↪→ Sm+k

we see that pM for k + 1 is just the suspension of pM for k as long as
k ≥ m+ 1. Thus we get a well defined stable homotopy class of maps

Sm+k → Σk−m−1T (νm+1(M))

and hence a well defined element in the mth stable homotopy group

πsm(T (νM )) = lim
k→∞

πm+k(T (νk(M))) .
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Transversal maps to the Thom complex. Given a map from a
differentiable manifold Nn into the Thom space of a k-plane bundle η over
a complex X, Nn → T (η), it is possible to partially reverse the Pontrjagin-
Thom construction.

Note that a neighborhood of the zero section in the Thom complex,
T (η) is homeomorphic to E(η). In this context we can consider a map
g : Nn → T (η) from an n-dimensional manifold to the Thom space of the
k-plane bundle η.

Definition 14. A map g : Nn −−→ T (η) from an n-manifold N to
the Thom space of a k-plane bundle η is transverse at the zero section
X ⊂ T (η) if the inverse image is a closed (n− k)-dimensional submanifold

M = g−1(X) ⊂ N
with normal k-plane bundle

νM⊂N = f∗η : M
f−−→ X

η−−→ BOk

the pullback of η to M along the restriction f = g| : M −−→ X, so that there
is defined a bundle map

(f, b) : (M,νM⊂N ) −−→ (X, η) .

Theorem 13. (Sard, Thom [66])
Every continuous map g : Nn −−→ T (η) from an n-dimensional manifold to
the Thom space T (η) of a k-plane bundle η : X −−→ BOk is homotopic to
a differentiable map g : N −−→ T (η) which is transverse at the zero section
X ⊂ T (η).

In particular, for k < n there is an n − k dimensional submanifold
V n−j ⊂ Nn with a map f : V n−j → X pulling the bundle η over X back to
the normal bundle of the embedding V n−j ↪→ Nn, and it follows that the
original map g : Nn → T (η) is homotopic to the following composition

Nn
PV−−→ T (f !(η))

T (F )−−→ T (η)

where PV is the Pontrjagin-Thom construction associated to the embedding
V ↪→ Nn.



CHAPTER 3

Immersions and embeddings

An immersion f : Nn−→Mm is a C∞ map which satisfies the condition
that the induced map of tangent bundles df : τN−→τM has rank n at every
point of N . From the implicit function theorem it follows that if f is an
immersion it is locally an embedding, but there may be a fairly complex
set of points in the image with inverse images consisting of multiple points.
This set is called the singular set of the immersion.

1. Embeddings and Immersions in Rm

Particularly important are immersions and embeddings f : Mn−→Rn+s.
In this case the test for immersion is particularly easy since τRn+s = Rn+s×
Rn+s, and there is a projection onto the second coordinate so that f is an
immersion if and only if p2df takes τm to an n-plane in Rn+s for eachm ∈M .

We begin by studying imbeddings and immersions of disks in Euclidian
space into Rm. Thus, let Dr be the open disk of radius r centered at the
origin in Rn and consider the space F(n,m, r) defined as the set of C∞ maps
f : Dr−→Rm. A length function on F(n,m, r) is given by setting

||f || = maxx∈D̄r−τ ,1≤i,j≤n

(
|f(x)|,

∣∣∣∣
∂fj
∂xi

∣∣∣∣
)

for some fixed τ with 0 < τ < r. Then we have the following result.

Lemma 7. Let f ∈ F(n,m, r) and suppose that τ is given. Suppose that
f is an immersion or an embedding when restricted to Dr−τ , then there is
an ε > 0 depending on f so that if ||f ′ − f || < ε then f ′ is an immersion or
an embedding as well.

Proof. We begin with the case of an immersion. Since we are assuming
that f is an immersion we must have m ≥ n. Also the sum

∑

I∈I
Det(dfI)2(x) 6= 0

and is continuous for each x ∈ D̄r−τ , where I is the set of n×n minors of df
(so I is a sequence (1 ≤ i1 < i2 < · · · < in ≤ m) identifying a set of n distinct
columns in df). Consequently, since D̄r−τ is compact there is a d > 0 so that
the sum in 1 is > d for each x ∈ D̄r−τ . Now, consider the sum of two m×n
matrices, D+X. Then there is a polynomial pD(X1,1, . . . , Xm,n) which gives
the sum in 1 for D+X, and the coefficients are sums of determinants of the

33
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k×k minors in D. In particular, the constant term is 1 for D. Consequently,
letting D be df(x), there are bounds on all the coefficients with the constant
term ≥ d on D̄r−τ . It follows that there is an ε > 0 so that for |Xi,j | < ε,
then the term 1 for df(x) +X > 0 at every x ∈ D̄r−τ . This proves 7 for the
case of immersions.

Now we give the argument for embeddings. So suppose that f is an
embedding. First, choose ε so small that f ′ will be an immersion for ||f ′ −
f || < ε. In particular, there will be an δ > 0 so that f ′(x) − f ′(x + ~v) 6= ~0
for |~v| < δ and x ∈ D̄r−τ with δ just a function of f and ε. Consider the
composite map h = (−)(f ′ × f ′),

Rn × Rn f
′×f ′−−→Rm × Rm −−−→Rm

where (−1)(~y1, ~y2) = ~y1 − ~y2. We thus have that the distance from the
complement of the diagonal in {(−)(f ′ × f ′)}−1(~0)} to the diagonal is > δ.

Let Nd(∆) be the set of (x, y) ∈ D̄r−τ × D̄r−τ with |x − y| < d be a
neighborhood of the diagonal. Then, since f is an embedding, the map
(−1)(f × f) restricted to D̄r−τ × D̄r−τ − Nd(∆) has distance > e(d) > 0
from ~0. Assume now that ε is also smaller than δ/3. Then it follows that
for |x− y| < δ/3 we have f ′(x)− f ′(y) 6= ~0, so, in fact, f ′ is an embedding
on D̄r−τ . ¤

Lemma 8. Suppose that m ≥ 2n, and that f ∈ F(n,m, r). Then, for any
ε > 0 there is an f ′ ∈ F(n,m, r) with ||f ′ − f || < ε and f ′ is an immersion.

Proof. We denote by M(m,n) the space of all m × n matrices with
coefficients in R. Note that as a space M(m,n) = Rmn, is a manifold of
dimension mn.

The f ′ that we will find during the course of the proof will have the
form x 7→ f(x) +Mx, where M ∈M(m,n), and such a map has derivative
df ′ = df+M . Thus, we are searching for an M arbitrarily close to 0, so that
df +M is non-singular on D̄r−τ . To find such an M reverse the equation,
M = Q − df , and let Q vary over all the m × n matrices having rank < n.
Let M(m,n, k) be the subset of M(m,n) consisting of matrices of rank k
with k < n. We will show that the image of the map,

Dr ×M(m,n, k)
s−−→M(m,n)

defined by s(x,Q) = Q−df(x) has measure zero in M(m,n) for each k < n.
Thus, choosing M not in the image gives an immersion.

Proposition 9. The subset M(m,n, k) ⊂ M(m,n) is a manifold of
dimension

Dim(M(m,n, k)) = k(m+ n− k) .
Proof. Define an action of the group GLm(R)×GLn(R) on Mm,n(R)

by the rule
(A,B)(α) = AαB−1.
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Under this action, every m× n matrix of rank k is equivalent to the matrix

J =
(
Ik 0
0 0

)
.

Invertible matrices

A =
(
A1 A2

A3 A4

)
∈ GLm(R) , B =

(
B1 B2

B3 B4

)
∈ GLn(R)

with A1, B1 ∈ Mk,k(R) satisfy the equation AJB−1 = J (or equivalently
AJ = JB) if and only if

A1 = B1 , A3 = 0 , B2 = 0 .

The isotropy group of J

{(A,B) ∈ GLm(R)×GLn(R) | AJB−1 = J}
is thus the group of pairs of the form

(A,B) = (
(
L M
0 N

)
,

(
L 0
P S

)
)

where L is k×k, M is k× (m−k), N is (m−k)× (m−k), P is (n−k)×k,
and S is (n− k)× (n− k). The dimension of this isotropy group is

k2 + k(m− k) + (m− k)2 + (n− k)k+ (n− k)2 = m2 +n2− k(m+n− k) ,
so that the dimension of the orbit is k(m+ n− k) as asserted. ¤

Consequently, since k(n +m − k) is maximal for k = (n +m)/2 which
is greater than n since m ≥ 2n, it follows that k(n + m − k) is monotone
increasing for 1 ≤ k < n, and k(n+m− k) ≤ (n− 1)(m+ 1). Consequently

n+ k(n+m− k) ≤ n+ (n− 1)(m+ 1) = nm+ 2n−m− 1

is strictly less than nm for m ≥ 2n, and for each k the measure of the image
of Dr ×M(m,n, k) ⊂M(m,n) is zero. ¤

2. Constructing immersions f : Nn−→Mm with m ≥ 2n

We can globalize some of the above results directly to apply to compact
manifolds.

Lemma 9. Suppose that Nn is compact. Let f : Nn−→Mm be any map
with m ≥ 2n, then f is arbitrarily close to an immersion.

Proof. To begin we replace f by a C∞ map very close to f .
Next we cover Mm by coordinate patches and then cover Nn by a finite

set of coordinate patches U1, . . . , Uk with f(Dn
6/5 ⊂ Uj) contained in one of

the coordinate patches Vs(j) ⊂ Mm and the Dn
1 ⊂ Uj already a covering of

Nn.
Then we use the modifications above to change f to an immersion on

D̄n
1 ⊂ U1, modify f on Dn

6/5 ⊂ U2 so that on the intersection with D̄n
1 ⊂ U1
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the modified map remains an immersion, and continue this process with
Dn

6/5 ⊂ U3, and so on. ¤

Remark . Note that for f ′ sufficiently close to f it follows that f ′ is
homotopic to f . Indeed, sinceMm is paracompact there is a Riemann metric
on M , and for f ′ sufficiently close to f there is a unique geodesic joining f(n)
and f ′(n) for each n. These geodesics, if f(n) 6= f ′(n), are parametrized
by the length of the vector v ∈ τf(n)(Mm) so that exp(v) runs along the
geodesic, and renormalizing so the geodesic is traversed in unit time gives
the homotopy.

Corollary 9. Let f : Nn−→Mm be an arbitary map, then f is homo-
topic to an immersion for 2n ≤ m.

3. The Singular Set of an Immersion

The singular set of an immersion f : Nn−→Mm is the closure of the set
of points x ∈ Nn so that f−1f(x) is strictly larger than {x}. The singular
values are the images of the singular set. Note that an immersion f is
an embedding if and only if the singular set is empty. One would expect
that generically, the dimension of the singular set would be 2n −m if this
is greater than or equal to zero, and would be empty otherwise. This is
justified by the following result.

Lemma 10. Let f : Nn−→Mm be an immersion with, as usual Nn com-
pact with no boundary. Then arbitrarily close to f there is an immersion f ′
so that the composite map

g : Nn ×Nn −∆(Nn)
f ′×f ′−−→Mm ×Mm

is transverse to ∆(Mm). In particular, the singular set of f ′ has dimension
2n−m if 2n ≥ m and is empty otherwise.

Proof. Given f we consider a covering of Nn having the type consid-
ered in the proof of 9. Then for each disk D̄1 ⊂ D2 there there is C∞
function on Nn, λ(x), which is identically 1 on D̄1, decreases to 0 in D2 and
is identically 0 in Nn −D2.

The cover has been constructed so that f(D̄2) ⊂ Mm is contained in a
particular coordinate patch Rm. Then there is an ε > 0 so that the map
h : Dm

ε × D̄2−→Rm given by

h((~y, x)) = f(x) + λx~y

is entirely contained in the coordinate patch and we can consider the asso-
ciated map, K, given as the composite

Dm
ε ×

(
D̄2 × D̄2 −∆(D̄2)

) h×f−−→Rm × Rm (−)−−→Rm.
Given δ > 0 there is a ~y ∈ Rm with |~y| < δ so that ~y is a regular value of K
by Sard’s theorem. Now, set

f ′(x) = f(x) + λ(x)~y
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which is well defined as a map into Mm. It agrees with f outside of D2 and,
since ~y is regular for K it follows that the intersection of the singular set of
f ′ with D̄1 is a submanifold of dimension 2n−m or is empty. On (D̄2−D1)
intersected with the unit disks in the previous coordinate patches we can
assume that f has the same property, and it is direct to see that there is
some ε > 0 so that ε-close immersions have regular singular sets as well.
Thus, by choosing ~y sufficiently small we can assure that f ′ has singular set
of the correct type on the union of the first i patches D1,1, . . . , D1,i. ¤

Corollary 10. Whitney Embedding Theorem Let f : Nn−→Mm

be any continuous map, with Nn a compact manifold with empty boundary,
and suppose that m ≥ 2n+ 1. Then f is arbitrarily close to an embedding.

Corollary 11. The 2n-Immersion Theorem Let f : Nn−→M2n be
any continuous map with Nn as above. Then f is arbitrarily close to an
immersion with singular set consisting only of isolated points. Moreover, we
can assume

(1) the cardinality of the inverse image of each singular value is 2,
(2) the span of df(τN (x)), df(τN (x′)) is τM (f(x)) for each pair of dou-

ble points (x, x′) in Nn with f(x) = f(x′).

Proof. Most of this is evident. Suppose that f(x) is a multiple point
with the cardinality of f−1(f(x)) > 2. Then we can push away the third
and later points creating a series of isolated double points.

.................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................

...............................
.........
.................

............................................................................................................................................................................................................

A triple point The deformation

There is a similar argument for the structure of the span of the tangent
spaces.

¤

4. Immersions of Sn in R2n

In this section we will construct some basic immersions of Sn into R2n,
immersions with a single double point as their only singularities. But before
we do this we will find the definition of the index of a double point in
general position to be useful.
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Definition 15. Let v ∈M2n be a double point in general position for an
immersion f : Nn−→M2n. Suppose f−1(v) = {n1, n2} is given an ordering,
(n1, n2), so n1 preceeds n2. Then the index at v for the ordered pair (n1, n2)
and the given orientations of Nn, M2n is either ±1. Take an oriented
basis for τn1(N), e1, . . . , en and an oriented basis h1, . . . , hn for τn2(N) (with
respect to the given orientation of N). An orientation on τv(M) is given by
the basis

df(e1), . . . , df(en), df(h1), 0. ts, df(hn)
• The index is +1 if the orientation on τv(M) above agrees with that

of τv(M) given by the orientation of M .
• It is −1 otherwise.

Remark . Note that the index is independent of the choices for the bases
e1, . . . , en, h1, . . . , hn as long as the orientations they define agree with that
of N . Also, note that if n is odd and we reverse the order of n1, n2, then
the index changes sign, but for n even it is independent of the ordering of
the points in f−1(v). Finally, note that it is independent of the choice of
orientation on N , but changes sign if we change the orientation of M .

Proposition 10. For each n ≥ 1 and ε = ±1 there exists an immersion
f εn : Sn−→R2n with a single ordered double point ~v having index

I(~v) = ε .

The normal bundle to f εn(S
n) is equal to ετSn.

Proof. For n = 1, we can take f+
1 = f−1 : S1−→S2 to be the figure 8

immersion.
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Figure 8 curve
For n ≥ 2 we use the following construction. Start with

Dn
1 = {(x1, . . . , xn, 0, . . . , 0) ∈ R2n | ∑

x2
i ≤ 1} ,

Dn
2 = {(0, . . . , 0, y1, . . . , yn) ∈ R2n | ∑

y2
i ≤ 1} .

The intersection of the unit sphere S2n+1 ⊂ R2n with Dn
1 tDn

2 ,

S2n−1 ∩Dn
1 = Sn−1

1 , S2n−1 ∩Dn
2 = Sn−1

2

is a pair of linked spheres in S2n−1. Next we connect them together by a
tube in the complement of the unit ball. For 0 ≤ t ≤ 1 let

φt =
(

cos(πt/2)In sin(πt/2)In
−sin(πt/2)In cos(πt/2)In

)
: R2n −→ R2n .
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The embeddings

φ̄t : Sn−1
2 −→ R2n ; x −→

√
1 + sin2(πt) · φt(x) (0 ≤ t ≤ 1)

define an isotopy between φ̄0(S2n−1) = S2n−1
1 and φ̄1(S2n−1) = S2n−1

2 in the
complement of the unit ball in R2n. The map

f+
n : Sn = Dn × {0, 1} ∪ Sn−1 × I −→ R2n ;




(x1, . . . , xn, 0) −→ (x1, . . . , xn, 0, . . . , 0)
(y1, . . . , yn, 1) −→ (0, . . . , 0, y1, . . . , yn)
(z, t) −→ φ̄t(z)

,

after smoothing to make it C∞ in a small neighborhood of Sn−1
1 t Sn−1

2 , is
the desired immersion of Sn in R2n. To obtain the immersion f−n with a
double point of complementary index modify φt to

φ′t = µtφt where µt =




In−1 0 0 0
0 cos(πt) sin(πt) 0
0 −sin(πt) cos(πt) 0
0 0 0 In−1


 .

This corresponds to the replacement of the figure 8 immersion in 4 with the
immersion
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Index −1 Figure 8 curve

It remains to check the normal bundles. We do this in the first case as the
second is entirely similar. The tangent bundle to Sn can be described as
follows. Take the trivial bundles Rn×Dn on the upper and lower hemispheres
and glue them together along the common boundary, Sn−1, by identifying
(~y, ~x) ∼ (~y, ~x) for ~y ⊥ ~x, and (λ~x, ~x) ∼ (−λ~x, ~x) for each ~x ∈ Sn−1. This
can be seen by using the explicit maps of Rn×Dn to the tangent bundles at
the respective hemispheres by using the rotation Rθ,~x which rotates through
the angle θ in the subspace of Rn+1 spanned by (~x, 0) and (~0, 1) and is the
identity in the perpendicular complement.

On the other hand, consider the map f : Rn+1−→R2n defined by

(t, ~v) 7→
(
cos(2πt)~v
−sin(2πt)~v

)
.
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The differential df at the point (t, ~x) is given as the 2n× n+ 1 matrix
(−2πsin(2πt)~x cos(2πt)In
−2πcos(2πt)~x −sin(2πt)In

)
.

Consequently, the image of df at (t, ~x) is spanned by vectors of the form

e1,~x =
(
sin(2πt)~x
cos(2πt)~x

)
, and

e~y =
(
cos(2πt)~y
−sin(2πt)~y

)
.

Note that e1,~x ⊥ e2,~y for any ~y ∈ Rn so df has rank (n+ 1) as long as ~x 6= 0
and f is an immersion on R× (Rn −~0).

Clearly, vectors of the form
(
sin(2πt)~z
cos(2πt)~z

)

are perpendicular to df(λ, ~y) if ~z ⊥ ~x. This defines an (n − 1)-dimensional
subspace of τ(R2n) at f(t, ~x) and these subspaces together give the normal
bundle to f(R × (Rn − ~0)). Now, restricting to R × Sn−1 we see that the
vectors of type e~y in 4 are tangent to df(R × Sn−1 if and only if ~y ⊥ ~x.
Consequently, the vector

e2,~x =
(
cos(2πt)~x
−sin(2πt)~x

)

is also in the normal bundle to f(R×Sn−1) at f(t, ~x), so the normal bundle
is the Whitney sum of the trivial bundle above and the normal bundle to
f(R× (Rn −~0)).

Thus the normal bundle to the immersion consists of the trivial bundle
Rn × Dn

1 , points of the form ((~y, 0), (0, ~z)) with |~z| ≤ 1 over the first disk,
points of the form ((0, ~y), (~z, 0)) over the second disk and points of the form
above over the tube connecting their boundaries. But gluing these together
gives exactly the description above of the tangent bundle to Sn. ¤

Remark . Work of Smale classified immersions of Mn into Rn+k in
terms strictly of the normal bundle. A k-plane bundle η is a normal bundle
to Mn if and only if η + τMn = (n+ k)ε. Then, for k ≥ 1 there is a one to
one correspondence between pairs which consist of

(1) an isomorphism classes of normal k-plane bundles, η, on Mn to-
gether with

(2) a specific homotopy class of trivializations of η + τMn ,
and regular homotopy classes of immersions f : Mn−→Rn+k.

Here, two immersions f, g : Mn−→Nn+k are in the same regular homo-
topy class of immersions if and only if there is a C∞ map

H : I ×Mn−→I ×Nn+k
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so that H|t ×Mn is an immersion for each t and H(0 ×Mn) is f , while
H(1×Mn) is g.

From the point of view of classiying spaces Smale’s result converts the
problem of determining the regular homotopy classes of immersions of Mn

into Rn+k with k ≥ 1 to the problem of determining the set of homotopy
classes of maps I ×Mn−→BOn+2 with the image of 0 ×Mn contained in
BOk and the image of 1×Mn a fixed classifying map for the stable normal
bundle to Mn.

Note that in the special case of immersions of Sn into Rn+k Smale’s
result shows that the set of regular homotopy classes of immersions is in one
to one correspondence with the relative homotopy set (group for n ≥ 1),
πn+1(BOn+2, BOk). Of course, this is just πn(Vk,n+2−k), where Vk,n+2−k
is the fiber of the map Bi : BOk−→BOn+2. But Vk,m has the homotopy
type of the Stiefel manifold of m-frames in Rk+m a space which is very well
understood.

In particular we have

πn(Vn,2 =

{
Z/2 for n odd
Z for n even.

When n 6= 1, 3, 7 we also have that pin(Vn,2) injects into πn(BOn) and the
generator of πn(Vn,2) can be uniquely chosen so that its image represents
the tangent bundle to Sn. Consequenly, in these cases the isomorphism
class of the n-dimensional normal bundle completely determines the regular
homotopy class of the associated immersion, Sn−→R2n. However, in the
special cases where n = 1, 3, 7 the only stably trivial n-plane bundle over
Sn is the trivial bundle. Here, the non-trivial homotopy class in πn(Vn,2)
represents a choice of framing on the trivial bundle.

As a special case the figure eight immersion of S1 in R2, 4 represents the
non-trivial regular immersion class of S1 in R2 while the usual embedding
as the boundary of the unit disk represents 0 ∈ π1(V1,1).

Remark . The addition in πn(Vn,2) gives a method of “adding stably
trivial n-plane bundles on Sn” together to get further stably trivial n-plane
bundles on Sn. This is just a type of connected sum operation. Specifically,
regard ±τ(Sn) as given by a specific choice of gluing of the trivial bundle,
Rn × Dn along Rn × ∂(Dn) to a second copy of the trivial bundle on Dn.
Then if we take the sphere and cut out k disjoint copies of the disk Dn, take

Rn × (Sn − tk1Dn
j )

and glue Rn ×tk1Dn
j in by the gluing above for ±τ on each ∂(Dn

j ) we get a
representation of the bundle ±kτ(Sn).

Consequently, for n odd and n 6= 1, 3, 7, our construction of kτ(Sn) gives
the trivial bundle for k even, but for n even each of these bundles is distinct.

In fact they can be distinguished by a type of self intersection number.
Specifically, take the 0-section of the bundle and deform it slightly so that
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at each point of intersection between the zero section and the deformed 0-
section the intersection is in the general position. Choose the orientation of
the total space of the tangent bundle to Sn (regarded as a 2n-dimensional
manifold) to be that given by the orientation of Sn together with the orien-
tation of the space of tangents at x corresponding to that orientation. Then
the index of each intersection point is well defined and their sum is 2k for
the bundle kτ(Sn).

As this last fact will be very important to us in the sequel we will give
a proof in REFERENCE after we have introduced the basic homology tools
needed.

Remark . It is worth noting that we can construct immersions of S2n in
R4n having index k by simply taking k disjoint immersions of index sgn(k)
as constructed in 10 and connecting each of the second through kth to the
first with thin disjoint tubes to obtain an immersion of S2n in R4n in general
position having |k| double points. Comparing the construction of kτ(S2n)
with the construction of the normal bundle to this immersion we see that
the normal bundle is, in fact, kτ(S2n), and, by Smale’s theorem we have
obtained representatives for all of the regular immersion classes of S2n in
R4n.

5. The Whitney trick

We now return to the question of embeddings of Nn in Mn+k. For the
special case k = n we will prove the Whitney 2n-embedding theorem:

Theorem 14. Whitney, [75]. Let Nn be a compact, oriented, differ-
entiable manifold and let f : Nn−→M2n be any continuous map. Then f
is homotopic to an embedding provided that M2n is simply connected and
n ≥ 3.

Remark . The constraint that M2n be simply connected is essential
here. For π1(M2n) 6= 0 it can well happen that there are homotopy classes of
maps f : Nn−→M2n which contain no embeddings. However, a generalization
valid when n ≥ 3 in the non-simply connected case due to Wall will be the
critical ingredient in higher dimensional surgery m ≥ 5. We will prove this
generalization in REFERENCE.

There is also a generalization to n = 2 with M4 simply connected due to
M. Freedman but this generalization only works for topological embeddings
under special circumstances. Of course Freedman’s theorem lies at the heart
of the classification of 4-dimensional manifolds, but it also lies considerably
beyond the focus of our work here so we do not discuss it further.

Proof. The proof of 14. We can assume that f has already been
deformed to an immersion with isolated double points in general position as
its only singularities.
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The idea is to try to cancel the double points two at a time. In order to
do this we will need to occasionally introduce double points to modify the
immersion, in particular to make the total number of double points even.

Choose a pair of double points for f(N), together with orderings on their
inverse images so their indexes have opposite signs. If this is not possible
for the immersion as it stands, choose a double point and introduce a small
n-sphere in M2n disjoint from the image of f with a single double point of
index minus that of the choosen double point using 10. Then attach a small
tube connecting this immersed sphere to N so the chosen double point and
the newly introduced one have opposite indices.

As N is path connected and has dimension ≥ 2, there are differentiable
maps

γi : I = [0, 1] −→ N (i = 1, 2)
with endpoints

γi(0) = xi , γi(1) = yi ,

so that both curves avoid the double points of f except at their endpoints.
Consequently, the map

ω : S1 = I/{0 = 1} −→ M2n ; t −→
{
fγ1(2t) if 0 ≤ t ≤ 1/2
fγ2(2(1− t)) if 1/2 ≤ t ≤ 1

is an embedding – though with two corners.
We need to study a small neighborhood of this embedded S1 ∈M2n and

we begin by determining the structure of k-plane bundles on S1.
It follows directly from 6, 3 that every k-dimensional vector bundle over

Sn is constructed by glueing together two copies of the trivial k-dimensional
vector bundle over Dn along Sn−1, using an isomorphism of the form

φ : Sn−1 × Rk −→ Sn−1 × Rk ; (u, v) −→ (u, θu(v))

with θu : Rk−→Rk a linear isomorphism.
For n = 1 we have S0 = {0}t{1}, and we can assume θ1 is the identity.

Call θ0 : Rk−→Rk the characteristic map for the bundle over S1.

Lemma 11. Let k ≥ 1. There are exactly two isomorphism classes of
k-plane bundles over S1. Moreover, a k-plane bundle over S1 is trivial if
and only if the characteristic map is orientation preserving.

Proof. π0(GL1(R)) = Z2, and the inclusionGL1(R) ⊂ GLk(R) induces
an isomorphism of π0’s for k ≥ 2. Moreover, the two path components in
GLk(R) are distinguished by the sign of the determinant. Thus, from 10
we have that π1(BGLk(R)) = π0(GLk(R)) = Z/2. Consequently, since
BGLk(R) is path connected, it follows that the set of (unbased) homotopy
classes of maps from S1 to BGLk(R) is the set of conjugacy classes of el-
ements in π1(BGLk(R)). Thus there are exactly two homotopy classes of
maps from S1−→BGLk(R) and, using 5 together with 11, it follows that the
determinant of the characteristic map distinguishes them as asserted. ¤
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Thus the isomorphism classes of k-plane bundles over S1 are described
as followsÄ: the non-trivial one is the Whitney sum of the trivial bundle with
the Möbius band, and the other is the trivial bundle itself.

We now study the restriction of the tangent bundle τM to ω(S1) ⊂M2n.
Let g : M2n−→BO2n classify the tangent bundle to M , so gω : S1−→BO2n

classifies the restriction of τM to ω(S1).
As we have described ω, the image, ω(S1), does not have a normal bundle

in M , since ω(S1) is not differentiable at the two double points. However
it can be deformed by an arbitrarily small deformation in neighbourhoods
of the two double points to make it differentiable. Then we can argue that
the normal neighbourhood of the original circle is the same as that for the
deformed one, and the homeomorphism defines the bundle over the original
circle since the total spaces of the two distinct bundles over S1 are not
homeomorphic. Thus it makes sense to talk of the normal bundle to ω(S1).

Now, choose a metric on M2n so that at the double point x the two
n-dimensional subspaces df(x1)τN (x1), df(x2)τN (x2) of the 2n-dimensional
tangent space τM (f(x)) are perpendicular, and similarly at the double point
y.

Then we can split τ(M2n) into a Whitney bundle sum of two n-plane
bundles along ω(S1) as follows. Choose the first subbundle to be df(τγ1(2t))
along the image of fγ1 and the perpendicular bundle to df(τγ2(2t−1)) along
the image of fγ2. Similarly, the second bundle is given by interchanging
the roles of γ1 and γ2 above. Alternately, it is the perpendicular subbundle
of τM along ω(S1) to the subbundle just constructed. Note that since the
indexes of the two double points are opposite, each of these subbundles is
non-orientable and so has the form of a Whitney bundle sum η⊕ (n−1)ε.

We now construct an explicit η in each of the bundles above. Extend the
1-dimensional tangent section along γ1 to a Möbius band section β1 ⊂ α1 in
some way, and the 1-dimensional tangent section on γ2 to a 1-dimensional
Möbius band section β2 ⊂ α2, defining non-trivial line bundles β1 and β2 on
S1 so that

α1 = β1 ⊕ εn−1 , α2 = β2 ⊕ εn−1 .

Moreover, since βi ⊥ β2 at every point, the span of the two Möbius band
sections is their Whitney bundle sum, and

β1 ⊕ β2 = 2ε,

the trivial 2-plane bundle on S1, because the determinant of the matrix(−1 0
0 −1

)
is positive. This defines, using the tubular neighbourhood the-

orem 9, an embedding D2 × S1 ↪→ M2n extending ω(S1) which we can use
to construct a differentiable embedding D1 × S1 ↪→ M2n containing ω(S1)
in its interior and contained in the image of D2 × S1.

We regard this D1×S1 as a closed collar neighborhood of the boundary
in the unit ball D2 ⊂ R2, and we now want to extend this embedding to an
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embedding D2 ⊂M2n.
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D1 × S1 and the inverse image of ω(S1)
Lemma 12. Let V ⊂Mm be any subcomplex of the manifold Mm having

dimension ≤ m− 3 and suppose m ≥ 5. Then

π1(M\V ) = π1(M) .

Proof. The morphism π1(M\V )−→π1(M) induced by inclusion is sur-
jective, since every map S1−→M can be moved away from V by general po-
sition. In order to prove that the morphism is injective consider an element
x ∈ ker(π1(M\V )−→π1(M)), which may be represented by a commutative
square

S1
f−−→ M\Vy

y
D2

g−−→ M

with f a differentiable embedding. Since m ≥ 5 g is homotopic to an embed-
ding leaving f fixed. Now we ensure that V ∩g(D2) = ∅. By general position
we can move g(D2) away from V by an arbitrarily small perturbation leav-
ing g an embedding, and leaving f alone on S1. The result is an embedded
g(D2) ⊂M\V with ∂(g(D2)) = f(S1), so that x = 1 ∈ π1(M\V ). ¤

Returning to the proof of 14, apply 12 to obtain a differentiably em-
bedded disk D2 ⊂ M\f(N) with ∂(D2) = γ̃ and boundary one of the two
boundary components of the embedded D1 × S1 above.

We have that νD2⊂M = R2(n−2) ×D2 and on ∂(D2) a splitting Rn−1 ⊕
Rn−1×S1 is already given. The obstruction to extending this splitting to the
entire normal bundle of D2 is an element in π1(O(2(n−1))) = Z2. Moreover,
π1(O(n − 1)) maps onto this group since n ≥ 3. Thus we can change the
framing on one of the two Rn−1 × S1 bundles to extend the framing across
D2.

Finally, leaving the immersion alone near γ1 in N change it near γ2 to
γ′2 extending away from γ2 to Dn−1 × γ′2 ∪ D2 × ∂(νN (γ2)). This defines
a regular homotopy to an immersion without this pair of unordered double
points, completing the proof of 14 ¤





CHAPTER 4

Signature Invariants and characteristic classes

Consideration of pairs (Mn, ∂M) consisting of a closed oriented manifold
Mn with boundary ∂M is often crucial in surgery. In particular, invariants
of closed compact manifolds without boundaries which vanish when the
manifold is a boundary are particularly important.

Perhaps the first and most important of these invariants is the signature
invariant defined for closed compact manifolds of dimension 4k.

The definition is as follows. Let M4k be a closed, compact, oriented
manifold with empty boundary. Then H i(M4k;Z) is finitely generated for
each i andH2k(M ;Z) = (Z)s⊕Tor where Tor is the torsion subgroup. Write
the orientation class of M in H4k(M ;Z) as [M ] and consider the symmetric
bilinear form on H2k(M ;Z):

〈a, b〉 = 〈a ∪ b, [M ]〉 ∈ Z.
First note that this pairing vanishes identically on the torsion subgroup so it
factors throughH2k(M ;Z)/Tor ∼= (Z)s. Next, we claim that it is integrally
non-singular. This means that the adjoint map

φ : H2k(M ;Z)/Tor−→Hom(H2k(M ;Z)/Tor,Z)

defined by φ(a)(b) = 〈a, b〉 is an isomorphism. Indeed, this is just a direct
consequence of Poincaré duality, since H2k(M ;Z)/Tor = H2k(M ;Z)/Tor)∗
and a(b ∩ [M ]) = 〈a ∪ b, [M ]〉. Then the signature of this bilinear form is
the usual signature of the form after tensoring with the rationals Q, namely
the number of +1-eigenvalues minus the number of −-eigenvalues of the
symmetric matrix associated to the form after choosing a basis for Qs.

Lemma 13. R. Thom If M4k is a boundary then the signature of M is
0.

Proof. Suppose that M4k = ∂N4k+1. Then Poincar’e duality applied
to the middle dimensional region with Q-coefficients,

· · · −−→H2k(N ;Q)
i∗−−→H2k(M4k;Q)

δ−−→H2k+1(N,M ;Q)−−→· · ·

shows that H2k(N ;Q)/im(j∗) is dual to im(δ) ⊂ H2k+1(N,M ;Q), so

H2k(M4k;Q) = H2k(N ;Q)/im(j∗)⊕ im(δ)

47
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splits H2k(M ;Q) into two isomorphic summands. Moreover, for every ele-
ment in the image of i∗ we have

〈i∗(a) ∪ i∗(b), [M ]〉 = 〈a ∪ b, i∗([M ])〉
= 0,

since [M ] = ∂[N,M ], the orientation class of N .
Thus, after a change of basis the matrix of the form on H2k(M ;Q)

becomes
(

0 I
I 0

)
or the same becomes a diagonal matrix




T 0 0 . . . 0
0 T 0 . . . 0
0 0 T . . . 0
...

...
...

. . .
...

0 0 0 . . . T




where T =
(

0 1
1 0

)
. But the eigenvalues of this matrix are +1 and −1 so it

has signature 0, and it follows that the signature of M is zero as well. ¤
We write the signature ofM4k as I(M), and we have the following lemma

which is routinely verified.

Lemma 14. (1) Let −M be M with the orientation −[M ] assigned,
then I(−M) = −I(M).

(2) Let M4k and L4k be two closed, compact, oriented manifolds without
boundary, then, for the disjoint union M t L we have I(M t L) =
I(M) + I(L).

(3) Let L4s be closed, compact, oriented with empty boundary. Then
I(M×L) = I(M)I(L) where the orientation on M×L is [M ]⊗ [L].

Remark . The reason one only considers the signature for 4k-dimensional
manifolds is that in the 4k+2-dimensional case the form is skew symmetric
and hence there is always an integral basis so the the matrix of the form

becomes
(

0 I
−I 0

)
. Consequently, there isn’t much to distinguish the situ-

ation where M is not a boundary from that where M is a boundary here.
However, in the case where the manifold has additional structure such as a
non-trivial finite group action and we wish to consider only manifold pairs
(N,M = ∂N) where the group action extends to N even in the 4k + 2-case
there may be non-trivial invariants.

The first step is to take account of the group action by defining an
enriched bilinear form

b̄ : H∗(M2k;Q)⊗H∗(M2k;Q)−−→Q(G)

by setting b̄(a, b) =
∑

g∈G b(a, T b)T
−1. In particular, this enriched bilinear

form has the following properties
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(1) b̄(a, gc) = gb̄(a, c)
(2) b̄(ga, c) = g−1b̄(a, c)

so that it is Q(G)-linear in the second variable and conjugate Q(G)-linear
in the first variable. It is again non-singular in the sense that the adjoint
homomorphism

µ(b̄) : H∗(M2k;Q)−→HomQ(G)(H
k(M2k;Q);Q(G))

is an isomorphism, and it breaksHk(M2k;Q) into a direct sum of orthogonal
summands, one for each simple summand of the semi-simple ring Q(G).

A basic case where this happens is when the group G is abelian. Then
Hk(M2k;Q) is a module over the group ring Q(G) which is just a sum of
copies of cyclotomic fields Q(ζd), one for each distinct normal subgroupN/G
with cyclic quotient. For example, if G = Z/2 then there are two such sum-
mands, Q(G) = Q+⊕Q− and Hk(M2k;Q) splits into two orthogonal pieces,
the first the subspace of eigenvectors having eigenvalue 1 for the generator
T of G, and the second the subspace of eigenvectors for the eigenvalue −1.
In particular, in this case if k is even, the signature of M2k is the sum of
two separate signatures I(M2k) = I+(M2k)+I−(M2k) where the first is the
signature of the form restricted to the +1-eigenspace and the second is the
signature of the form restricted to the −1-eigenspace.

Similarly if G = Z/3 then there are again two summands, one consisting
of the eigenspace of the generator T with eigenvalue 1 and the other the
image of the idempotent projector

1
3
(2− T − T 2).

In this case the form on the second subspace may be regarded as a ±-
symmetric non-singular Hermitian form

Q(ζ3)m ×Q(ζ3)m−−→Q(ζ3),

and as such can be diagonalized in both the cases k = 2r, k = 2r + 1, the
only difference being that in the second case the diagonal elements have
the property that λ̄ = −λ. But such elements exist in Q(ζ3), for example√−3 = ζ3 − ζ2

3 . Of course, for the off diagonal elements we also have
λi,j = −λ̄j,i, but this is never a constraint.

In general Hk(M2k;C) can be written as an orthogonal direct sum of the
form

⊕
πi
Cji where the ith summand Cji is a module over the ith copy of C

in C(G), and the form restricted to Cji is ±-Hermitian and non-singular.

1. Some Two Dimensional Examples – the Fermat Surfaces

As a basic example let us consider the two dimensional manifold with
boundary which consists of the closed disk D̄2 with (n − 1) small disjoint
open disks removed. We give it a cellular decomposition by assuming the
removed disks are all tangent to a diameter of D̄2 and join one edge of the
diametor to the first, then the first to the second, and so on till the (n−2)nd
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is joined to the (n−1)st. Consequently the vertices are the points of tangency
and the first intersection of the diameter with the original boundary. The
one cells are the arcs around the boundary components starting and ending
at the intersection with the diameter as well as the arcs joining each to the
next, and there is a single two cell with interior the complement of the one
skeleton.
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The example for n = 5

v1 v2 v3 v4 v5α1 α2 α3 α4

The fundamental group of this manifold is the free group on (n−1)-generators
corresponding to the arcs in the positive sense around the (n − 1) deleted
disks. Also, with respect to these generators, the arc in the opposite direc-
tion around the boundary of the original disk represents the class

(g1g2 · · · gn−1)−1

in the fundamental group. Next, a homomorphism of this group into Z/n is
given by sending each gi to a fixed generator T of Z/n. Consequently, the
element on the outside boundary above also maps to T . It follows that the
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associated Z/n-cover has one skeleton of the form
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e1

Te2

T 2e3

T 3e4

T 4e5

α1

Tα2

T 2α3

T 3α4

The 1-Skeleton for n = 5
where the only identification is that the top edge is identified with the bot-
tom edge. The darker line represents the attaching of the generating 2-cell,
the other two cells being attached by shifting the attaching map of the first
cell by powers of T . Here, T acts by shifting the graph up one level.

We now determine the homology of the resulting covering space which
we denote Mn and call the free Fermat surface of level n, a nomenclature
explained by . Note that, since Z/n acts on this space the homology and
cohomology groups become modules over the group ring Z(bbz/n), and we
will describe the homology groups as modules.

Lemma 15. As a module over Z(Z/n) we have that

H1(Mn;Z) = Z(Z/n)n−2 ⊕ Z+

while H0(Mn;Z) = Z+ and all other homology groups are trivial. Here Z+

is Z with the trivial Z(Z/n) action, (
∑
niT

i)k = (
∑
ni)k for any k ∈ Z).

Proof. Let vi, 1 ≤ i ≤ n, be the vertex on the ith boundary circle, and
αj 1 ≤ j ≤ n− 1 be the edje connecting vi and vi+1. Also, let ei, 1 ≤ i ≤ n
be the arcs of the bounding circles, oriented so that, for H the generating
2-cell, we have

∂(H) = e1 + Te2 + T 2e3 + · · ·Tn−1en
+ (T − 1)α1 + (T 2 − 1)α2 + · · ·+ (Tn−1 − 1)αn−1.
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We may thus assume that

∂(ei) = (T − 1)vi
∂(αi) = vi+1 − vi,

and this gives the complete structure of the chain complex form Mn:

Z(Z/n)
∂2−−→Z(Z/n)2n−1

∂1−−→Z(Z/n)n.

Clearly, using the αi we can get rid of all all the vk but v1. Then, replacing
ei by

ei − e1 − (T − 1)
i−1∑

1

αj = fi

for i > 1, we have

∂(H) = e1 + Tf2 + T 2f3 + · · ·+ Tn−1fn
∂(fi) = 0
∂(e1) = (T − 1)v1

so the role of H is to suppress fn, and the complex takes the form of the
direct sum of the trivial complex Z(Z/n)n−2 in dimension one with the
complex

Z(Z/n)
T−1−−→Z(Z/n).

But this is just the complex of the circle with the free action of Z/n where
the action is rotation by 2π/n-degrees, and the lemma follows. ¤

Remark . Consider the Fermat variety Fn ⊂ P2 given as the set of zeros
of the homogeneous polynomial in three variables xn + yn − zn = 0. The
points in the intersection of Fn with the at the P1 at infinity given by z = 0,

F∞n = Fn ∩ P1(z = 0)

are solutions of

xn + yn =
n−1∏

j=0

(x+ ζjny) = 0

and hence there are exactly n points at this infinity. In the complement
we can normalize by taking x/z, y/z as affine coordinates so the equation
becomes Xn + Y n = 1, and we can project Fn − F∞n to the complex plane
by the projection (X,Y ) 7→ X for each pair (X,Y ) ∈ Fn − F∞n . The
inverse image of X, with Xn 6= 1 consists of exactly n points and the group
Z/n acting by (x, y, z) 7→ (x, ζny, z) acts freely in the complement of the
n points (0, 1, ζin) while it fixes each of these n points. If we delete small
disk neighborhoods of these n points we obtain the space Mn as well as the
action of Z/n given above.
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The intersection pairing for the Fermat Surfaces. By duality the
relative homology groups

Hj(Mn, ∂(Mn);Z) =





Z+ in dimension 2
Z(Z/n)n−2 ⊕ Z in dimension 1
0 in dimension 0

and the map H1(Mn;Z)−→H1(Mn, ∂(Mn);Z) must have kernel exactly

Z+ ⊕ (NnZ(Z/n))n−2 ∼= Zn−1
+

with image (Z(Z/n)/(NZ(Z/n)))n−2.
Let Rn = Q(Z/n)/(N). Then, with Rn coefficients, we have an isomor-

phism

j∗ : H1(Mn;Rn)
∼=−−→H1(Mn, ∂(Mn); rn),

and consequently a non-singular skew-symmetric pairing

B : Rn−2
n ×Rn−2

n −−→Rn.
Lemma 16. There is a basis for H1(Mn;Rn), f1, . . . , fn−2 so that the

pairing B of 1 is given by the tri-diagonal Toeplitz matrix



T − T−1 1− T−1 0 0 . . . 0
T − 1 T − T−1 1− T−1 0 . . . 0

0 T − 1 T − T−1 1− T−1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1− T−1

0 0 0 0 . . . T − T−1



.

Proof. The fi given in 1 are the generators we require. As it stands
they are given as boundary components in Mn. However, they can be sys-
tematically deformed to lie in the interior as follows:
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The image of the deformed curve in the quotient Mn/(Z/n)

Then the self-intersection corresponds to the intersection of the deformed
curve (which is embedded in Mn) with its translates by T and T−1. Sim-
ilarly, shifting this deformed curve to the right we get the deformed fi+1

which clearly intersects the deformed fi in two points. Again, when we lift
this corresponds to single point intersections with fi+1 and T−1fi+1. ¤
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Note that (T + 1)(1 − T−1) = T − T−1, (T−1 + 1)(T − 1) = T − T−1.
Also, note that T − T−1 is invertible in Rn for n odd, since

Rn =
∐
d|n
d6=1

Q(ζd)

and ζd − ζ−1
d 6= 0 unless ζd = ±1 and −1 is not an nth root of unity for n

odd. Consequently, in this case we can divide by T − T−1 and the matrix
B of 16 takes the form

(T − T−1)




1 T + 1 0 . . . 0
T−1 + 1 1 T + 1 . . . 0

0 T−1 + 1 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1




where the matrix C in 1 is Hermitian symmetric, not Hermitian skew-
symmetric, and the multisignature invariants will be determined by the sig-
natures of the various embeddings of C into Mn−2(C) obtained from the
distinct homomorphisms Rn−→C.

2. The Multisignature for Finite Group Actions

In the previous section we saw how to define a non-trivial bilinear form
on Hn(M ;C) in the case where the manifold structure on M2n is augmented
by the action of a finite group, G. The form splits as an orthogonal direct
sum of (−1)n-symmetric Hermitian forms, one for each irreducible complex
representation of G. We associate to each such form and irreducible com-
plex representation two integers, first the dimension of the direct summand
corresponding to the irreducible representation, and second the generalized
signature of the form. This is the ordinary signature of the Hermitian form
if n is even; the number of positive eigenvalues of the matrix minus the num-
ber of negative eigenvalues, and is the signature of i times the Hermitian
form in case n is odd.

We may define a geometric cobordism group of manifolds with G-actions
by making two oriented manifolds Mn and M̄n with G-actions G×M µ1−→M ,
G × M̄ µ−→M̄ , equivalent if there is an oriented n + 1 dimensional manifold
W with G-action G×W η−→W which defines an ordinary cobordism between
M and M̄ and so that the G-action on W when restricted to M or M̄ is the
G-action.

Under these conditions an easy extension of the arguments which showed
the cobordism invariance of the ordinary signature give the cobordism in-
variance of these new signature invariants.

Definition 16. Given M2n together with a G-action, G×M µ−→M , for
G a finite group, then the signature σR(M) at the irreducible representation
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R of G over C is the number of positive eigenvalues minus the number
of negative eigenvalues of the form above at this representation. Also the
multisignature of M2n is given as the sum

∑

Ri

σRi(M)Ri

taken over all the irreducible representations of G.

The Multisignatures for the Fermat Surfaces. Given an m × m
Hermitian symmetric matrix one method of determining the signature is to
count the sign changes of the diagonal minors, D1, D2, . . . , Dn, where Di is
the determinant of the i × i-minor consisting of the first i rows intersected
with the first i columns.

The various homomorphisms Z/n−→C∗ are given by sending T to ζin for
i = 0, 1, . . . , n − 1. Now we evaluate these determinants and the resulting
signatures. Note that

Di+1 = Di − (T + 1)(T−1 + 1)Di−1

gives a recursive evaluation of the Di, and write

(T + 1)(T−1 + 1) = T + T−1 + 2
= (Tn+1/2 + Tn−1/2)2

for n odd. Each Di is recursively given as a polynomial in λ = (T +T−1 +2)
which we write Di(λ) and we have

D1(λ) = 1
D2(λ) = 1− λ,
D3(λ) = 1− 2λ,
D4(λ) = 1− 3λ+ λ2,

in the first few cases. Note that the root of D2(λ) is 1 = 2cos(2π/3), the
roots of D4(λ) are (ζ5 + ζ−1

5 )2 and (ζ2
5 + ζ3

5 )2. In fact we have

Lemma 17. The roots of D2n(λ) are exactly the real numbers (ζk2n+1 +
ζ−k2n+1)

−2. Moreover, the roots of D2n+1(λ) are the inverses of the non-zero
numbers of the form (ζk2n+2 + ζ−k2n+1)

2.

Proof. Define the generating function

F (λ,w) = 1 + w +
∞∑

i=2

Di(λ)wi.

Consequently, by the recursion rule for the Di(λ), we have

1 = F (λ,w)− wF (λ,w) + λw2F (λ,w)

so

F (λ,w) =
1

(λw2 − w + 1)
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and
F (λ, λ−1/2w̄) = 1

1−τw̄+w̄2

=
(

1
r1−r2

)(
1

w̄−r1 − 1
w̄−r2

)

= 1
r1−r2

∑∞
i=0

(
r1r

−i
2 − r2r−i1

)
w̄i

= r1r2
r1−r2

∑∞
i=0

(
r
−(i+1)
2 − r−(i+1)

1

)
w̄i

where τ = λ−1/2, while r1 and r2 are the roots of w̄2 − τw̄ + 1. Hence,
comparing coefficients we have

Di(λ) =
(λ)i/2

r1 − r2
(
r
−(i+1)
2 − r−(i+1)

2

)
.

But the roots of 1− τw̄+ w̄2 are r, r−1 where r+ r−1 = τ . Hence, the only
time that this is sure to be zero is when r1 = ζji+1 and r2 = ζ−1.

There are also two cases where the possibility of extraneous roots occurs,
r = 0 and r = 1 (where r1 − r2 = 0). So we do a separate analysis of these
two cases. For λ = 0 all of the Di(1) = 1, so no root occurs. For λ = 1 we
see directly from the recursion formula that

F (1, w) = 1 + w − w3 − w4 + w6 + w7 − w9 − · · ·
so the only zeros occur for D3i−1 which agrees with the formula. This
completes the proof. ¤

3. The Wall Embedding Theorem

The embedded curve in the Z/n-cover of the Fermat curve in (1) has
image curve with a single double point in the Fermat curve itself. Moreover,
we will see now that no curve in the Z/n-cover in the homology class of the
curve of (1) will have image which imbeds into the Fermat curve. This will
be a consequence of C.T.C. Wall’s extension of the Whitney 2n-embedding
theorem to the case of non-simply connected manifolds.

Let Nn be any compact, closed, and simply connected n-manifold, and
suppose f : Nn−→M2n is any map, where M2n and M2n is not necessarily
compact, closed, simply connected, or oriented. Then f lifts to a map into
the universal cover of M2n since Nn is simply connected:

Nn
f̃−−→ M̃2ny=

yp

Nn
f−−→ M2n

where M̃2n
p−→M2n is the universal covering. Of course, f̃ is not unique, but

any two liftings differ by translation, using one of the covering transforma-
tions g : M̃2n−→M̃2n with g ∈ π1(M2n). Hence, f̃ is well defined if we choose
a particular point ñ0 in the fiber over f(n0) ∈ f(N) and set f̃(n0) = ñ0.
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Since M̃ is 2n-dimensional and simply connected it follows that we can
deform f̃ to a C∞ embedding g. Moreover, since the tangent map

d(p) : τ(M̃)−→τ(M)

is an isomorphism at each point of M̃ it follows that the composite pg is an
immersion. However, as pointed out above, it may well be the case that this
immersion is not an embedding into M2n.

Example 22. Consider the map 2: S1−→S1, 2(ζ) = ζ2. (2) lifts to an
embedding of S1 into the two fold cover of S1 (indeed, it is the 2-fold cover),
but can never be represented by an embedding.

Lemma 18. For n ≥ 2 we have that arbitrarily close to g is an embedding
so that the only singularities of pg are isolated transverse double points.

Proof. Arbitrarily close to pg is an immsersion with only transverse
isolated double points as its singularities. Moreover, the lift of such a map,
properly based, is arbitrarily close to g, and differentiable maps sufficiently
close to an embedding are again embeddings. ¤

Corollary 12. Suppose given an embedding g : N ↪→ M̃ so that pg has
transverse double points as its only singularities. Then, for h ∈ π1(M), if
x ∈ hg(N)∩g(N), g(N) and hg(N) are transverse at x. In particular, there
are only a finite number of such x for each h and only a finite number of h
so that the intersection g(M) ∩ hg(M) 6= ∅.

Proof. The double points in pg(N) are the images of the intersections
of g(N) with h(N) as h runs over π1(M). Consequently the result follows
from the compactness of N . ¤

We now define a twisted intersection form for the embedding g, compare
(4):

ψ : [g]−−→
∑
〈hg(N), g(N)〉h−1

as h runs over the non-identity elements of π1(M), and 〈hg(N), g(N)〉 is
the sum over the points of intersection of the index I(h(x), y) defined in the
proof of the Whitney 2n-embedding theorem.

By symmetry (when M is oriented) we have

〈h−1g(N), g(N)〉 = (−1)n〈hg(N), g(N)〉,
while in the case where M is non-oriented we have

〈h−1g(N), g(N)〉 = (−1)n(−1)h〈hg(N), g(N)〉
where (−1)h is +1 if h is orientation preserving and is −1 otherwise.

Note also that when T ∈ π1(M) satisfies T 2 = 1, then if g(x) = Tg(y) ∈
im(g(N)) we have that g(y) = Tg(x) as well, and there are an even number
of intersections in this case. In particular, when n is even and T is orientation
preserving or n is odd and T is orientation reversing, then the coefficient of
T in ψ(g) is even, while in the remaining two cases it is zero.
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It follows that we can (sort of) halve ψ(g). Specifically, pick, for each
pair {h, h−1} where h, h−1 ∈ π1(M) and h 6= h−1, one of h, h−1. Call
the chosen element h̄. Also, for h with h2 = 1, h 6= 1 choose for each set of
ordered pairs of points (x, y) and (y, x) with hg(y) = g(x), hg(x) = g(y), one
of the two, say (y, x), and associate to h the sum of the signed intersections,
I(hg(y), g(x)), as we run over the selected pairs. Then this sum is well
defined in the cases where n is even and T is orientation preserving or n is
odd and T is orientation reversing, while it is only well defined mod(2) in
the remaining cases. Thus, we set

ψ̂(g) =
∑

h,h2 6=1

〈h̄−1g(N), g(N)〉h̄+
∑

h,h2=1,h6=1

J(h, g)h

where J(h, g) is the sum desribed above with values either in Z or Z/2,
depending on n, and the orientation properties of h.



CHAPTER 5

The Homology of Fibre Bundles

1. Four homology theories

There are 4 distinct ways of constructing homology and cohomologyÄ:

(1) The singular homology groups H∗(X) of a topological space X are
the homology of the singular chain complex C = C(X)

Hi(X) = Hi(C) = ker(d : Ci−→Ci−1)/im(d : Ci+1−→Ci) ,
with Ci the free abelian group generated by all the continuous maps
σ : ∆i−→X from the standard i-simplex ∆i. The differentials are
given by

d : Ci −→ Ci−1 ; σ −→
i∑

j=0

(−1)jσ∂j

with ∂j : ∆i−1−→∆i the jth face inclusion. The singular cohomology
groups are defined by

H i(X) = H i(C) = ker(d∗ : Ci−→Ci+1)/im(d∗ : Ci−1−→Ci) ,
with

Ci = C∗i = HomZ(Ci,Z) , d∗(f) = fd .

(2) The simplicial homology groups of an ordered simplicial complex

X =
∞⋃

i=0

⋃
∆i

are the homology groups H∗(X) = H∗(C) of the simplicial chain
complex C, with Ci the free abelian group generated by the i-
simplexes ∆i and the differentials given by

d : Ci −→ Ci−1 ; (v0v1 . . . vi) −→
i∑

j=0

(−1)j(v0 . . . vj−1vj . . . vi)

with (v0v1 . . . vi) the i-simplex spanned by the vertices v0, v1, . . . , vi.
The cohomology groups are then defined by H∗(X) = H∗(C) as in
(i).

59
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(3) The cellular homology of a CW complex

X =
∞⋃

i=0

⋃
Di

is defined to be the homology of the cellular chain complex C, with

Ci = Hi(X(i), X(i−1))

the free abelian group generated by all the i-cells Di and

d : Ci = Hi(X(i), X(i−1)) −→ Ci−1 = Hi−1(X(i−1), X(i−2))

the boundary in the homology of the triple (X(i), X(i−1), X(i−2)),
with X(i) the union of all the cells of dimension ≤ i. As in (i) and
(ii) the cohomology groups are defined by H∗(X) = H∗(C).

(4) The deRham cohomology groups H∗(M ;R) of a differentiable man-
ifold M are defined using the cochain complex Ω∗(M)

H i(M ;R) = H i(Ω∗(M))
= ker(d : Ωi(M)−→Ωi+1(M))/im(d : Ωi−1(M)−→Ωi(M)) ,

with Ωi(M) the real vector space with one basis element for each
i-form. An i-form is a section ω : M−→Λi(M) of the bundle Λi(M)
over M with

Λi(M)(x) = Λi(τM (x)∗)
= {alternating linear maps :

⊗
i
τM (x)−→R} (x ∈M) .

The differentials

d : Ωi(M) −→ Ωi+1(M) ; ω −→ dω

are defined by the exterior derivative, given locally by

dωx(h1 ⊗ h2⊗ · · · ⊗ hi+1)

=
i∑

j=0
(−1)jωx(h1 ⊗ · · · ⊗ hj−1 ⊗ hj+1 ⊗ · · · ⊗ hi+1) .

The homology groups are obtained from the deRham cohomology
groups by applying the universal coefficient theorem, with

Hi(M ;R) = H i(M ;R)∗ .

Remark . The various homology theories have their own advantages
and disadvantagesÄ: (i) is topologically invariant, but is rather removed from
geometry; (ii) requires a triangulation, but is combinatorially invariant; (iii)
requires a CW structure; (iv) only applies to differentiable manifolds, with
R-coefficients only. In any case, (i), (ii), (iii) and (iv) agree whenever they
are defined on the same space and with the same coefficients. The ho-
mology and cohomology groups H∗(X), H∗(X) are finitely generated for a
finite simplicial (or CW ) complex X, such as a triangulation of a compact
manifold.
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However, in the main body of this work we shall have to consider ex-
tensively the relations between the homology and cohomology of a space X
and of various covers of X. So, to begin, we must discuss this topic in some
detail.

2. The homology and cohomology of a covering

Given a group π let Z[π] be the group ring, with elements finite linear
combinations ∑

g∈π
ngg (ng ∈ Z)

such that {g ∈ π |ng 6= 0} is finite.
Let X be a CW complex, and let X̃

p
→X be a regular covering of X with

group of covering translations π. The cover restricted to the interior of any
cell is just a product cover p−1ėk = ėk × π, that the cellular chain complex
of X̃ satisfies

Ck(X̃) = Hk(X̃(k), X̃(k−1)) = Z[π]⊗Z Ck(X)

for each k, being the free Z[π]-module generated by the k-cells of X. The
cellular boundary map in the cover,

Ck(X̃)
∂̃−−→ Ck−1(X̃)

is
(1) Z[π] equivariant, (∂̃((

∑
i ni,jgi,je

k
j ) =

∑
i,j ni,jgi,j ∂̃(ekj )),

(2) on tensoring, over Z[π] with Z, so (
∑

i nigi)e
k
j in Ck(X̃) is identified

with
∑
nie

k
j in Ck(X), that ∂̃ goes to ∂.

(3) In particular, multiplication by g ∈ π induces a chain equivalence
of C#(X̃).

Given any right Z[π]-moduleM the usual homology groups with twisted
coefficients in M Hπ∗ (X;M) are defined as the homology groups of the
complex M ⊗Z[π] C∗(X̃). Given any left Z[π]-module N , the cohomol-
ogy groups with twisted coefficients in N H∗

π(X;N ) are the homology
groups of the complex

HomZ[π](C∗(X);N ) .

Example 23. Let A be any abelian group. Give it the structure of a
Z[π]-module via the rule (

∑
ngg)(k) = (

∑
ng)k. This is the trivial Z[π]

action on A. Then H∗
π(X;A) = H∗(X;A), the ordinary cohomology of X

with A-coefficients.

Example 24. Let F → E → X be any Serre fibration. Every element
α ∈ π1(X) is represented by a based map f : (S1, 1) → (X, ∗), with an
induced fibration over S1, F → f !(E)

p
→S1. Lift the map

F × I p2−−→ I
j−−→ S1
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to f !(E) by extending the identity lifting over F × 0, where j(t) = e2πit.
This gives a homotopy equivalence l1(f) : F → F which up to homotopy
depends only on α, with f !E homotopy equivalent to the mapping torus

T (l1(f)) = F × I/{(x, 0) = (l1(f)(x), 1) |x ∈ F} .
As α runs over the elements in π1(X) the automorphisms l1(f)∗ : H∗(F ;A)→
H∗(F ;A) define an action

Z[π1(X)]⊗Z H∗(F ;A) −−→ H∗(F ;A) .

Then the ith twisted homology group of X with coefficients in Hj(F ;A) is
H
π1(X)
i (X;Hj(F ;A)).

Example 25. Let π = Z/2 and define an action of π on the abelian
group A by the rule (m1 +nT )a = (m−n)a. The group A with this action
is denoted A−, and HZ/2∗ (X;A−) occurs very frequently in applications.

More generally, let f : π → Z/2 be a non-trivial homomorphism. (The
set of all such distinct homomorphisms is in one to one correspondence with
the non-zero elements of Hom(π/π′,Z/2).) Then A(f,−) is the Z[π]-module
induced by f from A−. ((

∑
ngg)a =

∑
ngf(g)a.)

The action of π on X̃ also induces actions on the ordinary homology and
cohomology of X̃.

The action of π on X̃ induces an action in homology by the evident rule

Z[π]×H∗(X̃) −→ H∗(X̃) ; (g, x) −→ g∗x ,

so that the homology groups H∗(X̃) are (left) Z[π]-modules. The ordinary
cohomology groups H∗(X̃) are Z[π]-modules via

Z[π]×H∗(X̃) −→ H∗(X̃) ; (g, x) −→ (g−1)∗x .

Remark . Actually, this action is just a special case of the action in 24
since, when we convert the classifying map X → B(π1(X)) of the universal
covering space of X into a Serre fibration the fibre is X̃ and the action of
π1(X) on H∗(X̃) is exactly the action of π1(B(π1(X))) = π1(X) on the fiber.

Anti-automorphisms, involutions, and actions on cohomology.
The situation for cohomology requires more discussion. In general, if X̃ is
a covering of X with the group of covering translations π acting on the left,
and A is an abelian group, then the cochain complex with

Ci(X̃,A) = HomZ(Ci(X̃),A)

becomes a right Z[π]-module under the action fg(x) = f(gx).

Definition 17. An anti-automorphism of Z[π] is a map

χ : Z[π]→ Z[π]

that satisfies the following three conditions:
• χ(αβ) = χ(β)χ(α),
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• χ(α+ β) = χ(α) + χ(β),
• χ(n1) = n1.

Given an anti-automorphism χ, we can convert Ci(X̃,K) into a left
Z[π]-module by setting g(f) = fχ(g). Thus, for each anti-automorphism,
there is a distinct left action of Z[π] on H∗(X̃,K).

Perhaps the simplest anti-automorphism of the group ring Z[π] is the
one given by

∑
ngg ↔

∑
ngg

−1. This is an example of a special type of
anti-automorphism – an involution.

Definition 18. An involution on a ring A is a function

A −→ A ; a −→ a

satisfying

(a+ b) = a+ b , (ab) = b . a , a = a , 1 = 1 ∈ A (a, b ∈ A) .

In practice, the types of anti-automorphisms which actually occur are
involutions.

Example 26. (1) A commutative ring A admits the identity invo-
lution a = a .

(2) Complex conjugation defines an involution on the ring of complex
numbers C

C −→ C ; z = a+ ib −→ z = a− ib .
In the topological applications A = Z[π] with the involution given via a

slight twisting of the involution g ↔ g−1 as follows.

Definition 19. An orientation character on a group π is a group
morphism

w : π −→ Z2 = {±1} .
The w-twisted involution on the group ring Z[π] is given by

Z[π] −→ Z[π] ; a =
∑
g∈π

ngg −→ a =
∑
g∈π

ngw(g)g−1 (ng ∈ Z) .

In the untwisted case w(g) = +1 (g ∈ π) this is the oriented involution
on Z[π].

Definition 20. Let A be a ring with involution.
(1) The dual of a left A-module K is the left A-module

K∗ = HomA(K,A) ,

with A acting by

A×K∗ −→ K∗ ; (a, f) −→ (x −→ f(x).a) .

(2) The dual of an A-module morphism f : K−→L is the A-module
morphism, f∗

f∗ : L∗ −→ K∗ ; g −→ (x −→ g(f(x))) .
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Thus duality is a contravariant functor

∗ : {left A-modules} −→ {left A-modules} ; K −→ K∗ .

From now on we shall be mainly concerned with left A-modules, so “A-
module” will mean “left A-module”, unless it is specified as a “right A-
module”.

Remark . In case A = Z[π] and K is a finitely generated free A-module,
then, with the definition of K∗ given in 20, K∗ is also a finitely generated,
free A-module. In particular, it is distinct from the usual dual HomZ(K,Z).

Suppose that X is a compact manifold with boundary. Then, X̃ is also
a manifold, but for π of infinite order it will not be compact. Consequently,
for finite π the ordinary cohomology H∗(X̃) is adequate for Poincaré duality,
since then X̃ is compact. However, for infinite π it is the compactly sup-
ported cohomology H∗

cpt(X̃) which must be used to restore Poincaré duality.
Using an involution on Z[π] and cellular chain complexes it is in fact

possible to give a uniform treatment of the ordinary cohomology for finite
π and the compactly supported cohomology for infinite π, as follows.

Definition 21. Given a ring with involution A and an A-module chain
complex

C : . . . −→ Cr+1

d−→ Cr
d−→ Cr−1 −→ . . .

write the dual A-modules as

Cr = (Cr)∗ (r ∈ Z) .

The cohomology A-modules of C are defined by

Hr(C) = ker(d∗ : Cr−→Cr+1)/im(d∗ : Cr−1−→Cr) (r ∈ Z) .

The functions

Hr(C) −→ HomA(Hr(C), A) ; f −→ (x −→ f(x))

are A-module morphisms.

Definition 22. For any m ∈ Z define the m-dual of an A-module chain
complex C to be the A-module chain complex Cm−∗ with

dCm−∗ = (−)r(dC)∗ : (Cm−∗)r = Cm−r −→ (Cm−∗)r−1 = Cm−r+1 .

The m-dual chain complex is such that

Hr(Cm−∗) = Hm−r(C) (r ∈ Z) .

In §3 it will be shown that the cellular chain complex C(M̃) of an oriented
cover M̃ of a closed m-dimensional manifold M is chain equivalent to the
m-dual C(M̃)m−∗, with respect to an appropriate involution on the group
ring Z[π] of the group of covering translations π.
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For any connected CW complex X there is a natural isomorphism

H1(X;Z2) = [X,RP∞]
∼=−→ Hom(π1(X),Z2) ;

(w : X−→RP∞) −→ (w∗ : π1(X)−→π1(RP∞) = Z2) ,

so that the orientation characters w : π1(X)−→Z2 are in one-one correspon-
dence with the elements w ∈ H1(X;Z2) classifying double covers Xw of
X.

Definition 23. An oriented cover (X̃, π, w) of a space X is a reg-
ular covering of X with group of covering translations π, together with an
orientation character w : π−→Z2.

Note that for an oriented cover (X̃, π, w) of a space X the group π is
an intrinsic property of the covering projection X̃−→X, but the orientation
character w : π−→{±1} can be arbitrary.

Given an oriented cover (X̃, π, w) of X it is clear that the homology
groups H∗(X̃) are Z[π]-modules (irrespective of w). The action of Z[π] is by

Z[π]×H∗(X̃) −→ H∗(X̃) ; (
∑
g∈π

ngg, x) −→
∑
g∈π

ngg∗(x) ,

with g ∈ π acting by the Z-module automorphism g∗ : H∗(X̃)−→H∗(X̃)
induced by the covering translation g : X̃−→X̃. We shall now define coho-
mology Z[π]-modules H∗

(π,w)(X̃) which will depend on w. Let C(X̃) be the

cellular Z[π]-module chain complex of X̃, with

C(X̃)n = Hn(X̃(n), X̃(n−1))
= free left Z[π]-module generated by the n-cells of X

and d : C(X̃)n−→C(X̃)n−1 the boundary map of the triple (X̃(n), X̃(n−1),

X̃(n−2)). The homology Z[π]-modules of C(X̃)

Hn(C(X̃)) = ker(d : C(X̃)n−→C(X̃)n−1)/im(d : C(X̃)n+1−→C(X̃)n)

are just the ordinary integral homology groups of X̃

H∗(C(X̃)) = H∗(X̃) .

Use the w-twisted involution on Z[π] to define the dual Z[π]-modules

C(X̃)n = (C(X̃)n)∗ (n ≥ 0) .

If X is a finite CW complex then C(X̃) is a finite f.g. free Z[π]-module
chain complex.

Definition 24. The (π,w)-cohomology Z[π]-modules of a CW com-
plex X with respect to an oriented cover (X̃, π, w) are defined by

Hn
(π,w)(X̃) = Hn(C(X̃))

= ker(d∗ : C(X̃)n−→C(X̃)n+1)/im(d∗ : C(X̃)n−1−→C(X̃)n) (n ≥ 0)

using the w-twisted involution on Z[π].
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Evaluation defines Z[π]-module morphisms

Hn
(π,w)(X̃) −→ Hn(X̃)∗ ; f −→ (x −→ f(x)) .

Example 27. For a finite group π and a finite CW complex X the
(π,+1)-cohomology Z[π]-modules H∗

(π,w)(X̃) are just the ordinary cohomol-

ogy groups H∗(X̃) with the Z[π] action

Z[π]×H∗(X̃) −→ H∗(X̃) ; (
∑
g

ngg, x) −→
∑
g

ng(g−1)∗(x) .

Example 28. Let X = RP2 be the projective plane, and for ε = ±1
define the oriented cover

(X̃, π, w) = (S2,Z2, ε) .

Let
A = Z[Z2] = Z[T ]/(T 2 − 1)

with the w-twisted involution T = εT . The cellular A-module chain complex
of S2 is

C(S2) : . . . −→ 0 −→ A
1+T−→ A

1−T−→ A ,

and the dual A-module chain complex is

C(S2)∗ : A
1−T−→ A

1+T−→ A −→ . . . ,

so that H0
(Z2,ε)

(S2) = Zε is the Z[Z2]-module defined by Z with the generator
T ∈ Z2 acting by ε.

The terminology of 24 is somewhat elaborate, so we shall write

H∗
(π,w)(X̃) = H∗(X̃)

on the understanding that the (π,w)-cohomology modules may not be the
usual integral cohomology groups of X̃ with the induced Z[π]-action, and
may depend on the choice of orientation character w.

Remark . For a finite CW complex X the (π,+1)-cohomology Z[π]-
modules H∗(X̃) are the cohomology groups H∗

cpt(X̃) defined by integral
cochains with compact support (i.e. taking non-zero values on only a finite
number of cells) with the induced Z[π]-module structure

H∗(X̃) = H∗
cpt(X̃) .

Example 29. The homology and (Z,+1)-cohomology Z[Z]-modules of
the oriented cover (R,Z,+1) of R/Z = S1 are given by

Hn(R) =

{
Z n = 0
0 n 6= 0

, Hn(R) =

{
Z n = 1
0 n 6= 1

.
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Proposition 11. Given a CW complex X and an oriented cover (X̃, π, w)
there are defined cap products

∩ : Hm(X;Zw)×H i(X̃) −→ Hm−i(X̃) ; (x, y) −→ x ∩ y
such that for any a ∈ Z[π]

x ∩ ay = a(x ∩ y) ∈ Hm−i(X̃) .

Proof. The usual acyclic model argument gives a π-equivariant diago-
nal chain approximation

∆̃ : C(X̃) −→ C(X̃)⊗Z C(X̃) ,

with Z[π] acting by

Z[π]× C(X̃)⊗Z C(X̃) −→ C(X̃)⊗Z C(X̃) ;
(
∑

g∈π ngg, y ⊗ z) −→
∑

g∈π ng(gy ⊗ gz) .
Apply Zw ⊗Z[π] − to obtain a Z-module chain map

∆ = 1⊗ ∆̃ : Zw ⊗Z[π] C(X̃) = C(X;Zw) −→
Zw ⊗Z[π] (C(X̃)⊗Z C(X̃)) = C(X̃)t ⊗Z[π] C(X̃)

where C(X̃)t denotes the right Z[π]-module cellular chain complex C(X̃)
with the same additive structure and

C(X̃)t × Z[π] −→ C(X̃)t ; (x, a) −→ ax .

Given an m-chain x ∈ C(X;Zw)m let

∆(x) =
∑

i x
′
i ⊗ x′′i

∈ (C(X̃)t ⊗Z[π] C(X̃))m =
∑

p+q=m(C(X̃)tp ⊗Z[π] C(X̃)q) .

The cap product of x and an i-cochain y ∈ C(X̃)i is the (m− i)-chain

x ∩ y =
∑

j

y(x′j)x
′′
j ∈ C(X̃)m−i ,

with y(x′i) = 0 ∈ Z[π] if the degree of x′i is 6= i. The composite

Hm(X;Zw)
∆−→ Hm(C(X̃)t ⊗Z[π] C(X̃))

−→ Hm(HomZ[π](C(X̃)−∗, C(X̃)))

sends a homology class x ∈ Hm(X;Zw) to a chain homotopy class of Z[π]-
module chain maps

x ∩ − : C(X̃)m−∗ −→ C(X̃)

inducing the cap products

x ∩ − : H i(X̃) −→ Hm−i(X̃) ; y −→ x ∩ y .
¤
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Remark . For any CW complex Y there are defined cap product pair-
ings

∩ : H lf
m(Y )×H i

cpt(Y ) −→ Hm−i(Y ) ,

with H lf∗ (Y ) the homology groups defined using infinite but locally finite
chains in Y . If (X̃, π, w) is an oriented cover of a finite CW complex X with
w = +1 there are defined infinite transfer maps

p ! : H∗(X;Zw) = H∗(X) −→ H lf
∗ (X̃) ; x −→ x̃ .

The cap products of 11 can be expressed as the composites

∩ : Hm(X)×Hn(X̃)
p! × 1−−−−−−−→ H lf

m(X̃)×H i
cpt(X̃)

∩−→ Hm−i(X̃) ,

using to identify H∗(X̃) = H∗
cpt(X̃).

3. Poincaré duality

Poincaré duality for an oriented m-dimensional manifold Mm can be
expressed in one of three equivalent waysÄ:

(1) the isomorphism between cohomology and homology defined by
the evaluation of the cap product on the fundamental class [M ] ∈
Hm(M)

[M ] ∩ − : H i(M)
∼=−→ Hm−i(M) ,

(2) the cohomology pairing defined by the evaluation of the cup product
on [M ] ∈ Hm(M)

Hm−i(M)×H i(M) −→ Z ; (x, y) −→ 〈x ∪ y, [M ]〉
(3) the homology pairing

λ : Hi(M)×Hm−i(M) −→ Z

defined using (i) and (ii)

λ([M ] ∩ x, [M ] ∩ y) = 〈x ∪ y, [M ]〉 ,
or else using geometric intersection numbers of cycles represented
by submanifolds, which will be considered in Chapter ??.

The intersection pairing satisfies the symmetry property

λ(y, x) = (−)i(m−i)λ(x, y) ∈ Z (x ∈ Hi(M) , y ∈ Hm−i(M)) .

Theorem 15. (Poincaré duality) For any closed m-dimensional mani-
fold M and oriented cover (M̃, π, w) cap product with the fundamental class
[M ] ∈ Hm(M ;Zw) defines Z[π]-module isomorphisms

[M ] ∩ − : H∗(M̃)
∼=−→ Hm−∗(M̃) .
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Proof. Regard M as a cobordism (M ; ∅, ∅). By 15 a handle decompo-
sition of M determines a CW structure with a cellular Z[π]-module chain
complex is C(M̃), and the dual handle decomposition of M determines an-
other CW structure, with cellular Z[π]-module chain complex the m-dual
C(M̃)m−∗. Applying the cellular approximation theorem to the identity
map it is possible to approximate 1 : M−→M by a cellular homotopy equiv-
alence from a subdivision of the dual handlebody CW structure to the han-
dlebody CW structure. The corresponding Z[π]-module chain equivalence
C(M̃)m−∗−→C(M̃) is given by the cap product [M ] ∩−, up to chain homo-
topy. (One way to see this is to triangulateM as a PLmanifold, choosing the
handles of M to be subcomplexes of a second derived subdivision (Rourke
and Sanderson [61]), and to define the chain level cap product using the
Alexander-Whitney diagonal chain approximation.) ¤

Corollary 13. (Poincaré-Lefschetz duality) For any (m + 1)-dimen-
sional cobordism (W ;M,M ′) and oriented cover ((W̃ ; M̃, M̃ ′), π, w) cap prod-
uct with the fundamental class [W ] ∈ Hm+1(W,∂W ;Zw) defines Z[π]-module
isomorphisms

[W ] ∩ − : H∗(W̃ , M̃)
∼=−→ Hm+1−∗(W̃ , M̃ ′) .

Proof. As for 15, using a handle decomposition and its dual. ¤

Example 30. The circle S1 has a handle decomposition

S1 = W0 ∪W1

with one 0-handle W0 and one 1-handle W1.
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W0 W1

•

•

The fundamental group of S1 is the free abelian group on 1 generator

π1(S1) = Z = 〈z〉 ,
with group ring

Z[π1(S1)] = Z[z, z−1] .

The universal cover is S̃1 = R with π1(S1) acting by

z : R −→ R ; x −→ x+ 1 .
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The Z[z, z−1]-module Poincaré duality chain equivalence of S̃1 is given by

C(S̃1)1−∗ : · · · −−→ 0 −−→ Z[z, z−1]
1−z−1

−−→ Z[z, z−1]y
[S1]∩−

yid
y−z

C∗(S̃1) : · · · −−→ 0 −−→ Z[z, z−1]
1−z−−→ Z[z, z−1]

Example 31. The torus T 2 = S1 × S1 has a handle decomposition

T 2 = W0 ∪W1 ∪W2 ∪W3

with one 0-handle W0, two 1-handles W1,W2 and a 2-handle W3. The
fundamental group of T 2 is the free abelian group on 2 generators

π1(T 2) = Z2 = 〈a, b | aba−1b−1〉 .
The universal cover is T̃ 2 = R2 with π1(T 2) acting by

a : R2 −→ R2 ; (x, y) −→ (x+ 1, y) ,
b : R2 −→ R2 ; (x, y) −→ (x, y + 1) .

W̃0 aW̃0

bW̃0 abW̃0

fW1a−1fW1 afW1

bfW1 abfW1a−1bfW1

fW2 afW2

bfW2

b−1fW2

abfW2

ab−1fW2

W̃3 aW̃3

bW̃3a−1bW̃3 abW̃3

a−1W̃3

b−1W̃3a−1b−1W̃3 b−1W̃3 ab−1W̃3

T̃ 2
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The cellular Z[Z2 ]-module chain complex of T̃ 2 associated to this handle
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decomposition of T 2 is

C(T̃ 2) : Z[Z2 ]

 
1− b
a− 1

!

−−−−−−−−−→ Z[Z2 ]⊕ Z[Z2 ]

“
a− 1 b− 1

”

−−−−−−−−−−→ Z[Z2 ] .

Example 32. The real projective plane RP2 is obtained from ∅ by first
attaching a 0-handle D0×D2 to obtain D2, then attaching a 1-handle D1×
D1 to D2 to obtain a Möbius band, which is closed by attaching a 2-handle
D2 ×D0. The fundamental group of RP2 is the cyclic group of order 2

π1(RP2) = Z2 = 〈T |T 2〉 .

The cellular Z[Z2 ]-module chain complex of the universal cover R̃P2 = S2

associated to this handle decomposition of RP2 is

C(R̃P2) : Z[Z2 ]
1+T−→ Z[Z2 ]

1−T−→ Z[Z2 ] .

Poincaré duality and the associated pairings play an essential role in
surgery theoryÄ:

Example 33. If M4k is a 4k-dimensional manifold the intersection pair-
ing defines a symmetric form on H2k(M)

λ : H2k(M)×H2k(M) −→ Z ; (x, y) −→ λ(x, y) = λ(y, x) .

In order for it to be possible to kill an element x ∈ π2k(M) by surgery on
M4k it is necessary (but not in general sufficient) for the Hurewicz image
x ∈ H2k(M) to be such that

λ(x, x) = 0 ∈ Z .
Moreover, if surgery on x ∈ π2k(M) is possible and the effectM ′4k is oriented
then

H2k(M ′) = {y ∈ H2k(M) |λ(x, y) = 0 ∈ Z}/{nx |n ∈ Z} ,
the quotient of the subgroup of the homology classes orthogonal to x ∈
H2k(M) by the subgroup of the classes parallel to x. The symmetric form
on H2k(M ′) is the one inherited from the form on H2k(M)

λ′ : H2k(M ′)×H2k(M ′) −→ Z ; ([y], [z]) −→ λ(y, z) .

(See Chapter ?? for a detailed discussion of the homology effect of surgery.)
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4. The homology of a fibration

The four homology theories above all satisfy Künneth theorems so the
homology or cohomology of a product X × Y is easily determined from the
homology or cohomology of X and Y separately.

The homology of a space X with coefficients in an abelian group A are
defined by

H∗(X;A) = H∗(C(X;A))
with C(X;A) = A⊗Z C(X) the A-coefficient singular chain complex of X.

Theorem 16. For any spaces X,Y and abelian group A there is defined
a chain equivalence

C(X × Y ;A) ' C(X)⊗Z C(Y ;A) .

The natural homomorphisms⊕

i+j=∗
Hi(X;Hj(Y ;A)) −−→ H∗(X × Y ;A)

are isomorphisms in the case where A is the additive group of a field F , so
that

H∗(X × Y ;F) =
⊕

i+j=∗
Hi(X;F)⊗F Hj(Y ;F) ,

and similarly for cohomology.

In the more general situation of a fibre bundle F → E → X 16 describes
the local situation but some work needs to be done to patch things together
so as to relate H∗(E) with H∗(F ) and H∗(X).

In the case of a sphere fibration Sn−1 → E
p
→X we have the Gysin

sequence

· · · −−→ H i(X)
∪χ−−→ Hn+i(X)

p∗−−→ Hn+i(E)
t−−→ H i+1(X)

∪χ−−→ · · ·
where χ ∈ Hn(X) is the Euler class of the fibration. (So called because in
the special case where X is a closed, compact, oriented manifold without
boundary and p = τX : E → X is the tangent sphere bundle

χ = χ(X)[X]∗ ∈ Hn(X) ,

the ordinary Euler number χ(X) ∈ Z multiplied by the dual of the orienta-
tion class of X.)

But in the case where the fibre is more complex the usual techniques
of calculation involve spectral sequences, a subject somewhat distant from
the aims of this book. Consequently, we shall suppress the details of the
methods of calculation and merely record the cohomology of the various
spaces we shall need in the remainder of this work. Suffice it to say that
given a Serre fibration, F → E

p
→X then for any abelian group A there is

a spectral sequence with E2-term

Ei,j2 = H i
π1(X)(X,H

j(F ;A)}
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which converges to H∗(E;A), where Hj(F ;A) is the Z[π1(X)]-module de-
fined in 24. More generally, if F1 → E1

p
→X is a sub-Serre-fibration, so we

have inclusions
F1 −−→ E1

p−−→ Xy
j|

y
j

y
=

F −−→ E −−→ X

the there is a spectral sequence with E2-term

Ei,j2 = H i
π1(X)(X, {Hj(F, F1;A)})

which converges to H∗(E,E1;A). A Serre type spectral sequence is a
sequence of terms Ei,jr where, for each r there is a differential

dri,j : E
i,j
r → Ei+r,j−r+1

r

with dri+r,j−r+1d
r
i,j = 0 for all (i, j), and Ei,jr+1 = H∗(E

i,j
r ; dr). Moreover,

in the limit E∞ is defined and the groups Ei,j−i∞ are the associated graded
groups of a filtration of the jth cohomology group of the total space E or of
the pair (E,E1).

As a particular application of the results sketched above we have the
Thom Isomorphism Theorem:

Corollary 14. Thom Isomorphism Theorem Let Rn → E(ζ) → X be
an n-plane bundle over X with X path connected and orientation character

χ : π1(X)→ Z/2 .
Then we have

(1) Hn+i(T (ζ);Z) ∼= H i
π1(X)(X;Zχ) for each i.

(2) In the case where the orientation character is trivial then

Hn(T (ζ);Z) = Z
with generator U , and the isomorphism is given explicitly by

α ∈ H i(X;Z) 7→ α ∪ U ∈ Hn+i(T (ζ);Z) .

(3) For Z/2-coefficients then regardless of the orientation character χ,
Hn(T (ζ);Z/2) ∼= Z/2 with generator U and

α ∈ H i(X;Z/2) 7→ α ∪ U ∈ Hn+i(T (ζ);Z/2)

is an isomorphism for all i.

Proof. For a vector bundle Rn → E(ζ)→ X include X ⊂ E(ζ) by the
zero section. The Serre spectral sequence of the pair (E(ζ), E(ζ)\X) has
the form

Ei,j2 = H i
π1(X)(X;Hj(Rn,Rn\{0};A))

which is non-zero only if j = n, and there

Hn(Rn,Rn\{0};A) = Aχ .
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But since only one row is non-zero at E2 it follows that all the differentials
are zero and E2 = E∞. Moreover, a filtration of H∗(E(ζ), E(ζ)\X;A) of
length one is just

H∗(E(ζ), E(ζ)\X;A) = H∗(T (ζ);A) (∗ > 0) .

¤

Remark . The inclusion X ↪→ E(ζ) as the 0-section of ζ is a homotopy
equivalence X ' E(ζ). Consequently, the usual cup-product pairing

H i(Y ;A)⊗Hj(Y,W ;M)
∪
→H i+j(Y,W ;A⊗ZM)

in the case of ζ and p : E(ζ) → X gives the cup product pairing of 14 by
α ∪ U = p∗(α) ∪ U .

Definition 25. Let Rn → E(ζ) → X be an n-plane bundle, and let
h : X → T (ζ) be the inclusion of X as the 0-section of ζ. The Euler class
of ζ is the cohomology class

χ(ζ) = h∗(U) ∈ Hn(X;Z/2) .

For oriented ζ there is an integral Euler class

χ(ζ) = h∗(U) ∈ Hn(X;Z) .

The Thom space of the product of two vector bundles Rm → E(λ)→ X,
Rn → E(µ)→ Y (2)

Rm+n → E(λ)× E(µ)→ X × Y
is the smash product of the Thom spaces

T (λ× µ) = T (λ) ∧ T (µ)

and the 0-section is the product of the two 0-sections. It follows that the
Euler class of λ× µ is

(U(λ)⊗ 1) ∪ (1⊗ U(µ)) = U(λ)⊗ U(µ) ∈ H∗(X × Y ;A) .

Remark . The Euler class of the canonical 1-plane bundle γ1 over RP∞
is the non-zero class in H1(RP∞) since T (γ1) = RP∞ and the inclusion
associated to the 0-section is homotopic to the identity. (The Thom space
of γ1,k over RPk is RPk+1 and the inclusion RPk ↪→ RPk+1 is just the usual
inclusion.) This shows the non-triviality of the Euler class for all k-plane
bundles by the observation above.

Remark . Basically the same argument as above shows that the integral
Euler class of the canonical 2-plane bundle over CP∞ is one of the generators
of H2(CP∞;Z) = Z, which one depending on the original choice of U ∈
H2(T (γ2);Z) over CP∞. Again, the observation above shows that for each
k there is a 2k-plane bundle with non-trivial integral Euler class.
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Using these remarks, the fibre bundles Sn−1 → BOn−1 → BOn which
are just the associated bundles to the n-plane bundle

Rn → E(γn)→ BOn ,

and induction it can be proved that

H∗(BOn;Z/2) = Z/2[w1, w2, . . . , wn]

a polynomial algebra on generators wi where wi has dimension i and 1 ≤
i ≤ n. Moreover, wn is χ(γn), and the restriction map

H∗(BOn;Z/2)→ H∗(BOn−1;Z/2)

is surjective with kernel exactly the ideal (wn).

Definition 26. The class wi above is called the ith (universal) Stiefel-
Whitney class. Every n-plane bundle E(ζ)→ X induced by a map

f : X → BOn ,

and f∗(wi) is called the ith Stiefel-Whitney class of the bundle ζ. The
total Stiefel-Whitney class of ζ is

W (ζ) = 1 + w1(ζ) + w2(ζ) + · · ·+ wn(ζ) ∈
∞⊕

i=0

H i(X;Z/2) .

Similarly, we can show

H∗(BSOn;Z/2) = Z/2[w2, . . . , wn],

and, when we regard SO2 as U1, a similar induction on the fibre bundles

S2n−1 −−→ BUn−1 −−→ BUn

which are just the sphere bundles associated to the complex n-plane bundle
Cn → γn → BUn, gives

H∗(BUn;Z) = Z[c1, . . . , cn]

where ci ∈ H2i(BUn;Z) and cn = χ(γn). Here again the restriction map
H∗(BUn;Z)→ H∗(BUn−1;Z) is surjective with kernel exactly the ideal (cn).

Definition 27. The class ci ∈ H2i(BUn;Z) is called the ith (universal)
Chern class, and given a Cn-bundle E(ζ) → X induced by f : X → BUn
then f∗(ci) ∈ H2i(X;Z) is the ith Chern class of ζ. The total Chern
class of ζ is

C(ζ) = 1 + c1(ζ) + c2(ζ) + · · ·+ cn(ζ) ∈
∞⊕

i=0

H2i(X;Z) .

We can tensor the universal bundle γn over BOn with C to obtain a
complex n-plane bundle C⊗Rγn (associated to the usual inclusionGLn(R) ⊂
GLn(C)) and thus a map

Bi : BOn −−→ BUn .



76 5. THE HOMOLOGY OF FIBRE BUNDLES

There is also a map in the opposite direction, Br : BUn → BO2n which
comes from the inclusion GLn(C) ↪→ GL2n(R) which simply forgets the
complex structure. The composites respectively induce γn + γ̄n over BUn
and 2γn over BOn.

Definition 28. The ith (universal) Pontrjagin class is

pi = c2i(C⊗R γn) ∈ H4i(BOn;Z) (i ≥ 0) .

Given an n-plane bundle E(ζ)→ X induced by f : X → BOn then f∗(pi) ∈
H4i(X;Z) is the ith Pontrjagin class of ζ.



CHAPTER 6

Cobordism and Handle Decompositions

1. Foundations of cobordism

We recall the foundations of the cobordism theory of Thom [66]. The
handle and surgery techniques for constructing cobordisms will be described
in detail in §2, ??.

Here is the basic definitionÄ:

Definition 29. A cobordism of closed m-dimensional manifolds Mm,
Nm is an (m+ 1)-dimensional manifold Wm+1 with boundary

∂W = M tN .

Poincaré’s definition of homology was motivated by the invariance of in-
tegration on cobordant submanifolds. If ω is a closed differential m-form on
an n-manifold V n then for any closed m-dimensional oriented submanifold
Mm ⊂ V n it is possible to define the integral∫

M
ω ∈ R .

For disjoint submanifolds Mm, Nm ⊂ V n related by an oriented cobor-
dism (W ;M,M ′) which is also a submanifold Wm+1 ⊂ V n

∫

M
ω\

∫

N
ω =

∫

W
dω = 0 ∈ R

by Stokes’ theorem. In modern terminology we are dealing with the isomor-
phism of the universal coefficient theorem

Hm(V ;R) −→ HomR(Hm(V ;R),R) ; [ω] −→ ([M ] −→
∫

M
ω) ,

with [ω] ∈ Hm(M ;R) the deRham cohomology class of the form ω, and
[M ] ∈ Hm(V ;R) the homology class of the submanifold M .

Proposition 12. Cobordism is an equivalence relation on manifolds.

Proof. Every manifold M is cobordant to itself by the product cobor-
dism

M × (I; {0}, {1}) = (M × I;M × {0},M × {1}) ,
with I = I the unit interval. The union of adjoining cobordisms

(W ;M,M ′) , (W ′;M ′,M ′′)

77
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is a cobordism

(W ;M,M ′) ∪ (W ′;M ′,M ′′) = (W ∪M ′ W ′;M,M ′′) .
..........................................................................................................................
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¤

Diffeomorphic manifolds are trivially cobordant.

Definition 30. The unoriented cobordism ring

N∗ =
∞∑

m=0

Nm

is the graded ring with Nm the abelian group of cobordism classes [M ] of
closed m-dimensional manifolds Mm. The addition is by disjoint union

[Mm] + [M ′m] = [(M tM ′)m] ∈ Nm ,

and the multiplication is by cartesian product

Nm ×Nn −→ Nn+m ; ([Mm], [Nn]) −→ [M ][N ] = [(M ×N)m+n] .

INSERT THOM’S BASIC RESULTS HERE.
By reducing the geometry to homotopy theory and algebra Thom com-

puted N∗ to be the polynomial algebra over Z2

N∗ = Z2[xi | i ≥ 1 , i 6= 2j−1]

with one generator xi in each degree i 6= 2j − 1, with xi = [RPi] if i is even.

Definition 31. The oriented cobordism ring

Ω∗ =
∞∑

m=0

Ωm

is the graded ring with Ωm the abelian group of cobordism classes [M ] of
closed oriented m-dimensional manifolds Mm.

Thom showed that

Ω∗ ⊗Q = Q[y4i | i ≥ 1]

with one generator y4i = [CP2i] in degree 4i for each i ≥ 1.

Remark . The low-dimensional cobordism groups are given byÄ:

m 0 1 2 3 4 5 6 7 8

Nm Z2 0 Z2 0 (Z2)2 Z2 (Z2)3 Z2 (Z2)5

Ωm Z 0 0 0 Z Z2 0 0 Z2
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2. Handles

Handles are the building blocks of manifolds and cobordisms. We shall
now establish that every (m + 1)-dimensional cobordism (W ;M,M ′) has
a handlebody decomposition, and then use it to obtain Poincaré duality
isomorphisms

H∗(W,M) ∼= Hm+1−∗(W,M ′)
using appropriately twisted cohomology groups in the nonorientable case.

Definition 32. Given an (m+ 1)-dimensional manifold with boundary
(W,∂W ) and a framed (i−1)-embedding Si−1×Dm−i+1 ⊂ ∂W (0 ≤ i ≤ m)
define the (m+ 1)-dimensional manifold with boundary (W ′, ∂W ′) obtained
from W by attaching an i-handle to be

W ′ = W ∪Si−1×Dm−i+1 Di ×Dm−i+1 .
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W Di ×Dm−i+1

W ′

Definition 33. (i) An elementary (m+1)-dimensional cobordism
of index i is the cobordism (W ;M,M ′) obtained from M × I by attaching
an i-handle at Si−1 ×Dm+1−i ⊂M × {1}, with

W = M × I ∪Di ×Dm+1−i .

(ii) The dual of an elementary (m + 1)-dimensional cobordism of index i
(W ;M,M ′) is the elementary (m+1)-dimensional cobordism (−W ;M ′,M)
of index (m−i+1) obtained by reversing the ends, and regarding the i-handle
attached to M × I as an (m− i+ 1)-handle attached to M ′ × I.

Lemma 19. For any 0 ≤ i ≤ m+ 1 the Morse function

f : Rm+1 −→ R ; (x1, x2, . . . , xm+1) −→ −
i∑

j=1

x2
j +

m+1∑

j=i+1

x2
j

has a unique critical point 0 ∈ Rm+1, which is of index i. The (m + 1)-
dimensional manifolds with boundary defined for any ε > 0 by

W−ε = f−1(−∞,−ε] , Wε = f−1(−∞, ε]
are such that Wε is obtained from W−ε by attaching an i-handle

Wε = W−ε ∪Di ×Dm−i+1 .
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(WarningÄ: if i ≥ 1 then W−ε and Wε are not compact.)

Proposition 13. Let f : Wm+1−→I be a Morse function on an (m+1)-
dimensional manifold cobordism (W ;M,M ′) with f−1(0) = M , f−1(1) =
M ′, and such that all the critical points of f are in the interior of W .
(i) If f has no critical points then (W ;M,M ′) is a trivial h-cobordism, with
a diffeomorphism

(W ;M,M ′) ∼= M × (I; {0}, {1})
which is the identity on M .
(ii) If f has a single critical point of index i then W is obtained from M × I
by attaching an i-handle at a framed i-embedding Si−1×Dm−i+1 ⊂M×{1},
and (W ;M,M ′) is an elementary cobordism of index i with a diffeomorphism

(W ;M,M ′) ∼= (M × I ∪Di ×Dm−i+1;M × {0},M ′) .

Proof. (i) See Milnor [43].
(ii) In a neighbourhood of the unique critical point p ∈W

f(x1, x2, . . . , xm+1) = c−
i∑

j=1

x2
j +

m+1∑

j=i+1

x2
i

with respect to a coordinate chart Rm+1 ⊂ W such that 0 ∈ Rm+1 corre-
sponds to p ∈ W , with c = f(p) ∈ R the critical value. For any ε > 0 there
are defined diffeomorphisms

f−1(−∞, c− ε] ∼= M × I , f−1[c+ ε,∞) ∼= M ′ × I
by (i), and by 19 there is defined a diffeomorphism

f−1[c− ε, c+ ε] ∼= M × I ∪Di ×Dm−i+1 .

¤
Somewhat by analogy with the result that every finite-dimensional vec-

tor space has a finite basis we haveÄ:

Theorem 17. [Handle Decomposition Theorem] (Thom, Milnor
[41]) Every cobordism (Wm+1;Mm,M ′m) has a handle decomposition as the
union of a finite sequence

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2) ∪ . . . ∪ (Wk;Mk−1,Mk)

of adjoining elementary cobordisms (Wj ;Mj−1,Mj) with index ij, such that

0 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ m+ 1 , M0 = M , Mk = M ′ .

M0 W1 M1 W2 M2 Wk Mk
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Proof. Any cobordism admits a Morse function

f : (W ;M,M ′) −→ I

with
M = f−1(0) , M ′ = f−1(1) ,

and such that all the critical values are in the interior of I. Since W is
compact there are only a finite number of critical pointsÄ: label them pj ∈W
(1 ≤ j ≤ k). Write the critical values as cj = f(pj) ∈ R, and let ij be the
index of pj . It is possible to choose f such that

0 < c1 < c2 · · · < ck < 1 , 0 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ m+ 1 .

Let rj ∈ I (0 ≤ j ≤ k) be regular values such that

0 = r0 < c1 < r1 < c2 < · · · < rk−1 < ck < rk = 1 .

By 13 (i) each

(Wj ;Mj−1,Mj) = f−1([rj−1, rj ]; {rj−1}, {rj}) (1 ≤ j ≤ k)
is an elementary cobordism of index ij . ¤

Corollary 15. Every closed m-dimensional manifold Mm can be ob-
tained from ∅ by attaching handles.

Proof. Apply 17 to the cobordism (M ; ∅, ∅). ¤
Example 34. (1) The m-sphere Sm has a handle decomposition

consisting of a 0-handle and an m-handle

Sm = D0 ×Dm ∪Dm ×D0 ,

given by the upper and lower hemispheres.
(2) The cobordism (Dm+1; ∅, Sm) has a handle decomposition with one

0-handle. The dual cobordism (Dm+1;Sm, ∅) has a handle decom-
position with one (m+ 1)-handle.

We assume that the reader is already acquainted with CW complexes,
which are spaces obtained from ∅ by successively attaching cells of increasing
dimensionÄ: the space obtained from a space X by attaching an i-cell along
a map f : Si−1−→X (i ≥ 0) is the identification space

Y = X ∪f Di .

Proposition 14. The homotopy theoretic effect of attaching an i-handle
to an (m + 1)-dimensional manifold with boundary (W,∂W ) is that of at-
taching an i-cell, that is

W ′ = W ∪Di ×Dm−i+1 ' W ∪Di .

Let X = (A,B ⊆ A) be a relative CW pair with

A = B ∪Di1 ∪Di2 ∪ . . .
such that i1 ≤ i2 ≤ . . . . The relative skeleta of X

B ⊂ X(0) ⊂ X(1) ⊂ . . . ⊂ A
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are defined by
X(i) = B ∪

⋃

ij≤i
Dij (r ≥ 0) .

Given a regular cover Ã of A with group of covering translations π let B̃,
X̃(i) be the corresponding covers of B, X(i), such that

X̃(i) = B̃ ∪
⋃

ij≤i
π ×Dij .

The cellular Z[π]-module chain complex of X̃ = (Ã, B̃)

C = C(X̃) = C(Ã, B̃)

is defined by

Ci = Hi(X̃(i), X̃(i−1))
= the free Z[π]-module generated by the i-cells ,

with the differentials

d : Ci+1 = Hi+1(X̃(i+1), X̃(i)) −→ Ci = Hi(X̃(i), X̃(i−1))

the homology boundary maps of the triple (X̃(i+1), X̃(i), X̃(i−1)). The ho-
mology of C

H∗(C) = H∗(X̃) = H∗(Ã, B̃)

consists of the relative homology Z[π]-modules of (Ã, B̃).

Proposition 15. A handle decomposition of a cobordism

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2) ∪ . . . ∪ (Wk;Mk−1,Mk)

as a union of k adjacent elementary cobordisms determines a relative CW
structure on the pair X = (W,M)

W ' M ∪Di1 ∪Di2 ∪ · · · ∪Dik .

with ij the index of (Wj ;Mj−1,Mj). The handle decomposition thus deter-
mines the cellular Z[π]-module chain complex C(W̃ , M̃) and hence the ho-
mology Z[π]-modules H∗(W̃ , M̃), for any regular cover W̃ of W with group
of covering translations π.

Let (W ;M,M ′) be an (m + 1)-dimensional cobordism with a handle
decomposition

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2) ∪ . . . ∪ (Wk;Mk−1,Mk) ,

and let there be bi handles Wj with index ij = i. For each 0 ≤ i ≤ m + 1
let (W (i);M(i− 1),M(i)) be the cobordism defined by the union of all the
i-handles, with

W (i) =
⋃
ij=i

Wj , M(−1) = M , M(m+ 1) = M ′ ,
W (i) = M(i− 1)× I , M(i− 1) = M(i) if there are no i-handles ,

W =
⋃m+1
i=0 W (i) .
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It is possible to arrange the handles in such a way that all the handles Wj

of index i are attached to M(i − 1) simultaneously, with disjoint framed
(i− 1)-embeddings Si−1 ×Dm−i+1 ⊂M(i− 1) such that

W (i) = M(i− 1)× I ∪
⋃

bi

Di ×Dm−i+1 .

Reverse the i-handles, and regard them as dual (m − i + 1)-handles in
(W (i);M(i),M(i− 1)), so that

W (i) = M(i)× I ∪
⋃

bi

Di ×Dm−i+1 .

Definition 34. The algebraic intersection of handles Wj ,Wj′ of in-
dex i, i+1 is the algebraic intersection (??) of the cores Sm−i, Si ⊂M(i) of
the corresponding framed (m−i)- and i-embeddings Di×Sm−i, Si×Dm−i ⊂
M(i)

λalg(Wj ,W
′
j) = λalg(Sm−i, Si) ∈ Z[π] .
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M(i− 1) W (i) M(i) W (i+ 1)M(i+ 1)

Di ×Dm+1−i

Di+1 ×Dm−i

Si−1 ×Dm+1−i Di × Sm−i

Si ×Dm−i Di+1 × Sm−i−1

Proposition 16. The differentials in the cellular Z[π]-module chain
complex C = C(W̃ , M̃) of a handle decomposition of a cobordism (W ;M,
M ′) are given by the algebraic intersection numbers of the handles of ad-
joining index

d : Ci+1 = Hi+1(X̃(i+1), X̃(i)) = Z[π]bi+1

−→ Ci = Hi(X̃(i), X̃(i−1)) = Z[π]bi ;
[Wj′ ] −→

∑
ij=i

λ(Wj ,Wj′)[Wj ] .

Proposition 17. Let (W ;M,M ′) be an (m+1)-dimensional cobordism
with an oriented cover ((W̃ ; M̃, M̃ ′), π, w). Given a Morse function f :
W−→I and a corresponding handle decomposition

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2) ∪ . . . ∪ (Wk;Mk−1,Mk)

let f ′ = 1− f : W−→I be the opposite Morse function, corresponding to the
dual handle decomposition

(W ′;M ′,M) = (W ′
1;M

′
0,M

′
1) ∪ (W ′

2;M
′
1,M

′
2) ∪ . . . ∪ (W ′

k;M
′
k−1,M

′
k)

with

W ′ = −W , W ′
i = −Wk−i , M ′

i = Mk−i (0 ≤ i ≤ k) .
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The relative cellular Z[π]-module chain complexes of (W̃ , M̃), (W̃ , M̃ ′) are
related by

C(W̃ , M̃ ′) = C(W̃ , M̃)m+1−∗ ,
where duality is taken with respect to the w-twisted involution on Z[π].

Proof. The dual of an ni-handle Wi is the (m+ 1− ni)-handle W ′
k−i.

The algebraic intersection of an ni-handle Wi and an nj-handle Wj with
nj = ni + 1 is related to the algebraic intersection of the dual (m+ 1− ni)-
handle W ′

k−i and the dual (m+ 1− nj)-handle W ′
k−j by

λ(Wi,Wj) = λ(W ′
k−j ,W

′
k−i) ∈ Z[π] .

¤

3. Lagrangians and Even Forms

Definition 35. Let R be a ring with involution µ and b : R2k×R2k−→R
a non-singular R-bilinear ±-symmetric form. Then a direct summand Rk ⊂
R2k is called a Lagrangian of b if b|Rk ×Rk−→R is identically 0.

Definition 36. Let an R-bilinear form b : Rk × Rk−→R be given, then
it is even if there is an R-linear map l(b) : Rk−→(Rk)∗ so that the adjoint
of b has the form l(b)± (l(b))∗.

Remark . If (1/2) ∈ R then every ±-symmetic form is even so the
distinction is immaterial in this case. However, even in the case of the
integers the distinction is important. For example, the smallest even non-

singular symmetric form over the integers is
(

0 1
1 0

)
while the smallest form

is (1) : Z−→Z∗.
Remark . Note that if the ± form A is even, then the matrix, B, of

the form with respect to any basis is even (B = C ± C∗).
Lemma 20. Suppose that Rk = A ⊂ R2k is a Lagrangian for the even ±-

symmetric bilinear form b : R2k×R2k−→R. Then there is a second Lagrangian
Rk = B for b so that A⊕B = R2k and bases for A and B so that the form

becomes
(

0 I
±I 0

)
with respect to these bases.

Proof. Non-singularity implies that the adjoint of b gives an isomor-

phism r2k : A
∼=−→A∗. Consequently, given any basis for A there is a dual basis

for A∗ and lifting back, a direct summand B′ so that A + B′ = R2k and

the matrix of b with respect to these bases has the form
(

0 I
±I L

)
. By the

evenness of the form we can write L = M ±M∗ where M∗ is M -transpose
with the entries replaced by their images under the involution.

Now, there is a unique R-linear map τ : A∗−→A so that β∗Mλ = τ(β)(λ)
for each (β, τ) ∈ B × B. Then replacing the vectors of B by the vectors
(−τ(β), β) gives a new direct summand which is, in fact a Lagrangian. ¤
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Remark . The unoriented cobordism class of an m-dimensional mani-
fold Mm is determined by the Stiefel-Whitney numbers

wI(M) = 〈w1(M)i1w2(M)i2 . . . wn(M)in , [M ]〉 ∈ Z2

defined for any sequence I = (i1, i2, . . . , in) of integers ij ≥ 0 such that

i1 + 2i2 + · · ·+ nin = m ,

with wi(M) ∈ H i(M ;Z2) the ith Stiefel-Whitney class.

Remark . The oriented cobordism class of an oriented m-dimensional
manifold Mm is determined by the Stiefel-Whitney numbers wI(M) ∈ Z2

and the Pontrjagin numbers

pJ(M) = 〈p1(M)j1p 2(M)j2 . . . pn(M)jn , [M ]〉 ∈ Z
defined for any sequence J = (j1, j2, . . . , jn) of integers jk ≥ 0 such that

4j1 + 8j2 + · · ·+ 4njn = m ,

with pj(M) ∈ H4j(M) the jth Pontrjagin class.

Proposition 18. The signature of closed oriented 4k-dimensional man-
ifolds is an oriented cobordism invariant, with

σ(M) = σ(N) ∈ Z
for any oriented (4k + 1)-dimensional cobordism (W ;M,N).

Proof. It suffices to prove that σ(∂W ) = 0 for an oriented (4k + 1)-
dimensional manifold with boundary (W,∂W ). Let

(V, λ) = (H2k(∂W ;R), [∂W ] ∩ −)

be the intersection form of ∂W , with [∂W ] ∈ H2k(∂W ;R). The Poincaré
duality isomorphisms define an isomorphism of exact sequences

· · · → H2k(W ;R)
i∗
→ H2k(∂W ;R) → H2k+1(W,∂W ;R) → · · ·y

[W ]∩−

y
[∂W ]∩−

y
[W ]∩−

· · · → H2k+1(W,∂W ;R) → H2k(∂W ;R)
i∗
→ H2k(W ;R) → · · ·

with i : ∂W−→W the inclusion. It follows that the inclusion j : L−→V of the
subspace

L = im(i∗ : H2k(W ;R)−→H2k(∂W ;R)) ⊂ V = H2k(∂W ;R)

is such that there is defined an exact sequence

0 −→ L
j−→ V

j∗λ−→ L∗ −→ 0 .

Thus L is a ‘lagrangian’ (= maximal isotropic subspace) in (V, λ), j extends
to an isomorphism of symmetric bilinear forms

H(L) = (L⊕ L∗,
(

0 1
1 0

)
) −→ (V, λ) ,
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and the signature of ∂W is

σ(∂W ) = σ(V, λ) = σ(H(L)) = 0 ∈ Z .
(See 55 for the general definition of a lagrangian in a form over an arbitrary
ring with involution). ¤

In particular, the signature defines morphisms

σ : Ω4k −→ Z ; [M ] −→ σ(M) .

The expression of Ω∗ ⊗ Q in terms of the Pontrjagin numbers led to the
original proof of the celebratedÄ:

Theorem 18. [Signature Theorem] (Hirzebruch, 1952) The signature
of a closed oriented 4k-dimensional manifold M4k is given by

σ(M) = 〈Lk(M), [M ]〉 ∈ Z
with Lk(M) a polynomial in the Pontrjagin classes pj(M) = pj(τM ) ∈
H4j(M) of the tangent bundle.

See Hirzebruch [26] for the classic account of the signature theorem.

Example 35. The Pontrjagin classes of the tangent bundle τCPn : CPn
−→BSO2n of the n-dimensional complex projective plane CPn are given by

pj(CPn) =
(
n+ 1
j

)
∈ H4j(CPn) = Z (0 ≤ j ≤ n/2)

(Milnor and Stasheff [47,Äp.177]). Th signature of CP2k is

σ(CP2k) = signature(H2k(CP2k), φ0)
= signature(Z, 1) = 1 ∈ Z .

The signature theorem gives the following calculations for the signature of
CP2k for low values of k. For k = 1

p1(CP2) = 3 , L1 = p1/3 ,
σ(CP2) = 〈L1(CP2), [CP2]〉 = 1 .

For k = 2

p1(CP4) = 5 , p 2(CP4) = 10 , L2 =
1
45

(7p 2 − p 2
1 ) ,

σ(CP4) = 〈L2(CP4), [CP4]〉 = 1 .

For k = 3
p1(CP6) = 7 , p 2(CP6) = 21 , p 3(CP6) = 35 ,

L3 =
1

945
(62p 3 − 13p 2p 1 + 2p 3

1 ) ,
σ(CP6) = 〈L3(CP6), [CP6]〉 = 1 .



CHAPTER 7

The Homotopy and PL Classification of
Generalized Lens Spaces

The classical lens spaces are the quotients of the sphere S3 by the various
free linear actions of the cyclic groups Z/m given by regarding S3 as the set
of pairs of complex numbers (ζ1, ζ2) with |ζ1|2 + |ζ2|2 = 1 and defining the
actions by

T (z1, z2) = (ζi1mz1, ζ
i2
mz2)

with ζm = e2πi/m and (i1,m) = (i2,m) = 1. We denote the quotient by
Lm(i1, i2). These three dimensional lens spaces can be immediately gener-
alized to the higher dimensional lens spaces, Lm(i1, i2, . . . , in), given as the
quotients of S2n−1 = {(z1, . . . , zn) |

∑n
1 |zi|2 = 1} by the free actions of

Z/m given by
T (z1, . . . , zn) = (ζi1mz1, . . . , ζ

in
m zn)

with (ij ,m) = 1, 1 ≤ j ≤ n.

Lemma 21. Let v ∈ Z/m satisfy vi1 ≡ 1 mod (m) with (i1,m) = 1.
Then we have

(1) Lm(i1, . . . , in) = Lm(1, vi2, vi3, . . . , vin).
(2) Lm(i1, . . . , in) = Lm(iσ(1), iσ(2), . . . , iσ(n)) for any permutation σ ∈
Sn, the symmetric group on n letters.

(This is evident.)
Of course one can generalize still further and consider all manifolds

M2n−1 given as the quotients of the odd dimensional spheres by the free
action of the finite cyclic groups, Z/m, to be the set of generalized lens
spaces. In fact, this will be what we mean by generalized lens spaces in the
sequel. In this context we will call the lens spaces constructed above the
linear models.

One of the main motivations for the development of the non-simply
connected surgery theory was the question of classifying the generalized
lens spaces. This turns out to be a very difficult problem, not so much
conceptually but technically. However, at this time the solution is basically
complete. We will discuss aspects of the classification throughout this book
as we develop the relevant techniques.

In the present chapter we review the more classical aspects of the clas-
sification, first the homotopy classification of these spaces, and then White-
head’s piecewise linear classification.

87
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1. The homotopy classification of Generalized Lens Spaces

To do the homotopy classification we replace the sphere S2n−1 by a space
X homotopy equivalent to S2n−1 and consider the homotopy classification
of quotients of X2n−1 via free actions of the groups Z/m. To avoid truely
pathological situations we also assume throughout that our generalized lens
spaces are given as CW -complexes so that there are cell decompositions
of X for which the action of Z/m becomes cellular and free. Specifically,
we assume that the action of Z/m takes each cell homeomorphically to
a different cell in the decompostion. Consequently, the cell complex of X
becomes a complex of free Z(Z/m)-modules with the boundary ∂ a Z(Z/m)-
module map.

Example 36. Cell decompositions for the linear models are relatively
easy to construct. Thus, suppose Lm(i1, . . . , in) is given. We define the
0-cells of the associated cellular decomposition of S2n−1 as the elements
(ζim, 0, . . . , 0), the one cells as the element

e1 = {(z1, 0, . . . , 0) | 0 ≤ arg(z1) ≤ 2π/m}
so T i(e1) = ζime1 and

S1 = {(z1, 0, 0, . . . , 0) | |z1| = 1} =
m−1∑

i=0

T i(e1).

Next, the two cells are given as

e2 = {(z1, t, 0, . . . , 0) | 0 ≤ t ≤ 1}
and T ie2 = (ζi1mz1, ζ

i2
mt, 0, . . . , 0). Note that the boundary of e2 is equal to

the boundary of T i(e2) and is the circle S1 =
∑m−1

i=0 T (e1) in each case. This
procedure generalizes directly so that the cellular chain complex of S2n−1

is given as exactly one copy of the group ring Z(Z/m) in each dimension i,
0 ≤ i ≤ 2n− 1. Moreover, the boundary map from Ci to Ci−1 is described
as follows: 




∂(e2j−1) = (T ij − 1)e2j−2 going from odd to even,
∂(e2i = Ne2i−1, i > 0 going from even to odd,
∂(e0) = 0 in dimension 0.

Here, N ∈ Z(Z/m) is the sum of all the elements in the group,

N = 1 + T + T 2 + T 3 + · · ·+ Tm−2 + Tm−1.

Now we turn to the homotopy classification of the generalized lens
spaces.

Lemma 22. (1) The homology of a generalized lens space is isomor-
phic to that of BZ/m through dimensions ≤ 2n− 2, and is a single
copy of Z in dimension 2n− 1.
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(2) The (ordinary) homology of the classifying space BZ/m is given as




Z in dimension 0,
Z/m in odd dimensions,
0 in even dimensions > 0.

(3) The (ordinary) cohomology ring H∗(BZ/m;Z) = Z[b]/(mb = 0),
the quotient of the integral polynomial ring on the two dimensional
generator b, modulo the relation mb = 0.

Proof. Let M2n−1 be a generalized lens space with universal cover X
having the homotopy type of the sphere S2n−1 and having fundamental
group Z/m. Let f : M−→BZ/m be a map classifying the universal cover.
The homotopy fiber of f is X which is 2n−2 connected. It follows, since by
assumption M is a CW complex, that f is a homotopy equivalence through
dimension 2n − 2. This gives the first statement of 22(i). Before we can
prove the second it is most convenient to prove 22(ii) and 22(iii).

Note that since 2n − 1 is odd, the action of Z/m on H∗(X) is trivial.
Also, the homotopy fiber of f is X, and the Serre spectral sequence for the
fibering takes the form

Ei,j2 =

{
H i(BZ/m;Z), if j = 0 or 2n− 1,
0 otherwise.

Consequently, only one differential is possible, namely

d2n
i : Ei,2n−1

2 −−→Ei+2n,0
2 .

But M2n−1 is finite dimensional. Hence Ei,j2n+1 = 0 for i+ j ≥ 2n. It follows
that d2n

i must be an isomorphism for i ≥ 1. Thus,

H2n+i(BZ/m;Z) ∼= H i(BZ/m;Z) for i > 0.

We now calculate these groups explicitly for i = 1, 2 using Lm(1, 1, 1, 1)
which has chain complex starting as

Z(Z/m)
T−1−−→Z(Z/m)

N−−→Z(Z/m)
T−1−−→Z(Z/m)−−→0.

Tensoring over the action of Z/m with Z regarded as the trivial Z(Z/m)-
module (

∑
niT

i)1 =
∑
ni), gives the complex

Z
0−−→Z m−−→Z 0−−→Z−−→0.

and the homology is 



0 in dimension 2,
Z/m in dimension 1,
0 in dimension 0.
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Hence, by the universal coefficient theorem



H0(BZ/m;Z) = Z,
H1(BZ/m;Z) = 0,
H2(BZ/m;Z) = Z/m.

Let b be a generator for H2(BZ/m;Z). Then the periodicity result, (refpe-
riod 2) gives the result for H i(BZ/m;Z) for all i.

In the Serre spectral sequence, when the coefficients are acted on trivially
by the fundamental group of the base, d2n is a derivation, d(w ∪ j2n−1) =
w ∪ d(j2n−1) where j ∈ E0,2n−1

2 = Z is a generator. Consequently, bn is a
generator for H2n(BZ/m;Z), and 22(ii), 22(iii) follow.

Moreover, the differential

d2n : H2n−1(X;Z)−→H2n(BZ/m;Z)

has been identified as a surjective map Z−→Z/m where d2n(j) = kbn for
some k with (k,m) = 1. It follows that H2n−1(M ;Z) = Ker(d2n) = Z with
generator mj. ¤

We can look at the argument above more closely to give the homotopy
classification of the generalized lens spaces.

Theorem 19. Let V ⊂ Z/m be the multiplicative units in Z/m. Then
there is a one to one correspondence between the elements in the quotient
V/〈±1, V n〉 and the set of homotopy classes of generalized lens spaces. Here,
V n denotes the subgroup of V generated by all nth powers of elements in V .

Proof. There are three steps in the proof. The first is to construct a
homotopy invariant of X in the quotient above. The second is to show that
if M and M ′ are generalized lens spaces having the same invariant then they
are homotopy equivalent. Finally, the third is to show that for each element
in the quotient of V there is a generalized lens space which has that element
as an invariant.

For the first step we refine the cohomology calculation of 22 to obtain

Lemma 23. Let M be a generalized lens space with fundamental group
Z/m and universal cover X having the homotopy type of the sphere S2n−1.
The the following three statements are true.

(1)

H i(M ;Z/m) =

{
Z/m 0 ≤ i ≤ 2n− 1,
0 otherwise.

(2) The Z/m−→Z/m Bochstein operation β gives an isomorphism

β : H2j−1(M ;Z/m)−→H2j(M ;Z/m)

for j ≤ n− 1.,
(3) If b is a generator of H2(M ;Z/m) then bi is a generator of the

group H2i(M ;Z/m) for i < n.
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Proof. The first statement is just a direct consequence of the univer-
sal coefficient theorems. The second statement follows similarly from the
definition of the Bochstein map and the determination in 22 of the inte-
gral cohomology of M . Finally, the third statement follows directly from
22(iii). ¤

Using this result we note that given any generator e ∈ H1(M ;Z/m) we
can look at e ∪ (β(e))n−1 ∈ H2n−1(M ;Z/m). Note that if f is any other
generator then f = ue with u ∈ V , and f ∪ (β(f))n−1 = un(e ∪ (β(e))n−1).
Consequently, the element e ∪ (β(e))n−1 is independent of the choice of
generator e in V/〈V n〉.

On the other hand, from 22 we have that H2n−1(M ;Z) = Z with gener-
ator either ±[M ]. Then, evaluating e ∪ (β(e))n−1 on the image of a genera-
tor for H2n−1(M ;Z) gives a well determined element in the quotient group
V/〈±1, V n〉 which is clearly a homotopy type invariant for M . This is the
invariant we will show completely determines the homotopy type of M .

Remark . To make this invariant well defined we need to identify the
quotient above with a canonical quotient. Do this by choosing f∗(eβ(e)n−1)
as the generator for V . Now, f is well defined only up to a choice of gener-
ator for Z/m, so the set of distinct f which pull the universal covering on
BZ/m back to the universal covering of M are given as the compostions

M
f−→BZ/m

Bu−−→BZ/m

where u ∈ V andu : Z/m−→Z/m is the automorphism T j 7→ T ju. Con-
sequently, this gives a well defined identification of H2n−1(M ;Z/m)/〈V m〉
with H2n−1(BZ/m;Z/m)/〈V m〉.

We now consider again the classifying space BZ/m. From 22(i) and
the description of the cell decomposition for Lm(i1, . . . , in) given in 36 we
see that BZ/m = Lm(1, 1, . . . , 1) together with one 2n-cell, one 2n+ 1-cell,
etc. In particular, Lm(1, 1, . . . , 1) can be regarded as the 2n−1-dimensional
skeleton of BZ/m. It follows that the map f : M2n−1−→BZ/m factors as a
composition

M2n−1
g−−→Lm(1, 1, . . . , 1︸ ︷︷ ︸

n−times
)

i−−→BZ/m

where i embeds Lm(1, . . . , 1) as the 2n− 1 skeleton of BZ/m. In particular,
the map g is a homotopy equivalence through dimension 2n−2 from 22 and
consequently induces a map of universal covers:

X
g̃−−→ S2n−1yπ

yπ

M2n−1
g−−→ Lm(1, . . . , 1)



92 7. THE HOMOTOPY AND PL CLASSIFICATION OF GENERALIZED LENS SPACES

Lemma 24. The map g in (1) is a homotopy equivalence if and only if

g̃ : X−→S2n−1

is a homotopy equivalence.

Proof. Both M and Lm(1, . . . , 1) are CW -complexes. Consequently a
map between them will be a homotopy equivalence if and only if it induces
isomorphisms of homotopy groups g∗ : πi(M)−→πi(Lm(1, . . . , 1)) for all i. We
already know this is the case for i ≤ 2n − 2. But the diagram (1) extends
to the following diagram

X
π−−→ M

f−−→ BZ/my
g̃

y
g

y
id

S2n−1
π−−→ Lm(1, . . . , 1)

i−−→ BZ/m

where the horizontal lines are fibrations. Consequently, by the five lemma,
g is a homotopy equivalence if and only if g̃ is a homotopy equivalence. ¤

Note that g can be modified by pinching off a bubble on M and mapping
it to S2n−1 with degree k. This will change g to g′ and the map in homology
from H2n−1(X;Z) to H2n−1(S2n−1;Z) will change from degree s to degree
s + km. But g′ will still be a perfectly good lifting of the classifying map
f . Moreover, it is evident that the invariant for M is exactly the image in
the quotient group V/〈V n,±1〉 of the degree of g̃ mod (m). Consequently,
M is homotopy equivalent to Lm(1, . . . , 1) if and only if the invariant in this
quotient group is one.

Now suppose thatM andM ′ have the same invariant. Exactly as we con-
structed the map g : M−→Lm(1, . . . , 1) we can construct a map κ : M−→M ′
which is a homotopy equivalence through dimension 2n − 2. And up to
choice of g, g factors as the composite

M
κ−−→M ′ g′−−→Lm(1, . . . , 1).

Thus, the map κ∗ must take the invariant for M to the invariant for M ′.
Moreover, it follows that lifting the map to fibers κ̃ : X−→X ′ will have degree
±1 ∈ V/〈V n〉, so, after changing κ by a self map M−→M of degree un and
further modifying by the pinching construction above, we can assume that
the degree of κ̃ is actually ±1 and M 'M ′.

To complete the proof it remains to show that all possible invariants are
realized.

Lemma 25. The invariant for Lm(1, 1, . . . , 1, k) is k ∈ V/〈±1, V n〉.
Proof. We determine the map explicitly by looking at the chain com-

plexes. We have that the chain complexes of Lm(1, 1, . . . , k) and Lm(1, . . . , 1)
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are equal in dimensions less than 2n − 2. Then in this degree we have the
following diagram

C2n−1

Tk−1−−→ C2n−2

N−−→ C2n−3 −−→· · ·y
h2n−1

y
id

y
id

C2n−1

T−1−−→ C2n−2

N−−→ C2n−3 −−→· · ·
where each Ci is a copy of the group ring Z(Z/m). Then, in order to make
the chain map commute h2n−1 can be defined as

h2n−1 = 1 + T + T 2 + · · ·+ T k−1,

and h2n−1(N) = kN in the chain complex of Lm(1, . . . , 1). ¤
This complete the proof of 19. ¤

2. The Torsion of Chain Complexes with Trivial Homology

Now we move away from homotopy classification to give a more delicate
invariant that distinguishes spaces within a homotopy type. Thus, we sup-
pose given a homotopy equivalence f : X−→Y of CW complexes. Whitehead
explored the question of trying to refine the cell decompositions of X, Y and
deforming f so as to construct an isomorphism of cell complexes. Based on
earlier work of Reidemeister, Whitehead constructed an invariant in a group
which depends only on the fundamental group of X, that was later called
the Whitehead group Wh1(π1(X)).

The torsion of a long exact sequence of free R-modules. Through-
out the remainder of this chapter we assume that R is a unitary ring and
suppose that

(1) C = {tCi | 0 ≤ i ≤ n < ∞, ∂} is a chain complex of finitely
generated, free, and based R-modules, with ∂ : Ci−→Ci−1 R-
linear.

(2) Suppose, moreover, that the resulting sequence

0−−→Cn
∂−−→Cn−1

∂−−→ · · · ∂−−→C1

∂−−→C0−−→0

is long exact, i.e., the homology of C is identically 0.
Let S be a collapsing homotopy for C, i.e., S is a collection of R-linear

maps Si : Ci−→Ci+1 so that we have

S∂ + ∂S = id.

The existence of such an S is established inductively and we may even
assume that S2 = 0. Note that C splits as the direct sum Ker(∂)⊕W, and
by a direct inductive argument we see that both summands are stably free.
Moreover, in the case S2 = 0 we can assume that W = Im(S). Hence, if we

add a certain number of trivial based complexes R
id−→R in dimensions i+ 1
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and i we may assume that this splitting decomposes C into the direct sum
of two finitely generated free modules.

Lemma 26. Suppose that a triple {C, ∂, S} satisfying the conditions above
is given. Let

Cev =
⊕∞

i=0C2i

Cod =
⊕∞

i=0C2i+1.

Then
(1) Cev and Cod are both finitely generated, free, and based R-modules.
(2) The map ∂ + S : Cod−→Cev is an R-linear isomorphism.

Proof. The first statement is immediate. To see the second statement
note that ∂ + S also gives a map Cev−→Cod, and composing them in either
order gives ∂S + S∂ + S2 which has the form 1 + S2. This is the identity if
S2 = 1. If S2 6= 1 it is still an isomorphism since 1− S2 + S4 − S6 + · · · is
a well defined map from either piece to itself, and is clearly an inverse for
1 + S2. ¤

Definition 37. The torsion matrix of the triple (C, ∂, S) and the given
basing of C is the matrix of the isomorphism (∂ + S) : Cod−→Cev with respect
to the given bases.

In the definition of the torsion matrix the basing of C and ∂ are given,
but S is arbitrary. We now consider the effect of varying our choice of S on
the isomorphism ∂ + S.

Assume, as above, that a finite number of trivial based complexes R
id−→R

in dimensions i + 1, i have been added to C to give a complex which we
again call C that has the property Ker(∂) and W are both free. Moreover,
we assume that S2 = 0 and W = Im(S). Now, write

Cev = C0 ⊕W1 ⊕Ker(∂1)⊕W2 ⊕Ker(∂2)⊕ · · · ,
with a similar decomposition for Cod. Finally, suppose a basis chosen which
respects this splitting in each case.

Lemma 27. Let S′ be a second collapsing homotopy (S′∂ + ∂S′ = id).
Let Θ: Cev−→Cev and Θ′ : Cod−→Cod satisfy

(∂ + S)Θ = ∂ + S′
Θ′(∂ + S) = ∂ + S′.

Then both Θ and Θ′ are upper triangular matrices with ones along the di-
agonal in the bases above.

Proof. Note that
Θ = (∂ + S)−1(∂ + S′)

= (∂ + S)(∂ + S′)
= ∂S′ + S∂ + SS′

= 1 + ∂(S′ − S) + SS′,
= 1 + (S − S′)∂ + SS′.
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Thus, for v ∈ Ker(∂) we have Θ(v) = v + SS′(v). In the case where
v ∈ Im(S) we have

(S′ − S)∂(v) = −∂S′(v)
and v 7→ v + ∂λ+ SS′(v). The argument for Θ′ is similar. ¤

The definition of the K-group K1(R) and Torsion. Let R be a
ring. Let GLn(R) be the group of invertible R-linear maps of the free mod-
ule of rank n, Rn to itself. Let En(R) be the subgroup generated by the
“elementary transformations” of the form Ep,w, v 7→ v + p(v)w for some
R-linear map p : Rn−→R and a fixed vector w ∈ Ker(pi). Then the inverse
of Ep,w is Ep,−w.

Lemma 28. En(R) is a normal subgroup of GLn(R).

Proof. Let G ∈ GLn(R). Then G−1Ep,wG = EpG−1,Gw. ¤
Consider an inclusion as direct summand with free complement, Rn ⊂

Rn+1. That is to say Rn+1 = Im(Rn) ⊕ R. Then the pair, (inclusion,
splitting) induces an inclusion I : GLn(R) ⊂ GLn+1(R), by G 7→ (G, 1).
Moreover, clearly I(En(R)) ⊂ En+1(R), so I induces

I ′ : GLn(R)/〈En(R), GLn(R)′〉−→GLn+1(R)/〈En+1(R), GLn(R)′〉,
where GLn(R)′ is the commutator subgroup of GLn(R).

Lemma 29. The inclusion I ′ of (2)is independent of the pair (inclusion,
splitting), Rn ⊕R = Rn+1.

Proof. Let Rn ⊕ R = Rn+1 be any other pair (inclusion, splitting).
Then there is an element G ∈ GLn+1(R) so that G takes the first splitting to
the second. It follows that I(GLn(R)) for the first is conjugate to I(GLn(R))
for the second in GLn+1(R). It follows that G induces a conjugation action
on the quotient GLn+1(R)/〈En+1(R), GLn+1(R)′〉, taking the image of the
first I ′ to the image of the second. But since the commutator subgroup
is contained in the normal subgroup the conjugation action of G on the
quotient is the identity. ¤

Corollary 16. Passing to limits over n is well defined for the quotient
in (2)

Definition 38. The limit group in 16 is the first algebraic K-group of
the ring R and is written K1(R).

Consequently we have the following corollary/definition.

Corollary 17. The class of the torsion matrix in 37 in K1(R) is inde-
pendent of the choice of collapsing homotopy S and thus gives a well defined
invariant, the torsion of (C, ∂), which depends on the based complex C up

to the addition of a finite number of trivial complexes of the form R
id−→R in

dimensions i+ 1 and i.



96 7. THE HOMOTOPY AND PL CLASSIFICATION OF GENERALIZED LENS SPACES

Some Calculational Results for K1(R). Now we give some basic
results which enable us to calculate the groups K1(R) for many types of
unitary rings R.

Lemma 30. (1) Let f : R−→S be a ring homomorphism. Then f
induces a well defined homomorphism f1 : K1(R)−→K1(S).

(2) Let g : S−→A be a second ring homomorphism then (gf)1 = g1f1.
(3) Let Mn(R) be the ring of n×n matrices over R. Then the inclusions

GLnr(R)
=−−→GLr(Mn(R)),

pass to limits to give isomorphisms K1(R) = K1(Mn(R)) for each
n ≥ 1.

(4) Let R be a commutative ring. Then there is a well defined “deter-
minant map”, K1(R)−→R∗, where R∗ is the group of units in R.

Proof. Only the last assertion needs any kind of explanation. Note
that if we represent GLn(R) as the group of invertible matrices in Mn(R)
by choosing a basis for Rn then the matrices Ep,w are conjugates of elemen-
tary matrices Ei,j,r = I + rEi,j , i 6= j with Ei,j given as the matrix which
is all zeros except for a single one in the (i, j)-position. Consequently, the
determinant of any element of En(R) is 1. More directly, since the determi-
nant map GLn(R)−→R∗ is a group homomorphism to an abelian group, the
image of any commutator is also one. Thus, the determinant map factors
through the quotient in (2) Similarly, it is evident that we have the following
commutative diagram



GLn(R)

I−→ GLn+1(R)
↘ ↙

R∗




so the determinant map does, indeed, pass to limits. ¤

The following result is comparatively obvious but is also quite useful.

Lemma 31. Let R be the direct sum of the rings B, C, R = B ⊕ C.
Then K1(R) = K1(B)⊕K1(C).

The following result is very useful in calculations.

Lemma 32. Let R be any field or a Dedekind ring with quotient a finite
extension of the rationals Q. Then the determinant map Det : K1(R)−→R∗
is an isomorphism.

Proof. For the case of fields it is standard that En(R)i = SLn(R) and
is exactly the kernel of the determinant map. For the case of Dedekind rings
the argument is much more complex. But see for example [Milnor- Algebraic
K-Theory, §16, in particular 16.3 and the following discussion]. ¤
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The structure of K1(Z(ζd)). The case of most interest here is the ring
of integers in the cyclotomic number field Q(ζd), where ζd is a primitive dth

root of unity, for example e2πi/d ∈ C. Here, for definiteness, since ±1 ∈ Z,
we assume that either d ≡ 0 mod (4) or d is odd.

(1) The degree of Q(ζd) as an extension of Q, is µ(d), the number of
units in Z/d.

(2) The maximal real subfield of Q(ζd) is Q(ζd + ζ−1
d ) and has degree

µ(d)/2 over Q provided d 6= 2.
(3) The ring of algebraic integers in Q(ζd) is

Z(ζd) = Z+ Zζd + Zζ2
d + · · ·+ Zζd−1

d .

See e.g., [L. Washington, Introduction to Cyclotomic Fields, GTM,
Springer-Verlag, # 83, 1982, p. 11].

Thus, K1(Z(ζd)) = Z(ζd)∗, the group of units in Z(ζd).

Theorem 20. (Dirichlet) The group of units in the ring of algebraic
integers OK , for K any finite extension of Q, has the form Z/l × Zs+r−1

where 2s+ r is the degree of K over Q, and, for κ any primitive generator
of K, so K = Q(κ), then r is the number of real roots of the minimal
polynomial for κ. Of course, Z/l is the subgroup of roots of unity contained
in K.

(See e.g., [Lang, Algebraic Number Theory, Addison-Wesley, (1970)] for a
proof.)

Corollary 18.

K1(Z(ζd)) =

{
Z/d⊕ Zµ(d)/2−1 if d is even,
Z/2d⊕ Zµ(d)/2−1 if d is odd.

Certain units here arise very naturally. For example, if a is prime to d,
then

ζad − 1
ζd − 1

= 1 + ζd + ζ2
d + · · ·+ ζa−1

d

is always a unit, [L. Washington, loc. cit., p.2], and for d not prime, ζd − 1,
itself is a unit. These are examples of cyclotomic units.

Definition 39. Let Wd ⊂ Q(ζd)∗ be the multiplicative subgroup gener-
ated by the elements ±1, ζd, ζd − 1, ζ2

d − 1, . . . , ζd−1
d − 1. Then the cyclo-

tomic units, Cd ⊂ Z(ζd), are the elements in Wd intersected with the units
of Z(ζd).

Certainly, the cyclotomic units contain all the roots of unity in Z(ζd),
but they very nearly give all the units of Z(ζd). Explicitly, we have the
following results:

Theorem 21. (Ramachandra) The cyclotomic units have finite index
in the set of all units of Z(ζd).
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It is of some interest to give this index explicitly. To this end, let h2(d)
be the class number of the real subfield Q(ζd + ζ−1

d ) over Q. (This is the
size of the torsion subgroup of the Grothendieck group of finitely generated
projective modules over the ring of integers in Q(ζd + ζ−1

d ).) Fairly little is
known about h2(d), but we have

• If d is a prime power, pt with (p− 1)pt−1 < 66 then h2(d) = 1.
• If d is composite with d ≤ 200 and µ(d) ≤ 72, then h2(136) = 2,
h2(148), h2(152) are not known but for the rest h2(d) = 1.
• h2(163) = 4.
• For the prime p = 11, 290, 018, 777 h2(p) > p.
• Assume that n is divisible by at least four distinct primes. Then,
h2(n) > n3/2−ε, ε > 0 for infinitely many such n.

Then we have the following result which gives the index of the cyclotomic
units in the entire unit group of Z(ζd).

Theorem 22. (W. Sinnot) The index [K1(Z(ζd)), Cd] = 2bh2(d), where
b = 0 if d is a prime power, and b = 2g−2 + 1− g where g is the number of
distinct primes which divide d otherwise.

(See, e.g., [L. Washington, loc. cit., p. 147, 352] for details and references.)

The Structure of K1(Z(Z/m)). Suppose G = Z/m is a cyclic group.
Then

Q(G) =
∐

d divides m

Q(ζd)

contains the maximal order
∐
d divides m Z(ζd) which in turn contains Z(G)

since the natural inclusion

Z(Z/m) ↪→ Q(Z/m) =
∐

d divides m

Q(ζd)

has image contained in Z(ζd) because projection to each factor is simply
given as the map

Z(Z/m)−−→Q(ζd),
∑

niT
i 7→

∑
niζ

i
d.

Quite a bit deeper is the result of [Bass, Milnor, Serre, Solution of the
congruence subgroup problem for SLn (n ≥ 3) and Sp2n, (n ≥ 2), I.H.E.S.
Publications Math., 33(1967), 59-137, Proposition 4.14]

Theorem 23. The natural inclusion of rings induces an injection

K1(Z(Z/m))
i
↪→

∐

d divides m

Z(ζd)∗.

for each cyclic group Z/m.

This amounts to the assertion that K1(Z(Z/m)) is exactly the group of
units in Z(Z/m). Indeed, we have
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Corollary 19. An element θ ∈ Z(Z/m) is a unit if and only its image
in Z(ζd) is a unit for each d dividing m.

Proof. This is immediate from the naturality of the determinant map,
30, and the fact that the determinant detects K1(Z(ζd)), 32. ¤

This gives an effective way of constructing and recognizing all the units
in Z(Z/m).

Example 37. Suppose that p is a prime. Then there is a pull-back
diagram

Z(Z/p)
π1−−→ Z(ζp)y

ε

y
p

Z
p−−→ Z/p

so α =
∑p−1

0 niT
i is a unit in Z(Z/p) if and only if ε(α) =

∑
ni = ±1 and

π1(α) =
∑
niζ

i
p is a unit in Z(Z/p). For example, when p = 5, Z(ζ5)∗ =

Z/10 × Z with generators −ζ5 and ζ5 + ζ−1
5 = 1+

√
5

2 . Thus, Z(Z/5)∗ =
Z/(10)×Z, and the pair (−1, (ζ5 +ζ−1

5 )2) is the image of a generator for the
torsion free summand of K1(Z(Z/5)). Indeed, the explicit class in Z(Z/5)
with this image is given as

(T 2 + 2 + T−2)− (1 + T + T 2 + T 3 + T 4) = 1− T − T−1.

3. The Invariance of Torsion Under Cellular Subdivision

We continue to consider a long exact sequence of finite length of finitely
generated based R-modules, (C, ∂). The torsion of this complex is defined in
17 as an element in K1(R), and now we want to consider the way in which
the torsion changes under subdivision.

Definition 40. Assume that X is a finite CW -complex with a cellular
and free action of a finite group G. Then the cellular chain complex of
X, Ci = Hi(X,Xi−1;Z) is a free Z(G)-complex with a geometrically natural
choice of basis, namely the image of one of the generating cells.

Of course, this is only well defined up to multiplication by an element of
G, and up to sign. But C as above always will have homology so is not suit-
able for defining torsion. However, it may be possible to make the complex
exact by tensoring with a quotient ring. Another way in which we get exact
complexes is in case there is a G-equivariant CW -subcomplex Y ⊂ X and
the inclusion is a homotopy equivalence. In this case the quotient complex
C(X)/C(Y ) is naturally based up to multiplication by elements in G and ±1,
and is exact, so will have a well defined torsion class in K1(Z(G))/〈±1, G〉.

Definition 41. Assume that X is a finite CW -complex with a cellular
and free action of a finite group G, and C is is the cellular chain complex
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of X. A cellular subdivision of X is a second CW -decomposition of X,
X ′, so that the interior of each i-cell of X ′ is contained in a unique cell of
X of dimension at least i.

Theorem 24. J.H.C. Whitehead Assumptions as above for the CW -
pair (X,Y ). Let

((C(X ′), ∂)
be a subdivison of C(X). Then the torsion of C(X ′)/C(Y ′) is equal to the
torsion of C(X)/C(Y ) in K1(Z(G))/〈±1, G〉.

Proof. Order the generators of C(X)/(Y ) so that if dim(ei) > dim(ej)
then ei < ej in the ordering. Now, filterX so that Fs(X) = Fs−1(X)∪g∈Ggej
where ej is the sth-element in the ordering of the basis and F0(X) = Y .
Associated to this is a filtration of X ′, where Fs(X ′) is the G-subcomplex
of X ′ generated by all the elements hj,k with hj,k in the support of ei,l for
some ei,l in Fs(X). Then consider the cell complex

X ∪0×Fs(X) I × Fs(X) ∪1×Fs(X) Fs(X
′).

Clearly,
H∗(I × Fs(X) ∪0×Fs(X) X,X;Z) ≡ 0

for each s, so the torsion of each of the quotients

C(Fs(X ′))
⋃
I × C(Fs(X))

with boundary
∂I × e =

∑

h⊂ē
±ghh̄− I × ∂e

is defined, where h̄ ∈ {h, g1h, . . . , hnh} is the chosen generator.
Now, factor out by C(Y ), C(Y ′) so that the resulting quotient complexes

have the form, separately, of exact complexes. Then it is clear that the
torsion of the quotient is, on the one hand the torsion of C(X ′)/C(Y ′) divided
by the torsion of C(X)/C(Y ), and, on the other hand is the product of the
torsions of the relative complexes[CI × Fs(X) ∪ CFs(X ′)

]
/

[CI × Fs−1(X) ∪ CFs−1(X ′)
]

for s 6= 0. But, by excision, each of these complexes is – relatively – a disjoint
union of the form G×(I×Di) where Di is a single cell. Consequently, it has
torsion of the form ±g multiplied by the torsion of I×Di ∈ K1(Z) = ±1. ¤

Example 38. The usual situation for the above construction is when we
have a cellular map f : X−→Y which is a homotopy equivalence. Then the
mapping cylinder, MC(f̃) of the induced homotopy equivalence of universal
covers

f̃ : X̃−→Ỹ
has the two subcomplexes C(X̃) and C(Ỹ ) both of which are homotopy
equivalent to the total space MC(f̃) and there are two torsions defined: τ1,
the torsion of C(MC(f̃)/C(X̃) and τ2 = τ−1

1 , the torsion of C(MC(f̃)/C(Ỹ ).
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This torsion is well defined as an invariant of the pair of CW -complexes
up to cellular subdivision, (X,Y ) when we factor out the subgroup of all
torsions which can occur in a self homotopy equivalence of X.

4. The Reidemeister-Whitehead Classification of Lens Spaces

The other situation where a torsion invariant could be defined for X is
if we tensor C(X) over Z(G) with a quotient ring R so that the homology
of C(X) ⊗Z(G) R ≡ 0. Then the cellular basing of C(X) leads to a torsion
class in K1(R)/〈±1, G〉. The argument above in the proof of 24 extends in
an evident way to show that the resulting torsion for X is unchanged under
cellular subdivision and hence provides an invariant of the equivalence class
of the cellular decomposition of X.

Theorem 25. Let X be a generalized lens space homotopic to

Lm(1, . . . , 1, k).

Let R = Z(1/m)(G)/N where, as in (36), N = 1 + T + · · ·+ Tm−1. Then,
in the CW -complex of the universal cover X̃, C(X̃) we have that

C(X̃)⊗Z(Z/m) R

is an exact complex and consequently has a well defined torsion invariant in
K1(R)/〈±1, G〉.





CHAPTER 8

Surgery in Low Dimensions

1. Types of Modifications of Manifolds

Blowing up submanifolds. Let V a complex and η a Ck-bundle over
V . There is an associated CPk−1-bundle over V , given as the set of pairs
η̄ = {(h, v)} where h ⊂ ηv is a complex line through the origin in the fiber
of η over v ∈ V . There is also a natural complex line bundle L(η) over η̄,
given as the set of triples L(η) = {(w, h, v) | w ∈ h}.

Lemma 33. Suppose that η has a hermitian metric, and let W ⊂ η be
the subspace of non-zero vectors of length ≤ 1. Similarly, let WL(η) be
the subspace of the line bundle L(η) consisting of the triples (w, h, v) with
~0 6= w and ||w|| ≤ 1, then the map p : WL(η)−→W sending (w, h, v) to w is
a homeomorphism.

Proof. A non-zero vector w ∈ η determines a unique complex line
through the origin. ¤

Now, given any manifold Mn, a compact submanifold V n−2k ⊂Mn and
a complex structure on the normal bundle ηM (V ) to V in Mn, then we
can regard an open neighborhood of V in M as the subspace W (ηM (V ))
and using the identification above we can replace this neighborhood by
WL(ηM (V )). This construction is called blowing up along V ⊂ M with
respect to the given complex structure on ηM (V ). This is one of the oldest
methods of obtaining new manifolds from old ones.

Example 39. If V is a point so η = Ck then L(η) is the cannonical
line bundle over CPk−1. Consequently, if M2n is a complex manifold and
p ∈M2n is a point, then ηM (p) = Cn and the blow-up of M2n at p replaces
p by a copy of CPk−1.

If V ⊂M is a closed manifold with a complex structure given on ηM (V )
then ∂(WL(ηM (V ))) = ∂W (ηM (V )) and we can regard the blow-up of M
over V as obtained fromM−Int(W (ηM (V ))) by identifying ∂(WL(ηM (V )))
with ∂{M − Int[W (ηM (V ))]}.

There is a degree one map from the blow-up of M over V to M which
collapses the CPk−1-bundle over V to V and is otherwise 1 ↔ 1. But, in
general, the blow-up over V is not even cobordant with M . For example
if n = 4k and we blow up a point, then the signature of the blow-up is
σ(M)− 1, and since σ(M) is a bordism invariant the two manifolds cannot
be bordant.

103
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Framed surgery and spherical replacement in dimension 3. Let
K ⊂ M3 be a knot, i.e., a differentiable embedding of S1 ⊂ M3. If the
normal bundle to K is trivial and a framing is given, then this gives an
embedding D2 × S1 ⊂ M3 extending the original embedding K ⊂ M3.
Now, ∂(D2 × S1) = S1 × S1 and this is also the boundary of S1 × D2.
Consequently, we can replace the neighborhood Int(D2 × S1) ⊂ M3 of K
by S1 × D2 by simply identifying the two S1 × S1 boundary components.
This is called framed surgery on the knot K.

Lemma 34. Let C × S1
p−→S1 be the trivial R2-bundle over S1, (with a

choice of complex structure), then the set of framings is identified with the
integers, where the framing associated to m is given by ψm(v, ζ) = (ζmv, ζ).
In particular, the map in homology (ψm)∗ : H1(S1×S1;Z)−→H1(S1,×S1;Z)
is given by

(ψm)∗(e1) = e1
(ψm)∗(e2) = me1 + e2

Example 40. We can write S3 = ∂(D2×D2) = S1×D2∪S1×S1D2×S1.
Consequently, replacing the second D2 × S1 by S1 ×D2 after using ψm to
reframe it, we get

W 3 = S1 ×D2 ∪S1×S1 S1 ×D2

where the D2 in the second S1 ×D2 is attached to e1 +me2, while the first
D2 is attached to e1. Consequently, H1(W 3;Z) = Z/m, and it is not hard
to see that W 3 is the ordinary lens space L3

m(1).

Remark . The most general type of replacement for K is obtained by
gluing D2 × S1 to M3 − Int(D2 × S1) via a homeomorphism

ψ : S1 × S1−→S1 × S1.

Clearly, if ψ is concordant to λ then the resulting manifolds

(M3 − Int(D2 × S1)) ∪ψ (D2 × S1)

and
(M3 − Int(D2 × S1)) ∪λ (D2 × S1)

are diffeomorphic, so the distinct constructions are indexed by a quotient of
the concordance classes of diffeomorphisms ψ : S1 × S1−→S1 × S1.

It is relatively direct to verify that the set of these concordances is iden-

tified with SL2(Z): if
(
a b
c d

)
∈ SL2(Z) then the associated diffeomorphism

of S1 × S1 is given by
(ζ, ν) 7→ (ζaνb, ζcνd),

and in homology the map is given by e1 7→ ae1 + ce2, e2 7→ be1 + de2. In
particular, if a = m, b = j, then the result of attaching D2 × S1 to itself by
the above diffeomorphism is the lens space L3

m(j).
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Spherical modification or surgery in general. Suppose that an
embedding

ψ : Sk ×Dn−k ↪→Mn

is given. Then ∂(Sk ×Dn−k) = Sk × Sn−k−1 and this is also the boundary
of Dk+1 × Sn−k−1. Consequently, we can replace im(ψ) by Dk+1 × Sn−k−1

as above:

M̄n = M − Int(Sk ×Dnk) ∪Sk×Sn−k−1 Dk+1 × Sn−k−1.

Such a modification is called a spherical modification or surgery on ψ.
Consider the n + 1 dimensional manifold with boundary, W (ψ), con-

structed from I×Mn and Dk+1×Dn−k by gluing the component Sk×Dn−k
of ∂(Dk+1 ×Dn−k) to 1×Mn by ψ:
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..............................................................................................................................................

I ×M

Dk+1 ×Dn−k

Clearly, W (ψ) is obtained from I ×Mn by attaching a handle, 2, on

ψ(Sk ×Dn−k ⊂ 1×Mn

contained in ∂(I×Mn). We call W (ψ) the elementary bordism from M
to M ′ associated to the embedding ψ. W (ψ) is alos called the trace of ψ.
Also, ∂(W (ψ)) = MtM̄ where M̄ is the manifold obtained fromM by doing
surgery on ψ(Sk × Dn−k). Consequently, from the handle decomposition
theorem, 17, we have

Theorem 26. Let Mn and (Mn)′ be closed compact differentiable man-
ifolds without boundaries, then (Mn)′ is obtained from Mn by a sequence of
surgeries if and only if Mn is cobordant to (Mn)′.

In fact, given a bordism Wn+1 from Mn to (Mn)′, 17 shows that W is
obtained from I ×M by a sequence of elementary bordisms.

Remark . The following duality property of surgery and elementary
bordisms is often useful. Clearly, if M ′ is obtained from M by a single
surgery on Sk × Dn−k ↪→ M , then M is obtained from M ′ by a single
surgery on ψ′ : Dk+1 × Sn−k−1 ↪→M ′ and W (ψ) = W (ψ′).
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2. Further Examples of the effect of surgery

The special case of surgery on the circle is both easy and very illuminat-
ing. First consider the case where we embed S0×D1 with the D1 embedded
in such a way that the induced orientation from the orientation of S1 agrees
with the that on S0 ×D1.
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In this case the result of the surgery is two disjoint circles, and W (M) is the
pair of pants

S1 S1 × I ∪D1 ×D1 S1 t S1
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Modify the framed 0-embedding e : S0 ×D1−→S1 in (ii) by twisting one
of the two embeddings of D1 by the orientation-reversing diffeomorphism

ω : D1 −→ D1 ; t −→ − t ,
defining a different 0-embedding

eω : S0 ×D1
1 t ω−−−−−→ S0 ×D1

e−→ S1

with the same core as e. The 0-surgery on S1 removing eω(S0×D1) has effect
a single circle S1. The trace is the non-orientable cobordism (N2;S1, S1)
obtained from the Möbius band M2 by punching out the interior of an em-
bedding D2 ⊂M\∂M .

S1 S1 × I ∪D1 ×D1 S1
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We have already seen in FRAMED SURGERY ON A KNOT the importance
of the choice of the framing, i.e., the way in which the map on the core
Sm is extended to Sm × Dn−m. The general situation for the variation of
the framing is that the map is changed by a map τ : Sm−→O(n − m), so
ψτ (s, v) = (s, τ(s)v).

Definition 42. The connected sum of connected m-dimensional man-
ifolds Mm, M ′m is the connected m-dimensional manifold

(M #M ′)m = cl.(M\Dm) ∪ Sm−1 × I ∪ cl.(M ′\Dm)

obtained by excising the interiors of embedded discs Dm ⊂M , Dm ⊂M ′ and
joining the boundary components Sm−1 ⊂ cl.(M\Dm), Sm−1 ⊂ cl.(M ′\Dm)
by Sm−1 × I.
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M#M ′
M M ′

Sm−1 × I

Example 41. The connected sum M#M ′ is the effect of the 0-surgery
on the disjoint union M tM ′ which removes the framed 0-embedding S0 ×
Dm ⊂ M t M ′ defined by the disjoint union of embeddings Dm−→M ,
Dm−→M ′.

We can push this last example a bit further. Suppose we embed our
Sm ×Dn−m inside a ball Dn in Mn:

Sm ×Dn−m ⊂ Dn ⊂M.

Then, when we do surgery on Sm ×Dn−m the result is the connected sum
Mn#Sm+1×Sn−m−1 since we can regard Mn as the connected sum Mn#Sn

with the Sn − ∗ being identified with Dn, and we can write

Sn = Sm ×Dn−m ∪Sm×Sn−m−1 Dm+1 × Sn−m−1

and replacing the first Sm × Dn−m by a second copy of Dm+1 × Sn−m−1

and gluing by the identity map on Sm × Sn−m−1 gives Sm+1 × Sn−m−1 as
asserted.

For example, doing surgery on Sm−1 ×Dm+1 ⊂ D2m ⊂ M2m results in
the connected sum

M2m#Sm × Sm
and, in M2m#Sm × Sm, if we do surgery on one of the cores,

Sm ×Dm ⊂ Sm × Sm
this undoes the previous surgery, giving M2m as the result.

Of course, this last cancelling surgery assumes that we took the correct
framing on Sm, a change of framing by a map τ : Sm−→O(m) could, perhaps,
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change the result. We will see in the next section that, in this dimension, it
cannot change the effect on homology of the surgery. But it could, conceiv-
ably, change the diffeomorphism type of the resulting manifold. We can see
this more clearly in the next example.

The map t : S2m−1−→O(2m) which gives the clutching map for the tan-
gent bundle τ(S2m) has the property that if we take the associated map

S2m−1 × S2m−1
Adj(t)−−−→S2m−1 × S2m−1,

Adj(t)(~x, ~y) = (~x, t(~x(~y)), then in homology

Adj(t)∗(e~x) = e~x + 2e~y, Adj(t)∗(e~y) = e~y).

One way of seeing this is to note that the Euler class of τ(S2m) = χ(S2m) =
2, and it follows that in the usual inclusion of S2m ↪→ T (τ(S2m)) the Thom
class Uτ(S2m) pulls back to the Euler class, 2[S2m]∗. On the other hand, if
S2m−1−→E−→S2m is the associated sphere bundle to τ(S2m) then T (τ(S2m))
is the quotient S2m/E and, from the long exact sequence in cohomology

· · · −−→H∗(T (τ(S2m))−−→H∗(S2m)−−→H∗(E)
δ−−→H∗+1(T (τ(S2m))−−→· · ·

we have

H∗(E) =





Z if ∗ = 0 or 4m− 1,
Z/2 if ∗ = 2m,
0 otherwise.

On the other hand E can be given as

D2m × S2m−1 ∪S2m−1×S2m−1 D2m × S2m−1

where the identifiying map on the S2m−1 × S2m−1 is t above. Comparing
the result of the Mayer-Vietoris sequence for this description of E with the
cohomology calculation above gives the assertion.

It follows that the composition kt:

S2m−1
k−→S2m−1

t−−→O(2m)

where k : S2m−1−→S2m−1 is the degree k map, gives Adj(kt)(e~x) = e~x+2ke~y,
Adj(kt)(e~y) = e~y.

Now, suppose we take S4m−1 and inside S4m−1 we do surgery on S2m−1×
D2m, but, instead of simply replacing, we first reframe via the map kt. Then,
the manifold resulting from the surgery on the reframed S2m−1 × D2m is
D2m × S2m−1 ∪S2m−1×S2m−1 D2m × S2m−1, with associated Mayer-Vietoris
sequence

· · · δ−−→H2m−1(S2m−1 × S2m−1)
i−−→H2m−1(D2m × S2m−1)⊕H2m−1(D2m × S2m−1)

−−→H2m−1(M)
δ−−→ · · ·
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and the map i∗ has the property e~x 7→ 2ke1, e~y 7→ e1 + e2, which has matrix
(

2k 0
1 1

)

with determinant 2k. It follows that H2m−1(M) = Z/2k, which shows that
in this case, the reframing does change the homology of the resulting mani-
fold.

3. The effect of surgery on homology

Consider the effect of surgery on ψ(Sk × Dn−k) ⊂ Mn. We have that
the homotopy type of the elementary cobordism W (ψ) is that of Mn with
a single (k + 1)-cell attached from 14,

W (ψ) 'Mn ∪α ek+1.

But, since W (ψ) is the same as the elementary cobordism from M̄n to Mn

obtained by attaching Dk+1×Dn−k on Dk+1×Sn−k−1 ⊂ M̄n it follows that

W (ψ) ' M̄n ∪β en−k.
Consequently, comparing these two expressions for W (ψ) we have

Lemma 35. Suppose that k+1 ≤ [
n
2

]
. Then, given ψ : Sk×Dn−k ↪→Mn,

the manifold M̄n obtained from Mn by surgery on ψ has the homotopy type
of Mn ∪ψ(Sk) e

k+1 through dimensions less than n− k.
Surgery in dimension m for M of dimension n = 2m − 1 or n = 2m is

more complex. In both cases, in order to understand the effect of surgery we
need to consider the manifold with boundary W (M) = M − (Sm ×Dn−m).
We have, by excision,

H∗(W (M), ∂(W (M))) = H∗(M,Sm)

and there is an exact sequence

· · · −−→H∗(Sm)
ψ∗−−→H∗(M)−−→H∗(M,Sm)

∂−−→H∗−1(Sm)−−→· · ·
which in only non-trivial in the range around ∗ = m:

0−−→Hm+1 (M)−−→Hm+1(M,Sm)
∂−−→

Hm(Sm) = Z
ψ∗−−→Hm(M)−−→Hm(M,Sm)−−→0.

More generally, in the non-simply connected case we can consider the uni-
versal cover and the associated embedding

π1(M)× (Sm ×Dn−m)
ψ̃
↪→M̃

which leads to the generalization of 3

0−−→Hm+1 (M̃)−−→Hm+1(M̃, π1(M)× Sm)
∂−−→

Z(π1(M))
ψ̃∗−−→Hm(M̃)−−→Hm(M̃, π1(M)× Sm)−−→0.
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Then the boundary map from H∗(W (M̃), ∂) to ∂(π1(M)× Sm ×Dn−m) is
related to the ∂-map in 3 through the commutative diagram

H∗+1(W (M̃), π1 × Sm × Sn−m−1)
∂−−→ H∗(π1 × Sm × Sn−m−1)y

∼=

y
p

H∗+1(M̃, π1(M)× Sm)
∂−−→ H∗(π1(M)× Sm)

where p is projection on the middle factor (homotopy equivalent to the
inclusion Sm × Sn−m−1 ↪→ Sm × Dn−m ' Sm). On the other hand, there
are two Mayer-Vietoris sequences which can be used to connect the homology
of M ′ and M̃ ′ with the groups discussed above, the usual one,

· · · −−→H∗+1 (M̃ ′)
∂−−→H∗(π1(M)× Sm × Sn−m−1)−−→

H∗(W (M̃))⊕H∗(Dm+1 × Sn−m−1)−−→H∗(M̃ ′)
∂−−→ · · ·

and the sequence of relative groups (which is Poincaré dual to the usual
cohomology Mayer-Vietoris sequence for 3),

· · · −−→H∗+1(M̃ ′)−−→
H∗+1(W (M̃), π1(M)× Sm × Sn−m−1)⊕

H∗+1(π1(M)× (Dm+1 × Sn−m−1, Sm × Sn−m−1))
δ−−→H∗(π1(M)× Sm × Sn−m−1)−−→H∗(M̃ ′)−−→· · ·

Away from the middle dimensions we do not need these tools as the result
of 35 will be sufficient for our needs here, but for surgery on Sm × Dn−m
where n = 2m or n = 2m+ 1 we do since

(1) In 3, for n = 2m+ 1 we have

H̃∗(π1(M)× Sm × Sm) =

{
0 ∗ 6= m,
Z(π1)⊕ Z(π1) ∗ = m.

Consequently, the effect of surgery is determined by the image of ∂
in 3 on the second factor in the upper right hand corner, a map not
determined directly by the image of ψ(Sm).

(2) For n = 2m we can replace H∗(W (M̃), π1(M)× Sm × Sn−m−1) by
H∗(M̃, π1(M)×Sm) in 3, and, in dimension m we obtain the exact
sequence

0−−→Hm(M̃ ′)−−→Hm(M̃, π1(M)× Sm)
δ−−→Z(π1(M))

where δ is again determined by more than just the image of ψ∗.
In the case n = 2m we have the following result which shows that the

most difficult part of understanding the homology effect of surgery in this
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dimension is to be able to embed a sphere with trivial normal bundle where
we can control the intersection numbers.

Lemma 36. The image of δ in 2 is the ideal of all elements µ ∈ Z(π1(M))
which occur as ψ(Sm) ∩ e for e ∈ Hm(M̃ ;Z).

Proof. Let v ∈ Hm(M̃) be represented by a map of an oriented m-
dimensional manifold V m−→M̃ , and consider the image of v under the com-
posite map

Hm(M̃)
j∗−−→Hm(M̃, π1 × Sm ×Dm)

∼=−−→Hm(W (M̃), π1 × Sm × Sm−1).

Here ∼= is the inverse of the excision isomorphism, and composing with
∂ : Hm(W (M̃), π1 × Sm × Sm−1)−→Hm−1(π1 × Sm × sm−1) = Z(π1) is just
the intersection pairing V m∩π1×Sm. Thus the result works for classes rep-
resented by manifolds. However, by Thom’s representation theorem, REF-
ERENCE, a finite multiple of every element in Hm(M̃) has this property,
so the lemma follows by the linearity of the composite map. ¤

Remark . Since ψ(Sm) ⊂ Sm × Dm ⊂ M it follows that the self-
intersection of ψ∗([Sm]) with itself in H∗(M̃ ;Z) is zero.

Remark . In the case where the ideal in Z(π1(M)) given by capping
with ψ∗([Sm]) is Z(π1(M)) we see that Hm(M̃ ′) is given as

Ker[∩(ψ∗([Sm]))] ⊂ Hm(M̃)/Z(π1)ψ∗([Sm]).

The situation when n = 2m + 1 turns out to be harder. What matters
is the image of

∂ : Hm+1(W (M̃), π1(M)× Sm × Sm) −−→ Hm(π1 × Sm × Sm)
= Z(π1(M))⊕ Z(π1(M)).

Let us define an orientation class for π1(M)×Sm×Sm as ∂([W (M̃)]). Then
this defines a non-singular cap-product pairing on Z(π1(M)) ⊕ Z(π1(M))
which is (−1)m-Hermitian symmetric with respect to the involution

∑
nigi ↔∑

nig
−1
i on Z(π1(M)):

〈α, β〉 = (−1)m〈β, α〉,
〈vα, β〉 = v̄〈α, β〉,

and we have

Lemma 37. Let e = ∂(w) ∈ Hm(π1(M) × Sm × Sm), then 〈e, e〉 = 0
under the cap-product pairing above.

Proof. Let v ∈ HomZ(π1)(Hm(π1 × Sm × Sm),Z(π1)) be dual to e so
e = v ∩ ∂[W (M̃)]. Then

〈e, e〉 = v(e)
= v(v ∩ ∂[W (M̃)]

= δ(v)(i∗(e))
= 0.
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¤
This turns out to be about all that we can say about the image, but it

will turn out that it’s almost as much as we will need.

4. Normal maps and surgery below the middle dimension

Definition 43. Suppose that X is a locally finite CW -complex and Mn

is an n-dimensional compact, closed manifold with empty boundary. Then
a continuous map f : Mn−→X is said to be a normal map if there is a k-
dimensional vector bundle χ over X so that f !(χ) is a stable normal bundle
for Mn.

Precisely, this means of course, that f !(χ) ⊕ τM = (n + k)ε, the trivial
bundle with fiber Rn+k over Mn. But the data does not include a preferred
trivialization.

The most important property of normal maps is given by the following
lemma.

Lemma 38. Let f : Mn−→X be a normal map as defined in 43. Let
g : Sm ↪→ Mn be a differential embedding so that the composition fg is
homotopic to the trivial map. Then the normal bundle to g(Sm) in Mn,
ηMn(g(Sm)), is stably trivial. In particular, if m <

[
n
2

]
, then ηMn(g(Sm))

is the trivial bundle Rn−m × Sm.

Proof. The normal bundle toMn restricted to g(Sm) is f !(χ) restricted
to g(Sm) and this is (fg)!(χ) which is trivial, since fg is homotopic to the
trivial map. But the Whitney bundle sum of ηM (g(Sm)) with the normal
bundle to M restricted to g(Sm) is the normal bundle to the composite
embedding

Sm
g
↪→Mn ↪→ Rn+l

for l ≥ n+ 1. Consequently, this bundle sum is trivial:

ηM (Sm)⊕ (fg)!(χ) = (l + n−m)ε

and ηM (Sm) is stably trivial as required. Moreover, if m <
[
n
2

]
then n−m >

m and ηM (Sm) being stably trivial guarantees that it is actually trivial by
8. ¤

This, given a normal map we have a reasonably efficient method for
checking when we can thicken an embedding Sm ↪→ Mn to an embedding
Dn−m × Sm ↪→ Mn so as to be able to do surgery. Of course this method
does not give much information for m >

[
n
2

]
since then there can be a

large number of stably trivial but non-trivial (n − m)-plane bundles over
Sm. However, when n = 2m the classes of stably trivial bundles are quite
restrictive as indicated in 12, forming a group




Z for m even,
0 if m = 1, 3, 7,
Z/2 form odd, m 6= 1, 3, 7.
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The next lemma gives us conditions when we can extend the normal
map f : Mn−→X to a normal map of the elementary cobordism W (f), and
in particular, obtain a normal map of the surgered manifold M̄n to X with
respect to the same bundle over X.

Lemma 39. Let f : Mn−→X be a normal map with respect to the bundle α
on X. Suppose that m ≤ n−m and we have an embedding g : Sm ↪→Mn with
fg homotopically trivial. Then there is an embedding φ : Dn−m×Sm ↪→Mn

so that f extends to a map f̂ : W (φ)−→X with f̂ !(α) equal to the stable
normal bundle to W (φ).

Proof. Note first that a k-plane bundle on the sphere St is trivial on
the upper hemisphere as well as the lower hemisphere. Hence it is completely
determined by a map St−1−→GLk(R) which describes the gluing of these two
trivial bundles over the equatorial St−1 ⊂ St. Moreover, if two such maps,
St−1−→GLk(R) are homotopic then the resulting bundles are isomorphic.

Now consider the elementary bordism W (φ). By 35 W (φ) 'M ∪g em+1,
and, since fg ' 0 it follows that f extends to

f̂ : M ∪g em+1−−→X
and hence to W (φ), and this is independent of the choice of framing of
ηM (g(Sm)) and consequent embedding Dn−m×Sm ↪→M extending g. Now,
use this extension to pull back α. Clearly, f̂ !(α) and the stable normal
bundle to W (φ) differ only on Dn−m × em+1, and hence since both are
trivial (and identified) on Sm it follows that their difference corresponds to
a given framing λ : Sm−→GLn−m(R). If we use λ to get a new embedding
Dn−m × Sm ↪→ Mn, (~v, s) 7→ φ(λ(s)~v, s), then the resulting normal bundle
to W (φ′) will be exactly f̂ !(α). ¤

Remark . The process of modification described in the proof of 39 is
very similar to the process used in proving 10, and, indeed, it is a good
exercise to adjust the argument above to prove 10.

Definition 44. Given a normal map f : Mn−→X as in 43 with respect
to the bundle α on X, and a bordism Wn+1 between Mn and M̄n. An
extension of f to f̂ : Wn+1−→X is said to be a normal bordism of f if f̂ !(α)
is the stable normal bundle to Wn+1.

In particular, a normal bordism of f restricts to give a normal map,
f̂ | : M̄n−→X with respect to α.

Corollary 20. Let f : Mn−→X be a normal map as in 43, then there is
a normal bordism f̂ : W−→X extending f , with f̂ restricted to M̄ a homotopy
equivalence to X through dimension

[
n
2

]− 1.

5. Degree one normal maps.

Suppose that Mn is a compact manifold and f : Mn−→X, is a normal
map. We saw in the last section how surgery can be done in this situation to
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make f into a homotopy equivalence through one less than half the dimen-
sion of M . But, to proceed to make f an equivalence through any greater
range of dimensions is much more difficult. The first reason is that H∗(Mn)
satisfies Poincaré duality, so H∗(X) would have to at least look like the ho-
mology of a space which satisfies Poincaré duality. The second reason is that
it is much harder to embed spheres, let alone thickened spheres Sm×Dn−m
for m ≥ [

n
2

]
.

On the other hand, suppose that there is a homology class [X] ∈ Hn(X;Z)
so that H∗(X) satisfies Poincaré duality with respect to [X]. Then we have

f∗(f∗(α) ∩ [M ]) = α ∩ f∗([M ])
= α ∩ k[X]
= kα ∩ [X],

where f∗([M ]) = k[X]. One way of thinking of this is that Poincaré duality
connects cohomology and homology, so the map f∗, by duality, gives a map
from H∗(X) to H∗(M), and f∗([M ]) determines the effect of the composite
map,

H∗(X)−−→H∗(M)
f∗−−→H∗(X).

It follows that, if f∗([M ]) = ±[X], then f∗ is automatically surgective, and,
if f∗ is an isomorphism through the middle dimension, then it is an isomor-
phism through all dimensions.

Of course, this is not enough to guarantee that f is a homotopy equiva-
lence unless we can obtain the same conclusions for the universal covers of
M and X. Fortunately, the discussion of Poincaré duality for non-simply
connected manifolds 3 extends the discussion above directly to the universal
covers, and it follows that if we have a degree ±1 map of n-dimensional
Poincaré duality spaces which induces isomorphisms of fundamental groups,
and isomorphisms in homology of the universal covers through the middle di-
mension, then it automatically induces a homotopy equivalence of the entire
spaces.

Definition 45. Let (X,Y ) be a pair of finite complexes which satisfy
Poincaré duality 3 in dimension n, and (Mn, ∂M) an n-dimensional mani-
fold with boundary. A degree one normal map

f : (Mn, ∂M)−−→(X,Y )

is a continuous map f so that f∗([M,∂M ]) = [X,Y ] together with a stable
vector bundle ψ on X and a bundle isomorphism

g : ηM−−→f !(ψ).

The homotopy interpretation of degree one normal maps. Let
X be an oriented Poincaré duality complex of dimension n with orientiation
class [X]. Suppose that f : Mn−→Xn, g : ηM−→f !(ψ) is a degree one normal
map then, since ηM is only stably well defined, we may as well assume that
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we are free to modify ψ by adding arbitrary copies of the trivial bundle ε,
and that the dimension of the fibers of ψ, d, is greater than n.

Since the Thom space of ε ⊕ ψ = ΣT (ψ) 7 it follows from 6 that the
degree one normal data gives a map

Sn+d
PT−−→T (ηM )

T (g)−−→T (ψ)

which is well defined up to suspension, and consequently gives a well defined
element in the stable homotopy group

lim
s 7→∞πn+s+d(ΣsT (ψ)) = πsn(T (ψ)).

Lemma 40. The Hurewicz image of the homotopy class above is the
image of [X] under the Thom isomorphism Hn(X)−→Hn+d(T (ψ)).

Proof. We have that the Hurewicz image of the Pontrajagin-Thom
map PT is the image of [M ] under the Thom isomorphismHn(M)−→Hn+d(T (ηM )).
Hence, since f is degree 1 the result follows. ¤

On the other hand, given any map α : Sn+d−→T (ψ) with α∗([Sn+d]) equal
to the image of [X] under the Thom isomorphism, it follows that when we
make α transverse regular over X ⊂ T (ψ), that restricting to the imverse
image of α gives a degree one normal map to X, and if α is homotopic to
β, then, again applying transversality this time to the homotopy, we have
that the degree one normal problem associated to α is normally bordant to
the degree one normal problem associated to β.

Here the definition of a degree one normal bordism is obvious: a degree
one normal map of pairs H : (W,∂W )−→(V,Xt−X), G : ηW−→H !(ν), where
H, G, restrict to M , M ′ as the previously given normal maps.

Thus we have

Theorem 27. Suppose that
{
f : Mn−→X, g : ηM−→f !(ψ)

}

is a degree one normal map with M closed and oriented. Then the set of
normal bordism classes of degree one normal maps over (X,ψ) is identified
with the Kernel of the stable Hurewicz map,

Ker(h : πsn(T (ψ))−→Hs
n(T (ψ))).

In the case of degree one normal maps of pairs

f : (M,∂M)−→(X,Y ), g : ηM−→f !(ψ),

the set of degree one normal maps is identified with the kernel of the Hurewicz
map of relative groups

Ker(h : πsn(T (ψ), T (ψ|Y ))−−→Hs
n(T (ψ), T (ψ|Y )).
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Example 42. The stable bundles over the sphere Sn are identified with
πn(BO) which are given by Bott periodicity as Z if n ≡ 0 mod (4), Z/2 if
n ≡ 1, 2 mod (4), and 0 otherwise. Let φ : Sn−1−→SO(d) give the attaching
map for one of these bundles, σ(φ). Then the Thom complex is the 2-cell
complex

Sd ∪ J(φ)ed+n

where ed+n = Dd ×Dn, and J(φ) is given as
{
J(φ)(~v, ~w) = φ(~w)(~v) when (~v, ~w) ∈ (Dd × Sn−1,
( if (~v, ~w) ∈ Sd−1 ×Dn.

In particular, here Sd is Dd/(∂D ∼ ∗).
Clearly, if [λ] = k[φ] ∈ πn−1(O(d)) we have that the attaching map

J(λ) is homotopic to k times the attaching map J(φ). It follows that we
have constructed a homomorphism πn(BO)−−→πsn−1(S

0), the (n−1)st stable
homotopy group of spheres, and we can construct a degree one normal map,

f : Mn−−→Sn, g : ηM−−→f !(σ(φ))

if and only if J(φ) = 0. But deep results during the 1960’s of J. F. Adams,
[THE J(X) PAPERS], M. Mahowald, D. Sullivan [ANNALS PAPER], and
D. Quillen, [ADAMS CONJECTURE] completely determined the kernel of
the homomorphism J . The kernel is zero in dimensions not congruent to
0 mod (4) and the p-primary part in dimension 4n is given as the p-primary
part of the greatest common division of the numbers (q2n−1) as q runs over
all primes distinct from p.

In fact, these powers of p are given as follows. First, if p is odd, then
|Im(J)4n−1| is divisible by p if and only if (p− 1) divides 2n. Moreover, pt

divides |Im(J)4n−1| if and only if (p − 1)pt−1 divides 2n. When p = 2 we
have that, 2n = 21+sc with c odd if and only if 23+s is the power of 2 in
|Im(J)4n−1|. Thus, in particular we have

Im(J)7 = Z/(240)

where 240 = 3 · 5 · 16.
For each φ ∈ Ker(J) we see that the Thom complex has the form of a

wedge Sd ∨ Sn+d with d > n, so

πn+d(T (σφ)) = πsn(S
0)⊕ Z

and the set of degree one normal maps associated to φ is identified with
πsn(S

0).

Example 43. We specialize the above discussion to the case where φ is
the trivial bundle.

Proposition 19. If f : Mn−→Sn is a normal map as above, associated
to the trivial bundle over Sn, then Mn is an oriented boundary. In particular
the signature of Mn is 0 if n = 4k.
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Proof. Thom’s correspondence between elements in the bordism group
and elements in πsn(T (BO)) is obtained as in 5, by taking the homotopy class
of the composite

S2n+k
PT−−→T (ηM )

T (c(ηM ))−−−−−→T (ζn+k(BO(n+ k))

where PT is now the Pontrajagin-Thom map associated to an embedding
Mn ↪→ S2n+k with normal bundle ηM classified by the map

c(ηM ) : M−→BO(n+ k).

Here, ζn+k(BO(n + k)) is the universal n + k bundle over the classifying
space BO(n+ k), and T (c(ηM )) is the associated map of Thom spaces.

In the case here c(ηM ) ' 0 since the normal bundle to M is trivial,
and consequently the same is true of T (c(ηM )), so the composite above is
homotopy trivial and M represents 0 in the oriented bordism group. ¤

Note that in this case a degree one normal map is simply a choice of
framing of ηM , well defined up to a reframing of the trivial bundle over Sn,
which is the same as an element in πsn(S

0), the mth stable homotopy group
of the stable sphere taken modulo the elements in πsn(S

0) which come from
stable framings of the n-sphere. This can be seen by simply assuming that
the framing is changed only over a small region in Sn, a region where the
map f is a homeomorphism.

But this group can be identified with the image of the J-homomorphism
of the previous example. Thus, independent of the choice of framing of
the trivial bundle over Sn there is a map of normal bordism classes to
πsn(S

0)/Im(J). Alternatively, we can understand this by noting that a re-
framing, τ , of the trivial bundle over Sn induces a self map of the Thom
complex which is the identity on the Sd, while on the Sn+d the map is
(id, J(τ)).

Now, assume that we have a degree one normal map as above,

f : Mn−−→Sn, g : ηM−−→f !(dε)

which is normally bordant to 0. By this I mean that it extends to a normal
bordism

F : (Wn+1, ∂(W ) = M)−−→(Dn+1, Sn), G : ηW−−→F !(dε).

This is an element in πsn+1(S
d ∨Dn+d+1, Sn+d).

Note that if we have any two such extensions, (f̂ ,W, ψ̂) and f̄ , W̄ , ψ̄) then
we can glue them together over (f,M,ψ) to give a degree one normal map
(g,W ∪M W̄ , ψ̂∪ ψ̄) to Sn+1. But, the normal bundle for this normal map is
the pull-back of a bundle over Sn+1 which need not be trivial. This remark
will become important later when we connect the discussion here with the
determination of the set of distinct diffeomorphism classes of manifolds Σn

which are homeomorphic to Sn.
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Fiber homotopy trivial bundles and Ker(J). In the first example a
crucial role was played by those bundles over Sn which, while non-trivial as
bundles had Thom complexes homotopic to the Thom complex of the trivial
bundle, Σd(Sn+) ' S2 ∨ Sn+d. One way in which we can guarantee that this
will happen for the stable version of a bundle is that when we consider
the sphere bundle, S(µ), with fiber Sd−1 associated to the Rd-vector bundle
µ+kε, there is a fiber preserving homotopy equivalence,H : S(µ)−→Sd−1×X.
Since the Thom space of µ+ kε is the mapping cone of the fibration

S(µ)−−→X
it follows that H gives a cannonical identification of T (µ+kε) with σd(X+).
We call H a stable fiber homotopy trivialization of µ, and consider the
subset of the set of stable vector bundles over X which have a stable fiber
homotopy trivialization.

Lemma 41. Suppose that X is a finite complex and µ is a stably fiber
homotopy trivial vector bundle over X, then for any other bundle γ over X
we have

T (γ + µ) = ΣdT (γ).

Also, the subset of K∗
O(X) consisting of stably fiber homotopy trivial vector

bundles over X is a subgroup.

Proof. The sphere bundle associated to γ + µ is the fiberwise join
S(γ) ∗ S(µ) = S(γ) ∗ (Sd−1 × X) and each fiber is simply the join of the
fiber over X in S(γ) with Sd−1, so, when we take the mapping cone, the
coordinates in the Sd−1 identify the Thom space with Σd(T (γ)).

To show that the Whitney sum of two fiber homotopy trivial bundles
is again fiber homotopy trivial we use the same argument, noting that the
fiberwise join of Sd−1 ×X with Sl−1 ×X is just

Sd−1 ∗ Sl−1 ×X = Sd+l−1 ×X.
Now, suppose that µ is fiber homotopy trivial and γ + µ = (d + m)ε. We
assume that m > dim(X). The trivialization of γ + µ gives a projection

p : S(γ + µ)−−→Sd+m−1,

which together with the fiber projection π : γ + µ−→X, gives a homotopy

equivalence S(γ + µ)
p×π−→Sd+m−1 × X. Embedding S(µ) ⊂ S(γ + µ) and

composing with p gives a map

Sd−1 ×X−−→Sd+m−1

which, for dimensional reasons is homotopic to the constant map

Sd−1 ×X−→Sd−1 ↪→ Sd+m−1.

Using this homotopy and the original map p we obtain a map

S(γ)−−→Sm−1
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which is degree on on the fiber Sm−1 and gives a homotopy trivialization of
γ. ¤

It will turn out that the quotient of KO(X) by the group of fiber ho-
motopy trivial bundles is always finite for X a finite complex, and from the
lemma if γ is associated with a degree one normal map to X, then γ + µ is
associated to degree one normal maps for any µ in this subgroup. In analogy
with the situation for spheres we call this subgroup Ker(J) for KO(X).

Homology properties of degree one normal maps. For now let us
consider the structure of degree one normal maps M−→X where M and X
have empty boundaries.

From 5 we have that f∗ : H∗(Mn)−→H∗(Xn) is surjective. But more is
true: since the case of degree 1-normal maps gives

f∗(f∗(α) ∩ [M ]) = α ∩ [X]

it follows that Ker(f) is a split summand of H∗(M), where f∗(Hn−1(X))∩
[M ] is the complementary summand. Moreover, we define the kernel of f as

K∗(f) = Ker(f∗), and K∗(f) = {θ ∈ H∗(M) | θ ∩ [M ] ∈ K∗(f)}.
In words K∗(f) is those θ in H∗(M) so that θ capped with the orientation
class lies in the kernel of f∗.

It follows directly that H i(M) = f∗(H i(X)) ⊕ Ki(f) for each i, and
capping with [M ] preserves this splitting: Ki(f) ∩ [M ] = Kn−i(f), so that
associated to a degree one normal map f : M−→X, f !(ψ) = ηM , we have a
splitting H∗(M) = H∗(X)⊕K∗(f), H∗(M) = H∗(X)⊕K∗(f) and Poincaré
duality preserves this splitting so Kn−∗(f) and K∗(f) are dually paired.

In the case of pairs K∗(f) is defined as before, while

K∗(M,∂M, f) is Ker(f∗ : H∗(M,∂M)−−→H∗(X,Y ).

Once more the formula

f∗(f∗(α) ∩ [M,∂M ]) = α ∩ [X,Y ]

shows that f∗ is surjective and split for both H∗(M) and H∗(M,∂M). Fi-
nally, we define K∗(f) and K∗(M,∂M, f) as above, and Poincaré duality
gives dual parings K∗(f) ∼= Kn−∗(M,∂M, f), K∗(M,∂M, f) ∼= Kn−∗(f).

It is also true that the universal coefficient formula relates K∗(f) with
K∗(f), and

K∗(M,∂M, f) with K∗(M,∂M, f).

Precisely, we have

K∗(f) = Hom(K∗(f),Z)⊕Ext(K∗−1(f),Z),
K∗(M,∂M, f) = Hom(K∗(M,∂M, f),Z)⊕Ext(K∗−1(M,∂M, f),Z).

This discusssion works equally well for covers, though here

K∗(f), K∗(f), K∗(M,∂M, f) and K∗(M,∂M, f)
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have the additional structure of modules over Z(π) where π is the group of
the cover.

From the definition and the results of the last chapter we have

Corollary 21. Let f : M−→X be a degree one normal map as above.
Then there is a cobordism W from (M,∂M) to (M ′, ∂(M ′)) together with
an extension of f to a degree one normal map of the triple

f̂ : (W, (M tM ′),W ′)−−→(I ×X, (0×X t 1×X), I × ∂X)

and restricting f̂ to
(M ′, ∂M ′)−→(X, ∂X)

gives a homotopy equivalence through one less than the middle dimension.
Moreover, the induced map in homology is surgective in all dimensions.

Similarly, in the relative case we first construct bordisms on the bound-
ary to a degree one normal map which is a homotopy equivalence through
one less than

[
n
2

]
, and then extend this bordism to give a bordism to a

normal map F : (Mn+1, ∂M)−→(X,Y ) where all the kernels fit together in
an exact sequence:

0−−→K[n
2 ]+1 (F |∂M)−−→K[n

2 ]+1(F )

−−→K[n
2 ]+1(M,∂M,F )

∂−−→K[n
2 ](F |∂M)−−→0

for n odd and

0−−→Kn
2
+1(F ) −−→Kn

2
+1(M,∂M,F )

∂−−→
Kn

2
(F |∂M)−−→Kn

2
(F )−−→Kn

2
(M,∂M,F )−−→0

for n even. Later we will see that we can make the extreme terms in this
last sequence 0 as well.

In particular, in the case where M is closed, the data of a degree one
normal map shows that the obstruction to obtaining a cobordism of pairs
from the original map to a degree one normal map which is a homotopy
equivalence occurs only in the middle dimension if n is even, and in the two
dimensions

[
n
2

]
,
[
n
2

]
+ 1 if n is odd.



CHAPTER 9

Surgery for simply connected manifolds

We break the discussion here into cases depending on the dimension
of M mod (4). In the first three sections we determine the form of the
obstruction to completing surgery – for n odd there is none, while for n ≡
0 mod (4) there obstruction is the index of a certain non-singular symmetric
bilinear form on Zr, and for ≡ 2 mod (4) the obstruction turns out to be
the class of a certain quadratic refinement of a non-singular skew-symmetric
form on (Z)2r.

1. The case n ≡ 0 mod (4)

The types of forms which appear in K2n for a 4n-dimensional surgery
problem after surgery has been done to make Kj = 0 for j 6= 2n can be
described as follows:

Lemma 42. Under the conditions above the intersection pairing on K2n,
(alternately, the ∪-product pairing on K2n), satisfies the conditions
1. The associated adjoint map ϕ : K2n−→K2n is an isomorphism,
2. α ∩ α ∈ 2Z for all α ∈ K2n.
3. ϕ∗ = ϕ, i.e., the intersection pairing is symmetric.

Proof. : The first statement is a direct consequence of Poincaré duality.
The third statement follows since the dimension of M is 4n. The second
statement occurs as follows. In cohomology we have H2n(M ;Z) = K2n ⊕
H2n(X;Z), and this splitting preserves cup products. Reducing mod(2) we
have Sq2n(x) = x2 for x ∈ H2n(M ;Z/2), but Sq2n(x) = x ∪ v2n where v2n
is the Wu class of the normal bundle to M . On the other hand, since π is a
normal map, there is a bundle φ on X so π!(φ) = ηM , and v2n = f∗(v2n(φ).
Finally, note that K2n is orthogonal to f∗(H∗(X;Z/2)) in H∗(M ;Z/2) so,
for any element α ∈ K2n, we have α∪v2n = 0, which completes the proof. ¤

We now list a number of basic properties of forms satisfying the condi-
tions (1)-(3) above.

Lemma 43. Let α ∈ K2n be any element of K2n which is indecomposable
and also satisfies the condition α ∩ α = 0. Then there is a β ∈ K2n so that
α∩β = 1 and β∩β = 0. In particular, K2n can be written as the orthogonal
direct sum K ′

2n ⊥ 〈α, β〉, and the intersection form on 〈α, β〉 is given by the

matrix
(

0 1
1 0

)
.

121
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Proof. Since α is indecomposable it follows that there is a basis for
K2n containing α as one of the basis elements. Since the adjoint map
ϕ : K2n−→K2n is an isomorphism there is a β ∈ K2n so that ϕ(β) evalu-
ates as 0 on all the elements of the basis except for α, where it evaluates
to 1. We must show that β can be now modified to satisfy the condition
β ∩ β = 0. But consider β′ = β − (β∩β)

2 α. β′ ∈ K2n since β ∩ β ∈ 2Z, and

β′ ∩ β′ = β ∩ β − 2
(
β∩β

2

)
β ∩ α = 0, since α ∩ α = 0.

It remains to show that K2n splits as an orthogonal direct sum. But this
is a consequence of the more general

Proposition 20. Let ϕ : A−→A∗ be any symmetric isomorphism where
A is a finitely generated free abelian group. Let B ⊂ A satisfy the condition

that the composite B ↪→ A
ϕ−→A∗

i∗−→B∗ is an isomorphism, then A splits as
an orthogonal direct sum B ⊥ B⊥, where B⊥ is the set of all elements a ∈ A
which satisfy 〈a, b〉 = ϕ(a)(b) = 0 for all b ∈ B.

Proof of Proposition. Let a ∈ A be arbitrary, then a defines an
element b(a) ∈ B∗ by b(a)(b) = 〈a, b〉. Since the composite i∗ϕi is an
isomorphism there is an element b′(a) ∈ B so that 〈b′(a), b〉 = b(a)(b) for all
b ∈ B, and a − b′(a) ∈ B⊥. Consequently, writing a = b′(a) + (a − b′(a))
shows that A = B + B⊥. It remains to note that B ∩ B⊥ = 0, which is
true since, given any element in B, there is an element e(b) ∈ Hom(B,Z)
so e(b)(b) 6= 0. But since i∗ϕi is an isomorphism there is an element c ∈ B
so that i∗ϕi(c) = e(b), and b is not contained in B⊥. ¤

¤

Returning to K2n we see that after applying the remarks above we can

write K2n = V ⊥ W where the form on V has the special form
(

0 I
I 0

)
.

A key result of class field theory shows that if there are elements w1 ∈ W ,
w2 ∈W with w1 ∩ w1 > 0 and w2 ∩ w2 < 0, then there must be an element
w ∈W with w ∩w = 0. Assuming this, we can iterate the procedure above
until W is definite, i.e. either 〈w,w〉 > 0 for each w ∈W or 〈w,w〉 < 0.

Thus the form on K2n(f) splits as an orthogonal direct sum W ⊥ sH
where W is definite and H is an orthogonal direct sum of (Z2)’s with form

given by the matrix
(

0 1
1 0

)
.

From the arguments of the last chapter if we embed an Sn representing
one of the generating Z’s for such an H, then the embedding extends to an
embedding S2n × D2n ⊂ M , and doing surgery on this embedding simply
removes the copy of H. It follows that after doing surgery we can assume
that the intersection form on K2n(f) is definite.

We now show that the dimension of K2n(f) when the form is definite is
independent of the choices made.
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First, note that when we tensor K2n(f) with the rationals, Q, the form
remains definite. Indeed, given any element α ∈ K2n(f) ⊗ Q, then there is
some non-zero v ∈ Q so that vα ∈ K2n(f). Hence, since 〈vα, vα〉 = v2〈α, α〉,
the claim follows.

Lemma 44. Let F be any field which contains 1
2 , and ϕ : Fn−→(Fn)∗ any

non-singular symmetric form, then there is a change of basis so that ϕ be-
comes diagonal.

Proof. If α ∈ Fn satisfies 〈α, α〉 6= 0, then 〈α〉 is a non-singular direct
summand of Fn and we can write Fn = 〈α〉 ⊕ 〈α〉⊥ as above. On the other
hand, if 〈α, α〉 = 0 there is β so that 〈α, β〉 = 1 by non-singularity, and if
〈β, β〉 = 0 as well, 〈α + β, α + β〉 = 2 6= 0, so we have a sufficient number
of vectors with 〈α, α〉 6= 0 in order to iterate the splitting procedure above
and complete the proof of the lemma. ¤

Thus, when we diagonalize the form on W ⊗Q we see that the diagonal
elements are either all positive or all negative and the index is ±(Dim(W ⊗
Q)) On the other hand, the index of the form H ⊗Q is zero, so the index of
K2n(f)⊗Q is, in absolute value, the dimension of W ⊗Q.

Finally, note that since

H2n(M4n,Q) = K2n(f)⊗Q ⊥ H2n(X;Q)

and the index is additive for orthogonal sums it follows that

Dim(W ⊗Q) = |I(M)− I(X)|,
which is, indeed, independent of the choices made.

We have proved

Lemma 45. If f : M4n−→X, g : ηM−→f !(φ), is a degree one normal map
with M a closed manifold and π1(X) = 0, then f is normally bordant to a
homotopy equivalence if and only if I(X) = I(M).

2. The case n = 4k + 2 and π1(M) = 0

Most of the arguments of the previous section for n = 4k carry over
to this case. First we have that K2k+1 = Z2m with a non-singular (−1)-
symmetric form, which must be even since 〈x, x〉 = 0 for any x ∈ K2k+1.
Consequently, we can write K2k+1 = B ⊥ B∗ with 〈x, y〉 = 0 if x, y ∈ B or
x, y ∈ B∗. Now, assuming that k ≥ 1 every element in K2k+1 is represented
by an embedded sphere which is unique up to isotopy when we assume that
f∗(σ) = 0 in π2k+1(X). However, all we know about the normal bundle to
this embedded sphere is that it is stably trivial, so ε⊕ ησ = (2k + 2)ε. As a
consequence, ησ is either trivial or is a copy of τS2k+1 (which is trivial if and
only if k = 0, 1, 3). So for now let us also assume that k 6= 0, 1, 3.

Lemma 46. Suppose that α, β ∈ K2k+1. Define a function χ : K2k+1−→Z/2
by assigning 1 ∈ Z/2 to α if ηM (α) = τS2k+1. Otherwise, assign 0 ∈ Z/2 to
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α. Then we have

χ(α+ β) = χ(α) + χ(β) + 〈α, β〉
where 〈α, β〉 is the intersection number of α and β taken mod(2).

Proof. Suppose that α is represented by the embedding f : S2k+1−→M
and β is represented by g : S2k+1−→M . Suppose, moreover that f and g are
in general position so that their images intersect transversally in M . Then
the parity of the number of intersection points in exactly 〈α, β〉 ∈ Z/2. Now,
α + β is represented by f ∪ g, when we connect the two images by a tube
disjoint from their images, and this gives an immersion f ∪ g representing
α+β with normal bundle the sum of the normal bundle to α and the normal
bundle to β. On the other hand, in order to use the Whitney trick to change
f∪g into an embedding we have to add 〈α, β〉 single double point immersions.
It follows that the normal bundle to the embedded sphere representing α+β
is

ηM (α) + ηM (β) + 〈α, β〉τS2k+1

and the lemma follows. ¤
Thus the normal bundle data to the embedded spheres gives a Z/2 qua-

dratic extension of the intersection form on K2k+1, and we have

Corollary 22. We can do surgery to kill the kernel K2k+1 if and only
if we can find a splitting K2k+1 = B ⊥ B∗ with the quadratic extension
restricted to B identically zero.

Proof. Indeed, we’ve already seen that the effect of surgery in this
situation is to remove a copy of Z2 generated by α and some dual to α. So
the only real difficulty is to obtain enough embeddings of S2k+1 ×D2k+1 to
represent half the generators of K2k+1. ¤

Remark . Of course, at this stage we don’t know if two different ways
of doing surgery will arrive at different K2k+1’s, for one of which we can do
surgery and for the other we can’t. But later we will, in fact, show that if
the obstruction above does not vanish for one way of surgering f : M−→X
to be an equivalence in dimensions < 2k+1, then it does not vanish for any
choice.

We now define an invariant of a non-singular skew symmetric form on
Z2m together with a quadradic function ψ : Z2m−→Z/2 satisfying the formula
of the previous lemma.

Definition 46. Let 〈x, y〉 be a non-singular skew-symmetric form on
Z2m with ψ : Z2m−→Z/2 a quadratic refinement. Then if Z2m = B ⊕ B∗
with 〈α, β〉 = 0 for α, β ∈ B or B∗ we can choose a basis e1, . . . , em for B,
and the dual basis e∗1, . . . , e

∗
m for B∗, and the Arf invariant of the quadratic

refinement is the sum

Arf(ψ) =
m∑

1

ψ(ei)ψ(e∗i ).
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Of course, a priori, it is far from obvious that Arf(ψ) does not depend
on the choices of B, B∗ and the basis e1, . . . , em. But what is clear is that
ψ(2λ) = 0 for any λ ∈ K2k+1. Consequently, ψ factors through the mod(2)
reduction K2k+1 7→ K2k+1 ⊗ Z/2 where it becomes a quadratic reduction
of the non-singular bilinear form 〈ᾱ, β̄〉 = 〈α, β〉 mod (2). We also have the
relations:

Lemma 47.
(a.) The Arf invariant of the orthogonal direct sum (K1, ψ1) ⊥ (K1, ψ2) is
the sum of the Arf invariants Arf(ψ1) +Arf(ψ2).
(b.) Let H = Z2 with skew-symmetric non-singular bilinear form given by

the matrix
(

0 1
−1 0

)
, and ψ(e) = ψ(e∗) = 0, while A is Z2 with the same

non-singular skew-symmetric form, but ψ(e) = ψ(e∗) = 1. Then H ⊥ H ∼=
A ⊥ A, the isomorphism being with respect to both the bilinear form and ψ.

Proof. Consider A ⊥ A with basis e1, e∗1, e2, e
∗
2 preserving the sum-

mands. Then a new basis is given as e + 1 + e2, e1 + e2 + e∗1, and e∗1 + e∗2,
e∗1 + e∗2 + e2. One easily checks that this gives a splitting into orthogonal
summands and the space spanned by the first two is a copy of H, as is the
space spanned by the third and fourth. ¤

Corollary 23. Let Z2m be given with a non-singular skew-symmetric
bilinear form together with a quadratic reduction ψ. Then there is a basis
for Z2m which makes this triple isomorphic to either

H ⊥ H ⊥ · · · ⊥ H︸ ︷︷ ︸
m−times

or
A ⊥ H ⊥ H ⊥ · · · ⊥ H︸ ︷︷ ︸

(m−1)−times
.

Finally, we have

Lemma 48. The non-singular skew-symmetric bilinear form together
with quadratic reduction

A ⊥ H ⊥ H ⊥ · · · ⊥ H︸ ︷︷ ︸
(m−1)−times

is not isomorphic to H ⊥ · · · ⊥ H︸ ︷︷ ︸
m−times

for any m.

Proof. Here we use the reduction to (Z2m)⊗Z/2 = (Z/2)2m. We have
that the total number of elements of (Z/2)2m for which ψ(a) = 1 in the first
case is 22m−1 + 2m−1, while it is 22m−1 − 2m−1 in the second case. Indeed,
in the first case the total number of elements for which ψ(a) = 1 is given as
the sum

3(N1) +N2
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where N1 is the total number of elements in (m− 1)H ⊗Z/2 with ψ(a) = 0
while N2 = 22(m−1) − N1 is the total number of elements with ψ(a) = 1.
Similarly, the total number of elements in mH ⊗Z/2 with ψ(a) = 1 is given
as

3N2 +N1.

Now, the count is an easy induction. ¤

Returning to the surgery problem in dimension 4k+2 we see that we can
complete the surgery on the degree one normal map to make it a homotopy
equivalence if and only if the quadratic refinement ofK2k+1 has Arf invariant
0. Thus, there is (at most) a Z/2 obstruction to completing the surgery. In
7 we will complete the argument here by showing that the Arf invariant is,
in fact, independent of the way in which the surgery problem is made 2k+1
independent.

3. Surgery on degree one maps for n odd and π1(X) = 0

We now prove a remarkable result:

Theorem 28. Let f : M2k+1−→X, g : ηM−→f !(ζ) be a degree one normal
map with π1(X) = 0. Then f is normally bordant to a homotopy equivalence.

Proof. The proof builds on the comments in the last chapter relating
to the effect of a single surgery in dimension k. Let e1, . . . , er be a generating
set for Kk(f), and embed representing spheres with trivial normal bundle
for each ei. We can assume all these spheres are disjoint and we consider the
resulting manifold, M̂ , obtained by deleting disjoint Sk ×Dk+1’s obtained
by thickening these embedded Sk’s.

For convenience we can assume that f restricted to each Sk ×Dk+1 has
image ∗ ∈ X, a given basepoint. We may also assume that X = Y ∪ e2k+1,
where Y is a 2k−1-complex and e2k+1 represents the class [X] ∈ H2k+1(X).
Then a further homotopy of f modifies it to a map f ′ which takes (Sk ×
Dk+1, Sk×Sk) to (D2k+1, S2k) ⊂ e2k+1, and on Sk×Sk is just the pinching
map, collapsing the skeleton Sk ∨ Sk to point. In particular, restricting f ′

to M̂ gives a degree one normal map of pairs,

(M̂, ∂(M̂))−−→(X − Int(D2k+1), S2k).

Lemma 49. There is a short exact sequence of kernels

0−−→Kk+1(M̂, ∂(M̂))
∂−−→Hk(∂(M̂))

i∗−−→Kk(M̂)−−→0
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Here Hk(∂(M̂)) = (Z)2r with non-singular (−1)k-symmetric intersection
form given by the matrix 



K 0 0 . . . 0
0 K 0 . . . 0
0 0 K . . . 0
...

...
...

. . .
...

0 0 0 . . . K




with K =
(

0 1
(−1)k 0

)
, and, with respect to this form and the identification

using Poincaré duality in M̂ of Kk+1(M̂, ∂(M̂)) with Kk(M̂)∗, we have that
im(∂) = Zk is a Lagrangian Kernel and i∗ = (∂)∗.

Proof. We note first the following facts about Kk(f) and Kk+1(f).
Since Kk−1(f) = 0 it follows that Kk+2(f) = 0 so Kk+1(f) must be torsion
free. (By the universal coefficient theorem, if T ⊂ Kk+1(f) is the torsion
part, it follows that Kk+2(f) = T ∗ direct summed with the torsion free
part of Kk+2(f), where T ∗ = Hom(T,Q/Z) ∼= T .) Consequently Kk(f) =
Kk+1(f)∗ is also torsion free. It follows that since i∗ : Hk(

∐r
1 S

k)−→Hk(M)
is surjective onto Kk(f), dually, i∗ : Hk(M)−→Hk(

∐r
1 S

k) factors through
Kk(f) and gives an injection Kk(f) ↪→ Hk(

∐r
1 S

k) = Zr. Now consider the
diagram

Zr
i∗←−− Kk(f)x∼=

x
Hk(

∐r
1 S

k) ←−− Hk(M) ←−− Hk(M,
∐r

1 S
k) ←−− 0xf∗

xf∗

Hk(X)
∼=←−− Hk(X,D2k+1) ←−− 0

Since the middle vertical sequence is exact it follows that

f∗ : Hk(X,D2k+1)−→Hk(M,

r∐

1

Sk)

is an isomorphism, and by dualityHk+1(M̂)−→Hk+1(X) is an isomorphism as
well. Likewise, we can dualize the diagram above to the homology diagram
and conclude that Hk(M,

∐r
1 S

k) ∼= Hk(X,D2k+1) ∼= Hk(X). Hence by
duality

f∗ : Hk+1(X − int(D2k+1))−→Hk+1(M̂)
is an isomorphism as well.

Now we need to determine Hk+1(M,
∐r

1 S
k). Note that

Hk+1(M,

r∐

1

Sk) = Hk+1(X)⊕ L
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where L is finitely generated from the exact sequence

0←−−Kk(f)←−−Zr ∂←−−Hk+1(M,
r∐

1

Sk)←−−Hk+1(M)←−−0.

Indeed, rationally, this shows that L ⊗ Q = Qr. Consequently, from the
universal coefficient theorem we have
Hk+1(M,

∐r
1 S

k) = Hom(Hk+1(M,
∐r

1 S
k),Z)⊕ Ext(Hk(M,

∐r
1 S

k),Z)
= Hom(Hk+1(X),Z)⊕Hom(L,Z)⊕ Ext(Hk(X),Z)

= Hk+1(X,Z)⊕Hom(L,Z)

and this has the form Hk+1(X,Z)⊕ Zr since L is finitely generated.
By excision we have isomorphisms

H∗(M,
r∐

1

Sk) ∼= H∗(M,
r∐

1

Sk ×Dk+1) ∼= H∗(M̂,
r∐

1

Sk × Sk),

and similarly in cohomology.
From the calculation above and the fact that Hk+1(M̂) = Hk+1(X) we

now see that

δ : Hk(
r∐

1

Sk × Sk)−−→Hom(L,Z)

must be onto, hence split since Hom(L,Z) = Zr. The remainder of the
proof of this lemma is now direct. ¤

The next step is to point out, as was observed in the previous chapter,
that the effect of surgery can be thought of as exchanging a certain number
of the ei with their duals, e∗i , and then taking the quotient by projection of
im(∂) on the resulting first summand. Thus, surgery can be completed if
and only if we can modify the embeddings and framings of the Sk ×Dk+1

while controlling the image im(∂) so that after switching a subset of the ei,
e∗i , the resulting projection is onto. In particular, in such a case we must
have a basis for Kk+1(M̂, ∂(M̂)), f1, . . . , fr so that the image of fi in the
new Hk(∂(M̂)) has the form

ei +
∑

ai,je
∗
j

and, since the image is a Lagrangian Kernel the ai,j are not arbitrary but
must satisfy the symmetry constraint ai,j = (−)k+1aj,i.

In the next subsection we show that it is always possible to modify the
embeddings and framings to achieve this. ¤

4. The geometric moves

We now consider the effect of certain fairly simple changes in the em-
bedded Sk’s and their framing on the exact sequence of 49. First, we can
modify the embedding of the tth sphere Sk by taking a path disjoint from
the other Sk going from Skt to Sks and then thickening the path to a tube,
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I ×Sk−1 and using this tube to take the connected sum of Skt with a sphere
in one of the fibers Dk+1 of Sk × Dk+1 which links Sks . The effect of this
modification is to change the form so that et is replaced by et + e∗s and es
by es ± e∗t as long as t is distinct from s. The matrix associated to such a
change is

TN(t,s) =
(
I Jts
0 I

)

where Jts is the matrix which is zero except for a 1 in the (t, s)-position and
a ±1 in the (s, t)-position. The sign being + if k is odd, and (−) if k is
even. By this we mean that the resulting image of Kk+1(M̂, ∂(M̂)) is given
by the composition TN(t,s)∂.

Next, we can reorder the ej , which induces, simultaneously a reordering
of the e∗j , with matrix of the form

Tσ =
(
σ 0
0 σ−t

)
.

As before Tσ∂ gives the new image of ∂ with respect to this variation in the
embeddings. This will remain true for the following variations as well.

Also we can change the framing of over Skt . The constraint that we
must be able to extend the degree one normal map over the trace of a
surgery constrains us to take framing modifications which induce stably
trivial bundles over Sk+1, provided that the original framing satisfies the
condition that when we do surgery with respect to this framing we are able
to extend the normal map to a normal map on the trace of the surgery.

In particular, if we assume this, then for k odd the possible reframings
correspond to multiples of the tangent bundle and take et to et + 2λe∗t ,
leaving the remaining ej and e∗j fixed. Here the matrix is

TF (λ,t) =
(
I Dt

0 I

)

where Dt is the matrix which is identically zero except for a 2λ in the (t, t)-
position.

On the other hand, if k is even, then the only possible reframing corre-
sponds to the tangent bundle to Sk+1, and, since the Euler class is zero in
this case, reframing, in this case has no effect in homology.

Finally, we can proceed as in the first case, taking a path from Skt to Sks
disjoint from the other Sk’s, translate Sks away from itself to (Sk, v) where
v ∈ Dk+1 is a given fixed vector, and taking the connected sum of Skt and
(Sks , v) along I × Sk−1 thickening the path. This move will have the matrix

(
I +Ets 0

0 I −Est

)

where, as usual, Erm is the matrix which is 0 except for a single 1 in position
(r,m).
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These matrices generate a subgroup Hk ⊂ SP (−)k

r (Z), where SP (−)k

r (Z)
is the group of isometries of the form over Z2r given by the matrix

Jk =
(

0 I
(−)kI 0

)
.

In particular, T ∈ SP (−1)k

r (Z) if and only if

TJkJ
t = Jk,

and if we add in the matrix Si, which exchanges ei with (−)ke∗i while leaving
everything else fixed (the move associated with surgery on the ith Sk×Dk+1),
then we have

Theorem 29. The group SP
(−)k

r (Z) is generated by the subgroup Hk

together with S1. Consequently, a sequence of moves of the type above to-
gether with at most r surgeries will kill Kk(f). It follows that for n odd
and π1(X) = 0, then any degree one normal map f : Mn−→X, is normally
cobordant to a homotopy equivalence.

(The theorem will follow directly once it is shown that 〈Si, Hk〉 = SP
(−)k

r (Z).
The proof SHOULD APPEAR in [Coxeter]. However, this result is suffi-
ciently important that we give a proof here in APPENDIX to this chapter.)

5. Plumbing and the Browder-Novikov Theorem

We now construct some examples of degree one normal maps over the
pair (Dk+1, Sk) which are very useful, and in fact, represent the heart of
simply connected surgery theory. Using these examples and our discussion
of surgery above we will then prove the most basic theorem in the subject
– the Browder-Novikov theorem.

Plumbing disk bundles. Given two disk bundles over Sk,Dk−→E−→Sk
andDk−→F−→Sk, we plumb them together by taking a trivialization of E over
a small Dk ⊂ Sk, so π−1(Dk) = Dk

f ×Dk
b , where Df lies on the fiber and Db

lies parallel to the base, and a similar trivialization of F over a second small
Dk ⊂ Sk. Then we make a single manifold with boundary by identifying
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Dk
f ×Dk

b ⊂ E with Dk
f ×Dk

b ⊂ F , by exchanging base and fiber.
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The Plumbing of two copies of I × I

Clearly, the total space of the resulting plumbing has the homotopy type of
the wedge of two spheres Sk ∨ Sk, with intersection numbers given by the
matrix

A(E,F ) =
(

λ1 1
(−1)k λ2

)

where λi is the self intersection number of Sk in E or F . Now denote the
plumbing by P (E,F ), then there is a long exact sequence

· · · −−→Hi( P (E,F ))−−→Hi(P (E,F ), ∂(P (E,F )))
∂−−→Hi−1(∂(P (E,F )))−−→· · ·

which is non-trivial only for i = k. Here the sequence becomes

0−−→Hk(∂(P ))−−→Z2
A(E,F )−−−→(Z2)∗

∂−−→Hk−1(∂(P ))−−→0,

and this allows us to determine the homology of ∂(P ).
Standard general position arguments show that π1(∂P (E,F )) = 0 pro-

vided k ≥ 3, but for k = 2 π1(∂P (E,F )) is generally non-trivial. Conse-
quently, in the examples below we will assume that k ≥ 3.

Example 44. The first example occurs for k odd, and E = F , the

tangent disk bundle over Sk. Then the matrix A(E,F ) =
(

0 1
−1 0

)
is non-

singular and Hi(∂(P (E,F ))) = 0 for i 6= 0, 2k − 1. Consequently, from
the Poincaré conjecture in dimensions ≥ 5 it follows that ∂(P (E,F )) is
homeomorphic to the sphere S2k−1. However, Browder, [8], has shown that
it cannot be diffeomorphic to the ordinary S2k−1 unless k is one less than
a power of 2. In these cases, it is known that ∂(P (E,F )) is diffeomorphic
to S2k−1 for k = 1, 3, 7, 15, 31, but it is unknown at present whether this is
true for k = 63.
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Now consider the situation where k is even and E is the disk bundle of
λ1 copies of the tangent disk bundle (so the self intersection number of Sk

in E is 2λ1, and F is λ2 copies of the tangent disk bundle. Here

A =
(

2λ1 1
1 2λ2

)

which has determinant 4λ1λ2 − 1, and the exact sequence above becomes

0−−→Z2
A−−→Z2

∂−−→Z/(4λ1λ2 − 1)−−→0.

In particular, if E and F are both simply the tangent bundle to Sk then the

matrix is
(

2 1
1 2

)
with determinant 3.

One can also iterate the plumbing construction, using three or more
disk bundles over Sk and plumbing them together over disjoint Dk

f ×Dk
b ’s

according to a graph (or better, a tree). For example, in the situation where
k is even, Ei is λi copies of the tangent disk bundle, and the graph is

.....................................................................................................• • •
λ1 λ2 λ3

Plumbing 3 bundles along a linear tree

we get the matrix

A =




2λ1 1 0
1 2λ2 1
0 1 2λ3




with determinant 8λ1λ2λ3 − 2(λ1 + λ3). Consequently, when all the λi are
one, then the determinant is 4.

Likewise, for the linear graph with 4 vertices

.......................................................................................................................................................• • • •
λ1 λ2 λ3 λ4

Plumbing 4 bundles along a linear tree

we get the matrix

A =




2λ1 1 0 0
1 2λ2 1 0
0 1 2λ3 1
0 0 1 2λ4




which has determinant

(1− 4λ1λ2)(1− 4λ3λ4)− 4λ1λ4.

In particular, if all the λi are 1 then the determinant is 5. Similarly, for the
non-linear graph

.....................................................................................................

........

........

........

........

........

........

...• • •
•

λ1

λ2

λ3

λ4

Plumbing 4 bundles along a non-linear tree
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the matrix is 


2λ1 1 0 0
1 2λ2 1 1
0 1 2λ3 0
0 1 0 2λ4




with determinant

16λ1λ2λ3λ4 − 4(λ1λ4 + λ1λ3 + λ3λ4),

which again gives 4 in case all the λi = 1.
Perhaps the most important example of this kind is associated with the

graph of the E8-lattice
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........

........

........

........

........
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...• • • • • • •
•

The graph of the E8-lattice

In the case where all the λi = 1 this has matrix

AE8 =




2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 1 0 0 0
0 0 1 2 0 0 0 0
0 0 1 0 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2




with determinant equal to 1. Consequently, the plumbing associated to the
E8-graph with all the λi = 1 has boundary Σ4k−1

8 which has the homotopy
type of the sphere S4k−1, and consequently, is homeomorphic to S4k−1 for
k ≥ 2.

Lemma 50. The signature of AE8 is 8.

Proof. The signature of V is the signature of the matrix A above for
the E8-lattice. But the signature is the number of positive eigenvalues mi-
nus the number of negative eigenvalues. Moreover, the number of negative
eigenvalues corresponds to the number of changes of sign of the diagonal
minors given as the intersection of the first t rows with the first t columns.
But it is easily checked that these determinants are

2, 3, 4, 5, 4, 3, 2, 1

respectively in this case. ¤

Actually, it turns out that any non-singular even form on Zr must have
signature divisible by 8:
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Theorem 30. Let W be an even, integral, unimodular, symmetric form,
then I(W ) is divisible by 8.

Proof. We introduce the characteristic element ofW inW⊗Z/2, which
has a non-singular, even, form induced from the form on W . v is defined
by 〈v, w〉 = 〈w,w〉 for all w ∈ W ⊗ Z/2. This makes sense since 〈w +
s, w+ s〉 = 〈w,w〉+ 〈s, s〉 mod (2), so 〈w,w〉 defines a homomorphism from
W ⊗Z/2−→Z/2, and the non-singularity of W ⊗Z/2 guarantees that v exists
and is unique.

Note that if V is any lift of v we have 〈V, V 〉 ∈ Z is well defined mod (8),
since 〈V +2s, V +2s〉 = 〈V, V 〉+4〈V, s〉+4〈s, s〉, and 〈V, s〉 ∼= 〈s, s〉 mod (2).
Hence 〈V, V 〉 ∈ Z/8 is a well defined invariant of W .

It remains to identify this invariant with the index of W mod (8). In
order to do this, following an argument of Serre we introduce a certain
equivalence relation on non-singlar but not necessarily even forms on free
Z-modules.

We now consider unimodular, symmetric forms on (Z)n. Suppose there
is an isotropy vector α which we can assume is irreducible. Consider the
subspace 〈α〉 ⊂ 〈α〉⊥. I claim that the original form induces a form of
the same type on the quotient 〈α〉⊥/〈α〉 ∼= Zn−2. Indeed, for βi ∈ 〈α〉⊥/〈α〉,
i = 1, 2, define 〈β1, β2〉 = 〈b1, b2〉 for a choice of bi ∈ 〈α〉⊥ which projects onto
βi. Since 〈b1 + kα, b2〉 = 〈b1, b2〉 for all bi ∈ 〈α〉⊥ it follows that this pairing
is well defined. On the other hand, suppose that λ ∈ Hom(〈α〉⊥/〈α〉,Z).
By projection this defines an element λ ∈ Hom(〈α〉,Z) which vanishes on
〈α〉. Thus, when we look at ϕ−1(λ), it belongs to 〈α〉⊥ and it follows that
the resulting form on the quotient is non-singular. Moreover, it is even if
the original form was.

We define an equivalence relation on integral unimodular forms on Zn,
n = 1, 2, . . . by setting Zn ≡ 〈α〉⊥/〈α〉 for any indecomposable isotropy
vector in Zn. Note that I(W ) = I(〈α〉⊥/〈α〉), so I(W ) is an invariant of the
equivalence class.

Lemma 51. The set of isomorphism classes of unimodular, symmetric
forms on Zn, n = 1, 2, . . . under the equivalence relation induced by the
construction above is a copy of Z, where the generator is 〈1〉, and the inverse
of this generator is 〈−1〉. Moreover, I(W ) completely determines the class
of W in Z.

Proof. Note first that the orthogonal direct sum 〈1〉 ⊥ 〈−1〉 contains
the irreducible isotropy vector e1 + e2 = α and it is directly seen that
〈α〉⊥ = 〈α〉 in this case. Thus the sum above is trivial. Suppose now that W
is given, then, suppose that w ∈W is a generator. If it is an isotropy vector
we can reduce. If not, consider W ⊥ 〈−1〉 ⊥ 〈1〉, which is equivalent to W .
Suppose that 〈w,w〉 = k > 0. Then w + kf is an isotropy vector, where f
is a basis element of the summand 〈−1〉. Consequently, the quotient can be
written W ′ ⊥ 〈1〉, where Dim(W ′) = Dim(W ) − 1. (A similar argument
holds if k < 0, in which case just replace 〈−1〉 by 〈1〉 and conversely. After
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iterating this construction we see that W ≡ 〈1〉 ⊥ · · · ⊥ 〈1〉︸ ︷︷ ︸
k times

if I(W ) = k, or

〈−1〉 ⊥ · · · ⊥ 〈−1〉︸ ︷︷ ︸
k times

if I(W ) = −k. ¤

Returning to the proof of the theorem we must show that this invariant
is preserved under the relation of equivalence defined above. But note that
if 〈α, α〉 = 0, then, by definition a lift of v for W can be chosen in 〈α〉⊥.
Moreover, again from the definition, the lift of the characteristic element for
〈α〉⊥/〈α〉 can be chosen as the lifted element for W , and it follows that the
invariants are the same for W and 〈α〉⊥/〈α〉. Additionally, this invariant
is additive in the sense that 〈V (W ⊥ W ′, V (W ⊥ W ′〉 = 〈V (W ), V (W )〉 +
〈V (W ′), V (W ′)〉, so it defines and is defined by a homomorphism from the
set of equivalence classes to Z/8.

Finally, we claim 〈V, V 〉 = I(W ) mod (8). Indeed, it suffices to evaluate
on generators. But, ie e is a generator for 〈1〉 it can be chosen as the lift of
the characteristic class v in this case, and the invariant is 1.

The theorem follows since, for an even form 〈w,w〉 ≡ 0 for all w ∈
W ⊗ Z/2, so, in this case, v = 0 and V can be taken to be zero. ¤

The sphere Σ7
8 is exotic.

Theorem 31 (Milnor). The manifold Σ7
8 is not diffeomorphic to the

ordinary sphere S7.

Proof. Note first that if E is the disk bundle of λ copies of the tangent
bundle, τ(S2k), then E is parallelizable. Indeed,

τ(E) = π!(τ(S2k))⊕ π!(E)

where π : E−→S2k is the bundle map. But this bundle is stably trivial.
On the other hand E ' S2k and any stably trivial vector bundle of fiber
dimension ≥ 2k+1 is already trivial on E. Similarly, since we are plumbing
along a tree it is easy to see that the total space of the plumbing is also
parallelizable.

Consequently, the plumbing construction realizes Σ4k−1
8 as the boundary

of a parallelizable manifold, V .
Using this preliminary remark we prove the theorem by assuming, to the

contrary, that Σ7
8 is diffeomorphic to the ordinary sphere S7. In this case

we can attach a disk to V over ∂V , resulting in a closed manifold, M8, with
tangent bundle trivial on the 7-skeleton, so the normal map factors through
the pinching map M8−→S8,

M8−−→S8
ψ−−→BSO.

Now, Bott has proved that any such map ψ : S8−→BSO must have Pontra-
jagin class P2 divisible by 3!.
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Remark . More generally Bott showed that the Pontrajagin class Pk of
the bundle induced by the map f : S4k−→BO which represents the generating
sphere in π4k(BO) = Z is ak(2k − 1)!, where ak = 2 if k is odd and is 1
otherwise.

Additionally, since the pinching map M8−→S8 becomes a degree one
normal map we must have that the Thom space of the bundle over S8 has
the form Sd+8 ∨ Sd, and consequently, the associated generator σ−1[f ] ∈
π7(O) lies in the kernel of the J-homomorphism, and hence is divisible by
15× 16 = 240 in π7(O), so [f ] ∈ π8(BO) is divisible by 240 as well as by 3!.
As a result, Pk[f ] is divisible by

3!× 240 = 25 × 9× 5.

On the other hand the L-genus evaluates as

〈 7
45
P2, [M ]〉

so the signature of M must be divisible by 7×25, and this is a contradiction.
¤

Remark . Actually, the above argument shows that there are at least 28
distinct diffeomorphism classes of manifolds homeomorphic to S7. Indeed,
we know that the signature of M8 is always divisible by 8, and from the
Browder-Novikov theorem which we prove in the next section, if Σ7 bounds
a parallelizable manifold, then the signature of M completely determines
the diffeomorphism class of Σ7. Thus, the various connected sums of the
manifold pair (V 8, ∂V ) must give distinct differentiable structures on the
boundary until the signature is divisible by 7 × 25, which happens exactly
when we’ve taken 28 summands.

6. The Browder-Novikov Theorem

We have shown that in the simply connected case, if we are given a
degree one normal map f : Mn−→Xn, then, for n odd there is no obstruc-
tion to completing surgery to construct a normal bordism to a homotopy
equivalence. On the other hand, for n = 4k there is a single obstruction
to completing the surgery, the difference of the signatures I(M4k) − I(X)
which takes values in the integers Z, while for n = 4k + 2 we’ve shown that
the obstruction is at most an element of the group Z/2 – the Arf invariant of
a quadratic refinement of the intersection form on K2k+1(f) after f is made
2k-connected.

On the other hand, in the last section we constructed a parallelizable
4k + 2-dimensional manifold with boundary homeomorphic to S4k+1, so
that the quadratic refinement of the intersection form on the interior has
Arf invariant one. We also constructed a parallelizable 4k-manifold with
boundary homeomorphic to S4k−1 and index 8, for k ≥ 2.

These allow us to change the resulting normal map by gluing in the
above manifolds via a (piecewise linear) homeomorphism of their boundaries



6. THE BROWDER-NOVIKOV THEOREM 137

to the boundary of a small disk in Mn at the cost of possibly losing the
differentiability of Mn. However, this loss of differentiability occurs only in
a small neighborhood of a single point of M . Consequently, we can continue
to do surgery using our previous techniques of embedding spheres with trivial
normal bundles – simply taking mild care to make sure the embeddings avoid
this point. This gives the following result:

Theorem 32. [Browder-Novikov] Let X be a simply connected Poincaré
duality complex of dimension n ≥ 5, and let f : Mn−→X be a degree one
normal map. Then X is homotopy equivalent to a differentiable manifold
for n odd, and is, otherwise either homeomorphic to a differentiable manifold
or a piecewise linear manifold which is differentiable in the complement of
a single point.

There is also a relative version of this theorem.

Theorem 33 (Browder-Novikov). Let X be a simply connected Poincaré
duality complex of dimension n with n ≥ 5 and odd. Then, given a degree one
normal map, f : Mn−→X with f a homotopy equivalence, Mn is unique up
to connected sum with the boundary of the K(n+1)-plumbing for n = 4k+1,
or a finite number of copies of ±Σ4k−1

8 if n = 4k.

Proof. If f1 : Mn
1 −→X and f2 : Mn

1 −→X are both degree one normal
maps which are homotopy equivalences and are normally bordant, then let

Mn
1 tMn

2

f1tf2−−→ 0×X t 1×Xy
∂

y
i0ti1

Wn+1
H−−→ I ×X

be a normal bordism. We can do surgery on H away from the boundary to
make it a homotopy equivalence in dimensions less than n+1

2 , so we obtain
the short exact sequence of kernels in this dimension:

0−−→Kn+1
2

(H)−−→Kn+1
2

(W,∂W )
∂−−→0

and it follows that the intersection pairing on Kn+1
2

(W ) is non-singular.
On the other hand, if we can complete surgery to a homotopy equivalence

of pairs (W,∂W )−→(I ×X, (∂I) ×X), it follows that W is an h-cobordism
from Mn

1 to Mn
2 and, consequently, Mn

1 and Mn
2 will be diffeomorphic since

they are simply connected and of dimension ≥ 5. But if we are willing to
take the connected sum of Mn

2 with one of the manifolds described in the
theorem we can extend the H to a copy of the Arf invariant one plumbing
or the appropriate number of copies of ±Kn+1

E8
, now thought of as given

by a degree one normal map to the pair (Dn+1, Sn), so as to modify the
obstruction to completing surgery on W , and the theorem follows. ¤
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Remark . : In the case where n ≥ 6 is even, if the degree one normal
map is normally bordant to a homotopy equivalence,

f : Mn−−→X
then the same argument as above, doing surgery on the normal bordism,
shows that Mn is unique up to diffeomorphism. Similarly, in the case where
it is necessary to modify M to a piecewise linear manifold in order to get the
homotopy equivalence we again conclude that any two which are normally
bordant are piecewise linearly homeomorphic by using a piecewise linear
variant of the h-cobordism theorem. [REFERENCE].

7. The Arf-invariant for surgery in dimension 4k + 2 is well
defined

As was indicated in the proof of the second Browder-Novikov theorem in
the previous section we can also consider surgery problems on manifolds with
boundaries, i.e., degree one normal maps to Poincaré pairs (X,Y ), (obvious
definitions). Thus, suppose that f1 : M4k+2

1 −→X4k+2 and f2 : M4k+2
2 −→X4k+2

are 2k-connected degree one normal maps which are normally bordant, and
suppose, as above that

(W 4k+3, ∂(W ) = M1 t −M2)
H−−→(I ×X, 0×X t 1×X)

is a normal bordism. We can assume that surgery has been done on the
interior of W to make the map H 2k-connected. Consequently, applying the
techniques of 49 we obtain the following short exact sequence of kernels,

0−−→K2k+2(W,∂W )
∂−−→K2k+1(f1) ⊥ −K2k+1(f2)

i∗−−→K2k+1(W )−−→0

with K2k+1(W ), K2k+2(W,∂W ) torsion free and dual to each other. We
modify the situation above by taking a path from M1 to M2 in W and
deleting the interior of a small regular neighborhood of the path to obtain a
new degree one normal map from (W1, ∂W1) to (I × (X − Int(D4k+2)), ∂),
where ∂W1 is the connected sum M1#−M2. Note that the map of kernels
is unchanged in homology. But, using the relative Whitehead theorem, it
follows that the elements of K2k+2(W1, ∂W1) are now represented by maps
of pairs (D2k+2, S2k+1). Choosing these maps of pairs to be immersions
which are embeddings on the boundaries, we see that the spheres in the
image of ∂ are represented by embeddings S2k+1 ↪→ M1#M2 with trivial
normal bundles.

Consequently, these give a 1
2 -rank direct summand of

K2k+1(M1) ⊥ −K2k+1(M2)

for which the quadratic refinement vanishes, which implies that the Arf
invariant of K2k+1(M1) ⊥ −K2k+1(M2) is zero. On the other hand the Arf
invariant is additive for orthogonal sums so the Arf invariant for K2k+1(M1)
is equal to the Arf invariant for K2k+1(M2) and the result follows.
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8. The classification of homotopy spheres

As an application of the Browder-Novikov theorem we give the classifica-
tion of the diffeomorphism classes of manifolds homeomorphic to the sphere
Sn for n ≥ 5. This is work of Milnor, and Kervaire-Milnor [REFERENCES]
and represents the origins of the ideas of surgery on degree one normal maps.

Lemma 52. Let Γn be the set of diffeomorphism classes of manifolds
homeomorphic to Sn. Then the operation of connected sum

(Σ1,Σ2) 7→ Σ1#Σ2

makes Γn into an abelian group for n ≥ 5.

Proof. First, it is clear that Σ1#Σ2 is diffeomorphic to Σ2#Σ1 and
both are homeomorphic to Sn, while Σ1#(Σ2#Σ3) is equal to (Σ1#Σ2)#Σ3.
Consequently connected sum defines a commutative, associative pairing on
Γn. Thus, it remains to construct inverses.

Delete a little disk Dn from Σ. Then Σ−Int(Dn) is diffeomorphic to Dn

and Σ is given as Dn ∪Sn−1 Dn for a given diffeomorphism λ : Sn−1−→Sn−1

which identifies the two copies of Sn−1. If we now define Σ′ as Dn ∪λ−1 Dn,
then taking the connected sum of these two spheres along disks centered on
the equator (and where λ, λ−1 are just the identity on the intersection), it
is quite direct to see that the resulting diffeomorphism for the connected
sum is λ#λ−1, but by a standard argument this diffeomorphism is isotopic
to the identity.

Finally, an isotopy between to diffeomorphisms of Sn defines an h-
cobordism between the resulting homotopy spheres. Consequently, using the
h-cobordism theorem we see that the two elements are diffeomorphic. ¤

The next result relates Γn with degree one normal maps to Sn.

Lemma 53. Let Σ ∈ Γn and f : Σ−→Sn be a degree one homotopy equiv-
alence. Then f is a degree one normal map for φ = (n+ 1)ε over Sn.

Proof. Since f is a homotopy equivalence there is some stable bundle,
ψ, over Sn so that f !(ψ) = ηΣ. On the other hand, we know that the bundle
must be in Ker(J) since the Thom space has to be a wedge of two spheres,
Sd∨Sn+d. Unless this bundle is zero, it must have a non-trivial Pontrajagin
class (and n = 4k). But then the L-genus for Σ would not be zero and the
Signature of Σ would be non-trivial, which is impossible. ¤

Now, by the Browder-Novikov theorem and the remarks of 42, 43, and
especially 19, the diffeomorphism type of Σ is determined by its normal
cobordism class up to connected sums with elements obtained as the bound-
ary of the Kervaire invariant plumbing in dimension 4k+1, and plumbing of
tangent disk bundles over S2k via the E8-lattice in dimension 4k − 1. Also,
the discussion in 7 relating to the Z/2-Arf invariant surgery obstruction in
dimension 4n− 2 gives
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Lemma 54. The surgery obstruction gives a well defined homomorphism
of πsn(S

0) thought of as the set of degree one normal maps over (Sn, (n+1)ε)
to Z/2 which is trivial in dimensions 6= 2k + 2, and in 2k + 2 is the Arf
invariant of the resulting surgery problem. This homomorphism is trivial on
im(J).

Let Bn, the nth Bernoulli number, be the coefficient of Pn in the L-genus
L4n, so

L4n = BnPn + decomposables.

Bn is rational with known denominator, see, e.g. [ADAMS, J(X)]. Then we
set

W (4n− 1) =
1
8
Bnan(2n− 1)!|im(J)4n−1|.

See the discussion around for an(2h − 1)!, the discussion around 42 for
|im(J)4n−1|, and we have

Lemma 55. The rational number W (4n− 1) is actually an integer.

Proof. Indeed, imitating the arguments in the proof that S7
8 was not

the ordinary sphere, and that, in fact, the operation of connected sum gives
a Z/28 ⊂ Γ7 generated by connected sums of S7

8 with itself, we see that
8W (4n−1) is the signature of the manifold with normal bundle induced from
a the generating bundle for Ker(J) over S4n by the (degree one) pinching
map, M4n−→S4n. Consequently, 8W (4n − 1) is an integer. But by 30 this
signature is divisible by 8, so W (4n− 1) is an integer as well. ¤

Finally, putting all this together we are able to determine the structure
of the groups Γn for n ≥ 5 as follows.

Theorem 34. Suppose that n ≥ 5. Then there are exact sequences of
groups

0−−→Z/W (4n− 1)−−→Γ4n−1−−→πs4n−1(S
0)/Im(J)−−→0

0−−→Γ4n−2

∼=−−→Ker(Arf)−−→0

where Arf : πs4n−2(S
0)/(im(J))−→Z/2 is the surgery obstruction. Also, we

have the further exact sequences

0−−→Z/2−−→Γ4n−3−−→πs4n−3(S
0)/(Im(J))−−→0

provided that Arf : πs4n−2(S
0)−→Z/2 is identically zero, and

0−−→Γ4n−3

∼=−−→πs4n−3(S
0)/(Im(J))−−→0

when Arf( : πs4n−2(S
0)−→Z/2 is non-trivial. Finally, we have

0−−→Γ4n−−→πs4n−3(S
0)/(Im(J))−−→0

in the remaining case.
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The homotopy spheres in the group Z/W (4n−1) are called the Milnor
spheres. They are connected sums of the homotopy sphere in dimension
4n − 1 obtained as the boundary of the plumbing on the E8-lattice, 5, for
n ≥ 2. Similarly, the homotopy spheres in dimension 4n+1 obtained as the
boundaries of the plumbing of two copies of the tangent bundle to S2n+1

are called the Kervaire spheres.
The Milnor spheres are always exotic, while the Kervaire sphere is not

exotic if and only if the dimension 4k+ 2 has the form 2s− 2 and there is a
non-trivial element in the 2-primary part of πs4k+2(S

0) which is detected in
filtration two in the Adams spectral sequence. Such an element, if it exists,
is called an Arf-invariant class, and whether or not these classes exist in the
stable homotopy of spheres is one of the chief open questions in homotopy
theory. They are known to exist for s ≤ 6, [MAHOWALD], [MINAMI], and
it is conjectured that they exist in each dimension 2s − 2.





CHAPTER 10

The Algebraic Analysis of Surgery Groups when
π1(X) = 0

In this chapter we do two things. First we give a complete proof that
the odd surgery groups, L2n+1(1), for surgery on simply connected manifolds
vanish. Then we give a deeper analysis of the proof, developing an exact
sequence which connects both the even and odd surgery obstruction groups
in this case with Witt rings of quadratic forms over the rationals and modules
of torsion quadratic forms.

The second topic provides the foundation for techniques which allow us
to determine the structure of the surgery obstruction groups in the case of
surgery on manifolds with finite fundamental group later in this work.

The first step in the proof of vanishing is to show that we can do surgery
to make the surgery kernel into a finite torsion module which has a non-
singular linking form together with a quadratic refinement. This is accom-
plished by some fairly crude moves. However, the next step – showing that
we can do surgery to kill the torsion form – is somewhat more delicate. It
becomes a case by case analysis where we show that in each case we can
reduce the order of the kernel if it is not zero until we finally arrive at a
kernel which has order a power of 2. Here we use an explicit surgery to
reduce the order further and thus we complete the proof.

Then, as indicated we study the set of torsion forms together with a non-
singular ± - symmetric form and a quadratic refinement. Under orthogonal
direct sum and a relation 62 implied by surgery considerations, the sets
of equivalence classes of forms with a given ± symmetry become abelian
groups, LTor± (Z), and we determine them completely.

When we study surgery with general fundamental group we will con-
struct exact sequences

L2n(Z(π))−−→L2n(Q(π))−−→LTor2n (Z(π))−−→L2n−1(Z(π))−−→· · ·
which give us effective tools for studying surgery problems at least for finite
fundamental groups. The analysis in the current chapter provides the key
motivation for these constructions as well as basic calculations.

1. The Vanishing of the Odd Surgery Groups when π1(X) = 0

We are given a ±-symmetric non-singular form over Z together with a
quadratic refinement. Precisely, a q-refinement is a linear map T : Zk−→(Zk)∗
so that the original bilinear form is T ± T ∗. Note that one more or less

143
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automatically has a certain degree of freedom in defining T since T+(B∓B∗)
will satisfy the same criterion as T for any B. In the case of +-symmetric
forms, the constraint that the form is T + T ∗ simply says that the form is
even as we’ve seen is true for the middle dimension kernel form for a 4s-
dimensional degree one normal map. Moreover the variation of T by B−B∗
does not have much effect since the diagonal terms of B − B∗ are all zero,
so the value of q(X) = X∗TX does not change.

However, for (−)-symmetric forms the situation is different. Here B+B∗
has even terms on the diagonal so that X∗TX changes by even integers
and the quadratic refinement is only well defined as an integer mod(2). In
particular, this agrees with the structure needed for surgery on 4n + 2-
dimensional manifolds where the quadratic refinement is given as

q(ei) =

{
0
1

depending on whether the normal bundle to the embedded sphere corre-
sponding to ei has trivial or non-trivial normal bundle in the degree one
normal map situation.

In the situation we have in mind here we will assume that the form has
a Lagrangian so k = 2s: indeed, we will assume that T is, in both cases, the
matrix

T =
(

0 I
0 0

)

at least after modifying by a matrix of the form B ∓ B∗. Then, the group
that we wish to analyze is the group which preserves T up to the same
indeterminacy.

Thus, assume the form above with quadratic refinement T is given and
fixed. Let V ∼= Zs be any quadratic Lagrangian contained in Z2s with
respect to this form. This means that

• first, V is a direct summand of Z2s,
• second, that the bilinear form is identically zero on V ,
• third, the value of the quadratic refinement on each v ∈ V is an

even integers if the form is (−)-symmetric, and is identically zero if
the form is +-symmetric.

Write Z2s as (Zs)⊕ (Zs)∗, and choose a basis e1, . . . es for the first sum-
mand and the dual basis e∗1, . . . e

∗
s for the second summand, so that T takes

the form above, 1, for this splitting. Then we may write a basis for V in the
form (~l1,~t∗1), . . . , (~ls,~t

∗
s) in terms of the splitting above.

We want to modify our choices of basis elements for Zs and for V to
give the vectors ~l1, . . . ,~ls the simplest possible form to make it easier to do
surgery.

Note that GLs(Z) is generated by Ss, the symmetric group acting as
permutations of the coordinates, and E1

1,2, the transformation which takes
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e1 to e1 + e2, while ei 7→ ei for i 6= 1. Consequently the geometric moves of
4 show that the subgroup consisting of all matrices of the form

(
A 0
0 A−t

)

for A ∈ GLs(Z) is contained in the group generated by the geometric moves.
It follows that we can change basis at will in the first Zs.

Consider the projection π1 : Z2s−→Zs which has kernel the second sum-
mand (Zs)∗ ⊂ Z2s, and let I1(V ) be the image of the composite map

V ↪→ Z2s
π1−−→Zs,

and K1(V ) be the kernel.

Lemma 56. A series of geometric moves enables us to assume that
K1(V ) is 0, so the composite above is injective and has finite index in Zs.

Proof. We identify the image Zs of 1 with the first summand Zs of Z2s

in what follows. Tensoring with the rationals, Q, I1(V ) defines a sub-vector
space of Qs = Zs ⊗ Q. If this is the entire Qs we are done. If not, it is a
proper subspace, and we have Zs−k ⊂ Zs defined as

Zs−k = Zs ∩ I1(V )⊗Q.
Now choose a new basis for Zs so that the first s−k basis elements span Zk−s
and the corresponding dual basis for (Zs)∗. This basis change is realized by
geometric moves due to the remarks above. Now, consider the composite
projection

V ↪→ Z2s
π∗1−−→(Zs)∗−−→(Zs−k)⊥.

Restricting to K1(V ), I claim that this map must be injective. Indeed,
if not, since V injects into Z2s, we must have that for any T ∈ K1(V )
which is also in the kernel of the composite map 1, it has image (0, T2) with
T2 ∈ (Zs−k)∗. But this directly contradicts the assumption that V is a kernel
in Z2s. Consequently, 1 injects on K1(V ) as asserted.

Now we can use the surgery moves to exchange (Zs−k)⊥ and its dual
space in Zs. ¤

Now that we are able to assume that the projection in 1 is injective with
finite index we modify it still further to make the index as small as possible;
in this case 1. (For more general rings, such as the integral group rings of
finite groups, this may not always be possible.)

Consider the quotient Zs/I1(V ) = W , and let w ∈ W be given. Then,
choosing w̄ ∈ Zs so that it has image w, there is a finite k 6= 0 so that
kw̄ ∈ I1(V ). Hence, there is a unique element h(w, k) ∈ V with kw̄ given as
the image of h(w, k), so

h(w, k) = (kw̄, λ(w, k)) ∈ Zs ⊕ (Zs)∗.
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Definition 47. Let w1, w2 be contained in W , then 〈w1, w2〉 ∈ Q/Z is
the rational number

1
k1k2

λ(w1, k1)(k2w̄2)

taken in the (additive) quotient Q/Z.

Note that this is, in fact, well defined. If w̄′ is a second lifting of w, then
w̄′ = w̄ + s where s ∈ I1(V ). Consequently,

(kw̄, λ) + k(s1, s2)

is the resulting element in V , and the value in 47 is changed by adding an
element in Z.

Lemma 57. The bilinear form on the quotient Zs/I1(V ) defined above is
∓-symmetric depending on whether the original form on Z2s is ±-symmetric,
and is non-singular, in the sense that adjoint map to the form

W−→Hom(W,Q/Z) = W ∗

is an isomorphism.

Proof. First we verify that the form is ∓-symmetric. Since V is a
Lagrangian kernel it follows that

〈(k1w̄1, λ(w̄1, k1)), (k2w̄2, λ(w̄2, k2))〉 = 0

but expanding this out we have

λ(w̄1, k1)(k2w̄2)± λ(w̄2, k2)(k1w̄1) = 0

so the ∓-symmetry follows.
It remains to show that the form is non-singular. For this it suffices to

show that if 〈w,w′〉 = 0 for all w′ ∈W , then w = 0. So suppose kw̄ ∈ I1(V ).
Then

1
k
λ(w̄, k)(s) ∈ Z

for every s ∈ Zs. Consequently, λ(w̄, k) = kτ for some τ ∈ (Zs)∗, and

(kw̄, λ(w̄, k) = k(w̄, s) ∈ V.
But V is a direct summand so (w̄, s) ∈ V , and w = 0 as asserted. ¤

Example 45. Here we assume that we have the +-symmetric form on
Z2 ⊕ (Z2)∗, and let V be the Lagrangian,

V =
(

5 0
0 5 |

0 3
−3 0

)
.

Then the quotient W = (Z/5)2 with (−)-symmetric form

1
5

(
0 3
−3 0

)
.
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Example 46. Now we assume that we have the (−)-symmetric form on
Z⊕ Z∗ and

V = 〈(5, 2)〉
so W = Z/5 with generator T and 〈T, T 〉 = 2

5 .

Remark . The construction above of the non-singular form is modeled
on the geometric linking form on the torsion in Hn−1(M2n−1,Z). However,
there is one important difference here: there should be a quadratic refine-
ment reflecting the fact that not all Lagrangian kernels for the linking form
are acceptable. They must also have “trivial” quadratic refinement where
the quadratic refinement reflects the structure of the normal bundle to the
corresponding embedded sphere. As a special case, in the last example,

V ′ = 〈(5, 1)〉
is also a Lagrangian kernel for the linking form, where now 〈T, T 〉 = 1

5 ,
but on S2n−1×S2n−1 if we take the embedded sphere which corresponds to
(5, 1) it has normal bundle equal to the tangent bundle to S2n−1. (Just take
1(5) ≡ 1 mod (2).) So V ′ is not an acceptable kernel for surgery.

This motivates us to introduce the quadratic refinement of the bilinear
form above on W as

q(w) =
1
k2

(λ(w̄, k)(kw̄),

which is well defined mod(2Z) for the original form (−)-symmetric, and
must be identically zero for the original form +-symmetric.

The Kervaire-Milnor proof. What follows is a slight modification
of the original proof that surgery can always be completed in odd dimen-
sions. Using the pair, (Zs ⊕ (Zs)∗, V ) and the geometric moves we are able
to suppress all further geometric arguments, and the proof becomes purely
an algebraic manipulation with (1) algebraic surgery (exchanging a gener-
ator of Zs with its dual in (Zs)∗), and (2) using the geometric moves to
systematically reduce the order of the quotient Zs/I1(V ).

Note first that we can change the basis of V at will, and that, using
the matrices of the form 1 we can change the basis of Zs at will. Thus,
the inclusion J : V−→I1(V ) ⊂ Zs may be modified to the form AJB with
A,B ∈ GLs(Z) and J an integral matrix which is rationally invertible. But
under such variation J is uniquely equivalent to a matrix of the form

N(J) =




m1 0 0 . . . 0
0 m2 0 . . . 0
0 0 m3 . . . 0
...

...
...

. . .
...

0 0 0 . . . mr






148 10. THE ALGEBRAIC ANALYSIS OF SURGERY GROUPS WHEN π1(X) = 0

where each mi is a positive integer and mi divides mi+1 for i = 1, . . . , r− 1.
Consequently, the image of V in Zs ⊕ (Zs)∗ has the form

(N(J) | A)

with A also an r×r integral matrix. Moreover, since A defines the quadratic
form on the quotient, and V is a quadratic kernel, this puts strong conditions
on the coefficients in A. All we will need is this: ifmi = mj then ai,j = ∓aj,i,
and if the form on Zs⊕ (Zs)∗ is +-symmetric, then ai,i = 0 for each i, while,
if the form is (−)-symmetric, then ai,i is divisible by 2.

The case Zs ⊕ (Zs)∗) (−)-symmetric. The critical invariant that we
will use is |Det(J)| = m1m2 · · ·mr. If this determinant is 1, then surgery
has been completed. Otherwise we show that we can always reduce the size
of |Det(J)|. The argument breaks up into three steps depending on whether

ar,r is





6= 0,mr

= 0
= mr

.

Suppose that ar,r 6= 0,mr. Then we can write

ar,r = 2kmr + v

with s 6= 0 and |v| < mr. Hence change basis by replacing er by er+2ke∗r and
leaving all other basis elements alone, which is one of the geometric moves.
This replaces ar,r by v, and leaves everything else alone. Now, do surgery –
exchanging the rth columns of N(J) and A, so the matrix replacing N(J)
becomes 



m1 0 0 . . . 0 a1,r

0 m2 0 . . . 0 a2,r

0 0 m3 . . . 0 a3,r
...

...
...

. . .
...

...
0 0 0 . . . mr−1 ar−1,r

0 0 0 . . . 0 v




which has determinant m1m2 . . .mr−1v which is non-zero and less than
|Det(N(J))|.

Next consider the case where ar,r = 0. The non-singularity of the form on
the quotient shows that there must be a second mr in N(J), say associated
to er−1 for definiteness, and

〈ēr−1, ēr〉 =
ar−1,r

mr

with ar−1,r equal to a unit mod(mr). Again we can write ar−1,r = kmr + u
where 0 < u < mr, and the basis change er 7→ er+ker−1, er−1 7→ er−1 +ker
with all other basis elements fixed is a geometric move which replaces ar−1,r
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by u, and leaves all other coefficients in (N(J)|A) fixed. Now do surgery on
both the last two columns. This replaces N(J) by



m1 0 0 . . . a1,r−1 a1,r

0 m2 0 . . . a2,r−1 a2,r

0 0 m3 . . . a3,r−1 a3,r
...

...
...

. . .
...

...
0 0 0 . . . ar−1,r−1 u
0 0 0 . . . u 0




which has determinant −m1m2 . . .mr−2u
2, and the absolute value has again

decreased.
It remains only to consider the case where ar,r = mr. This implies that

for the bilinear form we have 〈ēr, ēr〉 = 0, so there must be a second mr

occuring in N(J) say for er−1 with 〈ēr−1, ēr〉 = u
mr

with u a unit mod(mr).
If ar−1,r−1 6= mr we can exchange r, r − 1, and we are in the previous case.
Hence, assume ar−1,r−1 = mr as well. But then

q(ēr−1 + ēr) =
2u
mr

and this is 1 ∈ Q/(2Z) if and only if mr = 2. Otherwise, we replace er
by er + er−1, leaving the remaining basis elements (except for e∗r and e∗r−1)
alone, and we reduce to the previous case.

Finally, we need to consider the case where mr = mr−1 = 2, while ar−1,r

is odd and ar,r, ar−1,r−1 are both congruent to 2 mod (4). Then after a basis
change of the form

er−1 7→ er−1 + l1e
∗
r−1 + ke∗r

er 7→ er + l2er + ke∗r−1,

with all other basis elements fixed, the relevant parts of N(J) and A become(
2 0
0 2

∣∣∣∣
2 1
1 2

)
.

We again exchange these two columns, and the determinant on the left
side becomes 3m1m2 . . .mr−2 which is again less than Det(N(J)). This
completes the proof that surgery can be completed for (−)-symmetric forms..

The case where Zs⊕ (Zs)∗ is +-symmetric. Here the arguments are
simpler since all the ai,i = 0 for mi > 1. Indeed, since this is the case, we
must always have mr−1 = mr, and we can assume that 〈ēr−1, ēr〉 = u

mr
for

some unit mod(mr).
Then making a basis change er 7→ er + ke∗r−1, er−1 7→ er−1 − ke∗r , we

can assume that 0 < ar−1,r < mr, and ar−1,r = ar,r−1. Hence, exchang-
ing the last two columns as above the determinant of N(J) is replaced
by m1 . . .mr−2(ar−1,r)2 which is non-zero and less than the determinant of
N(J). This completes the proof that surgery can be completed in this case
as well.
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2. Torsion forms and signature

We begin by showing that every non-singular ±-symmetric non-singular
torsion form with quadratic extension is geometrically realizable as a kernel
form for a degree one normal map. Then, using the result above, we will
consider the trace of the sequence of surgeries which make the degree one
normal map normally bordant to a homotopy equivalence. This will con-
struct an important relationship between these torsion forms and rational
quadratic forms.

Lemma 58. Let (W, b : W
∼=−→W ∗, q) be a non-singular ±-symmetric tor-

sion form with (even) quadratic extension. Then there is a degree one normal
map

f : M2n+1−→S2n+1

with surgery kernel equal to (W, b, q), where n ≥ 3 and n is even if b is
(−)-symmetric, while n is odd if b is +-symmetric.

Proof. Suppose that Zm−→W is a surjective map with kernel K ∼= Zm.
Start with the connected sum

#m
1 S

n ×Dn+1,

and attach n+1-handles Dn+1×Dn to the boundary according to the choice
of basis for the kernel when projecting down onto the Sn’s, and at the same
time wind them around the normals to the Sni ’s according to the linking
pairing and quadratic refinement. This gives a new manifold with boundary,
and the non-singularity of b implies that the boundary is a homology sphere.
On the other hand, since n ≥ 2 so 2n + 1 ≥ 7 we see that the boundary is
simply connected, so it has the homotopy type of a sphere S2n, 2n ≥ 6. In
the usual way we can modify the framing of the attached handles to assure
that the resulting manifold is parallelizable, so the resulting sphere is the
ordinary sphere by 32, and we can attach a D2n+1 over it. The resulting
manifold obviously has a degree one normal map to S2n+1 and surgery kernel
isomorphic to (W, b, q) as desired. ¤

Now consider the trace, T , of a sequence of surgeries on the degree one
normal map above, which surger it to a homotopy equivalence. We may
assume the surgeries are all concentrated in middle dimension. Then we
have the short exact sequence of kernels

0−−→Kn+1(T )
J−−→Kn+1(T, ∂T )

∂−−→W−−→0

where Kn+1(T ) is torsion free, and we can identify

Kn+1(T, ∂T ) with Kn+1(T )∗

by Poincaré duality. Moreover, if we choose the dual basis for Kn+1(T, ∂T )
with respect to a chosen basis for Kn+1(T ) then the map J becomes a
(−1)n+1-symmetric, even matrix, A(J).
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Definition 48. Let (Qs, A) be a rational non-singular quadratic form,
where A : Qs−→(Qs)∗ is a ±-symmetric isomorphism. Then an even integral
sublattice for (Qs, A) is an integral lattice in Qs (a copy of Zs ⊂ Qs so
that Zs ⊗ Q = Qs), so that there is an integral matrix B with A(m)m′ =
(B +Bt)(m)m′ for all m, m′ in L.

Lemma 59.
(1) Even integral lattices exist for (Qs, A).
(2) If L1 and L2 are even integral lattices for (Qs, A), then L1 ∩ L2 is an
even integral lattice for (Qs, A).

Proof. Note that for any vector ~v ∈ Qs and any basis e1, . . . , es for Qs
there is an integer n(e1, . . . , es, ~v) = n so that

n~v = n1e1 + n2e2 + · · ·+ nses

with each ni ∈ Z. Using this we can find a positive integer n so that, with
respect to the new basis ne1, . . . , nes for Qs and 1

ne
∗
1, . . . ,

1
ne
∗
s for (Qs)∗, A be-

comes integral. But then, if A is not already even, if we chose 2ne1, . . . , 2nes
and 1

2ne
∗
1, . . . ,

1
2ne

∗
s the resulting matrix will be 4A which is certainly even.

The second statement is clear. ¤
Definition 49. Let L ⊂ Qs be any lattice in Qs, and suppose the non-

singular ±-symmetric form (Qs, A) is given. Then the dual lattice to L,
L# ⊂ (Qs)∗ is the set of elements w ∈ (Qs)∗ so that w(m) ∈ Z for each
m ∈ L.

Again, it is direct to see that the dual lattice exists.

Lemma 60. Suppose that L ⊂ Qs is an even integral lattice for the non-
singular ±-symmetric form (Qs, A).
(1) Then A(L) ⊂ L#, and choosing any basis for L and the corresponding
dual basis for L#, A becomes an integral matrix of the form B ±Bt.
(2) The map A−1 : L#/L−→Hom(L#/L,Q/Z) is an isomorphism, defining
a non-singular linking form on the quotient L#/L with quadratic reduction:

q : L#/L−→Q/2Z
defined by B.

(This is a direct exercise using the stated basis elements. Recall that the
form is defined on the quotient by 〈m,m′〉 = 1

km(A−1km̄′) for some k ∈ Z
so that km̄′ ∈ A(L). And similarly for the quadratic reduction.)

Remark . In the situation above, given A, realized as an even ±-
symmetric matrix with respect to a basis for L and the corresponding dual
basis for L#, our previous construction realizes (L#/L,A−1, q) as the result
of taking the Lagrangian kernel

(A | I) ⊂ Zs ⊕ (Zs)∗

with the associated (∓)-symmetric form.
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Summarizing the arguments above we have shown the following result.

Theorem 35. Let (T,C, q) be a triple consisting of a fintely generated
torsion module T over Z, and C : T−→Hom(T,Q/Z) a ±-symmetric isomor-
phism together with a quadratic reduction, q. Then there is a non-singular
rational ±-symmetric form (Qs, A) together with an even lattice L ⊂ Qs
with respect to A, so that (T,C, q) is identified with

(L#/L,A−1, q)

as described above.

We now turn to the question of the dependence of the form (Qs, A) on
(T,C, q), and conversely, the dependence of (L#/L,A−1, q) on the choice of
L when (Qs, A) is fixed.

Note first the obvious fact that if (T1, C1, q1) is associated to (Qs1 , A1, L1)
while (T2, C2, q2) is associated to (Qs2 , A2, L2), then the orthogonal direct
sum (T1 ⊕ T2, C1 ⊕ C2, q1 ⊕ q2) is associated to Qs1+s2 , A1 ⊕ A2, L1 ⊕ L2).
So we have an addition in this set.

Now let us look at the possible variation in the (T,C, q) associated to a
fixed (Qs, A).

Consider L1, L
#
1 , and L2, L

#
2 , both even lattices with respect to A in

(Qs, A). We also have L1 ∩ L2 and consequently the diagram of inclusions

L1 −−→ L#
1

↗ ↘
L1 ∩ L2 (L1 ∩ L2)#

↘ ↗
L2 −−→ L#

2

.

Lemma 61. In (L2 ∩ L2)#/L2 ∩ L2 let V1 be the image of L1 so V1 =
L1/(L1 ∩ L2) and similarly let V2 = L2/(L1 ∩ L2). Then V1 and V2 are La-
grangian kernels in the sense that both the bilinear forms and their quadratic
reductions vanish identically on them.

(Since A and B restricted to L1 and L2 are integral this is immediate.)
Note also that V ⊥1 is the image of L#

1 in the quotient while V ⊥1 is the
image of L#

2 . Here, as usual, the perpendicular to a sub-module, M , is the
set of elements v so that 〈v,m〉 = 0 ∈ Q/Z for each m ∈M .

Lemma 62. Let (T,A, q) be a non-singular ±-symmetric torsion form
with quadratic reduction. Let V ⊂ T be a Lagrangian kernel in the sense
above. Then (V ⊥/V,A, q) is a non-singular ±-symmetric torsion form.

Proof. Note that (V ⊥)⊥ = V since the original form is non-singular.
In particular, there is an exact sequence

0−−→V ⊥ A
↪→Hom(T,Q/Z)

r−−→Hom(V,Q/Z)−−→0
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where r is restriction. Moreover, the elements in the image of V ⊥ may be
characterized as the elements in Hom(T,Q/Z) which anhilate V . Thus this
group maps to Hom(V ⊥/V,Q/Z), and non-singularity amounts to saying
that this map is onto.

Consider the extension sequence

0−−→V ⊥ ↪→ T−−→Hom(V,Q/Z)−−→0

and suppose that an element in Hom(V ⊥/V,Q/Z) is given. This element
extends in the obvious way to V ⊥, giving a homomorphism V ⊥−→Q/Z).
But note that Q/Z is injective! This implies that the homomorphism
extends to all of T , and this proves that the restriction map above is onto
Hom(V ⊥/V,Q/Z). The rest of the argument is direct. ¤

Let us now define an equivalence relation on non-singular + or (−)
symmetric forms via the relation above: if V ⊂ (T,A, q) is a quadratic
kernel, then

(T,A, q) ∼ (V ⊥/V,A|, q|).
Clearly, this equivalence relation preserves the direct sum structure provided
that V is, itself a direct sum. Consequently, the set of equivalence classes
forms a monoid under orthogonal direct sum. Write LTor4n (Z) for the monoid
of equivalence classes of +-symmetric forms, and LTor4n+2(Z) for the monoid
of equivalence classes of (−)-symmetric forms. Then we have

Lemma 63. Both LTor4n (Z) and LTor4n+2(Z) are abelian groups under or-
thogonal direct sum.

Proof. (T,−A,−q) ⊥ (T,A, q) has a Kernel ∆(T ) with ∆(T )⊥ =
∆(T ). So additive inverses exist. ¤

We now define the Witt ring of ±-symmetric q-forms over Q as the
monoid generated by the isomorphism classes of non-singular ±-symmetric
forms on finite dimensioal Q-vector spaces under the same equivalence re-
lation: Let V ⊂ Qs be a vector subspace and also a quadratic kernel, then
(Qs, A, q) is equivalent to (V ⊥/V,A), and we define L4(Q) to be the set of
equivalence classes of +-symmetric forms while L2(Q) is the set of equiva-
lence classes of (−)-symmetric forms. As above these are abelian groups.

Theorem 36. The correspondence above (Qs, A) maps to

{(L#/L,A, q)} ∈ LTor2∗ (Z)

for an even integral lattice L ⊂ Qs, gives a well defined, surjective map-
ping p : L2∗(Q)−→LTor2∗ (Z) with kernel the subgroup generated by the even
±-symmetric forms which come from non-singular, even forms over Z.

Proof. If V ⊂ Qs is a quadratic kernel for (Qs, A) then we can find a
subset V ∗ ⊂ Qs which is also a kernel and is dual to V under A. DOES THIS
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NEED TO BE EXPANDED, OR HAS IT ALREADY BEEN DISCUSSED?
Consequently, (Qs, A) can be written as an orthogonal direct sum

(V ⊕ V ∗) ⊥ (Qs−2t, A′)

and we can construct a sub-lattice of Qs of the form (L(V ) ⊕ L(V )∗) ⊥ L̄
where L̄ is an integral, even lattice in Qs−2t. It follows that p(Qs, A) =
p(Qs−2t, A′) since L(V ) ⊕ L(V )∗ is self dual. Consequently p descends to
give a map of equivalence classes.

Clearly, if (Qs, A) admits a self-dual, integral, even lattice, then p(Qs, A) =
0. On the other hand, suppose that p(Qs, A) = 0. Then, for an arbitrary
integral, even lattice L we have that (L#/L,A−1, q) must have a quadratic
kernel V with V = V ⊥. Let L̄ be the inverse image of V in L#. Then L̄ is
a non-singular, even, self-dual lattice and we are done. ¤

Remark . We have already seen that the surgery obstruction groups
L2k(Z) are Z when k is even, and Z/2 when k is odd. They are given as
the sets of equivalence classes of self-dual even integral lattices modulo the
equivalence relation (L,A) ∼ (L,A) ⊕ H where H is given by the matrix(

0 I
±I 0

)
. But it is easily seen that this gives exactly the same set as

requiring that (L,A) ∼ (V ⊥/V,A) for any quadratic kernel V ⊂ L which is
a Z-direct summand.

Consequently, the kernels of p are directly seen to be the images in
L2∗(Q) of L2s(Z). Moreover, in the case of L4(Q), since L4(Z) is detected
by the signature, which factors through L4(R) it follows that the map

L4(Z)
⊗Q−−→L4(Q)

is injective and we have the exact sequence

0−−→L4(Z)
⊗Q−−→L4(Q)

p−−→LTor4 (Z)−−→0

connecting all these groups.

Remark . Note that since 1
2 ∈ Q the Arf invariant does not have an

analogue for (−)-symmetric forms over Q. Consequently it is fairly clear
that the image of L2(Z) in L2(Q) is zero. Indeed, here is an explicit proof.

The q-form on (Z2,

(
0 1
−1 0

)
, q) which gives Arf-invariant one is q(e) =

q(f) = q(e+f) = 1 ∈ Z/2. Here Z/2 = Z/(a+a), but for Q, Q/(a+a) = 0.
Consequently, when we tensor with Q the Arf invariant one form becomes
identified with the trivial form, and the image is zero, as asserted. It follows
that L2(Q) ∼= LTor2 (Z).

The determination of the groups LTor2∗ (Z). Let (V,A, q) be a torsion
form of the type considered in the definition of LTor2∗ (Z), then the decompo-
sition of V into its p-primary components is an orthogonal decomposition
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with respect to A and q. Consequently, if we define LTor,p2∗ (Z) to be the set
of equivalence classes of triples (V,A, q) as above with V a finite p-torsion
module, then we have

LTor2∗ (Z) =
⊕

p prime

LTor,p2∗ (Z).

We now have

Lemma 64.
(1) LTor,p2 (Z) = 0 for each p.
(2) LTor,p4 (Z) = Z/2⊕ Z/2 for p ≡ 1 mod (4).
(3) LTor,p4 (Z) = Z/4 for p ≡ 3 mod (4)
(4) LTor,24 (Z) = Z/8⊕ Z/2

Proof. For part one note that the only non-singular (−)-symmetric Q
forms are given as

(Q2s,

(
0 I
−I 0

)

up to isomorphism, and these represent 0 in L2(Q). Consequently, L2(Q) =
0 and, since p : L2(Q)−→LTor2 (Z) is onto, it follows that LTor2 (Z) = 0 as well.

For parts (2), (3), note that we can diagonalize every bilinear form on
a p-torsion module for p odd. So it suffices to consider the basic forms
(Z/pr, 2λ

pr ). Note that if r > 1 and T is a generator of Z/pr then 〈pr−1T 〉 = V

is a quadratic kernel. Thus

(Z/pr,
2λ
pr

) ∼ (Z/pr−2,
2λ
pr−2

).

Consequently, the generators for LTor,p4 (Z), for p odd are the forms (Z/p, 2λ
p ).

By a change of basis, T 7→ τT , such a form is equivalent to the form
(Z/p, 2τ2λ

p ), and so, since F∗p splits into exactly two cosets under multiplica-
tion by squares, the non-squares and the squares, it follows that there are
at most two generators for LTor,p4 (Z),

(Z/p,
2
p
), and (Z/p,

2λ
p

)

where λ is a non-square in F∗p. If −1 is a non-square, then there is only the
one generator, and this happens if and only if p ≡ 3 mod (4). In this case
LTor,p4 (Z) is a cyclic group Z/l(p). In the case p ≡ 1 mod (4) it follows that
LTor,p4 (Z) = Z/l1(p)⊕ Z/l2(p), and it remains to determine these li(p).

In case (2), where p ≡ 1 mod (4) it follows that −1 is a square so
(Z/p, θp) ∼ (Z/p, −θp ) so LTor,p4 (Z) is a quotient of (Z/2)2.

In case (3) we have that −1 = τ2 +λ2 for a pair of non-zero elements in
F∗p. Consequently, changing the basis in

(
(Z/p)2,

(
1 0
0 1

))
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to τe1+λe2 = f1, λe1−τe2 = f2 we have that 〈f1, f2〉 = 0 while 〈fi, fi〉 = −1.
It follows that (

(Z/p)2,
(

1 0
0 1

))
∼=

(
(Z/p)2,

(−1 0
0 −1

))

so LTor,p4 (Z) is a quotient of Z/4.
It remains to show that these are exactly the groups in the two cases.

For this we will need a sensitive invariant. Thus, given (T,A, q) where
q : T−→Q/2Z is a quadratic refinement of the non-singular +-symmetric form
(T,A), set

χ(T,A, q) =
∑

τ∈T
eπiq(τ).

This invariant does not factor through LTor4 (Z) but we do have the following
results. First note that

Proposition 21.
(1) Let (T,A, q) be the orthogonal direct sum (T1, A1, q1) ⊥ (T2, A2, q2).
Then

χ(T,A, q) = χ(T1, A1, q1)χ(T2, A2, q2).
(2) χ(T,−A,−q) = χ(T,A, q).

Proof. For w1 ∈ T1, w2 ∈ T2 we have q(w1 +w2) = q1(w1) + q2(w2) so
∑

w1∈T1

∑

w2∈T2

eπiq(w1+w2) =
∑

w1∈T1

eπiq(w1)
∑

w2∈T2

eπiq(w2),

but this is the result. The second statement is clear. ¤
Proposition 22. Let V ⊂ T be a quadratic kernel for (T,A, q), then

χ(T,A, q) = |V |χ(V ⊥/V,A, q).

Proof. Break T up into cosets of V ⊥ as follows. The elements of a
general coset have the form

v∗ + (λ+ v)

where λ represents a coset of V in V ⊥. Also, q(v∗+(λ+v)) = q(v∗)+q(λ)+
2〈v∗, λ〉+ 2〈v∗, v〉 so

eıπiq(v
∗+λ+v) = eπiq(v

∗+λ)e2πi〈v
∗,v〉.

Now, fixing v∗, λ an varying v over V , if the image of v∗ in Hom(V,Q/Z)
is non-trivial, then the sum of these terms is zero since the sum of all the
(pi)th roots of 1 is always zero for p > 1. Hence the only non-zero term
correspond to the coset V ⊥ itself. Here v∗ = 0 and the sum is∑

v∈V

∑

λ∈V ⊥/V
eπiq(λ) = |V |χ(V ⊥/V,A, q)

as asserted. ¤
Thus we have
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Corollary 24.
(1) χ(T,A, q) = |T | 12 e2πiθ for some real number θ.
(2) If |T | is odd, then θ is rational and 4θ is an integer.

Proof. First, note that (T,A, q) ⊥ (T,−A, q) has a kernel V given as
the diagonal image of T , with V ⊥ = V . Consequently, χ(T,A, q)χ(T,A, q) =
|T |, and χ(T,A, q) = |T | 12w where w is a complex number of modulus 1.

Now suppose that |T | is odd. Then T breaks up into an orthogonal
direct sum of odd prime components, and for each of these it is true by the
preliminary calculations above that 4Tp has a kernel V with V ⊥ = V . Thus
the same must be true for T and the corollary follows. ¤

In fact we can evaluate χ(T,A, q) more or less explicitly for |T | odd. It
suffices to evaluate it for the basic classes (Z/p, 1/p) and (Z/p, λ/p) where
λ is a non-square. We have

Proposition 23.
(1) If p ≡ 1 mod (4) then χ(Z/p, 2/p) = −χ(Z/p, 2λ/p), so one is p

1
2 and

the other is −p 1
2 .

(2) If p ≡ 3 mod (4) then χ(Z/p, 2/p) = ±ip 1
2 .

Proof. In the sum
∑p−1

1 e2πiτk
2/p each term in the sum appears twice.

Thus
χ(Z/p, 2/p) + χ(Z/p, 2λ/p) = 2

∑p−1
0 e2πij/p

= 0.
Thus, case (1) follows directly. In case (2), writing S1 = χ(Z/p, 2/p), S2 =
χ(Z/p,−2/p) we have S1S2 = −S2

1 = p and S1 = ±ip 1
2 as claimed. ¤

But this completes the proof of parts (2) and (3) in the theorem, since
the argument of χ(T,A, q) give a non-trivial surjective homomorphism from
LTor,p4 (Z)−→Z/4 when p ≡ 3 mod (4), and χ distinguishes the two generators
when ≡ 1 mod (4).

It remains to demonstrate (4). So for the remainder of the argument we
assume that T is a 2-torsion module. By downward induction, starting with
the elments of largest order in T we see that we can always reduce order
unless we have Z/4’s or Z/2’s as the elements of largest order. Morover,
again using the existence of kernels for direct sums we can assume that at
most one element of order 4 appears in a generating set, and we can assume
that the form is diagonalized. Consequently, the generators for LTor,24 (Z)
are 




(Z/2, 1
2) written A1

(Z/4, 1
4) written A2

(Z/4, 3
4) written A3.

Proposition 24. We have the following relations among the generators
A2 ⊥ A3 ∼ 4A1, 2A2 ∼ 2A1, 8A1 ∼ 0. Thus, LTor,24 (Z) is at most Z/8 ⊕
Z/2.
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Proof. To begin let us consider 4A1. In 4(Z/2, 1/2) there is a Z/2
kernel generated by the diagonal Z/2, V = 〈(1, 1, 1, 1)〉. Here V ⊥/V =
(Z/2)2 with generators (1, 1, 0, 0) and (1, 0, 0, 1). Consequently, we have

q(1, 1, 0, 0) = q(1, 0, 0, 1) = 1

while
〈(1, 1, 0, 0), (1, 0, 0, 1)〉 =

1
2
.

Thus the resulting form on the quotient is the Arf invariant one form, B.
Now, note that the diagonal copy of B in B ⊥ B is a kernel with ∆(B)⊥ =
∆(B), so 2B ∼ 8A1 is zero in LTor,24 (Z) as asserted.

Next, note that A2 ⊥ A3 has the diagonal V ∼= Z/2 = 〈(2, 2)〉 as a
kernel and V ⊥/V = Z/2 ⊥ Z/2 with generators (1, 1) and (2, 0). The

associated bilinear form has matrix 1
2

(
0 1
1 0

)
but q(1, 1) = q(2, 0) = 1

which is again the Arf invariant one form. Thus we have verified the relation
A2 ⊥ A3 ∼ 4A1 in LTor,24 (Z).

Finally, we consider the form A2 ⊥ A2 which again has the diagonal
V = 〈(2, 2)〉 as a quadratic kernel. Here a suitable basis for V ⊥ is (1, 1) and
(1, 3) and V ⊥/V = Z/2⊕ Z/2 (1, 1) ⊥ (1, 3) and q(1, 1) = q(1, 3) = 1

2 . This
shows that 2A2 ∼ 2A1 and completes the proof. ¤

To complete the proof of (4) we must show that LTor,24 (Z) is at least
Z/8⊕ Z/2. To do this note that

χ(Z/2, 1/2) = 1 + i = 2
1
2 e2π/8

while
χ(Z/4, 1/4) = (1 + i− 1 + i) = 2i.

On the other hand, χ really has two invariants in it. The first is the modulus
modulo integral powers of 2, so it is either 1 or 2

1
2 . The second is the

argument which takes its values in Z/8. Thus it defines a homomorphism
from LTor,24 (Z) to Z/2⊕ Z/8 and

A1 7→ (2
1
2 , 1

8)
A2 7→ (1, 1

8)

and these two images together generate the entire Z/2⊕ Z/8. ¤
A reciprocity law. We have seen that we have a short exact sequence

0−−→Z−−→L4(Q)−−→LTor4 (Z)−−→0

but we also have a homomorphism

L4(Q)
⊗R−−→L4(R)

where R is the reals. On the other hand every real quadratic form is diago-
nalizable to a direct sum k〈1〉 ⊥ s〈−1〉, so the only invariant, when we factor
out by kernels, is σ = k − s, the signature. It thus follows that L4(R) = Z,
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and, since the signature detects the kernel of the map L4(Q)−→LTor4 (Z), it
follows that the sum map

L4(Q)−−→LTor4 (Z)⊕ L4(R) = Z
is injective.

Theorem 37. Define a map

s1 : LTor4 (Z)−−→Z/8
by sending (T,A, q) to the argument of χ(T,A, q). Also define s2 : L4(R)−→Z/8
by taking the signature mod(8). Then (v, w) ∈ LTor4 (Z) ⊕ L4(R) is in the
image from L4(Q) if and only if s1(v) = s2(w).

(We don’t prove this here. An analytic proof is given in an appendix to [46],
but, being careful with the proof of 36 above leads to a constructive proof.)

3. The construction of an exact sequence for the surgery groups

Lemma 65. Suppose a non-singular ±-torsion form W with a quadratic
refinement is given as above, and suppose that L ⊂W is a quadratic kernel
(this means that 〈l1, l2〉 = 0 for each pair l1, l2 ∈ L and q(l) = 0 as well for
each l ∈ L). Then there is a well defined non-singular ±-form with quadratic
refinement on L⊥/L.

Proof. Indeed, for m1,m2 ∈ L⊥ we define 〈m̄1, m̄2〉 = 〈m1,m2〉, and
q(m̄) = q(m). These are both well defined since, for example, q(m + l) =
q(m) + q(l) + 〈m, l〉 = q(m), and similarly for the bilinear form.

Now, consider the composite map W
B−→W ∗ p−→L∗. By definition, L⊥ is

precisely the kernel. Using this remark we can see that the induced bilinear
form on L⊥/L is non-singular.

For m ∈ L⊥, representing a non-trivial element in the quotient, suppose
that

〈m,m′〉 = 0
for all m′ ∈ L⊥. It follows that m ∈ (L⊥)⊥. Now consider w ∈ W . We
have 〈m,w〉 = 〈m,w + m′〉 for any m′ ∈ L⊥, so m ∈ Hom(L∗,Q/Z) ∼= L,
and there is a unique element l(m) ∈ L so that 〈l(m), w〉 = 〈m,w〉 for all
w ∈W . But, since the form is non-singular, this implies that m = l(m) ∈ L
which represents 0 in the quotient. ¤

Example 47. In the 46 above, if we set L = Z/5, then L = L⊥, so the
quotient is zero. In the first example, 45, there is no such L.

The reason this sub-quotient construction is useful is the following lemma:

Lemma 66. Suppose the element w ∈ W satisfies q(w) = 0. Then
a series of geometric moves will replace the original surgery problem by a
problem with W replaced by L⊥/L.





CHAPTER 11

The Global Structure of Surgery when π1(X) = 0

In this chapter we survey the global theory of surgery in the case where
π1(X) = 0. To begin we construct a topological invariant, the Spivak normal
fibration, associated to any closed Poincaré duality complex. This invariant
is the homotopy type of the normal sphere bundle over X if X is a manifold,
and is classified by a map f : X−→BG where BG is a space which classifies
homotopy sphere bundles – Serre fibrations where the fiber has the homotopy
type of a sphere.

Given a lifting of this Spivak normal bundle to an actual vector bundle
over X we get a normal bordism class of degree one normal maps over X.
Moreover, in this context, by taking difference constructions we get a new
description of the set of normal bordism classes of degree one normal maps
as the set of homotopy classes of maps [X,G/O] where G/O is the fiber of
the Serre fibration associated to the natural map BO−→BG.

From this we obtain the surgery exact sequence

[ΣX,G/O]
σ−−→Ln+1(1)−−→HD(X)−−→[X,G/O]

σ−−→Ln(1)

where HD(X) is the set of h-cobordism classes of pairs (Mn, f) with Mn

an n dimensional differentiable manifold and f : Mn−→X a homotopy equiv-
alence. Also, σ is the surgery obstruction map. A key property of σ is that
it only depends on the bordism class of (Mn, g : Mn−→G/O) is case Mn is
a closed, compact differentiable manifold with empty boundary.

Next we review work of Sullivan which identifies the value of σ(Mn, g)
in terms of reasonably accessible homology data for the map g : Mn−→G/O.
In particular, these formulae depend crucially on the existence of product
formulae – also due to Sullivan – which identify the surgery obstruction of
a normal map of the form

Nk × M̄n
id×f−−→Nk ×Mn

in terms of characteristic classes of N and the surgery obstruction of f .
These product formulae and their generalizations to the non-simply con-
nected case play a crucial role in applications of surgery.

161
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1. The Spivak normal fibration in the simply connected case

We assume that X is a closed n-dimensional, simply connected and finite
Poincaré duality complex throughout this section, and f : Xn−→R2n+k is an
embedding of X as a subcomplex of Euclidian space where k ≥ 21.

Then, in the second barycentric subdivision of the triangulation ofR2n+k,
by taking the stars of the simplices of X and smoothing slightly we obtain
a regular neighborhood, N(X) of X, which (of course) collapses to X and
which has a manifold boundary ∂N(X).

Example 48. Let Mn ↪→ R2n+k be an embedding of a closed, compact,
differentiable manifold. Then, by the tubular neighborhood theorem, 9, we
can identify such a neighborhood of M with the normal disk bundle to the
embedding,

Dn+k ↪→ N(Mn)−−→Mn,

and the boundary with the sphere bundle of this normal bundle,

Sn+k−1 ↪→ ∂N(Mn)−−→Mn.

Up to homotopy a similar result is true in much greater generality.

Theorem 38. The homotopy fiber of the inclusion ∂N(X) ↪→ N(X) '
X has the homotopy type of the sphere Sn+k−1 for X as above and k suffi-
ciently large.

Proof. The homology groups H∗(∂N(X)) fit into the exact sequence

· · · −→H∗(X)
j−→H∗(X, ∂N(X))

∂−→H∗−1(∂N(X))−→H∗−1(X)−−→· · · .
Also we have the Poincaré duality isomorphisms

H2n+k−∗(X, ∂N(X)) ∼= H∗(X) ∼= Hn−∗(X).

It is convenient to assume that j is the zero map in 1 so that 1 shows that
in dimensions less than n+ k we have isomorphisms

H∗(∂N(X)) ∼= H∗(X)

while in dimensions greater than n+ k − 1 we have

∂ : H∗(X, ∂(N(X))−−→H∗(∂N(X))

is an isomorphism.
In fact we can always achieve this by increasing k by one so we have

X ⊂ R2n+k ⊂ I × R2n+k ⊂ R2n+k+1.

Indeed,
∂(I ×N(X)) = I × ∂(N(X))

⋃
∂I ×N(X)

so that the map X−→I×N(X) factors up to homotopy through ∂(I×N(X)).

1Sucha an embedding is always possible since X is a subcomplex of the simplex ∆m−1 where
m is the number of vertices of X
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Summarizing, ∂ : H∗(X, ∂N(X))−→H∗−1(∂N(X)) is an isomorphism and

Hi(∂N(X)) =

{
Hi(X) if i ≤ n
Hi−n−k+1(X) for i ≥ n+ k − 1.

Lemma 67. The boundary ∂I ×N(X) is simply connected.

Proof. Indeed, the above description of ∂N(X) gives it as a double:

∂(I ×N(X)) ' N(X) ∪∂N(X) N
(X).

By the van Kampen theorem π1(∂N(X)) is the amalgamated product of
π1(N ′(X)) with itself over π1(∂N ′(X)). But π1(N ′(X)) = 0 so the lemma
follows. ¤

The relative Hurewicz theorem now shows that πi(X, ∂N(X)) = 0 for
i ≤ n+ k − 1 and

πn+k(X, ∂N(X)) ∼= Hn+k(X, ∂N(X)) = Z.

Consequently, if V ∈ πn+k(X, ∂N(X)) is a generator, then

∂V ∈ πn+k−1(∂N(X))

is non-trivial, lies in the kernel of i∗ : πn+k−1(∂N(X))−→πn+k−1(X), and thus
represents a non-trivial Z-generator in πn+k−1(F ) where F is the homotopy
fiber of i.

On the other hand, in the Serre spectral sequence of the fibration we see
that the fiber has H∗(F ) = H∗(Sn+k−1) since πi(F ) = πi+1(X, ∂N(X)) and
is consequently 0 for i < n+ k − 1. Then in n+ k − 1 we have constructed
the Z generator, and the resulting two lines of the Serre spectral sequence

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................•

•

•

•

•

•
Z

Z H1(X)

H1(X)

Hi(X)

Hi(X)

The Serre spectral sequence of the fibration

completely describe H∗(∂N(X)). Consequently, there can be no further
non-zero lines in the Spectral sequence and the homology of the fiber is that
of the sphere. Thus, by applying the Whitehead theorem the fiber has the
homotopy type of Sn+k−1 as asserted. ¤

There is also a relative version of this result. Suppose that (Y n+1, Xn)
is a Poincaré pair with both X, Y simply connected and

h : (Y,X)−→(R2n+k+1
+ ,R2n+k)
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is a simplicial embedding with N(Y ) ⊂ R2n+k+1
+ , N(X) ⊂ R2n+k as regular

neighborhoods with manifold boundaries:

........................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................
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........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
................................................................................................................................................................................................................................................................................................................

N(X)

N(X)

N(Y )

Theorem 39. Define W as ∂N(Y )−N(X), so ∂N(Y ) = N(X)∪∂N(X)

W . Then the inclusion W ↪→ N(Y ) has homotopy fiber Sn+k if X, Y as
above are simply connected and k is sufficiently large.

Proof. We have

H∗(Y,X) ∼= H∗(N(Y ), N(X)) ∼= Hn−∗(N(Y )) ∼= Hn+k+∗+1(N(Y ),W )

and the remainder of the proof goes as before. ¤

Definition 50. Let (X, ∂X) ↪→ (R2n+k+1
+ ,R2n+k) be an embedding of

compact Poincaré pairs, or X ↪→ R2n+k an embedding of a closed compact
Poincaré duality complex, and N(X) a regular neighborhood of X with man-
ifold boundary. Then the inclusion ∂N(X) − N(∂X) ↪→ N(X) is called a
Spivak normal bundle to X.

We have shown above that in the simply connected case the Spivak
normal bundle has the homotopy type of a spherical fibering with fiber
Sn+k−1. In the next section we will give Browder’s extension of this result
to the non-simply connected case.

Then in the following sections we will show that the Spivak normal
bundle is unique up to equivalence of Serre fibrations for k ≥ 3. (Two
Serre fibrations E1

π1−→X and E1

π2−→X are equivalent if and only if there is a
homotopy equivalence h : E1−→E2 so that π1 = π2h.)

There is also a Thom space construction for fiber homotopy Sm-bundles.

Definition 51. Let f : E−→X be any Serre fibration with fiber the sphere
Sm, then the Thom space T (f) is the mapping cone of f .

Lemma 68. The Thom isomorphism theorem holds with Z/2 coefficients
for all Serre fibrations f : E−→X with fiber the sphere Sm. If the fibration is
oriented – in particular if π1(X) = 0 – then the Thom isomorphism theorem
holds with integer coefficients.
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Proof. The Serre spectral sequence for the pair (X,E) has E2-term

H∗(X,H∗(Dm+1, Sm)))

and consequently only has one non-zero row, E∗,m+1
2 with E∗,m+1

2 = H∗(X).
Here, the coefficients are twisted by an action of π1(X) on

Hm+1(Dm+1, Sm) = Z

which, consequently factors through

Aut(Z) = Z/2.

If we take Z/2-coefficients the twisting is trivial, of course. In any case
it follows that E2 = E∞. Moreover, by applying cup products, cupping
with the class corresponding to a generator of Hn+1(Dm+1, Sm) gives the
isomorphism in the case of Z/2 coefficients, or in the case where the action
of π1(X) is trivial. ¤

On the other hand, by taking the inclusion R2n+k ↪→ S2n+k and collaps-
ing the complement of Int(N(X)) to a point we obtain Pontrajagin-Thom
maps for the Spivak normal bundles:

S2n+k−−→S2n+k/(S2n+k − Ṅ(X)) ' N(X)/∂N(X)

when X is a closed, finite, n-dimensional Poincaré complex, and

(D2n+k+1, S2n+k) −−→ R2n+k+1
+ /(R2n+k+1

+ − Ṅ(X))
' N(X)/(∂N(X)−N(∂X))

which are direct generalizations of the Pontrajagin-Thom maps for differen-
tial manifolds or differential manifolds with boundary. Thus, the top class
of the Thom complex for the Spivak normal bundle is always spherical.

2. Browder’s extension of the Spivak normal bundle to π1(X) 6= 0

Suppose that X is a closed Poincaré duality complex of dimension n
with π1(X) 6= 0. We can still embed X ↪→ R2n+s for some sufficiently large
s provided that X is a finite complex – which we assume in what follows.
We would again like to conclude that the inclusion ∂N(X) ↪→ N(X) of
the manifold boundary of a regular neighborhood of X ↪→ R2n+s is again a
spherical fibering. However, even though the homology groups are correct
for this to happen, the possibility of non-trivial twisted coefficients on the
fiber prevents us from making this conclusion when we just try to argue as
in the proof of 38.

Browder’s idea was to embed X ⊂ Y for Y an n+ 1-dimensional simply
connected Poincaré complex so that a neighborhood of X in Y has the form
I×X. Then restricting the Spivak normal bundle to Y to this neighborhood
and using a Whitney sum construction he showed that the inclusion of the
∂ in the thickening of this neighborhood is a spherical fibering.

We modify is idea somewhat in what follows constructing the Spivak
normal bundle for an (n+1)-dimensional simply connected Poincaré duality
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space which contains X as a boundary component, and noting that the
restriction of this bundle to X together with projection to X must be the
homotopy type of the pair (N(X), ∂N(X)), and consequently, the homotopy
fiber of the inclusion is the sphere Sn+k−1 for sufficiently large k as desired.

Here are the details. We assume n ≥ 5 in what follows.
Let e1, . . . , er generate π1(X) and suppose that maps fi : S1−→X, i =

1, . . . , r are given to represent the ei. Then for each i

(fi)∗[S1] = [ei] = αi ∩ [X]

with αi ∈ Hn−1(X). Let V be the union over X of the mapping cones of
the fi (that is, we attach r 2-cells to X with attaching maps the fi). The
fundamental group of V is thus 0. Moreover, Hn−1(V ) ∼= Hn−1(X) since
n ≥ 5, so the αi are still present in Hn−1(V ).

For each αi we have a map αi : V−→K(Z, n − 1) with α∗i (ι) = αi, and,
since

K(Z, n− 1) ' Sn−1 ∪ en+1 ∪ · · ·
as a cell complex, it follows that we have maps

ᾱi : V−−→Sn−1

with ᾱ∗i ([S
n−1]∗) = αi, 1 ≤ i ≤ r, and thus a map

r∨

1

ᾱi : V−−→
r∨

1

Sn−1.

We now study the fiber of
∨r

1 ᾱi which we write F . There is a fibration

Ω
r∨

1

Sn−1−−→F−−→V

and

Ω
r∨

1

Sn−1 =

(
r∨

1

Sn−2

)
∪r21 e2n−4 ∪ · · · .

Thus in the range of dimensions < 2n− 4 the Serre spectral sequence only
has two rows, E∗∗,0 and E∗∗,n−2 and only one differential

dn−1 : Hn−1(X) = En−1,0−→E0,n−2 = Zr.

•

•

•

•

• •

• •
...........

.

H2(V )

H2(V,Zr)

Hn−1(V ) Hn(V )

Hn(V )⊗ ZrZr

The spectral sequence for H∗(F )
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As a consequence Hn(F ) = Z⊕H2(V,Zr) and Hn−1(F ) = 0 since H1(V ) =
0.

It remains to choose a single class in Hn(F ) which will give Poincaré
duality and kill the others.

In homology Hn−2(F ) is torsion free. We can write

Hn−2(V ) = Z/n1 ⊕ Z/n2 ⊕ · · · ⊕ Z/ns ⊕ Zl

but the cohomology coboundary dn−1 above is surjective onto

Hn−1(V ) = Z/n1 ⊕ · · ·Z/ns ⊕ Zw.
Thus, dually, the classes ei, 1 ≤ i ≤ s responsible for the torsion truncations
in the homology of V lift in the fiber to classes with boundaries nifi + gi
where gi is the dual of the appropriate cohomology class on the fiber with
coboundary the Bochstein of f∗i .

Also, H2(F ) = H2(V ) is torsion free since π1(V ) = 0. Now, the elements
in

H2(V,Hn−2(F )) = H2(V )⊗Z Hn−2(F ) = E2,n−2
∞

correspond to cup products if the terms in Hn−2(F ) lie in E0,n−2∞ which has
finite index in the entire term (being generated by the elements n1e

∗
1, . . . , nse

∗
s,

and a direct summand). But we have already seen the extension structure
in homology which indicates that there is, for each generator αi ∈ H2(V )
(which corresponds to the summand Z/ni), an element in E∞2,n−2 which,
when capped with αi gives the homology generator in Hn−2(V ) which cor-
responds. The sum of these elements for each i, together with the class
corresponding to [X] gives Poincaré duality. Consequently we have con-
structed a simply connected Poincaré duality complex by adding this class
to the n− 1-skeleton of the fiber F .

Denote the resulting space X ′.
The inclusions X ⊂ V and X ′ ⊂ V , the latter obtained as the com-

position of inclusion X ′ ⊂ F−→V , define an (n + 1)-dimensional Poincaré
pair,

(V,X t −X ′),

as is easily verified, and consequently a Spivak normal bundle exists for
V which restricts to the Spivak normal bundle for X ′ and, for X we have
the following situation. The restriction of this Spivak normal bundle fac-
tors through the boundary of a regular neighborhood of X in a sufficiently
high dimensional euclidian space, and there gives a homology isomorphism.
Again, for sufficiently large dimension, we can assume that the map also
induces isomorphisms in homotopy for i = 1, 2. But from this, by the
Whitehead theorem and the 5-lemma it induces homotopy equivalences on
the respective fibers as well. It follows that the construction of 38 works in
the non-simply connected case as well provided that X is an oriented, closed
Poincaré duality space.
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Remark . The argument above is modeled on the process of doing
surgery on embedded S1 ×Dn−1’s in Mn. However, attempting to directly
generalize this to Sr×Dn−r ↪→ X requires that X be connected through di-
mension r−1 if we are to use the fiber of an associated dual map V−→Sn−r as
a model for the result of surgery. This is not satisfactory. Better theories of
surgery on Poincaré duality complexes have been constructed by L. Jones, N.
Levitt, Housemann and Vogel and others, [REFERENCE], [REFERENCE],
[REFERENCE], by proving various kinds of “patching” theorems which en-
able one to give models for Poincaré duality spaces which are reasonably
close to being n-dimensional manifolds.

3. The basic properties of homotopy sphere bundles

Given a mapping f : Y−→X of finite CW -complexes, let M(f) be the
mapping cylinder of f . We convert f into a Serre fibration by replacing Y
by the mapping space

E
M(f)
Y,M(f)

consisting of paths g : I−→M(f) in the mapping cylinder of f which originate
in Y , so f is replaced by h(g) = πg(1), where π : M(f)−→X is the projection.

For technical convenience we assume that f is base point preserving and
that M(f) is the reduced mapping cylinder, where we identify I × ∗Y with
∗X ∈ X and assume that this is the base point ∗ ∈M(f).

When we do this the fiber has the homotopy type of the space of paths
E
M(f)
Y,∗ , and if we have h : Z−→X we can take the induced fibration h!(E)−→Z

where h!(E) is the set of pairs (z, g) with π(g(1)) = h(z). This is again a
Serre fibration with fiber EM(f)

Y,∗ .
Similarly, if we have Serre fibrations f : E−→X and f ′ : E′−→X ′ with

fibers F and F ′ respectively, then

E ×E′ f×f
′

−−→X ×X ′

is a Serre fibration with fiber F ×F ′. In particular, if X = X ′, then restrict-
ing to the diagonal ∆(X) ⊂ X ×X gives us a Serre fibration over X with
fiber F × F ′.

Example 49. Let I×X p2−→X be projection onto the second factor. Then
if f : E−→X is any Serre fibration the result of the construction above is the

composition I × E p2−→E
f−→X.

In the case of Serre fibrations where the fibers have the homotopy types
of the spheres Sm and St respectively, we get a fibration with fiber Sm×St
using the construction above. This is not quite what we want. We would
like, in analogy with the Whitney bundle sum, to be able to replace the two
fibrations above by a Serre fibration with fiber Sm+t+1. That we can do this
is a consequence of the next lemma.
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Lemma 69. Let E
π−→X be a sub-Serre fibration of the Serre fibration

E′
π′−→X with fibers F and F ′ respectively. Suppose that E

π−→X is also a

sub-Serre fibration of the Serre fibration E′′
π′′−→X with fiber F ′′. Then

E′ ∪E E′′
π′′∪ππ′−−−→ X

is again a Serre fibration with fiber F ′′ ∪F F ′ provided E is open in both E′,
E′′.

Proof. We are given the following situation

V
h−−→ E′ ∪E E′′y

i0

y
π′∪ππ′′

V × I H−−→ X

and we want to extend h to V × I so as to cover H where V is a finite
simplicial complex. We take a refinement of the triangulation of V so that
for each simplex in the refinement is taken by h into E, E′, or E′′. Then we
construct the extension first over the subcomplex generated by the simplexes
which map into E so that the extensions lie in E. At this point we can
extend the extensions to the remaining simplices without difficulty. Thus
the map is a Serre fibration and the fiber is manifestly as claimed. ¤

Corollary 25. Let f1 : E1−→X, f2 : E2−→X be two Serre fibrations with
fibers Sm and St respectively. Then the fiberwise join E1 ∗f1,f2 E2 defined as
the subset of the join E1 ∗E2 consisting of the equivalence classes of triples
(e1, t, e2) with f1(e1) = f2(e2) maps to X and, regarded as a Serre fibration
has fiber the sphere Sm+t+1.

Proof. Let E
f−→X be a Serre fibration. We regard

E
M(f)
E,M(f) ' E

M(f)
E×[0,1),M(f)

as a subspace of

E
M(f)
M(f),M(f) ' X.

This gives an open inclusion of the type required in 69. Now apply 69 in
the obvious way. ¤

Thus we have Whitney bundle sums for spherical fibrations. In particu-
lar the construction corresponding to adding a trivial line bundle is simply
the fiberwise join of the trivial bundle S0 × X p2−→X with E−→X, and this
allows us to talk about stabilization.

The major theorem here is the Stasheff classification theorem, which, in
our case is the following:
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[Stasheff, [65]]
Theorem 40. Let Gm be the associative, unitary monoid of homotopy

equivalences of the sphere Sm, and SGm the monoid of orientation pre-
serving homotopy equivalences. Then Gm and SGm have classifying spaces
BGm, BSGm respectively together with universal fibrations

Sm−→Em−→BGm , Sm−→SEm−→BSGm ,

so that, given a finite complex X and a spherical Serre fibration f : E−→X
with fiber Sm then there is a unique homotopy class of maps Bf : X−→BGm

(or X−→BSGm if the fibration is oriented) so that the original fibrations is
the induced bundle.

(See [65] for details.)

The structure of the spaces Gm, SGm, G, and SG. In order to
understand the spaces Gm and SGm note that the map

Eval : Gm−→Sm

defined by Eval(g) = g(∗) is a Serre fibration with fiber Ωm(Sm)± where
Ωm(Sm) is the space of based maps g : Sm−→Sm. Here, the decoration ±
means those components which consist of homotopy equivalences, the +1
and −1 components, where the components are distinguished by the degree
of g. From the definition of Ωm(Sm) we see that the ith homotopy group
of Ωm(Sm) is πi+m(Sm). Moreover, the construction of the Sm+1-spherical
fibration Sm+1−→S0 ×X ∗p2,π E−→X shows that the corresponding maps

Gm
σ−−→Gm+1, SGm

σ−−→ , ΩmSm
σ−−→Ωm+1Sm+1

are given by simply suspending the maps. In particular, for

ΩmSm−→Ωm+1Sm+1

the map in homotopy is just the usual suspension homomorphism

σ : πi(Sm)−→πi+1S
m+1,

which, by a theorem of Freudenthal, is an isomorphism for i < 2m− 1. On
the other hand, from the exact sequence

· · · ∂−−→πm+i(Sm)−−→πi(SGm)−−→πi(Sm)
∂−−→πm+i−1(Sm)−−→· · ·

associated to the fibration ΩmSm−→SGm−→Sm, we see that the inclusion
ΩmSm ↪→ SGm is a homotopy equivalence through dimension m− 2. Thus
we have

Theorem 41.
(1) The associated suspension maps for the classifying spaces

Bσ : BGm−→BGm+1 , Bσ : BSGm−→BSGm+1

are homotopy equivalences through dimension m− 1.
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(2) The limit spaces BG and BSG which classify stable homotopy spherical
fibrations satisfy π1(BG) = Z/2, π1(BSG) = 0 while for i ≥ 2 we have

πi(BG) ∼= πi(BSG) ∼= lim
m7→∞πi+m−1(Sm).

Definition 52. The forgetful maps

Jn : On(R)−−→Gn−1, Jn : SOn(R)−−→SGn−1

pass to limits as well giving the maps of classifying spaces

BJ : BO−−→BG, BJ : BSO−−→BSG
and the fiber in both cases is written G/O.

Thus we have the following exact sequence for determining the homotopy
groups of G/O:

· · · −−→πn(O)
j∗−−→πn(G)−−→πn(G/O)

∂
π n−1(O)

jn−1−−→ · · · .
Thus, replacing π∗(G) by πs∗(S0), the stable homotopy of spheres, and writ-
ing Coker(j) for the cokernel of the map j : π∗(O)−→πs∗(S0) this gives

0−−→Coker(j)−−→πn(G/O)−−→
{
Z if n is 4s,
0 otherwise

−−→0.

Also, note that Coker(j)8n+4 = πs8n+4(S
0) and Coker(j)8n = πs8n(S

0)/(Z/2).

4. The Spivak bundle and degree one normal maps

Any two Spivak normal structures on anm-dimensional geometric Poincaré
complex X are related by a stable fibre homotopy equivalence c : ν ' ν ′
which preserves the Pontrajagin-Thom map S2n+k−→T (ν). This is a direct
consequence of the fact that for complexes any two embeddings X ↪→ R2n+k

with k ≥ 2 are isotopic in the sense that there is an embedding H : I×X ↪→
I×R2n+k so that H restricted to the two ends gives the original embeddings.
Indeed, we use the relative version of the existence of Spivak normal bundles
and classification to show that the associated spherical fibration on I × X
is a product, and the assertion is direct from this.

Although a homotopy equivalence of manifolds need not preserve the
normal bundles it does preserve the Spivak normal fibrations. Indeed, we
have

Corollary 26. A homotopy equivalence of geometric Poincaré com-
plexes preserves the Spivak normal fibrations.

Proof. Embed the mapping cone of the homotopy equivalence inR2n+k+3

for k ≥ 1. Then the mapping cone has the homotopy type of X × I, and
classification gives the result. ¤

A normal invariant is a realization of the Spivak normal structure by a
vector bundle. Precisely:
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Definition 53.
(ii) A normal invariant (η, ρ) on an m-dimensional geometric Poincaré
complex X is a vector bundle η over X which lifts the Spivak normal bundle
to X together with a map ρ : Sm+k−→T (η) to the Thom space of η such that

Uη ∩ h∗(ρ) = [X] ∈ Hm(X;Zw(X)) .

(ii) An equivalence of normal invariants (η, ρ), (η′, ρ′) on an m-dimen-
sional geometric Poincaré complex X is a stable bundle isomorphism c : η '
η′ such that

T (c)∗(ρ) = ρ′ ∈ πSm+k′(T (η′)) .
(iii) The normal structure set T (X) of an m-dimensional geometric
Poincaré complex X is the set of equivalence classes of normal invariants.

Example 50. Any embeddingM ⊂ Sm+k of anm-dimensional manifold
Mm with tubular neighbourhood (Y, ∂Y ) determines a normal invariant
(η, ρ) with

η = νM⊂Sm+k : M −−→ BO(k) ,
(Dk, Sk−1) −−→ (E(η), S(η)) = (Y, ∂Y ) −−→ M ,
ρ = projection : Sm+k −−→ Y/∂Y = T (η) .

Any two such embeddings determine equivalent normal invariants. The
Spivak normal fibration of M is the stable sphere bundle JνM : M−→BG of
the stable normal bundle νM : M−→BO.

When does a geometric Poincaré complex admit a normal invariant?

Theorem 42. (Browder [7], [9], Novikov [49])
The following conditions on an m-dimensional geometric Poincaré complex
X are equivalent:
(i) The normal structure set T (X) is non-empty, i.e. X admits a normal
invariant.
(ii) There exists a degree 1 normal map (f, b) : Mm−→X.
(iii) The Spivak normal fibration νX : X−→BG admits a bundle reduction
η : X−→BO.

Proof. (i) =⇒ (ii) Given a normal invariant (η, ρ) on X make ρ :
Sm+k−→T (η) transverse at the zero section X ⊂ T (η), obtaining a degree 1
normal map

(f, b) : Mm = ρ−1(X) −→ X .

(ii) =⇒ (i) Given a degree 1 normal map (f, b) : M−→X with b : νM−→η use
an embedding Mm ⊂ Sm+k of an m-dimensional manifold M to define a
normal invariant (νM , ρM ), with

νM = νM⊂Sm+k : M −→ BO(k) ,
ρM = proj. : Sm+k −−→ Sm+k/(Sm+k\E(νM )) = T (νM ) .

Define a normal invariant (η, ρ) on X by

ρ = T (b)ρM : Sm+k
ρM−−−→ T (νM )

T (b)−−−→ T (η) .
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(ii) =⇒ (iii) For any normal invariant (η, ρ) of X the sphere bundle Jη :
X−→BG is the Spivak normal fibration νX , by 42. ¤

In view of our previous discussion of degree one normal maps, 45, 5, we
can summarize this discussion as follows.

Proposition 25. Let X be an m-dimensional geometric Poincaré com-
plex which admits a normal invariant.
(i) The normal structure set T (X) is in natural bijective correspondence with
the set of normal bordism classes of degree 1 normal maps (f, b) : M−→X (for
varying reductions η : X−→BO of the Spivak normal fibration νX : X−→BG).
(ii) The normal structure set T (X) is in unnatural bijective correspondence
with the set [X,G/O] of fibre homotopy trivialized stable vector bundles over
X.

Proof. Only (ii) needs to be shown. An element (α, β) ∈ [X,G/O] is
a vector bundle α : X−→BO(j) (j large) together with a fibre homotopy
trivialization β : Jα ' {∗} : X−→BG(j). Given a normal invariant (η :
X−→BO(k), ρ : Sm+k−→T (η)) define a normal invariant (η′, ρ′) by

η′ = η ⊕ α : X −−→ BO(j + k) ,

ρ′ : Sm+j+k
Σjρ−−−→ ΣjT (νX)

1⊕T (β)−−−→ T (η′) .

The construction defines a bijection

ιη,ρ : [X,G/O] −−→ T (X) ; (α, β) −−→ (η′, ρ′) .

¤
Example 51. The Spivak normal fibration νM : M−→BG of a manifold

M has a canonical vector bundle reduction, namely the stable normal bundle
ν̃M : M−→BO, and the normal structure set T (M) is in natural bijective
correspondence with [M,G/O]. The bijective correspondence

T (M)
'−→ [M,G/O] ; ((f, b) : N−→M) −→ (α, β)

is defined by sending a normal map (f, b) : N−→M to the fibre homotopy
trivialized stable vector bundle (α, β) over M with b : ν̃N−→ν̃M ⊕ α.

Example 52. The following construction exhibits a geometric Poincaré
complex X without a normal invariant, i.e. such that the Spivak normal
fibration νX : X−→BG is not reducible to a vector bundle ν̃X : X−→BO. It
uses the fact that the total space of a fibration

F −−→ E −→ B

with the basis B anm-dimensional geometric Poincaré complex and the fibre
F an n-dimensional geometric Poincaré complex is an (m+ n)-dimensional
geometric Poincaré complex E (Gottlieb [22]). In particular, the total space
of an n-spherical fibration over Sm classified by

ω : Sm −→ BG(n+ 1)
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is an (m+ n)-dimensional geometric Poincaré complex S(ω)

Sn −→ S(ω) −→ Sm .

If ω admits a section, say

ω = ω1 ⊕ ε : Sm −→ BF (n+ 1)

for some ω1 : Sm−→BG(n), the total space S(ω) has a cell structure

S(ω) = (Sm ∨ Sn) ∪[ιm,ιn]+θ(ω) D
m+n ,

with [ιm, ιn] ∈ πm+n−1(Sm ∨ Sn) the Whitehead product of ιm ∈ πm(Sm)
and ιn ∈ πn(Sn) (the attaching map of the top cell in S(εn+1) = Sm × Sn)
and

θ(ω) = adjoint of ω : Sm+n−1 −−→ Sn .

The Thom space of ω has a cell structure

T (ω) = Sn+1 ∪Σθ(ω) D
m+n+1 .

The Spivak normal fibration of S(ω) is classified by

νS(ω) : S(ω) −−→ Sm
−ω−−−−−→ BF (k) (k large) ,

and the Thom space of νS(ω) has the cell structure

T (νS(ω)) = (Sk ∪Σθ(−ω) D
m+k) ∨ Sn+k ∨ Sm+n+k .

In the special case

m = 3 , n = 2 , ω = 1 ∈ π3(BF (3)) = π4(S2) = Z2

there is obtained a 5-dimensional geometric Poincaré complex X = S(ω)
such that the Spivak normal fibration νX : X−→BG does not have a bundle
reduction – see Madsen and Milgram [35, p.33]. In this case the composite

t(νX) : X
νX−→ BG −−→ B(G/O)

does not admit a null-homotopy. fbox

The surgery exact sequence. With these preliminaries out of the
way we can now describe the structure of the set of all simply connected
manifolds homotopy equivalent to a given Poincaré complex as follows.

Definition 54. Let X be a simply connected, closed, compact Poincaré
duality complex of dimension n. Assume that there is at least one degree
one normal problem over X, so the structure set S(X) 6= ∅. The set of
homotopy differential structures on X, written HD(X) is the set of
homotopy equivalences f : Mn−→X for Mn a closed compact differentiable
manifold, where the equivalence relation is given by (M,f) ∼ (M ′, f ′) if
and only if there is an h-cobordism W from M to M ′ together with a map
H : W−→I ×X so that H|M is f while H|M ′ is f ′.

Of course, from the Browder-Novikov theorem, HD(X) 6= ∅.
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Theorem 43. Let X be a simply connected closed, finite n-dimensional
Poincaré duality complex with a vector bundle reduction of its Spivak normal
bundle and n ≥ 5. Then there is a long exact sequence of sets

· · · −−→[ΣX,G/O]
σ−−→Ln+1(1)−−→HD(X)−−→[X,G/O]

σ−−→Ln(1)

where Ln(1) is the surgery obstruction group for simply connected surgery
problems:

Ln(X) =





Z if n ≡ 0 mod (4),
Z/2 if n ≡ 2 mod (4),
0 if n is odd.

Proof. The only point where we need to make some comments is in
analyzing the kernel of the map from HD(X) to [X,G/O]. Here an element
in the kernel means, actually, two elements (M1, f1) and (M2, f2) with the
same image in [X,G/O]. Thus, there is is an (n + 1)-dimensional mani-
fold W with boundary M2 −M1 together with a degree one normal map
H : Wn+1−→I ×X so that H|Mi is fi : Mi−→X. We may assume, of course
that both f1 and f2 are homotopy equivalences. Thus, we can do surgery
on the interior of W to make H a homotopy equivalence if n is even, and it
follows that (M1, f1) and (M2, f2) are h-cobordant, hence equal in HD(X).
But if n is odd there will be an index or Kervaire invariant obstruction to
completing surgery.

Now, to what degree is this obstruction well defined? Clearly, once the
homotopy I ×X−→G/O is specified (so we have a specific choice of surgery
problem fixed on the boundary) then the obstruction is well defined. Thus,
the variation occurs through the variation of the homotopy. If there are
two distinct homotopies from (M1, f1) to (M2, f2) with different surgury
obstructions, then taking the difference gives a homotopy from (M1, f1)
to itself with surgery obstruction the difference of the two obstructions.
And conversely, given a homotopy from (M1, f1) to itself with given surgery
obstruction, σ, by adding it to the given homotopy we change the original
surgury obstruction by adding σ to it.

On the other hand, given the surgery obstruction σ it is represented, as
we’ve seen by a surgery problem of the form

Wn+1−→I × Sn

which, at one end is the identity and at the other end gives a degree one
map of a Milnor sphere, 8, onto Sn if n ≡ 3 mod (4) while it gives a Ker-
vaire sphere, 8 if n ≡ 1 mod (4). By gluing this bordism to the product

I ×Mn
id×f1−−→I × X we obtain a surgery problem with any desired surgery

obstruction on W .
This completes the proof. ¤

Example 53. We consider again the case where X = Sn, the ordinary
n-sphere with n even. From 3 we have determined πn(G/O) = [Sn, G/O]. In
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the case n = 4k the surgery obstruction map is injective on the Z-summand
and, since L4k+1(1) = 0, it follows that HD(S4k) = Coker(j)4k which is
πs4k(S

0) for k odd and πs4k(S
0)/(Z/2) for k even. In the case of S4n+2 the

surgery map is onto if and only if the boundary of the Kervaire plumbing is
an ordinary sphere (in which case we can close up the surgery problem over
the disk D4k+2 to a problem over S4k+2).

We have that the image of j is Z/2 in dimensions congruent to 2 mod (8)
and is 0 in dimensions congruent ot 6 mod (8). It follows that in dimension
congruent ot 6 mod (8) there must be a special kind of Z/2-direct summand
in πs8n+6(S

0) in order that the surgery obstruction map be non-trivial. (In
the remaining case we would need either a Z/2 summand or a Z/4 sum-
mand.) In fact Browder proved a very precise result.

Theorem 44. [Browder] The only dimensions n = 4k + 2 where the
surgery obstruction map σ : [Sn, G/O]−→Ln(1) = Z/2 can be non-trivial are
of the form n = 2v − 2. Moreover, the map will be non-trivial if and only if
there is an infinite cycle in the Adams spectral sequence for πs∗(S0) in this
dimension occuring in filtration degree two.

In any case, modulo this indetermininacy, the above discussion deter-
mines the set HD(S4k+2).

Example 54. The case for the odd spheres S2n+1, always has the form

π2n+2(G/O)
Σ−−→L2n+2(1)−−→HD(S2n+1)−−→Coker(j)2n+1−−→0.

Here, the map Σ is the surgery map for the even sphere discussed above.
In particular, when 2n + 1 = 4k + 3 we have L2n+2(1) = Z and the

quotient Z/im(Σ) corresponds to the Milnor spheres of 8.
On the other hand, for 2n+1 = 4k+1 with 4k+2 not of the form 2s−2

it follows from Browder’s result that Σ is the zero map, so the boundary of
the Kervaire problem in this dimension is not diffeomorphic to the regular
sphere, and taking the connected sum with this class describes the kernel of
the map from HD(S4k+1) to Coker(j)4k+1.

The bordism invariance of the surgery obstruction. The next
thing that we need to note is that if we have two maps

f1 : Mn
1 −−→G/O, and f2 : Mn

2 −−→G/O
where the Mi are closed, compact, differential manifolds without boundary
which are bordant with bordism

H : W−→G/O, ∂(W ) = M2 −M1, H|Mi = fi

then the associated surgery problem over W can be made highly connected
so that we get the following exact sequence of surgery kernels in case n is
even:

0−−→Kn
2
+1(H)

∂−−→Kn
2
(f2)⊕ (−)Kn

2
(f1)−−→Kn

2
(H)−−→0
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which shows that the surgery obstruction associated to (M1, f1) is equal to
the surgery obstruction for (M2, f2).

Consequently, in the cases where our Poincaré duality spaces are actually
manifolds the surgery obstruction map [Mn, G/O]−→Ln(1) actually factors
through the bordism of G/O, giving a map

σ : Ωn(G/O)−→Ln(1)

so that the surgery obstruction factors through σ.
Note that the product construction

(Mn, (Nk, f)) 7→ (Mn ×Nk, fp2)

where p2 : Mn×Nk−→Nk is just projection onto the second factor passes to
bordism and defines an action

Ωn(pt)× Ωk(W )−−→Ωn+k(W )

for any space W . In particular, it is natural to ask how this action affects
the surgery invariant in the case where W = G/O.

In the case of the signature we know that the signature of M4n×N4k is
just the product S(M)S(N). Consequently, in these dimensions, the surgery
obstruction for the product of the surgery problem N̄4k

g−→N4k associated
to the map f : N4kra1G/O is just the surgery obstruction for f multiplied
by the signature of N .

Theorem 45. [Sullivan] There are cohomology classes

K4i ∈ H4i(G/O,Q), i = 1, 2, . . . ,

so that given f : N4k−→G/O, then the surgery obstruction for (N, f) is given
by the formula

σ(N, f) = 〈L(M) ∪
k∑

i=1

f∗(K4i).

Proof. We recall that we have the fibration

G/O
j−−→BO−−→BG,

and if g : M̄4k−→M4k is the surgery problem associated to the map

f : M−→G/O,
then the normal bundle to M̄ is

g!(ν(M)⊕ j!(ξ))
where ξ is the universal bundle over BO. On the other hand, the L-class of
ν(M̄) evaluated on [M̄ ] gives the signature of M̄ , while the L-class of ν(M)
evaluated on [M ] gives the signature of M̄ .

But the L-class is multiplicative. Consequently, the L-class of ν(M̄),

L(ν(M̄)) = g∗(L(M)) ∪ g∗(f∗j∗(L))
= g∗(L(M) ∪ f∗(j∗(L)).
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Evaluating this on M̄ and subtracting 〈L∗(M), [M ]〉 gives the formula in the
theorem when we define K4i = j∗(L4i). ¤

Of course, the answer above is just one of four cases in which the product
could have a non-trivial surgery obstruction. We can see that one other case
is also fairly direct: when the dimension of N is 4k + 2 and the dimension
of M is 4n + 2, then the signature of the product is zero so, in this case,
whatever the original surgery obstruction, the surgery obstruction for the
product is zero.

The structure of piecewise linear surgery theory. It remains to
understand the cases where the dimension of N is 4k but the dimension of
M is 4n+ 2 and where the dimension of N is 4k+ 2 while the dimension of
M is 4n.

Here the arguments are much more subtle as is shown by 44. Sullivan
took a more general approach in order to understand this situation. He
first considered surgery over piecewise linear manifolds – topological man-
ifolds together with a triangulation so that the open stars of simplices are
triangulated n-disks. In this case the Poincaré conjecture in dimension ≥ 5
shows that the boundary of the Kervaire plumbing is the usual piecewise
linear sphere, so it can be coned off and one obtains a degree one surgery
problem over the sphere S4n+2 in the piecewise linear category with surgery
obstruction, the non-trivial element in L2(1).

Work of Milnor and others shows that there is a classifying space for
piecewise linear sphere bundles and consequently a fibration

G/PL−−→BPL−−→BG
which plays the same role for piecewise linear surgery as G/O plays for
ordinary surgery theory. Indeed, we can define, as before the set of ho-
motopy triangulations HD(Xn) of a closed, compact, Poincaré complex
without boundary as the set of equivalence classes of homotopy equivalences
f : Mn−→X with Mn a piecewise linear manifold. As before the equivalence
here is taken with respect to h-cobordisms over I ×X. Then the Poincaré
conjecture in dimensions ≥ 5 shows that HD(Sn) = {Sn} consists of a sin-
gle element in these dimensions. Again, the surgery exact sequence of 43
extends via an almost identical proof to give the exact sequence

[ΣX,G/PL]
σ

−−→Ln+1(1)−−→HT (X)−−→[X,G/PL]−−→Ln(1)

but here as a consequence of the fact that HT (Sn) = {Sn} and the fact
that the boundary of the plumbing constructions associated to the Ker-
vaire sphere, 8 in dimensions m = 4k+2 and to the E8-lattice in dimensions
m = 4k are both Sm−1 we obtain degree one normal maps of closed piecewise
linear manifolds over the spheres Sm and Sm which have surgery obstruc-
tions the generators of Lm(1) as long as m ≥ 5. Thus we have
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Theorem 46. For n ≥ 5, we have

πn(G/PL) ∼= Ln(1) =





Z n ≡ 0 mod (4)
0 n ≡ 1, 3 mod (4)
Z/2 n ≡ 2 mod (4).

Also, this result extends to dimensions < 5 as well though the interpre-
tations of the low dimensional classes are different.

Theorem 47. [Sullivan] The first 4 homotopy groups of G/PL are

π1(G/PL) = 0
π2(G/PL) = Z/2
π3(G/PL) = 0
π4(G/PL) = Z

the Z/2 being represented by the surgery problem given by the Kervaire
plumbing over S2 while the generator in dimension 4 is given by an in-
dex 16 problem. In particular the image of the generator in dimension 4
under the surgery map is twice the generator of L4(1).

Sullivan’s product formula for the Kervaire invariant. In the case
of piecewise linear surgery the discussion above shows that the Kervaire
invariant is much closer to the surface! Sullivan exploited this to obtain
a complete understanding of the homotopy type of the space G/PL. The
critical first step was to obtain a closed formula for determining the Kervaire
invariant of a surgery problem given in the form

(M4n+2, f : M4n+2−→G/PL)

with M4n+2 a differentiable manifold.
First Sullivan proves a second product formula.

Theorem 48. [Sullivan] Let f : M̄4k+2−→M4k+2 be a piecewise linear
degree one normal map with M4k+2 differentiable, and N4k any differentiable
manifold. Then the surgery obstruction for the product normal map

N × M̄ id×f−−→N ×M
is I(N)σ(f), the signature of N multiplied by the surgery obstruction of f .

For the proof see e.g. [8], [REFERENCE-ROURKE, SANDERSON].
This can be rewritten as follows: let v2k be the middle dimensional Wu

class of N4k, so v2k ∈ H2k(N ;Z/2) is characterized by the formula

α2 = v2k ∪ α = Sq2k(α)

for each α ∈ H2k(N ;Z/2). Then

〈v2
2k, [N ]〉

is directly seen to be the signature of N mod (2). (Compare the arguments
in 30 where we show that actually v2

2k is well defined mod (8) and determines
the signature of N mod (8).) Thus we have
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Corollary 27. Let V (N) be the total Wu class of N . Then, for the
product problem in 48 the surgery obstruction is given as 〈〈V 2(N), [N ]〉σ(f).

The most important thing here is that we have the determination of
bordism modulo odd torsion as follows. Let

A = Z(
1
3
,
1
5
, . . . ,

1
2n+ 1

, . . . )

so we have
Ω∗(X)⊗ A = H∗(X; Ω∗(pt)⊗ A).

This is very close to being the tensor product H∗(X;A) ⊗ Ω∗(pt). As a
consequence, by induction Sullivan proves the product formula

Theorem 49. [Sullivan] There are cohomology classes

k4k+2 ∈ H4n+2(G/PL,Z/2), k = 0, 1, 2, . . . ,

so that, given any differentiable manifoldM4n+2 and map g : M4n+2−→G/PL
the Kervaire invariant for the associated degree one normal map is given as

〈V 2(M) ∪
∞∑

k=0

g∗(k4k+2), [M4n+2]〉.

Here V is the total Wu class of M4n+2,
∑n

0 vi
2.

This has a profound implication for the homotopy type of G/PL. Real-
izing these cohomology classes via maps into Eilenberg-Maclane spaces gives
the following result.

Corollary 28. [Sullivan] There is a fibration

W−−→G/PL
Q
k4i+2−−−−→

∞∏

i=0

K(Z/2, 4i+ 2)

where the fiber W has homotopy groups

πi(W ) =

{
Z if i ≡ 0 mod (4)
0 otherwise.

In particular, W , when looked at modulo odd torsion (tensoring with A)
is a product of Eilenberg-Maclane spaces K(Z, 4i), while modulo 2-torsion
(tensoring with Z(1

2)) W is a copy of BO.

Proof. The idea of the proof is to use the description of the surgery
obstruction as a difference of indexes in dimensions 4n. This ties it in to
the L-class and bordism. It is direct to check that the cohomology classes
in 45 are actually integral when looked at modulo odd torsion, so the first
statement follows by simply mapping out to a product of Eilenberg-Maclane
spaces of the form K(Z, 4n).

2The ith Wu class of M is the unique element in Hi(M ;Z/2) so that vi ∪ α = Sqi(α) for
every α ∈ Hn−i(M).



4. THE SPIVAK BUNDLE AND DEGREE ONE NORMAL MAPS 181

To see the second statment involves checking the denominators of these
classes. One finds that they are equal to the denominators of the correspond-
ing classes for BO up to powers of 2. On the other hand, from homotopy
theory these denominators are maximal! That is to say, there is no space
with these homotopy groups which has these denominators except for BO
[REFERENCE – ADAMS, MARGOLIS]. Details of the calculations of de-
nominators are given in [35]. ¤

Finally, putting all this together we have Sullivan’s determination of the
homotopy type of G/PL.

Theorem 50. [Sullivan] Ignoring odd torsion G/PL is a product

E ×
∞∏

k=1

K(Z/2, 4k + 2)×K(Z, 4(k + 1))

where E is the unique stable Postnikov system

K(Z, 4)−−→E−−→K(Z/2, 2)

with K-invariant of order 2.

From these results it is not very difficult to determine the mapping sets
[X,G/PL], which makes simply connected surgery in the piecewise linear
category quite manageable.

Example 55. A case in point is the structure of [CPn, G/PL]. When
we look at the situation ignoring odd torsion this set is just the product

[CPn, E]×
n∏

k=3

{
Z/2 k odd
Z for k even,

while the K-theory of CPn is just
∑[n/2]

1 Z.
Thus, it suffices to understand [CPn, E]. The effect of the non-trivial

K-invariant in dimension 5 is to force Sq2(ι2), to be the restriction of a
torsion free integral class, where ι ∈ H2(E;Z/2) is the non-trivial class.
In fact H4(E;Z) = Z while H4(E;Z/2) = H4(E;Z) ⊗ Z/2. Consequently,
any map f : CPn−→E with f∗(ι) 6= 0 must take the torsion free generator in
dimension 4 to an odd multiple of b2 in H4(CPn;Z). It follows, using the
multiplication in E, that [CPn, E] = Z for any n ≥ 2.

Finally, we should note the commutative diagram of surgery sequences
which shows that the control of the surgery obstruction given by Sullivan’s
results for piecewise linear manifolds gives equally sharp control for differ-
entiable manifolds provided we know something about the map from G/O
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to G/PL.
σ−−→ Ln+1(1) −−→ HD(X) −−→ [X,G/O]

σ−−→ Ln(1)y
=

y

y

y
=

σ−−→ Ln+1(1) −−→ HT (X) −−→ [X,G/PL]
σ−−→ Ln(1)

Fortunately, the structure of this map has been pretty well completely ana-
lyzed. The details are given in the book [35].



CHAPTER 12

Surgery When π1(X) 6= {1}

This chapter completes our discussion of the foundational results in
surgery theory by considering the case where the fundamental group is non-
trivial. Most of the results here are due to C.T.C. Wall, though the proofs
and some of the definitions benefit from later work.

We begin with a short discusssion of duality over non-commutative rings
with involutions.

In the next section, in view of the experience we’ve gained in the the
previous four chapters we will start out by directly giving the definitions of
the even dimensional surgery obstruction groups. After this we construct
a well defined map from even dimensional degree one normal problems to
these groups which assigns zero to the problem if and only if it is possible
to do surgery to make the map normally bordant to a homtopy equivalence.

Then we repeat this process for the odd groups, first giving their defi-
nitions and proving that there is a well defined map from odd dimensional
degree one normal problems to these groups which assigns zero if and only
if the map is normally bordant to a homotopy equivalence.

Finally, we write down the various versions of the surgery exact sequence
which are applicable in this case. There are more than one since, as we’ve
seen, h-cobordism in the non-simply connected case does not necessarily give
diffeomorphic boundary components here, so it is also necessary to consider
s-cobordisms, which lead to different obstruction groups. We denote these
groups Lhn(Z[π], w) for degree one normal bordisms in dimension n up to
h-cobordism, where π is the fundamental group and w is the orientation
character, and by Lsn(Z[π], w) for equivalence up to s-cobordism. In appli-
cations the Lh-groups turn out to be easier to handle.

Again, for degree one normal maps over closed manifolds the surgery
obstruction will factor through bordism giving maps

Ω∗(G/O ×Bπ1(M), w)
σ−−→Lh,s∗ (Z[π1(M)], w).

Some applications are indicated in 6 based on the construction of some
non-trivial elements in Lhn(Z[Z/2], 1). There it is shown, among other things
that there exist smooth free actions of Z/2 on S4n−1, n ≥ 2, which are not
even topologically conjugate to the usual antipodal action ~x↔ −~x.

The proofs here are fairly close to Wall’s original proofs and, as in the
simply connected case are based on first making the normal map connected
up to the middle dimensions. However, in actual calculations this method

183
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is not very useful. The problem is that, unlike the case where π1 = {1},
the relevant structures in Kn(f) for 2n-dimensional problems, or Kn(f)
and Kn+1(f) for (2n + 1)-dimensional problems are not visible until one
has actually done surgery to make the map highly connected. Thus, to do
things like prove product formulae in the non-simply connected case one has
to have a method of determining the surgery obstruction without first doing
surgery. This will require a different point of view on the obstruction, one
based on iterated loop space theory and obstruction to desuspension. It will
be presented in the next chapter where we begin the discussion of the more
recent developments in the theory.

1. Preliminaries on Modules over Rings with Involutions

Before we can give the general definitions we have to discuss the structure
of non-singular (even) (±)-symmetric forms over general, in particular non-
commutative rings. In order to do this the ring A must be equipped with
an involution, 18, a↔ ā, ab = b̄ā which we consider fixed in the remainder
of our discussion. We also assume throughout that A satisfies the condition
that every finitely generated free module has a well defined rank, that is to
say An 6= Am if n 6= m and both are finite. Also, all our modules over A
will be assumed to be finitely generated.

Example 56. The most important examples for us are the group rings
Z[π] with the w-twisted involution of 19,

∑
nigi 7→

∑
w(gi)nig−1

i ,

where w : π−→Z/2 = {±1} is a fixed homomorphism. These rings all satisfy
the dimension condition above since they have homomorphisms J : A−→Fp
J(

∑
nigi) =

∑
ni for any finite field of prime order, Fp, and tensoring over

J with Fp takes modules to vector spaces.

We begin our discussion by considering non-singular quadratic forms on
finitely generated projective modules over A. Recall that a finitely generated
projective over a ring A is any A-direct summand of a finitely generated free
A-module, Am for some m. The dual of a finitely generated A-moduleM is
the module

M∗ = HomA(M,A).
Using the involution on A we define an A-module structure on M∗ by
af(m) = f(m)ā for all m ∈M.

Remark . Note here that the (perhaps) expected definition af(m) =
f(am) is not A-linear unless A happens to be commutative since af(bm)
would be b(af(m)) if (af) with this definition were linear, but this is b(f(am)) =
ba(f(m)). On the other hand af(bm) = f(abm) = ab(f(m)). Thus the mul-
tiplication on the right is necessary for linearity in general. On the other
hand, since ab(f) should equal a(b(f)) we see that the involution is needed
in order that this give an action.
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It is, of course, standard that M 7→ M∗ is a contravariant functor
on A-modules. Here, given f : M−→N then f∗ : N ∗−→M∗ is defined by
f∗(g)(m) = gf(m). Additionally,

(M⊕N )∗ = M∗ ⊕N ∗.

Remark . Another thing to note here is that for general modulesM∗ is
pretty much uncontrolled. For example, in the case that A = Z andM is a
torsion module, thenM∗ = 0. Thus, we have to make stringent assumptions
aboutM to conclude, for example, that (M∗)∗ =M.

A key result here is this.

Lemma 70. Let M be a finitely generated projective, then M∗ is again
a finitely generated projective A-module and (M∗)∗ =M.

Proof. Note first that for A, we have

A∗ = HomA(A,A) = A.

Consequently, (An)∗ ∼= An, and the result is true in this case. Likewise, since
M is projective, we haveM⊕N ∼= An for some n, N , andM∗ ⊕N ∗ = An
as well. SoM∗ is projective. Also,M∗ is non-trivial ifM is, since, writing
M ⊕ N = An, it follows that at least one of the coordinate projections
An−→A defines a non-trivial element ofM∗.

It remains to show thatM = (M∗)∗. Note first that the map

A−→(A∗)∗, a 7→ (f 7→ f(a))

for f ∈ A∗ gives an isomorphism, and is a special case of a general map
M−→(M∗)∗ which has the same definition. Thus, the map

M⊕N ∼= An−−→((An)∗)∗

takes M into (M∗)∗, and since is is an isomorphism overall, it must be an
isomorphism betweenM and (M∗)∗. ¤

Next we show that given M projective with M∗ ∼= M then there is a
projective N so that N ∗ ∼= N and M⊕N ∼= Ak for some k. But first we
need to recall Shanuel’s lemma.

[Shanuel]
Lemma 71. Let M be any A-module, and πi : Ani−→M, i = 1, 2, be two

surjective A-maps. Let K1 be the kernel of π1 and K2 be the kernel of π2.
Then K1 ⊕ An2 ∼= K2 ⊕ An1.

Proof. The map

π1 + π2 : An1+n2−−→M (a, b) 7→ π(a) + π(b)

is also surjective, and depending on our point of view we can identify the
kernel with K1 ⊕ An2 or K2 ⊕ An1 . ¤
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Corollary 29. Suppose M is finitely generated, projective, and iso-
morphic to M∗. Then there is a finitely generated projective N so that
N ∼= N ∗ and M⊕N ∼= Am with m <∞.

Proof. Take any surjective map π : An−→M with kernel N1. Dually,
we have

0−−→M∗−−→An−−→N ∗
1−−→0,

and sinceM, N1 are projective we can reverse the last arrows and obtain a
surjection

An =M∗ ⊕N ∗−−→M∗

with kernel N ∗. Now, using the isomorphism M ∼= M∗, and applying
Shanuel’s lemma we have N1 ⊕ An ∼= N ∗

1 ⊕ An. Thus, if we set

N = N1 ⊕ An

we see that N satisfies the conditions of the corollary. ¤

Remark . As a consequence of 29 the operation M ↔ M∗ induces
an involution on K0(A), with the fixed point set identified with those stable
isomorphism classes of finitely generated projectives withM⊕An ∼=M∗⊕An
for some n.

2. The Even Surgery Obstruction Groups

We now define the surgery obstruction groups L2n(A) for any ring with
involution. There are three special cases which need to be considered. First,
the obstruction groups most useful in applications are the groups which are
associated to quadratic forms over free A-modules. These groups are de-
noted Lh2n(A). They are fairly subtle to compute however, and a useful
intermediate group which is easier to study, the group associated to qua-
dratic forms over projective A-modules, Lp2n(A), is also introduced. Finally,
the orginal group of Wall, the group associated to quadratic forms over free
modules together with a choice of preferred bases, written Ls2n(A) is not
considered here. This last group is associated to surgery where up to nor-
mal s-cobordisms, hence the s. Likewise, the Lh groups are associated to
surgery up to normal h-cobordisms. Once we have given the definitions of
Lh,p2n (A), the modifications for describing Ls2n(A) should be quite clear.

Non-singular (±)-symmetric forms and quadratic reductions.
An A-linear map s :M−→M∗ is non-singular if it is an isomorphism. It is
(±)-symmetric if and only if s∗ = ±s. In what follows we only consider (±)-
symmetric non-singular forms s : M−→M∗. Such a form has a quadratic
reduction if there is an A-linear map T : M−→M∗ so that s = T ± T ∗.
Note that if we vary T by any (∓)-symmetric map V – for example a map
of the form B∓B∗ – then then T ± T ∗ is unchanged. In fact two quadratic
reductions, T and T ′ for s will be called equivalent if and only if T ′ =
T + (B ∓B∗) for some B : M−→M∗.
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The map T gives a rise to a map

qT : M−−→A
defined by qT (m) = T (m)(m). This map has the following properties:

qT (am) = aqT (m)ā
qT (m1 +m2) = qT (m1) + qT (m2) + T (m1)(m2) + T (m2)(m1)

= qT (m1) + qT (m2) + T (m1)(m2) + T ∗(m1)(m2)
= qT (m1) + qT (m2) + s(m1)(m2) + (ν ∓ ν̄)

where ν = T ∗(m1)(m2).
In accord with standard usage we introduce the notation

〈m1,m2〉s = s(m1)(m2),

which defines a mappingM×M−→A with the properties

〈am1,m2〉s = 〈m1,m2〉sā
〈m1, am2〉s = a〈m1,m2〉s

〈m1 +m2,m3〉s = 〈m1,m3〉s + 〈m2,m3〉s
〈m1,m2 +m3〉s = 〈m1,m2〉s + 〈m1,m3〉s.

Moreover, if s is (+)-symmetric or (−)-symmetric then we have

〈m1,m2〉s = ±〈m2,m1〉s.
When s is T ± T ∗ with T as above we call s the associated Hermitian form
with quadratic reduction T .

We now return to consideration of the map qT in (2). The initial diffi-
culty with qT is the term ν ∓ ν̄ in the last line of (2). Thus, let Q±(A) be
the abelian group defined as the quotient

Q+(A) = A/({a− ā}), for a ∈ A
Q−(A) = A/({a+ ā}), for a ∈ A.

The groups Q±(A) have multiplicative A-actions defined by a(b) = abā and
are the natural value groups for the map qT above. In particular, note that
if we redefine the quadratic reduction of s as qT :M−→Q±(A), then

qT (am) = aqT (m) ∈ Q±(A)
qT (m1 +m2) = qT (m1) + qT (m2) + 〈m1,m2〉s ∈ Q±(A).

Another thing that is important is to note that qT+B∓B∗ = qT in Q±(A).

Example 57. (1) When A = Z so the involution is the identity,
then Q+(Z) = Z while Q−(Z) = Z/2.

(2) In the case of the group ring Z(Z/2) there are two involutions.
Letting τ be the generator of Z/2 they are defined by τ ↔ ±τ
respectively.
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(a) In the case where the involution is the identity we haveQ+(Z(Z/2)) =
Z(Z/2) while Q−(Z(Z/2)) = Z/2(Z/2).

(b) In the remaining case, τ ↔ −τ , we have

Q+(Z(Z/2)) = Z[1]⊕ Z/2[τ ]
Q−(Z(Z/2)) = Z/2[1]⊕ Z[τ ].

A special case of (±)-non-singular symmetric form with quadratic reduc-
tion is the hyperbolic form associated to any finitely generated projective
A-module,M:

Hε(M) =
{
M⊕M∗

∣∣∣∣ s =
(

0 [I]
ε[I] 0

)
, T =

(
0 [I]
0 0

)}

where [I] : M−→(M∗)∗ =M is the indentification ofM withM∗∗ discussed
above, and ε is (+) or (−) 1 depending on whether we are considering (+)-
symmetric or (−)-symmetric forms.

Definition 55. (1) Given an ε-symmetric form (M, s) and a sub-
module L ⊆M define the orthogonal submodule

L⊥ = { y ∈M| 〈x, y〉s = 0 ∈ A for all x ∈ L }
= ker(i∗s : M−→L∗)

with i : L−→M the inclusion.
(2) A sublagrangian of a nonsingular ε-quadratic form (M, T, s) over

A is a direct summand L ⊆M such that

s(L× L) = {0} ⊂ A , T (L) = {0} ⊆ Qε(A) ,

so that
L ⊆ L⊥ .

(3) A lagrangian of (M, s, T ) is a sublagrangian L such that

L⊥ = L .

If (M, s) is nonsingular and L is a direct summand ofM then so is L⊥.
In the classical theory of quadratic forms over fields a lagrangian is

called a “maximal isotropic subspace”. Wall [70] called hyperbolic forms
“kernels” and the lagrangians “subkernels”. Novikov [51] called hyperbolic
forms “hamiltonian”, and introduced the name “lagrangian”, because of the
analogy with the hamiltonian formulation of physics in which the lagrangian
expresses a minimum condition.

Example 58. The cases considered in the previous chapter for π1 = {1}
are typical in many ways. Thus, for example in the hyperbolic form (H(−)(Z)
with basis e1, e∗1 the lagrangians are the Z-direct summands of the form
ae1 + be∗1 with ab even. So 〈3e1 + 2e∗1〉, 〈5e1 − 4e∗1〉, and so on are all
quadratic lagrangians.

Theorem 51. A nonsingular ε-quadratic form (M; s, T ) admits a la-
grangian L if and only if it is isomorphic to the hyperbolic form Hε(L).
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Proof. An isomorphism of forms sends lagrangians to lagrangians, so
any form isomorphic to a hyperbolic form has at least one lagrangian. In
proving the converse, it is convenient to use the language of split ε-quadratic
forms replacing (s, T ) by ψ ∈ Qε(K) and choosing a representative ψ ∈
S(K). Suppose that

(i, θ) : (L, 0) −→ (K,ψ)
is the inclusion of a lagrangian of (K, s, T ). An extension of (i, θ) to an
isomorphism

(f, χ) : Hε(L)
∼=−→ (K,ψ)

determines a lagrangian f(L∗) ⊂ K complementary to L. We shall construct
an isomorphism (f, χ) by first choosing a complementary lagrangian to L
in (K,ψ). Let i ∈ HomA(L,K) be the inclusion, and choose a splitting
j′ ∈ HomA(L∗,K) of i∗(ψ + εψ∗) ∈ HomA(K,L∗), so that

i∗(ψ + εψ∗)j′ = 1 ∈ HomA(L∗, L∗) .

In general, j′ : L∗−→K is not the inclusion of a lagrangian, with j′∗ψj′ 6=
0 ∈ Qε(L∗). Given any k ∈ HomA(L∗, L) there is defined another splitting

j = j′ + ik : L∗ −→ K

such that
j∗ψj = j′∗ψj′ + k∗i∗ψik + k∗i∗ψj′ + j′∗ψik

= j′∗ψj′ + k ∈ Qε(L∗) .
Choose a representative ψ ∈ HomA(K,K∗) of ψ ∈ Qε(K) and set

k = −j′∗ψj′ : L∗ −→ L∗ .

The corresponding splitting j : L∗−→K is the inclusion of a lagrangian

(j, ν) : (L∗, 0) −→ (K,ψ)

which extends to an isomorphism of split ε-quadratic forms

((i j) ,
(

θ 0
j∗ψi ψ

)
) : Hε(L)

∼=−→ (K,ψ) .

¤
Theorem 51 is a generalization of Witt’s theorem on the extension to

isomorphism of an isometry of quadratic forms over fields. The procedure
for modifying the choice of complement to be a lagrangian is a generalization
of the Gram-Schmidt method of constructing orthonormal bases in an inner
product space.

Corollary 30. The inclusion of a lagrangian in a nonsingular ε-quad-
ratic form

i : (L, 0, 0) −→ (M, s, T )
extends to an isomorphism of forms

f : Hε(L)
∼=−→ (M, s, T ) .
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Proof. The proof of 51 gives an explicit extension. ¤

Example 59. In the case of H(−)(Z) with basis e1, e∗1 as in 58 we can
consider the quadratic lagrangian 〈3e1 + 2e∗1〉. Then 4e1 + 3e∗1 generates a
second quadratic lagrangian and

〈4e1 + 3e∗1, 3e1 + 2e∗1〉 = 1

so the map (
3 2
4 3

)

with determinant +1 gives a suitable isomorphism of forms. This reflects
that fact that the group Sp2(Z) = SL2(Z).

Corollary 31. For any nonsingular ε-quadratic form (K, s, T ) the di-
agonal inclusion

∆ : K −→ K ⊕K ; x −→ (x, x)

extends to an isomorphism of ε-quadratic forms

f : Hε(K)
∼=−→ (K, s, T )⊕ (K,−s,−T ) .

Proof. Apply 30 to the lagrangian ∆(K) of (K ⊕K, s⊕−s, T ⊕−T ) .
For any split ε-quadratic structure ψ ∈ S(K) representing (s, T ) define an
extension of ∆ to an isomorphism

f =
(

1 −εψ∗
1 ψ

)
: Hε(K)

∼=−→ (K, s, T )⊕ (K,−s,−T ) .

¤

The definitions of the even L-groups.

Definition 56. Two ε-symmetric non-singular forms on finitely gen-
erated projective A-modules with quadratic reductions are Witt equivalent if
and only if there is an isomorphism of the first, {M | s, T} orthogonal direct
sum with Hε(W) to the second {N | s′, T ′} orthogonal direct sum with Hε(V)
so that s ⊥ sH(W) is carried to s′ ⊥ sH(V) and T is carried to T ′+(B− εB∗)
for some B.

• The set of Witt equivalence classes of ε-symmetric, non-singular
forms with quadratic reduction is defined as the projective L-
group Lpε (A).
• The set of equivalence classes of ε-symmetric, non-singular forms

with quadratic reduction under Witt equivalence where we restrict
M to be a finitely generated free module and the hyperbolic forms
Hε(W) to those where W is free and finitely generated, is defined
as the L-group Lhε (A).

The definitions above imply that these sets of equivalence classes have
a group structure. Indeed, we have
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Lemma 72. The sets of equivalence classes above Lpε (A) and Lhε (A) are
both abelian groups under the operation of orthogonal direct sum.

Proof. It is clear that orthogonal sum preserves Witt equivalence classes
since the orthogonal direct sums of hyperbolic forms are again hyperbolic
forms. Thus it suffices to show that givenM, together with T :M−→M∗ so
that T ± T ∗ = s is an isomorphism, there is N together with τ : N−→N ∗ so
that (M, T ) ⊥ (N , τ) is hyperbolic.

Indeed, suppose that {M, T} is given. Then {M, T} ⊕ {M,−T} has
the diagonal as a lagrangian, 31, and hence represents the trivial class in
Lpε (A) or Lhε (A). ¤

Definition 57. The surgery groups Lp,h2n (A) are defined as follows:

Lp,h2n (A) = Lp,h(−)n(A).

Thus Lp,h4n (A) = Lp,h+ (A), and Lp,h4n+2(A) = Lp,h− (A). Here the involution is
understood. In the special case most useful in applications where A = Z[π]
and the involution is the w-twisted involution of 19 we write these groups in
the form Lh,s2n (Z[π], w).

Example 60. (1) In the case A = Z the only projective modules
are free so Lh2n(Z) = Lp2n(Z), and these groups are the surgery
obstruction groups already discussed in 43 and the previous two
chapters. Consequently

Lh2n(Z) = Lp2n(Z) =

{
Z for n even,
Z/2 for n odd.

(2) In case 1
2 ∈ A then the quadratic refinement is unique since, given

s, setting T = 1
2s gives a quadratic reduction and given any second

quadratic reduction T ′ then, if T ′ is also ε-symmetric so 2T = 2T ′
it follows that T = εT ′. Thus, setting

B =
1
4
(T ′ − (T ′)∗),

it follows that T ′ − (B ∓ εB∗) = 1
2(T ′ + ε(T ′)∗).

(a) In case A = R, the real numbers then again projectives are free
and Lh4n(R) = Z, while Lh4n+2(R) = 0.

(b) In case A = Q, the rational numbers, then Lh4n(Q) is given by
the calculation of 36, , , while Lh4n+2(Q) = 0.

Example 61. One of the first calculations for a ring which is not an
integral domain or a field, is for the group ring Z[Z/2] with the oriented
involution τ̄ = τ where τ is the generator of Z/2 is due to Wall. Here again
projectives are free so Lp = Lh.
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We can construct an explicit element in Lh4n(Z[Z/2], 1) as follows. Con-
sider the matrix

E8,0 =




2τ 1 0 0 0 0 0 0
1 2τ 1 0 0 0 0 0
0 1 2τ 1 1 0 0 0
0 0 1 2τ 0 0 0 0
0 0 1 0 2τ 1 0 0
0 0 0 0 1 2τ 1 0
0 0 0 0 0 1 2τ 1
0 0 0 0 0 0 1 2τ




If we embed Z[Z/2] into the direct sum Z+ ⊕ Z−,

τ 7→ (1,−1)
1 7→ (1, 1)

then E8,0 goes to the direct sum of the E8-matrix of 5 and the matrix

F =




−2 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 1 0 0 0
0 0 1 −2 0 0 0 0
0 0 1 0 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2




.

For F we calculate the determinants of the diagonal minors,

−2,
(−2 1

1 −2

)
,



−2 1 0
1 −2 1
0 1 −2


 , etc.

as −2, 3,−4, 5,−4, 3,−2, 1, respectively, so that the signature of F is zero,
(see the discussion in the proof of 50), and the image of the determinant of
E8,0 is (1, 1). From this we conclude that the determinant of E8,0 in Z[Z/2]
is 1 ∈ Z[Z/2], and the multi-signature of E8,0 is (8, 0). Moreover, a quadratic
reduction of E8,0 is given as

T =




τ 1 0 0 0 0 0 0
τ 1 0 0 0 0 0

0 0 τ 1 1 0 0 0
0 0 0 τ 0 0 0 0
0 0 0 0 τ 1 0 0
0 0 0 0 0 τ 1 0
0 0 0 0 0 0 τ 1
0 0 0 0 0 0 0 τ



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so (Z[Z/2]8, E8,0, T ) represents an element in Lh4n(Z[Z/2], 1). Thus, the
surgery L-group Lh4n(Z[Z/2], 1) contains at least a Z ⊕ Z, given by tak-
ing orthogonal direct sums of ±E8,0 with sums of the ordinary ±E8 which
has multisignature ±(8, 8). Consequently, we obtain any pair (8k, 8w) as
the multisignature of an element in Lh4n(Z[Z/2], 1).

In fact, Wall shows that the elements above generate all of Lh4n(Z[Z/2], 1)
and {

Lh4n(Z(Z/2)) = Z⊕ Z
Lh4n+2(Z(Z/2)) = Z/2.

Here the Z/2 is the ordinary Kervaire invariant for f : M−→X as will be
explained in 63 after we’ve discussed the induces maps of L2n(A) under ring
maps with involutions.

Example 62. In the case of L4n+2(A), consider the group ring A =
Z[Z/4] where Z/4 = {τ | τ4 = 1}, and the involution is given by

3∑

0

αiτ
i ↔

3∑

0

αiτ
−i.

Let

T ′ = τ




1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1




so, embedding A ⊂ Z+ ⊕ Z− ⊕ Z(i), by

1 7→ (1, 1, 1), τ 7→ (1, −1, i), τ2 7→ (1, 1,−1), τ3 7→ (1,−1,−i),
takes T ′ − (T̄ ′)t to the triple

(H8,H8, iE8)

where H8 is the matrix



0 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
0 −1 0 1 1 0 0 0
0 0 −1 0 0 0 0 0
0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 1
0 0 0 0 0 0 −1 0



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which has determinant 1. Consequently, the determinant of T ′ − (T̄ ′)t is
1 ∈ Z[Z/4] and

(Z[Z/4]8;T ′ − (T̄ ′)t, T ′)

represents an element of Lh4n+2(Z[Z/4], 1), which is non-trivial because the
multisignature of the third component, iE8 is 8. In fact it turns out that

Lh4n+2(Z[Z/4], 1) = Z⊕ Z/2,
the Z generated by the element (62), and the Z/2 generated, as in the case
of Z[Z/2] and Z, by

T =
(

1 1
0 1

)
.

These examples tend to indicate the importance of the multi-signature
invariants at least for the L2k-groups of the group rings of finite groups.
In fact it turns out that for these rings the kernels of the multi-signature
maps are always finite 2-torsion groups when A = Z[π] with a w-twisted
involution.

We should also note briefly the naturality properties of this definition.
Suppose that A and B are rings with involution and f : A−→B is an involution
preserving map. Then tensor product

M 7→ B⊗AM
takes projective A-modules to projective B-modules and non-singular forms
with quadratic reduction to non-singular forms with quadratic reduction. It
follows that there are induced maps

Lh,p2n (f) : Lh,p2n (A)−→Lh,p2n (B)

which satisfy the usual naturality conditions with respect to compositions
of involution preserving ring maps.

Example 63. (1) In the case of the inclusion I : Z ↪→ R the induced
map is an isomorphism Lh4n(Z)−→Lh4n(R) while in in dimension 4n+2
the map is obviously zero.

(2) In the case of where A = Z(Z/2) with the oriented involution, then
the inclusion i : Z ↪→ A, n 7→ n[I], and the projection π : Z(Z/2)−→Z
given by n[I] +m[T ] 7→ n +m are both involution preserving ring
maps, and the composition π ◦ i is the identity. It follows that one
of the two Z-summands in Lh4n(Z(Z/2)) can be identified with the
ordinary signature invariant. Similarly,

Lh4n+2(Z(Z/2))
π−−→Lh4n+2(Z)

is an isomorphism and identifies the non-trivial element in this
group with the ordinary Arf invariant.
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3. The Even Dimensional Surgery Obstruction

Now we show that for any degree one normal map f : M2n−→X2n there
is a well defined invariant

σ(f, g) ∈ Lh2n(Z(π1(X), ω)

which vanishes if and only if f is normally bordant to a homotopy equiva-
lence.

To begin we need two lemmas.

Lemma 73. Let f : M2n−→X2n, b : ηM−→ξX , be a degree one normal map
with M closed and compact. Suppose, moreover that f is (n− 1)-connected.
Then Kn(f) is a finitely generated and stably free Z(π1(X))-module.

Proof. We can write C∗(M) = C∗(X)⊕W where both C∗(M) and C∗(X)
are finitely generated with each group free over Z(π1(X)). It follows that
W is also finitely generated and stably free. On the other hand H∗(W ) =
Kn(f) is concentrated in dimension n. From this an easy Euler characteristic
argument allows us to replace the complex W by a complex

0−−→Cn+1

∂−−→Cn
∂−−→Cn−1−−→0

with Cn free, Cn±1 stably free and homology Kn(f). We write Cn = Ker(∂)⊕
Cn−1 with ∂ the identity on the summand Cn−1. Consequently, Ker(∂) is
stably free and so is Ker(∂)∗. Dually, we thus have the sequence

0−−→Cn−1
id−−→Cn−1 ⊕Ker(∂)∗

δ−−→Cn+1−−→0

with δ the zero map on Cn−1. Since the cohomology of this complex is Kn(f)
we thus get the short exact sequence

0−−→Kn(f)−−→Ker(∂)∗−−→Cn+1−−→0

so Ker(∂)∗ = Cn+1 ⊕Kn(f). But now the result is clear. ¤

Consequently, by doing surgery on a finite number of small disjointly
embedded Sn ×Dn ⊂M2n which represent 0 ∈ πn(M2n) we replace Kn(f)
by Kn(f) ⊥ H(−1)n(Z(π1(X))k), and we can assume that Kn(f) is actually
free, at least up to Witt equivalence.

We now give the quadratic reduction of the self intersection form over
Z(π1(X)) on Kn(f), after surgery has been done to make the degree one
normal problem (n− 1)-connected.

Given α ∈ Kn(f) we define qT (α) to be the Wall embedding obstruction
away from the identity [1] ∈ Z(π1(X)) while the coefficient of the identity in
Qn(Z(π1(X))) is determined, as in the simply connected case, by the normal
bundle to the embedded sphere representing α. In particular, more or less
tautologically, with this choice of quadratic reduction, we get an element in
Lh2n(Z(π1(X))), and we have
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Lemma 74. Under the assumptions of 73, with n ≥ 3, an element α ∈
Kn(f) can be represented by an embedded sphere Sn ↪→ M2n with trivial
normal bundle if and only if qT (α) = 0 ∈ Q(−1)n(Z(π1(X))).

The next step is to show that the element above, σ(f, b) ∈ Lh2n(Z(π1(X))),
is independent of choices, such as the particular method used to make f into
an (n− 1)-connected map.

Proposition 26. The surgery obstructions of normal bordant n-conn-
ected 2n-dimensional degree 1 normal maps

(f, b) : M1n−−→X, (f ′, b′) : M ′2n−−→X
are the same so

σ∗(f, b) = σ∗(f ′, b′) ∈ L2n(Z[π1(X)]) .

Proof. Given a (2n+ 1)-dimensional degree 1 normal bordism

((g, c); (f, b), (f ′, b′)) : (W 2n+1;M2n,M ′2n) −→ X × (I; {0}, {1})
use ?? to kill the kernel Z[π1(X)]-modules Ki(W ) for i ≤ n−1 by i-surgeries
on the interior of W keeping f and f ′ fixed. Thus it may be assumed that g
is n-connected, and hence that W has a handle decomposition on M of the
type

W = M×I∪∪m n−handles Dn×Dn+1∪∪m′(n+1)−handles Dn+1×Dn .

Let
(W ;M,M ′) = (W ′;M,M ′′) ∪M ′′ (W ′′;M ′′,M ′)

with
W ′ = M × I ∪ ∪m n−handles Dn ×Dn+1 ,

W ′′ = M ′′ × I ∪ ∪m′(n+ 1)−handles Dn+1 ×Dn .

The restriction of (g, c) to M ′′ is an n-connected 2n-dimensional degree 1
normal map

(f ′′, b′′) : M ′′ ∼= M #(#
m
Sn × Sn) ∼= M ′#(#

m′
Sn × Sn) −→ X

with kernel (−)n-quadratic form

(Kn(M ′′), s′′, T ′′) ∼= (Kn(M), s, T )⊕H(−)n(Z[π1(X)]m)
∼= (Kn(M ′), s′, T ′)⊕H(−)n(Z[π1(X)]m

′
) .

It follows that
σ∗(f, b) = (Kn(M), s, T )

= (Kn(M ′), s′, T ′) = σ∗(f ′, b′) ∈ L2n(Z[π1(X)]) .

¤
In view of the invariance of the surgery obstruction under normal bor-

dism (26) and the result of Chapter ?? that every 2n-dimensional degree 1
normal map is normal bordant to an n-connected degree 1 normal map the
surgery obstruction can be defined in general. Note, also that the definition
we give below not only holds for surgery on surgery problems over closed
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Poincaré duality complexes with empty boundary, but also over Poincaré
complexes with non-trivial boundary where the normal map is assumed to
already be a homotopy equivalence on the boundaries and surgery is only
done on the interior of W .

Definition 58. The surgery obstruction of a 2n-dimensional degree
1 normal map (f, b) : M2n−→X is defined to be the class of the (−)n-quadratic
form over Z[π1(X)]

σ∗(f, b) = (Kn(M ′), s′, T ′) ∈ L2n(Z[π1(X)])

of any normal bordant n-connected 2n-dimensional degree 1 normal map
(f ′, b′) : M ′2n−→X.

Proposition 27. Let n ≥ 3. Given an n-connected 2n-dimensional
degree 1 normal map (f, b) : M2n−→X such that

σ∗(f, b) = 0 ∈ L2n(Z[π1(X)])

there exists an n-connected (2n+ 1)-dimensional degree 1 normal bordism

((g, c); (f, b), (f ′, b′)) : (W 2n+1;M2n,M ′2n) −→ X × (I; {0}, {1})
to a homotopy equivalence (f ′, b′) : M ′−→X.

Proof. By hypothesis there exists an isomorphism of forms

(Kn(M), s, T )⊕H(−)n(Z[π1(X)]m) ∼= H(−)n(Z[π1(X)]m
′
) .

The effect of k (n − 1)-surgeries on (f, b) is the normal bordant degree 1
map

(f1, b1) = (f, b)# std. : M1 = M #
[
#
m
Sn × Sn

]
−→ X

with kernel form

(Kn(M1), s1, T1) = (Kn(M), s, T )⊕H(−)n(Z[π1(X)]m) .

The effect of m′ n-surgeries on (f1, b1) killing a basis x1, x2, . . . , xm′ ∈
Kn(M1) for a lagrangian is a homotopy equivalence (f ′, b′) : M ′2n−→X nor-
mal bordant to (f1, b1), and hence also to (f, b). ¤

Theorem 52. A 2n-dimensional degree 1 normal map of pairs

(f, b) : (M2n, ∂M) −→ (X, ∂X)

with ∂f : ∂M−→∂X a homotopy equivalence has a surgery obstruction

σ∗(f, b) ∈ L2n(Z[π1(X)])

such that σ∗(f, b) = 0 if (and for n ≥ 3 only if) (f, b) is normal bordant rel
∂ to a homotopy equivalence of pairs.
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Proof. The surgery obstruction of (f, b) is defined by

σ∗(f, b) = (Kn(M ′), s′, T ′) ∈ L2n(Z[π1(X)])

for any n-connected degree 1 normal map (f ′, b′) : (M ′, ∂M)−→(X, ∂X) bor-
dant to (f, b) relative to the boundary, with ∂f ′ = ∂f , exactly as in the
closed case ∂M = ∂X = ∅ in 58. The rel ∂ version of 26 shows that the
surgery obstruction is a normal bordism invariant, which is 0 for a homotopy
equivalence. Also, if n ≥ 3 and σ∗(f, b) = 0 then (f, b) is normal bordant rel
∂ to a homotopy equivalence of pairs, proved exactly as in the closed case
in 27. ¤

4. The Odd Dimensional Surgery Obstruction Groups

The surgery obstruction of an even-dimensional degree 1 normal map
was expressed in section 3 as an equivalence class of nonsingular ε-quadratic
forms, with the zero class represented by the forms which admit a lagrangian.
The different lagrangians admitted by a form correspond to different ways
of solving the even-dimensional surgery problem by constructing a normal
bordism to a homotopy equivalence. The odd-dimensional surgery obstruc-
tion will be expressed in section ?? as an equivalence class of nonsingu-
lar ε-quadratic ‘formations’, which are nonsingular ε-quadratic forms with
ordered pairs of lagrangians, corresponding to two solutions of an even-
dimensional surgery problem in codimension 1.

Formations. The fundamental algebraic structure determined by a closed
2n-dimensional manifold N2n is the nonsingular (−)n-quadratic form over
Z(π1(N)) = A on Hn(N ;A). The fundamental algebraic structure de-
termined by a (2n + 1)-dimensional manifold with non-empty boundary
(M2n+1, ∂M) is the lagrangian of the (−)n-quadratic form on Hn(∂M ;A)
defined by

L = im(Hn+1(M,∂M ;A)−→Hn(∂M ;A)) ⊂ Hn(∂M ;A) .

A decomposition of a closed (2n+1)-dimensional manifold M2n+1 as a union
of two (2n + 1)-dimensional manifolds (M2n+1

+ , ∂M+), (M2n+1
− , ∂M−) with

the same boundary N2n = ∂M+ = ∂M−

M2n+1 = M+ ∪N M−

determines a (−)n-quadratic formation, namely the (−)n-quadratic form on
K = Hn(N ;A) with the lagrangians L+, L− ⊂ K defined by

L± = im(Hn+1(M±, N ;A)−→Hn(N ;A)) .

Such decompositions were first used by Heegard in the study of 3-dimensional
manifoldsÄ: every closed 3-dimensional manifold can be expressed as M3 =
M+ ∪N M− with M+ and M− the connected sums of k copies of the solid
3-torus S1×D2, and N the connected sum of k copies of the 2-torus S1×S1.
It should be clear that such expressions are not unique, since forming the
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connected sum of M with S3 = S1×D2 ∪D2×S1 increases k by 1 without
affecting the diffeomorphism type.

In section 4 we shall only be concerned with the algebraic properties of
formations. As before, let A be a ring with involution, and let ε = ±1.

Definition 59. An ε-quadratic formation over A (K, s, T ;F,G) is
a nonsingular ε-quadratic form (K, s, T ) together with an ordered pair of
lagrangians F ,G.

Also, we assume that A is such that the rank of f.g. free A-modules is
well-defined (e.g. bba = Z[π]), with

rankA|(K) = k ∈ Z+

for a f.g. free A-module K if and only if K is isomorphic to Ak. The hy-
pothesis on A ensures that for every formation (K, s, TF,G) over A there
exists an automorphism α : (K, s, T )−→(K, s, T ) such that α(F ) = G (28
below). In the original work of Wall the odd-dimensional surgery obstruc-
tion was defined in terms of such automorphisms, but formations are more
algebraically tractable.

Definition 60. An isomorphism of ε-quadratic formations over A

f : (K, s, T, F,G)
∼=−→ (K ′, T ′, s′;F ′, G′)

is an isomorphism of forms f : (K, s, T )−→(K ′, T ′, s′) such that

f(F ) = F ′ , f(G) = G′ .

Proposition 28. (1) Every ε-quadratic formation (K, s, T ;F,G) is
isomorphic to one of the type (Hε(F );F,G).

(2) Every ε-quadratic formation (K, s, T ;F,G) is isomorphic to one of
the type (Hε(F );F, α(F )) for some automorphism

α : Hε(F )−→Hε(F ).

Proof. (i) By 51 the inclusion of the lagrangian F ↪→ K extends to an
isomorphism of ε-quadratic forms

f : Hε(F )
∼=−→ (K, s, T ) ,

defining an isomorphism of ε-quadratic formations

f : (Hε(F );F, f−1(G))
∼=−→ (K, s, T ;F,G) .

(ii) As in (i) extend the inclusions of the lagrangians F ↪→ K, G ↪→ K to
isomorphisms of forms

f : Hε(F )
∼=−→ (K, s, T ) , g : Hε(G)

∼=−→ (K, s, T ) .

Then
rankA(F ) = rankA(K)/2 = rankA(G) ∈ Z+ ,
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so that F is isomorphic to G. Choosing an A-module isomorphism β : F−→G
there is defined an automorphism of Hε(F )

α : Hε(F )

 
β 0
0 β∗−1

!

−−−−−−−→ Hε(G)
g−→ (K, s, T )

f−1

−−→ Hε(F )

such that there is defined an isomorphism of formations

f : (Hε(F );F, α(F ))
∼=−→ (K, s, T ;F,G) .

¤

Later we will associate to an n-connected (2n + 1)-dimensional degree
1 normal map (f, b) : M2n+1−→X a ‘stable isomorphism’ class of kernel
(−)n-quadratic formations (K, s, T ;F,G) over Z[π1(X)]. Also, as was the
case before for simply connected surgery, the surgery kernels associated to
a formation are given as

Kn(M) = K/(F +G) , Kn+1(M) = F ∩G .

Stable isomorphism , which is analogous to Witt stabilization in even di-
mensions, associated to enlarging the surgery kernel by doing a sequence of
surgeries over homotopy trivial embedded spheres is defined as followsÄ:

Definition 61. (1) An ε-quadratic formation T = (K, s, T ;F,G)
is trivial if it is isomorphic to (Hε(F );F, F ∗).

(2) A stable isomorphism of ε-quadratic formations

[f ] : (K, s, T ;F,G)
∼=−→ (K ′, T ′, s′;F ′, G′)

is an isomorphism of ε-quadratic formations of the type

f : (K, s, T ;F,G)⊕ T
∼=−→ (K ′, T ′, s′;F ′, G′)⊕ T ′

with T , T ′ trivial.

Definition 62. The boundary of a (−ε)-quadratic form (K, s, T ) is
the graph formation

∂(K, s, T ) = (Hε(K);K,Γ(K,T ))

with
Γ(K,T ) = { (x, s(x)) ∈ K ⊕K∗ |x ∈ K } .

Remark . The ε-quadratic formation ∂(K, s, T ) depends only on the
even ε-symmetric form (K, s), and not on the ε-quadratic function T .

Note that in this situation the form (K, s, T ) may be singular, that is
the A-module morphism s : K−→K∗ need not be an isomorphism.

Proposition 29. The graphs Γ(K,T ) of (−ε)-quadratic forms (K, s, T )
are precisely the lagrangians of Hε(K) which are the direct complements of
K∗.
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Proposition 30. (1) An ε-quadratic formation (K, s, T ;F,G) is
trivial if and only if the lagrangians F and G are direct comple-
ments in K

F ∩G = {0} , F +G = K .

(2) An ε-quadratic formation (K, s, T ;F,G) is isomorphic to a bound-
ary if and only if (K, s, T ) has a lagrangian H which is a direct
complement of both the lagrangians F , G.

(3) For any ε-quadratic formation Φ = (K, s, T ;F,G) there exists an
ε-quadratic formation Φ′ = (K ′, T ′, s′;F ′, G′) such that Φ ⊕ Φ′ is
isomorphic to a boundary.

(4) A (−ε)-quadratic form (K, s, T ) is nonsingular if and only if the
boundary ε-quadratic formation ∂(K, s, T ) is trivial.

Proof. (i) If F and G are direct complements in K represent (s, T ) by
a split ε-quadratic form (K,ψ ∈ S(K)) with

ψ =
(
α− εα∗ γ

δ β − εβ∗
)

: K = F ⊕G −→ K∗ = F ∗ ⊕G∗ .

Then γ + εδ∗ ∈ HomA(G,F ∗) is an A-module isomorphism, and there is
defined an isomorphism of formations

(
1 0
0 (γ + εδ∗)−1

)
: (Hε(F );F, F ∗)

∼=−→ (K, s, T ;F,G) .

(ii) For the boundary ∂(F, φ, θ) of a (−ε)-quadratic form (F, φ, θ) the la-
grangian F ∗ of Hε(F ) is a direct complement of both the lagrangians F ,
Γ(F,φ). Conversely, suppose that (K, s, T ;F,G) is such that there exists a
lagrangian H in (K, s, T ) which is a direct complement to both F and G.
By the proof of (i) there exists an isomorphism of formations

f : (Hε(F );F, F ∗)
∼=−→ (K, s, T ;F,H)

which is the identity on F . Now f−1(G) is a lagrangian of Hε(F ) which is a
direct complement of F ∗, so that it is the graph Γ(F,φ) of a (−ε)-quadratic
form (F, φ, θ), and f defines an isomorphism of ε-quadratic formations

f : ∂(F, φ, θ) = (Hε(F );F,Γ(F,φ))
∼=−→ (K, s, T ;F,G) .

(iii) Every lagrangian has a lagrangian direct complement, by 30. Let
(K ′, T ′, s′) = (K,−T,−s), and let F ′, G′ be lagrangian direct complements
of F , G respectively. The diagonal lagrangian ∆ of (K, s, T ) ⊕ (K ′, T ′, s′)
(31) is complementary to both F⊕F ′ and G⊕G′, so that Φ⊕Φ′ is isomorphic
to a boundary by (ii).
(iv) The graph lagrangian Γ(K,s) of Hε(K) is a direct complement of K if
and only if s : K−→K∗ is an isomorphism. ¤
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The odd-dimensional L-groups .

Definition 63. The (2n + 1)-dimensional L-group L2n+1(A) of a
ring with involution A is the group of equivalence classes of nonsingular
(−)n-quadratic formations (K, s, T ;F,G) over A, subject to the equivalence
relation

(K, s, T ;F,G) ∼ (K ′, T ′, s′;F ′, G′)
if there exists an isomorphism of formations

(K, s, T ;F,G)⊕ T ⊕B ∼= (K ′, T ′, s′;F ′, G′)⊕ T ′ ⊕B′
for some trivial T , T ′ and boundaries B, B′.

The addition and inverses in L2n+1(A) are given by

(K1, s1, T1;F1, G1) + (K2, s2, T2;F2, G2)
= (K1 ⊕K2, s1 ⊕ s2, T1 ⊕ T2;F1 ⊕ F2, G1 ⊕G2) ,

−(K, s, T ;F,G) = (K,−s,−T ;F ∗, G∗) ∈ L2n+1(A)

with F ∗, G∗ lagrangian direct complements of F , G.

It should be clear that L2n+1(A) depends only on the residue n(mod 2),
so that only two L-groups have actually been defined, L1(A) and L3(A).
Note that 63 uses 30 (iii) to justify

(K,T, s;F,G)⊕ (K,−s,−T ;F ∗, G∗) ∼ 0 .

Example 64. (1) In the case A = Z then these odd L-groups are
the surgery obstruction groups studied in 10, so

L2n+1(Z) = 0 .

(2) If A is a field, F, with arbitrary involution then, after choosing a
basis for F and the associated dual basis for F ∗ a finite number of
exchanges ei ↔ e∗i will ensure that the projection of Hε(F ) onto F
with kernel F ∗ will map G isomorphically. But then F and G have
F ∗ as a common complement. It follows that L2n+1(F) = 0

(3) Wall showed that the odd-dimensional L-groups of Z[Z2] with the
oriented involution T = T are given by

L2n+1(Z[Z2]) =

{
0 if n ≡ 0(mod 2)
Z2 if n ≡ 1(mod 2)

(Wall [68]).

Proposition 31. For any lagrangians F,G,H in a nonsingular (−)n-
quadratic form (K, s, T ) over A

(K, s, T ;F,G)⊕ (K, s, T ;G,H) = (K, s, T ;F,H) ∈ L2n+1(A) .

Proof. Choose lagrangians F ∗, G∗, H∗ in (K, s, T ) complementary to
F,G,H respectively. The (−)n-quadratic formations (Ki, si, Ti;Fi, Gi) (1 ≤
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i ≤ 4) defined by

(K1, s1, T1;F1, G1) = (K,−s,−T ;G∗, G∗) ,
(K2, s2, T2;F2, G2) = (K ⊕K, s⊕−s, T ⊕−T ;F ⊕ F ∗,H ⊕G∗)

⊕(K ⊕K,−s⊕ s,−T ⊕ T ;∆K ,H
∗ ⊕G) ,

(K3, s3, T3;F3, G3) = (K ⊕K, s⊕−s, T ⊕−T ;F ⊕ F ∗, G⊕G∗) ,
(K4, s4, T4;F4, G4) = (K ⊕K, s⊕−s, T ⊕−T ;G⊕G∗,H ⊕G∗)

⊕(K ⊕K,−s⊕ s,−T ⊕ T ; ∆K ,H
∗ ⊕G)

are such that

(K, s, T ;F,G)⊕ (K, s, T ;G,H)⊕ (K1, s1, T1;F1, G1)
⊕(K2, s2, T2;F2, G2)

= (K, s, T ;F,H)⊕ (K3, s3, T3;F3, G3)⊕ (K4, s4, T4;F4, G4) .

Each of (Ki, si, Ti;Fi, Gi) (1 ≤ i ≤ 4) is isomorphic to a boundary, since
there exists a lagrangian Hi in (Ki, Ti, si) complementary to both Fi and
Gi, so that 30 (ii) applies and (Ki, si, Ti;Fi, Gi) represents 0 in L2n+1(A).
Explicitly, we can take

H1 = G ⊂ K1 = K ,
H2 = ∆K⊕K ⊂ K2 = (K ⊕K)⊕ (K ⊕K) ,

H3 = ∆K ⊂ K3 = K ⊕K ,
H4 = ∆K⊕K ⊂ K4 = (K ⊕K)⊕ (K ⊕K) .

¤

Remark . It is also possible to express L2n+1(A) as the abelian group
of equivalence classes of (−)n-quadratic formations over A subject to the
equivalence relation generated byÄ:

(i) (K, s, T ;F,G) ∼ (K ′, s′, T ′;F ′, G′)
if (K, s, T ;F,G) is stably isomorphic to (K ′, s′, T ′;F ′, G′)
(ii) (K, s, T ;F,G)⊕ (K, s, T ;G,H) ∼ (K, s, T ;F,H)

with addition and inverses by

(K, s, T ;F,G) + (K ′, s′, T ′;F ′, G′)
= (K ⊕K ′, s⊕ s′T ⊕ T ′;F ⊕ F ′, G⊕G′) ,

−(K, s, T ;F,G) = (K, s, T ;G,F ) ∈ L2n+1(A) .

This is immediate from 30 and the observation that for any (−)n+1-quadratic
form (G,φ, θ) on a f.g. free A-module G the lagrangian G∗ in H(−)n(G) is a
complement to both G and the graph Γ(G,φ,θ), so that

∂(G,φ, θ) ∼ (H(−)n(G);G,Γ(G,φ,θ))⊕ (H(−)n(G); Γ(G,φ,θ), G
∗)

∼ (H(−)n(G);G,G∗) ∼ 0 .
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5. The Odd Dimensional Surgery Obstruction

Suppose that (f, b | f : M2n+1−→X) is a degree one normal map which
is (n − 1)-connected. Then, by 4, we’ve seen how to associate a formation
to (f, b).

• First embed a sequence of Sn×Dn+1’s disjointly in M̃ to represent
the generators of Kn(f) ↪→ Hn(M̃ ;Z) as a module over Z[π1(M)]
where M̃ is the universal cover of M , so that the projections to M
are also disjoint embeddings. Then the spaces π−1π(Sn×Dn+1 are
all copies of π1(M) × Sn × Dn+1 and are all disjoint. Denote the
union of these inverse images by U ⊂ M̃ .
• Regard M̃ as the disjoint union

M̃0 ∪∂U U.
• Note that H∗(∂U) = Z[π1(X)] ⊗⊕

H∗(Sn × Sn), one Sn × Sn

for each Sn × Dn+1. In particular Hn(∂U) is a hyperbolic form
H(−1)n(Z[π1(X)]m).
• Finally, the two lagrangians are given as the images under ∂,

F = im∂ : Hn+1(U, ∂U)−−→Hn(∂U),
G = im∂ : Hn+1(M̃0, ∂U)−−→Hn(∂U).

Remark . One thing that is evident is that if our original disjoint em-
beddings hj : Sn × Dn+1 are isotoped through disjoint embeddings to new
embeddings h̄j : Sn×Dn+1 ↪→M , very close to the original ones the resulting
formation is identical to the original one.

What we need to do now is to show that this assignment is independent
of the choices made,

• first of the particular representatives for Kn(f), and
• second of the particular way the original surgery problem is surgered

to one which is (n− 1)-connected.
In fact, the formations will vary but we now show that their representatives
in Lh2n+1(Z[π1(X)]) are all the same.

Theorem 53. The assignment of a formation to the surgery problem in
(5) (f, b | f : M2n+1−→X2n+1) gives a well defined map from surgery prob-
lems to Lh2n+1(Z[π1(X)]) by taking the equivalence class of this formation.
As before we denote this equivalence class as σ(f, b). Moreover, σ(f, b) is
zero if and only if the orginal problem (f, b) is normally bordant to a homo-
topy equivalence.

Proof. We begin by considering the effect of the choice of representing
embeddings. So suppose that h1, . . . , hr and h̄1, . . . , h̄t are two sets of disjoint
embeddings giving generators for Kn(f). By a sequence of very small moves
we may assume that all the embeddings are disjoint on the core spheres, and
by shrinking the Dn+1’s if necessary we can, in fact, assume that the entire
images of Sn ×Dn+1 are disjoint. This gives us three formations:
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• the first,

(H(−)n(Z[π1(X)]r), ∂Hn+1(U1, ∂U1), ∂Hn+1(M̃1, ∂U1))

associated to h1, . . . , hr,
• the second,

(H(−)n(Z[π1(X)]t), ∂Hn+1(U2, ∂U2), ∂Hn+1(M̃2, ∂U2))

associated to h̄1, . . . , h̄t,
• and the third,

(H(−)n(Z [π1(X)]r+t),
∂Hn+1(U1 t U2, ∂(U1 t U2)), ∂Hn+1(M̃3, ∂(U1 t U2)))

associated to the union h1, . . . , hr, h̄1, . . . , h̄t.
By excision Hi(M̃i, ∂M̃i) ∼= Hi(M̃, Ui), so we have commutative diagrams

Hn+1(Mi, ∂Ui)
∂−−→ Hn(∂Ui)y

y
Hn+1(M3, ∂(U1 t U2))

∂−−→ Hn(∂(U1 t U2))

for i = 1, 2 with the vertical and horizontal arrows all inclusions as Z[π1(X)]
direct summands. Note that we have exact sequences

0−−→Kn+1(f)−−→ Hn+1(M̃i, ∂Ui)−−→Hn(∂Ui)/(im(Hn+1(Ui, ∂Ui))
−−→Kn(f)−−→0

for i = 1, 2. Consequently, we have

Lemma 75. There is an exact sequence of Z[π1(X)]-modules

0−−→Kn+1(f)−−→ Hn+1(M̃1, ∂U1)⊕Hn+1(M̃2, ∂U2)
−−→Hn+1(M̃3, ∂M̃3)−−→Kn(f)−−→0,

where the inclusions are those in 5.

(This is direct.)
Consequently, in G3 = im(Hn+1(M̃3, ∂M̃3)), the intersection of G1 and

G2 is Kn+1(f). Next, note that the images of both F ∗1 and F ∗2 under pro-
jection of F ∗3 = F ∗1 ⊕ F ∗2 are Kn(f). As a result, we can lift F ∗1 to G3, by
taking, for each generator e∗i , 1 ≤ i ≤ r , e∗i − si where si ∈ F ∗2 has image
equal to that of ei in Kn(f), and lifting this element to G3. Let V ⊂ G3 be
this lifting.

Note that V is perpendicular to G2 since they are both contained in G3.
If we write H(−)n(F1 ⊕ F2) = F1 ⊕ F ∗1 ⊕ G2 ⊕ G∗2, then the basis elements
ei, 1 ≤ i ≤ r for V all have the form (hi, e∗i , θ, 0) since otherwise they would
not be orthogonal to G2. Since Vi is a kernel, it follows that (hi, ei) is a
lagrangian kernel for (F1 ⊕ F ∗1 ), and hence is a graph kernel.

We have that G3 = V ⊕G2. Hence, replacing G3 by an associated graph
formation, we can assume that the generators of V have the form (0, e∗i , θi, 0),
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1 ≤ i ≤ r. But then a new basis for this kernel is simply (0, e∗i , 0, 0) together
with a basis for G2, and it follows that after modifying by a graph formation
we have our formation given as

((F1 ⊕ V ) ⊥ (G2 ⊕G∗2), F1 ⊕ F2, V ⊕G2).

This is the sum (F1 ⊕ V, F1, V ) ⊕ (F2 ⊕ F ∗2 , F2, G2) which is equivalent to
(F2 ⊕ F ∗2 , F2, G2).

Finally, exchanging the subscripts 1 and 2 throughout the argument
above shows that the big formation is also equivalent to (F1 ⊕ F ∗1 , F1, G1).

Thus, we have completed first step of showing that for a given (n− 1)-
connected surgery problem (f, b), any two ways of realizing the kernel Kn(f)
give rise to the equivalent formations. It remains to consider the relation
between the formations associated to two normally bordant (n−1)-connected
surgery problems, (f, b) and (f ′, b′) over X.

At this point we asssume given a normal bordism (H,B),H : W 2n+2−→I×
X so that ∂(W ) = Mt−M ′ and (H,B) restricted toM is (f, b) while (H,B)
restricted to M ′ is (f ′, b′). To begin we may do surgery on the interior of W
to make H into an n-connected map so that the exact sequence of kernels
becomes

0−−→Kn+1(f)⊕Kn+1( f ′)−−→Kn+1(W )

−−→Kn+1(W,∂W )
∂−−→Kn(f)⊕Kn(f ′−−→0.

Consequently, W can be given as either I ×M or I ×M ′ with a number of
handles Dn+1×Dn+1 attached along 1×M or 0×M ′. Suppose, for definite-
ness that we have r such handles. Then, they are obtained by embedding r
disjoint copies of Sn ×Dn+1 ↪→M where the images of the core Sn’s when
lifted to the universal cover, give generators g1, . . . , gr for Kn(f). It follows
that the inverse images of this

⊔r
1 S

n ×Dn+1 = U ⊂ M̃ is a suitable U for
our previous discussion.

It follows that the chain subcomplex of C∗(M) associated to the surgery

kernel is given as Z[π1(X)]2r
∂−−→Z[π1(X)]2r or more exactly:

Kn+1(M̃0, ∂U)⊕Hn+1(U, ∂U)
∂1+∂2−−−→Hn(∂U).

Consequently the chain complex needed for determining the homology of W
and of (W,M) is the direct sum of the chain complex of the universal cover
of X together with the complex associated to the surgery kernels:

[⊕r
1 Z[π1(X)]⊗Hn+1((Dn+1, Sn)

] ⊕Kn+1(M̃0, ∂U)⊕Hn+1(U, ∂U)
∂3+∂1+∂2−−−−−→Hn(∂U).

Note that the sum ∂3 + ∂2 gives an isomorphism
[

r⊕

1

Z[π1(X)]⊗Hn+1((Dn+1, Sn)

]
⊕Hn+1(U, ∂U)−−→Hn(∂U)
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since the first summand hits the lift of the core spheres of U in ∂U , while
the second summand hits the transverse spheres. It follows that

K∗(H) = Kn+1(H) ∼= Z[π1(X)]r

where the generators are represented by elements of the form ei + L∂2(ei)
with L a lift of ∂3 + ∂2 in 5, while ei a free generator for Kn+1(M̃0, ∂U), as
i runs from 1 to r. Similarly,

Kn+1(W,M) ∼= Kn+1(W,M ′) ∼= Z[π1(X)]r

representing the piece
⊕r

1 Z[π1(X)]⊗Hn+1((Dn+1, Sn) in the complex above.
Thus we obtain the formation

(Kn+1(W,M)⊕Kn+1(W,M ′);Kn+1(W,M ′),Kn+1(W ))

which we can identify with the formation for (f, b) associated to the decom-
position M = M0 ∪

∐r
1 S

n ×Dn+1 above. But reversing the roles of M and
M ′ we obtain the formation

(Kn+1(W,M)⊕Kn+1(W,M ′);Kn+1(W,M),Kn+1(W ))

for an associated decomposition M ′ = M ′
0 ∪

∐r
1 S

n × Dn+1. On the other
hand, the formations 5 and 5 are equivalent in Lh2n+1(Z[π1(X)], w). Thus
we have proved the first statement of 53.

It remains to show that the surgery obstruction is zero in Lh2n+1(Z[π1(X), w)
if and only if the original problem is equivalent to a homotopy equivalence.

Thus suppose that in the construction above (f ′, b′) is a homotopy equiv-
alence. In this case, 5 has the property that the projection,

p : Kn+1(W )−→Kn+1(W,M ′)

is an isomorphism and Kn+1(W ) is a graph kernel,

(h∓ (−1)nh∗, id)(Kn+1(W,M ′)).

Then the equivalence between 5 and 5 completes the proof of 53. ¤

6. Realizing the Surgery Obstructions

In this section we show how to construct degree one normal problems
over manifolds of the form I ×M , (F, b) with

F : (W,∂W )−→(I ×M, (∂I)×M)

which are homotopy equivalences on the boundary of W and on the interior
realize any arbitrary element in the surgery obstruction group

Lhn+1(Z[π1(M)], w).

When π = π1(M) = {1}, we’ve already seen how to do this, and, at least in
the piecewise linear case we were able to actually assume that the boundaries
were empty. However, in the case where π 6= {1} this is not always possible
as we will point out with some examples. Throughout this section we assume
that n ≥ 5.
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Realizing the obstructions in odd dimensions. Suppose that we
have α ∈ Lh2n+1(Z[π], w) and M2n is a compact closed manifold with funda-
mental group π, and orientation cover w. Then we realize α as an explicit
formation

α ≡ (H(−)n(Z[π]k), F,G)

and embed k disjoint copies of Sn−1 × Dn+1, each contained in a disjoint
disk D2n ⊂M2n. Doing surgery on these Sn−1 ×Dn+k gives

N2n = M2n#Sn × Sn# · · ·#Sn × Sn︸ ︷︷ ︸
k−times

together with a manifold

W = I ×M2n ∪1×Sn−1×Dn+1
1

Dn ×Dn+1 ∪ · · · ∪Sn−1×Dn+1
k

Dn ×Dn+1

which gives a bordism between the two manifolds. The framings are given
so that there is a normal map to I×M extending the identity map on 0×M .
Next, in the π-cover, embed spheres Sn ⊂ N2n realizing the generators of
the kernel G. This makes sense since the surgery kernel of the normal map
from N to M is H(−)n(Z[π]k) with the first kernel F being the image of the
boundaries of the Dn+1’s in the handles.

Since G is a quadratic lagrangian, we can write H(−)n(F ) = H(−)n(G)
from 28, surgery can be done on the generators ofG, and the effect of surgery
on G cancels the surgery kernel, thus giving a homotopy equivalence of the
surgered manifold to M2n. The union of the traces of these two surgeries is
the manifold W , and attempting to do surgery on the interior of W leads
to the formation of (6).

Realizing the obstructions in even dimensions. Now suppose that
we are given M2n−1, closed, compact, oriented, with empty boundary so
that π1(M) = π and w is the orientation covering. Let α ∈ Lh2n(Z[π], w) be
represented by the form

α ≡ (Z[π]k; s, T ).
Then, as before start with k disjointly embedded Sn−1×Dn’s, each embed-
ded in a disjoint disk D2n−1 ⊂M . Take the universal cover, and select lifts
of each of these Sn−1 × Dn. Then, use T to modify these embedding by
attaching tubes between the representing Sn−1 and a linking sphere about
(gSn−1)i, according to the coefficients in the matrix T . All of this can be
done so that the modified embeddings remain disjoint of course, and for
each sphere let Dn be an embedded disk in M2n for which it is the bound-
ary. This disk is obtained from a disk in the D2n−1 containing the original
sphere together with obvious disks attached for each linking. Next, mod-
ify the framings on the normal bundles to the resulting spheres so that the
resulting normal bundles to the core spheres in the handle body given by
doing surgery on these Sn−1 × Dn’s are also given by T . (Alternately, we
can do this by constructing attaching further self-linkings of the sphere to
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itself.) In any case, the resulting handle-body, W , will have the property
that there is a degree one normal map F : W−→I×M with ∂W = M1t−M ,
F restricted to −M is the identity and F |M1 is a homotopy equivalence onto
1×M . Indeed, the exact sequence of kernels becomes

0−−→Kn(F |M1)−−→Z[π]k = Kn(F )
s−−→ Kn(W,∂W ) ∼= Kn(f)∗

∂−−→Kn−1(F |M1)−−→0

and since s is an isomorphism, both Kn(F |M1) and Kn−1(F |M1) are 0.
Thus we have succeeded in realizing α in this case as well, again regarded

as the obstruction to doing surgery on the interior ofW to obtain a homotopy
equivalence of pairs

F ′ : (W ′, ∂W = ∂W ′)−−→(I ×M, 1×M t −0×M).

Example 65. Let us realize the generator of Lh8(Z[Z/2], 1) studied in
61, which is given explicitly as

(Z[Z/2]8, E8,0, T )

where T is the matrix of (61) using RP7 for example as the manifold M7.
Then the two boundary components of W are homotopy equivalent and we
can glue them together using an orientation preserving equivalence.

The resulting complex (there is no reason to assume that this homotopy
equivalence is a diffeomorphism) has fundamental group Z/2 × Z and we
can embed an S1 × D7 in this complex, where the S1 represents the new
generator in π1, since we can assume that the homotopy equivalence is the
identity in a neighborhood of a given point of RP7. Doing surgery on this
S1 × D7 gives us a new 8-dimensional oriented Poincaré duality complex
W̄ 8 with π1(W̄ ) = Z/2. But W̄ 8 has been so constructed that it has multi-
signature (8, 0). (Alternately, this is the same as saying that both W̄ 8 and
its universal cover have index 8.)

However, a theorem of Wall shows that every closed, oriented, 4k-dimen-
sional differentiable manifold, M4k, with ∂M = ∅, and with fundamental
group Z/2 has the property that the index of the universal cover M̃ is
twice the index of M . (This is quite easy. One simply looks at the torsion
free subgroup of Ω∗(BZ/2) and notes that the quotient of this group by the
elements coming from Ω∗(pt) is, in each dimension, a finite 2-group. But if
M4k−→BZ/2 factors through the point map then the associated cover is just
the disjoint union of two copies of M4k projecting onto M .)

Remark . Later work on the structure of the piecewise linear and topo-
logical cobordism rings, [REFERENCE], [REFERENCE], shows that the
same property holds here - if π is a finite group then the quotient of ΩPL∗ (Bπ)
by ΩPL∗ (pt) is again finite in each dimension, and similarly for ΩTOP∗ (Bπ).
Consequently, if W̄ were even a topological manifold it would have to have
the property that the signature of the universal cover is twice that of W̄ .
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We conclude that W̄ is an example of a closed compact Poincaré duality
complex with empty boundary that does not have the homotpy type of any
manifold, whether differentiable, piecewise linear, or topological.

As a consequence the two boundary components of W , RP7 and the
manifold, RP7, homotopy equivalent to RP7 cannot be diffeomorphic, piece-
wise linearly homeomorphic, or even homeomorphic. Of course the universal
cover of RP7 is diffeomorphic to the Milnor sphere, but it is piecewise linearly
homeomorphic to the ordinary sphere, so this construction shows the exis-
tence of two distinct, piecewise linear, free actions of Z/2 on the piecewise
linear S7 which are not even topologically conjugate.

Example 66. If we realize the orthogonal sum of 28 copies of the quad-
ratic form (Z[Z/2]8, E8,0, T ), then the universal cover of the exotic RP7 will
be the ordinary differentiable S7, but Wall’s result still applies, so this exotic
RP7 cannot be diffeomorphic to the ordinary RP7 and we have constructed
a new free action of Z/2 on S7 which is not topologically conjugate to the
usual action.

In constructing W̄ of 65 we did not consider the question of the triviality
or non-triviality of the set of degree one normal maps over W̄ , which is the
same as the question of whether there is a reduction of the Spivak normal
bundle to a vector bundle. It turns out that there is only a single obstruction
which lies in dimension 3 to this reduction. In fact, the obstruction is
represented by a characteristic class k3 ∈ H3(BSG;Z/2) but we don’t know
if it is zero or not for this particular bundle.

Thus there are two possibilities. First, if the Spivak normal bundle
reduces to a vector bundle, then there is an 8-dimensional Poincaré complex
with a degree one normal problem over it that has surgery obstruction the
generator (Z[Z/2]8, E8,0, T ) above. Second, the exotic characteristic class k3

is non-zero for the Spivak normal bundle to W̄ .
In either case it appears clear that

(Z[Z/2]8, E8,0, T ) ⊥ (Z[Z/2]8, E8,0, T )

is the surgery obstruction to doing surgery on a degree normal map to a
closed, oriented Poincaré duality complex V̄ with fundamental group Z/2.

In general, the question of which elements in Lhm(Z[π], w) can be the
surgery obstruction to degree one normal problems over closed Poincaré
duality complexes with empty boundaries and fundamental group π appears
to be a very difficult problem.

Later we will answer this question completely in the case where π is
finite but we must assume that the Poincaré duality complex X is actually
a closed, compact differentiable or topological manifold.
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7. Surgery Exact Sequence and Bordism when π1(X) 6= 0

In this section we extend the surgery exact sequence of 4, more exactly,
43 and 4, to the non-simply connected case. For the most part the exten-
sion is routine. However, two significant differences complicate the results
considerably. First is the problem that the two boundary components of
an h-cobordism need not be homeomorphic or diffeomorphic. This makes it
necessary to consider the distinction between h and s-cobordisms, and, op-
tionally, to introduce more sensitive surgery obstruction groups, the groups
Lsn(Z[π1(X)], w). The second difficulty is that, unlike the case π1(X) = {1},
the elements of Lhn(Z[π], w) or Lsn(Z[π], w) need not be realized by surgery
problems over closed manifolds, though we will see that they can all be
realized by surgery problems of the form

[(H, b) | H : (Wn, ∂W )−−→(Mn, ∂M)]

with H restricted to ∂W a homotopy equivalence to ∂M .
As in 4 we have the set HD(Xn) for any closed Poincaré duality complex

with ∂(X) = ∅, that is homotopy equivalent to a closed compact differen-
tiable manifold with empty boundary, and we have the set HT (Xn) when
X has the homotopy type of a finite piecewise linear manifold with empty
boundary. But since, in both cases the equivalence relation is that of nor-
mal h-cobordisms, and, as observed, the two boundary components in an
h-cobordism need not be diffeomorphic or even piecewise linearly homeomor-
phic in the non-simply connected case, the geometric objects represented by
these sets are unclear. Thus we also introduce a refinement:

Definition 64. (1) The set SD(X) is the set of closed, compact,
differentiable manifolds with empty boundary together with degree
one normal map (f, b) with f : Mn−→X a simple homotopy equiva-
lence f : Mn−→X, where the equivalence relation is normal s-cobordism.

(2) The set ST (X) is defined similarly as the set of closed, compact,
piecewise linear manifolds with empty boundary together with a de-
gree one normal map (f, b) as above, with the same notion of equiv-
alence.

As above, we can define surgery obstruction groups Lsn(Z[π1(X)], w),
using forms and formations, together with well defined surgery obstruction
maps,

σ(f, b) : [X,G/O] −−→ Lsn(Z[π1(X)], w)
σ(f, b) : [X,G/PL] −−→ Lsn(Z[π1(X)], w).

Here, the only difference is that we are restricted by the constraint that the
normal bordisms between homotopy equivalences must preserve the simple
homotopy type of M . This puts a restriction on the types of basis changes
that can occur. The reader can easily work out the details, or see [WALL].

Surgery exact sequences. In as much as the proofs in the simply
connected case and the cases where π1(X) 6= {1} are identical we simply
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record the results. We have the following exact sequences:

· · · −−→[ΣX,G/ O]
σ−−→Lhn+1(Z[π], w)−−→

HD(X)−−→[X,G/O]
σ−−→Lhn(Z[π], w)

· · · −−→[ΣX,G/ O]
σ−−→Lsn+1(Z[π], w)−−→

SD(X)−−→[X,G/O]
σ−−→Lsn(Z[π], w)

· · · −−→[ΣX,G/ PL]
σ−−→Lhn+1(Z[π], w)−−→

HT (X)−−→[X,G/PL]
σ−−→Lhn(Z[π], w)

· · · −−→[ΣX,G/ PL]
σ−−→Lsn+1(Z[π], w)−−→

ST (X)−−→[X,G/PL]
σ−−→Lsn(Z[π], w)

One remark needs to be made here. One can construct an h-cobordism
over M with any desired Whitehead torsion invariant by simply attaching
a number of handles Dk+1 × Dn−k over trivially embedded Sk × Dn−k’s
which results in a normal bordism between M and M connected sum with a
number of Sk×Sn−k’s. Then, in the universal cover, which is the connected
sum of M̃ with the same number of copies of π1(X)×Sk×Sn−k, we choose a
new basis for the kernel in dimension k: Z[π1(X)]r, which has determinant
representing an arbitrary element in Wh1(Z[π1(X)]), and attach handles
over embedded Sk × Dn−k’s representing these basis elements. The result
gives a normal bordism between M and M ′ with the requisite torsion (or
it’s inverse, depending on k). Using this, if we can solve the h-cobordism
problem, then we can solve the s-cobordism problem as well. Consequently,
in terms of existence, the crucial step is solving the Lh-problem.

Factoring the surgery obstruction through bordism. As before,
4, when we have a degree one normal map

(f, b), f : M2n+ε−−→N2n+ε

with N2n+ε a closed, compact manifold with empty boundary and π1(N) =
π, whether differentiable or piecewise linear, then we have two maps associ-
ated to (f, b):

• a map g : N−→G/O or g : N−→G/PL which measures the difference
between the given normal problem and the identity problem (id, id)
over N ,
• a map h : N−→Bπ which classifies the universal covering.

Consequently, the product map g×h : N−→G/CAT×Bπ, defines an element
in the bordism group ΩCAT

2n+ε(G/CAT × Bπ, w) where w is the orientation
character of N .

On the other hand, given a bordism of g×h we can assume, after doing
surgery that the fundamental groups of both boundary components and the
interior are copies of π, and, using the map into G/CAT we obtain a degree
one normal problem over the bordism which, on the boundary component
M is the original surgery problem.
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Now, we can do surgery on the interior of the bordism to make it highly
connected and the exact sequence of surgery kernels becomes

0−−→Kn+1(W,∂W )
∂−−→Kn(∂W )−−→Kn(W )−−→0

for n even, and

0−−→Kn+1(∂W )−−→Kn+1(W )−−→Kn+1(W,∂W )
∂−−→Kn(∂W )−−→0

for n odd. In the first case, the image of ∂ is a quadratic lagrangian, so

Kn(∂W ) = Kn(M) ⊥ −Kn(M ′)

is trivial, and in the second case we’ve seen in the discussion following (5)
that this picture results in a trivial surgery obstruction. Thus we have shown
that in the case where the surgery problem lies over a manifold the surgery
obstruction factors through bordism.

Remark . In the following chapters we will see how, using product
formulae, this fact will enable us to get explicit formulae for the surgery
obstructions over closed manifolds with fundamental group π and orientation
character w for many classes of π. In particular, explicit formulae exist for
all finite groups π.





CHAPTER 13

The Instant Surgery Obstruction and Product
Formulae

To this point we have discussed the original development of surgery
theory, initiated in the late 1950’s and carried to the point of understanding
the definitions of the surgery obstruction groups and the foundations of
the theory. From this point, in order to get further it was necessary to
have some control of the L-groups, Lhn(Z[π], w), and to be able to calculate
the surgery obstructions to degree one normal problems without having to
do sugery to make the maps highly connected. The main objective of the
current chapter is to discuss this last point. We will show how ideas and
techniques due primarily to the authors allow one to define the surgery
obstruction essentially instantly, from the map f : Mn−→X and one further
bit of homotopy theoretic data which is often readily available. Then we
will apply this result to give product formulae for the surgery obstructions
to problems of the form N × (f, b), where f : Mn−→X is producted with the
manifold N to give

id× f : N ×Mn−−→N ×X,
while b is replaced by id×b. In the majority of the applications these product
formulae are used starting with (f, b) where X is simply connected and N
contains the possibly non-trivial fundamental group.

In any case, in order to develop these results we have to review the basic
facts of iterated loop space theory, which will occupy us for most of this
chapter.

1. Review of Iterated Loop Space Theory

Let x1, . . . , xr be points in the pointed space X which we will assume
throughout this chapter is a connected CW -complex with base point a 0-
cell. Also, assume that y1, . . . , yr are distinct points in the interior of the
unit disk Dn ⊂ Rn. Let w = mini6=j ||yi − yj ||, and set N(y1, . . . , yr) =
w
4 . As a consequence, the closed disks DN (y1), . . . , DN (yr) of radius N =
N(y1, . . . , yr) centered at the points yi are disjoint.

Write local coordinates in the disk, DN (yi) in the form ~v 7→ ~v+~yi where
~v is an arbitrary point in the closed disk or radius N about ~0.

Given an r-tuple of points x1, . . . , xr together with the y1, . . . , yr above
we can define a map

f(y1,...,yr),(x1,...,xr) : S
n−−→ΣnX

215



216 13. THE INSTANT SURGERY OBSTRUCTION AND PRODUCT FORMULAE

by the formula

f(θ) =

{
( 1
N~v, xi) if θ = ~yi + ~v ∈ DN (yi),
∗ the base point of ΣnX otherwise.

Example 67. In the case n = 2 and r = 5 we have the following situation
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where each little disk is linearly expanded to the unit disk D2 × yi for the
yi corresponding to the center of the little disk, and the remaining points in
the big disk are all mapped to the base point.

This map has the following two properties as a function of the xi and
the yj .

(1) If xi = ∗ then

f(y1,...,yr),(x1,...,xr) ∼ f(y1,...,ŷi,...yr),(x1,...,x̂i,...xr).

In words, this says that the original map is identical to the map
associated to the (r− 1)-tuples where xi and yi are deleted, except
possibly for some evident rescaling, since the disks about the yj
may increase in size slightly.

(2) If we permute the yj by the permutation σ ∈ Sr and simultaneously
permute the xj by the same permuation, then the associated maps
are identical:

f(yσ1,...,yσr),(xσ1,...,xσr) = f(y1,...,yr),(x1,...,xr).

The space of all ordered r-tuples of distinct points of Int(Dn) = Sn−∞
is denoted Fr(Sn −∞) and the construction above gives a continuous map

hr : Fr(Sn −∞)×Sr X
r−−→ΩnΣnX

where ΩnY is the n-fold loop space of Y , the space of all based continuous
maps f : Sn−→Y , with the compact-open topology.

Remark . There is a generalization of this to give a map,

Tr : Fr(Sn −∞)×Sr (ΩnX)r−−→ΩnX

defined by

Tr((y1, . . . , yr), (f1, . . . , fr)) =

{
fi( 1

N~v) if θ = ~yi + ~v is in the disk DN (yi),
∗ the base point of X otherwise
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which just uses the map fi appropriately scaled in the disk of radius N
about yi and is base point otherwise.

Note that Fr(Sn −∞) is (n − 2)-connected since it can be given as an
iterate fibration:

Rn − (y1, . . . , yr−1) −−→ Fr(Sn −∞)y
Rn − (y1, . . . , yr−2) −−→ Fr−1(Sn −∞)y

...y
Rn − y1 −−→ F2(Sn −∞)y

Sn −∞
and each fiber is (n − 2)-connected while the base is contractible. Also,
Fr(Sn −∞) is free under the action of Sr. Incidently, the notation in the
diagram should be clear. Each vertical arrow is a fibration with fiber given
by the domain of the horizontal arrow.

For ε > 0 sufficiently small we can replace the space Fr(Sn − ∞) by
the space Fr(Sn −∞, ε) consisting of all r-tuples (y1, . . . , yr) ∈ Fr(Sn −∞)
such that N(y1, . . . , yr) ≥ ε, and, comparing the iterate fibration associated
to Fr(Sn − ∞, ε) with that of (1), it is directly shown that the inclusion
Fr(Sn−∞, ε) ↪→ Fr(Sn−∞) is a homotopy equivalence. Consequently, the
inclusion induces a homotopy equivalence

Fr(Sn −∞, ε)×Sr X
r ↪→ Fr(Sn −∞)×Sr X

r

and for s ≤ r we can consider the construction

Cr(Sn,∞, X, ∗, ε) =
r∐

1

Fs(Sn −∞, ε)×Ss X
s/ ∼

where ∼ is the equivalence relation given by

{(y1, . . . , yr), (x1, . . . , xr)} ∼ {(y1, . . . , ŷi, . . . , yr), (x1, . . . , x̂i, . . . , xr)}
if xi = ∗.

Then, clearly the maps hεs defined on the Fs(Sn −∞, ε) in the same way as
hs except that we replace N(y1, . . . , ys) by ε/4 all fit together to give a map

Eεr : Cr(S
n,∞, X, ∗, ε)−−→ΩnΣnX.
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Now, define

C(Sn,∞, X, ∗) =
∞∐

1

Fs(Sn −∞)×Ss X
s/ ∼

where ∼ is the equivalence relation of (1). Passing to limits and checking the
existence of compatible homotopies for the varying ε’s we obtain a natural
map

E : Cr(Sn,∞, X, ∗)−−→ΩnΣnX

and the main result of iterated loop space theory is that this map is a
homotopy equivalence when X satisfies our standing assumptions.

Variations of this construction abound. One can replace Sn by any n-
dimensional connected, closed manifold with empty boundary, Mn, and ∞
by any point in Mn. Then one obtains

C(Mn, pt,X, ∗) =
∞∐

1

Fs(Mn − pt)×Ss X
s/ ∼

where ∼ is again the equivalence relation of (1). In this case we obtain the
following theorem of D. McDuff:

[D. McDuff]
Theorem 54. Assume that Mn is, as above, a closed, compact, con-

nected manifold with empty boundary which is almost parallelizable. Then
there is a natural inclusion C(Mn, pt,X, ∗) ↪→ Map∗(Mn,Σn(X)) which is
a homotopy equivalence of mapping spaces.

(The idea is that Mn − pt is parallelizable and choosing a trivialization of
the tangent bundle τMn , the exponential map exp : τMn−→Mn gives a way of
identifying a set of sufficiently small neighborhoods of each point of Mn−pt
with the disk Dn. Consequently, a collection of r distinct points in Mn− pt
together with r corresponding points ofX and an ε sufficiently small that the
ε-disks about the distinct points are all disjoint give a map Mn, pt)−→ΣnX
as before. Then using a handle body decomposition of Mn reduces this to
the previous result.)

Perhaps the best discussion of these results is contained in [CARL-
FRIEDRICH BÖDIGHEIMER]

In another direction, we can go to infinity with n in the original con-
struction.

In the limit as n 7→ ∞ we can replace Fr(Sn −∞) by the total space
of the universal cover of a classifying space for Sr, ESr since Fr(Sn −∞) is
(n− 1)-connected and Sr-free.

Define Q(X, ∗) = limn 7→∞ΩnΣnX. Then we get a model for Q(X, ∗)
given originally by Dyer-Lashof [REFERENCE],

∞∐

1

ESs ×Ss X
s/ ∼' Q(X, ∗).
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In particular, the first two stages of the construction give the following
space

X ∪F S∞ ×Z/2 X2

where the generator of Z/2 acts as multiplication by −1 on S∞ and to
interchange coordinates in X2. Similarly, at the finite levels, the first two
stages of C(Sn,∞, X, ∗) give

X ∪F Sn−1 ×Z/2 X2.

The construction has been modified to include the situation where X
is not connected but X is the union of a simply conneced space Y with a
disjoint base point ∗. In this case Q(Y+) has the form Z×W (Y ) where the
components are all of the form

W (Y ) ' (ES∞ ×S∞ X∞)+ .

We now explain the + on the space above. To begin we attach one 2-cell to
kill the homotopy class of the permutation t = (1, 2, 3) ∈ S∞. The normal
closure of this element is the alternating group A∞, and so the fundamental
group of the resulting space is Z/2. Also, the homology class represented
by the 2-cell we just attached becomes spherical, and we can attach a 3-cell
to kill this spherical class. Then the plus means the result of attaching this
2-cell and 3-cell.

Remark . The attaching of the two cells above does not change the
homology of ES∞ ×S∞ (X∞) so that the suspensions of these two spaces are
homotopy equivalent. On the other hand, V. Snaith proved the following
splitting theorem.

Theorem 55. [REFERENCE] [REFERENCE] Let X be a connected
CW -complex with base point ∗. Then there is a splitting natural in X:

Σ∞ES∞ ×S∞ X∞ '
∞∨

1

Σ∞ESn ×Sn X ∧X ∧ · · · ∧X︸ ︷︷ ︸
n−times

.

Thus, given a map f : X−→Q(Y+) we have a sequence of natural projec-
tions

hn(f) : Σ∞X−−→Σ∞ESn ×Sn X ∧X ∧ · · · ∧X︸ ︷︷ ︸
n−times

called the higher Hopf invariants of f .
We need to make this splitting explicit because we need a variant of it

for the case X = Y+. Thus, let

Ik = (i1, . . . , ik), 1 ≤ i1 < i2 < i3 < · · · < ik ≤ r
be any k-tuple of distinct points in the set {1, 2, . . . , n}, and define the
projection πIk : Fr(Rn)−→Fk(Rn) in the evident way:

πIk(y1, . . . , yr) = (yi1 , yi2 , . . . , yik).
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Note that
πIk(y1, . . . , yr) 6= πI′k(y1, . . . , yr)

unless Ik = I ′k since all the yj are distinct. Consequently, with the lexio-
graphic ordering on the Ik, we have that the product map

∏

Ik

πIk : Fr(Rn)−−→
(r

k)∏

1

Fk(Rn)

actually has image contained in F(r
k)

(Fk(Rn)).
Further, Fk(Rn) ⊂ Rnk, and using the diagonal map

∆: Fk(Rn) ↪→ Rnk × Fk(Rn)
we extend the map above to a map of the form

Θk,r : Fk(Rn)−−→F(r
k)

(Rkn)× Fk(Rn)(
r
k).

We now investigate the way the action of Sr on Fk(Rn) commutes with
Θk,r. First, let α ∈ Sr be an arbitrary permuation. Then it defines a
permutation of the elements in the power set of all distinct k-tuples Ik,

π(α)({i1, . . . , ik}) = {iα−1(1), . . . , iα−1(k)}.
Of course, it is not generally true that iα−1(1) < iα−1(2) < · · · < iα−1(k), so –
for each Ik, α also defines a β(α, Ik) which puts these iα−1(j) into ascending
order. Then the map into the wreath product

S(r
k)
o Sk = S(r

k)
× S(r

k)
k

with multiplication given by

(λ, (t1, . . . , t(r
k)

))(τ, (s1, . . . , s(r
k)

)) = (λτ, (tλ−1(1)s1, . . . , tλ−1((r
k))
s(r

k)
))

defined by
α 7→ (π(α), (β(α, I1), . . . , β(α, I(r

k)
))

is actually a homomorphism, known as the Frobenius homomorphism.
We now extend Θ to give a map from Fr(Rn) ×Sr X

r. To do this, let
Ik be an element in the power set of all subsets with k elements of the set
{1, 2, . . . , r}, and define

Ik : Xr−−→Xk

by Ik(x1, . . . , xr) = (xi1 , . . . , xik). Then we have the extension of Θ:

Θ̄ : Fr(Rn)×Sr X
r−−→FS(r

k)
(Rnk)×S(r

k)

(
Fk(Rn)×Sk

Xk
)(r

k)

by
((y1, . . . , yr), (x1, . . . , xr)) 7→ Θ(y1, . . . , yr), I1(~x), . . . , I(r

k)
(~x).

Also, note that the adjoint map

Adj(id) : ΣnΩnX−−→X
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defined by Adj(id)(~t, f) = f(~t) can be applied to the composition EΘ̄ where
E is the map of (1) so we obtain a transfer map:

Tr,k : Σnk (Fr(Rn)×Sr X
r)−−→Σnk

(
Fk(Rn)×Sk

Xk
)

which is the core of Snaith splitting. In fact we have

Lemma 76. Let x ∈ X be any base point. Consider the inclusion

Jx : Fk(Rn)×Sk
Xk−−→Fr(Rn)×Sr X

r,

defined on points by

{(y1, . . . , yk), (x1, . . . , xk)} 7→
{(y1, . . . , yk, zk+1, . . . , zr), (x1, . . . , xk, x, . . . , x)}

where zi = (Max(||yi||) + i, 0, . . . , 0) ∈ Rn. Next, consider the composition
πΣnkJx:

Σnk(Fk(Rn)×Sk
Xk)

ΣnkJx−−−→Σnk(Fr(Rn)×Sr X
r)

Adj(id)−−−−→
Σnk(Fk(Rn)×Sk

Xk)
π−−→Σnk(Fk(Rn) .<Sk

X(k))

where X(k) is the smash product of X with itself k-times with respect to the
base point x, and .< denotes that when X(k) is at base point we collapse
everything to base point. Then this composition factors through

ΣnkFk(Rn) .<Sk
X(k),

and on this quotient is a homotopy equivalence.

Proof. Note that if we take a point of the form

((y1, . . . , yr), (x1, . . . , xk, ∗, . . . , ∗)),
then Ik(x1, . . . , xk, ∗, . . . , ∗) contains at least one ∗ unless Ik = (1, . . . , k).
Consequently, when we project to

F(r
k)

(Rnk)×S(r
k)

(
Fk(Rn) .<Sk

X(k)
)
,

the image has the form

{Θ(y1, . . . , yr), {(y1, . . . , yk), (x1, . . . , xk)}, ∗, . . . , ∗︸ ︷︷ ︸
(r

k)−1 times

)}

and this is identified with

{(y1, . . . , yk), {(y1, . . . , yk), (x1, . . . , xk)}} ∼ {(y1, . . . , yk), (x1, . . . , xk)}
which completes the proof. ¤

This result more or less directly gives Snaith splitting. But the prospec-
tive application of splitting to surgery required this very precise description.
We turn to this application now.
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2. The quadratic reduction of the surgery kernel

Let the group G act on X. Then there is an induced action of G on
Fk(Rn)×Sk

Xk by

g({(y1, . . . , yk), (x1, . . . , xk)}) = {(y1, . . . , yk), (g(x1), . . . , g(xk))}
and the map Θ̄ of 1 is G-equivariant, so it induces a reduced map

X/G−−→F(r
k)

(Rnk)×S(r
k)
Fk(Rn)×Sk

(Xk/∆(G))

for each k with 1 ≤ k ≤ r.
3

In surgery we are interested in the case where Y is the universal cover
of a manifold Mn and π1(M) acts freely on Y . In this case, letting π1(M)
act freely on the disjoint base point, there is a semi-free action of π1(M) on
Σn(Y+) with the base point as the only fixed point. This action induces an
action of π1(M) on Q(Y+), which restricted to our model is simply given
by the identity on ES∞ and the diagonal action on X∞. In particular, the
higher Hopf invariant maps above are equivariant with respect to the

One aspect of this naturality will be particularly important to us. Sup-
pose that X has a free
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