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Preface

The Belarusian Workshops on Queueing Theory were started in 1985. Their
initiation as a continuation of the series of All-Union conferences in queueing
theory in the former Soviet Union was triggered by the famous scientist B.V.
Gnedenko and the founder of the Belarusian scientific school in probability the-
ory G.A. Medvedev. These workshops were organized annually until 1999 and
biennially since 2001 as scientific conferences on queueing theory and its various
applications. The workshops became the main forum of researchers in queueing
theory in the former Soviet Union and independent countries previously united
in the Soviet Union. Since 1995, the representatives of many other countries
(Austria, Algeria, Belgium, Bulgaria, Canada, China, France, Germany, Hun-
gary, India, Italy, Japan, Korea, Mexico, The Netherlands, Portugal, Poland,
Spain, Sweden, Turkey, USA) have participated in these workshops.

The Belarusian workshops on queueing theory achieved the status of inter-
national conferences, with each conference having its own subtitle. The 22nd
Belarusian Workshop on Queueing Theory (BWWQT 2013) was held at the Be-
larusian State University, Minsk, Belarus, during January 28–31, 2013, as the
international conference “Modern Probabilistic Methods for Analysis, Design
and Optimization of Information Telecommunication Networks.”

The proceedings of the Belarusian Workshops on Queueing Theory were reg-
ularly published by the Belarusian University Publishers as volumes in the series
“Queues: Flows, Systems, Networks.” This year, a collection of selected papers
among those accepted to the program of the workshop are published in Springer’s
Communications in Computer and Information Science (CCIS) series.

This volume presents new results in the study and optimization of information
transmission models in telecommunication networks using different approaches,
mainly based on theories of queueing systems and queueing networks.

This volume is aimed at specialists in probabilistic theory, random processes,
mathematical modeling, and mathematical statistics as well as engineers engaged
in logical and technical design and operational management of telecommunica-
tion and computer networks, databases, contact centers, health care, security,
custom, border control, etc.

January 2013 Alexander Dudin
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Analysis of Queueing System

with Constant Service Time for SIP Server
Hop-by-Hop Overload Control

Pavel Abaev1, Alexander Pechinkin2,1, and Rostislav Razumchik2,1

1 Peoples Friendship University, Ordzhonikidze str., 3, 117198 Moscow, Russia
2 Institute of Informatics Problems of Russian Academy of Sciences, Vavilova str.,

44-2, 119333 Moscow, Russia
{pabaev,rrazumchik}@ieee.org, apechinkin@ipiran.ru

Abstract. Consideration is given to the analysis of queueing system
M2|D|1|R with bi-level hysteretic input load control that can model sig-
nalling hop-by-hop overload control mechanism for SIP servers described
in RFC 6357. Bi-level hysteretic input load control implies that system
may be in three states (normal, overloaded, blocking), depending on the
total number of customers present in it, and upon each state change in-
put flow rate is adjusted. New approach that allows fast computation
of joint stationary probability distribution is proposed, expressions for
important performance characteristics are given.

Keywords: SIP server, hop-by-hop mechanism, loss-based overload
control, constant service rate, queueing model.

1 Introduction

In [1] there was developed a hop-by-hop signaling load control mechanism based
on the loss-based scheme for SIP server networks (described in [2]) and con-
structed the applicable threshold-based queuing system to analyze the perfor-
mance characteristics of the mechanism. This study is devoted to the analysis
of one of the generalizations of that queueing system, namely consideration is
given to similar queueing system but in which customers that enter the queue are
served for constant time as opposed to exponentially distributed service times
as assumed in [1]. Threshold-based and hysteric queueing systems have been
subject of extensive research, for example [3]–[7], just to mention a few. In this
paper we propose new approach that allows fast computation of joint stationary
probability distribution for significant practical use values of thresholds.

2 Description of the System

Consider the queueing system with Poisson incoming flows of customers (say
type 1 and type 2) with rate λ1 and λ2, finite queue of size R − 1 < ∞, and
one server. Denote λ = λ1 + λ2. Type 1 customers have relative priority over

A. Dudin et al. (Eds.): BWWQT 2013, CCIS 356, pp. 1–10, 2013.
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2 P. Abaev, A. Pechinkin, and R. Razumchik

customers of type 2 (i.e. no service interruptions are allowed and type 2 customer
enters server only when it becomes free and there are no type 1 customers in
the queue). If arriving customer sees R customers in the system, it is considered
to be lost. All customers are served for constant time 0 < T <∞. The hysteric
mechanism operates as follows. The system during operation changes its state
depending on the total number of customers present in it. Choose arbitrary
numbers L and H such that 0 < L < H < R. When the system starts to work
it is empty and as long as the total number of customers in the system remains
below H − 1, system is considered to be in “normal“ state. When total number
of customers exceeds H − 1 for the first time, the system changes its state to
“overload“ and stays in it as long as the number of customers remains between
L and R− 1. Moreover when overloaded, system accepts only type 1 customers.
Being in “overload“ state, system waits till the number of customers drops down
below L after which it changes its state back to “normal“, or exceeds R−1 after
which it changes its state to “blocking“. In the “blocking“ state systems does
not accept new arriving customers until the total number of customers drops
down below H + 1, after which system’s state changes back to “overload“.

Consider random process {X(t) = (ξ(t), η(t), ν(t)), t ≥ 0}, where ξ(t) is the
total number of customers in the system at an instant t, η(t) is the elapsed service
time of the customer in server at instant t, ν(t) is the state of the system at instant
t. When ξ(t) = 0, components η(t) and ν(t) are omitted. Process X(t) defined
in such a way is Markov process. The state space of X(t) can be represented as
X = X0∪X1∪X2, whereX0 is the set of “normal“ states,X1 is the set of “overload“
states, and X2 is the set of “blocking“ states. These sets are

X0 = {0} ∪ {(n, x, 0) : 0 < n ≤ H − 1, x ∈ [0, T ]} ,
X1 = {(n, x, 1) : L ≤ n ≤ R− 1, x ∈ [0, T ]} ,

X2 = {(n, x, 2) : H + 1 ≤ n ≤ R, x ∈ [0, T ]} .
Let us introduce the following notation:

p0(t) = P{ξ(t) = 0}, Pns(x, t) = P{ξ(t) = n, η(t) < x, ν(t) = s}, s = 0, 1, 2 .

As X is finite and all states intercommunicate then limiting probabilities exist
and coincide with stationary probabilities which we denote by p0 = lim

t→∞ p0(t),

Pns(x) = lim
t→∞Pns(x, t). It can be shown that for all allowable values of n and

s derivatives dPns(x)/dx exist and further they are denoted by pns(x). In order
to shed some light on the above made notations let us describe the meaning of
pns(x). Now then pn0(x), n = 1, H − 1, is the stationary probability density
of the fact, that total number of customers in the system is n, elapsed service
time of currently served customer equals x and system accepts all (type 1 and
type 2) arriving customers. Onwards, pn1(x), n = L,R− 1, is the stationary
probability density of the fact, that total number of customers in the system is
n, elapsed service time of currently served customer equals x and system accepts
only type 1 arriving customers (type 2 customers are dropped). Finally, pn2(x),
n = H + 1, R, is the stationary probability density of the fact, that total number
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of customers in the system is n, elapsed service time of currently served customer
equals x and system does not accept any new arriving customers.

In order to write out the equations for pns(x) auxiliary functions are needed.
We introduce them in the next section.

3 Auxiliary Functions

Assume that at arbitrary time instant τ the total number of customers in the
system is n, n = H + 1, R− 1, remaining service time of currently served cus-
tomer is x, and only type 1 customers are allowed to enter system (i.e. the system
is in “overload“ state). Denote by αn(x) the probability of the fact that until
the moment of time when the total number of customers in the system equals
n − 1 for the first time, there will never be R customers in the system (or, al-
ternatively, the total number of customer in the system will reach n− 1 earlier
that R).

Henceforth notation αn = αn(T ), n = L,R− 1, n �= H is used. By definition
αR(x) ≡ 0, ∀x ∈ [0, T ]. Let us show, that other probabilities αn(x) satisfy the
system of equations

α′n(x) = −λ1αn(x) + λ1αn+1(x)αn, n = H + 1, R− 1 . (1)

Indeed, consider time instant τ − 
, where 
 is a small amount of time. Then,
the total number of customer in the system will reach n − 1 earlier that R given
that at time instant τ −
 the total number of customers in the system is n, n =
H + 1, R− 1, remaining service time of currently served customer is x, and only
type 1 customers are allowed to enter system if the following conditions are

1. in time 
 type 1 customer did not arrive (with probability 1−λ1
+ o(
))
and the total number of customer in the system will reach n− 1 earlier that
R given at time instant τ the total number of customers in the system is n,
remaining service time of currently served customer is x−
, and only type
1 customers are allowed to enter system (with probability αn(x−
)),

2. and in time 
 type 1 customer arrived (with probability λ1
+ o(
)), the
total number of customer in the system will reach n earlier that R given
at time instant τ the total number of customers in the system is n + 1,
remaining service time of currently served customer is x−
, and only type
1 customers are allowed to enter system (with probability αn+1(x − 
))
and total number of customers will reach n − 1 earlier that R, given that
remaining service time is T (with probability αn).

Thus is holds

αn(x) = (1−λ1
)αn(x−
)+λ1
αn+1(x−
)αn+o(
), n = H + 1, R− 1 .

Now, subtracting αn(x) from both sides, dividing by 
 and taking the limit as

 → 0 we obtain (1). Note that the boundary conditions for (1) are αn(0) =
1, n = H + 1, R− 1.
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The solution of (1) is straightforward. Let αn(x)=e
−λ1xβn(x), n=H + 1, R.

Making such substitution into (1) we get

β′n(x) = λ1αnβn+1(x), n = H + 1, R− 1 . (2)

Using boundary conditions for (1) we find that βn(0) = 1, n = H + 1, R− 1.
Moreover from the fact, that αR(x) ≡ 0, ∀x ∈ [0, T ] it follows, that βR(x) ≡
0, ∀x ∈ [0, T ].

The solution of the system of differential equations (2) has the form

βn(x) =

R−n−1∑
i=0

cn,ix
i, n = H + 1, R− 1 . (3)

Thus βR−1(x) = cR−1,0 = 1 and from (2) for n = H + 1, R− 2 we get

βn(x) = cn,0 + λ1αn

x∫
0

βn+1(y) dy = cn,0 + λ1αn

R−n−2∑
i=0

xi+1

i+ 1
cn+1,i . (4)

From the fact, that βn(0) = 1, n = H + 1, R− 2 it follows, that cn,0 = 1, n =
H + 1, R− 2. Remember, that ∀x ∈ [0, T ] αn(x) = e

−λ1xβn(x), n = H + 1, R
and thereby βn(T ) = e

λ1Tαn(T ). Now, by putting x = T in (4), the expression
for αn is found:

αn =

(
eλ1T − λ1

R−n−2∑
i=0

T i+1

i+ 1
cn+1,i

)−1

, n = H + 1, R− 2 . (5)

Comparing (3) and (4) we obtain the following recurrence relations for compu-
tation of coefficients cn,i in (3):

cn,0=1, n=H + 1, R− 1, cn,i=
λ1αn
i
cn+1,i−1, i=1, R− n− 1, n=H + 1, R− 2 .

Thus the probability αn(x) ∀x ∈ [0, T ] can be determined by computing βn(x),
using (3), and then multiplying it by e−λ1x. Now we proceed to the definition of
another auxiliary function.

Assume that at arbitrary time instant the total number of customers in the
system is n, n = L,H − 1, remaining service time of currently served customer
is x, and all arriving customers are allowed to enter system (i.e. the system is
in “normal“ state). Denote by αn(x) the probability of the fact that until the
moment of time when the total number of customers in the system equals n− 1
for the first time, there will never be H customers in the system (alternatively,
the total number of customer in the system will reach n− 1 earlier that H).

By definition αH(x) ≡ 0, ∀x ∈ [0, T ]. Using the same argument as above,
it can be shown that probabilities αn(x), n = L,H − 1 satisfy the system of
equations

α′n(x) = −λαn(x) + λαn+1(x)αn , (6)
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with boundary condition αn(0) = 1, n = L,H − 1. The solution of (6) is found
by analogy with (1) and therefore is stated below without detailed explanation:

αn(x) = e
−λx

H−n−1∑
i=0

cn,ix
i, n = L,H − 1,

cn,0 = 1, n = L,H − 1, cn,i =
λαn
i
cn+1,i−1, i = 1, H − n− 1, n = L,H − 2,

αn =

(
eλT − λ

H−n−2∑
i=0

T i+1

i + 1
cn+1,i

)−1

, n = L,H − 2 .

Having introduced all necessary auxiliary functions, we proceed in the next sec-
tion to the derivation and solution of equations for the stationary probability
densities pns(x).

4 Stationary Probability Distribution

Let us start with the derivation of equations for stationary probability densities
pn0(x), n = 1, L− 1. Let n = 2, L− 1. Consider time instants t−
 and t. For
the process X(t) to be in state (n, x, 0) at time instant t, the following conditions
must hold

1. at the instant t−
 the processX(t) is in state (n, x−
, 0), and no customer
arrives in the time interval 
 (with probability 1− λ1
+ o(
));

2. at the instant t−
 the processX(t) is in state (n−1, x−
, 0), one customer
(with probability λ1
+ o(
)) arrives in the time interval 
.

Since all other events are of probability o(
), using the law of total probability,
we obtain

pn0(x, t)=pn0(x−
, t−
)(1−λ
)+pn−1,0(x−
, t−
)λ
+o(
), n = 2, L− 1 .

Taking the limit as t→ ∞ in the previous equation, it can be rewritten as

pn0(x) = pn0(x−
)(1 − λ
) + pn−1,0(x −
)λ
+ o(
), n = 2, L− 1 .

Now, subtracting pn0(x−
) from both sides, dividing by 
 and making 
 tend
to zero, we obtain

p ′
n0(x) = −λpn0(x) + λpn−1,0(x), n = 2, L− 1 . (7)

When n = 1, following the similar argument, one can show that it holds

p ′
10(x) = −λp10(x) . (8)

In order to solve (7) and (8) let us make the substitution pn0(x) = e
−λxqn0(x),

n = 1, L− 1. Then (7) and (8) will take the form

q ′
10(x) = 0, q ′

n0(x) = λqn−1,0(x), n = 2, L− 1 . (9)
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Solution of the system (9) are functions qn(x) such that

q10(x) = c1, qn0(x) = cn + λ

x∫
0

qn−1,0(y) dy =

n−1∑
i=0

(λx)i

i!
cn−i, n = 2, L− 1 .

In order to determine coefficients cn = pn0(0), n = 1, L− 1 we will use the elim-
ination method (see, for example, [8, Chapter 1]). Let us begin with probability
p1(0). Notice that when the process X(t) is in state (1, x, 0), x ∈ [0, T ] and any
customer arrives, it leaves this state but with probability 1 comes back to it and
moreover elapsed service time of the customer in server will always be 0 (in other
words, the process X(t) leaves the state (1, x, 0) with arrival of a customer and
with probability 1 comes back to state (1, 0, 0)). Thus, using the global balance
principle, the probability of the state (1, 0, 0) is

p1(0) = c1 = λp0 +

T∫
0

λp1(x) dx = λp0 + c1(1− e−λT ) ,

wherefrom it follows that c1 = λeλT p0. If we consider probability pn(0), n =
2, L− 1 and apply the same probabilistic argument, we obtain

pn(0) = cn =

T∫
0

λpn(x) dx = cn(1− e−λT ) + λ

T∫
0

e−λx
n−1∑
i=1

(λx)i

i!
cn−idx ,

whence

cn = λeλT
T∫

0

e−λx
n−1∑
i=1

(λx)i

i!
cn−idx, n = 2, L− 1 .

Now, having found expressions for pn0(x), n = 1, L− 1, we proceed to derivation
of equations for pn0(x), n = L,H − 1. Using completely the same reasoning
which was used above for pn0(x), n = 2, L− 1, one can verify that it holds

p ′
n0(x) = −λpn0(x) + λpn−1,0(x), n = L,H − 1 . (10)

Substitution pn0(x) = e
−λxqn0(x), n = L,H − 1 into (10) yields

q ′
n0(x) = λqn−1,0(x), n = L,H − 1 .

Functions qn0(x) that satisfy the previous system of differential equations have
the form

qn0(x) = cn + λ

x∫
0

qn−1,0(y) dy =
n−1∑
i=0

(λx)i

i!
cn−i, n = L,H − 1 . (11)

Now one needs to determine coefficients cn = pn0(0), n = L,H − 1. Taking into
consideration, that process X(t) never visits state (H − 1, 0, 0), it holds that
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cH−1 = pH−1,0(0) = 0. Using elimination method and the same probabilistic
argument as used above for obtaining equations for cn, n = 1, L− 1, we get the
following equations for other coefficients cn, n = L,H − 2:

pn0(0) = cn =

T∫
0

λαn+1(T − x)pn0(x) dx =

= λcne
−λT

H−n−2∑
j=0

T j+1

j + 1
cn+1,j + λe

−λT
H−n−2∑

j=0

n−1∑
i=1

j!λi T i+j+1

(i + j + 1)!
cn+1,jcn−i ,

whence

cn = λαn

H−n−2∑
j=0

n−1∑
i=1

j!λi T i+j+1

(i+ j + 1)!
cn+1,jcn−i, n = L,H − 2 .

Having found expressions for cn, n = L,H − 1, stationary probability densities
pn0(x), n = L,H − 1 are considered to be found too.

Let us dwell on the derivation of equations for pn1(x), n = L,H − 1. Con-
sidering the process X(t) at time instants t − 
 and t one can verify that the
following differential equations for pn1(x) hold

p ′
L1(x) = −λ1pL1(x) ,

p ′
n1(x) = −λ1pn1(x) + λ1pn−1,1(x), n = L+ 1, H − 1 .

This system can be solved in the same manner as system (7)–(8). After substi-
tution pn1(x) = e

−λ1xqn1(x), n = L,H − 1 it yields to

q ′
L1(x) = 0, q ′

n1(x) = λ1qn−1,1(x), n = L+ 1, H − 1 . (12)

Solution of the system (12) has the form

qn1(x) = c
∗
n + λ1

x∫
0

qn−1,1(y) dy =
n−L∑
i=0

(λ1x)
i

i!
c∗n−i, n = L,H − 1 . (13)

Using again the elimination method to determine coefficients c∗n = pn1(0), n =
L,H − 1 one can find, that

pn1(0) = c
∗
n =

T∫
0

λ1pn1(x) dx +

T∫
0

λpH−1,0(x) dx ,

wherefrom after some algebraic manipulations it follows

c∗n = λ1e
λ1T

T∫
0

e−λ1x
n−L∑
i=1

(λ1x)
i

i!
c∗n−idx+ λe

λ1T pH−1,0, n = L,H − 1 .
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In the latter equality we assume
0∑

i=1

≡ 0.

Whereas probabilities pn1(x), n = L,H − 1. are now considered to be found,
we proceed to the determination of probability pH1(x). Considering the state
change on the process X(t) in the small time period 
 one can verify that it
holds

p ′
H1(x) = −λ1pH1(x) + λpH−1,0(x) + λ1pH−1,1(x) .

After substitution pH1(x) = e
−λ1xqH1(x) the previous equation yields to

q ′
H1(x) = λe

−λ2xqH−1,0(x) + λ1qH−1,1(x) . (14)

The solution of (14) has the form

qH1(x) = cH + λ

x∫
0

e−λ2yqH−1,0(y) dy + λ1

x∫
0

qH−1,1(y) dy =

= cH + λ

x∫
0

e−λ2y
H−2∑
i=0

(λy)i

i!
cH−i−1dy +

H−L−1∑
i=0

(λ1x)
i+1

(i+ 1)!
c∗H−i−1 ,

where the constant cH = pH(0) is found from equation pH1(0) =
T∫
0

λ1pH1(x) dx

i. e. equals

cH = λeλ1T

T∫
0

e−λy
H−2∑
i=0

(λy)i

i!
cH−i−1dy − λ

T∫
0

e−λ2y
H−2∑
i=0

(λy)i

i!
cH−i−1dy +

+λ1e
λ1T

T∫
0

e−λ1x
H−L−1∑

i=0

(λ1x)
i+1

(i + 1)!
c∗H−i−1dx .

The equations for stationary probability densities pn1(x), n = H + 1, R− 1, and
their solution are almost identical to the ones for pn0(x), n = L,H − 1, that is
it holds

p ′
n1(x) = −λ1pn1(x) + λ1pn−1,1(x), n = H + 1, R− 1 .

If we make substitution pn1(x) = e
−λ1xqn1(x), n = H + 1, R− 1, then the pre-

vious system of equations can be rewritten as

q ′
n1(x) = λ1qn−1,1(x), n = H + 1, R− 1 ,

whose solution is

qn1(x) = cn + λ1

x∫
0

qn−1,1(y) dy, n = H + 1, R− 1 .
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In order to determine the functions qn1(x) completely one needs to find terms
cn = pn1(0), n = H + 1, R− 1. As process X(t) never visits state (R − 1, 0, 1),
then cR−1 = pR−1,1(0) = 0. Other terms cn are found in the similar manner
as it is done throughout the paper (i.e. using elimination method). Thereby for
n = H + 1, R− 2 it holds

cn = pn1(0) =

T∫
0

λ1αn+1(T − x)pn1(x) dx ,

wherefrom remembering that αn(x) = e
−λ1xβn(x) and βn(x), n = H + 1, R− 2,

is defined by (4)–(5), one finds that

cn = λ1

T∫
0

qn−1(y) [βn(T − y)− 1]dy, n = H + 1, R− 2 .

The last system of equations that is left to be found is for pn2(x), n = H + 1, R.
One can readily verify that these stationary probability densities satisfy

p ′
R2(x) = λ1pR−1,1(x), p ′

n2(x) = 0, n = H + 1, R− 1 .

The solution of this system is pn2(x) = c
∗
n, n = H + 1, R− 1 and

pR2(x) = c
∗
R + λ1

x∫
0

pR−1,1(y) dy = c
∗
R + λ1PR−1,1(x) .

The terms c∗n = pn2(0), n = H + 1, R can be found in the following way. Note
that as process X(t) never visits state (R, 0, 2), then c∗R = pR2(0) = 0. Now as
the system in “blocking“ state does not accept any new arriving customers, then
it holds

pn2(0) = pn+1,2(T ), n = H + 1, R− 1 .

Thus, we have shown how to determine all stationary probability densities pns(x).
The probability p0 is found, as usual, from the normalization condition

p0 =

(
1 +

∑
n,s

T∫
0

pns(x)dx

)−1

.

Using the above results, we may calculate performance characteristics of the
system. Server utilization is simply 1 − p0. Loss probability of type 1 and type
2 customers, π1 and π2 respectively, is

π1 =
R∑

n=H+1

∫ T

0

pn2(x)dx, π2 = π1 +
R−1∑
n=L

∫ T

0

pn1(x)dx .
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Load, served by the system, equals λ∗ = (1− π1)λ1 + (1− π2)λ2 and thus mean
waiting time is V = Q/λ∗, where Q – mean number of customers in the queue
which can be computed as follows

Q =
H−1∑
n=1

(n−1)Pn0+
R−1∑
n=L

(n−1)Pn1+
R∑

n=H+1

(n−1)Pn2, Pns =

∫ T

0

pns(x)dx .

5 Conclusion

In this study consideration is given to finite M2|D|1|R queue with bi-level hys-
teretic load control which can serve as an alternative model for hop-by-hop
overload control in SIP server networks. New approach is proposed which allows
fast computation of the joint stationary distribution. Numerical experiments
show that the proposed algorithm allows accurate computations of stationary
distribution for high values of L and H (L > H > 200) in reasonable time. Our
further research will be devoted to analysis of one of the important performance
characteristic of hysteric mechanism in the considered queueing system – mean
return time to normal operation state and verification of obtained results by
comparing them with simulation based on real time traffic.

Acknowledgments. The reported study was partially supported by RFBR,
research project No. 12-07-00108 and No. 11-07-00112.
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Abstract. Single server queueing system with two Poisson input flows
of rate λ1 and λ2, finite queue of size R − 1 < ∞ and bi-level hysteretic
policy is considered. Customers of λ1 flow are served with relative pri-
ority. Customers of both flows are served with the same constant ser-
vice time. Bi-level hysteretic policy implies that system may be in three
states (normal, overload, blocking), depending on the total number of
customers present in it. New method for calculation of mean return time
to normal operation state is proposed.

Keywords: SIP, hysteric control, constant service rate, queueing system,
mean return time.

1 Introduction

Threshold load control is a well-known and reliable tool for preventing SS7 sig-
nalling link congestion [1]. In [2] it was shown that the same technique is appli-
cable to overload control problems in a SIP server signalling network, that was
stated in recent IETF RFCs and drafts (see, for example, [3]) and remains un-
solved. Again in [2] Markov queuing system with bi-level hysteretic policy that
can model overload control was introduced and thoroughly studied. In particular
there was stated and numerically solved the problem of optimal choice of thresh-
old values that minimize mean return time of the system to normal operation
state given certain restrictions on blocking probabilities.

In this study we consider queueing system with bi-level hysteretic policy which
in Kendall’s notation is denoted by M2|D|1|R. The main goal of the paper is to
find expression for mean return time to normal operation state. The next section
starts with the detailed description of the system and performance characteristic
of interest, and introduces some auxiliary functions. In section 3 we propose new
approach for the calculation of this performance characteristic. Conclusion sums
up the results of the paper and outlines plans of further study.

A. Dudin et al. (Eds.): BWWQT 2013, CCIS 356, pp. 11–19, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Description of the System

Consider the queueing system with two Poisson flows of rate λ1 and λ2, finite
queue of size R − 1 < ∞, and one server. Further use notation λ = λ1 + λ2.
Customers of flow λ1 have relative priority over customers of flow λ2 (i.e. no
service interruptions are allowed and customer of λ2 flow enters server only
when it becomes free and there are no customers of flow λ1 in the queue). If
arriving customer sees R customers in the system, it is considered to be lost. All
customers are served for constant time 0 < T <∞. The bi-level hysteric policy
implies the following. The system during operation changes its state depending
on the total number of customers present in it. Choose arbitrary numbers L and
H such that 0 < L < H < R. When the system starts to work it is empty and as
long as the total number of customers in the system remains below H−1, system
is considered to be in “normal” state. When total number of customers exceeds
H − 1 for the first time, the system changes its state to “overloaded” and stays
in it as long as the number of customers remains between L and R−1. Moreover
when overloaded, system accepts only type 1 customers. Being in “overloaded”
state, system waits till the number of customers drops down below L after which
it changes its state back to “normal”, or exceeds R− 1 after which it changes its
state to “blocking”. In the “blocking” state systems does not accept new arriving
customers until the total number of customers drops down below H + 1, after
which system’s state changes back to “overloaded”.

The important (as it is mentioned in [2]) performance characteristic of the
system with bi-level hysteric policy is mean time it takes the system to return
from “overloaded” or “blocking” state back to “normal” state. Assume at an
arbitrary moment of time there are total of n, n = L,R− 1 customers in the
considered queueing system and it is in “overloaded” state. Then denote by
Mn, n = L,R− 1 – mean time to the time instant when the total number of
customers in the system becomes equal L−1 for the first time. Now assume that
at an arbitrary moment of time there are total of n, n = H + 1, R customers in
the considered queueing system and it is in “blocking” state. Denote byM∗

n, n =
H + 1, R – mean time to the time instant when the total number of customers in
the system becomes equal L− 1 for the first time. The goal is to obtain analytic
expressions that allow fast computation of Mn and M∗

n.
In order to achieve this goal new approach was developed. Before moving to its

explanation one needs to define the following auxiliary functions. Their purpose
will become clear in Section 3.

Assume that at arbitrary time instant the total number of customers in the
system is n, n = H + 1, R− 1, remaining service time of currently served cus-
tomer is x, and system is in “overload” state. Denote by αn(x) the probability
of the fact that until the moment of time when the total number of customers
in the system equals n − 1 for the first time, there will never be R customers
in the system. Introduce notation αn = αn(T ), n = L,R− 1, n �= H . As it is
show in [4] for αn(x) it holds

αn(x) = e
−λ1xβn(x), n = H + 1, R− 1 , (1)
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where

βn(x) =

R−n−1∑
i=0

cn,ix
i, n = H + 1, R− 1, cn,0 = 1, n = H + 1, R− 1, (2)

cn,i =
λ1αn
i
cn+1,i−1, i = 1, R− n− 1, n = H + 1, R− 2, (3)

αn =

(
eλ1T − λ1

R−n−2∑
i=0

T i+1

i+ 1
cn+1,i

)−1

, n = H + 1, R− 2 . (4)

Now assume that at arbitrary time instant the total number of customers in the
system is n, n = L,H − 1, remaining service time of currently served customer
is x, and system is in “normal” state. Denote by αn(x) the probability of the
fact that until the moment of time when the total number of customers in the
system equals n − 1 for the first time, there will never be H customers in the
system (alternatively, the total number of customer in the system will reach
n− 1 earlier that H . In [4] it was found that αn(x), n = L,H − 1 have the form
αn(x) = e

−λxβn(x), n = L,H − 1, where

βn(x) =

H−n−1∑
i=0

cn,ix
i, n = L,H − 1, cn,0 = 1, n = L,H − 1 (5)

cn,i =
λαn
i
cn+1,i−1, i = 1, H − n− 1, n = L,H − 2, (6)

αn =

(
eλT − λ

H−n−2∑
i=0

T i+1

i+ 1
cn+1,i

)−1

, n = L,H − 2 . (7)

Having introduced auxiliary functions αn(x), we proceed in the next section to
the detailed explanation of the approach that allows calculation of mean return
times Mn and M∗

n.

3 Calculation of Mean Return Times

Denote by mn(x), n = H + 1, R− 1, – mean time to the time instant when the
total number of customers becomes equal n−1 for the first time and until that time
instant total number of customers will never reach R, provided that at arbitrary
time instant (say τ) there are n customers in the system, remaining service time
of currently served customer is x, and system is in “overloaded” state.

As opposed to mn(x) denote by m
∗
n(x), n = H + 1, R− 1, – mean time to the

time instant when the total number of customers becomes equal R for the first
time and until that time instant total number of customers will never be less
than n, provided that at arbitrary time instant (say τ) there are n customers in
the system, remaining service time of currently served customer is x, and system
is in “overloaded” state.
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Henceforth, the following notation is used:

α∗n(x) = 1− αn(x), n = H + 1, R− 1, α∗n = α∗n(T ), n = H + 1, R− 1,

mn = mn(T ), n = H + 1, R− 1, m∗
n = m∗

n(T ), n = H + 1, R− 1 . (8)

One can verify that for mn(x), n = H + 1, R− 1 the following equations hold:

m′
R−1(x) = αR−1(x) − λ1mR−1(x), (9)

m′
n(x) = αn(x) − λ1mn(x) +

+λ1[mn+1(x)αn + αn+1(x)mn], n = H + 1, R− 2 . (10)

Indeed, let n = H + 1, R− 2 and consider time instant τ − 
, where 
 is a
small amount of time. Then, the mean time to reach n − 1 without visiting R,
given that at time instant τ − 
 total number of customer in the system is
n, remaining service time of currently served customer is x and system is in
“overloaded” state equals

1. 
 if eventually we will reach n − 1 without visiting R, given that at time
instant τ total number of customer in the system is n, remaining service
time of currently served customer is x − 
 and system is in “overloaded”
state (which happens with probability αn(x));

2. mean time to reach n − 1 without visiting R, given that at time instant
τ total number of customer in the system is n, remaining service time of
currently served customer is x − 
 and system is in “overloaded” (which
happens with probability 1− λ1
+ o(
));

3. sum of two terms (both with probability λ1
+ o(
))
– mean time to reach n without visiting R, given that at time instant τ

total number of customer in the system is n+1, remaining service time
of currently served customer is x−
 and system is in “overloaded” state
(which happens with probability αn(T ) = αn) and

– mean time to reach n− 1 without visiting R, given that total number of
customer in the system is n, remaining service time of currently served
customer is T and system is in “overloaded” state if until the moment of
time when the total number of customers in the system becomes equal
n for the first time there will never be R customers, provided that at
time instant τ the total number of customers in the system is n + 1,
remaining service time of currently served customer is x−
 and system
is in “overload” state (which happens with probability αn+1(x)).

Using the law of total expectation, we obtain

mn(x) = 
αn(x −
) + (1− λ1
)mn(x−
) +

+λ1
[mn+1(x −
)αn + αn+1(x−
)mn] + o(
), n = H + 1, R− 2 .

Subtracting mn(x −
) from both sides, dividing by 
 and taking the limit as

 → 0 we obtain (10). For n = R− 1 one can readily see, that

mR−1(x) = 
αR−1(x −
) +mR−1(x−
)(1− λ1
) + o(
) ,



Mean Return Time in System with Constant Service Time 15

so that by subtracting mR−1(x−
) from both sides, dividing by 
 and making

 tend to zero, we arrive at (9). Evidently the boundary conditions for (9) and
(10) are mn(0) = 0, n = H + 1, R− 1.

In order to solve (9)-(10) let us introduce functions un(x), n = H + 1, R− 1
such that

mn(x) = e
−λ1xun(x), n = H + 1, R− 1 . (11)

Substitution of (11) into (9) and (10), seeing (1), yields

u′R−1(x) = βR−1(x), (12)

u′n(x) = βn(x) + λ1[un+1(x)αn + βn+1(x)mn], n = H + 1, R− 2 . (13)

Note, that functions βn(x) and values of αn that enter the above system of equa-
tions are known and given by (2)–(4). The solution of (12)–(13) has the form

un(x) =

R−n∑
i=1

rn,ix
i, n = H + 1, R− 1 . (14)

Coefficients rn,i can be found by substitution of (14) into (13) and direct integra-
tion. For n = R− 1 integration from 0 to x of (14) and use of (2) leads to

uR−1(x) =

x∫
0

βR−1(y) dy = cR−1,0x = x ,

wherefrom it follows that rR−1,1 = cR−1,0 = 1. For n = H + 1, R− 2 if one
integrates (13) from 0 to x, substitutes (14) into the result and uses (2),
one obtains

un(x) =

x∫
0

(βn(y) + λ1[un+1(y)αn + βn+1(y)mn]) dy =

=
R−n−1∑

i=0

cn,i
xi+1

i+ 1
+ λ1

[
αn

R−n−1∑
i=1

rn+1,i
xi+1

i+ 1
+mn

R−n−2∑
i=0

cn+1,i
xi+1

i+ 1

]
.(15)

By comparing coefficients of equal powers of x in (14) and (15) one can obtain
the following formulas for rn,i:

rn,1 = cn,0 + λ1mncn+1,0, n = H + 1, R− 2,

rn,i =
1

i
(cn,i−1 +

+λ1[αnrn+1,i−1 +mncn+1,i−1]), i = 2, R− n− 1, n = H + 1, R− 3,

rn,R−n =
1

R− n (cn,R−n−1 + λ1αnrn+1,R−n−1), n = H + 1, R− 2 .

The lattermost terms that are left unknown in expressions for rn,i are mn. They
can be found, using relation (11). Indeed, if we substitute (15) into (11) and put
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x = T , we arrive at the following relation for n = H + 1, R− 2:

mn=e
−λ1T

[R−n−1∑
i=0

cn,i
T i+1

i+ 1
+λ1αn

R−n−1∑
i=1

rn+1,i
T i+1

i+ 1
+λ1mn

R−n−2∑
i=0

cn+1,i
T i+1

i+ 1

]
,

whence, after collecting the common terms and seeing (4), it follows that

mn = αn

[R−n−1∑
i=0

cn,i
T i+1

i+ 1
+ λ1αn

R−n−1∑
i=1

rn+1,i
T i+1

i+ 1

]
.

Thus we have found all relations needed to compute coefficients rn,i, functions
un(x) and ultimately quantities mn(x), n = H + 1, R− 1.

Applying the same argument, which was used for mn(x), one can verify, that
for m∗

n(x), n = H + 1, R− 1 it holds

m∗′
R−1(x) = α

∗
R−1(x) − λ1m∗

R−1(x), (16)

m∗′
n (x) = α

∗
n(x)− λ1m∗

n(x) +

+λ1[m
∗
n+1(x) +mn+1(x)α

∗
n + αn+1(x)m

∗
n], n = H + 1, R− 2 , (17)

with boundary conditions m∗
n(0) = 0, n = H + 1, R− 1. Substitution of

m∗
n(x) = e

−λ1xu∗n(x), n = H + 1, R− 1 , (18)

into (16) and (17), seeing (1), yields

u∗′R−1(x) = e
λ1x − βR−1(x), (19)

u∗′n (x) = e
λ1x − βn(x) +

+λ1[u
∗
n+1(x) + un+1(x)α

∗
n + βn+1(x)m

∗
n], n = H + 1, R− 2 . (20)

Note, that functions βn(x) and values of α∗n that enter the above system of
equations are known and given by (2)–(4) and (8). The solution of (19)–(20) has
the form

u∗n(x) =
R−n∑
i=0

r∗n,ix
i + tne

λ1x, n = H + 1, R− 1 . (21)

For n = R− 1 integration from 0 to x of (19) and use of (2) yields

u∗R−1(x) =

x∫
0

[eλ1x − βR−1(x)]dx =
1

λ1
eλ1x − 1

λ1
− cR−1,0x ,

whence it follows that r∗R−1,0 = −1/λ1, r
∗
R−1,1 = −cR−1,0 = 1, tR−1 = 1/λ1.

Other coefficients r∗n,i and tn can be found by substitution of (21) into (20),
seeing (14) and direct integration. Thus it holds

u∗n(x) =

x∫
0

(eλ1y − βn(y) + λ1[u∗n+1(y) + un+1(y)α
∗
n + βn+1(y)m

∗
n]) dy =
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=
(1 + λ1tn+1)

λ1
(eλ1x − 1)−

R−n−1∑
i=0

cn,i
xi+1

i+ 1
+ λ1

[R−n−1∑
i=0

r∗n+1,i

xi+1

i + 1
+

+α∗n
R−n−1∑

i=1

rn+1,i
xi+1

i+ 1
+m∗

n

R−n−2∑
i=0

cn+1,i
xi+1

i + 1

]
, n = H + 1, R− 2 .(22)

By comparing coefficients of equal powers of x in (22) and (21) one can obtain
the following formulas for r∗n,i and tn:

r∗n,0 = −1 + λ1tn+1

λ1
, tn =

1 + λ1tn+1

λ1
, n = H + 1, R− 2,

r∗n,1 = −cn,0 + λ1[r∗n+1,0 +m
∗
ncn+1,0], n = H + 1, R− 2,

r∗n,i = −cn,i−1
1

i
+ λ1

[
r∗n+1,i−1

i
+

+α∗n
rn+1,i−1

i
+m∗

n

cn+1,i−1

i

]
, i = 2, R− n− 1, n = H + 1, R− 3,

r∗n,R−n = −cn,R−n−1

R− n + λ1

[
r∗n+1,R−n−1

R − n + α∗n
rn+1,R−n−1

R− n
]
, n = H + 1, R− 2 .

In expressions for r∗n,i and tn the only unknown quantities arem∗
n, n=H+1, R−2.

They can be found, as well as case of mn, using relation (18) when x = T . We
omit these manipulations and state the final expression for m∗

n:

m∗
n = αn

(
1 + λ1tn+1

λ1
(eλ1T − 1)−

R−n−1∑
i=0

cn,i
T i+1

i+ 1
+

+λ1

[R−n−1∑
i=0

r∗n+1,i

T i+1

i+ 1
+ α∗n

R−n−1∑
i=1

rn+1,i
T i+1

i+ 1

])
, n = H + 1, R− 2 .

Hereon all relations for computation of quantities m∗
n(x) are found.

Let us now denote by Ln, n = H + 1, R− 1, – mean time mean time to
the time instant when the total number of customers in the system becomes
equal H for the first time, provided that at an arbitrary time instant there
are total of n customers in the system and system is in “overloaded” state.
Additionally denote by L∗

n, n = H + 1, R mean time to the time instant when
the total number of customers in the system becomes equal H , provided that
at an arbitrary time instant there are total of n customers in the system and
system is in “blocking” state. We assume that if n = H + 1, R− 1, then at at an
arbitrary time instant customer in server has remaining service time T , and if
n = R then customer in server has remaining service time T/2. This assumption
leads to certain calculation error, but this error is insignificant already for small
values of R−H . For example, when R−H = 10 the error is estimated at 5%, and
for R−H = 50 it does not exceed 1%. It is possible to obtain exact expressions
for Ln and L∗

n but slight increase of accuracy will lead to serious complication
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of calculations. This is seen to be impractical. Thus taking this reasoning into
consideration, we can write out expressions for Ln and L∗

n:

L∗
n = (n−H)T, n = H + 1, R− 1, L∗

R =
(
R−H − 1

2

)
T,

LH+1 = mH+1 +m
∗
H+1 + α

∗
H+1L

∗
R,

Ln = mn + αnLn−1 +m
∗
n + α∗nL

∗
R, n = H + 2, R− 1 .

The lattermost functions that have to be introduced are m∗
n(x), n = L,H, –

mean time to the time instant when the total number of customers becomes
equal n − 1 for the first time, provided that at arbitrary time instant there are
n customers in the system, remaining service time of currently served customer
is x, and system is in “overloaded” state. Denote m∗

n = m∗
n(T ), n = L,H.

Repeating the same arguments, that we used to obtain equations for mn(x), one
can verify, that it holds

m∗′
H(x) = 1− λ1m∗

H(x) + λ1(mH+1(x) +m
∗
H+1(x) + α

∗
H+1(x)L

∗
R +m∗

H),(23)

m∗′
n (x) = 1− λ1m∗

n(x) + λ1(m
∗
n+1(x) +m

∗
n), n = L,H − 1 ,(24)

with boundary conditions m∗
n(0) = 0, n = L,H . By analogy with (16)–(17) the

solution of (23)–(24) has the form m∗
n(x) = e

−λ1xu∗n(x), n = L,H, where

u∗n(x) =
R−n∑
i=0

r∗n,ix
i + tne

λ1x, n = L,H .

Coefficients r∗n,i and tn for n = L,H completely in the same way as it is done
when solving (16)–(17). Due to the lack of space we do not state here interme-
diate calculations and provide final expressions for the coefficients:

tH =
(1 + λ1[L

∗
R + tH+1 +m

∗
H ])

λ1
, tn=

(1+λ1[tn+1 +m
∗
n])

λ1
, n=H−1, L,

r∗H,0=−
(1 + λ1[L

∗
R + tH+1 +m

∗
H ])

λ1
, r∗H,1=λ1

(
r∗H+1,0− L∗

RcH+1,0

)
,

r∗H,i=λ1

(
rH+1,i−1

i
+
r∗H+1,i−1

i
− L∗

R

cH+1,i−1

i

)
, i = 2, R−H − 1,

r∗H,R−H = λ1

(
rH+1,R−H−1

R−H +
r∗H+1,R−H−1

R−H
)
,

r∗n,0 = − (1 + λ1[tn+1 +m
∗
n])

λ1
, r∗n,i = λ1

r∗n+1,i−1

i
, i = 1, R− n, n = H − 1, L .

In the above expressions quantities m∗
n, n = L,H, remain unknown. They can

be found from equation m∗
n(x) = e

−λ1u∗n(x), if one puts x = T . Omitting inter-
mediate calculations we arrive at the following expressions for m∗

n:

m∗
H =

(1 + λ1[L
∗
R + tH+1])

λ1
(eλ1T − 1) +
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+λ1

(R−H−1∑
i=1

rH+1,i
T i+1

i+ 1
+

R−H−1∑
i=0

r∗H+1,iT
i+1

i+ 1
− L∗

R

R−H−2∑
i=0

cH+1,i
T i+1

i+ 1

)
,

m∗
n =

(1 + λ1tn+1)

λ1
(eλ1T − 1) + λ1

R−n−1∑
i=0

r∗n+1,i

T i+1

i+ 1
, n = H − 1, L .

Now everything is ready for writing out expressions for Mn andM∗
n. Recall that

Mn, n = L,R− 1 is mean time to the time instant when the total number of
customers in the system becomes equal L − 1 for the first time, given that at
an arbitrary moment of time there are total of n, n = L,R− 1 customers in the
considered queueing system and it is in “overloaded” state. We still assume, that
at arbitrary moment of time remaining service time of customer in service is T .
Then it is easy to see, that ML = m∗

L, Mn = m∗
n +Mn−1, n = L+ 1, H , Mn =

Ln+MH , n = H + 1, R− 1 Remembering, thatM∗
n, n = H + 1, R is mean time

to the time instant when the total number of customers in the system becomes
equal L − 1 for the first time, given that at an arbitrary moment of time there
are total of n, n = H + 1, R customers in the considered queueing system and
it is in “blocking” state, it becomes clear that M∗

n = L∗
n +MH , n = H + 1, R .

4 Conclusion

Consideration is given to M2|D|1|R < ∞ queueing system with bi-level hys-
teretic policy. The policy implies that system may be in three states (normal,
overloaded, blocking). One of the important performance characteristics of hys-
teric policy and system itself – mean return time to normal state of operation – is
being analyzed. New method that allows fast computation of this characteristic
is proposed. All theoretical results were compared with simulation results, ob-
tained with the use of GPSS, and showed good accuracy. Further research in this
area will be concentrated on the verification of obtained results by comparing
them with simulation based on real time SIP traffic.
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research project No. 12-07-00108 and No. 11-07-00112.
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Abstract. In this paper we analyze a discrete-time queueing system in
which an arriving customer can decide, with a certain probability, to go
directly to the server expelling out of the system the customer that is
currently in service or to join the queue in the last place. The arrivals
are assumed to be geometrical and the service times are arbitrarily dis-
tributed. We present some numerical examples in order to illustrate the
effect of the parameters on several performance characteristics.

Keywords: Discrete-time, expulsions, recurrent formulae.

1 Introduction

The standard models of classical queueing theory are systems operating in con-
tinuos time. But in practice there are many systems which shows an inherent
generic slotted time scale (for example time–shared computing systems) and de-
mands a serious study of discrete time systems. One of the advantages of dealing
with discrete-time models is that they have been found more appropriate that
their continuous-time counterpart for modelling computer and telecommunica-
tion systems. The discrete time scale often reflects the nature of an underlying
application: for example, the clock time unit in a computer system fixed size
data units (bits, bytes, fixed length packets) on a communication channel, etc.

The study of discrete-time queues was initiated by Meisling [7], Birdsall et al.
[2], and also by Powell et al. [10]. Reference works and more detailed applica-
tions on discrete–time queueing theory include the monographs [3,11]. Further,
a detailed treatment regarding this subject can be found in a two–volume book
on applied probability [5,6].

In our work we consider a discrete-time single-server queueing system with
expulsions. The expulsions can be controlled by the server and decides weather
the new incoming work or customer is worth to update the server and expel out
of the system the current one in service or continue servicing and the new arrival
joins the queue in order to be served later on. Let us note that the customers
arriving from outside has priority on others. In order to avoid trivial cases we
will suppose 0 < a < 1.

� The work of I. Fortes and S. Sánchez is partially supported by the Junta of Andalućıa
[P09-FQM-5233].

A. Dudin et al. (Eds.): BWWQT 2013, CCIS 356, pp. 20–25, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Discrete-Time Queueing System with Expulsions 21

2 The Mathematical Model

We consider a single-server discrete-time queueing system where the time axis
is divided into a sequence of equal time intervals (called slots) and it is assumed
that all queueing activities (arrivals and departures) take place at the slot boun-
daries. For mathematical convenience, we will suppose that the departures occur
at the moment immediately before the slot boundaries and the arrivals occur at
the moment immediately after the slot boundaries, that is:

m−

m

m+

Potential departure epoch

Potential arrival epoch

Arrival to the server from the queue

Customers arrive according to a geometric arrival process with rate a, that
is, a is the probability that a customer arrives at a slot. If, upon arrival, the
service is idle, the service of the arriving customer begins immediately, other-
wise, the arriving customer either with probability θ expels the customer that is
currently being served out of the system and starts immediately its service, or
with complementary probability θ̄ = 1− θ joins the last place of the queue.

Service times are governed by an arbitrary distribution {si}∞i=1, with gener-
ating functions S(x) =

∑∞
i=1 si x

i. We will denote by Sk =
∑∞

i=k si; k ≥ 1, the
probability that the service lasts not less than k slots.

3 The Markov Chain

At time m+ the system can be described by the Markov process {Ym , m ∈ N}
with Ym = (Cm, ξm, Nm) where Cm takes the values 0, or 1 according to the
server is free or busy and Nm is the number of customers in the queue. If Cm = 1,
ξm corresponds to the remaining service time.

It can be shown that {Ym , m ∈ N} is the Markov chain of our queueing
system, whose states space is

{(0); (1, i, k) : i ≥ 1, k ≥ 0}
Our goal is to determine the stationary distribution

π0 = lim
m→∞P [Cm = 0, Nm = 0]

π1,i,k = lim
m→∞P [Cm = 1, ξm = i, Nm = k]
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The Kolmogorov equations for the stationary distribution of the system are
given by

π0 = āπ0 + āπ1,1,0 ⇐⇒ aπ0 = āπ1,1,0 (1)

π1,i,0 = asiπ0 + āπ1,i+1,0 + āsiπ1,1,1 + asiπ1,1,0 + aθsi

∞∑
j=2

π1,j,0 (2)

π1,i,k = āπ1,i+1,k + āsiπ1,1,k+1 + asiπ1,1,k +

+ aθsi

∞∑
j=2

π1,j,k + aθ̄π1,i+1,k−1, k ≥ 1 (3)

Eqs. (2) and (3) can be written in the following way:

π1,i,k = δ0k asiπ0 + āπ1,i+1,k + āsiπ1,1,k+1 + asiπ1,1,k +

+ aθsi

∞∑
j=2

π1,j,k + (1− δ0,k) aθ̄π1,i+1,k−1, k ≥ 0 (4)

where δa,b is the Kronecker’s symbol and the normalizing condition is

π0 +

∞∑
i=1

∞∑
k=0

π1,i,k = 1.

With the aim of solving Eq. (4) we introduce the following generating function

ϕ(x, z) =

∞∑
i=1

∞∑
k=0

π1,i,kx
izk =

∞∑
i=1

ϕi(z)x
i

where ϕi(z) is the auxiliary function

ϕi(z) =

∞∑
k=0

π1,i,kz
k.

Multiplying equation (4) by zk and summing over k, we have

ϕi(z) = (ā+ aθ̄z)ϕi+1(z) +
ā+ aθ̄z

z
siϕ1(z) + aθsiϕ(1, z)− 1− z

z
aπ0si (5)

Multiplying the former equation by xi and summing over i we get:

x− (ā+ aθ̄z)

x
ϕ(x, z) = (ā+ aθ̄z)

S(x)− z
z

ϕ1(z) +

+ aθS(x)ϕ(1, z)− 1− z
z
aS(x)π0 (6)

Setting x = 1 and x = ā+ aθ̄z in the above equation, respectively we obtain

ϕ1(z) =
S(ā+ aθ̄z)(1− θ̄z)

(ā+ aθ̄z)[S(ā+ aθ̄z)− θ̄z] aπ0 (7)

ϕ(1, z) =
1− S(ā+ aθ̄z)
S(ā+ aθ̄z)− θ̄z π0 (8)
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By substituting (7) and (8) in (6) yields

ϕ(x, z) =
S(x) − S(ā+ aθ̄z)
x− (ā+ aθ̄z)

· xz(1− θ̄z)
S(ā+ aθ̄z)− θ̄z aπ0 (9)

The normalization condition, that can be written as π0 + ϕ(1, 1) = 1, allow us
to find out the unknown constant π0:

π0 =
S(ā+ aθ̄)− θ̄

1− θ̄
Therefore, the necessary condition for the stability of the system is S(ā+aθ̄) > θ̄.

We summarize the above results in the following theorem:

Theorem 1. The generating functions of the stationary distribution of the chain
are given by

ϕ1(z) =
S(ā+ aθ̄z)(1− θ̄z)

(ā+ aθ̄z)[S(ā+ aθ̄z)− θ̄z] aπ0

ϕ(1, z) =
1− S(ā+ aθ̄z)
S(ā+ aθ̄z)− θ̄z π0

ϕ(x, z) =
S(x)− S(ā+ aθ̄z)
x− (ā+ aθ̄z)

· xz(1− θ̄z)
S(ā+ aθ̄z)− θ̄z aπ0

where π0(z) is given by

π0 =
S(ā+ aθ̄)− θ̄

1− θ̄
In order to design a responsive system, a probabilistic assessment of factors like
queue length, timing, and composition must be made. Queueing theory provides
some powerful tools to help make this assessment, and is an absolutely essential
part of any communication design.

Lemma 1. 1. The GF of the number of customers in the system is:

Φ(z) = π0 + zϕ(1, z) =
S(ā+ aθ̄z)(1− z) + zθ
S(ā+ aθ̄z)− θ̄z π0

2. The GF of the number of customers in the queue is:

Ψ(z) = π0 + ϕ(1, z) =
1− θ̄z

S(ā+ aθ̄z)− θ̄z π0

3. The mean number of the customers in the system is given by

E[L] = Φ′(1) =
S(ā+ aθ̄)[1− S(ā+ aθ̄)]− aθθ̄S′(ā+ aθ̄)

θ[S(ā+ aθ̄)− θ̄]
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4. The mean number of the customers in the queue is given by

E[N ] = Ψ ′(1) =
θ̄[1− S(ā+ aθ̄)]− aθθ̄S′(ā+ aθ̄)

θ[S(ā+ aθ̄)− θ̄]

5. The mean sojourn time of a customer in the system and in the queue are
given by

v̄ =
E[L]

a

w̄ =
E[N ]

a
.

4 Numerical Results

This section is devoted to illustrate the effect of the parameters on several perfor-
mance characteristics. Throughout this section, we assume that the mean service
time is equal to 3 of a BN(2, 0.4) for the service time. Of course, in all the below
examples, the parametric values are chosen so as to satisfy the stability condition.

θ̄

π0
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Fig. 1. The probability that the system is empty
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Fig. 2. The behavior of E[L] against the parameter θ̄
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In figure 1 the probability that the system is empty is plotted against the
parameter θ̄ for different values of a (a = 0.05, 0.15, 0.25). As we expected, π0
decreases with increasing values of θ̄ depending also on the arrival rate a.

The graphic plotted in fig 2 illustrates the behavior of E[L] against the param-
eter θ̄. As intuition tells us, E[L] increases with increasing values of θ̄ depending
also on the arrival rate.
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Abstract. This paper considers stationary functioning of an open queue-
ing network with temporarily non-active customers. Non-active customers
are in a system queue and do not get service. Customers can pass from
non-active state into state, when they can get their service and vice versa.
Stationary distribution invariance with reference to service time distribu-
tion functional form is obtained.

Keywords: queueing network, temporarily non-active customers,
stationary distribution invariance.

1 Introduction

Nowadays one pay considerable attention to queueing systems reliability. Here-
with, the problem of customer reliability becomes actual to a marked degree too.
Queueing network with temporarily non-active customers is a model with cus-
tomers, which are partly unreliable. Non-active customers are in a system queue
and do not get service, partly loosing their capacity for service. Customers can
pass from non-active state into state, when they can get their service and vice
versa. In papers [1], [2] G. Tsitsiashvili and M. Osipova observed an open queue-
ing network with non-active customers and established the form of stationary
distribution. We have generalized their result in a case of random distributed
service times. We have obtained stationary distribution invariance with reference
to service time distribution functional form.

2 Queueing Network Description

An open queueing network with set of systems J = {1, 2, . . . , N} is considered.
Customers arrive at the network according to a Poisson processes at rates λi,
i ∈ J . Non-active customers are in a system queue and can not get service. There
are input Poisson flows of signals at rates νi and ϕi, i ∈ J . When arriving at the
system i ∈ J the signal at rate νi induces an ordinary customer at system, if
any, to become non-active. When arriving at the system i ∈ J the signal at rate
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ϕi induces an non-active customer, if any, to become an ordinary. Signals do not
need service. Let ni(t), n

′
i(t) are numbers of ordinary and non-active customers at

system i ∈ J at time t accordingly. States space for process z(t) = (ni(t), n
′
i(t)) is

Z = {((n1, n′1), . . . , (nN , n′N))|ni, n′i ≥ 0, i ∈ J}. Service times are independent
random distributed values with functions of distribution Bi(ni+n

′
i, xni+n′

i
) and

expected values 1/μi, i ∈ J . After finishing of service process at system i ∈ J
customer is routed to system j ∈ J with the probability pi,j and with the

probability pi,0 is removed from network (
∑N

j=1 pi,j + pi,0 = 1), i ∈ J . Let
pi,i = 0, i ∈ J . The discipline of service is LSFS-PR.

A traffic equations system is:

εi = λi +

N∑
j=1

εjpj,i, i ∈ J. (1)

One can prove that under certain conditions traffic equations system has unique
non-trivial solution.

3 Stationary Distribution Invariance

G. Tsitsiashvili, M. Osipova [1], [2] considered an open queueing network with
temporarily non-active customers and exponentially distributed service time. It
has been proved that under conditions of ergodicity

εi < μi,

εiνi < μiϕi, i = 1, . . . , N,

process z(t) = (ni(t), n
′
i(t)) has stationary distribution

p(z) = p1(n1, n
′
1)p2(n2, n

′
2) . . . pN(nN , n

′
N), z ∈ Z,

where

pi(ni, n
′
i) =

(
1− εiνi

ϕiμi

)(
1− εi

μi

)( εiνi
ϕiμi

)n′
i
( εi
μi

)ni

, i = 1, . . . , N,

εi, i ∈ J – is a traffic equations system solution.
We consider an open queueing network, where service times are indepen-

dent random distributed values. In this case z(t) is not Markov process. So
we introduce Markov process ζ(t) = (z(t), ξ(t)), where ξ(t) = (ξ1(t), . . . , ξN (t)),
ξi(t) = (ξi,1(t), . . . , ξi,ni+n′

i
(t)). Here ξi,k(t) – rest service time of a customer,

which has position k at system i at time t, i ∈ J .
Denote by

F (z, x) = F (z, x1,1, . . . , x1,n1+n′
1
;x2,1, . . . , x2,n2+n′

2
; . . . ;xN,1, . . . , xN,nN+n′

N
) =

= lim
t→∞P{z(t) = z, ξi,1(t) < xi,1, . . . , ξi,ni+n′

i
(t) < xi,ni+n′

i
, i ∈ J}.

Functions F (z, x) are called stationary functions of ζ(t) distribution.
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Theorem 1. Under conditions of ergodicity:

εi < μi, (2)

εiνi < μiϕi, i = 1, . . . , N, (3)

stationary functions of ζ(t) distribution F (z, x) are:

F (z, x) = p1(n1, n
′
1)p2(n2, n

′
2) . . . pN (nN , n

′
N)×

×
N∏
i=1

μ
ni+n′

i

i

ni+n′
i∏

s=1

xi,s∫
0

(1−Bi(s, u))du, z ∈ Z, (4)

where

pi(ni, n
′
i) =

(
1− εiνi

ϕiμi

)(
1− εi

μi

)( εiνi
ϕiμi

)n′
i
( εi
μi

)ni

, i = 1, . . . , N, (5)

εi, i ∈ J – is a traffic equations system solution.

Proof.Denote by ei ∈ Z – a vector, which coordinates equal 0 with the exception
of (ni, n

′
i) = (1, 0), denote by e′i ∈ Z – a vector, which coordinates equal 0 with

the exception of (ni, n
′
i) = (0, 1), i ∈ J .

Consider process ζ(t). In the case of exponentially distributed service times
a process z(t) was ergodic under conditions (2), (3) [1]. Accordingly a process
ζ(t) is ergodic under conditions (2), (3), because ζ(t) is obtained from z(t) by
continuous components adding.
ζ(t) condition changes that occur through customers or signals arriving will

name spontaneous changes. Suppose that h is small time interval and consider
the probability

P{z(t+ h) = z, ξi,1(t+ h) < xi,1, . . . , ξi,ni+n′
i
(t+ h) < xi,ni+n′

i
, i ∈ J}.

This event may occur in the following ways:

1. From the moment t during time h there were no spontaneous changes and
service at any system was not over. The probability of this event is

P{z(t)=z, ξi,1(t) < xi,1,. . . , hIni>0 ≤ ξi,ni+n′
i
(t)<xi,ni+n′

i
+hIni>0, i∈ J}×

×(1−
N∑
i=1

(λi + νiIni>0 + ϕiIn′
i>0)h+ o(h)).

2. During time h a customer has arrived at system i ∈ J . There were no other
spontaneous changes. No customer was serviced.

P{z(t) = z−ei, ξk,1(t) < xk,1, . . . , hInk>0 ≤ ξk,nk+n′
k
(t) < xk,nk+n′

k
+hInk>0,
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k ∈ J, k �= i,
ξi,1(t) < xi,1, . . . , hIni>1 ≤ ξi,ni+n′

i−1(t) < xi,ni+n′
i−1 + hIni>1}×

×(λih+ o(h))Bi(ni + n
′
i, xi,ni+n′

i
+ θh)Ini>0, 0 < θ < 1.

3. During time h a customer was serviced at system i ∈ J and was routed to
system j ∈ J . There were no spontaneous changes.

P{z(t) =

= z − ei + ej , ξk,1(t) < xk,1, . . . , hInk>0 ≤ ξk,nk+n′
k
(t) < xk,nk+n′

k
+ hInk>0,

k ∈ J, k �= i, k �= j,
ξj,1(t) < xj,1, . . . , ξj,nj+n′

j
(t) < xj,nj+n′

j
, ξj,nj+n′

j+1(t) < h,

ξi,1(t) < xi,1, . . . , hIni>1 ≤ ξi,ni+n′
i−1(t) < xi,ni+n′

i−1 + hIni>1}×
×Bi(ni + n

′
i, xi,ni+n′

i
+ θh)pj,iIni>0, 0 < θ < 1.

4. During time h a customer was serviced at system i ∈ J and was removed
from the network. There were no spontaneous changes.

P{z(t) = z+ei, ξk,1(t) < xk,1, . . . , hInk>0 ≤ ξk,nk+n′
k
(t) < xk,nk+n′

k
+hInk>0,

k ∈ J, k �= i,
ξi,1(t) < xi,1, . . . , ξi,ni+n′

i+1(t) < h}pi,0.
5. During time h an informational signal at rate νi has arrived at system i ∈ J .

There were no other spontaneous changes. No customer was serviced.

P{z(t) =

= z + ei − e′i, ξk,1(t) < xk,1, . . . , hInk>0 ≤ ξk,nk+n′
k
(t) < xk,nk+n′

k
+ hInk>0,

k ∈ J, k �= i,
ξi,1(t) < xi,1, . . . , h ≤ ξi,ni+n′

i
(t) < xi,ni+n′

i
+ h}(νih+ o(h))In′

i>0.

6. During time h an informational signal at rate ϕi has arrived at system i ∈ J .
There were no other spontaneous changes. No customer was serviced.

P{z(t) =

= z − ei + e′i, ξk,1(t) < xk,1, . . . , hInk>0 ≤ ξk,nk+n′
k
(t) < xk,nk+n′

k
+ hInk>0,

k ∈ J, k �= i,
ξi,1(t) < xi,1, . . . , hIni>1 ≤ ξi,ni+n′

i
(t) < xi,ni+n′

i
+hIni>1}(ϕih+o(h))Ini>0.

7. During time h there were more than two changes of queueing network con-
dition. This probability is o(h).
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Therefore

P{z(t+h)=z, ξi,1(t+h) < xi,1, . . . , ξi,ni+n′
i
(t+ h) < xi,ni+n′

i
, i ∈ J} =

= P{z(t) = z, ξi,1(t) < xi,1, . . . , hIni>0 ≤ ξi,ni+n′
i
(t)<xi,ni+n′

i
+hIni>0, i ∈ J}×

× (1−
N∑
i=1

(λi + νiIni>0 + ϕiIn′
i>0)h+ o(h)) +

N∑
i=1

(
P{z(t) =

= z − ei, ξk,1(t) < xk,1, . . . , hInk>0 ≤ ξk,nk+n′
k
(t) < xk,nk+n′

k
+ hInk>0,

k ∈ J, k �= i,
ξi,1(t) < xi,1, . . . , hIni>1 ≤ ξi,ni+n′

i−1(t) < xi,ni+n′
i−1 + hIni>1}×

× (λih+ o(h))Bi(ni + n
′
i, xi,ni+n′

i
+ θh)Ini>0+

+
N∑
j=1

P{z(t)=z− ei+ej, ξk,1(t)<xk,1,. . . , hInk>0≤ξk,nk+n′
k
(t)<xk,nk+n′

k
+hInk>0,

k∈ J, k �= i, k �= j,
ξj,1(t) < xj,1, . . . , ξj,nj+n′

j
(t) < xj,nj+n′

j
, ξj,nj+n′

j+1(t) < h,

ξi,1(t) < xi,1, . . . , hIni>1 ≤ ξi,ni+n′
i−1(t) < xi,ni+n′

i−1 + hIni>1}×
×Bi(ni + n

′
i, xi,ni+n′

i
+ θh)pj,iIni>0+

+ P{z(t)=z+ei, ξk,1(t)<xk,1,. . ., hInk>0 ≤ ξk,nk+n′
k
(t)<xk,nk+n′

k
+hInk>0,

k ∈ J, k �= i,
ξi,1(t) < xi,1, . . . , ξi,ni+n′

i+1(t) < h}pi,0+
+P{z(t) = z+ei−e′i, ξk,1(t) < xk,1, . . . , hInk>0 ≤ ξk,nk+n′

k
(t) < xk,nk+n′

k
+hInk>0,

k ∈ J, k �= i,
ξi,1(t) < xi,1, . . . , h ≤ ξi,ni+n′

i
(t) < xi,ni+n′

i
+ h}(νih+ o(h))In′

i>0+

+P{z(t) = z−ei+e′i, ξk,1(t) < xk,1, . . . , hInk>0 ≤ ξk,nk+n′
k
(t) < xk,nk+n′

k
+hInk>0,

k ∈ J, k �= i,

ξi,1(t)<xi,1,. . ., hIni>1 ≤ ξi,ni+n′
i
(t) < xi,ni+n′

i
+hIni>1}(ϕih+o(h))Ini>0+o(h)

)
.

(6)
Every probability from (6) may be expressed in terms of functions Ft(z, x) =
P{z(t) = z, ξi,1(t) < xi,1, . . . , ξi,ni+n′

i
(t) < xi,ni+n′

i
, i ∈ J}, taking into consid-

eration that

P{z(t) = z, ξi,1(t) < xi,1, . . . , h ≤ ξi,ni+n′
i
(t) < xi,ni+n′

i
+ h, i ∈ J} =

= Ft(z, xi,1, . . . , xi,ni+n′
i
+ h, i ∈ J)−

N∑
k=1

Ft(z, xi,1, . . . , xi,ni+n′
i
+ h,

i ∈ J, i �= k;xk,1, . . . , xk,nk+n′
k−1, h) + . . .+ Ft(z, xi,1, . . . , xi,ni+n′

i−1, h, i ∈ J)
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and P{z(t) = z, ξi,1(t) < xi,1, . . . , h ≤ ξi,ni+n′
i
(t) < xi,ni+n′

i
+ h, i ∈ J} =

= Ft(z, xi,1, . . . , xi,ni+n′
i
, i ∈ J) +

N∑
i=1

∂Ft(z, xi,1, . . . , xi,ni+n′
i
, i ∈ J)

∂xi,ni+n′
i

h−

−
N∑
i=1

∂Ft(z, xl,1, . . . , xl,nl+n′
l
, l ∈ J, l �= i;xi,1, . . . , xi,ni+n′

i−1, 0)

∂xi,ni+n′
i

h+ o(h).

Letting t tend to infinity, we obtain the following equations system:

F (z, x) = F (z, x) + h

N∑
i=1

(
∂F (z, x)

∂xi,ni+n′
i

−
( ∂F (z, x)
∂xi,ni+n′

i

)
xi,ni+n′

i
=0

)
Ini>0−

−
( N∑

i=1

(
λi + νiIni>0 + ϕiIn′

i>0

)
h+ o(h)

)
F (z, x)+

+

N∑
i=1

F (z − ei, x)Bi(ni + n
′
i, xni+n′

i
)(λih+ o(h))Ini>0+

+ h

N∑
j=1

N∑
i=1,i�=j

pj,iBi(ni + n
′
i, xi,ni+n′

i
)
(∂F (z + ej − ei, x)

∂xj,nj+n′
j+1

)
xj,nj+n′

j
+1=0

Ini>0+

+h
N∑
i=1

pi,0

(∂F (z + ei, x)
∂xi,ni+n′

i+1

)
xi,ni+n′

i
+1=0

+
N∑
i=1

F (z+ ei− e′i, x)(νih+ o(h))In′
i>0+

+

N∑
i=1

F (z − ei + e′i, x)(ϕih+ o(h))Ini>0 + o(h). (7)

Subtracting F (z, x) from both sides of (7), dividing both sides of (7) by h and
letting h tend to zero, we obtain the following differential equations system:

F (z, x)

N∑
i=1

(
λi + νiIni>0 + ϕiIn′

i>0

)
=

=
N∑
i=1

(
∂F (z, x)

∂xi,ni+n′
i

−
( ∂F (z, x)
∂xi,ni+n′

i

)
xi,ni+n′

i
=0

)
Ini>0+

+

N∑
i=1

F (z−ei, x)Bi(ni+n
′
i, xni+n′

i
)λiIni>0+

N∑
i=1

pi,0

(∂F (z + ei, x)
∂xi,ni+n′

i+1

)
xi,ni+n′

i
+1=0

+

(8)

+
N∑
j=1

N∑
i=1,i�=j

pj,iBi(ni + n
′
i, xi,ni+n′

i
)
(∂F (z + ej − ei, x)

∂xj,nj+n′
j+1

)
xj,nj+n′

j
+1=0

Ini>0+

+

N∑
i=1

F (z + ei − e′i, x)νiIn′
i>0 +

N∑
i=1

F (z − ei + e′i, x)ϕiIni>0.
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Divide (8) into local balance equations:

F (z, x)
(
νiIni>0 +ϕiIn′

i>0

)
= F (z+ ei − e′i, x)νiIn′

i>0 +F (z− ei + e′i, x)ϕiIni>0,
(9)(( ∂F (z, x)

∂xi,ni+n′
i

)
xi,ni+n′

i
=0

− ∂F (z, x)

∂xi,ni+n′
i

)
Ini>0 =

=

N∑
j=1,j �=i

pj,iBi(ni + n
′
i, xi,ni+n′

i
)
(∂F (z + ej − ei, x)

∂xj,nj+n′
j+1

)
xj,nj+n′

j
+1=0

Ini>0+ (10)

+F (z − ei, x)Bi(ni + n
′
i, xni+n′

i
)λiIni>0,

λiF (z, x) = pi,0

(∂F (z + ei, x)
∂xi,ni+n′

i+1

)
xi,ni+n′

i
+1=0

. (11)

Substituting F (z, x), determined by means of (4), (5) into local balance equa-
tions (9) - (11), considering traffic equation system (1), we obtain identity. �
Denote by {p(z), z ∈ Z} – stationary distribution of process z(t). From the
foregoing theorem, considering equality p(z) = F (z,+∞), we obtain

Corollary. Under conditions of ergodicity (2), (3) process z(t) has stationary
distribution

p(z) = p1(n1, n
′
1)p2(n2, n

′
2) . . . pN(nN , n

′
N), z ∈ Z,

where pi(ni, n
′
i), i ∈ J may be found by means of (5).

4 Conclusion

We have considered stationary functioning of an open queueing network with
temporarily non-active customers. Expression for stationary distribution has
been derived. Stationary distribution invariance with reference to service time
distribution functional form has been obtained. Research results have practical
importance and may be used for real networks investigation.
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Non-active Customers and Rounds
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Abstract. An open queueing network with partly non-active customers
is considered. Non-active customers are in a system queue and do not get
service. Customers can pass from non-active state into state, when they
can get their service and vice versa. The form of stationary distribution
and conditions of stationary distribution existence are obtained.

Keywords: queueing network, temporarily non-active customers, rounds,
stationary distribution.

1 Introduction

Nowadays queueing networks with partly non-active customers become actual
to a marked degree. Non-active customers are in a system queue and do not get
service. We consider network, where customers may partly loose their capacity
for service. Customers can pass from non-active condition into condition, when
they can get their service and vice versa.

In paper [1] G. Tsitsiashvili and M. Osipova have observed an open queueing
network with non-active customers and have established the form of stationary
distribution. This paper generalizes results for network from [1]. We consider
model with temporarily non-active customers and rounds of queueing systems.
We have researched the form of stationary distribution and have established the
criterion of stationary distribution existence.

2 An Open Queueing Network with Temporarily
Non-active Customers and Rounds

Consider an open queueing network with set of systems J = {1, 2, . . . , N}. Cus-
tomers arrive at the network according to Poisson processes at rates λi, i ∈ J .
There are input Poisson flows of signals at rates νi and ϕi, i ∈ J . When arriving
at the system i ∈ J the signal at rate νi induces an ordinary customer at system,
if any, to become non-active. When arriving at the system i ∈ J the signal at rate
ϕi induces an non-active customer, if any, to become an ordinary. Non-active cus-
tomers are in a system queue and can not get service. Signals do not need service.
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Service times are independent exponentially distributed random values with pa-
rameters μi, i ∈ J . When arriving at the system i customer queues up to the
system with the probability fi and with the probability 1 − fi the customer
goes round the system i ∈ J (such customer is considered to be served). After
finishing of service process at system i ∈ J customer is routed to system j ∈ J
with the probability pi,j and with the probability pi,0 is removed from network

(
∑N

j=1 pi,j+pi,0 = 1), i ∈ J . Let pi,i = 0, i ∈ J . Let ni(t), n′i(t) are numbers of or-
dinary and non-active customers at system i ∈ J at time t accordingly. Consider

X(t) =
(
(n1(t), n

′
1(t)), . . . , (nN (t), n′N (t))

)
. X(t) is a continuous-time Markov

chain. States space for process X(t) is Z = {((n1, n′1), . . . , (nN , n′N ))|ni, n′i ≥
0, i ∈ J}.

A traffic equations system is:

εi = λi +

N∑
j=1

εjpj,i, i ∈ J. (1)

One can prove that under certain conditions traffic equations system has unique
non-trivial solution.

Theorem 1. Under conditions of ergodicity:

εifi < μi, (2)

εifiνi < μiϕi, i = 1, . . . , N, (3)

X(t) has stationary distribution:

π(n, n′) = π1(n1, n′1)π2(n2, n
′
2) . . . πN (nN , n

′
N ), (4)

where

πi(ni, n
′
i) =

(
1− εifi

μi

)(
1− εifiνi

μiϕi

)(εifi
μi

)ni
(εifiνi
μiϕi

)n′
i

, (5)

here εi, i ∈ J – is a traffic equations system solution.

Proof. Consider the following events:

1. A customer sent to the system i ∈ J , will not change the state of the network.
The probability of this event denote by ψi.

2. A customer sent to the system i ∈ J , will be served by system j ∈ J first
time. The probability of this event denote by ψi,j .

3. A customer served by system i ∈ J , will not change the state of the network.
The probability of this event denote by βi.

4. A customer served by system i ∈ J , will be served by system j ∈ J first
time. The probability of this event denote by βi,j .
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It has been obtained in [5], that

ψi = (1− fi)(pi,0 +
N∑
j=1

ψjpi,j); (6)

ψi,j = fiδi,j + (1 − fi)
N∑

k=1

pi,kψk,j ; (7)

βi = pi,0 +

N∑
j=1

pi,jψj ; (8)

βi,j =
N∑

k=1

pi,kψk,j . (9)

Herewith

ψi +
N∑
j=1

ψi,j = 1; (10)

βi +

N∑
j=1

βi,j = 1; (11)

here δi,j – is Kronecker symbol.
It has been proved in [5], that traffic equations system solution satisfies gen-

eralized traffic equations system:

fiεi =
N∑

k=1

λkψk,i +
N∑
j=1

fjεjβj,i. (12)

Intensities of transitions for Markov process X(t) are

q(n, n+ ei) =

N∑
j=1

λjψj,i;

q(n, n− ei) = μiβiIni>0;

q(n, n+ ei − e′i) = ϕiIn′
i>0;

q(n, n− ei + e′i) = νiIni>0;

q(n, n− ei + ej) = μiβi,jIni>0.

It is obvious, that under conditions (2) Markov process X(t) is ergodic, therefore
unique stationary distribution π(n), n ∈ Z exists.

Global balance equations are:∑
i∈J

(∑
j∈J

λjψj,i + μiβiIni>0 + ϕiIn′
i>0 + νiIni>0 +

∑
j∈J

μiβi,jIni>0

)
π(n) =
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=
∑
i∈J

(
π(n− ei)

N∑
j=1

λjψi,jIni>0 + π(n+ ei)μiβi+

+π(n− ei + e′i)ϕiIni>0 + π(n+ ei − e′i)νiIn′
i>0+

+
∑
j∈J

π(n+ ei − ej)μiβi,jInj>0

)
, n ∈ Z.

It is easy to show, that with foregoing intensities of transitions Markov process
X(t) is reversible.

Substituting π(n), determined by means of (4), (5) into global balance equa-
tions, considering (6) - (11), traffic equation system (1) and generalized traffic
equations system (12), we obtain identity. �

3 Conclusion

We have considered an open queueing network with temporarily non-active cus-
tomers and rounds. Customers could partly loose their capacity for service. Cus-
tomers could pass from non-active condition into condition, when they can get
their service and vice versa. Conditions of ergodicity have been established. The
form of stationary distribution and conditions of stationary distribution exis-
tence have been obtained.
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Abstract. In this paper we study a multi-server retrial queueing model
in which customers arrive according to a Markovian arrival process (MAP)
and the service times are assumed to be of phase type (PH-type). An
arriving customer finding all servers busy will enter into a (retrial) orbit
of infinite size. The customers in orbit will try to capture a free server
after a random amount of time which is assumed to be of PH-type. Thus,
every customer in the orbit has his/her own phase type distribution be-
fore attempting to get into service. Due to the complexity of the model
and lack of attention to such models in the literature, we study this via
simulation. After validating our simulated results against known results
(both exact and approximation) for some special cases, we illustrate how
one can underestimate or overestimate some key system performance
measures by incorrectly assuming the retrial times to be exponential.

1 Introduction and Model Description

Retrial queueing models play an important role in practice. The literature on
retrial queues is extensive and covers a wide spectrum of models [2, 7]. With
the exception of a few papers [1, 6, 8, 17–20] the models studied in the lit-
erature assume the retrial times to be exponential. The few papers in which
non-exponential retrial times are assumed the authors propose a variety of ap-
proximations to compute selected system performance measures for very restric-
tive class of models such as single server or two-state phase type distribution or
M/M/c type queues or assume that not all customers in orbit attempt to capture
a free server but only the customer at the head of the queue or discuss only the
stability condition of the queue with no qualitative discussion on the role played
by non-exponential retrial times. These are mainly due to the explosive nature of
the state space that is required to keep track of the system which is not needed in
the case of Poisson/exponential type retrial queues. Thus, there is a huge void in
the literature on retrial queues and this paper is an attempt to fill this gap. The
approach we take to address this issue is via simulation for two reasons. First,
we want to get a feel for how some key system performance measures behave
in multi-server retrial models with non-exponential retrials. Secondly, the simu-
lated results may be helpful for any future study on such general retrial models
with approxiation/truncation procedures. The results of our on-going research
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including the use of truncation/approximation procedures on this general retrial
model using matrix-analytic methods will be reported elsewhere.

The retrial model under study in this paper is as follows. Customers arrive ac-
cording to a Markovian arrival process (MAP ) with representation (D0, D1) of
order m to a multi-server queueing system. A brief description of MAP is given
below. There are c homogeneous servers who offer services and the service times
are assumed to be of phase type PH-type with representation (α, T ) of dimen-
sion n1. Recall that a PH-distribution is obtained as the time until absorption
in a finite state Markov chain with one absorption state. It is characterized by
an initial probability vector (α) and a square matrix (T ) governing the transi-
tions to various transient states. PH-distributions are defined for both discrete
and continuous time. For details on PH-distributions and their properties, we
refer the reader to [13, 14, 16]. An arriving customer finding all servers busy
will enter into an orbit of infinite size. These customers will independently try
to capture a free server after a random amount of time that is assumed to be
of phase type. Note that we assume that every customer will have his/her own
phase type distribution that will be started when entering the retrial buffer as
well as when the attempt to capture a free server is unsuccessful. The common
PH-distribution for the retrial times has representation (β, S) of dimension n2.

Nowwewill briefly describe the versatile point process introduced byNeuts [12].
AMAP is a tractable class of Markov renewal processes. It should be noted that
by appropriately choosing the parameters of theMAP the underlying arrival pro-
cess can be made as a renewal process. TheMAP is a rich class of point processes
that includes many well-known processes such as Poisson, PH-renewal processes,
and Markov-modulated Poisson process. One of the most significant features of
the MAP is the underlying Markovian structure and fits ideally in the context
of matrix-analytic solutions to stochastic models. Matrix-analytic methods were
first introduced and studied by Neuts [13]. The idea of theMAP is to significantly
generalize the Poisson processes and still keep the tractability for modelling pur-
poses. Furthermore, MAP is a convenient tool to model both renewal and non-
renewal arrivals. While MAP is defined for both discrete and continuous times,
here we will need only the continuous time case.

The MAP in continuous time is described as follows. Let the underlying
Markov chain be irreducible and let Q∗ be the generator of this Markov chain.
At the end of a sojourn time in state i, that is exponentially distributed with

parameter λi, one of the following two events could occur: with probability p
(1)
ij

the transition corresponds to an arrival and the underlying Markov chain is in

state j with 1 ≤ i, j ≤ m; with probability p
(0)
ij the transition corresponds to no

arrival and the state of the Markov chain is j, j �= i. Note that the Markov chain

can go from state i to state i only through an arrival. Define matricesD0 = (d
(0)
ij )

and D1 = (d
(1)
ij ) such that d

(0)
ii = −λi, 1 ≤ i ≤ m, d

(0)
ij = λip

(0)
ij , for j �= i and

d
(1)
ij = λip

(1)
ij , 1 ≤ i, j ≤ m. By assuming D0 to be a nonsingular matrix, the

interarrival times will be finite with probability one and the arrival process does
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not terminate. Hence, we see that D0 is a stable matrix. The generator Q∗ is
then given by Q∗ = D0 +D1.

Thus, D0 governs the transitions corresponding to no arrival and D1 governs
those corresponding to an arrival. It can be shown that MAP is equivalent to
Neuts’ versatile Markovian point process. The point process described by the
MAP is a special class of semi-Markov processes. For further details on MAP
and their usefulness in stochastic modelling, we refer to ([10], [14], [15]) and for
a review and recent work on MAP we refer the reader to ([3–5]).

Let η be the stationary probability vector of the Markov process with gener-
ator Q∗. That is, η is the unique (positive) probability vector satisfying ηQ∗ =
0,ηe = 1, where e is a column vector of 1’s of appropriate dimension. We denote
the average arrival rate, the average service rate, and the average retrial rate by,
respectively, λ, μ, and θ. These are given by λ = ηD1e, μ = [α(−T )−1e]−1, θ =
[β(−S)−1e]−1.

The rest of the paper is organized as follows. In Section 2 we give a Markov
process description of the model under study. Some key system performance mea-
sures used in this study are listed in Section 3. The simulated model is validated
in Section 4. The roles of retrial distribution in the context of M/PH/c and
MAP/PH/c with PH− retrials are discussed in Sections 5 and 6, respectively.
Some concluding remarks are given in Section 7.

2 Markov Process Description

The model outlined in Section 1 can be studied as a Markov process by keeping
track of (a) the number,Ki(t), of retrial customers waiting in phase i, 1 ≤ i ≤ n2,
at time t; (b) the number, Lj(t), of servers busy serving in phase j, 1 ≤ j ≤ n1,
at time t; and (c) the phase, J(t), of the arrival process at time t. Note that
the retrial orbit being empty is indicated by taking Ki(t) = 0, 1 ≤ i ≤ n2.
The number of free servers at time t is given by c − ∑n1

j=1 Lj(t). The process
{(K1(t), · · · ,Kn2(t), L1(t), · · · , Ln2(t), J(t)) : t ≥ 0} is a continuous-time Markov
chain with state space given by

Ω = {(k1, · · · , kn2 , l1, · · · , ln1 , r) : ki ≥ 0, 1 ≤ i ≤ n2, lj ≥ 0, 1 ≤ j ≤ n1,

0 ≤ l1 + · · ·+ ln1 ≤ c, 1 ≤ r ≤ m}.
The generator of this Markov process can be set up with the help of Kro-
necker products and sums of matrices [11]. However, it is clear that the steady-
state analysis requires some form of approximation or truncation due to many
(sub)states that grow without bound. The accuracy of the approximation or
truncation depends on the degree to which these are carried out. Our focus in
this paper is not in providing an approximation or truncation or a combination of
both in performing the steady-state analysis. These are currently work-in-process
and the results will be reported elsewhere. Instead, our goal is to see how the type
of distributional assumption affects some selected system performance measures
through simulation. Further, this simulated results can be used to compare any
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approximation/truncation methods possibly proposed in the future. Thus, the
rest of the paper is based on simulating the retrial model described in Section 1
with the help of ARENA [9].

3 Selected System Performance Measures

In this section we will list a number of key system performance measures for our
illustration.

1. The probability, PBLK, that an arriving customer finds all servers to be
busy.

2. The probability, PESO, that an arriving customer enters into service with
at least one customer in the orbit.

3. The fraction, FRSF , of customers successfully capturing a free server at the
time of a retry.

4. The mean, MWTS, waiting time in the system of a customer.
5. The mean, MNIO, number of customers in the orbit.
6. The mean, MWTO, waiting time in the orbit of a customer (given that a

customer enters into the orbit). Note thatMWTS = 1
μ+(PBLK)(MWTO).

4 Validation of the Simulated Model

Before we proceed to discuss the simulated results, it is important to validate
our simulated model by comparing our results with the published results in the
literature. As pointed earlier only few papers deal with non-exponential retrial
times for restricted class of models. Thus, we validate our model by comparing
our simulated results with the ones for which results (either exact or approxi-
mations) are reported.

4.1 M/M/5 with PH2 Retrial Times [18]

In [18], the author studied an M/M/c type retrial queueing model with two-
state PH-distributions for the retrial times using level-dependent quasi-birth-
and-death (QBD) process. Since the generator of the QBD is of infinite size
with entries depending on the level (which is the number of customers in the
orbit), the author truncated the generator so as to arrive at the steady-state
results. The author reported the results for M/M/5 model with three two-state
PH-distributions: (a) Erlang of order 2 labeled as E2; (b) hyperexponential with
squared coefficient variation (SCV set at 2; and (c) hyperexponential with SCV
set at 10. Specifically, the hyperexponential considered has the mixing probabil-
ities (p, 1− p) and the rates in these two states are γ1 and γ2, where

p = 0.5[1 +
√
(SCV − 1)/(SCV + 1)], γ1 = 2θp, γ2 = 2θ(1− p).

We reproduce a part Table 1 in [18]) with our notations in Table 1 below for
comparison purposes. We analyzed the same model using our simulated model
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and the results are summarized in Table 2. In Table 3 we display the error
percentage which is calculated as (Shin approx - Simulated)/Shin approx.

By looking at these tables we notice that our simulated results are very close
to the approximated results presented in [18].

Table 1. Shin’s approximation (see Table 1 in [18])

Retrial distribution

E2 HE2(SCV = 2) HE2(SCV = 10)

ρ θ−1 P (block) E(NIO) P (block) E(NIO) P (block) E(NIO)

0.3 0.1 0.0191 0.0108 0.0188 0.0121 0.0187 0.0150
1 0.0163 0.0300 0.0166 0.0352 0.0169 0.0399
5 0.0152 0.1179 0.0155 0.1275 0.0156 0.1327
10 0.0150 0.2305 0.0152 0.2416 0.0153 0.2468
20 0.0150 0.4574 0.0151 0.4695 0.0151 0.4747

0.5 0.1 0.1218 0.1561 0.1196 0.1691 0.1190 0.2018
1 0.1003 0.3644 0.1016 0.4221 0.1045 0.4895
5 0.0910 1.3010 0.0928 1.4150 0.0941 1.4920
10 0.0897 2.5020 0.0909 2.6340 0.0917 2.7130
20 0.0891 4.9230 0.0898 5.0690 0.0903 5.1480

0.8 0.1 0.5248 2.5190 0.5192 2.6190 0.5171 2.8730
1 0.4545 5.0030 0.4572 5.4660 0.4646 6.2040
5 0.4245 16.1500 0.4276 17.0000 0.4315 17.9900
10 0.4198 30.2700 0.4217 31.2200 0.4241 32.2700
20 0.4174 58.6100 0.4185 59.6200 0.4198 60.7000

Table 2. Simulated results for M/M/5

Retrial distribution

E2 HE2(SCV = 2) HE2(SCV = 10)

ρ θ−1 P (block) E(NIO) P (block) E(NIO) P (block) E(NIO)

0.3 0.1 0.0191 0.0108 0.0187 0.0120 0.0189 0.0150
1 0.0163 0.0296 0.0165 0.0345 0.0168 0.0389
5 0.0153 0.1193 0.0154 0.1288 0.0154 0.1307
10 0.0150 0.2286 0.0152 0.2405 0.0153 0.2473
20 0.0148 0.4521 0.0152 0.4729 0.0151 0.4707

0.5 0.1 0.1221 0.1562 0.1202 0.1713 0.1187 0.2011
1 0.1003 0.3623 0.1020 0.4230 0.1045 0.4895
5 0.0906 1.2937 0.0932 1.4224 0.0943 1.5015
10 0.0894 2.4933 0.0912 2.6391 0.0924 2.7602
20 0.0892 4.9187 0.0898 5.0671 0.0908 5.1584

0.8 0.1 0.5239 2.5045 0.5217 2.6267 0.5180 2.8862
1 0.4526 4.9391 0.4575 5.4802 0.4630 6.1722
5 0.4225 15.9597 0.4282 16.9751 0.4323 18.0360
10 0.4191 30.2014 0.4237 31.4826 0.4245 32.3222
20 0.4164 58.3282 0.4173 59.2781 0.4189 60.4343
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Table 3. Error percentage for M/M/5

Retrial distribution

E2 HE2(SCV = 2) HE2(SCV = 10)

ρ θ−1 P (block) E(NIO) P (block) E(NIO) P (block) E(NIO)

0.3 0.1 0.00% 0.00% 0.53% 0.83% -1.07% 0.00%
1 0.00% 1.33% 0.60% 1.99% 0.59% 2.51%
5 -0.66% -1.19% 0.65% -1.02% 1.28% 1.51%
10 0.00% 0.82% 0.00% 0.46% 0.00% -0.20%
20 1.33% 1.16% -0.66% -0.72% 0.00% 0.84%

0.5 0.1 -0.25% -0.06% -0.50% -1.30% 0.25% 0.35%
1 0.00% 0.58% -0.39% -0.21% 0.00% 0.00%
5 0.44% 0.56% -0.43% -0.52% -0.21% -0.64%
10 0.33% 0.35% -0.33% -0.19% -0.76% -1.74%
20 -0.11% 0.09% 0.00% 0.04% -0.55% -0.20%

0.8 0.1 0.17% 0.58% -0.48% -0.29% -0.17% -0.46%
1 0.42% 1.28% -0.07% -0.26% 0.34% 0.51%
5 0.47% 1.18% -0.14% 0.15% -0.19% -0.26%
10 0.17% 0.23% -0.47% -0.84% -0.09% -0.16%
20 0.24% 0.48% 0.29% 0.57% 0.21% 0.44%

4.2 M/M/5 with Mixture of Erlang Retrial Times [19]

In [19], the authors studied M/M/c retrial queues with PH-distribution for the
retrial times through approximating the steady-state probabilities by assuming
that the service facility behaving like a birth-and-death process in which the
rates are independent of the retrials. They compare their approximations to
the special cases considered in [18] and also to the simulated results for their
specialized models. They look at four retrial distributions: Erlang of order 4
(E4), mixture of two Erlangs (MER3), and two distributions that are mixtures
of generalized Erlang and Erlang (CE3,1). All these are four distributions are
normalized so as to have the same mean retrial times. We refer the reader to the
paper [19] for the form of these distributions. We reproduce a part of that table
in Table 4 below for comparison purposes. We analyzed the same model using
our simulated model and the results are summarized in Table 4. Our simulated
results are given within parentheses in Table 4. In Table 5 we display the error
percentage which is calculated as [(SM approx - Simulated)/SM approx].

It should be pointed out that the results reported in Shin and Moon are
approximations and as mentioned in [19], the approximation for the case when
the retrial time distribution is given by CE3,1(0.185487) is worse. Thus, we
notice a higher percentage for the error for that case. This could be due to the
approximation rather than due to our simulated results.
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Table 4. Shin’s approximation and simulated results for E(NIO) for M/M/5

Retrial distribution
ρ θ−1 E4 MER3 CE3,1(0.007773) CE3,1(0.185487)
0.3 10.0 0.1598 (0.1526) 0.1629 (0.154) 0.1811 (0.1728) 0.2328 (0.22)

1.0 0.3634 (0.3519) 0.373 (0.3627) 0.4296 (0.4229) 0.7133 (0.7171)
0.2 1.294 (1.2975) 1.304 (1.2938) 1.413 (1.3987) 1.96 (2.0572)
0.1 2.501 (2.4976) 2.507 (2.4882) 2.631 (2.6215) 3.267 (3.4217)
0.1 4.931 (4.9072) 4.933 (4.9247) 5.064 (5.0522) 5.762 (5.9654)

0.5 10.0 2.594 (2.5062) 2.622 (2.5133) 2.785 (2.6991) 3.317 (3.1043)
1.0 4.842 (4.9176) 4.922 (4.9549) 5.439 (5.525) 8.1 (8.1949)
0.2 15.98 (16.0332) 16.01 (16.0437) 16.79 (17.0079) 21 (23.0209)
0.1 30.15 (30.2656) 30.16 (30.2923) 30.97 (31.2837) 35.47 (38.1137)
0.1 58.52 (58.555) 58.53 (58.4076) 59.35 (59.1616) 63.99 (67.3217)

Table 5. Error percentage for E(NIO) for M/M/5

Retrial distribution
ρ θ−1 E4 MER3 CE3,1(0.007773) CE3,1(0.185487)
0.3 10.0 4.51% 5.46% 4.58% 5.50%

1.0 3.16% 2.76% 1.56% -0.53%
0.2 -0.27% 0.78% 1.01% -4.96%
0.1 0.14% 0.75% 0.36% -4.74%
0.1 0.48% 0.17% 0.23% -3.53%

0.5 10.0 3.38% 4.15% 3.08% 6.41%
1.0 -1.56% -0.67% -1.58% -1.17%
0.2 -0.33% -0.21% -1.30% -9.62%
0.1 -0.38% -0.44% -1.01% -7.45%
0.1 -0.06% 0.21% 0.32% -5.21%

5 Role of Retrial Distribution in M/PH/c with PH
Retrial Times

In this section we will look at the role of the retrial time distribution on the se-
lected system performance measures under different scenarios for M/PH/c type
queueing model with PH retrial times. The reason for looking at this model first
before studying the most general one is to highlight how some system perfor-
mance measures are sensitive to the type of retrial and or service time assumed
even for this simplest retrial model. For all cases considered we fix the arrival
and retrial rates to be 1 (i.e., λ = θ = 1) and vary other parameters as illustrated
in the discussions below. We simulated the model using 10 replications and for
100,000 units (which in our case is minutes) for each replicate.

First we look at the case of exponential services since M/M/c type retrial
models have been very widely studied in the literature. We vary c from 1 to 4
and vary μ so as to achieve a given value for ρ = λ

cμ . Specifically we consider
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ρ = 0.1, 0.2, 0.3, 0.5, and 0.9. For retrial times we look at the following three PH-
distributions: (a) Erlang of order 5 (ERLR); (b) Exponential (EXPR); and (c)
hyperexponential (HEXR) with mixing probabilities 0.9 and 0.1 with rates, re-
spectively, 10 and 1/9.1. The graphs of the measures: (i) FRSF; (ii) MWTO; (iii)
MWTS; and (iv) PESO are plotted in Figure 1 for various scenarios. It should
be pointed out that after conducting a statistical analysis on the output based
on 10 replications, the measures that are found to be significant are plotted.
Thus, for example, we did not plot the measure, PBLK, since we did not find
any significant (at 5% level) differences among the various retrial distributions
used with regard to this measure.

Fig. 1. System measures under various scenarios

A quick look at Figure 1, one will notice the significant role played by the
type of retrial distribution used. The significance of the role of retrial distribution
depends not only the type of system measure but also on the traffic intensity. For
example, in the case of the fraction of orbiting customers successfully reaching
an idle server, the significance of the type of retrial time distribution is seen in
the case of low to moderate values of ρ. However, when looking at the mean
waiting time in the system or the mean waiting time in orbit, the significance of
the type of retrial time distribution is noticed for reasonably large values of ρ.
Thus, one cannot make a statement that the significance of the type of retrial
distribution is only in the case of low to moderate or only for large values of ρ.
In conclusion, assuming exponential retrial times (when in practice it is not the
case) will lead to incorrect decisions.
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We noticed a similar behavior with regard to Erlang and hyperexponential
services and due to space restriction we did not display the graphs here. How-
ever, it should be pointed out that these measures vary significantly when the
retrial times are varied from Erlang to exponential to hyperexponential. This
indicates that both the variability in the services as well as the retrial times play
a significant role and should not be overlooked.

6 Role of Retrial Distribution in MAP/PH/c with PH
Retrial Times

In this section we will continue our discussion of the retrial model under study
with a primary focus on the role of the retrial time variability on selected system
performance measures under different scenarios for MAP/PH/c type queueing
model with PH retrial times. For the arrival process, we consider the following
five sets of values for D0 and D1.

1. Erlang (ERLA):

D0 =

⎛⎜⎜⎜⎜⎝
−5 5 0 0 0
0 −5 5 0 0
0 0 −5 5 0
0 0 0 −5 5
0 0 0 0 −5

⎞⎟⎟⎟⎟⎠ , D1 =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
5 0 0 0 0

⎞⎟⎟⎟⎟⎠
2. Exponential (EXPA):

D0 =
(−1

)
, D1 =

(
1
)

3. Hyperexponential (HEXA):

D0 =

(−10 0
0 − 10

91

)
, D1 =

(
9 1
9
91

1
91

)
4. MAP with negative correlation (MNCA):

D0 =

⎛⎝−1.1 1.1 0
0 −1.1 0
0 0 −5.5

⎞⎠ , D1 =

⎛⎝ 0 0 0
0.055 0 1.045
5.225 0 0.275

⎞⎠
5. MAP with positive correlation (MPCA):

D0 =

⎛⎝−1.1 1.1 0
0 −1.1 0
0 0 −5.5

⎞⎠ , D1 =

⎛⎝ 0 0 0
1.045 0 0.055
0.275 0 5.225

⎞⎠
All these fiveMAP processes are normalized so as to have a specified arrival rate.
However, these are qualitatively different in that they have different variance and
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correlation structure. The first three arrival processes, namely ERLA, EXPA,
and HEXA, correspond to renewal processes and so the correlation is 0. The ar-
rival process labeledMNCA has correlated arrivals with correlation between two
successive inter-arrival times givenby -0.3984and the arrivals corresponding to the
processes labelledMPCA has a positive correlation with values 0.3984. The ratio
of the standard deviations of the inter-arrival times of these five arrival processes
with respect to ERLA are, respectively, 1, 2.2361, 8.8261, 2.7499, and 2.7499.

For the service times ((α, T )) as well as for retrial times ((β, S)), we consider
the following three PH−distributions.

A. Erlang (ERLS/ERLR) : α = β = (1, 0), T = S =

(−2 2
0 −2

)
.

B. Exponential (EXPS/EXPR) : α = β = 1, T = S =
(−1

)
.

C. Hyperexponential (HEXS/HEXR) : α=β = (0.9, 0.1), T =S=

(−10 0
0 −d

)
.

For all cases considered we again fix the arrival and retrial rates to be 1 (i.e.,
λ = θ = 1) and vary other parameters as illustrated in the discussions below,
and accordingly the PH-representations will be normalized except in the case of
hyperexponential in which case d will be chosen to have the specific mean. We
simulated the model using 10 replications and for 100,000 units (which in our
case is minutes) for each replicate.

In Table 6, we display the significance (at 5% level based on the analysis of
variance) of each of the measures. The notations used in the table are as follows:
the symbol ”S” for the significance of the role of the service times and ”R” for
the significance of the role of the retrial times. From this table it is obvious how
the system performance measures for various combinations of the arrival process,
service times, c, and ρ, are sensitive to the type of retrial distribution assumed.
For example, in Figure 2, we display under various scenarios, the ratios of the
five measures: PBLK,PESO,FRSF,MTWS, and MWTO. These ratios are
calculated as follows. Since in the literature exponential distribution is the most
commonly assumed one for retrial times, we use this as the base and compute
the ratios, labeled R1 and R2, of the selected measures when the retrial times
are Erlang and hyperexponential, respectively. For example, when a particular
measure is computed for the model MAP/PH/c with Erlang retrials and say
this measure has a value a and for the corresponding retrial model but with
exponential retrials the measure has a value b, the ratio a

b will have a label R1.
Note that whenever these ratios are closer to 1, using exponential retrials instead
of Erlang or hyperexponential will have no adverse effect. However, it is when
these ratios are far away from 1, then one needs to use nonexponential retrial
times. From Figure 2 we notice that the ratio for PBLK is close to 1 for all the
scenarios under consideration; however, in the case of other measures the ratios
are far away from 1 under many different scenarios.

As mentioned earlier, one should not ignore the variability in the services as
well as the retrial times when using such retrial models in practice.
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Table 6. Significance based on ANOVA for MAP/PH/1

c = 1 c = 2 c = 3 c = 4
ρ ρ ρ ρ

Measures MAP 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9
PBLK ERLA S S S S,R S S S,R S S S,R

EXPA S,R S S S,R S S S S
HEXA S,R S,R S,R S,R S,R S,R S,R S,R S,R S,R S,R S
MNCA S,R S S S S S S S S S,R
MPCA R S,R S,R S,R S S,R S S,R S S

PNDW1 ERLA S R S,R S,R R S,R S R S,R
EXPA R S,R R S,R S,R R S,R S,R R R S,R
HEXA R S S S,R S,R S,R S,R S,R S,R S,R S,R
MNCA R R R S,R S,R R R S,R R S,R
MPCA R R R S,R S,R S,R S,R R S,R S,R R R

FRSF ERLA R S,R S S S S S S S S S S
EXPA R S,R S S,R S S S,R S S S,R S S
HEXA S,R S,R S,R S,R S,R S S,R S,R S S,R S,R S
MNCA R S,R S S,R S S S,R S S S,R S S
MPCA R S,R S S,R S,R S S,R S,R S S,R S,R S

MWTS ERLA S S S,R S S,R S S,R S S S
EXPA R S,R S,R R S,R S,R R S,R S S,R S
HEXA R S,R S S,R S,R S,R S,R R S S,R R S
MNCA R S,R S,R R S,R S,R S,R S,R S,R S,R
MPCA R S,R R S,R S R S,R S S,R S,R S

MNIO ERLA S S S,R S S,R S S S,R S S S
EXPA R S,R S,R R S,R S,R R S,R S R S,R S
HEXA R S,R S S,R S,R S,R S,R R S S,R S S
MNCA R S,R S,R R S,R S,R S,R S,R S,R S,R
MPCA R S,R S R S,R S S,R S,R S S,R S,R S

MWTO ERLA S S,R S S,R S,R S,R S S,R S,R
EXPA R S,R S,R R S,R S,R R S,R S R S,R S
HEXA R S,R S S,R S,R S,R S,R S,R S S S,R S
MNCA R S,R S,R R S,R S,R R S,R S,R R S,R S,R
MPCA R S,R S R S,R S S,R S,R S S,R S,R S
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Fig. 2. Ratios of the measures: R1: ERLR/EXPR; R2: HEXR/ERLR

7 Concluding Remarks

In this paper we analyzed a multi-server retrial queueing system in which cus-
tomers arrive according to a Markovian arrival process. Assuming the service and
retrial times to be of phase type, we investigated the impact of the type of distri-
bution assumed for the retrials through simulation as most work in the literature
concentrate on exponential retrial times. We showed how one can underestimate
or overestimate key system measures by incorrectly assuming the retrial times
to be exponential. We hope that this study will help researchers pursuing the
study of this class models using some kind of approxiation/truncation to com-
pare their results with the simulated ones. The results of our on-going research
using matrix-analytic methods will be reported elsewhere.
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Abstract. We study with the use of fluid flow approximation the im-
pact of a modified weighted moving average on the performance of RED
mechanism. A model of TCP/UDP connection with RED implemented
in an intermediate IP router is used, the weighted moving average is de-
termined on the basis of a difference (recursive) equation. The fluid flow
approximation technique is applied to model the interactions between
the set of TCP/UDP flows and RED mechanism.

1 Introduction

The rapid growth of the Internet has imposed many new challenges, one of them
is the necessity to control continuously growing traffic which has a complex sta-
tistical nature. Delays and congestions are supervised by TCP protocol, however,
more advanced congestion control mechanisms, such as RED – Random Early
Detection (or Drop) [9] or other Active Queue Management (AQM) schemes,
are widely used.

The RED mechanism is conceptually very simple but interaction between
RED and TCP is rather complex [12]. A lot of analytical models of RED in
IP routers was already studied in open-loop scenario [7], [8]. In this paper we
try to analyse the RED/TCP interaction with the use of fluid flow modelling
methodology based on mean value analysis [11], [16], [19]. The model enables
not only the steady-state analysis, but also allows us to obtain the transient
behaviour when a set of TCP flows start or end transmission. This nonlinear
dynamic model of TCP was conceived to analyse and understand various network
congestion scenarios [16]. It was shown that it is able to reproduce the dynamics
of TCP flows [21].

Several extensions of classical RED mechanism were investigated in the lit-
erature and some of them were based on modifications of the drop probability
function [22], [1], [2]. The authors already investigated the influence of weighted
moving average on the performance of the RED mechanism in open loop scenario

A. Dudin et al. (Eds.): BWWQT 2013, CCIS 356, pp. 50–58, 2013.
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[3] and proposed there an approach based on estimation of weighted moving av-
erage by high order difference equations. Here we consider a closed-loop model
and use the fluid flow approximation to analyse the influence of our RED mod-
ification in the TCP/UDP environment.

The rest of this article is organized as follows. The section 2 describes the
fluid flow model of router supporting RED queue management with TCP/UDP
flows. The section 3 displays the obtained results and is followed by conclusions
in section 4.

2 The Fluid Flow Model of AQM Router

This section presents a fluid flowmodel of the AQM router supporting TCP/UDP
flows. The model presented in [16] demonstrates TCP protocol dynamics and al-
lows to obtain the average value of key network variables. The model is described
by the following nonlinear differential equations [10]:

W ′(t) =
1

R(t)
− W (t)W (t−R(t))

2R(t−R(t)) p(t−R(t)) (1)

q′(t) =
W (t)

R(t)
N(t)− C (2)

where:

W – expected TCP sending window size (packets),
q – expected queue length (packets),
R – round-trip time = q/C + Tp (secs),
C – link capacity (packets/sec),
Tp – propagation delay (secs),
N – number of TCP sessions,
p – packet drop probability.

The maximum values of q and W (queue length and congestion window size)
depend on the buffer capacity and maximum window size. The dropping prob-
ability p depends on the queue algorithm.

The traffic composed of TCP and UDP streams was considered in [20]. In
this model a single router supports N sessions and each session is assumed to
be either a TCP or UDP session. Each TCP stream is a TCP-Reno connection
and each UDP sender is a CBR source. The rate of UDP sessions is denoted by
λ. Fluid-flow equations of TCP and UDP mixed traffic become:

W ′(t) =
1

R′(t)
− W (t)W (t−R(t))

2R′(t−R(t)) p(t−R′(t)) (3)

q′(t) =
W (t)

R(t)
Nγ(t)− (C − λ) (4)

where R′ = round-trip time = q/(C − λ) + Tp (secs)
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The RED algorithm was proposed by IETF to improve the transmission
through IP routers. It was first described by Sally Floyd and Van Jacobson
in [9]. The idea of RED mechanism is based on a drop function giving proba-
bility that a packet is rejected. The argument avg of this function is a weighted
moving average queue length working as a low-pass filter and calculated at the
arrival of each packet using the following formula:

xi = (1− α)xi−1 + αqinst (5)

where qinst is the current queue length and α is a parameter.
Our approach to determine the weighted moving average queue is based on a

difference equation (a recursive equation).
Let A(n) denote the weighted moving average length at the n-th moment of

time and may be expressed using the difference equation as follows:

A(n) = a1A(n− 1) + a2A(n− 2) + . . .+
+akA(n− k) + b0Q(n)+
+b1Q(n− 1) + . . .+ bmQ(n−m)

(6)

where aj = const for j = 1, . . . , k, bi = const for i = 0, . . . ,m, A(l) is the
weighted moving average queue length at the l-th moment of time, Q(l) is the
current length of the packet queue at the l-th moment.

Constraint conditions for aj and bi coefficients are:

k∑
j=1

aj +

m∑
i=0

bi = 1 ∧ aj ≥ 0 ∧ bi ≥ 0. (7)

The classical RED approach (were the weighted moving average queue length is
given by eq. 5) satisfies the equation of the model given by eq. 1 when only a1 and
b0 are significant coefficients. Only one parameter (a1) should be determined in
the classical RED approach (because b0 = 1−a1). This was named 1-dimesional
model, [a1], (k = 1,m = 0).

We propose to take into account 4 significant parameters (a1, a2, b0, b1), so we
consider 3-dimensional model [a1, a2, b1] (k = 2,m = 1) were b0 = 1−a1−a2−b1.
Based on (1) we can calculate the weighted moving average queue length as:

A(n) = a1A(n− 1) + a2A(n− 2)+
+(1− a1 − a2 − b1)Q(n) + b1Q(n− 1)

(8)

In particular, for selected values of a2 and b1 the proposed model [a1, a2, b1] =
[a1, 0, 0] becomes the classical RED model, i.e. [a1].

3 Results

During the tests we assumed the following parameters for AQM buffer:

– Minth = 10,
– Maxth = 15,
– buffer size (measured in packets) = 20,
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Table 1. Mean queue length

Type of flows Number weighted Mean
of flows moving average queue length

TCP 1 normal 8.335941

TCP 1 modified ver. 1 8.828522

TCP 1 modified ver. 2 9.771673

TCP 2 normal 8.333797

TCP 2 modified ver. 1 7.968082

TCP 2 modified ver. 2 9.557045

TCP 10 normal 10.298166

TCP 10 modified ver. 1 10.210228

TCP 10 modified ver. 2 10.075144

TCP+UDP 1 normal 8.880204

TCP+UDP 1 modified ver. 1 9.040307

TCP+UDP 1 modified ver. 2 9.969054

TCP+UDP 2 normal 9.184550

TCP+UDP 2 modified ver. 1 8.650753

TCP+UDP 2 modified ver. 2 9.527762

TCP+UDP 10 normal 10.411907

TCP+UDP 10 modified ver. 1 10.410298

TCP+UDP 10 modified ver. 2 10.233717

and the parameters of TCP connection:

– transmission capacity of AQM router: C = 0.075,
– propagation delay for i-th flow: Tpi = 2,
– initial congestion window size for i-th flow (measured in packets): Wi = 1.

All computations were made with the use of PyLab (Python numeric computa-
tion environment) [18] – a combination of Python, NumPy, SciPy, Matplotlib,
and IPython. Table 1 presents overall results: the weighted moving average col-
umn presents the kind of function used during calculation of the moving average
queue length. The normal position presents the results of the standard RED
function, a1 = 0.007, a2 = 0.0, b1 = 0.0. The modified position denotes our
approach; we used two sets of parameters [3], ,,ver. 1”: a1 = 0.004, a2 = 0.008,
b1 = 0.0 and ,,ver. 2”: a1 = 0.08, a2 = 0.0014, b1 = 0.001.

The curves in figures present transient system behaviour, the time axis is
drawn in seconds. Figures 1 (a), (b) and (c) present one TCP flow. The use
of modified weighted moving average, despite the fact that increases the mean
queue length (which seems to be adverse), results in smaller changes of TCP
window and thus smoother transmissions.
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The situation is similar in figure 2. A thing to notice is that the queue fills
up faster, resulting in a much earlier reduction of congestion window. For the
case of 10 TCP flows (figures 3 (a), (b) and (c)), a stable state of the network
is reached after the the initial large number of losses. For all TCP flows the
congestion window oscillates around the minimum value.

When we look at the figures 4 (a), (b) and (c) we can see that the introduc-
tion of UDP traffic increases the mean queue length for all three solutions. The
introduction of UDP traffic increases also the fluctuation of the TCP window.
It can be seen clearly when we compare figures 1 (a) and 4 (a). The use of
modified weighted moving average causes less fluctuation of TCP window than
for the classical RED. In this case one can see an advantage of the solution with
the parameters ”ver. 2” (mean queue length increases the least). For a large
number of TCP+UDP flows (figures 5 (a), (b) and (c)) - the solution with the
parameters ”ver. 2” gives the best results (the last column of table 1). This is
in accordance with the results obtained in [3]. In that study we examined the
traffic excluding the impact of TCP and this solution was also the best.

Fig. 1. RED queue, one TCP flow: (a) standard weighted moving average (a1 = 0.007,
a2 = 0.0, b1 = 0.0), (b) modified weighted moving average (a1 = 0.004, a2 = 0.008,
b1 = 0.0), (c) modified weighted moving average (a1 = 0.08, a2 = 0.0014, b1 = 0.001)
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Fig. 2. RED queue, two TCP flows - standard weighted moving average (a1 = 0.007,
a2 = 0.0, b1 = 0.0)

Fig. 3. RED queue, ten TCP flows: (a) standard weighted moving average (a1 = 0.007,
a2 = 0.0, b1 = 0.0), (b) modified weighted moving average (a1 = 0.004, a2 = 0.008,
b1 = 0.0), (c) modified weighted moving average (a1 = 0.08, a2 = 0.0014, b1 = 0.001)
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Fig. 4. RED queue, one TCP flow with UDP: (a) standard weighted moving average
(a1 = 0.007, a2 = 0.0, b1 = 0.0), (b) modified weighted moving average (a1 = 0.004,
a2 = 0.008, b1 = 0.0), (c) modified weighted moving average (a1 = 0.08, a2 = 0.0014,
b1 = 0.001)

Fig. 5. RED queue, ten TCP flows with UDP: (a) standard weighted moving average
(a1 = 0.007, a2 = 0.0, b1 = 0.0), (b) modified weighted moving average (a1 = 0.004,
a2 = 0.008, b1 = 0.0), (c) modified weighted moving average (a1 = 0.08, a2 = 0.0014,
b1 = 0.001)
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4 Conclusions

The presented approach is based on a dynamical discrete model to define the
average packet queue length and makes use of linear difference equations. The
paramters used in these equations were received earlier in the open-loop sce-
nario [3]. Numerical examples show that the classical RED displays the best
performance in the case of small traffic. If the load and the share of UDP traffic
flows increase, our modified RED algorithm performs better that the classical
RED. This is in accordance with the results obtained by us previously in the
open-loop scenario. Taking into account the increasing share of UDP traffic in
the internet traffic, the use of our modification may assure better smoothness of
transmissions (less fluctuation in congestion window).

Our study has also shown that the selection of the optimum parameters of
the modified RED mechanism (the weight parameter of the moving average)
depends on the type of traffic (the load and the TCP to UDP ratio).

Our future works will concentrate on creating an adaptive mechanism which
will be change a way of counting the weighted moving average depending on the
number of TCP and UDP flows passing through the router.

Acknowledgements. This research was partially financed by Polish Ministry
of Science and Higher Education project no. N N516479640.
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(eds.) CN 2010. CCIS, vol. 79, pp. 199–206. Springer, Heidelberg (2010)
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Abstract. We consider a tandem queueing system with session arrivals.
Session means a group of customers which should be sequentially pro-
cessed in the system. In contrast to the standard batch arrival when
a whole group of customers arrives into the system at one epoch, we
assume that the customers of an accepted session arrive one by one in
exponentially distributed times. Generation of sessions at the first stage
is described by a Batch Markov Arrival Process (BMAP ). At the first
stage of tandem, it is determined whether a session has the access to
the second stage. After the first stage the session moves to the second
stage or leaves the system. At the second stage having a finite buffer
the customers from sessions are serviced. A session consists of a random
number of customers. This number is geometrically distributed and is
not known at a session arrival epoch. The number of sessions, which can
be admitted into the second stage simultaneously, is subject to control.
An accepted session can be lost, with a given probability, in the case of
any customer from this session rejection.

Keywords: tandem system, batch Markovian arrival process, session
admission control, performance modeling.

1 Introduction

Queueing theory is widely used for modelling and performance evaluation of
modern telecommunications networks. Typically, an user of telecommunication
system can generate not a single request but a group of requests. That is the
reason why a Batch Markovian Arrival Process (BMAP ) as an arrival process
is assumed when the queueing system that modelles a real telecommunication
system is considered. The BMAP was introduced by D. Lucantoni in [1]. In
[1], a single-server queueing system with the BMAP arrival process, the gen-
eral service time distribution and an infinite buffer is analyzed. In [2], a de-
parture process of BMAP/G/1 is analysed. In [3, 4], BMAP/G/1 queue with
controlled service intensity is investigated. BMAP/G/1 queue with generalized
vacations is considered in [5] and BMAP/G/1 with disasters is considered in [6].
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BMAP/G/1 cyclic polling models are investigated in [7]. BMAP/G/1 retrial
queueing system is considered in [8, 9].

Single-server queues with BMAP arrivals, semi-Markovian service process
and an infinite buffer are analysed, e.g., in [10–12].

If a queueing system with a finite buffer and BMAP arrivals is considered,
it is assumed that at a batch arrival epoch all requests of the batch arrive into
the system simultaneously and decision whether or not the batch should be
admitted into the system is based on comparison of the batch size and the
available capacity of the system, see, e.g., [13], [14].

Very general model of the BMAP/SM/1/N type with discipline of partial
admission is investigated in [15], and the BMAP/G/1/N type with disciplines
of complete rejection and complete admission is investigated in [16]. Numerically
stable algorithms, which are taking into account special structure of transition
probability matrix and are suitable even if the buffer capacity N is equal to
several thousands, are presented there.

Tandem queueing systems with BMAP arrivals are considered, e.g., in
[17–20].

The queues with BMAP arrival process are well suited for modeling the real
systems in which the requests can arrive simultaneously. However, in many nowa-
days communication networks, IP networks in particular, customers can arrive
in groups, but the arrival of customers from a group is not simultaneous. To dis-
tinguish the standard batches from the group with non-simultaneous customers
arrivals the latter ones are called sessions.

Session arrivals are typical for multiple access telecommunication system which
resources are shared by a set of users. An user establishes a session (sends the
first request) when it enters the system. If this user’s request is admitted to the
system, the session is considered as established. Once the user has established
the session, he(she) can generate the sequence of requests. Belonging of the re-
quests to established sessions is determined by means of IP address. Note that
the number of requests at a session is random and unknown at the session ar-
rival epoch. If the arrival request belongs to existed session, it is accepted to the
system. If the request belongs to a new session (the first request of the session),
the buffer and channel capacity is still available, and the number of session in
the system is non critical, the session and request are admitted into the system
and the session count is increased. Otherwise, the session and its first request
are rejected. When the requests from admitted session do not arrive to the sys-
tem during a certain time interval, the session is assumed to be finished and the
session count is decreased by one.

Due to the requests from a session arrive to the system non-simultaneously
and the number of requests in a session is unknown at the session arrival epoch
it is impossible to make a decision to accept or not the arriving session to the
system based on comparison the session size with the available capacity of the
system. Under consideration queues with session arrivals, it is assumed that the
number of sessions is restricted by means of so called tokens. The number of
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tokens, which defines the maximal number of flows that can be admitted into
the system simultaneously, is very important control parameter.

In paper [21], a novel finite capacity queueing model of M/M/N/R type with
request arrivals in sessions is investigated. In paper [22], the MAP/PH/1/N
queueing system with session arrivals is investigated. It was assumed in [21] and
[22], that the sessions arrival is regulated by means of tokens. The pool of tokens
consists of K tokens and a new session is admitted to the system only if there is
an available token and the buffer is not full at a session arrival epoch. Otherwise,
the session leaves the system forever.

In paper [23], the mechanism of requests arrival within a session is signifi-
cantly generalized comparing to the model considered in [22] by suggesting that
the customers from the admitted session can arrive in groups. Session arrivals
are directed by a MAP (Markovian Arrival Process) and customers’ arrivals in
session are directed by the BMAP in [23].

In presented paper the tandem queueing system with BMAP arrivals of ses-
sion is investigated. At the first stage of the system it is determined whether an
arriving session has the access to the system. After the first stage the session
moves to the second one if it has the access or leaves the system. At the second
stage admitted sessions are serviced.

The paper is organized as follows. In section 2, the mathematical model is
described. The stationary distribution of system states is analyzed in section 3.
The expressions for the main system performance measures are given in section
4. Section 5 concludes the paper.

2 Mathematical Model

The system consists of two stages. The first stage is a single server queueing
system with a finite buffer of capacity R, 1 ≤ R <∞.

The customers arrive to the system in sessions. Groups of sessions arrive
at the first stage according to the Batch Markov Arrival Process (BMAP ).
Sessions arrival in the BMAP is directed by an irreducible continuous time
Markov chain νt, t ≥ 0, with the finite state space {0, 1, . . . ,W}. The sojourn
time of the Markov chain νt in the state ν has an exponential distribution with
the parameter λν , ν = 0,W. After this sojourn time expires, with probability
pl(ν, ν

′) the process νt transits to the state ν′, and l, l ≥ 0, sessions arrive to the
system.

The intensities of jumps from one state into another, which are accompa-
nied by an arrival of l sessions, are combined into the square matrices Dl, l ≥
0, of size W̄ = W + 1. The matrix generating function of these matrices is

D(z) =
∞∑
l=0

Dlz
l, |z| ≤ 1.

The (ν, ν′)th entry of the matrix Dl has form

(Dl)ν,ν′ = λνpl(ν, ν
′), ν, ν′ = 0,W , l ≥ 1,

(D0)ν,ν′ =

{
λνp0(ν, ν

′), ν �= ν′, ν, ν′ = 0,W ;
−λν , ν = ν′, ν = 0,W.
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The matrix D(1) is the infinitesimal generator of the process νt, t ≥ 0. The
stationary distribution vector χ of this process satisfies the equations χD(1) =
0, χe = 1. Here and in the sequel 0 is a zero row vector and e denotes unit
column vector.

The average intensity λ (fundamental rate) of the sessions arrivals is defined
as λ = χD′(z)|z=1e. The intensity λb of group session arrivals is defined as λb =
χ(−D0)e. The coefficient of variation cvar of intervals between group session
arrivals is defined by c2var = 2λbχ(−D0)

−1e − 1. The coefficient of correlation
ccor of the successive intervals between group session arrivals is given by ccor =
(λbχ(−D0)

−1(D(1)−D0)(−D0)
−1e− 1)/c2var.

The service time of a session at the first stage is exponentially distributed
with the parameter η.

If at the arrival epoch of a batch of sessions the size of the batch does not
exceed the number of available waiting places, the whole group is admitted to the
system. Otherwise, the sessions, for which there is no available place in the buffer,
leave the system forever. This means that we assume so called partial sessions
admission discipline. Complete rejection and complete admission disciplines need
separate treatment.

After service at the first stage a session leaves the system forever with prob-
ability q, 0 ≤ q ≤ 1, or proceeds to the second stage with complementary prob-
ability.

The second stage consists ofN identical independent servers and a finite buffer
of capacity M, 1 ≤M <∞.

We assume that admission of sessions (they are called also flows, connections,
sessions, exchanges, windows, etc. in different real-life applications) to the second
stage is restricted by means of tokens. The total number of available tokens is
assumed to K, K ≥ 1.

If there is no available token at a session arrival epoch at the second stage
or the buffer at the second stage is full, the session is rejected, and leaves the
system forever. If the number of available tokens at the session arrival epoch at
the second stage is positive and the buffer is not full, this session is admitted
into the second stage and the number of available tokens decreases by one. We
assume that the first request of a session arrives at the session arrival epoch
and if it meets a free server at the second stage, it occupies the server and is
processed. If all servers are busy, the customer moves to a buffer and later it is
picked up for the service according to the First Came - First Served discipline.
After admission of the session at the second stage, the next customer of this
session should arrive directly into the second stage in a random interval length
which is exponentially distributed with the parameter γ.

If there is an available server at the second stage, the customer is admitted,
otherwise, it is rejected and leaves the system forever. If the customer from ad-
mitted session is rejected, this session leaves the system forever with probability
p, 0 ≤ p ≤ 1, and releases the token. The rejection of customer does not affect
on the future behavior of the session with complementary probability 1− p.
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The number of customers in the session has geometrical distribution with
parameter θ, i.e., probability that the flow consists of k customers is equal to
θk−1(1− θ), k ≥ 1. If the random time since arrival of the previous customer of
a session expires and a new customer does not arrive, it means that the arrival of
the session is finished. The token, which was obtained by this flow upon arrival,
is returned into the pool of available tokens. The customers of this session, which
stay in the buffer of the second stage at the epoch of returning the token, should
be completely processed by the second stage.

The service time of a customer at the second stage is exponentially distributed
with the parameter μ.

3 The Process of System States

Let it, it = 0, R+ 1, be the number of sessions at the first stage, nt, nt =
0, N +M, be the number of customers at the second stage, kt, kt = 0,K, be
the number of sessions having token for admission to the system, νt, νt = 0,W ,
be the state of the directing process of the BMAP arrival process at the epoch
t, t ≥ 0.

It is obvious that the four-dimensional process ξt = {it, nt, kt, νt}, t ≥ 0, is
the irreducible regular continuous time Markov chain.

Let us enumerate the states of this Markov chain in lexicographic order and
refer to (i, n) as macro-state consisting of K̄ = W̄ (K+1) states (i, n, k, ν), k =
0,K, ν = 0,W .

Introduce the following notation:

• Im is an identity matrix of size m, Om is a zero matrix of size m×m;

• γ− = γ(1− θ), γ+ = γθ;

• ⊗ and ⊕ are symbols of Kronecker’s sum and product respectively, see, e.g.,
[24];

• C̃ = diag{0, 1, . . . ,K}, C = C̃ ⊗ IW̄ ;

• E− is the square matrix of size K + 1 with all zero entries except entries
(E−)i,i−1, i = 1,K, which are equal to 1;

• E+
l , l = N +M,K is the square matrix of size l + 1, with all zero entries

except entries (E+
l )i,i+1, i = 0, l − 1, (E+

l )l,l = 1, which are equal to 1;

• A = (−γC̃ + γ−C̃E−)⊗ IW̄ ;

• δi,j is Kronecker delta, δi,j is equal to 1 if i = j and equal to 0 otherwise.

Let Q be the generator of the Markov chain ξt, t ≥ 0, with blocks Qi,j consisting
of intensities (Qi,j)n,n′ of this chain transitions from the macro-state (i, n) into
the macro-state (j, n′), n, n′ = 0, N +M. The diagonal entries of the matrix Qi,i

are negative and the modulus of the diagonal entry of (Qi,i)n,n defines the total
intensity of leaving the corresponding state (i, n, k, ν) of the Markov chain. The
block Qi,j , i, j = 0, R+ 1, has dimention M̄ × M̄, where M̄ = K̄(N +M + 1).
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Lemma 1. The generator Q of the Markov chain ξt, t ≥ 0, has the following
block structure

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Q0,0 Q0,1 Q0,2 . . . Q0,R Q0,R+1

Q1,0 Q1,1 Q1,2 . . . Q1,R Q1,R+1

O Q2,1 Q2,2 . . . Q2,R Q2,R+1

...
...

...
. . .

...
...

O O O . . . QR,R QR,R+1

O O O . . . QR+1,R QR+1,R+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where non-zero blocks Qi,j are defined by

Qi,i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C
(i)
0,0 C0,1 O . . . O O

C1,0 C
(i)
1,1 C1,2 . . . O O

O C2,1 C
(i)
2,2 . . . O O

...
...

...
. . .

...
...

O O O . . . C
(i)
N+M−1,N+M−1 CN+M−1,N+M

O O O . . . CN+M,N+M−1 C
(i)
N+M,N+M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, i = 0, R+ 1,

Qi,i+l =

⎧⎨⎩
I(N+M+1)(K+1) ⊗Dl, 0 < l < R− i+ 1,

I(N+M+1)(K+1) ⊗
∞∑
j=l

Dj , l = R− i+ 1 , i = 0, R.

Qi,i−1 = Q− = η(qI(N+M+1)(K+1)W̄ + (1− q)E+
N+M ⊗ E+

K ⊗ IW̄ ), i = 1, R+ 1.

Here

• C(i)
n,n=A−(1−δi,0)ηIK̄+IK+1⊗[D0+δi,R+1(D(1)−D0)]−min{n,N}μIK̄ , n =

0, N +M − 1, i = 0, R+ 1;

• C(i)
N+M,N+M = A−(1−δi,0)ηIK̄+IK+1⊗ [D0+δi,R+1(D(1)−D0)]−NμIK̄+

γ+(1− p)C + γ+p(C̃E−)⊗ IW̄ , i = 0, R+ 1;
• Cn,n+1 = γ+C, n = 0, N +M − 1,
• Cn,n−1 = min{n,N}μIK̄ , n = 1, N +M.

Proof of the lemma consists of analysis of the Markov chain ξt, t ≥ 0, transitions
during the infinitesimal interval of time and further combining corresponding
transition intensities into the matrix blocks. Value γ− is the intensity of tokens
releasing due to the finish of the session arrival, γ+ is the intensity of new
customers arrival in the session.

Since the four-dimensional Markov chain ξt = {it, nt, kt, νt}, t ≥ 0, is the irre-
ducible and regular and has the finite state space, the following limits (stationary
probabilities) exist:

π(i, n, k, ν) = lim
t→∞P{it = i, nt = n, kt = k, νt = ν},

i = 0, R+ 1, n = 0, N +M, k = 0,K, ν = 0,W.
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Let us combine these probabilities into the row-vectors

π(i, n, k) = (π(i, n, k, 0), π(i, n, k, 1), . . . , π(i, n, k,W )), k = 0,K,

π(i, n) = (π(i, n, 0),π(i, n, 1), . . . ,π(i, n,K)), n = 0, N +M,

πi = (π(i, 0),π(i, 1), . . . ,π(i, N +M)), i = 0, R+ 1.

It is well known that the vector (π0, . . . ,πR+1) is the unique solution to the
following system of linear algebraic equations:

(π0, . . . ,πR+1)Q = 0, (π0, . . . ,πR+1)e = 1.

This system can be solved on computer directly (”by brute force”). Alternatively,
the following numerically stable algorithm for solving this system, which takes
into account the special structure of the generator Q, can be applied.

Step 1. Compute the matrices Pi,j recurrently:

Pi,R+1 = −Qi,R+1(QR+1,R+1)
−1
, i = 0, R,

Pi,j = −(Qi,j +Pi,j+1Q
−)(Qj,j + Pj,j+1Q

−)−1
, i = 0, j − 1, j = R,R− 1, . . . , 1.

Step 2. Calculate the matrices Φj , j = 0, R+ 1:

Φ0 = I, Φj =

j−1∑
i=0

ΦiPi,j , j = 1, R+ 1.

Step 3. Calculate the vector π0 as the unique solution to the following system
of linear algebraic equations:

π0(Q0,0 + P0,1Q
−) = π0, π0

R+1∑
j=0

Φje = 1.

Step 4. Calculate the vectors πj : πj = π0Φj , j = 1, R+ 1.

4 Performance Measures

As soon as the vectors πi, i = 0, R+ 1, have been calculated, we are able to
find various performance measures of the system under consideration.

The average number of sessions at the first stage is calculated as

L(1) =

R+1∑
i=1

iπie.

The average number of customers at the second stage is calculated as

L(2) =

R+1∑
i=0

N+M∑
n=1

nπ(i, n)e.
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The average number of sessions in the buffer at the first stage is calculated as

N
(1)
buffer =

R+1∑
i=2

(i− 1)πie.

Theaverage number of customers in the buffer at the second stage is calculated as

N
(2)
buffer =

R+1∑
i=0

N+M∑
n=N+1

(n−N)π(i, n)e.

The average number of busy servers at the second stage is calculated as

Nserver =

R+1∑
i=0

(

N∑
n=1

nπ(i, n)e+N

N+M∑
n=N+1

π(i, n)e).

The intensity of flow of sessions, which get the service at the first stage, is
calculated as

λ
(1)
out = η(1 − π0e).

The intensity of flow of customers, which get the service in the system, is
calculated as

λ
(2)
out = μNserver.

The loss probability of whole group of sessions at the entrance to the first stage
due to buffer overflow is calculated as

P (ent−loss) = λ−1
b πR+1(e⊗

∞∑
k=1

Dke).

The average number of sessions at the second stage is computed as

B =

R+1∑
i=0

N+M∑
n=0

K∑
k=1

kπ(i, n, k)e.

The loss probability of arbitrary session at the first stage is calculated as

P
(session−loss)
1 = λ−1

R+1∑
i=0

πi(e⊗
∞∑

k=R−i+2

(i+ k −R− 1)Dke).

The probability P
(loss)
s of an arbitrary session rejection upon arrival at the second

stage is computed by

P
(session−loss)
2 =

η

λ
(1)
out

R+1∑
i=1

(N+M−1∑
n=0

π(i, n,K) +

K∑
k=0

π(i, N +M,k)

)
e.
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The probability P
(loss)
c of an arbitrary customer from admitted session rejection

is computed by

P (loss)
c =

R+1∑
i=0

K∑
k=1

kγ+π(i, N +M,k)e

K∑
k=1

N+M∑
n=0

kγ+π(i, n, k)e

.

5 Conclusion

A tandem queueing system with batch session arrivals is investigated. The sys-
tem underlying process is constructed. The stable algorithm for calculation of
the stationary distribution of system states is presented. The key system perfor-
mance measures are computed.
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Abstract. This article presents a mathematical foundation for schedul-
ing of batch data produced by mobile end users over the time-frequency
resources provided by modern mobile operators. We model the mobile
user behavior by Batch Markovian Arrival Process, where a state cor-
responds to a specific user data activity (i.e. sending a photo, writing a
blog message, answering an e-mail etc). The state transition is marked
by issuing a batch of data of the size typical to the activity. To model
the changes of user behavior caused by the environment, we introduce a
random environment which affects the intensities of transitions between
states (i.e., the probabilities of the user data activities). The model can
be used for calculating probability of packet loss and probability of ex-
ceeding the arbitrarily fixed value by the sojourn time of a packet in
the system conditional that the packet arrives to the system at moments
when the random environment has a given state. This allows to com-
pute the realistic values of these probabilities and can help to properly
fix their values that can be guaranteed, depending on the state of the
random environment, by a service provider.

Keywords: batchMarkovian arrival process, random environment, phase
type service time distribution.

1 Introduction

According to the vision of leading vendors of equipment for cellular networks1

it is expected that the traffic demand in Long Term Evolution (LTE) networks
will increase thousand times by the year 2020. By the same time it is expected
that the total number of diverse radio communicating devices will reach fifty
billion. Besides this visionary drastic increase of mobile terminals, the mobile
operators experience major difficulties in providing quality of service in densely
populated areas already at present days. According to the recent studies by

� Corresponding author.
1 “More than 50 billion connected devices”, Ericsson white paper 284 23-3149 Uen,
February 2011. [Online] Available:
http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.pdf

A. Dudin et al. (Eds.): BWWQT 2013, CCIS 356, pp. 69–82, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Actix 2 three quarters of subscribers in transport hubs, central business districts,
tourist centers and the locations for major conventions and sporting events are
not getting satisfactory quality during peak times. The drop in the data rate in
worst cases could be as bad as 95 percent. One of the major reasons for this is user
behavior agnostic way of distributing time-frequency resources. Historically and
due to a tough competition for customers, the mobile operators normally offer
data services as relatively cheep flat-rate-priced data pipes without accounting
for traffic patterns generated by diverse multimedia applications.

This article presents a mathematical foundation for socio-behavioral schedul-
ing of time-frequency resources for modern mobile operators. We model the mo-
bile user behavior by Batch Markovian Arrival Process (BMAP), where a state
corresponds to a specific user data activity (e.g., sending a photo, writing a blog
message, answering an e-mail) and the state transition is marked by issuing a
batch of data of the size typical to the activity.

To capture the fact that the user behavior changes based on the external envi-
ronment we introduce a random environment (RE). The intensities of transitions
between states (i.e., the probabilities of the user data activities) are governed by
a process describing a random environment in which the user is presently located
(e.g., a soccer game, busy hour business activities). The random environment
can be further detailed to include specific events in the current environment
(e.g., a goal being made at a soccer match).

The user activities impose a varying load on the LTE base stations both up
link and down link. In this paper we focus on scheduling up link transmissions
in an LTE-A cell and concentrate on the proof of the properties of the suggested
mathematical model. The effect of the user activities is than that batches of
data are queued in the buffers of the wireless devices. The data of a queue is
served by a base-station and herein each base station is modeled as a number of
servers, where each server handles resource in part of the frequency domain.

The model can be used to calculate critical performance metrics of the system
such as the data/packet loss probability when using finite buffers, the mean
amount of data queued, the mean amount of served data (i.e., number of busy
servers and idle servers), the probability of exceeding delay limits by the sojourn
time of a packet, etc.

An analogous queueing model was considered in [1]. In this article we use
another multi-dimensional Markov chain for description of the system behavior
what allows to compute performance measures of the system for much larger
number of servers. We focus on two key performance measures of the system
separately for data (customers) arriving to the system at the time periods when
the RE has given states and discuss the issues of application of the model for
managing operation of the system with different requirements to the quality of
the service under different states of the RE.

2 “Actix finds 75 % of subscribers cannot get the data speeds they want at peak
times”, [Online.] Available: http://www.actix.com/sites/www.actix.com/files/
Actix Hotspots Study Findings.pdf

http://www.actix.com/sites/www.actix.com/files/Actix_Hotspots_Study_Findings.pdf
http://www.actix.com/sites/www.actix.com/files/Actix_Hotspots_Study_Findings.pdf


Scheduling of Time-Frequency Resources for Modern Mobile Operators 71

User 1

User 2

User 3

User 4

T
im

e

Frequency

resourceOne

block

One

subframe

12 OFDM carriers

Fig. 1. Socio-behavioral approach to uplink resource scheduling

The article is structured as follows. In section 2 we overviewmajor mechanisms
of data transmission in LTE-Advanced wireless networks. The mathematical
model is described in section 3. The process of the system states as a multi-
dimensional continuous time Markov chain and its generator are analyzed in
section 4. Expressions for some key performance measures of the system are
given in section 5. Sojourn time distributions of an arbitrary customer and of an
arbitrary customer arriving under the fixed value of the random environment are
obtained in terms of Laplace-Stieltjes transform in section 6. Expressions for two
initial moments of these distributions and approximate formulas for distribution
functions are given there. Section 7 concludes the paper.

2 LTE Scheduling Principle, Assumptions and Model
Notations

In fourth generation wireless networks also known under name LTE [2] a combi-
nation of frequency and time division multiple access also known as Orthogonal
Frequency Division Multiplexing is used to communicate data between a base
station and a mobile terminal. Essentially, this means that the time line for all
mobile terminals and the base station is divided into fixed length time intervals.
During each interval multiple terminals may concurrently transmit data to the
base station using a unique set of frequencies assigned by the base station with-
out disturbing each other. In the frequency domain, depending on the strength
of the signal, different modulation techniques can be used allowing for different
data transmission rates. A scheduler of the time-frequency resources is a key
element which to a large extent determines the overall system performance.

According to the LTE specification the minimum scheduled to a terminal quan-
tum of spectrum is 180 kHz. This portion of the spectrum assigned to a particular
terminal during 0.5 ms is referred as to one resource block. The scheduling unit in
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time is equal to 1 ms, in terminology of LTE referred as to a subframe. While the
details of scheduler’s implementation is left outside the standard and is vendor-
specific, in principle, a scheduled terminal can be assigned an arbitrary combina-
tion (but not more than 110) of resource blocks in each 1ms subframe. In the case
of a good channel quality between a terminal and the base station this corresponds
to the base station’s grant to transmit from 50 to 5000 bytes of user data roughly.

The overall approach to the modeling is graphically illustrated in Figure 1. We
consider the case where the system in question changes it’s behavior in reaction
to a random environment process rt, t ≥ 0, which is assumed to be an irreducible
continuous time Markov chain with the state space {1, . . . , R}, R ≥ 2, and the
infinitesimal generator Q. An example of such process would be scoring events at
a soccer game, business activities at busy hours, arrival, departure of transport
at a transport hub etc. Different states of the random environment affect the
overall user behavior and the service times at the base station as described below.

Since implementation of the base station’s scheduler is vendor-specific, for
the sake of modeling we describe an abstract generic scheduler as a set of N
identical virtual servers. Each server is responsible for policing of user’s traffic in
time within 180kHz chunk of bandwidth according to the defined below service
rate. In order to account for the base station scheduler’s ability to assign multiple
resource blocks within the 1 ms subframe we model the content of the transmit
buffer in each user terminal as a batch of customers and allow customers from
one batch to use more than one server simultaneously.

A batch is all the data generated instantaneously by a terminal as a reaction
to the user activities. A batch consists of a number of customers. The customers
belonging to the same batch could be of different sizes, which are the multiples
of a number of bits that could be transmitted up-link with a selected modulation
technique over a time interval of 1 millisecond. In the real system one customer
corresponds to the data from one batch scheduled on an arbitrary 180 kHz por-
tion of bandwidth. Note that the batches of data produced by the user activities
are queued consecutively in the wireless device and that the sizes of the served
customers are independent, i.e., the scheduler can at each epoch serve any size
customer from the queue.

By modeling the uplink scheduler this way and analyzing the performance
results for different distribution of customer sizes within batches would allow to
derive rules for real scheduler at the base station which would deliver the desired
per-user performance. This type of the result interpretation is, however, outside
the scope for this article and will be reported elsewhere.

3 The Mathematical Model

Let N be the number of identical independent servers. The service time in
a server time is interpreted as the time until the irreducible continuous time
Markov chain mt, t ≥ 0, with the state space {1, . . . ,M + 1} reaches the
absorbing state M + 1. Under the fixed value r of the random environment,
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transitions of the chain mt, t ≥ 0, within the state space {1, . . . ,M} are defined
by an irreducible sub-generator S(r) while the intensities of transition into the

absorbing state are defined by the vector S
(r)
0 = −S(r)e. Here e is a column

vector consisting of ones. At the service beginning epoch, the state of the process
mt, t ≥ 0, is chosen according to the probabilistic row vector β(r), r = 1, R.
It is assumed that the state of the process mt, t ≥ 0, is not changed at the
epoch of the process rt, t ≥ 0, transitions. Just the exponentially distributed
sojourn time of the process mt, t ≥ 0, in the current state is re-started with
a new intensity defined by the sub-generator corresponding to the new state of
the random environment rt, t ≥ 0.

The input flow into the system is produced by U terminals each modeled as
a continuous time Batch Markovian Arrival Process (BMAP), see, e.g. [3]. So,
superposition of these flows is also the BMAP. For modeling we consider a set of
distinct user events to be fixed and finite. These events constitute the states of
BMAP. At transitions between states the terminal produces batches of data (in
bits) corresponding to defined user events. The intensity of transitions depends
on the external environment process as introduced below. More formally, the
arrival of customers is directed by the process νt, t ≥ 0, (the underlying process)
with the state space {0, 1, . . . ,W}. Under the fixed state r of the RE, this process
behaves as an irreducible continuous time Markov chain. Transitions of the chain
νt, t ≥ 0, which are accompanied by arrival of k-size batch, are described by

the matrices D
(r)
k , k ≥ 0, r = 1, R, with the generating function D(r)(z) =

∞∑
k=0

Dk
(r)zk, |z| ≤ 1. The matrix D(r)(1) is an irreducible generator for all r =

1, R. Under the fixed state r of the random environment, the average intensity
λr (fundamental rate) of the BMAP is defined as λr = θ(r)(D(r)(z))′|z=1e, and

the intensity λ
(b)
r of batch arrivals is defined as λ

(b)
r = θ(r)(−D(r)

0 )e. Here the

row vector θ(r) is the solution to the equations θ(r)D(r)(1) = 0, θ(r)e = 1, e is a

column vector of appropriate size consisting of 1’s. The variation coefficient c
(r)
var

of intervals between batch arrivals is given by

(c(r)var)
2 = 2λ(b)r θ(r)(−D(r)

0 )−1e− 1

while the correlation coefficient c
(r)
cor of intervals between successive batch arrivals

is calculated as

c(r)cor = (λ(b)r θ(r)(−D(r)
0 )−1(D(r)(1)−D(r)

0 )(−D(r)
0 )−1e− 1)/(c(r)var)

2.

The necessary condition for a terminal to begin the transmission is to obtain
a scheduling grant in response to the scheduling request message submitted to
the base station prior to the scheduled period. For the purpose of modeling
we assume that the system has L, 0 ≤ L < ∞, virtual waiting positions. If the
system has all servers being busy at a batch arrival epoch, the batch occupies the
waiting position. Due to a possibility of the batch arrivals, it can occur that there
are free servers in the system at an arrival epoch, however the number of these
positions is less than the number of the customers in an arriving batch. In such
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situation the acceptance of the customers to the system is realized according
to the partial admission discipline (only a part of the batch corresponding to
the number of free servers is allowed to enter the system while the rest of the
batch is lost). The disciplines of complete rejection and complete admission are
considered analogously, details are omitted here.

At the epochs of the process rt, t ≥ 0, transitions, the state of the process
νt, t ≥ 0, does not change, but the intensities of its transitions are immediately
changed. This corresponds to a situation where, for example, the intensity of
blog messages, photo or vide clips uploads increases after the scoring event in a
soccer game.

Our aim is calculation of the stationary state distribution and main perfor-
mance measures of the described queueing model with further use for optimiza-
tion of parameters of quality of service in the system.

4 Process of the System States

It is easy to see that operation of the considered queueing model can be described
in terms of the regular irreducible continuous-time Markov chain

ξt = {nt, rt, νt,m(1)
t , . . . ,m

(M)
t }, t ≥ 0,

where

– nt is the number of customers in the system, nt = 0, N + L;
– rt is the state of the random environment, rt = 1, R;
– νt is the state of the BMAP underlying process, νt = 0,W ;

– m
(l)
t be the number of servers at the phase l of service, l = 1,M, m

(l)
t =

0,min{nt, N},
M∑
l=1

m
(l)
t = min{nt, N}, at the epoch t, t ≥ 0.

Note that the use of the components m
(l)
t for description of service processes

in multi-server queues stems from the works by Ramaswami and Lucantoni,
see [5,6].

Let us enumerate the states of the chain ξt, t ≥ 0, in the lexicographic
order of components (rt, νt) and the reverse lexicographic order of components

(m
(1)
t , . . . ,m

(M)
t ) and form the row vectors pn of probabilities corresponding

to the state n of the first component of the process ξt, t ≥ 0. Denote also
p = (p0,p1,p2, . . . ,pN+L).

It is well known that the vector p satisfies the system of the linear algebraic
equations (so called equilibrium equations or Chapman-Kolmogorov equations)
of the form:

pA = 0, pe = 1, (1)

where A is the infinitesimal generator of the Markov chain ξt, t ≥ 0.
To present explicit expression for generator A, let us introduce the following

notation:
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• en (0n) is a column (row) vector of size n, consisting of 1’s (0’s). Suffix may
be omitted if the dimension of the vector is clear from context;

• Kn =
(
n+M−1
M−1

)
, n = 0, N ;

• I (O) is an identity (zero) matrix of appropriate dimension (when needed
the dimension of this matrix is identified with a suffix);

• diag {al, l = 1, L } is a diagonal matrix with diagonal entries or blocks al;

• ⊗ and ⊕ are symbols of the Kronecker product and sum of matrices;

• D(z) =
∞∑
k=0

diag{D(r)
k , r = 1, R}zk;

• H(n)
k = diag{D(r)

k ⊗ IKn , r = 1, R}, n = 0, N, k ≥ 0;

• H(n)(z) =
∞∑
k=0

H
(n)
k zk, n = 0, N ;

• B(n)
l = diag{IW̄ ⊗Pn,n+l(β

(r)), r = 1, R}, n = 0, N − 1, l = 1, N − n, W̄ =
W + 1;

• Â(n) = diag{IW̄ ⊗ Ãn(N,S
(r)), r = 1, R}, n = 1, N ;

• Δ(n) = −diag{IW̄ ⊗ diag{Ãn(N,S
(r))e+ LN−n(N, S̃

(r))e}, r = 1, R}, n =
1, N ;

• S̃(r) =

(
0 0

S
(r)
0 S(r)

)
, r = 1, R;

• L(n) = diag{IW̄ ⊗ LN−n(N, S̃
(r)), r = 1, R}, n = 1, N ;

• L̄ = diag{IW̄ ⊗ L0(N, S̃
(r))PN−1(β

(r)), r = 1, R};
• C(n) = Q⊗ IW̄ ⊗ IKn +H

(n)
0 + Â(n) +Δ(n), n = 0, N ;

• C̄ = Q⊗ IW̄ ⊗ IKN +
∞∑
k=0

H
(N)
k + Â(N) +Δ(N);

• Pn,l(β(r)) = Pn(β
(r))× · · · × Pl−1(β

(r)), n = 0, N − 1, l = n+ 1, N ;

• E(n)
k = H

(n)
k B

(n)
min{N−n,k}, n = 0, N − 1, k = 1, N + L− 1;

• Ê(n)
k =

∞∑
l=k

E
(n)
l , n = 0, N − 1, k ≥ 0;

• Ĥk =
∞∑
l=k

H
(N)
l , k = 1, L.

The algorithms for calculating the matricesPn(β
(r)), n=0, N− 1, Ãn(N,S

(r)), n=
0, N, and LN−n(N, S̃

(r)), n = 0, N, r = 1, R, are presented in Appendix of
paper [7].

Lemma 1. Infinitesimal generator A of the Markov chain ξt, t ≥ 0, has the
following block structure:

A = (An,n′)n,n′=0,N+L =
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C(0) E
(0)
1 · · · E(0)

N−1 E
(0)
N E

(0)
N+1 · · · E(0)

N+L−1 Ê
(0)
N+L

L(1) C(1) · · · E(1)
N−2 E

(1)
N−1 E

(1)
N · · · E(1)

N+L−2 Ê
(1)
N+L−1

O L(2) · · · E(2)
N−3 E

(2)
N−2 E

(2)
N−1 · · · E(2)

N+L−3 Ê
(2)
N+L−2

...
...

. . .
...

...
...

. . .
...

...

O O · · · C(N−1) E
(N−1)
1 E

(N−1)
2 · · · E(N−1)

L Ê
(N−1)
L+1

O O · · · L(N) C(N) H
(N)
1 · · · H

(N)
L−1 ĤL

O O · · · O L̄ C(N) · · · H
(N)
L−2 ĤL−1

...
...

. . .
...

...
...

. . .
...

...

O O · · · O O O · · · C(N) Ĥ1

O O · · · O O O · · · L̄ C̄

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof of the Lemma follows from analysis of Markov chain ξt, t ≥ 0, transitions
during an infinitesimal interval. Block entries of the generator have the following
meaning.

The non-diagonal entries of the matrices C(n), n = 0, N , and C̄ define inten-

sity of transition of the components {rt, νt,m(1)
t , . . . ,m

(M)
t } of the Markov chain

ξt, t ≥ 0, which do not lead to the change of the number n of customers in the
system. The diagonal entries of the matrices C(n), n = 0, N , and C̄ are negative
and define, up to the sign, intensity of leaving the corresponding states of the
Markov chain ξt, t ≥ 0.

The entries of the matrices E
(n)
k define intensity of transitions of the compo-

nents {rt, νt,m(1)
t , . . . ,m

(M)
t } of the Markov chain ξt, t ≥ 0, which are accompa-

nied by arrival of k customers conditioned on the fact that the number of busy
servers at arrival epoch is n.

The entries of the matrices Ê
(n)
k define intensity of transitions of the compo-

nents {rt, νt,m(1)
t , . . . ,m

(M)
t } of the Markov chain ξt, t ≥ 0, which are accom-

panied by arrival of more then k− 1 customers conditioned on the fact that the
number of busy servers at arrival epoch is n.

The entries of the matrices H
(N)
k , k = 1, L− 1, (Ĥl, l = 1, L,) define the

intensity of transitions which are accompanied by arrival of k (not less than l)
customers at the epoch when all servers are busy.

The entries of the matrices L(n), n = 1, N, define intensity of transitions,
which are accompanied by a departure of a customer, conditioned on the fact
that the number of busy servers is n and there is no customers in the buffer.

The entries of the matrix L̄ define intensity of transitions, which are accom-
panied by a departure of a customer, conditioned on the fact that there are
customers in the buffer.

To solve system (1) with the matrixA defined by Lemma 1, we use the effective
numerically stable procedure developed in [8] that exploits the special structure
of the matrix A (it is upper block Hessenbergian) and probabilistic meaning of
the unknown vector p.
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5 Performance Measures

Having the probability vector p been computed, we are able to calculate perfor-
mance measures of the considered model. The main performance measure in the
case of a finite buffer is the probability Ploss that an arbitrary customer will be
lost due to the buffer overflow (the loss probability).

The loss probability Ploss is calculated as follows

Ploss = 1− 1

λ

N+L−1∑
n=0

N+L−n∑
k=0

(k + n−N − L)pnH
(min{n,N})
k e, (2)

where
λ = θ̃D(z)|′z=1e, (3)

and θ̃ is the unique solution to the following system of linear algebraic equations

θ̃(Q⊗ IW̄ +D(1)) = 0, θ̃e = 1.

The loss probability of an arbitrary customer that arrives to the system when
the random environment is staying in the state r is calculated by formula

P
(r)
loss = 1− 1

λ(r)

N+L−1∑
n=0

N+L−n∑
k=0

(k + n−N − L)p̃(r)
n H

(min{n,N})
k e (4)

where

λ(r) =

L+N∑
n=0

∞∑
k=1

kp̃(r)
n H

(min{n,N})
k e, r = 1, R,

p̃(r)
n = pn(e

(r) ⊗ IW̄ ⊗ IKmin{n,N}),

and e(r), r = 1, R, is a column vector of size R with all zero entries except the
entry r which is equal to one.

Other important system performance measures are calculated as

– The mean number of customers in the system

Lsystem =

N+L∑
n=1

npne;

– The mean number of busy servers

Nbusy =
L+N∑
n=1

min{n,N}pne;

– The mean number of idle servers

Nidle = N −Nbusy ;

– The probability Pimm that an arbitrary customer will enter the service im-
mediately upon arrival (without visiting a buffer)

Pimm = λ−1
N−1∑
n=0

N−n∑
k=0

(k + n−N)pnH
(n)
k e.
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6 Sojourn Time Distribution

Let v(s), Re s > 0, be the Laplace-Stieltjes transform of the sojourn time
distribution and v̄ be the mean sojourn time of the arbitrary customer in the
system.

Theorem 1. The Laplace-Stieltjes transform v(s) of the sojourn time distribu-
tion of an arbitrary customer in the system is calculated as follows

v(s) = Ploss +
1

λ
{
N−1∑
n=0

∞∑
k=1

min{k,N − n}pnH
(n)
k (IR ⊗ eW̄Kn

)+ (5)

+

N+L−1∑
n=0

{
N+L−n∑

k=max{1,N−n+1}
pnH

(min{n,N})
k B(max{0,N−n})×

×
k∑

l=max{1,N−n+1}
(F (s))n−N+l(IR ⊗ eKN )+

+

∞∑
k=N+L−n+1

pnH
(min{n,N})
k B(max{0,N−n})×

×
N+L−n∑

l=max{1,N−n+1}
(F (s))n−N+l(IR ⊗ eKn)}H(s)eR,

where

H(s) = diag{β(r), r = 1, R}(sI − (Q ⊗ IM + S))−1diag{S(r)
0 , r = 1, R},

F (s) = (sI − (Q⊗ IKN + diag{ÃN (N,S(r))−
−diag{ÃN (N,S(r))e+ L0(N, S̃

(r))e}, r = 1, R}))−1×
×diag{L0(N, S̃

(r))PN−1(β
(r)), r = 1, R},

B(n) = diag{eW̄ ⊗ PN−n,N (β(r)), r = 1, R}, n = 1, N,

B(0) = diag{eW̄ ⊗ IKN , r = 1, R}
S = diag{S(r), r = 1, R}.

Remark 1. The Laplace-Stieltjes transform v(r)(s) of the sojourn time distri-
bution of an arbitrary customer, which arrives to the system when the state
of random environment is r, can be calculated by means of formula (5) via

replacing the values Ploss, pn, and λ by the quantities P
(r)
loss, p

(r)
n , and λ(r),

correspondingly.
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Theorem 2. The mean sojourn time v1 of an arbitrary customer in the system
is calculated by

v1 = − 1

λ

{N−1∑
n=0

∞∑
k=1

min{k,N − n}pnH
(n)
k (IR ⊗ eW̄Kn

)H′(0)eR+ (6)

+

N+L−1∑
n=0

[ N+L−n∑
k=max{1,N−n+1}

pnH
(min{n,N})
k B(max{0,N−n})×

×
k∑

l=max{1,N−n+1}

n+l−N−1∑
m=0

(F (0))
m
F

′
(0)(F (0))n+l−N−1−m(IR ⊗ eKN )+

+

∞∑
k=N+L−n+1

pnH
(min{n,N})
k B(max{0,N−n})×

×
N+L−n∑

l=max{1,N−n+1}

n−N+l−1∑
m=0

(F (0))
m
F

′
(0)(F (0))n+l−N−1−m(IR ⊗ eKN )

]
eR+

+

N+L−1∑
n=0

{ N+L−n∑
k=max{1,N−n+1}

pnH
(min{n,N})
k B(max{0,N−n})×

×
k∑

l=max{1,N−n+1}
(F (0))

n−N+l
(IR ⊗ eKN )+

+

∞∑
k=N+L−n+1

pnH
(min{n,N})
k B(max{0,N−n})×

×
N+L−n∑

l=max{1,N−n+1}
(F (0))

n−N+l
(IR ⊗ eKN )

}
H′

(0)eR

}
,

where

F
′
(0) = −[Q⊗ IKN + diag{ÃN (N,S(r))− diag{ÃN (N,S(r))e+

+L0(N, S̃
(r))e}, r = 1, R}]−2diag{L0(N, S̃

(r))PN−1(β
(r)), r = 1, R},

H′
(0) = −diag{β(r), r = 1, R}[Q⊗ IM + S]−2diag{S(r)

0 , r = 1, R}.

To get v1 we differentiate (5) at the point s = 0 and use the formula v1 = −v′(0).

Remark 2. The average sojourn time v
(r)
1 of an arbitrary customer, which ar-

rives to the system when the state of random environment is r, can be calcu-

lated by formula (6) where notations pn and λ are replaced with p
(r)
n and λ(r),

correspondingly.
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Calculation of highermoments of the sojourn time distribution is based on formula

vm = (−1)m
dmv(s)

dsm
|s=0, m ≥ 1, (7)

for an arbitrary customer and formula

v(r)m = (−1)m
dmv(r)(s)

dsm
|s=0 (8)

for an arbitrary customer which arrives to the system when the state of random
environment is r.

Using formulas (7) and (8), the second moments v2 and v
(r)
2 of the sojourn

time distribution can be found taking into account that

H′′(0) = 2diag{β(r), r = 1, R}[Q⊗ IM + S]−3diag{S(r)
0 , r = 1, R},

F
′′
(0) = 2[Q⊗ IKN + diag{ÃN (N,S(r))− diag{ÃN(N,S(r))e+

+L0(N, S̃
(r))e}, r = 1, R}]−3diag{L0(N, S̃

(r))PN−1(β
(r)), r = 1, R},

[F k(s)]′|s=0 =

k−1∑
m=0

(F (0))mF ′(0)(F (0))k−m−1,

[F k(s)]′′|s=0 =
k−1∑
m=0

[m−1∑
j=0

(F (0))jF ′(0)(F (0))m−1−jF ′(0)(F (0))k−m−1+

+(F (0))mF ′′(0)(F (0))k−m−1+(F (0))mF ′(0)
k−m−2∑
u=0

(F (0))uF ′(0)(F (0))k−m−2−u

]
.

Having known two first moments v
(r)
1 and v

(r)
2 of sojourn time distribution of a

customer arrived at the moment when the state of random environment is r one
can approximate the density of this distribution, e.g., by function

v(r)(t) = q(r)
μ
(r)
1 (μ

(r)
1 t)

k
(r)
1 −1

(k
(r)
1 − 1)!

e−μ
(r)
1 t + (1 − q(r))μ

(r)
2 (μ

(r)
2 t)

k
(r)
2 −1

(k
(r)
2 − 1)!

e−μ
(r)
2 t

where unknown parameters q(r), μ
(r)
i , 0 ≤ q(r) ≤ 1, μ

(r)
i ≥ 0, and positive

integers k
(r)
i , i = 1, 2, should be found from the relations

v
(r)
1 = q(r)

k
(r)
1

μ
(r)
1

+ (1− q(r))k
(r)
2

μ
(r)
2

,

v
(r)
2 = q(r)

k
(r)
1 (k

(r)
1 − 1)

(μ
(r)
1 )2

+ (1− q(r))k
(r)
2 (k

(r)
2 − 1)

(μ
(r)
2 )2

.
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Let now T (r) be the guaranteed by an operator value of sojourn time of an
arbitrary customer that arrived at the moment when the state of random en-
vironment is r, r = 1, R. Assume that, according to a service level agreement,
actual sojourn time of an arbitrary customer that arrived at the moment when
the state of random environment is r may be greater than T (r) only with small
probability ε(r), r = 1, R. Equation, which matches the values of T (r) and ε(r),
has the following form:

∞∫
T (r)

(
q(r)

μ
(r)
1 (μ

(r)
1 t)

k
(r)
1 −1

(k
(r)
1 − 1)!

e−μ
(r)
1 t + (1 − q(r))μ

(r)
2 (μ

(r)
2 t)

k
(r)
2 −1

(k
(r)
2 − 1)!

e−μ
(r)
2 t

)
dt = ε(r).

This equation along with formulas for loss probabilities P
(r)
loss can be considered

as a mathematical background for fixing guaranteed level of service to customers
arrived to the system under various states of the random environment.

7 Conclusion

The BMAP/PH/N/L system operating in random environment as a model
of service providing by mobile operator in varying external conditions is inves-
tigated. Variation of conditions may randomly occur at moments when some
events having social importance or events relating to sport competitions or dis-
asters occur. The joint stationary distribution of the number of the customers
in the system, the state of the random environment, and the states of the un-
derlying processes of arrival and service processes is calculated. The analytic
formulas for some performance measures of the system are derived. Laplace-
Stieltjes transform of sojourn time distribution is derived and the mean sojourn
time is calculated for an arbitrary customer and an arbitrary customer that
arrived at the moment when the state of random environment is r, r = 1, R.
Formulas matching admissible probabilities of excess of a given level of sojourn
time in the system with different levels are presented. The obtained results can
be used as a base for computing reasonable parameters of the system operation
which should be fixed when service level agreement between an user and oper-
ator is prepared. In contrast to existing methods, our methodology takes into
account heterogeneous character of information flows and their burstyness and
also pre-assumes that quality of service may temporarily become worse due to
some external events. Different values of indicators of quality of service may be
fixed for normal and abnormal situations.

Aspects relating to possible retrials of customers who did not get immediate
access to the system upon arrivals can be treated by analogy with [9].

Acknowledgments. This work was supported by COST IC0906 WiNeMO
(Wireless Networking for Moving Objects).
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Queueing System MAP/M/N/N + K

Operating in Random Environment
as a Model of Call Center

Olga Dudina� and Sergey Dudin
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dudina olga@email.com, dudin@madrid.com

Abstract. A multi-server queueing system with a Markovian Arrival
Process (MAP ), a finite buffer and impatient customers operating in
random environment as a model of a call center is investigated. The
service time of a customer by a server has an exponential distribution. If
all servers are busy at a customer arrival epoch, the customer may leave
the system forever or move to the buffer with probability that depends
on the number of customers in the buffer. During a waiting period, a
customer can be impatient and can leave the system without the service.
System parameters depend on the state of the random environment. An
efficient algorithm for calculating the stationary probabilities of system
states is proposed. Some key performance measures are calculated. The
Laplace-Stieltjes transforms of the sojourn and waiting time distributions
are derived.

Keywords: call center, Markovian arrival process, random environment,
impatient customer.

1 Introduction

Most major companies use call centers for interaction with their customers. Ac-
cording to the latest research, almost all large companies have at least one call
center. Since call centers are at the front line of customer service, the compa-
nies that value their customers have to provide good call center performance. To
describe the operation and improve the performance of call centers queueing the-
ory is used. Adequate mathematical modeling the call centers can substantially
increase their economic efficiency and improves the quality of the customers’
service. For the references and the present state-of-art in investigation of call
centers the reader is referred to the survey [1], the papers [2], [3] and the refer-
ences therein.

The models of call centers in the overwhelming majority of existing papers
assume that the arrival flow of customers is described by a stationary Poisson
arrival process. This assumption greatly simplifies the study of systems, but at
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the same time reduces the adequacy of the model, because arrival flows in most
of modern telecommunication networks are correlated.

The model of call center with Markovian Arrival Process (MAP ) is considered
in [4]. MAP is useful for modelling the arrival flows that do not possess the
properties of stationarity, memory less and ordinarity.

However, even the consideration ofMAP arrival flow not always well suits for
modelling the real arrival flow. MAP arrival flow takes into account an effect of
correlation and inter-arrival times variation but the MAP process is fixed in a
border of considered model. At the same time the arrival flow of customers can
change it characteristics (average arrival rate, coefficient of correlation, varia-
tion coefficient, etc.) depending on some random factors. Moreover, the random
factors can also impact on other system parameters such as the intensity of im-
patience, service time distribution, etc. To take into account the influence of
random factors on the system parameters the queueing systems operating in
random environment are considered. Under consideration queues in random en-
vironment it is assumed that there is a finite state stochastic process independent
on queueing system called as random environment. Under the fixed state of the
random environment the queueing system operates as a classical queueing sys-
tem. However the system parameters (arrival process, service time distribution,
intensity of impatience, etc.) are immediately changed with change the state of
random environment. For the references and the present state-of-art in investi-
gation of the queueing systems operating in random environment the reader is
referred to the papers [5], [6] and the references therein.

To the best of our knowledge, the models of call centers as the queueing system
operating in random environment are not considered in literature previously
despite on their practical importance. In this paper, we deal with a multi-server
queueing system with the MAP process, a finite buffer and impatient customers
operating in random environment. We calculate the stationary distribution of
the system states and derive the Laplace-Stieltjes transform of the sojourn and
waiting time distributions. The formulas for some system performance measures
are obtained.

2 Mathematical Model

We consider a queueing system to model a call center with N operators (servers)
and a finite waiting space (buffer) of capacity K. The behavior of the system
depends on the state of random environment. Random environment is given by
the stochastic process rt, t ≥ 0, which is an irreducible continuous time Markov
chain with the state space {1, 2, . . . , R} and the infinitesimal generator H.

The customers arrive to the system according to MAP . That means the fol-
lowing. The arrival of customers is directed by the stochastic process νt, t ≥ 0,
with the state space {0, 1, . . . ,W}. Under the fixed state r of random environ-
ment this process is an irreducible continuous time Markov chain. The sojourn
time of this chain in the state ν is exponentially distributed with the posi-

tive finite parameter λ
(r)
ν . When the sojourn time in the state ν expires, with
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probability p
(r)
0 (ν, ν′) the process νt jumps to the state ν′ without generation of

customers, ν, ν′ = 0,W , ν �= ν′, r = 1, R and with probability p
(r)
1 (ν, ν′) the pro-

cess νt jumps to the state ν′ with generation of a customer, ν, ν′ = 0,W, r = 1, R.

The behavior of the MAP is completely characterized by the matrices D
(r)
0 ,

D
(r)
1 defined by entries

(D
(r)
0 )ν,ν = −λ(r)ν , ν = 0,W, (D

(r)
0 )ν,ν′ = λ(r)ν p

(r)
0 (ν, ν′), ν, ν′ = 0,W , ν �= ν′,

(D
(r)
1 )ν,ν′ = λ(r)ν p

(r)
1 (ν, ν′), ν, ν′ = 0,W , r = 1, R.

The matrix D(r)(1) = D
(r)
0 +D

(r)
1 represents the generator of the process νt, t ≥

0, under the fixed r = 1, R.
The average arrival rate λ(r) under the fixed state r of random environment

is given as

λ(r) = θ(r)D
(r)
1 e

where θ(r) is the invariant vector of a stationary distribution of the Markov chain
νt, t ≥ 0, under the fixed state r. The vector θ(r) is the unique solution to the
system θ(r)D(r)(1) = 0, θ(r)e = 1. Here e is a column vector of appropriate size
consisting of 1’s and 0 is a row vector of appropriate size consisting of zeroes.

The squared coefficient of variation c
(r)
var of intervals between successive arrivals

is given as

c(r)var = 2λ(r)θ(r)(−D(r)
0 )−1e− 1.

The coefficient of correlation c
(r)
cor of two successive intervals between arrivals is

given as

c(r)cor = (λ(r)θ(r)(−D(r)
0 )−1D

(r)
1 (−D(r)

0 )−1e− 1)/c(r)var.

More information about the MAP and related research is given, e.g., in [7], [8].
At the epochs of transitions of process rt, t ≥ 0, the states of the process

νt, t ≥ 0, do not change, only the intensities of transition of this process change.
We also suggest that the call center queue is ”visible” (see, e.g., [9]), which

means the following. An arriving customer, who cannot enter into service imme-
diately, is informed about the queue length. The customer then decides either
to leave the system immediately due to the length of the queue is inadmissible
or join the queue.

So, in mathematical model we assume that if at an arbitrary customer arrival
epoch there is a free server, a customer is admitted to the system and occupies
the free server.

If at a customer arrival epoch all servers are busy and i, i = 0,K − 1, cus-
tomers are presenting in the buffer then this customer leaves the system with

probability q
(r)
i under the fixed state r of random environment or moves to the

buffer with supplementary probability.
If at an arbitrary customer arrival epoch the buffer is full, the customer leaves

the system forever.
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The customers can be impatient, i.e., under the fixed state r of random envi-
ronment the customer leaves the system after arrival in random time, which is
exponentially distributed with the parameter α(r), 0 < α(r) <∞.

The service time (talk time and after talk work time) of a customer by each
server has an exponential distribution. Under the fixed state of random en-
vironment r the service time is exponentially distributed with the parameter
μr, r = 1, R.

3 The Process of System States

Let it be the number of customers in the system, it = 0, N +K, rt be the state
of random environment, rt = 1, R, and νt be the state of the directing process
of the MAP , νt = 0,W.

So, the behavior of the system under consideration can be described in terms
of the regular irreducible continuous-time Markov chain

ξt = {it, rt, νt}, t ≥ 0.

Since the Markov chain ξt is regular irreducible and has a finite state space, then
for any choice of the system parameters there exist stationary probabilities of
the system states which are defined as follows:

π(i, r, ν) = lim
t→∞P{it = i, rt = r, νt = ν}, i = 0, N +K, r = 1, R, ν = 0,W .

Then let us form the row vectors πi:

π(i, r) = (π(i, r, 0), π(i, r, 1), . . . , π(i, r,W )), r = 1, R,

πi = (π(i, 1),π(i, 2), . . . ,π(i, R)), i = 0, N +K.

It is well-known that the probability vectors πi, i = 0, N +K, satisfy the fol-
lowing system of linear algebraic equations:

(π0,π1, . . . ,πN+K)Q = 0, (π0,π1, . . . ,πN+K)e = 1 (1)

where Q is the infinitesimal generator of the Markov chain ξt, t ≥ 0.

Lemma 1. The infinitesimal generator Q of the Markov chain ξt, t ≥ 0, has
the block-three-diagonal structure:

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Q0,0 Q0,1 O . . . O O
Q1,0 Q1,1 Q1,2 . . . O O
O Q2,1 Q2,2 . . . O O
...

...
...

. . .
...

...
O O O . . . QN+K−1,N+R−1 QN+K−1,N+K

O O O . . . QN+K,N+K−1 QN+K,N+K

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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The non-zero blocks Qi,j , i, j ≥ 0, have the following form:

Qi,i = D̃0 + δi,N Q̄i−N D̃1 + [H − iA]⊗ IW̄ , i = 0, N,

Qi,i = D̃0 + Q̄i−N D̃1 + [H −NA− (i−N)E]⊗ IW̄ , i = N + 1, N +K − 1,

QN+K,N+K = D̃0 + D̃1 + [H −NA−KE]⊗ IW̄ ,
Qi,i−1 = iA⊗ IW̄ , i = 1, N,

Qi,i−1 = [NA+ (i −N)E]⊗ IW̄ , i = N + 1, N +K,

Qi,i+1 = D̃1, i = 0, N − 1,

Qi,i+1 = (I − Q̄i−N )D̃1, i = N,N +K − 1,

where

• I is an identity matrix, O is a zero matrix of appropriate dimension;
• ⊗ is the symbol Kronecker’s product, see, e.g., [10];
• W̄ =W + 1;

• D̃l = diag{D(r)
l , r = 1, R}, l = 0, 1;

• A = diag{μr, r = 1, R};
• Q̄k = diag{q(r)k , r = 1, R} ⊗ IW̄ , k = 0,K − 1;
• E = diag{α(r), r = 1, R}.

The proof of Lemma 1 is implemented by means of the analysis of all transitions
of the Markov chain ξt, t ≥ 0, during the interval of an infinitesimal length and
rewriting intensities of these transitions into the block matrix form.

If the dimension of the system (1) is small, it can be easily solved on a com-
puter by standard methods. Otherwise, to solve this system the following nu-
merically stable algorithm can be used.

Theorem 1. The vectors πi, i = 0, N +K, are given as follows

πi = πi−1Ti−1 = π0Fi, i = 1, N +K,

where the matrices Fi are calculated using the recurrent formulas:

F0 = I, Fi = Fi−1Ti−1, i = 1, N +K,

the matrices Ti, i = 0, N +K − 1, are calculated using the backward recursion

Ti = −Qi,i+1(Qi+1,i+1 + Ti+1Qi+2,i+1)
−1, i = N +K − 2, N +K − 3, . . . , 0,

under the initial condition

TN+K−1 = −QN+K−1,N+K(QN+K,N+K)−1,

the vector π0 is the unique solution to the system

π0(Q0,0 + T0Q1,0) = 0, π0

N+K∑
l=0

Fle = 1.

The numerical stability of the proposed algorithm follows from the fact, that all
inverted matrices computed in this algorithm are irreducible sub-generators. So,
as it is well known from the matrix theory, these inverse matrices exist and are
non-negative.
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4 Performance Measures

As soon as the vectors πi, i = 0, N +K, have been calculated, we are able to find
various performance measures of the system (call center) under consideration.

The stationary distribution of the number of customers in the system is given
as

lim
t→∞P{it = i} = πie, i = 0, N +K.

The average number of customers in the system is calculated as

L̃ =

N+K∑
i=1

iπie.

The average number of customers in the buffer is given as

N buffer =
N+K∑
i=N+1

(i−N)πie.

The average number of busy servers is computed by

Nserver =
N+K∑
i=1

min{i, N}πie.

The loss probability of an arbitrary customer at the entrance to the call center
due to buffer overflow is given as

P ent−loss = λ−1πN+KD̃1e

where the average arrival rate λ is calculated as follows

λ = θD̃1e,

and the vector θ is the unique solution to the following system

θ(H ⊗ IW̄ + D̃0 + D̃1) = 0, θe = 1.

The probability P esc−loss that an arbitrary customer arrives when all servers
are busy, buffer is not full, and the customer does not join the buffer and leaves
the system is given as

P esc−loss = λ−1
N+K−1∑

i=N

πiQ̄i−N D̃1e.

The intensity of flow of customers, which get the service in the system, is calcu-
lated as

λout =

N+K∑
i=1

min{i, N}πi(A⊗ IW̄ )e.
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The loss probability of an arbitrary customer is calculated as

P loss = 1− λ
out

λ
.

The probability P imp−loss that an arbitrary customer after arrival will go to the
buffer and leave it due to impatience is computed by

P imp−loss = P loss − P ent−loss − P esc−loss.

5 Distribution of Sojourn Time of an Arbitrary Customer
in the System

Let V (x) be the distribution function of the sojourn time of an arbitrary cus-

tomer in the system and v(s) =
∞∫
0

e−sxdV (x), Re s > 0, be its Laplace-Stieltjes

transform (LST ).
Let us tag an arbitrary customer and keep track of its staying in the system.

We will derive the expression for the LST v(s) by means of the method of collec-
tive marks (method of additional event, method of catastrophes) for references,
see, e.g., [11], [12]. To this end, we interpret the variable s as the intensity of
some imaginary stationary Poisson flow of catastrophes. So, v(s) has the mean-
ing of the probability that no catastrophe arrives during the sojourn time of the
tagged customer.

Let y(s, r) be the probability that a catastrophe will not arrive during the
rest of the tagged customer’s service time in the system conditioned on the fact
that at the given moment the state of the random environment is r, r = 1, R.

The probabilities y(s, r) can be found from the following system of linear
algebraic equations:

y(s, r) = (μr −Hr,r + s)
−1(μr +

R∑
r′=1, r′ �=r

Hr,r′y(s, r
′)), r = 1, R. (2)

Let us form the vector

y(s) = (y(s, 1), . . . , y(s,R))T ,

and rewrite system (2) into the matrix form as

(−A+H − sI)y(s) = −Ae.
Note, that the matrix−A+H−sI is subgenerator, so the matrix (−A+H−sI)−1

exists and
y(s) = (A−H + sI)−1Ae.

Let w(s, l, r) be the probability that a catastrophe will not arrive during the rest
of the tagged customer’s sojourn time in the system conditioned on the fact that
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at the given moment the tagged customer has the position l, l = 1,K, in the
buffer, and the state of the random environment is r, r = 1, R.

The probabilities w(s, l, r), l = 1,K, r = 1, R, can be found from the system
of linear algebraic equations:

w(s, l, r) = (s+lα(r)+Nμr−Hr,r)
−1

(
δl,1Nμry(s, r)+(1−δl,1)Nμrw(s, l−1, r)+

+

R∑
r′=1, r′ �=r

Hr,r′w(s, l, r
′) + (l − 1)α(r)w(s, l − 1, r) + α(r)

)
. (3)

To find the solution to system (3), let us introduce the column vectors

w(s, l) = (w(s, l, 1), . . . , w(s, l, R))T ,w(s) = ((w(s, 1))T , . . . , (w(s,K))T )T ,

and rewrite system (3) into the matrix form as

(−sI −NA− lE +H)w(s, l) + δl,1NAy(s)+

+((1− δl,1)NA+ (l − 1)E)w(s, l − 1) + Ee = 0T , l = 1,K,

and then

(−sI−NIK⊗A−C⊗E+IK⊗H+NE−⊗A+(C−IK)E−⊗E)w(s)+a(s) = 0T ,
(4)

where
C = diag{1, . . . ,K},

E− is a square matrix of size K with all zero entries except the entries
(E−)i,i−1, i = 1,K − 1, which are equal to 1,

a(s) = ((NAy(s) + Ee)T , (Ee)T , . . . , (Ee)T︸ ︷︷ ︸
K

)T .

Let us introduce the matrix

V = −NIK ⊗A− C ⊗ E + IK ⊗H +NE− ⊗A+ (C − IK)E− ⊗ E.
So, system (4) can be rewriten in the following form:

(V − sI)w(s) + a(s) = 0T . (5)

It can be verified that the diagonal entries of the matrix V − sI dominate in
all rows of this matrix. So the inverse matrix exists. Thus we have proved the
following assertion.

Theorem 2. The vector w(s) consisting of the conditional LST w(s, l, r), l =
1,K, r = 1, R, is calculated as

w(s) = −(V − sI)−1a(s). (6)
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Formula (6) gives the explicit form of the vector w(s), but in practice the matrix
V − sI usually has a big dimension. Using the fact that this matrix has block
form the subvectors w(s, l), l = 1,K, of the vector w(s) can be easily calculated
by recurrent formulas:

w(s, 1) = (NA+ E −H + sI)
−1

(NAy(s) + Ee)T ,

w(s, l+1) = (NA+ (l + 1)E −H + sI)
−1

[Ee−(NA+lE)w(s, l)]T , l = 1,K − 1.

Theorem 3. The LST v(s) of distribution of an arbitrary customer’s sojourn
time in the system is computed by

v(s) = P ent−loss + P esc−loss + λ−1[

N−1∑
i=0

R∑
r=1

π(i, r)D
(r)
1 ey(s, r)+

+

N+K−1∑
i=N

R∑
r=1

(1 − q(r)i−N )π(i, r)D
(r)
1 ew(s, i−N + 1, r)].

Corollary 1. The average sojourn time Vsoj of an arbitrary customer is calcu-
lated by

Vsoj = −v′(s)|s=0 = −λ−1[

N−1∑
i=0

R∑
r=1

π(i, r)D
(r)
1 e

∂y(s, r)

∂s
|s=0+

+
N+K−1∑

i=N

R∑
r=1

(1− q(r)i−N )π(i, r)D
(r)
1 e

∂w(s, i−N + 1, r)

∂s
|s=0].

Here the values ∂w(s,l,r)
∂s |s=0, l = 1,K, r = 1, R, are calculated as the entries of

the vector dw(s)
ds |s=0 = −V −1[a′(0)− e], and the values ∂y(s,r)

∂s |s=0 are calculated

as the entries of the vector dy(s)
ds |s=0 = −(A−H)

−1
e.

Corollary 2. The average waiting time Vwait of an arbitrary customer is cal-
culated by formula

Vwait = −λ−1
N+K−1∑

i=N

R∑
r=1

(1− q(r)i−N )π(i, r)D
(r)
1 e

∂z(s, i−N + 1, r)

∂s
|s=0

where the values ∂z(s,l,r)
∂s |s=0, l = 1,K, r = 1, R, are calculated as the entries of

the vector dz(s)
ds |s=0 = −V −2a(0).

6 Conclusion

In this paper, the multi-server queueing system with a MAP arrival process, a
finite buffer and impatient customers operating in random environment is in-
vestigated. The process of system states is considered. The numerically stable
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algorithm for calculating the steady state probabilities is presented. Expressions
for the main performance characteristics of the system and the Laplace-Stieltjes
transforms of the sojourn and waiting time distributions are obtained. The pre-
sented results can be used for modeling, performance evaluations and optimiza-
tion of real call centers.
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Abstract. The problems of telecommunication networks designing
could be presented into three aspects: 1) choice of the capacity for each
telecommunication link with total minimum network cost; 2) QoS-routing
of multicommodity flows in the synthesized network for all forecasting de-
mands and 3) providing a necessary level of survivability. We consider
QoS-routing, taking into account various performance requirements: de-
lay, variation of the delay (jitter), bandwidth, packet loss probability. In
this article we consider QoS-routing adding to consideration new
constraints which provide the delay requirements as the important part
of QoS.

Keywords: telecommunication networks design, optimization in
telecommunication, multicommodity flows, QoS-routing, survivability.

1 Introduction

The development of the WWW-service and Virtual Private Networks (VPNs)
has greatly changed the nature of telecommunication network design [1]. New
applications, such as video conferencing, Internet telephony, various forms of e-
commerce, e-government and e-learning represent specific performance require-
ments. Many of these applications are typically delay-sensitive with performance
guarantees, sufficient resources (for example, bandwidth, processing time of the
routers) are made available to various classes of traffic so that certain specified
performance requirements (delay, variation delay) will be explicitly met. For
such applications the best efforts service is no longer acceptable. Till today, the
Internet was dominated by applications such as file transfer and e-mail. Since
these applications could tolerate considerable delays, so-called the best efforts
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service, which not provide any performance guarantees, were acceptable. Below
we should see that these problems are interconnected and it is possible to use the
common mathematical model for their simultaneous decision. The term Quality
of Service (QoS) describes network features that are used to provide the better
than the best efforts performance that is required by any applications [1], [2]. In
particular, we introduce QoS-routing by involving the multiple constrains: delay,
variation of the delay (jitter), bandwidth, packet loss probability.

Our approach of telecommunication network designing could be presented into
three following models.

Model 1 (Choice of Capacites). Sets of possible technologies for future telecom-
munication networks are given. It is necessary to determine the type, technologies
and capacity for each telecommunication link.

Model 2 (QoS-Routing). It necessary to route of multicommodity flows in the
synthesized network for all forecasting demands and QoS requirements (delay,
jitter, packets loss e.g.).

Model 3 (Survivabiliy). Providing the necessary level of survivability is desir-
able to design networks that are robust with respect to link one node failures.
The survivability is an important part of QoS requirements.

The article continues our investigations presented in [3].

2 Choice of the Capacity of the Telecommunication
Networks

We shall represent the topology of the telecommunication networks as non-
directed (or direct) graph G = (V,E), where V is the set of nodes and E is
the set of potential edges (arcs) connecting the nodes. The nodes of the graph
G represent user equipment, routers, switchers, cross-connecters etc. The edges
e ∈ E of the graph G represent the telecommunication links which can be po-
tentially used (exist by the current moment or can be established); for example,
an optical fiber, copper links, radio-wave links, satellite channels, etc. If between
two net nodes there are some various communication links they are represented
by the parallel edges responding different technologies: Ethernet, Frame Relay,
ISDN, ATM, etc. In telecommunication networks each link at transfer of the
information is directed: one node passes the information, and the other accepts.
The establishment of the link between i and j allows to pass an amount of the
information in unit of time between i and j and the same amount of the infor-
mation between j and i, if connectivity is synchronous, and total (from i to j
plus from j to i) amount of the information, if connectivity is asynchronous.

A traffic demand (or just demand) is a requirement on the network design
to provide for predetermined source s and sink t the future volume information
d(s, t). Let D be the set of all demands. For all demands (s, t) ∈ D the positive
numbers d (s, t) are called function of the traffic. The function of the traffic is
determined statistically on the basis of the information flows growth forecast.

As capacity ye(e) of the link e ∈ E, possible physical capacities of telecom-
munication links (at use the lease links and dial-up links for realization of
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connectivity of type a point - point between net nodes), and speed on which
connectivity can be carried out to local or global networks are understood. It
is measured in bits/s or some resource unit (64 Kbit/s, channels, E1/T1s, frac-
tional T1s, wavelengths, OC-ns). At use of a synchronous link in 1024 Kb/s it is
possible to transfer in the same second 1024 kilobits/second (Kb/s) from i to j
and 1024 Kb/s from j to i. There are two links of identical capacity in each such
link that is essential. At asynchronous connectivity in 1024 Kb/s in the same
second the information with total speed in 1024 Kb/s is transferred from i to j
and from j to i, that it is necessary to take into account at designing networks.

There are two cases of the formulated problem: designing of topology and tech-
nology of a telecommunication network and upgrade of topology and a choice of
technology of an existing network. As we shall see below, there are mathemati-
cal models which are common for both cases. For this purpose it is possible to
consider that initial capacity of the each edgee of the graph G is C0(e). If today
there are not such channels, we are on opinion that C0(e) = 0. That on estab-
lishing the links with initial capacity C0(e) it is not required capital expenses. In
modern technologies continuous capacities seldom meet in practice. Much more
often communication links have discrete capacities.

For each e ∈ E set of possible capacities are determined by the following
parameters:
t(e) = |T (e)| is the number of possible additional capacities for an edge e;
Ct(e) ∈ Z+(1 ≤ t ≤ t(e)) are the potential technologies for an edge e (it is

supposed that C0(e) ≤ C1(e) ≤ · · · ≤ Ct(e)(e));
Kt(e) ∈ Q+(1 ≤ t ≤ t(e)) is the cost of establishing the communication link

with capacity Ct(e).
For each edge e ∈ E, we introduce the variables

x0(e) ≥ x1(e) ≥ · · · ≥ xt(e), (1)

xt (e) ∈ {0, 1} , for all e ∈ E, t = 1, t(e). (2)

A choice of the capacity Cτ (e)(0 ≤ τ ≤ t(e)) for an edge means that x0(e) =
x1(e)... = xτ (e) = 1, xτ+1(e) = ... = xt(e) = 0.

Then variables

y(e) =

t(e)∑
t=0

ct(e)xt(e), for all e ∈ E, (3)

representing the capacities are installed on the edges e. Here

ct(e) = Ct(e)− Ct−1(e)(1 ≤ t ≤ t(e)), kt(e) = Kt(e)−Kt−1(e)(1 ≤ t ≤ t(e)).

For convenience of denotations we shall put c0(e) = C0(e) and k0(e) = K0(e).
If we should designate the cost K(e) of establishing the telecommunication

link e ∈ E, the common problem of design of topology and a choice of capacities
y(e) of networks could be formulated as follows.

Problem of the Capacity Choice: it is necessary to find subgraph G = (V,E)
of the complete graph on set of vertices V with the minimal total cost of edges
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K (G) =
∑
e∈E

K (e) such that the capacities of edges of the graph G′ provide

QoS-routing (probably, in view of constraints on lengths, delay, . . . , of telecom-
munication links) the required amount of the information in accident-free and in
failures.

In other words, it means the following. The general problem of the telecom-
munication network design, including routing of information flows, will consist in
definition of capacities of all telecommunication at which there is minimum cost
network providing the transfer of flows under all demands (s, t) traffic d(s, t).

In the case of considering networks with multiple edges, models of the choice
of technologies could be simplified. Namely, if we should suggest that each line
(edge) is responded with unique technology Cτ (e) and with cost Kτ (e) the prob-
lem of a choice of technology becomes simpler and can be formulated in the
following ways:

to determine subgraph G = (V,E) with the minimum cost of edges
∑
e∈E

K(e)

and capacities y c(e) = C(e) for e ∈ E and y(e) = 0 for e /∈ E, providing routing
the traffic for all demands.

The above mentioned problem could be a little bit complicated: it is necessary
to minimize a total cost of establishing of additional telecommunication links,
and also to determine the routing paths on which the data will be transferred
for satisfaction of all demands (a problem of routing). Understandably, that not
at any capacities of links and topology of a network the solution of a problem of
routing is possible.

In the optimal solution capacities y(e) could be equal to 0, therefore the
problem of a choice of technologies automatically also includes the problem of a
choice of topology of a network.

Designing of a network without taking into account capacities can be applied
at building of a new network. Sometimes at the initial stages of development
more attention is given to topology, and capacities of separate communication
links are determined at later stages (only topological models are used). For
optimization of already existing network models, which will take into account at
capacities of existing topology, are more preferable.

In view of the introduced denotations and assumptions the problem of a choice
of the capacities can be formulated as the follows:

min
∑
e∈E

t(e)∑
t=1

kt(e)xt(e), (4)

subjects to (1)-(3) and supplement of constraints to provide QoS-routing in a
network (V,E, y) the traffic d(s, t) for all demands (s, t) ∈ D.

3 QoS-Routing of the Multicommodity Flows in the
Form of “Flows-Arcs”

The problem of routing is an identification of one or several paths along which
there will be traffic d(s, t) from a source s to a sink t. A flow between s and t
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nodes we shall call a flow of the type (s, t). Thus, in a problem of routing it is
necessary to segment the traffic and, for each of the segments, to find the path
of data transfer. Thus on one link there could be different flows, but in the sum
they should not exceed its real opportunities on data transfer.

The initial base model used for the analysis paths are multiflows in the net-
works [4], [5], [6], [7], [8], [9]. There are possible two formulations of the model
in terms of ”flows - arcs” and in terms of ”flows - paths”. We shall also use both
of them below and consider the models for two technologies: synchronous and
asynchronous.

If an edge e = (v, w) ∈ E is directed from v to w we say, that e leaves from
v and enters in w. Set of the arcs, which are incoming in v, we shall designate
through Eint(v) and the arcs leaving v is denotes as Eout(v).

The nonnegative numbers

f(s, t; e) > 0, e ∈ E, for all (s, t) ∈ D (5)

are called as a multiflow, if they satisfy the following linear balance equations:

∑
e∈Eint(v)

f(s, t, e)−
∑

e∈Eout(v)

f(s, t, e) =

⎧⎨⎩
−d(s, t), v = s,
0, v �= s, t,
d(s, t), v = t,

for all v ∈ V, (s, t) ∈ D.

(6)
and also inequations on capacities of edges:

for synchronous technologies:∑
(s,t)∈D

f(s, t, e) ≤ y(e), for all e ∈ E; (7)

or for asynchronous technologies:

0 ≤
∑

(s,t)∈D

(
f+ (s, t, e) + f− (s, t, e)

) ≤ y (e) , for all e ∈ E (7′)

which express that fact that the total amount of the flows of all types in both
directions on any edge cannot exceed capacity of this edge.

The problem of designing of an optimal telecommunication network with dis-
crete capacities y(e) is formulated as the multi-commodity flow models, described
by (1)-(7) for synchronous network or (1)-(6), (7’) for asynchronous networks.

QoS-routing should be provided by including constraint for the average packet
delay. The queuing plus transmission delay have frequently been approximated
using M/M/1 model. As the results by the Kleinrock-formula [1] for average
packet delay in the network the following constraints should be noted:

1

γ

∑
e∈E

fe(s, t, e)[
1

ye(s, t, e)− fe(s, t, e) +μ(Pe+Ke)] ≤ Tmax(s, t), for all(s, t) ∈ D

(8)
where: Tmax(s, t) is maximum possible delay; 1/μ is the average packet length
(bits/packet); λe is the average packet arrival rate to link e (packets/second);
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Pe is propagation delay on link e; Ke is node processing delay entering link e; γ
is total traffic in the network (packets/second).

There are some ways to determine maximum possible delay. First of all, you
should allocate Tmax(s, t) empirically, for example, from performance required
by any application.

Klincewicz [1] proposed the algorithms to allocate maximum delay for each
route any links and the network at the whole. An objective function could be
more complicated and include other requirements of QoS, not only delay, but,
for example, cost of delay for each link e [1]:

T(s, t, e) = β
fe(s, t, e)

ye(s, t, e)− fe(s, t, e) (9)

where T (s, t, e) is cost delay for link of the demand (s, t); β is cost factor.
Function (9) is derived from M/M/1 expression for queuing and insertion

delay.

4 QoS-Routing in the Form of “Flows-Paths”

Let’s designate through P (s, t) the set of all paths from s in t in graph G =
(V,E). Concrete path P from P (s, t), containing an edge (or vertex u), we shall
designate P ∈ P (s, t) : e ∈ P, u ∈ P. Let f(s, t;P ) be the flow of type (s, t) along
path P ∈ P (s, t).

It is known that always there is a decomposition of the flow f(s, t; e) as flows
on paths (the theorem of decomposition [5]) so, that

f(s, t; e) =
∑

P∈P (0;s,t):e∈P

f(s, t;P ).

Cost of transfer of unit of the flow on path P ∈ P (s, t) is determined by the
following.

K(s, t;P ) =
∑
e∈P

K(s, t, e),

where K(s, t; e) is cost of transfer on an arc e the unit of the information on
demand (s, t). Cost of transfer can not depend on type of the demand (s, t). In
general K(s, t; e) can differ from cost kτ (e), escalating capacity of a line e on
technology τ .

The problem of designing of an optimal telecommunication network for dis-
crete capacities y(e) in the form of ”flows-paths” can be represented as the
following model: ∑

(s,t)∈D

∑
P∈P (0,s,t):e∈P

K(s, t; e)f(s, t;P ) → min (10)

subject to (1)-(2) and constraints on capacities of the arcs for synchronous links

∑
(s,t)∈D

∑
P∈P (0;s,t):e∈P

f(s, t;P ) ≤ y(e); y(e) =
t(e)∑
t=0

ct(e)xt(e), for all e ∈ E; (11)
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on constraints on volume of the demands∑
P∈P (0;s,t;)

f(s, t;P ) = d(s, t) for all(s, t) ∈ D (12)

f(s, t;P ) ≥ 0 for all (s, t) ∈ D and P ∈ P (s, t). (13)

For asynchronous links constraints (11) are replaced by the following:∑
(s,t)∈D

∑
P∈P (0;s,t):e∈P

f(0; s, t;P ) ≤ y(e), for all e ∈ E+(for direct arcs); (11′)

∑
(s,t)∈D

∑
P∈P (0;s,t):e∈P

f(0; s, t;P ) ≤ y(e), for all e ∈ E−(for return arcs).

It is not difficult to notice, that the problem of routing formulated through flow
variables on the ways, has simple enough structure of constraint s. For each edge
e ∈ E there is a unique constraint on total amount of the flows on an edge. It is
limited by its bandwidth. For each demand (s, t), there is one constraint which
guarantees that the amount of the flow from a source s to a sink t will be equal
d(s, t).

The main feature of the given model is polynomial number of the constraints
and exponential number of unknown variables. For the solution of relaxation
problems LP for the given model the simplex - method with procedure of gen-
eration columns is effective [10], [11].

In case of loading of telecommunication links some paths, carrying the in-
formation between pairs of s and t nodes from set of demand D, could appear
very long. By the various reasons (for example, to reduce the delays to estab-
lish the connectivity or to reduce loading computers) it happens desirable to
limit length of communication ways [1]. We described above the models (1)-(7)
or (1)-(6), (7’) of designing of optimal networks with unlimited length of paths
and models without unlimited length of ways. More complicated models include
multi-constraints (see, for example, [1], [2], [12]).

Let each link (u, v) ∈ E be specified by m additive QoS weights wi(u, v) ≥
0, i = 1, . . . ,m. The weights correspond to the QoS metrics: delay, variation
of delay and so on. Delay is the amount of time between the moments when
a packet enters the network and leaves the network. It is the most common
factor considered in QoS metrics. So, in this paper we pay more attention for
consideration of delay factor. The various possible components of delay include:
insertion delay, queuing delay, node processing delay and propagation delay.
Insertion (transmission) delay refers to the time required to insert a packet of
given size (in kilobits) on transmission facility that severs packets at a given
rate (kilobits per second). Queuing delay refers to the time that the packet has
to wait at the output buffer to be served by the transmission facilities. Node
processing delay includes time required for the router to examine and route the
packet and to perform other operations, such as encryption/decryption of data
compression. The propagation delay refers to the time required to traverse the
transmission facility (related to the length of the link and the speed of light).
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A path from source s to sink t such that∑
(u,v)∈P

wii(u, v) ≤ Li for all i = 1, . . . ,m, (14)

is called QoS-feasible path. Let Pfes(s, t) be the set of QoS-feasible paths from
s to t. Then the problem of QoS-routing should be formulated as the models
described by (10-14) where the set of all paths P (s, t) is changed on the set of
QoS-feasible paths Pfes(s, t).

5 Solution Strategy

The optimization models described in previous section lead to mixed-integer lin-
ear programs with Boolean variables xi which are presented by discrete capacities
y(e) and continues variables f(s, t, e) or f(s, t, P ) [3], [13], [14].

Standard approach allows to combine enumeration algorithm for definition
discrete capacities y(e) and special linear programm for multicommodity flow
with additional constraints (constraints paths, QoS-feasible path, etc.).

Without loss of a generality, it is possible to assume that all costs K(e) of
edges of the graph G are integer. It implies that if Kopt is a cost of an optimal
network then Kopt ∈

[
0,Kmax =

∑
e∈E Kt (e)

]
. Thus, the problem of designing

the network can be solved with use of the dichotomy on a cost interval [0,Kmax].
The chosen approach could be reduced to the solution O (logK) of the following
ND(K) problem:

ND(K) problem: for each integer K, to find subgraph G = (V,E) of the graph,
taking in account that

∑
e∈E

K (e) ≤ K and capacities y(e) of edges of the graph

G provide routing, probably taking into account the constraints on lengths of
paths (strategy of short ways or QoS-feasible paths) in normal and in all failure
states.

Let consider the solution of the problem ND(K). Take for example the problem
of providing the survivability of the network by strategy of reservation in case
of asynchronous networks. We shall introduce the following objective function:

zu(f
+
u , f

−
u , yu) =

=
∑

(s,t)∈D

∑
e∈E

αu,st(e)(f
+(u; s, t; e)+f−(u; s, t; e))+

∑
(s,t)∈D

βu,styu,st+μy → max

where: αu,st(e)(0 ≤ αu,st(e) ≤ d(u, s, t)) is parameter which determines the
amount of the minimal demand.

Let’s determine the coefficients of objective function as follows:

αu,st(e) = −1 for all e ∈ E, (s, t) ∈ D;βu,st =

{
K + 1

2 , u = 0;
|V |, u �= 0.

Parameter m can get one of two values: 0 or M where, as it is traditional in
linear programming formulation, M is big enough number.
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If for providing survivability of a network strategy of reservation is used the
ND(K) problem could be written down as the following ND1(K) linear prob-
lem: to maximize objective function z0

(
f+0 , f

−
0 , y0

)
subject to the following con-

straints on nonnegative flow variables:
on equality to zero of the flows on the failure nodes:

f+(u; s, t;u) = 0, f−(u; s, t;u) = 0, for all (s, t) ∈ D, u ∈ E;
f+(u; s, t; e) = 0, f−(u; s, t; e) = 0, for all e ∈ Eint(u) ∪Eout(u), (s, t) ∈ D, u ∈ V ;

on the numbers of the demands which have been written down for all s ∈ {0} ∪
Ē ∪ V̄ as:

d(u; s, t) ≤ y(u; s, t) ≤ d(s, t), (s, t) ∈ D,
and also under following conditions imposed by dichotomy process:∑

e∈E

K(e)x(e) ≤ A; x(e) = 0, 1; for all e ∈ E.

Optimal routing of the flows for a state u in a network determined by the network
Gi(Vi, Ei, y) is the solution of the following problem of linear programming:

Problem LP(u): to maximize objective function zu (f
+
u , f

−
u , yu) with the pur-

pose of definition of the new paths for transfer of the information at the following
constraints :

on nonnegative flow variables:

f+ (u; s, t; e) ≥ 0, f− (u; s, t; e) ≥ 0, for all e ∈ E, (s, t) ∈ D;

flows on the failed nodes of the network are equal to zero:

f+(u; s, t;u) = 0, f−(u; s, t;u) = 0, (s, t) ∈ D, u ∈ E;
f+(u; s, t; e) = 0, f−(u; s, t; e) = 0, for all e ∈ Eint(u) ∪ Eout(u), (s, t) ∈ D, u ∈ V ;

on capacities:
∑

(s,t)∈D (f+(u; s, t; e) + f−(u; s, t; e)) ≤ y(e), for all e ∈ E
balance constraints:

(
∑

e∈Eint(v)

f+(u; s, t; e) +
∑

e∈Eout(v)

f−(u; s, t; e))−

−(
∑

e∈Eint(v)

f+(u; s, t; e)−
∑

e∈Eout(v)

f−(u; s, t; e)) =

=

⎧⎨⎩−y(u; s, t), v = s;
0, v ∈ V \{s, t};
y(u; s, t), v = t;

for all (s, t) ∈ D

on number of demands:

d(u; s, t) ≤ y(u; s, t) ≤ d(s, t), for all (s, t) ∈ D.
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It is easy to understand that LP (u) problem has the solution for a state u
when a capacity of network G is sufficient for rerouting a given percent of the
information for each of the demand.

Let’s notice, that in problem LP(u), u ∈ {0} ∪E ∪ V variables {x(e)}e∈E are
fixed and are not unknown.

Let’s stop on the analysis of the optimal solution of LP(u) problem for the
state u, and actually we shall determine the new paths for transfer of the infor-
mation. Let

f̄+(u; s, t; e), f̄(u; s, t; e), ȳ(u; s, t), e ∈ E, (s, t) ∈ D

be the components of the optimal basic solution of the problem LP(u). As the
columns of the matrix of the constraints of a problem, which are corresponded
to variables f̄+(u; s, t; e), f̄(u; s, t; e), are linearly dependent, then one of values
f̄+(u; s, t; e), f̄−(u; s, t; e) should be equal to zero. For (s, t) ∈ D on set of the
nodes V we shall determine the subgraph Gs,t with set of arcs As,t and the valid
function gs,t on As,t as follows: (s, t) ∈ As,t, gs,t(s, t) = y(0,s,t); for e = (v, w) ∈ E
(orientation from v w); if f̄+(0; s, t; e) > 0, (v, w) ∈ As,t then gs,t(v, w) =
f̄+(0; s, t; e), and if f̄−(0; s, t; e) > 0, (v, w) ∈ As,t then gs,t(v, w) = f̄

−(0; s, t; e).
We shall note that gs,t is circulation. Therefore, in time O(|V ||E|) it is possible
to find family G1

s,t, ..., G
k(s,t)
s,t of simple subcycles in Gs,t and a set of positive

real numbers ε1s,t, ..., ε
k(s,t)
s,t such that

gs(e) =
∑

1≤j≤k(s,t), e∈E(Gj
s,t)

εjs,t, ∀e ∈ As,t.

Here E(G) is a set of arcs of the cycle G. We shall determine the weights of
arcs of the subgraph Gs,t as follows: ws,t(s, t) = βu,s,t; ws,t(e) = au,s,t(e), if
e ∈ As,t\{s, t}. Then by virtue of definition of circulationgst we have:

k(s,t)∑
j=1

εjs,t
∑

e∈E(Gj
s,t)

ws,t(e) =
∑
e∈Aj

ws,t(e)gs,t(e) = zu(f̄
+
u , f̄

−
u , yu).

We should see that weight ws,t

(
Gj

s,t

)
=

∑
e∈E(Gj

s,t)
ws,t (e) of each of cycles Gj

s,t

is nonnegative. Having removed an arc (s, t) from cycles G1
s,t, ..., G

k(s,t)
s,t we shall

receive the family of simple (s, t) ways P 1
s,t, ..., P

k(s,t)
s,t on which ε1s,t, ..., ε

k(s,t)
s,t

units of the information could be transferred accordingly between s and t. As

d(u; s, t) ≤ ȳu,s,t =
k(s,t)∑
j=1

εjs,t, then on paths P 1
s,t, ..., P

k(s,t)
s,t it is possible to trans-

fer required amount of the information.
The survey of another methods of the optimal network design one can find,

for example, in [1].
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6 Conclusions and Extensions

The main features of the presented models of the optimal routing are taking
in account the QoS requirements, in particular, delay metric as very important
requirement for a lot of delay-sensitive applications.

To develop the models in the form of ”flows - paths”, objection function can
be a little bit another, for example, where the function of the cost includes
cost of transferring the unit of information. Objective function can be even
more complex, for example, as expression (4) or (10) where along with cost of
transferring of unit of the information expenses for building of a network (a
building of the additional telecommunication links) and cost of delay (9) are
taken into account.

Some researchers develop the models, where the decisions suggested by these
models would not necessary be implemented immediately. But future advance in
technologies (e.g., integration of the IP layer and optical layer) will likely make
it more possible for networks to respond in real time to short-term changes in
traffic demands. So, optimization models that address various types of real-time
decisions will be needed [1].

In majority of the works the traffic on the link is presented beM/M/1 model.
But more realistic model, that could be described the traffic at the networks
is model, based on BMAP-flows. This allows for network design procedures to
utilize more realistic models and characterizations of traffic behavior both in the
calculation of network delay and in the sizing of network links.

In our consideration we analyze the different types of delay: insertion, queu-
ing, node processing delay and the propagation delay. Incorporating new QoS
metrics, such as application delay, into network design models will allow users
to make more direct connection between system requirements and model inputs.

Network design problems with QoS consideration are typically difficult solved
combinatorial problems. Success in these directions of research will enable net-
work designers in any practical problems by optimal routing information flows
with QoS requirements. For example, using the model (5)-(9) for upgrade educa-
tional network Unibel of the Ministry of Education of Belarus it’s needed more
than ten hours of PC work.
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Abstract. We consider a retrial tandem queue with two multi-server
stations which can be considered as a mathematical model of a call center
with two types of customers classified by their ability to wait for the
connection to the agent. Customers arrive at Station 1 according the
stationary Poisson flow. If an arriving customer meets all servers busy
he/she goes to the infinite size orbit and retries after a random time.
The type of a customer is randomly determined upon completion of the
service at Station 1. If all servers of Station 2 are busy type 1 (priority)
customer leaves the system forever while type 2 (non-priority) customer
is queued in the buffer of limited size. If the buffer is full this customer
leaves the system. The customers staying in the queue are impatient. This
means that they might decide to leave the system before their service at
Station 2 begins. It is assumed that a number of servers of Station 2 can
be reserved to serve priority customers only. We calculate the stationary
distribution and the main performance measures of the system. The cost
function evaluating quality of service under different number of reserved
server is constructed. Illustrative numerical example is presented.

Keywords: tandem queue, retrials, impatient customers, reservation of
servers, stationary performance measures.

1 Introduction

Call centers provide customer support, help-desk services, reservation and sales
support, order-taking functions for catalog and Web-based merchants. To offer
high quality services, call center managers and designers should consider the
complex factors associated with random arrivals of customers and a variety of
customer requirements for quality of service. Queueing models can be effectively
used for call center design and support of their management. The survey of
research works devoted to mathematical modeling of call center can be seen in
survey [1], papers [5,7,6] and references therein.

In this paper we consider two-stations tandem queue with retrial phenomena
at Station 1. The retrial phenomena is that a customer who finds all lines busy

A. Dudin et al. (Eds.): BWWQT 2013, CCIS 356, pp. 105–114, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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upon arrival joins the virtual group of blocked customers called orbit and, in-
dependently of other orbital customers, retries for the service after a random
amount of time. Such a behavior is typical for outside calls calling to the center
and receiving a signal that all trunk lines are busy. Once the call is connected,
it are handled in automatic call distributor that is designed to root calls con-
nected via Station 1. In our consideration all calls are directed to service at
Station 2 which are modeled by a multi-server queue with a limited buffer. We
assume that all agents (servers of Station 2) are flexible enough to answer all
requirements of service but the customers to be served at Station 2 is divided
into two different classes according to their ability to wait for the connection to
the agent. We assume that the company that owns the call center provides strict
preferences to high-valued clients who show absolute impatience. If such a client
is not connected to an agent immediately after dialing, he/she leaves the system
without service. To prevent the loss of most of these clients, management of call
center may decide that a group of agents will serve high-valued (priority) clients
only. The non-priority customers can also abandon service. They wait for only
a limited time, and hang up after this time expires. As it was shown (see, e.g.,
[3]), the performance evaluation of the models with abandonment is essentially
differs from the models without abandonment.

Our purpose is to calculate the stationary performance measures of the tan-
dem queue modeling the above call center and discuss the problem of optimal
reservation of servers (agents) at Station 2.

2 Model Description

We consider a tandem queueing system consisting of two stations in series. Sta-
tion 1 is represented by the N -server queue without a buffer. Customers arrive
at Station 1 according the stationary Poisson flow with parameter λ. If an arriv-
ing customer meets all servers busy he/she goes to the infinite size orbit and tries
his/her luck later on after a random amount of time.We assume that the total flow
of retrials is such as the probability of generating a retrial attempt in the interval
(t, t+Δt) is equal to αiΔt+ o(Δt) when the number of customers in the orbit is
equal to i, i > 0, α0 = 0. We do not fix the explicit dependence of the intensity αi
on i assuming only that lim

i→∞
αi = ∞. Note that such a dependence describes the

classic retrial strategy (αi = iα) and the linear strategy (αi = iα + γ, α > 0) as
special cases.

We assume that customers arriving at Station 1 are not homogeneous. They
can be of two types. The type of a customer is determined by a randomized man-
ner upon completion of a service at Station 1: with probability p the customer
is classified as type 1 (priority) customer and with probability q = 1− p he/she
is classified as type 2 (non-priority) one. Customer’s type is determined based
on his/her ability to wait for the service at Station 2. If all servers of Station 2
are busy type 1 (priority) customer leaves the system forever while type 2 (non-
priority) customer is queued in the buffer of size M . If the buffer is full type 2
customer leaves the system. We assume that some number R, R ≤ N, servers of
Station 2 are reserved to serve priority customers only.
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For each customer placed into the buffer, the waiting time is restricted by the
random value having the exponential distribution with parameter γ. If this time
(obsolescence time) expires before the customer is picked-up from the buffer to
the server, it is assumed that this customer immediately leaves the buffer and
is lost. The obsolescence times of different customers are independent of each
other and identically distributed.

All servers of the tandem are independent of each other. The service time of a
customer at Station k is exponentially distributed with parameter μk, k = 1, 2.

The structure of the system is presented in Figure 1.

Fig. 1. The structure of the system

For further use in the sequel, we introduce the following notation:

• I (e ) is an identity matrix (a row vector of units) of appropriate dimension.
When needed we will identify the dimension of the matrix (the vector) with a
suffix;

• 0l is a square matrix of size l consisting of zeroes;
• ⊗ is a symbol of Kronecker’s product of matrices, see [4];
• Ĩ and Î are square matrices of size M + 1 that are defined as

Ĩ =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . 0 1
0 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎠ , ÎH =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎠
• I (I ) is a square matrix of size M + 1 whose first (last) diagonal entry is

equal to 1 and others entries are equal to zero;
• diag {al, l = 1, L } is a diagonal matrix with diagonal entries or blocks al;
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3 Process of the System States

Let

• it be the number of calls in the orbit;
• nt be the number of busy servers at Station 1;
• rt be the number of busy servers at Station 2;
• mt be the number of customers staying in the buffer at time t, t ≥ 0.

The process of the system states is described in terms of the irreducible four-
dimensional continuous-time Markov chain ξt = {it, nt, rt,mt}, t ≥ 0 with state
space X = {(i, n, r,m), i ≥ 0, n = 0, N, r = 0,K +R, m = 0,M}.

Enumerate the states of this chain in lexicographic order, and denote by
Qi,j , i, j ≥ 0, the square matrix of order (N + 1)(K + R + 1)(M + 1) gov-
erning the transition rates of the chain from the set of states {i, ·, ·} to the set
{j, ·, ·}.
Lemma 1. Infinitesimal generator of the Markov chain ξt, t ≥ 0, has the fol-
lowing block structure:

Q =

⎛⎜⎜⎜⎜⎜⎝
Q0,0 Q0,1 0 0 0 . . .
Q1,0 Q1,1 Q1,2 0 0 . . .
0 Q2,1 Q2,2 Q2,3 0 . . .
0 0 Q3,1 Q3,2 Q3,3 . . .
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠ ,

where sub-diagonal and over-diagonal blocks are calculated as follows:

Qi,i−1 = αiĨN+1 ⊗ I(K+R+1)(M+1), i ≥ 1,

Qi,i+1 = λIN+1 ⊗ I(K+R+1)(M+1), i ≥ 0,

diagonal blocks are represented as block matrices Qi,i = ((Qi,i)n,n′)n,n′=0,N with
non-zero blocks of the following form:

(Qi,i)n,n−1 =

= nμ1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 IM+1 0 . . . 0 0 0 . . . 0 0
0 0 IM+1 . . . 0 0 0 . . . 0 0
...

...
...

. . .
...

...
...
. . .

...
...

0 0 0 . . . IM+1 0 0 . . . 0 0

0 0 0 . . . q(Ĩ + I) pI 0 . . . 0 0

0 0 0 . . . 0 q(Ĩ + I) pI . . . 0 0
...

...
...

...
...

...
...
. . .

...
...

0 0 0 . . . 0 0 0 . . . q(Ĩ + I) pI

0 0 0 . . . 0 0 0 . . . 0 q(Ĩ + I) + pI

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

i ≥ 0, n = 1, N ;
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(Qi,i)n,n =

= μ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 0 . . . 0 0
IM+1 0 . . . 0 0 0 . . . 0 0

...
...
. . .

...
...

...
. . .

...
...

0 0 . . . (K − 1)IM+1 0 0 . . . 0 0

0 0 . . . 0 KIM+1 KÎ . . . 0 0

0 0 . . . 0 0 (K + 1)I . . . 0 0
...

...
. . .

...
...

... . . .
...

...

0 0 . . . 0 0 0 . . . (K +R)I (K +R)Î

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+γdiag {0K(M+1), IR+1 ⊗ diag{0, 1, . . . ,M }(Î − I)}

−diag{nμ1 + (1− δn,N )αi + λ+ kμ2, k = 0,K +R} ⊗ IM+1, i ≥ 0, n = 0, N ;

(Qi,i)n,n+1 = λI(K+R+1)(M+1), i ≥ 0, n = 0, N − 1.

In the further investigation of the Markov chain ξt, t ≥ 0, we will use the re-
sults for continuous time asymptotically quasi-toeplitz Markov chains (AQTMC)
presented in [8].

Corollary 1. The Markov chain ξt, t ≥ 0, belongs to the class of continuous
time asymptotically quasi-toeplitz Markov chains.

Proof. According to the definition given in [8], the chain ξt, t ≥ 0, belongs to
the class of continuous time AQTMC if there exist the limits

Y0 = lim
i→∞

C−1
i Qi,i−1, Y1 = lim

i→∞
C−1

i Qi,i + I, Y2 = lim
i→∞

C−1
i Qi,i+1, (1)

and the matrix
∞∑
k=0

Yk is a stochastic one.

Here Ci is a diagonal matrix defined by modules of diagonal entries of the
matrix Qi,i, i ≥ 0.

It is easy to see that the diagonal entries of the matrix Ci corresponding to
the first N block rows of the matrix Qi,i include the term αi while the rest of
diagonal does not depend on i. Then this matrix can be represented as

Ci =

(
C1(i) 0
0 C2

)
.

Taking into account dependence (or not dependence) of the blocks of the matrices
Qi,i+k, k = −1, 0, 1, of αi we calculate the limits (1) as follows:

Y0 = ĨN+1 ⊗ I(K+R+1)(M+1), Y2 =

(
0N(K+R+1)(M+1) 0

0 C−1
2 (Qi,i+1)N,N

)
,

Y1 =

(
0N(K+R+1)(M+1) 0
C−1

2 (Qi,i)N,N−1 C−1
2 (Qi,i)N,N + I

)
.

It is easy to see that the sum of these matrices is a stochastic matrix. Thus, the
chain ξt, t ≥ 0, is asymptotically quasi-toeplitz Markov chain.
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4 Stationary Distribution

It is clear that the condition for existing the stationary distribution of the tandem
under consideration coincides with such a condition for the retrial queueM/M/N
representing the first station of the tandem. Using the results of the paper [2]
where the more general retrial queue BMAP/PH/N has been investigated we
immediately get the following statement.

Theorem 1. (i) The stationary distribution of the Markov chain ξt, t ≥ 0,
exists if the following inequality

ρ = λ/(Nμ1) < 1. (2)

holds.
(ii) The stationary distribution of the chain ξt, t ≥ 0, does not exist if in-

equality (2) has an opposite sign.

In what follows we assume inequality (2) be fulfilled.
Let p(i, n, r,m), i ≥ 0, n = 0, N, r = 0,K +R,m = 0,M, be the steady state

probabilities of the chain ξt, t ≥ 0. Enumerate the states of the ξt, t ≥ 0, in
the lexicographic order and form the row vector pi of steady state probabilities
corresponding the value i of the first component, i ≥ 0. To calculate the vectors
pi, i ≥ 0, we use the numerically stable algorithm (see [8]) which has been
elaborated for calculating the stationary distribution of the multi-dimensional
continuous time asymptotically quasi-toeplitz Markov chain. Taking into account
the specifics of the chain under consideration, this algorithm takes the following
form.

1. Compute Neuts’ matrix G (see [9]) as the minimal nonnegative solution of
the matrix equation G = Y0 + Y1G+ Y2G

2.
2. For preassigned sufficiently large integer i0 compute the matrices Gi0−1,
Gi0−2, . . . , G0 using the equation of the backward recursion

Gi = (−Qi+1,i+1 −Qi+1,i+2Gi+1)
−1Qi+1,i, i = i0 − 1, i0 − 2, . . . , 0

with the boundary condition Gi = G, i ≥ i0.
3. Compute the matrices Q̄i,j, j ≥ i, by the formulas

Q̄i,i = Qi,i +Qi,i+1Gi, Q̄i,i+1 = Qi,i+1.

4. Compute the matrices Fi from the recursion

F0 = I, Fi = Fi−1Q̄i−1,i

(−Q̄i,i

)−1
, i ≥ 1.

5. Compute the vector p0 as the unique solution to the system

p0(−Q̄0,0) = 0, p0

∞∑
i=0

Fie = 1.

6. Compute the vectors pi by the formulas pi = p0Fi, i ≥ 0.
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5 Performance Measures

• Mean number of calls in the orbit Lorb =
∞∑
i=1

ipie.

• Joint stationary distribution of the number of busy servers at Station 1 and

the number of customers at Station 2 P (1,2) =
∞∑
l=0

pi.

• Stationary distribution of the number of busy servers at Station 1

P (1) = P (1,2)(IN+1 ⊗ e(K+R+1)(M+1)).

• Mean number of busy servers at Station 1 N
(1)

= P (1)diag{0, 1, . . . , N}e.
• Stationary distribution of the number of busy servers at Station 2

P (2) = P (1,2)(eN+1 ⊗ IK+R+1 ⊗ eM+1).

• Mean number of busy servers at Station 1

N
(2)

= P (2)diag{0, 1, . . . ,K +R+ 1}e.

• Stationary distribution of the number of non-priority customers in the buffer

P (buff) = P (1,2)(eN+1 ⊗ eK+R+1 ⊗ IM+1).

• Probability that an arbitrary arriving customer will be lost

Ploss = 1− λ−1P (2) μ2diag{0, 1, . . . ,K +R + 1}e.

• Intensity of output flow from Station 1

μ̄(1) = μ1P
(1,2)(diag{0, 1, . . . , N} ⊗ I(K+R+1)(M+1))e.

• Probability that an arbitrary priority customer will be lost due to lack of
idle servers at Station 2

P
(prior)
loss = μ1P

(1,2)(diag{0, 1, . . . , N} ⊗ ĪK+R+1 ⊗ IM+1)e/μ̄
(1).

• Probability that an arbitrary non-priority customer will be lost due to lack
of free space at Station 2

P
(non−prior,buff)
loss = μ1P

(1,2)(diag{0, 1, . . . , N} ⊗ IK+R+1 ⊗ ĪM+1)e/μ̄
(1).

• Probability that an arbitrary non-priority customer will be lost due to im-
patience

P
(non−prior,ipm)
loss = Ploss − qP (prior)

loss − pP (non−prior,buff)
loss .
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6 Numerical Example

In the numerical example we provide graphics for the loss probabilities associ-
ated with tandem and consider the problem of optimal choice of the number R
of reserved servers at Station 2. We introduce the following cost criterion (an
average penalty per unit time under the steady-state operation of the system):

I = aR+ qμ̄(1)(c1P
(non−prior,buff)
loss + c2P

(non−prior,ipm)
loss ) + c3pμ̄

(1)P prior
loss

where a is a cost of maintenance of a reserved server per unit time, c1(c2) is a
penalty for the loss of non-priority customer due to absence of free space in the
buffer (due to impatience), c3 is a penalty for the loss of priority customer.

The parameters of the queue under consideration are assumed to be as follows.
The number of servers at Stations 1 and Station 2 are N = 6 and K + R = 14
respectively. The size of the buffer is M = 8. Intensity of arrival is λ = 5. The
service rate at stations are defined by μ1 = 1;μ2 = 0.4. We consider the classic
retrial strategy αi = iα where α = 1. The impatience rate is γ = 1.

Figures 2-4 depict the probabilities P
(prior)
loss , P

(non−prior,buff)
loss , P

(non−prior,imp)
loss

as functions of the number R of reserved server of Station 2 for different values
of probability p.

Fig. 2. The probability P
(prior)
loss vs the number R of reserved server

Let now consider an example of numerical solution of optimization problem.
The cost coefficients a, c1, c2, c3 are assumed to be as follows: a = 0, c1 =
10, c2 = 5, c3 = 60. Our aim is to find numerically the optimal number R of
reserved servers at Station 2 that provides the minimal value to the cost criterion
for different share p of priority customers. The value of criterion I as a function
of R and p is presented in Figure 5. The minimum value of I is achieved at the
point R = 2, p = 0.1 and is equal to 2.614.

For better understanding the behavior of cost criterion we present in Figure
6 the values of the criterion as function of R under three different values of p. It
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Fig. 3. The probability P
(non−prior,buff)
loss vs the number R of reserved servers

Fig. 4. The probability P
(non−prior,imp)
loss vs the number R of reserved servers

Fig. 5. The cost criterion as a function of the number R of reserved servers at Station
2 and the share p of priority customers
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Fig. 6. The cost criterion as a function of the number R of reserved servers at Station
2 for different shares p of priority customers

is seen from the figure that the optimal number of reserved servers at Station 2
increases from 2 to 5 when the share p of priority customers increases from 0.15
to 0.35.
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Abstract. We consider a queueing system with Poisson arrivals and
exponentially distributed service time and FCFS service discipline. The
service of a customer is started at the moment of arrival (in case of free
system) or at moments differing from it by the multiples of a given cycle
time T (in case of occupied server or waiting queue). The waiting time is
always the multiple of cycle time T , one finds its generating function and
mean value. The characteristics of service are illustrated by numerical
examples. If we measure the waiting time by means of number of cycles,
we can optimize the cycle time T .

1 Introduction

According to the Kendall notation a queueing system is characterized by the
interarrival and service times, the number of servers and the waiting room. This
notation does not include the service discipline which plays key role, too. It
determines the order of service, these rules may be rather simple (first-come-
first-served, last-come-first-served, random, etc.) or more complex depending
on the waiting time, number of present customers or priorities and so on. The
analysis of queueing system with simple probabilistic characteristics may be
rather complicated because of the service discipline.

We propose to consider a single-server queueing system, where an entering
customer may be accepted for service either at the moment of arrival or at
moments differing from it by the multiples of a given so-called cycle time. In
order to illustrate the problem we give two practical examples.

1. Airplanes arrive at the airport in optimal position for landing. If there is
no queue and the previous one is far enough, they start the landing process. If
the distance is too small or there are some waiting ones, they start cycling. The
next request for service may be put when the the airplane arrives at the starting
geometrical point and this procedure is repeated.

2. Optical signals enter a node and they should be transmitted according to
the FCFS rule. This information cannot be stored, if it cannot be serviced at
once is sent to a delay line and returns to the node after having passed it. Clearly,
the signal can be transmitted from the node at the moment of its arrival or at
the time that differs from it by a multiple of time necessary to pass the delay
line.

A. Dudin et al. (Eds.): BWWQT 2013, CCIS 356, pp. 115–121, 2013.
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The original problem was raised in connection with the landing process of air-
planes [2], later it appeared to be an exact model for the transmission of optical
signals where because of lack of optical RAM the fiber delay lines are used. First
the system was studied characterizing it by the number of present customers
[2], Koba [1] found sufficient condition for the stability of GI/G/1 system and
gave the system of equations determining the waiting time’s ergodic distribution.
Koba and Mykhalevich [3] compared the classical retrial M/G/1 system with the
cyclic-waiting one. [4], [5] describe the application of model for the transmission
of optical signals.

The queueing systems may be considered from the viewpoints of the system
and the individual customers. From the viewpoint of the system the number of
present customers is important, from the viewpoint of individual customers the
waiting time plays essential role. In this paper we concentrate our attention on
the waiting time for such systems.

2 Theoretical Results

We consider a queueing system with Poisson arrivals and exponentially dis-
tributed service time, the corresponding parameters are λ and μ, respectively.
The service is realized according to the order of arrivals and fix some cycle time
T . If the system is free, the entering customer is immediately taken for service.
If the server is occupied or there is a waiting queue, the customer starts cy-
cling with cycle length T , it can put the next request for service arriving at the
starting geometrical point. If it is at the head of queue and the server is free its
service begins, in the opposite case this process is repeated.

We will use Koba’s results [1] to find the waiting time distribution. We shortly
repeat them.

Let tn denote the time of arrival of the n-th customer; its service will begin at
the moment tn + T ·Xn, where Xn is a nonnegative integer. Let ξn = tn+1 − tn,
and ηn be the service time of n-th customer. Furthermore, let Xn = i, if

(k − 1)T < iT + Yn − Zn ≤ kT (k ≥ 1),

then Xn+1 = k, and if iT + ηn − ξn ≤ 0, then Xn+1 = 0. Hence, Xn is a
homogeneous Markov chain with transition probabilities pik, where

pik = P{(k − i− 1)T < ηn − ξn ≤ (k − i)T }
if k ≥ 1, and pi0 = P{ηn − ξn ≤ −iT }. Introduce the notations

fj = P{(j − 1)T < ηn − ξn ≤ jT }, (1)

pik = fk−i if k ≥ 1, pi0 =

−i∑
j=−∞

fj = f̂i. (2)

The ergodic distribution of this chain satisfies the system of equations

pj =
∞∑
i=0

pipij (j ≥ 0),
∞∑
j=0

pj = 1.
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Theorem 1. Let us consider the above described system and introduce a Markov
chain whose states correspond to the waiting time (in the sense that the wait-
ing time is the number of actual state multiplied by T) at the arrival time of
customers. The matrix of transition probabilities for this chain is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0∑
j=−∞

fj f1 f2 f3 f4 . . .

−1∑
j=−∞

fj f0 f1 f2 f3 . . .

−2∑
j=−∞

fj f−1 f0 f1 f2 . . .

−3∑
j=−∞

fj f−2 f−1 f0 f1 . . .

...
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
its elements are defined by (1) and (2). The generating function of the ergodic
distribution is

P (z) =

[
1− λ

μ

1− e−λT

e−λT (1− e−μT )

]
× (3)

×
μ

λ+ μ
− μ(1− e

−λT )

λ+ μ

z

z − e−λT

1− λ(1 − e
−μT )

λ+ μ

z

1− ze−μT
− μ(1− e

−λT )

λ+ μ

z

z − e−λT

,

the condition of existence of ergodic distribution is

λ

μ
<
e−λT (1− e−μT )

1− e−λT
. (4)

Proof. For the system we have

P{Z < x} = 1− e−λx, P{Y < x} = 1− e−μx.

η − ξ has the distribution

F (x) =

{
μ

λ+μe
λx if x ≤ 0,

1− λ
λ+μe

−μx if x > 0.

The transition probabilities of the Markov chain are, if j > 0

fj = 1− λ

λ+ μ
e−μ(j−1)T − 1 +

λ

λ+ μ
e−μjT =

λ

λ+ μ
(1− e−μT )e−μ(j−1)T ,

for the negative values (j ≥ 0)

f−j =
μ

λ+ μ
e−λjT − μ

λ+ μ
e−λ(j+1)T =

μ

λ+ μ
(1− e−λT )e−λjT ,
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pi0 = f̂i =

−i∑
j=−∞

fj =

∞∑
j=i

μ

λ+ μ
(1− e−λT )e−λjT =

μ

λ+ μ
e−λiT .

Using the matrix of transition probabilities, we obtain the system of equations

p0 = p0f̂0 + p1f̂1 + p2f̂2 + p3f̂3 + . . .

p1 = p0f1 + p1f0 + p2f−1 + p3f−2 + . . .

p2 = p0f2 + p1f1 + p2f0 + p3f−1 + . . .

...

Multiplying the j-th equation by zj, summing up from zero to infinity, for the

generating function P (z) =
∞∑
j=0

pjz
j we obtain

P (z) = P (z)F+(z) +

∞∑
j=1

pjz
j

j−1∑
i=0

f−iz
−i +

∞∑
j=0

pj f̂j . (5)

For our system

F+(z) =

∞∑
i=1

fiz
i =

λz

λ+ μ
(1− e−μT )

∞∑
i=1

e−μ(i−1)T zi−1 =

=
λ(1 − e−μT )

λ+ μ

z

1− ze−μT
,

j−1∑
i=0

f−iz
−i =

μ(1− e−λT )

λ+ μ

j−1∑
i=0

e−λiT z−i =
μ(1 − e−λT )

λ+ μ

1−
(

e−λT

z

)j

1− e−λT

z

,

∞∑
i=0

pif̂i =

∞∑
i=0

pi
μ

λ+ μ
e−λiT =

μ

λ+ μ
P

(
e−λT

)
.

Substituting these expressions (5) yields

P (z) = P (z)F+(z) +

∞∑
j=1

pjz
j μ(1− e−λT )

λ+ μ

1−
(

e−λT

z

)j

1− e−λT

z

+
μ

λ+ μ
P

(
e−λT

)
=

= P (z)F+(z) +
μ(1− e−λT )

λ+ μ

z

z − e−λT

[
P (z)− P (

e−λT
)]

+
μ

λ+ μ
P

(
e−λT

)
,

or

P (z)

[
1− F+(z)− μ(1− e

−λT )

λ+ μ

z

z − e−λT

]
=

= P
(
e−λT

) [
μ

λ+ μ
− μ(1 − e

−λT )

λ+ μ

z

z − e−λT

]
.
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Fig. 1. Ū (a), C̄ (b), W̄ (c) and L̄ (d) versus λ

The value of P (e−λT ) can be found from the fact P (1) = 1,

P
(
e−λT

)
= 1− λ

μ

1− e−λT

e−λT (1 − e−μT )
.

For the generating function of waiting time we obtain the above expression,
whence the probability of zero waiting time is

p0 =

[
1− λ

μ

1− e−λT

e−λT (1 − e−μT )

]
μ

λ+ μ
.

Because of ergodicity p0 > 0 must hold, so the inequality

λ

μ

1− e−λT

e−λT (1 − e−μT )
< 1

must be fulfilled. It leads to the condition (4), and coincides with the stability
condition for the number of customers [2].

3 Mean Performance Measures

As soon as the probabilities pi, i ≥ 0 are known, different performance charac-
teristics of the system can be evaluated. Some of them are enumerated below.
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Fig. 2. W̄ versus λ for μ = {1.0, 1.5, 2.0, 2.5, 3.0} (a) and versus μ for λ =
{0.1, 0.3, 0.5, 0.7, 0.9} (b) in case of exact and approximated values of T ∗

Utilization of the system Ū = 1− p0 =
λ

λ+ μ

1− e−(λ+μ)T

e−λT (1− e−μT )
.

Mean number of retrial cycles (from (3))

C̄ =
λ[1− e−(λ+μ)T ]

(1 − e−μT )[μe−λT (1− e−μT )− λ(1− e−λT )]
.

Mean waiting and sojourn time

W̄ = T C̄, S̄ = W̄ +
1

μ
.

Mean number of customers in orbit and system Q̄ = λW̄ , N̄ = λS̄.
Mean busy period

L̄ =
1

λ

(
1

p0
− 1

)
=

1− e−(λ+μ)T

(λ+ μ)e−λT (1− e−μT )− λ(1 − e−(λ+μ)T )
.

Mean number of customers served in a busy period N̄L = μL̄.

4 Optimization of the Retrial Cycle

Our numerical experiments indicate that optimization of the values like Ū , W̄ ,
S̄, Q̄, N̄ , L̄ and N̄L for any fixed parameters λ and μ leads to trivial solution,
i.e. when the length of retrial cycle is T = 0.

Assuming T > 0, it is interesting to study the value C̄ of the mean number
of cycles. The formal optimization problem can be written as follows

C̄ = C̄(T ) ⇒ min
T
.

Figure 3 illustrates the concave structure of the curve C̄ upon varying the pa-
rameter T for different values of λ and μ. Hence the optimal value T ∗ > 0 exists
and can be evaluated. This figure shows that T ∗ takes a lower value while λ in-
creases and/or μ decreases. In this case the server with a higher probability will
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Fig. 3. C̄ versus T , λ (a) and μ (b)

be busy and obviously the cycle length should be decreased in order to minimize
the mean number of retrial cycles during the waiting time.

It is not possible to derive an explicit formula for the value T ∗. The function
C̄(T ) can be minimized numerically by evaluation of the derivative which must
be set to be equal to 0. Another way is a simple enumerative technique if the
parameter T is changed in some interval with a small step.

Depending on the value of T the number of cycles first decreases and achieving
some optimal value it increases. This fact may be explained on a simple way. In
case of small T till the beginning of service of the next customer a large number
of cycles is required (the service time is significantly greater than the length of a
cycle). Approaching the optimal value T ∗ the number cycles decreases, leaving
it the cycle is longer and longer and the waiting time will mainly be determined
not by the service time, but the length of the cycle. It makes the waiting time
large, consequently the required number of cycles will grow.
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Gaussian Approximation of Multi-channel

Networks in Heavy Traffic
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Abstract. In the paper the multichannel stochastic networks are con-
sidered. From the outside on each node of the network a Poisson input
flow of calls arrives. An approximate method of studying of the service
process at heavy traffic regime is developed. The limit process is repre-
sented as a multidimensional diffusion.

Keywords: multichannel stochastic network, heavy traffic regime,
Gaussian approximation.

1 Introduction and Main Result

The basic mathematical model under consideration in the paper is a queuing
network consisting of ”r ” service nodes. From the outside a Poisson input flow of
calls νi(t) with the leading function Λi(t) arrives at the i -th node, i = 1, 2, ..., r.
Each of ”r” nodes operates as a multi-channel stochastic system. If the call
arrives at such a system then its service immediately begins. In the i-th node
service time is exponential distributed with parameter μi , i = 1, 2, ..., r . After
service in the i -th node the call arrives in the j-th node with probability pij

and leaves the network with probability pi,r+1 = 1 −
r∑

j=1

pij . P = ‖pij‖r1 is

a switching matrix of the network. An additional node numbered ”r + 1” is
interpreted as ”output” from the network.

According to the notation system, which is adopted in the theory of stochastic
networks, such the model will be marked by the symbol [Mt|M |∞]r.

Let Qi(t), i = 1, 2, ..., r be the number of calls in the i-th node of the network
at t moment time.To the r - dimensional process Q′(t) = (Q1(t), ..., Qr(t)) we
will refer as to a service process of calls in the network of the [Mt|M |∞]r- type.
Our main goal is to study the process Q(t) in conditions of heavy traffic.

The heavy traffic regime is determined by the following behavior of network
parameters.

Condition 1. Input flows depend on n (series number) so that in any finite
interval [0, T ]

n−1Λ
(n)
i (nt) ⇒U

n→∞ Λ
(0)
i (t) ∈ C[0, T ], i = 1, 2, ..., r (1)

where C[0, T ] is a set of continuous functions, symbol
U⇒ means convergence in

uniform metric.
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Let us consider two cases that are important for applications when the Con-
dition 1 is held.

We temporarily assume that the Poisson flow νi(t) is regular: Λi(t) =
t∫
0

λi(u)du, where λi(u) is an instant value of the parameter (see, for example

[1], page 100). It is naturally to call this flow as a Poisson flow with variable
parameter.

If for the regular flow
lim
t→∞λi(t) = λi > 0,

then Condition 1 holds with Λ
(0)
i (t) = λit.

This follows from the estimates:∣∣∣∣1t
∫ t

0

λi(u)du− λi
∣∣∣∣ ≤ 1

t

∫ t

εt

|λi(u)− λi|du+ 1

t

∫ εt

0

|λi(u)− λi|du ≤

≤ (1− ε)δ(εt) + (λ∗i + λi)ε,

where ε ∈ (0, 1), supu≥0 λi(u) = λi∗ , δ(t′) → 0 , when t′ → ∞ .
Now let λi(t) be a periodic function with period Ti:

λi(nTi + t) = λi(t) for bothn = 1, 2, . . . and 0 ≤ t < Ti.

Then Condition 1 holds with Λ
(0)
i (t) =

(
Ti∫
0

λi(u)du

)
t . Really,

Λi(t)

t
=

∫ t

0
λi(u)du

t
=

[t]Ti

∫ Ti

0
λi(u)du +

∫ (t)Ti

0
λi(u)du

[t]Ti + {t}Ti

−−−−→
t→ ∞λi,

where [t]Ti = max{n ∈ Z+ : nTi ≤ t}, {t}Ti = t − [t]Ti , Z+ is the set of
nonnegative integer numbers.

Condition 2. A service rate in each node depends on the ”n” (series number)
so that

lim
n→∞nμi(n) = μi > 0, i = 1, 2, . . . , r.

Together Conditions 1 and 2 mean that [Mt|M |∞]r - network operating in heavy
traffic regime.

In the context of Conditions 1, 2 we consider the sequence of stochastic pro-
cesses:

ξ(n)(t) = n−1/2(Q(n)(nt)− q(n)(nt)),

where q(n)
′
(nt) = (q

(n)
1 (nt), . . . , q

(n)
r (nt)), q

(n)
j (nt) =

r∑
i=1

nt∫
0

dΛ
(n)
i (u)p

(n)
ij (nt −

u), j = 1, . . . , r , p
(n)
ij (τ) are elements of the matrix P (n)(τ) = ‖p(n)ij (τ)‖r1 =

exp{Δ(μ(n))(P − I)τ}, μ(n)′ = (μ
(n)
1 , . . . , μ

(n)
r ) , Δ(x) = ‖δijxi‖r1 is a diagonal

matrix with the vector x′ = (x1, . . . , xr) at the principal diagonal, I = ‖δij‖r1 is
the identity matrix.
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To describe the limit of the sequence of stochastic processes ξ(n)(t) , n ≥ 1,

we introduce two independent Gaussian processes ξ(i)
′
(t) = (ξ

(i)′
1 (t), . . . , ξ

(i)′
r (t)),

i = 1, 2.
The process ξ(1)(t) is determined by the average values:

Eξ(1)(t) = 0

and by correlation matrixes:

R(1)(t) = Eξ(1)(t)ξ(1)
′
(t)−Eξ(1)(t)Eξ(1)′(t) =

∫ t

0

P ′(t− τ)Δ[dΛ(0)(τ)]P (t− τ),

R(1)(s, t) = Eξ(1)(s)ξ(1)
′
(t)− Eξ(1)(s)Eξ(1)′(t) = R(1)(s)P (t− s), s < t,

where Λ(0)′(t) = (λ
(0)
1 (t), . . . , λ

(0)
r (t)), P (τ) = exp{Δ(μ)(P − I)τ}.

For the process ξ(2)(t)
Eξ(2)(t) = 0,

R(2)(t) =

∫ t

0

[Δ[(dΛ(0)(τ))′P (t− τ)]− P ′(t− τ)Δ[dΛ(0)(τ)]P (t − τ)],

R(2)(s, t) = R(2)(s)P (t− s), s < t.

The following theorem is the main result of the work.

Theorem 1. Let for the [Mt|M |∞]r- network conditions 1, 2 take place. At the
initial moment of time t = 0 the network is empty: Qi(0) = 0, i = 1, 2, . . . , r.
Then for any finite interval [0, T ] the sequence of stochastic processes ξ(n)(t),
n ≥ 1, converges in the uniform topology to ξ(1)(t) + ξ(2)(t).

2 Proof of Theorem 1

Before proof of Theorem 1 we obtain some auxiliary results.

Lemma 1. Let ν(n)(t) be the Poisson process with leading function Λ(n)(t)
for which Condition 1 is true. Then for any finite interval [0, T ] sequence of
stochastic processes W (n)(t) = n−1/2(ν(n)(nt) − Λ(n)(nt)), n ≥ 1, converges in
the uniform topology to the Wiener process W (0)(t) with EW (0)(t) = 0 and
V arW (0)(t) = Λ(0)(t).

Proof. Convergence of finite-dimensional distributions of the process W (n)(t) to
W (0)(t) follows from the fact that for any natural number N and time moments
0 < t1 < . . . < tN the joint characteristic function of ν(t1), . . . , ν(tN ) is equal:

E exp

{
i

N∑
k=1

s(k)ν(tk)

}
=

N−1∏
k=0

exp

{
[Λ(tk+1)− Λ(tk)]

[
exp

(
i

N∑
m=k+1

s(m)

)
− 1

]}
,

where (s(1), . . . , s(N)) ∈ RN , t0 = 0.
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Now in order to prove convergence in uniform topology it’s sufficient to check
the following condition

lim
h→0

lim
n→∞ sup

|t1−t2|≤h

P
{∣∣∣W (n)(t2)−W (n)(t1)

∣∣∣ > ε} = 0 (2)

from [2] (page 493).
Based on the Chebyshev inequality

sup
|t1−t2|≤h

P
{∣∣∣W (n)(t2)−W (n)(t1)

∣∣∣ > ε} ≤ ε−2 sup
t∈[0,T ]

[n−1Λ(n(t+h))−n−1Λ(nt)].

Condition 1 implies that for any 0 < δ < T

sup
t∈[0,δ]

[
n−1Λ(n(t+ h))− n−1Λ(nt)

] ≤ n−1Λ(n(δ + h)) ≤ (λ+ εn)(δ + h)

and
sup

t∈[δ,T ]

[n−1Λ(n(t+ h))− n−1Λ(nt)] ≤ λh+ (2T + h)εn.

Hence we find

lim
h→0

lim
n→∞ sup

|t1−t2|≤h

P
{∣∣∣W (n)(t2)−W (n)(t1)

∣∣∣ > ε} ≤ λε−2δ.

Since δ > 0 is arbitrary, Condition 1 holds. Lemma is proved.

Hereafter we will denote asW
(0)
i (t), i = 1, 2, . . . , r, independent Wiener processes

with EW
(0)
i (t) = 0 and V arW

(0)
i (t) = Λ

(0)
i (t). If Condition 1 takes place they

approximate the input flows ν
(n)
i (t).

For W (0)′(t) = (W
(0)
1 (t), . . . ,W

(0)
r (t)) we will need the following result.

Lemma 2. Finite-dimensional distributions of
t∫
0

dW (0)′(u)P (t − u) coincide

with the finite-dimensional distributions of Gaussian process ξ(1)(t).

This result is a partial case of Lemma 1 from [3].
Service of a call in nodes of the [Mt|M |∞]r -network is independent of other

calls. In order to structurally define the service process, we consider the Markov
chain x(t), t ≥ 0, in the set of states {1, . . . , r, r + 1} with infinitesimal charac-
teristics

aij =

⎧⎨⎩−μi(1− pii), i = j = 1, . . . , r;
μipij , i �= j, i = 1, . . . , r, j = 1, . . . , r, r + 1;
0, i = r + 1, j = 1, . . . , r, r + 1;

and the initial distribution p′(0) = (p1(0), . . . , pr+1(0)) .
If pi(0) = 1 then we will mark the corresponding chain as x(i)(t). State ”r+1”

for the chain x(t) is absorbing. Transitional probabilities of x(t)

pij(t) = P{x(t) = j/x(0) = i} = P{x(i)(t) = j}, i, j = 1, . . . , r

are elements of the matrix P (t) = exp{Δ(μ)(P − I)t}.
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The path of the call from the input moment of time in the network through
i-th node to output of it can be described by the chain x(i)(t). The absorption
in the state ”r + 1” is interpreted as the output of call from the network.

Let us connect with the chain x(i)(t) , t ≥ 0, the r-dimensional process of

indicator type χ(i)
′
(t) = (χ

(i)
1 (t), . . . , χ

(i)
r (t)), t ≥ 0, as follows

χ(i)(t) =

{
ej , x

(i)(t) = j, j = 1, . . . , r;

e0, x
(i)(t) = r + 1;

where ej is r-dimensional vector with the j-th component equal to 1, while others
are zero, e0 is zero r-dimensional vector.

For arbitrary natural N and z′(i) = (z1(i), . . . , zr(i)), i = 1, 2, . . . , N, |z(i)| ≤
1, we will denote a joint generating function of the vectors χ(m)(t1), . . . , χ

(m)(tN ),
0 < t1 < . . . < tN , as Φ(m) = Φ(m)(t1, . . . , tN , z(1), . . . , z(N)), Φ′ =
(Φ(1), . . . , Φ(r)).

Lemma 3. For any N = 1, 2, . . . and 0 < t1 < . . . < tN

Φ = 1̄ +

N∑
i=1

P (Δt1)Δ[z(1)] . . . P (Δti−1)Δ[z(i− 1)]P (Δti)(z(i)− 1̄), (3)

where 1̄ is r-dimensional vector composed of units, Δti = ti − ti−1 (t0 = 0), i =
1, . . . , N. .

The proof of (3) can be obtained by mathematical induction on the parameter
N .

Proof. (of Theorem 1) Let us analyze the behavior of one-dimensional distribu-
tions of the process ξ(n)(t), t ≥ 0, as n→ ∞.

Under the fixed path of input flow ν(t) the distribution of Q(t) coincides with
the distribution of

r∑
m=1

νm(t)∑
k=1

χ(m,k)(t− τ (m)
k ),

where χ(m,1)(t), χ(m,2)(t), . . . is a sequence of independent stochastic processes

with finite-dimensional distributions coinciding with χ(m)(t), τ
(m)
k is the arrival

moment of time of k-th call to the m-th node.
Taking into account this fact and the formula (2) under N = 1 the generation

function Φ(t, z), z′ = (z1, . . . , zr), |z| ≤ 1, of the vector Q(t) can be represented
as:

Φ(t, z) = E
r∏

m=1

νm(t)∏
k=1

[1− p′m(t− τ (m)
k )(z − 1̄)], (4)

where p′m(τ) = (pm1(τ), . . . , pmr(τ)) is the m-th line of matrix P (τ).
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Let φ(n)(s), s′ = (s1, . . . , sr) ∈ Rr be a characteristic function of ξ(n)(t). In
view of (4)

φ(n)(s) = Eeiξ
(n)′s = exp

{
−in−1/2q(n)

′
(nt)s

}
×

×E exp

⎧⎨⎩
r∑

m=1

ν(n)
m (nt)∑
k=1

ln[1− p(n)′m (nt− τ (m)
k )(eis/

√
n − 1̄)]

⎫⎬⎭ ,
where

(
eis/

√
n
)′

=
(
eis1/

√
n, . . . , eisr/

√
n
)
.

Let us denote by (s2)′ = (s21, . . . , s
2
r). Then

lim
n→∞φ

(n)(s) = lim
n→∞ exp

{
−in−1/2q(n)

′
(nt)s

}
×

×E exp

⎧⎨⎩
r∑

m=1

ν(n)
m (nt)∑
k=1

[
i√
n
p′m(t− τ

(m)
k

n
)s− 1

2

1

n
p′m(t− τ

(m)
k

n
)s2+

+
1

2

1

n
s′pm(t− τ

(m)
k

n
)p′m(t− τ

(m)
k

n
)s

]}
=

= lim
n→∞ exp

{
−in−1/2q(n)

′
(nt)s

}
E exp

⎧⎨⎩in−1/2

t∫
0

dν(n)
′
(nτ)P (t − τ)s−

−1

2

1

n

t∫
0

dν(n)
′
(nτ)P (t − τ)s2 + 1

2

1

n

r∑
m=1

t∫
0

dν(n)
′

m (nτ)s′pm(t− τ)p′m(t− τ)s
⎫⎬⎭ =

= lim
n→∞ exp

⎧⎨⎩−1

2

1

n

t∫
0

dΛ(n)′(nτ)P (t − τ)s2+

+
1

2

1

n

r∑
m=1

t∫
0

dΛ(n)
m (nτ )s′pm(t− τ )p′m(t− τ )s

⎫⎬⎭E exp

⎧⎨⎩i

t∫
0

dW (n)′(τ )P (t− τ )s

⎫⎬⎭ ,

where W (n)′(τ) = (W
(n)
1 (τ), . . . ,W

(n)
r (τ)), W

(n)
k (τ) = n−1/2(ν

(n)
k (nτ) −

Λ
(n)
k (nτ)), k = 1, . . . , r.
Using Condition 1 and Lemmas 1, 2 we find

lim
n→∞φ

(n)(s) = exp

⎧⎨⎩−1

2

t∫
0

dΛ(0)′(τ)P (t − τ)s2+

+
1

2

r∑
m=1

t∫
0

dΛ(0)
m (τ )s′pm(t− τ )p′m(t− τ )s− 1

2
s′

t∫
0

P ′(t− τ )Δ[dΛ(0)(τ )]P (t− τ )s

⎫⎬⎭ =
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= exp

⎧⎨⎩−1

2
s′

t∫
0

[Δ[dΛ(0)′(τ)P (t − τ)] − P ′(t− τ)Δ[dΛ(0)(τ)]P (t − τ)]s−

−1

2
s′

t∫
0

P ′(t− τ)Δ[dΛ(0)(τ)]P (t− τ)s
⎫⎬⎭ .

The limit is a characteristic function of ξ(1)(t) + ξ(2)(t). Thus, the convergence
of one-dimensional distributions is proved.

Now we consider the two-dimensional distributions. Under the fixed path of
input flow the distribution of (Q(t1), Q(t2)), 0 < t1 < t2, coincides with the
distribution of

r∑
m=1

⎛⎝νm(t1)∑
k=1

χ(m,k)(t1 − τ
(m)
k ),

νm(t1)∑
k=1

χ(m,k)(t2 − τ
(m)
k ) +

νm(t2)∑
k=νm(t1)+1

χ(m,k)(t2 − τ
(m)
k )

⎞⎠ .

Using the formula (2) for N = 2 a joint generating function Φ(t1, t2, z(1), z(2))
of vectors Q(t1), Q(t2) can be represented as follows:

Φ(t1, t2, z(1), z(2)) = E

⎧⎨⎩
r∏

m=1

νm(t1)∏
k=1

[1 + p′m(t1 − τ
(m)
k )(z(1)− 1̄)+

+p′m(t1 − τ
(m)
k )Δ[z(1)]P (Δt2)(z(2)− 1̄)]

νm(t2)∏
k=νm(t1)+1

[1 + p′m(t2 − τ
(m)
k )(z(2)− 1̄)]

⎫⎬⎭ .

From here we find the limit for the joint characteristic function φ(n)(s(1), s(2)),
s(1), s(2) ∈ Rr, of vectors ξ

(n)(t1) and ξ
(n)(t2).

Similarly we can check convergence of N -dimensional distributions for N > 2.
The resulting convergence of finite-dimensional distributions can be strength-

ened to convergence of ξ(n)(t) in the uniform topology. To do this it is necessary
to use the convergence of normalized input flow W (n)(t) to the W (0)(t) in the
uniform topology and the representation of the service process as the amount of
indicator-type processes at the input flow.

Theorem is proved.

Part ξ(1)(t) of the limit process is associated with fluctuations of input flows and
ξ(2)(t) with fluctuations of service times.

3 Limit Process as a Multidimensional Diffusion

In the one-dimensional case for Gaussian processes there is a criterion in terms of
necessity and sufficiency to verify the Markov property ([7], Theorem 1 on page
115). In the multydimensional case the situation becomes more complicated and
there is no general criterion. We will present a variant of the sufficient condition
from [4] for the Markov property of r-dimensional Gaussian processes and apply
this criterion to the limit process from the previous section.
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Let ξ′(t) = (ξ1(t), ξ2(t), . . . , ξr(t)) ∈ Rr be the r-dimensional Gaussian process
with zero mean and correlation matrices

R(t) = Eξ(t)ξ′(t)− Eξ(t)Eξ′(t), R(s, t) = Eξ(s)ξ′(t)− Eξ(s)Eξ′(t), s < t.

Theorem 2. Let for some matrix A and for all s, t (0 ≤ s < t) the functions
R(s) and R(s, t) be related by the following way:

R(s, t) = R(s)P (t− s), where P (t) = exp(At).

Then the Gaussian process ξ(t) is a Markov process and besides the conditional
distribution P (ξ(t) ∈ B/ξ(s) = x), B ∈ BRr , is Gaussian with mean vector
P ′(t− s)x and correlation matrix R(t)− P ′(t− s)R(s)P (t− s).
The set GA of Gaussian processes for which the condition of Theorem 1 takes
place and the corresponding matrices are the same (equal A) satisfies to the
closure condition: a linear combination of two independent processes from GA

belongs GA . Thus, as a consequence from Theorem 2 we obtain the following
interesting fact: the sum of two independent Markov GA-processes is a Markov
process.

Note, that the many-dimensional Ornstein-Uhlenbeck process (see [6], page
166) satisfies the condition of Theorem 2.

Let us apply the criterion of Markov behaviour which is given by Theorem 2
to the limiting Gaussian process ξ(1)(t) + ξ(2)(t) .

Corollary 1. If Λ
(0)
i (t) =

t∫
0

λ
(0)
i (u)du, λ

(0)
i (u) ∈ C[0, T ], i = 1, 2, . . . , r, then

the limiting Gaussian process ξ(1)(t) + ξ(2)(t), t ∈ [0, T ], is an r-dimensional
diffusion with drift vector A(x) = A′x and the diffusion matrix

B(t) = Δ[λ(0)
′
(t) + q′(t)A]−A′Δ[q(t)]−Δ[q(t)]A,

where A = Δ(μ)(P − I), q′(t) =
t∫
0

λ(0)
′
(τ)P (t − τ)dτ, λ(0)

′
(τ) =

(λ
(0)
1 (τ), . . . , λ

(0)
r (τ)).

If we denote as R(t), R(s, t), s < t, the corresponding correlation matrices of the
process ξ(1)(t)+ξ(2)(t) then for them the condition of Theorem 2 will be satisfied
under A = Δ(μ)(P − I) and ξ(1)(t) + ξ(2)(t) will be Markov diffusion process.
Drift vector and diffusion matrix are determined by the form of conditional
distribution P (ξ(t) ∈ B/ξ(s) = x), B ∈ BRr .

Thus, Corollary 1 relates to the method of the diffusion approximation of
overloaded stochastic systems and networks. In this sense it extends the results
of section 4.2 of [5] to the case of Poisson input flow with a varying rate.

The form of the limiting process as a many-dimensional diffusion is attractive
in that the diffusion process is determined by only its local characteristics and
we can use the developed tools of Markov diffusion processes for analysis of
ξ(1)(t) + ξ(2)(t). However, there is a loss because now the limiting process does
not reflect in detail the structure of the prelimiting service process.
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Abstract. In this paper we discuss the estimation of the loss proba-
bility in a queueing system with finite buffer fed by Brownian traffic,
the Gaussian counterpart of the well-known Poisson process. The inde-
pendence among arrivals in consecutive time slots allows the application
of regenerative simulation technique, combined with the so-called Delta-
method to construct confidence intervals for the stationary loss prob-
ability. Numerical simulation are carried out to verify the efficiency of
the regenerative approach for different values of the queue parameters
(buffer size and utilization) as well as simulation settings (digitization
step and generalizations of the regeneration cycle).

1 Introduction

We consider a single server queue with finite buffer of size b, constant service
rate C and cumulative input process

A(t) = mt+
√
mB(t), (1)

given by the superposition of a deterministic linear term mt with positive drift
m > 0 (corresponding to the mean arrival rate) and an adequately scaled version
of the Brownian motion (BM) {B(t)}, with Var A(1) = m. The resulting pro-
cess A(t) is known in the literature as the Gaussian counterpart of the Poisson
stream [6].

The workload processQn in this queueing system, which will be denoted in the
following as Bi/D/1/b, is described by the well-known (discrete time) Lindley
recursion:

Qn = min((Qn−1 − C +Xn)
+, b), n = 1, 2, . . . , (2)

where
Xn := A(n+ 1)−A(n) =st m+N(0,m)

represents the amount of work arriving during the nth time slot and =st means
stochastic equality. The increments Xn are i.i.d. random variables and in the
following X will denote the generic element.

A. Dudin et al. (Eds.): BWWQT 2013, CCIS 356, pp. 131–139, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Denote by Lb(T ) the workload lost during the interval [0, T ], that is

Lb(T ) :=

T∑
k=1

(Qk−1 − C +Xk − b)+.

The time average loss P�(b, T ) is defined as the ratio between the amount of lost
workload and the arrived workload during [0, T ], that is

P�(b, T ) :=
Lb(T )

A(T )
. (3)

Due to the finite buffer size, the system is stable and the loss ratio converges to
the stationary loss probability P�(b), that is

P�(b) := lim
T→∞

P�(b, T ) =
E(Q +X − C − b)+

m
, (4)

where Q is the stationary workload. The following heuristic expression given
in [5]

P�(b) ≈ P�(0)

P(Q > 0)
P(Q > b), (5)

allows us to calculate the loss probability provided there is an explicit formula
(or a satisfactory approximation) for the overflow probability P(Q > b) in the
associated infinite buffer system. In our case, it is possible to use the following
continuous-time approximation (see [8]):

P(Q > b) ≈ exp

(
−2 · C −m

m
· b

)
. (6)

Moreover, it is easy to calculate P�(0), namely,

P�(0) =
E(X − C)+

m

=
1

m3/2
√
2π

∫ ∞

C

(x − C)e−(x−m)2/2m2

dx. (7)

Thus results (5)–(7) allow us to find an approximation of the overflow probability
P� := P�(b) in our model.

2 Regenerative Approach

In this section, we show how to estimate the steady-state loss probability P�
using the regenerative approach. First we construct regeneration points for the
workload process (see also [4]). Let β0 = 0 and

βk+1 = min{n > βk : Qn−1 = 0, Qn > 0}, k ≥ 0, (8)
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where Qn is defined by recursion (2). Before estimating the stationary loss prob-
ability, we must be sure that the workload process is positive recurrent, i.e. the
mean regeneration period must be finite: Eβ <∞, where β denotes the generic
regeneration period.

To prove that Eβ < ∞ in our finite buffer system we require that, starting
in a compact set, the process Qt, t ≥ 0, hits the regeneration (zero) state in a
finite time with a positive probability [7].

It is easy to see that this requirement holds if the traffic intensity ρ := m/C <
1. Indeed, for an arbitrary instant t, consider the event D(t) = {Qt ≤ b} and
note that P(D(t)) = 1 regardless of t. Let m−C = −ε < 0 and note that during
each slot the accumulated workload reduces in average by the quantity ε > 0
(provided the system is not empty). Also consider the i.i.d. sequence Ni, i ≥ 1,
where each Ni is distributed as standard normal variable N(0, 1). Consider the
events ωi = {Ni ≤ 0}, so P(ωi) = 1/2 for all i. Denote by R = �b/ε� the smallest
integer not less than b/ε; then, regardless of t, the workload process reaches the
regeneration state in any interval [t, t+ R] with a probability q, which is lower
bounded by a positive constant as follows

q ≥
[1
2

]R
> 0.

Thus, the regeneration condition is satisfied, and it implies positive recurrence
of the process of regenerations for ρ < 1.

As the queue content is upper bounded by the buffer size b, the queueing
system is stable also when ρ ≥ 1. In this case C ≤ m, and we can take into
account the negative values of the BM to compensate the shortage of the server
capacity C − m ≤ 0. Indeed, during each slot [t, t + 1) the absence of newly
arrived workload has probability

P(m+
√
mB(1) ≤ 0)

= P(N(0, 1) ≤ −√
m) =

1

2
− Φ(√m) := δ > 0,

where Φ denotes the Laplace function. Introduce the events ωi = {Ni < −√
m}

and realize R1 = �b/C� < ∞ such events. Then we obtain (as above) that the
workload process reaches zero during interval [t, t+R1] with a probability which
is lower bounded by a positive constant δR1 > 0.

Thus, we have established that the workload process indeed reaches regener-
ation in a finite interval with positive probability, that is regeneration condition
holds. It means that the renewal process of regenerations is positive recurrent
for all values of ρ.

Denote by Li and Ai the workload lost and arrived during the ith regeneration
cycle, respectively. The regenerative method leads to the following representation
of the steady-state loss probability

P� =
EL

EA
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where the unknown means EL and EA = mEβ < ∞ (as before, L and A denote
the corresponding generic elements) can be estimated from n i.i.d. replications
L1, .., Ln, A1, ..., An:

L̂ := L̂(n) =
1

n

n∑
i=1

Li, Â := Â(n) =
1

n

n∑
i=1

Ai, P̂� := P̂�(n) =
L̂

Â
. (9)

Using the Delta-method [1,2], it is possible to construct confidence intervals for
P�. Let Zi, i = 1, 2 be some random variables. Actually we need to find an
estimation for

f(z) = f(z1, z2), zi = EZi, i = 1, 2, (10)

where f is a sufficiently smooth function (in our case f(z1, z2) = z1
z2
). It is

reasonable to set

fn(ẑ) = f(ẑ1, ẑ2), ẑi =
1

n

n∑
k=1

Z
(k)
i i = 1, 2, (11)

where {Z(k)
i } are i.i.d. replications of Zi. Using Taylor expansion

fn(ẑ)− f(z) = ∇f(z)(ẑ − z) + o(||ẑ − z||), where ∇f =

(
∂f

∂z1
,
∂f

∂z2

)
and ||x|| is Euclidean norm. It is possible to show that

√
n (fn(ẑ)− f(z)) ⇒ N(0, σ2), n→ ∞, (12)

where ⇒ stands for weak convergence and

σ2 = ∇f ·Σ · (∇f)′, Σ = (Cov(Zi,Zj))1≤i,j≤2 .

In particular, for the loss probability convergence (12) can be rewritten in the
following form: √

n
(
P̂� − P�

)
⇒ N(0, η2), n→ ∞, (13)

where

η2 =
E [L−A · P�]

2

(EA)2
.

and, applying the standard sample estimator, we get

η̂2 := η̂2(n) =

1
n−1

n∑
i=1

(Li − P̂�Ai)
2(

1
n

n∑
i=1

Ai

)2 (14)

Based on (13), the (1− γ/2)% confidence interval for P� is given by[
P̂� − tγ η̂√

n
, P̂� +

tγ η̂√
n

]
, (15)
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where tγ = Φ−1
(
γ
2

)
, Φ−1(x) is the inverse of Laplace function and γ is a given

confidence level.
Actually, the estimator (11) can be biased, and it is useful to estimate the

possible bias. To this aim let us consider the second order Taylor expansion of
f (assuming twice differentiability of f , which is automatically fulfilled in our
case):

f(ẑ)− f(z) = ∇f(z)(ẑ − z) + 1

2
(ẑ − z)′H(z)(ẑ − z) + o(||ẑ − z||2),

where H(z) = (Hij(z))1≤i,j≤2 is the Hessian matrix of f . Then

Ef(ẑ)− f(z) = 1

2n

2∑
i,j=1

Cov(Zi, Zj)Hij(z) + o(1/n), n→ ∞. (16)

Hence it seems reasonable to use the modified estimator f(ẑ)− g(ẑ), where

g(ẑ) =
1

2n

2∑
i,j=1

Ĉov(Zi, Zj)Hij(ẑ) (17)

and Ĉov(Zi, Zj) is the sample covariance. The relevance of this bias depends on
the length of the simulation and on the system parameters, but typically it is
negligible (see the numerical results in the next section).

3 Numerical Results

The regenerative approach is applied to the above considered system Bi/D/1/b
in order to estimate its stationary loss probability. In more detail, regeneration
points are constructed according to (8) and then confidence intervals for the
probability P� are calculated according to (15).

Several simulation tests have been carried out in order to analyze the different
issues raised in the previous sections. Unless otherwise stated, the following
values of the system parameters are considered: mean arrival rate m = 0.8,
service rate C = 1, buffer size b = 4, simulation length T = 105 and 95%
confidence level.

The first set of simulation aimed at checking the relevance of the bias as
a function of the simulation length. As highlighted by Fig. 1, |g(ẑ)| rapidly
decreases with the simulation length T and this justifies the value T = 105

chosen for the remaining sets of simulations (as can be seen in Fig. 2, P� ≈ 0.033
for the chosen values of the queue parameters).

Another relevant issue in discrete-time simulation is the choice of the digi-
tization step: indeed, we considered a continuous-time system only at discrete
points in time and this typically introduces some kind of approximation in the
estimated parameters (see, for instance,[2,3] and [6] for a more detailed anal-
ysis of the problem). To this aim, we simulated the queueing system over non
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overlapping time slots of length h = 1/N and Fig. 2 shows the behaviour of P�

(with its 95% confidence interval) as a function of N , which is rather insensitive
to the selection of the concrete value of step digitization h in a wide range of
values of N . This remark permits to choose a relatively small value of N (in the
following N = 10 will be considered), saving simulation time (indeed the number
of simulated slots is given by NT ).

As far as the simulation set-up is concerned, we finally studied the depen-
dence of the estimates on the choice of the regeneration points. Namely, we built
subsequences of regeneration points {βsk} for several values of s as βsk = βsk in
order to estimate the effect of cycle aggregation (for the same fixed length of the
simulation interval, i.e. T = 105). As highlighted by Fig. 3, the estimation of P�

very weakly depends on the parameter s, so it is reasonable to make use of the
standard regenerative simulation (i.e., with s = 1).
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Fig. 1. Behaviour of |g(ẑ)| in the Bi/D/1/4 queue
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Fig. 3. Effect of alternative choices of the regeneration points in the Bi/D/1/4 queue

Fig. 4 compares the simulation results (considering the settings discussed
above) with the analytical approximation (5) for different values of the buffer
size b, confirming the goodness of the proposed approach.
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Fig. 4. Estimates of P� in the Bi/D/1/b queue for m = 0.8: regenerative method vs.
approximation (5)

Due to the finite buffer size, regenerative simulation can also be applied when
ρ > 1; in this case the average length of the regeneration cycles grows (as reported
in Table 1 for different values of b in the two considered scenarios), but the
estimation is still quite accurate as shown in Fig. 5 for m = 1.2. In this case it is
not possible to compare the simulation results with the approximation (5) since
the latter relies on the stability of the corresponding infinite-buffer system.
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Fig. 5. Estimates of P� through regenerative simulation in the Bi/D/1/b queue for
m = 1.2

Table 1. Average length of the regeneration cycles for Bi/D/1/b queue

Buffer Size m=0.8 m=1.2

1 2.329 4.033
2 2.846 6.928
3 3.164 11.118
4 3.365 16.917
5 3.481 25.156
6 3.564 35.726
7 3.609 50.431
8 3.636 69.365
9 3.655 97.955
10 3.667 138.441
11 3.676 192.323
12 3.679 262.308
13 3.680 357.794
14 3.682 474.206
15 3.682 683.510

4 Conclusion

Loss probability is a relevant Quality of Service parameter in computer networks
and simulation is a powerful tool for its estimation, provided that some informa-
tion about its accuracy is available. In this work we considered a single-server
queue with finite buffer fed by Brownian traffic, the Gaussian counterpart of
the well-known Poisson process. The nature of the input process allowed us to
construct confidence intervals for the stationary loss probability by combining
regenerative simulation with the so-called Delta-method.

Through several sets of simulations, at first we discussed the effect of different
parameters related to the simulation set-up, which may have a relevant impact
on the simulation time. In more detail, we considered the entity of biasing, the
effect of the digitization step and possible generalizations in the definition of
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the regeneration cycles. Then we applied the regenerative approach for different
values of the buffer size, confirming that the regenerative method efficiently
works also when the corresponding infinite buffer system is unstable (i.e., for
ρ > 1).

Finally, a known approximation of the loss probability via the overflow prob-
ability was used to verify the accuracy the estimation.

Acknowledgment. This work is partially supported by the strategic devel-
opment program of Petrozavodsk State University for 2012-2016 and Russian
Foundation for Basic research, project No 10-07-00017.
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Finite Source Retrial Queues

with State-Dependent Service Rate

Vadym Ponomarov and Eugene Lebedev

Taras Shevchenko National University of Kyiv

Abstract. This paper deals with the research of finitesource retrial
queues whose service rate depends on queue length. Two- and three-
dimensional models that describe threshold and hysteresis control poli-
cies are taken into account. Explicit vector-matrix representations of
stationary distributions are main results in both cases.

Keywords: retrial queue, state-dependent service rate, stationary prob-
abilities, optimization.

1 Introduction

Multi-channel systems with repeated calls and finite number of primary sources
are an important class of the models in which arrival calls are not lost but repeat
the attempt to receive service in case of failure. In contrast to the systems with
Poisson input flow such models take into account the fact that the primary
flow rate decreases with the growth of users in the system. Systems with the
finite number of primary sources are often used in practice for cellular networks
modeling (see [1], [2]). Additional cases of such models usage can be found in
[3].

The first priority problem for retrial queues is the research of steady state of
the process X(t) = (C(t);N(t)), where C(t) - number of busy servers, N(t) -
number of retrials. For the classic Markov model (see, for example, [4], page 269)
X(t) is a Markov chain in state space S(X) = {0, 1, . . . , c} × {0, 1, . . . , n − c}
(c - number of servers, n - number of primary sources), whose infinitesimal
characteristics are build according to primary calls generation rate λ, service
rate ν and repeated attempts Poisson flow rate μ related to the failed call.

In this paper the classic model becomes more complex as the service rate
depends on the number of repeated calls. We consider two cases of such a de-
pendency. In the first case the service process remains two-dimensional but in
the second one the third component has to be added to save the Markov prop-
erty. This generalization of the service process allows to model threshold and
hysteresis control policies of the service rate, in order to formulate and solve
optimization problems.

A. Dudin et al. (Eds.): BWWQT 2013, CCIS 356, pp. 140–146, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Two-Dimensional Service Process for State-Dependent
Service Rate

To define the service process for state-dependent service rate we will realize the
following substitution in the classic model: ν = νj > 0, j = 0, 1, . . . , n− c, where
j – number of retrials. The structure of infinitesimal characteristics dependence
on system’s parameters remains the same.

Let us analyze steady state of the process X(t) = (C(t), N(t)). To formulate
the main result we introduce the necessary notations.

Let πij , (i, j) ∈ S(X) be stationary probabilities of the process X(t), πj =

(π0j π1j . . . πc−1j)
T
, ei = (δi0 δi1 . . . δic−1)

T
, 1 – c-dimensional vector that

consists of 1.

Aj =
∥∥∥ajik∥∥∥c−1

i,k=0
– three-diagonal matrix with elements:

ajii = (n− i− j)λ+ jμ+ iνj, i = 0, 1, . . . , c− 1,

ajii+1 = −(i+ 1)νj , i = 0, 1, . . . , c− 2,

ajii−1 = −(n+ 1− i− j)λ, i = 1, 2, . . . , c− 1.

Bj =
∥∥∥bjik∥∥∥c−1

i,k=0
, where

bjii−1 = (j + 1)μ, i = 1, 2, . . . , c− 2,

bjc−1i =
c(j + 1)μνj
(n− c− j)λ, i �= c− 2,

bjc−1c−2 =
(j + 1)μ ((n− c− j)λ+ cνj)

(n− c− j)λ ,

all other elements are equal to 0.
C = ‖cik‖c−1

i,k=0, where (c00 c10 . . . cc−10)
T = e0 and cik = an−c

i−1k, when i �= 0.

Φj =

⎛⎝n−c−1∏
i=j

A−1
i Bi

⎞⎠C−1e0, j = 0, 1, . . . , n− c.

Theorem 1. Steady state probabilities of the system are defined through sys-
tem’s parameters in the following form:

πj = Φjπ0n−c, j = 0, . . . , n− c,

πcj =
(j + 1)μ

(n− c− j)λ1
T
Φj+1π0n−c, j = 0, . . . , n− c− 1,

πcn−c =
[λ+ (n− c)μ+ (c− 1)νn−c] e

T
c−1 − 2λeTc−2

cνn−c
C−1e0π0n−c,
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where

π0n−c =

{
1
T

n−c∑
j=0

(n− c+ 1− j)λ+ jμ
(n− c+ 1− j)λ Φj+

[λ+ (n− c)μ+ (c− 1)νn−c] e
T
c−1 − 2λeTc−2

cνn−c
Φn−c

}−1

.

Proof. To find probabilities πij let us use the theorem about the equality of
probability flows balance through closed path of the phase space in the steady
state ([5] p.49). For each j = 1, 2, . . . , n − c we use decomposition of the phase

space S(X) = S
(1)
j (X) ∪ S̄(1)

j (X), S
(1)
j (X) = {(p, q) ∈ S(X) : q ≤ j}. Equating

probability flows through the border of subset S
(1)
j (X), we obtain:

(n− c+ 1− j)λπcj−1 = jμ
c−1∑
i=0

πij , j = 1, . . . , n− c. (1)

Then for i = 0, 1, . . . , c − 1, j = 1, 2, . . . , n − c + 1 we build decomposition of

state space S(X) = S
(2)
ij (X)∪ S̄(2)

ij (X), S
(2)
ij (X) = {(i, j)}. Equating probability

flows through the border of subset S
(2)
ij (X), we obtain the following system of

equations:

[(n+ 1− i− j)λ+ (j − 1)μ+ iνj−1]πij−1 =

= jμπi−1j + (n+ 2− i− j)λπi−1j−1 + (i+ 1)νj−1πi+1j−1, (2)

j = 1, . . . , n− c+ 1, i = 0, . . . , c− 1,

n−c∑
j=0

c∑
i=0

πij(H) = 1. (3)

The last equation is normalizing condition. Let us rewrite (2) in the following
form:

−(n+ 1− i− j)λπi−1j + [(n− i− j)λ+ jμ+ iνj ]πij − (i+ 1)νjπi+1j =

= (j + 1)μπi−1j+1, j = 0, ..., n− c− 1, i = 0, ..., c− 2. (4)

From equation (1) we find probability πcj and substitute it into (2) for i = c−1.
We obtain:

−(n− c+ 2)λπc−2j + [(n− c+ 1− j)λ+ jμ+ (c− 1)νj ]πc−1j =

=
(j + 1)cμνj
(n− c− j)λ

c−1∑
i=0,i�=c−2

πij+1 +
(j + 1)μ [(n− c− j)λ+ cνj ]

(n− c− j)λ πc−2j+1,

j = 0, . . . , n− c− 1. (5)
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We can rewrite the system of equations (4), (5) in the following vector-matrix
form:

Ajπj = Bjπj+1, j = 0, . . . , n− c− 1.

From the last equation:

πj =

⎛⎝n−c−1∏
i=j

A−1
i Bi

⎞⎠πn−c, j = 0, . . . , n− c− 1. (6)

Supplementing the system (2) for i = 0, 1, . . . , c−2, j = n−c+1 by the equation
π0n−c = π0n−c and writing it in vector-matrix form we obtain:

Cπn−c = e0π0n−c.

Which leads to the following result for the vector πn−c:

πn−c = C
−1e0π0n−c. (7)

Finally from equations (6) and (7) we obtain:

πj = Φjπ0n−c, j = 0, . . . , n− c.
By substitution of expression for probability πj+1 into equation (1), we find
πcj , j = 0, . . . , n − c − 1. From equation (2) we obtain probability πcn−c when
i = c− 1, j = n− c+ 1.

Probability π0n−c is found from the normalizing condition (3).

The essence of the above result is to provide an efficient algorithm for comput-
ing steady state probabilities and the performance characteristics of the service
process in the steady regime. The obtained explicit formulas also allow to de-
terminate the structure of dependency of stationary distribution on the model’s
parameters.

The special case of service rate control, corresponding to the threshold strat-
egy is described below. We fix the threshold H ∈ {−1, 0, 1, . . . , n− c}. If j ≤ H ,
then νj = ν

(1) and the service process operates in the first mode. If j > H , then
νj = ν(2) and the process operates in the second mode. Theorem 1 gives us an
efficient algorithm for finding an optimal threshold H∗ that maximizes a quality
functional. Numeric examples and other details can be found in [6].

3 Controll of Service Rate by Hysteresis Strategy

To define a strategy of the hysteresis type one should fix two thresholdsH1, H2 ∈
{−1, 0, 1, . . . , n− c}, H1 ≤ H2. If the number of retrials j ≤ H1 then the service

rate is equal to ν
(1)
j . When j > H2 the service process operates in the second

mode with the rate ν
(2)
j . When j ∈ (H1, H2], the system keeps its previous

operating mode.
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Such a delay in switching of service rate allows to lower a cost of this operation

and to increase an efficiency of the control. In case of H1 = H2 = H , ν
(1)
j =

ν(1), ν
(2)
j = ν(2) the hysteresis strategy turns into the threshold strategy. Single

channel systems with retrials and controlled parameters of such type can be
found in [7].

To provide a formal description of the service process while preserving the
Markov property it is necessary to add the third component R(t) ∈ {1, 2} which
is the number of operating mode at time t ≥ 0. As a result the service process
turns into the three-dimensional Markov chain Y (t) = (C(t), N(t), R(t)) with a
state space S(Y ) = S(1)(Y ) ∪ S(2)(Y ), where

S(1)(Y ) = {i = (i1, i2, 1) : i1 = 0, . . . , c, i2 = 0, . . . , H2} ,

S(2)(Y ) = {i = (i1, i2, 2) : i1 = 0, . . . , c, i2 = H1 + 1, . . . , n− c} ,
S(1)(Y ) ∩ S(2)(Y ) = Ø.

Local characteristics αij , i = (i1, i2, i3), j = (j1, j2, j3) of the chain Y (t) remain
similar to characteristics of two-dimensional process X(t). We pay additional
attention to transitions from layer S(1)(Y ) to S(2)(Y ) and vice versa:

1. if i = (c,H2, 1) then
αij = (n− c−H2)λ, when j = (c,H2 + 1, 2),

αij = cν
(1)
H2

, when j = (c− 1, H2, 1),

αij = −
[
(n− c−H2)λ+ cν

(1)
H2

]
, when j = i,

otherwise αij = 0.
2. if [(i1 = 0, . . . , c− 1) ∧ (i2 = H1 + 1) ∧ (i3 = 2)] then
αij = (n−H1 − 1− i1)λ, when j = (i1 + 1, H1 + 1, 2),
αij = (H1 + 1)μ, when j = (i1 + 1, H1, 1),

αij = i1ν
(2)
H1+1, when j = (i1 − 1, H1 + 1, 2),

αij = −
[
(n−H1 − 1− i1)λ+ (H1 + 1)μ+ i1ν

(2)
H1+1

]
, when j = i,

otherwise αij = 0.

The main result of this section is to construct explicit vector-matrix formulas

for steady state probabilities π
(r)
ij , (i, j, r) ∈ S(Y ) of the process Y (t), t ≥ 0.

Let us consider the matrices:

F
(1)
j =

⎛⎝H1∏
i=j

A−1
i (1)Bi(1)

⎞⎠[
E +

H2∑
k=H1+1

(
k−1∏

i=H1+1

A−1
i (1)Bi(1)

)
A−1

k (1)Dk(1)

]
,

j = 0, . . . , H1

F
(1)
j =

H2∑
k=j

⎛⎝k−1∏
i=j

A−1
i (1)Bi(1)

⎞⎠A−1
k (1)Dk(1), j = H1 + 1, . . . , H2;
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(It is considered that F
(1)
H2+1 is equal to zero matrix);

F
(2)
j =

(
E −

⎡⎣ H2∑
k=j

⎛⎝k−1∏
i=j

A−1
i (2)Bi(2)

⎞⎠A−1
k (2)Dk(2)

⎤⎦×

×
[
E +

H2∑
k=H1+1

(
k−1∏

i=H1+1

A−1
i (2)Bi(2)

)
A−1

k (2)Dk(2)

]−1 )
×

×
n−c−1∏
i=j

A−1
i (2)Bi(2), j = H1 + 1, . . . , n− c− 1;

(
F

(2)
n−c = E = ‖δij‖c−1

i,j=0

)
;

F̃
(1)
j =

(j + 1)μ

(n− c− j)λF
(1)
j+1F

(2)
H1+1, j = 0, . . . , H1 − 1,

F̃
(1)
j =

(j + 1)μ

(n− c− j)λ
(
F

(1)
j+1 +

H1 + 1

j + 1
E

)
F

(2)
H1+1, j = H1, . . . , H2,

F̃
(2)
j =

(j + 1)μ

(n− c− j)λ
(
F

(2)
j+1 −

H1 + 1

j + 1
F

(2)
H1+1

)
, j = H1 + 1, . . . , H2,

F̃
(2)
j =

(j + 1)μ

(n− c− j)λF
(2)
j+1, j = H2 + 1, . . . , n− c− 1,

where matricesAj(r), Bj(r) are defined similar to Aj , Bj ;Dj(r) =
∥∥∥djik(r)∥∥∥c−1

i,k=0
:

djc−1k(r) =
(H1 + 1) cμν

(r)
j

(n− c− j)λ , k = 0, . . . , c− 1;

other elements of Dj(r) are equal to 0.

Theorem 2. Steady state probabilities of Y (t) = (C(t), N(t), R(t)) can be found
in the following form:

π
(1)
j = π

(2)
0n−cF

(1)
j F

(2)
H1+1C

−1e0, j = 0, . . . , H2,

π
(2)
j = π

(2)
0n−cF

(2)
j C−1e0, j = H1 + 1, . . . , n− c

π
(1)
cj = π

(2)
0n−c1

T
F̃

(1)
j C−1e0, j = 0, . . . , H2,

π
(2)
cj = π

(2)
0n−c1

T
F̃

(2)
j C−1e0, j = H1 + 1, . . . , n− c− 1,

π
(2)
cn−c = π

(2)
0n−c

[
λ+ (n− c)μ+ (c− 1)ν

(2)
n−c

]
eTc−1 − 2λeTc−2

cν
(2)
n−c

C−1e0,
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where π
(r)
j =

(
π
(r)
0j π

(r)
1j . . . π

(r)
c−1j

)T

, matrix C is defined as above with the

substitution of An−c(2) instead of An−c,

(
π
(2)
0n−c

)−1

=

(
1
T

⎡⎣E +

H2∑
j=0

(
F

(1)
j F

(2)
H1+1 + F̃

(1)
j

)
+

n−c∑
j=H1+1

(
F

(2)
j + F̃

(2)
j

)⎤⎦+

+

[
λ+ (n− c)μ+ (c− 1)ν

(2)
n−c

]
eTc−1 − 2λeTc−2

cν
(2)
n−c

)
C−1e0.

The proof of theorem 2 is similar to such for theorem 1. We again use the
balance equations of probability flows for special subset of the phase space to
obtain the set of equations for stationary probabilities wich can be solved in the
vector-matrix form.

Results of the theorem 2 are suitable and for solving optimization problems
in case of control policy of hysteresis type.
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Abstract. Multidimensional alternative processes are introduced, their
stationary and quasi-stationary probabilities are investigated, and their
applications in reliability models are considered.

Keywords: alternative processes, reliability models, quasi-stationary
probabilities.

1 Introduction and Motivation

Most of complex technical systems and biological objects have an hierarchical
structure and are supported by inner control system. Therefore from reliability
point of view they can be considered as renewable systems. Moreover these
systems usually have high reliability that could be, for example, result of quick
restoration.

Binary Markov models for renewable reliability systems are enough good stud-
ied. Multi-State Markov reliability models are in the focus of specialists during
last time [1–4]. Some models of reliability control has been considered in [5, 6].

However elements life and restoration times not always exponentially dis-
tributed that leads to engage alternative processes for investigation of binary
reliability models with general life and restoration times distributions. From
another side because there are no infinitely long existing systems, the most in-
terest represents an investigation of their behavior during their life time. The
system behavior before its full failure is described with conditional probability
distribution given life time didn’t end.

Closed form representation of these probabilities in general case are hardly
possible. However, because under quick restoration a system many times visit
any of its not absorbing states an interesting problem is study limits of these
probabilities for t → ∞. The problems of these limits existence for Markov
processes and especially for birth and death processes have been considered by
several authors (see for example [7, 8] and the bibliography therein). Evaluation
of the convergence rate to the quasi-limiting probabilities for queueing models in
[9] has been studied. In [10] generalized birth and death processes as a model for
systems degradation has been introduced and studied, where also the problem
of quasi-limiting probabilities has been discussed.

In the paper multidimensional alternative processes are introduced and their
steady state probabilities are calculated. It is shown that they are insensitive to

A. Dudin et al. (Eds.): BWWQT 2013, CCIS 356, pp. 147–156, 2013.
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the shape of process components sojourn time in their states distributions, and
have a product form. For Markov case the life time distribution and problem
of quasi-stationary distributions existence is considered. Some examples of the
model applications in reliability are proposed.

2 The Problem Setting and Examples

Consider some system, consisting from n units, each of which can be in two
states: “up” and “down” and suppose that simultaneously only one unit can
change its state, being the sojourn time spent of any unit in any its state is a
random variable (r.v.) with general distribution. The long time system behavior
is usually described with steady state probabilities. However, because there is
no infinitely long existing systems in most real situation it is necessary to study
their life time (before entering in sone full failure subset of states) as well as
their behavior during this time.

Therefore the problem consists in not only investigation of steady state proba-
bilities of a system at infinity, but also in studying their life time i.e. distribution
of some absorbing set destination as well as their behavior during this time. Con-
sider some examples.

1. Heterogeneous Reliability System. Renewable reliability system from
n heterogeneous elements can be described by n dimensional binary vector j =
(j1, . . . , jn), where

jk =

{
0, if k-th element is in up state,

1, if k-th element is in down state.

The full set of states E = {j = (j1, . . . , jn), jk = {0, 1}, (k = 1, n)} should be
divided into up E0 and down E1 subsets. For example the down subset for system
in parallel is E1 = {(1, . . . , 1)} and for system in line is E1 = E \ {(1, . . . , 1)}.

2. Homogeneous System. Homogeneous system is a special case of hetero-
geneous one for which failure and restoration parameters of elements are equal.
In this case the model admit states enlarging by joining states with equal number
of down elements, j =

∑
1≤k≤n jk with set of states E = {0, 1, . . . , n}.

3. Hierarchical System. Hierarchical system also can be modelled with
multidimensional alternative process. In this case elements of the system should
be numerated by vector indices i = (i1, i2, . . . ir), which components show num-
bers of sequence subsystems to which appropriate elements belongs, and index
r denotes the hierarchical level of appropriate element. Thus, the system states
are described with binary vectors ji, which indices show the elements position,
and binary components denote the element state: 0–up state, 1–down state. The
system structure function φ is a complex function, which should be constructed
from structure functions φik of subsystems ik = (i1, i2, . . . ik) for k = 1, 2, . . . r
up to elementary level. In this representation the subset E1 = φ−1(0) determines
the system failure subset.
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3 Definition. Main Relations

The above considered systems can be modelled by multidimensional alterna-
tive random process J(t) = (J1(t), . . . Jn(t)) with binary components Jk(t) =
{0, 1} (k = 1, n) and finite state space E = {j = (j1, . . . jn), jk = {0, 1} (k =
1, n)} consisting of |E| = N = 2n states. Accordingly to the system structure
the transitions from state j are possible only to “neighboring” states j → j± ek,
where ek is a vector all component of which are zero except of the k-th one which
is equal to one, being the time spent by each component in its 0 and 1 states
during any visit in it has general distribution.

In order to describe the system behavior with Markov process let us use
the extended state space E = E × Rn

+ and consider multidimensional process
Z(t) = {J(t), X(t)} in which components J(t) ∈ E are the states of the initial
process, and additional components X(t) ∈ Rn

+ denote the time spent each of
its first component in its state beginning from its last entering in it. Denote by

– Ak(x), Bk(x) cumulative distribution functions (c.d.f.) of the sojourn time
k-th component of process J(t) in its state jk = 0 or jk = 1 beginning from
the time of last entering in it;

– ak(x), bk(x) appropriate probability density function (p.d.f.);
– ak =

∫
(1−Ak(x))dx, bk =

∫
(1−Bk(x))dx their expectations; and

– αk(x) = (1 − Ak(x))
−1ak(x) βk(x) = (1 − Bk(x)

−1)bk(x) transition in-
tensities of the process J(t) from the state j to states j + ek and j − ek
correspondingly under condition that the time spent of its k-th component
beginning from the last entering in it equal to x.

Put also

j̄k = (j1, . . . jk−1, 1− jk, jk+1, . . . jn), xk(u) = (x1, . . . xk−1, u, xk+1, . . . xn),

c(k,jk)(x) = a
1−jk
k (x) bjkk (x),

γ(k,jk)(x) = α
1−jk
k (x)βjkk (x), γj(x) =

∑
1≤k≤n

γ(k,jk)(x).

Denote by πj(t;x) = π(j1,...jn)(t; x1, . . . xn) the p.d.f. of the process Z(t),

πj(t; x)dx = π(j1,...jn)(t; x1, . . . xn)dx1 . . . dxn =

= P{Ji(t) = ji, Xi(t) ∈ dxi, i = 1, n},
Kolmogorov’s system of equations for these p.d.f.’s in the set 0 ≤ xj ≤ t <
∞, j = 1, 2, . . . n is

∂πj(t,x)

∂t
+

∑
1≤k≤n

∂πj(t,x)

∂xk
= −γj(x)πj(t,x) (j ∈ E), (1)

and boundary conditions are

πj(t;xk(0)) =

t∫
0

πj̄k(t;xk(u))γ(k, jk)(j; u)du (j ∈ E), (2)
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while the initial conditions in terms of Dirac δ-function are

πj(0;0) = δ(j, 0)(t) (j ∈ E). (3)

Based on characteristic method for first order partial differential equations so-
lution [11], general solution of this system should be find in the form

πj(t;x) = hj(t− x1, . . . , t− xn)
∏

1≤k≤n

(1−Ak(xk))
1−jk(1 −Bk(xk))

jk , (4)

where functions hj(. . . ) accordingly to the boundary conditions (2) should be
find from equations

hj(t− xk(0)) =

t∫
0

hj̄k(t− xk(u))c(k, jk)(j; u)du (j ∈ E). (5)

One can see that these equations hold for the functions hj(. . . ) in the form

hj(u1, . . . , un) =
∏

1≤k≤n

h(k, jk)(uk). (6)

From the other side the initial conditions (3) show that the functions h(k, jk)(u)
have to satisfy to the equations

h(k, jk)(t) = δjk, 0(t) +

t∫
0

hk, 1−jk(t− u)c(k,jk)(u) du (k = 1, n),

which in terms of Laplace Transforms (LT) can be represented as

h̃(k, jk)(s) = δjk, 0 + h̃k, 1−jk(s)c̃(k, jk)(s) (k = 1, n).

The last system has the following solution

h̃(k, jk)(s) =
ãjkk (s)

1− ãk(s)b̃k(s)
. (7)

In general case closed form representation of time dependent probabilities is
hardly possible. However for Markov case one can get them.

Example. Consider multidimensional Markov alternative process with tran-
sition intensities αk and βk for k-th element. In this case ãk(s) = αk(s +
αk)

−1, b̃k(s) = βk(s + βk)
−1. Thus for functions h̃(k, jk)(s) from (7) one find

h̃(k, jk)(s) =
(s+ αk)

1−jkαjkk (s+ βk)

s(s+ αk + βk)
(8)
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At least using (4) and (6) one find π̃j(s) =
∏

1≤k≤n π̃k, jk(s) with

π̃k, jk(s) =
h̃(k, jk)(s)

(s+ αk)1−jk((s+ βk)jk)
=

=
α1−jk
k βjkk

s(αk + βk)
+ (−1)jk

αk
(αk + βk)(s+ αk + βk)

,

Inversion of these expressions give

πk, jk(t) =
α1−jk
k βjkk
αk + βk

+ (−1)jk
αk

αk + βk
e−(αk+βk)t,

and πj(t) =
∏

1≤k≤n πk, jk(t) that also can be find with direct Markov approach.

4 Stationary Regime

The expression (7) shows that the functions h(k, jk)(t) are renewal densities of a
renewal process, generated by process Z(t) components returning times to the
zero state and therefore for t→ ∞ they have the limits

lim
t→∞h(k, jk)(t) = lim

s→0
sh̃(k, jk)(s) =

1

ak + bk
.

It is impossible to find closed form expressions for time-dependent probabilities
in general case, however taking into account (6) for t→ ∞ in (4) one find

πj(x) = lim
t→∞ πj(t;x) =

∏
1≤k≤n

1

ak + bk
(1−Ak(xk))

1−jk(1 −Bk(xk))
jk .

From another side for stationary probabilities of macro-states using Smith’s key
theorem from (4) and (6) one has

πj = lim
t→∞

∫
· · ·

∫
0≤xk≤t, (k=1,n)

πj(t;x1, . . . , xn)dx1, . . . , dxn =

= lim
t→∞

∏
1≤k≤n

t∫
0

h(k, jk)(t− xk)(1 −Ak(xk))
1−jk(1−Bk(xk))

jkdxk =

=
∏

1≤k≤n

1

ak + bk

∞∫
0

(1 −Ak(xk))
1−jk (1−Bk(xk))

jkdxk =
∏

1≤k≤n

a1−jk
k bjkk
ak + bk

.

This result means insensitivity of stationary probabilities to the shape of c.d.f.
sojourn time.
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5 Life Time Distribution and System Behavior on It

For many applications especially for reliability models actual problems are both:
to find the failure subset of states E1 destination time, which can be considered
as the system “life time”, and to investigate the system behavior during this
time. Denote by

T = inf{t : J(t) ∈ E1}
the subset E1 destination time and by F (t) = P{T ≤ t} its c.p.f. In order to find
this distribution and the system state distribution during this time one should
solve the system (1) with subset E1 as an absorbing set. In this case the
Kolmogorov’s system of equations (1) holds for j ∈ E0 with the same boundary
(2) and initial (3) conditions and absorbing conditions

πj(t) =
∑

k: j̄k∈E0

t∫
0

πj̄k(t;xk(u))γ(k, jk)(u)du (j ∈ E1). (9)

The general solution of this system does not change in the set j ∈ E0, i.e. has a
form

πj(t;x) = hj(t− x1, . . . , t− xn)
∏

1≤k≤n

(1−Ak(xk))
1−jk (1−Bk(xk))

jk , (10)

At that functions hj(· · · ) must satisfy to equations that appropriate to the
boundary (2), initial (3) and absorbing (9) conditions, being the last one takes
the form

hj(t) =
∑

k: j̄k∈E0

t∫
0

hj̄k(t− xk(u)) c(k, jk)du (j ∈ E1) (11)

Now the components of the process Z(t) are dependent and there is no simple
closed form solution for this system. However, the equations (1) for j ∈ E0 give
the possibility for numerical solution of the problem and calculation of the subset
E1 destination time distribution in the form

F (t) = P{T ≤ t} =
∑
j∈E1

πj(t). (12)

In case of Markov alternative process it is possible to calculate appropriate func-
tions in terms of their LT. Denote by Λ infinitesimal matrix of the process J(t)
and by π′(t) = (πj(t), j ∈ E) its probability states vector with πj(t) = P{J(t) =
j}, and by e ′

0 vector each components of which equals 0, except of those that
corresponds to the state 0, which equals to 1. Here and below the sign “prime”
denotes transpose operation while derivatives are denoted with up dots. With
this notations the Kolmogorov’s system of equations in matrix form with initial
conditions are

π̇′(t) = π′(t)Λ, π′(0) = e ′
0 (13)
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that in terms of LT is

sπ̃′ − e ′
0 = π̃′(s)Λ. (14)

Representing the infinitesimal matrix and probability state vector π′(t) in block
form

Λ =

[
Λ0, 0 Λ0, 1

Λ1, 0 Λ1, 1

]
, π′(t) = (π′

E0
(t),π′

E1
(t)), e ′

0 = (e ′
E0
, e ′

E1
),

where matrix blocks with indices 0 and 1 correspond to system states subsets
E0 and E1 and putting Λ1, 0 = e ′

E1
= 0, reduce the system (14) to the form

sπ̃′
E0

(s)− e ′
E0

= π̃′
E0

(s)Λ0, 0, sπ̃′
E1

(s)− e ′
E1

= π̃′
E0

(s)Λ0, 1

that have the solution

π̃′
E0

(s) = e ′
E0

(Is− Λ0, 0)
−1, π̃′

E1
(s) =

1

s
e ′

E0
(Is− Λ0, 0)

−1Λ0, 1 (15)

Taking into account that the life time c.p.f. has a form (12), its generating
function (g.f.) f̃(s) = sF̃ (s) can be represented as

f̃(s) = sπ̃′
E1

(s)1 = e ′
E0

(Is− Λ0, 0)
−1Λ0, 11. (16)

This expression allows to calculate the life time moments and moreover being
fractionally rational it admits by calculation of its inversion to find life time
p.d.f. and reliability function. Some example of this approach see in [12].

6 Quasi-stationary Probabilities

The main characteristic of an object behavior at its life cycle is the conditional
state probabilities given life time is not finished. Denote by π̄j(t) conditional
probability of the object occurring in the state j at its life cycle,

π̄j(t) = P{J(t) = j |t < T }.

Because the system (13) solution {πj(t), j ∈ E0} with absorbing state E1 is
a joint probability the process being at the state j jointly with life cycle isn’t
finished, πj(t) = P{J(t) = j, t < T }, so for π̄j(t) it is true the representation

π̄j(t) ≡ P{J(t) = j |t < T } =
πj(t)

R(t)
,

where R(t) = 1−F (t) = P{T > t} is a reliability (survival) function of the sys-
tem. Calculation of these function in general case is hardly possible. However be-
cause under quick restoration the object many times occurs in its non-absorbing
states, it is interesting to prove the existence and to calculate the limiting value
of these conditional probabilities for t → ∞, that could be considered as part
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of time spending by the process in each of its states at its fife cycle (before
absorbing).

Consider these problems for the case of Markov alternative process. Asymp-
totic behavior of probabilities π̄j(t) for t → ∞ will be studied with the help of
their LT, that accordingly to (15) have the form

π̃j(s) = e ′
E0

(Is− Λ0, 0)
−11 =

Δj(s)

Δ(s)
, j ∈ E0

π̃j(s) =
1

sΔ(s)

∑
i∈E0

Δi(s)λi, j j ∈ E1,

where Δ(s) is determinant of matrix (Is− Λ0, 0) and Δj(s) is algebraic adjunct
of j-th component its first row.

It is very known that the all roots of characteristic equation

Δ(s) = det(Is− Λ0, 0) = 0 (17)

are negative. Denote them with si (i = 1, N), numerate them in order its de-
creasing sN < · · · < s2 < s1 and suppose that the maximal root s1 has an order
one. Thus in simple fractions representation of the functions π̃j(s) for j ∈ E0 has
a form

π̃j(s) =
Aj1

s− s1 +
∑

2≤k≤n

Aj,k

(s− sk)ij,k (18)

where ij,k is an appropriate root multiply, and Aj,k are some coefficients, first of
which is a residue of the function π̃j(s) at the point s1,

Aj1 = lim
s→s1

(s− s1)π̃j(s) = Δj(s1)

Δ̇(s1)
.

Inversion of (18) gives
πj(t) = Aj1e

s1t(1 + fj(t)), (19)

where

fj(t) =
∑

2≤k≤n

Ajk

Aj1
e−(s1−sk)t → 0 for t→ ∞.

Show that the reliability function R(t) has the same asymptotic behavior at
infinity as probabilities πj(t). Really, from (12) and (15) it follows that F̃ (s) can
be represented as

F̃ (s) =
AE1,0

s
+
AE1,1

s− s1 +
∑

2≤k≤n

AE1, k

(s− sk)iE1, k

with some coefficients AE1,k. Show that the first coefficient AE1,0 in this rep-
resentation equals 1, AE1,0 = 1. Indeed, F (t) is the non degenerated c.p.f. and
therefore limt→∞ F (t) = 1, which leads to

AE1,0 = lim
s→0

sF̃ (s) = 1.
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Now, taking into account that R(t) = 1− F (t), for its LT R̃(s) holds

R̃(s) =
1

s
− F̃ (s) = AE1,1

s− s1 +
∑

2≤k≤n

AE1, k

(s− sk)iE1, k
.

Passing to original in the last relation one find

R(t) = AE1,1e
s1t(1 + fE1(t)), (20)

with

fE1(t) =
∑

2≤k≤n

AE1, k

AE1, 1
e−(s1−sk)t → 0 for t→ ∞.

From (19) and (20) it follows that for t→ ∞ holds

π̄j = lim
t→∞ π̄j(t) = lim

t→∞
πj(t)

R(t)
= lim

t→∞
Aj,1(1 + fj(t))

AE1,1(1 + fE1(t))
=

=
Aj,1

AE1,1
= lim

s→s1

π̃j(s)

R̃(s)
=
π̃j(s1)

R̃(s1)
.

The above argumentations are represented in the theorem

Theorem 1. Asymptotic behavior of the functions πj(t) and R(t) for t → ∞
coincide and it is determined by the maximal root of characteristic equation
Δ(s) = 0. Thus, the conditional probabilities π̄j(t) have limits for t→ ∞, which
equal

π̄j = lim
t→∞ π̄j(t) =

π̃j(s1)

R̃(s1)
. (21)

Denote by

p̄ij(t) = P{J(t) = j, t < T |J(0) = i} ≡ Pi{J(t) = j, t < T } (i, j ∈ E0)

transition probabilities of the process J(t) reduced to the subset E0. Due to
Markov property of the process J(t) the following equality holds

π̄j(s+ t) ≡ p̄0, j(s+ t) =
∑
k∈E0

p̄0,k(s)p̄k, j(t).

Passing to the limit for s→ ∞ in the last equality one get that

π̄j =
∑
k∈E0

π̄kp̄k, j(t) for all t. (22)

This result can be represented as the following theorem

Theorem 2. Quasi-stationary probabilities of the process J(t) exist, coincide
with quasi-limiting ones, and satisfy to the equation (22).

For the general case analogous theorems also hold. However its proof is more
delicate and we’ll leave it for the next time.
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7 Conclusion

Multidimensional alternative processes are considered. It is shown that their
steady state probabilities have a product form and unsensitive to the shape of
its states sojourn time distributions. Distribution for some absorbing subset of
states destination time is studied and existence of quasi-limiting probabilities is
shown.
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Abstract. The paper deals with the analysis of BMAP/G/1 cyclic
polling model with binomial-gated and binomial-exhaustive disciplines.
The analysis relies on formerly applied methodology, in which the ser-
vice discipline independent and service discipline dependent parts of the
analysis are treated separately. In this work we complete the service dis-
cipline dependent part of the analysis for the binomial disciplines. This
leads to a governing equation of the system in terms of the steady-state
number of customers at the server arrival and departure epochs. A nu-
merical procedure can be established based on the newly derived results
together with formerly obtained service discipline independent results to
determine the steady-state factorial moments of the number of customers
in the system.

Keywords: queueing theory, polling model, BMAP, service discipline.

1 Introduction

This paper deals with the analysis of cyclic polling models with Batch Markovian
Arrival Process (BMAP), which is the generalization of the classical cyclic polling
model. The end of service at the given station is governed by the so-called service
discipline, like e.g. gated, exhaustive, binomial-gated or binomial-exhaustive. For
the analysis of classical cyclic polling systems see Takagi [7]. Polling models are
effective instruments in modeling computer systems, manufacturing systems and
telecommunication systems see e.g. in Takagi [8].

BMAP introduced by Lucantoni [3] is the natural generalization of the batch
Poisson arrival process. The analysis method of BMAP queueing models with
more stations, like priority models or polling models, can utilize the advantages
of both the matrix analytic-method by Neuts [4] and factorization forms in
probability-generating function (PGF) domain.

In this paper we apply the same analysis method for polling models with
BMAP as in our previous work [6], in which the analysis is separated into two
parts based on quantities at server arrival and departure epochs. In the ser-
vice discipline independent part factorization forms are established in terms of
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quantities at server arrival and departure epochs, while in the service discipline
dependent part these quantities are solved for the individual disciplines.

In binomial-gated discipline (Levy [2]) every customer present at the polling
epoch is served with probability p. Under binomial-exhaustive discipline (Boxma
[1]) every customer present at the polling epoch and arrived during its associated
busy period is served with probability p.

In this work first we give an overview of the service discipline independent
results including the steady-state vector factorial moments for the number of
customers and then provide the discipline specific analysis for the binomial-gated
and binomial-exhaustive disciplines.

The contribution of this paper is the service discipline specific analysis part of
the BMAP/G/1 cyclic nonzero-switchover-times polling model with binomial-
gated and binomial-exhaustive disciplines. We set up the governing equations of
the system in terms of joint PGFs of the steady-state number of customers and
the phases of the BMAP s at server arrival and departure epochs. They can be
numerically solved by means of system of linear equations and afterwards the
required quantities at the server arrival and departure epochs are computed.

The rest of this paper is organized as follows. In section 2 we introduce the
model and the notations. In section 3 we give an overview of the former service
discipline independent results, which we relay on. The analysis of the nonzero-
switchover-times polling model with binomial-gated and binomial-exhaustive
disciplines follows in section 4. Final remarks closes the paper in Section 5.

2 Model and Notation

2.1 BMAP Process

In this Section we give a brief summary on the BMAP related definitions and
notations, which we use in this paper. For a more detailed description on BMAP
see Lucantoni [3].

The number of BMAP phases is denoted by L. The L×L matrix D0 governs
the transitions without any arrival. Similarly the L×LmatrixDk(k ≥ 1) governs
the transitions with batch arrivals, in which the batch size is k. The irreducible
infinitesimal generator of the phase process is D =

∑∞
k=0 Dk. Let π be the

stationary probability vector of the phase process. Then πD = 0 and πe = 1
uniquely determine π, where e is the column vector having all elements equal
to one. The matrix generating function (matrix GF) of Dk, D̂(z) is defined as

D̂(z) =

∞∑
k=0

Dkz
k, |z| ≤ 1.

The stationary arrival rate of a BMAP is λ = π dD̂(z)
dz

∣∣∣
z=1

e = π
∑∞

k=0 kDke.

So far we used the conventional BMAP notations, i.e. the station index i was
suppressed throughout this Section. However from now on the first subscript
stands for the station index, thus Di denotes matrixD of the BMAP at station i.
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2.2 The BMAP/G/1 Cyclic Polling Model

We consider a continuous-time asymmetric polling model with N stations. A
single server attends the stations in a cyclic manner. Each station has an infinite
buffer queue, which is served when the server attends that station. If no customer
is present at a station at server arrival, the server immediately attends the next
station. At each station batch of customers arrive according to BMAP process.
We call the BMAP at station i as i-th BMAP and λi denotes its stationary arrival
rate. The customer who arrives to station i is called i-customer. The customer
service times at station i are general independent and identically distributed. Bi

stands for the customer service time at station i and B̃i(s), Bi(t) and bi denote
its Laplace-Stieljes transform (LST), its cumulated distribution function and its
mean, respectively. The model enables only nonzero-switchover-times.Ri denotes
the switchover time from station i to the next one. The Ri switchover times
of the consecutive cycles are general independent and identically distributed.
R̃i(s), Ri(t) and ri are its LST, cumulated distribution function and its mean,
respectively.

The arrival of the server to a station and the departure of the server from
a station are called polling epoch and departure epoch, respectively. We call the
polling epoch of station i as i-polling epoch. Similarly the departure epoch of
station i is an i-departure epoch. The cycle time of a given station is defined
as the time elapsed from the server visit to station i in the actual cycle to the
server visit to the same station in the next cycle. It is also called as polling cycle.
The mean cycle time is denoted by c.

On the BMAP/G/1 cyclic polling model we impose the following assumptions:

A.1 At each station the phase process of the BMAP is irreducible and the
stationary arrival rate is positive and finite, 0 < λi <∞.

A.2 The mean customer service time and the mean switchover time are pos-
itive and finite at each station, 0 < bi <∞, 0 < ri <∞.

A.3 The arrival processes, the service times and the switchover times are
mutually independent.

The server utilization at station i and the overall utilization are ρi = λibi and
ρ =

∑N
i=1 ρi, respectively. We assume that all stations of the polling system are

stable.
We define matrix Ai(k), whose (j, l)-th element, for k ≥ 0, 1 ≤ j, l ≤ L, is

given as the conditional probability that during an i-customer service time the
number of i-th BMAP arrivals is k and the final phase of the i-th BMAP is l
given that the initial phase of the i-th BMAP is j. Matrix GF Âi(z) is defined

as Âi(z) =
∑∞

k=0 Ai(k)z
k, |z| ≤ 1.

adjY and detY denote the adjugate and the determinant of matrix Y, respec-
tively. Furthermore [Y]j,l stands for the j, l-th element of matrix Y and similarly

[y]j denotes the j-th element of vector y. When Ŷ(z), |z| ≤ 1 is a matrix GF,
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Y(k) denotes its k-th (k ≥ 1) factorial moment, i.e., Y(k) = dk

dzk Ŷ(z)|z=1 and

Y(0) denote its value at z = 1, i.e., Y(0) = Ŷ(1). The same notation conven-

tion is applied for any quantities having the form ŷ(z), detT̂i (z) and adjT̂i (z)

for |z| ≤ 1. Hence, for k ≥ 1, y(k) = dk

dzk ŷ(z)|z=1, y
(0) = ŷ(1), [detTi]

(k) =

dk(detT̂i(z))
dzk

∣∣∣∣
z=1

, [detTi]
(0) = detT̂i (1), [adjTi]

(k) =
dk(adjT̂i(z))

dzk

∣∣∣∣
z=1

and

[adjTi]
(0) = adjT̂i (1).

3 Service Discipline Independent Results

In this section we recall the former service discipline independent results which
we rely on in the analysis.

Let Ni(t) and Ji(t) be the right continuous number of i-customers in the sys-
tem at time t, for t ≥ 0, and the phase of the i-th BMAP at time t, respectively.
Furthermore, tfi (�) and tmi (�) denote the i-polling epoch and the i-departure
epoch in the �-th cycle, for � ≥ 1, respectively.

We define the 1 × L vector GFs of the stationary number of i-customers
at arbitrary epoch, q̂i (z), at i-polling epoch, f̂i (z), and at i-departure epoch,
m̂i (z), by their j-th element, j = 1 . . . L as

[q̂i (z)]j = lim
t→∞

∞∑
n=0

Pr{Ni(t) = n, Ji(t) = j}zn |z| ≤ 1.

[̂fi (z)]j = lim
�→∞

∞∑
n=0

Pr{Ni(t
f
i (�)) = n, Ji(t

f
i (�)) = j}zn |z| ≤ 1,

[m̂i (z)]j = lim
�→∞

∞∑
n=0

Pr{Ni(t
m
i (�)) = n, Ji(t

m
i (�)) = j}zn |z| ≤ 1.

Theorem 1. (Expression of q̂i (z).) In the stable BMAP/G/1 cyclic polling
model with a set of disciplines including the binomial-gated and binomial-
exhaustive ones the following relation holds for steady-state vector GF of the
number of i-customers:

q̂i (z) D̂i (z)
(
zI− Âi(z)

)
=

1

c
(z − 1)

(
f̂i (z)− m̂i (z)

)
Âi(z). (1)

Proof. The proof of the theorem can be found in [6]. Here we presented an
equivalent form of the constant on the r.h.s. of (1), which can be obtained by
applying equilibrium arguments (see [6]).

Let matrix T̂i (z) be defined as:

T̂i (z) = D̂i (z)
(
zI− Âi(z)

)
.
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Theorem 2. (The vector factorial moment formula for q
(n)
i .) In the stable

BMAP/G/1 cyclic polling model satisfying assumptions A.1 - A.3 with a set of
disciplines including the binomial-gated and binomial-exhaustive ones the recur-
sive formula for computing the factorial moments of the stationary number of
i-customers at an arbitrary instant is given by:

q
(n)
i =

1

c

n+1∑
l=0

n+1−l∑
k=0

(
n+ 2

1, l, n+ 1− k − l, k
)(

f
(l)
i −m

(l)
i

)
A

(n+1−k−l)
i

× [adjTi]
(k)

(1 + 2n+ 1(n≥2)

(
n
2

)
)[detTi](2)

−πi
[detTi]

(n+2)

(1 + 2n+ 1(n≥2)

(
n
2

)
)[detTi](2)

−
((

1(n≥3)

n−2∑
k=1

(
n

k + 2

)
+ 1(n≥2)

n−1∑
k=1

((
n

k + 1

)
+

(
n+ 1

k + 1

)))
q
(n−k)
i

)

× [detTi]
(k+2)

(1 + 2n+ 1(n≥2)

(
n
2

)
)[detTi](2)

n ≥ 1, (2)

where 1(con) denotes the indicator of condition ”con”.

Proof. The proof of the theorem can be found in [5]. Here we presented an
equivalent form of the constant on the r.h.s. of (1), which can be obtained by
applying equilibrium arguments (see [6]).

4 Discipline Dependent Analysis of the Model with
Binomial Disciplines

In this section we provide the service discipline specific solution for nonzero-
switchover-times polling model with binomial-gated and binomial-exhaustive

disciplines. In order to determine the discipline specific quantities f
(n)
i and m

(n)
i

(n ≥ 1) used by the formula (2) first we determine the joint probabilities of the
steady-state number of customers and the phases of the BMAP s at i-polling
and i-departure epochs.

4.1 Notations

The joint probabilities of the steady-state number of customers and the phases
of the BMAPs at i-polling and i-departure epochs are described as hypervectors.
Notation ⊗ stands the Kronecker product and ej = (0, . . . , 1, . . . , 0) denotes the
1 × L vector with 1 at the j-th position. The 1 × LN stationary probability
hypervector pf

i (n1, . . . , nN) is defined as
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pf
i (n1, . . . , nN ) = lim

�→∞

L∑
j1=1

. . .

L∑
jN=1

ej1 ⊗ . . .⊗ ejN

Pr
{
N1(t

f
i (�)) = n1, . . . , NN (tfi (�)) = nN , J1(t

f
i (�)) = j1, . . . , JN (tfi (�)) = jN

}
,

n1, . . . , nN ∈ {0, 1, . . .}; i = 1, . . . , N.

Similarly the 1 × LN steady-state probability hypervector pm
i (n1, . . . , nN) is

defined as:

pm
i (n1, . . . , nN ) = lim

�→∞

L∑
j1=1

. . .
L∑

jN=1

ej1 ⊗ . . .⊗ ejN

Pr
{
N1(t

m
i (�)) = n1, . . . , NN (tmi (�)) = nN , J1(t

m
i (�)) = j1, . . . , JN (tmi (�)) = jN

}
,

n1, . . . , nN ∈ {0, 1, . . .}; i = 1, . . . , N.

Based on these quantities we define the steady-state hypervector GFs of the
number of customers at i-polling and i-departure epochs as

f̂i(z1, . . . , zN ) =
∞∑

n1=0

. . .
∞∑

nN=0

pf
i (n1, . . . , nN ) zn1

1 . . . znN
N ,

m̂i(z1, . . . , zN) =

∞∑
n1=0

. . .

∞∑
nN=0

pm
i (n1, . . . , nN ) zn1

1 . . . znN
N ,

i = 1, . . . , N ; |z1| ≤ 1, . . . , |zN | ≤ 1.

We define the homogenous bivariate Markov chain{
(Ni(t

d
i (n)), Ji(t

d
i (n)));n ∈ {1, . . .}} on the state space {0, 1, . . .}×{1, 2, . . . , L},

where tdi (n) denotes the n-th i-customer departure epoch during the same server
visit at station i for n ≥ 1. We define matrix Gi(t), t ≥ 0, whose (j, �)-th element
is given as the probability that the first passage starting from state (n + 1, j)
in the Markov chain to the level n, n ∈ 0, 1, 2, . . ., 1 ≤ j, � ≤ L, occurs no later
than time t, and the first state visited in level n is (n, �).

We use notation⊕ for the Kronecker sum and⊕N
k=1D̂k(zk) stands for D̂1(z1)⊕

. . .⊕ D̂N (zN ). Additionally we introduce several further notations as follows:

Âi(z1, . . . , zN) =

∫ ∞

0

et⊕
N
k=1D̂k(zk)dBi(t),

Ûi(z1, . . . , zN) =

∫ ∞

0

et⊕
N
k=1D̂k(zk)dRi(t).

Ĥi(z1, . . . , zi−1, zi+1, . . . , zN ) =

∫ ∞

0

et⊕
i−1
k=1

D̂k(zk) ⊗ dGi(t)⊗ et⊕
N
k=i+1D̂k(zk).
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Note that Âi(z1, . . . , zN), Ûi(z1, . . . , zN) and Ĥi(z1, . . . , zi−1, zi+1, . . . , zN) are
all LN × LN hypermatrices.

4.2 Polling Model with Binomial-Gated Discipline

Theorem 3. (Governing equations of the system.)The governing equations of
the stable BMAP/G/1 cyclic nonzero-switchover-times polling model satisfying
assumptions A.1 - A.3 and with binomial-gated service discipline are given in
terms of the hypervector GFs f̂i(z1, . . . , zN ) and m̂i(z1, . . . , zN) for i = 1, . . . , N
as

m̂i (z1, . . . , zN ) = f̂i
(
z1, . . . , zi−1,

(
pÂi(z1, . . . , zN) + (1− p)Izi

)
, zi+1, . . . , zN

)
,

f̂i+1 (z1, . . . , zN) = m̂i (z1, . . . , zN ) Ûi(z1, . . . , zN ). (3)

Proof. The hypermatrix GF of the number of simultaneously arriving k-
customers for k = 1, . . . , N during the interval (0, t), where t is independent of

the arrival processes, is given as eD̂1(z1)t⊗ . . .⊗eD̂N (zN )t = e(D̂1(z1)⊕...⊕D̂N (zN ))t.
It follows that the hypermatrix GF of the number of simultaneously arriving k-
customers for k = 1, . . . , N during the service of one i-customer can be expressed

as
∫∞
0

(
et⊕

N
k=1D̂k(zk)

)
dBi(t) = Âi(z1, . . . , zN ).

Under binomial-gated discipline every customer which is present at the polling
epoch is served with probability p (0 < p ≤ 1) independently from the other
ones. Let us condition on the number of j-customers, for j = 1, . . . , N , present
at the i-polling epoch, n1, . . . , nN , for n1, . . . , nN ≥ 0. Then the probability
that 0 ≤ k ≤ n i-customers get service is

(
n
k

)
pk(1 − p)n−k. Each of the k

i-customers getting service generates a random population of simultaneously
arriving k-customers for k = 1, . . . , N arriving during its service time, whose
hypermatrix GF is Âi(z1, . . . , zN ). Each of the other n − k i-customers does
not cause any change in the number of j-customers, for j = 1, . . . , N , thus this
transition can be described by a hypermatrix Izi. Since I and Âi(z1, . . . , zN)
commute, for any selection order of the customers the hypermatrix GF of
the number of j-customers, for j = 1, . . . , N , at the next i-departure epoch
is zn1

1 . . . z
ni−1

i−1 Âk
i (z1, . . . , zN )(Izi)

n−kz
ni+1

i+1 . Using it and applying the binomial
theorem yields to the hypermatrix GF of the number of customers at next i-
departure epoch, given that there is n1, . . . , nN j- customers, for j = 1, . . . , N ,
present at the previous i-polling epoch, as

n∑
k=0

(
n

k

)
pk(1 − p)n−kzn1

1 . . . z
ni−1

i−1 Âk
i (z1, . . . , zN)(Izi)

n−kz
ni+1

i+1 . . . z
nN

N

= zn1
1 . . . z

ni−1

i−1

(
pÂi(z1, . . . , zN) + (1− p)Izi

)ni

z
ni+1

i+1 . . . z
nN

N . (4)
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Unconditioning (4) yields

∞∑
n1=0

. . .
∞∑

nN=0

pf
i (n1, . . . , nN ) zn1

1 . . . z
ni−1

i−1

(
pÂi(z1, . . . , zN ) + (1− p)Izi

)ni

× z
ni+1

i+1 . . . znN
N ,

=

∞∑
n1=0

. . .

∞∑
nN=0

pm
i (n1, . . . , nN ) zn1

1 . . . znN
N , i = 1, . . . , N. (5)

Applying similar arguments as before yields the relation for the transition mi →
fi+1 of the binomial-gated polling model as

∞∑
n1=0

. . .

∞∑
nN=0

pm
i (n1, . . . , nN ) zn1

1 . . . znN
N Ûi(z1, . . . , zN)

=

∞∑
n1=0

. . .

∞∑
nN=0

pf
i+1 (n1, . . . , nN ) zn1

1 . . . znN
N , i = 1, . . . , N. (6)

The theorem comes by applying the compact notation for the steady-state hy-
permatrix GFs in (5) and (6).

The steady-state probability hypervectors pf
i (n1, . . . , nN) and pm

i (n1, . . . , nN),
for i = 1, . . . , N , can be determined from the equations, which can be obtained by
setting an upper limit X for n1, . . . , nN in (5) and (6) and taking their x1-th, . . .,
xN -th derivatives (x1, . . . , xN ∈ {0, . . . , X}) at z1 = . . . = zN = 1, respectively.
This results in the following system of linear equations for i = 1, . . . , N and
x1, . . . , xN ∈ {0, . . . , X}:

X∑
n1=0

. . .
X∑

nN=0

pf
i (n1, . . . , nN )

×
dx1 . . . dxN

(
zn1
1 . . . z

ni−1

i−1

(
pÂi(z1, . . . , zN) + (1− p)Izi

)ni

z
ni+1

i+1 . . . znN
N

)
dz1x1 . . . dzNxN

∣∣∣∣∣∣
z=1

(7)

=
X∑

n1=x1

. . .
X∑

nN=xN

pm
i (n1, . . . , nN )

n1!

(n1 − x1)!
. . .

nN !

(nN − xN)!
,

X∑
n1=0

. . .
X∑

nN=0

pm
i (n1, . . . , nN )

dx1 . . . dxN

(
zn1
1 . . . znN

N Ûi(z1, . . . , zN)
)

dz1x1 . . . dzNxN

∣∣∣∣∣∣
z=1

(8)

=
X∑

n1=x1

. . .
X∑

nN=xN

pf
i+1 (n1, . . . , nN )

n1!

(n1 − x1)!
. . .

nN !

(nN − xN)!
,

where z = 1 stands for z1 = . . . = zN = 1.



BMAP/G/1 Cyclic Polling Model with Binomial Disciplines 165

4.3 Polling Model with Binomial-Exhaustive

Theorem 4. (Governing equations of the system.)The governing equations of
the stable BMAP/G/1 cyclic nonzero-switchover-times polling model satisfy-
ing assumptions A.1 - A.3 and with binomial-exhaustive service discipline are
given in terms of the hypervector GFs f̂i(z1, . . . , zN) and m̂i(z1, . . . , zN) for
i = 1, . . . , N as

m̂i (z1, . . . , zi−1, 1, zi+1, . . . , zN )

= f̂i

(
z1, . . . , zi−1,

(
pĤi(z1, . . . , zi−1, zi+1, . . . , zN ) + (1 − p)Izi

)
, zi+1, . . . , zN

)
,

f̂i+1 (z1, . . . , zN) = m̂i (z1, . . . , zi−1, 1, zi+1, . . . , zN ) Ûi(z1, . . . , zN). (9)

Proof. Under binomial-exhaustive discipline each customer present at the polling
epoch is handled together with the newly arrived ones during its associated busy
period. Every such customer group is served with probability p. Based on this
and applying similar argument as before for the model with the binomial-gated
discipline results in the statement.

The stationary probability hypervectors pf
i (n1, . . . , nN) and pm

i (n1, . . . , nN),
for i = 1, . . . , N , can be determined again from a system of linear equations
which is given for i = 1, . . . , N and u1, . . . , uN ∈ {0, . . . , U} as

X∑
n1=0

. . .
X∑

nN=0

pf
i (n1, . . . , nN )

dx1 . . . dxi−1dxi+1 . . . dxN

dz1x1 . . . dzi−1
xi−1 dzi+1

xi+1 . . . dzNxN

×
(
zn1
1 . . . z

ni−1

i−1

(
pĤi(z1, . . . , zi−1, zi+1, . . . , zN ) + (1− p)Izi

)ni

z
ni+1

i+1 . . . znN
N

)∣∣∣
z=1
(10)

=

X∑
n1=x1

. . .

X∑
ni−1=xi−1

X∑
ni+1=xi−1

. . .

X∑
nN=xN

pm
i (n1, . . . , ni−1, 0, ni+1, . . . , nN )

× n1!

(n1 − x1)!
. . .

ni−1!

(ni−1 − xi−1)!

ni+1!

(ni+1 − xi+1)!
. . .

nN !

(nN − xN)!
,

X∑
n1=0

. . .

X∑
ni−1=0

X∑
ni+1=0

. . .

X∑
nN=0

pm
i (n1, . . . , ni−1, 0, ni+1, . . . , nN )

×
dx1 . . . dxN

(
zn1
1 . . . z

ni−1

i−1 z
ni+1

i+1 . . . znN
N Ûi(z1, . . . , zN)

)
dz1x1 . . . dzNxN

∣∣∣∣∣∣
z=1

(11)

=
X∑

n1=x1

. . .
X∑

nN=xN

pf
i+1 (n1, . . . , nN )

n1!

(n1 − x1)!
. . .

nN !

(nN − xN)!
.
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5 Final Remarks

The numerical procedure for computation of the vector factorial moments for the
model with the binomial-gated (binomial-exhaustive) discipline consists of the
same steps as for the model with the gated (exhaustive) disciplines. For details
see [5].

The total number of operations required by the whole numerical proce-
dure for the model with the binomial-gated discipline is in the magnitude of
N2 L3N (X+1)3N , while it is N2 L3N (X+1)3N−3 for the system with binomial-
exhaustive discipline. The total number of required elementary computational
steps increases with X , L and with N . Hence the numerical solution becomes
computationally intensive when the server utilization is high, the number of
BMAP phases is high or the system is large.

Setting p = 1 in the model with binomial-gated discipline yields the model
with gated discipline as special case. Similarly the model with exhaustive dis-
cipline can be obtained as special case by setting p = 1 in the model with
binomial-exhaustive discipline.
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Abstract. Fluid queueing models with finite capacity buffers are ap-
plied to analyze a wide range of real life systems. There are well estab-
lished numerical procedures for the analysis of these queueing models
when the load is lower or higher than the system capacity, but these
numerical methods become unstable as the load gets close to the sys-
tem capacity. One of the available numerical procedures is the additive
decomposition method proposed by Nail Akar and his colleagues.

The additive decomposition method is based on a separation of the
eigenvalues of the characterizing matrix into the zero eigenvalue, the
eigenvalues with positive real part and the eigenvalues with negative
real part. The major problem of the method is that the number of zero
eigenvalues increases by one at saturation. In this paper we present an
extension of the additive decomposition method which remain numeri-
cally stable at saturation as well.

Keywords: Markov fluid queue, additive decomposition method.

1 Introduction

Intuitively it is quite clear that infinite buffer queueing systems remain stable as
long as the system load is below the system capacity. It is also widely accepted
that finite buffer systems remain stable also when the system load is higher than
the system capacity. This second statement suggests that finite buffer systems
can be easily analyzed for any load level. In contrast, it turns out that standard
solution methods suffer from severe numerical instabilities at the region where
the load is close to the system capacity. It is interesting to note that analysis
methods of finite buffer queueing systems used for the dimensioning of telecom-
munication network components are typically used for evaluating models close
to saturation.

Apart of this practical issue, the common analysis approaches of finite buffer
queueing systems exclude the case of saturation, because the discussion is re-
stricted to the case when the load is below the system capacity and it is com-
monly left for the reader to invert the buffer content process if the load is higher
than the system capacity. Unfortunately, this approach does not help when the
load is equal to the system capacity.
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In this paper we consider Markov fluid queues (MFQs) with finite fluid buffers.
There is a wide literature devoted to this subject (see e.g., [6,1,7,3,9,5]) for the
case when the load is different from the capacity, but the case of saturation is
considered only recently in [10] for the method proposed by Soares and Latouche
in [7,8]. Here we investigate an other analysis method, the additive decomposi-
tion, which is proposed in [9], [5]. We propose an modification of the method
which remains applicable in case of saturation.

The rest of the paper is organized as follows. Section 2 introduces Markov
fluid queues (MFQs) with finite buffer and their analytical description. The
next section discusses the additive decomposition method. The first subsection
of Section 3 presents the solution method applicable for systems below and
above saturation. The next subsection contains the proposed modification of
the procedure for the case of saturation. Section 4 demonstrates the numerical
properties of the standard and the proposed analysis methods. The paper is
concluded in Section 5.

2 Markov Fluid Queue

The evolution of Markov fluid queue with single fluid buffer is determined by
a discrete state of the environment and the continuous fluid level in the fluid
buffer. The Z(t) = {M(t), X(t); t ≥ 0} process represents the state of the MFQ,
where M(t) ∈ S is the (discrete) state of the environment and X(t) ∈ [0, b] is
the fluid level in the fluid buffer at time t, where b denotes the buffer size. The
fluid level cannot be negative or greater than b. We define π̂j(t, x), p̂j(t, 0) and
p̂j(t, b) to describe the transient fluid densities at fluid level x and the transient
probability masses of the fluid distribution at idle and full buffer as follows

π̂j(t, x) = lim
Δ→0

Pr(M(t) = j, x ≤ X(t) < x+Δ)

Δ
,

p̂j(t, x) = Pr(M(t) = j,X(t) = x) x = 0, b.

One of the main goal of the analysis of MFQ is to compute the stationary fluid
density πj(x) = lim

t→∞ π̂j(t, x) and fluid mass at idle and full buffer pj(x) =

lim
t→∞ p̂j(t, x), x = 0, b. The row vector π(x) = {πj(x)}, satisfies [4]

d

dx
π(x)R = π(x)Q , (1)

where matrixQ = {Qij} is the transition rate matrix of the environment process,
and the diagonal matrix R = diag〈Rj〉 is composed by the fluid rates Rj , j ∈ S.
Rj rate determines the rate at which the fluid level changes (increases when
Rj > 0 or decreases when Rj < 0) when the environment is in state j. In this
paper we assume that matrix Q determines an irreducible Markov chain and
exclude the case of Rj = 0. If there are states in the model where the fluid level
remains constant then a censored process needs to be defined and investigated
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where sojourns in states with constant fluid level are excluded. Details of the
censored analysis method can be find e.g. in [3]. A consequence of the exclusion
of states with constant fluid level is that matrixR is non-singular. We denote the
set of states with positive fluid rates by S+ and the set of states with negative
fluid rates by S−.

Kulkarni investigated the properties of the characterizing matrix of (1) in [6].
First of all, he defined the stability condition of infinite buffer MFQs. Let γ
be the stationary distribution of the CTMC with generator matrix Q. γ is the
solution of the linear system γQ = 0, γ1I = 1, where 1I is the column vector of
ones of appropriate size. An infinite buffer MFQ is stable if it “drift” is negative,
where the drift is d = γR1I.

Further more differential equation in (1) suggests to find the solution of the
fluid density function in a matrix exponential form. To find the matrix expo-
nential solution [6] defines the relation of the number of states with positive and
negative fluid rates and the number of eigenvalues of matrix QR−1 with positive
and negative real parts. These results are summarized in Table 1.

Table 1. Drift related properties of finite MFQs, where |S−| (|S+|) is the number of
states with negative (positive) fluid rate

d < 0 d = 0 d > 0

positive eigenvalues |S−| − 1 |S−| − 1 |S−|
negative eigenvalue |S+| |S+| − 1 |S+| − 1

zero eigenvalue 1 2 1

The initial vector of the matrix exponential solution is determined by the
boundary conditions.

pi(0) = 0 for i ∈ S+, pi(b) = 0 for i ∈ S−, (2)

and
−πi(0)Ri +

∑
j∈S−

pj(0)Qji = 0, πi(b)Ri +
∑
j∈S+

pj(b)Qji = 0. (3)

(2) states that the fluid level cannot be 0 when the fluid rate is positive and
it cannot be b when the fluid rate is negative. For i ∈ S− the first part of (3)
means that the fluid level can be 0 due to a state transition of the environment
from an other state with negative fluid rate or due to the fact that the fluid level
reduced to 0 in a state with negative fluid rate. For i ∈ S+ the first part of (3)
represents that the fluid level can start increasing from 0 due to the fact that the
process stayed in a state with negative fluid rate at level 0 and a state transition
occurred to a state with positive fluid rate. The second part of (3) contains the
counterpart statements for buffer level b.
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3 The Additive Decomposition Method

A numerically stable approach to the analysis of MFQs is the additive decom-
position method [5]. It will be summarized in the following section. It’s stability
is based on the separation of the eigenvalues of the matrices in equation 1. The
original additive decomposition algorithm from [5] can not be applied for fluid
queues at saturation directly.

3.1 Fluid Queues at Non-zero Drift

Due to the fact that states with constant fluid rates are excluded we can multiply
both sides of (1) with R−1. If we denote QR−1 with A, this will result in the
following differential equation:

d

dx
π(x) = π(x)A (4)

The usual way of solving equations like (4) is based on it’s spectral representa-
tion:

π(x) = eλxΓ

λ is a scalar and Γ is a row vector. Substituting this form to (1), we find:

λΓ = λA (5)

After finding the eigenvalues λi and eigenvectors Γi one may search for π(x) as
the sum of the results of (4), with ai parameters:

π(x) =
∑
i

aie
λixΓi (6)

The limitation of this method may appear when we want to fit the formula to
the boundary conditions at the buffer limit. The arising equations will define
the ai parameters in (6), hence they are crucial for solving the problem. If the
buffer limit is large (b → ∞), than if λi > 0 → eλib → ∞ moreover if λj < 0,
then eλjb → 0. This will result in badly conditioned linear equations for ai.

The additive decomposition method solves this problem by separating the
eigenvalues based on their sings, and by handling them separately. In [5] a pro-
cedure is described with which one may transform A into a blockmatrix form.
(It uses Schur-decomposition and solves a Lyapunov-equation in order to find
it.)

Y−1AY =

⎛⎝0 0 0
0 A− 0
0 0 A+

⎞⎠ (7)

A− (A+) is a square matrix, and all of it’s eigenvalues are negative (positive).
Let us denote different parts of Y−1 with the following notations

Y =

⎛⎝L0

L−
L+

⎞⎠ (8)
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L0 is the first row of Y−1 while L− and L+ have the same amount of rows as
A− and A+ respectively. In [5] it is proven, that the following form is also a
complete solution of the differential equation (4):

π(x) = a0L0 + a−eA−xL− + a+e
−A+(b−x)L+

a0 is a scalar and a− and a+ are row vectors with the same number of columns
as A− and A+ respectively. They are the parameters we need to define from the
boundary conditions. The linear equations in this case are numerically stable,
because all of the eigenvalues of A− and −A+are negative.

3.2 Fluid Queues at Saturation

The additive decomposition method was developed for fluid queues with non-
zero mean drift, but the procedure as it is described in the previous subsection
does not work in case of saturation. A slight enhancement is needed in order to
apply the procedure for MFQs at saturation.

Theorem 1. In A’s normal Jordan form, there is one Jordan-block belonging
to the zero eigenvalue, and it’s size is 2× 2.

Proof. The numbers of eigenvalues of different signs are given in [6] and are sum-
marized in Table 1. The multiplicity of the zero eigenvalue is 2 in saturation.
Now we need to show that there is a single (linear independent) eigenvector as-
sociated with the zero eigenvalue, because in this case the Jordan decomposition
contains a Jordan block of size 2.

The left eigenvector associated with the zero eigenvalue satisfies

αQR−1 = 0

Multiplying both sides with R shows that α should also be the left eigenvector
of Q associated with the zero eigenvalue. Due to the fact that Q defines an
irreducible Markov chain it has only a single (linear independent) eigenvector
associated with the zero eigenvalue and it is γ.

Corollary 1. It is not possible to transform A to the same form as in (7).

In case of a MFQ in saturation, instead of having a single matrix element associ-
ated with the zero eigenvalue, we have a Jordan-block of size 2× 2 in the similar
decomposition of A as the one in (7). Hence one needs to modify the original
method for MFQs at saturation. The proposed modification is to transform A
to the following form

Y−1AY =

⎛⎝A0 0 0
0 A− 0
0 0 A+

⎞⎠ , (9)
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where A0 corresponds to the 0 eigenvalues. Consequently L0 will have two rows,
a0 will have two elements in (8), and the expression for π(x) changes to

π(x) = a0e
A0xL0 + a−eA−xL− + a+e

−A+(b−x)L+

Unfortunately, this formula is not stable for large buffer limits. This happens,
because one the off-diagonal elements of the Jordan-block A0 are nonzero. For
example, if it is an upper tridiagonal matrix then

A0 =

(
0 a12
0 0

)
→ eA0x =

(
1 a12x
0 1

)
,

and a12x → ∞ as x → ∞, therefore this matrix will be badly conditioned for
large buffer limits. Thus one might experience numerical problems when fitting
the parameters of the system to the boundary conditions.

4 Numerical Examples

We analyzed the numerical properties of the algorithms for finite buffer MFQs
using our MATLAB implementations, which are parts of the BuTools package
(available at http://webspn.hit.bme.hu/∼butools/). We compared the proposed
procedure (Section 3.2), with the original additive decomposition method (Sec-
tion 3.1) at two different drift values, one far from zero and one close to zero.

4.1 Comparison of Methods When the Drift Is Far from Zero

First we evaluated the MFQ with buffer size b = 30, generator matrix and fluid
rate matrix

Q =

−4 0 2 1 1
3 −6 0 2 1
1 3 −5 1 0
3 1 1 −7 2
1 1 0 1 −3

, R =

1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

,

respectively. The stationary distribution of the CTMC characterized by Q is
γ = (0.314, 0.142, 0.154, 0.143, 0.247) and the drift is d = −0.00933. To quantify
the difference between the results of the methods we used the following error
measure:

Δ =
∑
i∈S

∫ b

0

|πOi (x)− πMi (x)|dx +
∑
i∈S

|pOi (0)− pMi (0)|+
∑
i∈S

|pOi (b)− pMi (b)| ,

where πOi (x) and πMi (x) correspond to the fluid density for state i at level x for
the original and the modified algorithms. pOi (0) and p

M
i (0) are the probabilities

for the empty buffer and pOi (b) and p
M
i (b) are for the full buffer. The fluid density

curves computed by the two methods are depicted in Figure 1.
We also calculated the difference between the methods for systems with state

space cardinalities of 20 and 50. The results were similar. The average error was
Δ ∼ 10−5.
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Fig. 1. The fluid density functions (πi(x) versus fluid level x) of the example with non-
zero drift (b = 30, d = −0.00933). The left graph corresponds to the method proposed
in [5], the right graph corresponds to the method proposed in Section 3.2.

4.2 Comparison of the Methods When the Drift Is Close to Zero

In our second example the buffer size is b = 30 the generator matrix and the
fluid rate matrix are

Q =

−5 3 1 0 1
5 −8 0 2 1
1 0 −4 2 1
4 1 0 −6 1
1 0 0 2 −3

, R =

1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

.

The stationary distribution for this CTMC process is γ =
(0.349, 0.151, 0.087, 0.163, 0.250) and the drift is d = −1.11 · 10−16. The
original method proposed in [5] and summarized in Section 3.1 failed in
the phase of decomposition according to the signs of the eigenvalues using
the standard numerical precision of MATLAB, while the modified method
completes. The obtained fluid density curve is depicted in Figure 2. When the
drift is close to zero the original procedure gets numerically instable as it is
clearly visible on the figure.

4.3 Analysis of a Communication System with RED

We analyze a communication system using the proposed method. The fluid level
represents the amount of data in the buffer, and the data arrival and service
processes are modulated by an environmental Markov chain with generator Q.
There are N identical users in the system. They are either in the ON or in
the OFF state. In the ON state they transmit data at rate r, otherwise they
do not. The sojourn time in state ON (OFF) is exponentially distributed with
parameter α (β). The service speed of the server is c, and reject incoming data
with probability 1−s, consequently data arrive to the server at rate r∗s. This last
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Fig. 2. The fluid density function (πi(x) versus fluid level x) for a queue with zero
drift (d = −1.11 · 10−16, b = 30)

functional property is referred to as ”random early detection” (RED) mechanism
[2]. The RED method filters the input data as a function of the fluid level, namely
s(x) is a function of the fluid level x. Assuming that s(x) is a piecewise constant
function the multi region version of the adaptive decomposition method [5] and
its modification for the case of zero drift in Section 3.2 allows to analyze the
described communication systems. The limits of the constant regions of s(x) are
denoted by xj (j = 0, 1, . . . , k), such that x0 = 0 and xk = B.

Due to the identity of the N users a MFQ with N + 1 states describe the
system behavior with generator matrix

Q =

⎛⎜⎜⎜⎜⎜⎜⎝
−Nβ Nβ 0 0 0 0
α −α− (N − 1)β (N − 1)β 0 0 0
0 2α −2α− (N − 2)β (N − 2)β 0 0
0 0 ... ... ... 0
0 0 0 (N − 1)α −(N − 1)α− β β
0 0 0 0 Nα −Nα

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and fluid rate matrix

R(x) =

⎛⎜⎜⎜⎜⎜⎜⎝
−c 0 0 0 0
0 rs(x) − c 0 0 0 0
0 0 2rs(x) − c 0 0 0
0 0 ... ... ... 0
0 0 0 0 (N − 1)rs(x) − c
0 0 0 0 0 Nrs(x) − c

⎞⎟⎟⎟⎟⎟⎟⎠ .

One of the most important performance measure of this system is the loss. The
loss is the amount of lost data. Loss may be caused by two phenomenons. The
first is the filtering of the RED mechanism. When n users are ON the loss rate
is L1 = (1− s)nr. The second reason for the loss is the finite buffer. The server
may also loose data when the buffer is full. As the buffer is served with speed c,
the loss rate due to the finite buffer capacity is L2 = snr − c. These two parts
of the loss can be computed as
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L1 =
B∫
0

ri(1− s(x))fi(x)dx +
∑
j,k

p(xj , k)rk(1− s(xj),
L2 =

∑
k

p(B, k)(s(B)rk − c)

where fix is the stationary probability density for state i, and p(xj , k) is the
probability at threshold level xj for state k. Based on these loss rates the loss
ratio is

L =
L1 + L2

B∫
0

rifi(x)dx +
∑
j,k

p(xj , k)rk

.

We analyze the performance measures of interest through the MFQ model and
the additive decomposition method. The model parameters are α = 2/3 1

s ,
β = 1 1

s , r = 12.2kbps, N = 25, c = 190kbps and B = 30kb. Without RED fil-
tering (s(x) = 1) the drift is d = 183kbps, and with decreasing RED acceptance
probability the drift is decreasing to d = −c at s(x) = 0. We considered 2 kinds of
piecewise constant functions for s(x). The (0, B) interval was divided into 3 and 6
identical subintervals. E.g., in the first case x1 = 10, x2 = 20, x3 = 30 and vector
(s1, s2, s3) contains the acceptance probabilities for the intervals (0, 10), (10, 20),
(20, 30), respectively. Figure 3 depicts the fluid density functions for different
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Fig. 3. Fluid density functions with s(x) = 1, (s1, s2, s3) =
(0.905, 0.8041, 0.72), (s1, s2, s3) = (1, 0.8127, 0.76), (s1, s2, s3, s4, s5, s6) =
(0.908, 0.7936, 0.72, 0.69, 0.65, 0.54), respectively
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s(x) functions. In the first graph s(x) = 1, in the second graph (s1, s2, s3) =
(0.905, 0.8041, 0.72), in the third graph (s1, s2, s3) = (1, 0.8127, 0.76), in the
fourth graph (s1, s2, s3, s4, s5, s6) = (0.908, 0.7936, 0.72, 0.69, 0.65, 0.54). The as-
sociated loss rations are 0.0121, 0.0995, 0.0492 and 0.100.

5 Conclusions

The problem of analyzing finite buffer MFQs in saturation has been considered
recently in [10]. In that paper the numerical procedure by Soares and Latouche
[7,8] was generalized for the case of saturation. In this paper we considered the
additive decomposition procedure by Nail et al. [9,5] and generalized for the case
of saturation.

The proposed modification seems to eliminate the numerical instabilities of
the method for drift values close to zero and for moderate buffer sizes. The case of
extremely large buffers still results in numerical problems, because in saturation
a Jordan block of size 2× 2 associated with the zero eigenvalue, which results in
an exponentially increasing coefficient.

Acknowledgements. This work was supported by OTKA grant no. K-101150.

References

1. Ahn, S., Jeon, J., Ramaswami, V.: Steady state analysis of finite fluid flow models
using finite qbds. Queueing Systems 49, 223–259 (2005)

2. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking 1, 397–413 (1993)

3. Gribaudo, M., Telek, M.: Stationary analysis of fluid level dependent bounded fluid
models. Performance Evaluation 65, 241–261 (2008)

4. Horton, G., Kulkarni, V., Nicol, D., Trivedi, K.: Fluid stochastic petri nets: The-
ory, applications, and solution techniques. European Journal of Operational Re-
search 105, 184–201 (1998)

5. Kankaya, H., Akar, N.: Solving multi-regime feedback fluid queues. Stochastic Mod-
els 24(3), 425–450 (2008)

6. Kulkarni, V.G.: Fluid models for single buffer systems. In: Dshalalow, J.H. (ed.)
Models and Applications in Science and Engineering. Frontiers in Queueing,
pp. 321–338. CRC Press (1997)

7. da Silva Soares, A., Latouche, G.: Matrix-analytic methods for fluid queues with
finite buffers. Perform. Eval. 63, 295–314 (2006)

8. da Silva Soares, A., Latouche, G.: Fluid queues with level dependent evolution.
European Journal of Operational Research 196(3), 1041–1048 (2009)

9. Sohraby, K., Akar, N.: Infinite/finite buffer markov fluid queues: A unified analysis.
Journal of Applied Probability 41(2), 557–569 (2004)

10. Telek, M., Vécsei, M.: Finite queues at the limit of saturation. In: 9th International
Conference on Quantitative Evaluation of SysTems (QEST), pp. 33–42. Conference
Publishing Services (CPS), London (2012)



Queue-Size Distribution in M/G/1-Type System

with Bounded Capacity and Packet Dropping

Oleg Tikhonenko1 and Wojciech M. Kempa2

1 Czestochowa University of Technology, Institute of Mathematics
ul. Dabrowskiego 69, 42–201 Czestochowa, Poland

oleg.tikhonenko@gmail.com
2 Silesian University of Technology, Institute of Mathematics

ul. Kaszubska 23, 44–100 Gliwice, Poland
wojciech.kempa@polsl.pl

Abstract. A single-server queueing system of M/G/1-type with boun-
ded total volume is considered. It is assumed that volumes of arriv-
ing packets are generally distributed random variables. The AQM-type
mechanism is used to control the actual buffer state: each of arriving
packets is dropped with probability depending on its volume and the
occupied volume of the system at the pre-arrival epoch. The explicit for-
mulae for the stationary queue-size distribution and loss probability are
found.

Keywords: AQM algorithms, finite buffer, loss probability, single-server
queueing system, queue-size distribution.

1 Introduction

Wide applications of finite-buffer queueing systems in telecommunication, com-
puter networks, management, transport and logistics are known. In particular,
we can use them as mathematical models of the data packet traffic in the node
(router) of the Internet network. A typical phenomenon which can be observed
in the operation of the Internet network is the situation of buffer congestion
causing losses of the arriving packets. It’s clear that the enlarging the capacity
of the buffer is not a good solution of this problem since it prolongs the sojourn
time of the packet in the system. Another approach is based on using of Ac-
tive Queue Management (AQM) algorithms. A basic algorithm, called Random
Early Detection (RED) was proposed in [5]. In the RED scheme a drop function
is defined that “controls” the input stream and rejects the arriving packet with
probability dependent on the actual queue size at the pre-arrival epoch. Various
types of drop functions were studied. In [2], [1, 10], [17] and [6] linear, exponen-
tial, quadratic and “gentle” linear drop functions were considered respectively.
Some other results relating to the theoretical and practical aspects of using the
AQM schemes can be found in [3, 4, 7, 8, 11–13, 16]. In [9] the M/M/1/m sys-
tem with single and batch arrivals, with the buffer “state” controlled by a drop
function, was considered. The formulae for different stationary-state stochastic
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characteristics were derived there: the queue-size distribution, the number of
packets (batches of packets) lost consecutively, and the time between two suc-
cessive losses. In [14] the representation for the stationary queue-size distribution
was obtained for the generalizedM/M/1/m system, in which the arriving pack-
ets have generally distributed volumes and the total their volume (capacity) in
the system is bounded. The extension of results obtained in [14] can be found in
[15] where the case of a multi-server system was investigated.

In the paper we generalize results from [14] for the case of a single-server
system with Poisson arrivals and generally distributed service times. We replace
the classical drop function by an “accepting” function that accepts the arriving
packet with probability that depends on the actual occupied capacity of the
system at the pre-arrival epoch, and on the volume of the arriving packet.

2 The Model and Auxiliary Results

Consider a single-server queueing system in which succesive packets arrive
according to Poisson process with intensity a, and are characterized by their
volumes which are generally distributed positive-valued random variables with
a distribution function L(x). Packets are served individually with a general-
type service time distribution function B(t), independently of their volumes.
Sequences of successive interarrival and service times, and volumes of the ar-
riving packets are supposed to be totally independent. The total volume of the
system, i.e. the sum of volumes of all packets present in the system, is bounded
by a non-random positive value (system capacity) V.We shall denote the system
under consideration by M/G/1/(∞, V ) (see e.g. [16, 17]). Let us note that the
well-known “classical” M/G/1/m-type system, in fact, is a special case of the
system described above, when L(x) = 0 for x ≤ 1, L(x) = 1 for x > 1 and
V = m+ 1.

Let η(t) be the number of packets present in the system at a fixed time t.
Let ξ∗(t) be the residual service time of the packet being in service at time t (if
η(t) > 0).

Consider now the “classical” systemM/G/1/∞. Its evolution can be described
by the following Markov process: (

η(t); ξ∗(t)). (1)

For the system M/G/1/(∞, V ) we need to supplement this process. Let ζi(t)
be the volume of the ith packet present in the system at time t. Then σ(t) =

=
∑η(t)

i=1 ζi(t) is the “transient” volume of the system at time t, i.e. the sum of
volumes of all packets present in the system at time instant t. Now the considered
system can be described by the following Markov process:(

η(t); ζi(t), i = 1, η(t); ξ∗(t)). (2)

Here we take the assumption that the arriving packets are numbered successively
as they occur. Of course, if η(t) = 0 then also σ(t) = 0. Assume that there exists
the stationary state of the system and introduce the following notations:
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lim
t→∞σ(t) = σ, (3)

lim
t→∞ ξ

∗(t) = ξ∗, (4)

lim
t→∞ ζi(t) = ζi. (5)

In the stationary state the stochastic process (1) can be characterized by the
functions

wk(y) = P{η = k; ξ∗ < y}, (6)

where k = 1, 2....
Similarly, one can describe the stochastic process (2) using the following func-

tions:

gk(x, y)dx = P{η = k; σ ∈ [x, x + dx); ξ∗ < y}, (7)

where k is defined as previously.
Let us note that for the process (2) we can write

wk(y) =

∫ V

0

gk(x, y)dx. (8)

Define

Pk(t) = P{η(t) = k}, pk = P{η = k}, (9)

where k = 0, 1, ..., and η stands for the number of packets present in the system
in the stationary state.

In the stationary state we have evidently

pk = P{η = k} = wk(∞), k = 1, 2, .... (10)

Assume that β1 =
∫ ∞
0
tdB(t) <∞.

We end this section with supplementing necessary notations. Let us denote by
ploss the stationary loss probability i.e. the probability that the incoming packet

is lost. Besides, let ρ = aβ1 be the traffic load of the system. Lastly, by F
(k)
∗ (·)

we denote the k-fold Stieltjes convolution of any distribution function F (·) of
non-negative random variable with itself i.e.

F
(0)
∗ (y) ≡ 1, F

(k)
∗ (y) =

∫ y

0

F
(k−1)
∗ (y − x)dF (x), k = 1, 2, .... (11)

3 Queue-Size Distribution in the Original System with
Packet Dropping

Let us take into consideration the “classical” M/G/1/∞-type queueing system
without packet dropping. The stationary probabilities for this “clasical” system
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can be obtained from the formula (10). Using the notations introduced in the
previous section we can write the following system of differential equations for
the unknown functions wk(y), where k = 1, 2, ...:

0 = −ap0 + ∂w1(y)

∂y

∣∣∣
y=0

; (12)

− ∂w1(y)

∂y
+
∂w1(y)

∂y

∣∣∣
y=0

= ap0B(y)− aw1(y) +
∂w2(u)

∂u

∣∣∣
u=0
B(y); (13)

− ∂wk(y)

∂y
+
∂wk(y)

∂y

∣∣∣
y=0

= awk−1(y)− awk(y)+

+
∂wk+1(u)

∂u

∣∣∣
u=0
B(y), k = 2, 3, .... (14)

For the system (12)–(14) the following boundary conditions hold true:

awk(y) =
∂wk+1(u)

∂u

∣∣∣
u=0
, k = 1, 2, .... (15)

Let us now take into consideration the original M/G/1/(∞, V )-type queueing
system, where the total volume of packets in the system is bounded by V. We
introduce into the system the AQM algorithm defined as follows. Let r(·) be a
right-hand continuous and nonincreasing function defined on the interval [0, V ],
and satisfying conditions r(0) ≤ 1 and r(V ) ≥ 0. If the volume of the arriving
packet and the total volume of the system at the pre-arrival instant equal x and
y respectively, then r(x + y) is the probability that the arriving packet will be
accepted for service. If the packet of the volume x, arriving at time t is dropped,
we have η(t) = η(t−) and σ(t) = σ(t−). Similarly, in the case of acceptance the
arriving packet we have η(t) = η(t−) + 1 and σ(t) = σ(t−) + x.

The system of Kolmogorov-type equations for the stationary state of the
M/G/1/(∞, V ) system with AQM takes the following form:

0 = −ap0
∫ V

0

r(v)dL(v) +
∂w1(y)

∂y

∣∣∣
y=0

; (16)

− ∂w1(y)

∂y
+
∂w1(y)

∂y

∣∣∣
y=0

= ap0B(y)

∫ V

0

r(v)dL(v)−

− a
∫ V

0

g1(x, y)

∫ V−x

0

r(x + v)dL(v)dx +
∂w2(u)

∂u

∣∣∣
u=0
B(y); (17)

− ∂wk(y)

∂y
+
∂wk(y)

∂y

∣∣∣
y=0

= a

∫ V

0

gk−1(x, y)

∫ V−x

0

r(x + v)dL(v)dx−

− a
∫ V

0

gk(x, y)

∫ V −x

0

r(x+ v)dL(v)dx +
∂wk+1(u)

∂u

∣∣∣
u=0
B(y), k = 2, 3, ....

(18)
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The boundary conditions are following:

a

∫ V

0

gk(x, y)

∫ V −x

0

r(x + v)dL(v)dx =
∂wk+1(u)

∂u

∣∣∣
u=0
B(y), k = 1, 2, ....

(19)

Let us introduce now the following notation:

R(z) =

∫ z

0

r(V − z + v)dL(v). (20)

Putting (20) into the system (16)–(18) we get

0 = −ap0R(V ) + ∂w1(y)

∂y

∣∣∣
y=0

; (21)

− ∂w1(y)

∂y
+
∂w1(y)

∂y

∣∣∣
y=0

= ap0B(y)R(V )−

− a
∫ V

0

g1(x, y)R(V − x)dx + ∂w2(u)

∂u

∣∣∣
u=0
B(y); (22)

− ∂wk(y)

∂y
+
∂wk(y)

∂y

∣∣∣
y=0

= a

∫ V

0

gk−1(x, y)R(V − x)dx−

− a
∫ V

0

gk(x, y)R(V − x)dx + ∂wk+1(u)

∂u

∣∣∣
u=0
B(y), k = 2, 3, .... (23)

The boundary conditions (19) can be rewritten in the following form:

a

∫ V

0

gk(x, y)R(V − x)dx =
∂wk+1(u)

∂u

∣∣∣
u=0
B(y), k = 1, 2, .... (24)

Systems (12)–(15) and (21)–(24) lead to the following theorem:

Theorem 1. The stationary queue-size distribution pk, k = 0, 1, ..., in the
M/G/1/(∞, V )-type queueing system with packet dropping can be expressed as

pk = Cp̂kR
(k)
∗ (V ), k = 0, 1, ..., (25)

where

C =

[ ∞∑
k=0

p̂kR
(k)
∗ (V )

]−1

, (26)

p̂k, k = 0, 1, ..., are stationary probabilities in the “classical” M/G/1/∞ system,

and R
(k)
∗ (·) is the k−fold Stieltjes convolution of the function R(·) defined in

(20) with itself.
Moreover, the loss probability ploss is given by the formula

ploss = 1− 1− p0
ρ

, (27)
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where ρ = aβ1, a is the arrival intensity, and β1 is the first moment of the
service time.

Proof. Assume that the number p̂0 and functions ŵk(y), k = 1, 2, ..., satisfy the
system of equations (12)–(15) for the “classical” M/G/1/∞-type system, and
besides the normalization condition

p̂0 +

∞∑
k=1

ŵk(∞k) = 1. (28)

Let C be a constant which will be found explicitly later, and denote by R
(k)
∗ (·)

a k−fold Stieltjes convolution of the function R(·).
By a direct substitution, it is easy to verify that the number p0 = Cp̂0 and

the functions gk(x, y), such that

gk(x, y)dx = Cŵk(y)dR
(k)
∗ (x), (29)

satisfy the system of equations (21)–(24).
Thus, if p̂k is the stationary probability that exactly k packets are present in

the “classical” model, then - for the M/G/1/(∞, V )-type system with packet
dropping - the correspondent probability pk can be found as pk = Cp̂kR

k∗(V ).
The normalization condition gives now

C =

[ ∞∑
k=0

p̂kR
(k)
∗ (V )

]−1

.

that ends the proof of (25) and (26).
The formula (27) is a consequence of the stability condition. �
It is clear that in general case the formulae (25) are not convenient for calcula-

tions because of p̂k precise calculation impossibility and of Stieltjes convolutions
presence. But we can calculate the probabilities pk and ploss for some special
forms of the functions B(·) and R(·).

4 Some Special Cases

A. “Classical” AQM. Consider the classical system M/G/1/m < ∞ with
drop function di, having the sense of probability that the arriving packet will be
rejected, if there are i other packets in the system at the arriving epoch, i = 0,m.

It follows from the equations (25) and (26) that in this case we have for the
probabilities pk, that form the stationary queue-size distribution of the system,,
the following representations:

p0 = Cp̂0, pk = Cp̂k

k−1∏
i=0

(1− di), k = 1,m+ 1,
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where p̂k are the stationary probabilities that there are k packets present in the
“classical” M/G/1/∞ system, k = 0,m+ 1,

C =

[
p̂0 +

m+1∑
k=1

p̂k

k−1∏
i=0

(1− di)
]−1

.

In this case precise calculation of the probabilities pk are evidently possible for
service time having an exponential distribution (see [9]) or being a constant
value. More widely, they are possible, if an algorithm for calculation of p̂k is
known.

B. Constant Service Time. For service time ξ ≡ t0 = const (i.e. for the
system M/D/1/(∞, V )) we evidently obtain

p1 = p0(e
ρ − 1)R(V ),

pk = p0

{
ekρ +

k−1∑
i=1

(−1)k−ieiρ

[
(iρ)k−1

(k − i)! +
(iρ)k−i−1

(k − i− 1)!

]}
R

(k)
∗ (V ), k ≥ 2,

where

p0 =

{
1 + (eρ − 1)R(V )+

+

∞∑
k=2

[
ekρ +

k−1∑
i=1

(−1)k−ieiρ

(
(iρ)k−1

(k − i)! +
(iρ)k−i−1

(k − i− 1)!

)]
R

(k)
∗ (V )

}−1

, ρ = at0.

C. Exponentially Distributed Service Time. If B(t) = 1−e−μt, μ > 0 (i.e.
for the system M/M/1/(∞, V )), we have evidently

pk = p0ρ
kR

(k)
∗ (V ), k = 1, 2, ...,

where

p0 = C(1 − ρ) =
[ ∞∑

k=0

ρkR
(k)
∗ (V )

]−1

, ρ = a/μ.

In Tab. 1 we present stationary probabilities pk, for k = 0, 1, ..., 16, in the system
in which V = 10 and volumes of packets are exponentially distributed with mean
2. The “accepting” function is defined as

r(x) =
(x− 10)2

100
, 0 ≤ x ≤ 10.

In computations we compare the cases of traffic loads ρ = 1 and ρ = 4. Results
are presented geometrically in Fig. 1 (the case ρ = 4 in dark colour).

The values of loss probability for ρ = 1 and ρ = 4 equal 0.58391009 and
0.89597752 respectively.
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Table 1. Stationary probabilities for exponential packet volume distribution, expo-
nential service time, and ρ = 1 and ρ = 4

Queue size k pk for ρ = 1 pk for ρ = 4

0 0.58391009 0.22623632

1 0.39020278 0.60473721

2 0.02544025 0.15770944

3 0.00044376 0.01100387

4 0.00000311 0.00030882

5 1.08639396 × 10−8 4.31026173 × 10−6

6 2.40300481 × 10−11 3.81356307 × 10−8

7 1.34619664 × 10−13 8.54564379 × 10−10

8 2.50094105 × 10−15 6.35038026 × 10−11

9 3.70268432 × 10−17 3.76073692 × 10−12

10 3.90566084 × 10−19 1.58675833 × 10−13

11 3.06682151 × 10−21 4.98384757 × 10−15

12 1.88406302 × 10−23 1.22470550 × 10−16

13 1.00188522 × 10−25 2.60503884 × 10−18

14 5.91427732 × 10−28 6.15117253 × 10−20

15 4.91545009 × 10−30 2.04493499 × 10−21

16 4.87042159 × 10−32 8.10480858 × 10−23

Fig. 1. Stationary probabilities for exponential packet volume distribution, exponential
service time, and ρ = 1 and ρ = 4

In Tab. 2 we state stationary probabilities pk for the system with V = 10
and volumes of packets having 2-Erlang distributions with parameter α = 1 (so,
with mean 2). The “accepting” function is defined as above. As previously, we
compare the cases of ρ = 1 and ρ = 4. Results are presented in Fig. 2 (in dark
colour the case ρ = 4).

Now the values of loss probability for ρ = 1 and ρ = 4 equal 0.53209755 and
0.79451408 respectively.
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Table 2. Stationary probabilities for exponential packet volume distribution, 2-Erlang
service time, and ρ = 1 and ρ = 4

Queue size k pk for ρ = 1 pk for ρ = 4

0 0.53209755 0.17805630

1 0.42443864 0.56812119

2 0.04221294 0.22601210

3 0.00123538 0.02645745

4 0.00001539 0.00131870

5 9.84474610 × 10−8 3.37342000 × 10−5

6 3.73550067 × 10−10 5.12005771 × 10−7

7 1.62007964 × 10−12 8.88223771 × 10−9

8 3.33422929 × 10−14 7.31208922 × 10−10

9 8.51994577 × 10−16 7.47382358 × 10−11

10 1.59676709 × 10−17 5.60283168 × 10−12

11 2.23845424 × 10−19 3.14176874 × 10−13

12 2.43726606 × 10−21 1.36832394 × 10−14

13 2.15496080 × 10−23 4.83933127 × 10−16

14 1.71000077 × 10−25 1.53603911 × 10−17

15 1.53884029 × 10−27 5.52916445 × 10−19

16 1.91507107 × 10−29 2.75239554 × 10−20

Fig. 2. Stationary probabilities for exponential packet volume distribution, 2-Erlang
service time, and ρ = 1 and ρ = 4

5 Conclusion

In the paper stationary queue-size probabilities and loss probability for the sys-
tem with bounded capacity M/G/1/(∞, V ) and dropping packets mechanism
are derived, under conditions that packet volume and service time are indepen-
dent, and probability of dropping depends on the volume of the arriving packet
and the total volume of packets present in the system at the pre-arrival epoch.
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Abstract. In this paper, we consider the model of server traffic when
the traffic is separated into several streams. The amount of transferred
data differs for different streams. Based on real traffic measurements
we proposed the server traffic model where traffic of every stream is
described by the same independent processes, but each process has its
own time scale. We show that for traffic analysis as well as for developing
of the most effective methods of control of this traffic, it is necessary to
correctly identify the time scale for each stream, as well as the time scale
of traffic fluctuations those have a significant effect to QoS.

Keywords: communication system traffic, mathematical model, time
scale, self-similar, Poisson arrival process.

1 Introduction

Recently a number of high-quality, high-resolution measurements of multimedia
traffic in high-speed networks were carried out and analyzed. It is shown that the
traffic in such networks is self-similar [1]. But mathematical analysis of models
based on the self-similar processes is very difficult. On the other hand, the tra-
ditional traffic models such as the Poisson arrival process, the Markovian arrival
process, etc., are well studied but do not give sufficient accuracy for a modern
network traffic description, including a long-time dependence.

The modern networks traffic is described as a multi-stream traffic. The traffic
is partitioned usually onto steams under the QoS conditions for different types of
traffic: real-time audio-, video traffic, data, etc. [2]. In contrast, in this paper we
analyze one type of traffic with respect to using a network resource by different
types of requests, classified in [3]. It was found that some resources generate a
family of streams which differ by a service time [4], [5]. Therefore, the total traffic
can be described as linear combination of the flat-rate traffic with different time-
scales. In contrast with the self-similar traffic, this approach gives possibilities
to research processes with a long-time dependence using the classical teletraffic
models if the components are describing by the classical models.

For traffic shaping, it is necessary to single out the significant stream for QoS
characteristics calculating. When the significant stream is singled out then its
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influence onto the QoS characteristics may be investigated by using the classical
teletraffic models.

Traffic of two real sources was examined: a multimedia resource and a musical
portal [4], [5]. The multi-media resource provides access for users to files of
various types. Most requests come for transfer of small files (HTML pages with
images) when users search files and additional information. The number of user
requests to transfer a specific mp3 file is substantially smaller, but the processing
of such requests requires an essentially more time. The maximum service time is
typical for requests for the transfer of archive files containing music albums and
video files. The total traffic of the resource is self-similar (the estimation of the
Hurst parameter is 0.88). It may be divided onto four streams with substantially
different times of services (see Table below). We investigate properties of this
streams and show that the traffic of every of them may be considered as a Poisson
processes. Thus, we can say that the server generated several types of streams
with different intensity and size of the requested files. Its time of service (or size
of sent file) gives us the time-scale of this steam or its time unit. Analogous
result was get for a musical portal [4].

In this paper, we propose the mathematical model of traffic based on the
classical Poisson arrival processes but in case when the processes have different
time-scales. This approach gives us possibility to use classical and more compli-
cated theory (for example, [6], [7]). By the way, this approach gives us possibility
to use the algorithms to estimate variations of the model calculated parameters
under uncertainty in the model input parameters [8], [9].

In Section 2, we introduce the mathematical model of traffic generated by
a source with an “unbounded” service time variation where every component
of the total traffic has own time-scale unit. Based on this model, we discuss
how to choose that component of the traffic which gives us the main influence
on the interesting output parameter of the model. The choice is based on the
time scale unit. In this case, the streams with more time service assume as
non-random processes and the ones with less time service assume as processes
with rapid random fluctuations. This unit gives us possibility to choose of the
significant stream; this steam has the same time scale. Therefore, the time unit
of the significant stream is the major characteristic for the total traffic model
describing. In Section 3, we give an example of a server which generates four
streams such that the average volume of a request differs from 7 up 20 times. We
estimate auto-correlation functions (ACFs) of processes of the first steam input
requests and total input requests and ACFs of the first steam transmitted data
and the total transmitted data. In Section 4, we outline numerical simulation
results of our model and some traffic control models. In this case, traffic shaping
consists in regulation of a data transfer rate for different streams.

2 Mathematical Model

For simplicity of researches, we assume that the source of the load generates n
Poisson streams of requests with intensities λi, Λ =

∑n
i=1 λi is the summary
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intensity of incoming requests, pi = λi/Λ is the probability that the request
arrived from the i-th stream. A request from the i-th stream is serviced during
a time units āi. Therefore, the average service time is A =

∑n
i=1 piāi. As a

characteristic of load source’s randomness it is considered the standard deviation
of the service time σ =

√
D where D =

∑n
i=1 piā

2
i −A2.

We consider the situation when σ/A� 1. The mathematical approach of this
condition consists of a model with an infinite variance of the service time.

For this model, the traffic generated by the data server can be portioned onto
n independent stationary streams of requests and every stream generates the

process of data level with the average λiāi and the random component Y
(i)
t .

The processes Y
(i)
t for all i have the same structure and differ only by the time

scale āi and the variation αi. Let Xt be a stationary stochastic process which
describes the random component of the data level of a steam with servicing time
value equals to 1 and the variation value of X1 equals to 1. The deviation from
the average of the total load generated by n streams can be found as

Yt = α1 ·X(1)
t/a1

+ α2 ·X(2)
t/a2

+ ...+ αn ·X(n)
t/an

(1)

whereX
(i)
t be independent copies of the processXt. All the copies are considered

as independent processes and αi determine the proportion of the corresponding
component in the random component of the total load.

We may suppose also that the service time of a request from the i-th stream
is serviced during a random time ai (independent of servicing times of others
requests) with the mean value āi and the variation σi and the values σi/āi have
the same order for all i.

It should be noted that server’s traffic passes through the switch or router,
which has a buffer on the output interface to compensate the fluctuations traffic
and reduce losses. The buffer overflow probability is the main characteristic of
QoS [10], [11]. Therefore, we are interested to know a maximum deviation for
the time period [0, T ] where T is a time comparable with the router’s buffer fill
time and may give us the time-scale unit of the total traffic.

We consider the ratio of deviation from the average amount of data received
from the server during the time period T :

Ȳ =
1

T

∫ T

0

Ytdt =

n∑
i=1

αiāi
T

∫ T/āi

0

X
(i)
t dt. (2)

Since the streams are independent and EY = 0 the variance of the overall process
is calculated as a sum of the variances [12]:

D
[
Y
]
=

n∑
i=1

[
α2i

(
1− T

3āi

)
I (T ≤ āi) + α

2
i āi
T

(
1− āi

3T

)
I (T > āi)

]
(3)

where I(B) is the indicator function of the event.
It follows from (3) that for T � āi the variance of random deviations of the

data generated by the i-th stream decreases in proportion to T , but for T � āi
the variance decreases with significantly lower rate.



190 I. Titov, I. Tsitovich, and S. Poryazov

It is shown on Fig. 1 the dependence of the variance D
[
Y
]
on T (the line D)

with the following values of parameters n=3, ā1 = 1, ā2 = 10, ā3 = 100, and
α1 = α2 = α3 =

√
10/3 (named Example 1). For comparison, the plot Dm(T ) of

dependence on the variance on T for the server with one Poisson stream intensity
Λ, and constant service time A = 10/3 (named Example 2) is also shown on Fig.
1 (left), i.e. it is the case when we do not consider the structure of the source
load and use its average characteristics only.

Fig. 1. Diagrams of the traffic variance with three and one stream (left) and diagrams
of the variances for the 1-st and 3-rd systems from Section 4 (right)

It is shown that for T < A the variance is approximately the same for both
systems. Therefore, for systems without buffer the probability of loss will be the
same. However, the traffic variance in the second example starts decreasing with
a high speed at significantly lower values of T . For example, when T = 100 the
variances D(T ) is 10 times greater than the variance Dm(T ). The dependence of
the variance on T for each stream separately Di(T ) also is shown on Fig. 1 (left).
It follows from this dependence and the formula (3) that for small values of T
the variances for all streams are the same. A linear decreasing of the variance of
the i-th stream starts at values āi.

Therefore, if the average time of filling the buffer is more than A then it
should take into account the structure of the source of the load, otherwise the
assumptions about the buffer overflow probability will be too optimistic. For
example, for the 1-st stream buffer with a specific size can be enough to provide
a low level of data loss. Packets often enter in the buffer, but do not stay there
for a long time because the system quickly changes its states; therefore, the
amount of resources invested in the buffer reaches the maximum value rarely.
At the same time, for the n-th stream this buffer may not be sufficient because
the n-th stream has a different time scale. Therefore, the ratio between the time
of filling the buffer and the stream time scale gives us possibility to understand
how this stream may influence the probability of data loss. For example, for
small values of T , all streams will make the same contribution into the buffer
overflow probability. In contrast, if T > ān then the probability of data loss will
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be determined only by n-th stream. Therefore, the efficiency of control methods
applied to different streams depends on T and the steam time scale.

3 Analysis of Web Server Traffic Properties

In this section, we analyze traffic coming from the real multimedia resource. This
resource provides access for users to files of various types. Majority of requests
consists in a transfer of a small file (HTML pages with images). The number
of user’s requests to transfer a specific mp3 file is substantially smaller, but the
processing of such requests requires an essentially large time. The maximum
service time is typical for requests for the transfer of archive files with music
albums and video files. Thus, we can say that the server receives several types of
streams of user requests with different intensity and size of the requested files.

Traces were collected at the edge of data-center where servers of this mul-
timedia resource are located. Therefore we captured all traffic from these Web
servers. We analyzed packet headers of network and transport layer. Selection
criterion was a pool of IP addresses belonging to multimedia resource (primary
and non-primary servers) and TCP source port 80 (HTTP). Traffic was analyzed
from 10:00 to 13:30 on 23th of October 2010 (Saturday). During the observation
period it was recorded 383000 TCP sessions and was transferred over 41 GB of
data [5].

For analyzing the traffic, we recorded the times of start and finish of each
TCP session. The histogram for time intervals between times of opening two
consecutive TCP sessions, i.e. time intervals between two consecutive events of
receiving user’s request, is shown on Fig. 2 (left). It can be clearly seen that the
probability distribution decreases exponentially (we use the logarithmic scale
for x and the plot has a linear form). In addition, the mean value 39.4 ms and
the variance 40.6 ms are almost equal. Such equality is typical for exponentially
distributed random variables.

Fig. 2. Histogram of time intervals between user’s requests (left) and 1−Fm(x) (right)
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For the long-time dependence investigating we considered another character-
istic of incoming stream — the probability of receiving m requests for the time
period t. Let Fm(x) be the empirical distribution function of receiving m re-
quests per 1 s. The dependence 1 − Fm(x) on x in a logarithmic scale is shown
on Fig. 2 (right). The tail of this distribution also decreases exponentially.

In addition, we consider the sample estimate of the incoming stream ACF.
ACF of number of requests received for the time period 1 s is shown on Fig. 3
(left). From this plot we can see that incoming stream does not possess a long-
time dependence. The same results are obtained for time periods 10 and 100 s.

Fig. 3. ACF of the number of requests received in 1 s (left) and ACF of amount of
data generated by the server in 1 s (right)

Thus, the arrival process of user’s requests can be described as a Poisson
process. Poisson processes are well studied and widely used as models of real
streams. These results correspond to the classical view of the teletraffic theory on
the structure of incoming streams of requests from a large number of independent
sources.

For study the distribution of the amount of transmitted data, we estimate the
amount data coming from the server to the client within a single TCP session.

The histogram for an amount of transferred data from Web server in a double
logarithmic scale is shown on Fig. 4 (left). An amount of transmitted data in
bytes is represented on the abscissa and the frequency of the corresponding 100-
byte interval is represented on the ordinate.

From these plot it can be clearly seen that the probability distribution de-
creases nonmonotonically. For different values of the amount of transmitted data
observed local maxima corresponding to the transfer of a large number of similar
sized objects.

For a more detailed, we study the properties of the tail of the distribution.
The dependence 1− Fn(x) on x in a double logarithmic scale is shown on Fig.
4 (right).
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Fig. 4. The histogram of the amount of transmitted data (left) and 1 − Fn(x) as a
function on the amount of transmitted data (right)

From this dependence it can be clearly seen that typical periods of slow decreas-
ing of 1 − Fn(x) (i.e., at this period it was recorded a little number of sessions of
the appropriate size) alternate with periods of rapid speed decreasing of 1−Fn(x)
(i.e. at this period it was observed a local maximum in the histogram). Thus, we
can separate different streams of requests by depending on the rate of change of
the empirical distribution function, as well as based on the character of changes in
the histogram. Also there are shown on Fig. 4 (right) the three vertical lines cor-
responding to values of the volume of transferred data: 6 · 104, 9 · 105 and 5 · 106
bytes. These lines separate different streams of user’s requests.

The main characteristics of data streams generated by the server during the
observation time Ts are presented in Table: the number of sessions λ · Ts, the
average amount of transferred data within a single TCP session V , and the total
amount of information transmitted for each stream λ · Ts · V .

Table 1. Characteristics of the data streams

No. 1 2 3 4

λ · Ts 279490 96222 7019 229

V , KB 11.09 213.2 1604 28812

λ · Ts · V , GB 3.1 20.51 11.26 6.6

The first stream corresponds to the downloading of HTML pages containing
images into JPEG and GIF formats with different sizes and scripts in Flash
and JavaScript. The largest number of TCP sessions (73%) opens to download
these types of files, but the amount of traffic generated by this stream is only
7.5% of the total traffic. The second stream consists of 30 seconds fragments
of music and video files (preview). This stream generates almost half of total
traffic. The third stream corresponds to the downloading of mp3-files and books
in formats TXT, DOC and PDF. The fourth stream consists of video files and
archived musical albums. The number of user requests for transfer files of third
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and fourth types is only 1.9% of the total number but these streams create 43%
of the total traffic.

The ACF of the total amount of data generated by the server in 1 s is shown
on Fig. 3 (right). It is clearly seen that the ACF does not vanish during a longe
time. Since, each of the streams corresponds to its time scale, the ACF of the
amount of data from the specific stream needs significantly different time for
decreasing to zero. For example, the ACF for the amount of data from the 1-st
stream generated by the server in 1 s is shown on Fig. 5 (right). We can see that
the ACF for the 1-st stream decreases rapidly. Results of research show that the
ACF for other streams need much more time to vanish, and this time depends
on the time scale corresponded to the stream.

In additional, we analyzed the ACF of numbers of requests received from a
special stream. For example, ACF of number of requests from the 1-st stream
received in 1 s is shown in Fig. 5 (left). For this stream (also as for other 3
streams) the ACF vanishes rapidly and it does not depend on a time period in
which we measure a number of received requests.

Fig. 5. ACF of the number of requests of the 1-st stream (left) and ACF of the amount
of data of the 1-st stream generated by the server (right)

Thus, the analysis of the real Web server’s traffic shows that this traffic can
be divided into four Poisson streams with average times of service differ by more
than tenfold. Therefore, each of the streams will correspond to its time scale
that differs significantly for different streams.

4 Numerical Results

In this section, we outline results the numerical simulation of the Web server’s
data load when a traffic control is applied for different streams. For the numerical
studies we use the mathematical model from Section 2 with the parameters
n = 3, ā1 = 1, ā2 = 10, ā3 = 100, and α1 = α2 = α3 =

√
1/3. All requests

obtained the same rate Cm, consequently, the time of service is determined only
by the size of requested file.
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The traffic control means that we decrease rate of the data transfer in d times
for one or several streams. Four systems with rate control were considered. The
model without control is named the first system. The second system is one when
the data transfer rate decreases to Cm/d for all requests; the 3-rd one is with
the rate decreasing for requests with the maximum file size (the 3-rd stream)
only; in the 4-th one the same control applies to requests of the 2-nd and 3-rd
streams; and the 5-th one the control applies to requests with the minimum file
size (the 1-st stream) only. For the 3-rd, 4-th and 5-th systems, the service time
of requests is chosen in such a way that the average service time for all requests
is the same for all four systems and, therefore, equals to A · d.

The plots of the variance as a function on T for the total traffic of the 1-th
systemD1 as well as for each of streamsD1i shown on Fig. 1 (right). In addition,
analogous dependencies for the 3-rd system for d = 1.5 is shown in this figure
(D3 and D3i).

The comparison left and right parts of Fig. 1 shows that the changes of the
variance for different streams obtained based on the analysis of the results of
modeling of server traffic and obtained in the analytical form in Chapter 2 have
the same character. As it is shown on Fig. 1 (right), for both systems the vari-
ance for the 1-st and the 2-nd streams changes identically. However, for the 3-rd
system with the rate control, the variance of the 3-th stream becomes signifi-
cantly lower. Consequently, a speed of decreasing of the total variance begins to
increase for T > 10.

It is shown on Fig. 6 (left) the variance Dk (k is a number of the system) for
5 systems for d = 1.5.

Fig. 6. Diagrams of the total variance for 5 systems (left) and of the loss probability
as a function on the buffer size for d = 1.5 (right)

As it is followed from these plots, for different methods of the rate control
correspond different ranges of T where the method gives the minimum values of
the variance by k. Therefore, the effectiveness of a method of the rate control
is differ in depending on the buffer size and on the bandwidth. For example, it
is shown on Fig. 6 (right) the dependence of the loss probability (Pk, k is the
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number of the system) on buffer size when the bandwidth C = 120Cm, d = 1.5,
λi = λ1 · 10(i−1), λ1 = 33.3. For these parameters each stream generates the
same average load of data and the average total load of data is 100Cm.

It is shown on these plots that the efficiency of the rate control applied only
to requests for transferring files of maximum size (system 3) increases with in-
creasing the buffer size. If the size of router’s buffer is middle or big then it is
not effective to decrease the rate for requests from the 1-st stream (system 5)
[13]. The method of the rate control of the 4-th system is most effective and can
significantly reduce the buffer overflow probability.

For example, for buffer size B = 0.1Cm, each stream makes equal contribution
to the packets loss, therefore decreasing of the data transfer rate for all requests
(system 5) is the most effective method (it decreases the loss probability in 4.5
times). However, if the router time scale is larger then an effectiveness of the
rate control methods may be different. For example, for buffer size B = 20Cm,
applying of the rate control to requests from the 2-nd and the 3-rd streams
decreases the buffer overflow probability in 15 times, but applying of the rate
control to requests from the 1-st stream decreases the buffer overflow probability
only on 16%.

In addition, in [14] we analyzed effectiveness of rate control methods for system
with distribution function of the amount of transmitted data corresponding to
empirical distribution function of Web server considered in Chapter 3.

5 Conclusions

The data server traffic, which grants to users an access to files of different types,
can be split into streams depending on the volume of a requested data. Analysis
of the real Web server traffic shows that data volumes of requests of different
streams may be substantially differed and the total traffic of Web server may
be self-similar. But an appropriate splitting into streams based onto their time
scales gives us possibility to use Poisson models or similar for QoS estimating or
the Web server total traffic shaping.
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1 Introduction

Stationary and nonstationary Erlang loss queueing model has been considered
by a great number of authors, see [1]-[7],[9,11,16].

We believe the main reasons for the wide application of the model are sim-
plicity and ease of application.

Since the 1970s, the most important problems have been connected with the
bounds on the rate of convergence to the limiting regime [1,3,5,6,9,11,13,15,16].

Here we introduce and study a simplest analogue of Mt/Mt/S/S queue for a
queueing system with group services.

Namely, we suppose that an intensity of arrival of a customer to the queue
is λ(t), and an intensity of departure (servicing) of a group of k customers is

μk(t) =
μ(t)
k if 1 ≤ k ≤ S, and we also suppose that X(t) ≤ S, i.e. there are no

waiting rooms.
Let X = X(t), t ≥ 0 be a queue-length process for the queue.
We suppose that intensities λ(t) and ν(t) are locally integrable on [0,∞)

nonnegative functions.
Then the probabilistic dynamics of the process is represented by the forward

Kolmogorov differential system:

dp

dt
= A(t)p(t). (1)
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Here A(t) is transposed intensity matrix,

A(t) =

⎛⎜⎜⎜⎜⎝
a00(t) μ1(t) μ2(t) μ3(t) μ4(t) · · · μS(t)
λ(t) a11(t) μ1(t) μ2(t) μ3(t) · · · μS−1(t)
0 λ(t) a22(t) μ1(t) μ2(t) · · · μS−2(t)
· · ·
0 0 0 · · · 0 λ(t) aSS(t)

⎞⎟⎟⎟⎟⎠ , (2)

where μk(t) = μ(t)/k, and aii(t) are such that all column sums in A(t) equal
zero for any t ≥ 0.

We denote throughout the paper by ‖ • ‖ the l1-norm, i. e. ‖x‖ =
∑ |xi|, and

‖B‖ = maxj
∑

i |bij | for B = (bij)
S
i,j=0.

Let Ω be a set all stochastic vectors, i. e. l1 vectors with nonnegative coordi-
nates and unit norm.

Let Ek(t) = E {X(t) |X(0) = k } be the mean of the process at the moment
t under initial condition X(0) = k, and Ep(t) be the mathematical expectation
(the mean) at the moment t under initial probability distribution p(0) = p.

Recall that the process X(t) is weakly ergodic if ‖p∗(t) − p∗∗(t)‖ → 0 as
t → ∞ for any initial conditions p∗(s),p∗∗(s) and any s ≥ 0. In particular, if
the state space is finite, and the intensities are constant (X(t) is stationary), then
weak ergodicity is equivalent to ergodicity of the process, that is, the existence
of steady-state distribution, say π.

2 Ergodicity Bounds

Theorem 1. Queue-length process X(t) is weakly ergodic if and only if the fol-
lowing assumption holds:

∞∫
0

(λ(t) + μ(t)) dt = +∞. (3)

Proof. Let firstly (3) do not satisfied. Then we have

‖A(t)‖ = 2max |aii(t)| = 2

(
λ(t) + μ(t) ·

S∑
k=1

1

k

)
≤ 2 (λ(t) + (1 + logS)μ(t)) ,

(4)
and ∞∫

0

‖A(t)‖ dt < +∞. (5)

Therefore, X(t) does not weakly ergodic by Theorem 3.3 [12].

Let now (3) hold. Using the method which was proposed by one of us, see
[10], put p0 = 1−∑

1≤i≤S pi. Then we obtain from (1) the following equation:

dz

dt
= B(t)z(t) + f(t), (6)
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where f(t) = (λ, 0, · · · , 0)T ,

B =

⎛⎜⎝ a11 − λ μ1 − λ μ2 − λ μ3 − λ · · · · · · μS−1 − λ
λ a22 μ1 μ2 · · · · · · μS−2

0 λ a33 μ1 · · · · · · μS−3

· · ·
0 0 · · · · · · 0 λ aSS

⎞⎟⎠ . (7)

Employing the approach of [8,13,14], consider the triangular matrix

D =

⎛⎜⎜⎝
d1 d1 d1 · · · d1
0 d2 d2 · · · d2
· · ·
0 0 · · · 0 dS

⎞⎟⎟⎠ , (8)

and the respective vector norm ‖z‖1D = ‖Dz‖1.
Then we obtain

DBD−1 =

⎛⎜⎜⎝
a11 (μ1 − μ2)

d1
d2

(μ2 − μ3)
d1
d3

· · · (μS−1 − μS)
d1
dS

λ
d2
d1

a22 (μ1 − μ3)
d2
d3

· · · (μS−2 − μS)
d2
dS

0 λ
d3
d2

a33 · · · (μS−3 − μS)
d3
dS· · ·

0 0 0 · · · aSS − λ

⎞⎟⎟⎠ . (9)

Essential Service Rate. Let
∞∫
0

μ(t) dt = +∞. (10)

Put all di = 1. Then we have the following bound for the logarithmic norm of
B(t) in D−norm, see details in [5,13,14]:

γ (B(t))1D = γ
(
DB(t)D−1

)
1
=

max
(
aSS(t)− λ(t) +

∑S−1
k=1 (μS−k(t)− μS(t)) dk

dS
, (11)

max1≤i≤S−1

(
aii(t) +

∑i−1
k=1(μi−k(t)− μi(t))dk

di
+ λ(t)di+1

di

))
=

max1≤i≤S−1 (−kμk(t)) = −μ(t).
Then

‖z∗(t)− z∗∗(t)‖1D ≤ e−
∫

t
s
μ(u)du‖z∗(s)− z∗∗(s)‖1D, (12)

for any 0 ≤ s ≤ t and any initial conditions z∗(s), z∗∗(s).
We have ‖D‖ =

∑S
i=1 di = S, ‖D−1‖ = 2max 1

dk
= 2.

Then the following bound in ’natural’ l1-norm holds:

‖p∗(t)− p∗∗(t)‖ ≤ 2‖z∗(t)− z∗∗(t)‖ = 2‖D−1D (z∗(t)− z∗∗(t)) ‖ ≤
4‖z∗(t)− z∗∗(t)‖1D ≤ 4e−

∫ t
s μ(τ) dτ‖z∗(s)− z∗∗(s)‖1D ≤ (13)

4Se−
∫ t
s μ(τ) dτ‖z∗(s)− z∗∗(s)‖ ≤ 4Se−

∫ t
s μ(τ) dτ‖p∗(s)− p∗∗(s)‖ ≤ 8Se−

∫ t
s μ(τ) dτ ,

for any initial conditions p∗(s) , p∗∗(s) and any s, t, 0 ≤ s ≤ t.
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Finally, X(t) is weakly ergodic and the following bound on the rate of con-
vergence holds:

‖p∗(t)− p∗∗(t)‖ ≤ 8Se−
∫

t
0
μ(τ) dτ , (14)

for any initial conditions p∗(0) , p∗∗(0) and any t ≥ 0.

Essential Arrival Rate. Let

∞∫
0

λ(t) dt = +∞. (15)

Put all dk = 1
k . Hence in accordance with (11) we have the following bound for

the logarithmic norm of B(t):

γ (B(t))1D = − 1

S
λ(t) − 1

S − 1
μ(t) ≤ −λ(t)

S
. (16)

Then

‖z∗(t)− z∗∗(t)‖1D ≤ e− 1
S

∫ t
s
λ(u)du‖z∗(s)− z∗∗(s)‖1D, (17)

for any 0 ≤ s ≤ t and any initial conditions z∗(s), z∗∗(s).
We have ‖D‖ =

∑S
i=1 di ≤ 1 + logS and ‖D−1‖ = 2max 1

dk
= 2S.

Therefore the following bound on the rate of convergence holds instead of (13)
and (14) :

‖p∗(t)− p∗∗(t)‖ ≤ 2‖D−1D (z∗(t)− z∗∗(t)) ‖ ≤
8S (1 + log S) e−

1
S

∫ t
s
λ(τ) dτ , (18)

for any initial conditions p∗(s) , p∗∗(s) and any s, t, 0 ≤ s ≤ t.
Corollary 1. Let (3) be fulfilled. Then queue-length process X(t) is weakly er-
godic and both bounds on the rate of convergence (14) and (18) hold.

Bounds (14) and (18) are useful for estimation of the rate of convergence for the
mean of the length of queue. Namely the next statement follows immediately
from the inequality

∑S
k=0 k|pk| ≤ S

∑S
k=0 |pk|.

Corollary 2. The following bounds on the rate of convergence for the mean
hold:

|Ep∗(t)− Ep∗∗(t)| ≤ 8S2e−
∫ t
0
μ(τ) dτ , (19)

and
|Ep∗(t)− Ep∗∗(t)| ≤ 8S2 (1 + logS) e−

1
S

∫
t
s
λ(τ) dτ , (20)

for any initial probability distributions p∗(0), p∗∗(0), and any t ≥ 0.
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Corollary 3. If λ and μ are constant, then queue-length process X(t) is ergodic
if and only if λ + μ > 0. If μ > 0 then the following bound on the rate of
convergence holds:

‖p(t)− π‖ ≤ 8Se−μt, (21)

|Ep(t)− φ| ≤ 8S2e−μt, (22)

where φ =
∑S

k=0 kπk, for any initial condition p(0) = p and any t ≥ 0. Similar
bounds hold for λ > 0.

Corollary 4. Let λ(t) and μ(t) be 1−periodic. Then queue-length process X(t)
is weakly ergodic if and only if

1∫
0

(λ(t) + μ(t)) dt > 0. (23)

If
∫ 1

0
μ(t) dt > 0 then the following bound on the rate of convergence holds:

‖p(t)− π(t)‖ ≤ 8Se−
∫

t
0
μ(u) du, (24)

|Ep(t)− φ(t)| ≤ 8S2e−
∫ t
0
μ(u) du, (25)

where π(t) is the limiting 1−periodic regime and φ(t) =
∑S

k=0 kπk(t) is the

respective 1−periodic limiting mean. Similar bounds hold for
∫ 1

0 λ(t) dt > 0.

Remark 1. One can obtain perturbation bounds for the model using the results
obtained in [8].

3 Examples

We consider two queueing models: ordinaryMt/Mt/S/S Erlang loss system, and
its analogue for a queue with group services with the same characteristics.

Put S = 103, λ(t) = 1 + sin 2πt, μ(t) = 1 + cos 2πt.
Then we can apply estimates (24) and (25) for the both models, see Corollary

4 of the present paper, and Corollary 2 of [16].

We have e−
∫

t
0
μ(u) du = e−t− sin 2πt

2π ≤ 1.2e−t and therefore the following bounds
hold for the both queueing models:

‖p(t)− π(t)‖ ≤ 104e−t, (26)

|Ep(t)− φ(t)| ≤ 107e−t, (27)

where π(t) is the limiting 1−periodic regime and φ(t) =
∑S

k=0 kπk(t) is 1−
periodic limiting mean for the respective queue-length process.

Then p(t) ≈ π(t) and Ep(t) ≈ φ(t), if t ≥ 23 with an error less than 10−6

and 10−3 respectively. Hence we can calculate the limiting characteristics for the
respective queue-length process by solving the Cauchy problem for the forward
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Kolmogorov system (1) on the interval [0, 24] with initial conditionX(0) = 0 (i.e.

p(0) = e0 = (1, 0, 0, . . . , 0)
T
). Finally, we obtain (approximately) the limiting

1−periodic regime π(t) and 1−periodic limiting mean φ(t) for both processes on
the interval [23, 24].

Remark 2. One can see the interesting fact that the limiting mathematical ex-
pectations are the same for both examples .

Fig. 1. Approximation of the limiting probability of the empty queue for Erlang model

Fig. 2. Approximation of the limiting probability of the empty queue for analogue of
Erlang loss system with group services
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Fig. 3. Approximation of the limiting mean for Erlang model

Fig. 4. Approximation of the limiting mean for analogue of Erlang loss system with
group services
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Study of Queues’ Sizes in Tandem Intersections

under Cyclic Control in Random Environment

Andrei Zorine�
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Gagarina ave., 23, 603950 Nizhni Novgorod, Russia
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Abstract. Tandem queueing systems under cyclic control with read-
justments are investigated. Conflict input flows are formed in a random
synchronious environment. Transition of customers from the first system
to the second system occurs with random speeds. Two communicating
intersections give an example of such a tandem. The blocks of the systems
are described nonlocally. A mathematical model is constructed in form
of a multidimensional denumerable discrete-time Markov chain. Limit
behaviour of queues’ sizes is studied.

Keywords: Conflict input flows, cyclic control, random environment,
Markov chain, limit theorems.

1 Introduction

System of control for traffic flows attract researchers constantly [1,2,3,4]. Con-
temporary traffic flows in cities are highly intensive, have dependent inter-arrival
intervals and variable structure. In these conditions the cyclic control with read-
justments (yellow light) is quasi-optimal. So, construction and analysis of ade-
quate stochastic models for tandem intersections with cyclic control algorithm
at each intersection is tempting [5].

2 Problem Statement and Model Construction

Consider the following two single server queueing systems. Conflict input flows
Π1, Π2 enter the first queueing system, while conflict flows Π3, Π4 enter the
second. In essence, conflictness means that customers from different flows can
not be serviced in the same queueing system simultaneously, and that the input
flows can not be joined to reduce the number of input flows (and the dimensions
of the resulting stochastic process). Input flows Π1, Π2, Π4 are formed in a
random external environment with a finite number d of states e(1), e(2), . . . ,
e(d). The environment may change its state only at instants when one of the

� This research was supported by RFBR Grant 12-01-90409 ”Modelling and analysis
of controlling systems for interacting high intensity transport flows”.

A. Dudin et al. (Eds.): BWWQT 2013, CCIS 356, pp. 206–215, 2013.
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servers terminates work or readjustment. The probability of switch from e(k)

to e(l) is ak,l. In state e(k), k = 1, 2, . . . , d, customers from Πj , j = 1, 2, 4,

arrive in batches so that the flow of batches is Poisson with parameter λ
(k)
j , and

batch sizes are independent having b customers with probability π(b; j, k). Input
flow Π3 consists of retrial customers from Π1 and Π2. Namely, after service,
customers from Π1 are directed into the second queueing system; they make
input flow Π5 of customers, for which the movement from the first queueing
system to the second queueing system is another kind of service. Upon service
termination each customer from Π2, independently of the others, either joins Π5

instantly with probability α and starts movement towards the second queueing
system, or leaves tandem queueing systems with probability 1 − α and joins
the corresponding output flow. Thus one of the two input flows of the second
queueing system consists of the flow of retrial customers from the first queueing
system. It is assumed that transition from system to system takes time and
occurs with random speed with unknown probability distribution. Moreover, the
speeds of different customers are different and have different laws of probability
distributions. Hence we assume that during a working act or a readjustment act
each customer moving between the queueing systems either finishes with known
probability, or keeps moving with complementary probability. Output flow of
customers, whose service consisted in moving between two queueing systems, is
the input flow Π3 to the second queueing system. Customers from the flow Πj ,
j = 1, 2, . . . , 5, wait in a buffer Oj of unlimited capacity.

Service of conflict flows in each queueing system is done according to a cyclic
algorithm with fixed durations. To resolve conflictness, after each service act
a readjustment act is required. No customer is serviced during a readjustment
act. It means that the server in the first queueing system has four possible states
(regimes) Γ (1,1), Γ (2,1), Γ (3,1), Γ (4,1), and the duration for the state Γ (s,1) is non-
random and equals Ts,1. In state Γ (1,1) only customers from Π1 are serviced, in
state Γ (2,1) only customers from Π2 are serviced, and in states Γ (2,1) and Γ (4,1)

readjustment is carried out. The states shift in the order . . .→ Γ (1,1) → Γ (2,1) →
Γ (3,1) → Γ (4,1) → Γ (1,1) → . . .. The server in the second queueing system has
also four possible states (regimes) Γ (1,2), Γ (2,2), Γ (3,2), Γ (4,2), and the duration
for the state Γ (s,2) is non-random and equals Ts,2. In state Γ (1,2) only customers
from Π3 are serviced, in state Γ (2,2) only customers from Π4 are serviced, and in
states Γ (2,2) and Γ (4,2) a readjustment takes place. The states shift in the order
. . . → Γ (1,2) → Γ (2,2) → Γ (3,2) → Γ (4,2) → Γ (1,2) → . . .. Numbers T1,1, . . . ,
T4,2 are assumed commensurable. In the remaining of this work it is convenient
to consider the two servers as a new single server with some number n of cyclic
states Γ (1), Γ (2), . . . , Γ (n), and a fixed duration Tr for state Γ

(r), 1 ≤ r ≤ n. The
new server changes its states exactly when one of the original servers changes its
state. Here, number n and the durations Tr, 1 ≤ r ≤ n are uniquely determined
by the initial states Γ (r′,1), Γ (r′′,2) at time 0 and by durations T1,1, . . . , T4,2.
The new states change by the following rule: Γ (r) → Γ (r⊕1) where r⊕ 1 = r+1
for 1 ≤ r ≤ n − 1, n ⊕ 1 = 1. We write u(Γ (r)) = Γ (r⊕1) then. Recall that
besides ordinary service of flows Π1, Π2, Π3, Π4, the new server also delivers
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service to customers from Π5. So, state Γ
(r) can belong to one of nine classes

Γ I, Γ II, . . . , Γ IX. For Γ (r) ∈ Γ I only customers from queue O5 are serviced;
for Γ (r) ∈ Γ II — from queues O1, O5; for Γ

(r) ∈ Γ III — from queues O2, O5;
for Γ (r) ∈ Γ IV — from queues O3, O5; for Γ

(r) ∈ ΓV — from queues O4, O5;
for Γ (r) ∈ ΓVI — from queues O1, O3, O5; for Γ

(r) ∈ ΓVII — from queues O2,
O3, O5; for Γ

(r) ∈ ΓVIII — from queues O1, O4, O5; finally, for Γ
(r) ∈ Γ IX

only customers from queues O2, O4, O5 are serviced. In state Γ (r) of the server,
during time interval of length Tr each customer from queue O5 either finishes
service with probability pr, leaves O5 and joins Π3, or with probability 1 − pr
remains in O5 for the next tact.

Service durations for single customers in each system are random, in gen-
eral, dependent, and with different laws of probability distribution. Thus to
define service processes we use saturation flows Πsat

j , j = 1, 2, . . . , 5, i.e. vir-
tual output flows in conditions of highly loaded queues and maximal usage of
server’s resources. During time Tr let the saturation flow Πsat

1 contain nonran-
dom number �r,1 ≥ 1 of customers in server state Γ (r) ∈ Γ II ∪ ΓVI ∪ ΓVIII, and
0 customers in server state Γ (r) �∈ Γ II ∪ ΓVI ∪ ΓVIII, Πsat

2 contain nonrandom
number �r,2 ≥ 1 of customers in server state Γ (r) ∈ Γ III ∪ ΓVII ∪ Γ IX and 0
customers Γ (r) �∈ Γ III ∪ ΓVII ∪ Γ IX, Πsat

3 contain nonrandom number �r,3 ≥ 1
of customers in server state Γ (r) ∈ Γ IV ∪ ΓVI ∪ ΓVII and 0 customers in server
state Γ (r) �∈ Γ IV ∪ ΓVI ∪ ΓVII, Πsat

4 contain nonrandom number �r,4 ≥ 1 of
customers in server state Γ (r) ∈ ΓV ∪ ΓVIII ∪ Γ IX and 0 customers in server
state Γ (r) �∈ ΓV ∪ ΓVIII ∪ Γ IX.

Tandem intersections with traffic flows Π1 – Π7 is a possible interpretation
for tandem queueing systems in study (Fig. 1). Assuming flows Π6, Π7 have
low intensity one can think that flow Π6 passes through together with flow Π3

of the second intersection and together with flow Π1 of the first intersection,
while traffic flow Π7 is let through at the same time as flow Π4 of the second
intersection. Flow Π5 is the total of serviced customers from Π1, and serviced
customers from Π2 with certain thinning probability.

Let τ0 = 0, τ1, τ2, . . . be the instants of changes of server states. In what
follows we need the following sets, random elements and randoms variables: the
set E = {e(1), e(2), . . . , e(d)} of environment states, the random element χi ∈ E
describing environment state in the interval (τi, τi+1], the size κj,i of the queue
Oj at instant τi, the set Γ = {Γ (1), Γ (2), . . . , Γ (n)} of possible server states,
server state Γi ∈ Γ at instant τi, the number ηj,i of customers from Πj arrived
during the time interval (τi, τi+1], the number ξj,i of customers in saturation flow
Πsat

j during (τi, τi+1], the number ξ̄j,i of customers of output flow Πout
j during

time interval (τi, τi+1]. Finally, denote by η′5,i the number of retrial customers
from O2 redirected to flow Π5 after service.

To have a mathematical model for the input flows Π1, Π2, Π4 consider a
marked point process {(τi, η1,i, η2,i, η4,i, νi); i = 0, 1, . . .} with a mark νi =
(Γi, χi) of customers arrived during (τi, τi+1]. Define ϕj,k(x; t), t > 0, j = 1,
2, 4, k = 1, 2, . . . , d, through the expansion
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Fig. 1. Tandem intersections

qj,k(z; t) =

∞∑
x=0

zxϕj,k(x; t) = exp
{
λ
(k)
j t

( ∞∑
b=1

zbπ(b; j, k)− 1
)}
.

Here ϕj,k(x; t) is the probability of exactly x = 0, 1, . . . customers’ arrivals from
Πj in environment state e(k) during time t, and qj,k(z; t) is the corresponding
probability generating function. Let the conditional probability distribution for
the discrete selected component {(η1,i, η2,i, η4,i, νi); i = 0, 1, . . .} have the follow-
ing form: for b = 0, 1, . . .

P({ω : ηj,i = b}|{ω : Γi = Γ (r), χi = e
(k)}) = ϕj,k(b;Tr⊕1).

For the saturation flowsΠsat
1 ,Πsat

2 ,Πsat
3 ,Πsat

4 consider the marked point process
{(τi, ξ1,i, ξ2,i, ξ3,i, ξ4,i, νi); i = 0, 1, . . .}. Conditional probability distributions for
the selected discrete component {(ξ1,i, ξ2,i, ξ3,i, ξ4,i, νi); i = 0, 1, . . .} are given by

P({ω : ξ1,i = 0}|{ω : Γi = Γ (r)}) = 1 for Γ (r⊕1) �∈ Γ II ∪ Γ IV ∪ ΓVIII,

P({ω : ξ1,i = �r⊕1,1}|{ω : Γi = Γ (r)}) = 1 for Γ (r⊕1) ∈ Γ II ∪ Γ IV ∪ ΓVIII,

P({ω : ξ2,i = 0}|{ω : Γi = Γ (r)}) = 1 for Γ (r⊕1) �∈ Γ III ∪ ΓVII ∪ Γ IX,

P({ω : ξ2,i = �r⊕1,2}|{ω : Γi = Γ (r)}) = 1 for Γ (r⊕1) ∈ Γ III ∪ ΓVII ∪ Γ IX,

P({ω : ξ3,i = 0}|{ω : Γi = Γ (r)}) = 1 for Γ (r⊕1) �∈ Γ IV ∪ ΓVI ∪ ΓVII,

P({ω : ξ3,i = �r⊕1,3}|{ω : Γi = Γ (r)}) = 1 for Γ (r⊕1) ∈ Γ IV ∪ ΓVI ∪ ΓVII,

P({ω : ξ4,i = 0}|{ω : Γi = Γ (r)}) = 1 for Γ (r⊕1) �∈ ΓV ∪ ΓVIII ∪ Γ IX,

P({ω : ξ4,i = �r⊕1,4}|{ω : Γi = Γ (r)}) = 1 for Γ (r⊕1) ∈ ΓV ∪ ΓVIII ∪ Γ IX.

Input flow Π5 is defined as a marked point process {(τi, η′5,i, ν′i); i = 0, 1, . . .}
with a mark ν′i = (κ2,i, η2,i, ξ2,i). Put ψ(k;x, u) = C

k
xu

k(1− u)x−k for 0 < u ≤ 1
0 ≤ k ≤ x. Then for 0 ≤ b ≤ x

P({ω : η′5,i = b}|{ω : κ2,i = x, η2,i = u, ξ2,i = y}) = ψ(b; min{y, x+ u}, α).
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Output flow Πout
5 is defined as a marked point process {(τi, ξ̄5,i, ν′′i ); i = 0, 1, . . .}

with a mark ν′′i = (Γi, κ5,i) and conditional probability distributions

P({ω : ξ̄5,i = b}|{ω : Γi = Γ (r), κ5,i = x}) = ψ(b;x, pr⊕1) for 0 ≤ b ≤ x,

For non-negative integers i, x1, x2, x3, x4, x5, r = 1, 2, . . . , n and k = 1, 2, . . . ,
d, introduce events

Ai(r, k, x1, x2, x3, x4, x5) = {ω : Γi = Γ (r), χi = e
(k)}

∩{ω : κ1,i = x1, κ2,i = x2, κ3,i = x3, κ4,i = x4, κ5,i = x5},
Bi(b1, b2, b3, b4, y1, y2, y3, y4, y5) = {ω : η1,i = b1, η2,i = b2}

∩{ω : η4,i = b4, ξ1,i = y1, ξ2,i = y2, η′5,i = b3, ξ3,i = y3, ξ4,i = y4, ξ̄5,i = y5}.

The problem statement suggests that

P
(
Bi(b1, b2, b3, b4, y1, y2, y3, y4, y5)

∣∣∣∣∣
i⋂

ι=0

Aι(rι, kι, x1,ι, x2,ι, x3,ι, x4,ι, x5,ι)
)

= P({ω : η1,i = b1}|{ω : Γi = Γ (ri), χi = e
(ki)})

×P({ω : η2,i = b2}|{ω : Γi = Γ (ri), χi = e
(ki)})

×P({ω : η4,i = b4}|{ω : Γi = Γ (ri), χi = e
(ki)})

×P({ω : ξ1,i = y1}|{ω : Γi = Γ (ri)})P({ω : ξ2,i = y2}|{ω : Γi = Γ (ri)})
×P({ω : ξ3,i = y3}|{ω : Γi = Γ (ri)})P({ω : ξ4,i = y4}|{ω : Γi = Γ (ri)})

×P({ω : η′5,i = b3}|{ω : κ2,i = x2, η2,i = b2, ξ2,i = y2})
×P({ω : ξ̄5,i = y5}|{ω : Γi = Γ (ri), κ3,i = x5}).

The remaining blocks of the system, such as the server, output flows, queues’
sizes are defined by functional dependencies

ξ̄j,i = min{ξj,i, κj,i + ηj,i}, κj,i+1 = max{0, κj,i + ηj,i − ξj,i} j = 1, 2, 3, 4;

Γi+1 = u(Γi), η3,i = ξ̄5,i, η5,i = ξ̄1,i + η
′
5,i, κ5,i+1 = κ5,i + ξ̄1,i + ξ̄2,i − ξ5,i.

(1)

3 Analysis of the Model

In the remainder of this paper we assume that Markov chain {χi; i = 0, 1, . . .}
is irreducible and aperiodic, and probability generating functions qj,k(z;Tr) are
analytic in an open disk |z| < 1 + ε. Denote by w = (w1, w2, w3, w4, w5) an
arbitrary element of the non-negative integer lattice X = {0, 1, . . .} × . . . ×
{0, 1, . . .}, let
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S′
1 = {(Γ (r), e(k), w) : Γ (r) ∈ Γ II ∪ ΓVI ∪ ΓVIII, e(k) ∈ E,

w ∈ X,w1 > 0, w5 < �r,1},
S1 = {(γ, e(k), w) : γ �∈ Γ II ∪ ΓVI ∪ ΓVIII, e(k) ∈ E,w ∈ X},

S2 = {(γ, e(k), w) : γ ∈ Γ II ∪ ΓVI ∪ ΓVIII, e(k) ∈ E,w ∈ X,w1 = 0},
S3 = {(Γ (r), e(k), w) : Γ (r) ∈ Γ II ∪ ΓVI ∪ ΓVIII, e(k) ∈ E,

w ∈ X,w1 > 0, w5 ≥ �r,1}.
Recurrent equations (1) and the properties of conditional probabilities mentioned
above permit to prove next statement.

Theorem 1. The law of probability distribution for the vector

(Γ0, χ0, κ1,0, κ2,0, κ3,0, κ4,0, κ5,i)

given, the sequence

{(Γi, χi, κ1,i, κ2,i, κ3,i, κ4,i, κ5,i); i = 0, 1, . . .} (2)

is a Markov chain. The state space Γ × E ×X of Markov chain (2) is a union
of unclosed set S′

1 of nonessential states and closed set S1 ∪ S2 ∪ S3 of essential
periodic states with period n.

Let jΓ = Γ II ∪ ΓVI ∪ ΓVIII for j = 1, jΓ = Γ III ∪ ΓVII ∪ Γ IX for j = 2, and
jΓ = ΓV ∪ ΓVIII ∪ Γ IX for j = 4. Denote by

λ̄
(k)
j = λ

(k)
j

∞∑
b=1

bπ(b; j, k)

the expected number of arrivals from Πj in environment state e(k) per time unit,
Ak the stationary probability of the environment state e(k), k = 1, 2, . . . , d and
put �j =

∑
r∈ jΓ �r,j. Then we have the following theorem.

Theorem 2. Let j = 1, 2, 4. For expected sizes Eκj,i of the queue Oj, i = 0,
1, . . . , to be bounded it is sufficient that the next inequality holds

T

d∑
k=1

Akλ̄
(k)
j − �j < 0. (3)

Proof. Notice that the sequence

{(Γi, κj,i, χi); i = 0, 1, . . .} (4)

is an irreducible periodic Markov chain as well as (2). Define the corresponding
marginal laws of probability distribution

Qj,i(r, k, xj) =
∑
Qi(r, k, x1, x2, x3, x4, x5),
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where summation is done with respect to all variables xs = 0, 1, . . . , 5 with
index s �= j. For probability generating functions

Ψj,i(z; r, k) =

∞∑
xj=0

zxjQj,i(r, k, xj) = E
(
zκj,iI({ω : Γi = Γ (r), χi = e

(k)})
)

one can establish the following recurrent equations, i = 0, 1, . . . :

Ψj,i+1(z; r ⊕ 1, l) =

d∑
k=1

ak,lqj,k(z;Tr⊕1)Ψj,i(z; r, k), Γ (r⊕1) �∈ jΓ, (5)

Ψj,i+1(z; r ⊕ 1, l) =

d∑
k=1

ak,lqj,k(z;Tr⊕1)z
−�r⊕1,jΨj,i(z; r, k) +

d∑
k=1

ak,l

×
�r⊕1,j−1∑
xj=0

Qj,i(r, k, xj)

�r⊕1,j−xj∑
b=0

ϕj,k(b;Tr⊕1)(1− zxj+b−�r⊕1,j ), Γ (r⊕1) ∈ jΓ. (6)

Equations (5), (6) show that the series Ψj,i(z; r, k) converge inside the disk |z| <
1+ε for all i = 0, 1, . . . . Choose z ∈ (1, 1+ε) and a positive integer g. Substitute
index i+1 with i+ng, and i with i+ng− 1 in equations (5), (6), then sum the
obtained equations for k, r. Then apply equations equations (5), (6) again with
change of index i− 1 to i+ ng − 1, and so on. We get

d∑
l=1

Ψj,i+gn(z; r, l) =
∑

(k1,k2,...,kgn)∈Egn

ak1,k2ak2,k3 × . . .× akgn−2,kgn−1z
−g�j

×qj,k1(z;Tr⊕1)qj,k2(z;Tr⊕2)× . . .× qj,kgn(z;Tr⊕(gn))Ψj,i(z; r, k1) +Bj,i(z; r),
(7)

where the term Bj,i(z; r) ≥ 0 includes probabilities Qj,i(r, k, xj), Qj,i+1(r, k, xj),
. . . , Qj,i+gn−1(r, k, xj) only for xj = 0, 1, . . . , max{�r,j : Γ (r) ∈ jΓ}. Therefore
it is possible to give an upper bound B̂j(z; r) > 0 independent of i. So we have

d∑
l=1

Ψj,i+gn(z; r, l) ≤
∑

(k1,k2,...,kgn)∈Egn

ak1,k2 × . . .× akgn−2,kgn−1z
−g�j

×qj,k1(z;Tr⊕1)× . . .× qj,kgn(z;Tr⊕(gn))Ψj,i(z; r, k1) + B̂j(z; r), (8)

The derivative at z = 1 of the multiplier in front of Ψj,i(z; r, k1) equals

d∑
k=1

λ̄
(k)
j

(
Tr⊕1(a

(0)
k1,k

+ a
(n)
k1,k

+ . . .+ a
(gn−g)
k1,k

) + Tr⊕2(a
(1)
k1,k

+ a
(n+1)
k1,k

. . .+ a
(gn−g+1)
k1,k

) + . . .+ Tr⊕n(a
(n−1)
k1,k

+ a
(2n−1)
k1,k

+ . . .+ a
(gn−1)
k1,k

)
)
− g�j. (9)

As g → ∞ the Cesaro means converge [6],

g−1(a
(s)
k1,k

+ a
(n+s)
k1,k

+ . . .+ a
(gn−g+s)
k1,k

) → Ak, s = 0, 1, . . . , n− 1.
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Hence for g large enough the sign of the derivative (9) coincides with that of (3).
Since for z = 1 ∑

(k2,...,kgn)∈Egn−1

ak1,k2ak2,k3 × . . .× akgn−2,kgn−1z
−g�j

×qj,k1(z;Tr⊕1)qj,k2(z;Tr⊕2)× . . .× qj,kgn(z;Tr⊕(gn)) = 1,

and the derivative (9) is negative, there exists z, 0 < z < 1, such that

R+ = max
1≤k1≤d

{ ∑
(k2,...,kgn)∈Egn−1

ak1,k2ak2,k3 × . . .× akgn−2,kgn−1z
−g�j

×qj,k1(z;Tr⊕1)qj,k2(z;Tr⊕2)× . . .× qj,kgn(z;Tr⊕(gn))

}
< 1.

Define further a sequence by

Ψ+
j,0 =

d∑
k=1

n∑
r=1

Ψj,0(z; r, k), Ψ+
j,1 =

d∑
k=1

n∑
r=1

Ψj,1(z; r, k),

. . . , Ψ+
j,ng−1 =

d∑
k=1

n∑
r=1

Ψj,ng−1(z; r, k),

Ψ+
j,i+gn = R+Ψj,i + B̂j(z; r), i = 0, 1, . . . .

The sequence {Ψ+
i ; i = 0, 1, . . .} thus defined is convergent, so it is bounded by

some constantM . At the same time, Ψi(z; r, k) ≤ Ψ+
i ≤M . Finally, the Cauchy’s

integral formula

Eκj,i =
∣∣∣ 1

2π
√−1

∫
|z−1|=ρ

(z − 1)−2
d∑

k=1

n∑
r=1

Ψj,i(z; r, k) dz
∣∣∣ ≤ ndM

ρ

ensures that the sequence Eκj,i, i = 0, 1, . . . is also bounded.

Theorem 3. Let κ1,0 = κ2,0 = . . . = κ5,0 = 0. The sequence {Eκ5,i; i =
0, 1, . . .} is bounded.

Proof. Consider probability generating functions

Ψi(z1, z2, z3; r, k) =

∞∑
x1=0

∞∑
x2=0

∞∑
x3=0

zx1
1 z

x2
2 z

x3
3 Qi(r, k, x1, x2, x3),

which hold information about joint probability distribution

Qi(r, k, x1, x2, x3) = P({ω : Γi = Γ (r), κ1,i = x1, κ2,i = x2, κ5,i = x5, χi = e
(k)})
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of κ1,i, κ2,i, κ5,i, Γi, and χi. Then for Γ (r⊕1) ∈ Γ I

Ψi+1(z1, z2, z3; r ⊕ 1, l) =
d∑

k=1

ak,lq1,k(z1, Tr⊕1,1)q2,k(z2, Tr⊕1,1)

×Ψi(z1, z2, pr⊕1 + (1− pr⊕1)z3; r, k),

for Γ (r⊕1) ∈ Γ II ∪ ΓVI ∪ ΓVIII

Ψi+1(z1, z2, z3; r ⊕ 1, l) =

(
z3
z1

)�r⊕1,1 d∑
k=1

ak,lq1,k(z1, Tr⊕1,1)q2,k(z2, Tr⊕1,1)

×Ψi(z1, z2, pr⊕1 + (1− pr⊕1)z3; r, k) +

d∑
k=1

�r⊕1,1−1∑
x1=0

∞∑
x2=0

∞∑
x3=0

Qi(r, k, x1, x2, x3)

×ak,lzx2
2 (pr⊕1 + (1− pr⊕1)z3)

x3q2,k(z2, Tr⊕1)

�r⊕1,1−x1−1∑
b=0

ϕ1,k(b;Tr⊕1)

×(zx1+b
3 − zx1+b−�r⊕1,1

1 z
�r⊕1,1

3 ),

for Γ (r⊕1) ∈ Γ III ∪ ΓVII ∪ Γ IX

Ψi+1(z1, z2, z3; r ⊕ 1, l) =

(
1− α+ αz3

z1

)�r⊕1,2 d∑
k=1

ak,lq1,k(z1, Tr⊕1,1)

×q2,k(z2, Tr⊕1,1)Ψi(z1, z2, pr⊕1 + (1 − pr⊕1)z3; r, k)

+

d∑
k=1

ak,l

∞∑
x1=0

�r⊕1,2−1∑
x2=0

∞∑
x3=0

Qi(r, k, x1, x2, x3)

×zx1
1 (pr⊕1 + (1 − pr⊕1)z3)

x3q1,k(z1, Tr⊕1)

�r⊕1,2−x2−1∑
b=0

ϕ2,k(b;Tr⊕1)

×((1− α+ αz3)
x2+b − zx2+b−�r⊕1,2

2 (1− α+ αz3)
�r⊕1,2).

Since |pr⊕1+(1− pr⊕1)z3| < 1+ ε for 1 < z3 < 1+ ε, these equations determine
functions Ψi(z1, z2, z3; r, k) analytic in the polydisk {|z1| < 1 + ε, |z2| < 1 +
ε, |z3| < 1 + ε}. Thus the derivatives

mi(r) =

d∑
k=1

∂

∂z3
Ψi(1, 1, z3; r, k)

∣∣
z3=1
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exist and satisfy equations

mi+1(r ⊕ 1) = (1 − pr⊕1)mi(r), Γ (r⊕1) ∈ Γ I,

mi+1(r ⊕ 1) = (1− pr⊕1)mi(r) + �r⊕1,1

d∑
k=1

Ψi(1, 1, 1; r, k)

+

d∑
k=1

�r⊕1,1−1∑
x1=0

∞∑
x2=0

∞∑
x3=0

Qi(r, k, x1, x2, x3)

×
(�r⊕1,1−x1−1∑

b=0

ϕ1,k(b;Tr⊕1)(x1 + b− �r⊕1,1)

)
, Γ (r⊕1) ∈ Γ II ∪ ΓVI ∪ ΓVIII,

mi+1(r ⊕ 1) = (1− pr⊕1)mi(r) + α�r⊕1,2

d∑
k=1

Ψi(1, 1, 1; r, k)

+

d∑
k=1

∞∑
x1=0

�r⊕1,2−1∑
x2=0

∞∑
x3=0

Qi(r, k, x1, x2, x3)

×
(�r⊕1,2−x2−1∑

b=0

ϕ2,k(b;Tr⊕1)α(x2 + b− �r⊕1,2)

)
, Γ (r⊕1) ∈ Γ III ∪ ΓVII ∪ Γ IX,

and are dominated by convergent sequences m+
i (r) = mi(r), 0 ≤ i ≤ n − 1,

m+
i (r) = (1 − p1) × . . . × (1 − pn)m+

i−n(r) + �1 + α�2, i ≥ n. Hence they are
bounded. We only have to recall that Eκ5,i = mi(1) +mi(2) + . . .+mi(n).

Theorems 2, 3 show that in tandem intersections the queue of retrial customers
is always stable, and queues O1, O2, O4 can be stable independently of each
other.
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