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Preface

The power industry, a capital and technology intensive industry, is a basic national
infrastructure. Its security, reliability, and economy have enormous and far-reaching
effects on a national economy. An electrical power system is a typical large-scale
system. Questions such as how to reflect accurately the characteristics of modern
electrical power systems, how to analyze effectively their operating features, and how
to improve further the operating performance are always at the forefront of electrical
power systems research.

Electrical power system analysis is used as the basic and fundamental measure to
study planning and operating problems. In the last century, electrical power
researchers have undertaken a great deal of investigation and development in this
area, have made great progress in theoretical analysis and numerical calculation,
and have written excellent monographs and textbooks.

Over the last 20 years, the changes in electrical power systems and other relevant
technologies have had a profound influence on the techniques and methodologies of
electrical power system analysis.

First, the development of digital computer technology has significantly im-
proved the performance of hardware and software. Now, we can easily deal with
load flow issues with over ten thousand nodes. Optimal load flow and static security
analysis, which were once considered hard problems, have attained online practical
applications.

Second, the applications of HVDC and AC flexible transmission technologies
(FACTS) have added new control measures to electrical power systems, and have
increased power transmission capacity, enhanced control capability, and improved
operating characteristics. However, these technologies bring new challenges into
the area of electrical power system analysis. We must build corresponding mathe-
matical models for these new devices and develop algorithms for static and
dynamic analysis of electrical power systems including these devices.

In addition, the rapid development of communication technology has enabled
online monitoring of electrical power systems. Therefore, the demand for online
software for electrical power system analysis becomes more and more pressing.

Furthermore, worldwide power industry restructuring and deregulation has
separated the former vertically integrated system into various parts, and the once
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unified problem of power system dispatching is now conducted via complicated
bilateral contracts and spot markets. New issues such as transmission ancillary
service and transmission congestion have emerged.

In recent years, several power blackouts have taken place worldwide, especially
the “8.13” blackout on the eastern grid of USA and Canada and the blackouts that
occurred successively in other countries have attracted a great deal of attention.

All of these aspects require new theories, models, and algorithms for electrical
power system analysis. It is within such an environment that this book has been
developed. The book is written as a textbook for senior students and postgraduates
as well as a reference book for power system researchers.

We acknowledge the support from various research funding organizations, their
colleagues, and students, especially, the special funds for Major State Basic Re-
search Projects of China “Research on Power System Reliability under Deregulated
Environment of Power Market” (2004CB217905). We express our special gratitude
to Professor Wan-Liang Fang and Professor Zheng-Chun Du for providing the
original materials of Chaps. 5 and 6, and 7 and 8, respectively. We also express
our sincere gratitude to the following colleagues for their contributions to various
chapters of the book: Professor Zhao-Hong Bie for Chaps. 1 and 3; Professor Xiu-Li
Wang for Chaps. 2 and 4; Dr. Ze-Chun Hu for Chap. 3; Dr. Xiao-Ying Ding for
Chap. 4; Dr. Lin Duan for Chaps. 5 and 6; Professor De-Chiang Gang for Chap. 7;
and Professor Hai-Feng Wang for Chaps. 6 and 8.

Xi’an, China Xi-Fan Wang
Liverpool, UK Yonghuna Song
London, UK Malcolm Irving
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Chapter 1
Mathematical Model and Solution of Electric
Network

1.1 Introduction

The mathematical model of an electric network is the basis of modern power system
analysis, which is to be used in studies of power flow, optimal power flow, fault
analysis, and contingency analysis. The electric network is constituted by transmis-
sion lines, transformers, parallel/series capacitors, and other static elements. From
the viewpoint of electrical theory, no matter how complicated the network is, we
can always establish its equivalent circuit and then analyze it according to the AC
circuit laws. In this chapter, the electric network is represented by the linear lumped
parameter model that is suitable for studies at synchronous frequency. For electro-
magnetic transient analysis, the high frequency phenomena and wave processes
should be considered. In that situation, it is necessary to apply equivalent circuits
described by distributed parameters.

Generally speaking, an electric network can be always represented by a nodal
admittance matrix or a nodal impedance matrix. A modern power system usually
involves thousands of nodes; therefore methods of describing and analyzing the
electric network have a great influence on modern power system analysis. The
nodal admittance matrix of a typical power system is large and sparse. To enhance
the computational efficiency, sparsity techniques are extensively employed. The
nodal admittance matrix and associated sparsity techniques will be thoroughly
discussed in this chapter.

The nodal impedance matrix is widely applied in the fault analysis of power
systems and will be introduced in Sect. 1.5.

The equivalent circuits of the transformer and phase-shifting transformer are
also presented in Sect. 1.1 because they require special representation methods.

X.-F. Wang et al., Modern Power Systems Analysis. 1
doi: 10.1007/978-0-387-72853-7, © Springer Science + Business Media, LLC 2008



2 1 Mathematical Model and Solution of Electric Network

1.2 Basic Concepts

1.2.1 Node Equation and Loop Equation

There are two methods usually employed in analyzing AC circuits, i.e., the node
voltage method and loop current method. Both methods require the solution of
simultaneous equations. The difference between them is that the former applies
node equations while the latter applies loop equations. At present, node equations
are more widespread in analyzing power systems, and loop equations are used
sometimes as an auxiliary tool.

In the following, we use a simple electric network as an example to illustrate the
principle and characteristics of the node equation method.

As shown in Fig. 1.1, the sample system has two generators and an equivalent
load, with five nodes and six branches whose admittances are y; ~ yg.

Assigning the ground as the reference node, we can write the nodal equations
according to the Kirchoff’s current law,

ya(Va = V1) +y5(Vs = Vi) = y6V1 =0

yi(Va—=Va) +y3(Vs = Vo) +34(Vi = V2) =0

y2(Vs = V) + y3(Va = V3) + ys(Vi = V3) = 0 ¢, (1.1)
yi(Va—Va) =1

»(Vs—V3)=1h

where V| ~ Vs denote the node voltages.
Combining the coefficients of node voltages, we obtain the following equations:

Fig. 1.1 Sample system for node voltage method
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(va+ s +6)V1 = yaVa = ysV3 =0

Vi 4+ 14y +ya)Va =33V —yiVa =0
Vi —ysVa+ (2 +y3 +y5)Vs —yVs =0 5. (1.2)
—y1V2 +Y1V4 =1
V3 + Vs =1

In (1.2), the left-hand term is the current flowing from the node and the right-hand
term is the current flowing into the node. The above equations can be rewritten in
more general form as follows:

YiVi+ YV + Yi3Vs + Y1aVy + YisVs = I
Yo Vi + YoaVa + Ya3Vs + Yo4Vy + YosVs = I
Y3 Vi + YV + YasVs + YuVa + YasVs = 1 . (1.3)
Yo Vi + YiaVa + YasVs + YagViy + YusVs = Iy
YsiVi + Ys2Va + Y53V + YsaViy + YssVs = Is

Comparing (1.3) with (1.2), we can see

Yii = y4+ys5 +ys,
Y =y +y3+ s,
Y33 =y2 +y3 + s,
Yi4 = y1,
Ys5 = ya.

These elements are known as nodal self-admittances.

Yio =Y = —ys,

Yi3 =Y31 = —ys,
Yo3 = Y3 = —y3,
You =Y = —yi,

Y35 = Y53 = —y.

Similarly, the above elements are known as mutual admittances between the
connected nodes. The mutual admittances of the pair of disconnected nodes are zero.

Equation (1.3) is the node equation of the electric network. It reflects
the relationship between node voltages and injection currents. Here I; ~ I5 are
the nodal injection currents. In this example, except 14 and 15, all other nodal
injection currents are zero.
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Equation (1.3) can be solved to get node voltages V1 ~ V5, then the branch
currents can be obtained. Thus, we have obtained all the variables of the network.

Generally, for a n node network, we can establish 7 linear node equations in (1.3)
format. In matrix notation, we have

I1=YV, (1.4)
where
I Vi
I— 14} Cv= V.z
; v,

Here I is the vector of nodal injection currents and V is the vector of nodal voltages;
Y is called the nodal admittance matrix

Yii Yo - Yy,
Yy — Y Yoo -+ Yo
Ynl YnZ e Ynn

As we have seen, its diagonal element Y;; is the nodal self-admittance and the off
diagonal element Y; is the mutual admittance between node i and node ;.

Now we introduce the incidence matrix that is very important in network
representations.

The incidence matrix represents the topology of an electric network. Different
incidence matrices correspond to different networks configurations. The elements
of the incidence matrix are only 0, 4-1, or —1. They do not include the parameters of
network branches.

For example, there are five nodes and six branches in Fig. 1.1. Its incidence
matrix is a matrix with five rows and six columns.

0 O 0 -1 -1 1
-1 0 1 1 0 0
A=|0 -1 -1 O 1 0
1 0 0 0O 0 O
0 1 0 0O 0 O

In the incidence matrix, the serial numbers of rows correspond to the node numbers
and the serial numbers of columns correspond to the branch numbers. For example,
the first row has three nonzero elements, which denotes node 1 is connected with
three branches. These three nonzero elements are in the fourth, fifth, and sixth
columns, which means the branches connected with node 1 are branches 4, 5, and 6.
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If the branch current flows into the node, the nonzero element equals —1; if the
branch current flows out of the node, the nonzero element equals 1. The positions of
the nonzero elements in each column denote the two node numbers of the relevant
branch. For example, in the fifth column the nonzero elements are in the first and
third row, which means the fifth branch connects node 1 and 3. In the sixth column,
there is only one nonzero element in the first row, which means the sixth branch is a
grounded branch.

From the above discussion we see that an incidence matrix can uniquely
determine the topology of a network configuration.

The incidence matrix has a close relationship with the network node equation. If
there are n nodes and b branches in an electric network, the state equation for every
branch is

jBk = }’BkVBIw (1-5)

where ygy is the admittance of branch k; Is; the current flowing in branch &; and VBk
is the voltage difference of branch k, whose direction is determined by Ip;.

If branch & includes a voltage source, as shown in Fig. 1.2a, it should be
transformed to the equivalent current source as shown in Fig. 1.2b.

yBr = 1/zps
dpk = €Bk/ZBK = YBACBK

The current source can be treated as current injecting into the electric network,
thus the branch can also be represented by (1.5). In matrix notation, the equation of
a b branch network is

Iy = YpVg, (1.6)

€BK
ZBK

Fig. 1.2 Transformation from
voltage source to current source
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where Iy is the vector of the currents in branches, Vg the vector of the branch
voltage differences, and Yy is a diagonal matrix constituted by the branch admit-

tances.

According to Kirchoff’s current law, the injection current /; of node i in an
electric network can be expressed as follows

b
jizzaikin (i:LZ,...,I’l), (17)
k=1

where a;; is a coefficient. If branch current in directs toward node i, a; = —1; if

branch current I/, directs away from the node i, @;; = 1; and if branch k does not
connect to node i, a; = 0. It is easy to get the relationship between nodal current
vector I and branch current vector Iy as follows,

I =Alg, (1.8)
where A is the incidence matrix of the network.

Assuming the power consumed in the whole network is S, we can obtain the
following equation,

b
S= ZIBkVBk = Iz x Vg,
1

where /g and I are the conjugate of the corresponding vector and * is the scalar
product of the two vectors.
From the viewpoint of the nodal input power, we have

=3 0V =iV,
i—1
Obviously,
I+V =1Ig V. (1.9)
From (1.8), we see
I=13A".
Substituting it into (1.9), we obtain,

[5ATV = V.
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Therefore,
A"V = V. (1.10)
Substituting (1.6) and (1.10) into (1.8) sequentially, we can get
I =AYgATV =YV, (1.11)
where Y is the nodal admittance matrix of the electric network
Y = AYpAT. (1.12)

Thus the nodal equations of an electric network can be obtained from its incidence
matrix.

In the following, the network shown in Fig. 1.1 is used again to illustrate the
basic principle of analyzing the electric network by the loop current equations. In
the loop equation method, the network elements are often represented in impedance
form. The equivalent circuit is shown in Fig. 1.3. There are three independent loops

in the network and the loop currents are 1, I, and I3, respectively. According to
Kirchoff’s voltage law, the voltage equations of the loops are

V4 == (Zl +z4 + Zﬁ)il + Z6i2 — Z4i3
Vj :ZGjl +(22+Zs +26)j2+25j3 . (113)
0= —Z4j1 + 2512 + (23 +z4 + 25)j3

Rewrite the above equation into the normative form,

E\ = Zily + Ziphh + Zi313
Ey = Zoily + Zonhy + Zosl5 3, (1.14)
E3 = Zail| + Zapls + Zaal3

Fig. 1.3 Sample system with loop
currents
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where

E 1= V4,E2 = V5,E 1 = 0 are voltage potentials of three loops, respectively,
Z\ =z1+ 24 + 26, Zpp = 22 + 25 + 26,233 = z3 + 24 + 25 are loop self-impedances,
Ziy =72y = 26,213 = Z31 = —z4,2Zp3 = Z3p = z5 are the loop mutual impedances.

If we know loop voltage E1,E,,and E5, we can solve the loop current 1,1, and I
from (1.14), and then obtain the branch current,

=1, ibh=5hL, =1,

iy =1 —i37 l:s =i2+i3, l:e =1 +D.
And the node voltages are
Vi =zls, Vo=Vy4—zii1, V3="Vs— 2.
Thus all the variables of the electric network are solved.

Generally, an electric network with m independent loops can be formulated by m
loop equations. In matrix notation, we have

E, =271, (1.15)
where
I E,
I = L B = E:z
i, i,

are vectors of the loop currents and voltage phasors, respectively;

Zy Zip - Zim
7= |2 2o (116
Zml Zn12 T me

is the loop impedance matrix, where Z; is the self-impedance of the loop i and
equals the sum of the branch impedances in the loop; Z;; is the mutual impedance
between loop i and loop j, and equals the sum of the impedances of their common
branches. The sign of Z; depends on the directions of loop currents of loop i and
loop j. If their directions are identical, Z;; is positive, and if their directions are
different, Z; is negative.
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For the example shown in Fig. 1.3 we can write the basic loop incidence matrix
according to the three independent loops,

1 0 1
0 1 1
1 0

1 0
B=|0 1
0 0 -1

- o O

The serial numbers of rows correspond to the loop numbers and the serial
numbers of columns correspond to the branch numbers. For example, in the third
row, there are three nonzero elements in the third, fourth, and fifth columns which
means loop 3 includes branches 3, 4, and 5. If the branch current has the same
direction as the basic loop current, the corresponding nonzero element equals +1; if
the directions of branch current and loop current are different the corresponding
nonzero element equals —1.

It should be noted that a basic loop incidence matrix cannot uniquely determine
a network configuration. In other words, there may be different configurations
corresponding to the same basic loop incidence matrix.

Similarly to the discussion on the node incidence matrix above, we can get the
basic loop equations of an electric network from its basic loop incidence matrix B,

Z;, = BZyB", (1.17)

where Zg is a diagonal matrix composed of the branch impedances.

The application of incidence matrices is quite extensive. If we have the above
basic concepts, network analysis problems can be dealt with more flexibly.
The details will be discussed in the relevant later sections.

1.2.2 Egquivalent Circuit of Transformer and Phase-Shift
Transformer

The equivalent circuit of an electric network is established by the equivalent
circuits of its elements such as transmission lines and transformers. The AC
transmission line is often described by the nominal IT equivalent circuit which
can be found in other textbooks. In this section, only the equivalent circuits of the
transformer and the phase-shift transformer are discussed, especially the transform-
er with off-nominal turns ratios. Flexible AC Transmission Systems (FACTS) are
increasingly involved in power systems, and we will discuss the equivalent circuit
of FACTS elements in Chap. 5.

When the exciting circuit is neglected or treated as a load (or an impedance), a
transformer can be represented by its leakage impedance connected in series with
an ideal transformer as shown in Fig. 1.4a. The relation between currents and
voltages can be formulated as follows:
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Fig. 1.4 Transformer equivalent circuit

[ +K[;=0
Vi — 27l Y,
i—zrli=—

TLi K

Solving the above equation, we can obtain

i 1. 1 v
i=—Vi———Vj
. le .KZT . (1.18)
Ii=——Vi+——V.
/ KZT +KZZT /
Rewrite (1.18) as follows
K—-—1. 1 . .
L=——Vi+—(V,-V))
KZT KZT ’
K. L. . (1.19)
I =——V.4+— (V. —V:
J KZZT ‘/] +KZT( J Vl)

According to (1.19), we can get the equivalent circuit as shown in Fig. 1.4b. If the
parameters are expressed in terms of admittance, the equivalent circuit is shown in
Fig. 1.4c, where

1
Yr=—-
ZT

It should be especially noted in Fig. 1.4a the leakage impedance zt is at the terminal
where the ratio is 1. When the leakage impedance zt is at the terminal where ratio is
K, we should transform it to z; by using the following equation, so that the
equivalent circuit shown in Fig. 1.4 also can be applied in this situation

2 = z1/K*. (1.20)

The equivalent circuit of a two-winding transformer has been discussed above. A
similar circuit can be used to represent a three-winding transformer. For example,
Fig. 1.5 shows the equivalent circuit of a three-winding transformer that can be
transformed into two two-winding transformers’ equivalent circuits.
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Fig. 1.5 Three-winding
transformer equivalent circuit

After obtaining the transformer equivalent circuit, we can establish the equiva-
lent circuit for a multivoltage network. For example, an electric network shown in
Fig. 1.6 can be represented by the equivalent circuit shown in Fig. 1.6b or ¢ when
the leakage impedances of transformer T, and T, have been normalized to side @
and side @. It can be proved that the two representations have an identical ultimate
equivalent circuit as shown in the Fig. 1.6d.

When we analysis the operation of a power system, the per-unit system is
extensively used. In this situation, all the parameters of an electric network are
denoted in the per-unit system. For example, in the Fig. 1.6, if the voltage base at
side @ is Vj, at sides @ and @ is V), and at side @ is Vj, then the base ratio
(nominal turns ratio) of transformer 7 and T, are

Vi v
Ky =2 Kp = 2. (1.21)
Vi Vi

The ratios of transformer T} and T, on a per-unit base (off-nominal turns ratio) are

K
K*l - ) __2
K;

2 Ky (1.22)
Therefore, the ratio of the transformer should be K,; or K,, when its equivalent
circuit is expressed in a per-unit system.

In modern power systems, especially in the circumstances of deregulation, the
power flow often needs to be controlled. Therefore the application of the phase-
shifting transformer is increasing. As we know, a transformer just transforms the
voltages of its two terminals and its turn ratio is a real number. The phase-shifting
transformer can also change the phase angle between voltages of its two terminals.
Thus its turn ratio is a complex number. When the exciting current is neglected or
treated as a load (or an impedance), a phase-shifting transformer can be represented
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Fig. 1.6 Equivalent circuit of a multivoltage electric network

by its leakage impedance, which is connected in series with an ideal transformer
having a complex turns ratio as shown in Fig. 1.7. From this figure, we can obtain
the equations as follows,

Vil = V] (1.23)
Ii+1;=0. '

Apparently, the two terminal voltages are related by
Vi=V;/K. (1.24)
Since there is no power loss in an ideal autotransformer,

ViI; = Vilj,
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Fig. 1.7 Phase-shifting
transformer representation

where I;’ andfj are the conjugates of f/’ and IAj respectively. It follows from the
above equations that

I} = KI;. (1.25)
Substituting (1.24) and (1.25) into (1.23)
. V,' V]' . .
li=— = =——=Y;Vi +Y;V;
e (1.26)
eV Vi iy,
7 I&zT K2zp ivi
where
Yim b, ¥y— - y— _ !
i — T 9 iy — KZT 9 J— kZT ) /. KZZT .

Equation (1.26) is the mathematical model of the phase-shifting transformer. It is
easy to be proved that (1.26) is the same as (1.18) when the turn ratio is a real
number. This illustrates that the transformer is a particular case of the phase-
shifting transformer. Because the ratio of a phase-shifting transformer is complex
number, and Y;; # Y};, it has no equivalent circuit and the admittance matrix of the
electric network with the phase-shifting transformer is not symmetric.

1.3 Nodal Admittance Matrix

1.3.1 Basic Concept of Nodal Admittance Matrix

As mentioned above, the node equation (1.3) is usually adopted in modern power
system analysis. If the number of nodes in a network is n, we have the following
general simultaneous equations:
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L=YuVi+YoVi+ 4+ Vit + YLV,
L =Yy Vi+YuVod 4+ YoiVi+ -+ Y5,V

. . . . . (1.27)
L=YaVi+YoVo+ -+ YiVit+ -+ YiVa

in = Yanl + YHZVZ + -+ YniVi + -+ Ynnvn

The matrix constituted by the coefficients of (1.27) is the nodal admittance matrix

_Yll Y12 Yli Yan—
Yo Yo - Yy - Yo,
r= Yil Yj cee Yii - Y’_n . (1.28)
L Ynl Yn2 T Yni e Ynn J

A nodal admittance matrix reflects the topology and parameters of an electric
network, so it can be regarded as a mathematical abstraction of the electric network.
The node equation based on the admittance matrix is a widely used mathematical
model of electric networks. Next we will introduce some physical meaning of the
matrix elements.

If we set a unit voltage at node i and ground other nodes, i.e.,

Vi=1
Vi=0 (j=12,....nj#1i),

then the following relationships hold according to (1.27),
L=Y; j=12,...,n (1.29)

From (1.29) we can see the physical meaning of the ith column elements in the
admittance matrix: the diagonal element Y;; in the ith column, the self-admittance of
node i, is equal to the injection current of the node i; the off-diagonal elements ¥;; in
the ith column, the mutual-admittance of node i and node j, is equal to the injection
current of node j in this situation.

We will further illustrate these concepts by a simple network shown in Fig. 1.8.
The network has three nodes (plus ground), thus the dimension of its admittance
matrix is 3 x 3,
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Fig. 1.8 Construction process of admittance matrix in simple electric network

Yiu Yo Yi3
Y=Yy Y Yy
Y31 Y Y33

According to the above discussion, we can get the elements of the first column:
Y11,Y21, and Y3, by setting a unit voltage on node 1 and grounding node 2 and
node 3 as shown in Fig. 1.8b. Evidently,

. . . . 1 1 1
L=Ipn+ls+lio=—+—+—=T1,
Z12 Z1o 213
L=l =——=7Y,
Z12
ILi=-I3=——=7Y3
713

Similarly, setting a unit voltage at node 2 and grounding node 1 and node 3 as
shown in Fig. 1.8c, we can get the elements of the second column:

. . 1
I =—-Ih)=——="Yn,
Z12

L= =—="7Yn,
712



16 1 Mathematical Model and Solution of Electric Network

For the elements of the third column we have (see Fig. 1.8d),

1

Iy = —I3 = —— =Y,
231
I =0 =Y,
I3 =1 =—=7Ys.
Z13

Finally, the admittance matrix of the above simple network becomes

1 1 1 1 1

Z12 2101 Z13 1212 Z13

Y = - — 0
Ziz Z12 1

_ 0 _

Z13 Z13

(1.30)

If we change the node numbers in Fig. 1.8a, e.g., exchange the number ordering of
node 1 with node 2, as shown in Fig. 1.8e, then the admittance matrix becomes,

-1 1 _
— S 0

Z12 Z12
1 1 1 1 1
Y=|-—— —+—+— ——
Z12 Z12 220 223 223

1
0 —— 1
L 223 Z23

The above matrix can be obtained through exchanging the first row with the second row,
and at the same time exchanging the first column with the second column of the matrix
shown in (1.30). The exchange of the rows and columns of the admittance matrix
corresponds to the exchange of the sequence of node equations and their variables.

The properties of the admittance matrix can be summarized as follows:

1. The admittance matrix is symmetric if there is no phase-shifting transformer in

the network. From (1.30) we have

1 1
Yio =Yy Z—Z,Yls =Y :_;’YB = Y3 =0.
1 1

Generally, according to the reciprocity of the network,

Yij =Yji.

Therefore, the admittance matrix is symmetric. We will discuss the networks

with phase-shifting transformers later.
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2.

The admittance matrix is sparse. From the discussion above, we know that
Y;; and Y}; will be zero if node i does not directly connect with node ;. For
example, in Fig. 1.8a, node 2 does not directly connect with node 3, so both of
Y23 and Y3, are zero. In general, the number of nonzero off-diagonal elements of
each row is equal to the number of branches that are incident to the corresponding
node. Usually, the number of branches connected to one node is 2—4, thus there
are only 2—4 nonzero off-diagonal elements in each row. The property that only a
few nonzero elements exist in a matrix is called sparsity. This phenomenon will
be more remarkable with increase of the power system scale. For instance, for a
network with 1,000 nodes, if each node directly connects three branches on
average, the total number of nonzero elements for the network is 4,000, which
is only 0.4% of the total elements in the admittance matrix.

The symmetry and sparsity of an admittance matrix are very important features for

large-scale power systems. If we make full use of these two properties, the computa-
tion speed will be accelerated and the computer memory will be saved dramatically.

1.3.2 Formulation and Modification of Nodal Admittance Matrix

Now we discuss formulation of an admittance matrix by inspection first. When an
electric network is composed of only transmission lines, the principles of
constructing its admittance matrix can be summarized as follows:

1.

2.

The order of the admittance matrix is equal to the number of the nodes of the
electric network.

The number of the nonzero off-diagonal elements in each row is equal to the
number of the ungrounded branches connected to the corresponding node.

. The diagonal elements of the admittance matrix, i.e., the self-admittance of the

node, is equal to the sum of all the admittances of the incident branches of the
corresponding node. Thus

Y :Zy,;,-, (1.31)

jei

where yj; is the reciprocal of z;;, which is the branch impedance between node i
and node j, “‘j I’ denotes that only the incident branches of node i (including the
grounding branch) are included to the summation. For example, in Fig. 1.8, the
self-admittance of node 1, i.e., Y1, should be

1 1 1
Yi=—+—+—=yn+yi0+ys
Z12 Z10 213

The self-admittance of node 2, i.e., Y»,, should be
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4. The off-diagonal element of the admittance matrix, Y;;, is equal to the negative of
the admittance between node i and node j

1
Yi=——=—y; (1.32)
Zij
For example, in Fig. 1.8a,
Ypop=——=—yn,
Z12
1
Yp=—-——=-y3
Z13

Therefore, no matter how complicated the configuration of an electric network
is, its admittance matrix can be established directly by inspection according to the
parameters and the topology of the network.

When the electric network involves transformers or phase-shifting transformers,
they need special treatment.

When branch ij is a transformer, the admittance matrix certainly can be formed
following the above steps if the transformer is substituted beforehand by the I
equivalent circuit as shown in Fig. 1.4a. However, in practical application the
transformer is often treated directly in forming the admittance matrix. If branch ij
is a transformer, as shown in Fig. 1.4a, the elements of the admittance matrix
related to the branch can be obtained as follows:

1. Add two nonzero off-diagonal elements into the admittance matrix

T
Y=Y =—2-. 1.33
7 Ji K ( )

2. Add to the self-admittance of node i by,

K—-1 1
YT+ 2T =T (1.34)

AY; =
K K

3. Add to the self-admittance of node j by

1 | —K yr
AYjj = —yr +K—yT:ﬁ'

< (1.35)

When branch ij is a phase-shifting transformer, its equivalent circuit is Fig. 1.7.
Then the corresponding matrix elements are obtained as follows:

1. Add two nonzero off-diagonal elements into the admittance matrix

1

Yi=——o!, 1.36
B (1.36)
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1
kZT '

Y=

2. Add to the self-admittance of node i by

1
AY; = —.
ZT
3. Add to the self-admittance of node j by
1
AY;=——.
4 KZZT

19

(1.37)

(1.38)

(1.39)

It can be seen from (1.36) and (1.37) that Y;; # Y;, thus the admittance matrix is
not symmetric any more although its structure is still symmetric.

Studies of different system operation states, such as transformer or transmission
line outages, play an important part in modern power system analysis. Because the
outage of branch ij only affects the self and mutual admittance of node i and node j,
we can obtain the new admittance matrix for the contingency state by modifying the
original admittance matrix. The modification methods for different situations are

introduced as follows:

1. To add a new node with a new branch for the original network as shown in

Fig. 1.9a.

Assume that i is a node of the original network and j is the new node; z;; is the
impedance of the new branch. The dimension of the admittance matrix becomes
N + 1 because of the new node. There is only one branch connected to node j,

therefore, its self-admittance is,

1
ij:;a
L

The self-admittance of node i should be modified (added) by,

AY,‘,' = i .
Z,'j
Zij
i t+— i i
J
N N Zf/[] N
J J

T I

Fig. 1.9 Four cases of modifying the electric network

N

J

=
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Two off-diagonal elements should also be created

Yi=Y; = !
1 Jt ZU .
2. To add a new branch between node i and node j as shown in Fig. 1.9b.
In this case, no new node is introduced and the dimension of the new
admittance matrix is the same as the original one, while the following modifica-

tions should be made.

1
AY,',' = —
Z,‘j
1
AYjj = — : (1.40)
Z,'j
1
AYj =AY = ——
Zij

3. To remove a branch with impedance z;; between node i and node j.
In this case, it is equivalent to adding a new branch of impedance —z;; between
node i and node j as shown in Fig. 1.9c. Therefore, the modifications of the
admittance matrix are as follows:

1
AY,‘,‘ = ——
Zij
1
AY = —— . (1.41)

. zj

1

AY,‘]‘ = AY_,',‘ = —

Zij

4. To change branch impedance z;; for z:j.

This case is equivalent to removing branch impedance z;; first and then adding a
branch of impedance zﬁj between node i and node j as shown in Fig. 1.9d. Thus the
modifications can be carried out according to (1.40) and (1.41).

It should be noted that the above discussion is based on the assumption that the
added or removed branch is a pure impedance branch. If the branch is a transformer
or a phase-shifting transformer, the modifications should be carried out according to
(1.33)—(1.35) or (1.36)—(1.39).

[Example 1.1] Figure 1.10 shows an equivalent circuit of a simple electric
network with two transformers. The branch impedance and grounding admittance
in per unit are shown in the figure. Determine the nodal admittance matrix for the
electric network.

[Solution] According to the method introduced in Sect. 1.2.2, we can assemble
the elements of the admittance matrix node by node.
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1:1.05 @) 0.08 + j0.30 3 1.05:1

1
| S—)

T
Tj025  Tj025

j0.015 70.03

®

j0.25 ©)
Fig. 1.10 Equivalent circuit for Example 1.1

In Fig. 1.10, parameters are in admittance for grounding branches and in
impedance for other branches (branches in series connection). Using (1.31), we
obtain the self-admittance of node 1 as follows:

1

Yy = — 025
W= Y0y s =0 o025 T 0.1 47035

= 1.378742 — j6.291665.

The mutual admittances related to node 1 can be obtained according to (1.32),

1

Y21 = Y12 = —YV12 = _m = —0624025 +_/3900156
1

Y31 = Y13 = —YV13 = _m = —07547]7 +]2641509

Because branch 24 is a transformer, the self-admittance of node 2 should be
calculated according to (1.31) and (1.35) based on the equivalent circuit as shown
in Fig. 1.4a

Yoo =y +yi2+y»3 +%
)
n 1 n 1 y 1
0.04 +,0.25  0.08 +,0.30 j0.015  1.052

= 1.453909 — j66.98082.

= (j0.25 4j0.25) +

The mutual admittances related to node 2 are

1
Yos = Yo = — —— — —(.829876 + j3.112033.
237527 70,08 +,0.30 +J

Using (1.33) we have

Y42 1 1 .
Yoo = Vo= — 22— 1 1 i63.49206.
uE e = e T T 0015 1.05
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The other elements of the admittance matrix can be calculated in a similar way. The
ultimate result is

[ 1.378742  —0.924024 —0.754717
—j6.291665 +;3.900156 +-2.641509

—0.24024  1.453909  —0.829876  0.000000
+j3.900156 —j66.98082 +j3.112033 +;63.19206

y_ | —0754717  —0.929876  1.584596 0.000000
= | +/2.641500 +3.112033 —j35.73786 +31.74603 |
0.000000 0.000000
+63.49206 —j66.66667
0.000000 0.000000
+31.74603 —j33.33333 |

where the vacancies are zero elements.

1.4 Solution to Electric Network Equations

1.4.1 Gauss Elimination Method

At present, Gauss elimination is the most popular method to solve the electric
network equations. In the initial stage of computer application in power systems,
iterative methods were also been used because of the limitation of computer
memory. The fatal disadvantage of the iterative methods is the convergence
problem. Therefore, the Gauss elimination method almost has substituted for
iterative methods after successful application of the sparse techniques [1, 2]. The
Gauss elimination method is introduced in this section, and the sparse technique
and sparse vector method will be described successively.

The Gauss elimination method in solving simultaneous linear equations consists
of two steps, i.e., forward elimination and back substitution. Both forward elimina-
tion and back substitution can be carried out by either row or column orientation.
Generally, the column-oriented forward elimination and row-oriented back substi-
tution scheme are widely used. The related algorithm is introduced next, and other
algorithms can be easily deduced similarly.

A system of n simultaneous linear equations may be written in the matrix form as
AX = B in which elements in matrix A and vector B can be either real or complex
numbers. For example, the coefficient matrix of (1.3) is complex, while that of the
correction equation in the Newton—Raphson method (see (2.40) in Chap. 2) is real.
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Because the forward eliminations involve manipulations with matrix A and B, a
n x (n+ 1) augmented matrix is formed by appending B as the (n + 1)th column of
A,

ay app - ap b ayy ap v Ay At
— a a ceeoa b a a ceeoa a
A=[A B]= 21 dn wm by | _ |an axn o A2l

Anl A2 Apn by Al A2 Qe Appyd

In the above equation, b; is substituted by a@;,+1 (j = 1,2,...,n) to simplify the
following representation.
The process of the column-oriented forward eliminations is introduced first.

Step 1. Eliminate the first column

First, normalize the first row of the augmented matrix A,

1 1 1
1ody &) oalh,, (1.42)

where

(ny _ ay .
AV =Y (j=23,...,n+1).
1y an (.] )

Then the derived row as shown in (1.42) is used to eliminate the elements
az1,asy, .. .,ay, of A, and the remaining elements of the second to the nth row
can be calculated by

a,(jl) :aij—a,-la(l}) G=2,3,....,n+1),(i=2,3,...,n),

where the superscript (1) denotes that the relative element is the result of the first
manipulation. At this stage, matrix A is changed into A,

1) 1) ¢
L oay, - agn ‘11,;)1+1
(W ) (1)
_ a Ay Ay
A =[A B|=
T

The corresponding equation is A X = B; which has the same solution as the
original equation. In the above matrix, the vacancies are zero elements.
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Step 2. Eliminate the second column

Normalize the second row of the augmented matrix A as the following

0 1 da ... a5, (1.43)

where
2 ), 1) .
agj):agj)/a(zz) (Gj=3,4,...,n+1).

Then the derived row shown in (1.43) is used to eliminate the elements
ag?,af&% - ,af&l) of Ay and the remaining elements of the third to the nth row

can be calculated by,

2 I H @ .
agl.) :a§i> fafz)agj) (G=3,4,....,n+1),(i=3,4,...,n),

where the superscript (2) denotes that the relative element is the result of the second
manipulation. Now, matrix A; has been transformed into A5,

1 40 W n 1)

dip  dyz Ay dpgyg

2 - ) )

P body a5 ),
2=1A2 By|= ) (2 (2
a5y ay) a3,

T )

a,%) A @y g

Generally, the following computation should be executed when eliminating the kth
column

ay =al ™V jal™V (G=k+1, 41, (1.44)
k k—1 k—1) (k . .
al’ =al™ —af Vel G=k+1, . n+1),(=k+1,.. 0. (145)

After proceeding with the elimination # times in this manner, the elements below
the diagonal of the matrix become zero, and the nth derived augmented matrix is
obtained.

M &Y W m 1) 7

dyppy dyz --- Ay A
2 2 2
1 a§3) e agn) a§,3+1
A_n = [An Bn] - 1 e (l;i) ag?’3+1 (146)
L 1 aE:;Z+1 J
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The corresponding equation becomes A, X = B, that is

(1) )

X1+ allzxz—i— a113 Dy — (1)

X3+ ... Fa, %= a)
X+ a%)xﬁ— +a§i)x,, = a%l 11
3 3
X3+ . +aF,1)xn = 51(3’,),+1 (1.47)
W= A,

Its solution is the same as the original equation AX = B.
For (1.47), back substitution is carried out in a bottom-up sequence. The value of
X, is obtained directly from the nth equation,
(n)

Xp = iy
Then substituting x,, into the (n — 1)th equation we get the solution of x,_1,

(n-1) (n-1)

Xn—1 = anfl.,nJrl - anfl,n

X

Substituting x,—; and x, into the (n — 2)th equation, we obtain x,_,. Generally, x;

can be obtained by substituting the solved variables Xy, X;12,...,X, into the ith
equation,
xi:al(f,)lﬂf Zal(;)xj (i=n,...,2,1). (1.48)
J=i+1

This is the general equation of the row-oriented back substitution.
[Example 1.2] Solve the following simultaneous linear equations by using the
Gauss elimination method.

X1 +2x+x3+x3=25

2x1 +x =3
X1 +x3=2
x| +xs=2

[Solution] Write the augmented matrix according to the original equations as
below.

(1) 2 1 1 :5
2 0 0 :3
1 1 0 :2
1 01 :2
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As an initial step, normalize the first row of the augmented matrix according to
(1.44), i.e., divide the first row by its diagonal element.

1 211 :5
2) 1 0 0 :3
(1) 01 0 :2
(1) 0 0 1 :2

Then eliminate the first column according to (1.45)

1 2 1 1 5
(-3) —2 -2 -7
-2 0 -1 :=3
-2 -1 0 :=3

The next step is the elimination of the second column. When normalizing the
second row, we divide the elements in the second row by the diagonal element —3

12 11 5
[ T
(-2) 0 -1 -3

Then eliminate the second column in terms of (1.45) to obtain

—_
— N

—~

W= WA W =

~—

[SSIFEN Q= W Ll
Wi W W

Repeat the procedure for the third column. Normalize the third row through
dividing the third row by the diagonal element 4/3.

—_
WD =

—_
WA B WD -
[S[V N NN NS |
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Then eliminate the third column in terms of (1.45) to obtain

21 1
IR

—
Bl Bl W W

STV N,

—~
~

The last step is normalizing the fourth row according to (1.44), that is, dividing the
fourth row by the diagonal element 5/4.

1 211 :5
BRI
1 Lo
1 1

The transformed equations after elimination become

X1+ 204+ 34+ x4= 5
2 2 7

Xo+ 33+ Pa= 3

1 5°

X3+ Z.X4: 1

Xq = 1

X4,X3,X2,X1 can be obtained through the back substitution according to (1.48).

X4—1

_5 1, —
B=3774=

—1 2 2, —
x2—§—§X3 §X4—1

X1 :5—2X2—X3—X4=1

1.4.2 Triangular Decomposition and Factor Table

In practical applications, the simultaneous equations often need to be solved
repeatedly when only right-hand vector B changes while coefficient matrix A is a
constant matrix. In such cases, the factor table method is often used to improve
computation efficiency.

The factor table records all the operations on right-hand vector B in the Gauss
elimination process. As the discussion above, The Gauss elimination method
involves forward elimination and back substitution. Back substitution is determined
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by the upper triangular elements of the coefficient matrix after elimination opera-
tion as shown (1.46). In order to execute the elimination operation (forward
elimination), the relative operation factors also need to be recorded in the elimina-
tion process. The forward elimination includes normalization and elimination
operation. Take column-oriented elimination as an example, operations on the i
th element of B (i.e., b; ,+1) in the forward elimination are as follows (see (1.44) and
(1.45)),

b = bV (i=1,2,....n), (1.49)
b =p* YV —aTBY (k=1,2,...,0-1). (1.50)
The above operation factors a1, a§21>, al(;), - ,a,(-f;zl) and al(ii ! are to be stored in

the lower triangular matrix row by row and appended to the upper triangular
elements of the (1.46). Thus, we obtain the factor table as the following

1) (1)

din dpp diz dyg oo Ay
L R
o ) a ]
o df
an ey al o an!

Where the lower triangular elements are used in elimination operations on B and the
upper triangular elements are used in back substitution operations. The factor table
also can be denoted in the following format

diy upp w3 ug - Uiy
by dyn uy uyu - Uy
l3i l dyz uss -+ Uz,
Iy I Iz dag - ugy (1.51)
lnl ln2 ln3 ln4 e dnn
where
_ i)
dii a; -,
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We can see that the lower triangular elements of the factor table are exactly the
operation elements used in the elimination process. Therefore, if we retain them in
the original position and take the reciprocals of the diagonal elements, the lower
triangular elements of the factor table can be readily obtained. The upper triangular
elements of the factor table are just the upper triangular part of the coefficient
matrix after the elimination operations.

If the simultaneous equations need to be solved repeatedly for different right-
hand vector B, we should first carry out the elimination operation on coefficient
matrix A to obtain its factor table. Then the factor table can be used directly and
repeatedly to solve the equations with different B. In this situation, we will carry out
the elimination operation on the following equations instead of (1.49) and (1.50),

b =V dy, (1.52)

p6) _ pl-)

i i

— L x b (i=k+1,...,n). (1.53)

The back substitution will be carried out on the following equations instead of
(1.48)

X, = bﬁl”),
Xi = b,('> — Z Ujj X X;. (154)
J=i+1

[Example 1.3] For the simultaneous linear equations of Example 1.2, find
the factor table of its coefficient matrix A and solve the equation when
B=[-1 1 2 o]

[Solution] Inspecting the solution process of Example 1.2, we can directly
obtain the factor table of coefficient matrix A,

L2 11 dy wup wz wug
-3 2 2

303 Ly dy us Uy

4 .

1 -2 % 3 Ly Iy dy wusg

1 -2 % ;51 Iyl Iz du

The lower triangular elements of the above factor table are just the operation factors
in brackets which appeared in the elimination process, and the upper triangular
elements are the upper triangular part of the coefficient matrix after elimination
operation.

Now we first use the lower triangular elements of the factor table to operate
column-oriented elimination on B. Normalize b; according to (1.52),
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b\ = b /dy = (—=1)/1 = —1.

Then operations on by, b3, by are carried out by using the elements of the factor
table’s first column in the lower triangular part according to (1.53)
bV = by~ x b =1-2x (1) =3,
b = by — Iy x bV =2~ 1 x (=1) =3,
b = by — Ly x BV =0—1x (=1)=1.

Thus the elimination operation of the first column is completed, and we have,
BY =[-1 3 3 1]".

Next, normalize bgl) according to (1.52),

b = by Jdn =3/(=3) = —1.

The elimination operation on bgl),bff) is followed by using the elements of the

second column in the lower triangular part according to (1.53),

b =) — 15 x b =3 — (=2) x (-1) =1,
b = bl x by =1 (=2) x (<1) = ~1.

Thus the elimination operation of the second column is finished, and we have
BY=[-1 -1 1 —1]"

Normalize bgz) according to (1.52) and operate bfﬁ) according to (1.53)

by = b Jdsy = 1/4 =13,

Again, the elimination operation on bf‘z) is followed by using the elements of the
third column in the lower triangular part according to (1.53)

b = by — Ly x b = —1 -

B®

Il
—
\
—

\
—
B~
\
ENIV)
A

;ﬁ
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The last step of the elimination operation is to normalize bf) according to (1.52)

b = b Jdu = =4/ (4) = 1.

Now, all the elimination operations are fulfilled.
BY =[-1 -1 -1]".

Comparing with the factor table, we obtain the following identical solution equa-
tions

X1+ 204+ x4+ x =-1
Xy + %X3 + %X4 = -1

X3 + %)C4:A3—t ’

Xa = -1

Now, the unknowns could be solved using the upper triangular part of the factor
table according to (1.54).

xy=bY =—1
Sy =3_lx(-1)=1
X3 3 Uzg X X4 i 4><( )
xz:bg2>—u23 XX3—M24><X4=—1—%><1—%)((—1):—1
Xlzb(ll)—ulz X Xp — U3 X X3 — U4 ><X4:—1—2><(—)—1Xl—lX(—l):l.

It should be pointed out that the factor table as shown in (1.50) can be established
not only by the Gauss elimination method but also by the triangular decomposition
method. From the above example, we can verify that the following relationship
between the factor table and its coefficient matrix holds,

A=LU, (1.55)
where
1 0 00 1211
L,2—300U01§§
230 YTloo 1!
1 -2 12 00 0 1

L' can be decomposed further,

L' =LD. (1.56)
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In the above example, L can be obtained through dividing off-diagonal elements in
each column of L’ by the corresponding diagonal element,

1000 10 00
21 0 0 0 -3 0 0
=112 10| P=]0 0o ¢ o
i ‘
121 0 0 0

Therefore the original coefficient matrix can be generally represented as follows
A =LDU. (1.57)
From the example, we can also see the following relationship
L"=UorU=L" (1.58)
This phenomenon is not specific to this example. The relationship in (1.58) can be
proved when the coefficient matrix is symmetric.
In the following, we deduce the recursion formulae of the triangular decomposi-

tion.
Expand (1.55)

l/
aip diz ap o dig 11
L, L
azy ax» a;z - dy 21 2
! i !
asy dasy asz -t Ay | — 131 132 133
a a a a ! ! U U
nl n2 n3 nn lnl ln2 ln3 lnn
I up wsz -+ u,
1wz -+ uy,
x Lo | (1.59)
1

Comparing two sides of the above equation, the diagonal element of the first row
can be found

4
ll] =daii-

Comparing the first element of the second row and the first two elements of the
second column in both sides, we can obtain

/ / ' ’
121 = a21;l11u12 = aiy, lzlulz + 122 =dan.
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Hence the recursion formulae are

33

! ! ! !
Uy = an,un = an/ly, 1 = ain — Lun.

The following decomposition equation can be obtained

a ap
azy  ax

} _ {l’u
b

1
l’ X
22

Uiz
1 .

Similarly, if the first K — 1 rows of L’ and the first X — 1 columns of U have been

obtained, the equation becomes

ai an a3 a1
an an an azi1
as az as; as -1
ar-11 Q12 Gr-13 11
. _
Iy I up us Uy f—1
! !
I I I U 1
! U U
—| & I3 ly X L uzpe
! ! ! !
U1y Gy s By -1 | 1

All the elements of the two matrices in the right hand of the above equation have
been solved. Comparing the first k — 1 elements in the kth row and the first k
elements in the kth column of the two sides element by element, we can get the
corresponding elements by the following formulae

1 i—1 .
Mik=E<a,'k—pz_;l;pupk> (i=1,2,...,k=1)
J—1

p=l1

(1.60)

The above are recursion formulae. Taking & from 1 to » in sequence, the triangular
decomposition, A = L'U, will be achieved by using these formulae. Furthermore,
dividing the off-diagonal elements by the corresponding diagonal element, L can be
obtained:

1 I~ .
lkj_F<akj_Zl;epuﬁj> (k=j+1,....n). (1.61)
J] p=1
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The diagonal elements of L’ constitute D, i.e., d; = I\, (i = 1,2,...,n). Now, the
coefficient matrix is decomposed into the format A = LDU. It should be particu-
larly noted that (1.58) will always be true if the coefficient matrix is symmetric.

1.4.3 Sparse Techniques

From the discussion of the above section, we know that the solution process of the
electric network equation is the process of operating the right-hand constant vector
successively using the elements of its factor table. In Example 1.3, there are 16
elements in its factor table: four diagonal elements, six lower triangular elements,
and six upper triangular elements. Therefore the solution involves 16 multiplication
operations. According to (1.53) and (1.54), if elements in the factor table are zero,
the corresponding multiplication operations can be avoided (since the product will
be zero) and significant computational effort can be saved. Based on this idea, so-
called sparse technique is widely used in power system analysis to improve solution
efficiency. The concept of the sparse technique is illustrated by an example in the
following.

[Example 1.4] Solve the simultaneous linear equations in Example 1.2 by using
the sparse method.

[Solution] In Example 1.2, the simultaneous linear equations are

X1 2% x3 +x4 =5
2x1  +x =

1.62
X1 +X3 = ( )
X1 +x4 =2

In order to make full use of the sparsity advantages of the equations, the following
transformation should be made first,

X1 = Y4, X2 = Y2, X3 = Y3, X4 = Y1. (1.63)
Then, the original equations are transformed into

Y1 +ys =2
Y2 +2yy =3

Y3 tys =27
yi 2y 4+y3 4+ys =95

(1.64)

We will solve the equations by using its factor table. The coefficient matrix is

(1) 0 0 1
0 10 2
0 0 1 1
1 2 1 1
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First, we normalize the first row and eliminate the first column. There are only two
operations: one normalization operation and one elimination operation in this step.
The elements in brackets are the computing factors. For a 4 x 4 coefficient matrix,
the elimination of the first column should include one normalization operation and
three elimination operations. However, because both a,; and a3, are zero, two
corresponding operations are avoided. After the above operations, we obtain

1 0 01
0 (1) 0 2
0 0 1 1
0 2 10

The next step is the normalization of the second row and elimination of the second
column. There are also only two operations, one normalization operation and one
elimination operation in this step. The figures in the brackets of the above matrix are
the computing factors. For a 4 x 4 coefficient matrix, the elimination of the second

column should include one normalization operation and two elimination operations.
(1)

Because a3, is zero, the corresponding operation is avoided. After these operations,
we obtain

0 1
0o 2
1 1
1

S oo~
SO = O

(1) —4
To normalize the third row and eliminate the third column, we also need two
operations, one normalization operation and one elimination operation. The com-
puting factors are the elements in the brackets of the above matrix. After these
operations, we obtain

S OO =
S o= O
o= O O

—_ N =

(=3)

Here, the factor table of the coefficient matrix can be readily written,

—_—0 O =
\S e )
—_——O O
—_ N =

-5

The above factor table can also be found using (1.60) and (1.61). Because there are
only six zero off-diagonal elements in the above factor table, six multiply—add
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operations are avoided. In the following, we will use this factor table to obtain the
solution to the constant vector:

B=1[2 3 2 5"

First, eliminating B column by column is executed by using the lower triangular
part of the factor table. According to (1.52), b; is normalized,

b\ =byjdy =2/1=2.
Then the operations on b,, b3, by are continued by using the elements of the first

column in the lower triangular part according to (1.53). Because /;; and /3; are
zero, we have

b = by — by x B = b, =3,
b = by — 5 x B\ = by = 2.

The above two steps should be avoided and only the following operation is needed
b = by — Ly x bV =5-1x2=3.
After the elimination operation of the first column, we obtain
BV =02 3 2 3]".
Then normalize bgl) according to (1.52)
b = b Jdyy =3/1 =3,

Now, the operation on bg”, bff) should use the elements of the second column in the

lower triangular part according to (1.53). Because /3, is zero, only the operation
related to /4p will be performed. Thus,
P =b) — 1y xbP =3-2x3=-3
After finishing elimination operation of the second column, we have
BY=[2 3 2 -3]"

Next, we normalize bf) according to (1.52)

b =bP Jdyy =2/1 =2.
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And then compute bfﬁ) according to (1.53)

b =0 —lyx b =3 - 1x2=-5
After finishing the elimination operation of the third column, we obtain
BY =2 3 2 5"

The last step of the elimination operation is to normalize bf) according to (1.52)

by = by Jda = —5/(=5) = L.

At this stage, all of the elimination operation have been completed, the right-hand
vector becomes

BY =12 3 2 1]".

Comparing with the factor table, we obtain the following identical solution equa-
tions of (1.64)

i +ys= 2
2 +2y4= 3

3 tya= 2

ya= 1

Now, the unknowns can be solved using the upper triangular part of the factor table
according to (1.54). Because u,,, 13, and uy3 are zero, corresponding operations are
avoided in back substitution.

ya=b =1
y3=bg3>—u34><y4:2—1><l:1

yo=bY iy xyy=3-2x1=1

i = b

—M14Xy4:2—1 x1=1
Substituting the above results into (1.63), the solutions to original equation (1.62)
can be obtained.

From the above example, we can see that the computation effort can be saved not
only in the formation of the factor table but also in the forward and back substitu-
tion. The amount of computation saved by the sparse technique depends on the
number of zero elements in the factor table. Therefore, the key point of improving
computation efficiency is to keep the number of zero elements in the factor table as
high as possible.
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1.4.4 Sparse Vector Method

Nowadays, the sparse matrix techniques are adopted to solve almost all large-scale
power network problems. In this section, the sparse vector method, which can
further improve the computation efficiency, will be introduced [3].

Sparse vector methods are useful for solving a system of simultaneous linear
equations when the independent (right-hand) vector is sparse, or only few elements
in the unknown vector are wanted. To take advantage of vector sparsity is relatively
simple, but the results of improving computational efficiency and saving memory
can be quite dramatic. Therefore sparse vector methods are often used in the
compensation method, fault analysis, optimal power flow problem and contingency
analysis.

In principle, the sparse vector method can be applied to both full- and sparse-
matrix equations. This section focuses only on the implementation of sparse vector
methods in the sparse-matrix situation. According to the above discussion, the
admittance matrix Y of an electric network without phase-shifting transformers is
symmetric. If there are phase-shifting transformers in the network the sparse
admittance matrix is only symmetric in its structure. Nodal voltage equations can
be written as

YV =1. (1.65)

For generality, we assume Y is an incidence-symmetric square matrix of order n and
can be factorized as

Y =LDU, (1.66)
where L and U are lower and upper triangular matrices with unity diagonals,
respectively, and D is a diagonal matrix. It is easy to solve the nodal equations
using the above expressions. For example, the simultaneous equations can be
written in the following form

LDUV =1. (1.67)

The above formulae can be decomposed as

LX =1, (1.68)
DW =X, (1.69)
Uuv=w. (1.70)

V can be obtained when (1.68)—(1.70) are solved in sequence. If Y is symmetric,
matrix U is the transpose of L. If Y is incidence symmetric, matrix U is not the
transpose of L, but they are identical in the sparsity structure.
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The forward substitution operations can be expressed as
W=D"'L'L (1.71)
The back substitution operations can be expressed as
V=U'W. (1.72)

Generally, these operations can be performed either by rows or by columns.
However, for the sparse vector method, the forward elimination (1.71) must be
performed by columns, while the back substitution (1.72) by rows.

Many different schemes can be used for storing and accessing L and U. For the
sparse vector method, the lowest-numbered, nonzero, off-diagonal element in each
column of L or in each row of U must be directly accessed without search. This
requirement is satisfied by most storage schemes for L and U.

The independent vector I is sparse in many applications. However, the solution
vector V is not sparse in general. The term ‘‘sparse vector’ in the following refers
to either a sparse vector I or a subset of vector V containing the elements of interest.
The exact meaning is always clear from the context.

If the vector I is sparse, only a subset of the columns of L is needed for the
forward elimination. This is called the fast forward (FF) process. If only certain
elements of vector V are actually wanted, only a subset of the rows of U is needed
for the backward substitution. This is called the fast backward (FB) process.

[Example 1.5] Solve the following simultaneous linear equations

Vi +Vy =0
V, +2Vy =1
V3 +Vy =0

Vi 42V, +Vi +Vy =0

[Solution] The coefficient matrix of above simultaneous linear equations is the

same as in (1.64) of Example 1.4. The only difference is that the right-hand vector is
sparse.

I=B=[0 1 0 o]".

Therefore, the factor table of these simultaneous linear equations is the same as that
of (1.64).

1 0 0 1
01 0 2
0 01 1
1 21 =5
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Decomposing the factor table, we obtain

1 1 1 0 0 1
0 1 1 1 0 2
L= 0 0 1 » D= 1 » U= 1 1
1 2 1 1 -5 1
From (1.53), we can see that all the operations related with [;; (i=k+1,...,n)

can be avoided if b,(f) is equal to zero:

b =p* Y 1 x b (i=k+1,...,n).
In other words, the kth column in the lower triangular matrix can be ignored. In this
example, b; is equal to zero, so we can skip the first column of L. For this sparse
vector, the elimination should begin from the second column. The elimination also
includes the normalization and elimination operations. After this, the right-hand
sparse vector is transformed into

B=[0 10 —1]"

The next step is elimination of the third column. Because b, is zero, the operations
related to the third column of L are skipped, thus the elimination of the fourth
column is performed directly. Here, we use da4 to normalize b}, and the ultimate
result vector after the elimination operation is

B'=[0 1 0o "

As we know, the backward substitution operations must be performed by rows. If
only V3 is wanted, the operations with the first and second rows of U can be
neglected. If only V, is wanted, the operations with the first row of U can be
avoided. Furthermore, the operations with the third row of U also can be omitted
because b’3 = 0. Therefore, the back substitution is only needed to perform on the
second row of U. Therefore, we have

_aqn " o_ 1__3
Vz—bz—bt24><b471—2><§7§.

From the above example, we can see that the key task of sparse vector methods is to
identify the active subsets of L and U for FF and FB operations. The active subset of
columns for FF depends on the sparsity structure of L and I while the active subset
of rows for FB depends on the sparsity structures of U and V.

In order to find the active subset of FF and improve the computation efficiency,
the following simple algorithm can be summarized according to the above example
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1. Zero all locations in I, and enter the given nonzero elements in 1.

2. Search the nonzero elements in I and let k be the location number of the lowest-
numbered nonzero element.

3. Perform the forward eliminations defined by column & of L on I.

4. If k = n, exit. Else, return to Step 2.

This algorithm ensures that only the necessary nonzero operations of FF are
performed, but it is wasteful because of zeroing and searching. A similar algorithm
can be used to FB, but it is even more wasteful.

In the following we introduce a more efficient algorithm based on the concept of
the factorization path. A factorization path for a sparse vector is represented by an
ordered column list of L for FF operations. A path is executed in forward order for
FF and in reverse order for FB. The same or different paths may be used for FF and
FB depending on the application.

The path for a singleton is basic to the path concept. A singleton is a vector with
only one nonzero element. Assume that the nonzero element is in location k. The
following algorithm determines the path of the singleton:

1. Let & be the first number in the path.

2. Get the number of the lowest-numbered nonzero element in column k of L (or
row k of U). Replace k with this number, and list it in the path.

3. If k = n, exit. Else, return to Step 2.

The path for a singleton can be determined directly from the indexing arrays
without searching or testing. A general sparse vector is the sum of singleton vectors,
and its path is the union of the paths of its composite singleton vectors. For any
sparse system, a path can be always associated with a given sparse vector.

[Example 1.6] Find the factorization path of the electric network shown in Fig.
1.11.

[Solution] Figure 1.12 shows the sparsity structure of the incidence symmetric
admittance matrix of the network as shown in Fig. 1.11 (only the lower triangular
part of the matrix is labeled). Because there are 21 branches in the network, 21

CL480
Al

Fig. 1.11 Example electric network
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represent the off-diagonal elements of the matrix. After triangular factorization, 10
fill-in elements (labeled as O) are added. Therefore there are altogether 31 nonzero
elements in the factor table.

The factorization path of any singleton can be directly obtained from the
structure of the factor table. For example

When k = 1, the singleton pathis 1 -2 —-7 — 12 —- 13 — 14 — 15

When k = 35, the singleton pathis 5 — 11 — 13 — 14 — 15

When k = 6, the singleton pathis6 — 9 — 10 — 12 - 13 — 14 — 15

When a sparse vector is not a singleton, its path is the union of the paths of its
composite singletons. For a sparse vector as follows

I=[1 000 10000000O0TO0 O]

we have its path as the union of the paths of its composite singletons when k = 1
and k =5,

1-2—-7—-12—-5—->11—-13 — 14 — 15.

In Table 1.1 we list the entire factorization paths for the network shown in Fig. 1.12.

A pictorial view of the path table is provided by the path graph shown in Fig.
1.13. Utilizing this path graph, highly efficient algorithms for the sparse vector can
be obtained. For example, assume the injected current at node 5 is /5 while the
injected currents of other nodes are zero, and the voltage at node 1 is wanted. To do
so, we carry out FF operations according to the following active column sequence:

5—11—=13 — 14 — 15.

And then carry out FB operations according to the following active row
sequence:

15—-14—-13-12—-7—-2—1

In the above solution process, only the elements of five columns in lower triangular
and seven rows in upper triangular elements are employed, the computation effi-
ciency is improved dramatically. For sparse vector methods, the above path graph

Table 1.1 Path table

Node Next node Node Next node
2 8 10

7 9 10

4 10 12

11 13

11 12 13

9 13 14

12 14 15

~N OBk WN—
(o]
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I=[1 00 010000000°O0O0 0

1 2 3 4 5 6 7 8 9 10 1112 |13]14] 15
1 °
2 . .
3 .
4 . °
5 .
6 .
7 ° °
8 . .
9 . .
10 . . .
11 * ®
12110 . * 10 .
13 . O . O e . .
14 . « [O]O]
15 « | ol ]o]o]ole]-

Fig. 1.12 Sparse structure of a network’s factor table

Fig. 1.13 The path graph

should be determined in advance and then be utilized directly, thus unnecessary
zeroing and searching can be skipped.

1.4.5 Optimal Ordering Schemes of Electric Network Nodes

At present, the Gauss elimination method introduced in Sect. 1.3.1 is applied to
solve the node equations I =YV in most power system analysis programs. In
order to solve the network equation repeatedly, the admittance matrix is usually
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Fig. 1.14 Relationship between
Gauss elimination and Y-A
transformation

factorized first, and then the factor table can be directly used to solve the equations
with different right-hand vectors.

As we know, the admittance matrix is sparse and the triangular matrices after
factorization are also sparse. Generally, the distributions of nonzero elements in the
admittance matrix are different from those in the factorized triangular matrix,
because some new nonzero elements, i.e., the fill-in elements, may occur in the
elimination or LU factorization process.

The addition of fill-ins in the elimination process can be explained intuitively by
Y-A transformation. As shown in Fig. 1.14, node / does not directly connect with
nodes i and j in the initial network, thus corresponding elements Y;; and Yj; in its
admittance matrix are zero while Y;; is nonzero.

It can be proved that eliminating the first column of the admittance matrix in
Gauss elimination is equivalent to eliminating node 1 by Y-A transformation as
shown in Fig. 1.14. New branches connecting node pairs ij, i/, and [j are created.
Therefore, in the new admittance matrix, Yy, Y;;, and Y;; are all nonzero elements,
thus two fill-ins occur in eliminating the first column.

Generally, eliminating node k£ which is the central point of a star network will
create a mesh network whose vertexes are nodes connecting directly with node . If
the number of nodes connecting directly with & is Ji, the branches in the mesh
network should be combinations of any two nodes of J; nodes, which is equal to
(1/2)Jx(Jx — 1). Assuming that there already exist D; branches connecting these J;
nodes, the number of new branches (the number of fill-ins) after the elimination of
node £ is

1
Aby = 3 Jx(Jx — 1) = Di. (1.73)

The number of fill-ins highly depends on the elimination sequence or the ordering
number of the nodes. In Fig. 1.15, four number ordering schemes and the
corresponding fill-ins in the triangular matrix are denoted. Apparently, different
number ordering schemes will result in different fill-ins.

An optimal ordering minimizes the fill-ins in the factor table during the LU
factorization process. Different number ordering schemes should be compared
according to the number of fill-ins. At present, several effective schemes have been
developed. Among them the following three ordering schemes are widely employed:

1. Static ordering scheme: This scheme numbers the nodes according to the
number of branches connected to them. It means that the nodes are ordered
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Different ordering schemes | Admittance matrix Lower triangular matrix |Fn|2-
2
® | ®o o o o [ ]
[ N J o0
1 |5 — . 3| @ ® o |X |e® 6
[ ] [ ] ® X X |®
) [ ] [ ) ® X [ X |X|®
3 [ N J [ ]
® o o o o [ ]
2 1e 2 <4 [ [ N J 3
° ° e X |eo
: ° Y ® X X |@®
b ° ° °
[ AN )
3 ]07340 4/l | o | @] ® L BN J 1
[ NN J o0
: ° ® o | X|e
) [ ] [ ] [ ]
[ [ ] [
4 (113 ° ° hd 0
[ Y [ ]
4 e (o o o o ® (6|0 o o

® ————— Non-zero element X ———— Non-zero fill-in

Fig. 1.15 Tllustration of number ordering

from the node with fewest branches to the node with most branches. If the
numbers of connected branches for more than one node are the same, any one of
them can be ordered first. Before ordering, the number of the branches connected
to each node needs be counted.

The scheme can be explained intuitively as follows: in the admittance matrix,
the node with the fewest connected branches corresponds to the row which has
the fewest nonzero elements, so the fill-ins will be generated with less possibility
in the elimination operation. This scheme is very simple and suitable to be
applied to small networks with fewer loops.

2. Semidynamic ordering scheme: In the above scheme, the number of branches
connected to each node is counted based on the initial network and is constant in
the ordering process. In fact, in the process of node elimination, the number of
branches connected to each node will change according to A — Y transformation.
Therefore, the number of branches of the remaining nodes should be updated
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after each elimination and then they should be ordered according to new data.
This ordering scheme might be expected to result in better fill-in reduction,
because it considers the changing number of incident branches during the
elimination process.

3. Dynamic ordering scheme: The above two schemes are only suboptimal, which
cannot guarantee minimizing fill-in number. The more rigorous scheme numbers
the node according to the principle that introduces the fewest new branches. The
ordering process is as follows

¢ According to A — Y transformation, count the number of new branches (the
number of fill-ins) added after the elimination on each node, and the node
with the fewest branches (including fill-ins) is numbered first.

e Update the new number of incident branches connected to the remaining
nodes.

e It is clear that the computation complexity of this scheme is much more than
the other two.

[Example 1.7] Ordering the nodes of the network as shown in Fig. 1.16.
[Solution] The above three ordering schemes are performed and compared as
follows for the network as shown in Fig. 1.16.

1. Static optimal ordering scheme: There are eight nodes and 14 branches in this

network. The number of incident branches on each node is listed in Table 1.2.
The ordering results according to the static ordering scheme are shown in Fig.

1.17a. There are four new branches added in the process of node eliminations.
When node 1 is eliminated, branch 2—7 and branch 2—8 are generated and when
node 2 is eliminated, branch 3-7 and branch 4-7 are added. Factorizing the
corresponding admittance matrix, we get the structure of the lower triangular
matrix as shown in Fig. 1.17b. Four fill-ins, /77, I73, l74, and g, correspond with
the four new added branches.

2. Semidynamic ordering scheme: The process of numbering is shown in Table 1.3
and the result in Fig. 1.18a.

N
v N
N

Fig. 1.16 Example of the node
ordering R
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Table 1.2 Number of branches at each node for network shown in Fig. 1.16

47

Node M N o P Q R S T
Number of incident branches 4 3 3 3 3 3 3 6
2 v 3
1 —
| 2 | X
3 X
RN o 4L IX]X
7
N7
6 X
7 X oo o [X]|X
g | X || X|X[|X]|X|X
6
a b 1 2 5 6 7
Fig. 1.17 Results of static optimal ordering
Table 1.3 Process of semidynamic ordering scheme
Node Node
Node M N O P Q R S T ordered number
Process of 4 @3 3 3 3 3 3 6 N 1
numbering 4 4 3 3 3 3 6 P 2
4 3 @ 3 3 5 Q 3
4 ) 3 3 4 0 4
3 3 3 3 M 5
2 2 2 R 6
1 1 S 7
0 T 8

In this scheme, two new branches are introduced in the elimination process,
that is, when node 1 is eliminated, branch 4-5 and branch 4-8 are added.

3. Dynamic ordering scheme: In order to number the nodes, we need to count the
number of new branches (the number of fill-ins) added after eliminating each
node. The result is listed in Table 1.4. From this table, we can see that node R or
S should be numbered first. Suppose that node R is selected as node 1. After this
node is eliminated we count the new branch numbers when eliminating other

nodes. The results are shown in Table 1.5.

From Table 1.5, node S should be numbered as node 2. The computation is
repeated until the last node has been numbered. The results are shown in Fig.

1.18b. Only one new branch is added by this scheme.

Therefore, for complex networks, the dynamic ordering scheme can obtain

more satisfactory results.
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Fig. 1.18 Result of semidynamic
and dynamic optimal ordering

Table 1.4 First step of dynamic ordering scheme
Node eliminated M N O P Q R
Number of new branches 2 2 2 1 1 0

10

Table 1.5 Second step of dynamic ordering scheme
Node eliminated M N (0] P Q
Number of new branches 1 2 2 1 1

1.5 Nodal Impedance Matrix

1.5.1 Basic Concept of Nodal Impedance Matrix

As described above, the nodal equation of electric network can be generally re-
presented as

I=YV,

where I is the column vector of the nodal injection currents. Generally, it is the
known variable in power system analysis; V is the column vector of the nodal
voltages. Generally, it is unknown variable in power system analysis; and Y is the
nodal admittance matrix.

The above linear simultaneous equations can be solved by various methods, such
as the direct method by inverting the admittance matrix. Suppose

Z=Yy L (1.74)
Then, the above nodal equation can be written as

V=2 (1.75)
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or in the expansion

Vi=2Zuh +Zph + -+ Zyli + -+ Zy,

VZ :ZZIjl +222j2+"‘+Zziji+"'+22nln

i . .o . . . (1.76)
Vi=Znhh +Zoh+ -+ Zili + - + Zyl,
Vn = Zn]il +Z,,2i2 + - +Zniji +--- +Znnjl1
Comparing (1.75) with (1.76), we can see that
(Zn Ziz o Zu o Zig]
Ly Ly o Lo o Iy
Z= Zy Zp - Zi o Zin | (1.77)
-an Zn2 o Zni e Znn -

This is the nodal impedance matrix corresponding to the nodal admittance matrix Y,
and they have the same order. The diagonal element Z;; is called the self-impedance
or the input impedance, and the off-diagonal element Z; is called the mutual
impedance or the transfer impedance between the node i and node j. When the
injection currents are known, the nodal voltages of the network can be solved
directly through (1.75) or (1.76).

The physical meaning of the elements in the nodal impedance matrix can be
explained as follows:

If a unit current is injected into node i, and all other nodes are open, i.e.,

=1

[=0 (j=1,2,..., nj#i).

Then from (1.76), we can get

Vi=142;
Vo =2Zn

Vi =Z;
Vn - Zin-

Thus, we know that the elements in the ith column of the impedance matrix have the
following physical meaning:
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1. The diagonal element Z;; of the impedance matrix is equal in value to the voltage
of node i, when a unit current is injected into node i and all the other nodes are
open. Therefore, Z;; can be also regarded as the equivalent impedance between
node i and the ground when all other nodes are open. If the network has some
grounding branches and node i is connected to the network, Z;; must be a nonzero
element.

2. The off-diagonal element Z; is the mutual impedance between node i and j.
When a unit current is injected into node i and all the other nodes are open, Z;; is
equal in value to the voltage of node j. Because there are always some electro-
magnetic connections (including indirect connections) among the nodes of a
power network, the voltage of every node should be nonzero when node i is
injected with a unit current and the other nodes are open. That is to say, all the
mutual impedance elements Z;; are nonzero elements. Therefore, the impedance
matrix is a full matrix without zero elements.

The impedance matrix method for directly solving network voltage used to be
very popular in the early stages of power system analysis by computer. But the
impedance matrix is a full matrix, more memory and operations are required, which
limits its applications especially for large-scale networks. Nevertheless, it is con-
ceptually very useful in many aspects of power system analysis. This will be
introduced in later chapters.

1.5.2 Forming Nodal Impedance Matrix by Using Nodal
Admittance Matrix

Comparing with the admittance matrix, it is more difficult to formulae the nodal
impedance matrix of an electric network. Two general methods of constructing the
impedance matrix will be introduced in the next sections.

According to the discussion in Sect. 1.2.2, the admittance matrix of an electric
network can be obtained directly from its configuration and parameters. So we can
get the impedance matrix by inverting the admittance matrix. Several methods can
be used to invert a matrix. In the following, we will illustrate one of them —
inversion of a matrix through solving linear equations.

Consider an admittance matrix Y and its corresponding impedance matrix Z.
Solving the linear equation

YZ; = B; (1.78)

we can get the element Z; of the column j in the impedance matrix, where B; is a
column vector:
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Solving (1.78) successively for j = 1,2,...,n, we can obtain all elements of the
impedance matrix. When the elements are solved column by column, only the right-
hand vector B; is changed in (1.78). Therefore, the triangular factorization algo-
rithm is very efficient to solve (1.78) (refer to Sect. 1.3.2 for details).

Since the admittance matrix is symmetric, it can be factorized as:

Y =LDL".

The elements of the unit lower triangular matrix L and the diagonal matrix D can be
obtained from (1.61). Therefore, (1.78) can be rewritten as:

LDL'Z; = B,. (1.79)

Let
L'z, =W, (1.80)
DW, = X,. (1.81)

Then according to (1.79), we have
LX; = Bj. (1.82)

Thus the whole process of solving (1.79) can be decomposed into three steps:

1. Solve X; from (1.82)
Expand (1.82) as

1 X1 0
121 1 X2 0
Ly I 1 X3 :
Do =|:]. (1.83)
e e Gy 1 Xj 1
0
_lnl ln2 e lnj e ln,nfl 1_ L Xn L -
Then we can get xy, x2, .. ., X, sequentially from the above equation. This is the

forward substitution.
2. Obtain W; from (1.81)
Expand (1.81) as
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dl ] _Wl 1 _Xl 1
d, wa X2
d; w3 X3
=1:]. (1.84)
dj wj X
L dy 1 LW ] LXn |
Then we can get wy, wy, ..., w, sequentially from the above equation. This is the
normalization.
W,':Xl'/dj i:l,2,...,n. (185)
3. Obtain Z; from (1.80)
Expand (1.80) as
(1 by Ly oo Ly Ly T 2y ] Wy ]
1 I - lp - p Zy; W,
| R Z, | =W | (1.86)
1 ln7n71 anl,j anl
L 1 4L an a L Wn a
Then we can solve Z,;,Z,_y,...,Zj,...,Z,Z); one by one from bottom to top

sequence. This is the backward substitution.
[Example 1.8] Form the impedance matrix of the electric network shown in the
Example 1.1 from its admittance matrix by applying the factorization algorithm.
[Solution] The admittance matrix can be factorized by using (1.61),

dy =Y =1.378742 — j6.291665
Yy —0.6242024 4 3.900156 ,

by =—~= =0.612227 +;0.034979

T4 T 1378742 j64 57121 +

dy=Ypn—1B5d
= (1.453909 — j66.98082) — (0.61227 +j0.031979)* x (1.378742 — j6.291665)
= 1.208288 — j64.57121

Similarly, other elements can be found through using the recursion formulae. Then
the admittance matrix is factorized as
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r 1
~0.612227 |
+0.034979
—0.425687  —0.073971
L= | —j0.026671 —j0.017193
—0.982943
—j0.018393
T 1.378742
—6.291665
1.208288
—j64.57121
D:

1

~0.137743
—j0.027718
—0.924654
+j0.027559

1.022377

—j34.30237

0.887283
—j3.640902

53

1

—1.189287
+70.048151

1

0.038964
+j1.263678 |

The first step is to get the first column elements Z; of the impedance matrix. In this
situation, (1.83) should be written as

i 1
—0.612227 |
+j0.034979
—0.425687 —0.073971 |
—j0.026671  —j0.017193
—0.982943 —0.137743
—j0.018393  —;j0.027718
—0.924654
L +50.027559
Therefore,
X1:1

X1 1
X2 0
X3 = 0
X4 0
1 X5 0
—1.189287 1
+j0.048151 |

X2 = 0 — bLyx; = 0.612227 — j0.034979

x3 =0 — lyyx; — 320 = 0.471576 + j0.034609
x4 = 0 — Lipxy — lisxs = 0.665138 — j0.027805
x5 = 0 — Is3x3 — Isaxs = 1.226700 — j0.046890.
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From (1.85), we obtain

o X1 - 1
YT T 1378742 — 63291665
X 0.612227 — j0.034979

= 0.033234 4 j0.151658

_ — —0.000719 + j0.009468
"2 T 0, T 1208288 — j64.57121 +J ’
xs 0.665138 — j0.027805 ,
_ M — 0.049233 + j0.170687
M T 0.887283 — j3.640902 +J
x5 0.471576 + j0.034609 .
s — 0.000599 + j0.013765
"3 T g T 1022377 — j34.30237 +J ’
1.226700 — j0.046890
Wy =23 J = —0.006535 — j0.970940.

ds  0.03894 + 1263678

Back substitution is executed using the following equation

[, 0612227  —0.425687 [ 0.033234 ]

1j0.034979  —j0.026671 +j0.151658
B

. —0.073971  —0.982943 a —0.000719

—j0.017193  —j0.018393 Z +j0.009468

| ~0.137743  —0.924654 | | 7, | = | ©:0005%9

—j0.027718  +j0.027559 +/0.013765
Zy

N

+j0.048151 | | Zs; | e
—0.006535
L 1] | —j0.970940 |

Then the first column elements of the impedance matrix are

Zs; = —0.006535 — j0.970940
Z4 = —0.005290 — j0.983725
Z31 = —0.006862 — j1.019487
Zy; = —0.005555 —j1.032911
Z; = 0.017972 — j0.914690.

The computation can be performed in a similar way and the whole impedance
matrix can be obtained column by column.
Thus we finally have
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r 0.017972 —0.005555  —0.006862  —0.005290  —0.006535 7
—j0.914690  —j1.032911 —j1.019487 —j0.983725 —;0.970940
—0.0055555 0.007781 —0.010007 0.007410 —0.009530
—j1.032911  —j0.961291 —j1.037907 —j0.918658 —;j0.988482

7 —0.006862 —0.010007 0.026875 —0.009530 0.025596
| —j1.019487  —j1.037907 —j0.90470  —;j0.988482 —j0.861619
—0.005290 0.007410 0.007410 0.007057 —0.009076
—j0.983725  —j0.918658 —j0.918658 —j0.859912 —j0.941412
—0.006535 —0.009530  —0.009530  —0.009076 0.024377
L —j0.970940 —;j0.988482  —j0.988482 —j0.941412 —;j0.790589 |

As described above, the elements of the jth column in the impedance matrix are
equal to the nodal voltages in value when a per-unit current is injected into node j
and other nodes are open. Therefore, finding the elements of the jth column from
(1.78) is equivalent to solving the following nodal equation

YV =1, (1.87)

where all the elements of the current column vector I; are zero except the jth
element equals 1. Obviously, V obtained from this equation is equal to Z; in value.

It is worth noting that the computation burden of this method is a little too heavy
in some situations; for example, if we want to derive the impedance matrix of a
network with n nodes, n linear equations must be solved n times. Hence this method
is only suitable for the case in which only a few elements are of interest. In power
flow and short circuit analysis, the input impedance of one pair of nodes and the
transfer impedance between two node pairs are often calculated using the above
method. In Fig. 1.19, in order to get the input impedance of node i and j and the

Fig. 1.19 Solving node pair’s
input and transfer impedance —
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transfer impedance between ij and &/, a unit current is injected between node i and
node j, while other nodes are open. That is

L=1, [[=-1
In this case, solve the network equation
YV =F, (1.88)
where
"0
1 i
0|
F;=| :
—1|
0
L O -

The nodal voltage can be obtained and the input impedance of node pair ij is
Zijfij = V,' — Vj (189)
The transfer impedance between ij and £/ is

Ziij=Vi =V, (1.90)

1.5.3 Forming Nodal Impedance Matrix by Branch
Addition Method

In the above section, we have described a method of forming the impedance matrix
by using the admittance matrix. An alternative method is to form the impedance
matrix directly by the branch addition method. The method is straightforward in
computation and allows easy impedance matrix modification for changes in the
network. Therefore it is applied widely.

The forming process is illustrated by Fig. 1.20.

We start to form the impedance matrix from a grounded branch and a matrix of
order 1 is formed. In Fig. 1.20, zj first is used to form this matrix. Then branch z;,
is added and the new branch creates a new node @. We call it adding a tree branch if
a new node is generated when adding a branch. At the same time, the order of the
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-

Z20

@ Z14 @
Z10

Fig. 1.20 Process of branch addition method in forming impedance matrix

corresponding matrix increases by 1. Thus after adding tree branch z;,, we obtain a
2 x 2 impedance matrix.

We next add branch zy. In this situation, there is no new node generated. The
order of the impedance matrix does not change. This is called adding a link branch.
All the elements of the impedance matrix must be updated when a link branch is
added. Repeat the operations in a similar way: after adding tree branch z;3, node 3 is
created. Then the order of the impedance matrix becomes three.

After adding tree branch z;4, node 4 is created and the order of the impedance
matrix becomes four.

After adding tree branch zs5, node 5 is generated. The order of the impedance
matrix becomes five.

When adding link z,5, no new node is generated and the order of the impedance
matrix is still five.

The impedance matrix is formed after all the branches have been added to the
electric network.

It should be noted that the sequence of adding the branches is not unique. An
alternative sequence is as follows:

Tree branch z;y — tree branch z,y — link z;, — tree branch z;3 — link zo3 —
tree branch z;4 — tree branch z,s.

Of course, there are some other schemes besides these two schemes. And it can
be proved that whatever the branch adding sequence is, the impedance matrix is the
same when the node number ordering is the same. However, the computation
efforts under the different adding sequences are quite different. The effects of
adding a tree branch or a link branch on the impedance matrix will be discussed
in the following:

1. Adding a tree branch

Assume that the m x m impedance matrix of an electric network has been formed
for the first m nodes.

Zy Zyp - Ly oo Zim
oy Iy 2y Zom
In = o . 1.91
N Zy Zp - Zi o Zip (191)
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When a tree branch Z;; is added at node i, a new node j is created and the order of the
impedance matrix becomes m + 1 (see Fig. 1.21). Suppose the new impedance
matrix is

' / / / ’
le le e Zu‘ U Zlm le

! ! ! ! . !

21 2 77 2 T om - sz

! ! ! ! . !

7 — | Zn Lo o Ly L Ly | (1.92)
N

! ! ! U . !
Zm] ZmZ Zmi e me . ij

! ! ! ! . !

L4y Zp Zji Zim 2y |

We first solve the m x m matrix inside the dashed lines of (1.92). In order to obtain
the values of the first column Z,Z5, - - - Z{, - - - Z! |, a unit current is injected in node
1 and the other nodes are open as shown in Fig. 1.21a. In this case, voltages of the
node 1, 2, ..., m have nothing to do with branch z;;, therefore,

! ! ! !
Z =211, 2y = Zor, .. Ly =Zity . 2 = T

It means that the first column of Z& is the same as the first column of Zy. Similarly,
the second column of Zf\I is the same as the second column of Zy. Therefore we can
deduce that the m x m matrix inside the dashed lines of (1.92) is the original
impedance matrix before adding the branch z;;.

V. 4
112:1 1
N :
N V’ ”/j J N Vl Zij / ijzl
s N T —e—
Vm e V;n

L b

Fig. 1.21 Adding tree branch

|||—
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We now solve the jth column of Z}. Similarly, j and other nodes are open as
shown in Fig. 1.21b. In this situation, voltages of the node 1,2,...,i,... m are the
same as those when a unit current is injected in node i, so we have,

Zyy = 21,25 = Zni, ..., Zy = Ziiy ..., Zpyi = . (1.93)

mi =
The voltage of node j is
Vj = Vi+z,-]- x 1.
According to the physical meaning of the impedance matrix, we obtain
Zjj = Zii + zj;. (1.94)

Due to the symmetry of the impedance matrix, the off-diagonal elements of the jth
row in Zj, can be obtained as follows,

Zj'.1 :le,ZJ’-2 =2, 2 =Zijy ..\ Loy = L. (1.95)

© i » “jm

Hence all the elements in the impedance matrix after adding tree branch z;; are
found. Additionally, although the order of the new impedance matrix increases by
1, the computation to form it is relatively simple.

1. Adding a link

The impedance matrix of the initial network is denoted as Zy. When link z;; is added
between nodes 7 and j, the impedance matrix becomes Zj. The orders of these two
matrices are the same because no new node is generated in the network. We now
consider how to calculate the elements of new impedance matrix Zy.

As shown in Fig. 1.22, suppose the injection current vector of the new network is
1,

1:[1’1 I - I .- 1} jm}‘
and the nodal voltage vector is V
VZ[V1 Vo oor Ve Vj Vm}‘.
Thus the following relationship holds

V=2 (1.96)



60 1 Mathematical Model and Solution of Electric Network

Fig. 1.22 Adding a link
R
V, b
Vi
N .
I"/\ Zijp ,
DR/
V’v‘Vl jl;l
From Fig. 1.22, the nodal current injected into the initial network is
_ 1:1 -
163
Ii = Iy
I = : =1I—-Aylj, (1.97)
Ij + 1,'J'
L I |
where Ay, is a column vector related to the added link branch,
0
1
0 ||!
Ay =] : (1.98)
1| _
0 J
L 0 -
According to the nodal equation of the original network,
V = ZxI' = ZyI — ZyAul;. (1.99)

Assume

ZnAy = 7. (1.100)
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We know that Z; is a column vector

[ Z1i — Zy; T
Zyi — Loj
Z;; — Z;j
Z, = : (1.101)
Zji - Zjj
L Zpi — Zyj |
Rewrite (1.99) as,
V =2l — Z, 1. (1.102)
The voltage difference between nodes i and j is equal to
Vi—V;=zyl; = ALV, (1.103)

where AL is the transpose of Aj;. Substituting (1.102) into (1.103), we obtain
Zijilj = A;{,IZNI — ALZLIU
I ;j can be solved as follows

: 1
Iij=—17Z1, (1.104)
ZiL

where
ZLL = ALZL + Z,‘j = Zii + ij — 2Z’J + Z,‘j7 (1105)
2T = AL Zx = (ZnA)".

Substituting (1.104) into (1.102), we have

1
V= (ZN——ZLZ{)I. (1.106)
Z1

Comparing (1.96) with (1.106), we obtain the new impedance matrix Z&,

1
Zy = Zx —Z—ZLZ{. (1.107)
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Expanding the above equation, we have the following formulae of the elements in Z}

2,...,m
) ) (1.108)

Zy=Zu—
ki e, M

ZikZy k=1,
ZiL 1

In contrast with adding a tree branch, the computation of adding a link is quite
heavy and complicated in which each element of the impedance matrix must be
recalculated according to (1.108). The speed of forming the impedance matrix
mainly depends on computations for adding links. Therefore the sequence of adding
branches affects the computation speed dramatically. For example of the network in
Fig. 1.20, the computations of adding link z»3 according to the first sequence are
performed on a 5 X 5 matrix, but the recalculations are just executed on a 3 x 3
matrix according to the second sequence. Hence the more reasonable sequence of
adding branches is to add links as early as possible.

If the transformer branch is involved, the IT equivalent circuit as shown in
Fig. 1.4 can be used in forming the impedance matrix. Comparing with a transmis-
sion line, two more branches must be added for each transformer and in most
circumstances both of them are links. Therefore the computation burden increases
notably.

Now a direct method of adding a transformer branch is introduced in the
following, which need not use the IT equivalent circuit.

First, we discuss the situation that the transformer added is a tree branch. In
Fig. 1.23a, the leakage impedance is put at the nominal turn ratio side of the
transformer. If the leakage impedance is put at the off nominal side, the formulae
can be derived in a similar way.

The impedance matrix of the original network is denoted as Zy (see (1.91)).
When the transformer is added as a tree branch, the order of the new impedance
matrix Zf\] increases by 1 (see (1.92)). It can be proved that the m x m block matrix
in the top-left of Zy is just Zx.

As shown in Fig. 1.23b, the transformer is substituted for its equivalent circuit.
When node j is open, the transformer’s Il equivalent circuit is also opened as
viewed from node i. This can be explained as follows.

L

Fig. 1.23 Adding a transformer
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The impedance of the loop constituted by nodes i, j and the ground is

K? K
Zij = T G

zijo = Kz + 7 T

1-K
And the impedance between node i and the ground is z;o = (K/(1 — K))z;jo. The
value of the parallel impedance of zjy and z;;o becomes infinity. When a unit current
is injected at each node of the original network, the current distribution of the
original network is unchanged after adding a transformer as a tree branch. Hence
the nodal voltages are also unchanged.

The issue now is how to solve the new elements of Z{. Focus on this question, a
unit current is injected at node j and the other nodes are open as shown in Fig. 1.23b.
This is just like the injecting current K into the original network at node i. Thus the
nodal voltages are

Vi=KZ;,Vos =KZy;,...,Vi = KZij,Vyy = KZ,,.
The voltage of node j is
Vi = K(Vi + Kzj) = K*(Zi + zy).
Thus, we obtain

lej :KZH,Z;j :K22i7-~~7zl/‘j ZKZ,*,',... ! KZmi; (1109)

»Emj T

Zjl-j- :KZ(Zii+Zii). (1110)
Obviously, (1.109) and (1.110) will be changed into (1.93) and (1.94) when the turn
ratio K = 1.

The situation when the transformer added is a link branch is shown in Fig. 1.23c.
Assume that the current injected into the network after adding the transformer
branch is a column vector I, thus the current injected into the original network
A
I

I — KI;

r =1- Al (1.111)

Ij—|—],:,'
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where A}, is a column vector.

0
K — 1
0

Ay =
—1||<J
0
_0_

The following steps are similar to that of a simple impedance link branches (see
(1.99)~(1.108)). The only difference is to substitute the original Ay for Aj},.
Therefore (1.101) should be changed as follows:

rKZy; — le T
K7, — sz
KZi — Z;
Z, = . (1.112)
KZ;i — Z;
_KZmi - ij J

Equation (1.103) should be rewritten as
KV; —V; = K*z;l; = A V. (1.113)
Accordingly, (1.105) is changed as
Z11 = KZp; — Z1; + Kz (1.114)

After calculating Z; and Z;;, the elements of Z& can be calculated according to
(1.108).

Briefly, the process of forming an impedance matrix by using the branch
addition method is a process of adding branches one by one. If the configuration
of a network is changed or a branch needs to be added, the impedance matrix can be
modified directly according to the above formulae. For instance, if a branch z;
needs to be removed, the equivalent operation is to add a branch —z; into the
network.
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[Example 1.9] Form the impedance matrix of the electric network shown in Fig.
1.10 by using the branch addition method.

[Solution] For convenience of the computation, line-to-ground capacitances at
both ends of the transmission lines are lumped to the corresponding node and
denoted in the format of line-to-ground reactance. The equivalent circuit is shown
in Fig. 1.24.

According to the node ordering, we can make the sequence table of branch
adding as follows.

Sequence of Terminal nodes of

branches branch

added Impedance of branch
i J

M 0.1 —j4

2) 0---2 -j2

3) 1---2 0.04 + ;0.25

(4) 03 —j4

5) 1---3 0.1 +0.35

(6) 2---3 0.08 + j0.30

(7) 2.+ 4 j0.015

(8) 3---5 70.03

Then label the branch adding sequence on the figure as shown in Fig. 1.24.

1.

1 0.08 +0.30

: Q@ * ©)
(

(

(

A

(1)-|—

Fig. 1.24 Impedance matrix formed by using branch addition method
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The procedure for forming the impedance matrix is shown as follows:

1. Start from the grounded branch zy; to form a 1 x 1 matrix. Its element is
— j4

2. Add branch (2): z(, is atree branch, i = 0, j = 2. According to (1.93) and (1.94),
the new elements are

Zia =7y = 210,222 = Zoo + Zoa-
According to the physical meaning of the impedance matrix element, we have
Zio =2y = 0.
Then
Zin =20 =0,2pn=Zp=—2

and the 2 x 2 matrix is

2 -2

3. Add branch (3): zj; is a link branch. The elements of Z; can be obtained
according to (1.101) and (1.105),

Ziyn =2y —Zip = —j4
Zir =21y — 2y = —j2.

From (1.105) we know,
Zip =721 —Zip + z1p = —j4 — j2 + 0.04 +j0.25 = 0.04 — j5.75.

Modify the elements of the 2 x 2 matrix according to (1.108)

ZiZ, _ i (—j4)2

Z =Zy — b ——T = 0.019356 — j1.217526
n A T T T T 004 — 575 /
Z12Z14 72 x (—j4) )
Z, =27, =Z - =0-— = —0.096782 — j1.301237
2T T AT 0.04 — j5.75 /
7157 2)?
Zh, =2y -2 V2" _ 0004839 — j1.304381.

ZiL 150,04~ j5.75
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Thus we obtain the impedance matrix constituted by branches 1, 2, and 3

1 2

1| 0.019356 —-0.096282
—j1.1217526 | —j1.391237
—0.096282 0.004839
—j 1.391237 | —j1.304381

4. Add branch (4): zp3 is a grounded tree branch. The computation process is the
same as that in Step 2. The augmented matrix 3 x 3 is

1 2 3

1 | 0.019356 —-0.096282
—j1.1217526 — 1.391237
—0.096282 0.004839
—j 1.391237 —j 1.304381

3 —j 4

5. Add branch (5) zy3 and branch (6) z»3. Because both of these are links, the matrix
order is unchanged. The computation process is the same as that in Step 3. The
augmented matrix 3 x 3 is

1 2 3
0.017972 ~0.005555 | —0.006862
—j0.914690 | —j 1.032911 | —j1.019487
~0.005555 | 0.007781 | —0.010007
—j 1.0329111 | —j 0.964591 | —j1.037907
~0.006862 | —0.010007 | 0.026875

—j1.019487 | —j1.037907 | —j0.904700

6. Add branch (7): zp4 is a transformer tree branch. In this network, the off normal
turns ratio of the transformer is at node i. The computation cannot be performed
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1

j0.015%(1.05)?
/—: > @ g

@ j0.015
—{

Fig. 1.25 Equivalent circuit of the transformer

directly using (1.109) and (1.110). We should transfer the off normal turns ratio
to the other terminal node of the transformer. It is illustrated in the Fig. 1.25.

Then the elements of the fourth row and column can be calculated according
to (1.109) and (1.110).

‘ -

Zy =71y =K7 = (—0.005555 — j1.032911) = —0.005290 — j0.983725

—_
- o
S

Zyp =70y =K'Z0p = (—0.007781 — j0.964591) = 0.007410 — j0.918658

_.
‘H'o
(9

Zys =734 =K'Zp; = (—0.010007 — j1.037907) = —0.009530 — j0.988482

[
-
W

1
Zus = KP(Zny + 2hy) = 55 (~0.007781 — j0.964591) + j0.015

= 0.007057 — j0.859912.

We now have a 4 x 4 matrix

1 2 3 4
0.017972 —0.005555 | —0.006862 | —0.005290
—j0.914690 | —j —j1.019487 | —j0.983725
1.0329111
—0.005555 | 0.007781 —0.010007 | 0.007410
—j -j —j1.037907 | —j0.918658
1.0329111 | 0.964591
—0.006862 | —0.010007 | 0.026875 —0.009530
—j1.019487 | —j1.037907 | —j0.904700 | —;0.988482
—0.005290 | 0.007410 —0.009530 | 0.007057
—j0.983725 | —j0.918658 | —;j0.988482 | —;0.859912
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7. Add branch (8): z35 is also a transformer tree branch. Its off normal turns ratio is
also at node i. The computation process is the same as that in Step 6.

The final impedance matrix is

©0.017972  —0.0055555 —0.006862 —0.005290  —0.006535 7
—j0.914690  —j1.032911 —j1.019487 —j0.983725 —;j0.970940
—0.0055555  0.007781  —0.010007  0.007410  —0.009530
—j1.032911  —j0.964591 —j1.037907 —j0.918658 —;j0.988482
~0.006862  —0.010007  0.026875  —0.009530  —0.025596
—j1.019487  —j1.037907 —j0.904700  —j988482  —j0.861619
~0.005290  0.007410  —0.009530  0.007057  —0.009076
—j0.983725 —j0.918658  —jO88482  —j0.859912 —j0.941412
—0.006535  —0.009530  —0.025596  —0.009076  0.024377
—j0.970940  —j0.988482 —j0.861619 —j0.941412  —j0.790589

Thinking and Problem Solving

1.

2.

10.

11.
12.
13.

Prove that the incidence matrix of an electrical power network is a singular
matrix

Is the admittance matrix generally a singular matrix? In what condition can the
admittance matrix be a singular matrix?

. What simplifications can be made to the equivalent circuit of the transformer in

Fig. 1.4?

. Why is the admittance matrix including phase shifter(s) not a symmetric

matrix?

. How many elements are there in the admittance matrix of an electrical power

network with N nodes and B branches?

. What changes will occur in the admittance matrix when the turn ratio of a

transformer varies?

. What changes will occur in the admittance matrix when a line is out of service?
. What characteristics does the electrical power network equation have? And

what requirements are there for its solution algorithm?

. Why is the method of Gauss elimination often adopted to solve network

equations?

How is the factor table formed? Compare the features between two methods of
forming the factor tables.

What is the key idea behind sparse technique?

What fields can the sparse vector method be applied to?

Compare the features and application areas of three kinds of node optimal
ordering methods.
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15.

16.

1 Mathematical Model and Solution of Electric Network

. State the significance of self-impedance, input impedance, mutual impedance,

and transfer impedance.

How can an admittance matrix be used to find self-impedance Z; and mutual
impedance Z;? Give a detailed program flowchart.

Describe the storage scheme of a sparse admittance matrix.



Chapter 2
Load Flow Analysis

2.1 Introduction

Load flow analysis is the most important and essential approach to investigating
problems in power system operating and planning. Based on a specified generating
state and transmission network structure, load flow analysis solves the steady
operation state with node voltages and branch power flow in the power system.
Load flow analysis can provide a balanced steady operation state of the power
system, without considering system transient processes. Hence, the mathematic
model of load flow problem is a nonlinear algebraic equation system without
differential equations. Power system dynamic analysis (see Chaps. 5 and 6) inves-
tigates system stability under some given disturbances. Its mathematic model
includes differential equations. It should be pointed out that dynamic analysis is
based on load flow analysis and the algorithm of load flow analysis is also the base
for dynamic analysis methods. Therefore, familiarity with the theory and algo-
rithms of load flow analysis is essential to understanding the methodology of
modern power system analysis.

Using digital computers to calculate load flow started from the middle of the
1950s. Since then, a variety of methods has been used in load flow calculation. The
development of these methods is mainly led by the basic requirements of load flow
calculation, which can be summed up as:

1. The convergence properties
2. The computing efficiency and memory requirements
3. The convenience and flexibility of the implementation

Mathematically, the load flow problem is a problem of solving a system of nonlinear
algebraic equations. Its solution usually cannot avoid some iteration process. Thus
reliable convergence becomes the prime criterion for a load flow calculation meth-
od. With the scale of power system continually expanding, the dimension of load
flow equations now becomes very high (several thousands to tens of thousands). For
the equations with such high dimensions, we cannot ensure that any mathematical
method can converge to a correct solution. This situation requires the researchers
and scholars in the power system analysis field to seek more reliable methods.

X.-F. Wang et al., Modern Power Systems Analysis. 71
doi: 10.1007/978-0-387-72853-7, © Springer Science + Business Media, LLC 2008



72 2 Load Flow Analysis

In the early stages of using digital computers to solve power system load flow
problems, the widely used method was the Gauss—Seidel iterative method based on
a nodal admittance matrix (it will be simply called the admittance method below)
[4]. The principle of this method is rather simple and its memory requirement is
relatively small. These properties made it suit the level of computer and power
system theory at that time. However, its convergence is not satisfactory. When the
system scale becomes larger, the number of iteration increases sharply, and some-
times the iteration process cannot converge. This problem led to the use of the
sequential substitution method based on the nodal impedance matrix (also called
the impedance method).

At the beginning of the 1960s, the digital computer had developed to the second
generation. The memory and computing speed of computers were improved signif-
icantly, providing suitable conditions for the application of the impedance method.
As mentioned in Chap. 1, the impedance matrix is a full matrix. The impedance
method requires the computer to store the impedance matrix that represents the
topology and parameters of the power network. Thus it needs a great amount of
computer memory. Furthermore, in each iteration, every element in the impedance
matrix must be operated with, so the computing burden is very heavy.

The impedance method improved convergence and solved some load flow
problems that the admittance method could not solve. Therefore, the impedance
method was widely applied from then on and made a great contribution to power
system design, operation, and research.

The main disadvantage of the impedance method is its high memory require-
ment and computing burden. The larger the system is, the more serious these
defects are. To overcome the disadvantage, the piecewise solution method based
on impedance matrix was developed [5]. This method divides a large system up into
several small local systems and only the impedance matrixes of local systems and
the impedances of tie lines between these local systems are to be stored in the
computer. In this way, the memory requirement and computing burden are greatly
alleviated.

The other approach to overcoming the disadvantages of the impedance method is
to apply the Newton—Raphson method (also called the Newton method) [6]. The
Newton method is a typical method used to solve nonlinear equations in mathemat-
ics with very favorable convergence. As long as the sparsity of the Jacobean matrix
is utilized in the iterative process, the computing efficiency of the Newton method
can be greatly improved. Since the optimal order eliminating method [7] began to
be employed in the middle of the 1960s, the Newton method has surpassed the
impedance method in the aspects of convergence, memory demand, and computing
speed. It is still the favored method, and is widely used in load flow calculation
today.

Since the 1970s, the load flow calculating method continues to develop in
various ways. Among them the most successful is the fast decoupled method,
also called the P — Q decoupled method [8]. Comparing with the Newton method,
this method is much simpler and more efficient algorithmically, and therefore more
popular in many applications.
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In the recent 20 years, research on load flow calculation is still very active. Many
contributions seek to improve the convergence characteristics of the Newton
method and the P — Q decoupled method [9—-15]. Along with the development of
artificial intelligent theory, the genetic algorithm, artificial neural network algo-
rithm, and fuzzy algorithm have also been introduced to load flow analysis [16—19].
However, until now these new models and new algorithms still cannot replace the
Newton method and P — Q decoupled method. Because the scales of power systems
continue to expand and the requirements for online calculation become more and
more urgent, the parallel computing algorithms are also studied intensively now and
may become an important research field [20].

This chapter mainly discusses the currently widely used Newton method and
P — Q decoupled method.

The degree of flexibility and convenience of load flow calculation are also very
important to computer application. In practice, load flow analysis is usually part of
an interactive environment, rather than a pure calculation problem. Therefore, the
human—computer interface should be friendly, allowing users to monitor and
control the calculation process. To obtain an ideal operation scheme, it is usually
necessary to modify the original data according to the computing results. Thus, the
computing method should be flexible, permitting users to readily modify and adjust
their operation scheme. Input and output processes should also receive careful
attention.

Power system steady state analysis includes load flow analysis and static security
analysis. Load flow analysis is mainly used in analyzing the normal operation state,
while static security analysis is used when some elements are out of service. Its
purpose is to check whether the system can operate safely, i.e., if there are
equipment overloads, or some node voltages are too low or too high. In principle,
static security analysis can be replaced by a series of load flow analyses. However,
usually there are very many contingency states to be checked and the computation
burden is quite large if a rigorous load flow calculation method is used. Hence
special methods have to be developed to meet the requirement of efficient calcula-
tion. In the first part of this chapter, the models and algorithms of load flow
calculation are introduced. In the second part, the problems related to static security
analysis are discussed.

2.2 Formulation of Load Flow Problem

2.2.1 Classification of Node Types

An electric power system is composed of generators, transformers, transmission
lines and loads, etc. A simple power system is illustrated in Fig. 2.1. In the process
of power system analysis, the static components, such as transformers, transmission
lines, shunt capacitors and reactors, are represented by their equivalent circuits
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Fig. 2.1 Simple power system

consisting of R,L,C elements. Therefore, the network formed by these static
components can be considered as a linear network and represented by the
corresponding admittance matrix or impedance matrix. In load flow calculation,
the generators and loads are treated as nonlinear components. They cannot be
embodied in the linear network, see Fig. 2.1b. The connecting nodes with zero
injected power also represent boundary conditions on the network.

In Fig. 2.1b, the relationship between node current and voltage in the linear
network can be described by the following node equation:

I=YV (2.1)

or
ii :ZY”VI (l: 1,2,...,”) (2'2)
=1

where /; and Vj are the injected current at bus i and voltage at bus j, respectively, Y
is an element of the admittance matrix, » is the total number of nodes in the system.
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To solve the load flow equation, the relation of node power with current should
be used

. Pi—jO; .
= VJQ (i=1,2,...,n) (2.3)

where P;, Q; are the injected active and reactive power at node i, respectively. If
node i is a load node, then P; and Q; should take negative values. In (2.3), V,- is the
conjugate of the voltage vector at node i. Substituting (2.3) to (2.2), we have,

Pi—jOi X~y o
AJQ :ZY,-jVj (i=1,2,...,n)
=

Vi
or
Pi+jOi ~o o .
%Q:ZY,” (i=1,2,...,n) (2.4)
i j=1

There are n nonlinear complex equations in (2.4). They are the principal equations
in load flow calculation. Based on different methods to solve (2.4), various load
flow algorithms can be formed.

In the power system load flow problem, the variables are nodal complex voltages
and complex powers: V, 0, P, Q. If there are n nodes in a power system, then the
total number of variables is 4 .

As mentioned above, there are n complex equations or 27 real equations defined
in principal by (2.4), thus only 2n variables can be solved from these equations,
while the other 2n variables should be specified as original data.

Usually, two variables at each node are assumed known, while the other two
variables are treated as state variables to be resolved. According to the original data,
the nodes in power systems can be classified into three types:

1. PQ Nodes: For PQ nodes, the active and reactive power (P, Q) are specified as
known parameters, and the complex voltage (V, 0) is to be resolved. Usually,
substation nodes are taken as PQ nodes where the load powers are given
constants. When output P and Q are fixed in some power plants, these nodes
can also be taken as PQ node. Most nodes in power systems belong to the PQ
type in load flow calculation.

2. PV Nodes: For PV nodes, active power P and voltage magnitude V are specified
as known variables, while reactive power Q and voltage angle 0 are to be
resolved. Usually, PV nodes should have some controllable reactive power
resources and can thus maintain node voltage magnitude at a desirable value.
Generally speaking, the buses of power plants can be taken as PV nodes, because
voltages at these buses can be controlled with reactive power capacity of their
generators. Some substations can also be considered as PV nodes when they
have enough reactive power compensation devices to control the voltage.
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3. Slack Node: In load flow studies, there should be one and only one slack node
specified in the power system, which is specified by a voltage, constant in
magnitude and phase angle. Therefore, V and 0 are given as known variables
at the slack node, while the active power P and reactive power Q are the
variables to be solved. The effective generator at this node supplies the losses
to the network. This is necessary because the magnitude of losses will not be
known until the calculation of currents is complete, and this cannot be achieved
unless one node has no power constraint and can feed the required losses into the
system. The location of the slack node can influence the complexity of the
calculations; the node most closely approaching a large AGC power station
should be used.

We will employ different methods to treat the above three kinds of nodes in
power flow calculations.

2.2.2 Node Power Equations

As described above, power system load flow calculations can be roughly considered
as the problem of solving the node voltage phasor for each node when the injecting
complex power is specified. If the complex power can be represented by equations
of complex voltages, then a nonlinear equation solving method, such as the
Newton—-Raphson method, can be used to solve the node voltage phasors. In this
section, node power equations are deduced first.

The complex node voltage has two representation forms — the polar form and the
rectangular form. Accordingly, the node power equations also have two forms.

From (2.4), the node power equations can be expressed as

Pi+jQi=Vi) YiV; (i=1,2,...,n) (2.5)

JEi

where j € i means the node j should be directly connected with node i, including
j = 1. As discussed in Chap.1, the admittance matrix is a sparse matrix, and the
terms in X are correspondingly few. If the voltage vector of (2.5) adopts polar form,

V=V (2.6)

where V;,0; are the magnitude and phase angle of voltage at node i. The elements of
admittance matrix can be expressed as

Yij = Gjj+JBj
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Hence (2.5) can be rewritten as

Pi+jQi = Vie" > (G — jByj)Vie ™ (i=1,2,...,n) (2.7)

Jjei
Combining the exponential items of above equation and using the relationship
¢ = cos O+ jsinf

we have,

Pi+jQ;i =Vi Y _Vi(Gy — jBy)(cos Oy +jsin0;) (i=1,2,...,n) (2.8

JEI

where 0;; = 0; — 0;, is the voltage phase angle difference between node i and j.
Dividing above equations into real and imaginary parts,

Pi = Vl‘ Z Vj(G,j Ccos 0,] + B,:,' sin 01:/')
Jei
Ql‘ = Vl' Z V/’(Gij sin Gl‘j — B,'j COS 61:]')

Jjei

This is the polar form of the nodal power equations. It is not only very important in
the Newton—Raphson calculation process, but also essential to establish the fast
decoupled method.

When the voltage vector is expressed in rectangular form,

Vi=e +Jf;
where

e = V,' CoS 91' f, = V,' sin 91'

We can obtain from (2.5),

Pi=eiy (Gyej—Byfy) + fi Y (Gifi + Bie))

Jei jeEi

Qi =1 ) (Gie; = Biif) — e y_ (Giifi + Byey)

JEi JEi

(i=1,2,....,n) (2.10)
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Let

> (Gye; = Bif) = aj

JEi

> (Gyfi + Bije) = b;

jei

(2.11)

Obviously, a; and b; are the real and imaginary parts of injected current at node i
and (2.10) can be simplified as,

P; = eja; + fib;
5 (i=1,2,....n) (2.12)
Qi = fia; — eib;

This is the rectangular form of the nodal power equations.

Both (2.9) and (2.10) are the simultaneous nonlinear equations of node voltage
phasors. They are usually expressed as the following forms as mathematical models
of the load flow problem:

API' = Pjs — V,' Z Vj(Gij COS 0,']' + B,‘j sin Bij) =0
jei
AQ: = Qi — Vi > _ Vi(Gjjsin 0y — Bjjcos ;) = 0

jei

(i=1,2,...,n) (2.13)

and

AP = Pis — ey (Gye; — Byf;) = f; Y (Gyfy + Bye;) = 0

jei jei
AQi = Qi —fi Y (Gye; — Byfy) + e Y (Gyifi + Byej) =0 (2.14)
jei jei
i=1,2,...,n)

where P;s, Q;s are the specified active and reactive powers at node i. Based on
the above two simultaneous equations, the load flow problem can be roughly
summarized as: for specified P;,Q; (i = 1,2,...,n), find voltage vector V;,0; or
e;,f; (i=1,2,...,n), such that the magnitudes of the power errors AP;, AQ;,
(i=1,2,...,n) of (2.13) or (2.14) are less then an acceptable tolerance.

2.3 Load Flow Solution by Newton Method

2.3.1 Basic Concept of Newton Method

The Newton—Raphson method is an efficient algorithm to solve nonlinear equa-
tions. It transforms the procedure of solving nonlinear equations into the procedure
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of repeatedly solving linear equations. This sequential linearization process is the
core of the Newton—Raphson method. We now introduce the Newton—Raphson
method by the following nonlinear equation example,

fx)=0 (2.15)

Let x(*) be the initial guess value of the above equation solution. Assume the real
solution x is close to x(@,

x=x0 — Ax® (2.16)
where Ax(¥) is a modification value of x(?). The following equation holds,
F(O — A9y =0 (2.17)

When Ax() is known, the solution x can be calculated by (2.16). Expanding this
function in a Taylor series expansion about point x(*)yields:

FO) = Ax0) = F(x0) = f/()Ax® 4 f(x0) AL (2.18)
..+(,1)"f<n)(x<0))%+...:0 '

where f'(x\"),. . ., X are the different order partial derivatives of f(x) at x"/.

here f/(x(©)),..., £ (x(?)) are the diff der partial derivatives of f ©

If the initial guess is sufficiently close to the actual solution, the higher order terms
of the Taylor series expansion could be neglected. Equation (2.18) becomes,

F0) = £ (0)Ax® =0 (2.19)

This is a linear equation in Ax(*) and can be easily solved.
Using Ax(©) to modify x(¥), we can get x(1):

K1 = X0 — A (2.20)

x") may be more close to the actual solution. Then using x(!) as the new guess
value, we solve the following equation similar to (2.19),

) = £ =0
Thus x?is obtained:
12 = (1 _ A (D (2.21)
Repeating this procedure, we establish the correction equation in the tth iteration:

) = /(YA = 0 (222)
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Fig. 2.2 Geometric interpretation
of Newton method
y=/x)
f(x(Hl)) f(x(f))
N o0
D |0 X
AX(HI AX(I)
or
FE) = £ () A (2.23)

The left hand of the above equation can be considered as the error produced by
approximate solution x). When f (x<’)) — 0, (2.15) is satisfied, so x is the solution
of the equation. In (2.22), f'(x(")) is the first-order partial derivative of function f(x)
at point x\¥). It is also the slope of the curve at point x), as shown in Fig. 2.2,

tan o) = f'(x(0) (2.24)

The correction value Ax") is determined by the intersection of the tangent line at
xWwith the abscissa. We can comprehend the iterative process more intuitively

from Fig. 2.2.
Now we will extend the Newton method to simultaneous nonlinear equations.
Assume the nonlinear equations with variables x, x, ..., X,;
fl(xl,x2, N ,X,,) =0
fz(x17x2a e 7xn) = 0
(2.25)
Falxi,x0,...,x,) =0
Specify the initial guess values of all variables x(lo) , x(zo), e ,xﬁlo), let Axgo),
Axgo), e ,Axﬁ,o) be the correction values to satisfy the following equations,
fi (xgo) — Ax(lo) ,xgo) — Axgo), .. ,xﬁlo) — Axﬁl())) =0
b2 (x(lo) — Ax<10>,x§0> — Axgo), . 7X’(10) — Axno)) =0
(2.26)

fa (x(lo) — Ax<10>,x(0> — Ax(zo), o x D Ay =
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Expanding the above n equations via the multivariate Taylor series and neglecting
the higher order terms, we have the following equations,

fl(x(l()),xgo),...,xno))— gi‘oAxo 2} ’ Ax 0f] | Ax =0
X1 J
0) 8 8 1
f2(x§0)7x(20)7-"7xn0))7 afz ‘ M(O)+afz ’()A)C f2 ’()A)C =0
l ] (2.27)
0) (0 [ Ofa © , I fa ]
A A0 — o oAl T A o] =0
here % |o is the partial derivative of function f;(x1,x,,...,x,) over independent
]
variable x; at point (x(lo)7 xg)), R xﬁf))). Rewrite the above equation in matrix form,
[ o | on | ]
fl (X(IO)vx;O)a s 7xl(10>) 91|09z |0+, |0 A‘X(IO)
0 0 0 0 0 e 0
f2(x(1)7xé)a"'7x£l)) 8._})2()%0"’0{20 A.Xé)
= (2.28)
©) (0) 0 ; (0)
f;l(xl yXp Ty n ) _gj;’; g;’; 0"'3?/7’0_ Axn

This is a set of simultaneous linear equations in the variables Ax(lo),Axg)), coe
Axs,o), usually called the correction equations of the Newton—Raphson method.

After solving Ax(lo), Axg)), e ,Axg,o), we can get,

X, =x
o (2.29)
PO :xf(lﬂ) _ Ax;(z)

x(ll),x(zl),...,xﬁ,]) will approach the actual solution more closely. The updated

values are used as the new guess to solve the correction equation (2.28) and to
further correct the variables. In this way the iterative process of the Newton—
Raphson method is formed.

Generally, the correction equation in the rth iteration can be written as,

b f
fi (xgt),xg>, ... ,x,(f)) afll | ah li-- % t Ax(lt>
b 9 9
fZ(x(lt)angV"axy)) (7{21 |’0{22 |t£ ! AX(ZZ>
= . _ . (2.30)
Ofu | O Ofu
fn(x$t)vx;t)7"'ax'(7t>) _3)); ’t?in""‘a{"n ! Axg,t)
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or expressed in matrix form,

F(X") = JOAXY (2.31)
where

fi (x(l’) , xg), .. ,xﬁf))

f2(x(1t)7xg)a e 7-xi(lt))
F(X") = . (2.32)

fu (x(l') , x§t> ey xg,t))

is the error vector in the tth iteration;

) Oy O

Oxy 1 Oxy 18002 o, 11
G| O Oy

g = | PR 0n (2.33)
W | Ofa U

Ox) |’8x2 L Ox, |’

is the Jacobian matrix of tth iteration;
AX) = (2.34)

is the correction value vector in the rth iteration.
We also have the equation similar to (2.29),

XD = X0 — AX®) (2.35)
With (2.31) and (2.35) solved alternately in each iteration, X (r+1) gradually
approaches the actual solution. Convergence can be evaluated by the norm of the
correction value,
[AXY]| < & (2.36)
or by the norm of the function,

[FXD)|| < & (2.37)

Here ¢ and ¢, are very small positive numbers specified beforehand.
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2.3.2 Correction Equations

In Section 2.3.1, we derived two forms of the nodal power equations. Either can be
applied in the load flow calculation model.

When the polar form (2.13) is used, the node voltage magnitudes and angles V;,0;
(i=1,2,...,n) are the variables to be solved. For a PV node, the magnitude of the
voltage is specified. At the same time, its reactive power Q;; cannot be fixed
beforehand as a constraint. Therefore, the reactive equations relative to PV nodes
should not be considered in the iterative process. These equations will be used only
to calculate the reactive power of each PV node after the iterative process is
over and all node voltages have been calculated. Similarly, the voltage magnitude
and angle of the slack node are specified, hence the related power equations do
not appear in the iterative process. When the iteration has converged, the active
and reactive power of the slack node can be calculated by using these power
equations.

Assume that total number of system nodes is n, the number of PV nodes is r. For
convenience, let the slack bus be the last node, i.e., node n.Therefore, we have n — 1
active power equations,

APy =P —V, ZVJ(GU cos 0 + By;sin Qlj) =0
el
APy = Py — V) Z V_]'(sz cos sz + By;sin 92_,‘) =0
=)
AP,_| = P,,,l’s — Vot Z Vj(anlJ Ccos en—l,j +Bn,1_,jsin 9,,,14-) =0
Jj€(n—1)
(2.38)
and n — r — 1 reactive power equations.
AQ] = le — V] ZV/(G]/SH]GU —BUCOS 91/) =0
el
AQy = 05— V2 ¥ Vi(Gyjsin Oy — Byjcos ) = 0
jez (2.39)

AQu—1 = Q15— Vi Z Vi(Gn-1,jsin0,_1 j —By,_1jcosl, ;) =0

Jj€(n=1)

In the above equations, node voltage angle 0; and magnitude V; are the variables to
be resolved. Here the number of 0; is n — 1 and the number of V;is n — r — 1. There
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are 2n — r — 2 unknown variables in total and they can be solved by the above
2n — r — 2 equations.

Expanding (2.38) and (2.39) in a Taylor series, neglecting the high-order terms,
the correction equation can be written as,

AP r : ] A0
! Hiy Hy ... Hi,1 @ Nn Niz ... Nipa !
AP2 . ABZ
. Hy, Hy ... Hyp 1 : Ny Ny ... Ny,
AP”’I Hn—]‘l Hn—ll Hn—l‘n—l Nn—l‘l NH—I.Z Nn—l,n—l A9"71
...... S [ s e T s s | X (2.40)
AQ, Ji Jo oo Jigmr ¢ Ly Lo ... Lig AVi/V;
AQ2 . AVz/VQ
) Joi Jn o T Ly Ly ... Ly,
[AQn1 ] Lduoin Juc1z2 oo Jncinet & Jncin Jnciz oo Juciand LAVao1 Vi

The form of the voltage magnitude correction values represented here, AV, /V,
AV, /Vy, ... AV, 1/V,_y, allow the elements in the Jacobian matrix to have
similar expressions.

Taking partial derivations of (2.38), or (2.39), and noting that both P;, Q; are
constants, we can obtain the elements of the Jacobian matrix as,

OAP; .
H,’j = 90 = —V,VJ(GU s 0,7 - B,‘j Ccos 6’/) j 7& i (241)
J
AP; .
H,‘,’ = 889 = V,' Z Vj(G,’j Sin 01'1' - B,‘j COS Hij) (242)
! Jjei
J#i
or
Hii=ViBi+ 0 (2:43)
OAP; .
N," = v Vj = —V,'Vj(G,'j COS 0,‘] + B,‘j Sin 0,‘]) j # i (244)
J
6AP,‘ . 2 2
N,',' = WVI = —V,‘ZV/'(GUCOS 0,]' +BUSIH 9,‘/‘) — 2V, G,‘,’ = —V’» Gii — P,' (245)
! J€i
#i
OAP;
Jij= 804’ =VVi(Gjjcos0; + Bysin0;) j#i (2.46)
J
OAP;
Jii = 861 =-V; Z Vj(G,‘j Ccos 9,‘1' + B,:,‘ sin 9,‘]) = VI-ZG,‘,‘ —P; (247)
J Jei

J#
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OAQ;
Lj= C')VQ,-I Vi ==VVi(Gysin0; — Bjjcos ;) j+#i (2.48)
aAQl . 2 2
L,’,’ = avl Vl' = —V,' E VJ'(GU Sim 9,1 - Bij Cos 0,-,-) + 2V1 B,’l‘ = Vi B,',' - Q,‘ (249)
Jei
J#

The concise form of (2.40) is

[ﬁ(ﬂ B [? N {Aé?v} (2.50)

Comparing (2.50) with (2.40), the meaning of elements is obvious. The correction
equation can be rearranged into the following form for convenience,

AP, Hyy N Hip Nip ... Hip Nyt A0,

AQ, Ji Ly Ji2 Lo ... Jiga Ly AV [V,

AP, Hy, Ny Hx» Ny ... Hyuy Nyt A0,

AQ, | — | Ju Ly, Jn Ly ... Joua Ly, AV, [V, (2.51)
AP, H, 11 Npoig Huoi2 Nacip2o oo Hpoiper Npoipe AO,

AQ,— Joc1g Locvn I Loz oo Jnciper Lo AV, [Vt

When the rectangular form is adopted in the load flow model, the state variables to
be solved are the real and imaginary parts of voltages, i.e., e1,f1, €2, f2,...,en, fa.
Since the voltage phasor of the slack node is specified, the number of state variables
is2(n — 1). We need 2(n — 1) equations to solve these variables. In fact, every node
has two equations except the slack bus. For PQ nodes, P;s, Q;s are given, so the
equations are

AP; =P — ey (Gye; — Byfy) —fi ) (Gyf; + Bye;) = 0

JEi Jjei

AQ; = Qis —f Y (Gijej — Byf;) + e y_ (Gijf; + Bye;) = 0

JEI JjEi

(2.52)

For PV nodes, P, Vs are given, so the equations are

AP; =P — ey (Gye; — Byfy) = f; Y (Giif; + Bye;) = 0
jei jei (2.53)
AV? =Vi— (e} +f7) =0
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There are 2(n — 1) equations included in (2.52) and (2.53). Expanding them in a
Taylor series expansion, neglecting the higher order terms, we can obtain the
correction equation as follows,

FAP ]
AQ,
AP,
AQ»
AP,

AV?

1

[ 9AP,
661

9AQ,
66]

OAP,
86’]

0AQ»
86’1

OAP;
86’]

0

OAP,
oh
OAQ,
oh
OAP,
of
0AQ>
i

IAP;
o

0

OAP,
362

A0,
362

OAP,
862

0AQ>
8(’2

OAP;
862

0

OAP,
o
0AQ,
e/
OAP,
f
0AQ»
o

OAP;
o

0

OAP,
de;
0AQ,
0(3,‘
OAP,
0(’,‘

0AQ»
0(’,‘

OAP;
0(’,‘
DAV
de;

OAP,
o,
IAQ,
o,
OAP,
of;
9AQ»

i

AP,
ofi
NG
i

7 [Aey

Afy

Aez

Af

Aei

Af;

(2.54)

By differentiating (2.52) and (2.53), we can obtain elements of the Jacobian matrix.
The off-diagonal elements of the Jacobian matrix for j i can be expressed as,

OAP,  OAQ
de; O
AP _0MQi _
o O o
OAVZ  OAVE 0
e o;

- Gljﬁ

= —(Gjei + Bijfi)

The diagonal elements of the Jacobian matrix for j = i,

Using (2.11), we can rewrite the above expression as

OAP;
86,-

JEi

OAP;

8e,~

= —a; — Gje,

and can obtain the following elements similarly,

=- Z (Gjjej — Bjjf;) — Giiei — Biif;

- Bjif;

(2.55)
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OAQ;
an' =- Z (Gyej — Bjjfj) + Girei + Bii fi = —a; + Giiei + Biifi
! JEI
OAP;
o Z (Gijfj + Bijej) + Biiei — Giifi = —bi + Biie; — Gii f;
! Jjei
OAQ;
aeQ = Z (Gijfj + Bije;) + Bije; — Gij fi = b; + Bjie; — Giif; (2.56)
! Jjei
OAV?
el I P
aei ¢
2
N
i

The correction equations, in either polar form or rectangular form, are the basic
equations that need repeatedly solving in Newton—Raphson load flow calculation.
Investigating these equations, we can observe the following properties:

1.

2.

Equations (2.54) and (2.40) include 2(n — 1) and 2(n — 1) — r equations respec-
tively.

From the expression of the off-diagonal elements of the Jacobian matrix either in
polar form or in rectangular form, i.e., (2.41), (2.44), (2.46), (2.48), and (2.55),
we can see that each of them is related to only one element of the admittance
matrix. Therefore, if the element Y;; in the admittance matrix is zero, the
corresponding element in the Jacobian matrix of the correction equation is also
zero. It means the Jacobian matrix is a sparse matrix, and has the same structure
as the admittance matrix.

. From the expression of the elements of the Jacobian matrix we can see that the

Jacobian matrix is not symmetrical in either coordinate form. For example,

OAP; , OAP;  OAQ;

2 0AQ;
00; 7 00, * v,

oV,

£

OAP; , OAP;  9MQ; , OAQ;

9e 7 oe op T o

. The elements in the Jacobian matrix are a function of node voltage phasors.

Therefore, they will vary with node voltages during the iterative process. The
Jacobian matrix must not only be updated but also be triangularized in each
iteration. This has a major effect on the calculation efficiency of the Newton—
Raphson method.

Many improvements of the Newton—Raphson method have focused on this

problem.

For instance, when the rectangular coordinate is adopted and the injected current

(see (2.4)) is used to form the load flow equations [12], the off-diagonal elements of
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the Jacobian matrix become constant. This property can certainly be used to
improve the solution efficiency. Semlyen and de Leon [13] suggest that the Jacobi-
an matrix elements can be updated partially to alleviate the computing burden.

Both the above two forms of coordinate system are widely used in Newton—
Raphson load flow algorithms. When the polar form is used, PV nodes can be
conveniently treated. When the rectangular form is used, the calculation of trigo-
nometric functions is avoided. Generally speaking, the difference is not very
significant. A comparison between the two coordinate systems is carried out in [14].

The fast decoupled method is derived from the Newton—Raphson method in
polar form. It will be discussed in Sect. 2.4. In the next section, we mainly introduce
the Newton—Raphson method based on the correction equation of (2.54) in rectan-
gular form.

2.3.3 Solution Process of Newton Method

In the Newton—Raphson method, the electric network is described by its admittance
matrix. From (2.52), (2.53), (2.55), and (2.56) we know that all operations are
relative to the admittance matrix. Therefore, forming the admittance matrix is the
first step in the algorithm.

The solving process of the Newton method roughly consists of the following
steps.

1. Specify the initial guess values of node voltage, ¢, f(©);

2. Substituting ¢, £ into (2.52) and (2.53), obtain the left-hand term of the
correction equation, AP, AQ© and (AV?)?;

3. Substituting e, £ into (2.55) and (2.56), obtain the coefficient matrix (Jaco-
bian matrix) of the correction equation;

4. Solving (2.54), obtain the correction variables, Ae® and Af(o);

5. Modify voltages;

o) = o0 _ AL0)
(2.57)

FO = O _ Af(©)

6. Substituting ¢! and £ into (2.52) and (2.53), obtain AP, AQ"D, and
(Av2)(1>

7. Check whether the iteration has converged. When it has converged, calculate
branch load flow and output the results; otherwise take e(!) and f(!) as the new
guess value, return to step (3) and start the next iteration.

The main flowchart of the Newton—Raphson method is shown in Fig. 2.3. The
above steps introduce the main principles of the solution process. There are still
many details to be clarified. As mentioned above, the solution procedure of the
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Newton—-Raphson method is essentially the process of iteratively forming and
solving the correction equations. Dealing with the correction equation has a crucial
influence over the memory requirement and computing burden. This problem will
be presented in the next section. First, we discuss some other important issues.

The convergence characteristic of the Newton—Raphson method is excellent.
Generally, it can converge in 6-7 iterations, and the number of iteration does not
depend on the scale of the power system. Theoretically speaking, the Newton—
Raphson method has a quadratic convergence characteristic if the initial guess
values are close to the solution. If the initial guess values are not good enough,
the iterative process may not converge or may converge to a solution at which the
power system cannot operate. This property stems from the Newton method itself.
As described above, the substance of the Newton method is sequential linearization
of nonlinear equations. It is established on the assumption that Ae and Af are very
small so that their high-order terms can be neglected. Therefore, a good initial guess
value is crucial because the Newton method is very sensitive to it.

Under normal operation states of power systems, the node voltage magnitudes
are usually close to their nominal voltages, and the phase angle differences between
the nodes of a branch are not very large. Therefore, a “flat start” initial guess
value, i.e.,

V=10 f9=00 (i=12,....n (2.58)
can give satisfactory results. In Fig. 2.3, the convergence condition is
AP AQY || < & (2.59)

where ||AP<’),AQ(’> H is a norm representing the maximal modulus elements in

vectors APY), AQU). This convergence criterion is very intuitive, and can be used to
directly control the power errors. When the calculation is based on the per unit
system, we can set ¢ = 10~* or 1073. If the base value is 100 MVA, the maximum
error corresponds to 0.01 MVA or 0.1 MVA.

From Fig. 2.3 we know that in the Newton—Raphson load flow calculation, the
Jacobian matrix must be formed and triangularized in each iteration. Hence the
computing burden in each iteration is quite heavy. From the expressions of Jacobian
elements one can see that in the iteration procedure, especially when it is near
convergence, the change of the elements caused by voltage variation is not signifi-
cant (see Example 2.1). Therefore, to decrease the computing effort, once a
Jacobian matrix is formed, it could be used in several successive iterations.

2.3.4 Solution of Correction Equations

The Newton—Raphson method, with Gauss elimination solving the correction
equation, has been used in load flow calculation since the 1950s.
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| Form admittance matrix

}

| Give voltage initial value ¢!” and f(© |

| Solve the elements of Jacobian matrix according to (2.55) and (2.56) |

l

|Solve modified equation (2.54) to obtain Ae®” and Af' (’)|

| Modify voltage on each node according to (2.57) |

Fig. 2.3 Flowchart of Newton method

In the 1960s, the sparsity of the correction equation was fully investigated and
employed in the iteration procedure. In this way, the storage and operation for zero
elements in the Jacobian are avoided. When the technology of optimal node ordering
is adopted, it can minimize the number of the fill-in nonzero elements in factorizing
the Jacobian of the correction equation. This greatly reduces memory and computing
requirements to almost proportional to the node number of the power system. Based
on this sparsity technology, the Newton—Raphson method has become one of the
most popular methods in power system load flow calculation [7].

With a simple system as shown in Fig. 2.4, we now illustrate some algorithmic
tricks in solving the correction equation of the Newton—Raphson method. In
Fig. 2.4, both node 3 and node 6 are generator nodes. We set node 3 as a PV
node while node 6 the slack node; other nodes are all PQ nodes. The structure of the
network admittance matrix is shown in Fig. 2.5.

The correction equation is given as (2.60). It does not include the equation
related to node 6, the slack node.
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Fig. 2.4 Example of simple

system ~ @ : j_@

Fig. 2.5 Structure of admittance Yii Yo Y3 Y
matrix Y1 Y Y26
Y3 Y33 Y3
Ya Yoz Yau Yss
Ysq4 Y55 Ysg
Ysr Yos Yoo
(AP, [Hu Nu Hix Nip Hi3s Nis His Nig 1 [Aei ]
AQ, Ju L Jio Lz Jiz Liz Jiu L Afi
AP, Hy Ny Hy Nap Ae,
AQ» Jow Loy Jn Lo Af
AP3 | _ | Hz N3 Hiz N3z Hzs Niy Aes (2.60)
AV2 0 0 Ry S 0 0 A |
AP, Hy Ny His Nuz Has Nag Hys Nas | | Aey
AQ, Jar Ly Jiz Laz Jas Las Jas Las | | Afs
APs Hsy Nsy Hss Nss | | Aes
|AOs | | Jsa Lss Jss Lss | | Afs |
where the constant terms AP;, AQ; can be obtained by (2.52),
AP; =P — ey (Gye;—Byf)) —fi y_ (Gyf; + Bie))
jei jei
AQ,‘ = Qis *f,' Z (G,-jej — Bl'jf]") + e; Z (G,jf} + B,»jej)
i el
or can be written as
AP; = Pis — (eia; + fib
(eiai +fib) (2.61)
AQ; = Qis — (fia; — eib;)
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From (2.56) we know the diagonal elements of the Jacobian are

OAP;
i = = —a; — (Gije; + Bif;
3e, a; — (Gjie; + Bify)
AP;
Nii = aaf- = —b; + (Biiei — Giif;)
oAD, (2.62)
Ji = ——— = bi + (Biiei — Giff;
20— byt (Bacs — G
0AQ;
Lii - 8f, = —a; + (Gllel +Bllﬁ)

Both (2.61) and (2.62) include components of the injected current at node i, a; and
b;. To calculate AP;, AQ;, and the diagonal elements of Jacobian H;;, Nj;, Jii, Ly,
we must first compute a; and b;. From (2.11) we can see, the injected current
components a; and b; at node i only depends on the i th row elements of the
admittance matrix and voltage components of corresponding nodes. Therefore, a;
and b; can be accumulated by sequentially taking the two terms and performing
multiplication plus operation.

After a;, b; are known, AP; and AQ; can be easily obtained according to (2.61).

The nondiagonal elements of the Jacobian in (2.60) can be expressed by:

OAP;
Hjj = De; = —(Gjje;i + Bjjfi)
Njj = 0P Bijei — Gy i

e (2.63)
Jij = aej’ _ Bijei — Gijfi = N,'j

OAQ;
Lij = 8-Q = Gjjei + Bjjfi = —H;j

J

Obviously, the off-diagonal elements are only related to the corresponding admit-
tance elements and voltage components. From (2.62), the ith diagonal element
consists of, besides the injecting current components at node i(a; and b;), only the
arithmetic operation results of the diagonal elements of admittance matrix G;; + jB;;
and voltage components e; + jf;.

In brief, the whole correction equation can be formed by sequentially taking and
arithmetically operating the elements of the admittance matrix and corresponding
voltage components.

If node i is PV node, the equation of AQ; should be replaced by the equation of
AVI-Z. The constant term AVi2 on the left hand and elements R;; and §;; of the Jacobian
can be easily obtained from (2.53) and (2.56),

Rii = = —2¢
8e,~ ¢

2
5, _OAV?
ofi

(2.64)
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Forming the correction equation is a very important step in the Newton—Raphson
method which remarkably affects the efficiency of the whole algorithm. Therefore,
we should investigate the above equations carefully in coding the program.

When Gauss elimination is used to solve the correction equation, we usually
eliminate the correction equation row by row. The augmented matrix corresponding

to (2.60) is

Hyy Ninn Hyp Nip Hi3 Niz Hig Ny AP,
Ju Ly Jio Lo Jiz Lz Ju Lu AQ,
Hy Ny Hy Ny AP,
Joo Loy Jn Lxn AQ»
H3; N3 Hi3 N3z Hsy N3y AP;

0 0 Ry Su 0 0 AV?
Hy1 Na Hyzs Niz His Nas His Nas APy
Ja1 La Jiz Laz Jaa Las Jas Lis AQy

Hsy Nsy Hss Nss  APs
L Jsa Lsy Jss Lss AQs |

After the equations related to node 1 and 2 are eliminated, the augmented matrix is
converted as shown in Fig. 2.6. This figure tell us when the equations related to
node 2 are eliminated (row 3 and row 4), all operations are independent of equations
related to node 3, 4, ..., N. Therefore, in the eliminating procedure, we can
eliminate the rows related to a node immediately after forming them.

In Fig. 2.6, elements such as H5;,NY, ... L},, etc. are fill-in nonzero elements
created in the elimination process. To decrease the number of injected elements, we
should optimize the node number ordering before load flow calculation (see Section
1.3.5). The element with superscript (") represents that it has been manipulated. We
need not save memory for the fill-in element in advance using this elimination
procedure and thus the algorithm is simplified.

When the whole elimination procedure finished, the augmented matrix of cor-
rection equation becomes,

il N, H, N, H, N, H, N| AR
i 1 J, L, Jh oo D Ly AQI’E
i I N, Hi Ny H N, AP, |
; A ) N
o N, H, N, H, N, AP [
Ry, Sy AV

H, N, H, N, H, N, Hs N AP,
Ju Ly Jo Ly Ju Ly Jis  LisiAQ,
Hy Ny Hs; NgAR

Jo Ly Jss o LssiAQ;

Fig. 2.6 Diagram of eliminating row by row
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(LN H NG HG N Hi N AP,
Uy Ly T L o L AQ,
UONp HL NG H N AP,
AL ) A0,

LNy Hy Ny AP,

1 Jy Ly AV

I Njy Hi Nis AP,
I Jis L AQ,

1 Nl AP,
I 1 AQs |
Finally, using a normal backward substitution, one can get Aej, Af1, ..., Aes, Afs

from AP, AQ), ..., AQs.

Following to the above discussion, we can summarize the algorithm via flow-
chart shown in Fig. 2.7, where R represents the slack node. The correction equation
can be solved by the common Gauss elimination method. The above procedure
adopts the strategy of eliminating the rows related to a node immediately after
forming them. At the same time, the corresponding constant terms of the correction
equation are also accumulated and eliminated. Thus the operation count per itera-
tion is significantly reduced.

[Example 2.1] Calculate the load flow of the power system shown in Fig. 2.8.

[Solution] The load flow is calculated according to the procedures of the
flowchart. The first step includes forming the admittance matrix and specifying
the initial voltage values.

From Example 1.1 we know the admittance matrix of this system is

[ 1.37874  —0.62402  —0.75471 T
—j6.29166  +3.90015  +j2.64150
—0.62402 145390  —0.82987  0.00000
+3.90015 —j66.98082  +j3.11203  +j63.49206
y_ | 075471 082087 1.58459 0.00000
+j2.64150  +j3.11203  —j35.73786 +j31.74603
0.00000 0.00000
+j63.49206 — j66.66667
0.00000 0.00000
I +j31.74603 —j33.33333

The initial values of node voltages are given in Table 2.1.
According to (2.52) and (2.53), we can establish the expression of the constant
terms (mismatch terms) of the correction equations as
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| Optimize node number |

I
| Form admittance matrix |
v
Give initial value, and iterate by using
successive iteration method
¥
I

Substituted backward
and modify voltage

Form two-row equation
relative to node i
v
Eliminate the (2i Hth Output
and (2i) th equations by
using the Ist to the
2(i—1)th equations

Fig. 2.7 Flowchart of Newton Method

tor1os 7 -

T
I

j0.25

Fig. 2.8 Simple power system
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Table 2.1 Voltage initial values

2 Load Flow Analysis

Node 1 2 3 4 5
e 1.00000 1.00000 1.00000 1.05000 1.05000
FO 0.00000 0.00000 0.00000 0.00000 0.00000

AP, = Py — ei[(Grie1 — Biifi) + (Gizezs — Biofz) + (Gizes — Buaf3)]
—fil(G1ifi + Buier) + (Giafa + Bioea) + (Giafs + Bizes)]

AQi = Qis — fil(Giier — Bi1fi) + (Graea — Biofa) + (Gizes — Biaf3)] +
e1[(G1ifi + Buier) + (Giafa + Biaez) + (Giafs + Bizes)]

AP, = Pys — e4[(Garer — Baofr) + (Gases — Buafs)] — fal(Gaofo + Bazes) +

(Guafs + Bysey)]

Using (2.55) and (2.56), we can obtain the expressions of Jacobian matrix elements:

OAP,
Oey
OAP;
o
aaA:;] = —(Gne + Biof), 0AP
OAP;
663
0AQ,
Oey
OAQ,
oh
OAQ,  OAP, OAQ1  OAP,
862 o 6f2 ’ 8f2 - 862
OAQ, OAP;  O0AQ1  0AP,
des — Ofs T Ofs Oy
OAP,
864
OAP,
ofs

g
OAP,

g

= —(Gze1 + Buaf1),

= —[(Giier — Biif1) + (Gizea — Biofa) + (Gizes — Biafs)] — Giier — Biifi
= —[(Gnfi + Biie1) + (Giafo + Bizea) + (Giafs + Bizes)] + Biier — Giifi
—— =Bpe; — Gufi

= Bize1 — Giafi

= [(Gufi +Buer) + (Guofr + Binez) + (Giafs + Bizes)] + Buier — Guifi

= —[(Gnie1 — Buif1) + (Gaea — Biofa) + (Gizes — Buafs)] + Giier + Buifi

= —[(Gaer — Bufr) + (Gases — Basfs)| — Gases — Busfs

= —[(Gaofa + Byzez) + (Gaafs + Bases)] + Bases — Gaafs



2.3 Load Flow Solution by Newton Method 97

OAV?
=-2
664 ¢4
8AVZ
= -2

Thus according to (2.60), the correction equation of the first iteration can be written
as

[—1.37874 —6.54166 0.62402  3.90015  0.75471  2.64150 1 [Aey]
—6.04166 1.37874 3.90015 —0.62402 2.64150 —0.75471 Afy
0.62402 3.90015 —1.45390 —73.67881 0.82897  3.11203  0.00000 63.49206 | | Ae;
3.90015 0.62402 —60.28283 1.45390  3.11203 —0.82897 63.49206 0.00000 A
—0.75471 2.64150 0.82897  3.11203 —1.58459 —39.98688 Aes
2.64150 —0.75471 3.11203 —0.82897 —32.38884 1.58459 Afs

0.00000  66.66666 0.00000 —63.49206 | | Aes

0.00000  0.00000 —2.10000 0.00000 | [ Afj |

[—1.60000]
~0.55000
—2.00000

5.69799
—3.70000
2.04901
5.00000
| 0.00000 |

the above equation, the elements in italic have maximal absolute value in each row
of the Jacobian matrix. Obviously, if elements are arranged this way, the maximal
elements do not appear at the diagonal positions.

It should be noted that this situation is not accidental. From the above equation

%ﬁ?" or 03—3 This is
because the active power is mainly related to the vertical component of voltage
while the reactive power is mainly related to the horizontal component of voltage in
high voltage power systems.

To reduce the rounding error of the calculations, the maximal elements should
be located in diagonal positions. There are two methods to satisfy this requirement:
the first is to exchange positions of the equations relative to AQ and AP, i.e., to
exchange odd numbered rows with even numbered rows; the second method is to
exchange the variables Ae and Af, i.e., to exchange odd numbered columns with
even numbered columns of the Jacobian matrix.

We now introduce the first approach. Thus the above equation will be rearranged
as,

we can conclude that the maximal element of each row is
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[—6.04166 137874 3.90015 —0.62402 2.64150 —0.75471 [Ae; ]
—1.37874 —6.54166 0.62402  3.90015  0.75471  2.64150 Afy
3.90015 0.62402 —60.28283 1.45390  3.11203 —0.82897 63.49206 0.00000 Aey
0.62402 3.90015 —1.45390 —73.67881 0.82897  3.11203  0.00000 63.49206 Af>
2.64150 —0.75471 3.11203 —0.82897 —32.38884 1.58459 Aes
—0.75471 2.64150 0.82897  3.11203 —1.58459 —39.98688 Afs
—2.10000 0.00000 Aey

0.00000  66.66666 0.00000 —63.49206 | | Afs |

[—0.55000]
~1.60000
5.69799
—2.00000
2.04901
—3.70000
0.00000
| 5.00000 |

We can see the maximal element of each row appears in the diagonal position
except for row 8.

As described in Section 2.3.4, the iteration procedure adopts the strategy of
immediately eliminating the rows related to a node after forming them (see
Fig. 2.7). The equations related to node 1 are formed as

—6.04166 1.37874 3.90015 —0.62402 2.64150 —0.75471 0 0 : —0.55000
—1.37874 —6.54166 0.62402 3.90015 0.75471 2.64150 0 0 : —1.60000

After the elimination operation is executed, the first and second row of the upper
triangular matrix can be obtained:

1.00000 —0.22820 —0.64554 0.10328 —0.43721 0.12491 0 0 : 0.09103
1.00000 0.03879 —0.58961 —0.02215 —0.41038 0 0 : 0.21505

Then we establish the equations related to node 2, the corresponding augmented
matrix is

3.90015 —0.62402 —60.28283 1.45390 3.11203 —0.82987 63.49206 00 : 5.69799
0.62402 390015 —1.45390 —73.67881 0.82987 3.11203 00 i 000 o0

Executing the elimination operation, the third and forth rows of the upper triangular
matrix become:
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1.00000 —0.02090 —0.08348 0.02090 —1.09894 0.00000 : —0.09184
1.00000 —0.01528 —0.06609 0.01859 —0.88943 : 0.04253

Continuing this procedure until the eliminating operation procedure is finished, we
have the upper triangular matrix:
1.00000 —0.22820 —0.64554 0.10328 —0.43721 0.12491 ©0.09103
1.00000 0.03879 —0.58961 —0.02215 —0.41038 ©0.21505
1.00000 —0.02090 —0.08348 0.02090 —1.09894 0.00000 : —0.09148
1.00000 —0.01528 —0.06609 0.01850 —0.88943 : 0.04253
1.00000 —0.03303 —0.17246 0.03146 : —0.07548
1.00000 —0.02816 —0.11194 : 0.12021
1.00000  0.00000 : 0.00000
1.00000 : —0.45748 |

After the backward substitution operation, the correcting increments of node
voltages can be obtained,

Ae;] T 0.03356
Afi 0.03348
Aes —0.10538
AH | | —0.36070
Aes | ~ | —0.05881
Afy 0.06900
Aey 0.00000
AR | | —0.45748 |

Modifying the node voltage, the voltage vector becomes:

el [ 0.96643 7
fi —0.33481
e 1.10533
£ | 036070
es | T | 1.05881
s —0.66900
eq 1.05000
] | 045748 |

Using this voltage vector as the initial voltage value, we can repeat above opera-
tions. If the tolerance is set to ¢ = 107°, the calculation converges after five
iterations. The evolution process of node voltages and power mismatches is
shown in Tables 2.2 and 2.3.
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Table 2.2 Node voltages in iterative process

Iterating

No. € fi ) 5 €3 f €y fa

1 0.96643 —0.33481 1.10538 0.36074 1.05881 —0.06900 1.05000 0.45748
2 0.87365 —0.07006 1.03350 0.32886 1.03564 —0.07694 0.97694 0.38919
3 0.85947 —0.07176 1.02608 0.33047 1.03355 —0.07737 0.97464 0.39061
4 0.85915 —0.07182 1.02600 0.33047 1.03351 —0.07738 0.97461 0.39067
5 0.85915 —0.07182 1.02600 0.33047 1.03351 —0.07738 0.97461 0.39067

Table 2.3 Node power mismatches in iterative process

Iterating

No. AQ] AP] AQZ APZ AQ3 AP3 AP4

1 —0.55000 —1.60000 5.69799%  —2.00000 2.04901 —3.70000 5.00000
2 —0.07263 —0.03473 —6.00881% 2.10426 —0.37144 0.04904 —2.39001
3 —0.02569 —0.06011 —0.41159%  0.15764 —0.00924 0.00329 —0.16193
4 —0.00078 —0.00032 —0.0030*  —0.00054 —0.00002 0.00000 0.00069
5 0.00000  0.00000  0.00000 0.00000  0.00000 0.00000 0.00000

A

Power error

10! /\J\

10°

107!

1072

1073

1074
Fig. 2.9 Convergence property of >
Newton—Raphson method 1 2 3 4 5 6 7 Tterations

To reveal the convergence property, the maximal power mismatches (with # in
Table 2.3) in the iterative process are shown in Fig. 2.9.

In the iteration process, especially when it approaches convergence, the changes
of the diagonal elements in the Jacobian are not very significant. To illustrate this
point, the changes of the diagonal elements are given in Table 2.4.

The calculation results of node voltages are shown in Table 2.5.
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Table 2.4 Diagonal elements of Jacobian matrix in iterative process

Iterating OAQ;  OAP, OAQ» OAP, OAQ3 OAP3 OAV? OAP,
no. dey ofi Oey of Oe3 o Oey Ofa
6.04166 6.54166 60.28283 73.67881 32.38884 39.08688 1.05000 63.49206
5.22590 6.84268 79.81886 69.30868 36.62734 38.83341 0.96259 70.18293
4.37415 6.42613 69.78933 69.61682 35.38612 38.39351 0.97528 65.61929
4.23077 6.38634 68.89682 69.52026 35.29706 38.33158 0.97463 65.14834
422720 6.38577 68.88900 69.51747 35.29572 38.33048 0.97461 65.14332

[ N R S

Table 2.5 Node voltage vectors

Node Magnitude Angle (°)
1 0.86215 —4.77851
2 1.07791 17.85353
3 1.03641 —4.28193
4 1.05000 21.84332
5 1.05000 0.00000

2.4 Fast Decoupled Method

2.4.1 Introduction to Fast Decoupled Method

The basic idea of the fast decoupled method is expressing the nodal power as a
function of voltages in polar form; separately solving the active and reactive power
equations [9] by using active power mismatch to modify voltage angle and using
reactive power mismatch to modify voltage magnitude. In this way, the computing
burden of load flow calculation is alleviated significantly. In the following, the
derivation of the fast decoupled method from the Newton method is discussed.

As described previously, the core of the Newton load flow approach is to solve
the correction equation. When the nodal power equation is expressed in polar form,
the correction equation is (see (2.50)),

[ﬁg} - {I; N [Aéf/)v} (2.65)

or can be written as,

AP = HA® + NAV/V
(2.66)
AQ = JA® + LAV/V

This equation is derived strictly from the mathematical viewpoint. It does not take
the characteristics of power systems into consideration.

We know that in high voltage power system the active power flow is mainly
related to the angle of the nodal voltage phasor while reactive power flow is mainly
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related to its magnitude. The experiences of many load flow calculations tell us that
the element values of matrix N and J in (2.66) are usually relatively small.
Therefore, the first step to simplify the Newton method is to neglect N and J, and
(2.66) is simplified to

AP = HA® } 267)

AQ = LAV/V

Thus a simultaneous linear equation of dimension 27 is simplified to two simulta-
neous linear equations of dimension n.

The second important step to simplify the Newton method is to approximate the
coefficient matrices of (2.67) as constant and symmetric matrices.

As the phase angle difference across a transmission line usually is not very large
(does not exceed 10°~20°), so the following relations hold,

cos0; ~ 1 (2.68)
Gl‘j sin 0,‘1' < B,‘j ’

Furthermore, the admittance B;; corresponding to the node reactive power is
certainly far smaller than the imaginary part of the node self-admittance, i.e.,

0i
By = ‘712 < Bji
Accordingly,
0: < VB (2.69)

Based on the above relationships, the element expressions of coefficient matrix in
(2.67) can be represented as (see (2.41), (2.42), (2.48), and (2.49)):

H;; = V}Bj;
H;j = V;V:Bj
o (2.70)
Lii = ViBi
Lj =ViVBjj
Therefore, the coefficient matrix in (2.67) can be written as
ViByy  ViVaBy, ... ViV,By,
VoViBai  V3Byn ... VaV,Ba,
H=L= ] (2.71)

V.ViBy V,\VaBy ... V2B,
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It can be further represented as the product of the following matrices:
Vl B 11 BlZ B 1n Vl
Vo 0 By By By, %)
H=L= . . (2.72)
0 : 0
Vn Bnl BnZ Bnn Vn

Substituting (2.72) into (2.67), we can rewrite the correction equations as follows:

AP, Vi Bii B

AP, Vo, 0 By B
: B 0 :

APn Va By Bn

and

AQ; Vi By By

AQ» Vo 0 By Bxn
: 0 :

AQ,, Vn Bnl Bn2

Multiplying both sides of the above equation with matrix,

Vl V]
Va
Vi
one can obtain
AP /V, By B
AP, /V, B> By
APn/Vn Bnl Bn2
and
AQ,/V, Bii B2
AQ»/V, By B
AQ,/V, B, Bp

B, | | V1AO,
B, VA0, (2 73)
B, | | V.AO,
Bln Avl
BZn AVZ (2 74)
Bl’lVl Avﬂ
1
Va
1
Va
By, | | V1AO,
B>, VA0, (2 75)
B, | | VaAO,
B, | | AVy
BZn AVZ
: (2.76)
B AV,
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The above two equations are the correction equations of the fast decoupled load
flow method. The coefficient matrix is merely the imaginary part of the nodal
admittance matrix of the system, and is thus a symmetric, constant matrix. Com-
bining with the power mismatch equation (2.13), we obtain the basic equations of
the fast decoupled load flow model

AP; = Pig = Vi Y Vi(GycosO;+ Bysin0;) (i =1,2,...,n) (2.77)

Jei

AQ,' = Qis - V,‘ Z VJ(GU sin 6,‘1‘ - Bij Cos 0,‘]‘) (l = 1, 2, ey n) (278)

JEi

The iterative process can be briefly summarized in the following steps:

1. Specify node voltage vector initial value 91@, VI.(O)

2. Calculate the node active power mismatch AP; according to (2.77), and then
calculate AP;/V;

3. Solving correction equation (2.75), calculate the node voltage angle correction
A0,

4. Modify the node voltage angle 0,

0" = 0" VAap" (2.79)

5. Calculate node reactive power mismatch AQ; according to (2.78), and then
calculate AQ;/V;

6. Solving correction equation (2.76), calculate the node voltage magnitude cor-
rection AV;,

7. Modify the node voltage magnitude V;;

v =yl Ay (2.80)
8. Back to step (2) to continue the iterative process, until all node power mis-
matches AP; and AQ; satisfy convergence conditions.

2.4.2 Correction Equations of Fast Decoupled Method

The main difference between the fast decoupled method and the Newton method
stems from their correction equations. Comparing with correction (2.40) or (2.54)
of the Newton method, the two correction equations of the fast decoupled method
have the following features:

1. Equations (2.75) and (2.76) are two simultaneous linear equations of dimension
n instead of a simultaneous linear equation of dimension 2n
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2. In (2.75) and (2.76), all elements of the coefficient matrix remain constant during
the iterative process
3. In (2.75) and (2.76), the coefficient matrix is symmetric.

The benefit of the first feature for computing speed and storage is obvious. The
second feature alleviates the computing burden in forming and eliminating
the Jacobian within the iterative process. We can first form the factor table for the
coefficient matrix of the correction equation (see (2.76)) by triangularization. Then
we can carry out elimination and backward substitution operations for different
constant terms AP/V and AQ/V through repeatedly using the factor table. In this
way, the correction equation can be solved very quickly. The third feature can
further improve efficiency in forming and storing the factor table.

All the simplifications adopted by the fast decoupled method only affect the
structure of the correction equation. In other words, they only affect the iteration
process, but do not affect the final results. The fast decoupled method and the
Newton method use the same mathematical model of (2.13), if adopting the same
convergence criteria we should expect the same accuracy of results.

It seems that (2.75) and (2.76) derived above have the same coefficient matrix,
but in practice the coefficient matrixes of the two correction equations in the fast
decoupled algorithms are different. We can simply write them as

AP/V = B'VA® (2.81)
AQ/V =B"AV (2.82)

Here V is a diagonal matrix with the diagonal elements being the node voltage
magnitudes.

First, we should point out that the dimensions of B’ and B” are different. The
dimension of B’ is n — 1 while the dimension of B” is lower than n — 1. This is
because (2.82) dose not include the equations related to PV nodes. Hence if the
system has r PV nodes, then the dimension of B” should be n — r — 1.

To improve the convergence, we use different methods to treat B’ and B”, and
how we treat B’ and B” will result in different fast decoupled methods, are not
merely the imaginary part of the admittance matrix.

As described above, (2.81) and (2.82) are the correction equations based on a
series of simplifications. Equation (2.81) modifies the voltage phase angles accord-
ing to the active power mismatch; (2.82) modifies the voltage magnitudes according
to the reactive power mismatch. To speed up convergence, the factors that have no
or less effect on the voltage angle should be removed from B'. Therefore, we use the
imaginary part of admittance to form B’ without considering the effects of shunt
capacitor and transformer’s off-nominal taps. To be specific, the off-diagonal and
diagonal elements of B’ can be calculated according to following equations:

I - /
By =— m’ = 2+x =D _Bj (2.83)

JEi JEi

where r;; and x;; is the resistance and reactance of branch ij, respectively.
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Theoretically, the factors that have less effect on voltage magnitude should be
removed from B”. For example, the effect of line resistance to B” should be
removed. Therefore, the off-diagonal and diagonal elements of B” can be calculated
according to the following equations:

1 1 1
B:;:_x_j7BZ:Zx__bm B:::Zx__bla (284)
L jei v jei TU

where b;, is the shunt admittance of the grounding branch of node i.

If B’ and B” are formed according to (2.83) and (2.84), the fast decoupled
method is usually called the BX algorithm. Another algorithm opposite to BX
method is called the XB algorithm in which B’ used in the AP ~ A iteration is
formed according to (2.84), while B” used in the AQ ~ AV iteration is formed
according to (2.83). Although these two algorithms have different correction
equations, their convergence rates are almost the same. Several IEEE standard
test systems have been calculated to compare the convergence of these algorithms.
Table 2.6 shows the number of iterations needed to converge for these test systems.

Many load flow calculations indicate that BX and XB methods can converge for
most load flow problems for which the Newton method can converge. The authors
of [9, 10] explain the implications of the simplifications made in the fast decoupled
method. Wong et al. [19] propose a robust fast decoupled algorithm to especially
treat the possible convergence problem caused by high r/x networks. Bacher and
Tinney [26] adopt the sparse vector technique to improve the efficiency of the fast
decoupled method.

From the above discussion we know that the fast decoupled method uses
different correction equations to the Newton method, hence the convergence
properties are also different. Mathematically speaking, the iteration method based
on a fixed coefficient matrix to solve a nonlinear equation belongs to “the constant
slope method.” Its convergence process has the characteristic of the geometric
series. If the iteration procedure is plotted on a logarithmic coordinate, the conver-
gence characteristic is nearly a straight line. In contrast, convergence of the Newton
method has a quadratic property and is quite similar to a parabola. Fig. 2.10 shows
the typical convergence properties of the two methods.

Figure 2.10 illustrates that the Newton method converges slower at the early
stages, but once converged to some degree its convergence speed becomes very
fast. The fast decoupled method converges almost at the same speed throughout the
iteration procedure. If the specified convergence criterion is smaller than the errors

Table 2.6 Convergence comparison of BX method and XB

method

Systems Newton BX XB
IEEE-5 bus 4 10 10
IEEE-30 bus 3 5 5
IEEE-57 bus 3 6 6
IEEE-118 bus 3 6 7
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Power T
error
1 / Newton Method
le-1
\ P—Q Decoupled Method
le-2 -
le-3 -
le-4
le-5 -
| | | -

5 10 15
Iterations

Fig. 2.10 Convergence properties of fast decoupled method and Newton method

at point A in Fig. 2.10, the iteration number of the fast decoupled method is larger
than that of the Newton method. It can be roughly considered that a linear relation
exists between the iteration number and the required precision when using the fast
decoupled method.

Although the iteration number of the fast decoupled method is larger, its
computing requirement in each iteration is far less than that of the Newton method.
So the computing speed of the fast decoupled method is much higher than the
Newton method.

2.4.3 Flowchart of Fast Decoupled Method

The principle flowchart of the fast decoupled method is shown in Fig. 2.11 which
illustrates the main procedure and logical structure of the load flow calculation.
The symbols used in Fig. 2.11 are first introduced below:

t: counter for the iteration number

K01 a flag with “0” and “1” states, “0” indicates the active power iteration; while
“1” the reactive power iteration. A whole iteration includes an active power
iteration and a reactive power iteration.
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v

Input information and original data, and deal with original data

l

Form admittallnce matrix

Calculate coefficient matrix B’, and form the first factor table

v

Calculate coefficient matrix B”, and form the second factor table

i

Give voltage initial value on each node
v
t=0,k01=0

—’l Calculate [AW(KO01)/V];ERM(KO01)

ONCOIONONONONG)

Solve modified equation (2.81)or(2.
82), and modify V (K 01)

®

Kol1=0,t=t+1

false

ERM(0) <€AERM (I)<€

| Output the results of load flow |

Fig. 2.11 Principle flowchart of P — Q decoupled load flow program

AW: power mismatch vector: when K01 = 0, AW(KO01) is the mismatch of active
power; when KO1 = 1, AW(KO1) is the mismatch of reactive power.

V: Voltage vector: when K01 =0, V(KO1) represents voltage angle; when
K01 = 1, V(KO1) represents voltage magnitude.

ERM: Store the maximal power mismatch in an iteration: when K01 = 0, ERM
(KO1) stores the maximal active power mismatch; when K01 = 1, ERM(KO01)
stores the maximal reactive power mismatch;

¢: Convergence criterion.

From the figure one can see, after inputting the problem data, the admittance matrix
is formed. Then according to (2.83) the matrix B’ is obtained, and triangularized to
form the first factor table (block in Fig. 2.11).
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After considering shunt capacitances of transmission lines and grounding branches
of off-nominal taps of transformer, matrix B” can be formed according to (2.84), and
then triangularized to form the second factor table (block in Fig. 2.11).

It should be point out that B’ and B” can be formed at the same time when
forming the admittance matrix. Meanwhile, the admittance matrix (block) should
be stored for calculating the power mismatches according to (2.77) and (2.78).

In the flowchart, the iteration procedure is composed of blocks.

In block the initial voltage values are set accordingly for PQ nodes and PV
nodes. For PQ node, the voltage magnitude can be set as the average voltage of the
system; for a PV node, the voltage magnitude is set to the specified value. The
voltage angle can be set to O as initial value for all nodes.

Block establishes the original state for iteration. The iteration procedure starts
with a P ~ 0 iteration, thus KO1 is set to “0.”

The iteration procedure in Fig. 2.11 follows 10 and 1V mode. That is to say the
iteration procedure is carries out by alternately solving P ~ 6 and Q ~ V correction
equations.

Block calculates the node power mismatch according to (2.77) or (2.78) and records
the maximal mismatch in ERM(KO01) for checking the convergence condition.

Block solves correction equations, and further modifies the voltage magnitude
and angle. Block establishes the state for the next iteration and counts the iteration
number.

Block checks whether the iteration procedure converges. When both the P ~ 6
and Q ~ V iterations converge, the iteration procedure comes to an end, otherwise
the process continues to the next iteration.

[Example 2.2] Using the fast decoupled method to calculate the load flow of the
system shown in Fig. 2.8.

[Solution] The calculating procedure follows the flow chart of Fig. 2.11.
The admittance matrix of the system can be found in Example 1.1. The factor table
used in P ~ 0 iteration is

—0.15286 —0.59620 —0.40379
—0.01466 —0.06874 —0.93125
—0.02769 —0.12087
—0.26061

It should be pointed out that B’ used in forming the above factor table should be
calculated according to (2.83). The factor table in Q ~ V iteration is

—0.15135 —0.60541 —0.43243
—0.01541 —-0.07804
—0.02895
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Matrix B” used in forming the above factor table is calculated by (2.84).
Because matrix B” does not include the elements related to PV nodes, it is a three-
dimensional matrix,

—6.60714 4.0000 2.85714
B"=| 40000 —67.30197 3.33333
2.85714 3.33333 —36.17480

It is easy to establish the above factor table by an elimination operation on B”.
The initial values of node voltages are similar to example 2.1 except the polar
form is used here. The average operation voltage of system is:

Vo = 1.00000

Then the initial value of node voltage vector is:
VIO = v — v = 1.00000

V¥ = v = 1.05000

According to (2.77) and (2.78), the functions of node power mismatches are given
as follows:

AP = Py, — V1[ViG11 + Va(Gracos 01z 4+ Biasin0yp) +
+ V3(Gy3 cos 013 + By sin 013)]

AQy = Q15 — Vi[=V1B11 + V2(Grasin 01 — By cos 012) +
+ V3(Gy3 sin 013 — B3 cos 013)]

AP4 = P45 — V4[V2(G42 CcOoS 042 + B42 sin 042) + V4G44]
For the first P ~ 0 iteration the node power mismatch can be calculated as

—1.60000

—2.00000

—3.70000
5.00000

AP =

Thus we have the right-hand term of the correction equation,
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—1.60000
AP\ | —2.00000
(7) ~ | =3.70000

4.76190

Using the first factor table to execute elimination and backward substitution opera-
tions, we obtain the correcting value of node 0 as

0.09455
—0.30580
0.07994
—0.38081

A©) =

Note that in the P ~ 0 iteration, after solving the correction equation, we should
obtain VyA@ (see (2.81)). But in this example, the calculation is based on per unit
and Vo =1, hence,

VoA = Ag(®)
After modifying the node voltage angle, we get 0 as
—0.09455
0.30580

—0.07994
0.38080

o) — 90 _ A9©® —

The Q ~ V iteration is carried out next. The node reactive power mismatches are
—1.11284
AQQ = | 552890
1.41242

The right-hand term of the correction equation is

AON @ —1.11284
(TQ) — | 5.52800
1.41242

Solving this equation, we obtain the voltage correct vector for PQ nodes:

0.10493
AV = | —0.07779
—0.03793
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The modified node voltages can be calculated (see (2.80)):

0.89057
v = yO _Ay© = | 1.07779
1.03793

Thus the first iteration is complete.

The iteration procedure repeats the above steps until the convergence condition
is satisfied. When ¢ = 107, the iteration procedure converges after ten iterations.
The evolution of the node voltages is demonstrated in Table 2.7.

Table 2.8 shows the evolution of the maximal errors of the node powers and
voltages in the iteration procedure.

The convergence property of the fast decoupled method used in this example is
displayed in Fig. 2.12. From this figure we can see that the convergence characteris-
tic of the fast decoupled method on a logarithmic coordinate is nearly a straight line.
At the beginning, its convergence speed is faster than that of the Newton method.

The result of load flow calculation is shown in Fig. 2.13.

Table 2.7 Node voltage changes in the iteration process

Iterating No. 0, Vi 0, V, 03 Vs 04
1 —0.09455 0.89507 0.30580 1.07779 —0.07995 1.03793 0.38080
2 —0.08227 0.87158 0.30728 1.07857 —0.07405 1.03743 0.37652
3 —0.08239 0.86512 0.31048 1.07813 —0.07448 1.03673 0.38010
4 —0.08316 0.86309 0.31117 1.07798 —0.07468 1.03652 0.38079
5 —0.08332 0.86244 0.31152 1.07794 —0.07471 1.03644 0.38115
6 —0.08339 0.86222 0.31162 1.07792 —0.07473 1.03642 0.38126
7 —0.08341 0.86215 0.31166 1.07791 —0.07473 1.03641 0.38129
8 —0.08342 0.86213 0.31167 1.07791 —0.07474 1.03640 0.38131
9 —0.08342 0.86212 0.31167 1.07791 —0.07474 1.03640 0.38131

10 —0.08342 0.86212 0.31168 1.07791 —0.07474 1.03641 0.38131

Note: the angles in the table are in rad

Table 2.8 Changes of maximal node power and voltage errors

Iterating No. APy AQwm AOy AVMm
1 5.00000 5.52890 0.38080 0.10493
2 0.38391 0.15916 0.01228 0.02348
3 0.02660  0.03398  0.00358  0.00647
4 0.00898 0.01054 0.00077 0.00202
5 0.00279 0.00339 0.00036 0.00066
6 0.00095  0.00111 0.00011 0.00022
7 0.00031 0.00037 0.00004 0.00007
8 0.00010 0.00012 0.00001 0.00002
9 0.00003  0.00004  0.00000  0.00001

—
]

0.00001  0.00001 0.00000  0.00000
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Fig. 2.12 Convergence property of P — Q decoupled method
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Fig. 2.13 Load flow calculation results

2.5 Static Security Analysis and Compensation Method

2.5.1 Survey of Static Security Analysis

Static security analysis is widely used in power system planning and dispatching to
check the operation states when some system equipment sustains forced outages. It
will answer the questions such as “what will happen if a 500 kV line is disconnected.”
When the results show that the power flows and voltages all are in the acceptable
range, the system is static secure. When the results show that some transmission
equipments are overloaded or the bus voltages of some nodes are beyond the
constraints, the system is not static secure. Therefore static security analysis is a
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very important part in power system security analysis and is discussed in this
section. The dynamic performance analysis of power systems will be presented in
the last two chapters of this book.

The static security analysis can be used in evaluating the enduring capability of a
planning scheme, or an operating schedule of the power system. The static security
analysis usually checks the typical forced outages of generator units or transmission
equipments, onefold or two-fold. Sometimes it also inspects multi-fold outages, or
common mode failures, e.g., those caused by relay system failures.

In power system planning, all credible outage cases should be considered in the
static security analysis. According to the result of the static security analysis the system
planner usually needs to add some redundant devices or to adjust the network scheme.

In power system operation, to avoid equipment damage and large area blackouts,
the static security analysis, both online and off-line, is essential [21, 22]. In
particular, the power market evolution introduces many uncertain factors to system
operation, and increasing demands on the security monitor and control system.

Since the dynamic performance of the power system is not involved, the static
security analysis is substantially a steady analysis problem. Through load flow
calculations for all possible contingencies, we can judge whether the system is
secure or not. Unfortunately, since the number of possible contingencies in static
security analysis is very large, it is almost impossible to complete the task by the
conventional load flow analysis method in a reasonable period of time for on-line or
real-time use. Therefore, many special methods for static security analysis have
been developed, such as the compensation method, DC load flow model and the
sensitivity method, etc. These methods will be presented below.

2.5.2 Compensation Method

When a minor change of the network topology occurs in a power system, we can still
use the original admittance matrix, even the original factor table to calculate the load
flow after such a change. To accomplish this we usually use the compensation method.

The compensation method is a very useful tool in power system analysis, not
only used in the static security evaluation but also widely applied in the dynamic
performance study and short circuit current calculation.

We first introduce the basic principles of the compensation method.

Assume the admittance matrix and the factor table of network N shown in
Fig. 2.14 have been formed, and the currents injected into the nodes are known,

12[11 [1 IJ [n]T
The problem in question is: when an impedance Z;; is added across nodes 7 and j,

how to solve the voltage V under the new condition by using the factor table of the
original network N:

Ve[V, Vs ... ... "
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Fig. 2.14 Equivalent circuit for
network branch changing

=

If we can get the current injecting into network N,
- 1:1 -
I
I+ Iy
I= . (2.85)

Thus the node voltage vector V can be calculated by an elimination and substitution
manipulation on I’ employing the original factor table. But before the node voltage
vector is obtained, the current I ;; flowing into branch Z;; is unknown. Therefore, the
node voltage cannot be calculated directly according to I

On the basis of the superposition principle, we can decompose network N shown
in Fig. 2.14 into two equivalent networks, as showing in Fig. 2.15a, b. The node
voltage vector V can be decomposed as

V=v® vyl (2.86)
where V() is related to the original network without the added line, see Fig. 2.15a.

Since the node injecting current vector I is known, V© can be easily calculated by
using the factor table of original network N:

vO = [yO po - po o o (2.87)
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Fig. 2.15 Principle of compensation method

Now we discuss how to calculate V(") in Fig. 2.15b. In this figure, the current vector
injected into the original network is

-0 1 01
I; ' 1 |«

=0 =00 (2.88)
—I; 1|
0 0

where I',:,~ is an unknown variable at this stage. But let I},- = 1, the node voltage can
be calculated by using the original factor table:

VO = [0y ey ] (2.89)

Because the network is linear, if the i,j can be obtained, then the final voltage vector
can be calculated by the following equation:
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-0 i
T
2 ) VZJ

V= : + [,:,' (290)
V,(P) V'(;ii)

Therefore, the problem we face now is to get / ;j- Here we need utilize the equivalent
generator principle.

As mentioned before, V(%) is the node voltage when branch Z;; is open. If we
consider the whole system as the equivalent source of branch Z;;, then the no-load
voltage of this source is

E=v? _y© (2.91)

Zr =V _y® (2.92)

where (Vi(ij> — V,-(’:i)) is the voltage drop between nodes i and j due to injecting
positive and negative unit current into these nodes. Thus we have the equivalent
circuit shown in Fig. 2.16, and can obtain iij directly:

T
I = B — / (2.93)
ij
where
Z;j =277t +Zj (2.94)

Fig. 2.16 Equivalent circuit to get

I
Zr
E Zj DT’Q‘/
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Substituting il-j- into (2.90), we finally obtain node voltage vector V.

The basic principle of compensation method has been introduced. In the prac-
tice, the compensation method can be used according to the following steps:

1. Find V% for the injecting unit current vector by using the factor table of the
original normal network.

-0 1
1 |«

Li=|0 (2.95)
-1 —J
0

2. Calculate the internal impedance, Zt, by (2.92), and then obtain Zlfj by (2.94).

3. Calculate V() by using the original factor table for the injected current vector I
(see Fig. 2.15a).

4 Obtain the current f,j flowing into branch Z;; by (2.93).

5. Solving node voltage vector V according to (2.90).

In theory, the compensation method can also be used when more than one operation
occurs simultaneously in the network. In this case, the above calculation steps
should be used recursively.

Now, we will show how to use the compensation method to analysis the
contingency state in the fast decoupled method.

The correction of (2.81) and (2.82) can be considered as the node equations of
the network based on “admittance matrix” B’ and B”, and the injecting currents
AP/V and AQ/V, respectively. The node voltages VoAO and AV are the variables
to be solved. In this way, the above calculation process can be followed directly.
When branch ij trips, the branch impedances added between i and j for B’ and B”
should be (see Fig. 2.14):

"o B
ij Bij ) ij - _xw (296)

If the tripped branch is a nonnominal tap transformer, the current representation in
(2.95) should be changed as
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01
. nr — 1
1M =10 (2.97)
_.1 —J
0

where nt is the nonnominal tap on the node j side of the transformer. In this
situation, (2.91), (2.92), and (2.93) should be revised, respectively, as

E=nvV? -y (2.98)

i J

Zr =mV? v (2.99)

VO O
g (2.100)

=
7 Zl/j

where Zl/j = ZT + Z,'j.

It should be noted, in above line outage operation, only the series branch of the
opened line (or transformer) is considered in (2.96). Rigorously speaking, the shunt
branches for line charging capacitance (and transformer ground branches) should
also be tripped simultaneously. However, tripping three branches at the same time
makes the calculation too complicated. Fortunately, practice indicates that the
errors caused by neglecting grounding branches are not very significant. Therefore,
the grounding branches can be neglected when the compensation method is used to
analyze line outage states.

2.6 DC Load Flow Method

The DC load flow simplifies the AC load flow to a linear circuit problem. Conse-
quently, it makes the steady state analysis of the power system very efficient. The
main shortcoming of the DC load flow model is that it cannot be used in checking
voltage limit violations. Because the DC load flow uses a linear model, it is not only
suitable to efficiently treat the problem of line outages, but is also suitable to form
linear optimization problems. Therefore, the DC load flow method has been widely
used in power system planning and operating problems.
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2.6.1 Model of DC Load Flow

The node active power equations of an AC load flow are given by (2.9),

P; =V ) Vi(Gjicos Oy + Bysin0;) (i=1,2,....n) (2.101)

jei
Branch active power is
P,’j = V,'Vj(Gij cos Hij + B,‘j sin 0,’]) — l‘,‘jG,'le«z (2102)

where #; is the circuit transformer ratio per unit of branch ij, 0;; is the phase angle
difference across branch ij; G;;, B;; are the real and imaginary parts of corresponding
elements of the node admittance matrix, respectively.

05 = 0; — 0; (2.103)

_rij X

G+ jBj = — — = + -
ij T JDij rij _|_]xi/~ }"12/ + X,2/ Jrlfzj +X121

(2.104)

where, r;;, x;; are resistance and reactance of line ij. When i = j,

Gi=—) Gy

JEi
J#i

Bjj = — ZBU
jei
J#

Under assumptions applied in the fast decoupled method, the above AC load flow
equations can be simplified to the following equations.

P,‘:ZBU'OU‘ (i:1,2,...,l’l)

jei

which can be rewritten as,

P, = ZBUH"_ZBUgf (i=1,2,...,n)

jei jei

From (2.104), we know the first term in the right hand of the above equation is 0,
thus we have,

Pi==> By (i=12,....n) (2.105)

JEi
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The DC flow model usually has no negative sign, thus we redefine B; as,
Bj=—— (2.106)

thus

1
B, = Z; (2.107)

Finally, we establish the DC flow equation,

Pi=> By (i=12,...,n) (2.108)

jei
or in matrix form,
P = Bo (2.109)

where P is 0 the node injection power vector and its ith element is given by
P; = Pg; — Pp;, here Pg; and Pp; are the generator output and load at node i,
respectively; is the phase angle vector and B is the matrix whose elements are
defined by (2.106) and (2.107).

Equation (2.109) can also be expressed as follows

0=XP (2.110)
where X is the inverse of matrix B,
X=B"! (2.111)

Similarly, substituting the simplifying conditions into (2.102), one obtains the
active power flowing into branch ij,
0; —0;

Pij = —Bjj0; =
X,‘j

(2.112)

or in matrix form,
P, = B,® (2.113)
If the number of branches is /, B; is an / x [ diagonal matrix whose elements are

branch admittance; Py is the branch active power vector; ® is the end terminal phase
angle difference vector.
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Assuming that the network incidence matrix is A, then one arrives at
b =A0 (2.114)

Equations (2.109), (2.110), and (2.113) are basic DC load flow equations which are
linear. Under given system operation conditions, the state variable 6 may be
obtained through triangularizition or matrix inversion from (2.110), then branch
active power can be obtained from (2.113).

2.6.2 Outage Analysis by DC Load Flow Method

From the above discussion, it can be seen that it is very simple to solve system state
and active power flow by DC load flow equations. It will also be shown that because
these equations are linear, it is possible to carry out fast load flow computation after
adding or tripping a line.

Assuming that the original network nodal impedance matrix is X and a branch k&
is connected between nodes i and j. When a line with reactance x; is added in
parallel with branch k, a new network is formed. We now demonstrate how to
obtain the new network state vector in this situation from the original network
impedance matrix and state vector.

Assuming the new network impedance matrix is X', it can be obtained according
to the branch adding principle of section 14 (see (2.1-2.107)),

X XT¥

X =X - 2L (2.115)
XLL
where X1, = Xey,
"0

l — 1
= | : (2.116)

—1|<J

0

XekeTX
X =X_- "k 2.117
X + ekT,Xek ( )

Equation (2.117) can be further reduced to,

X' =X + B, Xere, X (2.118)
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where
B = _ (2.119)
A .
7 = €, Xex = X + X — 2X; (2.120)

where X;;, X;, X;; are elements of X.
From (2.118), the incremental change of the nodal impedance matrix is given by:

AX = X' — X = B Xere; X (2.121)

According to (2.121) and (2.110), under constant nodal injection power conditions,
the change in original state vector after adding line % is

A® = AXP = B, Xei, (2.122)

where ¢, = [0, is the terminal phase angle difference of branch k before the
change. The new network state vector is given by

Thus after adding line &, the new network nodal impedance matrix and the new state
vector can be obtained by (2.118) and (2.123) using the original network para-
meters. When line k£ trips, the above equations can still be applied with x; being
replaced by —xy.

If the outage of branch k causes system disconnection, the new impedance
matrix X’ does not exist and 3, of (2.119) becomes infinite, i.e., —x; + y; = 0.
Therefore, it is very easy to check whether the outage of a branch will cause system
disconnection by using the DC load flow equation. However, it is impossible to
carry out line outage analysis directly.

2.6.3 N-1I Checking and Contingency Ranking Method

A network design has to satisfy certain operational security requirements. As
discussed earlier, a common network operational security requirement is to satisfy
N-1 checking, i.e., when one of N branches fails, the system operation criteria
remain within given requirements. At the initial stage of forming a network
configuration, the principle is to ensure that there is no overloading in the network;
i.e., the network satisfies the requirements for securely transmitting power. To this
end, one has to carry out the overload check for successive line outages. If the
outage of a line causes overloading or system disconnection, then the network does
not satisfy N-1 checking.
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The strict N-1 checking on all branches needs N line outage analyses, resulting in
a large amount of computing. In practice, some line outages do not cause system
overloading. Therefore, a contingency ranking is carried out according to the
probability of system overload being caused by a line outage, then the checking
is first performed on the lines with higher probability. If the checking of a line
indicates that its outage does not cause overloading, the lines with lower rank are
not subjected to any further checking, which significantly reduces the amount of
computing. Such a process is also called contingency selection. A number of
contingency ranking methods are available in the literature [23, 24], each having
a different criterion for assessing the system contingency. This section describes a
contingency ranking method based on the criterion of system overloading.

To reflect the overall system overloading, a system performance index (P[) is
defined as follows:

L Pl 2
PI = ; i 5 (2.124)

where P, active power of line /

P,, transmission capacity of branch /

oy, number of parallel lines for branch /

wy, weighting factor of line /, which reflects the influence of a fault
L, number of branches in the network

It can be seen from (2.124) that when there is no overloading, P;/P; is not greater
than 1, the PI is small. When there is overloading in the system, P, /151 for the
overloaded line is greater than 1 and the positive exponential element makes the P/
relatively large. Therefore, this index generally reflects the system security. It may
also be possible to use a higher order exponential instead of a square element in the
equation to further obviate the overloading problem.

A sensitivity analysis of the P/ with respect to the change of a line admittance
will reveal the impact of an outage on the system security. When line £ fails, the
change in the PI is given by

oPI
APl = —AB; 2.125
k 8Bk k ( )

where AB; = By, is the admittance of line k. The bigger API; is, the larger the
increase in the P/ will be, which indicates that the probability of a faulted line &
causing system overloading becomes higher.

API; may be calculated from Telegen’s theorem and the adjoint network meth-
od. In the following study, we will derive a formula to calculate API; directly using
nominal load flow results.

Assuming that after line & fails other line flows become P'(I=1,2,...,L;
[ # k), the system performance index becomes,
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L P/ 2
PI'="aw (—1) (2.126)
=1 P
Hence

API, = PI' — PI (2.127)

For the sake of simplicity, we change the system index to a function of voltage
angles and express it in the matrix form. From (2.113),

P, = B,¢, (2.128)

Substituting the above equation into (2.124) and defining

- (Bi$))’ T
Ply =PI = o —gy—=¢'wap (2.129)
=1
where
¢T = [¢17"'7¢k7~--7¢d
and
_aclwlB% T
2 0
1
OCkaB]%
Wy = =
Py
0 dvaéBl%
L P
Substituting (2.114) into (2.129), one obtains
Ply, = 0"ATw,A0 = 070 (2.130)
where
w=ATw,A (2.131)

is a symmetric matrix. Matrix w has the same structure as matrix B. Thus its
formation is equivalent to directly forming the admittance matrix using element
oclwlB,2 /1’5,2 to replace B;. Similarly, Plﬁp can be expressed as

Pl =0 wo/ (2.132)
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where @' is the voltage angle vector after the line k fails.
Equation (2.132) contains all elements relevant to line £ which should not appear
in the new system performance index PI’. Thus

2
k

B. 1\2
PI' = PIj, — wy ( ’}f’k) (2.133)
Substituting (2.130) and (2.133) into (2.127), one obtains

Wsz Wsz

APl = PI), — Pl — (qsk) =0"wo' —0"wo — (¢>k) (2.134)

From (2.123), we know

0 =0+ i Xerd;
¢ = et = (14 B s

Substituting the above two equations into (2.134), we have

APIL = (04 B Xexd,)"W(0 + fiXerdy) — 07w — B5 (1 1 022

P}
T T 2,2 T wiB}
= BrPr (0" wXey + €, XW0) + e, XwXey, — 7( + ﬁk%k) d)k
(2.135)
Taking into account the symmetry of matrices X and w, let
=0"wXe, = ¢, Xw0 = ¢/R
T T (2.136)
7 = e, XwXe; = e Tey
where
R = Xw0
T — XwX (2.137)
Substituting (2.136) into (2.135), one obtains
M%z%@m+ﬁﬁu—7ru+mo¢k (2.138)

When line £ fails, 3, in the above equations becomes
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—1 By

B p— P—
Tt 1-Bug

Substituting the above equation into (2.138) gives,

2By, B2¢? B2¢?
app, = 2Bibite | Biditk — St ; (2.139)
L=Bie (1 —Byy)” (1= Bry)P;

Because P, = B¢y,

2Py, P21y P?
AP = Ay TR Mk (2.140)
L=Bye (1 -Byy)” (1 —Buw)P;

Equations (2.138), (2.139), and (2.140) have no essential difference except for
different expressions. Variables in these equations are obtained from the normal
load flow calculation. Under the condition that matrices X, w, R, T have been
formed, it is very convenient to compute AP/ after a line outage.

The process of contingency ranking is essential to compute the values of AP/
from (2.138) [or (2.139) and (2.140)] for all lines and arrange them in descending
order of magnitude of API. During the line outage analysis, load flow calculation
and overload checking are first carried out on the line with the largest value of API,
and then the procedure is continued until there is no overload caused by the outage
of certain lines. The lines with smaller values of API are not subjected to further
analysis because the probability of overload caused by other outages is very small.
However, the use of this system performance index may cause a “screening” effect.
For example, the value of API for the situation where there is overloading in some
lines and the flow in the other lines is very small may be smaller than that for the
situation where there is no overloading but line flows are large. Therefore, the
contingency ranking by this index may introduce some error. In practice, one may
decide that the line outage analysis is terminated only after a number of consecutive
line outages do not cause system overloading.

Thinking and Problem Solving

1. What functions do the swing bus and PV buses in load flow calculations have?
How should they be selected?

2. Compare the advantages and disadvantages of nodal power equations with
polar coordinates and rectangular coordinates.

3. Give the characteristics of Newton method based modified equations in load
flow calculation.

4. Give the physical meaning of Jacobian elements of the modified equation.
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5.

6.

7.

10.

11.

12.

2 Load Flow Analysis

Give the flowchart of the Newton method based load flow calculation by polar
coordinate equations.

Design the storage modes of the Jacobian matrix elements of the Newton
method based load flow calculation with two kinds of coordinates.

How should node conversion, such as changing a PV node into a PQ node, or
changing a PQ node into a PV node, be implemented in the design of a load
flow program?

. What simplified suppositions are considered in the P — Q decomposition

method? Why is it that the P — Q decomposition method can obtain the same
calculation accuracy as the Newton method after so many suppositions?

. How can we improve the convergence of the P — Q decomposition method

when the ratio R/X is very big?

How can the compensation method be applied to the case with two branches out
of service?

Prove that the DC load flow model has the same solution as that of the
following optimizing problem:

a. obj min ) P;X, 5 P and X;; are the active load flow and reactance of branch
ijeB
ij, B is the branch set.
b. s.t. > Py = 0ij € i denotes all branches that connect to node i.
ijei
Discuss the issues raised by the N-1 checking method being used as static
security analysis tool for electrical power systems.



Chapter 3
Stochastic Security Analysis of Electrical
Power Systems

3.1 Introduction

Recently, worldwide power blackouts have attracted great attention to the reliability of
electrical power systems. In the power market environment, the operating modes of
electrical power systems vary rapidly so that operators must closely monitor system
states and transmission configurations, consider all kinds of stochastic factors, adjust
system operation away from critical margins, and avoid potential cascade failures. In
this situation, the traditional deterministic security analysis methods have limitations,
consequently the concept of operational reliability has been presented [28, 29].

According to deterministic security analysis methods, the system should operate
safely under various prescribed contingencies. When overload and abnormal vol-
tages occur in the system under certain contingencies, measures must be taken to
make the system operate securely. The advantage of the deterministic method is
that the theory is simple, but its obvious subjectivity generally makes the system
security level inconsistent. Because this method does not consider the occurrence
probability and consequences of various contingencies synthetically, some high-
risk contingencies may be ignored.

The failure probability of electrical power systems is a function of many stochastic
factors, such as the fluctuation of load, the random failure of generator units, the
random failure of transmission and distribution components, etc. [30-32]. In a power
market, a greater number of probabilistic factors will influence the operation, due to
separation of generation and the grid and competition among generators.

When considering synthetically the occurrence probability and seriousness of
consequences of various contingencies, the idea of system operation risk is introduced.

Assuming the contingency j occurs in system operating mode i, the risk of state
Xx;; can be assessed by the following equation,

rij = pr(xij) - Sev(xy),

X.-F. Wang et al., Modern Power Systems Analysis. 129
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where p(x;) is probability of this sate, Sev(x;) is the severity degree of the
consequences of this contingency, which can be measured by the amount of load
shedding. Assuming the set of stochastic events for system operating mode i is ;,
then the risk of this operating mode is

R; = Z Tij = Z pr(xij) - Sev(x;).

X,’,‘GQ,‘ X,'jE.Q,’

The risk-evaluation-based operational decision making is obviously more ob-
jective and reasonable. In fact, this risk is one measurement of the reliability of an
electrical power system. Although there is no recognized risk standard at present, a
risk evaluating standard system can be set up according to each specific application
in electrical power systems.

At present, the Monte Carlo simulation method and probabilistic load flow
method can be used as risk analysis algorithms. The Monte Carlo simulation method
can consider comprehensively more complex stochastic factors [33], but these
factors are always neglected in analytical methods because of their inherent compli-
cation. The drawback of Monte Carlo simulation is its large computational com-
plexity. If we only study the effect of some key system factors on the reliability, the
probabilistic load flow method [34-36] may be more effective. In this chapter, we
will introduce these two methods in detail and present a system reliability evaluation
method based on probabilistic network-flow models. These developments involve
the measurement, transformation, and calculation of random variables; therefore
probability theory is first briefly introduced [37].

3.2 Basic Concepts of Probability Theory

3.2.1 Probability of Stochastic Events

In certain conditions, stochastic events are things that may or may not occur, and
are referred to concisely as events. The measurement of the possibility of occur-
rence of stochastic events is probability. Therefore, each event has one related
probability value. Probability value is between O and 1, in which 1 denotes an
inevitable event and 0 denotes an impossible event. The probability of event A is
defined as P(A), which must meet the requirements as follows:

0<PA)<I, (3.1)
P(Q) =1, P(p) =0, (3.2)

where ( is the sample space and is an inevitable event; ¢ is the empty set and is an
impossible event.
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In addition, suppose event A and event B are incompatible with each other, that
is, A N B = ¢, then,

P(AUB) = P(A) + P(B). (3.3)

Equations (3.1)—(3.3) represent the basic attributes of probability or are referred to
as axiomatic definitions of probability. According to this definition, we get,

(a) If two events A and B are independent, then,

P(ANB) = P(A)P(B). (3.4)

(b) If two events A and B are incompatible with each other (mutually exclusive),
then,

P(ANB) =0. (3.5)

(c) If two events A and B are independent but not mutually exclusive, then,

P(AUB) = P(A) + P(B) — P(A)P(B). (3.6)

Furthermore, the probability value of an event can be obtained by reasoning only
for very few cases (prior probability); in most situations, it is described as frequency
value by repeated experiments (posterior), which is referred to as a statistical
definition of probability. The reliability parameters of electrical components, such
as failure rate and so on, belong to the latter.

Conditional probability is an important concept in probability theory. The
conditional probability of an event A is the probability that the event will occur
given the knowledge that an event B has already occurred. The definition is

P(ANB)

PAIB) =g

P(B) > 0. (3.7)

Several important formulas can be deduced according to conditional probability.

1. Multiplication probability theorem. Let Ay, A,, ..., A, be n arbitrary events, the
probability of their intersection set is

P(AiNAN---NA,) = (AI)P(A2|A1)P[A3|(A1 NA,)] (3.8)
“PAJ(ANAN - NA, )] '
However, when Ay, A,, ..., A, are independent, we have
P(AiNAyN---NA,) =P(A)P(Ay) - P(A,). (3.9)

2. Formula of total probability. Let event A occur according to the given condition
of events By, B, . .., B,.. A can only occur at the same time as one of By, B>, .. .,
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B,, occurs, and any two of B, are mutually exclusive, but their union sets consist
of the sample space of one event, thatis, B;B; = p(i # j),> .+, B; = Q,P(B;) > 0,
then the total probability of event A, P(A), is

ZP P(A/B;). (3.10)

3. Bayes’ Formula. Assume the occurring condition of event B; (i = 1,2,..., n) is
same as that in (2), then the probability of occurrence of event B; after the event
A occurred, is denoted by

P(B,-/A):M (i=1,2,..)). (3.11)

;P(Bi)P(A/Bi)

Equation (3.11) is Bayes’ Formula. It means that once event A occurred in
experiment, (3.11) is used to reassess the cause B;, so the probability P(B;/A)
is called posterior probability.

3.2.2 Random Variable and its Distribution

If the outcome of a random experiment can be described by one numerical variable,
and this numerical value is determined by a certain probability, then the variable is
named a random variable. In mathematical terms, it can be described that the set 2
of all sample points e is one sample space in a random experiment, and X is a real-
valued function defined on the sample space, that is,

ee€Q, X(e) ER.
If there exist real values a < b, such that the set of sample points satisfies
fela < X(e) < b},
then this set is an event, and the function X(e) is referred to as a random variable.

If « = —o0, event {el - co < X(e) < b} can be described by {X < b} for short.
Its probability measurement,

F(x) = P(X < %) (3.12)

is defined as the distribution function of random variable X. x can be any given real
value.

The general random variable X can be classified into a discrete random variable
and a continuous random variable according to its different possible values.
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For continuous random variables, another function to express its probability is the
probability density function f(x), which is defined by,

. 1
flx) = lim = P(x <X <x+ Ax), (3.13)

which can also written in incremental format,
P(x <X <x+ Ax) = f(x)Ax. (3.14)

Formula (3.14) can be interpreted as the probability under the condition that
random variable X is in the interval (x, x + Ax) and Ax — 0. Obviously, the
probability of random variable X between a and b is,

b
Pla<X<b) = /f(x)dx (3.15)

and the relationship between (3.15) and distribution function F(x) in formula
(3.12) can be written as,

Flx) = / Fl)dr (3.16)
and
dF(x)
=7 3.17
Fo) =5 (3.17)
For a discrete random variable (as shown in Fig. 3.1), X may be x; i =1, 2, .., n),

then its probability density function is defined as

px) = {g(x =) e (3.18)

and the distribution function is

F(x) = 3 p(w). (3.19)

xi<x

3.2.3 Numeral Characteristics of Random Variable

In many practical problems, we can specify the characteristics of random variables
by finding the average value of random variables and the degree of value dispersion.
The two most commonly used methods are introduced as follows.
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Fig. 3.1 The relative function of discrete random variable (a) probability density function; (b)
distribution function

3.2.3.1 Mathematical Expectation (Mean Value)

Discrete random variable X can be xy, x,, ..., and its corresponding probability is
P(X:X,‘):pi l:1,2,
Then mathematical expectation or expectation, E(X), is defined as

E(X) = ixipi- (3.20)

For a continuous random variable X, when its density function is f{(x), we have
E(X) = / o (x)d. (3.21)
—00

For the mathematical expectation of a set of random variables X; (i =1, 2, .. ., n),
there are characteristics such as described as follows

E (Z X,-> = zn:E(X,-). (3.22)

3.2.3.2 Variance

Discrete random variable X is denoted as 62, which is defined by,

n

i Z (x; — m)’p;, (3.23)

i=1
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where m = E(X), that is average value. Obviously, o> represents the degree of

dispersion of its value deviating from the average value m.
For a continuous random variable X, we get,

o> = / (x — m)*f (x)dx. (3.24)

Some properties and applications related to other numerical characteristics of
random variables will be discussed in Sect. 3.5.1.

3.2.4 Convolution of Random Variable

Suppose two random variables X and Y are independent, and they have probability
density functions fi(x) and f>(y), respectively, then Z = X + Y is still a random
variable. The probability density function of Z is

P(z) = 7 flx,z = x)dx
= ]C AWA(z — x)dr. (3.25)
Its distribution function is
F(z) = / /OC AWA(z — x)dx dz. (3.26)

If X and Y are discrete random variables, then the distribution function is

Fzy= Y PX=x,Y=y)= Y p()

xi+y;<z Xit+yi<z

and

p(z) = Zp(x =x)P(Y =z —x;). (3.27)

00
i=0

Equations (3.25) and (3.27) are the convolution formula of probability density
functions.
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3.2.5 Several Usual Random Variable Distributions

Now, we introduce several probability distributions that are often used in probabil-
ity analysis of electrical power systems.

3.2.5.1 Binomial Distribution

Let P(X=1) =p and P(X =0) = 1 — p, then the random variable X is a Bernoulli
distribution with parameter p. It is used for describing random phenomena with
only two states. Components, such as transformer, transmission lines, etc., have
random phenomena with only two states: running (denoted as 1) and outage
(denoted as 0). In an experiment repeated n times, the number of occurrences of

event A (success) is r, and the probability is p”, then nonoccurrence number (failure)
is (n — r), and the probability is (1 — p)"~". The probability of random variable X is

n s
ﬂ@m):()pﬂ—p) F=0,1,2,....n, (3.28)

where

() ==

is called the binomial distribution and 7, p are known constants (parameters).
The mean and variance of the binomial distribution are, respectively,

E(X) = np, (3.29)

a® =np(1 —p). (3.30)

3.2.5.2 Uniform Distribution
Let continuous random variable X have probability density
1

fW)=4qb—a’
0

a<x<b (331)

otherwise

)

Then X is uniformly distributed in the interval (a, b), it is written as X ~ U(a, b).
It is easily known that f(x) > 0, and ff; flx)dx = 1.
The random variable X, which is uniformly distributed in interval (a, b), has
equal probability to be in any subinterval with equal length in the interval (a, b).
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f(x) 1 F(x)
1/(b-a)
O a b X O a b X
a Probability density function b Distribution function

Fig. 3.2 Uniform distribution

In other words, the probability that it is in a subinterval in (a, b) depends on the
length of the subinterval, and is independent of the location of the subinterval. In
fact, for any subinterval, (¢, ¢ + ) and a < ¢ < ¢ +/ < b, with length /, we get

c+l c+l 1 /
Plc<X<c+1)= dx = dx = . 3.32
e<x<ern= [ foo= [ w63
The corresponding distribution function is
0, x<a
F)={ 35—, a<x<b. (333)
1, x>b

The figures of f(x) and F(x) is shown in Fig. 3.2.

3.2.5.3 Normal Distribution

When a continuous random variable X has such a probability density function,
described as follows

1 ’
flx) = 5 e oM v < oo (3.34)
oV2n

then X is referred to as normally distributed, and is written as N(m, 02) for short.
Where, o is positive value and m can be any constant.

Two parameters of the normal distribution, m and ¢, are its mean value and
variance. m is also the position parameter, and it is depended on the movement of
density curve on horizontal axis. ¢ is also referred as a scale parameter and is
depended on the shape of the curve. A normal distribution with parameter m = 0 and
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o =1, N, 1), is named a standard normal distribution. Its probability density
function is

—¥2
——e /2

f(X)=\/E

The distribution function of a normal distribution is

1 I 2 2
Fx) = —— g (u=my 20 qy, 3.35
™) = Vo / (3.33)

Formula (3.35) cannot be approximately represented by general elementary func-

. u
tion. Let =

— m’ then (3.35) is changed into a standard normal distribution

1 >
Flx) = — 24z, 3.36
0=y [ e (3.36)
The value of a standard normal distribution can be obtained by the integration.
Figure 3.3 is the density function curve of the normal distribution.

The following formula can be deduced from the normal distribution function F(x)

3.2.6 Markov Process

Many random phenomena encountered in probability evaluation of electrical power
systems can be described by time-dependent random variables, which are called
random processes, and written as X(f).

f(x)

Fig. 3.3 The density function of —
normal distribution
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The random process, X(), can be described by their conditional probability. The
distribution of random variable X(¢,) at any time ¢, is related to all random variable
X(t;) at all past time instants #; (1 < i < n — 1). In discrete time, X(#;) will be written
as X; for short hereinafter, and its probability can be described in the following form

P[Xn :x,,|(X1 :Xl,Xz = X2,... ;Xn—l :xn_l)]. (337)

If the distribution of X,, is only related to the most recent state, and not to any
previous states, i.e.,

P(Xy = x| (Xt = 1) (3.38)

It is called a Markov Process or memory-less process.

Generally, the Markov process with discrete time and discrete state space is
referred to as a Markov chain. This process can be described by the conditional
probability of (3.24). For brevity, we denote the present state as i and the next state
as j, then (3.38) can be written as

P(Xn :j|Xn,1 = l) = Pijj- (339)

In which p;; is the transition probability from state i to state j. If the transition
probability in one transition process is independent of time ¢, and is also a constant,
ie.,

P(X,, :j|X,,,1 = l) = P(Xk :j|Xk,1 = l) :Pij

then this Markov chain is time homogeneous. In the later study of probability
problems of electrical power systems, we are only concerned with the time-
homogeneous Markov chain.

As the transition from state i to state j is completed in one step, p;; is referred to as
the one-step transition probability. If there are n states, then the one-step transition
probability can be written in matrix format

Pt P12 - P
P=|P2n P2 - Pm | (3.40)
Pnl P2 Pnn
where p; > 0i,j=1,2,...,n,
n
dpi=1 i=12,....n (3.41)
=1

Equation (3.41) describes the property of a stochastic matrix.
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If the process of transferring from state i to state j is completed by m steps, then
P = P = j1Xa = i)

pl(jm) is m-step transition probability, which can be described as a function of the

one-step transition probability matrix
pm — pm (3.42)
If the initial state probability vector of process is

P(O) = &71(0), P2(0)7 T pn(O)L

the probability in state j after m-steps can be obtained by the following formula
P™ = p(0)P". (3.43)

In each component of P(0), when a process begins from one specified state i, it is
often set P;(0) = 1, and other components are all 0.

3.3 Probabilistic Model of Power Systems

There are many random factors that influence the operation and planning of
electrical power systems. When assessing system operation security, we mainly
consider such random factors as load fluctuation, random failure of generator units,
and random failure of transmission and distribution components, etc. Now, we
introduce their models respectively as follows.

3.3.1 Probabilistic Model of Load

The loads in an electrical power system vary continuously, so the system operation
must adapt to this kind of variation at any time. Therefore, to build an appropriate
load model is very important for system security assessment. According to the
requirement of security assessment, the load model can be divided into time-
instance load model and time-period load model.

For the time-instance load model of node i, we generally describe it by a normal
distribution N(y;, ¢;), in which parameter y; is the numerical expectation of this
distribution and also is usually the forecast load value of node i at this time.
Parameter o; is the variance of this distribution, describing the degree that the
real load value w; deviates from the forecast value u; of node i. To obtain a load
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sample value w; on node i, a random number y; of standard normal distribution
N(0, 1) is first generated, which is then used to modify the forecast load value for the
node

Wi =u; + ;- yi, (3.44)

where w; is the load sample value of node i, ; is the load forecasting value, g; is the
variance of load distribution of the node i.

When security assessment requires a load model over a certain time period T, we
should first obtain the load duration curve for this time period, then change it into a
probability distribution of load. Suppose point (x, f) of the load duration curve
represents the time duration ¢ for which the load is greater than or equal to x, i.e.,

t=F(x). (3.45)
Dividing both sides of the above equation by time period T we have

fx) =F@)/T, (3.46)

where f(x) can be regarded as the probability that load is larger than or equal to x,
i.e., distribution of the load.

3.3.2 Probabilistic Models of Power System Components

When assessing the security and reliability of power system operation, we should
first build the probabilistic model of operating components, which usually include
such components as transmission lines, transformers, generator units, and so on.

Each transmission line has two operating states, normal operating state and
failure state. The basic parameter to represent the characteristic of a transmission
line operation is its forced outage rate (FOR), which is generally denoted as gq.
Suppose the transmission capacity of transmission line is ¢, we have,

P(Xx,«){l_q x,::c}' (3.47)

This means that probability of the available capacity of this transmission line
being ¢ is equal to 1 — ¢, and the probability of its available capacity being O is
equal to ¢g. The relative cumulative probability (that is the distribution function) is

P(X<x,~):{1 x’_:c}. (3.48)
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This denotes the probability 1 of the available capacity of this transmission line
being less than or equal to ¢, and the probability ¢ of the available capacity of this
transmission line being less than or equal to 0.

When assessing the reliability of electrical power systems, it is more convenient
to use outage capacity of a component. Comparing with the expression for available
capacity X, outage capacity is denoted by X. Then we get,

— _ N q xi = C
p(X—x,)—{l_q x,~=0}’ (3.49)
which denotes the probability is ¢ of the outage capacity of this transmission line
being equal to ¢, and the probability is 1 — ¢ of the outage capacity of this
transmission line being equal to 0. The cumulative probability of outage capacity is

= 1 Xi = 0
PX>x)= {q Y= }, (3.50)
which denotes the probability 1 of the outage capacity of this transmission line
being greater than or equal to 0, and the probability ¢ of the outage capacity of this
transmission line being greater than or equal to c.

The probabilistic models of the transformer and generator, which are usually
considered as two-state components, are similar to that of the transmission line.
Their probabilistic model can be constructed according to (3.47) and (3.48).

Sometimes the generator needs to be treated more fastidiously, because the
generator may include prime mover. The boiler and prime mover of thermal
power generator units are comparatively more complex, and failure of the ancillary
components will influence the output power of the generator unit. Therefore,
besides normal operation and failure state, a generator unit may also have degraded
operating states. When building the probabilistic model of generator unit, it may be
required to know the probability of degraded operation.

3.3.3 Outage Table of Power System Components

The states of power system components, such as the state of a generator unit, can be
described in the form of an outage table. Table 3.1 gives an outage table of a two-
state generator unit. This table can be set up according to (3.47) and (3.48).

It can be seen from above table that the probability is 1 of the outage capacity of
the generator unit being greater than or equal to 0, and the probability is ¢ of the
outage capacity of the generator unit being greater than or equal toc. In other words,
the probability is 1 of the available capacity of the generator unit being less than or
equal to ¢, and the probability is ¢ of the available capacity of the generator unit
being less than or equal to 0.

In real power systems, a power generation plant always has many generator units
with different types and capacities, we often combine these generator units by using
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Table 3.1 The outage table of a generator unit

Available Outage capacity Deterministic Cumulative
capacity (MW) MW) probability, p probability, P
c 0 1—q 1

0 c q q

the convolution formula, and hence obtain the outage table of this power generation
plant. The outage table gives the probability of various available capacities of
power generation plant under a definite step size Ax.

Suppose there is an outage table of n — 1 generator units, the outage capacity X is
arandom variable of a discrete distribution, and its probability is p, 1 (X). When the
nth new generator unit, with available capacity ¢, and forced outage rate g,, is
added, the new probability p,(X) of the outage capacity can directly deduced using
the convolution formula, (3.27)

pn(y) :Pwl(y)P(O) +Pn—1(7 - Cn)p(cn)-

The two-state probability of the nth generator unit can be deduced by (3.49)

p(Cn) = {qn, p(O) =1-gq,.

Substituting them into the above equation, we can obtain the recursive formula

pn(X) :pnfl(X)(l - QH) +pn71(}? - Cn)CIn- (351)

Equation (3.51) can recursively calculate the state probability, and can also calcu-
late the cumulative probability P,(X). To do so we only need to change P, (X) and
P,_1(X) in the formula into the corresponding cumulative probabilities. But the
initial condition of the calculation is that probability p,_1(X — ¢,) = 0, and cumu-
lative probability P, (X — ¢,) = 1 when X < ¢,,

Pu(X) = a1 (X)p(0) + puy (}_( = cn)p(Cn)-

[Example 3.1] A power generation system has two generator units, and their power
capacities are 30 MW and 40 MW, respectively, their forced outage rates (FOR) are
0.04 and 0.06, respectively. Form the outage table of this power generation system.

[Solution] The outage table of the power generation systems refers to the
probability table of various power capacity states of total system, and can be formed
by using the recursive formula described above, according to the outage table of
each generator unit. Therefore, first we should set up the outage table of each
generator unit. Let step size be AX = 10 MW, then the outage tables of these two
generator units are shown in Tables 3.2 and 3.3.

Then the outage table of the power generation system can be formed by recursive
formula, and is shown in Table 3.4.
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Table 3.2 Outage table of 30-MW generator unit

i X; (MW) P; Di

0 0 0.100000 x 10*°! 0.960000 x 10*%°
1 10 0.400000 x 107! 0.000000 x 10*%°
2 20 0.400000 x 10~ 0.000000 x 10*%°
3 30 0.400000 x 107! 0.400000 x 107!

Table 3.3 Outage table of 40-MW generator unit

i X; (MW) P; Di

0 0 0.100000 x 10*°! 0.940000 x 10*°
1 10 0.600000 x 107! 0.000000 x 10*°
2 20 0.600000 x 107! 0.000000 x 107
3 30 0.600000 x 107! 0.000000 x 10*°
4 40 0.600000 x 107! 0.600000 x 107!

Table 3.4 Outage table of 30-MW and 40-MW generator units

i X; (MW) P; Di

0 0 0.100000 x 10*°! 0.902400E + 00

1 10 0.976000 x 107! 0.000000 x 10*%°
2 20 0.976000 x 107! 0.000000 x 107
3 30 0.976000 x 10! 0.376000 x 10~
4 40 0.600000 x 107! 0.576000 x 107!
5 50 0.240000 x 10~ 0.000000 x 107
6 60 0.240000 x 107 0.000000 x 10*%°
7 70 0.240000 x 107 0.240000 x 107

In order to illustrate computing process, we introduce the application of the
recursive formula for the case with P; = 0.0976 when i = 3, X = 30 MW in Table
3.4. Let 30-MW power generator unit be component a and 40-MW power generator
unit be component b. Then, we know n, = 3. According to (3.51), the cumulative
probability of combined equivalent generator unit ¢ in condition k = 3 is

3
P.(3) = Zpa(i)Pb(k — i)

0
Pa(0)Py(3) + pa(1)Pp(2) + pa(2)Ps(1) + pa(3)Pp(0).

Substituting the corresponding numerical values in outage table into above equa-
tion, we have

P.(3) =0.96 x 0.06 + 0 x 0.06 + 0 x 0.06 + 0.04 x 1.0 = 0.0976.
As to parallel transmission lines and transformers, we can also form their outage

tables. Once outage tables of components of power systems have been obtained, we
can simplify the security or reliability evaluation process of system operation.
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3.4 Monte Carlo Simulation Method

3.4.1 Fundamental Theory of Monte Carlo Simulation Method

Monte Carlo simulation method [33, 38] is a simulation approach based on probabil-
ity and statistics theory and methodology. At present, the Monte Carlo simulation
method has been applied to many fields of engineering and scientific theory, with the
advantage of simple principles and realization, insensitivity to the dimension of
problems, avoidance of any constraining assumptions, and strong adaptability.

In the Monte Carlo simulation method, the state of each component in the system
is obtained by sampling. The components include various system equipment, such
as generators, transmission lines, transformers, etc., and different load levels. Let
the state of a power system be represented by the vector x = (xy, X2, X3, ..., X))
where x; is the state of the ith component. The set of all possible states x, arising
from combinations of component states is denoted by X, the state space. Suppose
F(x) is one experiment for a given state x. The objective of the test is to verify
whether that specific configuration of generators and circuits is able to supply that
specific load. The reliability indices correspond to the expected value, E(F), of
various Types of test functions over all possible states:

E(F) =Y F(x)- P(x). (3.52)

xeX

For example, the system loss of load probability (LOLP) is equal to the numerical
expectation of a dual-value function as follows

Flx) = 1, if x is a failed state
10, ifxisanormal state’

The expectation E (F) of experiment function F(x) can be estimated by (3.53)
R 1 Xs
E(F)=— F(x;), 3.53
(F) = P (3:53)

where E (F) is the estimate of the expected value of the test function, NS the number
of samplings, x; the ith sampled value, and F(x;) is the test result for the ith sampled
value.

It can be seen from (3.53) that E (F) is the estimated value rather than the real
value of E(F). Since x and F(x) are random variables, E(F ) is also a random
variable. E(F) is the average value of the function F(x). The variance of E(F) is

V(E(F)) = —=, (3.54)
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where V(F) is the variance of the test function F, and its estimated value V(F ) is

. 1 NS .

V(F) = o5 . (F(x) — E(F))* (3.55)

i=1

Now we will discuss the convergence, convergence rate, calculation error, and
computing process of the Monte Carlo simulation method.

3.4.1.1 The Convergence of the Monte Carlo Simulation Method

From (3.53), we know that E(F ) is often used as the estimate of the reliability
indices when we evaluate a system’s reliability using Monte Carlo simulation
method.

It can be understood from the Kolmogorov Strong Law of Large Numbers that if
{F(x;),i=1,2,...} is asequence of independent and identically distributed random
variables and its numeral expectation exists, then,

. 1 NS
P(lelinoo S ;F(x,-) = E(F)) =1, (3.56)
P<lei21wE(F) = E(F)) =1. (3.57)

In other words, the estimated value E (F) of the reliability indices converges to
E(F) with probability 1 when NS — oo by using the Monte Carlo simulation
method.

3.4.1.2 The Convergence Rate of the Monte Carlo Simulation Method

According to the Central Limit Theorem, if {F(x;), i =1, 2 ,...} is a sequence of
independent and identically distributed random variables and its numerical expec-
tation exists, and finite variance V(F) # 0, then, when NS — oo, the random
variable,

(E(F) — E(F))

tends to the standard normal distribution N(0, 1), hence,

(3.58)

1 Y 1,2
P(Yns < Xy) =& — / e 2" dx. 3.59
( NS ) \/E . ( )
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It is obvious that the random sample {F(x;), i=1, 2, ...} of test function F(x)
satisfies above condition according to the Monte Carlo simulation method. Thus
for any x, > 0, we have

P(|Yns| < x4) P<|E(F) *E(F)| < )@\/_ﬁéF))

1 ta 1,2
=—— e?dx=1-a 3.60
\Y4 27'C [oo ( )

This indicates that

Xy V(F)
VNS

has probability 1 — «. In general, o is also referred as the confidence of estimation,
1 — «a is the confidence level. o and x, have the relation of one to one correspon-
dence. Equation (3.61) indicates that the convergence order with which estimated

value E(F) converges to the real value E(F) is ONS™'?).

E(F)—E(F)| < (3.61)

3.4.1.3 The Error of the Monte Carlo Simulation Method

In general, variance coefficient f is often used to represent the estimated error

V(E(F))

= R (3.62)

Equation (3.54) is substituted into the above equation, we obtain

B= VVIE)NS, (3.63)

E(F)

Hence,
(3.64)

Equation (3.64) shows that the computational effort of Monte Carlo sampling,
given by the required sample size NS, does not depend on the number of states x
or on the complexity of the test function F. The required number of samplings NS
depends on the variance of the random variable and on the desired accuracy f3. If we
wish to reduce the number of samplings while maintaining the same accuracy, we
must find ways to reduce the variance.
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3.4.1.4 The Flowchart of the Monte Carlo Simulation Method

The flowchart of Monte Carlo simulation method is shown in Fig. 3.4.

3.4.2 Sampling of System Operation State

3.4.2.1 Random Number

When the operating process of electrical power systems is simulated by using the
Monte Carlo simulation method, it is required to generate random variables with
various probability distributions, in which the simplest, the most basic, and the most
important random variable is the random variable with uniform distribution on
interval [0, 1]. Generally, the sample value of a random variable with uniform
distribution on interval [0, 1] is referred to as a random number, and the samples
of random variables with other distributions can be obtained by means of a random
number with uniform distribution on interval [0, 1]. Thus we can say that the random
number is a basic tool of random sampling.

Set initial sample
times NS=0

-
<

Y
Sample of

system state X;

Y
NS=NS+1

'

Astostate X, . calculate test
function F(x;)

Y

Estimate expectation of test function
by equation (3-53)

{

Estimate the error by equation (3 -62)

[s error in allowable range?

( The end >

Fig. 3.4 The computing flowchart of the Monte Carlo simulation method
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One approach to generate random numbers is to use physical simulation. But this
is not very practical due to the high cost and the difficulty of generating random
numbers repeatedly.

Now the most widely used approach to generate random numbers is by using a
mathematical method with the aid of a computer. The advantages of this method
include low memory requirement, fast generating speed, and convenient regenerat-
ing without restriction on computer conditions. But these random numbers are
obtained by a deterministic recursive equation, and periodic phenomena exist.
Also, once the initial value is determined, all random numbers will be uniquely
determined, which does not meet the requirement for a true random number.
Consequently, random numbers generated using the mathematical method are
called pseudorandom numbers. In application, as long as these pseudorandom
number sequences are tested by a series of statistical methods, they can be applied
as a surrogate for “true” random numbers.

There are many methods to generate pseudorandom numbers, such as mid-
square method, mid-product method, and multiplicative and additive congruence
method. At present, the standard algorithms to generate uniform distribution can be
directly found in many books that introduce advanced computer languages, and the
existing functions also can be found directly. Therefore, we only need to call these
functions when sampling electrical power systems states.

3.4.2.2 Sampling of System Operation States

In the Monte Carlo simulation method, the power system state is sampled according
to element distribution functions. Though there are a large number of uncertainties
that affect the system reliability indices, we only consider some primary uncertain-
ties associated with the generator availability, the branch availability, and the
system load variation.

According to the Monte Carlo simulation method, the state of the electrical
power systems is determined by samples from the probability distribution functions
of each component. In reliability evaluation of electrical power systems, uncertain
factors such as random failure of generator, random failure of transmission line, and
random fluctuation of load are always considered.

For generators and branches, two operating states are employed. Their probabil-
ity distribution functions are two-point distribution according to Sect. 3.3.2. We can
generate a random number with uniform distribution U(0,1), compare this random
number with device forced outage rate ¢, then determine whether device state is in
failure state or running state, as shown by (3.65).

1, x> ggi, generator i is in running state

e = {0, x < qgi, generator i is in failure state

e . 3.65
{ 1, x> qu;, transmission line i isin running state ( )

i
My = .. T .
0, x < qu;, transmission line i is in failure state
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where, 77("g and 7}, is the state of generator i and transmission line 7, respectively, gg;
and gy ; are corresponding forced outage rates of ith generator and ith transmission
line, and x is random number following uniform distribution U(0,1).

For the power generator unit, because a power generation plant usually includes
many generator units with different Types and capacities, we can take each power
generation plant as a multistate generator unit, and directly sample by using the
outage table of the power generation plant (shown in Sect. 3.3.3) in order to
decrease computing burden.

For the load, the sample value of load can be obtained directly by considering
random fluctuation factors according to the method introduced in Sect. 3.3.1.

Thus, we have obtained each component state of system. All these states consist
of state vector x, the set of all possible state x, X, is referred to as the state space.
Having obtained the system state by sampling, we can now evaluate the system
state.

3.4.3 State Evaluation Model

3.4.3.1 Load Flow Model

System state evaluation (that is the process to calculate test function F(x)) can use
the AC load flow model or DC load flow model. An introduction to AC load flow
can be found in Sects. 2.3 and 2.4, and an introduction to DC load flow can be found
in Sect. 2.6.1. The reliability evaluation of electrical power systems is generally
based on the linearized load flow model, i.e., the DC load flow model. In practice,
the accuracy and computing load of the DC load flow mode is satisfactory.

3.4.3.2 Model of Load Curtailment

A considerable number of contingency states in which no load curtailment exists
will have been excluded after the contingency analysis of all the sampled contin-
gency states. For those contingency states which may have load curtailment,
generation outputs at some buses cannot be maintained due to generating unit
contingencies and/or there are some line overloads due to transmission component
outages. Generation outputs should be rescheduled to maintain generation demand
balance and alleviate line overloads and, at the same time, to avoid load curtail-
ment if possible or to minimize total load curtailment if unavoidable. The following
minimization model of load curtailment can be used for this purpose:

Np
Min Z Pp;
j=1
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s.t.BO + P, = Pg + Pp,

Ng Np Np
ZPGi+ZPDi = ZPLh
=1 =1 =1

~ (3.66)
P; < P < Pg,

0§PD§PL7

T|<T,

where, Pp is active power vector of virtual generators representing the amount of
load shedding on nodes; Pg is injecting active power vector of generator; Py is load
vector of nodes; Pg is the upper limit vector of active power of generators; P is the
lower limit vector of active power of generators; T is the active load flow vector of
transmission lines; 7 is the upper vector of active load flow of transmission lines;
Ng is the number of generator nodes; and Np, is the number of load nodes.

The above rescheduled-model is a standard form of linear program and can be
solved by linear programming algorithms. The details of the solution are omitted
here.

3.4.4 Indices of Reliability Evaluation

There are many possible indices which can be used to measure the adequacy of
power systems. Most adequacy indices are basically expected values of a random
variable. An expected value is not a deterministic parameter. It is a long-run average
of the phenomenon under study. Expectation indices provide valid adequacy indi-
cators which reflect various factors such as system component availability and
capacity, load characteristics, etc. In this book, the following indices are calculated.

3.4.4.1 Loss of Load Probability (LOLP)

LOLP represents the probability of load shedding due to various reasons. Its
defining equation is

LOLP = > " p;, (3.67)
Ci#0

where p; is the probability of load curtailment value C;.
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3.4.4.2 Expected Energy Not Supplied (EENS)

Expected Energy Not Supplied (EENS) is the expectation of energy-shortage in a
period of time. If we want to calculate the expectation of energy-shortage in a year,
the defining equation is

EENS = Y " C; x p; x 8,760, (3.68)
Cizo

where C; is the amount of load curtailment and p; is the corresponding probability.

Since EENS is an energy index, it is significant for economical assessment of
reliability, optimizing reliability, and system planning. Thus EENS is a very
important index for reliability assessment of the whole system.

3.4.5 Flowchart of Composite System Adequacy Evaluation

Figure 3.5 shows the flowchart of composite system adequacy evaluation using
Monte Carlo simulation.

[Example 3.2] To evaluate the reliability of the 5-node system shown in Fig. 2.6,
using the Monte Carlo simulation method. The capacity and reliability parameters
of system component are shown in Tables 3.5 and 3.6.

[Solution] This system consists of five nodes, seven branches, in which there are
two power generation plants, and total installed capacity is 11 and load is 7.3
represented as per unit values.

According to the process shown in Fig. 3.5, we can calculate the reliability
indices of system.

At first, system state x; is sampled by the Monte Carlo simulation method. Then
we generate a random number for every component with the aid of a computer, and
determine the device state according to this random number according to the
approach introduced in Sect. 3.4.2. The random number is generated for each
component and the state vector x; of components is determined. The states of
generation and network branch are determined as shown in Tables 3.7 and 3.8.

Thus, we can get a sample state x;. First, we analyze the network topology in this
state, and judge whether the system is connected or not. It can be seen from
Figs. 3.2-3.6 that the available capacity of system is only the power output, 5.0
p.u., of power generation plant G1 after a contingency occurs on transformer 5
(branch 3.5) and power generation plant G2 is separated from the system. Compar-
ing power output and load, we can find that total power generation plant output (5.0
p.u.) is less than total load (7.3 p.u.), so it cannot meet the balance condition of
active power, and partial load must be shed. Here, the state contributes to the reliability
indices. System blackout occurs once, and the amount of load shedding is 2.3 p.u.

Thus we have complete one sampling. By resampling, we can get a new system
state x;. In this state, the output of power generation plant G1 and G2 are all 5.0 p.u.,
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Initialize number of sample NS=0
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System state sampling

!

System state analysis using DC flow
model

Minimization model of load curtailment

NS=NS+1 solved by LP

Y
calculate the expected value of the test
function

\

Calculate the coefficient of variation of the
estimate

No If the coefficient of
variation is accepted?

Fig. 3.5 The flowchart of Monte Carlo simulation

and all other branches are running except fault branch 1-2. For x;, the state
evaluation proceeds:

1. Analyze network topology in state x;, and judge its connectivity. It can be seen
from Figs. 3.2-3.6 that system is still connected after contingency occurs on
transmission line 1-2.

2. Judge whether active power of system is balanced or not. In state x;, active power
output of system is 10.0 p.u. and load is 7.3 p.u., so the active power output is
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Table 3.5 Reliability parameter of power generation component

Power generation plant G1 Power generation plant G2
Available Cumulative Available Cumulative
capacity probability capacity probability
(p.u.) (p.u.)

5.0 1.00 6.0 1.00
4.0 0.06 5.0 0.08
3.0 0.04 4.0 0.06
2.0 0.02 3.0 0.04
1.0 0.01 2.0 0.02
0.0 0.01 1.0 0.01
- - 0.0 0.01

Table 3.6 Reliability parameter of transmission component

Branch node

number Capacity FOR
1-2 2.0 0.05
1-3 2.0 0.05
2-3 2.0 0.05
2-4 5.0 0.05
3-5 5.5 0.05

Table 3.7 Power generation output determined according to random num-
ber with uniform distribution U(0, 1)

Power generation U(0, 1) Random Available capacity of power
plant number, x generation plant (p.u.)
Gl 0.6502 5.0

G2 0.1325 6.0

Table 3.8 Branch state determined according to random number with uniform distribution
v, 1

Branch 1-2 1-3 2-3 2-4 35
U(0, 1) Random number 0.32 0.2 0.46 0.75 0.017
Fault rate of branch 0.05 0.05 0.05 0.05 0.05
Branch state Up Up Up Up Down

larger than load. Therefore, it can meet the balance demand of active power of
system.

3. Judge whether branch load flow can satisfy the restriction of transfer capacity or
not. Here, the DC load flow model is used to calculate branch load flow. The
calculated power outputs of power generation plant G1 and G2 are 5.0 p.u. and
2.3 p.u., respectively, and branch load flow data are shown in Table 3.9.

It can be seen from Table 3.9 that overload has occurred on branch 2-3, and it is
required to adjust power output of power generation plant.

4. Modify system state by adjusting output of power generation plant.

System state correction can be adjusted according to the state evaluation model
of (3.68) introduced in Sect. 3.4.3. After adjusting, the power outputs of power
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Table 3.9 The load flow of branches

Branch 1-3 2-3 24 3.5
Transfer power (p.u.) 1.6 3 5 2.3
Transfer capacity (p.u.) 2 2 5 5.5

Is restriction condition satisfied Satisfied Not satisfied Satisfied Satisfied

Table 3.10 The load flow on each branch after adjusting

Branch 1-3 2-3 2-4 35
Transfer power (p.u.) 1.6 2 4 33
Transfer capacity (p.u.) 2 2 5 5.5

Is restriction condition satisfied Satisfied Satisfied Satisfied Satisfied

Table 3.11 The reliability indices of five-node system

Reliability indices of system Calculation results
LOLP 0.13345
EENS (MW h) 300,384.78

generation plant G1 and G2 are 4.0 p.u. and 3.3 p.u. respectively, and branch load
flow is shown in Table 3.10.

It can be seen from above calculation that although overload has occurred on a
certain branch in this sample state, the overload on the transmission line can be
eliminated after adjusting power outputs of power generation plant, thus no load is
shed for this sample state.

Repeating the above processes, sampling time after time, summarizing each
calculation result, and adding up the times and the amount of load curtailment, we
can obtain the reliability indices of the system. From (3.67), we can get LOLP. And
from (3.68), we can get EENS.

The calculation results for the 5-node system are shown in Table 3.11.

It can be seen from the above table that LOLP is 0.13345, and expectation of
power cut is 300384.78 MW h each year which is about 4.7% energy for the total
system. The reliability indices of the system are not satisfactory, and strengthening
measures must be adopted to improve system reliability.

Next, we further carry out the statistics and analysis of the convergence rate of
reliability indices.

The convergence curve of reliability index EENS is shown in Figs. 3.6 and 3.7.
LOLP has similar characteristics which need not be discussed further.

It can be seen from Fig. 3.6 that EENS will converge to a stable numerical value
by 20,000 samplings, which is more clearly recognized from the convergence curve
of EENS relative error. When the number of samples reaches 20,000, the relative
error of EENS is 0.02. If we want to improve the precision of calculation further,
and reduce the error of calculation, we should increase the number of samples. For
example, when the number of samples is 40,000, the relative error of EENS index is
0.014. It can be seen that the computing load of the Monte Carlo simulation method
is in inverse proportion to the square of estimated error. For a definite precision, the
only way to reduce the number of samples is to reduce the variance.
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3.4.6 Markov Chain Monte Carlo (MCMC) Simulation Method

Markov Chain Monte Carlo (MCMC) was presented in the 1950s. The MCMC
method, as a computer-intensive tool, has enjoyed an enormous upsurge in interest
over the last few years. MCMC methods are widely used to estimate expectations of
functions with respect to complex, high-dimensional distributions, especially in
Bayesian analysis [38], statistical physics, and estimation of Value-at-Risk. But
there is no report of the MCMC method being applied to reliability evaluation of
power systems so far.
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As discussed above, the Monte Carlo simulation method is a kind of statistical
experimental method, and is more flexible in reliability evaluation of large-scale
electrical power systems. It is inefficient because of its proportional characteristic
with the required index accuracy. Moreover, Monte Carlo methods are based on
sampling independent sequences, which cannot reflect the relativities in the
changes of the system states. Additionally, it is difficult to obtain the independent
sequences from multivariate probability distributions.

For the above reasons, a new Monte Carlo simulation is proposed to evaluate
reliability indices of large-scale system based on Markov chains. First, a Markov
chain, whose distribution corresponds to the target probability distribution, is con-
structed by sampling. Then, this Markov chain is used to sample the state to compute
reliability indices [39]. MCMC is a special Monte Carlo method, which applies a
Markov chain in the stochastic process to implement dynamic Monte Carlo simulation.

Consider a sequence Xy, Xi, X5, ... such that X;,; is generated from the
conditional distribution for {X.; | X; and X, represents some initial condition. By
the form of the conditional distribution, knowledge of X, provides the information
required to probabilistically characterize the behavior of the state X;.,. That is, the
distribution for X, depends only on the most recent state, not on the earlier states
Xo, X1, X, ..., X;_1. Hence, Xy, X1, X5, ... is a Markov chain.

Under standard conditions for Markov chains, the dependence of X on any fixed
number of early states, say Xo, X1, X5, . . ., X, M < 00, disappears as k—oc. Hence,
the density of X, will approach a stationary form, say p"(-). That is, as k gets large,
the random vectors in the Markov chain will become a dependent sequence with a
common density p”(-). Ignoring the first M iterations in the chain called the “burn-
in” period whose density distribution is not p(-), we can form an ergodic average

l n
E[F(x)] = > F(X). (3.69)

n—M, 4,

Equation (3.69) is a practical realization of the famous ergodic theorem of stochas-
tic processes. The variance of E (f) (the estimate of E(f)) is

VIE(F)] =V (F)/n. (3.70)
The estimate of V(f) is

VF) = LS ) - £ (371)
=1

From the above discussion, we can see that the key idea in the MCMC method is to
design Markov chains that have stationary distribution p“(-). That is, the limit of the
ergodic mean in (3.69) will correspond to the desired value E[ f(x)] computed with
respect to p(x). It is very easy to construct such a Markov chain. One most popular
algorithm of the MCMC method is the Gibbs sampler. The Gibbs sampler obtains
samples from the full conditional distributions without the difficult task of adjusting
the acceptance rate, so it is used in this paper to generate the desired Markov chain.
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In the Gibbs sampler for the MCMC method, the system states are obtained from the
devices’ full conditional probability distributions. In this section, generators and lines in
the system are considered with the two-state model. p; is the failure probability of the
components in the system. Loads are fixed to the maximum load of the whole year.

X represents the state variables of generators and lines and is a collection of m
univariate components. Number m is the sum of the number of sampled generators
and lines. The kth sample X from the Gibbs sampler is

X, =Xu X Xl

where X;; denotes the state of the ith component for the kth replicate of X generated
via the sampler.

X — 1 the ith component is in the running state when the kth sampling,
ki 0 the ith component is in the failure state when the kth sampling,

i=1,2,...,m.

From the initial state of the components X = 1 and initial relative prior probability
Done» the process of obtaining X, ; is as follows:

1. Under the current system state X, the relative posterior probability pone OT Prero
for the next state is obtained from the full distribution p{X;, ;| X;;} according to
the current state of the component, where

Xevi = { X1, X120 -+ Xertim 15 Xeie 1 - - - X }-

The first i—1 elements of X represent the sample points at the same (k + 1)th
iteration, whereas the remaining m—i elements are points available from the kth
iteration. SO Pope OF Puero 1S

i—1 m
In Hpjlfx”""'(l —pj)t [HIP/'l*X""(l )™,
= =i+

where the purpose of logarithm is to make the value of pg,. or p,.,, between
0 and 1, and convenient for calculating.

2. Calculating the probability of this component for the next state which is in a
running state (taking 1),

n= 1/[exp(pzem —Pone) + 1]7

where exp is corresponding to the logarithm taken in step 1.
3. Generating a random number # with the uniform distribution and determining
the next state of generator or line by comparing 7 and u.

Yoot — 1  u<mn the ith component is in running state
bl 0 u>mn the ith component is in failure state

4. If the state of the component changes, the pone Or p,ero Obtained from full
conditional distribution is used as the relative probability for the next component
keeping its current state.



3.4 Monte Carlo Simulation Method 159

Repeat these steps to obtain a Markov chain whose stationary distribution is the
system probability distribution. Then utilizing the convergent Markov chain as
system state samples, the reliability indices of the electrical power system is
obtained by state evaluation and adjustment.

The computing process of the state evaluation model and active power optimal
adjustment model for generators is the same as that of the traditional Monte Carlo
simulation method, which can be found in Sect. 3.3.2, and is not repeated here.

It can be proved that the computing load of MCMC method (sampling times) is
the same as that of the traditional MC method, and is not influenced by system scale
and complexity, thus this method is also suitable for dealing with various complex
factors, such as relative load and various operating control strategies and so on. In
addition, the techniques for reducing variance in the MC method can also be used in
the MCMC method.

In essence, the MCMC method is a kind of special MC method, which applies
Markov chains in the random process for MC simulation. This not only inherits the
advantages of traditional Monte Carlo simulation methods, with computing load
being approximately linearly proportion to increasing system scale, but also
achieves a dynamical simulation of the Monte Carlo method.

[Example 3.3] Calculate the reliability evaluation of the IEEE-TRS 24-node
reliability test system [40] by the MCMC method.

[Solution] The Gibbs sampler iterates for 55,000 times, in which the first 5,000
iterations are used for “annealing” to remove the effect of initial values. The results
of the remaining 50,000 iterations are used as samples to evaluate reliability indices.

The reliability indices obtained by use of the MCMC method are shown in Table
3.12. The results of comparing the MCMC method with other methods are shown in
Table 3.13.

The data in Table 3.13 show that the results of the proposed method are very
close to the other methods. It is illuminated that the proposed method in this chapter
is more effective.

Next, we will discuss the convergence rate and stability of the MCMC method,
respectively, according to calculation results of the example.

Table 3.12 The reliability indices of IEEE-RTS 24-node system

Reliability indices of system Value
LOLP 0.08464
EENS (MW h) 127,859.73

Table 3.13 The results of comparing different calculating methods on IEEE-RTS 24-node system

Reliability Convolution State MC method MCMC
indices method enumeration based on random method
method sampling
LOLP 0.084578 0.084575 0.084420 0.084640

EENS (MW h)  128,716.62 128,695.3 129,781.86 127,859.7
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Fig. 3.8 The convergence curves of LOLP relative error to two methods
3.4.6.1 Convergence Comparison of the Algorithms

Figure 3.8 is the convergence rate diagram of index LOLP relative error. From Fig.
3.8, we can see that the variance coefficient of LOLP for the MCMC method is
about 0.35 than that of MC method with same number of samples. In other words,
the convergence rate of LOLP in the MCMC method has been improved seven
times compared to that of the MC method with the same number of samples. At the
same time, we can see from Fig. 3.8 that the variance coefficient of the index LOLP
already reaches 0.01 after sampling 10,000 times when using the MCMC method,
which also shows that we can obtain more accurate results by only sampling 10,000
times when utilizing the MCMC method, which decreases sampling time and
speeds up the evaluation process.

3.4.6.2 Stability Comparison of the Algorithms

In order to check the stability of the algorithms, the reliability index LOLP has been
calculated, using the MCMC method and the MC method, ten times each. The results are
shown in Figs. 3.9 and 3.10. Comparing Fig. 3.9 with Fig. 3.10, we can see that the
stability of the MCMC method is higher than that of the MC method. The variance
of LOLP over ten calculations using the MCMC method is 1.89% of that obtained
from ten calculation results using the MC method. That is because the MCMC
method is based on the dependent sequence whose convergence is not related to the
initial value, and the sampled Markov chains converge to the same objective
probability distribution. Therefore, the calculated reliability indices are very stable.

From Fig. 3.9, we can see that the reliability indices converge to stable values
after 10,000 iterations (samplings) for each Markov chain. However, because
the MC method is based on independent sequences and the sampled sequences
have greater differences between each other for each sampling, the calculated
indices are very different and not stable enough. To obtain steadier results, the
sampling number must be increased.
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3.5 Probabilistic Load Flow Analysis

The probabilistic load flow method is a macroscopic stochastic method under
steady-state power system operation, which takes into account various random
factors in system operation, such as load fluctuation, generator faults, and the
impact of transmission component faults on steady-state operation. Therefore, the
probabilistic load flow method is more capable of revealing power system operation
characteristics than the conventional load flow method. It enables us to find the
potential crisis and weak points of the system operation. For example, it can give
the probability of line overloading, over voltage, steady-state instability, and so on.

Network planning involves a large number of uncertainties, such as inaccurate load
forecasts in long-term planning, generation capacity, alteration to the dispatch plans,
etc. These factors have a large impact on network planning schemes. In order to assess
overall system performance, network planners usually carry out load flow calculations
for many possible system operation modes, resulting in a large amount of computing
and also difficulty in reflecting global situations. The use of the probabilistic load flow
calculation method effectively solves these problems, providing decision-making
evaluation of planning schemes with more global information.

Generally speaking, probabilistic load flow calculations consist of two parts:
linearization of load flow equations and convolution calculations.
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In this section, we will describe a probabilistic load flow calculation method
which is based on the linearized model of the Newton-Raphson load flow calcula-
tion method. This model is characterized by its simplicity. It can provide line flow
and nodal voltage probability distribution, and also estimate the probability of
steady-state instability under a studied operation mode, making probabilistic load
flow results more valuable.

The convolution calculation of random variables is a very important part of
probabilistic load flow calculation. The probabilistic load flow calculation method
described in this section uses the cumulant method to perform convolution compu-
tation of random variables and the Gram—Charlier series expansion to compute their
distributions. Therefore, the overall probabilistic calculation is very efficient and its
accuracy satisfies the requirements of planning and operation analysis.

The cumulant method has attracted wide application and deep research investi-
gation because it is high in computation efficiency and flexible in solving problems.
This section will put emphasis on the method. First of all the cumulant method for
the probabilistic production simulation is introduced in combination with random
distribution cumulant and Gram—Charlier series and Edgeworth series. Then expla-
nations are made of how to deal with multistate generating units and sectionalized
generating units. Finally, the errors of the algorithm are analyzed.

3.5.1 Cumulants of Random Distribution

When a random variable’s distribution is known, its moment of every order can
then be obtained. Suppose the density function of a continuous random variable x is
g(x), then its v-order moment o, can be calculated by the following equation:

oy = /x"g(x)dx. (3.72)

u=oy = / xg(x)dx. (3.73)

From the expectation p, the central moment of every order M, can be calculated.
Then the central moment of every order M, can be solved by the expectation g,

M, = / (x— 1)"g()dx. (3.74)
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For discrete random variables, the equations for the moment of every order are
different from the above equations in form. Suppose the probability of the discrete
random variable x having a value x; is p;. Then the v-order moment is defined as

oy = Zpixiv (3~75)

in which ) means the summing up of all the possible value points of the random
variable x.
The expectation of random variable x should be

p=oy = pix;. (3.76)
i
Therefore the central moment of every order M, can be expressed as

M, = Zpi(xi SO (3.77)

A random variable’s moment of every order is a numerical characteristic and to
some extent represents the nature of the random distribution. The cumulant is also a
kind of numerical characteristic, which can be calculated from the moments of all
orders not higher than the corresponding order. The relationships between the first
eight cumulants and the moments of every order are given below:

Ki = o

Ky =0, — oc12

K3 = oz — 300 + 20(13

Ky = o4 — 4oz — 3oc22 + 12a29c12 — 6ocl4

Ks = o5 — 500 — 1003000 + 20053002 4 30020 — 60000,° + 240>

K¢ = o — 60501 — 15004000 + 300(40(12 — 100(32 + 12003000001 — 120:x3oc13
+ 300° — 27006202 + 360050 * — 12001, °

K7 = a7 — Togoy — 21as0n + 42a5a12 — 350403 + 210040000
— 210040, + 14003201 4 210030602 — 12600300 + 84001301,
— 6300501 + 252000570112 — 252002011 4 72001,

Ks = og — 8a701; — 28a00 + 5601601 > — 5605063 + 3360150200, — 33601501
— 35042 + 5600403001 + 42004007 — 25200400001 > + 16800501,
+ 5600320y — 1680032012 — 504003000201, + 13440030000
— 672003001° — 6300, + 1008001° 01 — 25200022 01,* — 201600501,
— 504008

(3.78)
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From (3.74) and (3.77), we can see that the first-order central moment of random
variables is exactly equal to zero

M, = 0.

If the above equation is substituted into (3.78), we obtain the relationships between
cumulants and central moments:

K> = M,

Ky = M;

Ky = My — 3M,?

Ks = Ms — 10MsM,

K¢ = Mg — 15MyM, — 10M3 + 30M,°

K7 = M7 — 21M3M3 — 35M4M; + 210M3M5°

Ky = Mg — 28M2M; — 56MsM5 — 35M,* + 420M4M,*
+ 560M3°M, — 630M,*

(3.79)

A cumulant has the following important quality. If random variables x"’ and x‘* are

independent of each other, and each has its own k-order cumulants K‘(,l) and

Kk (v=1,2,...,k), then the v-order cumulant of the random variable x” = x‘"

) 1@ is
KO =k K@ (v=1,2,... k). (3.80)

The above quality can be generalized to the situation when there are n-independent
random variables x® (i=1,2,..., n). Now the v-order cumulant of the sum of n
independent random variables can be expressed as

KO ="K (v=1,2,....k). (3.81)
i=1

Equations (3.80) and (3.81) are called the sum of “cumulants,” which moments or
central moments do not possess, and which is the reason why it is sometime also
called semi-invariate.

Now, we can calculate the every order moment and cumulants of random
distributions for loads and generator units according to above equations.

In general, the load curve of a power system is usually taken to be a step-wise
curve. The moments of each order can be calculated using by (3.75),

oLy = Zpix}’ (v=1,2,...,k), (3.82)
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where oy , is the v-order moment of the load curve and p; is the probability when the
load has the value of x;,

Di = ti/Tv

where ¢; is the duration of the load x; and T is the investigated period.
For a generating unit, the moments of each order can be calculated using the
following equation, when it is a multistate generating unit and the probability of

outage capacity Cj; i pis:

Nis
o= piuCl (v=1,2,....k), (3.83)
s=1
where N, is the number of states of generating unit i. For a dual-state generating
unit, N;; = 2, under this circumstance, the probability when the outage capacity
equals the rated capacity C; is ¢; and the probability when the outage capacity
equals zero is 1 — g;. Therefore,

%y = qiC}. (3.84)

When the moments of every order of the load curve and the generating unit’s outage
capacity distribution are known, all the cumulants of the respective order Ky, and
K;, can be obtained by using (3.78). However, to simplify the computation, the
central moments My, and M;, of the load curve and the generating unit’s outage
capacity distribution are usually first calculated and then the corresponding cumu-
lants are obtained by using the relatively simple (3.79). The moments of each order
can also be transformed into the central moment of each order by using (3.74) and
(3.77),

M, = <V> oy (—oY, (3.85)
0 \J
where ()) is the combination of “v and j,”

v
(j) =vv—-1)Wv=-2)---(v—j+1)/!
From (3.85), we get,

M2 = 0 — O(]2

M3 =03 — 30(20(] + 20(13

M4 =04 — 40630(1 + 60(12062 — 30514

etc.
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Equation (3.79) can be used to compute the corresponding cumulant when the
moments of each order are known. If only (3.82)—(3.84) are used to obtain the
moments of each order of the load curve and the generating unit’s outage capacity,
then (3.78) should be used to compute the cumulants of each order.

A method to calculate cumulants of every order from the random variable
distribution was discussed above. It was shown that the convolution of independent
random variables could be simplified to the addition of cumulants according to the
summability of cumulants.

The following problem to be dealt with is how to form the distribution of a
random variable from its moments or cumulants. There are many methods to solve
this problem. The Gram—Charlier series expansion and Edgeworth series expansion
are mainly used in probabilistic production simulation. These two series both
represent the random variable’s distribution function by using the derivatives of
the random variable. The coefficients of the series are formed by the random
variable’s cumulants.

To simplify the form of series, we define

o =K,/Jo" =K,JKS* (v=1,2,...,8), (3.86)

where g, is the normalized cumulant of the order v and o is the standard deviation.
From (3.36) and (3.38), we get,

g = \/K25

g1 =0,

& =1,

g3 = Ms /a3,

g4 =Myj/os— 1,

where g3 is the deviation coefficient of random variable distribution and g4 is its
transcending coefficient.

The random variable’s distribution function can be expressed as the following
expansion of the Gram—Charlier series using the normalized cumulants:

o]

flx) = / N(x)dx + %N@) (x) — %N@ (x) — %N(“) (x)
X
10g3 35 3.87
_ 86 ‘|‘6' 83 NS (x) + 871+ i 8384 5(6) x) ( )
56 352
88 +508385 + g4N(7)(x) T

8!
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or as the following expansion of the Edgeworth series

flx) = / N(x)dx + g3—3' N®(x) — g4—"‘ N® (x) + gs—f NG (x) — —(;f' 3 NG (x)
35384 280g3 86
+—; N© (x) 4 5 NG (x) — A NO)(x) (3.88)
35¢; 564385 2,100g384
— 741\](7)()() - N(7>(x) — T!SN(Q)(X)
1540088 1)
TR

where f (x) is the probability when the random variable adopts a value greater than
or equal to x. From (3.49) and (3.50), it can be seen that the Gram—Charlier series
and the Edgeworth series are expanded according to different rules, which will be
further discussed in Sect. 3.3.5. N(x) is the standard normal distribution density
function:

1 i
N(X) = E e_ixz,

where N (x) (y = 1, 2, ...) is the y-order derivative of N(x).

N (x) = (d‘i) " NW).

After the differentiation
N (x) = (=1)"H, (x)N(x), (3.89)

where H,, (x) is Hermite polynomial, the first ten Hermite polynomials are

(x)
(x)
(x)
(x)
(x)
Hs(x) = x° — 10x° 4 15x . (3.90)
(x)
(x)
(x)
(x)
(x)
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The general expression and recursive equation for the Hermite polynomial can be
seen in [37, 41]. Substituting the above equations into (3.87) and (3.88), we get the
Gram—Charlier expansion:

Flx) = / N(x)dv + N () %HZ(@ + SHH ) + 5 Hi(7)

X

1083 35 3.91

86+ 1083 1 () 4 81+ 338384 (3.91)
6! 7

| 88 + 568385 + 3543

8!

+ H6(f)

* Hy(%) + - --

and the Edgeworth expansion

Fx) = / N(x)dx + N(¥) [%Hz(x) +%H3(X) +%H4(X)

10g3 . 35 28083 . _ ~
+ P Hs(®) + 258 1) + B ) + S Hs @) + S ()
569395 ) 2100g2g4 15400

4
g1 o1 M@+ Hn (@) + -

35¢3

_|_

(3.92)

For the convenience of using the standard normal distribution table and the Hermite

polynomials derived from the standard normal distribution density function, the

normalized random variable x is used on the right-hand side of (3.91) and (3.92):

X—H
o

X =

, (3.93)

where i and ¢ are the expectation and standard variance of the random distribution.

The Gram—Charlier expansion in (3.91) uses the first eight orders of cumulants
and the first seven Hermite polynomials, whereas the Edgeworth expansion in
(3.92) uses only the first six orders of cumulants but the first 11 Hermite poly-
nomials.

3.5.2 Linearization of Load Flow Equation

In Sect. 2.7.1, we used the Taylor series expansion in deriving the linear (2.150)
from the nodal power (2.141) under the condition that a disturbance occurs to
injection powers, i.e.,

AX = SoAW, (3.94)

where (3.91) is linear. The distribution of the random state variable AX may be
obtained by convolution from the distribution operation of the AW.
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Following a similar argument, we can also obtain the linear relationship

between the branch flow (2.153) and the nodal injection power AW. Now, rewrite
(2.153) as

P,‘j = V,‘Vj(G,‘j cos 9,‘1‘ + B,‘j sin 9,:,‘) — l‘,‘jG,jViz
Qij = V,'Vj(G,'j sin HU — B,‘j CcOoS 9,1) + (t,'jB,'j — b,j)Vlz '

The above equation can be written as follows
Z =g(X).
Expanding the above equations according to the Taylor series, we obtain
Z=Zy+AZ =g(Xo+ AX) = g(Xo) + GoAX + - - -. (3.95)
Since Z, is obtained from normal load flow calculation and
Zy = g(Xo). (3.96)

Ignoring high-order terms of (3.92), we get

AZ = GyAX, (3.97)
where
0z
= — . 3.98
Go =2x -~ (3.98)

Gy is 2b x 2N matrix (b is the number of branches, N is the number of nodes), with
its elements given by,
Oy _

Py oP;

80[ = _Hij7 8—9] = Hijv 80k 0k ¢{laj}
OP; oP; oP;
VieU—op, Ny, VSN, VS L —0keli
Vi R Ho (3.99)
8Qii an] 8Ql] .. .
- :—.]," :J," :0k¢{l ]}
00; 0 8(9] j7 00, -
anj o aQij o 8Qij o ..
Vigy, = 2Qi —Hy V"aT/j =Hy, Vigy =0k ¢{i.j},

where H;;, Nj;, J;; are elements of the Jacobian matrix (2.164), thus G can easily be
obtained.



170 3 Stochastic Security Analysis of Electrical Power Systems

AZ of (3.94) is the random fluctuation component of branch flows. In order to
meet the independence requirements of random variable convolution operation,
substituting (3.91) into (3.94) we obtain

AZ = GoSoAW = ToyAW, (3.100)
where
To = GoSo (3.101)

is a transformation matrix. Equation (3.100) is linear. The use of the convolution
operation gives probability distribution of branch flows by injecting independent
random variable AW.

The random disturbance of the injection power AW is mainly comprised of
random factors of nodal load and generator failure. For the nodal load power, its
random component arises from forecast errors or random fluctuations of load. It can
generally be described by a normal distributed random variable. When the load
varies according to a load curve, we can simulate it using a discrete distribution,
thus reflecting operation modes of several load profiles in the load flow model. For
details of the probability distribution of generator power output and its cumulant
solution, see Sect. 3.3.

The effect of random failure of transmission and distribution components on
system can be simulated by using the corresponding injecting power AW, (see
(2.151) in Sect. 2.7). Suppose FOR of the transmission line is ¢, then the probabil-
ity of injecting power (being AW,) of the corresponding transmission line outage is
q1, and the probability of injecting power (being 0) is 1 — ¢;. Hence we can get
corresponding cumulant.

The random variable of nodal injection power is given by

AW = AW, & AW, & AW, (3.102)

where AW, and AW, are random variables of generator and load and AW, is the
injecting power of transmission and distribution components corresponding to
random failure. Symbol @ means convolution operation. Therefore, in order
to obtain the random variable of the nodal injection power AW it is necessary to
perform a random variable convolution. From AW it is also necessary to perform a
linear transformation on the random variable AW according to (3.91) and (3.97) in
order to obtain the probability distributions, AX and AZ, of state variables and
branch flows.

In order to use the Gram—Charlier series expansion to approximate the distribu-
tions of random variables, it is necessary to know every order of cumulant of this
variable. However, the use of a semi-invariant has to satisfy the independent
requirements of variables. Therefore, we assume that all nodal injection power
random variables are independent.

Through the cumulants’ properties of random variable (see Sect. 3.5.1), the kth
order semi-invariant of nodal injection power AW® may be obtained from the
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corresponding semi-invariant of load injection power AWE ) and generator injection

power AW(k>, ie.,
AWH = AW 4 AW 1+ Aw®. (3.103)

From the cumulants’ properties, we could obtain cumulants of the state variable AX
and branch flows AZ from respective cumulants of AW according to the linear
relationships (3.94) and (3.100), i.e.,

AX® = 5,0 . AW (3.104)
AZ®) =T, . AW, (3.105)

where S(()k) and Ték) are obtained as k exponents of matrix Sy and Ty, respectively,
i.e.,

So®(i,j) = S0 (i, )],
ToM (i,j) = [To(i.j)]".

It can be seen from the above discussion that after the random variables have been
transformed to the form of cumulants, the convolution and linear transformation
operations given by (3.100)—(3.102) become very simple. Therefore, after the
cumulants of the distributions of nodal load and generator powers have been
obtained, it is very easy to solve for cumulants, AX® and AZ®, of the state variable
AX and branch flows AZ based upon which the probability distribution of AX and
AZ can be obtained by the Gram—Charlier series.

Sometimes, in order to obtain the probability density function of a state variable or
line flow, itis necessary to expand the density function using the Gram—Charlier series:

+10
P(x) = N() (1 o+ STHS () + 5 Ha() + G Hs(®) + 5 2 He ()
' ' ' ' (3.106)
+ 35¢; _ +56 +35¢3
L8 & 8384y ) 88 gifs % p1,(%) +)

The above equation is obtained by differentiating (3.91) in the above section with
respect to x.

3.5.3 Computing Process of Probabilistic Load Flow

According to the above linearized probabilistic load flow model and convolution
operation of random variables, we have the flowchart for probabilistic load flow
calculations as shown in Fig. 3.11.
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Fig. 3.11 Flowchart of probabilistic load flow calculations
The meaning of each block in Fig. 3.11 is briefly explained as follows:

1. Raw data required by the probabilistic load flow calculation include data re-
quired by the normal load flow calculation and information about the probability
distribution of relevant nodal injection variables, such as the means and standard
deviations of normally distributed load, load power, and the corresponding
probability at each discrete point for discretely distributed load and the number,
capacity and forced outage rate of the generators in order to compute probability
distribution of the generator output.

2. Use the Newton-Raphson method to calculate normal load flow distributions,
obtaining the state variable X, branch flow Z; and Jacobian matrix J,. The
sensitivity matrix Sy is obtained through triangularization of J,.

3. Compute moments of nodal injection power random variables and their cumu-

lants AWl(k) and AWék).
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4. Superimpose cumulants of generator outputs on those of loads to obtain cumu-
lants of nodal injection powers.

5. Compute cumulants of state variables AX® from AW® according to (3.104),
preparing for the subsequent calculation of statistical distribution.

6. After having solved for G according to (3.98), form T, according to (3.101), and
solve for semi-invariants of branch flows AZ® from AW® according to (3.105).
It should be worth noting that AX is not an independent random variable any
more; therefore, AX® cannot be used to obtain AZ® according to the linear
(3.97).

7. Use the Gram—Charlier series expansion to obtain the distributions of AX and AZ
(3.87). The mathematical expectations of X and Z are X, and Z, respectively.
Their probability distributions are equivalent in shift to those of AX and AZ by
the expectation values X, and Z,. If it is only necessary to calculate the
probability of a variable being out of its limits, only the corresponding distribu-
tion function needs to be computed. On the other hand, if further study of the
distribution of a variable is needed, the expansion form of its density function,
(3.106), is used.

The flowchart of probabilistic flow calculations (Fig. 3.11) takes full advantage of
results obtained by the Newton-Raphson method during the formation of the
linearized model. When random variable convolution operations are carried out it
uses highly efficient cumulants and Gram—Charlier series. The whole model is
characterized by clear concepts and rapid computation. However, due to the solving
of the distribution of random variables by use of the semi-invariant, it is inevitable
to generate errors in the calculation results. To reduce the errors, we can deal with
continuous distribution and discrete distribution of random variables separately.
For the discrete random variable, the Von Mises method is used. For the continuous
random variable, a Gram—Charlier series is adopted. Thereby, the calculation error
can be greatly reduced [36, 41].

[Example 3.4] Perform probabilistic load flow calculations on the IEEE-14 bus
system. To stress the total computing process of probabilistic load flow, the case
with branch outage is not considered in this example.

Statistical data of nodal injection powers are as follows. The relative data of
generator units are shown in Table 3.15.

The load at node 9 is discretely distributed and its values are given in Table 3.16.
Loads at the other nodes are normally distributed; their expectation values and
standard deviations are given in Table 3.17.

[Solution] According to the flowchart shown in Fig. 3.11, we have the following
procedures of computation:

1. Use the Newton-Raphson method to calculate the normal load flow. State
variables X, and branch flows Z, under normal conditions have been obtained
as shown in Table 3.18. X, and Z, will be regarded as expected values for
probabilistic load flow calculation. Similarly, the Jacobian matrix Jo and sensi-
tivity matrix So have also been obtained (they are not listed here because of
limited space).
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Table 3.14 The data of nodes and branches (on the 100 MV A base)

Branch Node
Node of Node Active  Reactive Voltage
branch Resistance  Reactance  b;jp or t; power power
1-2 0.01938 0.05917  0.01320 1 2.324 0 1.06
1-3 0.05403 0.22304  0.01320 2 0.183 0 1.04
2-3 0.04699 0.19797  0.01095 3 —0.942 0 1.01
2-4 0.05811 0.17632  0.00935 4 —0.478 0.039 b
2-5 0.05695 0.17388  0.00850 5 —0.076 —0.016 -
34 0.06701 0.17103  0.00865 6 —0.112 0 1.07
4-5 0.01335 0.04211  0.00320 7 -0.0 0 -
4-7¢ 0.00000 0.20912  0.97800 8 -0.0 0 1.09
4-9° 0.00000 0.55618  0.96900 9 —0.295 0.046 -
5-6° 0.00000 0.25202  0.93200 10 —0.090 —0.058 -
611 0.09498 0.19890  0.00000 11 —0.035 —0.018 -
6-12 0.12291 0.25581  0.00000 12 —0.061 —0.016 -
6-13 0.06615 0.13027  0.00000 13 —0.135 —0.058 -
7-8 0.00000 0.17615  0.00000 14 —0.149 —0.050 -
7-9 0.00000 0.11001  0.00000
9-10 0.03181 0.08450  0.00000
9-14 0.12711 0.27038  0.00000
10-11 0.08205 0.19207  0.00000
12-13 0.22092 0.19988  0.00000
13-14 0.17093 0.34802  0.00000

“Represents that node 1 is slack node
b«_»Represents PQ node, and its voltage is unknown
“Represents transformer branch, the value in the last column is the ratio

Table 3.15 The relative data of generator units

Node Capacity (MW) Number FOR Expectation of power output (MW)

1
2

2.5 10 0.08 23.00
22 2 0.09 40.04

Table 3.16 Probability distribution of load at node 9

Active load (MW) 13.4 19.6 30.2 34.8 37.3
Probability 0.10 0.15 0.30 0.25 0.20
Reactive load (MVAR) 7.5 11.0 17.0 19.6 21.0
Probability 0.10 0.15 0.30 0.25 0.20

. Calculate the cumulants of the nodal injection power. Based upon the method of

solving for statistically distributed cumulants described in Sect. 3.3.1, we could
obtain eight cumulants of generator nodes 1 and 2 and discretely distributed load
at node 9, as shown in Table 3.19 (where all values are in per unit).

For normally distributed injection powers, their first-order cumulant is equal

to their expected value, the second cumulant is equal to their variances, while the
third-order to eighth-order cumulants are equal to zero. For example, the load at
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Table 3.17 Statistical data on nodal loads

Node Active load (MW) Reactive load (MVAR)
Expectation Deviation (%) Expectation Deviation (%)
1 0.0 0.0 0.0 0.0
2 21.74 0.09 12.7 0.092
3 94.20 0.10 19.0 0.105
4 47.80 0.11 -39 0.097
5 7.60 0.05 1.6 0.05
6 11.20 0.06 7.5 0.063
7 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0
10 9.0 0.10 5.8 0.10
11 35 0.095 1.8 0.095
12 6.1 0.076 1.6 0.086
13 13.5 0.105 5.8 0.095
14 14.9 0.086 5.0 0.086

Table 3.18 The results of load flow calculation by Newton-Raphson method

Load flow on branch Nodal voltage

Node of

branch P (o Pj; Qi Node Amplitude Angle
1-2 1.5694 —0.1893 —1.5264 0.2914 1 1.06000 0.00000
1-3 0.7547 0.0550 —0.7271 0.0305 2 1.04500 —4.98429
2-3 0.7327 0.0475  —0.7095 0.0273 3 1.01000  —12.73054
2-4 0.5614 —0.0041 —0.5446 0.0351 4 1.01714  —10.30872
2-5 0.4152 0.0259 —0.4062 —0.0164 5 1.01873 —8.76485
34 —0.2325 0.0455 0.2363  —0.0537 6 1.07000  —14.21900
4-5 —0.6110 0.1608 0.6161 —0.1511 7 1.06128  —13.35621
4-7 0.2806 —0.0983 —0.2806 0.1154 8 1.09000  —13.35621
4-9 0.1607 —0.0049 —0.1607 0.0179 9 1.05571 —14.93501
5-6 0.4411 0.1210 —0.4411 —0.0769 10 1.05080  —15.09401
6-11 0.0737 0.0361 —0.0731 —0.0349 11 1.05681  —14.78788
6-12 0.0779 0.0251 —0.0772 —0.0236 12 1.05517  —15.07369
6-13 0.1776 0.0724 —0.1754 —0.0682 13 1.05035  —15.15407
7-8 0.0000 —0.1730 0.0000 0.1777 14 1.03539  —16.03092
7-9 0.2506 0.0576 —0.2806 —0.0496
9-10 0.5212 0.0418 —0.0520 —0.0414
9-14 0.0942 0.0358 —0.0930 —0.0334

10-11 —0.0380 —0.0166 0.0381 0.0169

12-13 0.0162 0.0076 —0.0161 —0.0075
13-14 0.0565 0.0178 —0.0560 —0.0166
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Table 3.19 Cumulants of nodal injection powers at nodes 1, 2, and 9

Order Node 1 Node 2 Node 9
Active power Reactive power

1 0.230000 x 10*! 0.230000 x 10 —0.295000 x 10"®  —0.166000 x 10*°
2 0.460000 x 107" 0.792792 x 1072 0.599600 x 1072 0.191550 x 1072
3 —0.9660000 x 1072 —0.143020 x 102 0.430640 x 1072 0.778925 x 1074
4 0.160540 x 1072 0.195156 x 107> —0.168809 x 10™*  —0.172255 x 107>
5 —0.705180 x 107*  —0.119061 x 107>  —0.142591 x 10™*  —0.824467 x 107°
6 —0.100259 x 1073 —0.121103 x 107% —0.163633 x 10> —0.535577 x 10~
7 0.553146 x 107* 0.502300 x 1073 0.714816 x 107 0.132089 x 1077
8 —0.132800 x 107™*  —0.736492 x 10~° 0.335819 x 10°° 0.351225 x 107®

Table 3.20 Expectation and standard deviation values of state

variables
Node Voltage (p.u) Angle (°)
Expectation Deviation Expectation Deviation
1 1.06000 0.00000 0.00000 0.00000
2 1.04500 0.00000 —4.98429 0.44298
3 1.01000 0.00000 —12.73054 0.99757
4 1.01714 0.00202 —10.30872 0.68979
5 1.01873 0.00164 —8.76485 0.57883
6 1.07000 0.00000 —14.21900 0.84952
7 1.06128 0.00286 —13.35621 0.97527
8 1.05571 0.00000 —13.35621 0.97527
9 1.09000 0.00519 —14.93501 1.114956
10 1.05080 0.00441 —15.09401 1.09751
11 1.05681 0.00231 —14.78788 0.97113
12 1.05517 0.00069 —15.07369 0.88307
13 1.05035 0.00120 —15.15407 0.90842
14 1.03539 0.00368 —16.03092 1.06123

node 2 has an expected value of 0.2174 and variance (in percent) of 0.009; its
cumulants are

K, =0.2174,

K> = (0.2174 x 0.09)2 = 0.000382828, .

Ki=0 j=3,4,...,8

The sum of cumulants of the load and generator output at node 2 are displayed in
the third column of Table 3.19. Similarly, cumulants of the nodal injection
powers may be obtained.

. Compute the cumulants of the state variables. Since the sensitivity matrix Sy has

been obtained from normal load flow calculation, the cumulants of the state
variables may be obtained directly from those of the nodal injection powers
according to (3.104). Table 3.20 shows the expected values and standard
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deviations of nodal voltages and angles, where expected values are the first-
order cumulants, and the standard deviations are the square root of the second-
order cumulants.

4. Compute the cumulants of branch flows. When the Jacobian matrix and branch
flows under normal conditions are given, Gy is easily obtained from (3.99). Itis a
sparse matrix. Matrix T, is formed according to (3.101). For example, for line 5—
6, its position in T}, is the 19th and 20th rows with each row having 28 elements,
of which the first 14 correspond to active power and the last 14 to reactive power,
ie.,

To(19) = 0.0, —0.00523, —0.0209, —0.0370,0.01435, —0.6871
—2.07,-2.07, —0.2967, —0.3687, —0.5273,

— 0.6689, —0.6441, —0.4591;0.0,0.0, 0.0, —0.008 14,
—0.0129,0.0, —0.0393,0.0, —0.0736, —0.0658,
— 0.0367, —0.0030, —0.0168, —0.0548]

To(20) = 0.0, —0.0013, —0.0084, —0.0547,0.0747, —0.0124
—0.0556, —0.0556, —0.0542, —0.0478, —0.0309,
—0.0153,—-0.0194, —0.0413;0.0,0.0, 0.0, —0.1166,

0.1935,0.0,0.4848,0.0,0.0445, 0.0368, 0.0186, 0.00384,
0.0065,0.0286]

Eight cumulants of the branch flow are obtained from those of the nodal injection
power according to (3.105). The eight cumulants corresponding to line 5-6 are

K, =0.44111 x 107° K, = 0.70949 x 1073

K3 = —0.11284 x 10" K4 = —0.13095 x 10
K5 =0.32814 x 1077 Kg=—0.11174 x 1078
K; = —0.14485 x 107" K3 =0.20194 x 10710

Table 3.21 shows the expected values and standard deviations of branch flows.
5. Compute the probability distributions of the state variables. We take node 4 as an
example to solve for the probability density function of voltages.

Eight cumulants of the voltage at node 4 are given as

K, =0.10171 x 10*! K, = 0.40674 x 1073

K3 = 041810 x 107 K, = —0.32393 x 107!
Ks = —0.55467 x 107"° K¢ = —0.13057 x 1071
K; =0.11764 x 1077 K3 =0.11428 x 107"
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Table 3.21 Expectation and standard deviation values of branch flows

Branch Active load flow (MW) Reactive load flow (MVAR)
Expectation Mean Expectation Mean
Variance (%) Variance (%)
1-2 156.9366 13.3943 —18.9334 3.1295
1-5 75.4682 4.7871 5.5020 0.5054
2-3 73.2721 5.7571 4.7525 0.5651
24 56.1419 3.3318 —0.4093 0.6566
2-5 41.5220 2.4094 2.5914 0.5004
34 —23.2535 4.4619 4.5501 2.0654
4-5 —61.0946 4.4898 16.0791 1.4391
4-7 28.0606 3.5716 —9.8291 0.8584
4-9 16.0705 2.0367 —0.4891 0.7895
5-6 44.1110 2.6636 12.1028 0.5586
6-11 7.3663 1.4758 3.6053 1.0306
6-12 7.7890 0.4155 2.5089 0.1953
6-13 17.7556 1.2340 7.2398 0.6805
7-8 0.0000 0.0000 —17.3021 1.6740
7-9 28.0607 3.5716 5.763%9 2.3431
9-10 5.2150 1.5654 4.1753 1.0012
9-14 9.4161 1.2503 3.5818 0.6851
10-11 —3.7978 1.4467 —1.6587 1.0088
12-13 1.6172 0.3685 0.7594 0.1822
13-14 5.6540 1.1001 1.7751 0.6725

Taking the discrete step length as 0.01, we obtain the probability density function of
the voltage at node 4, as shown in Fig. 3.12, according to the Gram—Charlier series
method and (3.106), as described in Sect. 3.3.2. If the upper limit of the voltage is
1.02, then the probability of this voltage being greater than its upper limit is

P(V4 > 1.02) = 0.106232.
The dashed line in Fig. 3.12 is the result of using the sixth-order semi-invariant.

Following the same argument, we could obtain probability density distribution
functions of other state variables and branch flows and their over-limit probability.

3.6 Probabilistic Network-Flow Analysis

3.6.1 Introduction

The adequacy of the transmission system is basic to guarantee the secure operation
of power systems. The fundamental cause of the “8.13” Blackout in USA and
Canada is that many transmission components of the power system operated in their
limit states. Several blackouts in USA were caused by grounding fault induced by
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Fig. 3.12 Voltage probability density function at node 4

increasing sag of some over heated conductor. When adequacy of the transmission
system is not enough, after one transmission component goes out of service, load
transfer can easily cause cascading overload, which will expand the extent of
outages. A series of worldwide blackout events show that they are usually caused
by cascading outages.

The occurrence of cascading outages has a very close relation with power
network structure. When a power network may induce cascading outages in a
certain operating condition, we define the power grid structure as not stable in
this operating situation. And when the power network cannot induce cascading
outages in a certain operating condition, we define the power grid structure as stable
in this operating situation. An example of whether a power grid structure is stable or
not is given in Fig. 3.13.

There are three sources and three loads in the power network shown in Fig. 3.13,
and the capacity limit of each transmission line is also given in this figure. The
power network structure shown in Fig. 3.13a is stable in the corresponding load
condition, and satisfies the requirement of continuous power supply for load in
normal and N — 1 conditions. Due to the increasing load, the power network
structure shown in Fig. 3.13b becomes unstable. In such a condition, any outage
of an outlet line of the three sources will cause a blackout of the total system. For
instance, as shown in Fig. 3.13d, after the outage of the outlet line of source C,
overload of outlet line of source A and B occurs because of load transfer, which
therefore induces blackout of the whole power grid. But, when the connection lines
of DE and EF do not exist, the power network is stable because the outage of any
component in the power grid will not cause cascading outage, which is shown in
Fig. 3.13c.

In Fig. 3.13b, the blackout of whole power network caused by the outage of
transmission line has no relation with angular stability and voltage stability. In fact,
even though the length of all transmission lines in this power network approaches 0,
the blackout of whole power grid will still occur. For an unstable power grid,
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Fig. 3.13 The stability of power grid structure

measures to prevent cascading outages should be carried out. For instance, when a
transmission line trips, we should adopt such measures as load shedding to restrict
outage scope to a minimum area.

In this section, we will analyze power network structure by using a probabilistic
network-flow model, and discriminate components that induce cascading outages.
On this basis, we consider random outages of generation and transmission compo-
nents, calculate the probability (i.e., reliability) that a given load is satisfied, and
quantify the importance of each component in the power grid. This model can
provide useful information for transmission system planning, generation and trans-
mission device maintenance, contingency setting, and countermeasures.

3.6.2 Network-Flow Model

The “network” is a graph with capacity constrained branches [42], and nodes can
also be set with capacity restrictions under certain conditions. Communication
networks, transportation networks, and power networks are all typical networks
[43].

The transmission system, shown in Fig. 3.14a, with N nodes, N, branches, N;
generators, and N; loads, can be represented by the network illustrated in Fig.
3.14b.

In Fig. 3.14b, each component ij of the transmission system is assigned a
capacity C;. The generators are represented by branches connected to the fictitious
source node S, whose capacities C e1» Coo, + .., Cyy are determined by generators’
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Fig. 3.14 The network-flow
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available capacities. The loads are represented by branches connected to the
fictitious sink node T, whose capacities Cq;, Cqz, . . ., Cq; are determined by loads’
demands. As a consequence, the number of branches in Fig. 3.14b is

Ns =Ny, + Ny + Nj.

Assume the sum of loads is D, i.e.,

Ny
> Ca=D.
=1

Then the feasible network-flow model can be described by

Y Fi=0, j=12,...,N; j#S,T, (3.107)
kej
ZFk =D, (3.108)
ket
Fy < Cy. (3.109)

Ns = Np + Ns + Nj.
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Where F; is flow on branch k. Equation (3.107) means that the inflow and outflow
power at each node should be balanced; i.e., the feasible flows must be balanced at
each node, or satisfy the Kirchhoff’s First Law of electric circuits, which is the basic
property of network-flow. Equation (3.108) shows that flows must satisfy the load
demand D. Equation (3.109) presents the branch capacity constraints. Since Fy, <
Cai (3.108) is equivalent to

Fu=Cq =Dy, k=12... N (3.110)

Each feasible solution corresponds to a possible operating state satisfying transmis-
sion requirements. All feasible flow solutions represent all possible operating states
under the given generation and transmission resources.

To thoroughly dissect the grid structure, one should solve and analyze all
feasible flow solutions [42]. To do so, we need find the minimal path set from S
to T in Fig. 3.14b, P = {P,, P>, ..., P,,}, where m is number of all minimal paths.

Assume {fi, />, . . .. f,,} are flows on these paths, the feasible solutions should satisfy
the following constraints
> f<C k=12,...,Ng, (3.111)
Pick

> f=D. (3.112)

Equation (3.111) is the capacity constraint for branch &, P; € k denotes the minimal
paths that pass branch k; Equation (3.112) shows that flow on all minimal paths
should satisfy the load demand. Because a feasible solution is described by accu-
mulation of flows on minimal paths, flow balance condition represented by (3.107)
holds automatically. Therefore, the feasible flow model of (3.111) and (3.112) is
equivalent to that of (3.107), (3.108), and (3.109).

To understand the algorithm of network-flow model conveniently, the process
for finding a feasible solution is explained in detail by a numeral example.

[Example 3.5] Form the minimal path set and solve the feasible flow solution of
the sample system shown in Fig. 3.15.

[Solution] The sample system shown in Fig. 3.15a contains five nodes, five
branches, two generators and three loads ((1), (2), (3)). Its electrical parameters are
illustrated in Example 1.1. The network model is demonstrated in Fig. 3.15b, and
the numbers in parentheses present capacities of respective branches. To improve
computational efficiency, the capacities of all branches are enlarged ten times in
this example, thus floating computation can be replaced by integer computation. In
Fig. 3.15b, besides the original five branches, we add two branches (6 and 7)
connected with source point S, representing generators G1 and G2, respectively.

First, find the minimal path of arriving at each load node (1) (2) (3) of the network
shown in Fig. 3.15b from its incident matrix [44, 45]. Altogether ten minimal paths
are fund as illustrated in Table 3.22.
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Fig. 3.15 The network-flow ® ©
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a Simple power system

b Network.flow model

Table 3.22 Set of minimal paths
No. Including paths  Supplying load

1 1 3 5 7 Load (1)
2 1 4 6

3 2 -3 4 6

4 2 5 17

5 -1 2 5 17 Load 2
6 35 7

7 4 6

§ -2 1 4 6 Load (3
9 -3 4 6

10 5 7

*+sign is relative to given direction of
the branch

Then the feasible solution set is solved by an implicit enumeration method
according to (3.111) and (3.112). Forty-five feasible solutions have been found as
shown in Table 3.23. Because system load is 73, so the sum of the flows on the
minimal paths in each feasible set is 73. Flows on branches of each feasible solution
are shown in Table 3.24. The table demonstrates all possible operating states and
connecting modes that give satisfactory power supply, and provides comprehensive
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Table 3.23 Set of feasible solutions
No. f1 12 f3 f4 f5 f6 f7 f8 19 f10

1 16 20 24 13
2 16 20 24 13
3 16 20 36 1
4 16 4 16 4 30 3
5 16 4 16 4 33
6 16 4 16 34 3
7 16 20 4 26 7
8 16 20 4 33
9 16 20 30 7
10 16 20 37
11 16 20 24 10 3
12 16 20 24 13
13 16 20 20 17
14 16 20 4 30 3
15 16 20 4 33
16 16 20 34 3
17 16 20 4 10 23
18 16 20 4 33
19 16 20 14 23
20 16 20 37
21 16 4 16 24 10 3
22 16 4 16 24 13
23 16 4 16 20 17
24 16 4 16 18 19
25 16 4 16 4 33
26 16 4 16 37
27 16 20 20 14 3
28 16 20 20 17
29 16 20 24 13
30 16 20 14 23
31 16 20 4 33
32 16 20 37
33 16 4 16 24 13
34 16 4 16 24 13
35 16 4 16 36 1
36 16 4 16 24 10 3
37 16 4 16 24 13
38 16 4 16 20 17
39 16 20 20 17
40 16 20 20 17
41 16 20 37
42 16 20 20 10 7
43 16 20 20 17
44 16 20 20 17
45 16 20 37




3.6 Probabilistic Network-Flow Analysis 185

Table 3.24 Branch states of feasible solutions

No. b] Bz b3 b4 b5 No. b] b2 b3 B4 b5
1 20 4 3 37 36 24 14 2 16 50 23
2 20 4 16 24 49 25 4 20 20 36 37
3 4 20 20 36 37 26 4 20 16 32 41
4 20 4 10 50 23 27 20 4 10 50 23
5 20 4 20 20 53 28 20 4 4 36 37
6 16 B 14 50 23 29 s 16 20 40 33
7 20 4 10 50 23 30 14 2 16 50 23
8 20 4 16 24 49 31 L] 16 20 40 33
9 16 z 14 50 23 32 ] 16 16 36 37

10 16 u 16 20 53 33 20 4 3 37 36

11 20 4 10 50 23 34 20 4 16 24 49

12 20 4 = 40 33 35 4 20 20 36 37

13 4 20 20 36 37 36 20 4 10 50 23

14 20 4 10 50 23 37 20 4 2 40 33

15 20 4 20 20 53 38 4 20 20 36 37

16 16 u 14 50 23 39 20 4 3 37 36

17 20 4 10 50 23 40 20 4 20 20 53

18 20 4 H 40 33 41 ] 16 17 37 36

19 16 2 14 50 23 42 20 4 10 50 23

20 16 H ] 36 37 43 20 4 B 40 33

21 20 4 10 50 23 44 “ 16 20 40 33

22 20 4 u 40 33 45 ] 16 B 20 53

23 4 20 20 36 37

information of operating states under given generation and transmission condition.
The flow presented by shadow area denotes no flow on that relative branch, which
means that there still is a feasible solution even if corresponding branch is tripped.
For example, when branch b, is tripped by an incident, there are still feasible
solutions numbered 29, 31, 32, 41, 44; when branch b, is tripped, there are still
feasible solutions numbered 6, 9, 10, 16, 19; when branch b; is tripped, feasible
solutions numbered 12, 18, 22, still can satisfy load requirements. Even if branches
b, and b3 are simultaneously tripped, solution numbered 20 still can satisfy load
requirements. When branches b; and b5 are tripped simultaneously solution num-
bered 45 still can satisfy load requirements.

Table 3.24 can be simplified to Table 3.25 according to different outputs of
generators and configuration of the transmission system.

From Table 3.24 and 3.25, we can see that when branches 1, 2, and 3 tripped
separately, and branches 2 and 3, as well as branches 1 and 3 tripped simultaneous-
ly, feasible solutions still exist. This implies that under such conditions the trans-
mission system still can satisfy load requirement.

In all feasible solutions, branch 4 and 5 are indispensable, their failures certainly
cause other branches to overload or induce cascade failures. In other words, these
two branches are most important to maintain reliability of the transmission system.
By contrast, failures of other branches (1, 2, 3) have no essential impact on
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Table 3.25 Feasible solutions for different network configurations

Outage branches Generator output Ordinary number of feasible solution
Gl G2
No outage branch 37 36 1, 33,39
24 49
36 37 2,8,34
50 23 3, 13, 23, 25, 28, 35, 38,
20 53 4,7,11, 14, 17, 21, 24
32 41 27, 30, 36, 42
5, 15,40
20
Branch 1 40 33 29, 31, 44
36 37 32
37 36 41
Branch 2 50 23 6,9, 16, 19
20 53 10
Branch 3 40 33 12, 18, 22, 37,43
Branch 2&3 36 37 20
Branch 1&3 20 53 45

continuity of power supply, thus they are less important than branches 4 and 5.
Branch 3 has the least contribution to reliability of the transmission system. When it
is tripped, the transmission system can still satisfy load demand even if branch 1 or
2 is further tripped.

Therefore, from a network structure perspective, branches 4, 5 are the most
valuable branches, branches 1, 2 are less valuable branches, and branch 3 is the least
valuable branch.

Valuation of each branch in a transmission system can be further quantified, see
the example in Sect. 3.6.4.

It should be pointed out, 45 feasible solutions in Table 3.24 and 3.25 are valid
only under the condition that available capacities of generators G; and G, are 5.0
and 5.5, respectively. In such condition, reserve of the power system is big enough
to re-dispatch when contingency occurs. From the tables we can see that power
regulation range of G; is 2.0-5.0, while that of G, is 2.3-5.3. When limiting the
available capacity of these two generators to 4.0, the number of the feasible solution
decreases to 22, which can be found in Tables 3.24 and 3.25. In this situation, no
feasible solution exists when branches 1 and 3 are simultaneously tripped.

3.6.3 Lower Boundary Points of Feasible Flow Solutions

The network-flow model cannot include the Kirchhoff’s Second Law in its con-
straints. Therefore, multiple solutions may exist under the same generation and
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transmission condition. For instance, feasible solutions 21 and 27, 25 and 35 in
Table 3.24 are multiple solutions. In order to efficiently evaluate reliability of the
transmission system, the feasible solutions need to be sifted so that there is only one
feasible solution for each operating condition.

The sifting principle in this paper is to retain the feasible solution with the least
“total reactive power loss” AQ under the same operation condition

AQ =) P Xy, (3.113)
]

where P, X;; are the active flow and reactance of branch ij; > sums up “loss” of
all branches in the network. This principle can obtain the solution that best
approximates the DC power flow solution. The assertion is proved below.

Let us investigate the following optimization model,

c e 1
obj : Min5 > PP Xy, (3.114)
ijeNetwork
st.Y Pj=0, i€N. (3.115)
ijei

The problem is to minimize “total loss,” with the constraint of Kirchhoff’s First
Law, i.e., the conservative balance of the flows at each node. The Lagrangian
function of the problem is

N
L:% > p7 x,j—;eiZPij, (3.116)

ijeNetwork ijei

where 0; is the Lagrangian multiplier. Taking derivative of L respective to P;;, and
setting it to 0, we have

oL
—=P;X; —(0; —0;) =0. 3.117

5. = Fi X = (0= 0) (3.117)
Taking 0;, 0; as the phase angles of voltages at nodes i, j, one can see that (3.117)
represents Kirchhoff’s Second Law in the DC power flow model. For any loop L in
a transmission network, from (3.117) the next equation holds

> Py X;=0. (3.118)
ijeL

It is clear that the solution of above optimization model of (3.114) and (3.115) is
equivalent to that of the DC power flow model. Therefore, the solution retained
according to the least loss principle will best approximate DC power flow solution.
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By use of above sifting principle, after solving feasible solution of each network
flow in each operating state, we can calculate AQ according to (3.113) at once, and
remain flow solution relative to minimal AQ by comparing with original feasible
solution AQ. Thus same feasible solutions are sifted at the same time.

After sifting solutions, we have a unique feasible solution corresponding to each
feasible operating state. Define the branch flow vectors of a feasible solution as the
lower boundary point @,

Qi ={Fii, Fip, - Fone }, 1=1,2,... ko, (3.119)

where F;); is flow on branch j of the ith feasible operating state and &y is the total
number of feasible operating states. When the capacity of each branch is larger than
or equal to the corresponding component of this vector, the transmission system can
satisfy the load demand.

3.6.4 Reliability of Transmission System

The transmission system can be considered as a stochastic network, and the
capacities of generators, transmission lines, and transformers are treated as stochas-
tic variables because of random outages. Generally speaking, load demands are also
stochastic variables. But in reliability study, the load demands D are often given as
a standard to measure reliability, so that a reliability index can be defined as the
probability of satisfying load demand D by the transmission system.

When the lower boundary points of all feasible solutions ®;, (i = 1, 2, ..., ko)
have been obtained, we can calculate the probability of satisfying load demand D
according to the distribution of each branch capacity.

Let us define event B;,

B; ={Y|Y > &}, (3.120)
where Y > ®;) means
Yi > @4y, j=1,2,...,Ny. (3.121)

Then probability that B; occurs is
P(B:) = [ P(Fuy), (3.122)

where P(F ;) is cumulative probability which can be obtained from the outage
table of component j (see Sect. 3.3.3).
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The event Ap that satisfies load demand D is
ko
Ap = JB:- (3.123)
i=1

Therefore, the probability that load demand D is satisfied or the reliability of the
transmission system Rp is described by,

Ro =P(_ijBi) (3.124)

The above indices Rp can be calculated by the inclusion—exclusion rule [46].

In this section, the probabilistic network-flow model and algorithm of reliability
evaluation are introduced. Its feasible solution set illustrates the whole scenario of
possible operating states of transmission systems, which can be used to analyze
power network structure, and to find components whose outages cause system
cascade failures. The importance of each component in a power grid can be
quantified by probabilistic network flow, and the probability (i.e., reliability) to
satisfy given load is calculated. It provides abundant quantified information for
transmission system operation and planning, generation and transmission compo-
nent maintenance, the dispatch and purchase of operational reserve, contingency
setting, countermeasures, and so on.

When solving for network-flow, it is enough to give the available capacities
instead of output power. Therefore, the feasible operation solution obtained by the
proposed model automatically takes redispatch into consideration. As a static
security analysis tool, the efficiency is much higher than load flow analysis.

From the viewpoint of application, probabilistic network-flow model and algo-
rithm have provided a powerful tool for the evaluation of power networks and tie-
lines between areas and the reliability of interconnected systems.

There are two shortcomings related to the proposed model that need to be further
improved. Firstly, the model neglects Kirchhoff’s Second Law, and the load flow is
therefore erroneous. Although treated by a remedial measure, this problem is still
worth paying attention to in applications. Secondly, the application of the stochastic
network-flow model needs the development of effective algorithms. The stochastic
network-flow model is a NP complexity problem, and the key algorithm adopts the
implicit enumeration technique. This problem needs further investigation to devel-
op various effective simplified algorithms.

[Example 3.6] Evaluating the reliability of transmission system shown in Fig.
3.15, in which the capacity and reliability parameter of components are given in
Table 3.5 and 3.6.

[Solution] Firstly, we analyze the effect of each branch on system reliability.

After enumerating and sifting feasible solutions we can calculate composite
reliability Rp according to (3.124). Assume maximum available capacities of and
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are 5 and 5.5, respectively. The transmission system reliability Rp is 0.8685586.
When neglecting random outages of generators, i.e., FOR is O for all generators,
reliability Rp, increases to 0.9002437.

Let us now analyze the contribution of each branch on transmission system
reliability. The results are shown in Table 3.26. The basic scheme in the table
corresponds to the configuration shown in Fig. 3a. Its reliability index R has been
mentioned above. To evaluate the contribution of each branch on reliability, in the
table we demonstrate Rp for the schemes of the transmission system without
branches b1, b2, and b3, respectively.

We can see the impact of each branch on composite reliability from the table.
The reliability index of the transmission system without branch bl or b2 are
significantly worse than the basic case, Rp decreases to 0.8121741 from
0.8685586. Branch b3 has less impact on composite reliability. When the scheme
excludes it, Rp decreases to 0.8516820. When neglecting random outages of
generators (FOR = 0), branch b3 has almost no contribution to transmission
reliability, see the third column of the table.

Impacts on composite reliability reflect the values of branches in the transmis-
sion system.

When load demand increases, the relia