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Preface

The power industry, a capital and technology intensive industry, is a basic national

infrastructure. Its security, reliability, and economy have enormous and far-reaching

effects on a national economy. An electrical power system is a typical large-scale

system. Questions such as how to reflect accurately the characteristics of modern

electrical power systems, how to analyze effectively their operating features, and how

to improve further the operating performance are always at the forefront of electrical

power systems research.

Electrical power system analysis is used as the basic and fundamental measure to

study planning and operating problems. In the last century, electrical power

researchers have undertaken a great deal of investigation and development in this

area, have made great progress in theoretical analysis and numerical calculation,

and have written excellent monographs and textbooks.

Over the last 20 years, the changes in electrical power systems and other relevant

technologies have had a profound influence on the techniques and methodologies of

electrical power system analysis.

First, the development of digital computer technology has significantly im-

proved the performance of hardware and software. Now, we can easily deal with

load flow issues with over ten thousand nodes. Optimal load flow and static security

analysis, which were once considered hard problems, have attained online practical

applications.

Second, the applications of HVDC and AC flexible transmission technologies

(FACTS) have added new control measures to electrical power systems, and have

increased power transmission capacity, enhanced control capability, and improved

operating characteristics. However, these technologies bring new challenges into

the area of electrical power system analysis. We must build corresponding mathe-

matical models for these new devices and develop algorithms for static and

dynamic analysis of electrical power systems including these devices.

In addition, the rapid development of communication technology has enabled

online monitoring of electrical power systems. Therefore, the demand for online

software for electrical power system analysis becomes more and more pressing.

Furthermore, worldwide power industry restructuring and deregulation has

separated the former vertically integrated system into various parts, and the once
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unified problem of power system dispatching is now conducted via complicated

bilateral contracts and spot markets. New issues such as transmission ancillary

service and transmission congestion have emerged.

In recent years, several power blackouts have taken place worldwide, especially

the ‘‘8.13’’ blackout on the eastern grid of USA and Canada and the blackouts that

occurred successively in other countries have attracted a great deal of attention.

All of these aspects require new theories, models, and algorithms for electrical

power system analysis. It is within such an environment that this book has been

developed. The book is written as a textbook for senior students and postgraduates

as well as a reference book for power system researchers.

We acknowledge the support from various research funding organizations, their

colleagues, and students, especially, the special funds for Major State Basic Re-

search Projects of China ‘‘Research on Power System Reliability under Deregulated

Environment of Power Market’’ (2004CB217905). We express our special gratitude

to Professor Wan-Liang Fang and Professor Zheng-Chun Du for providing the

original materials of Chaps. 5 and 6, and 7 and 8, respectively. We also express

our sincere gratitude to the following colleagues for their contributions to various

chapters of the book: Professor Zhao-Hong Bie for Chaps. 1 and 3; Professor Xiu-Li

Wang for Chaps. 2 and 4; Dr. Ze-Chun Hu for Chap. 3; Dr. Xiao-Ying Ding for

Chap. 4; Dr. Lin Duan for Chaps. 5 and 6; Professor De-Chiang Gang for Chap. 7;

and Professor Hai-Feng Wang for Chaps. 6 and 8.

Xi’an, China Xi-Fan Wang
Liverpool, UK Yonghuna Song
London, UK Malcolm Irving
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Chapter 1

Mathematical Model and Solution of Electric

Network

1.1 Introduction

The mathematical model of an electric network is the basis of modern power system

analysis, which is to be used in studies of power flow, optimal power flow, fault

analysis, and contingency analysis. The electric network is constituted by transmis-

sion lines, transformers, parallel/series capacitors, and other static elements. From

the viewpoint of electrical theory, no matter how complicated the network is, we

can always establish its equivalent circuit and then analyze it according to the AC

circuit laws. In this chapter, the electric network is represented by the linear lumped

parameter model that is suitable for studies at synchronous frequency. For electro-

magnetic transient analysis, the high frequency phenomena and wave processes

should be considered. In that situation, it is necessary to apply equivalent circuits

described by distributed parameters.

Generally speaking, an electric network can be always represented by a nodal

admittance matrix or a nodal impedance matrix. A modern power system usually

involves thousands of nodes; therefore methods of describing and analyzing the

electric network have a great influence on modern power system analysis. The

nodal admittance matrix of a typical power system is large and sparse. To enhance

the computational efficiency, sparsity techniques are extensively employed. The

nodal admittance matrix and associated sparsity techniques will be thoroughly

discussed in this chapter.

The nodal impedance matrix is widely applied in the fault analysis of power

systems and will be introduced in Sect. 1.5.

The equivalent circuits of the transformer and phase-shifting transformer are

also presented in Sect. 1.1 because they require special representation methods.

X.‐F. Wang et al., Modern Power Systems Analysis. 1
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1.2 Basic Concepts

1.2.1 Node Equation and Loop Equation

There are two methods usually employed in analyzing AC circuits, i.e., the node

voltage method and loop current method. Both methods require the solution of

simultaneous equations. The difference between them is that the former applies

node equations while the latter applies loop equations. At present, node equations

are more widespread in analyzing power systems, and loop equations are used

sometimes as an auxiliary tool.

In the following, we use a simple electric network as an example to illustrate the

principle and characteristics of the node equation method.

As shown in Fig. 1.1, the sample system has two generators and an equivalent

load, with five nodes and six branches whose admittances are y1 � y6.
Assigning the ground as the reference node, we can write the nodal equations

according to the Kirchoff’s current law,

y4ð _V2 � _V1Þ þ y5ð _V3 � _V1Þ � y6 _V1 ¼ 0

y1ð _V4 � _V2Þ þ y3ð _V3 � _V2Þ þ y4ð _V1 � _V2Þ ¼ 0

y2ð _V5 � _V3Þ þ y3ð _V2 � _V3Þ þ y5ð _V1 � _V3Þ ¼ 0

y1ð _V4 � _V2Þ ¼ _I1

y2ð _V5 � _V3Þ ¼ _I2

9>>>>>>>=
>>>>>>>;
; ð1:1Þ

where _V1 � _V5 denote the node voltages.

Combining the coefficients of node voltages, we obtain the following equations:

y3 y2

y5

y6

y4

V
•

4 V
•

2

V
•

1

V
•

3 V
•

5
y1

I
•

1

I
•

4

I
•

3

I
•

5

I
•

2

I
•

6

Fig. 1.1 Sample system for node voltage method
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ðy4 þ y5 þ y6Þ _V1 � y4 _V2 � y5 _V3 ¼ 0

�y4 _V1 þ ðy1 þ y3 þ y4Þ _V2 � y3 _V3 � y1V4 ¼ 0

�y5 _V1 � y3 _V2 þ ðy2 þ y3 þ y5Þ _V:3 � y2 _V5 ¼ 0

�y1 _V2 þ y1 _V4 ¼ _I1

�y2 _V3 þ y2 _V5 ¼ _I2

9>>>>>>>=
>>>>>>>;
: ð1:2Þ

In (1.2), the left-hand term is the current flowing from the node and the right-hand

term is the current flowing into the node. The above equations can be rewritten in

more general form as follows:

Y11 _V1 þ Y12 _V2 þ Y13 _V3 þ Y14 _V4 þ Y15 _V5 ¼ _I1

Y21 _V1 þ Y22 _V2 þ Y23 _V3 þ Y24 _V4 þ Y25 _V5 ¼ _I2

Y31 _V1 þ Y32 _V2 þ Y33 _V3 þ Y34 _V4 þ Y35 _V5 ¼ _I3

Y41 _V1 þ Y42 _V2 þ Y43 _V3 þ Y44 _V4 þ Y45 _V5 ¼ _I4

Y51 _V1 þ Y52 _V2 þ Y53 _V3 þ Y54 _V4 þ Y55 _V5 ¼ _I5

9>>>>>>>=
>>>>>>>;
: ð1:3Þ

Comparing (1.3) with (1.2), we can see

Y11 ¼ y4 þ y5 þ y6;

Y22 ¼ y1 þ y3 þ y4;

Y33 ¼ y2 þ y3 þ y5;

Y44 ¼ y1;

Y55 ¼ y2:

These elements are known as nodal self-admittances.

Y12 ¼ Y21 ¼ �y4;
Y13 ¼ Y31 ¼ �y5;
Y23 ¼ Y32 ¼ �y3;
Y24 ¼ Y42 ¼ �y1;
Y35 ¼ Y53 ¼ �y2:

Similarly, the above elements are known as mutual admittances between the

connected nodes. The mutual admittances of the pair of disconnected nodes are zero.

Equation (1.3) is the node equation of the electric network. It reflects

the relationship between node voltages and injection currents. Here _I1 � _I5 are

the nodal injection currents. In this example, except _I4 and _I5, all other nodal

injection currents are zero.

1.2 Basic Concepts 3



Equation (1.3) can be solved to get node voltages _V1 � _V5, then the branch

currents can be obtained. Thus, we have obtained all the variables of the network.

Generally, for a n node network, we can establish n linear node equations in (1.3)
format. In matrix notation, we have

I ¼ YV; ð1:4Þ

where

I ¼

_I1
_I2
..
.

_In

2
66664

3
77775; V ¼

_V1

_V2

..

.

_Vn

2
66664

3
77775:

Here I is the vector of nodal injection currents and V is the vector of nodal voltages;

Y is called the nodal admittance matrix

Y ¼
Y11 Y12 � � � Y1n
Y21 Y22 � � � Y2n
� � � � � � � � � � � �
Yn1 Yn2 � � � Ynn

2
664

3
775:

As we have seen, its diagonal element Yii is the nodal self-admittance and the off

diagonal element Yij is the mutual admittance between node i and node j.
Now we introduce the incidence matrix that is very important in network

representations.

The incidence matrix represents the topology of an electric network. Different

incidence matrices correspond to different networks configurations. The elements

of the incidence matrix are only 0,þ1, or�1. They do not include the parameters of

network branches.

For example, there are five nodes and six branches in Fig. 1.1. Its incidence

matrix is a matrix with five rows and six columns.

A ¼

0 0 0 �1 �1 1

�1 0 1 1 0 0

0 �1 �1 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

2
66664

3
77775:

In the incidence matrix, the serial numbers of rows correspond to the node numbers

and the serial numbers of columns correspond to the branch numbers. For example,

the first row has three nonzero elements, which denotes node 1 is connected with

three branches. These three nonzero elements are in the fourth, fifth, and sixth

columns, which means the branches connected with node 1 are branches 4, 5, and 6.
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If the branch current flows into the node, the nonzero element equals �1; if the
branch current flows out of the node, the nonzero element equals 1. The positions of

the nonzero elements in each column denote the two node numbers of the relevant

branch. For example, in the fifth column the nonzero elements are in the first and

third row, which means the fifth branch connects node 1 and 3. In the sixth column,

there is only one nonzero element in the first row, which means the sixth branch is a

grounded branch.

From the above discussion we see that an incidence matrix can uniquely

determine the topology of a network configuration.

The incidence matrix has a close relationship with the network node equation. If

there are n nodes and b branches in an electric network, the state equation for every
branch is

_IBk ¼ yBk _VBk; ð1:5Þ

where yBk is the admittance of branch k; IBk the current flowing in branch k; and _VBk

is the voltage difference of branch k, whose direction is determined by IBk:
If branch k includes a voltage source, as shown in Fig. 1.2a, it should be

transformed to the equivalent current source as shown in Fig. 1.2b.

yBk ¼ 1=zBk

_aBk ¼ _eBk=zBk ¼ yBk _eBk

)
:

The current source can be treated as current injecting into the electric network,

thus the branch can also be represented by (1.5). In matrix notation, the equation of

a b branch network is

IB ¼ YBVB; ð1:6Þ

zBK

yBK

a

b V
•

BK

I
•

BK

a
•

BK

e
•

BK

Fig. 1.2 Transformation from

voltage source to current source
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where IB is the vector of the currents in branches, VB the vector of the branch

voltage differences, and YB is a diagonal matrix constituted by the branch admit-

tances.

According to Kirchoff’s current law, the injection current _Ii of node i in an

electric network can be expressed as follows

_Ii ¼
Xb
k¼1

aik _IBk ði ¼ 1; 2; . . . ; nÞ; ð1:7Þ

where aik is a coefficient. If branch current _IBk directs toward node i, aik ¼ �1; if
branch current _IBk directs away from the node i, aik ¼ 1; and if branch k does not
connect to node i, aik ¼ 0. It is easy to get the relationship between nodal current

vector _I and branch current vector _IB as follows,

I ¼ AIB; ð1:8Þ

where A is the incidence matrix of the network.

Assuming the power consumed in the whole network is S, we can obtain the

following equation,

S ¼
Xb
i¼1

ÎBk _VBk ¼ ÎB � _VB;

where ÎBk and ÎB are the conjugate of the corresponding vector and * is the scalar

product of the two vectors.

From the viewpoint of the nodal input power, we have

S ¼
Xn
i¼1

Îi _Vi ¼ Î� _V:

Obviously,

Î � _V ¼ ÎB � _VB: ð1:9Þ

From (1.8), we see

Î ¼ ÎBA
T:

Substituting it into (1.9), we obtain,

ÎBA
T _V ¼ ÎB _VB:
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Therefore,

AT _V ¼ _VB: ð1:10Þ

Substituting (1.6) and (1.10) into (1.8) sequentially, we can get

_I ¼ AYBA
T _V ¼ Y _V; ð1:11Þ

where Y is the nodal admittance matrix of the electric network

Y ¼ AYBA
T: ð1:12Þ

Thus the nodal equations of an electric network can be obtained from its incidence

matrix.

In the following, the network shown in Fig. 1.1 is used again to illustrate the

basic principle of analyzing the electric network by the loop current equations. In

the loop equation method, the network elements are often represented in impedance

form. The equivalent circuit is shown in Fig. 1.3. There are three independent loops

in the network and the loop currents are _I1; _I2; and _I3, respectively. According to

Kirchoff’s voltage law, the voltage equations of the loops are

_V4 ¼ ðz1 þ z4 þ z6Þ _I1 þ z6 _I2 � z4 _I3

_V5 ¼ z6 _I1 þ ðz2 þ z5 þ z6Þ _I2 þ z5 _I3

0 ¼ �z4 _I1 þ z5 _I2 þ ðz3 þ z4 þ z5Þ _I3

9>=
>;: ð1:13Þ

Rewrite the above equation into the normative form,

_E1 ¼ Z11 _I1 þ Z12 _I2 þ Z13 _I3

_E2 ¼ Z21 _I1 þ Z22 _I2 þ Z23 _I3

_E3 ¼ Z31 _I1 þ Z32 _I2 þ Z33 _I3

9>=
>;; ð1:14Þ

z4

z1 z3 z2

z6

z5

1

2
4

3
5

V
•

4

i
•

1 i
•

3 i
•

2

i
•

5

i
•

6

i
•

4

V
•

1

I
•

2

I
•

3

I
•

1

Fig. 1.3 Sample system with loop

currents
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where

_E1 ¼ _V4; _E2 ¼ _V5; _E1 ¼ 0 are voltage potentials of three loops, respectively,

Z11 ¼ z1þ z4 þ z6;Z22 ¼ z2 þ z5 þ z6;Z33 ¼ z3þ z4 þ z5 are loopself-impedances,

Z12 ¼ Z21 ¼ z6;Z13 ¼ Z31 ¼�z4;Z23 ¼ Z32 ¼ z5 are the loop mutual impedances.

If we know loop voltage _E1; _E2; and _E3, we can solve the loop current _I1; _I2; and _I3
from (1.14), and then obtain the branch current,

_i1 ¼ _I1; _i2 ¼ _I2; _i3 ¼ _I3;

_i4 ¼ _I1 � _I3; _i5 ¼ _I2 þ _I3; _i6 ¼ _I1 þ _I2:

And the node voltages are

_V1 ¼ z6 _i6; _V2 ¼ _V4 � z1 _i1; _V3 ¼ _V5 � z2 _i2:

Thus all the variables of the electric network are solved.

Generally, an electric network with m independent loops can be formulated bym
loop equations. In matrix notation, we have

E1 ¼ Z1I1; ð1:15Þ

where

I1 ¼

_I1
_I2
..
.

_Im

2
66664

3
77775; E1 ¼

_E1

_E2

..

.

_Em

2
66664

3
77775

are vectors of the loop currents and voltage phasors, respectively;

Z1 ¼
Z11 Z12 � � � Z1m
Z21 Z22 � � � Z2m
� � � � � � � � � � � �
Zm1 Zm2 � � � Zmm

2
664

3
775 ð1:16Þ

is the loop impedance matrix, where Zii is the self-impedance of the loop i and
equals the sum of the branch impedances in the loop; Zij is the mutual impedance

between loop i and loop j, and equals the sum of the impedances of their common

branches. The sign of Zij depends on the directions of loop currents of loop i and
loop j. If their directions are identical, Zij is positive, and if their directions are

different, Zij is negative.
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For the example shown in Fig. 1.3 we can write the basic loop incidence matrix

according to the three independent loops,

B ¼
1 0 0 1 0 1

0 1 0 0 1 1

0 0 1 �1 1 0

2
4

3
5:

The serial numbers of rows correspond to the loop numbers and the serial

numbers of columns correspond to the branch numbers. For example, in the third

row, there are three nonzero elements in the third, fourth, and fifth columns which

means loop 3 includes branches 3, 4, and 5. If the branch current has the same

direction as the basic loop current, the corresponding nonzero element equalsþ1; if
the directions of branch current and loop current are different the corresponding

nonzero element equals �1.
It should be noted that a basic loop incidence matrix cannot uniquely determine

a network configuration. In other words, there may be different configurations

corresponding to the same basic loop incidence matrix.

Similarly to the discussion on the node incidence matrix above, we can get the

basic loop equations of an electric network from its basic loop incidence matrix B,

ZL ¼ BZBB
T; ð1:17Þ

where ZB is a diagonal matrix composed of the branch impedances.

The application of incidence matrices is quite extensive. If we have the above

basic concepts, network analysis problems can be dealt with more flexibly.

The details will be discussed in the relevant later sections.

1.2.2 Equivalent Circuit of Transformer and Phase-Shift
Transformer

The equivalent circuit of an electric network is established by the equivalent

circuits of its elements such as transmission lines and transformers. The AC

transmission line is often described by the nominal P equivalent circuit which

can be found in other textbooks. In this section, only the equivalent circuits of the

transformer and the phase-shift transformer are discussed, especially the transform-

er with off-nominal turns ratios. Flexible AC Transmission Systems (FACTS) are

increasingly involved in power systems, and we will discuss the equivalent circuit

of FACTS elements in Chap. 5.

When the exciting circuit is neglected or treated as a load (or an impedance), a

transformer can be represented by its leakage impedance connected in series with

an ideal transformer as shown in Fig. 1.4a. The relation between currents and

voltages can be formulated as follows:
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_Ii þ K _Ij ¼ 0

_Vi � zT _Ii ¼
_Vj

K

9=
;:

Solving the above equation, we can obtain

_Ii ¼ 1

zT
_Vi � 1

KzT
_Vj;

_Ij ¼ � 1

KzT
_Vi þ 1

K2zT
_Vj:

ð1:18Þ

Rewrite (1.18) as follows

Ii ¼ K � 1

KzT
_Vi þ 1

KzT
ð _Vi � _VjÞ

Ij ¼ 1 � K

K2zT
_Vj þ 1

KzT
ð _Vj � _ViÞ

9>>=
>>;: ð1:19Þ

According to (1.19), we can get the equivalent circuit as shown in Fig. 1.4b. If the

parameters are expressed in terms of admittance, the equivalent circuit is shown in

Fig. 1.4c, where

yT ¼ 1

zT
:

It should be especially noted in Fig. 1.4a the leakage impedance zT is at the terminal

where the ratio is 1. When the leakage impedance zT is at the terminal where ratio is

K, we should transform it to z0T by using the following equation, so that the

equivalent circuit shown in Fig. 1.4 also can be applied in this situation

z0T ¼ zT=K
2: ð1:20Þ

The equivalent circuit of a two-winding transformer has been discussed above. A

similar circuit can be used to represent a three-winding transformer. For example,

Fig. 1.5 shows the equivalent circuit of a three-winding transformer that can be

transformed into two two-winding transformers’ equivalent circuits.

a b c

i j

K
(K−1)yT (1−K)yT

K2

K
yTI&i1:K

i
jzT

ji
K2zT

K−1 1−K
KzT

KzTV
•

j
V

•

i

V
•

i
V

•

j

V
•

j
V        

•

i

I
•

i

I
•

i I
•

j

I
•

j

I
•

j

Fig. 1.4 Transformer equivalent circuit
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After obtaining the transformer equivalent circuit, we can establish the equiva-

lent circuit for a multivoltage network. For example, an electric network shown in

Fig. 1.6 can be represented by the equivalent circuit shown in Fig. 1.6b or c when

the leakage impedances of transformer T1 and T2 have been normalized to side �
and side�. It can be proved that the two representations have an identical ultimate

equivalent circuit as shown in the Fig. 1.6d.

When we analysis the operation of a power system, the per-unit system is

extensively used. In this situation, all the parameters of an electric network are

denoted in the per-unit system. For example, in the Fig. 1.6, if the voltage base at

side � is Vj1, at sides � and � is Vj2 and at side � is Vj4, then the base ratio

(nominal turns ratio) of transformer T1 and T2 are

Kj1 ¼ Vj2

Vj1
;Kj2 ¼ Vj2

Vj4
: ð1:21Þ

The ratios of transformer T1 and T2 on a per-unit base (off-nominal turns ratio) are

K�1 ¼ K1

Kj1
; K�2 ¼ K2

Kj2
: ð1:22Þ

Therefore, the ratio of the transformer should be K�1 or K�2 when its equivalent

circuit is expressed in a per-unit system.

In modern power systems, especially in the circumstances of deregulation, the

power flow often needs to be controlled. Therefore the application of the phase-

shifting transformer is increasing. As we know, a transformer just transforms the

voltages of its two terminals and its turn ratio is a real number. The phase-shifting

transformer can also change the phase angle between voltages of its two terminals.

Thus its turn ratio is a complex number. When the exciting current is neglected or

treated as a load (or an impedance), a phase-shifting transformer can be represented

1 : Kik

1 : Kij

zih

zkh

zjh

hi

j

k

Fig. 1.5 Three-winding

transformer equivalent circuit
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by its leakage impedance, which is connected in series with an ideal transformer

having a complex turns ratio as shown in Fig. 1.7. From this figure, we can obtain

the equations as follows,

_Vi � _IizT ¼ _V0j
_Ii þ _I0j ¼ 0:

ð1:23Þ

Apparently, the two terminal voltages are related by

_V0j ¼ _Vj= _K: ð1:24Þ

Since there is no power loss in an ideal autotransformer,

_V0j Î
0
j ¼ _VjÎj;

1 2 3 4

T1 T2

1 : K1

1 : K1

K2 : 1

K2 : 1

l

a

b

c

d

2
yl

2
yl

2
yl

2
yl

zT1

zT1

K1zT1

K1zT1 K1
2zT1 K2

2z21 K2zT2

K2zT2

zT2

zT2zl

zl

zl

1:
1

K1

1
:1

K2

2
yl

2
yl

K1−1 1−K1 1−K2 K2−1

Fig. 1.6 Equivalent circuit of a multivoltage electric network
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where Î0j and Îj are the conjugates of Î0j and Îj, respectively. It follows from the

above equations that

_I0j ¼ _̂K _Ij: ð1:25Þ

Substituting (1.24) and (1.25) into (1.23)

_Ii ¼
_Vi

zT
�

_Vj

_KzT
¼ Yii _Vi þ Yij _Vj

_Ij ¼ �
_Vi

K̂zT
þ

_Vj

K2zT
¼ Yji _Vi þ Yjj _Vj;

ð1:26Þ

where

Yii ¼ 1

zT
; Yij ¼ � 1

_KzT
; Yji ¼ � 1

K̂zT
; Yjj ¼ 1

K2zT
:

Equation (1.26) is the mathematical model of the phase-shifting transformer. It is

easy to be proved that (1.26) is the same as (1.18) when the turn ratio is a real

number. This illustrates that the transformer is a particular case of the phase-

shifting transformer. Because the ratio of a phase-shifting transformer is complex

number, and Yij 6¼ Yji, it has no equivalent circuit and the admittance matrix of the

electric network with the phase-shifting transformer is not symmetric.

1.3 Nodal Admittance Matrix

1.3.1 Basic Concept of Nodal Admittance Matrix

As mentioned above, the node equation (1.3) is usually adopted in modern power

system analysis. If the number of nodes in a network is n, we have the following

general simultaneous equations:

i
jzT ′V

•

i V
•

j

V
•

j

I
•

i I
•

j

I
•

j

1 : K
•Fig. 1.7 Phase-shifting

transformer representation
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_I1 ¼ Y11 _V1 þ Y12 _V1 þ � � � þ Y1i _Vi þ � � � þ Y1n _Vn

_I2 ¼ Y21 _V1 þ Y22 _V2 þ � � � þ Y2i _Vi þ � � � þ Y2n _Vn

..

.

_Ii ¼ Yi1 _V1 þ Yi2 _V2 þ � � � þ Yii _Vi þ � � � þ Yin _Vn

..

.

_In ¼ Yn1 _V1 þ Yn2 _V2 þ � � � þ Yni _Vi þ � � � þ Ynn _Vn

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: ð1:27Þ

The matrix constituted by the coefficients of (1.27) is the nodal admittance matrix

Y ¼

Y11 Y12 � � � Y1i � � � Yan
Y21 Y22 � � � Y2i � � � Y2n
..
. ..

. � � � ..
. � � � ..

.

Yi1 Yi2 � � � Yii � � � Yin
..
. ..

. � � � ..
. � � � ..

.

Yn1 Yn2 � � � Yni � � � Ynn

2
66666664

3
77777775
: ð1:28Þ

A nodal admittance matrix reflects the topology and parameters of an electric

network, so it can be regarded as a mathematical abstraction of the electric network.

The node equation based on the admittance matrix is a widely used mathematical

model of electric networks. Next we will introduce some physical meaning of the

matrix elements.

If we set a unit voltage at node i and ground other nodes, i.e.,

_Vi ¼ 1

_Vj ¼ 0 ðj ¼ 1; 2; . . . ; n; j 6¼ iÞ;

then the following relationships hold according to (1.27),

Ij ¼ Yji j ¼ 1; 2; . . . ; n: ð1:29Þ

From (1.29) we can see the physical meaning of the ith column elements in the

admittance matrix: the diagonal element Yii in the ith column, the self-admittance of

node i, is equal to the injection current of the node i; the off-diagonal elements Yij in
the ith column, the mutual-admittance of node i and node j, is equal to the injection
current of node j in this situation.

We will further illustrate these concepts by a simple network shown in Fig. 1.8.

The network has three nodes (plus ground), thus the dimension of its admittance

matrix is 3� 3,

14 1 Mathematical Model and Solution of Electric Network



Y ¼
Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

2
4

3
5:

According to the above discussion, we can get the elements of the first column:

Y11; Y21; and Y31, by setting a unit voltage on node 1 and grounding node 2 and

node 3 as shown in Fig. 1.8b. Evidently,

_I1 ¼ _I12 þ _I13 þ _I10 ¼ 1

z12
þ 1

z10
þ 1

z13
¼ Y11;

_I2 ¼ � _I12 ¼ � 1

z12
¼ Y21;

_I3 ¼ � _I13 ¼ � 1

z13
¼ Y31:

Similarly, setting a unit voltage at node 2 and grounding node 1 and node 3 as

shown in Fig. 1.8c, we can get the elements of the second column:

_I1 ¼ � _I21 ¼ � 1

z12
¼ Y12;

_I2 ¼ _I21 ¼ 1

z12
¼ Y22;

_I3 ¼ 0 ¼ Y32:

12z 23z

1 2 3

20z

12z 13z

12 3

10z

a

c d

e

b

12z
13z

0=

1= 312

10z

12z 13z

11 =V
2

1 3

10z

12z 13z

0=

31
2

10z

V
•

3

I
•

2
I

•

1 I
•

3

I
•

1

I
•

10

I
•

13I
•

12

I
•

3
I

•

31I
•

12

I
•

2I
•

3I
•

1
I

•

13I
•

12

I
•

2

Fig. 1.8 Construction process of admittance matrix in simple electric network
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For the elements of the third column we have (see Fig. 1.8d),

_I1 ¼ � _I31 ¼ � 1

z31
¼ Y13;

_I2 ¼ 0 ¼ Y23;

_I3 ¼ _I31 ¼ 1

z13
¼ Y33:

Finally, the admittance matrix of the above simple network becomes

Y ¼

1

z12
þ 1

z10
þ 1

z13
� 1

z12
� 1

z13

� 1

z12

1

z12
0

� 1

z13
0

1

z13

2
666664

3
777775: ð1:30Þ

If we change the node numbers in Fig. 1.8a, e.g., exchange the number ordering of

node 1 with node 2, as shown in Fig. 1.8e, then the admittance matrix becomes,

Y0 ¼

1

z12
� 1

z12
0

� 1

z12

1

z12
þ 1

z20
þ 1

z23
� 1

z23

0 � 1

z23
1

z23

2
66666664

3
77777775
:

Theabovematrix canbeobtained throughexchanging thefirst rowwith the second row,

and at the same time exchanging the first columnwith the second column of thematrix

shown in (1.30). The exchange of the rows and columns of the admittance matrix

corresponds to the exchange of the sequence of node equations and their variables.

The properties of the admittance matrix can be summarized as follows:

1. The admittance matrix is symmetric if there is no phase-shifting transformer in

the network. From (1.30) we have

Y12 ¼ Y21 ¼ � 1

z12
;Y13 ¼ Y31 ¼ � 1

z13
; Y23 ¼ Y32 ¼ 0:

Generally, according to the reciprocity of the network,

Yij ¼ Yji:

Therefore, the admittance matrix is symmetric. We will discuss the networks

with phase-shifting transformers later.
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2. The admittance matrix is sparse. From the discussion above, we know that

Yij and Yji will be zero if node i does not directly connect with node j. For
example, in Fig. 1.8a, node 2 does not directly connect with node 3, so both of

Y23 and Y32 are zero. In general, the number of nonzero off-diagonal elements of

each row is equal to the number of branches that are incident to the corresponding

node. Usually, the number of branches connected to one node is 2–4, thus there

are only 2–4 nonzero off-diagonal elements in each row. The property that only a

few nonzero elements exist in a matrix is called sparsity. This phenomenon will

be more remarkable with increase of the power system scale. For instance, for a

network with 1,000 nodes, if each node directly connects three branches on

average, the total number of nonzero elements for the network is 4,000, which

is only 0.4% of the total elements in the admittance matrix.

The symmetry and sparsity of an admittance matrix are very important features for

large-scale power systems. If we make full use of these two properties, the computa-

tion speed will be accelerated and the computer memory will be saved dramatically.

1.3.2 Formulation and Modification of Nodal Admittance Matrix

Now we discuss formulation of an admittance matrix by inspection first. When an

electric network is composed of only transmission lines, the principles of

constructing its admittance matrix can be summarized as follows:

1. The order of the admittance matrix is equal to the number of the nodes of the

electric network.

2. The number of the nonzero off-diagonal elements in each row is equal to the

number of the ungrounded branches connected to the corresponding node.

3. The diagonal elements of the admittance matrix, i.e., the self-admittance of the

node, is equal to the sum of all the admittances of the incident branches of the

corresponding node. Thus

Yii ¼
X
j2i

yij; ð1:31Þ

where yij is the reciprocal of zij, which is the branch impedance between node i
and node j, ‘‘j I’’ denotes that only the incident branches of node i (including the
grounding branch) are included to the summation. For example, in Fig. 1.8, the

self-admittance of node 1, i.e., Y11, should be

Y11 ¼ 1

z12
þ 1

z10
þ 1

z13
¼ y12 þ y10 þ y13:

The self-admittance of node 2, i.e., Y22, should be

Y22 ¼ 1

z12
¼ y12:

1.3 Nodal Admittance Matrix 17



4. The off-diagonal element of the admittance matrix, Yij, is equal to the negative of
the admittance between node i and node j

Yij ¼ � 1

zij
¼ �yij: ð1:32Þ

For example, in Fig. 1.8a,

Y12 ¼ � 1

z12
¼ �y12;

Y13 ¼ � 1

z13
¼ �y13:

Therefore, no matter how complicated the configuration of an electric network

is, its admittance matrix can be established directly by inspection according to the

parameters and the topology of the network.

When the electric network involves transformers or phase-shifting transformers,

they need special treatment.

When branch ij is a transformer, the admittance matrix certainly can be formed

following the above steps if the transformer is substituted beforehand by the P
equivalent circuit as shown in Fig. 1.4a. However, in practical application the

transformer is often treated directly in forming the admittance matrix. If branch ij
is a transformer, as shown in Fig. 1.4a, the elements of the admittance matrix

related to the branch can be obtained as follows:

1. Add two nonzero off-diagonal elements into the admittance matrix

Yij ¼ Yji ¼ � yT
K
: ð1:33Þ

2. Add to the self-admittance of node i by,

DYii ¼ K � 1

K
yT þ 1

K
yT ¼ yT: ð1:34Þ

3. Add to the self-admittance of node j by

DYjj ¼ 1

K
yT þ 1� K

K2
yT ¼ yT

K2
: ð1:35Þ

When branch ij is a phase-shifting transformer, its equivalent circuit is Fig. 1.7.

Then the corresponding matrix elements are obtained as follows:

1. Add two nonzero off-diagonal elements into the admittance matrix

Yij ¼ � 1

_KzT
; ð1:36Þ
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Yji ¼ � 1

K̂zT
: ð1:37Þ

2. Add to the self-admittance of node i by

DYii ¼ 1

zT
: ð1:38Þ

3. Add to the self-admittance of node j by

DYjj ¼ 1

K2zT
: ð1:39Þ

It can be seen from (1.36) and (1.37) that Yij 6¼ Yji, thus the admittance matrix is

not symmetric any more although its structure is still symmetric.

Studies of different system operation states, such as transformer or transmission

line outages, play an important part in modern power system analysis. Because the

outage of branch ij only affects the self and mutual admittance of node i and node j,
we can obtain the new admittance matrix for the contingency state by modifying the

original admittance matrix. The modification methods for different situations are

introduced as follows:

1. To add a new node with a new branch for the original network as shown in

Fig. 1.9a.

Assume that i is a node of the original network and j is the new node; zij is the
impedance of the new branch. The dimension of the admittance matrix becomes

N þ 1 because of the new node. There is only one branch connected to node j,
therefore, its self-admittance is,

Yjj ¼ 1

zij
;

The self-admittance of node i should be modified (added) by,

DYii ¼ 1

zij
:

N

i

j

zij

zij

i

j

a b c d

i

j

−zij

−zij

zij

i

j

′N N N

Fig. 1.9 Four cases of modifying the electric network
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Two off-diagonal elements should also be created

Yij ¼ Yji ¼ � 1

zij
:

2. To add a new branch between node i and node j as shown in Fig. 1.9b.

In this case, no new node is introduced and the dimension of the new

admittance matrix is the same as the original one, while the following modifica-

tions should be made.

DYii ¼ 1

zij

DYjj ¼ 1

zij

DYij ¼ DYji ¼ � 1

zij

9>>>>>>>=
>>>>>>>;
: ð1:40Þ

3. To remove a branch with impedance zij between node i and node j.

In this case, it is equivalent to adding a new branch of impedance �zij between
node i and node j as shown in Fig. 1.9c. Therefore, the modifications of the

admittance matrix are as follows:

DYii ¼ � 1

zij

DYjj ¼ � 1

zij

DYij ¼ DYji ¼ 1

zij

9>>>>>>>=
>>>>>>>;
: ð1:41Þ

4. To change branch impedance zij for z
0
ij.

This case is equivalent to removing branch impedance zij first and then adding a

branch of impedance z0ij between node i and node j as shown in Fig. 1.9d. Thus the

modifications can be carried out according to (1.40) and (1.41).

It should be noted that the above discussion is based on the assumption that the

added or removed branch is a pure impedance branch. If the branch is a transformer

or a phase-shifting transformer, the modifications should be carried out according to

(1.33)–(1.35) or (1.36)–(1.39).

[Example 1.1] Figure 1.10 shows an equivalent circuit of a simple electric

network with two transformers. The branch impedance and grounding admittance

in per unit are shown in the figure. Determine the nodal admittance matrix for the

electric network.

[Solution] According to the method introduced in Sect. 1.2.2, we can assemble

the elements of the admittance matrix node by node.
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In Fig. 1.10, parameters are in admittance for grounding branches and in

impedance for other branches (branches in series connection). Using (1.31), we

obtain the self-admittance of node 1 as follows:

Y11 ¼ y10 þ y12 þ y13 ¼ j0:25þ 1

0:04þ j0:25
þ 1

0:1þ j0:35

¼ 1:378742� j6:291665:

The mutual admittances related to node 1 can be obtained according to (1.32),

Y21 ¼ Y12 ¼ �y12 ¼ � 1

0:04þ j0:25
¼ �0:624025 þ j3:900156

Y31 ¼ Y13 ¼ �y13 ¼ � 1

0:1þ j0:35
¼ �0:754717 þ j2:641509:

Because branch 2–4 is a transformer, the self-admittance of node 2 should be

calculated according to (1.31) and (1.35) based on the equivalent circuit as shown

in Fig. 1.4a

Y22 ¼ y20 þ y12 þ y23 þ y42
K2
42

¼ ðj0:25þ j0:25Þ þ 1

0:04þ j0:25
þ 1

0:08þ j0:30
þ 1

j0:015
� 1

1:052

¼ 1:453909 � j66:98082:

The mutual admittances related to node 2 are

Y23 ¼ Y32 ¼ � 1

0:08þ j0:30
¼ �0:829876þ j3:112033:

Using (1.33) we have

Y24 ¼ Y42 ¼ � y42
K42

¼ � 1

j0:015
� 1

1:05
¼ j63:49206:

j0.015

1:1.05 1.05:1

j0.03j0.25

j0.25

j0.25

j0.25

0.08 + j0.30

0.04+ j0. 25 0.1
 + j0

.35

Fig. 1.10 Equivalent circuit for Example 1.1
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The other elements of the admittance matrix can be calculated in a similar way. The

ultimate result is

Y ¼

1:378742 �0:924024 �0:754717
�j6:291665 þj3:900156 þj2:641509

�0:24024 1:453909 �0:829876 0:000000
þj3:900156 �j66:98082 þj3:112033 þj63:19206

�0:754717 �0:929876 1:584596 0:000000
þj2:641509 þj3:112033 �j35:73786 þj31:74603

0:000000 0:000000
þj63:49206 �j66:66667

0:000000 0:000000
þj31:74603 �j33:33333

2
66666666666666666666664

3
77777777777777777777775

;

where the vacancies are zero elements.

1.4 Solution to Electric Network Equations

1.4.1 Gauss Elimination Method

At present, Gauss elimination is the most popular method to solve the electric

network equations. In the initial stage of computer application in power systems,

iterative methods were also been used because of the limitation of computer

memory. The fatal disadvantage of the iterative methods is the convergence

problem. Therefore, the Gauss elimination method almost has substituted for

iterative methods after successful application of the sparse techniques [1, 2]. The

Gauss elimination method is introduced in this section, and the sparse technique

and sparse vector method will be described successively.

The Gauss elimination method in solving simultaneous linear equations consists

of two steps, i.e., forward elimination and back substitution. Both forward elimina-

tion and back substitution can be carried out by either row or column orientation.

Generally, the column-oriented forward elimination and row-oriented back substi-

tution scheme are widely used. The related algorithm is introduced next, and other

algorithms can be easily deduced similarly.

A system of n simultaneous linear equations may be written in the matrix form as

AX ¼ B in which elements in matrix A and vector B can be either real or complex

numbers. For example, the coefficient matrix of (1.3) is complex, while that of the

correction equation in the Newton–Raphson method (see (2.40) in Chap. 2) is real.
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Because the forward eliminations involve manipulations with matrix A and B, a
n� ðnþ 1Þ augmented matrix is formed by appendingB as the ðnþ 1Þth column of

A,

�A ¼ ½A B � ¼
a11 a12 � � � a1n b1
a21 a22 � � � a2n b2
� � � � � � � � � � � � � � �
an1 an2 � � � ann bn

2
66666

3
77777
¼

a11 a12 � � � a1n a1;nþ1
a21 a22 � � � a2n a2;nþ1
� � � � � � � � � � � � � � �
an1 an2 � � � ann an;nþ1

2
66666

3
77777
:

In the above equation, bj is substituted by aj;nþ1 ðj ¼ 1; 2; . . . ; nÞ to simplify the

following representation.

The process of the column-oriented forward eliminations is introduced first.

Step 1. Eliminate the first column

First, normalize the first row of the augmented matrix �A,

1 a
ð1Þ
12 a

ð1Þ
13 . . . a

ð1Þ
1;nþ1 ; ð1:42Þ

where

a
ð1Þ
1j ¼

a1j
a11

ðj ¼ 2; 3; . . . ; nþ 1Þ:

Then the derived row as shown in (1.42) is used to eliminate the elements

a21; a31; . . . ; an1 of �A, and the remaining elements of the second to the nth row

can be calculated by

a
ð1Þ
ij ¼ aij � ai1a

ð1Þ
1j ðj ¼ 2; 3; . . . ; nþ 1Þ; ði ¼ 2; 3; . . . ; nÞ;

where the superscript (1) denotes that the relative element is the result of the first

manipulation. At this stage, matrix �A is changed into �A1,

�A1 ¼ ½A1 B1 � ¼

1 a
ð1Þ
12 � � � a

ð1Þ
1n a

ð1Þ
1;nþ1

a
ð1Þ
22

� � �
a
ð1Þ
2n a

ð1Þ
2;nþ1

..

. ..
. ..

. ..
.

a
ð1Þ
n2

� � �
a
ð1Þ
nn a

ð1Þ
n;nþ1

2
6666664

3
7777775
:

The corresponding equation is A1X ¼ B1 which has the same solution as the

original equation. In the above matrix, the vacancies are zero elements.
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Step 2. Eliminate the second column

Normalize the second row of the augmented matrix �A as the following

0 1 a
ð2Þ
23 . . . a

ð2Þ
2;nþ1; ð1:43Þ

where

a
ð2Þ
2j ¼ a

ð1Þ
2j =a

ð1Þ
22 ðj ¼ 3; 4; . . . ; nþ 1Þ:

Then the derived row shown in (1.43) is used to eliminate the elements

a
ð1Þ
32 ; a

ð1Þ
42 ; . . . ; a

ð1Þ
4n of �A1 and the remaining elements of the third to the nth row

can be calculated by,

a
ð2Þ
ij ¼ a

ð1Þ
ij � a

ð1Þ
i2 a

ð2Þ
2j ðj ¼ 3; 4; . . . ; nþ 1Þ; ði ¼ 3; 4; . . . ; nÞ;

where the superscript (2) denotes that the relative element is the result of the second

manipulation. Now, matrix �A1 has been transformed into �A2,

�A2 ¼ ½A2 B2 � ¼

1 a
ð1Þ
12 a

ð1Þ
13 � � � a

ð1Þ
1n a

ð1Þ
1;nþ1

1 a
ð2Þ
23

� � �
a
ð2Þ
2n a

ð2Þ
2;nþ1

a
ð2Þ
33

� � �
a
ð2Þ
3n a

pgð2Þ
3;nþ1

� � � � � �
a
ð2Þ
n3
� � � a

ð2Þ
nn a

ð2Þ
n;nþ1

2
6666664

3
7777775
:

Generally, the following computation should be executed when eliminating the kth
column

a
ðkÞ
kj ¼ a

ðk�1Þ
kj =a

ðk�1Þ
kk ðj ¼ k þ 1; . . . ; nþ 1Þ; ð1:44Þ

a
ðkÞ
ij ¼ a

ðk�1Þ
ij � a

ðk�1Þ
ik a

ðkÞ
kj ðj ¼ k þ 1; . . . ; nþ 1Þ; ði ¼ k þ 1; . . . ; nÞ: ð1:45Þ

After proceeding with the elimination n times in this manner, the elements below

the diagonal of the matrix become zero, and the nth derived augmented matrix is

obtained.

�An ¼ An Bn½ � ¼

1 a
ð1Þ
12 a

ð1Þ
13 . . . a

ð1Þ
1n a

ð1Þ
1;nþ1

1 a
ð2Þ
23 . . . a

ð2Þ
2n a

ð2Þ
2;nþ1

1 . . . a
ð3Þ
3n a

ð3Þ
3;nþ1

. .
. ..

. ..
.

1 a
ðnÞ
n;nþ1

2
666666664

3
777777775
: ð1:46Þ
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The corresponding equation becomes AnX ¼ Bn, that is

x1þ a
ð1Þ
12 x2þ a

ð1Þ
13 x3þ . . . það1Þ1n xn ¼ a

ð1Þ
1;nþ1

x2 þ a
ð2Þ
23 x3þ . . . það2Þ2n xn ¼ a

ð2Þ
2;nþ1

x3 þ . . . það3Þ3n xn ¼ a
ð3Þ
3;nþ1

. .
. ..

. ..
.

xn ¼ a
ðnÞ
n;nþ1

ð1:47Þ

Its solution is the same as the original equation AX ¼ B.
For (1.47), back substitution is carried out in a bottom-up sequence. The value of

xn is obtained directly from the nth equation,

xn ¼ a
ðnÞ
n;nþ1:

Then substituting xn into the ðn� 1Þth equation we get the solution of xn�1,

xn�1 ¼ a
ðn�1Þ
n�1;nþ1 � a

ðn�1Þ
n�1;nxn:

Substituting xn�1 and xn into the ðn� 2Þth equation, we obtain xn�2. Generally, xi
can be obtained by substituting the solved variables xiþ1; xiþ2; . . . ; xn into the ith
equation,

xi ¼ a
ðiÞ
i;nþ1 �

Xn
j¼iþ1

a
ðiÞ
ij xj ði ¼ n; . . . ; 2; 1Þ: ð1:48Þ

This is the general equation of the row-oriented back substitution.

[Example 1.2] Solve the following simultaneous linear equations by using the

Gauss elimination method.

x1 þ 2x2 þ x3 þ x4 ¼ 5

2x1 þ x2 ¼ 3

x1 þ x3 ¼ 2

x1 þ x4 ¼ 2

:

[Solution] Write the augmented matrix according to the original equations as

below.

ð1Þ 2 1 1 ..
.
5

2 1 0 0 ..
.
3

1 0 1 0 ..
.
2

1 0 0 1 ..
.
2

2
666664

3
777775:
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As an initial step, normalize the first row of the augmented matrix according to

(1.44), i.e., divide the first row by its diagonal element.

1 2 1 1 ..
.
5

ð2Þ 1 0 0 ..
.
3

ð1Þ 0 1 0 ..
.
2

ð1Þ 0 0 1 ..
.
2

2
6666664

3
7777775
:

Then eliminate the first column according to (1.45)

1 2 1 1 ..
.

5

ð�3Þ �2 �2 ..
.�7

�2 0 �1 ..
.�3

�2 �1 0 ..
.�3

2
666664

3
777775:

The next step is the elimination of the second column. When normalizing the

second row, we divide the elements in the second row by the diagonal element –3

1 2 1 1 ..
.

5

1 2
3

2
3

..

.
7
3

ð�2Þ 0 �1 ..
.�3

ð�2Þ �1 0 ..
.�3

2
6666664

3
7777775
:

Then eliminate the second column in terms of (1.45) to obtain

1 2 1 1 ..
.
5

1 2
3

2
3

..

.
7
3

4
3

� �
1
3

..

.
5
3

1
3

4
3

..

.
5
3

2
6666664

3
7777775
:

Repeat the procedure for the third column. Normalize the third row through

dividing the third row by the diagonal element 4/3.

1 2 1 1 ..
.
5

1 2
3

2
3

..

.
7
3

1 1
4

..

.
5
4

1
3

� �
4
3

..

.
5
3

2
6666664

3
7777775
:
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Then eliminate the third column in terms of (1.45) to obtain

1 2 1 1 ..
.
5

1 2
3

2
3

..

.
7
3

1 1
4

..

.
5
4

5
4

� � ..
.
5
4

2
6666664

3
7777775
:

The last step is normalizing the fourth row according to (1.44), that is, dividing the

fourth row by the diagonal element 5/4.

1 2 1 1 ..
.
5

1 2
3

2
3

..

.
7
3

1 1
4

..

.
5
4

1 ..
.
1

2
6666664

3
7777775
:

The transformed equations after elimination become

x1 þ 2x2 þ x3 þ x4 ¼ 5

x2 þ 2
3
x3 þ 2

3
x4 ¼ 7

3

x3 þ 1
4
x4 ¼ 5

4

x4 ¼ 1

:

x4; x3; x2; x1 can be obtained through the back substitution according to (1.48).

x4 ¼ 1

x3 ¼ 5
4
� 1

4
x4 ¼ 1

x2 ¼ 7
3
� 2

3
x3 � 2

3
x4 ¼ 1

x1 ¼ 5� 2x2 � x3 � x4 ¼ 1

:

1.4.2 Triangular Decomposition and Factor Table

In practical applications, the simultaneous equations often need to be solved

repeatedly when only right-hand vector B changes while coefficient matrix A is a

constant matrix. In such cases, the factor table method is often used to improve

computation efficiency.

The factor table records all the operations on right-hand vector B in the Gauss

elimination process. As the discussion above, The Gauss elimination method

involves forward elimination and back substitution. Back substitution is determined
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by the upper triangular elements of the coefficient matrix after elimination opera-

tion as shown (1.46). In order to execute the elimination operation (forward

elimination), the relative operation factors also need to be recorded in the elimina-

tion process. The forward elimination includes normalization and elimination

operation. Take column-oriented elimination as an example, operations on the i
th element of B (i.e., bi;nþ1) in the forward elimination are as follows (see (1.44) and

(1.45)),

b
ðiÞ
i ¼ b

ði�1Þ
i =a

ði�1Þ
ii ði ¼ 1; 2; . . . ; nÞ; ð1:49Þ

b
ðkÞ
i ¼ b

ðk�1Þ
i � a

ðk�1Þ
ik b

ðkÞ
k ðk ¼ 1; 2; . . . ; i� 1Þ: ð1:50Þ

The above operation factors ai1; a
ð1Þ
i2 ; a

ð1Þ
i2 ; . . . ; a

ði�2Þ
i;i�1 and a

ði�1Þ
ii are to be stored in

the lower triangular matrix row by row and appended to the upper triangular

elements of the (1.46). Thus, we obtain the factor table as the following

a11 a
ð1Þ
12 a

ð1Þ
13 a

ð1Þ
14 � � � a

ð1Þ
1n

a21 a
ð1Þ
22 a

ð2Þ
23 a

ð2Þ
24 � � � a

ð2Þ
2n

a31 a
ð1Þ
32 a

ð2Þ
33 a

ð3Þ
34 � � � a

ð3Þ
3n

a41 a
ð1Þ
42 a

ð2Þ
43 a

ð3Þ
44 � � � a

ð4Þ
4n

..

. ..
. ..

. ..
. ..

. ..
.

an1 a
ð1Þ
n2 a

ð2Þ
n3 a

ð3Þ
n4 � � � a

ðn�1Þ
nn

:

Where the lower triangular elements are used in elimination operations on B and the

upper triangular elements are used in back substitution operations. The factor table

also can be denoted in the following format

d11 u12 u13 u14 � � � u1n
l21 d22 u23 u24 � � � u2n
l31 l32 d33 u34 � � � u3n
l41 l42 l43 d44 � � � u4n
..
. ..

. ..
. ..

. ..
. ..

.

ln1 ln2 ln3 ln4 � � � dnn

; ð1:51Þ

where

dii ¼ a
ði�1Þ
ii ;

uij ¼ a
ðiÞ
ij ði < jÞ;

lij ¼ a
ðj�1Þ
ij ðj < iÞ:
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We can see that the lower triangular elements of the factor table are exactly the

operation elements used in the elimination process. Therefore, if we retain them in

the original position and take the reciprocals of the diagonal elements, the lower

triangular elements of the factor table can be readily obtained. The upper triangular

elements of the factor table are just the upper triangular part of the coefficient

matrix after the elimination operations.

If the simultaneous equations need to be solved repeatedly for different right-

hand vector B, we should first carry out the elimination operation on coefficient

matrix A to obtain its factor table. Then the factor table can be used directly and

repeatedly to solve the equations with different B. In this situation, we will carry out
the elimination operation on the following equations instead of (1.49) and (1.50),

b
ðiÞ
i ¼ b

ði�1Þ
i =dii; ð1:52Þ

b
ðkÞ
i ¼ b

ðk�1Þ
i � lik � b

ðkÞ
k ði ¼ k þ 1; . . . ; nÞ: ð1:53Þ

The back substitution will be carried out on the following equations instead of

(1.48)

xn ¼ bðnÞn ;

xi ¼ b
ðiÞ
i �

Xn
j¼iþ1

uij � xj: ð1:54Þ

[Example 1.3] For the simultaneous linear equations of Example 1.2, find

the factor table of its coefficient matrix A and solve the equation when

B ¼ ½�1 1 2 0 �T.
[Solution] Inspecting the solution process of Example 1.2, we can directly

obtain the factor table of coefficient matrix A,

1 2 1 1

2 �3 2
3

2
3

1 �2 4
3

1
4

1 �2 1
3

5
4

,

d11 u12 u13 u14

l21 d22 u23 u24

l31 l32 d33 u34

l41 l42 l43 d44

:

The lower triangular elements of the above factor table are just the operation factors

in brackets which appeared in the elimination process, and the upper triangular

elements are the upper triangular part of the coefficient matrix after elimination

operation.

Now we first use the lower triangular elements of the factor table to operate

column-oriented elimination on B. Normalize b1 according to (1.52),
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b
ð1Þ
1 ¼ b1=d11 ¼ ð�1Þ=1 ¼ �1:

Then operations on b2; b3; b4 are carried out by using the elements of the factor

table’s first column in the lower triangular part according to (1.53)

b
ð1Þ
2 ¼ b2 � l21 � b

ð1Þ
1 ¼ 1� 2� ð�1Þ ¼ 3;

b
ð1Þ
3 ¼ b3 � l31 � b

ð1Þ
1 ¼ 2� 1� ð�1Þ ¼ 3;

b
ð1Þ
4 ¼ b4 � l41 � b

ð1Þ
1 ¼ 0� 1� ð�1Þ ¼ 1:

Thus the elimination operation of the first column is completed, and we have,

Bð1Þ ¼ �1 3 3 1½ �T:

Next, normalize b
ð1Þ
2 according to (1.52),

b
ð2Þ
2 ¼ b

ð1Þ
2 =d22 ¼ 3=ð�3Þ ¼ �1:

The elimination operation on b
ð1Þ
3 ; b

ð1Þ
4 is followed by using the elements of the

second column in the lower triangular part according to (1.53),

b
ð2Þ
3 ¼ b

ð1Þ
3 � l32 � b

ð2Þ
2 ¼ 3� ð�2Þ � ð�1Þ ¼ 1;

b
ð2Þ
4 ¼ b

ð1Þ
4 � l42 � b

ð2Þ
2 ¼ 1� ð�2Þ � ð�1Þ ¼ �1:

Thus the elimination operation of the second column is finished, and we have

Bð2Þ ¼ �1 �1 1 �1½ �T:

Normalize b
ð2Þ
3 according to (1.52) and operate b

ð3Þ
4 according to (1.53)

b
ð3Þ
3 ¼ b

ð2Þ
3 =d33 ¼ 1=4

3
¼ 3

4
:

Again, the elimination operation on b
ð2Þ
4 is followed by using the elements of the

third column in the lower triangular part according to (1.53)

b
ð3Þ
4 ¼ b

ð2Þ
4 � l43 � b

ð3Þ
3 ¼ �1� 1

3
� 3

4
¼ �5

4
:

Thus the elimination operation on the third column is finished, and we have

Bð3Þ ¼ �1 �1 3
4
�5

4

� �T
:
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The last step of the elimination operation is to normalize b
ð3Þ
4 according to (1.52)

b
ð4Þ
4 ¼ b

ð3Þ
4 =d44 ¼ �4

5
= 4

5

� � ¼ �1:
Now, all the elimination operations are fulfilled.

Bð4Þ ¼ �1 �1 3
4
�1� �T

:

Comparing with the factor table, we obtain the following identical solution equa-

tions

x1 þ 2x2 þ x3 þ x4 ¼ �1
x2 þ 2

3
x3 þ 2

3
x4 ¼ �1

x3 þ 1
4
x4 ¼ 3

4

x4 ¼ �1
:

Now, the unknowns could be solved using the upper triangular part of the factor

table according to (1.54).

x4 ¼ b
ð4Þ
4 ¼�1

x3 ¼ b
ð3Þ
3 � u34� x4 ¼ 3

4
� 1

4
� ð�1Þ ¼ 1

x2 ¼ b
ð2Þ
2 � u23� x3� u24� x4 ¼�1� 2

3
� 1� 2

3
� ð�1Þ ¼ �1

x1 ¼ b
ð1Þ
1 � u12� x2� u13� x3� u14� x4 ¼�1� 2�ð�Þ� 1� 1� 1�ð�1Þ ¼ 1:

It should be pointed out that the factor table as shown in (1.50) can be established

not only by the Gauss elimination method but also by the triangular decomposition

method. From the above example, we can verify that the following relationship

between the factor table and its coefficient matrix holds,

A ¼ L0U; ð1:55Þ

where

L0 ¼
1 0 0 0

2 �3 0 0

1 �2 4
3

0

1 �2 1
3

5
4

2
664

3
775 U ¼

1 2 1 1

0 1 2
3

2
3

0 0 1 1
4

0 0 0 1

2
664

3
775:

L0 can be decomposed further,

L0 ¼ LD: ð1:56Þ
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In the above example, L can be obtained through dividing off-diagonal elements in

each column of L0 by the corresponding diagonal element,

L ¼
1 0 0 0

2 1 0 0

1 2
3

1 0

1 2
3

1
4

1

2
664

3
775 D ¼

1 0 0 0

0 �3 0 0

0 0 4
3

0

0 0 0 5
4

2
664

3
775:

Therefore the original coefficient matrix can be generally represented as follows

A ¼ LDU: ð1:57Þ

From the example, we can also see the following relationship

LT ¼ U or U ¼ LT: ð1:58Þ

This phenomenon is not specific to this example. The relationship in (1.58) can be

proved when the coefficient matrix is symmetric.

In the following, we deduce the recursion formulae of the triangular decomposi-

tion.

Expand (1.55)

a11 a12 a13 � � � a1n
a21 a22 a23 � � � a2n
a31 a32 a33 � � � a3n

..

. ..
. ..

. ..
. ..

.

an1 an2 an3 � � � ann

2
666664

3
777775 ¼

l011
l021 l022
l031 l032 l033
..
. ..

. ..
. . .

.

l0n1 l0n2 l0n3 � � � l0nn

2
6666664

3
7777775

�

1 u12 u13 � � � u1n
1 u23 � � � u2n

1 � � � u3n

. .
. ..

.

1

2
666664

3
777775: ð1:59Þ

Comparing two sides of the above equation, the diagonal element of the first row

can be found

l011 ¼ a11:

Comparing the first element of the second row and the first two elements of the

second column in both sides, we can obtain

l021 ¼ a21; l
0
11u12 ¼ a12; l

0
21u12 þ l022 ¼ a22:
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Hence the recursion formulae are

l021 ¼ a21; u12 ¼ a12=l
0
11; l

0
22 ¼ a12 � l021u12:

The following decomposition equation can be obtained

a11 a12
a21 a22

� �
¼ l011

l021 l022

� �
� 1 u12

1

� �
:

Similarly, if the first k � 1 rows of L0 and the first k � 1 columns of U have been

obtained, the equation becomes

a11 a12 a13 � � � a1;k�1
a21 a22 a23 � � � a2;k�1
a31 a32 a33 � � � a3;k�1

� � � ..
. ..

. ..
. ..

.

ak�1;1 ak�1;2 ak�1;3 � � � ak�1;k�1

2
666664

3
777775

¼

l011
l021 l022
l031 l032 l033

..

. ..
. ..

. . .
.

l0k�1;1 l0k�1;2 l0k�1;3 � � � l0k�1;k�1

2
66666664

3
77777775
�

1 u12 u13 � � � u1;k�1
1 u23 � � � u2;k�1

1 � � � u3;k�1

. .
. ..

.

1

2
6666664

3
7777775
:

All the elements of the two matrices in the right hand of the above equation have

been solved. Comparing the first k � 1 elements in the kth row and the first k
elements in the kth column of the two sides element by element, we can get the

corresponding elements by the following formulae

uik ¼ 1

l0ii
aik �

Xi�1
p¼1

l0ipupk

 !
ði ¼ 1; 2; . . . ; k � 1Þ

l0kj ¼ akj �
Xj�1
p¼1

l0kpupj ðj ¼ 1; 2; . . . ; kÞ:
ð1:60Þ

The above are recursion formulae. Taking k from 1 to n in sequence, the triangular

decomposition, A ¼ L0U, will be achieved by using these formulae. Furthermore,

dividing the off-diagonal elements by the corresponding diagonal element, L can be

obtained:

lkj ¼ 1

ljj
akj �

Xj�1
p¼1

l0kpupj

 !
ðk ¼ jþ 1; . . . ; nÞ: ð1:61Þ
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The diagonal elements of L0 constitute D, i.e., dii ¼ l0ii ði ¼ 1; 2; . . . ; nÞ. Now, the
coefficient matrix is decomposed into the format A ¼ LDU. It should be particu-

larly noted that (1.58) will always be true if the coefficient matrix is symmetric.

1.4.3 Sparse Techniques

From the discussion of the above section, we know that the solution process of the

electric network equation is the process of operating the right-hand constant vector

successively using the elements of its factor table. In Example 1.3, there are 16

elements in its factor table: four diagonal elements, six lower triangular elements,

and six upper triangular elements. Therefore the solution involves 16 multiplication

operations. According to (1.53) and (1.54), if elements in the factor table are zero,

the corresponding multiplication operations can be avoided (since the product will

be zero) and significant computational effort can be saved. Based on this idea, so-

called sparse technique is widely used in power system analysis to improve solution

efficiency. The concept of the sparse technique is illustrated by an example in the

following.

[Example 1.4] Solve the simultaneous linear equations in Example 1.2 by using

the sparse method.

[Solution] In Example 1.2, the simultaneous linear equations are

x1 2x2 x3 þx4 ¼ 5

2x1 þx2 ¼ 3

x1 þx3 ¼ 2

x1 þx4 ¼ 2

: ð1:62Þ

In order to make full use of the sparsity advantages of the equations, the following

transformation should be made first,

x1 ¼ y4; x2 ¼ y2; x3 ¼ y3; x4 ¼ y1: ð1:63Þ

Then, the original equations are transformed into

y1 þy4 ¼ 2

y2 þ2y4 ¼ 3

y3 þy4 ¼ 2

y1 þ2y2 þy3 þy4 ¼ 5

: ð1:64Þ

We will solve the equations by using its factor table. The coefficient matrix is

ð1Þ 0 0 1

0 1 0 2

0 0 1 1

ð1Þ 2 1 1

2
664

3
775:
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First, we normalize the first row and eliminate the first column. There are only two

operations: one normalization operation and one elimination operation in this step.

The elements in brackets are the computing factors. For a 4� 4 coefficient matrix,

the elimination of the first column should include one normalization operation and

three elimination operations. However, because both a21 and a31 are zero, two

corresponding operations are avoided. After the above operations, we obtain

1 0 0 1

0 ð1Þ 0 2

0 0 1 1

0 ð2Þ 1 0

2
664

3
775:

The next step is the normalization of the second row and elimination of the second

column. There are also only two operations, one normalization operation and one

elimination operation in this step. The figures in the brackets of the above matrix are

the computing factors. For a 4� 4 coefficient matrix, the elimination of the second

column should include one normalization operation and two elimination operations.

Because a
ð1Þ
32 is zero, the corresponding operation is avoided. After these operations,

we obtain

1 0 0 1

0 1 0 2

0 0 ð1Þ 1

0 0 ð1Þ �4

2
664

3
775:

To normalize the third row and eliminate the third column, we also need two

operations, one normalization operation and one elimination operation. The com-

puting factors are the elements in the brackets of the above matrix. After these

operations, we obtain

1 0 0 1

0 1 0 2

0 0 1 1

0 0 0 ð�5Þ

2
664

3
775:

Here, the factor table of the coefficient matrix can be readily written,

1 0 0 1

0 1 0 2

0 0 1 1

1 2 1 �5
:

The above factor table can also be found using (1.60) and (1.61). Because there are

only six zero off-diagonal elements in the above factor table, six multiply–add
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operations are avoided. In the following, we will use this factor table to obtain the

solution to the constant vector:

B ¼ 2 3 2 5½ �T:

First, eliminating B column by column is executed by using the lower triangular

part of the factor table. According to (1.52), b1 is normalized,

b
ð1Þ
1 ¼ b1=d11 ¼ 2=1 ¼ 2:

Then the operations on b2; b3; b4 are continued by using the elements of the first

column in the lower triangular part according to (1.53). Because l21 and l31 are

zero, we have

b
ð1Þ
2 ¼ b2 � l21 � b

ð1Þ
1 ¼ b2 ¼ 3;

b
ð1Þ
3 ¼ b3 � l31 � b

ð1Þ
1 ¼ b3 ¼ 2:

The above two steps should be avoided and only the following operation is needed

b
ð1Þ
4 ¼ b4 � l41 � b

ð1Þ
1 ¼ 5� 1� 2 ¼ 3:

After the elimination operation of the first column, we obtain

Bð1Þ ¼ 2 3 2 3½ �T:

Then normalize b
ð1Þ
2 according to (1.52)

b
ð2Þ
2 ¼ b

ð1Þ
2 =d22 ¼ 3=1 ¼ 3:

Now, the operation on b
ð1Þ
3 ; b

ð1Þ
4 should use the elements of the second column in the

lower triangular part according to (1.53). Because l32 is zero, only the operation

related to l42 will be performed. Thus,

b
ð2Þ
4 ¼ b

ð1Þ
4 � l42 � b

ð2Þ
2 ¼ 3� 2� 3 ¼ �3:

After finishing elimination operation of the second column, we have

Bð2Þ ¼ 2 3 2 �3½ �T:

Next, we normalize b
ð2Þ
3 according to (1.52)

b
ð3Þ
3 ¼ b

ð2Þ
3 =d33 ¼ 2=1 ¼ 2:
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And then compute b
ð3Þ
4 according to (1.53)

b
ð3Þ
4 ¼ b

ð2Þ
4 � l43 � b

ð3Þ
3 ¼ �3� 1� 2 ¼ �5:

After finishing the elimination operation of the third column, we obtain

Bð3Þ ¼ 2 3 2 �5½ �T:

The last step of the elimination operation is to normalize b
ð3Þ
4 according to (1.52)

b
ð4Þ
4 ¼ b

ð3Þ
4 =d44 ¼ �5=ð�5Þ ¼ 1:

At this stage, all of the elimination operation have been completed, the right-hand

vector becomes

Bð4Þ ¼ 2 3 2 1½ �T:

Comparing with the factor table, we obtain the following identical solution equa-

tions of (1.64)

y1 þy4 ¼ 2

y2 þ2y4 ¼ 3

y3 þy4 ¼ 2

y4 ¼ 1

:

Now, the unknowns can be solved using the upper triangular part of the factor table

according to (1.54). Because u12; u13; and u23 are zero, corresponding operations are
avoided in back substitution.

y4 ¼ b
ð4Þ
4 ¼ 1

y3 ¼ b
ð3Þ
3 � u34 � y4 ¼ 2� 1� 1 ¼ 1

y2 ¼ b
ð2Þ
2 � u24 � y4 ¼ 3� 2� 1 ¼ 1

y1 ¼ b
ð1Þ
1 � u14 � y4 ¼ 2� 1� 1 ¼ 1

:

Substituting the above results into (1.63), the solutions to original equation (1.62)

can be obtained.

From the above example, we can see that the computation effort can be saved not

only in the formation of the factor table but also in the forward and back substitu-

tion. The amount of computation saved by the sparse technique depends on the

number of zero elements in the factor table. Therefore, the key point of improving

computation efficiency is to keep the number of zero elements in the factor table as

high as possible.
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1.4.4 Sparse Vector Method

Nowadays, the sparse matrix techniques are adopted to solve almost all large-scale

power network problems. In this section, the sparse vector method, which can

further improve the computation efficiency, will be introduced [3].

Sparse vector methods are useful for solving a system of simultaneous linear

equations when the independent (right-hand) vector is sparse, or only few elements

in the unknown vector are wanted. To take advantage of vector sparsity is relatively

simple, but the results of improving computational efficiency and saving memory

can be quite dramatic. Therefore sparse vector methods are often used in the

compensation method, fault analysis, optimal power flow problem and contingency

analysis.

In principle, the sparse vector method can be applied to both full- and sparse-

matrix equations. This section focuses only on the implementation of sparse vector

methods in the sparse-matrix situation. According to the above discussion, the

admittance matrix Y of an electric network without phase-shifting transformers is

symmetric. If there are phase-shifting transformers in the network the sparse

admittance matrix is only symmetric in its structure. Nodal voltage equations can

be written as

YV ¼ I: ð1:65Þ

For generality, we assume Y is an incidence-symmetric square matrix of order n and
can be factorized as

Y ¼ LDU; ð1:66Þ

where L and U are lower and upper triangular matrices with unity diagonals,

respectively, and D is a diagonal matrix. It is easy to solve the nodal equations

using the above expressions. For example, the simultaneous equations can be

written in the following form

LDUV ¼ I: ð1:67Þ

The above formulae can be decomposed as

LX ¼ I; ð1:68Þ

DW ¼ X; ð1:69Þ

UV ¼ W: ð1:70Þ

V can be obtained when (1.68)–(1.70) are solved in sequence. If Y is symmetric,

matrix U is the transpose of L. If Y is incidence symmetric, matrix U is not the

transpose of L, but they are identical in the sparsity structure.
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The forward substitution operations can be expressed as

W ¼ D�1L�1I: ð1:71Þ

The back substitution operations can be expressed as

V ¼ U�1W: ð1:72Þ

Generally, these operations can be performed either by rows or by columns.

However, for the sparse vector method, the forward elimination (1.71) must be

performed by columns, while the back substitution (1.72) by rows.

Many different schemes can be used for storing and accessing L and U. For the
sparse vector method, the lowest-numbered, nonzero, off-diagonal element in each

column of L or in each row of U must be directly accessed without search. This

requirement is satisfied by most storage schemes for L and U.
The independent vector I is sparse in many applications. However, the solution

vector V is not sparse in general. The term ‘‘sparse vector’’ in the following refers

to either a sparse vector I or a subset of vector V containing the elements of interest.

The exact meaning is always clear from the context.

If the vector I is sparse, only a subset of the columns of L is needed for the

forward elimination. This is called the fast forward (FF) process. If only certain

elements of vector V are actually wanted, only a subset of the rows of U is needed

for the backward substitution. This is called the fast backward (FB) process.

[Example 1.5] Solve the following simultaneous linear equations

V1 þV4 ¼ 0

V2 þ2V4 ¼ 1

V3 þV4 ¼ 0

V1 þ2V2 þV3 þV4 ¼ 0

:

[Solution] The coefficient matrix of above simultaneous linear equations is the

same as in (1.64) of Example 1.4. The only difference is that the right-hand vector is

sparse.

I ¼ B ¼ 0 1 0 0½ �T:

Therefore, the factor table of these simultaneous linear equations is the same as that

of (1.64).

1 0 0 1

0 1 0 2

0 0 1 1

1 2 1 �5
:
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Decomposing the factor table, we obtain

L ¼
1

0 1

0 0 1

1 2 1 1

2
664

3
775; D ¼

1

1

1

�5

2
664

3
775; U ¼

1 0 0 1

1 0 2

1 1

1

2
664

3
775:

From (1.53), we can see that all the operations related with lik ði ¼ k þ 1; . . . ; nÞ
can be avoided if b

ðkÞ
k is equal to zero:

b
ðkÞ
i ¼ b

ðk�1Þ
i � lik � b

ðkÞ
k ði ¼ k þ 1; . . . ; nÞ:

In other words, the kth column in the lower triangular matrix can be ignored. In this

example, b1 is equal to zero, so we can skip the first column of L. For this sparse
vector, the elimination should begin from the second column. The elimination also

includes the normalization and elimination operations. After this, the right-hand

sparse vector is transformed into

B0 ¼ 0 1 0 �1½ �T:

The next step is elimination of the third column. Because b03 is zero, the operations
related to the third column of L are skipped, thus the elimination of the fourth

column is performed directly. Here, we use d44 to normalize b04, and the ultimate

result vector after the elimination operation is

B00 ¼ 0 1 0 1
5

� �T
:

As we know, the backward substitution operations must be performed by rows. If

only V3 is wanted, the operations with the first and second rows of U can be

neglected. If only V2 is wanted, the operations with the first row of U can be

avoided. Furthermore, the operations with the third row of U also can be omitted

because b03 ¼ 0. Therefore, the back substitution is only needed to perform on the

second row of U. Therefore, we have

V2 ¼ b002 � u24 � b004 ¼ 1� 2� 1
5
¼ 3

5
:

From the above example, we can see that the key task of sparse vector methods is to

identify the active subsets of L andU for FF and FB operations. The active subset of

columns for FF depends on the sparsity structure of L and I while the active subset
of rows for FB depends on the sparsity structures of U and V.

In order to find the active subset of FF and improve the computation efficiency,

the following simple algorithm can be summarized according to the above example
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1. Zero all locations in I, and enter the given nonzero elements in I.
2. Search the nonzero elements in I and let k be the location number of the lowest-

numbered nonzero element.

3. Perform the forward eliminations defined by column k of L on I.
4. If k ¼ n, exit. Else, return to Step 2.

This algorithm ensures that only the necessary nonzero operations of FF are

performed, but it is wasteful because of zeroing and searching. A similar algorithm

can be used to FB, but it is even more wasteful.

In the following we introduce a more efficient algorithm based on the concept of

the factorization path. A factorization path for a sparse vector is represented by an

ordered column list of L for FF operations. A path is executed in forward order for

FF and in reverse order for FB. The same or different paths may be used for FF and

FB depending on the application.

The path for a singleton is basic to the path concept. A singleton is a vector with

only one nonzero element. Assume that the nonzero element is in location k. The
following algorithm determines the path of the singleton:

1. Let k be the first number in the path.

2. Get the number of the lowest-numbered nonzero element in column k of L (or

row k of U). Replace k with this number, and list it in the path.

3. If k ¼ n, exit. Else, return to Step 2.

The path for a singleton can be determined directly from the indexing arrays

without searching or testing. A general sparse vector is the sum of singleton vectors,

and its path is the union of the paths of its composite singleton vectors. For any

sparse system, a path can be always associated with a given sparse vector.

[Example 1.6] Find the factorization path of the electric network shown in Fig.

1.11.

[Solution] Figure 1.12 shows the sparsity structure of the incidence symmetric

admittance matrix of the network as shown in Fig. 1.11 (only the lower triangular

part of the matrix is labeled). Because there are 21 branches in the network, 21 l

13

2 4

3

5

10 14

12

9

15
6

1

7 8 11

Fig. 1.11 Example electric network
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represent the off-diagonal elements of the matrix. After triangular factorization, 10

fill-in elements (labeled as*) are added. Therefore there are altogether 31 nonzero

elements in the factor table.

The factorization path of any singleton can be directly obtained from the

structure of the factor table. For example

When k ¼ 1, the singleton path is 1! 2! 7! 12! 13! 14! 15

When k ¼ 5, the singleton path is 5! 11! 13! 14! 15

When k ¼ 6, the singleton path is 6! 9! 10! 12! 13! 14! 15

When a sparse vector is not a singleton, its path is the union of the paths of its

composite singletons. For a sparse vector as follows

I ¼ 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0½ �T

we have its path as the union of the paths of its composite singletons when k ¼ 1

and k ¼ 5,

1! 2! 7! 12! 5! 11! 13! 14! 15:

In Table 1.1 we list the entire factorization paths for the network shown in Fig. 1.12.

A pictorial view of the path table is provided by the path graph shown in Fig.

1.13. Utilizing this path graph, highly efficient algorithms for the sparse vector can

be obtained. For example, assume the injected current at node 5 is I5 while the

injected currents of other nodes are zero, and the voltage at node 1 is wanted. To do

so, we carry out FF operations according to the following active column sequence:

5! 11! 13! 14! 15:

And then carry out FB operations according to the following active row

sequence:

15! 14! 13! 12! 7! 2! 1

In the above solution process, only the elements of five columns in lower triangular

and seven rows in upper triangular elements are employed, the computation effi-

ciency is improved dramatically. For sparse vector methods, the above path graph

Table 1.1 Path table

Node Next node Node Next node

1 2 8 10

2 7 9 10

3 4 10 12

4 8 11 13

5 11 12 13

6 9 13 14

7 12 14 15
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should be determined in advance and then be utilized directly, thus unnecessary

zeroing and searching can be skipped.

1.4.5 Optimal Ordering Schemes of Electric Network Nodes

At present, the Gauss elimination method introduced in Sect. 1.3.1 is applied to

solve the node equations I ¼ YV in most power system analysis programs. In

order to solve the network equation repeatedly, the admittance matrix is usually

I = [1 0 0 0 1 0 0 0 0 0 0 0 0 0 0]T

1 2 3 4 5 6 7  8  9  10  11  12  13  14  15

1

2

3   

4   

5     

6      

7

8    

9      

10        

11     

12

13   

14       

15     

Fig. 1.12 Sparse structure of a network’s factor table
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6
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Fig. 1.13 The path graph
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factorized first, and then the factor table can be directly used to solve the equations

with different right-hand vectors.

As we know, the admittance matrix is sparse and the triangular matrices after

factorization are also sparse. Generally, the distributions of nonzero elements in the

admittance matrix are different from those in the factorized triangular matrix,

because some new nonzero elements, i.e., the fill-in elements, may occur in the

elimination or LU factorization process.

The addition of fill-ins in the elimination process can be explained intuitively by

Y-D transformation. As shown in Fig. 1.14, node l does not directly connect with

nodes i and j in the initial network, thus corresponding elements Yil and Ylj in its

admittance matrix are zero while Yij is nonzero.
It can be proved that eliminating the first column of the admittance matrix in

Gauss elimination is equivalent to eliminating node 1 by Y-D transformation as

shown in Fig. 1.14. New branches connecting node pairs ij, il, and lj are created.

Therefore, in the new admittance matrix, Yil; Ylj; and Yij are all nonzero elements,

thus two fill-ins occur in eliminating the first column.

Generally, eliminating node k which is the central point of a star network will

create a mesh network whose vertexes are nodes connecting directly with node k. If
the number of nodes connecting directly with k is Jk, the branches in the mesh

network should be combinations of any two nodes of Jk nodes, which is equal to

ð1=2ÞJkðJk � 1Þ. Assuming that there already exist Dk branches connecting these Jk
nodes, the number of new branches (the number of fill-ins) after the elimination of

node k is

Dbk ¼ 1

2
JKðJK � 1Þ � Dk: ð1:73Þ

The number of fill-ins highly depends on the elimination sequence or the ordering

number of the nodes. In Fig. 1.15, four number ordering schemes and the

corresponding fill-ins in the triangular matrix are denoted. Apparently, different

number ordering schemes will result in different fill-ins.

An optimal ordering minimizes the fill-ins in the factor table during the LU

factorization process. Different number ordering schemes should be compared

according to the number of fill-ins. At present, several effective schemes have been

developed. Among them the following three ordering schemes are widely employed:

1. Static ordering scheme: This scheme numbers the nodes according to the

number of branches connected to them. It means that the nodes are ordered

i

j

l
1

Fig. 1.14 Relationship between
Gauss elimination and Y-D
transformation
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from the node with fewest branches to the node with most branches. If the

numbers of connected branches for more than one node are the same, any one of

them can be ordered first. Before ordering, the number of the branches connected

to each node needs be counted.

The scheme can be explained intuitively as follows: in the admittance matrix,

the node with the fewest connected branches corresponds to the row which has

the fewest nonzero elements, so the fill-ins will be generated with less possibility

in the elimination operation. This scheme is very simple and suitable to be

applied to small networks with fewer loops.

2. Semidynamic ordering scheme: In the above scheme, the number of branches

connected to each node is counted based on the initial network and is constant in

the ordering process. In fact, in the process of node elimination, the number of

branches connected to each node will change according toD� Y transformation.

Therefore, the number of branches of the remaining nodes should be updated

1
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3

4

6

3

1

0

Different ordering schemes Admittance matrix Lower triangular matrix Fill-
ins

1

2

3

4

5

• • • • •

×

1 2

3

4

5

•

•

1

2

3 4

5

1

2

3

4

5

×• Non-zero fill-inNon-zero element

•

• •• • •
•
•
•
• •

•
•

•
•

•
•

•
•

••
••

× ×
× × ×

•
•

•
•
•
•

• •
•

•
•

•
•

•
•

•

•
•
•

×
× ×

•
•

•
•

•

•
•

•
•

• • • •

•
•

•
•

•

• •
•
• ×

•••••
•

•
•

•

•

•
•

•
•

•• • •
•
•
•
•

Fig. 1.15 Illustration of number ordering
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after each elimination and then they should be ordered according to new data.

This ordering scheme might be expected to result in better fill-in reduction,

because it considers the changing number of incident branches during the

elimination process.

3. Dynamic ordering scheme: The above two schemes are only suboptimal, which

cannot guarantee minimizing fill-in number. The more rigorous scheme numbers

the node according to the principle that introduces the fewest new branches. The

ordering process is as follows

l According to D� Y transformation, count the number of new branches (the

number of fill-ins) added after the elimination on each node, and the node

with the fewest branches (including fill-ins) is numbered first.
l Update the new number of incident branches connected to the remaining

nodes.
l It is clear that the computation complexity of this scheme is much more than

the other two.

[Example 1.7] Ordering the nodes of the network as shown in Fig. 1.16.

[Solution] The above three ordering schemes are performed and compared as

follows for the network as shown in Fig. 1.16.

1. Static optimal ordering scheme: There are eight nodes and 14 branches in this

network. The number of incident branches on each node is listed in Table 1.2.

The ordering results according to the static ordering scheme are shown in Fig.

1.17a. There are four new branches added in the process of node eliminations.

When node 1 is eliminated, branch 2–7 and branch 2–8 are generated and when

node 2 is eliminated, branch 3–7 and branch 4–7 are added. Factorizing the

corresponding admittance matrix, we get the structure of the lower triangular

matrix as shown in Fig. 1.17b. Four fill-ins, l72; l73; l74; and l82 correspond with

the four new added branches.

2. Semidynamic ordering scheme: The process of numbering is shown in Table 1.3

and the result in Fig. 1.18a.

M

N

O P

Q

R

S

T

Fig. 1.16 Example of the node

ordering
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In this scheme, two new branches are introduced in the elimination process,

that is, when node 1 is eliminated, branch 4–5 and branch 4–8 are added.

3. Dynamic ordering scheme: In order to number the nodes, we need to count the

number of new branches (the number of fill-ins) added after eliminating each

node. The result is listed in Table 1.4. From this table, we can see that node R or

S should be numbered first. Suppose that node R is selected as node 1. After this

node is eliminated we count the new branch numbers when eliminating other

nodes. The results are shown in Table 1.5.

From Table 1.5, node S should be numbered as node 2. The computation is

repeated until the last node has been numbered. The results are shown in Fig.

1.18b. Only one new branch is added by this scheme.

Therefore, for complex networks, the dynamic ordering scheme can obtain

more satisfactory results.

Table 1.2 Number of branches at each node for network shown in Fig. 1.16

Node M N O P Q R S T

Number of incident branches 4 3 3 3 3 3 3 6

7

1

2 3

4

6

5

8

a b 71 4 5 632

×
×

×
×

×
×

×× × × × ×
× ×

×

1

2

3

4

5

6

7

8

o o

o

o

Fig. 1.17 Results of static optimal ordering

Table 1.3 Process of semidynamic ordering scheme

Node M N O P Q R S T

Node

ordered

Node

number

Process of

numbering

4 (3) 3 3 3 3 3 6 N 1

4 4 (3) 3 3 3 6 P 2

4 3 (2) 3 3 5 Q 3

4 (2) 3 3 4 O 4

(3) 3 3 3 M 5

(2) 2 2 R 6

(1) 1 S 7

(0) T 8
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1.5 Nodal Impedance Matrix

1.5.1 Basic Concept of Nodal Impedance Matrix

As described above, the nodal equation of electric network can be generally re-

presented as

I ¼ YV;

where I is the column vector of the nodal injection currents. Generally, it is the

known variable in power system analysis; V is the column vector of the nodal

voltages. Generally, it is unknown variable in power system analysis; and Y is the

nodal admittance matrix.

The above linear simultaneous equations can be solved by various methods, such

as the direct method by inverting the admittance matrix. Suppose

Z ¼ Y�1: ð1:74Þ

Then, the above nodal equation can be written as

V ¼ ZI ð1:75Þ

Table 1.4 First step of dynamic ordering scheme

Node eliminated M N O P Q R S T

Number of new branches 2 2 2 1 1 0 0 10

Table 1.5 Second step of dynamic ordering scheme

Node eliminated M N O P Q S T

Number of new branches 1 2 2 1 1 0 7

24

7

85

1
3

5 6

8

2

3

4

7

a b

6 1

Fig. 1.18 Result of semidynamic
and dynamic optimal ordering
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or in the expansion

_V1 ¼ Z11 _I1 þ Z12 _I2 þ � � � þ Z1i _Ii þ � � � þ Z1n _In
_V2 ¼ Z21 _I1 þ Z22 _I2 þ � � � þ Z2i _Ii þ � � � þ Z2n _In

� � � � � �
_Vi ¼ Zi1 _I1 þ Zi2 _I2 þ � � � þ Zii _Ii þ � � � þ Zin _In

� � � � � �
_Vn ¼ Zn1 _I1 þ Zn2 _I2 þ � � � þ Zni _Ii þ � � � þ Znn _In

9>>>>>>>=
>>>>>>>;
: ð1:76Þ

Comparing (1.75) with (1.76), we can see that

Z ¼

Z11 Z12 � � � Z1i � � � Z1n
Z21 Z22 � � � Z2i � � � Z2n

..

.

Zi1 Zi2 � � � Zii � � � Zin
..
.

Zn1 Zn2 � � � Zni � � � Znn

2
66666664

3
77777775
: ð1:77Þ

This is the nodal impedance matrix corresponding to the nodal admittance matrix Y,
and they have the same order. The diagonal element Zii is called the self-impedance

or the input impedance, and the off-diagonal element Zij is called the mutual

impedance or the transfer impedance between the node i and node j. When the

injection currents are known, the nodal voltages of the network can be solved

directly through (1.75) or (1.76).

The physical meaning of the elements in the nodal impedance matrix can be

explained as follows:

If a unit current is injected into node i, and all other nodes are open, i.e.,

_Ii ¼ 1

_Ij ¼ 0 ðj ¼ 1; 2; . . . ; n; j 6¼ iÞ:

Then from (1.76), we can get

_V1 ¼ Zi1

_V2 ¼ Zi2

� � � � � �
_Vi ¼ Zii

� � � � � �
_Vn ¼ Zin:

Thus, we know that the elements in the ith column of the impedance matrix have the

following physical meaning:
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1. The diagonal element Zii of the impedance matrix is equal in value to the voltage

of node i, when a unit current is injected into node i and all the other nodes are

open. Therefore, Zii can be also regarded as the equivalent impedance between

node i and the ground when all other nodes are open. If the network has some

grounding branches and node i is connected to the network, Zii must be a nonzero

element.

2. The off-diagonal element Zij is the mutual impedance between node i and j.

When a unit current is injected into node i and all the other nodes are open, Zij is
equal in value to the voltage of node j. Because there are always some electro-

magnetic connections (including indirect connections) among the nodes of a

power network, the voltage of every node should be nonzero when node i is
injected with a unit current and the other nodes are open. That is to say, all the

mutual impedance elements Zij are nonzero elements. Therefore, the impedance

matrix is a full matrix without zero elements.

The impedance matrix method for directly solving network voltage used to be

very popular in the early stages of power system analysis by computer. But the

impedance matrix is a full matrix, more memory and operations are required, which

limits its applications especially for large-scale networks. Nevertheless, it is con-

ceptually very useful in many aspects of power system analysis. This will be

introduced in later chapters.

1.5.2 Forming Nodal Impedance Matrix by Using Nodal
Admittance Matrix

Comparing with the admittance matrix, it is more difficult to formulae the nodal

impedance matrix of an electric network. Two general methods of constructing the

impedance matrix will be introduced in the next sections.

According to the discussion in Sect. 1.2.2, the admittance matrix of an electric

network can be obtained directly from its configuration and parameters. So we can

get the impedance matrix by inverting the admittance matrix. Several methods can

be used to invert a matrix. In the following, we will illustrate one of them –

inversion of a matrix through solving linear equations.

Consider an admittance matrix Y and its corresponding impedance matrix Z.
Solving the linear equation

YZj ¼ Bj ð1:78Þ

we can get the element Zj of the column j in the impedance matrix, where Bj is a

column vector:

Bj ¼ 0 � � � 0 1 0 � � � 0½ �t
j :
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Solving (1.78) successively for j ¼ 1; 2; . . . ; n, we can obtain all elements of the

impedance matrix. When the elements are solved column by column, only the right-

hand vector Bj is changed in (1.78). Therefore, the triangular factorization algo-

rithm is very efficient to solve (1.78) (refer to Sect. 1.3.2 for details).

Since the admittance matrix is symmetric, it can be factorized as:

Y ¼ LDLT:

The elements of the unit lower triangular matrix L and the diagonal matrixD can be

obtained from (1.61). Therefore, (1.78) can be rewritten as:

LDLTZj ¼ Bj: ð1:79Þ

Let

LTZj ¼ Wj; ð1:80Þ

DWj ¼ Xj: ð1:81Þ

Then according to (1.79), we have

LXj ¼ Bj: ð1:82Þ

Thus the whole process of solving (1.79) can be decomposed into three steps:

1. Solve Xj from (1.82)

Expand (1.82) as

1

l21 1

l31 l32 1

..

. ..
. ..

. . .
.

lj1 lj2 � � � lj;j�1 1

..

. ..
. ..

. � � � . .
.

ln1 ln2 � � � lnj � � � ln;n�1 1

2
66666666664

3
77777777775

x1
x2
x3
..
.

xj

..

.

xn

2
66666666664

3
77777777775
¼

0

0

..

.

..

.

1

0

..

.

2
66666666664

3
77777777775
: ð1:83Þ

Then we can get x1, x2, . . ., xn sequentially from the above equation. This is the

forward substitution.

2. Obtain Wj from (1.81)

Expand (1.81) as
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d1
d2

d3
. .
.

dj

. .
.

dn

2
66666666664

3
77777777775

w1

w2

w3

..

.

wj

..

.

wn

2
66666666664

3
77777777775
¼

x1
x2
x3
..
.

xj

..

.

xn

2
66666666664

3
77777777775
: ð1:84Þ

Then we can get w1;w2; . . . ;wn sequentially from the above equation. This is the

normalization.

wi ¼ xi=di i ¼ 1; 2; . . . ; n: ð1:85Þ

3. Obtain Zj from (1.80)

Expand (1.80) as

1 l21 l31 � � � lj1 � � � ln1
1 l32 � � � lj2 � � � ln2

. .
. ..

.

1 � � � � � � lnj

. .
. ..

.

1 ln;n�1
1

2
66666666664

3
77777777775

Z1j
Z2j

..

.

Zjj

..

.

Zn�1;j
Znj

2
66666666664

3
77777777775
¼

W1

W2

..

.

Wj

..

.

Wn�1
Wn

2
66666666664

3
77777777775
: ð1:86Þ

Then we can solve Znj; Zn�1;j; . . . ; Zjj; . . . ; Z2j; Z1j one by one from bottom to top

sequence. This is the backward substitution.

[Example 1.8] Form the impedance matrix of the electric network shown in the

Example 1.1 from its admittance matrix by applying the factorization algorithm.

[Solution] The admittance matrix can be factorized by using (1.61),

d1 ¼ Y11 ¼ 1:378742� j6:291665

l21 ¼ Y21
d1
¼�0:6242024þ j3:900156

1:378742� j64:57121
¼ 0:612227þ j0:034979

d2 ¼ Y22� l221d1

¼ ð1:453909� j66:98082Þ� ð0:61227þ j0:031979Þ2�ð1:378742� j6:291665Þ
¼ 1:208288� j64:57121

:

Similarly, other elements can be found through using the recursion formulae. Then

the admittance matrix is factorized as

52 1 Mathematical Model and Solution of Electric Network



L ¼

1

�0:612227
þj0:034979 1

�0:425687
�j0:026671

�0:073971
�j0:017193 1

�0:982943
�j0:018393

�0:137743
�j0:027718 1

�0:924654
þj0:027559

�1:189287
þj0:048151 1

2
66666666666664

3
77777777777775
;

D ¼

1:378742
�j6:291665

1:208288
�j64:57121

1:022377
�j34:30237

0:887283
�j3:640902

0:038964
þj1:263678

2
66666666666664

3
77777777777775
:

The first step is to get the first column elements Z1 of the impedance matrix. In this

situation, (1.83) should be written as

1

�0:612227
þj0:034979 1

�0:425687
�j0:026671

�0:073971
�j0:017193 1

�0:982943
�j0:018393

�0:137743
�j0:027718 1

�0:924654
þj0:027559

�1:189287
þj0:048151 1

2
66666666666664

3
77777777777775

x1
x2
x3
x4
x5

2
66664

3
77775 ¼

1

0

0

0

0

2
66664

3
77775:

Therefore,

x1 ¼ 1

x2 ¼ 0� l21x1 ¼ 0:612227 � j0:034979

x3 ¼ 0� l31x1 � l32x2 ¼ 0:471576þ j0:034609

x4 ¼ 0� l42x2 � l43x3 ¼ 0:665138� j0:027805

x5 ¼ 0� l53x3 � l54x4 ¼ 1:226700� j0:046890:
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From (1.85), we obtain

w1 ¼ x1
d1
¼ 1

1:378742 � j63291665
¼ 0:033234þ j0:151658

w2 ¼ x2
d2
¼ 0:612227 � j0:034979

1:208288 � j64:57121
¼ �0:000719 þ j0:009468;

w4 ¼ x4
d4
¼ 0:665138 � j0:027805

0:887283 � j3:640902
¼ 0:049233 þ j0:170687

w3 ¼ x3
d3
¼ 0:471576 þ j0:034609

1:022377 � j34:30237
¼ 0:000599 þ j0:013765;

w5 ¼ x5
d5
¼ 1:226700 � j0:046890

0:03894þ j1:263678
¼ �0:006535 � j0:970940:

Back substitution is executed using the following equation

1
�0:612227
þj0:034979

�0:425687
�j0:026671

1
�0:073971
�j0:017193

�0:982943
�j0:018393

1
�0:137743
�j0:027718

�0:924654
þj0:027559

1
�1:189287
þj0:048151

1

2
66666666666666666666664

3
77777777777777777777775

Z11

Z21

Z31

Z41

Z51

2
6666666666664

3
7777777777775
¼

0:033234
þj0:151658

�0:000719
þj0:009468

0:000599
þj0:013765

0:049233
þj0:170687

�0:006535
�j0:970940

2
66666666666666666666664

3
77777777777777777777775

:

Then the first column elements of the impedance matrix are

Z51 ¼ �0:006535 � j0:970940

Z41 ¼ �0:005290 � j0:983725

Z31 ¼ �0:006862 � j1:019487

Z21 ¼ �0:005555 � j1:032911

Z11 ¼ 0:017972� j0:914690:

The computation can be performed in a similar way and the whole impedance

matrix can be obtained column by column.

Thus we finally have
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Z ¼

0:017972
�j0:914690

�0:005555
�j1:032911

�0:006862
�j1:019487

�0:005290
�j0:983725

�0:006535
�j0:970940

�0:0055555
�j1:032911

0:007781
�j0:961291

�0:010007
�j1:037907

0:007410
�j0:918658

�0:009530
�j0:988482

�0:006862
�j1:019487

�0:010007
�j1:037907

0:026875
�j0:90470

�0:009530
�j0:988482

0:025596
�j0:861619

�0:005290
�j0:983725

0:007410
�j0:918658

0:007410
�j0:918658

0:007057
�j0:859912

�0:009076
�j0:941412

�0:006535
�j0:970940

�0:009530
�j0:988482

�0:009530
�j0:988482

�0:009076
�j0:941412

0:024377
�j0:790589

2
6666666666666664

3
7777777777777775

:

As described above, the elements of the jth column in the impedance matrix are

equal to the nodal voltages in value when a per-unit current is injected into node j
and other nodes are open. Therefore, finding the elements of the jth column from

(1.78) is equivalent to solving the following nodal equation

YV ¼ Ij; ð1:87Þ

where all the elements of the current column vector Ij are zero except the jth
element equals 1. Obviously, V obtained from this equation is equal to Zj in value.

It is worth noting that the computation burden of this method is a little too heavy

in some situations; for example, if we want to derive the impedance matrix of a

network with n nodes, n linear equations must be solved n times. Hence this method

is only suitable for the case in which only a few elements are of interest. In power

flow and short circuit analysis, the input impedance of one pair of nodes and the

transfer impedance between two node pairs are often calculated using the above

method. In Fig. 1.19, in order to get the input impedance of node i and j and the

N
=1

=−1

I
•

iV
•

i

I
•

jV
•

j

V
•

k

V
•

l

V
•

1

V
•

2

Fig. 1.19 Solving node pair’s

input and transfer impedance
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transfer impedance between ij and kl, a unit current is injected between node i and
node j, while other nodes are open. That is

_Ii ¼ 1; _Ij ¼ �1:

In this case, solve the network equation

YV ¼ Fij; ð1:88Þ

where

Fij ¼

0

..

.

1

0

..

.

�1
0

..

.

0

2
666666666666664

3
777777777777775

 �i

 �j
:

The nodal voltage can be obtained and the input impedance of node pair ij is

Zij�ij ¼ _Vi � _Vj: ð1:89Þ

The transfer impedance between ij and kl is

Zkl�ij ¼ _Vk � _Vl: ð1:90Þ

1.5.3 Forming Nodal Impedance Matrix by Branch
Addition Method

In the above section, we have described a method of forming the impedance matrix

by using the admittance matrix. An alternative method is to form the impedance

matrix directly by the branch addition method. The method is straightforward in

computation and allows easy impedance matrix modification for changes in the

network. Therefore it is applied widely.

The forming process is illustrated by Fig. 1.20.

We start to form the impedance matrix from a grounded branch and a matrix of

order 1 is formed. In Fig. 1.20, z10 first is used to form this matrix. Then branch z12
is added and the new branch creates a new node�. We call it adding a tree branch if

a new node is generated when adding a branch. At the same time, the order of the
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corresponding matrix increases by 1. Thus after adding tree branch z12, we obtain a
2 � 2 impedance matrix.

We next add branch z20. In this situation, there is no new node generated. The

order of the impedance matrix does not change. This is called adding a link branch.

All the elements of the impedance matrix must be updated when a link branch is

added. Repeat the operations in a similar way: after adding tree branch z13, node 3 is
created. Then the order of the impedance matrix becomes three.

After adding tree branch z14, node 4 is created and the order of the impedance

matrix becomes four.

After adding tree branch z25, node 5 is generated. The order of the impedance

matrix becomes five.

When adding link z25, no new node is generated and the order of the impedance

matrix is still five.

The impedance matrix is formed after all the branches have been added to the

electric network.

It should be noted that the sequence of adding the branches is not unique. An

alternative sequence is as follows:

Tree branch z10 ! tree branch z20 ! link z12 ! tree branch z13 ! link z23 !
tree branch z14 ! tree branch z25.

Of course, there are some other schemes besides these two schemes. And it can

be proved that whatever the branch adding sequence is, the impedance matrix is the

same when the node number ordering is the same. However, the computation

efforts under the different adding sequences are quite different. The effects of

adding a tree branch or a link branch on the impedance matrix will be discussed

in the following:

1. Adding a tree branch

Assume that the m � m impedance matrix of an electric network has been formed

for the first m nodes.

ZN ¼

Z11 Z12 � � � Z1i � � � Z1m
Z21 Z22 � � � Z2i � � � Z2m

� � � � � �
Zi1 Zi2 � � � Zii � � � Zim

� � � � � �
Zm1 Zm2 � � � Zmi � � � Zmm

2
6666664

3
7777775
: ð1:91Þ

z14

z13
z23

z12 z25

z20z10

214

3

5

Fig. 1.20 Process of branch addition method in forming impedance matrix
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When a tree branch Zij is added at node i, a new node j is created and the order of the
impedance matrix becomes mþ 1 (see Fig. 1.21). Suppose the new impedance

matrix is

Z0N ¼

Z011 Z012 � � � Z01i � � � Z01m
..
.

Z01j

Z021 Z022 � � � Z02i � � � Z02m
..
.

Z02j

� � � � � � ..
.

Z0i1 Z0i2 � � � Z0ii � � � Z0im
..
.

Z0mj

� � � � � � ..
.

Z0m1 Z0m2 � � � Z0mi � � � Z0mm
..
.

Z0mj

� � � � � � � � � � � � � � � � � � ..
. � � �

Z0j1 Z0j2 Z0ji Z0jm
..
.

Z0jj

2
66666666666666666664

3
77777777777777777775

: ð1:92Þ

We first solve the m � m matrix inside the dashed lines of (1.92). In order to obtain

the values of the first column Z011Z
0
21 � � � Z0i1 � � � Z0m1; a unit current is injected in node

1 and the other nodes are open as shown in Fig. 1.21a. In this case, voltages of the

node 1, 2, . . ., m have nothing to do with branch zij, therefore,

Z011 ¼ Z11; Z
0
21 ¼ Z21; . . . ;Z

0
i1 ¼ Zi1; . . . ; Z

0
m1 ¼ Zm1:

It means that the first column of Z0N is the same as the first column of ZN. Similarly,

the second column of Z0N is the same as the second column of ZN. Therefore we can

deduce that the m � m matrix inside the dashed lines of (1.92) is the original

impedance matrix before adding the branch zij.

N j N jzijzi j

a b

I
•

2=1

I
•

j =1

V
•

1 V
•

1

V
•

2

V
•

2

V
•

i V
•

i

V
•

m V
•

m

Fig. 1.21 Adding tree branch
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We now solve the jth column of Z0N. Similarly, j and other nodes are open as

shown in Fig. 1.21b. In this situation, voltages of the node 1; 2; . . . ; i; . . . ;m are the

same as those when a unit current is injected in node i, so we have,

Z01j ¼ Z1i;Z
0
2j ¼ Z2i; . . . ;Z

0
ij ¼ Zii; . . . ; Z

0
mj ¼ Zmi: ð1:93Þ

The voltage of node j is

_Vj ¼ _Vi þ zij � 1:

According to the physical meaning of the impedance matrix, we obtain

Zjj ¼ Zii þ zij: ð1:94Þ

Due to the symmetry of the impedance matrix, the off-diagonal elements of the jth
row in Z0N can be obtained as follows,

Z0j1 ¼ Z1j;Z
0
j2 ¼ Z2j; . . . ;Z

0
ji ¼ Zij; . . . ; Z

0
jm ¼ Zmj: ð1:95Þ

Hence all the elements in the impedance matrix after adding tree branch zij are
found. Additionally, although the order of the new impedance matrix increases by

1, the computation to form it is relatively simple.

1. Adding a link

The impedance matrix of the initial network is denoted as ZN. When link zij is added

between nodes i and j, the impedance matrix becomes Z0N. The orders of these two
matrices are the same because no new node is generated in the network. We now

consider how to calculate the elements of new impedance matrix Z0N.
As shown in Fig. 1.22, suppose the injection current vector of the new network is

I,

I ¼ _I1 _I2 � � � _Ii � � � _Ij � � � _Im
� �t

and the nodal voltage vector is V

V ¼ _V1
_V2 � � � _Vi � � � _Vj � � � _Vm

� �t
:

Thus the following relationship holds

V ¼ Z0NI: ð1:96Þ
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From Fig. 1.22, the nodal current injected into the initial network is

I0 ¼

_I1
_I2
..
.

_Ii � _Iij

..

.

_Ij þ _Iij

..

.

_Im

2
666666666666664

3
777777777777775

¼ I � AMIij; ð1:97Þ

where AM is a column vector related to the added link branch,

AM ¼

0

..

.

1

0

..

.

�1
0

..

.

0

2
666666666666664

3
777777777777775

��������������������

 i

 j

ð1:98Þ

According to the nodal equation of the original network,

V ¼ ZNI
0 ¼ ZNI � ZNAM

_Iij: ð1:99Þ

Assume

ZNAM ¼ ZL: ð1:100Þ

N
zij

V
•

1 I
•

1

V
•

2 I
•

2

I
•

jV
•

i

V
•

m

I
•

j

I
•

m

I
•

ij

V
•

j

Fig. 1.22 Adding a link
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We know that ZL is a column vector

ZL ¼

Z1i � Z1j
Z2i � Z2j

..

.

Zii � Zij

..

.

Zji � Zjj

..

.

Zmi � Zmj

2
66666666666664

3
77777777777775
: ð1:101Þ

Rewrite (1.99) as,

V ¼ ZNI � ZL
_Iij: ð1:102Þ

The voltage difference between nodes i and j is equal to

_Vi � _Vj ¼ zij _Iij ¼ AT
MV; ð1:103Þ

where AT
M is the transpose of AM. Substituting (1.102) into (1.103), we obtain

zij _Iij ¼ AT
MZNI � AT

MZL
_Iij:

_Iij can be solved as follows

_Iij ¼ 1

ZLL
ZT
LI; ð1:104Þ

where

ZLL ¼ AT
MZL þ zij ¼ Zii þ Zjj � 2Zij þ zij; ð1:105Þ

ZT
L ¼ AT

MZN ¼ ðZNAMÞT:

Substituting (1.104) into (1.102), we have

V ¼ ZN � 1

ZLL
ZLZ

T
L

	 

I: ð1:106Þ

Comparing (1.96) with (1.106), we obtain the new impedance matrix Z0N,

Z0N ¼ ZN � 1

ZLL
ZLZ

T
L : ð1:107Þ
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Expanding the above equation, we have the following formulae of the elements inZ0N

Z0kl ¼ Zkl � ZLkZLl
ZLL

k ¼ 1; 2; . . . ;m
l ¼ 1; 2; . . . ;m

	 

: ð1:108Þ

In contrast with adding a tree branch, the computation of adding a link is quite

heavy and complicated in which each element of the impedance matrix must be

recalculated according to (1.108). The speed of forming the impedance matrix

mainly depends on computations for adding links. Therefore the sequence of adding

branches affects the computation speed dramatically. For example of the network in

Fig. 1.20, the computations of adding link z23 according to the first sequence are

performed on a 5 � 5 matrix, but the recalculations are just executed on a 3 � 3

matrix according to the second sequence. Hence the more reasonable sequence of

adding branches is to add links as early as possible.

If the transformer branch is involved, the P equivalent circuit as shown in

Fig. 1.4 can be used in forming the impedance matrix. Comparing with a transmis-

sion line, two more branches must be added for each transformer and in most

circumstances both of them are links. Therefore the computation burden increases

notably.

Now a direct method of adding a transformer branch is introduced in the

following, which need not use the P equivalent circuit.

First, we discuss the situation that the transformer added is a tree branch. In

Fig. 1.23a, the leakage impedance is put at the nominal turn ratio side of the

transformer. If the leakage impedance is put at the off nominal side, the formulae

can be derived in a similar way.

The impedance matrix of the original network is denoted as ZN (see (1.91)).

When the transformer is added as a tree branch, the order of the new impedance

matrix Z0N increases by 1 (see (1.92)). It can be proved that the m � m block matrix

in the top-left of Z0N is just ZN.

As shown in Fig. 1.23b, the transformer is substituted for its equivalent circuit.

When node j is open, the transformer’s P equivalent circuit is also opened as

viewed from node i. This can be explained as follows.

N

1

2

i

m

zij

1:K

a b c

1

2

i j

K−1

Kzij

Kzij

1−K

1:K

−
m

N N

I
•

j = 1

I
•

i = K

I
•

ij  =K

K2zij

zi j

V
•

i

V
•

j
I

•

j

I
•

i

I
•

m

V
•

1

V
•

2
I

•

2

I
•

1

Fig. 1.23 Adding a transformer
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The impedance of the loop constituted by nodes i, j and the ground is

zij0 ¼ Kzij þ K2

1� K
zij ¼ K

1� K
zij:

And the impedance between node i and the ground is zi0 ¼ ðK=ð1� KÞÞzij0. The
value of the parallel impedance of zi0 and zij0 becomes infinity. When a unit current

is injected at each node of the original network, the current distribution of the

original network is unchanged after adding a transformer as a tree branch. Hence

the nodal voltages are also unchanged.

The issue now is how to solve the new elements of Z0N. Focus on this question, a
unit current is injected at node j and the other nodes are open as shown in Fig. 1.23b.
This is just like the injecting current K into the original network at node i. Thus the
nodal voltages are

_V1 ¼ KZ1i; _V2 ¼ KZ2i; . . . ; _Vi ¼ KZii; _Vm ¼ KZmi:

The voltage of node j is

_Vj ¼ Kð _Vi þ KzijÞ ¼ K2ðZii þ zijÞ:

Thus, we obtain

Z01j ¼ Kz1i; Z
0
2j ¼ Kz2i; . . . ;Z

0
ij ¼ KZii; . . . ;Z

0
mj ¼ KZmi; ð1:109Þ

Z0jj ¼ K2ðZii þ zijÞ: ð1:110Þ

Obviously, (1.109) and (1.110) will be changed into (1.93) and (1.94) when the turn

ratio K ¼ 1.

The situation when the transformer added is a link branch is shown in Fig. 1.23c.

Assume that the current injected into the network after adding the transformer

branch is a column vector I, thus the current injected into the original network

I0 ¼

_I1
_I2

..

.

_Ii � K _Iij

..

.

_Ij þ _Iij

..

.

_Im

2
6666666666666664

3
7777777777777775

¼ I � A0MIij; ð1:111Þ
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where A0M is a column vector.

A0M ¼

0

..

.

K
0

..

.

�1
0

..

.

0

2
666666666666664

3
777777777777775

��������������������

 i

 j
:

The following steps are similar to that of a simple impedance link branches (see

(1.99)–(1.108)). The only difference is to substitute the original AM for A0M.
Therefore (1.101) should be changed as follows:

ZL ¼

KZ1i � Z1j
KZ2i � Z2j

..

.

KZii � Zij

..

.

KZji � Zjj

..

.

KZmi � Zmj

2
66666666666664

3
77777777777775
: ð1:112Þ

Equation (1.103) should be rewritten as

K _Vi � _Vj ¼ K2zij _Iij ¼ A0TMV: ð1:113Þ

Accordingly, (1.105) is changed as

ZLL ¼ KZLi � ZLj þ K2zij: ð1:114Þ

After calculating ZL and ZLL, the elements of Z0N can be calculated according to

(1.108).

Briefly, the process of forming an impedance matrix by using the branch

addition method is a process of adding branches one by one. If the configuration

of a network is changed or a branch needs to be added, the impedance matrix can be

modified directly according to the above formulae. For instance, if a branch zij
needs to be removed, the equivalent operation is to add a branch �zij into the

network.
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[Example 1.9] Form the impedance matrix of the electric network shown in Fig.

1.10 by using the branch addition method.

[Solution] For convenience of the computation, line-to-ground capacitances at

both ends of the transmission lines are lumped to the corresponding node and

denoted in the format of line-to-ground reactance. The equivalent circuit is shown

in Fig. 1.24.

According to the node ordering, we can make the sequence table of branch

adding as follows.

Terminal nodes of 
branch 

Sequence of 
branches 
added  

i L j

Impedance of branch

 
(1) 0L 1 4j-

(2) 0L 2 2j-

 

(3) 1L 2 0.04   0.25j+

(4) 0L 3 4j-

 

(5) 1L 3 0.1   0.35j+

 

(6) 2L 3 0.08   0.30j+

(7) 2L 4 0.015j

(8) 3L 5 0.03j

Then label the branch adding sequence on the figure as shown in Fig. 1.24.

j0.015

1:1.05
0.08 + j0.30

1.05:1

j0.03

(7)

j4−

−j4−j2
(6)

)2(

(1)

(4)
(8)

4

1

2 3

5

(3) (5)

Fig. 1.24 Impedance matrix formed by using branch addition method
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The procedure for forming the impedance matrix is shown as follows:

1. Start from the grounded branch z01 to form a 1 � 1 matrix. Its element is

� j4

2. Add branch (2): z02 is a tree branch, i ¼ 0; j ¼ 2. According to (1.93) and (1.94),

the new elements are

Z12 ¼ Z21 ¼ Z10;Z22 ¼ Z00 þ Z02:

According to the physical meaning of the impedance matrix element, we have

Z10 ¼ Z00 ¼ 0:

Then

Z12 ¼ Z21 ¼ 0;Z22 ¼ Z02 ¼ �j2

and the 2 � 2 matrix is

1 2

1 − j4

2 − j2

3. Add branch (3): z12 is a link branch. The elements of ZL can be obtained

according to (1.101) and (1.105),

ZL1 ¼ Z11 � Z12 ¼ �j4
ZL2 ¼ Z12 � Z22 ¼ �j2:

From (1.105) we know,

ZLL ¼ ZL1 � ZL2 þ z12 ¼ �j4� j2þ 0:04þ j0:25 ¼ 0:04� j5:75:

Modify the elements of the 2 � 2 matrix according to (1.108)

Z011 ¼ Z11 � ZL1ZL1
ZLL

¼ �j4� ð�j4Þ2
0:04� j5:75

¼ 0:019356� j1:217526

Z012 ¼ Z021 ¼ Z12 � ZL2ZL1
ZLL

¼ 0� j2� ð�j4Þ
0:04� j5:75

¼ �0:096782� j1:301237

Z022 ¼ Z22 � ZL2ZL2
ZLL

¼ �j2� ðj2Þ2
0:04� j5:75

¼ 0:004839� j1:304381:
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Thus we obtain the impedance matrix constituted by branches 1, 2, and 3

1 2

0.0193561

− j1.1217526

−0.0962822

− j 1.391237

−0.096282

− j1.391237

0.004839

− j1.304381

4. Add branch (4): z03 is a grounded tree branch. The computation process is the

same as that in Step 2. The augmented matrix 3 � 3 is

1 2 3

0.019356 −0.0962821

− j1.1217526 −j 1.391237

2 −0.096282 0.004839

− j 1.391237 − j 1.304381

3 − j 4

5. Add branch (5) z13 and branch (6) z23. Because both of these are links, the matrix

order is unchanged. The computation process is the same as that in Step 3. The

augmented matrix 3 � 3 is

1 2 3

0.017972 −0.005555 −0.0068621

− j0.914690 − j 1.032911 − j1.019487

−0.005555 0.007781 −0.0100072

− j 1.0329111 − j 0.964591 − j1.037907

−0.006862 −0. 010007 0.0268753

− j1.019487 − j1.037907 − j0.904700

6. Add branch (7): z24 is a transformer tree branch. In this network, the off normal

turns ratio of the transformer is at node i. The computation cannot be performed
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directly using (1.109) and (1.110). We should transfer the off normal turns ratio

to the other terminal node of the transformer. It is illustrated in the Fig. 1.25.

Then the elements of the fourth row and column can be calculated according

to (1.109) and (1.110).

Z41 ¼ Z14 ¼ K0Z21 ¼ 1

1:05
ð�0:005555 � j1:032911Þ ¼ �0:005290� j0:983725

Z42 ¼ Z24 ¼ K0Z22 ¼ 1

1:05
ð�0:007781 � j0:964591Þ ¼ 0:007410� j0:918658

Z43 ¼ Z34 ¼ K0Z23 ¼ 1

1:05
ð�0:010007 � j1:037907Þ ¼ �0:009530� j0:988482

Z44 ¼ K02ðZ22 þ z024Þ ¼
1

1:052
ð�0:007781� j0:964591Þ þ j0:015

¼ 0:007057� j0:859912:

We now have a 4 � 4 matrix

1 2 3 4

0.017972 −0.005555 −0.006862 −0.0052901

− j0.914690 − j

1.0329111

− j1.019487 − j0.983725

−0.005555 0.007781 −0.010007 0.0074102

− j 

1.0329111

− j

0.964591

− j1.037907 − j0.918658

−0.006862 −0.010007 0.026875 −0.0095303

− j1.019487 − j1.037907 − j0.904700 − j0.988482

4 −0.005290 0.007410 −0.009530 0.007057

− j0.983725 − j0.918658 − j0.988482 − j0.859912

j0.015

1:1.05

j0.015×(1.05)2

:1
1.05
1

44

2 2

Fig. 1.25 Equivalent circuit of the transformer
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7. Add branch (8): z35 is also a transformer tree branch. Its off normal turns ratio is

also at node i. The computation process is the same as that in Step 6.

The final impedance matrix is

Z ¼

0:017972
�j0:914690

�0:0055555
�j1:032911

�0:006862
�j1:019487

�0:005290
�j0:983725

�0:006535
�j0:970940

�0:0055555
�j1:032911

0:007781
�j0:964591

�0:010007
�j1:037907

0:007410
�j0:918658

�0:009530
�j0:988482

�0:006862
�j1:019487

�0:010007
�j1:037907

0:026875
�j0:904700

�0:009530
�j988482

�0:025596
�j0:861619

�0:005290
�j0:983725

0:007410
�j0:918658

�0:009530
�j988482

0:007057
�j0:859912

�0:009076
�j0:941412

�0:006535
�j0:970940

�0:009530
�j0:988482

�0:025596
�j0:861619

�0:009076
�j0:941412

0:024377
�j0:790589

2
6666666666666664

3
7777777777777775
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Thinking and Problem Solving

1. Prove that the incidence matrix of an electrical power network is a singular

matrix

2. Is the admittance matrix generally a singular matrix? In what condition can the

admittance matrix be a singular matrix?

3. What simplifications can be made to the equivalent circuit of the transformer in

Fig. 1.4?

4. Why is the admittance matrix including phase shifter(s) not a symmetric

matrix?

5. How many elements are there in the admittance matrix of an electrical power

network with N nodes and B branches?

6. What changes will occur in the admittance matrix when the turn ratio of a

transformer varies?

7. What changes will occur in the admittance matrix when a line is out of service?

8. What characteristics does the electrical power network equation have? And

what requirements are there for its solution algorithm?

9. Why is the method of Gauss elimination often adopted to solve network

equations?

10. How is the factor table formed? Compare the features between two methods of

forming the factor tables.

11. What is the key idea behind sparse technique?

12. What fields can the sparse vector method be applied to?

13. Compare the features and application areas of three kinds of node optimal

ordering methods.
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14. State the significance of self-impedance, input impedance, mutual impedance,

and transfer impedance.

15. How can an admittance matrix be used to find self-impedance Zii and mutual

impedance Zij? Give a detailed program flowchart.

16. Describe the storage scheme of a sparse admittance matrix.
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Chapter 2

Load Flow Analysis

2.1 Introduction

Load flow analysis is the most important and essential approach to investigating

problems in power system operating and planning. Based on a specified generating

state and transmission network structure, load flow analysis solves the steady

operation state with node voltages and branch power flow in the power system.

Load flow analysis can provide a balanced steady operation state of the power

system, without considering system transient processes. Hence, the mathematic

model of load flow problem is a nonlinear algebraic equation system without

differential equations. Power system dynamic analysis (see Chaps. 5 and 6) inves-

tigates system stability under some given disturbances. Its mathematic model

includes differential equations. It should be pointed out that dynamic analysis is

based on load flow analysis and the algorithm of load flow analysis is also the base

for dynamic analysis methods. Therefore, familiarity with the theory and algo-

rithms of load flow analysis is essential to understanding the methodology of

modern power system analysis.

Using digital computers to calculate load flow started from the middle of the

1950s. Since then, a variety of methods has been used in load flow calculation. The

development of these methods is mainly led by the basic requirements of load flow

calculation, which can be summed up as:

1. The convergence properties

2. The computing efficiency and memory requirements

3. The convenience and flexibility of the implementation

Mathematically, the load flow problem is a problem of solving a system of nonlinear

algebraic equations. Its solution usually cannot avoid some iteration process. Thus

reliable convergence becomes the prime criterion for a load flow calculation meth-

od. With the scale of power system continually expanding, the dimension of load

flow equations now becomes very high (several thousands to tens of thousands). For

the equations with such high dimensions, we cannot ensure that any mathematical

method can converge to a correct solution. This situation requires the researchers

and scholars in the power system analysis field to seek more reliable methods.
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In the early stages of using digital computers to solve power system load flow

problems, the widely used method was the Gauss–Seidel iterative method based on

a nodal admittance matrix (it will be simply called the admittance method below)

[4]. The principle of this method is rather simple and its memory requirement is

relatively small. These properties made it suit the level of computer and power

system theory at that time. However, its convergence is not satisfactory. When the

system scale becomes larger, the number of iteration increases sharply, and some-

times the iteration process cannot converge. This problem led to the use of the

sequential substitution method based on the nodal impedance matrix (also called

the impedance method).

At the beginning of the 1960s, the digital computer had developed to the second

generation. The memory and computing speed of computers were improved signif-

icantly, providing suitable conditions for the application of the impedance method.

As mentioned in Chap. 1, the impedance matrix is a full matrix. The impedance

method requires the computer to store the impedance matrix that represents the

topology and parameters of the power network. Thus it needs a great amount of

computer memory. Furthermore, in each iteration, every element in the impedance

matrix must be operated with, so the computing burden is very heavy.

The impedance method improved convergence and solved some load flow

problems that the admittance method could not solve. Therefore, the impedance

method was widely applied from then on and made a great contribution to power

system design, operation, and research.

The main disadvantage of the impedance method is its high memory require-

ment and computing burden. The larger the system is, the more serious these

defects are. To overcome the disadvantage, the piecewise solution method based

on impedance matrix was developed [5]. This method divides a large system up into

several small local systems and only the impedance matrixes of local systems and

the impedances of tie lines between these local systems are to be stored in the

computer. In this way, the memory requirement and computing burden are greatly

alleviated.

The other approach to overcoming the disadvantages of the impedance method is

to apply the Newton–Raphson method (also called the Newton method) [6]. The

Newton method is a typical method used to solve nonlinear equations in mathemat-

ics with very favorable convergence. As long as the sparsity of the Jacobean matrix

is utilized in the iterative process, the computing efficiency of the Newton method

can be greatly improved. Since the optimal order eliminating method [7] began to

be employed in the middle of the 1960s, the Newton method has surpassed the

impedance method in the aspects of convergence, memory demand, and computing

speed. It is still the favored method, and is widely used in load flow calculation

today.

Since the 1970s, the load flow calculating method continues to develop in

various ways. Among them the most successful is the fast decoupled method,

also called the P� Q decoupled method [8]. Comparing with the Newton method,

this method is much simpler and more efficient algorithmically, and therefore more

popular in many applications.
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In the recent 20 years, research on load flow calculation is still very active. Many

contributions seek to improve the convergence characteristics of the Newton

method and the P� Q decoupled method [9–15]. Along with the development of

artificial intelligent theory, the genetic algorithm, artificial neural network algo-

rithm, and fuzzy algorithm have also been introduced to load flow analysis [16–19].

However, until now these new models and new algorithms still cannot replace the

Newton method and P� Q decoupled method. Because the scales of power systems

continue to expand and the requirements for online calculation become more and

more urgent, the parallel computing algorithms are also studied intensively now and

may become an important research field [20].

This chapter mainly discusses the currently widely used Newton method and

P� Q decoupled method.

The degree of flexibility and convenience of load flow calculation are also very

important to computer application. In practice, load flow analysis is usually part of

an interactive environment, rather than a pure calculation problem. Therefore, the

human–computer interface should be friendly, allowing users to monitor and

control the calculation process. To obtain an ideal operation scheme, it is usually

necessary to modify the original data according to the computing results. Thus, the

computing method should be flexible, permitting users to readily modify and adjust

their operation scheme. Input and output processes should also receive careful

attention.

Power system steady state analysis includes load flow analysis and static security

analysis. Load flow analysis is mainly used in analyzing the normal operation state,

while static security analysis is used when some elements are out of service. Its

purpose is to check whether the system can operate safely, i.e., if there are

equipment overloads, or some node voltages are too low or too high. In principle,

static security analysis can be replaced by a series of load flow analyses. However,

usually there are very many contingency states to be checked and the computation

burden is quite large if a rigorous load flow calculation method is used. Hence

special methods have to be developed to meet the requirement of efficient calcula-

tion. In the first part of this chapter, the models and algorithms of load flow

calculation are introduced. In the second part, the problems related to static security

analysis are discussed.

2.2 Formulation of Load Flow Problem

2.2.1 Classification of Node Types

An electric power system is composed of generators, transformers, transmission

lines and loads, etc. A simple power system is illustrated in Fig. 2.1. In the process

of power system analysis, the static components, such as transformers, transmission

lines, shunt capacitors and reactors, are represented by their equivalent circuits
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consisting of R, L,C elements. Therefore, the network formed by these static

components can be considered as a linear network and represented by the

corresponding admittance matrix or impedance matrix. In load flow calculation,

the generators and loads are treated as nonlinear components. They cannot be

embodied in the linear network, see Fig. 2.1b. The connecting nodes with zero

injected power also represent boundary conditions on the network.

In Fig. 2.1b, the relationship between node current and voltage in the linear

network can be described by the following node equation:

I ¼ YV ð2:1Þ

or

_Ii ¼
Xn
j¼1

Yij _Vj ði ¼ 1; 2; . . . ; nÞ ð2:2Þ

where _Ii and _Vj are the injected current at bus i and voltage at bus j, respectively, Yij
is an element of the admittance matrix, n is the total number of nodes in the system.

PF1 + jQF1
PH2 + jQH2

(a)

(b)

PF2 + jQF2

PH1 + jQH1

0

0

6 5 3 4

2

1

1

2

3

4

5

6

Linear
Network

(It can be described
by admittance matrix
or impedance matrix)

PF1 + jQF1

−PH1 + jQH1

−PH2 − jQH2
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V
•

1 I
•

1

V
•

2 I
•

2

V
•
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•

3

V
•

4 I
•

4

V
•

5 I
•

5

V
•

6 I
•

6

Fig. 2.1 Simple power system
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To solve the load flow equation, the relation of node power with current should

be used

_Ii ¼ Pi � jQi

V̂i

ði ¼ 1; 2; . . . ; nÞ ð2:3Þ

where Pi, Qi are the injected active and reactive power at node i, respectively. If

node i is a load node, then Pi and Qi should take negative values. In (2.3), V̂i is the

conjugate of the voltage vector at node i. Substituting (2.3) to (2.2), we have,

Pi � jQi

V̂i

¼
Xn
j¼1

Yij _Vj ði ¼ 1; 2; . . . ; nÞ

or

Pi þ jQi

_Vi

¼
Xn
j¼1

ŶijV̂j ði ¼ 1; 2; . . . ; nÞ ð2:4Þ

There are n nonlinear complex equations in (2.4). They are the principal equations

in load flow calculation. Based on different methods to solve (2.4), various load

flow algorithms can be formed.

In the power system load flow problem, the variables are nodal complex voltages

and complex powers: V , y, P, Q. If there are n nodes in a power system, then the

total number of variables is 4 n.
As mentioned above, there are n complex equations or 2n real equations defined

in principal by (2.4), thus only 2n variables can be solved from these equations,

while the other 2n variables should be specified as original data.

Usually, two variables at each node are assumed known, while the other two

variables are treated as state variables to be resolved. According to the original data,

the nodes in power systems can be classified into three types:

1. PQ Nodes: For PQ nodes, the active and reactive power (P;Q) are specified as

known parameters, and the complex voltage (V; y) is to be resolved. Usually,

substation nodes are taken as PQ nodes where the load powers are given

constants. When output P and Q are fixed in some power plants, these nodes

can also be taken as PQ node. Most nodes in power systems belong to the PQ
type in load flow calculation.

2. PV Nodes: For PV nodes, active power P and voltage magnitude V are specified

as known variables, while reactive power Q and voltage angle y are to be

resolved. Usually, PV nodes should have some controllable reactive power

resources and can thus maintain node voltage magnitude at a desirable value.

Generally speaking, the buses of power plants can be taken as PV nodes, because

voltages at these buses can be controlled with reactive power capacity of their

generators. Some substations can also be considered as PV nodes when they

have enough reactive power compensation devices to control the voltage.
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3. Slack Node: In load flow studies, there should be one and only one slack node

specified in the power system, which is specified by a voltage, constant in

magnitude and phase angle. Therefore, V and y are given as known variables

at the slack node, while the active power P and reactive power Q are the

variables to be solved. The effective generator at this node supplies the losses

to the network. This is necessary because the magnitude of losses will not be

known until the calculation of currents is complete, and this cannot be achieved

unless one node has no power constraint and can feed the required losses into the

system. The location of the slack node can influence the complexity of the

calculations; the node most closely approaching a large AGC power station

should be used.

We will employ different methods to treat the above three kinds of nodes in

power flow calculations.

2.2.2 Node Power Equations

As described above, power system load flow calculations can be roughly considered

as the problem of solving the node voltage phasor for each node when the injecting

complex power is specified. If the complex power can be represented by equations

of complex voltages, then a nonlinear equation solving method, such as the

Newton–Raphson method, can be used to solve the node voltage phasors. In this

section, node power equations are deduced first.

The complex node voltage has two representation forms – the polar form and the

rectangular form. Accordingly, the node power equations also have two forms.

From (2.4), the node power equations can be expressed as

Pi þ jQi ¼ _Vi

X
j2i

ŶijV̂j ði ¼ 1; 2; . . . ; nÞ ð2:5Þ

where j 2 i means the node j should be directly connected with node i, including
j ¼ i. As discussed in Chap.1, the admittance matrix is a sparse matrix, and the

terms in S are correspondingly few. If the voltage vector of (2.5) adopts polar form,

_Vi ¼ Vie
jyi ð2:6Þ

where Vi,yi are the magnitude and phase angle of voltage at node i. The elements of

admittance matrix can be expressed as

Yij ¼ Gij þ jBij
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Hence (2.5) can be rewritten as

Pi þ jQi ¼ Vie
jyi
X
j2i
ðGij � jBijÞVje

�jyj ði ¼ 1; 2; . . . ; nÞ ð2:7Þ

Combining the exponential items of above equation and using the relationship

ejy ¼ cos yþ j sin y

we have,

Pi þ jQi ¼ Vi

X
j2i

VjðGij � jBijÞðcos yij þ j sin yijÞ ði ¼ 1; 2; . . . ; nÞ ð2:8Þ

where yij ¼ yi � yj, is the voltage phase angle difference between node i and j.
Dividing above equations into real and imaginary parts,

Pi ¼ Vi

X
j2i

VjðGij cos yij þ Bij sin yijÞ

Qi ¼ Vi

X
j2i

VjðGij sin yij � Bij cos yijÞ

9>>=
>>; ði ¼ 1; 2; � � � ; nÞ ð2:9Þ

This is the polar form of the nodal power equations. It is not only very important in

the Newton–Raphson calculation process, but also essential to establish the fast

decoupled method.

When the voltage vector is expressed in rectangular form,

_Vi ¼ ei þ jfi

where

ei ¼ Vi cos yi fi ¼ Vi sin yi

We can obtain from (2.5),

Pi ¼ ei
X
j2i
ðGijej � Bij fjÞ þ fi

X
j2i
ðGij fj þ BijejÞ

Qi ¼ fi
X
j2i
ðGijej � Bij fjÞ � ei

X
j2i
ðGij fj þ BijejÞ

9>>=
>>; ði ¼ 1; 2; . . . ; nÞ ð2:10Þ
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Let

X
j2i
ðGijej � Bij fjÞ ¼ ai

X
j2i
ðGij fj þ BijejÞ ¼ bi

9>>=
>>; ð2:11Þ

Obviously, ai and bi are the real and imaginary parts of injected current at node i
and (2.10) can be simplified as,

Pi ¼ eiai þ fibi

Qi ¼ fiai � eibi

)
ði ¼ 1; 2; . . . ; nÞ ð2:12Þ

This is the rectangular form of the nodal power equations.

Both (2.9) and (2.10) are the simultaneous nonlinear equations of node voltage

phasors. They are usually expressed as the following forms as mathematical models

of the load flow problem:

DPi ¼ Pis � Vi

X
j2i

VjðGij cos yij þ Bij sin yijÞ ¼ 0

DQi ¼ Qis � Vi

X
j2i

VjðGij sin yij � Bij cos yijÞ ¼ 0

9>>=
>>; ði ¼ 1; 2; . . . ; nÞ ð2:13Þ

and

DPi ¼ Pis � ei
X
j2i
ðGijej � Bij fjÞ � fi

X
j2i
ðGij fj þ BijejÞ ¼ 0

DQi ¼ Qis � fi
X
j2i
ðGijej � Bij fjÞ þ ei

X
j2i
ðGij fj þ BijejÞ ¼ 0

9>>=
>>;

ði ¼ 1; 2; . . . ; nÞ

ð2:14Þ

where Pis,Qis are the specified active and reactive powers at node i. Based on

the above two simultaneous equations, the load flow problem can be roughly

summarized as: for specified Pis,Qis ði ¼ 1; 2; . . . ; nÞ, find voltage vector Vi, yi or
ei, fi ði ¼ 1; 2; . . . ; nÞ, such that the magnitudes of the power errors DPi,DQi,

ði ¼ 1; 2; . . . ; nÞ of (2.13) or (2.14) are less then an acceptable tolerance.

2.3 Load Flow Solution by Newton Method

2.3.1 Basic Concept of Newton Method

The Newton–Raphson method is an efficient algorithm to solve nonlinear equa-

tions. It transforms the procedure of solving nonlinear equations into the procedure
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of repeatedly solving linear equations. This sequential linearization process is the

core of the Newton–Raphson method. We now introduce the Newton–Raphson

method by the following nonlinear equation example,

f ðxÞ ¼ 0 ð2:15Þ

Let xð0Þ be the initial guess value of the above equation solution. Assume the real

solution x is close to xð0Þ,

x ¼ xð0Þ � Dxð0Þ ð2:16Þ

where Dxð0Þ is a modification value of xð0Þ. The following equation holds,

f ðxð0Þ � Dxð0ÞÞ ¼ 0 ð2:17Þ

When Dxð0Þ is known, the solution x can be calculated by (2.16). Expanding this

function in a Taylor series expansion about point xð0Þyields:

f ðxð0Þ � Dxð0ÞÞ ¼ f ðxð0ÞÞ � f 0ðxð0ÞÞDxð0Þ þ f 00ðxð0ÞÞ ðDxð0ÞÞ2
2! �

� � � þ ð�1Þnf ðnÞðxð0ÞÞ ðDxð0ÞÞnn! þ � � � ¼ 0
ð2:18Þ

where f 0ðxð0ÞÞ,. . ., f ðnÞðxð0ÞÞ are the different order partial derivatives of f ðxÞ at xð0Þ.
If the initial guess is sufficiently close to the actual solution, the higher order terms

of the Taylor series expansion could be neglected. Equation (2.18) becomes,

f ðxð0ÞÞ � f 0ðxð0ÞÞDxð0Þ ¼ 0 ð2:19Þ

This is a linear equation in Dxð0Þ and can be easily solved.

Using Dxð0Þ to modify xð0Þ, we can get xð1Þ:

xð1Þ ¼ xð0Þ � Dxð0Þ ð2:20Þ

xð1Þ may be more close to the actual solution. Then using xð1Þ as the new guess

value, we solve the following equation similar to (2.19),

f ðxð1ÞÞ � f 0ðxð1ÞÞDxð1Þ ¼ 0

Thus xð2Þis obtained:

xð2Þ ¼ xð1Þ � Dxð1Þ ð2:21Þ

Repeating this procedure, we establish the correction equation in the tth iteration:

f ðxðtÞÞ � f 0ðxðtÞÞDxðtÞ ¼ 0 ð2:22Þ
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or

f ðxðtÞÞ ¼ f 0ðxðtÞÞDxðtÞ ð2:23Þ

The left hand of the above equation can be considered as the error produced by

approximate solution xðtÞ. When f ðxðtÞÞ ! 0, (2.15) is satisfied, so xðtÞ is the solution
of the equation. In (2.22), f 0ðxðtÞÞ is the first-order partial derivative of function f ðxÞ
at point xðtÞ. It is also the slope of the curve at point xðtÞ, as shown in Fig. 2.2,

tan aðtÞ ¼ f 0ðxðtÞÞ ð2:24Þ

The correction value DxðtÞ is determined by the intersection of the tangent line at

xðtÞwith the abscissa. We can comprehend the iterative process more intuitively

from Fig. 2.2.

Now we will extend the Newton method to simultaneous nonlinear equations.

Assume the nonlinear equations with variables x1; x2; . . . ; xn;

f1ðx1; x2; . . . ; xnÞ ¼ 0

f2ðx1; x2; . . . ; xnÞ ¼ 0

..

.

fnðx1; x2; . . . ; xnÞ ¼ 0

9>>>>>=
>>>>>;

ð2:25Þ

Specify the initial guess values of all variables x
ð0Þ
1 ; x

ð0Þ
2 ; . . . ; x

ð0Þ
n , let Dxð0Þ1 ;

Dxð0Þ2 ; . . . ;Dxð0Þn be the correction values to satisfy the following equations,

f1ðxð0Þ1 � Dxð0Þ1 ; x
ð0Þ
2 � Dxð0Þ2 ; . . . ; xð0Þn � Dxð0Þn Þ ¼ 0

f2ðxð0Þ1 � Dxð0Þ1 ; x
ð0Þ
2 � Dxð0Þ2 ; . . . ; xð0Þn � Dxð0Þn Þ ¼ 0

..

.

fnðxð0Þ1 � Dxð0Þ1 ; x
ð0Þ
2 � Dxð0Þ2 ; . . . ; xð0Þn � Dxð0Þn Þ ¼ 0

9>>>>>>=
>>>>>>;

ð2:26Þ

f (x(t+1))

y = f (x)

f (x(t))

x(t)x(t+1)

Δx(t+1) Δx(t)

α(t)

x

y

0 x

Fig. 2.2 Geometric interpretation

of Newton method
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Expanding the above n equations via the multivariate Taylor series and neglecting

the higher order terms, we have the following equations,

f1ðxð0Þ1 ; x
ð0Þ
2 ; . . . ; xð0Þn Þ �

@f1
@x1

0 Dx
ð0Þ
1

��� þ @f1
@x2

0 Dx
ð0Þ
2

��� þ; . . . ;þ @f1
@xn

0 Dxð0Þn

��� �
¼ 0

f2ðxð0Þ1 ; x
ð0Þ
2 ; . . . ; xð0Þn Þ �

@f2
@x1

0 Dx
ð0Þ
1

��� þ @f2
@x2

0 Dx
ð0Þ
2

��� þ; . . . ;þ @f2
@xn

0 Dxð0Þn

��� �
¼ 0

..

.

fnðxð0Þ1 ; x
ð0Þ
2 ; . . . ; xð0Þn Þ �

@fn
@x1

0 Dx
ð0Þ
1

��� þ @fn
@x2

0 Dx
ð0Þ
2

��� þ; . . . ;þ @fn
@xn

0 Dxð0Þn

��� �
¼ 0

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð2:27Þ

here @fi
@xj 0j is the partial derivative of function fiðx1; x2; . . . ; xnÞ over independent

variable xj at point ðxð0Þ1 ; x
ð0Þ
2 ; . . . ; x

ð0Þ
n Þ. Rewrite the above equation in matrix form,

f1ðxð0Þ1 ; x
ð0Þ
2 ; . . . ; x

ð0Þ
n Þ

f2ðxð0Þ1 ; x
ð0Þ
2 ; . . . ; x

ð0Þ
n Þ

..

.

fnðxð0Þ1 ; x
ð0Þ
2 ; . . . ; x

ð0Þ
n Þ

2
6666664

3
7777775
¼

@f1
@x1

���0@f1@x2

���0. . . @f1@xn

���0
@f2
@x1

���0@f2@x2

���0. . . @f2@xn

���0
..
.

@fn
@x1

���0@fn@x2

���0. . . @fn@xn

���0

2
666666664

3
777777775

Dxð0Þ1

Dxð0Þ2

..

.

Dxð0Þn

2
6666664

3
7777775

ð2:28Þ

This is a set of simultaneous linear equations in the variables Dxð0Þ1 ;Dxð0Þ2 ; . . . ;

Dxð0Þn ; usually called the correction equations of the Newton–Raphson method.

After solvingDxð0Þ1 ;Dxð0Þ2 ; . . . ;Dxð0Þn ; we can get,

x
ð1Þ
1 ¼ x

ð0Þ
1 � Dxð0Þ1

x
ð1Þ
2 ¼ x

ð0Þ
2 � Dxð0Þ2

..

. ..
. ..

.

xð1Þn ¼ xð0Þn � Dxð0Þn

9>>>>>>=
>>>>>>;

ð2:29Þ

x
ð1Þ
1 ; x

ð1Þ
2 ; . . . ; x

ð1Þ
n will approach the actual solution more closely. The updated

values are used as the new guess to solve the correction equation (2.28) and to

further correct the variables. In this way the iterative process of the Newton–

Raphson method is formed.

Generally, the correction equation in the tth iteration can be written as,

f1ðxðtÞ1 ; x
ðtÞ
2 ; . . . ; x

ðtÞ
n Þ

f2ðxðtÞ1 ; x
ðtÞ
2 ; . . . ; x

ðtÞ
n Þ

..

. ..
. ..

.

fnðxðtÞ1 ; x
ðtÞ
2 ; . . . ; x

ðtÞ
n Þ

2
6666664

3
7777775
¼

@f1
@x1 tj @f1

@x2 tj . . . @f1@xn tj
@f2
@x1 tj @f2

@x2 tj . . . @f2@xn tj
..
. ..

. ..
.

@fn
@x1 tj @fn

@x2 tj . . . @fn@xn tj

2
66666664

3
77777775

DxðtÞ1

DxðtÞ2

..

.

DxðtÞn

2
6666664

3
7777775

ð2:30Þ
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or expressed in matrix form,

FðXðtÞÞ ¼ JðtÞDXðtÞ ð2:31Þ

where

FðXðtÞÞ ¼

f1ðxðtÞ1 ; x
ðtÞ
2 ; . . . ; x

ðtÞ
n Þ

f2ðxðtÞ1 ; x
ðtÞ
2 ; . . . ; x

ðtÞ
n Þ

..

.

fnðxðtÞ1 ; x
ðtÞ
2 ; . . . ; x

ðtÞ
n Þ

2
6666664

3
7777775

ð2:32Þ

is the error vector in the tth iteration;

JðtÞ ¼

@f1
@x1 tj @f1

@x2 tj ::: @f1@xn tj
@f2
@x1 tj @f2

@x2 tj ::: @f2@xn tj
..
.

@fn
@x1 tj @fn

@x2 tj ::: @fn@xn tj

2
6666664

3
7777775

ð2:33Þ

is the Jacobian matrix of tth iteration;

DXðtÞ ¼

DxðtÞ1

DxðtÞ2

..

.

DxðtÞn

2
6666664

3
7777775

ð2:34Þ

is the correction value vector in the tth iteration.

We also have the equation similar to (2.29),

Xðtþ1Þ ¼ XðtÞ � DXðtÞ ð2:35Þ

With (2.31) and (2.35) solved alternately in each iteration, Xðtþ1Þ gradually

approaches the actual solution. Convergence can be evaluated by the norm of the

correction value,

DXðtÞ
�� �� < e1 ð2:36Þ

or by the norm of the function,

FðXðtÞÞ�� �� < e2 ð2:37Þ

Here e1 and e2 are very small positive numbers specified beforehand.
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2.3.2 Correction Equations

In Section 2.3.1, we derived two forms of the nodal power equations. Either can be

applied in the load flow calculation model.

When the polar form (2.13) is used, the node voltage magnitudes and angles Vi,yi
ði ¼ 1; 2; . . . ; nÞ are the variables to be solved. For a PV node, the magnitude of the

voltage is specified. At the same time, its reactive power Qis cannot be fixed

beforehand as a constraint. Therefore, the reactive equations relative to PV nodes

should not be considered in the iterative process. These equations will be used only

to calculate the reactive power of each PV node after the iterative process is

over and all node voltages have been calculated. Similarly, the voltage magnitude

and angle of the slack node are specified, hence the related power equations do

not appear in the iterative process. When the iteration has converged, the active

and reactive power of the slack node can be calculated by using these power

equations.

Assume that total number of system nodes is n, the number of PV nodes is r. For
convenience, let the slack bus be the last node, i.e., node n.Therefore, we have n� 1

active power equations,

DP1 ¼ P1s � V1

X
j21

VjðG1j cos y1j þ B1j sin y1jÞ ¼ 0

DP2 ¼ P2s � V2

X
j22

VjðG2j cos y2j þ B2j sin y2jÞ ¼ 0

..

.

DPn�1 ¼ Pn�1;s � Vn�1
X

j2ðn�1Þ
VjðGn�1;j cos yn�1; j þ Bn�1; j sin yn�1; jÞ ¼ 0

9>>>>>>>>>>>=
>>>>>>>>>>>;
ð2:38Þ

and n� r � 1 reactive power equations.

DQ1 ¼ Q1s � V1

X
j21

VjðG1j sin y1j � B1j cos y1jÞ ¼ 0

DQ2 ¼ Q2s � V2

X
j22

VjðG2j sin y2j � B2j cos y2jÞ ¼ 0

..

.

DQn�1 ¼ Qn�1;s � Vn�1
X

j2ðn�1Þ
VjðGn�1; j sin yn�1; j � Bn�1; j cos yn�1; jÞ ¼ 0

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð2:39Þ

In the above equations, node voltage angle yi and magnitude Vi are the variables to

be resolved. Here the number of yi is n� 1 and the number of Vi is n� r � 1. There
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are 2n� r � 2 unknown variables in total and they can be solved by the above

2n� r � 2 equations.

Expanding (2.38) and (2.39) in a Taylor series, neglecting the high-order terms,

the correction equation can be written as,

DP1

DP2

..

.

DPn�1
������
DQ1

DQ2

..

.

DQn�1

2
666666666666664

3
777777777777775

¼

H11 H12 ... H1;n�1 ..
.

N11 N12 ... N1;n�1
H21 H22 ... H2;n�1 ..

.
N21 N22 ... N2;n�1

... ..
.

...
Hn�1;1 Hn�1;2 ... Hn�1;n�1 ..

.
Nn�1;1 Nn�1;2 ... Nn�1;n�1

......... ......... ... ......... ..
. ......... ......... ... .........

J11 J12 ... J1;n�1 ..
.

L11 L12 ... L1;n�1
J21 J22 ... J2;n�1 ..

.
L21 L22 ... L2;n�1

... ..
.

...
Jn�1;1 Jn�1;2 ... Jn�1;n�1 ..

.
Jn�1;1 Jn�1;2 ... Jn�1;n�1

2
666666666666664

3
777777777777775

�

Dy1
Dy2
..
.

Dyn�1
.........
DV1=V1

DV2=V2

..

.

DVn�1=Vn�1

2
666666666666664

3
777777777777775

ð2:40Þ

The form of the voltage magnitude correction values represented here, DV1=V1;
DV2=V2; . . . ;DVn�1=Vn�1; allow the elements in the Jacobian matrix to have

similar expressions.

Taking partial derivations of (2.38), or (2.39), and noting that both Pis, Qis are

constants, we can obtain the elements of the Jacobian matrix as,

Hij ¼ @DPi

@yj
¼ �ViVjðGij sin yij � Bij cos yijÞ j 6¼ i ð2:41Þ

Hii ¼ @DPi

@yi
¼ Vi

X
j2i
j 6¼i

VjðGij sin yij � Bij cos yijÞ ð2:42Þ

or

Hii ¼ V2
i Bii þ Qi ð2:43Þ

Nij ¼ @DPi

@Vj
Vj ¼ �ViVjðGij cos yij þ Bij sin yijÞ j 6¼ i ð2:44Þ

Nii ¼ @DPi

@Vi
Vi ¼�Vi

X
j2i
j6¼i

VjðGij cosyijþBij sinyijÞ� 2V2
i Gii ¼�V2

i Gii�Pi ð2:45Þ

Jij ¼ @DPi

@yj
¼ ViVjðGij cos yij þ Bij sin yijÞ j 6¼ i ð2:46Þ

Jii ¼ @DPi

@yj
¼ �Vi

X
j2i
j 6¼i

VjðGij cos yij þ Bij sin yijÞ ¼ V2
i Gii � Pi ð2:47Þ
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Lij ¼ @DQi

@Vj
Vj ¼ �ViVjðGij sin yij � Bij cos yijÞ j 6¼ i ð2:48Þ

Lii ¼ @DQi

@Vi
Vi ¼ �Vi

X
j2i
j 6¼i

VjðGij sinyij �Bij cosyijÞ þ 2V2
i Bii ¼ V2

i Bii �Qi ð2:49Þ

The concise form of (2.40) is

DP
DQ

� �
¼ H N

J L

� �
Dy

DV=V

� �
ð2:50Þ

Comparing (2.50) with (2.40), the meaning of elements is obvious. The correction

equation can be rearranged into the following form for convenience,

DP1

DQ1

DP2

DQ2

..

.

DPn�1
DQn�1

2
6666666664

3
7777777775
¼

H11 N11 H12 N12 . . . H1;n�1 N1;n�1
J11 L11 J12 L12 . . . J1;n�1 L1;n�1
H21 N21 H22 N22 . . . H2;n�1 N2;n�1
J21 L21 J22 L22 . . . J2;n�1 L2;n�1
..
. ..

. ..
. ..

. ..
. ..

. ..
.

Hn�1;1 Nn�1;1 Hn�1;2 Nn�1;2 . . . Hn�1;n�1 Nn�1;n�1
Jn�1;1 Ln�1;1 Jn�1;2 Ln�1;2 . . . Jn�1;n�1 Ln�1;n�1

2
6666666664

3
7777777775

Dy1
DV1=V1

Dy2
DV2=V2

..

.

Dyn�1
DVn�1=Vn�1

2
6666666664

3
7777777775
ð2:51Þ

When the rectangular form is adopted in the load flow model, the state variables to

be solved are the real and imaginary parts of voltages, i.e., e1; f1; e2; f2; . . . ; en; fn.
Since the voltage phasor of the slack node is specified, the number of state variables

is 2ðn� 1Þ. We need 2ðn� 1Þ equations to solve these variables. In fact, every node
has two equations except the slack bus. For PQ nodes,Pis, Qis are given, so the

equations are

DPi ¼ Pis � ei
X
j2i
ðGijej � Bij fjÞ � fi

X
j2i
ðGij fj þ BijejÞ ¼ 0

DQi ¼ Qis � fi
X
j2i
ðGijej � Bij fjÞ þ ei

X
j2i
ðGij fj þ BijejÞ ¼ 0

9>>=
>>; ð2:52Þ

For PV nodes, Pis, Vis are given, so the equations are

DPi ¼ Pis � ei
X
j2i
ðGijej � Bij fjÞ � fi

X
j2i
ðGij fj þ BijejÞ ¼ 0

DV2
i ¼ V2

is � ðe2i þ f 2i Þ ¼ 0

9=
; ð2:53Þ
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There are 2ðn � 1Þ equations included in (2.52) and (2.53). Expanding them in a

Taylor series expansion, neglecting the higher order terms, we can obtain the

correction equation as follows,

DP1

DQ1

DP2

DQ2

..

.

DPi

DV2
i

..

.

2
666666666666666666664

3
777777777777777777775

¼

@DP1

@e1
@DP1

@f1
@DP1

@e2
@DP1

@f2
� � � @DP1

@ei
@DP1

@f
i
� � �

@DQ1

@e1

@DQ1

@f1

@DQ1

@e2

@DQ1

@f2
� � � @DQ1

@ei

@DQ1

@f
i
� � �

@DP2

@e1
@DP2

@f1
@DP2

@e2
@DP2

@f2
� � � @DP2

@ei
@DP2

@fi
� � �

@DQ2

@e1

@DQ2

@f1

@DQ2

@e2

@DQ2

@f2
� � � @DQ2

@ei

@DQ2

@fi
� � �

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

@DPi

@e1
@DPi

@f1
@DPi

@e2
@DPi

@f2
� � � @DPi

@ei
@DPi

@fi
� � �

0 0 0 0 � � � @DV2
i

@ei

@DV2
i

@fi
� � �

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

2
6666666666666666666664

3
7777777777777777777775

De1

Df1

De2

Df2

..

.

Dei

Dfi
..
.

2
6666666666666666666664

3
7777777777777777777775

ð2:54Þ

By differentiating (2.52) and (2.53), we can obtain elements of the Jacobian matrix.

The off-diagonal elements of the Jacobian matrix for j 6¼ i can be expressed as,

@DPi

@ej
¼ � @DQi

@fj
¼ �ðGijei þ Bij fiÞ

@DPi

@fj
¼ @DQi

@ej
¼ Bijei �Gij fi

@DV2
i

@ej
¼ � @DV2

i

@fj
¼ 0

9>>>>>>>=
>>>>>>>;

ð2:55Þ

The diagonal elements of the Jacobian matrix for j ¼ i,

@DPi

@ei
¼ �

X
j2i
ðGijej � Bij fjÞ � Giiei � Bii fi

Using (2.11), we can rewrite the above expression as

@DPi

@ei
¼ �ai � Giiei � Bii fi

and can obtain the following elements similarly,
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@DQi

@fi
¼�

X
j2i
ðGijej � Bij fjÞ þ Giiei þ Bii fi ¼ �ai þ Giiei þ Bii fi

@DPi

@fi
¼�

X
j2i
ðGij fj þ BijejÞ þ Biiei � Gii fi ¼ �bi þ Biiei � Gii fi

@DQi

@ei
¼
X
j2i
ðGij fj þ BijejÞ þ Biiei � Gii fi ¼ bi þ Biiei � Gii fi

@DV2
i

@ei
¼�2ei

@DV2
i

@fi
¼�2fi

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð2:56Þ

The correction equations, in either polar form or rectangular form, are the basic

equations that need repeatedly solving in Newton–Raphson load flow calculation.

Investigating these equations, we can observe the following properties:

1. Equations (2.54) and (2.40) include 2ðn� 1Þ and 2ðn� 1Þ � r equations respec-
tively.

2. From the expression of the off-diagonal elements of the Jacobian matrix either in

polar form or in rectangular form, i.e., (2.41), (2.44), (2.46), (2.48), and (2.55),

we can see that each of them is related to only one element of the admittance

matrix. Therefore, if the element Yij in the admittance matrix is zero, the

corresponding element in the Jacobian matrix of the correction equation is also

zero. It means the Jacobian matrix is a sparse matrix, and has the same structure

as the admittance matrix.

3. From the expression of the elements of the Jacobian matrix we can see that the

Jacobian matrix is not symmetrical in either coordinate form. For example,

@DPi

@yj
6¼ @DPj

@yi
;

@DQi

@Vj
6¼ @DQj

@Vi

@DPi

@ej
6¼ @DPj

@ei
;

@DQi

@fj
6¼ @DQj

@fi
; etc:

4. The elements in the Jacobian matrix are a function of node voltage phasors.

Therefore, they will vary with node voltages during the iterative process. The

Jacobian matrix must not only be updated but also be triangularized in each

iteration. This has a major effect on the calculation efficiency of the Newton–

Raphson method.

Many improvements of the Newton–Raphson method have focused on this

problem.

For instance, when the rectangular coordinate is adopted and the injected current

(see (2.4)) is used to form the load flow equations [12], the off-diagonal elements of
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the Jacobian matrix become constant. This property can certainly be used to

improve the solution efficiency. Semlyen and de Leon [13] suggest that the Jacobi-

an matrix elements can be updated partially to alleviate the computing burden.

Both the above two forms of coordinate system are widely used in Newton–

Raphson load flow algorithms. When the polar form is used, PV nodes can be

conveniently treated. When the rectangular form is used, the calculation of trigo-

nometric functions is avoided. Generally speaking, the difference is not very

significant. A comparison between the two coordinate systems is carried out in [14].

The fast decoupled method is derived from the Newton–Raphson method in

polar form. It will be discussed in Sect. 2.4. In the next section, we mainly introduce

the Newton–Raphson method based on the correction equation of (2.54) in rectan-

gular form.

2.3.3 Solution Process of Newton Method

In the Newton–Raphson method, the electric network is described by its admittance

matrix. From (2.52), (2.53), (2.55), and (2.56) we know that all operations are

relative to the admittance matrix. Therefore, forming the admittance matrix is the

first step in the algorithm.

The solving process of the Newton method roughly consists of the following

steps.

1. Specify the initial guess values of node voltage, eð0Þ, f ð0Þ;
2. Substituting eð0Þ, f ð0Þ into (2.52) and (2.53), obtain the left-hand term of the

correction equation, DPð0Þ, DQð0Þ, and ðDV2Þð0Þ;
3. Substituting eð0Þ, f ð0Þ into (2.55) and (2.56), obtain the coefficient matrix (Jaco-

bian matrix) of the correction equation;

4. Solving (2.54), obtain the correction variables, Deð0Þ and Df ð0Þ;
5. Modify voltages;

eð1Þ ¼ eð0Þ � Deð0Þ

f ð1Þ ¼ f ð0Þ � Df ð0Þ

)
ð2:57Þ

6. Substituting eð1Þ and f ð1Þ into (2.52) and (2.53), obtain DPð1Þ, DQð1Þ, and

ðDV2Þð1Þ;
7. Check whether the iteration has converged. When it has converged, calculate

branch load flow and output the results; otherwise take eð1Þ and f ð1Þ as the new

guess value, return to step (3) and start the next iteration.

The main flowchart of the Newton–Raphson method is shown in Fig. 2.3. The

above steps introduce the main principles of the solution process. There are still

many details to be clarified. As mentioned above, the solution procedure of the
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Newton–Raphson method is essentially the process of iteratively forming and

solving the correction equations. Dealing with the correction equation has a crucial

influence over the memory requirement and computing burden. This problem will

be presented in the next section. First, we discuss some other important issues.

The convergence characteristic of the Newton–Raphson method is excellent.

Generally, it can converge in 6–7 iterations, and the number of iteration does not

depend on the scale of the power system. Theoretically speaking, the Newton–

Raphson method has a quadratic convergence characteristic if the initial guess

values are close to the solution. If the initial guess values are not good enough,

the iterative process may not converge or may converge to a solution at which the

power system cannot operate. This property stems from the Newton method itself.

As described above, the substance of the Newton method is sequential linearization

of nonlinear equations. It is established on the assumption that De and Df are very
small so that their high-order terms can be neglected. Therefore, a good initial guess

value is crucial because the Newton method is very sensitive to it.

Under normal operation states of power systems, the node voltage magnitudes

are usually close to their nominal voltages, and the phase angle differences between

the nodes of a branch are not very large. Therefore, a ‘‘flat start’’ initial guess

value, i.e.,

e
ð0Þ
i ¼ 1:0 f

ð0Þ
i ¼ 0:0 ði ¼ 1; 2; . . . ; nÞ ð2:58Þ

can give satisfactory results. In Fig. 2.3, the convergence condition is

DPðtÞ;DQðtÞ
�� �� < e ð2:59Þ

where DPðtÞ;DQðtÞ
�� �� is a norm representing the maximal modulus elements in

vectors DPðtÞ;DQðtÞ. This convergence criterion is very intuitive, and can be used to
directly control the power errors. When the calculation is based on the per unit

system, we can set e ¼ 10�4 or 10�3. If the base value is 100 MVA, the maximum

error corresponds to 0.01 MVA or 0.1 MVA.

From Fig. 2.3 we know that in the Newton–Raphson load flow calculation, the

Jacobian matrix must be formed and triangularized in each iteration. Hence the

computing burden in each iteration is quite heavy. From the expressions of Jacobian

elements one can see that in the iteration procedure, especially when it is near

convergence, the change of the elements caused by voltage variation is not signifi-

cant (see Example 2.1). Therefore, to decrease the computing effort, once a

Jacobian matrix is formed, it could be used in several successive iterations.

2.3.4 Solution of Correction Equations

The Newton–Raphson method, with Gauss elimination solving the correction

equation, has been used in load flow calculation since the 1950s.
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In the 1960s, the sparsity of the correction equation was fully investigated and

employed in the iteration procedure. In this way, the storage and operation for zero

elements in the Jacobian are avoided.When the technology of optimal node ordering

is adopted, it can minimize the number of the fill-in nonzero elements in factorizing

the Jacobian of the correction equation. This greatly reducesmemory and computing

requirements to almost proportional to the node number of the power system. Based

on this sparsity technology, the Newton–Raphson method has become one of the

most popular methods in power system load flow calculation [7].

With a simple system as shown in Fig. 2.4, we now illustrate some algorithmic

tricks in solving the correction equation of the Newton–Raphson method. In

Fig. 2.4, both node 3 and node 6 are generator nodes. We set node 3 as a PV
node while node 6 the slack node; other nodes are all PQ nodes. The structure of the

network admittance matrix is shown in Fig. 2.5.

The correction equation is given as (2.60). It does not include the equation

related to node 6, the slack node.

Input data

Is convergent?

Form admittance matrix

Output results

t = t+1

Modify voltage on each node according to (2.57)

Solve modified equation (2.54) to obtain Δe(t) and Δf (t)

Solve the elements of Jacobian matrix according to (2.55) and (2.56)

Calculate ΔP (t), ΔQ(t) and ΔV2 (t) according to (2.52) and (2.53)

t = 0

Give voltage initial value e(0) and f (0)

Yes

No

Fig. 2.3 Flowchart of Newton method

90 2 Load Flow Analysis



DP1

DQ1

DP2

DQ2

DP3

DV2
3

DP4

DQ4

DP5

DQ5

2
666666666666664

3
777777777777775

¼

H11 N11 H12 N12 H13 N13 H14 N14

J11 L11 J12 L12 J13 L13 J14 L14
H21 N21 H22 N22

J21 L21 J22 L22
H31 N31 H33 N33 H34 N34

0 0 R33 S33 0 0

H41 N41 H43 N43 H44 N44 H45 N45

J41 L41 J43 L43 J44 L44 J45 L45
H54 N54 H55 N55

J54 L54 J55 L55

2
666666666666664

3
777777777777775

De1
Df1
De2
Df2
De3
Df3
De4
Df4
De5
Df5

2
666666666666664

3
777777777777775

ð2:60Þ

where the constant terms DPi, DQi can be obtained by (2.52),

DPi ¼ Pis � ei
X
j2i
ðGijej � Bij fjÞ � fi

X
j2i
ðGij fj þ BijejÞ

DQi ¼ Qis � fi
X
j2i
ðGijej � Bij fjÞ þ ei

X
j2i
ðGij fj þ BijejÞ

9>>=
>>;

or can be written as

DPi ¼ Pis � ðeiai þ fibiÞ
DQi ¼ Qis � ðfiai � eibiÞ

)
ð2:61Þ

1

654

3 2

Fig. 2.4 Example of simple

system

Y66Y65Y62

Y56Y55Y54

Y45Y44Y43Y41

Y34Y33Y31

Y26Y22Y21

Y14Y13Y12Y11Fig. 2.5 Structure of admittance
matrix
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From (2.56) we know the diagonal elements of the Jacobian are

Hii ¼ @DPi

@ei
¼ �ai � ðGiiei þ BiifiÞ

Nii ¼ @DPi

@fi
¼ �bi þ ðBiiei �GiifiÞ

Jii ¼ @DQi

@ei
¼ bi þ ðBiiei � GiifiÞ

Lii ¼ @DQi

@fi
¼ �ai þ ðGiiei þ BiifiÞ

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð2:62Þ

Both (2.61) and (2.62) include components of the injected current at node i, ai and
bi. To calculate DPi, DQi, and the diagonal elements of Jacobian Hii, Nii, Jii, Lii,
we must first compute ai and bi. From (2.11) we can see, the injected current

components ai and bi at node i only depends on the i th row elements of the

admittance matrix and voltage components of corresponding nodes. Therefore, ai
and bi can be accumulated by sequentially taking the two terms and performing

multiplication plus operation.

After ai, bi are known, DPi and DQi can be easily obtained according to (2.61).

The nondiagonal elements of the Jacobian in (2.60) can be expressed by:

Hij ¼ @DPi

@ej
¼ �ðGijei þ Bij fiÞ

Nij ¼ @DPi

@fj
¼ Bijei � Gij fi

Jij ¼ @DQi

@ej
¼ Bijei � Gij fi ¼ Nij

Lij ¼ @DQi

@fj
¼ Gijei þ Bij fi ¼ �Hij

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð2:63Þ

Obviously, the off-diagonal elements are only related to the corresponding admit-

tance elements and voltage components. From (2.62), the ith diagonal element

consists of, besides the injecting current components at node i(ai and bi), only the

arithmetic operation results of the diagonal elements of admittance matrixGii þ jBii

and voltage components ei þ jfi.
In brief, the whole correction equation can be formed by sequentially taking and

arithmetically operating the elements of the admittance matrix and corresponding

voltage components.

If node i is PV node, the equation of DQi should be replaced by the equation of

DV2
i . The constant term DV2

i on the left hand and elements Rii and Sii of the Jacobian
can be easily obtained from (2.53) and (2.56),

Rii ¼ @DV2
i

@ei
¼ �2ei

Sii ¼ @DV2
i

@fi
¼ �2fi

9>>=
>>; ð2:64Þ
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Forming the correction equation is a very important step in the Newton–Raphson

method which remarkably affects the efficiency of the whole algorithm. Therefore,

we should investigate the above equations carefully in coding the program.

When Gauss elimination is used to solve the correction equation, we usually

eliminate the correction equation row by row. The augmented matrix corresponding

to (2.60) is

H11 N11 H12 N12 H13 N13 H14 N14 DP1

J11 L11 J12 L12 J13 L13 J14 L14 DQ1

H21 N21 H22 N22 DP2

J21 L21 J22 L22 DQ2

H31 N31 H33 N33 H34 N34 DP3

0 0 R33 S33 0 0 DV2
3

H41 N41 H43 N43 H44 N44 H45 N45 DP4

J41 L41 J43 L43 J44 L44 J45 L45 DQ4

H54 N54 H55 N55 DP5

J54 L54 J55 L55 DQ5

2
666666666666664

3
777777777777775

After the equations related to node 1 and 2 are eliminated, the augmented matrix is

converted as shown in Fig. 2.6. This figure tell us when the equations related to

node 2 are eliminated (row 3 and row 4), all operations are independent of equations

related to node 3, 4, . . ., N. Therefore, in the eliminating procedure, we can

eliminate the rows related to a node immediately after forming them.

In Fig. 2.6, elements such as H0023;N
00
23; . . . ; L

00
24, etc. are fill-in nonzero elements

created in the elimination process. To decrease the number of injected elements, we

should optimize the node number ordering before load flow calculation (see Section

1.3.5). The element with superscript (00) represents that it has been manipulated. We

need not save memory for the fill-in element in advance using this elimination

procedure and thus the algorithm is simplified.

When the whole elimination procedure finished, the augmented matrix of cor-

rection equation becomes,

Δ
Δ
Δ
Δ
Δ
Δ

′Δ

′Δ

′Δ

′Δ

′′′′′′′′
′′′′′′′′′
′′′′′′
′′′′′′′

5

5

4

4

2
3

3

2

2

1

1

55555454

55555454

4545444443434141

4545444443434141

3333

343433333131

24242323

2424232322

141413131212

14141313121211

1

1

1

1

Q

P

Q

P

V
P

Q

P

Q

P

LJLJ

NHNH

LJLJLJLJ

NHNHNHNH

SR
NHNHNH

LJLJ

NHNHN

LJLJLJ

NHNHNHN

Fig. 2.6 Diagram of eliminating row by row
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1 N011 H012 N012 H013 N013 H014 N014
1 J012 L012 J013 L013 J014 L014

1 N022 H0023 N0023 H0024 N0024
1 J0023 L0023 J0024 L0024

1 N033 H034 N034
1 J0034 L0034

1 N044 H045 N045
1 J045 L045

1 N055
1

DP01
DQ01
DP02
DQ02
DP03
DV

02
3

DP04
DQ04
DP05
DQ05

2
666666666666664

3
777777777777775

Finally, using a normal backward substitution, one can get De1;Df1; . . . ; De5;Df5
from DP01;DQ

0
1; . . . ;DQ

0
5.

Following to the above discussion, we can summarize the algorithm via flow-

chart shown in Fig. 2.7, where R represents the slack node. The correction equation

can be solved by the common Gauss elimination method. The above procedure

adopts the strategy of eliminating the rows related to a node immediately after

forming them. At the same time, the corresponding constant terms of the correction

equation are also accumulated and eliminated. Thus the operation count per itera-

tion is significantly reduced.

[Example 2.1] Calculate the load flow of the power system shown in Fig. 2.8.

[Solution] The load flow is calculated according to the procedures of the

flowchart. The first step includes forming the admittance matrix and specifying

the initial voltage values.

From Example 1.1 we know the admittance matrix of this system is

Y ¼

1:37874 �0:62402 �0:75471
�j6:29166 þj3:90015 þj2:64150
�0:62402 1:45390 �0:82987 0:00000
þj3:90015 �j66:98082 þj3:11203 þj63:49206
�0:75471 �0:82987 1:58459 0:00000
þj2:64150 þj3:11203 �j35:73786 þj31:74603

0:00000 0:00000
þj63:49206 �j66:66667

0:00000 0:00000
þj31:74603 �j33:33333

2
666666666666664

3
777777777777775

The initial values of node voltages are given in Table 2.1.

According to (2.52) and (2.53), we can establish the expression of the constant

terms (mismatch terms) of the correction equations as
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Input

Optimize node number

Substituted backward
and modify voltage

Eliminate the (2i   1)th
and (2i) th equations by

using the 1st to the
2(i   1)th equations

Form two-row equation
relative to node i

t=t+1i=1

t=1

Give initial value, and iterate by using
successive iteration method

Form admittance matrix

Output

i>n

i=R

Is convergent?

i = i+1

No
Yes

>

>

Fig. 2.7 Flowchart of Newton Method
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1

V5=1.05P4 =5
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j0.03j0.015
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j0.25

j0.25
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Fig. 2.8 Simple power system
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DP1 ¼ P1s � e1½ðG11e1 � B11f1Þ þ ðG12e2 � B12f2Þ þ ðG13e3 � B13f3Þ�
�f1½ðG11f1 þ B11e1Þ þ ðG12f2 þ B12e2Þ þ ðG13f3 þ B13e3Þ�

DQ1 ¼ Q1s � f1½ðG11e1 � B11f1Þ þ ðG12e2 � B12f2Þ þ ðG13e3 � B13f3Þ�þ
e1½ðG11f1 þ B11e1Þ þ ðG12f2 þ B12e2Þ þ ðG13f3 þ B13e3Þ�

DP4 ¼ P4s � e4½ðG42e2 � B42f2Þ þ ðG44e4 � B44f4Þ� � f4½ðG42f2 þ B42e2Þþ
ðG44f4 þ B44e4Þ�

DV2
4 ¼ V2

4s � ðe24 þ f 24 Þ

Using (2.55) and (2.56), we can obtain the expressions of Jacobian matrix elements:

@DP1

@e1
¼ �½ðG11e1 � B11f1Þ þ ðG12e2 � B12f2Þ þ ðG13e3 � B13f3Þ� � G11e1 � B11f1

@DP1

@f1
¼ �½ðG11f1 þ B11e1Þ þ ðG12f2 þ B12e2Þ þ ðG13f3 þ B13e3Þ� þ B11e1 � G11f1

@DP1

@e2
¼ �ðG12e1 þ B12f1Þ; @DP1

@f2
¼ B12e1 � G12f1

@DP1

@e3
¼ �ðG13e1 þ B13f1Þ; @DP1

@f3
¼ B13e1 � G13f1

@DQ1

@e1
¼ ½ðG11f1 þ B11e1Þ þ ðG12f2 þ B12e2Þ þ ðG13f3 þ B13e3Þ� þ B11e1 � G11f1

@DQ1

@f1
¼ �½ðG11e1 � B11f1Þ þ ðG12e2 � B12f2Þ þ ðG13e3 � B13f3Þ� þ G11e1 þ B11f1

@DQ1

@e2
¼ @DP1

@f2
;

@DQ1

@f2
¼ � @DP1

@e2
@DQ1

@e3
¼ @DP1

@f3
;

@DQ1

@f3
¼ � @DP1

@e3
@DP4

@e4
¼ �½ðG42e2 � B42f2Þ þ ðG44e4 � B44f4Þ� �G44e4 � B44f4

@DP4

@f4
¼ �½ðG42f2 þ B42e2Þ þ ðG44f4 þ B44e4Þ� þ B44e4 � G44f4

Table 2.1 Voltage initial values

Node 1 2 3 4 5

eð0Þ 1.00000 1.00000 1.00000 1.05000 1.05000

f ð0Þ 0.00000 0.00000 0.00000 0.00000 0.00000
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@DV2
4

@e4
¼ �2e4

@DV2
4

@f4
¼ �2f4

Thus according to (2.60), the correction equation of the first iteration can be written

as

�1:37874 �6:54166 0:62402 3:90015 0:75471 2:64150
�6:04166 1:37874 3:90015 �0:62402 2:64150 �0:75471
0:62402 3:90015 �1:45390 �73:67881 0:82897 3:11203 0:00000 63:49206
3:90015 0:62402 �60:28283 1:45390 3:11203 �0:82897 63:49206 0:00000
�0:75471 2:64150 0:82897 3:11203 �1:58459 �39:98688
2:64150 �0:75471 3:11203 �0:82897 �32:38884 1:58459

0:00000 66:66666 0:00000 �63:49206
0:00000 0:00000 �2:10000 0:00000

2
66666666664

3
77777777775

De1
Df1
De2
Df2
De3
Df3
De4
Df4

2
66666666664

3
77777777775

¼

�1:60000
�0:55000
�2:00000
5:69799
�3:70000
2:04901
5:00000
0:00000

2
66666666664

3
77777777775

the above equation, the elements in italic have maximal absolute value in each row

of the Jacobian matrix. Obviously, if elements are arranged this way, the maximal

elements do not appear at the diagonal positions.

It should be noted that this situation is not accidental. From the above equation

we can conclude that the maximal element of each row is @DPi

@fi
or @DQi

@ei
. This is

because the active power is mainly related to the vertical component of voltage

while the reactive power is mainly related to the horizontal component of voltage in

high voltage power systems.

To reduce the rounding error of the calculations, the maximal elements should

be located in diagonal positions. There are two methods to satisfy this requirement:

the first is to exchange positions of the equations relative to DQ and DP, i.e., to
exchange odd numbered rows with even numbered rows; the second method is to

exchange the variables De and Df , i.e., to exchange odd numbered columns with

even numbered columns of the Jacobian matrix.

We now introduce the first approach. Thus the above equation will be rearranged

as,
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�6:04166 1:37874 3:90015 �0:62402 2:64150 �0:75471
�1:37874 �6:54166 0:62402 3:90015 0:75471 2:64150
3:90015 0:62402 �60:28283 1:45390 3:11203 �0:82897 63:49206 0:00000
0:62402 3:90015 �1:45390 �73:67881 0:82897 3:11203 0:00000 63:49206
2:64150 �0:75471 3:11203 �0:82897 �32:38884 1:58459
�0:75471 2:64150 0:82897 3:11203 �1:58459 �39:98688

�2:10000 0:00000
0:00000 66:66666 0:00000 �63:49206

2
66666666664

3
77777777775

De1
Df1
De2
Df2
De3
Df3
De4
Df4

2
66666666664

3
77777777775

¼

�0:55000
�1:60000
5:69799
�2:00000
2:04901
�3:70000
0:00000
5:00000

2
66666666664

3
77777777775

We can see the maximal element of each row appears in the diagonal position

except for row 8.

As described in Section 2.3.4, the iteration procedure adopts the strategy of

immediately eliminating the rows related to a node after forming them (see

Fig. 2.7). The equations related to node 1 are formed as

�6:04166 1:37874 3:90015 �0:62402 2:64150 �0:75471 0 0 ..
. �0:55000

�1:37874 �6:54166 0:62402 3:90015 0:75471 2:64150 0 0 ..
. �1:60000

2
4

3
5

After the elimination operation is executed, the first and second row of the upper

triangular matrix can be obtained:

1:00000 �0:22820 �0:64554 0:10328 �0:43721 0:12491 0 0 ..
.
0:09103

1:00000 0:03879 �0:58961 �0:02215 �0:41038 0 0 ..
.
0:21505

2
4

3
5

Then we establish the equations related to node 2, the corresponding augmented

matrix is

3:90015 �0:62402 �60:28283 1:45390 3:11203 �0:82987 63:49206
0:62402 3:90015 �1:45390 �73:67881 0:82987 3:11203 0:0

�
0:0 ..

.
5:69799

63:49206 ..
. �2:0

3
5

Executing the elimination operation, the third and forth rows of the upper triangular

matrix become:
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1:00000 �0:02090 �0:08348 0:02090 �1:09894 0:00000 ..
. �0:09184

1:00000 �0:01528 �0:06609 0:01859 �0:88943 ..
.

0:04253

2
4

3
5

Continuing this procedure until the eliminating operation procedure is finished, we

have the upper triangular matrix:

1:00000 �0:22820 �0:64554 0:10328 �0:43721 0:12491 ..
.

0:09103

1:00000 0:03879 �0:58961 �0:02215 �0:41038 ..
.

0:21505

1:00000 �0:02090 �0:08348 0:02090 �1:09894 0:00000 ..
. �0:09148

1:00000 �0:01528 �0:06609 0:01850 �0:88943 ..
.

0:04253

1:00000 �0:03303 �0:17246 0:03146 ..
. �0:07548

1:00000 �0:02816 �0:11194 ..
.

0:12021

1:00000 0:00000 ..
.

0:00000

1:00000 ..
. �0:45748

2
66666666666666664

3
77777777777777775

After the backward substitution operation, the correcting increments of node

voltages can be obtained,

De1
Df1
De2
Df2
De3
Df3
De4
Df4

2
66666666664

3
77777777775
¼

0:03356
0:03348
�0:10538
�0:36070
�0:05881
0:06900
0:00000
�0:45748

2
66666666664

3
77777777775

Modifying the node voltage, the voltage vector becomes:

e1
f1
e2
f2
e3
f3
e4
f4

2
66666666664

3
77777777775
¼

0:96643
�0:33481
1:10533
0:36070
1:05881
�0:66900
1:05000
0:45748

2
66666666664

3
77777777775

Using this voltage vector as the initial voltage value, we can repeat above opera-

tions. If the tolerance is set to e ¼ 10�6, the calculation converges after five

iterations. The evolution process of node voltages and power mismatches is

shown in Tables 2.2 and 2.3.

2.3 Load Flow Solution by Newton Method 99



To reveal the convergence property, the maximal power mismatches (with # in

Table 2.3) in the iterative process are shown in Fig. 2.9.

In the iteration process, especially when it approaches convergence, the changes

of the diagonal elements in the Jacobian are not very significant. To illustrate this

point, the changes of the diagonal elements are given in Table 2.4.

The calculation results of node voltages are shown in Table 2.5.

Table 2.2 Node voltages in iterative process

Iterating

No. e1 f1 e2 f2 e3 f3 e4 f4
1 0.96643 �0.33481 1.10538 0.36074 1.05881 �0.06900 1.05000 0.45748

2 0.87365 �0.07006 1.03350 0.32886 1.03564 �0.07694 0.97694 0.38919

3 0.85947 �0.07176 1.02608 0.33047 1.03355 �0.07737 0.97464 0.39061

4 0.85915 �0.07182 1.02600 0.33047 1.03351 �0.07738 0.97461 0.39067

5 0.85915 �0.07182 1.02600 0.33047 1.03351 �0.07738 0.97461 0.39067

Table 2.3 Node power mismatches in iterative process

Iterating

No. DQ1 DP1 DQ2 DP2 DQ3 DP3 DP4

1 �0.55000 �1.60000 5.69799# �2.00000 2.04901 �3.70000 5.00000

2 �0.07263 �0.03473 �6.00881# 2.10426 �0.37144 0.04904 �2.39001
3 �0.02569 �0.06011 �0.41159# 0.15764 �0.00924 0.00329 �0.16193
4 �0.00078 �0.00032 �0.0030# �0.00054 �0.00002 0.00000 0.00069

5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

10−2

10−3

10−4

10−1

100

101

1 2 3 4 5 6 7 Iterations

Power error

Fig. 2.9 Convergence property of

Newton–Raphson method
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2.4 Fast Decoupled Method

2.4.1 Introduction to Fast Decoupled Method

The basic idea of the fast decoupled method is expressing the nodal power as a

function of voltages in polar form; separately solving the active and reactive power

equations [9] by using active power mismatch to modify voltage angle and using

reactive power mismatch to modify voltage magnitude. In this way, the computing

burden of load flow calculation is alleviated significantly. In the following, the

derivation of the fast decoupled method from the Newton method is discussed.

As described previously, the core of the Newton load flow approach is to solve

the correction equation. When the nodal power equation is expressed in polar form,

the correction equation is (see (2.50)),

DP
DQ

� �
¼ H N

J L

� �
Du

DV=V

� �
ð2:65Þ

or can be written as,

DP ¼ HDuþ NDV=V

DQ ¼ JDuþ LDV=V
ð2:66Þ

This equation is derived strictly from the mathematical viewpoint. It does not take

the characteristics of power systems into consideration.

We know that in high voltage power system the active power flow is mainly

related to the angle of the nodal voltage phasor while reactive power flow is mainly

Table 2.4 Diagonal elements of Jacobian matrix in iterative process

Iterating

no.

@DQ1

@e1

@DP1

@f1

@DQ2

@e2

@DP2

@f2

@DQ3

@e3

@DP3

@f3

@DV2
4

@e4

@DP4

@f4

1 6.04166 6.54166 60.28283 73.67881 32.38884 39.08688 1.05000 63.49206

2 5.22590 6.84268 79.81886 69.30868 36.62734 38.83341 0.96259 70.18293

3 4.37415 6.42613 69.78933 69.61682 35.38612 38.39351 0.97528 65.61929

4 4.23077 6.38634 68.89682 69.52026 35.29706 38.33158 0.97463 65.14834

5 4.22720 6.38577 68.88900 69.51747 35.29572 38.33048 0.97461 65.14332

Table 2.5 Node voltage vectors

Node Magnitude Angle (�)
1 0.86215 �4.77851
2 1.07791 17.85353

3 1.03641 �4.28193
4 1.05000 21.84332

5 1.05000 0.00000
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related to its magnitude. The experiences of many load flow calculations tell us that

the element values of matrix N and J in (2.66) are usually relatively small.

Therefore, the first step to simplify the Newton method is to neglect N and J, and

(2.66) is simplified to

DP ¼ HDu

DQ ¼ LDV=V

)
ð2:67Þ

Thus a simultaneous linear equation of dimension 2n is simplified to two simulta-

neous linear equations of dimension n.
The second important step to simplify the Newton method is to approximate the

coefficient matrices of (2.67) as constant and symmetric matrices.

As the phase angle difference across a transmission line usually is not very large

(does not exceed 10��20�), so the following relations hold,

cos yij � 1

Gij sin yij 	 Bij

)
ð2:68Þ

Furthermore, the admittance BLi corresponding to the node reactive power is

certainly far smaller than the imaginary part of the node self-admittance, i.e.,

BLi ¼ Qi

V2
i

	 Bii

Accordingly,

Qi 	 V2
i Bii ð2:69Þ

Based on the above relationships, the element expressions of coefficient matrix in

(2.67) can be represented as (see (2.41), (2.42), (2.48), and (2.49)):

Hii ¼ V2
i Bii

Hij ¼ ViVjBij

Lii ¼ V2
i Bii

Lij ¼ ViVjBij

9>>>>=
>>>>;

ð2:70Þ

Therefore, the coefficient matrix in (2.67) can be written as

H ¼ L ¼
V2
1B11 V1V2B12 . . . V1VnB1n

V2V1B21 V2
2B22 . . . V2VnB2n

..

.

VnV1Bn1 VnV2Bn2 . . . V2
nBnn

2
6664

3
7775 ð2:71Þ
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It can be further represented as the product of the following matrices:

H ¼ L ¼
V1

V2 0

0 . .
.

Vn

2
6664

3
7775

B11 B12 . . . B1n

B21 B22 . . . B2n

..

. ..
.

Bn1 Bn2 . . . Bnn

2
6664

3
7775

V1

V2 0

0 . .
.

Vn

2
6664

3
7775 ð2:72Þ

Substituting (2.72) into (2.67), we can rewrite the correction equations as follows:

DP1

DP2

..

.

DPn

2
6664

3
7775 ¼

V1

V2 0

0 . .
.

Vn

2
6664

3
7775

B11 B12 . . . B1n

B21 B22 . . . B2n

..

. ..
.

Bn1 Bn2 . . . Bnn

2
6664

3
7775

V1Dy1
V2Dy2

..

.

VnDyn

2
6664

3
7775 ð2:73Þ

and

DQ1

DQ2

..

.

DQn

2
6664

3
7775 ¼

V1

V2 0

0 . .
.

Vn

2
6664

3
7775

B11 B12 . . . B1n

B21 B22 . . . B2n

..

. ..
.

Bn1 Bn2 . . . Bnn

2
6664

3
7775

DV1

DV2

..

.

DVn

2
6664

3
7775 ð2:74Þ

Multiplying both sides of the above equation with matrix,

V1

V2

. .
.

Vn

2
6664

3
7775
�1

¼

1
V1

1
V2

. .
.

1
Vn

2
66664

3
77775

one can obtain

DP1=V1

DP2=V2

..

.

DPn=Vn

2
6664

3
7775 ¼

B11 B12 . . . B1n

B21 B22 . . . B2n

..

. ..
.

Bn1 Bn2 . . . Bnn

2
6664

3
7775

V1Dy1
V2Dy2

..

.

VnDyn

2
6664

3
7775 ð2:75Þ

and

DQ1=V1

DQ2=V2

..

.

DQn=Vn

2
6664

3
7775 ¼

B11 B12 . . . B1n

B21 B22 . . . B2n

..

. ..
.

Bn1 Bn2 . . . Bnn

2
6664

3
7775

DV1

DV2

..

.

DVn

2
6664

3
7775 ð2:76Þ
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The above two equations are the correction equations of the fast decoupled load

flow method. The coefficient matrix is merely the imaginary part of the nodal

admittance matrix of the system, and is thus a symmetric, constant matrix. Com-

bining with the power mismatch equation (2.13), we obtain the basic equations of

the fast decoupled load flow model

DPi ¼ Pis � Vi

X
j2i

VjðGij cos yij þ Bij sin yijÞ ði ¼ 1; 2; . . . ; nÞ ð2:77Þ

DQi ¼ Qis � Vi

X
j2i

VjðGij sin yij � Bij cos yijÞ ði ¼ 1; 2; . . . ; nÞ ð2:78Þ

The iterative process can be briefly summarized in the following steps:

1. Specify node voltage vector initial value yð0Þi , V
ð0Þ
i

2. Calculate the node active power mismatch DPi according to (2.77), and then

calculate DPi=Vi

3. Solving correction equation (2.75), calculate the node voltage angle correction

Dyi
4. Modify the node voltage angle yi

yðtÞi ¼ yðt�1Þi Dyðt�1Þi ð2:79Þ

5. Calculate node reactive power mismatch DQi according to (2.78), and then

calculate DQi=Vi

6. Solving correction equation (2.76), calculate the node voltage magnitude cor-

rection DVi,

7. Modify the node voltage magnitude Vi;

V
ðtÞ
i ¼ V

ðt�1Þ
i � DVðt�1Þi ð2:80Þ

8. Back to step (2) to continue the iterative process, until all node power mis-

matches DPi and DQi satisfy convergence conditions.

2.4.2 Correction Equations of Fast Decoupled Method

The main difference between the fast decoupled method and the Newton method

stems from their correction equations. Comparing with correction (2.40) or (2.54)

of the Newton method, the two correction equations of the fast decoupled method

have the following features:

1. Equations (2.75) and (2.76) are two simultaneous linear equations of dimension

n instead of a simultaneous linear equation of dimension 2n

104 2 Load Flow Analysis



2. In (2.75) and (2.76), all elements of the coefficient matrix remain constant during

the iterative process

3. In (2.75) and (2.76), the coefficient matrix is symmetric.

The benefit of the first feature for computing speed and storage is obvious. The

second feature alleviates the computing burden in forming and eliminating

the Jacobian within the iterative process. We can first form the factor table for the

coefficient matrix of the correction equation (see (2.76)) by triangularization. Then

we can carry out elimination and backward substitution operations for different

constant terms DP=V and DQ=V through repeatedly using the factor table. In this

way, the correction equation can be solved very quickly. The third feature can

further improve efficiency in forming and storing the factor table.

All the simplifications adopted by the fast decoupled method only affect the

structure of the correction equation. In other words, they only affect the iteration

process, but do not affect the final results. The fast decoupled method and the

Newton method use the same mathematical model of (2.13), if adopting the same

convergence criteria we should expect the same accuracy of results.

It seems that (2.75) and (2.76) derived above have the same coefficient matrix,

but in practice the coefficient matrixes of the two correction equations in the fast

decoupled algorithms are different. We can simply write them as

DP=V ¼ B0VDu ð2:81Þ
DQ=V ¼ B00DV ð2:82Þ

Here V is a diagonal matrix with the diagonal elements being the node voltage

magnitudes.

First, we should point out that the dimensions of B0 and B00 are different. The

dimension of B0 is n� 1 while the dimension of B00 is lower than n� 1. This is

because (2.82) dose not include the equations related to PV nodes. Hence if the

system has r PV nodes, then the dimension of B00 should be n� r � 1.

To improve the convergence, we use different methods to treat B0 and B00, and
how we treat B0 and B00 will result in different fast decoupled methods, are not

merely the imaginary part of the admittance matrix.

As described above, (2.81) and (2.82) are the correction equations based on a

series of simplifications. Equation (2.81) modifies the voltage phase angles accord-

ing to the active power mismatch; (2.82) modifies the voltage magnitudes according

to the reactive power mismatch. To speed up convergence, the factors that have no

or less effect on the voltage angle should be removed from B0. Therefore, we use the
imaginary part of admittance to form B0 without considering the effects of shunt

capacitor and transformer’s off-nominal taps. To be specific, the off-diagonal and

diagonal elements of B0 can be calculated according to following equations:

B0ij ¼ �
xij

r2ij þ x2ij
; B0ii ¼

X
j2i

xij
r2ij þ x2ij

¼
X
j2i

B0ij ð2:83Þ

where rij and xij is the resistance and reactance of branch ij, respectively.
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Theoretically, the factors that have less effect on voltage magnitude should be

removed from B00. For example, the effect of line resistance to B00 should be

removed. Therefore, the off-diagonal and diagonal elements of B00 can be calculated
according to the following equations:

B00ij ¼ �
1

xij
; B00ii ¼

X
j2i

1

xij
� bio B00ii ¼

X
j2i

1

xij
� bio ð2:84Þ

where bio is the shunt admittance of the grounding branch of node i.
If B0 and B00 are formed according to (2.83) and (2.84), the fast decoupled

method is usually called the BX algorithm. Another algorithm opposite to BX
method is called the XB algorithm in which B0 used in the DP � Dy iteration is

formed according to (2.84), while B00 used in the DQ � DV iteration is formed

according to (2.83). Although these two algorithms have different correction

equations, their convergence rates are almost the same. Several IEEE standard

test systems have been calculated to compare the convergence of these algorithms.

Table 2.6 shows the number of iterations needed to converge for these test systems.

Many load flow calculations indicate that BX and XB methods can converge for

most load flow problems for which the Newton method can converge. The authors

of [9, 10] explain the implications of the simplifications made in the fast decoupled

method. Wong et al. [19] propose a robust fast decoupled algorithm to especially

treat the possible convergence problem caused by high r=x networks. Bacher and

Tinney [26] adopt the sparse vector technique to improve the efficiency of the fast

decoupled method.

From the above discussion we know that the fast decoupled method uses

different correction equations to the Newton method, hence the convergence

properties are also different. Mathematically speaking, the iteration method based

on a fixed coefficient matrix to solve a nonlinear equation belongs to ‘‘the constant

slope method.’’ Its convergence process has the characteristic of the geometric

series. If the iteration procedure is plotted on a logarithmic coordinate, the conver-

gence characteristic is nearly a straight line. In contrast, convergence of the Newton

method has a quadratic property and is quite similar to a parabola. Fig. 2.10 shows

the typical convergence properties of the two methods.

Figure 2.10 illustrates that the Newton method converges slower at the early

stages, but once converged to some degree its convergence speed becomes very

fast. The fast decoupled method converges almost at the same speed throughout the

iteration procedure. If the specified convergence criterion is smaller than the errors

Table 2.6 Convergence comparison of BX method and XB
method

Systems Newton BX XB

IEEE-5 bus 4 10 10

IEEE-30 bus 3 5 5

IEEE-57 bus 3 6 6

IEEE-118 bus 3 6 7
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at point A in Fig. 2.10, the iteration number of the fast decoupled method is larger

than that of the Newton method. It can be roughly considered that a linear relation

exists between the iteration number and the required precision when using the fast

decoupled method.

Although the iteration number of the fast decoupled method is larger, its

computing requirement in each iteration is far less than that of the Newton method.

So the computing speed of the fast decoupled method is much higher than the

Newton method.

2.4.3 Flowchart of Fast Decoupled Method

The principle flowchart of the fast decoupled method is shown in Fig. 2.11 which

illustrates the main procedure and logical structure of the load flow calculation.

The symbols used in Fig. 2.11 are first introduced below:

t: counter for the iteration number

K01 a flag with ‘‘0’’ and ‘‘1’’ states, ‘‘0’’ indicates the active power iteration; while

‘‘1’’ the reactive power iteration. A whole iteration includes an active power

iteration and a reactive power iteration.

Power
error

Iterations
5

1e-5

1e-2

1e-3

1e-4

1e-1

1

10 15

Newton Method

P   Q Decoupled Method

A

Fig. 2.10 Convergence properties of fast decoupled method and Newton method
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DW: power mismatch vector: when K01 ¼ 0, DWðK01Þ is the mismatch of active

power; when K01 ¼ 1, DWðK01Þ is the mismatch of reactive power.

V: Voltage vector: when K01 ¼ 0, VðK01Þ represents voltage angle; when

K01 ¼ 1, VðK01Þ represents voltage magnitude.

ERM: Store the maximal power mismatch in an iteration: when K01 ¼ 0, ERM

(K01) stores the maximal active power mismatch; when K01 ¼ 1, ERM(K01)
stores the maximal reactive power mismatch;

e: Convergence criterion.

From the figure one can see, after inputting the problem data, the admittance matrix

is formed. Then according to (2.83) the matrix B0 is obtained, and triangularized to
form the first factor table (block in Fig. 2.11).

Calculate coefficient matrix B�, and form the first factor table

Input information and original data, and deal with original data

Give voltage initial value on each node

Output the results of load flow

Calculate [ DW(K01 ) /V] ;ERM(K01)

Solve modified equation (2.81)or(2.

82) , and modify V K 01

Calculate coefficient matrix B�, and form the second factor table

Form admittance matrix

ERM(0) < < ERM (1)<

true

false

No Yes

6

10

9

8

7

5

4

3

2

1

e e

t = 0, k 01= 0 

Fig. 2.11 Principle flowchart of P�Q decoupled load flow program
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After considering shunt capacitances of transmission lines and grounding branches

of off-nominal taps of transformer, matrixB00 can be formed according to (2.84), and

then triangularized to form the second factor table (block in Fig. 2.11).

It should be point out that B0 and B00 can be formed at the same time when

forming the admittance matrix. Meanwhile, the admittance matrix (block) should

be stored for calculating the power mismatches according to (2.77) and (2.78).

In the flowchart, the iteration procedure is composed of blocks.

In block the initial voltage values are set accordingly for PQ nodes and PV
nodes. For PQ node, the voltage magnitude can be set as the average voltage of the

system; for a PV node, the voltage magnitude is set to the specified value. The

voltage angle can be set to 0 as initial value for all nodes.

Block establishes the original state for iteration. The iteration procedure starts

with a P � y iteration, thus K01 is set to ‘‘0.’’

The iteration procedure in Fig. 2.11 follows 1y and 1V mode. That is to say the

iteration procedure is carries out by alternately solving P � y and Q � V correction

equations.

Blockcalculates thenodepowermismatchaccordingto(2.77) or (2.78) and records

the maximal mismatch in ERM(K01) for checking the convergence condition.

Block solves correction equations, and further modifies the voltage magnitude

and angle. Block establishes the state for the next iteration and counts the iteration

number.

Block checks whether the iteration procedure converges. When both the P � y
and Q � V iterations converge, the iteration procedure comes to an end, otherwise

the process continues to the next iteration.

[Example 2.2] Using the fast decoupled method to calculate the load flow of the

system shown in Fig. 2.8.

[Solution] The calculating procedure follows the flow chart of Fig. 2.11.

The admittance matrix of the system can be found in Example 1.l. The factor table

used in P � y iteration is

�0:15286 �0:59620 �0:40379
�0:01466 �0:06874 �0:93125

�0:02769 �0:12087
�0:26061

2
664

3
775

It should be pointed out that B0 used in forming the above factor table should be

calculated according to (2.83). The factor table in Q � V iteration is

�0:15135 �0:60541 �0:43243
�0:01541 �0:07804

�0:02895

2
4

3
5
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Matrix B00 used in forming the above factor table is calculated by (2.84).

Because matrix B00 does not include the elements related to PV nodes, it is a three-

dimensional matrix,

B00 ¼
�6:60714 4:0000 2:85714
4:0000 �67:30197 3:33333
2:85714 3:33333 �36:17480

2
4

3
5

It is easy to establish the above factor table by an elimination operation on B00.
The initial values of node voltages are similar to example 2.1 except the polar

form is used here. The average operation voltage of system is:

V0 ¼ 1:00000

Then the initial value of node voltage vector is:

V
ð0Þ
1 ¼ V

ð0Þ
2 ¼ V

ð0Þ
3 ¼ 1:00000

V
ð0Þ
4 ¼ V

ð0Þ
5 ¼ 1:05000

yð0Þ1 ¼ yð0Þ2 ¼ yð0Þ3 ¼ yð0Þ4 ¼ yð0Þ5 ¼ 0

According to (2.77) and (2.78), the functions of node power mismatches are given

as follows:

DP1 ¼ P1s � V1½V1G11 þ V2ðG12 cos y12 þ B12 sin y12Þ þ
þ V3ðG13 cos y13 þ B13 sin y13Þ�

DQ1 ¼ Q1s � V1½�V1B11 þ V2ðG12 sin y12 � B12 cos y12Þ þ
þ V3ðG13 sin y13 � B13 cos y13Þ�

. . . . . .

DP4 ¼ P4s � V4½V2ðG42 cos y42 þ B42 sin y42Þ þ V4G44�

For the first P � y iteration the node power mismatch can be calculated as

DPð0Þ ¼
�1:60000
�2:00000
�3:70000
5:00000

2
664

3
775

Thus we have the right-hand term of the correction equation,
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DP
V

� �ð0Þ
¼
�1:60000
�2:00000
�3:70000
4:76190

2
664

3
775

Using the first factor table to execute elimination and backward substitution opera-

tions, we obtain the correcting value of node y as

Dyð0Þ ¼
0:09455
�0:30580
0:07994
�0:38081

2
664

3
775

Note that in the P � y iteration, after solving the correction equation, we should

obtain V0Du (see (2.81)). But in this example, the calculation is based on per unit

and V0 ¼ I, hence,

V0Duð0Þ ¼ Duð0Þ

After modifying the node voltage angle, we get uð1Þ as

uð1Þ ¼ uð0Þ � Duð0Þ ¼
�0:09455
0:30580
�0:07994
0:38080

2
664

3
775

The Q � V iteration is carried out next. The node reactive power mismatches are

DQð0Þ ¼
�1:11284
5:52890
1:41242

2
4

3
5

The right-hand term of the correction equation is

DQ
V

� �ð0Þ
¼
�1:11284
5:52890
1:41242

2
4

3
5

Solving this equation, we obtain the voltage correct vector for PQ nodes:

DVð0Þ ¼
0:10493
�0:07779
�0:03793

2
4

3
5
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The modified node voltages can be calculated (see (2.80)):

Vð1Þ ¼ Vð0Þ � DVð0Þ ¼
0:89057
1:07779
1:03793

2
4

3
5

Thus the first iteration is complete.

The iteration procedure repeats the above steps until the convergence condition

is satisfied. When e ¼ 10�5, the iteration procedure converges after ten iterations.

The evolution of the node voltages is demonstrated in Table 2.7.

Table 2.8 shows the evolution of the maximal errors of the node powers and

voltages in the iteration procedure.

The convergence property of the fast decoupled method used in this example is

displayed in Fig. 2.12. From this figure we can see that the convergence characteris-

tic of the fast decoupled method on a logarithmic coordinate is nearly a straight line.

At the beginning, its convergence speed is faster than that of the Newton method.

The result of load flow calculation is shown in Fig. 2.13.

Table 2.7 Node voltage changes in the iteration process

Iterating No. y1 V1 y2 V2 y3 V3 y4
1 �0.09455 0.89507 0.30580 1.07779 �0.07995 1.03793 0.38080

2 �0.08227 0.87158 0.30728 1.07857 �0.07405 1.03743 0.37652

3 �0.08239 0.86512 0.31048 1.07813 �0.07448 1.03673 0.38010

4 �0.08316 0.86309 0.31117 1.07798 �0.07468 1.03652 0.38079

5 �0.08332 0.86244 0.31152 1.07794 �0.07471 1.03644 0.38115

6 �0.08339 0.86222 0.31162 1.07792 �0.07473 1.03642 0.38126

7 �0.08341 0.86215 0.31166 1.07791 �0.07473 1.03641 0.38129

8 �0.08342 0.86213 0.31167 1.07791 �0.07474 1.03640 0.38131

9 �0.08342 0.86212 0.31167 1.07791 �0.07474 1.03640 0.38131

10 �0.08342 0.86212 0.31168 1.07791 �0.07474 1.03641 0.38131

Note: the angles in the table are in rad

Table 2.8 Changes of maximal node power and voltage errors

Iterating No. DPM DQM DyM DVM

1 5.00000 5.52890 0.38080 0.10493

2 0.38391 0.15916 0.01228 0.02348

3 0.02660 0.03398 0.00358 0.00647

4 0.00898 0.01054 0.00077 0.00202

5 0.00279 0.00339 0.00036 0.00066

6 0.00095 0.00111 0.00011 0.00022

7 0.00031 0.00037 0.00004 0.00007

8 0.00010 0.00012 0.00001 0.00002

9 0.00003 0.00004 0.00000 0.00001

10 0.00001 0.00001 0.00000 0.00000
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2.5 Static Security Analysis and Compensation Method

2.5.1 Survey of Static Security Analysis

Static security analysis is widely used in power system planning and dispatching to

check the operation states when some system equipment sustains forced outages. It

will answer the questions such as ‘‘what will happen if a 500 kV line is disconnected.’’

When the results show that the power flows and voltages all are in the acceptable

range, the system is static secure. When the results show that some transmission

equipments are overloaded or the bus voltages of some nodes are beyond the

constraints, the system is not static secure. Therefore static security analysis is a

Power
error

Iterations
2 10864

1e-6

1e-1

1e-2

1e-3

1e-4

1e-5

1

Fig. 2.12 Convergence property of P� Q decoupled method
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3.7+j1.3

4 32
5

1

1.0500 21.8475 −4.2820

−4.7794
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1.050001.03641.0779
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+j1.4285 1.4157−j0.2442 −1.2775+j0.2033

2.5795+
j1.9746

2.5795+
j2.2995

1.5848+
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Fig. 2.13 Load flow calculation results
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very important part in power system security analysis and is discussed in this

section. The dynamic performance analysis of power systems will be presented in

the last two chapters of this book.

The static security analysis can be used in evaluating the enduring capability of a

planning scheme, or an operating schedule of the power system. The static security

analysis usually checks the typical forced outages of generator units or transmission

equipments, onefold or two-fold. Sometimes it also inspects multi-fold outages, or

common mode failures, e.g., those caused by relay system failures.

In power system planning, all credible outage cases should be considered in the

static security analysis. According to the result of the static security analysis the system

planner usually needs to add some redundant devices or to adjust the network scheme.

In power system operation, to avoid equipment damage and large area blackouts,

the static security analysis, both online and off-line, is essential [21, 22]. In

particular, the power market evolution introduces many uncertain factors to system

operation, and increasing demands on the security monitor and control system.

Since the dynamic performance of the power system is not involved, the static

security analysis is substantially a steady analysis problem. Through load flow

calculations for all possible contingencies, we can judge whether the system is

secure or not. Unfortunately, since the number of possible contingencies in static

security analysis is very large, it is almost impossible to complete the task by the

conventional load flow analysis method in a reasonable period of time for on-line or

real-time use. Therefore, many special methods for static security analysis have

been developed, such as the compensation method, DC load flow model and the

sensitivity method, etc. These methods will be presented below.

2.5.2 Compensation Method

When a minor change of the network topology occurs in a power system, we can still

use the original admittance matrix, even the original factor table to calculate the load

flow after such a change. To accomplish thiswe usually use the compensationmethod.

The compensation method is a very useful tool in power system analysis, not

only used in the static security evaluation but also widely applied in the dynamic

performance study and short circuit current calculation.

We first introduce the basic principles of the compensation method.

Assume the admittance matrix and the factor table of network N shown in

Fig. 2.14 have been formed, and the currents injected into the nodes are known,

I ¼ _I1 . . . _Ii . . . _Ij . . . _In
� 	T

The problem in question is: when an impedance Zij is added across nodes i and j,
how to solve the voltage V under the new condition by using the factor table of the

original network N:

_V ¼ _V1
_V2 . . . . . . _Vn

� 	T
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If we can get the current injecting into network N,

I ¼

_I1
_I2
..
.

_Ii þ _Iij

..

.

_Ij � _Iij

..

.

_In

2
66666666666664

3
77777777777775

ð2:85Þ

Thus the node voltage vector V can be calculated by an elimination and substitution

manipulation on I0 employing the original factor table. But before the node voltage

vector is obtained, the current _Iij flowing into branch Zij is unknown. Therefore, the
node voltage cannot be calculated directly according to I0.

On the basis of the superposition principle, we can decompose network N shown

in Fig. 2.14 into two equivalent networks, as showing in Fig. 2.15a, b. The node

voltage vector V can be decomposed as

V ¼ Vð0Þ þ Vð1Þ ð2:86Þ

where Vð0Þ is related to the original network without the added line, see Fig. 2.15a.

Since the node injecting current vector I is known, Vð0Þ can be easily calculated by

using the factor table of original network N:

Vð0Þ ¼ _V
ð0Þ
1

_V
ð0Þ
2 . . . _V

ð0Þ
i . . . _V

ð0Þ
j . . . _V

ð0Þ
n

h iT
ð2:87Þ
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Fig. 2.14 Equivalent circuit for

network branch changing
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Now we discuss how to calculateVð1Þ in Fig. 2.15b. In this figure, the current vector
injected into the original network is

Ið1Þ ¼

0

..

.

..

.

_Iij
0

..

.

� _Iij
0

..

.

2
666666666666664

3
777777777777775

¼ _Iij

0

..

.

..

.

1

0

..

.

�1
0

..

.

2
666666666666664

3
777777777777775

 i

 j

ð2:88Þ

where _Iij is an unknown variable at this stage. But let _Iij ¼ 1, the node voltage can

be calculated by using the original factor table:

VðijÞ ¼ _V
ðijÞ
1

_V
ðijÞ
2 . . . _V

ðijÞ
i . . . _V

ðijÞ
j . . . _V

ðijÞ
n

h iT
ð2:89Þ

Because the network is linear, if the _Iij can be obtained, then the final voltage vector
can be calculated by the following equation:

)0(
1V

)0(
2V

)0(
iV

)0(
jV

)0(
nV

iI

jI

1I

2I

nI
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)1(
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)1(
jV
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nV

ijI

0

0

0

ijI−

(b)(a)
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Fig. 2.15 Principle of compensation method
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V ¼

_V
ð0Þ
1

_V
ð0Þ
2

..

.

..

.

_V
ð0Þ
n

2
6666664

3
7777775
þ _Iij

_V
ðijÞ
1

_V
ðijÞ
2

..

.

..

.

_V
ðijÞ
n

2
6666664

3
7777775

ð2:90Þ

Therefore, the problem we face now is to get _Iij. Here we need utilize the equivalent
generator principle.

As mentioned before, Vð0Þ is the node voltage when branch Zij is open. If we
consider the whole system as the equivalent source of branch Zij, then the no-load

voltage of this source is

_E ¼ _V
ð0Þ
i � _V

ð0Þ
j ð2:91Þ

The equivalent internal impedance, ZT , is

ZT ¼ _V
ðijÞ
i � _V

ðijÞ
j ð2:92Þ

where ( _V
ðijÞ
i � _V

ðijÞ
j ) is the voltage drop between nodes i and j due to injecting

positive and negative unit current into these nodes. Thus we have the equivalent

circuit shown in Fig. 2.16, and can obtain _Iij directly:

_Iij ¼ �
_V
ð0Þ
i � _V

ð0Þ
j

Z0ij
ð2:93Þ

where

Z0ij ¼ ZT þ Zij ð2:94Þ

N

Iij

j

i

ZT

ZijE

Fig. 2.16 Equivalent circuit to get

Iij
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Substituting _Iij into (2.90), we finally obtain node voltage vector V.

The basic principle of compensation method has been introduced. In the prac-

tice, the compensation method can be used according to the following steps:

1. Find VðijÞ for the injecting unit current vector by using the factor table of the

original normal network.

_Iij ¼

0

..

.

..

.

1

0

..

.

�1
0

..

.

2
666666666666664

3
777777777777775

 i

 j

ð2:95Þ

2. Calculate the internal impedance, ZT, by (2.92), and then obtain Z0ij by (2.94).

3. Calculate Vð0Þ by using the original factor table for the injected current vector I

(see Fig. 2.15a).

4 Obtain the current _Iij flowing into branch Zij by (2.93).

5. Solving node voltage vector V according to (2.90).

In theory, the compensation method can also be used when more than one operation

occurs simultaneously in the network. In this case, the above calculation steps

should be used recursively.

Now, we will show how to use the compensation method to analysis the

contingency state in the fast decoupled method.

The correction of (2.81) and (2.82) can be considered as the node equations of

the network based on ‘‘admittance matrix’’ B0 and B00, and the injecting currents

DP=V and DQ=V, respectively. The node voltages V0Du and DV are the variables

to be solved. In this way, the above calculation process can be followed directly.

When branch ij trips, the branch impedances added between i and j for B0 and B00

should be (see Fig. 2.14):

Z0ij ¼
�1
Bij

; Z00ij ¼ �xij; ð2:96Þ

If the tripped branch is a nonnominal tap transformer, the current representation in

(2.95) should be changed as
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IðijÞ ¼

0

..

.

..

.

nT
0

..

.

�1
0

..

.

2
666666666666664

3
777777777777775

 i

 j

ð2:97Þ

where nT is the nonnominal tap on the node j side of the transformer. In this

situation, (2.91), (2.92), and (2.93) should be revised, respectively, as

_E ¼ nT _V
ð0Þ
i � _V

ð0Þ
j ð2:98Þ

ZT ¼ nT _V
ðijÞ
i � _V

ðijÞ
j ð2:99Þ

_Iij ¼ �
nT _V

ð0Þ
i � _V

ð0Þ
j

Z0ij
ð2:100Þ

where Z0ij ¼ ZT þ Zij.

It should be noted, in above line outage operation, only the series branch of the

opened line (or transformer) is considered in (2.96). Rigorously speaking, the shunt

branches for line charging capacitance (and transformer ground branches) should

also be tripped simultaneously. However, tripping three branches at the same time

makes the calculation too complicated. Fortunately, practice indicates that the

errors caused by neglecting grounding branches are not very significant. Therefore,

the grounding branches can be neglected when the compensation method is used to

analyze line outage states.

2.6 DC Load Flow Method

The DC load flow simplifies the AC load flow to a linear circuit problem. Conse-

quently, it makes the steady state analysis of the power system very efficient. The

main shortcoming of the DC load flow model is that it cannot be used in checking

voltage limit violations. Because the DC load flow uses a linear model, it is not only

suitable to efficiently treat the problem of line outages, but is also suitable to form

linear optimization problems. Therefore, the DC load flow method has been widely

used in power system planning and operating problems.
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2.6.1 Model of DC Load Flow

The node active power equations of an AC load flow are given by (2.9),

Pi ¼ Vi

X
j2i

VjðGij cos yij þ Bij sin yijÞ ði ¼ 1; 2; . . . ; nÞ ð2:101Þ

Branch active power is

Pij ¼ ViVjðGij cos yij þ Bij sin yijÞ � tijGijV
2
i ð2:102Þ

where tij is the circuit transformer ratio per unit of branch ij, yij is the phase angle
difference across branch ij;Gij;Bij are the real and imaginary parts of corresponding

elements of the node admittance matrix, respectively.

yij ¼ yi � yj ð2:103Þ

Gij þ jBij ¼ � 1

rij þ jxij
¼ �rij

r2ij þ x2ij
þ j

xij
r2ij þ x2ij

ð2:104Þ

where, rij; xij are resistance and reactance of line ij. When i ¼ j,

Gii ¼ �
X
j2i
j 6¼i

Gij

Bii ¼ �
X
j2i
j 6¼i

Bij

Under assumptions applied in the fast decoupled method, the above AC load flow

equations can be simplified to the following equations.

Pi ¼
X
j2i

Bijyij ði ¼ 1; 2; . . . ; nÞ

which can be rewritten as,

Pi ¼
X
j2i

Bijyi�
X
j2i

Bijyj ði ¼ 1; 2; . . . ; nÞ

From (2.104), we know the first term in the right hand of the above equation is 0,

thus we have,

Pi ¼ �
X
j2i

Bijyj ði ¼ 1; 2; . . . ; nÞ ð2:105Þ
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The DC flow model usually has no negative sign, thus we redefine Bij as,

Bij ¼ � 1

xij
ð2:106Þ

thus

Bii ¼
X
j2i
j6¼i

1

xij
ð2:107Þ

Finally, we establish the DC flow equation,

Pi ¼
X
j2i

Bijyj ði ¼ 1; 2; . . . ; nÞ ð2:108Þ

or in matrix form,

P ¼ Bu ð2:109Þ

where P is u the node injection power vector and its ith element is given by

Pi ¼ PGi � PDi, here PGi and PDi are the generator output and load at node i,
respectively; is the phase angle vector and B is the matrix whose elements are

defined by (2.106) and (2.107).

Equation (2.109) can also be expressed as follows

u ¼ XP ð2:110Þ

where X is the inverse of matrix B,

X ¼ B�1 ð2:111Þ

Similarly, substituting the simplifying conditions into (2.102), one obtains the

active power flowing into branch ij,

Pij ¼ �Bijyij ¼ yi � yj
xij

ð2:112Þ

or in matrix form,

Pl ¼ BlF ð2:113Þ

If the number of branches is l, Bl is an l� l diagonal matrix whose elements are

branch admittance; Pl is the branch active power vector;F is the end terminal phase

angle difference vector.
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Assuming that the network incidence matrix is A, then one arrives at

F ¼ Au ð2:114Þ

Equations (2.109), (2.110), and (2.113) are basic DC load flow equations which are

linear. Under given system operation conditions, the state variable y may be

obtained through triangularizition or matrix inversion from (2.110), then branch

active power can be obtained from (2.113).

2.6.2 Outage Analysis by DC Load Flow Method

From the above discussion, it can be seen that it is very simple to solve system state

and active power flow by DC load flow equations. It will also be shown that because

these equations are linear, it is possible to carry out fast load flow computation after

adding or tripping a line.

Assuming that the original network nodal impedance matrix is X and a branch k
is connected between nodes i and j. When a line with reactance xk is added in

parallel with branch k, a new network is formed. We now demonstrate how to

obtain the new network state vector in this situation from the original network

impedance matrix and state vector.

Assuming the new network impedance matrix is X0, it can be obtained according
to the branch adding principle of section 1–4 (see (2.1–2.107)),

X0 ¼ X� XLX
T
L

XLL

ð2:115Þ

where XL ¼ Xek,

ek ¼

0

..

.

1

..

.

�1
0

..

.

2
66666666664

3
77777777775

 i

 j
ð2:116Þ

X0 ¼ X� Xeke
T
kX

xk þ eTkXek
ð2:117Þ

Equation (2.117) can be further reduced to,

X0 ¼ Xþ bkXeke
T
kX ð2:118Þ
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where

bk ¼
�1

xk þ wk
ð2:119Þ

wk ¼ eTkXek ¼ Xii þ Xjj � 2Xij ð2:120Þ

where Xii;Xjj;Xij are elements of X.

From (2.118), the incremental change of the nodal impedance matrix is given by:

DX ¼ X0 � X ¼ bkXeke
T
kX ð2:121Þ

According to (2.121) and (2.110), under constant nodal injection power conditions,

the change in original state vector after adding line k is

Du ¼ DXP ¼ bkXekfk ð2:122Þ

where fk ¼ eTk u, is the terminal phase angle difference of branch k before the

change. The new network state vector is given by

u0 ¼ uþ Du ¼ uþ bkXekfk ð2:123Þ

Thus after adding line k, the new network nodal impedance matrix and the new state

vector can be obtained by (2.118) and (2.123) using the original network para-

meters. When line k trips, the above equations can still be applied with xk being

replaced by �xk.
If the outage of branch k causes system disconnection, the new impedance

matrix X0 does not exist and bk of (2.119) becomes infinite, i.e., � xk þ wk ¼ 0.

Therefore, it is very easy to check whether the outage of a branch will cause system

disconnection by using the DC load flow equation. However, it is impossible to

carry out line outage analysis directly.

2.6.3 N-1 Checking and Contingency Ranking Method

A network design has to satisfy certain operational security requirements. As

discussed earlier, a common network operational security requirement is to satisfy

N-l checking, i.e., when one of N branches fails, the system operation criteria

remain within given requirements. At the initial stage of forming a network

configuration, the principle is to ensure that there is no overloading in the network;

i.e., the network satisfies the requirements for securely transmitting power. To this

end, one has to carry out the overload check for successive line outages. If the

outage of a line causes overloading or system disconnection, then the network does

not satisfy N-1 checking.
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The strict N-l checking on all branches needs N line outage analyses, resulting in

a large amount of computing. In practice, some line outages do not cause system

overloading. Therefore, a contingency ranking is carried out according to the

probability of system overload being caused by a line outage, then the checking

is first performed on the lines with higher probability. If the checking of a line

indicates that its outage does not cause overloading, the lines with lower rank are

not subjected to any further checking, which significantly reduces the amount of

computing. Such a process is also called contingency selection. A number of

contingency ranking methods are available in the literature [23, 24], each having

a different criterion for assessing the system contingency. This section describes a

contingency ranking method based on the criterion of system overloading.

To reflect the overall system overloading, a system performance index (PI) is
defined as follows:

PI ¼
XL
l¼1

alwl
Pl

�Pl

� �2

ð2:124Þ

where Pl, active power of line l
�Pl, transmission capacity of branch l
al, number of parallel lines for branch l
wl, weighting factor of line l, which reflects the influence of a fault

L, number of branches in the network

It can be seen from (2.124) that when there is no overloading, Pl= �Pl is not greater

than 1, the PI is small. When there is overloading in the system, Pl= �Pl for the

overloaded line is greater than 1 and the positive exponential element makes the PI
relatively large. Therefore, this index generally reflects the system security. It may

also be possible to use a higher order exponential instead of a square element in the

equation to further obviate the overloading problem.

A sensitivity analysis of the PI with respect to the change of a line admittance

will reveal the impact of an outage on the system security. When line k fails, the

change in the PI is given by

DPIk ¼ @PI

@Bk
DBk ð2:125Þ

where DBk ¼ Bk, is the admittance of line k. The bigger DPIk is, the larger the

increase in the PI will be, which indicates that the probability of a faulted line k
causing system overloading becomes higher.

DPIk may be calculated from Telegen’s theorem and the adjoint network meth-

od. In the following study, we will derive a formula to calculate DPIk directly using
nominal load flow results.

Assuming that after line k fails other line flows become P0ðl ¼ 1; 2; . . . ; L;
l 6¼ kÞ, the system performance index becomes,
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PI0 ¼
XL
l¼1

alwl
P0l
�Pl

� �2

ð2:126Þ

Hence

DPIk ¼ PI0 � PI ð2:127Þ

For the sake of simplicity, we change the system index to a function of voltage

angles and express it in the matrix form. From (2.113),

Pl ¼ Blfl ð2:128Þ

Substituting the above equation into (2.124) and defining

PIf ¼ PI ¼
XL
l¼1

alwl
ðBlflÞ2

�P2
l

¼ fTwdf ð2:129Þ

where

fT ¼ f1; . . . ;fk; . . . ;fL½ �

and

wd ¼

a1w1B
2
1

�P2
1

0

� � �
akwkB

2
k

�P2
k � � �

0
aLwLB

2
L

�P2
L

2
666666664

3
777777775

Substituting (2.114) into (2.129), one obtains

PIf ¼ uTATwdAu ¼ uTou ð2:130Þ

where

w ¼ ATwdA ð2:131Þ

is a symmetric matrix. Matrix w has the same structure as matrix B. Thus its

formation is equivalent to directly forming the admittance matrix using element

alwlB
2
l =

�P2
l to replace Bl. Similarly, PI0F can be expressed as

PI0f ¼ u0Twu0 ð2:132Þ
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where u0 is the voltage angle vector after the line k fails.
Equation (2.132) contains all elements relevant to line k which should not appear

in the new system performance index PI0. Thus

PI0 ¼ PI0f � wk
ðBkf

0
kÞ2

�P2
k

ð2:133Þ

Substituting (2.130) and (2.133) into (2.127), one obtains

DPIk ¼ PI0f � PIf � wkB
2
k

�P2
k

ðf0kÞ2 ¼ u0Twu0 � uTwu� wkB
2
k

�P2
k

ðf0kÞ2 ð2:134Þ

From (2.123), we know

u0 ¼ uþ bkXekfk

f0k ¼ eky0 ¼ ð1þ bkwkÞfk

Substituting the above two equations into (2.134), we have

DPIk ¼ ðuþ bkXekfkÞTwðuþ bkXekfkÞ � uTwu� wkB
2
k

�P2
k

ð1þ bkwkÞ2f2
k

¼ bkfkðuTwXek þ eTkXwuÞ þ b2kf
2
ke

T
kXwXek �

wkB
2
k

�P2
k

ð1þ bkwkÞ2f2
k

ð2:135Þ

Taking into account the symmetry of matrices X and w, let

gk ¼ uTwXek ¼ eTkXwu ¼ eTkR

tk ¼ eTkXwXek ¼ eTkTek
ð2:136Þ

where

R ¼ Xwu
T ¼ XwX

ð2:137Þ

Substituting (2.136) into (2.135), one obtains

DPIk ¼ 2bkfkgk þ b2kf
2
ktk �

wkB
2
k

�P2
k

ð1þ bkwkÞ2f2
k ð2:138Þ

When line k fails, bk in the above equations becomes
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bk ¼
�1

�xk þ wk
¼ Bk

1� Bkwk

Substituting the above equation into (2.138) gives,

DPIk ¼ 2Bkfkgk
1� Bkwk

þ B2
kf

2
ktk

ð1� BkwkÞ2
� wkB

2
kf

2
k

ð1� BkwkÞP2
k

ð2:139Þ

Because Pk ¼ Bkfk,

DPIk ¼ 2Pkgk
1� Bkwk

þ P2
ktk

ð1� BkwkÞ2
� wkP

2
k

ð1� BkwkÞP2
k

ð2:140Þ

Equations (2.138), (2.139), and (2.140) have no essential difference except for

different expressions. Variables in these equations are obtained from the normal

load flow calculation. Under the condition that matrices X, w, R, T have been

formed, it is very convenient to compute DPI after a line outage.
The process of contingency ranking is essential to compute the values of DPI

from (2.138) [or (2.139) and (2.140)] for all lines and arrange them in descending

order of magnitude of DPI. During the line outage analysis, load flow calculation

and overload checking are first carried out on the line with the largest value of DPI,
and then the procedure is continued until there is no overload caused by the outage

of certain lines. The lines with smaller values of DPI are not subjected to further

analysis because the probability of overload caused by other outages is very small.

However, the use of this system performance index may cause a ‘‘screening’’ effect.

For example, the value of DPI for the situation where there is overloading in some

lines and the flow in the other lines is very small may be smaller than that for the

situation where there is no overloading but line flows are large. Therefore, the

contingency ranking by this index may introduce some error. In practice, one may

decide that the line outage analysis is terminated only after a number of consecutive

line outages do not cause system overloading.

Thinking and Problem Solving

1. What functions do the swing bus and PV buses in load flow calculations have?

How should they be selected?

2. Compare the advantages and disadvantages of nodal power equations with

polar coordinates and rectangular coordinates.

3. Give the characteristics of Newton method based modified equations in load

flow calculation.

4. Give the physical meaning of Jacobian elements of the modified equation.
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5. Give the flowchart of the Newton method based load flow calculation by polar

coordinate equations.

6. Design the storage modes of the Jacobian matrix elements of the Newton

method based load flow calculation with two kinds of coordinates.

7. How should node conversion, such as changing a PV node into a PQ node, or

changing a PQ node into a PV node, be implemented in the design of a load

flow program?

8. What simplified suppositions are considered in the P � Q decomposition

method? Why is it that the P � Q decomposition method can obtain the same

calculation accuracy as the Newton method after so many suppositions?

9. How can we improve the convergence of the P � Q decomposition method

when the ratio R/X is very big?

10. How can the compensation method be applied to the case with two branches out

of service?

11. Prove that the DC load flow model has the same solution as that of the

following optimizing problem:

a. obj min
P
ij2B

PijX
2
ij Pij and Xij are the active load flow and reactance of branch

ij, B is the branch set.

b. s.t.
P
ij2i

Pk ¼ 0 ij 2 i denotes all branches that connect to node i.

12. Discuss the issues raised by the N-1 checking method being used as static

security analysis tool for electrical power systems.
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Chapter 3

Stochastic Security Analysis of Electrical

Power Systems

3.1 Introduction

Recently, worldwide power blackouts have attracted great attention to the reliability of

electrical power systems. In the power market environment, the operating modes of

electrical power systems vary rapidly so that operators must closely monitor system

states and transmission configurations, consider all kinds of stochastic factors, adjust

system operation away from critical margins, and avoid potential cascade failures. In

this situation, the traditional deterministic security analysis methods have limitations,

consequently the concept of operational reliability has been presented [28, 29].

According to deterministic security analysis methods, the system should operate

safely under various prescribed contingencies. When overload and abnormal vol-

tages occur in the system under certain contingencies, measures must be taken to

make the system operate securely. The advantage of the deterministic method is

that the theory is simple, but its obvious subjectivity generally makes the system

security level inconsistent. Because this method does not consider the occurrence

probability and consequences of various contingencies synthetically, some high-

risk contingencies may be ignored.

The failure probability of electrical power systems is a function of many stochastic

factors, such as the fluctuation of load, the random failure of generator units, the

random failure of transmission and distribution components, etc. [30–32]. In a power

market, a greater number of probabilistic factors will influence the operation, due to

separation of generation and the grid and competition among generators.

When considering synthetically the occurrence probability and seriousness of

consequences of various contingencies, the idea of systemoperation risk is introduced.

Assuming the contingency j occurs in system operating mode i, the risk of state

xij can be assessed by the following equation,

rij ¼ prðxijÞ � SevðxijÞ;
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where p(xij) is probability of this sate, Sev(xij) is the severity degree of the

consequences of this contingency, which can be measured by the amount of load

shedding. Assuming the set of stochastic events for system operating mode i is Oi,

then the risk of this operating mode is

Ri ¼
X
xij2Oi

rij ¼
X
xij2Oi

prðxijÞ � SevðxijÞ:

The risk-evaluation-based operational decision making is obviously more ob-

jective and reasonable. In fact, this risk is one measurement of the reliability of an

electrical power system. Although there is no recognized risk standard at present, a

risk evaluating standard system can be set up according to each specific application

in electrical power systems.

At present, the Monte Carlo simulation method and probabilistic load flow

method can be used as risk analysis algorithms. TheMonte Carlo simulation method

can consider comprehensively more complex stochastic factors [33], but these

factors are always neglected in analytical methods because of their inherent compli-

cation. The drawback of Monte Carlo simulation is its large computational com-

plexity. If we only study the effect of some key system factors on the reliability, the

probabilistic load flow method [34–36] may be more effective. In this chapter, we

will introduce these twomethods in detail and present a system reliability evaluation

method based on probabilistic network-flow models. These developments involve

the measurement, transformation, and calculation of random variables; therefore

probability theory is first briefly introduced [37].

3.2 Basic Concepts of Probability Theory

3.2.1 Probability of Stochastic Events

In certain conditions, stochastic events are things that may or may not occur, and

are referred to concisely as events. The measurement of the possibility of occur-

rence of stochastic events is probability. Therefore, each event has one related

probability value. Probability value is between 0 and 1, in which 1 denotes an

inevitable event and 0 denotes an impossible event. The probability of event A is

defined as P(A), which must meet the requirements as follows:

0 � PðAÞ � 1; ð3:1Þ

PðOÞ ¼ 1; Pð’Þ ¼ 0; ð3:2Þ

where O is the sample space and is an inevitable event; ’ is the empty set and is an

impossible event.
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In addition, suppose event A and event B are incompatible with each other, that

is, A \ B = ’, then,

PðA [ BÞ ¼ PðAÞ þ PðBÞ: ð3:3Þ
Equations (3.1)–(3.3) represent the basic attributes of probability or are referred to

as axiomatic definitions of probability. According to this definition, we get,

(a) If two events A and B are independent, then,

PðA \ BÞ ¼ PðAÞPðBÞ: ð3:4Þ
(b) If two events A and B are incompatible with each other (mutually exclusive),

then,

PðA \ BÞ ¼ 0: ð3:5Þ
(c) If two events A and B are independent but not mutually exclusive, then,

PðA [ BÞ ¼ PðAÞ þ PðBÞ � PðAÞPðBÞ: ð3:6Þ
Furthermore, the probability value of an event can be obtained by reasoning only

for very few cases (prior probability); in most situations, it is described as frequency

value by repeated experiments (posterior), which is referred to as a statistical

definition of probability. The reliability parameters of electrical components, such

as failure rate and so on, belong to the latter.

Conditional probability is an important concept in probability theory. The

conditional probability of an event A is the probability that the event will occur

given the knowledge that an event B has already occurred. The definition is

PðAjBÞ ¼ PðA \ BÞ
PðBÞ ; PðBÞ > 0: ð3:7Þ

Several important formulas can be deduced according to conditional probability.

1. Multiplication probability theorem. Let A1, A2, . . ., An be n arbitrary events, the

probability of their intersection set is

PðA1 \ A2 \ � � � \ AnÞ ¼ PðA1ÞPðA2jA1ÞP½A3jðA1 \ A2Þ�
� � �P½AnjðA1 \ A2 \ � � � \ An�1Þ�:

ð3:8Þ

However, when A1, A2, . . ., An are independent, we have

PðA1 \ A2 \ � � � \ AnÞ ¼ PðA1ÞPðA2Þ � � �PðAnÞ: ð3:9Þ

2. Formula of total probability. Let event A occur according to the given condition

of events B1, B2, . . ., Bn. A can only occur at the same time as one of B1, B2, . . .,
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Bn occurs, and any two of Bi are mutually exclusive, but their union sets consist

of the sample space of one event, that is,BiBj ¼ ’ði 6¼ jÞ;Pn
i¼1 Bi ¼ O;PðBiÞ > 0,

then the total probability of event A, P(A), is

PðAÞ ¼
Xn
i¼1

PðBiÞPðA=BiÞ: ð3:10Þ

3. Bayes’ Formula. Assume the occurring condition of event Bi (i = 1,2,. . ., n) is
same as that in (2), then the probability of occurrence of event Bi after the event

A occurred, is denoted by

PðBi=AÞ ¼ PðBiÞPðA=BiÞPn
i¼1

PðBiÞPðA=BiÞ
ði ¼ 1; 2; . . .Þ: ð3:11Þ

Equation (3.11) is Bayes’ Formula. It means that once event A occurred in

experiment, (3.11) is used to reassess the cause Bi, so the probability P(Bi/A)
is called posterior probability.

3.2.2 Random Variable and its Distribution

If the outcome of a random experiment can be described by one numerical variable,

and this numerical value is determined by a certain probability, then the variable is

named a random variable. In mathematical terms, it can be described that the set O
of all sample points e is one sample space in a random experiment, and X is a real-

valued function defined on the sample space, that is,

e 2 O; XðeÞ 2 R:

If there exist real values a < b, such that the set of sample points satisfies

feja � XðeÞ � bg;

then this set is an event, and the function X(e) is referred to as a random variable.

If a = �1, event {e| ‐ 1 � X(e) � b} can be described by {X � b} for short.

Its probability measurement,

FðxÞ ¼ PðX � xÞ ð3:12Þ

is defined as the distribution function of random variable X. x can be any given real
value.

The general random variable X can be classified into a discrete random variable

and a continuous random variable according to its different possible values.
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For continuous random variables, another function to express its probability is the

probability density function f(x), which is defined by,

f ðxÞ ¼ lim
Dx!0

1

Dx
Pðx < X < xþ DxÞ; ð3:13Þ

which can also written in incremental format,

Pðx < X < xþ DxÞ � f ðxÞDx: ð3:14Þ
Formula (3.14) can be interpreted as the probability under the condition that

random variable X is in the interval (x, x + Dx) and Dx ! 0. Obviously, the

probability of random variable X between a and b is,

Pða < X � bÞ ¼
Zb
a

f ðxÞdx ð3:15Þ

and the relationship between (3.15) and distribution function F(x) in formula

(3.12) can be written as,

FðxÞ ¼
Zx

�1
f ðxÞdx ð3:16Þ

and

f ðxÞ ¼ dFðxÞ
dx

: ð3:17Þ

For a discrete random variable (as shown in Fig. 3.1), X may be xi (i = 1, 2, . . ., n),
then its probability density function is defined as

pðxÞ ¼ PðX ¼ xiÞ x ¼ xi
0 x 6¼ xi

�
ð3:18Þ

and the distribution function is

FðxÞ ¼
X
xi�x

pðxiÞ: ð3:19Þ

3.2.3 Numeral Characteristics of Random Variable

In many practical problems, we can specify the characteristics of random variables

by finding the average value of random variables and the degree of value dispersion.

The two most commonly used methods are introduced as follows.
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3.2.3.1 Mathematical Expectation (Mean Value)

Discrete random variable X can be x1, x2, . . ., and its corresponding probability is

PðX ¼ xiÞ ¼ pi i ¼ 1; 2; . . .

Then mathematical expectation or expectation, E(X), is defined as

EðXÞ ¼
X1
i¼1

xipi: ð3:20Þ

For a continuous random variable X, when its density function is f(x), we have

EðXÞ ¼
Z1

�1
xf ðxÞdx: ð3:21Þ

For the mathematical expectation of a set of random variables Xi (i = 1, 2, . . ., n),
there are characteristics such as described as follows

E
Xn
i¼1

Xi

 !
¼
Xn
i¼1

EðXiÞ: ð3:22Þ

3.2.3.2 Variance

Discrete random variable X is denoted as s2, which is defined by,

s2 ¼
Xn
i¼1

ðxi � mÞ2pi; ð3:23Þ
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Fig. 3.1 The relative function of discrete random variable (a) probability density function; (b)

distribution function
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where m = E(X), that is average value. Obviously, s2 represents the degree of

dispersion of its value deviating from the average value m.
For a continuous random variable X, we get,

s2 ¼
Z1
�1

ðx� mÞ2f ðxÞdx: ð3:24Þ

Some properties and applications related to other numerical characteristics of

random variables will be discussed in Sect. 3.5.1.

3.2.4 Convolution of Random Variable

Suppose two random variables X and Y are independent, and they have probability

density functions f1(x) and f2(y), respectively, then Z = X + Y is still a random

variable. The probability density function of Z is

fðzÞ ¼
Z1
�1

f ðx; z� xÞdx

¼
Z1
�1

f1ðxÞf2ðz� xÞdx: ð3:25Þ

Its distribution function is

FðzÞ ¼
Zz
�1

Z1
�1

f1ðxÞf2ðz� xÞdx dz: ð3:26Þ

If X and Y are discrete random variables, then the distribution function is

FðzÞ ¼
X

xiþyj<z

PðX ¼ xi; Y ¼ yjÞ ¼
X

xiþyj<z

pðzÞ

and

pðzÞ ¼
X1
i¼0

PðX ¼ xiÞPðY ¼ z� xiÞ: ð3:27Þ

Equations (3.25) and (3.27) are the convolution formula of probability density

functions.
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3.2.5 Several Usual Random Variable Distributions

Now, we introduce several probability distributions that are often used in probabil-

ity analysis of electrical power systems.

3.2.5.1 Binomial Distribution

Let P(X = 1) = p and P(X = 0) = 1 � p, then the random variable X is a Bernoulli

distribution with parameter p. It is used for describing random phenomena with

only two states. Components, such as transformer, transmission lines, etc., have

random phenomena with only two states: running (denoted as 1) and outage

(denoted as 0). In an experiment repeated n times, the number of occurrences of

event A (success) is r, and the probability is pr, then nonoccurrence number (failure)

is (n� r), and the probability is (1 � p)n�r. The probability of random variable X is

Prðn; pÞ ¼ n

r

� �
prð1� pÞn�r r ¼ 0; 1; 2; . . . ; n; ð3:28Þ

where

n

r

� �
¼ n!

r!ðn� rÞ!

is called the binomial distribution and n, p are known constants (parameters).

The mean and variance of the binomial distribution are, respectively,

EðXÞ ¼ np; ð3:29Þ

s2 ¼ npð1� pÞ: ð3:30Þ

3.2.5.2 Uniform Distribution

Let continuous random variable X have probability density

f ðxÞ ¼
1

b� a
; a < x < b

0; otherwise

8<
: : ð3:31Þ

Then X is uniformly distributed in the interval (a, b), it is written as X � U(a, b).

It is easily known that f(x) � 0, and
R1
�1 f ðxÞdx ¼ 1:

The random variable X, which is uniformly distributed in interval (a, b), has
equal probability to be in any subinterval with equal length in the interval (a, b).
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In other words, the probability that it is in a subinterval in (a, b) depends on the

length of the subinterval, and is independent of the location of the subinterval. In

fact, for any subinterval, (c, c + l) and a � c < c + l � b, with length l, we get

Pðc < X � cþ lÞ ¼
Z cþl

c

f ðxÞdx ¼
Z cþl

c

1

b� a
dx ¼ l

b� a
: ð3:32Þ

The corresponding distribution function is

FðxÞ ¼
0; x < a
x� a

b� a
; a � x < b

1; x � b

8><
>: : ð3:33Þ

The figures of f(x) and F(x) is shown in Fig. 3.2.

3.2.5.3 Normal Distribution

When a continuous random variable X has such a probability density function,

described as follows

f ðxÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p e�ðx�mÞ2=2s2 �1 < x < 1 ð3:34Þ

then X is referred to as normally distributed, and is written as N(m, s2) for short.
Where, s is positive value and m can be any constant.

Two parameters of the normal distribution, m and s, are its mean value and

variance. m is also the position parameter, and it is depended on the movement of

density curve on horizontal axis. s is also referred as a scale parameter and is

depended on the shape of the curve. A normal distribution with parameter m = 0 and

a b

1/(b-a)

f(x)

O x O

1
F(x)

a b x

Probability density functiona Distribution function b

Fig. 3.2 Uniform distribution
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s = 1, N(0, 1), is named a standard normal distribution. Its probability density

function is

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p e�x2=2:

The distribution function of a normal distribution is

FðxÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p
Zx
�1

e�ðu�mÞ2=2s2du: ð3:35Þ

Formula (3.35) cannot be approximately represented by general elementary func-

tion. Let ¼ u � m

s
, then (3.35) is changed into a standard normal distribution

FðxÞ ¼ 1

2p

Zu�m
s

�1
e�z2=2dz: ð3:36Þ

The value of a standard normal distribution can be obtained by the integration.

Figure 3.3 is the density function curve of the normal distribution.

The following formula can be deduced from the normal distribution function F(x)

RðxÞ ¼ 1� FðxÞ ¼
Z1
x

f ðuÞdu:

3.2.6 Markov Process

Many random phenomena encountered in probability evaluation of electrical power

systems can be described by time-dependent random variables, which are called

random processes, and written as X(t).

2πσ1

1

σ3>σ2

σ2>σ1

σ1

m

f(x)

xFig. 3.3 The density function of

normal distribution
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The random process, X(t), can be described by their conditional probability. The
distribution of random variable X(tn) at any time tn is related to all random variable

X(ti) at all past time instants ti (1 � i� n� 1). In discrete time, X(ti) will be written
as Xi for short hereinafter, and its probability can be described in the following form

P½Xn ¼ xnjðX1 ¼ x1;X2 ¼ x2; . . . ;Xn�1 ¼ xn�1Þ�: ð3:37Þ

If the distribution of Xn is only related to the most recent state, and not to any

previous states, i.e.,

PðXn ¼ xnjðXn�1 ¼ xn�1Þ: ð3:38Þ

It is called a Markov Process or memory-less process.

Generally, the Markov process with discrete time and discrete state space is

referred to as a Markov chain. This process can be described by the conditional

probability of (3.24). For brevity, we denote the present state as i and the next state
as j, then (3.38) can be written as

PðXn ¼ jjXn�1 ¼ iÞ ¼ pij: ð3:39Þ

In which pij is the transition probability from state i to state j. If the transition

probability in one transition process is independent of time t, and is also a constant,
i.e.,

PðXn ¼ jjXn�1 ¼ iÞ ¼ PðXk ¼ jjXk�1 ¼ iÞ ¼ pij

then this Markov chain is time homogeneous. In the later study of probability

problems of electrical power systems, we are only concerned with the time-

homogeneous Markov chain.

As the transition from state i to state j is completed in one step, pij is referred to as
the one-step transition probability. If there are n states, then the one-step transition

probability can be written in matrix format

P ¼
p11 p12 � � � p1n
p21 p22 � � � p2n
:::::::::::::::::::::::::::::
pn1 pn2 � � � pnn

2
64

3
75; ð3:40Þ

where pij � 0 i, j = 1, 2, . . ., n,

Xn
j¼1

pij ¼ 1 i ¼ 1; 2; . . . ; n: ð3:41Þ

Equation (3.41) describes the property of a stochastic matrix.
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If the process of transferring from state i to state j is completed by m steps, then

p
ðmÞ
ij ¼ PðXnþm ¼ jjXn ¼ iÞ:

p
ðmÞ
ij is m-step transition probability, which can be described as a function of the

one-step transition probability matrix

PðmÞ ¼ Pm: ð3:42Þ

If the initial state probability vector of process is

Pð0Þ ¼ ½p1ð0Þ; p2ð0Þ; . . . ; pnð0Þ�;

the probability in state j after m-steps can be obtained by the following formula

PðmÞ ¼ Pð0ÞPm: ð3:43Þ

In each component of P(0), when a process begins from one specified state i, it is
often set Pi(0) = 1, and other components are all 0.

3.3 Probabilistic Model of Power Systems

There are many random factors that influence the operation and planning of

electrical power systems. When assessing system operation security, we mainly

consider such random factors as load fluctuation, random failure of generator units,

and random failure of transmission and distribution components, etc. Now, we

introduce their models respectively as follows.

3.3.1 Probabilistic Model of Load

The loads in an electrical power system vary continuously, so the system operation

must adapt to this kind of variation at any time. Therefore, to build an appropriate

load model is very important for system security assessment. According to the

requirement of security assessment, the load model can be divided into time-

instance load model and time-period load model.

For the time-instance load model of node i, we generally describe it by a normal

distribution N(mi, si), in which parameter mi is the numerical expectation of this

distribution and also is usually the forecast load value of node i at this time.

Parameter si is the variance of this distribution, describing the degree that the

real load value wi deviates from the forecast value mi of node i. To obtain a load
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sample value wi on node i, a random number yi of standard normal distribution

N(0, 1) is first generated, which is then used to modify the forecast load value for the

node

wi ¼ ui þ si � yi; ð3:44Þ

where wi is the load sample value of node i, mi is the load forecasting value, si is the
variance of load distribution of the node i.

When security assessment requires a load model over a certain time period T, we
should first obtain the load duration curve for this time period, then change it into a

probability distribution of load. Suppose point (x, t) of the load duration curve

represents the time duration t for which the load is greater than or equal to x, i.e.,

t ¼ FðxÞ: ð3:45Þ

Dividing both sides of the above equation by time period T we have

f ðxÞ ¼ FðxÞ=T; ð3:46Þ

where f(x) can be regarded as the probability that load is larger than or equal to x,
i.e., distribution of the load.

3.3.2 Probabilistic Models of Power System Components

When assessing the security and reliability of power system operation, we should

first build the probabilistic model of operating components, which usually include

such components as transmission lines, transformers, generator units, and so on.

Each transmission line has two operating states, normal operating state and

failure state. The basic parameter to represent the characteristic of a transmission

line operation is its forced outage rate (FOR), which is generally denoted as q.
Suppose the transmission capacity of transmission line is c, we have,

PðX ¼ xiÞ ¼ 1� q xi ¼ c
q xi ¼ 0

� �
: ð3:47Þ

This means that probability of the available capacity of this transmission line

being c is equal to 1 � q, and the probability of its available capacity being 0 is

equal to q. The relative cumulative probability (that is the distribution function) is

PðX � xiÞ ¼ 1 xi ¼ c
q xi ¼ 0

� �
: ð3:48Þ
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This denotes the probability 1 of the available capacity of this transmission line

being less than or equal to c, and the probability q of the available capacity of this

transmission line being less than or equal to 0.

When assessing the reliability of electrical power systems, it is more convenient

to use outage capacity of a component. Comparing with the expression for available

capacity X, outage capacity is denoted by X. Then we get,

pðX ¼ xiÞ ¼ q xi ¼ c
1� q xi ¼ 0

� �
; ð3:49Þ

which denotes the probability is q of the outage capacity of this transmission line

being equal to c, and the probability is 1 � q of the outage capacity of this

transmission line being equal to 0. The cumulative probability of outage capacity is

PðX � xiÞ ¼ 1 xi ¼ 0

q xi ¼ c

� �
; ð3:50Þ

which denotes the probability 1 of the outage capacity of this transmission line

being greater than or equal to 0, and the probability q of the outage capacity of this

transmission line being greater than or equal to c.
The probabilistic models of the transformer and generator, which are usually

considered as two-state components, are similar to that of the transmission line.

Their probabilistic model can be constructed according to (3.47) and (3.48).

Sometimes the generator needs to be treated more fastidiously, because the

generator may include prime mover. The boiler and prime mover of thermal

power generator units are comparatively more complex, and failure of the ancillary

components will influence the output power of the generator unit. Therefore,

besides normal operation and failure state, a generator unit may also have degraded

operating states. When building the probabilistic model of generator unit, it may be

required to know the probability of degraded operation.

3.3.3 Outage Table of Power System Components

The states of power system components, such as the state of a generator unit, can be

described in the form of an outage table. Table 3.1 gives an outage table of a two-

state generator unit. This table can be set up according to (3.47) and (3.48).

It can be seen from above table that the probability is 1 of the outage capacity of

the generator unit being greater than or equal to 0, and the probability is q of the

outage capacity of the generator unit being greater than or equal toc. In other words,
the probability is 1 of the available capacity of the generator unit being less than or

equal to c, and the probability is q of the available capacity of the generator unit

being less than or equal to 0.

In real power systems, a power generation plant always has many generator units

with different types and capacities, we often combine these generator units by using
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the convolution formula, and hence obtain the outage table of this power generation

plant. The outage table gives the probability of various available capacities of

power generation plant under a definite step size Dx.
Suppose there is an outage table of n� 1 generator units, the outage capacity X is

a random variable of a discrete distribution, and its probability is pn�1ðXÞ. When the

nth new generator unit, with available capacity cn and forced outage rate qn, is

added, the new probability pnðXÞ of the outage capacity can directly deduced using

the convolution formula, (3.27)

pnðXÞ ¼ pn�1ðXÞpð0Þ þ pn�1ðX � cnÞpðcnÞ:

The two-state probability of the nth generator unit can be deduced by (3.49)

pðcnÞ ¼ qn; pð0Þ ¼ 1� qn:

Substituting them into the above equation, we can obtain the recursive formula

pnðXÞ ¼ pn�1ðXÞð1� qnÞ þ pn�1ðX � cnÞqn: ð3:51Þ

Equation (3.51) can recursively calculate the state probability, and can also calcu-

late the cumulative probability PnðXÞ. To do so we only need to change PnðXÞ and
Pn�1ðXÞ in the formula into the corresponding cumulative probabilities. But the

initial condition of the calculation is that probability pn�1ðX � cnÞ ¼ 0, and cumu-

lative probability Pn�1ðX � cnÞ ¼ 1 when X � cn,

pnðXÞ ¼ pn�1ðXÞpð0Þ þ pn�1ðX � cnÞpðcnÞ:

[Example 3.1] Apower generation systemhas twogenerator units, and their power

capacities are 30 MW and 40 MW, respectively, their forced outage rates (FOR) are

0.04 and 0.06, respectively. Form the outage table of this power generation system.

[Solution] The outage table of the power generation systems refers to the

probability table of various power capacity states of total system, and can be formed

by using the recursive formula described above, according to the outage table of

each generator unit. Therefore, first we should set up the outage table of each

generator unit. Let step size be DX = 10 MW, then the outage tables of these two

generator units are shown in Tables 3.2 and 3.3.

Then the outage table of the power generation system can be formed by recursive

formula, and is shown in Table 3.4.

Table 3.1 The outage table of a generator unit

Available

capacity (MW)

Outage capacity

(MW)

Deterministic

probability, p
Cumulative

probability, P

c 0 1�q 1

0 c q q
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In order to illustrate computing process, we introduce the application of the

recursive formula for the case with P3 = 0.0976 when i = 3, X ¼ 30 MW in Table

3.4. Let 30-MW power generator unit be component a and 40-MW power generator

unit be component b. Then, we know na = 3. According to (3.51), the cumulative

probability of combined equivalent generator unit c in condition k = 3 is

Pcð3Þ ¼
X3
i¼0

paðiÞPbðk � iÞ

¼ pað0ÞPbð3Þ þ pað1ÞPbð2Þ þ pað2ÞPbð1Þ þ pað3ÞPbð0Þ:

Substituting the corresponding numerical values in outage table into above equa-

tion, we have

Pcð3Þ ¼ 0:96	 0:06þ 0	 0:06þ 0	 0:06þ 0:04	 1:0 ¼ 0:0976:

As to parallel transmission lines and transformers, we can also form their outage

tables. Once outage tables of components of power systems have been obtained, we

can simplify the security or reliability evaluation process of system operation.

Table 3.2 Outage table of 30-MW generator unit

i Xi (MW) Pi pi

0 0 0.100000 	 10+01 0.960000 	 10+00

1 10 0.400000 	 10�01 0.000000 	 10+00

2 20 0.400000 	 10�01 0.000000 	 10+00

3 30 0.400000 	 10�01 0.400000 	 10�01

Table 3.3 Outage table of 40-MW generator unit

i Xi (MW) Pi pi

0 0 0.100000 	 10+01 0.940000 	 10+00

1 10 0.600000 	 10�01 0.000000 	 10+00

2 20 0.600000 	 10�01 0.000000 	 10+00

3 30 0.600000 	 10�01 0.000000 	 10+00

4 40 0.600000 	 10�01 0.600000 	 10�01

Table 3.4 Outage table of 30-MW and 40-MW generator units

i Xi (MW) Pi pi

0 0 0.100000 	 10+01 0.902400E + 00

1 10 0.976000 	 10�01 0.000000 	 10+00

2 20 0.976000 	 10�01 0.000000 	 10+00

3 30 0.976000 	 10�01 0.376000 	 10�01

4 40 0.600000 	 10�01 0.576000 	 10�01

5 50 0.240000 	 10�02 0.000000 	 10+00

6 60 0.240000 	 10�02 0.000000 	 10+00

7 70 0.240000 	 10�02 0.240000 	 10�02
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3.4 Monte Carlo Simulation Method

3.4.1 Fundamental Theory of Monte Carlo Simulation Method

Monte Carlo simulation method [33, 38] is a simulation approach based on probabil-

ity and statistics theory and methodology. At present, the Monte Carlo simulation

method has been applied to many fields of engineering and scientific theory, with the

advantage of simple principles and realization, insensitivity to the dimension of

problems, avoidance of any constraining assumptions, and strong adaptability.

In the Monte Carlo simulation method, the state of each component in the system

is obtained by sampling. The components include various system equipment, such

as generators, transmission lines, transformers, etc., and different load levels. Let

the state of a power system be represented by the vector x = (x1, x2, x3, . . ., xm)
where xi is the state of the ith component. The set of all possible states x, arising
from combinations of component states is denoted by X, the state space. Suppose

F(x) is one experiment for a given state x. The objective of the test is to verify

whether that specific configuration of generators and circuits is able to supply that

specific load. The reliability indices correspond to the expected value, E(F), of
various Types of test functions over all possible states:

EðFÞ ¼
X
x2X

FðxÞ � PðxÞ: ð3:52Þ

For example, the system loss of load probability (LOLP) is equal to the numerical

expectation of a dual-value function as follows

FðxÞ ¼ 1; if x is a failed state

0; if x is a normal state

�
:

The expectation ÊðFÞ of experiment function F(x) can be estimated by (3.53)

ÊðFÞ ¼ 1

NS

XNS
i¼1

FðxiÞ; ð3:53Þ

where ÊðFÞ is the estimate of the expected value of the test function, NS the number

of samplings, xi the ith sampled value, and F(xi) is the test result for the ith sampled

value.

It can be seen from (3.53) that ÊðFÞ is the estimated value rather than the real

value of E(F). Since x and F(x) are random variables, ÊðFÞ is also a random

variable. ÊðFÞ is the average value of the function F(x). The variance of ÊðFÞ is

VðÊðFÞÞ ¼ VðFÞ
NS

; ð3:54Þ
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where V(F) is the variance of the test function F, and its estimated value V̂ðFÞ is

V̂ðFÞ ¼ 1

NS� 1

XNS
i¼1

ðFðxiÞ � ÊðFÞÞ2: ð3:55Þ

Now we will discuss the convergence, convergence rate, calculation error, and

computing process of the Monte Carlo simulation method.

3.4.1.1 The Convergence of the Monte Carlo Simulation Method

From (3.53), we know that ÊðFÞ is often used as the estimate of the reliability

indices when we evaluate a system’s reliability using Monte Carlo simulation

method.

It can be understood from the Kolmogorov Strong Law of Large Numbers that if

{F(xi), i = 1, 2, . . .} is a sequence of independent and identically distributed random
variables and its numeral expectation exists, then,

P lim
NS!1

1

NS

XNS
i¼1

FðxiÞ
�����

����� ¼ EðFÞ
 !

¼ 1; ð3:56Þ

i.e.,

P lim
NS!1

ÊðFÞ ¼ EðFÞ
� 	

¼ 1: ð3:57Þ

In other words, the estimated value ÊðFÞ of the reliability indices converges to

E(F) with probability 1 when NS ! 1 by using the Monte Carlo simulation

method.

3.4.1.2 The Convergence Rate of the Monte Carlo Simulation Method

According to the Central Limit Theorem, if {F(xi), i = 1, 2 ,. . .} is a sequence of

independent and identically distributed random variables and its numerical expec-

tation exists, and finite variance V(F) 6¼ 0, then, when NS ! 1, the random

variable,

YNS ¼ ðÊðFÞ � EðFÞÞ
ð ffiffiffiffiffiffiffiffiffiffi

VðFÞp
=
ffiffiffiffiffiffiffi
NS

p Þ ð3:58Þ

tends to the standard normal distribution N(0, 1), hence,

PðYNS < xaÞ ! 1ffiffiffiffiffiffi
2p

p
Z xa

�1
e�

1
2
x2 dx: ð3:59Þ
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It is obvious that the random sample {F(xi), i=1, 2, . . .} of test function F(x)
satisfies above condition according to the Monte Carlo simulation method. Thus

for any xa > 0, we have

PðjYNSj < xaÞ ¼ P ÊðFÞ � EðFÞ�� �� < xa
ffiffiffiffiffiffiffiffiffiffi
VðFÞp
ffiffiffiffiffiffiffi
NS

p
 !

¼: 1ffiffiffiffiffiffi
2p

p
Z xa

�1
e�

1
2
x2dx ¼ 1� a: ð3:60Þ

This indicates that

ÊðFÞ � EðFÞ�� �� < xa
ffiffiffiffiffiffiffiffiffiffi
VðFÞp
ffiffiffiffiffiffiffi
NS

p ð3:61Þ

has probability 1 � a. In general, a is also referred as the confidence of estimation,

1 � a is the confidence level. a and xa have the relation of one to one correspon-

dence. Equation (3.61) indicates that the convergence order with which estimated

value ÊðFÞ converges to the real value E(F) is O(NS�1/2).

3.4.1.3 The Error of the Monte Carlo Simulation Method

In general, variance coefficient b is often used to represent the estimated error

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðÊðFÞÞ

q
ÊðFÞ : ð3:62Þ

Equation (3.54) is substituted into the above equation, we obtain

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðFÞ=NSp
ÊðFÞ : ð3:63Þ

Hence,

NS ¼ VðFÞ
ðbÊðFÞÞ2 : ð3:64Þ

Equation (3.64) shows that the computational effort of Monte Carlo sampling,

given by the required sample size NS, does not depend on the number of states x
or on the complexity of the test function F. The required number of samplings NS

depends on the variance of the random variable and on the desired accuracy b. If we
wish to reduce the number of samplings while maintaining the same accuracy, we

must find ways to reduce the variance.
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3.4.1.4 The Flowchart of the Monte Carlo Simulation Method

The flowchart of Monte Carlo simulation method is shown in Fig. 3.4.

3.4.2 Sampling of System Operation State

3.4.2.1 Random Number

When the operating process of electrical power systems is simulated by using the

Monte Carlo simulation method, it is required to generate random variables with

various probability distributions, in which the simplest, the most basic, and the most

important random variable is the random variable with uniform distribution on

interval [0, 1]. Generally, the sample value of a random variable with uniform

distribution on interval [0, 1] is referred to as a random number, and the samples

of random variables with other distributions can be obtained by means of a random

number with uniform distribution on interval [0, 1]. Thus we can say that the random

number is a basic tool of random sampling.

Fig. 3.4 The computing flowchart of the Monte Carlo simulation method
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One approach to generate random numbers is to use physical simulation. But this

is not very practical due to the high cost and the difficulty of generating random

numbers repeatedly.

Now the most widely used approach to generate random numbers is by using a

mathematical method with the aid of a computer. The advantages of this method

include low memory requirement, fast generating speed, and convenient regenerat-

ing without restriction on computer conditions. But these random numbers are

obtained by a deterministic recursive equation, and periodic phenomena exist.

Also, once the initial value is determined, all random numbers will be uniquely

determined, which does not meet the requirement for a true random number.

Consequently, random numbers generated using the mathematical method are

called pseudorandom numbers. In application, as long as these pseudorandom

number sequences are tested by a series of statistical methods, they can be applied

as a surrogate for ‘‘true’’ random numbers.

There are many methods to generate pseudorandom numbers, such as mid-

square method, mid-product method, and multiplicative and additive congruence

method. At present, the standard algorithms to generate uniform distribution can be

directly found in many books that introduce advanced computer languages, and the

existing functions also can be found directly. Therefore, we only need to call these

functions when sampling electrical power systems states.

3.4.2.2 Sampling of System Operation States

In the Monte Carlo simulation method, the power system state is sampled according

to element distribution functions. Though there are a large number of uncertainties

that affect the system reliability indices, we only consider some primary uncertain-

ties associated with the generator availability, the branch availability, and the

system load variation.

According to the Monte Carlo simulation method, the state of the electrical

power systems is determined by samples from the probability distribution functions

of each component. In reliability evaluation of electrical power systems, uncertain

factors such as random failure of generator, random failure of transmission line, and

random fluctuation of load are always considered.

For generators and branches, two operating states are employed. Their probabil-

ity distribution functions are two-point distribution according to Sect. 3.3.2. We can

generate a random number with uniform distribution U(0,1), compare this random

number with device forced outage rate q, then determine whether device state is in

failure state or running state, as shown by (3.65).

�ig ¼
1; x � qGi; generator i is in running state

0; x < qGi; generator i is in failure state

�

�ib ¼
1; x � qLi; transmission line i is in running state

0; x < qLi; transmission line i is in failure state

� ð3:65Þ
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where, �ig and �ib is the state of generator i and transmission line i, respectively, qGi
and qLi are corresponding forced outage rates of ith generator and ith transmission

line, and x is random number following uniform distribution U(0,1).
For the power generator unit, because a power generation plant usually includes

many generator units with different Types and capacities, we can take each power

generation plant as a multistate generator unit, and directly sample by using the

outage table of the power generation plant (shown in Sect. 3.3.3) in order to

decrease computing burden.

For the load, the sample value of load can be obtained directly by considering

random fluctuation factors according to the method introduced in Sect. 3.3.1.

Thus, we have obtained each component state of system. All these states consist

of state vector x, the set of all possible state x, X, is referred to as the state space.

Having obtained the system state by sampling, we can now evaluate the system

state.

3.4.3 State Evaluation Model

3.4.3.1 Load Flow Model

System state evaluation (that is the process to calculate test function F(x)) can use

the AC load flow model or DC load flow model. An introduction to AC load flow

can be found in Sects. 2.3 and 2.4, and an introduction to DC load flow can be found

in Sect. 2.6.1. The reliability evaluation of electrical power systems is generally

based on the linearized load flow model, i.e., the DC load flow model. In practice,

the accuracy and computing load of the DC load flow mode is satisfactory.

3.4.3.2 Model of Load Curtailment

A considerable number of contingency states in which no load curtailment exists

will have been excluded after the contingency analysis of all the sampled contin-

gency states. For those contingency states which may have load curtailment,

generation outputs at some buses cannot be maintained due to generating unit

contingencies and/or there are some line overloads due to transmission component

outages. Generation outputs should be rescheduled to maintain generation demand

balance and alleviate line overloads and, at the same time, to avoid 1oad curtail-

ment if possible or to minimize total load curtailment if unavoidable. The following

minimization model of load curtailment can be used for this purpose:

Min
XND

j¼1

PDi
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s:t:Buþ PL ¼ PG þ PD;

XNG

i¼1

PGi þ
XND

i¼1

PDi ¼
XND

i¼1

PLi;

PG � PG � PG;

0 � PD � PL;

jTj � T;

ð3:66Þ

where, PD is active power vector of virtual generators representing the amount of

load shedding on nodes; PG is injecting active power vector of generator; PL is load

vector of nodes; PG is the upper limit vector of active power of generators; PG is the

lower limit vector of active power of generators; T is the active load flow vector of

transmission lines; T is the upper vector of active load flow of transmission lines;

NG is the number of generator nodes; and ND is the number of load nodes.

The above rescheduled-model is a standard form of linear program and can be

solved by linear programming algorithms. The details of the solution are omitted

here.

3.4.4 Indices of Reliability Evaluation

There are many possible indices which can be used to measure the adequacy of

power systems. Most adequacy indices are basically expected values of a random

variable. An expected value is not a deterministic parameter. It is a long-run average

of the phenomenon under study. Expectation indices provide valid adequacy indi-

cators which reflect various factors such as system component availability and

capacity, load characteristics, etc. In this book, the following indices are calculated.

3.4.4.1 Loss of Load Probability (LOLP)

LOLP represents the probability of load shedding due to various reasons. Its

defining equation is

LOLP ¼
X
Ci 6¼0

pi; ð3:67Þ

where pi is the probability of load curtailment value Ci.
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3.4.4.2 Expected Energy Not Supplied (EENS)

Expected Energy Not Supplied (EENS) is the expectation of energy-shortage in a

period of time. If we want to calculate the expectation of energy-shortage in a year,

the defining equation is

EENS ¼
X
Ci 6¼0

Ci 	 pi 	 8;760; ð3:68Þ

where Ci is the amount of load curtailment and pi is the corresponding probability.

Since EENS is an energy index, it is significant for economical assessment of

reliability, optimizing reliability, and system planning. Thus EENS is a very

important index for reliability assessment of the whole system.

3.4.5 Flowchart of Composite System Adequacy Evaluation

Figure 3.5 shows the flowchart of composite system adequacy evaluation using

Monte Carlo simulation.

[Example 3.2] To evaluate the reliability of the 5-node system shown in Fig. 2.6,

using the Monte Carlo simulation method. The capacity and reliability parameters

of system component are shown in Tables 3.5 and 3.6.

[Solution] This system consists of five nodes, seven branches, in which there are

two power generation plants, and total installed capacity is 11 and load is 7.3

represented as per unit values.

According to the process shown in Fig. 3.5, we can calculate the reliability

indices of system.

At first, system state xi is sampled by the Monte Carlo simulation method. Then

we generate a random number for every component with the aid of a computer, and

determine the device state according to this random number according to the

approach introduced in Sect. 3.4.2. The random number is generated for each

component and the state vector xi of components is determined. The states of

generation and network branch are determined as shown in Tables 3.7 and 3.8.

Thus, we can get a sample state xi. First, we analyze the network topology in this
state, and judge whether the system is connected or not. It can be seen from

Figs. 3.2–3.6 that the available capacity of system is only the power output, 5.0

p.u., of power generation plant G1 after a contingency occurs on transformer 5

(branch 3.5) and power generation plant G2 is separated from the system. Compar-

ing power output and load, we can find that total power generation plant output (5.0

p.u.) is less than total load (7.3 p.u.), so it cannot meet the balance condition of

active power, and partial loadmust be shed. Here, the state contributes to the reliability

indices. System blackout occurs once, and the amount of load shedding is 2.3 p.u.

Thus we have complete one sampling. By resampling, we can get a new system

state xj. In this state, the output of power generation plant G1 and G2 are all 5.0 p.u.,
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and all other branches are running except fault branch 1–2. For xj, the state

evaluation proceeds:

1. Analyze network topology in state xj, and judge its connectivity. It can be seen

from Figs. 3.2–3.6 that system is still connected after contingency occurs on

transmission line 1–2.

2. Judge whether active power of system is balanced or not. In state xj, active power
output of system is 10.0 p.u. and load is 7.3 p.u., so the active power output is

Initialize number of sample NS=0

System state sampling

System state analysis using DC flow
model

Minimization model of load curtailment
solved by LP

Is there overload?

calculate the expected value of the test
function

Calculate the coefficient of variation of the
estimate

Stop

NS=NS+1

No

Yes

Yes

No

If the coefficient of
variation is accepted?

Fig. 3.5 The flowchart of Monte Carlo simulation
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larger than load. Therefore, it can meet the balance demand of active power of

system.

3. Judge whether branch load flow can satisfy the restriction of transfer capacity or

not. Here, the DC load flow model is used to calculate branch load flow. The

calculated power outputs of power generation plant G1 and G2 are 5.0 p.u. and

2.3 p.u., respectively, and branch load flow data are shown in Table 3.9.

It can be seen from Table 3.9 that overload has occurred on branch 2–3, and it is

required to adjust power output of power generation plant.

4. Modify system state by adjusting output of power generation plant.

System state correction can be adjusted according to the state evaluation model

of (3.68) introduced in Sect. 3.4.3. After adjusting, the power outputs of power

Table 3.5 Reliability parameter of power generation component

Power generation plant G1 Power generation plant G2

Available

capacity

(p.u.)

Cumulative

probability

Available

capacity

(p.u.)

Cumulative

probability

5.0 1.00 6.0 1.00

4.0 0.06 5.0 0.08

3.0 0.04 4.0 0.06

2.0 0.02 3.0 0.04

1.0 0.01 2.0 0.02

0.0 0.01 1.0 0.01

– – 0.0 0.01

Table 3.6 Reliability parameter of transmission component

Branch node
number Capacity FOR

1–2 2.0 0.05

1–3 2.0 0.05

2–3 2.0 0.05

2–4 5.0 0.05

3–5 5.5 0.05

Table 3.7 Power generation output determined according to random num-

ber with uniform distribution U(0, 1)

Power generation

plant

U(0, 1) Random
number, x

Available capacity of power

generation plant (p.u.)

G1 0.6502 5.0

G2 0.1325 6.0

Table 3.8 Branch state determined according to random number with uniform distribution
U(0, 1)

Branch 1–2 1–3 2–3 2–4 3.5

U(0, 1) Random number 0.32 0.2 0.46 0.75 0.017

Fault rate of branch 0.05 0.05 0.05 0.05 0.05

Branch state Up Up Up Up Down
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generation plant G1 and G2 are 4.0 p.u. and 3.3 p.u. respectively, and branch load

flow is shown in Table 3.10.

It can be seen from above calculation that although overload has occurred on a

certain branch in this sample state, the overload on the transmission line can be

eliminated after adjusting power outputs of power generation plant, thus no load is

shed for this sample state.

Repeating the above processes, sampling time after time, summarizing each

calculation result, and adding up the times and the amount of load curtailment, we

can obtain the reliability indices of the system. From (3.67), we can get LOLP. And

from (3.68), we can get EENS.

The calculation results for the 5-node system are shown in Table 3.11.

It can be seen from the above table that LOLP is 0.13345, and expectation of

power cut is 300384.78 MW h each year which is about 4.7% energy for the total

system. The reliability indices of the system are not satisfactory, and strengthening

measures must be adopted to improve system reliability.

Next, we further carry out the statistics and analysis of the convergence rate of

reliability indices.

The convergence curve of reliability index EENS is shown in Figs. 3.6 and 3.7.

LOLP has similar characteristics which need not be discussed further.

It can be seen from Fig. 3.6 that EENS will converge to a stable numerical value

by 20,000 samplings, which is more clearly recognized from the convergence curve

of EENS relative error. When the number of samples reaches 20,000, the relative

error of EENS is 0.02. If we want to improve the precision of calculation further,

and reduce the error of calculation, we should increase the number of samples. For

example, when the number of samples is 40,000, the relative error of EENS index is

0.014. It can be seen that the computing load of the Monte Carlo simulation method

is in inverse proportion to the square of estimated error. For a definite precision, the

only way to reduce the number of samples is to reduce the variance.

Table 3.9 The load flow of branches

Branch 1–3 2–3 2–4 3.5

Transfer power (p.u.) 1.6 3 5 2.3

Transfer capacity (p.u.) 2 2 5 5.5

Is restriction condition satisfied Satisfied Not satisfied Satisfied Satisfied

Table 3.10 The load flow on each branch after adjusting

Branch 1–3 2–3 2–4 3.5

Transfer power (p.u.) 1.6 2 4 3.3

Transfer capacity (p.u.) 2 2 5 5.5

Is restriction condition satisfied Satisfied Satisfied Satisfied Satisfied

Table 3.11 The reliability indices of five-node system

Reliability indices of system Calculation results

LOLP 0.13345

EENS (MW h) 300,384.78
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3.4.6 Markov Chain Monte Carlo (MCMC) Simulation Method

Markov Chain Monte Carlo (MCMC) was presented in the 1950s. The MCMC

method, as a computer-intensive tool, has enjoyed an enormous upsurge in interest

over the last few years. MCMCmethods are widely used to estimate expectations of

functions with respect to complex, high-dimensional distributions, especially in

Bayesian analysis [38], statistical physics, and estimation of Value-at-Risk. But

there is no report of the MCMC method being applied to reliability evaluation of

power systems so far.
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As discussed above, the Monte Carlo simulation method is a kind of statistical

experimental method, and is more flexible in reliability evaluation of large-scale

electrical power systems. It is inefficient because of its proportional characteristic

with the required index accuracy. Moreover, Monte Carlo methods are based on

sampling independent sequences, which cannot reflect the relativities in the

changes of the system states. Additionally, it is difficult to obtain the independent

sequences from multivariate probability distributions.

For the above reasons, a new Monte Carlo simulation is proposed to evaluate

reliability indices of large-scale system based on Markov chains. First, a Markov

chain, whose distribution corresponds to the target probability distribution, is con-

structed by sampling. Then, this Markov chain is used to sample the state to compute

reliability indices [39]. MCMC is a special Monte Carlo method, which applies a

Markov chain in the stochastic process to implement dynamicMonteCarlo simulation.

Consider a sequence X0, X1, X2, . . . such that Xk+1 is generated from the

conditional distribution for {Xk+1 | Xk and X0 represents some initial condition. By

the form of the conditional distribution, knowledge of Xk provides the information

required to probabilistically characterize the behavior of the state Xk+1. That is, the

distribution for Xk+1 depends only on the most recent state, not on the earlier states

X0, X1, X2, . . ., Xk�1. Hence, X0, X1, X2, . . . is a Markov chain.

Under standard conditions for Markov chains, the dependence of Xk on any fixed

number of early states, say X0, X1, X2, . . ., Xm,M<1, disappears as k!1. Hence,

the density of Xk will approach a stationary form, say p*(·). That is, as k gets large,
the random vectors in the Markov chain will become a dependent sequence with a

common density p*(·). Ignoring the first M iterations in the chain called the ‘‘burn-

in’’ period whose density distribution is not p*(·), we can form an ergodic average

E½FðxÞ� ¼ 1

n�M

Xn
k¼Mþ1

FðXkÞ: ð3:69Þ

Equation (3.69) is a practical realization of the famous ergodic theorem of stochas-

tic processes. The variance of Êðf Þ (the estimate of E( f )) is

V½ÊðFÞ� ¼ VðFÞ=n: ð3:70Þ
The estimate of V( f ) is

V̂ðFÞ ¼ 1

n� 1

Xn
i¼1

½FðxiÞ � ÊðFÞ�2: ð3:71Þ

From the above discussion, we can see that the key idea in the MCMC method is to

design Markov chains that have stationary distribution p*(·). That is, the limit of the

ergodic mean in (3.69) will correspond to the desired value E[ f(x)] computed with

respect to p(x). It is very easy to construct such a Markov chain. One most popular

algorithm of the MCMC method is the Gibbs sampler. The Gibbs sampler obtains

samples from the full conditional distributions without the difficult task of adjusting

the acceptance rate, so it is used in this paper to generate the desired Markov chain.
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In theGibbs sampler for theMCMCmethod, the system states are obtained from the

devices’ full conditional probability distributions. In this section, generators and lines in

the system are considered with the two-state model. pi is the failure probability of the

components in the system. Loads are fixed to the maximum load of the whole year.

X represents the state variables of generators and lines and is a collection of m
univariate components. Number m is the sum of the number of sampled generators

and lines. The kth sample X from the Gibbs sampler is

Xk ¼ ½Xk1 Xk2 � � � Xkm�T;
where Xki denotes the state of the ith component for the kth replicate of X generated

via the sampler.

Xki ¼ 1 the ith component is in the running state when the kth sampling,

0 the ith component is in the failure state when the kth sampling,

�
i ¼ 1; 2; . . . ;m:

From the initial state of the components X = 1 and initial relative prior probability

pone, the process of obtaining Xk+1,i is as follows:

1. Under the current system state X, the relative posterior probability pone or pzero
for the next state is obtained from the full distribution p{Xk+1,i | Xk\i} according to

the current state of the component, where

Xkni ¼ Xkþ1;1;Xkþ1;2; . . . ;Xkþ1;i�1;Xk;iþ1; . . . ;Xk;m


 �
:

The first i�1 elements of Xk\i represent the sample points at the same (k + 1)th

iteration, whereas the remaining m�i elements are points available from the kth
iteration. So pone or pzero is

ln
Yi�1

j¼1

pj
1�Xkþ1;jð1� pjÞXkþ1;j

Ym
l¼iþ1

pj
1�Xk;lð1� pjÞXk;l

" #
;

where the purpose of logarithm is to make the value of pone or pzero between

0 and 1, and convenient for calculating.

2. Calculating the probability of this component for the next state which is in a

running state (taking 1),

� ¼ 1=½expðpzero � poneÞ þ 1�;
where exp is corresponding to the logarithm taken in step 1.

3. Generating a random number u with the uniform distribution and determining

the next state of generator or line by comparing � and u.

Xkþ1;i ¼ 1 u < � the ith component is in running state

0 u � � the ith component is in failure state

�
:

4. If the state of the component changes, the pone or pzero obtained from full

conditional distribution is used as the relative probability for the next component

keeping its current state.
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Repeat these steps to obtain a Markov chain whose stationary distribution is the

system probability distribution. Then utilizing the convergent Markov chain as

system state samples, the reliability indices of the electrical power system is

obtained by state evaluation and adjustment.

The computing process of the state evaluation model and active power optimal

adjustment model for generators is the same as that of the traditional Monte Carlo

simulation method, which can be found in Sect. 3.3.2, and is not repeated here.

It can be proved that the computing load of MCMC method (sampling times) is

the same as that of the traditional MC method, and is not influenced by system scale

and complexity, thus this method is also suitable for dealing with various complex

factors, such as relative load and various operating control strategies and so on. In

addition, the techniques for reducing variance in the MCmethod can also be used in

the MCMC method.

In essence, the MCMC method is a kind of special MC method, which applies

Markov chains in the random process for MC simulation. This not only inherits the

advantages of traditional Monte Carlo simulation methods, with computing load

being approximately linearly proportion to increasing system scale, but also

achieves a dynamical simulation of the Monte Carlo method.

[Example 3.3] Calculate the reliability evaluation of the IEEE-TRS 24-node

reliability test system [40] by the MCMC method.

[Solution] The Gibbs sampler iterates for 55,000 times, in which the first 5,000

iterations are used for ‘‘annealing’’ to remove the effect of initial values. The results

of the remaining 50,000 iterations are used as samples to evaluate reliability indices.

The reliability indices obtained by use of the MCMC method are shown in Table

3.12. The results of comparing the MCMCmethod with other methods are shown in

Table 3.13.

The data in Table 3.13 show that the results of the proposed method are very

close to the other methods. It is illuminated that the proposed method in this chapter

is more effective.

Next, we will discuss the convergence rate and stability of the MCMC method,

respectively, according to calculation results of the example.

Table 3.12 The reliability indices of IEEE-RTS 24-node system

Reliability indices of system Value

LOLP 0.08464

EENS (MW h) 127,859.73

Table 3.13 The results of comparing different calculating methods on IEEE-RTS 24-node system

Reliability

indices

Convolution

method

State

enumeration

method

MC method

based on random

sampling

MCMC

method

LOLP 0.084578 0.084575 0.084420 0.084640

EENS (MW h) 128,716.62 128,695.3 129,781.86 127,859.7
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3.4.6.1 Convergence Comparison of the Algorithms

Figure 3.8 is the convergence rate diagram of index LOLP relative error. From Fig.

3.8, we can see that the variance coefficient of LOLP for the MCMC method is

about 0.35 than that of MC method with same number of samples. In other words,

the convergence rate of LOLP in the MCMC method has been improved seven

times compared to that of the MC method with the same number of samples. At the

same time, we can see from Fig. 3.8 that the variance coefficient of the index LOLP

already reaches 0.01 after sampling 10,000 times when using the MCMC method,

which also shows that we can obtain more accurate results by only sampling 10,000

times when utilizing the MCMC method, which decreases sampling time and

speeds up the evaluation process.

3.4.6.2 Stability Comparison of the Algorithms

In order to check the stability of the algorithms, the reliability index LOLP has been

calculated, using theMCMCmethodand theMCmethod, ten times each.The results are

shown in Figs. 3.9 and 3.10. Comparing Fig. 3.9 with Fig. 3.10, we can see that the

stability of the MCMC method is higher than that of the MC method. The variance

of LOLP over ten calculations using the MCMC method is 1.89% of that obtained

from ten calculation results using the MC method. That is because the MCMC

method is based on the dependent sequence whose convergence is not related to the

initial value, and the sampled Markov chains converge to the same objective

probability distribution. Therefore, the calculated reliability indices are very stable.

From Fig. 3.9, we can see that the reliability indices converge to stable values

after 10,000 iterations (samplings) for each Markov chain. However, because

the MC method is based on independent sequences and the sampled sequences

have greater differences between each other for each sampling, the calculated

indices are very different and not stable enough. To obtain steadier results, the

sampling number must be increased.
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Fig. 3.8 The convergence curves of LOLP relative error to two methods
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3.5 Probabilistic Load Flow Analysis

The probabilistic load flow method is a macroscopic stochastic method under

steady-state power system operation, which takes into account various random

factors in system operation, such as load fluctuation, generator faults, and the

impact of transmission component faults on steady-state operation. Therefore, the

probabilistic load flowmethod is more capable of revealing power system operation

characteristics than the conventional load flow method. It enables us to find the

potential crisis and weak points of the system operation. For example, it can give

the probability of line overloading, over voltage, steady-state instability, and so on.

Network planning involves a large number of uncertainties, such as inaccurate load

forecasts in long-term planning, generation capacity, alteration to the dispatch plans,

etc. These factors have a large impact on network planning schemes. In order to assess

overall system performance, network planners usually carry out load flow calculations

for many possible system operation modes, resulting in a large amount of computing

and also difficulty in reflecting global situations. The use of the probabilistic load flow

calculation method effectively solves these problems, providing decision-making

evaluation of planning schemes with more global information.

Generally speaking, probabilistic load flow calculations consist of two parts:

linearization of load flow equations and convolution calculations.
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In this section, we will describe a probabilistic load flow calculation method

which is based on the linearized model of the Newton-Raphson load flow calcula-

tion method. This model is characterized by its simplicity. It can provide line flow

and nodal voltage probability distribution, and also estimate the probability of

steady-state instability under a studied operation mode, making probabilistic load

flow results more valuable.

The convolution calculation of random variables is a very important part of

probabilistic load flow calculation. The probabilistic load flow calculation method

described in this section uses the cumulant method to perform convolution compu-

tation of random variables and the Gram–Charlier series expansion to compute their

distributions. Therefore, the overall probabilistic calculation is very efficient and its

accuracy satisfies the requirements of planning and operation analysis.

The cumulant method has attracted wide application and deep research investi-

gation because it is high in computation efficiency and flexible in solving problems.

This section will put emphasis on the method. First of all the cumulant method for

the probabilistic production simulation is introduced in combination with random

distribution cumulant and Gram–Charlier series and Edgeworth series. Then expla-

nations are made of how to deal with multistate generating units and sectionalized

generating units. Finally, the errors of the algorithm are analyzed.

3.5.1 Cumulants of Random Distribution

When a random variable’s distribution is known, its moment of every order can

then be obtained. Suppose the density function of a continuous random variable x is
g(x), then its v-order moment av can be calculated by the following equation:

av ¼
Z1
�1

xvgðxÞdx: ð3:72Þ

When v = 1, we have the expectation of the random variable x,

m ¼ a1 ¼
Z1

�1
xgðxÞdx: ð3:73Þ

From the expectation m, the central moment of every order Mv can be calculated.

Then the central moment of every order Mv can be solved by the expectation m,

Mv ¼
Z1
�1

ðx� mÞvgðxÞdx: ð3:74Þ
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For discrete random variables, the equations for the moment of every order are

different from the above equations in form. Suppose the probability of the discrete

random variable x having a value xi is pi. Then the v-order moment is defined as

av ¼
X
i

pixi
v ð3:75Þ

in which
P

means the summing up of all the possible value points of the random

variable x.
The expectation of random variable x should be

m ¼ av ¼
X
i

pixi: ð3:76Þ

Therefore the central moment of every order Mv can be expressed as

Mv ¼
X
i

piðxi � mÞv: ð3:77Þ

A random variable’s moment of every order is a numerical characteristic and to

some extent represents the nature of the random distribution. The cumulant is also a

kind of numerical characteristic, which can be calculated from the moments of all

orders not higher than the corresponding order. The relationships between the first

eight cumulants and the moments of every order are given below:

K1 ¼ a1

K2 ¼ a2 � a12

K3 ¼ a3 � 3a2a1 þ 2a13

K4 ¼ a4 � 4a3a1 � 3a22 þ 12a2a12 � 6a14

K5 ¼ a5 � 5a4a1 � 10a3a2 þ 20a3a12 þ 30a22a1 � 60a2a13 þ 24a15

K6 ¼ a6 � 6a5a1 � 15a4a2 þ 30a4a12 � 10a32 þ 120a3a2a1 � 120a3a13

þ 30a23 � 270a22a12 þ 360a2a14 � 120a16

K7 ¼ a7 � 7a6a1 � 21a5a2 þ 42a5a12 � 35a4a3 þ 210a4a2a1

� 210a4a13 þ 140a32a1 þ 210a3a22 � 1260a3a22 þ 840a3a14

� 630a23a1 þ 2520a22a12 � 2520a2a15 þ 720a17

K8 ¼ a8 � 8a7a1 � 28a6a2 þ 56a6a12 � 56a5a3 þ 336a5a2a1 � 336a5a13

� 35a42 þ 560a4a3a1 þ 420a4a22 � 2520a4a2a12 þ 1680a2a14

þ 560a32a2 � 1680a32a12 � 5040a3a22a1 þ 13440a3a2a3

� 6720a3a15 � 630a24 þ 10080a23a14 � 25200a22a14 � 20160a2a16

� 5040a18

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

:

ð3:78Þ
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From (3.74) and (3.77), we can see that the first-order central moment of random

variables is exactly equal to zero

M1 ¼ 0:

If the above equation is substituted into (3.78), we obtain the relationships between

cumulants and central moments:

K2 ¼ M2

K3 ¼ M3

K4 ¼ M4 � 3M2
2

K5 ¼ M5 � 10M3M2

K6 ¼ M6 � 15M4M2 � 10M2
3 þ 30M2

3

K7 ¼ M7 � 21M3M
2
2 � 35M4M3 þ 210M3M2

3

K8 ¼ M8 � 28M2
3M2 � 56M5M3 � 35M4

2 þ 420M4M2
2

þ 560M3
2M2 � 630M2

4

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

: ð3:79Þ

A cumulant has the following important quality. If random variables x(1) and x(2) are

independent of each other, and each has its own k-order cumulants K
ð1Þ
v and

K
ð2Þ
v ðv ¼ 1; 2; . . . ; kÞ, then the v-order cumulant of the random variable x(t) ¼ x(1)L
x(2) is

KðtÞ
v ¼ Kð1Þ

v þ Kð2Þ
v ðv ¼ 1; 2; . . . ; kÞ: ð3:80Þ

The above quality can be generalized to the situation when there are n-independent
random variables x(i) (i = 1, 2, . . ., n). Now the v-order cumulant of the sum of n
independent random variables can be expressed as

KðtÞ
v ¼

Xn
i¼1

KðiÞ
v ðv ¼ 1; 2; . . . ; kÞ: ð3:81Þ

Equations (3.80) and (3.81) are called the sum of ‘‘cumulants,’’ which moments or

central moments do not possess, and which is the reason why it is sometime also

called semi-invariate.

Now, we can calculate the every order moment and cumulants of random

distributions for loads and generator units according to above equations.

In general, the load curve of a power system is usually taken to be a step-wise

curve. The moments of each order can be calculated using by (3.75),

aLv ¼
X
i

pix
v
i ðv ¼ 1; 2; . . . ; kÞ; ð3:82Þ
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where aLv is the v-order moment of the load curve and pi is the probability when the
load has the value of xi,

pi ¼ ti=T;

where ti is the duration of the load xi and T is the investigated period.

For a generating unit, the moments of each order can be calculated using the

following equation, when it is a multistate generating unit and the probability of

outage capacity Cis is pis:

aiv ¼
XNis

s¼1

pisC
v
is ðv ¼ 1; 2; . . . ; kÞ; ð3:83Þ

where Nis is the number of states of generating unit i. For a dual-state generating

unit, Nis = 2, under this circumstance, the probability when the outage capacity

equals the rated capacity Ci is qi and the probability when the outage capacity

equals zero is 1 � qi. Therefore,

aiv ¼ qiC
v
i : ð3:84Þ

When the moments of every order of the load curve and the generating unit’s outage

capacity distribution are known, all the cumulants of the respective order KLv and

Kiv can be obtained by using (3.78). However, to simplify the computation, the

central moments MLv and Miv of the load curve and the generating unit’s outage

capacity distribution are usually first calculated and then the corresponding cumu-

lants are obtained by using the relatively simple (3.79). The moments of each order

can also be transformed into the central moment of each order by using (3.74) and

(3.77),

Mv ¼
Xv
j¼0

v

j

� 	
av�jð�aiÞj; ð3:85Þ

where v
j

� �
is the combination of ‘‘v and j,’’

v

j

� 	
¼ vðv� 1Þðv� 2Þ � � � ðv� jþ 1Þ=j !

From (3.85), we get,

M2 ¼ a2 � a12

M3 ¼ a3 � 3a2a1 þ 2a13

M4 ¼ a4 � 4a3a1 þ 6a12a2 � 3a14

� � � � � � � � �
etc.
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Equation (3.79) can be used to compute the corresponding cumulant when the

moments of each order are known. If only (3.82)–(3.84) are used to obtain the

moments of each order of the load curve and the generating unit’s outage capacity,

then (3.78) should be used to compute the cumulants of each order.

A method to calculate cumulants of every order from the random variable

distribution was discussed above. It was shown that the convolution of independent

random variables could be simplified to the addition of cumulants according to the

summability of cumulants.

The following problem to be dealt with is how to form the distribution of a

random variable from its moments or cumulants. There are many methods to solve

this problem. The Gram–Charlier series expansion and Edgeworth series expansion

are mainly used in probabilistic production simulation. These two series both

represent the random variable’s distribution function by using the derivatives of

the random variable. The coefficients of the series are formed by the random

variable’s cumulants.

To simplify the form of series, we define

gv ¼ Kv=sv ¼ Kv=K
v=2
2 ðv ¼ 1; 2; . . . ; 8Þ; ð3:86Þ

where gv is the normalized cumulant of the order v and s is the standard deviation.

From (3.36) and (3.38), we get,

s ¼ ffiffiffiffiffiffi
K2

p
;

g1 ¼ 0;

g2 ¼ 1;

g3 ¼ M3=s3;

g4 ¼ M4=s4 � 1;

where g3 is the deviation coefficient of random variable distribution and g4 is its
transcending coefficient.

The random variable’s distribution function can be expressed as the following

expansion of the Gram–Charlier series using the normalized cumulants:

f ðxÞ ¼
Z1
x

NðxÞdxþ g3
3!

Nð2ÞðxÞ � g4
4!

Nð3ÞðxÞ � g5
5!

Nð4ÞðxÞ

� g6 þ 10g23
6!

Nð5ÞðxÞ þ g7 þ 35g3g4
7!

Nð6ÞðxÞ

� g8 þ 56g3g5 þ 35g24
8!

Nð7ÞðxÞ þ � � �

ð3:87Þ
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or as the following expansion of the Edgeworth series

f ðxÞ ¼
Z1
x

NðxÞdxþ g3
3!

Nð2ÞðxÞ � g4
4!
Nð3ÞðxÞ þ g5

5!
Nð4ÞðxÞ � 10g23

6!
Nð5ÞðxÞ

þ 35g3g4
7!

Nð6ÞðxÞ þ 280g33
9!

Nð8ÞðxÞ � g6
6!
Nð5ÞðxÞ

� 35g24
8!

Nð7ÞðxÞ � 56g3g5
8!

Nð7ÞðxÞ � 2;100g23g4
10!

Nð9ÞðxÞ

� 15;400g43
12!

Nð11ÞðxÞ þ � � � ;

ð3:88Þ

where f (x) is the probability when the random variable adopts a value greater than

or equal to x. From (3.49) and (3.50), it can be seen that the Gram–Charlier series

and the Edgeworth series are expanded according to different rules, which will be

further discussed in Sect. 3.3.5. N(x) is the standard normal distribution density

function:

NðxÞ ¼ 1ffiffiffiffiffiffi
2p

p e�
1
2
x2 ;

where N(g) (x) (g = 1, 2, . . .) is the g-order derivative of N(x).

NðgÞðxÞ ¼ d

dx

� 	g

NðxÞ:

After the differentiation

NðgÞðxÞ ¼ ð�1ÞgHgðxÞNðxÞ; ð3:89Þ
where Hg (x) is Hermite polynomial, the first ten Hermite polynomials are

H0ðxÞ ¼ 1

H1ðxÞ ¼ x

H2ðxÞ ¼ x2 � 1

H3ðxÞ ¼ x3 � 3x

H4ðxÞ ¼ x4 � 6x2 þ 3

H5ðxÞ ¼ x5 � 10x3 þ 15x

H6ðxÞ ¼ x6 � 15x3 þ 45x2 � 15

H7ðxÞ ¼ x7 � 21x5 þ 105x3 � 105x

H8ðxÞ ¼ x8 � 28x6 þ 210x4 � 420x2 þ 105

H9ðxÞ ¼ x9 � 36x7 þ 378x5 � 1;260x3 þ 945x

H10ðxÞ ¼ x10 � 45x8 þ 630x6 � 3;150x4 þ 4;725x2 � 945

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

: ð3:90Þ
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The general expression and recursive equation for the Hermite polynomial can be

seen in [37, 41]. Substituting the above equations into (3.87) and (3.88), we get the

Gram–Charlier expansion:

f ðxÞ ¼
Z1
x

NðxÞdxþ NðxÞ
�
g3
3!

H2ðxÞ þ g4
4!

H3ðxÞ þ g5
5!

H4ðxÞ

þ g6 þ 10g23
6!

H5ðxÞ þ g7 þ 35g3g4
7!

H6ðxÞ

þ g8 þ 56g3g5 þ 35g24
8!

	 H7ðxÞ þ � � �



ð3:91Þ

and the Edgeworth expansion

f ðxÞ ¼
Z1
x

NðxÞdxþ NðxÞ
�
g3
3!

H2ðxÞ þ g4
4!

H3ðxÞ þ g5
5!

H4ðxÞ

þ 10g23
6!

H5ðxÞ þ 35g3g4
7!

H6ðxÞ þ 280g33
9!

H8ðxÞ þ g6
6!

H5ðxÞ þ 35g24
8!

H7ðxÞ

þ 56g3g5
8!

H7ðxÞ þ 2100g23g4
10!

H9ðxÞ þ 15400g43
12!

H11ðxÞ þ � � �



ð3:92Þ
For the convenience of using the standard normal distribution table and the Hermite

polynomials derived from the standard normal distribution density function, the

normalized random variable x is used on the right-hand side of (3.91) and (3.92):

x ¼ x� m
s

; ð3:93Þ

where m and s are the expectation and standard variance of the random distribution.

The Gram–Charlier expansion in (3.91) uses the first eight orders of cumulants

and the first seven Hermite polynomials, whereas the Edgeworth expansion in

(3.92) uses only the first six orders of cumulants but the first 11 Hermite poly-

nomials.

3.5.2 Linearization of Load Flow Equation

In Sect. 2.7.1, we used the Taylor series expansion in deriving the linear (2.150)

from the nodal power (2.141) under the condition that a disturbance occurs to

injection powers, i.e.,

DX ¼ S0DW; ð3:94Þ
where (3.91) is linear. The distribution of the random state variable DX may be

obtained by convolution from the distribution operation of the DW.
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Following a similar argument, we can also obtain the linear relationship

between the branch flow (2.153) and the nodal injection power DW. Now, rewrite

(2.153) as

Pij ¼ ViVjðGij cos yij þ Bij sin yijÞ � tijGijV
2
i

Qij ¼ ViVjðGij sin yij � Bij cos yijÞ þ ðtijBij � bijÞV2
i

)
:

The above equation can be written as follows

Z ¼ gðXÞ:

Expanding the above equations according to the Taylor series, we obtain

Z ¼ Z0 þ DZ ¼ gðX0 þ DXÞ ¼ gðX0Þ þ G0DX þ � � � : ð3:95Þ

Since Z0 is obtained from normal load flow calculation and

Z0 ¼ gðX0Þ: ð3:96Þ

Ignoring high-order terms of (3.92), we get

DZ ¼ G0DX; ð3:97Þ

where

G0 ¼ @Z

@X

����
X¼X0

: ð3:98Þ

G0 is 2b 	 2N matrix (b is the number of branches, N is the number of nodes), with

its elements given by,

@Pij

@yi
¼ �Hij;

@Pij

@yj
¼ Hij;

@Pij

@yk
¼ 0 k =2fi; jg

Vi
@Pij

@Vi
¼ 2Pij � Nij; Vj

@Pij

@Vj
¼ Nij; Vk

@Pij

@Vk
¼ 0 k =2fi; jg

@Qij

@yi
¼ �Jij;

@Qij

@yj
¼ Jij;

@Qij

@yk
¼ 0 k =2fi; jg

Vi
@Qij

@Vi
¼ 2Qij � Hij; Vj

@Qij

@Vj
¼ Hij; Vk

@Qij

@Vk
¼ 0 k =2fi; jg;

ð3:99Þ

where Hij, Nij, Jij are elements of the Jacobian matrix (2.164), thus G0 can easily be

obtained.
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DZ of (3.94) is the random fluctuation component of branch flows. In order to

meet the independence requirements of random variable convolution operation,

substituting (3.91) into (3.94) we obtain

DZ ¼ G0S0DW ¼ T0DW; ð3:100Þ
where

T0 ¼ G0S0 ð3:101Þ
is a transformation matrix. Equation (3.100) is linear. The use of the convolution

operation gives probability distribution of branch flows by injecting independent

random variable DW.

The random disturbance of the injection power DW is mainly comprised of

random factors of nodal load and generator failure. For the nodal load power, its

random component arises from forecast errors or random fluctuations of load. It can

generally be described by a normal distributed random variable. When the load

varies according to a load curve, we can simulate it using a discrete distribution,

thus reflecting operation modes of several load profiles in the load flow model. For

details of the probability distribution of generator power output and its cumulant

solution, see Sect. 3.3.

The effect of random failure of transmission and distribution components on

system can be simulated by using the corresponding injecting power DWy (see

(2.151) in Sect. 2.7). Suppose FOR of the transmission line is q1, then the probabil-
ity of injecting power (being DWy) of the corresponding transmission line outage is

q1, and the probability of injecting power (being 0) is 1 � q1. Hence we can get

corresponding cumulant.

The random variable of nodal injection power is given by

DW ¼ DWg 
 DW1 
 DWt; ð3:102Þ

where DWg and DW1 are random variables of generator and load and DWt is the

injecting power of transmission and distribution components corresponding to

random failure. Symbol
L

means convolution operation. Therefore, in order

to obtain the random variable of the nodal injection power DW it is necessary to

perform a random variable convolution. From DW it is also necessary to perform a

linear transformation on the random variable DW according to (3.91) and (3.97) in

order to obtain the probability distributions, DX and DZ, of state variables and

branch flows.

In order to use the Gram–Charlier series expansion to approximate the distribu-

tions of random variables, it is necessary to know every order of cumulant of this

variable. However, the use of a semi-invariant has to satisfy the independent

requirements of variables. Therefore, we assume that all nodal injection power

random variables are independent.

Through the cumulants’ properties of random variable (see Sect. 3.5.1), the kth
order semi-invariant of nodal injection power DW(k) may be obtained from the
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corresponding semi-invariant of load injection power DWðkÞ
1 and generator injection

power DWðkÞ
g , i.e.,

DWðkÞ ¼ DWðkÞ
g þ DWðkÞ

1 þ DWðkÞ
t : ð3:103Þ

From the cumulants’ properties, we could obtain cumulants of the state variable DX
and branch flows DZ from respective cumulants of DW according to the linear

relationships (3.94) and (3.100), i.e.,

DXðkÞ ¼ S0
ðkÞ � DWðkÞ; ð3:104Þ

DZðkÞ ¼ T0
ðkÞ � DWðkÞ; ð3:105Þ

where S
ðkÞ
0 and T

ðkÞ
0 are obtained as k exponents of matrix S0 and T0, respectively,

i.e.,

S0
ðkÞði; jÞ ¼ ½S0ði; jÞ�k;

T0
ðkÞði; jÞ ¼ ½T0ði; jÞ�k:

It can be seen from the above discussion that after the random variables have been

transformed to the form of cumulants, the convolution and linear transformation

operations given by (3.100)–(3.102) become very simple. Therefore, after the

cumulants of the distributions of nodal load and generator powers have been

obtained, it is very easy to solve for cumulants, DX(k) and DZ(k), of the state variable
DX and branch flows DZ based upon which the probability distribution of DX and

DZ can be obtained by the Gram–Charlier series.

Sometimes, in order to obtain the probability density function of a state variable or

lineflow, it is necessary to expand the density function using theGram–Charlier series:

pðxÞ ¼ NðxÞ 1þ g3
3!

H3ðxÞ þ g4
4!

H4ðxÞ þ g5
5!

H5ðxÞ þ g6 þ 10g32

6!
H6ðxÞ

�

þ g7 þ 35g3g4
7!

H7ðxÞ � g8 þ 56g3g5 þ 35g24
8!

H8ðxÞ þ . . .

	
:

ð3:106Þ

The above equation is obtained by differentiating (3.91) in the above section with

respect to x.

3.5.3 Computing Process of Probabilistic Load Flow

According to the above linearized probabilistic load flow model and convolution

operation of random variables, we have the flowchart for probabilistic load flow

calculations as shown in Fig. 3.11.
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The meaning of each block in Fig. 3.11 is briefly explained as follows:

1. Raw data required by the probabilistic load flow calculation include data re-

quired by the normal load flow calculation and information about the probability

distribution of relevant nodal injection variables, such as the means and standard

deviations of normally distributed load, load power, and the corresponding

probability at each discrete point for discretely distributed load and the number,

capacity and forced outage rate of the generators in order to compute probability

distribution of the generator output.

2. Use the Newton-Raphson method to calculate normal load flow distributions,

obtaining the state variable X0 branch flow Z0 and Jacobian matrix J0. The
sensitivity matrix S0 is obtained through triangularization of J0.

3. Compute moments of nodal injection power random variables and their cumu-

lants DWðkÞ
l and DWðkÞ

g .

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Input data

Compute load flow using Newton-
Raphson method. X0, Z0, J0, S0,

Compute various order cumulants of
node injection power disturbances caused
by generator, load power and line outage

Solve the distribution functions of ΔX and ΔZ or
probability of variables violating constrains using

Gram-Charlier series

print results

Obtain different order cumulants
of ΔW by Eq. 3.103

Solve for different order cumu-
lants of ΔX by Eq. 3.104

Solve for different order cumulants of
ΔZ using Eq. 3.105

Fig. 3.11 Flowchart of probabilistic load flow calculations

172 3 Stochastic Security Analysis of Electrical Power Systems



4. Superimpose cumulants of generator outputs on those of loads to obtain cumu-

lants of nodal injection powers.

5. Compute cumulants of state variables DX(k) from DW(k) according to (3.104),

preparing for the subsequent calculation of statistical distribution.

6. After having solved forG0 according to (3.98), form T0 according to (3.101), and
solve for semi-invariants of branch flows DZ(k) from DW(k) according to (3.105).

It should be worth noting that DX is not an independent random variable any

more; therefore, DX(k) cannot be used to obtain DZ(k) according to the linear

(3.97).

7. Use the Gram–Charlier series expansion to obtain the distributions of DX and DZ
(3.87). The mathematical expectations of X and Z are X0 and Z0, respectively.
Their probability distributions are equivalent in shift to those of DX and DZ by

the expectation values X0 and Z0. If it is only necessary to calculate the

probability of a variable being out of its limits, only the corresponding distribu-

tion function needs to be computed. On the other hand, if further study of the

distribution of a variable is needed, the expansion form of its density function,

(3.106), is used.

The flowchart of probabilistic flow calculations (Fig. 3.11) takes full advantage of

results obtained by the Newton-Raphson method during the formation of the

linearized model. When random variable convolution operations are carried out it

uses highly efficient cumulants and Gram–Charlier series. The whole model is

characterized by clear concepts and rapid computation. However, due to the solving

of the distribution of random variables by use of the semi-invariant, it is inevitable

to generate errors in the calculation results. To reduce the errors, we can deal with

continuous distribution and discrete distribution of random variables separately.

For the discrete random variable, the Von Mises method is used. For the continuous

random variable, a Gram–Charlier series is adopted. Thereby, the calculation error

can be greatly reduced [36, 41].

[Example 3.4] Perform probabilistic load flow calculations on the IEEE-14 bus

system. To stress the total computing process of probabilistic load flow, the case

with branch outage is not considered in this example.

Statistical data of nodal injection powers are as follows. The relative data of

generator units are shown in Table 3.15.

The load at node 9 is discretely distributed and its values are given in Table 3.16.

Loads at the other nodes are normally distributed; their expectation values and

standard deviations are given in Table 3.17.

[Solution] According to the flowchart shown in Fig. 3.11, we have the following

procedures of computation:

1. Use the Newton-Raphson method to calculate the normal load flow. State

variables X0 and branch flows Z0 under normal conditions have been obtained

as shown in Table 3.18. X0 and Z0 will be regarded as expected values for

probabilistic load flow calculation. Similarly, the Jacobian matrix Jo and sensi-

tivity matrix So have also been obtained (they are not listed here because of

limited space).
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2. Calculate the cumulants of the nodal injection power. Based upon the method of

solving for statistically distributed cumulants described in Sect. 3.3.1, we could

obtain eight cumulants of generator nodes 1 and 2 and discretely distributed load

at node 9, as shown in Table 3.19 (where all values are in per unit).

For normally distributed injection powers, their first-order cumulant is equal

to their expected value, the second cumulant is equal to their variances, while the

third-order to eighth-order cumulants are equal to zero. For example, the load at

Table 3.14 The data of nodes and branches (on the 100 MV A base)

Branch Node

Node of

branch Resistance Reactance bij0 or tij

Node Active

power

Reactive

power

Voltage

1–2 0.01938 0.05917 0.01320 1a 2.324 0 1.06

1–3 0.05403 0.22304 0.01320 2 0.183 0 1.04

2–3 0.04699 0.19797 0.01095 3 �0.942 0 1.01

2–4 0.05811 0.17632 0.00935 4 �0.478 0.039 –b

2–5 0.05695 0.17388 0.00850 5 �0.076 �0.016 –

3–4 0.06701 0.17103 0.00865 6 �0.112 0 1.07

4–5 0.01335 0.04211 0.00320 7 �0.0 0 –

4–7c 0.00000 0.20912 0.97800 8 �0.0 0 1.09

4–9c 0.00000 0.55618 0.96900 9 �0.295 0.046 –

5–6c 0.00000 0.25202 0.93200 10 �0.090 �0.058 –

6–11 0.09498 0.19890 0.00000 11 �0.035 �0.018 –

6–12 0.12291 0.25581 0.00000 12 �0.061 �0.016 –

6–13 0.06615 0.13027 0.00000 13 �0.135 �0.058 –

7–8 0.00000 0.17615 0.00000 14 �0.149 �0.050 –

7–9 0.00000 0.11001 0.00000

9–10 0.03181 0.08450 0.00000

9–14 0.12711 0.27038 0.00000

10–11 0.08205 0.19207 0.00000

12–13 0.22092 0.19988 0.00000

13–14 0.17093 0.34802 0.00000
aRepresents that node 1 is slack node
b‘‘–’’Represents PQ node, and its voltage is unknown
cRepresents transformer branch, the value in the last column is the ratio

Table 3.15 The relative data of generator units

Node Capacity (MW) Number FOR Expectation of power output (MW)

1 2.5 10 0.08 23.00

2 22 2 0.09 40.04

Table 3.16 Probability distribution of load at node 9

Active load (MW) 13.4 19.6 30.2 34.8 37.3

Probability 0.10 0.15 0.30 0.25 0.20

Reactive load (MVAR) 7.5 11.0 17.0 19.6 21.0

Probability 0.10 0.15 0.30 0.25 0.20
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Table 3.17 Statistical data on nodal loads

Node Active load (MW) Reactive load (MVAR)

Expectation Deviation (%) Expectation Deviation (%)

1 0.0 0.0 0.0 0.0

2 21.74 0.09 12.7 0.092

3 94.20 0.10 19.0 0.105

4 47.80 0.11 �3.9 0.097

5 7.60 0.05 1.6 0.05

6 11.20 0.06 7.5 0.063

7 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0

10 9.0 0.10 5.8 0.10

11 3.5 0.095 1.8 0.095

12 6.1 0.076 1.6 0.086

13 13.5 0.105 5.8 0.095

14 14.9 0.086 5.0 0.086

Table 3.18 The results of load flow calculation by Newton-Raphson method

Load flow on branch Nodal voltage

Node of

branch Pij Qij Pij Qji Node Amplitude Angle

1–2 1.5694 �0.1893 �1.5264 0.2914 1 1.06000 0.00000

1–3 0.7547 0.0550 �0.7271 0.0305 2 1.04500 �4.98429

2–3 0.7327 0.0475 �0.7095 0.0273 3 1.01000 �12.73054

2–4 0.5614 �0.0041 �0.5446 0.0351 4 1.01714 �10.30872

2–5 0.4152 0.0259 �0.4062 �0.0164 5 1.01873 �8.76485

3–4 �0.2325 0.0455 0.2363 �0.0537 6 1.07000 �14.21900

4–5 �0.6110 0.1608 0.6161 �0.1511 7 1.06128 �13.35621

4–7 0.2806 �0.0983 �0.2806 0.1154 8 1.09000 �13.35621

4–9 0.1607 �0.0049 �0.1607 0.0179 9 1.05571 �14.93501

5–6 0.4411 0.1210 �0.4411 �0.0769 10 1.05080 �15.09401

6–11 0.0737 0.0361 �0.0731 �0.0349 11 1.05681 �14.78788

6–12 0.0779 0.0251 �0.0772 �0.0236 12 1.05517 �15.07369

6–13 0.1776 0.0724 �0.1754 �0.0682 13 1.05035 �15.15407

7–8 0.0000 �0.1730 0.0000 0.1777 14 1.03539 �16.03092

7–9 0.2506 0.0576 �0.2806 �0.0496

9–10 0.5212 0.0418 �0.0520 �0.0414

9–14 0.0942 0.0358 �0.0930 �0.0334

10–11 �0.0380 �0.0166 0.0381 0.0169

12–13 0.0162 0.0076 �0.0161 �0.0075

13–14 0.0565 0.0178 �0.0560 �0.0166
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node 2 has an expected value of 0.2174 and variance (in percent) of 0.009; its

cumulants are

K1 ¼ 0:2174;

K2 ¼ ð0:2174	 0:09Þ2 ¼ 0:000382828;

Kj ¼ 0 j ¼ 3; 4; . . . ; 8

:

The sum of cumulants of the load and generator output at node 2 are displayed in

the third column of Table 3.19. Similarly, cumulants of the nodal injection

powers may be obtained.

3. Compute the cumulants of the state variables. Since the sensitivity matrix S0 has
been obtained from normal load flow calculation, the cumulants of the state

variables may be obtained directly from those of the nodal injection powers

according to (3.104). Table 3.20 shows the expected values and standard

Table 3.19 Cumulants of nodal injection powers at nodes 1, 2, and 9

Order Node 1 Node 2 Node 9

Active power Reactive power

1 0.230000 	 10+1 0.230000 	 10+0 �0.295000 	 10+0 �0.166000 	 10+0

2 0.460000 	 10�1 0.792792 	 10�2 0.599600 	 10�2 0.191550 	 10�2

3 �0.9660000 	 10�2 �0.143020 	 10�2 0.430640 	 10�2 0.778925 	 10�4

4 0.160540 	 10�2 0.195156 	 10�3 �0.168809 	 10�4 �0.172255 	 10�5

5 �0.705180 	 10�4 �0.119061 	 10�5 �0.142591 	 10�4 �0.824467 	 10�6

6 �0.100259 	 10�3 �0.121103 	 10�4 �0.163633 	 10�5 �0.535577 	 10�7

7 0.553146 	 10�4 0.502300 	 10�5 0.714816 	 10�6 0.132089 	 10�7

8 �0.132800 	 10�4 �0.736492 	 10�6 0.335819 	 10�6 0.351225 	 10�8

Table 3.20 Expectation and standard deviation values of state

variables

Node Voltage (p.u) Angle (�)
Expectation Deviation Expectation Deviation

1 1.06000 0.00000 0.00000 0.00000

2 1.04500 0.00000 �4.98429 0.44298

3 1.01000 0.00000 �12.73054 0.99757

4 1.01714 0.00202 �10.30872 0.68979

5 1.01873 0.00164 �8.76485 0.57883

6 1.07000 0.00000 �14.21900 0.84952

7 1.06128 0.00286 �13.35621 0.97527

8 1.05571 0.00000 �13.35621 0.97527

9 1.09000 0.00519 �14.93501 1.114956

10 1.05080 0.00441 �15.09401 1.09751

11 1.05681 0.00231 �14.78788 0.97113

12 1.05517 0.00069 �15.07369 0.88307

13 1.05035 0.00120 �15.15407 0.90842

14 1.03539 0.00368 �16.03092 1.06123
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deviations of nodal voltages and angles, where expected values are the first-

order cumulants, and the standard deviations are the square root of the second-

order cumulants.

4. Compute the cumulants of branch flows. When the Jacobian matrix and branch

flows under normal conditions are given,G0 is easily obtained from (3.99). It is a

sparse matrix. Matrix T0 is formed according to (3.101). For example, for line 5–

6, its position in T0 is the 19th and 20th rows with each row having 28 elements,

of which the first 14 correspond to active power and the last 14 to reactive power,

i.e.,

T0ð19Þ ¼ ½0:0;�0:00523;�0:0209;�0:0370; 0:01435;�0:6871

� 2:07;�2:07;�0:2967;�0:3687;�0:5273;

� 0:6689;�0:6441;�0:4591; 0:0; 0:0; 0:0;�0:00814;

� 0:0129; 0:0;�0:0393; 0:0;�0:0736;�0:0658;

� 0:0367;�0:0030;�0:0168;�0:0548�
T0ð20Þ ¼ ½0:0;�0:0013;�0:0084;�0:0547; 0:0747;�0:0124

� 0:0556;�0:0556;�0:0542;�0:0478;�0:0309;

� 0:0153;�0:0194;�0:0413; 0:0; 0:0; 0:0;�0:1166;

0:1935; 0:0; 0:4848; 0:0; 0:0445; 0:0368; 0:0186; 0:00384;

0:0065; 0:0286�
Eight cumulants of the branch flow are obtained from those of the nodal injection

power according to (3.105). The eight cumulants corresponding to line 5–6 are

K1 ¼ 0:44111	 10þ0 K2 ¼ 0:70949	 10�3

K3 ¼ �0:11284	 10þ4 K4 ¼ �0:13095	 10�6

K5 ¼ 0:32814	 10�7 K6 ¼ �0:11174	 10�8

K7 ¼ �0:14485	 10�0 K8 ¼ 0:20194	 10�10

Table 3.21 shows the expected values and standard deviations of branch flows.

5. Compute the probability distributions of the state variables. We take node 4 as an

example to solve for the probability density function of voltages.

Eight cumulants of the voltage at node 4 are given as

K1 ¼ 0:10171	 10þ1 K2 ¼ 0:40674	 10�5

K3 ¼ 0:41810	 10�8 K4 ¼ �0:32393	 10�11

K5 ¼ �0:55467	 10�13 K6 ¼ �0:13057	 10�15

K7 ¼ 0:11764	 10�17 K8 ¼ 0:11428	 10�19
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Taking the discrete step length as 0.01, we obtain the probability density function of

the voltage at node 4, as shown in Fig. 3.12, according to the Gram–Charlier series

method and (3.106), as described in Sect. 3.3.2. If the upper limit of the voltage is

1.02, then the probability of this voltage being greater than its upper limit is

PðV4 > 1:02Þ ¼ 0:106232:

The dashed line in Fig. 3.12 is the result of using the sixth-order semi-invariant.

Following the same argument, we could obtain probability density distribution

functions of other state variables and branch flows and their over-limit probability.

3.6 Probabilistic Network-Flow Analysis

3.6.1 Introduction

The adequacy of the transmission system is basic to guarantee the secure operation

of power systems. The fundamental cause of the ‘‘8.13’’ Blackout in USA and

Canada is that many transmission components of the power system operated in their

limit states. Several blackouts in USA were caused by grounding fault induced by

Table 3.21 Expectation and standard deviation values of branch flows

Branch Active load flow (MW) Reactive load flow (MVAR)

Expectation Mean Expectation Mean

Variance (%) Variance (%)

1–2 156.9366 13.3943 �18.9334 3.1295

1–5 75.4682 4.7871 5.5020 0.5054

2–3 73.2721 5.7571 4.7525 0.5651

2–4 56.1419 3.3318 �0.4093 0.6566

2–5 41.5220 2.4094 2.5914 0.5004

3–4 �23.2535 4.4619 4.5501 2.0654

4–5 �61.0946 4.4898 16.0791 1.4391

4–7 28.0606 3.5716 �9.8291 0.8584

4–9 16.0705 2.0367 �0.4891 0.7895

5–6 44.1110 2.6636 12.1028 0.5586

6–11 7.3663 1.4758 3.6053 1.0306

6–12 7.7890 0.4155 2.5089 0.1953

6–13 17.7556 1.2340 7.2398 0.6805

7–8 0.0000 0.0000 �17.3021 1.6740

7–9 28.0607 3.5716 5.763*9 2.3431

9–10 5.2150 1.5654 4.1753 1.0012

9–14 9.4161 1.2503 3.5818 0.6851

10–11 �3.7978 1.4467 �1.6587 1.0088

12–13 1.6172 0.3685 0.7594 0.1822

13–14 5.6540 1.1001 1.7751 0.6725
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increasing sag of some over heated conductor. When adequacy of the transmission

system is not enough, after one transmission component goes out of service, load

transfer can easily cause cascading overload, which will expand the extent of

outages. A series of worldwide blackout events show that they are usually caused

by cascading outages.

The occurrence of cascading outages has a very close relation with power

network structure. When a power network may induce cascading outages in a

certain operating condition, we define the power grid structure as not stable in

this operating situation. And when the power network cannot induce cascading

outages in a certain operating condition, we define the power grid structure as stable

in this operating situation. An example of whether a power grid structure is stable or

not is given in Fig. 3.13.

There are three sources and three loads in the power network shown in Fig. 3.13,

and the capacity limit of each transmission line is also given in this figure. The

power network structure shown in Fig. 3.13a is stable in the corresponding load

condition, and satisfies the requirement of continuous power supply for load in

normal and N � 1 conditions. Due to the increasing load, the power network

structure shown in Fig. 3.13b becomes unstable. In such a condition, any outage

of an outlet line of the three sources will cause a blackout of the total system. For

instance, as shown in Fig. 3.13d, after the outage of the outlet line of source C,

overload of outlet line of source A and B occurs because of load transfer, which

therefore induces blackout of the whole power grid. But, when the connection lines

of DE and EF do not exist, the power network is stable because the outage of any

component in the power grid will not cause cascading outage, which is shown in

Fig. 3.13c.

In Fig. 3.13b, the blackout of whole power network caused by the outage of

transmission line has no relation with angular stability and voltage stability. In fact,

even though the length of all transmission lines in this power network approaches 0,

the blackout of whole power grid will still occur. For an unstable power grid,
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measures to prevent cascading outages should be carried out. For instance, when a

transmission line trips, we should adopt such measures as load shedding to restrict

outage scope to a minimum area.

In this section, we will analyze power network structure by using a probabilistic

network-flow model, and discriminate components that induce cascading outages.

On this basis, we consider random outages of generation and transmission compo-

nents, calculate the probability (i.e., reliability) that a given load is satisfied, and

quantify the importance of each component in the power grid. This model can

provide useful information for transmission system planning, generation and trans-

mission device maintenance, contingency setting, and countermeasures.

3.6.2 Network-Flow Model

The ‘‘network’’ is a graph with capacity constrained branches [42], and nodes can

also be set with capacity restrictions under certain conditions. Communication

networks, transportation networks, and power networks are all typical networks

[43].

The transmission system, shown in Fig. 3.14a, with N nodes, Nb branches, Ns

generators, and N1 loads, can be represented by the network illustrated in Fig.

3.14b.

In Fig. 3.14b, each component ij of the transmission system is assigned a

capacity Ck. The generators are represented by branches connected to the fictitious

source node S, whose capacities Cg1, Cg2, . . ., Cgs are determined by generators’
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available capacities. The loads are represented by branches connected to the

fictitious sink node T, whose capacities Cdl, Cd2, . . ., Cdl are determined by loads’

demands. As a consequence, the number of branches in Fig. 3.14b is

NS ¼ Nb þ Ns þ N1:

Assume the sum of loads is D, i.e.,

XN1

k¼1

Cdk ¼ D:

Then the feasible network-flow model can be described by

X
k2j

Fk ¼ 0; j ¼ 1; 2; . . . ;N; j 6¼ S;T; ð3:107Þ

X
k2t

Fk ¼ D; ð3:108Þ

Fk � Ck: ð3:109Þ

NS ¼ Nb þ Ns þ N1:

a Transmission system

b Network-flow model
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Where Fk is flow on branch k. Equation (3.107) means that the inflow and outflow

power at each node should be balanced; i.e., the feasible flows must be balanced at

each node, or satisfy the Kirchhoff’s First Law of electric circuits, which is the basic

property of network-flow. Equation (3.108) shows that flows must satisfy the load

demand D. Equation (3.109) presents the branch capacity constraints. Since Fkt �
Cdk, (3.108) is equivalent to

Fkt ¼ Cdk ¼ Dk; k ¼ 1; 2; . . . ;N1: ð3:110Þ

Each feasible solution corresponds to a possible operating state satisfying transmis-

sion requirements. All feasible flow solutions represent all possible operating states

under the given generation and transmission resources.

To thoroughly dissect the grid structure, one should solve and analyze all

feasible flow solutions [42]. To do so, we need find the minimal path set from S
to T in Fig. 3.14b, P = {P1, P2, . . ., Pm}, where m is number of all minimal paths.

Assume {f1, f2, . . ., fm} are flows on these paths, the feasible solutions should satisfy
the following constraintsX

Pj2k
fj � Ck; k ¼ 1; 2; . . . ;NS; ð3:111Þ

Xm
j¼1

fj ¼ D: ð3:112Þ

Equation (3.111) is the capacity constraint for branch k, Pj 2 k denotes the minimal

paths that pass branch k; Equation (3.112) shows that flow on all minimal paths

should satisfy the load demand. Because a feasible solution is described by accu-

mulation of flows on minimal paths, flow balance condition represented by (3.107)

holds automatically. Therefore, the feasible flow model of (3.111) and (3.112) is

equivalent to that of (3.107), (3.108), and (3.109).

To understand the algorithm of network-flow model conveniently, the process

for finding a feasible solution is explained in detail by a numeral example.

[Example 3.5] Form the minimal path set and solve the feasible flow solution of

the sample system shown in Fig. 3.15.

[Solution] The sample system shown in Fig. 3.15a contains five nodes, five

branches, two generators and three loads (1, 2, 3). Its electrical parameters are

illustrated in Example 1.1. The network model is demonstrated in Fig. 3.15b, and

the numbers in parentheses present capacities of respective branches. To improve

computational efficiency, the capacities of all branches are enlarged ten times in

this example, thus floating computation can be replaced by integer computation. In

Fig. 3.15b, besides the original five branches, we add two branches (6 and 7)

connected with source point S, representing generators G1 and G2, respectively.

First, find the minimal path of arriving at each load node123 of the network

shown in Fig. 3.15b from its incident matrix [44, 45]. Altogether ten minimal paths

are fund as illustrated in Table 3.22.
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Then the feasible solution set is solved by an implicit enumeration method

according to (3.111) and (3.112). Forty-five feasible solutions have been found as

shown in Table 3.23. Because system load is 73, so the sum of the flows on the

minimal paths in each feasible set is 73. Flows on branches of each feasible solution

are shown in Table 3.24. The table demonstrates all possible operating states and

connecting modes that give satisfactory power supply, and provides comprehensive

Simple power systema

Network.flow modelb

(20)

(37)

5

(16)

(20)
(20)(20)

(55)

(55)(50)
(50)

76

21

3

4

S

T

3.7

1.6

2313

2

G1 G2

5344
2 3

5

1

~ ~

Fig. 3.15 The network-flow
model of sample system

Table 3.22 Set of minimal paths

No. Including paths Supplying load

1 1 3 5 7 Load 1
2 1 4 6

3 2 �3 4 6

4 2 5 7

5 �1 2 5 7 Load 2
6 3 5 7

7 4 6

8 �2 1 4 6 Load 3
9 �3 4 6

10 5 7

*�sign is relative to given direction of
the branch
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Table 3.23 Set of feasible solutions

No. f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10

1 16 20 24 13

2 16 20 24 13

3 16 20 36 1

4 16 4 16 4 30 3

5 16 4 16 4 33

6 16 4 16 34 3

7 16 20 4 26 7

8 16 20 4 33

9 16 20 30 7

10 16 20 37

11 16 20 24 10 3

12 16 20 24 13

13 16 20 20 17

14 16 20 4 30 3

15 16 20 4 33

16 16 20 34 3

17 16 20 4 10 23

18 16 20 4 33

19 16 20 14 23

20 16 20 37

21 16 4 16 24 10 3

22 16 4 16 24 13

23 16 4 16 20 17

24 16 4 16 18 19

25 16 4 16 4 33

26 16 4 16 37

27 16 20 20 14 3

28 16 20 20 17

29 16 20 24 13

30 16 20 14 23

31 16 20 4 33

32 16 20 37

33 16 4 16 24 13

34 16 4 16 24 13

35 16 4 16 36 1

36 16 4 16 24 10 3

37 16 4 16 24 13

38 16 4 16 20 17

39 16 20 20 17

40 16 20 20 17

41 16 20 37

42 16 20 20 10 7

43 16 20 20 17

44 16 20 20 17

45 16 20 37
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information of operating states under given generation and transmission condition.

The flow presented by shadow area denotes no flow on that relative branch, which

means that there still is a feasible solution even if corresponding branch is tripped.

For example, when branch b1 is tripped by an incident, there are still feasible

solutions numbered 29, 31, 32, 41, 44; when branch b2 is tripped, there are still

feasible solutions numbered 6, 9, 10, 16, 19; when branch b3 is tripped, feasible

solutions numbered 12, 18, 22, still can satisfy load requirements. Even if branches

b2 and b3 are simultaneously tripped, solution numbered 20 still can satisfy load

requirements. When branches b1 and b3 are tripped simultaneously solution num-

bered 45 still can satisfy load requirements.

Table 3.24 can be simplified to Table 3.25 according to different outputs of

generators and configuration of the transmission system.

From Table 3.24 and 3.25, we can see that when branches 1, 2, and 3 tripped

separately, and branches 2 and 3, as well as branches 1 and 3 tripped simultaneous-

ly, feasible solutions still exist. This implies that under such conditions the trans-

mission system still can satisfy load requirement.

In all feasible solutions, branch 4 and 5 are indispensable, their failures certainly

cause other branches to overload or induce cascade failures. In other words, these

two branches are most important to maintain reliability of the transmission system.

By contrast, failures of other branches (1, 2, 3) have no essential impact on

Table 3.24 Branch states of feasible solutions

No. b1 B2 b3 b4 b5 No. b1 b2 b3 B4 b5

1 20 4 3 37 36 24 14 2 16 50 23

2 20 4 16 24 49 25 4 20 20 36 37

3 4 20 20 36 37 26 4 20 16 32 41

4 20 4 10 50 23 27 20 4 10 50 23

5 20 4 20 20 53 28 20 4 4 36 37

6 16 14 50 23 29 16 20 40 33

7 20 4 10 50 23 30 14 2 16 50 23

8 20 4 16 24 49 31 16 20 40 33

9 16 14 50 23 32 16 16 36 37

10 16 16 20 53 33 20 4 3 37 36

11 20 4 10 50 23 34 20 4 16 24 49

12 20 4 40 33 35 4 20 20 36 37

13 4 20 20 36 37 36 20 4 10 50 23

14 20 4 10 50 23 37 20 4 40 33

15 20 4 20 20 53 38 4 20 20 36 37

16 16 14 50 23 39 20 4 3 37 36

17 20 4 10 50 23 40 20 4 20 20 53

18 20 4 40 33 41 16 17 37 36

19 16 14 50 23 42 20 4 10 50 23

20 16 36 37 43 20 4 40 33

21 20 4 10 50 23 44 16 20 40 33

22 20 4 40 33 45 16 20 53

23 4 20 20 36 37
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continuity of power supply, thus they are less important than branches 4 and 5.

Branch 3 has the least contribution to reliability of the transmission system. When it

is tripped, the transmission system can still satisfy load demand even if branch 1 or

2 is further tripped.

Therefore, from a network structure perspective, branches 4, 5 are the most

valuable branches, branches 1, 2 are less valuable branches, and branch 3 is the least

valuable branch.

Valuation of each branch in a transmission system can be further quantified, see

the example in Sect. 3.6.4.

It should be pointed out, 45 feasible solutions in Table 3.24 and 3.25 are valid

only under the condition that available capacities of generators G1 and G2 are 5.0

and 5.5, respectively. In such condition, reserve of the power system is big enough

to re-dispatch when contingency occurs. From the tables we can see that power

regulation range of G1 is 2.0–5.0, while that of G2 is 2.3–5.3. When limiting the

available capacity of these two generators to 4.0, the number of the feasible solution

decreases to 22, which can be found in Tables 3.24 and 3.25. In this situation, no

feasible solution exists when branches 1 and 3 are simultaneously tripped.

3.6.3 Lower Boundary Points of Feasible Flow Solutions

The network-flow model cannot include the Kirchhoff’s Second Law in its con-

straints. Therefore, multiple solutions may exist under the same generation and

Table 3.25 Feasible solutions for different network configurations

Outage branches Generator output Ordinary number of feasible solution

G1 G2

No outage branch 37 36 1, 33, 39

24 49

36 37 2, 8, 34

50 23 3, 13, 23, 25, 28, 35, 38,

20 53 4, 7, 11, 14, 17, 21, 24

32 41 27, 30, 36, 42

5, 15, 40

20

Branch 1 40 33 29, 31, 44

36 37 32

37 36 41

Branch 2 50 23 6, 9, 16, 19

20 53 10

Branch 3 40 33 12, 18, 22, 37, 43

Branch 2&3 36 37 20

Branch 1&3 20 53 45
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transmission condition. For instance, feasible solutions 21 and 27, 25 and 35 in

Table 3.24 are multiple solutions. In order to efficiently evaluate reliability of the

transmission system, the feasible solutions need to be sifted so that there is only one

feasible solution for each operating condition.

The sifting principle in this paper is to retain the feasible solution with the least

‘‘total reactive power loss’’ DQ under the same operation condition

DQ ¼
X
ij

Pij
2 Xij; ð3:113Þ

where Pij, Xij are the active flow and reactance of branch ij;
P

sums up ‘‘loss’’ of

all branches in the network. This principle can obtain the solution that best

approximates the DC power flow solution. The assertion is proved below.

Let us investigate the following optimization model,

obj : Min
1

2

X
ij2Network

Pij
2 Xij; ð3:114Þ

s:t:
X
ij2i

Pij ¼ 0; i 2 N: ð3:115Þ

The problem is to minimize ‘‘total loss,’’ with the constraint of Kirchhoff’s First

Law, i.e., the conservative balance of the flows at each node. The Lagrangian

function of the problem is

L ¼ 1

2

X
ij2Network

Pij
2 Xij �

XN
i¼1

yi
X
ij2i

Pij; ð3:116Þ

where yi is the Lagrangian multiplier. Taking derivative of L respective to Pij, and

setting it to 0, we have

@L

@pij
¼ Pij Xij � ðyi � yjÞ ¼ 0: ð3:117Þ

Taking yi, yj as the phase angles of voltages at nodes i, j, one can see that (3.117)

represents Kirchhoff’s Second Law in the DC power flow model. For any loop L in

a transmission network, from (3.117) the next equation holds

X
ij2L

Pij Xij ¼ 0: ð3:118Þ

It is clear that the solution of above optimization model of (3.114) and (3.115) is

equivalent to that of the DC power flow model. Therefore, the solution retained

according to the least loss principle will best approximate DC power flow solution.
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By use of above sifting principle, after solving feasible solution of each network

flow in each operating state, we can calculate DQ according to (3.113) at once, and

remain flow solution relative to minimal DQ by comparing with original feasible

solution DQ. Thus same feasible solutions are sifted at the same time.

After sifting solutions, we have a unique feasible solution corresponding to each

feasible operating state. Define the branch flow vectors of a feasible solution as the

lower boundary point F(i),

FðiÞ ¼ fFðiÞ1;FðiÞ2; . . . ;FðiÞNSg; i ¼ 1; 2; . . . ; k0; ð3:119Þ

where F(i)j is flow on branch j of the ith feasible operating state and k0 is the total
number of feasible operating states. When the capacity of each branch is larger than

or equal to the corresponding component of this vector, the transmission system can

satisfy the load demand.

3.6.4 Reliability of Transmission System

The transmission system can be considered as a stochastic network, and the

capacities of generators, transmission lines, and transformers are treated as stochas-

tic variables because of random outages. Generally speaking, load demands are also

stochastic variables. But in reliability study, the load demands D are often given as

a standard to measure reliability, so that a reliability index can be defined as the

probability of satisfying load demand D by the transmission system.

When the lower boundary points of all feasible solutions F(i) (i = 1, 2, . . ., k0)
have been obtained, we can calculate the probability of satisfying load demand D
according to the distribution of each branch capacity.

Let us define event Bi,

Bi ¼ fYjY � FðiÞg; ð3:120Þ

where Y � F(i) means

Yj > FðiÞj; j ¼ 1; 2; . . . ;Nb: ð3:121Þ

Then probability that Bi occurs is

PðBiÞ ¼
YNb

j¼1

PðFðiÞjÞ; ð3:122Þ

where P(F(i)j) is cumulative probability which can be obtained from the outage

table of component j (see Sect. 3.3.3).
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The event AD that satisfies load demand D is

AD ¼
[k0
i¼1

Bi: ð3:123Þ

Therefore, the probability that load demand D is satisfied or the reliability of the

transmission system RD is described by,

RD ¼ P
�[k0

i¼1

Bi

�
ð3:124Þ

The above indices RD can be calculated by the inclusion–exclusion rule [46].

In this section, the probabilistic network-flow model and algorithm of reliability

evaluation are introduced. Its feasible solution set illustrates the whole scenario of

possible operating states of transmission systems, which can be used to analyze

power network structure, and to find components whose outages cause system

cascade failures. The importance of each component in a power grid can be

quantified by probabilistic network flow, and the probability (i.e., reliability) to

satisfy given load is calculated. It provides abundant quantified information for

transmission system operation and planning, generation and transmission compo-

nent maintenance, the dispatch and purchase of operational reserve, contingency

setting, countermeasures, and so on.

When solving for network-flow, it is enough to give the available capacities

instead of output power. Therefore, the feasible operation solution obtained by the

proposed model automatically takes redispatch into consideration. As a static

security analysis tool, the efficiency is much higher than load flow analysis.

From the viewpoint of application, probabilistic network-flow model and algo-

rithm have provided a powerful tool for the evaluation of power networks and tie-

lines between areas and the reliability of interconnected systems.

There are two shortcomings related to the proposed model that need to be further

improved. Firstly, the model neglects Kirchhoff’s Second Law, and the load flow is

therefore erroneous. Although treated by a remedial measure, this problem is still

worth paying attention to in applications. Secondly, the application of the stochastic

network-flow model needs the development of effective algorithms. The stochastic

network-flow model is a NP complexity problem, and the key algorithm adopts the

implicit enumeration technique. This problem needs further investigation to devel-

op various effective simplified algorithms.

[Example 3.6] Evaluating the reliability of transmission system shown in Fig.

3.15, in which the capacity and reliability parameter of components are given in

Table 3.5 and 3.6.

[Solution] Firstly, we analyze the effect of each branch on system reliability.

After enumerating and sifting feasible solutions we can calculate composite

reliability RD according to (3.124). Assume maximum available capacities of and
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are 5 and 5.5, respectively. The transmission system reliability RD is 0.8685586.

When neglecting random outages of generators, i.e., FOR is 0 for all generators,

reliability RD increases to 0.9002437.

Let us now analyze the contribution of each branch on transmission system

reliability. The results are shown in Table 3.26. The basic scheme in the table

corresponds to the configuration shown in Fig. 3a. Its reliability index RD has been

mentioned above. To evaluate the contribution of each branch on reliability, in the

table we demonstrate RD for the schemes of the transmission system without

branches b1, b2, and b3, respectively.

We can see the impact of each branch on composite reliability from the table.

The reliability index of the transmission system without branch b1 or b2 are

significantly worse than the basic case, RD decreases to 0.8121741 from

0.8685586. Branch b3 has less impact on composite reliability. When the scheme

excludes it, RD decreases to 0.8516820. When neglecting random outages of

generators (FOR = 0), branch b3 has almost no contribution to transmission

reliability, see the third column of the table.

Impacts on composite reliability reflect the values of branches in the transmis-

sion system.

When load demand increases, the reliability deteriorates. The reliability indices

for different load levels from 1.0 to 1.4 times the original demand are demonstrated

in Fig. 3.16. When all loads are up to 1.4 times their original demands, the

Table 3.26 RD for different transmission schemes

Schemes FOR > 0 FOR = 0

Basic scheme 0.8685586 0.9002437

Without b1 0.8121741 0.8573750

Without b2 0.8121741 0.8573750

Without b3 0.8516820 0.9002437

0.65

0.7

0.75

0.8

0.85

0.9

0.9 1 1.1 1.2 1.3 1.4 1.5

Fig. 3.16 Variations of reliability index with load level
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reliability index RD decreases from 0.8685586 to 0.704385. It is worth noting that

reliability drops significantly, from 0.793561 to 0.704385, between 1.25 and 1.3

times loads. The reason behind this is that when loads up to 1.3 times, the load at

node 1 increases to 2.08, which exceeds the transmission capacity of branch 1 and

2. Therefore, outage of either of these two branches will cause shortage of power

supply for node 1. That is to say, at such a load level the transmission system cannot

satisfy the N�1 check for branch 1 and 2. We can conclude that below 1.25 times

load level, system reliability mainly relates to generation adequacy, beyond that

load level the transmission network is heavily stressed, and transmission adequacy

becomes the main reason for blackouts.

Generally speaking, the more the generation reserve, the more reliable the

composite system. However, because of capacity limitation of tie-lines, the same

amount of generation reserve at different generators may have a different influence

on composite reliability. The reliability indices with different reserves for the

sample system are demonstrated in Table 3.27. When available capacities of both

generators are 4.0, composite reliability RD is 0.827689 (see row 1). Adding 0.5

reserve capacity to G2, i.e., making its available capacity 4.5, has no influence on

RD (see row 2). By contrast, Adding 0.5 reserve capacity to G1, RD increases to

0.843002 (see row 3). Similarly, if now we increase available capacity of G1 to 5.5,

RD is unchanged (see row 4); if we increase available capacity of G2 to 5.5, RD

increases to 0.868558 (see row 5).

In conclusion, we can use the stochastic network-flow model not only to

comprehensively evaluate transmission system reliability but also to efficiently

purchase reserve to improve system reliability in a market environment.

Thinking and Problem Solving

1. What are the important characteristics of deterministic methods and stochastic

methods, when evaluating the security level of electrical power systems?

2. What stochastic factors influence the operation of electrical power systems?

How are these stochastic factors simulated?

3. What is understood by the ‘‘randomness’’ of the load? When can the random-

ness of load be simulated by discrete stochastic variables?

Table 3.27 Simulation results

Cases Available Capacity Reliability

G1 G2 RD

1 4 4 0.827689

2 4 4.5 0.827689

3 4.5 4 0.843002

4 5.5 5 0.843002

5 5 5.5 0.868558
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4. What does the component state of electrical power systems refer to? What does

the available capacity of a component refer to? Why are transmission lines and

transformers generally dual-state components, while generator units may be the

multistate components?

5. Two transmission lines operating in parallel can be considered as a triple-state

component. How can the triple-state model be obtained by using convolution

formulae?

6. Deduce the formulae of accumulative probability in an outage table.

7. What are the basic theory and main characteristics of the Monte Carlo simula-

tion method?

8. How can the sampling state of the system be obtained effectively when using

the Monte Carlo simulation method to evaluate the reliability of an electrical

power system?

9. Outline the simplified supposition conditions of the optimal adjustment model

for power output of generator units during reliability evaluation of electrical

power systems.

10. How can we evaluate the adequacies of a power generation system and power

transmission system, respectively, using the Monte Carlo simulation method?

11. What is the basic principle of the Markov Chain Monte Carlo (MCMC)

method? How can we obtain the sampling state of the system according to

the Gibbs sampler in the MCMC simulation method?

12. Why are random numbers with the uniform distribution used to determine the

component states in Monte Carlo sampling?

13. Outline the characteristics of the semi-invariant method in probabilistic load

flow.

14. What are the factors that influence the errors of probabilistic load flow?

15. What are the factors that influence the calculation speed of probabilistic load

flow?

16. What is the stability of an electrical power grid structure? What are cascade

failures?

17. What are the features of the network-flow method used to analyze the opera-

tional security of electrical power systems?

18. Design the calculation process to obtain all feasible solutions in the network-

flow method.

19. Design and realize the calculation process shown in formula (3–124) when k0 is
uncertain.
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Chapter 4

Power Flow Analysis in Market Environment

4.1 Introduction

Around the world, the electric industry is undergoing sweeping restructuring.

The trend is toward increased competition and reduced regulation.

According to economic theory, we can define the power market as a collection of

electricity buyers and electricity sellers that interact, resulting in the possibility for

exchange. It should be noted that besides electricity, different kinds of ancillary

services are also included in the goods of the power market. Ancillary services are

mainly employed to maintain the power system operating securely and efficiently,

comprising electricity transmission, providing capacity reserve, reactive power and

voltage regulation, etc.

A variety of restructuring models are being proposed, considered and experi-

mented with in different countries. Because production and consumption of electric

power occur simultaneously, transmission and relative services become a salient

feature of the power market. Because of its scale effects transmission service is

regarded as a natural monopoly. Therefore, the unbundling of generation from

transmission as a separate business is prevalent in different countries, and in general

the transmission sector remains regulated to permit a competitive environment for

generation and retail services.

Figure 4.1 shows the main structural components of the power market [48].

Generating companies (G) and electricity power market (PM) form market sellers;

retail service providers (R), and distribution service providers (D) form market

buyers. The transmission part (T) of the power market consists of five components:

transmission owners (TO), independent system operators (ISOs), ancillary service

(AS) providers, power exchanges (PXs), and scheduling coordinators (SCs), as

briefly explained below.

4.1.1 Transmission Owner

The basic premise of transmission open access is that the transmission owners treat

all transmission users on a nondiscriminatory and comparable basis regarding
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access to and use of the transmission system and services. This requirement could

be difficult to ensure if the transmission owners have any financial interests in

energy generation or supply. A general trend is, therefore, to designate an ISO to

operate the transmission system and facilitate provision of transmission services.

Maintenance of the transmission system generally remains the responsibility of the

transmission owners.

4.1.2 Independent Operator

The ISO operates the transmission grid and provides transmission services to all

transmission customers. The basic requirement of an ISO is lack of financial

interest in generation resources and load market. The responsibilities and scope

of the different ISOs existing or emerging different countries around the world vary

widely, but mainly include the following areas:

(1) Operations planning/scheduling

(2) Dispatching

(3) Control and monitoring

(4) Online network security analysis

(5) Market administration

(6) Transmission planning

4.1.3 Power Exchange

The basic function of a power exchange is to provide a forum to match electrical

energy supply and demand in the forward power markets. The market horizon may

range from an hour to a few months. The most usual situation is a day-ahead market

to facilitate energy trading 1 day before each operating day. Depending on the

market design, the day-ahead market may be preceded by a longer term market and

supplemented by hour-ahead markets. An hour-ahead market provides energy

trading opportunities to 1 or 2 h before the operating hour. Usually, the power

G PM

AS

SC

ISO

PX

TO

R D

T

Fig. 4.1 Structure components of
power market
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exchange is to act as a pool for energy supply and demand bids, and establish a

market clearing price (MCP). The MCP is then the basis for the settlement of

forward market commitments.

The above-mentioned components: TO, ISO, PX provide a platform for energy

transaction, and should not have any financial interests in the market.

4.1.4 Ancillary Service

Ancillary service providers supply the transmission network support services that

are needed for reliable operation of the power system. The majority of ancillary

services are, in fact, real or reactive power resources needed to operate the trans-

mission system in a secure and reliable manner.

Depending on the market design and activity rules, ancillary services may be

traded in the PX or ISO. The ancillary services may be provided in a bundled

manner or as an unbundled menu. Some ancillary services may be self-provided by

users of the transmission system, such as capacity reserve, energy imbalance, etc.

4.1.5 Scheduling Coordinator

Scheduling coordinators (SCs) are entities that put together supply and demand

energy schedules, outside the power exchange. Some structures restrict forward

schedule coordination to a center pool and do not permit other SCs to operate. In

some other structures no center pool or regulated power exchange exists; schedule

coordination is done in a decentralized manner often by the existing control areas.

In many new and emerging structures SCs are integral components of the market.

The structural components mentioned above may not be present in a specific

restructuring model. In some cases one or more of the segments are missing. In

other cases, two or more of these structural components are merged and delegated

to a single entity. In any case the relative functions cannot be eliminated.

The ongoing restructuring of the electric industry has imposed tremendous

challenges on both economic and technical aspects of power systems under this

new environment.

The theories of electricity pricing and transaction mechanisms are at the core of

economic problems of the power market. Electricity pricing can be traced to the

1980s, when the effect of electricity spot pricing on the efficient location of resources

was theoretically proved [49]. The studies on electricity price include cost analysis

and market clearing mechanism. The bidding strategy of electricity sellers is another

hot topic of investigation. This problem not only affects the benefits for generating

companies, but also efficiency and stability of market operation.

The new technical issues in the market-oriented power system mainly relate to

security and reliability problems. Regardless of the market structures that may
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emerge in various parts of the world, system security, reliability and quality of

supply must be maintained.

Transmission congestion is an important phenomenon in power markets. It can be

defined as the condition that occurs when there is insufficient transmission capability

to simultaneously implement all preferred transactions. Congestion can impose a

significant barrier with respect to trading electricity. Therefore, congestion manage-

ment is a major function of the ISO in any type of power market. In addition, for

better transmission services support and full utilization of transmission assets, an ISO

should accurately evaluate the transfer capability remaining in the system for further

transactions, which is termed as available transfer capability (ATC).

To price the transmission service in the market environment, steady-state analy-

sis should provide not only power flow in each branch of the system, but also

the contribution of every generating company or consumer to the branch flow.

Thus, the so-called power flow tracing problem becomes a new challenge.

This chapter will focus on some new developments in the steady-state analysis

field, including optimal power flow (OPF) and its application in spot pricing and

congestion management, power flow tracing and ATC problems.

4.2 Optimal Power Flow

In 1962, Carpentier introduced a generalized nonlinear programming (NLP) for-

mulation of the economic dispatch (ED) problem [50] including voltage and other

constraints. The problem was later named OPF. The OPF procedure consists of

determining the optimal steady-state operation of a power system, which simulta-

neously minimizes the value of a chosen objective function and satisfies certain

physical and operating constraints. Today OPF has been playing a very important

role in power system operation and planning: different classes of OPF problems,

tailored towards special-purpose applications are defined by selecting different

function to be minimized, different sets of controls and different sets of constraints.

4.2.1 General Formulation of OPF Problem

The OPF problem is setup on the following basis:

1. The operating generating units are predetermined

2. The power outputs of hydro units are predetermined by reservoir dispatching

3. The structure of transmission network is predetermined, which means the net-

work reconfiguration problem is not considered in OPF

The variables of OPF problem consist of a set of dependent variables and a set of

control variables. The dependent variables include node voltage magnitudes and

phase angles, as well as MVAr output of generators performing node voltage
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control. The control variables might include real and reactive power output of

generators, voltage settings of voltage control nodes, LTC transformer tap posi-

tions, phase shifter angles, operating capacities of shunt capacitors, reactors, etc.

The constraints of OPF include

1. Power flow equations

2. Upper and lower bounds on the generator active power outputs

3. Upper and lower bounds on the generator reactive power outputs

4. Capacity constraints on shut capacitors and reactors

5. Upper and lower bounds on the transformer or phase shifter tap positions

6. Branch transfer capacity limits

7. Node voltage limits

Except constraint (1), the other constraints are all inequality constraints. Among

these constraints, (1) and (6) are functional type constraints. When the rectangular

coordinates format is used to describe node voltages, constraint (7) is also of the

functional type. The others are constraints on variables.

The objective function of an OPF problem may take many different forms

according to the different applications. The general nonlinear OPF problem can

be formulated as (4.1)–(4.6)

Objective function:

min
X
i2SG

ða2iP2
Gi þ a1iPGi þ a0iÞ; ð4:1Þ

where PGi is the active generation of i th unit. a0i, a1i, a2i are the fuel cost

coefficients of unit i, SG is the set of generating units in the system.

Constraints:

PGi � PDi � Vi

Xn
j¼1

VjðGij cos yij þ Bij sin yijÞ ¼ 0

QGi � QDi þ Vi

Xn
j¼1

VjðGij sin yij � Bij cos yijÞ ¼ 0

9>>>>=
>>>>;

i 2 SB; ð4:2Þ

PGi � PGi � PGi i 2 SG; ð4:3Þ

Q
Ri
� QRi � QRi i 2 SR; ð4:4Þ

Vi � Vi � Vi i 2 SB; ð4:5Þ

Plj j ¼ Pij

�� �� ¼ ViVjðGij cos yij þ Bij sin yijÞ � V2
i Gij

�� �� � Pl l 2 Sl; ð4:6Þ

where the power flow (4.2) is equality constraints, constraints (4.3)–(4.6) are

inequality constraints, they are upper and lower bounds on the active sources,
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reactive sources, node voltages, and branch flows respectively. SB is the set of nodes

in the system. SR is the set of reactive sources. Sl is the set of transmission lines. PGi,

QGi are the active and reactive power output, PDi, QDi are the active and reactive

demand at node i. Vi, yi are the voltage magnitude and angle of node i; yij ¼ yi � yj.
Gij, Bij are the real and imaginary parts of the transfer admittance between nodes i
and j. Pl is the power flow on transmission line l that connects nodes i and j.
In the above OPF formulation the node voltage is expressed in polar coordinates.

The rectangular coordinate expression is also often used in formulating the

OPF problem.

4.2.2 Approaches to OPF

OPF development has been closely following the progress in numerical optimiza-

tion techniques and computer technology. Many different approaches have been

proposed to solve the OPF problem. These techniques include NLP, quadratic

programming (QP), linear programming (LP), mixed programming (MP), as well

as interior point and artificial intelligence algorithms.

4.2.2.1 Nonlinear Programming

NLP deals with problems involving nonlinear objective and nonlinear constraint

functions. It includes unconstrained programming and constrained programming.

It is well known that many simple and effective methods have been developed and

used successfully to solve unconstrained programming. For constrained program-

ming, we usually first transform the problem into unconstrained programming by

constructing an augmented Lagrangian objective function, and can then use various

different optimization algorithms to solve this unconstrained programming problem.

In 1968, Dommel and Tinney [51] developed an NLP model to minimize fuel

cost and active power losses. Based on the Newton–Raphson method of power flow

calculation, Kuhn–Tucker equations are solved by using a combination of the

gradient method for a fixed set of independent variables and penalty function for

violated dependent constraints. Their work has served as the guiding pioneer work

for commercial OPF tools. Dealing with inequality constraints via penalty functions

may cause ill-conditioning leading to very slow convergence. Sasson [52] presented

a modified method which implements step correction by the Fletcher–Powell

algorithm and checks convergence at each step in the optimization process.

However, because of inherent limitations of the gradient method the oscillation

phenomena cannot be avoided completely. In 1970, Sasson [53] extended Dommel

and Tinney’s work, trying to improve convergence of the Newton-based approach.

These methods are useful only for problems of limited size or using a nonsparse

formulation, because they generate dense Hessians. In 1982, Divi and Kesavan [54]
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presented a shifted penalty-function approach which overcomes the ill-conditioning

of the penalty-function method in solving constrained NLP problems. The method

exploited a reduced gradient concept and adapted Fletcher’s quasi-Newton tech-

nique for optimization of shifted penalty functions, which further improves conver-

gence and accuracy. This method was validated on three synthetic systems with an

11-node system being the largest. The method saves about 30% of the computa-

tional cost over standard penalty-function methods. In the same year (1982),

Talukdar et al. [55] presented a quasi-Newton (variable metric) method for solving

general OPF problems. The method is attractive for the following reasons: (1) it can

accommodate OPF constraints in a straightforward manner, (2) it is robust and will

attain a feasible solution from infeasible initial starting points, and (3) it appears to

be several times faster than its competitors.

4.2.2.2 Quadratic Programming

The quadratic programming is a special form of NLP with quadratic objective

function and linear constraints. In 1973, Reid and Hasdorf [56] presented a qua-

dratic programming method to solve the economic dispatching (ED) problem.

In this work, the fuel cost function is approximated to a quadratic function by

introducing slack variables, constraints are linearized by Taylor expansion, and

then Wolfe’s algorithm is used to solve the ED problem. Convergence is very fast

and does not depend upon the selection of gradient step size or penalty factors.

However, the CPU time dramatically increased as the system size increased. More

papers about applications of quadratic programming for the OPF problem appeared

in 1980s. In 1982, Burchett et al. [57] presented a method which can obtain a

feasible solution from an infeasible starting point even if the power flow diverges.

The method creates a sequence of quadratic programming problems that converge

to the optimal solution of the original nonlinear problem. Comparing with the older

algorithm which uses an augmented Lagrangian, the method has advantages in

terms of CPU time and robustness.

4.2.2.3 Linear Programming

Linear programming is another useful technique for solving OPF problems. Usual-

ly, the original OPF problem is first decomposed into active power and reactive

power sub-problems, then these two sub-problems are solved alternatively or

separately. Piecewise linear techniques and sequential approximation techniques

are often used to solve LP-based OPF problem. In 1968, Wells [58] developed a

linear programming approach to dispatching an economic operation plan including

network security requirements. The objective function and its constraints were

linearized and solved using the simplex method. The limitations of this method

are: (1) the final results for an infeasible situation obtained may not be optimum and

(2) rounding errors caused by digital computers may cause constraints to appear
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overloaded. In 1970, Shen and Laughton [59] presented a dual linear programming

technique. Both primal and dual problems were proposed and the solutions were

obtained using the revised simplex method. This work has been well tested and has

shown more promising online performance than the NLP technique.

4.2.2.4 Mixed Programming

Because active and reactive power sub-problems are provided with different char-

acteristic, two or more optimization techniques are often combined to solve OPF

problem. Nabona and Ferris [60] presented a method which involved quadratic and

linear programming for optimizing the economic dispatch objective function. The

minimum loss problem was solved using a linear programming approach, and the

minimum cost and reactive power problems were solved using either a quadratic or

a linear programming approach. In [61], the LP-based methods have been shown to

be effective for problems where the objective functions are separable and convex

functions, but not so effective for nonseparable objective functions, especially

when the objective function is the minimization of transmission losses. Both the

QP-based and Newton methods are second-order methods, and programs based on

these methods appear to overcome the shortcomings that exist in the LP-based

programs. But second-order methods require the calculation of second partial

derivatives of the Lagrangian (i.e., the Hessian matrix), which may be unavailable

if the original generation cost curves are given as piecewise linear functions or

discrete segments by which generators’ input–output characteristic with valve-

point loadings are modeled. This hybrid feature makes the approach very flexible

while preserving the efficiency of decoupling.

4.2.2.5 Interior Point Method (IPM)

Linear programming is one of the most widely applied mathematical techniques.

Until very recently, the standard method for solving LP problems was the simplex

method, first proposed by Dantzig. Since then, it has been routinely used to solve

problems in business, logistics, economics, and engineering. All forms of simplex

method reach the optimum by traversing a series of basic solutions. Since each

basic solution represents an extreme point of the feasible region, the track followed

by the algorithm moves around the boundary of the feasible region. In the worse

case, it may be necessary to examine most if not all of the extreme points. This

could be very inefficient given that the number of extreme points grows exponen-

tially with the number of constraints and variables of the problem. Fortunately, the

worst-case behavior has not been experienced for practical problems.

Ever since the simplex method was first presented, many researchers have

applied themselves to create an algorithm for solving LP problems that proceeded

on a path through the polytope rather than around its perimeter. One of the earliest

IPMs, originally proposed by Frish [62] in 1954, was a Barrier Method leading to
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the solution of an unconstrained optimization problem. Early IPMs also include that

of Huard (1967) [63], this Center Method is able to solve constrained NLP. In the

same year, Dikin [64] presented a method which is known as the Affine Scaling

Method. The advantage of this idea is that the steepest descent step in the original

space can be extremely short if the current iterate is close to the boundary, whereas

‘‘long’’ steps are always possible in the transformed space. Though theoretically

efficient, code developers were never able to realize an implementation that

matched the performance of the current simplex method. While IPMs were put

aside in the 1970s, significant advances were made in numerical linear algebra and,

of course, in computational capacity and speed. Interest in IPMs was then revita-

lized by the announcement of Karmarkar [65] that he had developed an IPM which

had provable polynomial complexity and was competitive with the simplex meth-

od. In fact, he claimed a factor of 100 speed-up, comparing with the contemporary

state-of-the-art simplex solver MPSX. A few years later, IPMs were extended to

apply to NLP problems by Gill [66].

Karmarkar’s method and its relatives, including the affine scaling algorithm,

logarithmic barrier function algorithm, and path following algorithm, were studied

intensively. Since then, thousands of papers have been written on both the theoreti-

cal and computational aspects of IMP for LP and on the extension of these ideas to

quadratic and more general NLP problems. The most successful IPMs are based on

using a primal–dual formulation and applying Newton’s method to the system of

equations arising from the barrier method, or in other words, arising by perturbing

the optimality conditions. This method has been widely used in power system

optimization problems because of its favorable convergence, robustness, and in-

sensitivity to infeasible starting points. The IPM for solving OPF problems will be

introduced in detail in Sect. 4.2.3.

4.2.2.6 Artificial Intelligence Method (AIM)

Though the optimization techniques described above gradually overcame the diffi-

culties in calculation speed, convergence, and starting points; discrete problem

could not be readily dealt with. Furthermore, these optimization methods are

essentially based on the idea of neighborhood search (also called local search).

The methods rely on convexity to obtain the global optimum and as such are forced

to simplify relationships to ensure convexity. However, the OPF problem is in

general nonconvex and as a result, many local optima may exist. Artificial intelli-

gence methods can resolve some of the above problems. The major AI methods

include: Evolutionary Algorithms (EA), Fuzzy Set Theory (FST), Simulated

Annealing (SA), etc.

The evolutionary algorithms, in part, emulate biological evolution and operate

on a population of candidate solutions to a problem. They chiefly include Evolu-

tionary Programming and Genetic Algorithms. An EA is often used to solve

reactive power optimization problems because it is good at dealing with discrete

variables. EA is a stochastic optimization method, which can obtain the global
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optimum with high probability (in theory). Moreover, EA has many advantages,

such as global convergence, parallel processing, universality, and robustness.

Fuzzy set theory represents an attractive tool to aid research in optimization

techniques when uncertain relationships or inconsistent measurements among

model parameters limit the specification of model objective functions and con-

straints. Recently, fuzzy set theory has been successfully applied in solving power

system optimization problems, because it provides a new approach to coordinating

multiple conflicting objectives of the problem. In [67], constraints are partitioned

into two parts: soft constraints and hard constraints. The OPF problem is formulated

with fuzzy objective and fuzzy soft constraints. An efficient successive linear

programming method is then modified to solve this new formulation. The numerical

results show that the fuzzy OPF can be equivalent to the crisp OPF where a feasible

solution exists. When there is no feasible solution for the crisp OPF, the fuzzy OPF

can obtain a more realistic solution that ‘‘evenly’’ distributes violations of the

limits, rather than violate a single normal limit excessively.

The simulated annealing algorithm is an iterative, stochastic search process,

which simulates the physical annealing mechanics of melting metal. The working

principle of SA is very simple, the only difference with a general search method is

that it allows some nonimproving solutions to be accepted with some probability in

every iteration step. In [68], SA is used to solve the reactive power optimization

problem. Theoretically, the global optimum can be obtained after many trials, but

this inevitably consumes a lot of calculation time.

The major drawback of artificial intelligence methods is usually their poor com-

putation efficiency. Due to the complexity of power system optimization problems,

hybridization of these with other optimization algorithms would be a way forward to

develop more powerful approaches to produce some particular properties.

4.2.3 Interior Point Method for OPF Problem

The main idea of IPM is to approach the optimal solution from the strict interior of

the feasible region. Two conditions must be noticed: (1) start from a feasible point

and (2) construct a barrier that prevents any variables from reaching a boundary

[69]. But it is very difficult to find a feasible start point for large-scale practical

problems. For many years researchers endeavored to weaken the ‘‘feasible start

point’’ condition, to improve the IPM performance. The center path following IPM

discussed in this section is a successful example. The ‘‘feasible start point’’ condi-

tion is replaced by simple inequality constraints that request nonzero slack variables

and Lagrangian multipliers.

To explain the problem explicitly, the OPF problem expressed by (4.1)–(4.6) is

expressed as the following generalized nonlinear optimal model,

obj min f ðxÞ; ð4:7Þ
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s:t:hðxÞ ¼ 0; ð4:8Þ

g � gðxÞ � g; ð4:9Þ

where objective function (4.7), corresponding to (4.1) in the OPF formulation, is

a nonlinear function. Equality constraint (4.8), corresponding to (4.2) in OPF

formulation, is also nonlinear. Equation (4.9) is nonlinear inequality constraints,

for which the upper bound is g ¼ ½�g1; . . . ; �gr�T and the lower bound is g ¼
½g

1
; . . . ; g

r
�T. It is assumed that there are n variables, m equality constraints, and r

inequality constraints in this formulation.

First, inequality constraint (4.9) is translated into an equality constraint by

introducing slack variables:

gðxÞ þ u ¼ g; ð4:10Þ

gðxÞ � l ¼ g; ð4:11Þ

where slack variables l ¼ ½l1; . . . ; lr�T, u ¼ ½u1; . . . ; ur�T must be positive:

u > 0; l > 0: ð4:12Þ

Thus the original problem becomes optimization problem A:

obj min f ðxÞ;
s:t: hðxÞ ¼ 0;

gðxÞ þ u ¼ g;

gðxÞ � l ¼ g;

u > 0; l > 0:

Then ‘‘ logðljÞ’’ and ‘‘ logðujÞ’’ are added to the objective function of problem A to

construct a barrier function objective which is equivalent to f ðxÞ when lj and

ujðj ¼ 1; . . . ; rÞ are more than zero. The barrier function objective would become

very large if any lj or ujðj ¼ 1; . . . ; rÞ approaches zero. Thus barrier function

optimization problem B is obtained

obj min f ðxÞ � m
Xr
j¼1

logðljÞ � m
Xr
j¼1

logðujÞ;
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s:t: hðxÞ ¼ 0;

gðxÞ þ u ¼ g;

gðxÞ � l ¼ g;

where factor (or barrier parameter) m satisfies m > 0. An inequality-constrained

optimization problem A is transformed into an equality-constrained problem B by

incorporating the inequality constraints in a logarithmic barrier function that

imposes a growing penalty as the boundary (uj ¼ 0, lj ¼ 0 for all j) is approached.
Therefore, the Lagrangian multiplier method of classical calculus can be used to

solve problem B.
The Lagrangian function of problem B is

L ¼ f ðxÞ � yThðxÞ � zT½gðxÞ � l� g� � wT½gðxÞ þ u� g� � m
Xr
j¼1

logðlrÞ

� m
Xr
j¼1

logðurÞ; ð4:13Þ

where y ¼ y1; . . . ; ym½ �, z ¼ z1; . . . ; zr½ �, w ¼ w1; . . . ;wr½ � are Lagrange multipliers.

The necessary conditions for a stationary point of the constrained optimization

problem B are that the partial derivatives of the Lagrangian function (4.13) with

respect to each variable must be zero.

Lx ¼ @L

@x
� rx f ðxÞ � rxhðxÞy�rxgðxÞðzþ wÞ ¼ 0; ð4:14Þ

Ly ¼ @L

@y
� hðxÞ ¼ 0; ð4:15Þ

Lz ¼ @L

@z
� gðxÞ � l� g ¼ 0; ð4:16Þ

Lw ¼ @L

@w
� gðxÞ þ u� g ¼ 0; ð4:17Þ

Ll ¼ @L

@l
¼ z� mL�1e ) L

m
l ¼ LZe� me ¼ 0; ð4:18Þ

Lu ¼ @L

@u
¼ �w� mU�1e ) Lm

u ¼ UWe þ me ¼ 0; ð4:19Þ

where L ¼ diagðl1; . . . ; lrÞ, U ¼ diagðu1; . . . ; urÞ, Z ¼ diagðz1; . . . ; zrÞ, W ¼ diag

ðw1; . . . ;wrÞ. From (4.18) and (4.19) we obtain

m ¼ lTz� uTw

2r
: ð4:20Þ
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We now define a duality gap as: Gap ¼ lTz� uTw, then we have

m ¼ Gap

2r
: ð4:21Þ

Fiacco and McCormick [70] proved that under certain conditions, if x� is the

optimal solution of problem A, xðmÞ is the optimal solution of problem B while m
is fixed, and sequence xðmÞf g becomes sufficiently close to x� as Gap ! 0, i.e.,

m ! 0. When solving the sequence of problems B, as the strength of the barrier

function is decreased, the optimum follows a well-defined path (hence the term

‘‘path following’’) that ends at the optimal solution to the original problem. As

shown in [71], when m is set according to (4.21), the convergence of the algorithm is

sometimes very weak, so the following modification is suggested:

m ¼ s
Gap

2r
; ð4:22Þ

where s 2 0; 1ð Þ is called center parameter, usually one can get satisfactory con-

vergence by setting s around 0.1. Because m > 0 and l > 0, u > 0 from (4.18) and

(4.19), we know that z > 0, w < 0 must be satisfied.

The necessary conditions for optimality, (4.14)–(4.19), can be solved by the

Newton method. The direction of the Newton update can be obtained by solving the

following linearized equations:

�½r2
xf ðxÞ � r2

xhðxÞy�r2
xgðxÞðzþwÞ�DxþrxhðxÞDy

þrxgðxÞðDzþ DwÞ ¼ Lx;
ð4:23Þ

rxhðxÞTDx ¼ �Ly; ð4:24Þ
rxgðxÞTDx� Dl ¼ �Lz; ð4:25Þ
rxgðxÞTDxþ Du ¼ �Lw; ð4:26Þ

ZDlþ LDz ¼ �L
m
l ; ð4:27Þ

WDuþ UDw ¼ �Lm
u : ð4:28Þ

The above equations can be rewritten in the matrix form:

H rxhðxÞ rxgðxÞ rxgðxÞ 0 0

rT
x hðxÞ 0 0 0 0 0

rT
x gðxÞ 0 0 0 �I 0

rT
x gðxÞ 0 0 0 0 I

0 0 L 0 Z 0

0 0 0 U 0 W

2
6666666664

3
7777777775

Dx

Dy

Dz

Dw

Dl

Du

2
6666666664

3
7777777775
¼

Lx

�Ly

�Lz

�Lw

�L
m
l

�Lm
u

2
6666666664

3
7777777775
; ð4:29Þ

where H ¼ �½r2
xf ðxÞ � r2

xhðxÞy�r2
xgðxÞðzþ wÞ�.
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The order of the above matrix is ð4r þ mþ nÞ � ð4r þ mþ nÞ. The most compu-

tationally intensive task involves forming the left-hand coefficient matrix of (4.29)

and then solving the equation. To reduce the calculation effort, (4.29) can be

transformed into the following form by exchanging some rows and columns:

L Z 0 0 0 0

0 �I 0 0 rT
x gðxÞ 0

0 0 U W 0 0

0 0 0 I rT
x gðxÞ 0

rxgðxÞ 0 rxgðxÞ 0 H rxhðxÞ
0 0 0 0 rT

xhðxÞ 0

2
6666666664

3
7777777775

Dz

Dl

Dw

Du

Dx

Dy

2
6666666664

3
7777777775
¼

�L
m
l

�Lz

�Lm
u

�Lw

Lx

�Ly

2
6666666664

3
7777777775
:

By simple mathematical manipulation among rows and columns, the above equa-

tion can be rewritten as

I L�1Z 0 0 0 0

0 I 0 0 �rT
x gðxÞ 0

0 0 I U�1W 0 0

0 0 0 I rT
x gðxÞ 0

0 0 0 0 H0 rxhðxÞ
0 0 0 0 rT

x hðxÞ 0

2
66666666664

3
77777777775

Dz

Dl

Dw

Du

Dx

Dy

2
6666666664

3
7777777775
¼

�L�1L
m
l

Lz

�U�1Lm
u

�Lw

L0
x

�Ly

2
6666666664

3
7777777775
; ð4:30Þ

where

L0
x ¼ Lx þrxgðxÞ½L�1ðLm

l þ ZLzÞ þ U�1ðLm
u �WLwÞ�H0

¼ H �rxgðxÞ½L�1Z� U�1W�rT
x gðxÞ;

H0 ¼ H �rxgðxÞ½L�1Z� U�1W�rT
x gðxÞ:

At this stage, major calculation effort of solving (4.30) is the LDLT decomposition

of
H0 rxhðxÞ

rT
xhðxÞ 0

� �
matrix which is of order ðmþ nÞ � ðmþ nÞ, and is much

smaller than the left-hand coefficient matrix of (4.30). The other variables are easily

obtained by back substitution. This approach can be implemented in a very efficient

manner because
H0 rxhðxÞ

rT
x hðxÞ 0

� �
is a highly sparse matrix.

The Newton direction for the kth iteration is obtained by solving (4.30), and the

new approximations for the optimal solution are

x kþ1ð Þ ¼ x kð Þ þ apDx; ð4:31Þ
l kþ1ð Þ ¼ l kð Þ þ apDl; ð4:32Þ
u kþ1ð Þ ¼ u kð Þ þ apDu; ð4:33Þ
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y kþ1ð Þ ¼ y kð Þ þ adDy; ð4:34Þ
z kþ1ð Þ ¼ z kð Þ þ adDz; ð4:35Þ
w kþ1ð Þ ¼ w kð Þ þ adDw; ð4:36Þ

where ap and ad are primal-step length and dual-step length respectively, they can

be set by the following equations to ensure u > 0 and l > 0:

ap ¼ 0:9995 min min
i

�li
Dli

; Dli < 0;
�ui
Dui

; Dui < 0

� �
; 1

� �

ad ¼ 0:9995 min min
i

�zi
Dzi

; Dzi < 0;
�wi

Dwi
; Dwi > 0

� �
; 1

� �
9>>>=
>>>;

i ¼ 1; 2; . . . ; r: ð4:37Þ
The flow chart of the IPM for OPF is shown in Fig. 4.2, with the initialization

including:

1. Set l; u conforming to ½l; u�T > 0

2. Set Lagrangian multipliers z;w; y conforming to ½z > 0; w < 0; y 6¼ 0�T

Calculate Gap

Initialization

Calculate μ

Calculate Δx, Δy, Δl, Δu, Δz, Δw

Calculate pα , dα

Gap < e

maxKk <

not converged

Output optimal
solution and stop

Y

Y

N

N

New approximation for optimal
solution

Fig. 4.2 Flow chart of OPF
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3. Set initial value of variables of the original OPF problem

4. Set s 2 0; 1ð Þ, calculation precision e = 10�6, number of iterations k = 0, and the

maximum number of iterations Kmax = 50.

A five-node power system shown in Fig. 2.6 is used for demonstrating the imple-

mentation of the IPM for the OPF problem. More details and programming tech-

niques can be found in [71].

[Example 1] Solve the OPF problem of a five-node power system shown in

Fig. 2.6.

[Solution] In addition to the parameters shown in Fig. 2.6, the data for the power

flow limits of transmission lines, the output limits of active and reactive sources,

and the fuel cost curves of each generator are listed in Tables 4.1 and 4.2. The data

listed in these tables are in per unit unless otherwise specified. The base power of

the system is 100 MVA, the upper and lower bound of node voltages are 1.1 and 0.9

respectively.

The fuel costs Fi of generators are represented by

Fi ¼ ða21P2
Gi þ a11PGi þ a0iÞ i ¼ 1; 2:

There are five nodes, two generators, and five lines in this system. Accordingly, the

state variables are

~x ¼ y1 V1 y2 V2 y3 V3 y4 V4 y5 V5f g:
The control variables are

~u ¼ PG1 PG2 QR1 QR2f g:
It should be noted that numbering of the active and reactive sources is independent

of numbering of the node that they belong to; for instance, the numbering of the

generator in node 4 is G1 in this example. The total number of variables in this

system is 14:

x ¼ PG1 PG2 QR1 QR2 y1 V1 y2 V2 y3 V3 y4 V4 y5 V5f g:

Table 4.1 Power flow limit of transmission lines

Line number Line terminal Power flow limit

1 1–2 2

2 1–3 0.65

3 2–3 2

4 2–4 6

5 4.5 5

Table 4.2 Parameters of generators

Generator Node Upper bound Lower bound Coefficient of fuel cost curve

Active

power

Reactive

power

Active

power

Reactive

power

a2i a1i a0i

1 4 8 3 1 �3 50.4395 200.4335 1,200.6485

2 5 8 5 1 �2.1 200.550 500.746 1,857.201
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The OPF of this system can be formulated as the following:

1. Objective Function:

minða21P2
G1 þ a11PG1 þ a01Þ þ ða22P2

G2 þ a12PG2 þ a02Þ

2. Constraints: Each node has two power balance equations. Therefore, we have

ten equality constraints for this OPF formulation.

For nongenerator node:

�PDi � Vi

X5
j¼1

VjðGij cos yij þ Bij sin yijÞ ¼ DPi

�QDi � Vi

X5
j¼1

VjðGij sin yij � Bij cos yijÞ ¼ DQi

9>>>>>=
>>>>>;

ði ¼ 1; 2; 3Þ:

For generator node:

X
k2i

PGk � PDi � Vi

X5
j¼1

VjðGij cos yij þ Bij sin yijÞ ¼ DPi

X
k2i

QGk �QDi � Vi

X5
j¼1

VjðGij sin yij � Bij cos yijÞ ¼ DQi

9>>>>>=
>>>>>;

ðk ¼ 1; 2; i ¼ 4; 5Þ;

where k 2 i notes that kth generator belongs to node i, so k ¼ 1 2 4, k ¼ 2 2 5.

There are 14 inequality constraints:

PGi � PGi � PGi ði ¼ 1; 2Þ;
Q

Ri
� QRi � QRi ði ¼ 1; 2Þ;

Vi � Vi � Vi ði ¼ 1; . . . ; 5Þ;
� Pij � Pij � Pij ðfor five linesÞ;

where Pij ¼ ViVjðGij cos yij þ Bij sin yijÞ � V2
i Gij:

Based on the above formulation the left-hand coefficient matrix and right-hand

constant vector of (4.30) can be established as follows.

4.2.3.1 Left-Hand Coefficient Matrix

Left-hand coefficient matrix of (4.30) is made up of four basic parts: the Jacobian

matrix of equality constraints rxhðxÞ, Jacobian matrix of inequality constraints

rxgðxÞ, diagonal matrix L�1Z, U�1W, and Hessian matrix H0. The structures of

these matrices are shown as the following:
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– The Jacobian matrix of equality constraints rxhðxÞ

rxhðxÞ ¼

@h

@PG

@h

@QR

@h

@~x

2
66666664

3
77777775
14�10

:

There are three sub-matrices in rxhðxÞ:

@h

@PG

¼
@DP1

@PG1

@DQ1

@PG1

. . .
@DP5

@PG1

@DQ5

@PG1

@DP1

@PG2

@DQ1

@PG2

. . .
@DP5

@PG2

@DQ5

@PG2

2
664

3
775
2�10

;

where

@DQj

@PGi
¼ 0

@DPj

@PGi
¼ 1 i 2 j

0 i =2 j

�
8>><
>>:

@h

@QR

¼
@DP1

@QR1

@DQ1

@QR1

. . .
@DP5

@QR1

@DQ5

@QR1

@DP1

@QR2

@DP1

@QR2

. . .
@DP5

@QR2

@DP5

@QR2

2
664

3
775
2�10

;

where

@DPj

@QRi
¼ 0

@DQj

@QRi
¼ 1 i 2 j

0 i =2 j

�
8>>><
>>>:

In the above equations, i is the numbering of generators, j is the numbering of

nodes. i 2 j denotes that ith generator belongs to node j.

@h

@~x
¼

@DP1

@y1

@DQ1

@y1
. . .

@DP5

@y1

@DQ5

@y1
@DP1

@V1

@DQ1

@V1

. . .
@DP5

@V1

@DQ5

@V1

..

. . .
. ..

.

@DP1

@y5

@DQ1

@y5
. . .

@DP5

@y5

@DQ5

@y5
@DP1

@V5

@DQ1

@V5

. . .
@DP5

@V5

@DQ5

@V5

2
666666666666664

3
777777777777775
10�10

:

Obviously,
@h

@~x
is the Jacobian matrix of the power flow problem.
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– Jacobian matrix of inequality constraints rxgðxÞ

rgðxÞ ¼

@g1
@PG

@g2
@PG

@g3
@PG

@g4
@PG

@g1
@QR

@g2
@QR

@g3
@QR

@g4
@QR

@g1
@~x

@g2
@~x

@g3
@~x

@g4
@~x

2
66666664

3
77777775
14�14

;

where g1, g2, g3, and g4 denote active power output constraints, reactive

power output constraints, voltage magnitude constraints, and line flow con-

straints, respectively.

@g1
@PG

¼I2�2;
@g1
@QR

¼ 02�2;
@g1
@~x

¼ 010�2

@g2
@PG

¼02�2;
@g2
@QR

¼ I2�2;
@g2
@~x

¼ 010�2

@g3
@PG

¼02�5;
@g3
@QR

¼ 02�5

@g4
@PG

¼02�10;
@g4
@QR

¼ 02�10

@g3
@~x

¼

0 0 . . . 0 0

1 0 . . . 0 0

..

. . .
. ..

.

0 0 . . . 0 0

0 0 . . . 0 1

2
6666664

3
7777775
10�5

In the above equation, only element of row 2� i and column i of matrix @g3=@
~x

are 1 ( i ¼ 1; . . . ; 5), all other elements are 0.

@g4
@~x

¼

@g4;1
@y1

@g4;2
@y1

. . .
@g4;10
@y1

@g4;1
@V1

@g4;2
@V1

. . .
@g4;10
@V1

..

. . .
. ..

.

@g4;1
@y5

@g4;2
@y5

. . .
@g4;10
@y5

@g4;1
@V5

@g4;2
@V5

. . .
@g4;10
@V5

2
666666666666664

3
777777777777775
10�5

The elements in matrix
@g4
@~x

can be calculated by the following equations:

@Pij

@yi
¼ �ViVjðGij sin yij � Bij cos yijÞ;
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@Pij

@yj
¼ ViVjðGij sin yij � Bij cos yijÞ;

@Pij

@Vi
¼ VjðGij cos yij þ Bij sin yijÞ;

@Pij

@Vj
¼ ViðGij cos yij þ Bij sin yijÞ:

– Diagonal matrix L�1Z, U�1W

L�1Z ¼ diagðz1=l1; � � � ; z14=l14Þ;
U�1W ¼ diagðw1=u1; � � � ;w14=u14Þ:

– Hessian matrix H0

H0 ¼ �r2
xf ðxÞ þ r2

xhðxÞyþr2
xgðxÞðzþ wÞ � rxgðxÞ½L�1Z� U�1W�rT

x gðxÞ:

Clearly, this is the most complex component of the left-hand coefficient matrix in

(4.30). Matrix H0 includes four items, the last item rxgðxÞ½L�1Z� U�1W�rT
x gðxÞ

can be obtained by manipulating matrices: rxgðxÞ, L�1Z, and U�1W, which are

already obtained above. The first item is the Hessian matrix of the objective

function r2
xf ðxÞ:

r2
x f ðxÞ ¼

2A2 0 0

0 0 0

0 0 0

2
4

3
5
14�14

;

where A2 is a diagonal matrix with A2ii ¼ a2i (i 2 SG), the coefficient of the fuel

cost curve of the ith generator.

The second term of Hessian matrix H0 is r2
xhðxÞy: the product of the Hessian

matrix of equality constraints and Lagrangian multiplier vector y. It can be

described by

Xn
i¼1

@2DPi

@P2
G

y2i�1þ @2DQi

@P2
G

y2i

 !
@2DPi

@PG@QR

y2i�1 þ @2DQi

@PG@QR

y2i

� �
@2DPi

@PG@
~x
y2i�1þ @2DQi

@PG@
~x
y2i

� �

@2DPi

@QR@PG

y2i�1 þ @2DQi

@QR@PG

y2i

� �
@2DPi

@Q2
R

y2i�1 þ@2DQi

@Q2
R

y2i

 !
@2DPi

@QR@
~x
y2i�1 þ @2DQi

@QR@
~x
y2i

� �

@2DPi

@~x@PG

y2i�1 þ @2DQi

@~x@PG

y2i

� �
@2DPi

@~x@QR

y2i�1 þ @2DQi

@~x@QR

y2i

� �
@2DPi

@~x
2

y2i�1þ@2DQi

@~x
2

y2i

� �

2
66666666664

3
77777777775

¼
02�2 02�2 02�10

02�2 02�2 02�10

010�2 010�2 A10�10

2
4

3
5
14�14

:
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In the above equation, matrix A ¼P5
i¼1

ðy2i�1APi þ y2iAQiÞ, where matrix APi and

AQi are:

APi ¼

@2DPi

@y21

@2DPi

@y1@V1

. . .
@2DPi

@y1@y5

@2DPi

@y1@V5

..

. . .
. ..

.

@2DPi

@V5@y1

@2DPi

@V5@V1

. . .
@2DPi

@V5@y5

@2DPi

@V2
5

2
6666664

3
7777775
:

According to the equation of DPi, the elements in the above matrix are

@2DPi

@y2i
¼ Vi

X
j6¼i

VjðGij cos yij þ Bij sin yijÞ;

@2DPi

@yi@yj
¼ �ViVjðGij cos yij þ Bij sin yijÞ;

@2DPi

@yi@Vi
¼
X
j6¼i

VjðGij sin yij � Bij cos yijÞ;

@2DPi

@yi@Vj
¼ ViðGij sin yij � Bij cos yijÞ; etc:

Similarly, for

AQi ¼

@2DQi

@y21

@2DQi

@y1@V1

. . .
@2DQi

@y1@y5

@2DQi

@y1@V5

..

. . .
. ..

.

@2DQi

@V5@y1

@2DQi

@V5@V1

. . .
@2DQi

@V5@y5

@2DQi

@V2
5

2
6666664

3
7777775
:

It is easy to calculate their elements, for example:

@2DQi

@y2i
¼ Vi

X
j 6¼i

VjðGij sin yij � Bij cos yijÞ;

@2DQi

@yi@yj
¼� ViVjðGij sin yij � Bij cos yijÞ;

@2DQi

@yi@Vi
¼�

X
j 6¼i

VjðGij cos yij þ Bij sin yijÞ;
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@2DQi

@yi@Vj
¼ �ViðGij cos yij þ Bij sin yijÞ; etc:

Finally, we obtain the elements of matrix A as

X5
k¼1

@2DPk

@y2i
y2k�1 þ @2DQk

@y2i
y2k

 !
¼ Vi

X
j 6¼i

Vj½Gijðcos yijy2i�1 þ sin yijy2i

þ cos yijy2j�1 � sin yijy2jÞ
þ Bijðsin yijy2i�1 � cos yijy2i
� sin yijy2j�1 � cos yijy2jÞ�;

X5
k¼1

@2DPk

@yi@Vi
y2k�1 þ @2DQk

@yi@Vi
y2k

� �
¼
X
j6¼i

Vj½Gijðsin yijy2i�1 � cos yijy2i

þ sin yijy2j�1 þ cos yijy2jÞ
þBijð� cos yijy2i�1 � sin yijy2i
þ cos yijy2j�1 � sin yijy2jÞ�;

X5
k¼1

@2DPk

@yi@yj
y2k�1 þ @2DQk

@yi@yj
y2k

� �
¼ ViVj½Gijð� cos yijy2i�1 � sin yijy2i � cos yijy2j�1

þ sin yijy2jÞ þ Bijð� sin yijy2i�1 þ cos yijy2i
þ sin yijy2j�1 þ cos yijy2jÞ�;

X5
k¼1

@2DPk

@yi@Vj
y2k�1 þ @2DQk

@yi@Vj
y2k

� �
¼ Vi½Gijðsin yijy2i�1 � cos yijy2i þ sin yijy2j�1

þ cos yijy2jÞ þ Bijð� cos yijy2i�1 � sin yijy2i
þ cos yijy2j�1 � sin yijy2jÞ�;

X5
k¼1

@2DPk

@V2
i

y2k�1 þ @2DQk

@V2
i

y2k

� �
¼ �2ðGiiy2i�1 � Biiy2iÞ;

X5
k¼1

@2DPk

@Vi@yi
y2k�1 þ @2DQk

@Vi@yi
y2k

� �
¼
X
j6¼i

Vj½Gijðsin yijy2i�1 � cos yijy2i

þ sin yijy2j�1 þ cos yijy2jÞ
þ Bijð� cos yijy2i�1 � sin yijy2i
þ cos yiky2j�1 � sin yijy2jÞ�;
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X5
k¼1

@2DPk

@Vi@yj
y2j�1 þ @2DQk

@Vi@yj
y2k

� �
¼ Vj½Gijð� sin yijy2i�1 þ cos yijy2i

� sin yijy2j�1 � cos yijy2jÞþ Bijðcos yijy2i�1

þ sin yijy2i � cos yijy2j�1 þ sin yijy2jÞ�;

X5
k¼1

@2DPk

@Vi@Vj
y2k�1 þ @2DQk

@Vi@Vj
y2k

� �
¼� ½Gijðcos yijy2i�1 þ sin yijy2i

þ cos yijy2j�1 � sin yijy2jÞþ Bijðsin yijy2i�1

� cos yijy2i � sin yijy2j�1 � cos yijy2jÞ�;

The third term of Hessian matrix H0 is r2
xgðxÞðzþ wÞ. Assume that zþ w ¼ c,

then:

r2
xgðxÞðzþ wÞ ¼r2

xgðxÞc ¼
X2
i¼1

@2g1i

@P2
G

ci
@2g1i

@PG@QR

ci
@2g1i
@PG@~x

ci

@2g1i
@QR@PG

ci
@2g1i

@Q2
R

ci
@2g1i
@QR@

~x
ci

@2g1i
@~x@PG

ci
@2g1i
@~x@QR

ci
@2g1i

@~x2
ci

2
6666666664

3
7777777775

þ
X2
i¼1

@2g2i

@P2
G

c2þi
@2g2i

@PG@QR

c2þi
@2g2i
@PG@~x

c2þi

@2g2i
@QR@PG

c2þi
@2g2i

@Q2
R

c2þi
@2g2i
@QR@

~x
c2þi

@2g2i
@~x@PG

c2þi
@2g2i
@~x@QR

c2þi
@2g2i

@~x2
c2þi

2
6666666664

3
7777777775

þ
X5
i¼1

@2g3i

@P2
G

c2þ2þi
@2g3i

@PG@QR

c2þ2þi
@2g3i
@PG@~x

c2þ2þi

@2g3i
@QR@PG

c2þ2þi
@2g3i

@Q2
R

c2þ2þi
@2g3i
@QR@

~x
c2þ2þi

@2g3i
@~x@PG

c2þ2þi
@2g3i
@~x@QR

c2þ2þi
@2g3i

@~x2
c2þ2þi

2
6666666664

3
7777777775

þ
X5
i¼1

@2g4i

@P2
G

c2þ2þ5þi
@2g4i

@PG@QR

c2þ2þ5þi
@2g4i
@PG@~x

c2þ2þ5þi

@2g4i
@QR@PG

c2þ2þ5þi
@2g4i

@Q2
R

c2þ2þ5þi
@2g4i
@QR@

~x
c2þ2þ5þi

@2g4i
@~x@PG

c2þ2þ5þi
@2g4i
@~x@QR

c2þ2þ5þi
@2g4i

@~x2
c2þ2þ5þi

2
6666666664

3
7777777775
:

4.2 Optimal Power Flow 215



It is obvious that the first, second, and third items in the above expression are zero

matrices. The elements of the fourth item can be obtained in a similar way to the

above.

4.2.3.2 Right-Hand Constant Vector

Vectors Ly, Lz, Lw, L
m
l , and Lm

u can be calculated by using (4.15)–(4.19), while

vector L0
x can be described as the following:

L0
x ¼ @L

@x
¼ rxf ðxÞ � rxhðxÞy�rxgðxÞðzþ wÞ

þ rxgðxÞ½L�1ðLm
l þ ZLzÞ þ U�1ðLm

u �WLwÞ�;

where the gradient vector of objective function is

rx f ðxÞ ¼

@f

@PG

@f

@QR

@f

@~x

2
6666664

3
7777775
14�1

¼

2a21PG1 þ a11

2a22PG2 þ a12

0

0

2
6664

3
7775:

The other terms of L0
x are ready to be calculated based on the Jacobian matrices of

the equality and inequality constraints discussed above.

Up to now, all the formulas that may be used in this algorithm are enumerated.

The five-node system shown in Fig. 2.6 now is used to numerically demonstrate

the process for searching the solution of OPF problem. It is assumed that the power

output of generators at node 4 and 5 are adjustable. The initial values of the

variables are set as: nonslack node voltages are Vi ¼ 1, yi ¼ 0 (i ¼ 1; 2; 3; 4); the
slack node voltage is V5 ¼ 1:05, y5 ¼ 0. The active and reactive power outputs of

sources are set to the average value between their upper bound and lower bound.

Slack variables are li ¼ 1 and ui ¼ 1 (i ¼ 1; . . . ; 14), Lagrangian multipliers are

zi ¼ 1, wi ¼ �0:5 (i ¼ 1; . . . ; 14), y2i�1 ¼ 1E� 10, and y2i ¼ �1E� 10

(i ¼ 1; 2; 3; 4; 5). Based on the flow chart shown in Fig. 4.2, the optimal solution

is reached after 17 iterations with tolerance e being 10�6. The value of Lx, Ly, Lz,

and Lw in the first iteration are listed in Tables 4.3–4.6.

The corrections of node voltages, active, and reactive output power quantities at

each iteration are listed in Tables 4.7 and 4.8.

The change of dual gap in the iteration process is shown in Fig. 4.3, which

demonstrates the convergence characteristic of IPM for OPF problems.

Comparisons between the OPF solution and conventional power flow are shown

in Tables 4.9–4.11. From Table 4.9 we find that the power output of generator at

node 4 increased, and that of generator in node 5 decreased because the fuel cost of
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the former is lower than that of the latter. To satisfy the voltage magnitude

constraint of node 1, the network losses and the reactive output increased. Never-

theless, the total fuel cost in OPF solution decreases $243.76.

If the active power output of generator in node4 is fixed at 5.0, thenOPF can beused

as a tool to decrease network loss through reactive power optimization. The results of

such optimization are shown in Tables 4.12–4.14. From Table 4.12 we find that the

network loss decreases 1.78 MW, which results in $27.27 saving of fuel cost. At the

same time, the voltage magnitude of node 1 is improved to 0.9129 (see Table 4.13).

4.3 Application of OPF in Electricity Market

4.3.1 Survey

As mentioned before, the main aim of the OPF is to determine the optimal steady-

state operation of a power system, which simultaneously minimizes the value of a

chosen objective function and satisfies certain physical and operating constraints.

Thus the economic dispatch (ED) and power flow (PF) calculation have been

ideally integrated into OPF problem. OPF is a constrained NLP with both active

and reactive power variables, which implements the integration of economics and

Table 4.3 Value of Lx after the first iteration

Lx1 Lx2 Lx3 Lx4 Lx5 Lx6 Lx7
653.889 2305.1960 �0.5000 �0.5000 0 �0.5000 0

Lx8 Lx9 Lx10 Lx11 Lx12 Lx13 Lx14
�0.5000 0 �0.5000 0 �0.5000 0 �0.5000

Table 4.6 Value of Lw after the first iteration

Lw1 Lw2 Lw3 Lw4 Lw5 Lw6 Lw7 Lw8 Lw9 Lw10
�2.500 �2.500 �2.000 �2.550 0.900 0.950 0.900 0.900 0.900 �1.000

Lw11 Lw12 Lw13 Lw14 Lw15 Lw16 Lw17 Lw18 Lw19
�1.000 0.350 0.350 �1.000 �1.000 �5.000 �5.000 �4.000 �4.000

Table 4.4 Value of Ly after the first iteration

Ly1 Ly2 Ly3 Ly4 Ly5
4.5000 �3.1746 4.5000 �1.9667 �1.6000

Ly6 Ly7 Ly8 Ly9 Ly10
�0.5500 �3.700 2.0490 �2.000 2.5234

Table 4.5 Value of Lz after the first iteration

Lz1 Lz2 Lz3 Lz4 Lz5 Lz6 Lz7 Lz8 Lz9 Lz10
2.500 2.500 2.000 2.550 �0.900 �0.850 �0.900 �0.900 �0.900 1.000

Lz11 Lz12 Lz13 Lz14 Lz15 Lz16 Lz17 Lz18 Lz19
1.000 �0.350 �0.350 1.000 1.000 5.000 5.000 4.000 4.000
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security of the full power system. Transforming the reliability and quality of power

supply into corresponding economic index OPF can realize optimization of source

location and reduction of generation and transmission cost.

The emerging competitive electricity market brings more requirements and

challenges to OPF. In this section we will briefly review some important application

of extended OPF techniques in the deregulated electricity market, such as energy

and ancillary market pricing, transmission pricing, congestion management, and

available transmission capacity evaluation.

Table 4.7 Corrections of node voltages

Iteration

number

Dy1 DV1 Dy2 DV2

1 1.578 � 10–1 4.392 � 10–1 6.724 � 10–1 5.668 � 10–1

2 �1.508 � 10–1 8.101 � 10–1 �5.343 � 10–1 3.873 � 10–1

3 �3.494 � 10–4 �3.101 � 10–1 7.388 � 10–2 �2.867 � 10–1

4 �2.866 � 10–2 �3.042 � 10–1 3.188 � 10–2 �2.326 � 10–1

5 �3.948 � 10–2 �2.880 � 10–1 1.980 � 10–2 �1.623 � 10–1

6 �4.262 � 10–2 �2.322 � 10–1 1.105 � 10–3 �1.615 � 10–1

7 �2.439 � 10–2 �4.229 � 10–2 �7.738 � 10–3 �1.010 � 10–2

8 �7.035 � 10–3 �9.491 � 10–3 �2.730 � 10–3 �2.328 � 10–3

9 �5.185 � 10–3 2.251 � 10–3 �5.593 � 10–3 �2.221 � 10–3

10 �6.356 � 10–3 �3.512 � 10–5 �9.307 � 10–3 6.195 � 10–3

11 �4.284 � 10–2 2.069 � 10–3 �6.595 � 10–2 �2.035 � 10–3

12 �4.046 � 10–2 1.932 � 10–3 �6.229 � 10–2 �1.932 � 10–3

13 �1.846 � 10–2 7.766 � 10–4 �2.852 � 10–2 �7.766 � 10–4

14 �5.974 � 10–4 3.890 � 10–7 �9.428 � 10–4 �3.830 � 10–7

15 �9.147 � 10–7 �1.847 � 10–9 �1.432 � 10–7 6.73 � 10–10

16 1.507 � 10–9 �1.92 � 10–10 2.454 � 10–7 1.56 � 10–10

17 1.99 � 10–10 �1.94 � 10–11 3.21 � 10–10 1.58 � 10–11

Iteration

number

DV3 Dy4 DV4 DV5

1 4.444 � 10–1 7.727 � 10–1 4.637 � 10–1 3.195 � 10–1

2 1.185 � 100 �5.874 � 10–1 3.009 � 10–1 1.194 � 100

3 �9.723 � 10–2 8.757 � 10–2 �2.600 � 10–1 �3.064 � 10–2

4 �1.804 � 10–1 4.053 � 10–2 �2.020 � 10–1 �1.361 � 10–1

5 �2.549 � 10–1 2.432 � 10–2 �1.285 � 10–1 �2.303 � 10–1

6 �1.469 � 10–1 5.845 � 10–3 �1.371 � 10–1 �1.173 � 10–1

7 �1.812 � 10–2 �7.739 � 10–3 �4.859 � 10–3 �1.298 � 10–2

8 �5.358 � 10–4 �2.734 � 10–3 �1.305 � 10–3 9.482 � 10–4

9 1.783 � 10–2 �5.521 � 10–3 �2.950 � 10–3 1.957 � 10–2

10 2.122 � 10–5 �1.045 � 10–2 6.650 � 10–3 �4.706 � 10–4

11 2.206 � 10–3 �6.978 � 10–2 �3.451 � 10–3 �2.184 � 10–3

12 2.082 � 10–3 �6.592 � 10–2 �3.259 � 10–3 �2.040 � 10–3

13 9.166 � 10–4 �3.023 � 10–2 �1.306 � 10–3 �8.197 � 10–4

14 2.149 � 10–5 �1.009 � 10–3 8.609 � 10–7 �4.108 � 10–7

15 3.474 � 10–8 �1.530 � 10–6 4.715 � 10–9 3.171 � 10–9

16 9.749 � 10–11 2.590 � 10–9 2.353 � 10–10 3.204 � 10–10

17 8.141 � 10–12 3.398 � 10–10 2.357 � 10–11 3.233 � 10–11
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The spot pricing of electricity was established by Scheweppe et al. [72] in 1988.

In their work, the concept of marginal price of the microeconomics has been

extended to power systems. The spot pricing idea stresses on that price of electricity

Table 4.8 Corrections of active and reactive power outputs of generators

Iteration

number

Correction of active power output Correction of reactive power output

DPG1 DPG2 DQG1 DQG2

1 1.868 � 100 �3.568 � 100 �4.225 � 10–1 �6.253 � 10–1

2 1.926 � 10–2 �7.906 � 10–1 �6.139 � 100 3.959 � 100

3 5.205 � 10–1 �5.646 � 10–1 1.411 � 100 2.726 � 100

4 1.121 � 10–1 �1.923 � 10–1 1.793 � 100 1.442 � 100

5 �3.941 � 10–2 �3.246 � 10–2 2.107 � 100 2.068 � 10–1

6 �6.956 � 10–2 �1.318 � 10–2 1.357 � 100 7.985 � 10–1

7 �7.135 � 10–3 1.597 � 10–2 1.997 � 10–1 6.519 � 10–2

8 �2.662 � 10–3 6.659 � 10–3 3.086 � 10–2 4.090 � 10–2

9 �6.003 � 10–3 7.330 � 10–3 �9.541 � 10–2 1.275 � 10–1

10 �1.554 � 10–3 �3.253 � 10–3 3.206 � 10–2 �3.285 � 10–2

11 �3.016 � 10–1 2.273 � 10–1 �1.653 � 10–1 �1.651 � 10–1

12 �2.853 � 10–1 2.156 � 10–1 �1.550 � 10–1 �1.546 � 10–1

13 �1.323 � 10–1 1.038 � 10–1 �6.626 � 10–2 �6.307 � 10–2

14 �4.717 � 10–3 4.584 � 10–3 �1.069 � 10–4 �2.733 � 10–4

15 �7.174 � 10–6 6.991 � 10–6 9.323 � 10–9 �3.002 � 10–7

16 1.217 � 10–8 �8.857 � 10–9 7.474 � 10–9 8.755 � 10–9

17 1.596 � 10–9 �1.251 � 10–9 7.566 � 10–10 9.026 � 10–10
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Fig. 4.3 Convergence performance of IPM for OPF problem

Table 4.9 Outputs of each active and reactive source

Generator index Node Active power
output

Reactive power
output

Fuel cost ($)

OPF PF OPF PF OPF PF

1 4 5.5056 5.0000 1.7780 1.8311 3,833.06 3,463.80

2 5 2.1568 2.5794 2.6194 2.2994 3,870.13 4,483.15

Total 7.6624 7.5794 4.3974 4.1305 7,703.19 7,946.95
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will vary with different time and different space. Theoretically, the spot price can

improve production efficiency and yield maximum social benefit. Due to the

historical limitation, this model cannot be directly applied in practical system in

despite of rigorous mathematic provenance [73, 74].

The spot pricing theory based on OPF model is developed following develop-

ment of OPF technique. Ray and Alvarado [75] use a modification of OPF model to

analyze the effects of spot pricing policies. This is the first application of OPF for

Table 4.11 Power flow in each branch

Line
number

Terminal
node

Line power

Pij Pji

OPF PF OPF PF

1 1–2 �1.6064 �1.4662 1.7347 1.5845

2 1–3 �0.0064 �0.1338 �0.0203 0.1569

3 2–3 1.7709 1.4155 �1.5635 �1.2774

4 2–4 �5.5056 �5 5.5056 5

5 4.5 �2.1568 �2.5794 2.1568 2.5794

Table 4.10 Voltage magnitude and angle of each node

Node Voltage magnitude Voltage angle (radian)

OPF PF OPF PF

1 0.90000 0.8622 �0.00697 �0.08340

2 1.10000 1.0779 0.40491 0.31160

3 1.08175 1.0364 �0.057126 �0.07473

4 1.06970 1.05000 0.47867 0.31160

5 1.10000 1.05000 0 0

Table 4.12 Active and reactive outputs of generators

Generator index Node Active power

output

Reactive power

output

Fuel cost ($)

OPF PF OPF PF OPF PF

1 4 5.0000 5.0000 2.3585 1.8311 3,463.80 3,463.80

2 5 2.5616 2.5794 1.5381 2.2994 4,455.88 4,483.15

Total 7.5616 7.5794 3.8966 4.1305 7,919.68 7,946.95

Table 4.13 Voltage magnitude and angle of each node

Node Voltage magnitude Voltage angle (radian)

OPF PF OPF PF

1 0.9129 0.8622 �0.06917 �0.0834

2 1.1000 1.0779 0.30003 0.31160

3 1.0855 1.0364 �0.06787 �0.07473

4 1.0669 1.0500 0.36718 0.38123

5 1.0960 1.0500 0 0
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spot pricing analysis. In paper [76], spot pricing model is extended by introducing

reactive power pricing and reveals that lp and lq, Lagrangian multipliers

corresponding to node power balance equations in OPF, represent the marginal

costs of node power injections, which have the same economic meanings as active

and reactive spot prices, respectively. The OPF technique becomes more promising

in spot pricing calculation based on these works.

The ancillary services include services such as operating reserves, frequency

control, loss compensation, energy imbalances, reactive power, black-start capabil-

ity, etc. Siddiqi and Baughman [77] extend the reliability differentiated pricing

(RDP) model to derive an optimal price for spinning reserve and an optimal level of

spinning reserve from a social welfare point of view. Rather than incorporating a

minimum spinning reserve constraint, RDP model includes customer’s outage costs

into the overall objective function to reflect the idea that outages created by

insufficient generation or transmission actually cause a loss of welfare. Zobian

and llic [78] focus on the ancillary service of energy imbalance compensation.

Considering most ancillary services and incorporating constraints on power quality

and environment, an advanced pricing prototype is introduced in [79, 80], which

combines the dynamic equations for load–frequency control with the static equa-

tions of constrained OPF. Xie et al. [81] develop OPF pricing formulation with

more system operation constraints, and the primary-dual interior point algorithm is

employed to solve it. This chapter reveals that lp and lq not only have the similar

economic meanings as spot price, but also can be further decomposed into four

components reflecting the effects of various ancillary services: the first part is the

marginal generation cost; the second part is the loss compensation cost; the third

part is concerned with the coupling between active and reactive power; and the last

part is associated with security cost, for active power it only represents congestion

alleviation cost, for reactive power, it also includes voltage support cost.

Transmission open access plays a key role in making the competitive electricity

market work. An important step of power industry restructuring is the transmission

open access. However, as a natural monopoly, the transmission sector remains being

more or less regulated to permit a competitive environment for generation and retail

services. The operating and planning for transmission network and the pricing of

transmission services are still retained as challenge on both theoretical and practical

aspects in the development of electricity markets. Many models and algorithms are

Table 4.14 Power flow in each branch

Line

number

Terminal

node

Line power

Pij Pji

OPF PF OPF PF

1 1–2 �1.4777 �1.4662 1.5840 1.5845

2 1–3 �0.1223 �0.1338 0.1448 0.1569

3 2–3 1.4160 1.4155 �1.2832 �1.2774

4 2–4 �5 �5 5 5

5 4.5 �2.5616 �2.5794 2.5616 2.5794
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developed to account for transmission pricing. Yu and Ilic, and Wang et al. [82, 83]

are concerned with transmission right evaluation and action. In [82], the idea of

priority insurance contracts is introduced for selling long-term transmission right. A

customer is obligated to obtain a transmission right before implementing the long-

term bilateral transaction. The main difficulty with the physical right is its physical

interpretation. The financial transmission right (FTR) path is defined by the trans-

mission reservation from the point where the power is scheduled to be injected into

the grid (source) to the point that is scheduled to be withdrawn (sink). Unlike the

traditional idea for transmission pricing, independent system operators (ISO) are

not required to know the flow paths of the transactions. A FTR’s economic value is

based on the megawatt reservation level multiplied by the difference between the

location marginal price (LMP) of the source and sink points. In [83], the impacts of

controlling different FACTS devices on FTR action are taken account for.

Security and reliability are the major concerns in the deregulated and unbundled

electricity supply industry due to the increased number of market participants and

the changing demand patterns. Congestion management has been debated much for

increasing competition electricity power generation in both pool and bilateral

dispatch models.

Congestion can be corrected by applying controls (corrective actions) such as

phase shifter [85], tap transformers and FACTS devices [86]. A fast relief of

congestion may be possible by removing congested lines to prevent severe damages

to system [84]. All these strategies are based on physical principle to control

network flows to increase trade possibilities. Physical curtailment without any

economic considerations could and should be considered as the last resort option

when it is impossible to wait for the system users to respond according to their

economic criteria. In the power market environment, congestion management focus

on increasing or curtailing transaction based on economic signal to alleviate

overload of transmission lines. Various congestion management schemes for the

different restructuring paradigms, different policy system and different technique

level have appeared, such as transaction curtailment, transmission capacity reser-

vation, and system redispatch. In the real world in order to manage transmission

congestion efficiently, market participants must have freedom to engage in various

mechanisms to protect their business. The best solution might always be a combi-

nation of several of the basic methods for different time scales. A framework for

real-time congestion management under a market structure similar to the newly

proposed UK trading arrangement is presented in [87]. Based on the uplift bid, not

only resources in balancing market but also some bilateral contracts can be dis-

patched if necessary to relief congestion. The linearized model of a modified OPF is

proposed to implement such a framework (see details in Sect. 4.3.2).

A new phenomenon in power market is a sudden increase interest in available

transfer capabilities (ATC) evaluation. Investment in new transmission facilities

is slow, hampered by environmental constraints and economic considerations.

This has led to a more intensive use of the existing transmission corridors. These

aspects have motivated the development of methodologies to evaluate the ATC and

transmission margins. On technique views, ATC can instruct system operators
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controlling power system safely and reliably. From economical viewpoint, market

participants can make decisions to obtained maximal benefit based on ATC infor-

mation. ATC is a measure of the transfer capability remaining in the physical

transmission network for future commercial activity over and above already com-

mitted uses. Mathematically, ATC can be obtained by solving an optimization

problem. Hamoud [88] describes a method for determining the ATC between any

two locations in a transmission system (single area or multiarea) under a given set

of selected transmission operating conditions. Linear programming can be used to

solve this problem when network is simulated by a DC flow model. A few recent

attempts have been made to include AC power flow constraints because reactive

power or voltage level has a great impact on transmission limit. In [89], based on

the OPF formulation, a neural network approach is proposed to the problem of real

power transfer capability calculations. In [90], a combined ‘‘OPF + MAT (maxi-

mum allowable transfer)’’ scheme is suggested for computing online power system

ATC. The cycle:

(1) Identifying the dangerous contingencies and corresponding critical machines

(2) Computing active power decrease on each one of them

(3) Reallocating (almost) the same amount of power among noncritical machines,

is repeated until stabilizing all dangerous contingencies, so as to ensure maxi-

mum power transfer on the tie–lie of concern.

OPF techniques enter the scene with their explicit recognition of network charac-

teristic within the broader context of power system optimization. As mentioned

above, OPF problems tailored towards special-purpose applications are defined by

selecting different objective function to be minimized, different sets of controls and

different sets of constraints. The potential applications of OPF in power markets are

shown in Table 4.15.

4.3.2 Congestion Management Method Based on OPF

Power markets with different models have been developed in many countries all

over the world in the last decade. Generally speaking, these models can be sum-

marized as pool model or bilateral contract model. Congestion management is one

of the most important tasks of the independent system operator (ISO) in the market.

No matter which model is adopted, the best way to solve the problem of real-time

congestion management under a deregulated environment is to establish a special

real-time balancing market (RBM) and to encourage more market participants to

take part in the competition in such a balancing market.

In power markets, there is a balance between the competition in power market

and the real-time dispatch of power system. With the trend that more and more

bilateral contracts are signed to trade electricity, the new problem might be what we

can do if the resources in the balancing market are not enough to eliminate network

congestion. When the congestion problem is very severe, not only the contracts in

pool balancing market but also some bilateral contracts should be rescheduled.
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Moreover, demand side participants are encouraged to take an active role in the

competition of real-time balancing market. An OPF can be used to solve this

problem. The task is to minimize the absolute MW of rescheduling, in light of

the cost which is determined by the submitted incremental bids in balancing market

and the compensative prices submitted by participants of bilateral contracts.

The simplified curve of bidding prices of a generator at node i is given in

Fig. 4.4, in which bþi and b�i are incremental and decremental bidding prices,

respectively; bi;ji is the curtailment price of bilateral contract between node i and

j; P0
i is its current output; P

i;j
i is the total amount of bilateral contracts between i and

j. Pmin
i and Pmax

i are the power output lower and higher limit of the resource at node

i, respectively. From this curve, it can be seen that the incremental bidding price is

higher than decremental bidding price while the curtailment price of bilateral

contracts is much higher than other two. The reason is that increasing output

needs more fuel cost, and the curtailment of a bilateral contract will affect the

financial interests of both participants. The bidding price curves of customers have

the similar form as that of the generators.

Table 4.15 Applications of OPF in power markets

Application in

electricity
markets

Extended OPF problems

Objective function

Network

model

Special

constraints Special controls

Spot market

clearing and

pricing

Maximize the social

welfare

DC/AC Ramp-rate

constraints

and reserve-
related

constraints

Supply offers and

demand bids

(mostly piece-wise
linear bidding

functions)

Transmission

pricing

Minimize generation

cost/maximize

consumer net
benefit

DC/AC Contingency

constraints

Generation, load and

FACTS devices

Congestion
management

Minimize the cost of
congestion

management

DC/AC Operating
constraints,

contingency
constraints,

stability

constraints

Incremental and

decremental
adjustment,

FACTS devices,
curtailment on

bilateral contracts

ATC

evaluation

Maximize the TTC AC Contingency,

stability,
stochastic

operating

constraints

FACTS devices

Ancillary

services

procurement

Minimize the cost of

ancillary services

DC Reserve-related

constraints

Reserve capacity from

generation and

demand

Transmission

right
allocation

Maximize the

revenue of
transmission

rights auction

DC Bids-related,

contingency
constraints

Injections and

withdraws for bids
of transmission

rights, FACTS

devices

224 4 Power Flow Analysis in Market Environment



The congestion management model can be written as

Objective Function:

min
XN
i¼1

max½bþi ðP̂i � P̂0
i Þ; 0; b�i ðP̂0

i � P̂iÞ� þ
XN
i¼1

XN
j¼1

bi;ji ðPi;j
i � Pi;j0

i Þ; ð4:38Þ

where N is the number of total nodes. In the objective function, the first item

represents the total adjustment cost of generators and load in RBM. The second

item notes the total adjustment cost of bilateral contract. It must be noted that P
_

i in

(4.38) is the difference between the total output power and the output power of the

bilateral contract in node i, which is not equal to the Pi in Fig. 4.4, so is P̂0
i . Their

relationship can be written as

P̂i ¼ Pi �
XN

j¼1; j 6¼i

Pi;j
i : ð4:39Þ

Constraints:

For generator nodes (i 2 SG)

P̂i þ
XN
j ¼ 1

j 6¼ i

P
i; j
i � ½V2

i Gii þ Vi

XN
j 2 i

j 6¼ i

VjðGij cos yij þ Bij sin yijÞ� ¼ 0; ð4:40Þ

Qi � ½�V2
i Bii þ Vi

XN
j 2 i

j 6¼ i

VjðGij sin yij � Bij cos yijÞ� ¼ 0; ð4:41Þ

Pmin
i � P̂i þ

XN
j¼1; j 6¼i

Pi;j
i � Pmax

i ; ð4:42Þ

ib

iP

+
ib

−
ib

min
iP 0

iP
max
iPji

iP ,

ji
ib ,

Fig. 4.4 Curve of bidding price in

Balancing Market
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0 �
XN

j¼1; j 6¼i

Pi;j
i � P0

i ; ð4:43Þ

0 � P̂i � Pmax
i ; Qmin

i � Qi � Qmax
i : ð4:44Þ

For load nodes (i 2 SL):

V2
i Gii þ Vi

XN
j 2 i

j 6¼ i

VjðGij cos yij þ Bij sin yijÞ þ P̂i þ
XN
j ¼ 1

j 6¼ i

Pi;j
i ¼ 0; ð4:45Þ

� V2
i Bii þ Vi

XN
j 2 i

j 6¼ i

VjðGij sin yij � Bij cos yijÞ þ Qi ¼ 0; ð4:46Þ

0 � P̂i þ
XN
j ¼ 1

j 6¼ i

Pi;j
i � P0

i : ð4:47Þ

For all nodes ði 2 NÞ:

Vmin
i � Vi � Vmax

i ; ð4:48Þ

Pij ¼ V2
i Gii � ViVjðGij cos yij þ Bij sin yijÞ � Pmax

ij ; ð4:49Þ

where SG is the set of generator nodes; SL is the set of load nodes; Qi is the total

reactive output of node i; Qmin
i and Qmax

i are the lower limit and higher limit of

reactive output of node i, respectively; Vi, yi are the magnitude and angle of voltage

of node i, yij ¼ yi � yj; Vmin
i and Vmax

i are the lower limit and higher limit of voltage

magnitude of node i; Gij, Bij are the real and imaginary part of transfer admittance

between nodes i and j.
The objective is to minimize the cost of congestion management. All the

resources that are adjusted to mitigate congestion will be paid by ISO. P̂, Pi;j
i , and

Qi are treated as independent control variables during the optimization process; Vi

and yi are dependent variables. Equations (4.39)–(4.41) and (4.49) are power

balance equations for generator nodes and load nodes, respectively. Equations

(4.47), (4.48), (4.43), and (4.44) are variable inequality constraint and functional

inequality constraint, (4.45) is branch power flow constraint.

To solve this optimization problem more reliably and efficiently, the OPF is

implemented with an interior point approach (see Sect. 4.2.3 for the detail). The

steps of this congestion management process are listed as follows.
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Step 1: Original generation schedule is produced through bilateral contract market

(BCM) and pool day-ahead auction market (PDAM).

Step 2: Both generators and consumers submit their incremental and decremental

energy bids to the ISO. Newton power flow is run to get the initial state of the

power system.

Step 3: If there is any congestion in the network? If yes, go to Step 4, otherwise, stop
program and output ‘‘There is no congestion in the system, it is a feasible

generation schedule!’’.

Step 4: Run OPF to solve the problem of congestion management.

Step 5: Obtain the optimal control strategy for congestion management, and stop.

[Example 2] A five-node test system is used to demonstrate the procedure of

congestion management. The network and the power flow in the nominal condition

are shown in Fig. 4.5. In this system there are two generators which are G1 at node 5

and G2 at node 4, and three loads which are L1 at node 1, L2 at node 2, and L3 at

node 3. One bilateral contract of 300 MW is signed between G1 and L3 in BCM. All

the other electricity supplies in this system are arranged by ISO in PAM.

[Solution] In RBM, G1, G2, and L2 submit their incremental and decremental

bids to the ISO to take part in the real-time dispatching competition. The bilateral

contract P3;4 also submits a curtailment price b3;4 to ISO:

bþG1 ¼ 20 $MW�1; b�G1 ¼ 8 $MW�1;

bþG2 ¼ 15 $MW�1; b�G2 ¼ 5 $MW�1;

b�L2 ¼ 30 $MW�1;

P3;4 ¼ 300MW; b3;4 ¼ 50 $MW�1:

5004 3 52 14 258

16

13

G1

500

128

158

146

L1
160

L3
370

L2
200

G2

258

1

Fig. 4.5 Five-node system example of congestion management
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From above bidding prices, it can be found that the price for adjustment of loads is

higher than that of generators, because the latter are more flexible to adjust. The

curtailment price of bilateral contract is rather high because both sides of the

contract are apt not to change their agreement. Therefore, only in the case of very

severe situation when the balance market cannot remove the congestion, adjustment

of bilateral contracts may be considered.

Case 1: Congestion management without changing bilateral contracts. Assume

that the MW limit on line 2–3 is reduced to 100 MW due to some reason. To

mitigate this congestion, the best solution is decreasing the output of G1 to 441.8

MW and increasing the output of G2 to 308 MW. As a result, the active power flow

of line 2–3 is reduced to 99.67 MW. The total cost of this adjustment is $1,253. The

bilateral contract P3;4 is carried out without curtailment because the available

resource of G1 in RBM is enough to eliminate the congestion.

Case 2: Congestion management with changing bilateral contract. Assume that

the MW limit on transformer 4–2 is reduced to 250 MW. Obviously, the output of

G1 should be reduced to 250 MW. But there is 300 MW of the bilateral contract P3;4

between G1 and L3, the curtailment to P3;4 must be done in this case. The best

strategy to solve this problem is as the following:

l Reducing 200 MW from the output of G1 in RBM
l Curtailing 50 MW from bilateral contract P3;4, both G1 and L3 will be reduced

50 MW. Thus the power output of G1 is totally used to satisfy the bilateral

contract between G1 and L3
l Increasing the output of G2 to 442.5 MW

The total cost of this adjustment is $7,192.

Case 3: Congestionmanagementwith curtailing load. Inboth above twocases, load

need not to be curtail in congestion management. When congestion becomes more

severe, load adjustmentmust be done.Assume that the transmission limit on line 2–3 is

reduced to 100 MW and the MW limit on branch 4–2 is reduced to 250 MW due to

some reason. To mitigate this congestion, the cheapest solutions are as follows:

l Decreasing the output of G2 to 392.9 MW
l Curtailing 50 MW from bilateral contract P3;4, which means both G1 and L3 will

be reduced 50 MW
l Limiting the power output of G2 at 250 MW
l Decreasing load L2 to 47.4 MW

The total cost of this strategy in this case is $7,385.

4.4 Power Flow Tracing

In the market environment, transmission becomes a special business that provides

services to independent power producers (IPPs) and electricity suppliers, or

provides wheeling services to other utilities. The IPPs, suppliers and utilities
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become the users of transmission services. Therefore, there is a growing need to

identify the items and cost of transmission services. In such a situation, dispatchers

should not only supervise power flow of the system, but also answer questions such

as ‘‘how much use is this generator (or load) making of this transmission line?’’ or

‘‘what proportion of the network losses is allocated to this generator (or load)?’’

Solution to these problems is very important to measure the services supplied by

transmission systems, and has a direct influence on wheeling cost.

Many methods have been used to determine the cost of transmission services,

such as the Postage stamp method (allocates transmission cost based on an

average embed cost and the magnitude of transacted power, the users are not

differentiated by the extend of use of transmission resources), the Contract path

method (assumes the transacted power would be confined to flow along an

artificially specified path through the involved transmission systems), the MW-

mile method (based on the flow distribution of a given transaction ignoring the

other transactions), and so on. However, these methods cannot accurately measure

the transmission usage of the users, and cannot obtain reasonable and equitable

transmission cost allocation. And what is more, these methods cannot send

correct signals to the transmission users, which may result overload and imperil

system operation. Therefore, the power flow distribution of transmission users

in different operation modes should be correctly evaluated, leading into power

tracing problem.

In recent years, many papers have contributed on these topics. Kirschen et al.

[91] propose an active power tracing method. By this method, the active power flow

from a generator to a load and the transmission usage of a generator (or load) can be

calculated, thus transmission cost and network losses can be allocated. However,

this method cannot be used to solve the problem if transmission network contains

loop circuits. Wang and Wang [92] introduce two current decomposition axioms,

and solve the current tracing and distribution problems that cannot be solved by

only using the Kirchoff’s laws. Based on the two axioms, a new active power

tracing method is proposed and used to solve network loss allocation and transmis-

sion usage problems. This method can treat networks with loops well and overcome

the drawbacks of [91]. Based on active power tracing and marginal cost theory, [93]

also provides a method to calculate transmission cost including fixed cost, losses,

and congestion cost.

As the theory basis of transmission pricing, the power flow tracing problem is

discussed in this section. First, the two current decomposition axioms as the

fundamentals of load flow analysis are introduced. Then the mathematical

models of the distribution factor problem and loss allocation problem are

established. To solve theses problem, series of theorems based on the graph

theory are presented and a very simple and efficient algorithm to solve above

problems is suggested.

In transmission pricing, network loss allocation and usage of transmission

facilities mainly depend on the active power, for simplification the affect of reactive

power is ignored in the following discussion. The further development of the power

tracing problem can be found in [94].
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4.4.1 Current Decomposition Axioms

Up to now, the research on electric circuits is limited to analyzing the currents of

circuit elements and their respective effects, without considering components of the

currents and allocation of their effects. Similarly, in a conventional load flow study

of power systems, concern is usually given to the powers (or currents) flowing along

branches (lines or transformers), and respective losses in the branches. However,

when considering the problems of wheeling cost, we need to identify the power (or

current) components in each branch and allocate the effects such as losses to its

components. To solve this kind of problems it is not enough to use only Kirchoff’s

laws of electric circuit. Therefore, we need first to introduce two axioms [92].

Assume the current of branch k, IðkÞ, consists of L current components

IðkÞlðl ¼ 1; 2; . . . ;LÞ supplied by L generators,

IðkÞ ¼
XL
l¼1

IðkÞl; ð4:50Þ

where IðkÞ and IðkÞl are the effective or rms values of the currents, which can be

either ‘‘active’’ or ‘‘reactive’’ component. Similarly, in the following description,

the term ‘‘power’’ can also be replaced by either ‘‘active power’’ or ‘‘reactive

power’’ as most papers in this field do.

Axiom 1 Components of current in a branch are conservative.

The axiom states that each component IðkÞl maintains the same at the initial and

terminal node of a branch.

I0ðkÞl ¼ I00ðkÞl ¼ IðkÞl l ¼ 1; 2; . . . ;L; ð4:51Þ
where I0ðkÞl and I00ðkÞl are the component currents shared by generator l at the initial

and terminal node, respectively, L is the number of generators in the system.

The usage of branch k making by generator l denoted by fðkÞl is termed distribu-

tion factor, and defined by

fðkÞl ¼
IðkÞlPL

l¼1

IðkÞl

¼ IðkÞl
IðkÞ

: ð4:52Þ

Corollary 1 Distribution factors are the same at the two nodes of a branch.
Assume the voltage at the initial and terminal nodes of branch k are VS and VR.

Thus, the respective powers are VSIðkÞ and VRIðkÞ. The powers at the two nodes

supplied by source l are VSI
0
ðkÞl and VRI

00
ðkÞl. Hence we have

VSI
0
ðkÞl

VSIðkÞ
¼

VRI
00
ðkÞl

VRIðkÞ
¼ IðkÞl

IðkÞ
¼ fðkÞl: ð4:53Þ
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Corollary 2 The loss of a branch should be allocated proportionally to the current
(or power) component.

The loss of a branch k, DPðkÞ can be represented by

DPðkÞ ¼ VSIðkÞ � VRIðkÞ ¼ ðVS � VRÞ
XL
l¼1

IðkÞl: ð4:54Þ

According (4.50), the loss caused by current component IðkÞl is

DPðkÞl ¼ VSI
0
ðkÞl � VRI

00
ðkÞl ¼ ðVS � VRÞIðkÞl: ð4:55Þ

Combining (4.54) and (4.55), we obtain

DPðkÞl ¼ DPðkÞ
IðkÞlPL

l¼1

IðkÞl

¼ DPðkÞ
IðkÞl
IðkÞ

: ð4:56Þ

In some reference, the principle of loss allocation on the basis of demand squared

was also suggested, i.e., the loss allocated to component current IðkÞl should be

calculated according to

DPðkÞl ¼ DPðkÞ
I2ðkÞlPL

l¼1

I2ðkÞl

: ð4:57Þ

This principle is not economically reasonable, because it can cause inefficient

resource allocation.

The next axiom is the proportional sharing assumption commonly used by

researchers in this field.

Axiom 2 The current component in an outgoing line of an injected current at a node

is proportional to the current of the outgoing line.

Assume the total current injected at node i is Ii, this axiom states that when the

current injected by generator l at node i is Il, its component current IðkÞl in outgoing
line k is

IðkÞl ¼ Il
IðkÞPL0

k¼1

IðkÞ

; ð4:58Þ

where L0 is the number of the outgoing lines at node i.
This axiom can be interpreted as that the injected current is randomly distributed

to the outgoing lines, and the distribution probability is proportional to their

currents. To deduce the next corollary, the definition of ‘‘node loss’’ is first given

as the following.
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Definition The whole loss caused by transmitting power from generators to a node
is called ‘‘loss of the node.’’ We will denoted the loss of node i by dPi.

Obviously, when electric power of node i is directly transmitted through its

incoming lines from generators, the loss of node i, dPi is equal to the total loss of

these incoming lines. To allocate dPi to the outgoing lines of node i we have the

following corollary.

Corollary 3 The factor of node loss allocated to an outgoing line is equal to its
allocation factor.

Proof. Assume that node i has Li incoming lines all directly connected with the

generators. Then the loss of node i is

dPi ¼
XLi
m¼1

DPðmÞ; ð4:59Þ

where DPm is the loss of incoming line. According to Corollary 2 of Axiom 1 and

Axiom 2, the loss allocated to outgoing line k of DPm is

DPðmÞðkÞ ¼ DPðmÞ
IðkÞPLo

k¼1

IðkÞ

:

Therefore, the total loss allocated to outgoing line k can be calculated by

DPðkÞ ¼
XLi
m¼1

DPðmÞðkÞ ¼
XLi
m¼1

DPðmÞ
IðkÞPLo

k¼1

IðkÞ

¼ aiðkÞdPi; ð4:60Þ

where aiðkÞ is the allocation factor

aiðkÞ ¼
IðkÞPLo

k¼1

IðkÞ

¼ PðkÞPLo
k¼1

PðkÞ

: ð4:61Þ

When the incoming lines of node i all are not connected to the generators, (4.60)

and (4.61) can be proved by the recursive reasoning method. □

4.4.2 Mathematical Model of Loss Allocation

After running a traditional load flow, the total system loss and the loss of each

branch DPij can be obtained. The question now is how to allocate the losses to each
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generator or each load. In the following we first introduce the mathematical model

of loss allocation to each load.

Here, the key issue is to calculate the node loss dPiði ¼ 1; 2; . . . ;NÞ. dPi consists

of the following two parts:

1. The sum of branch loss DPji that belongs to incoming line set ji 2 G�ðiÞ
2. The total transmitted loss dPj from node j through lines in the incoming line set

of node i, ji 2 G�ðiÞ
For a N node system, the network loss balance equation can be formulated as

follows:

dPi ¼
X

ji2G�ðiÞ
ðDPji þ ajðkÞdPjÞ i ¼ 1; 2; . . . ;N; ð4:62Þ

where ajðkÞ is the factor that dPj is transmitted from node j to node i, along the

outgoing line ji; k is the index of branches ji. From (4.61),

ajðkÞ ¼ PjiP
ji2GþðjÞ

Pji þ P
ðLÞ
j

; ð4:63Þ

where P
ðLÞ
j is the load power at node j; GþðjÞ is the set of outgoing lines at node

j; (4.62) consists of N linear equations and N variables dPiði ¼ 1; 2; . . . ;NÞ, the
common solution method can be used to solve this equations.

After obtaining all node loss dPj, the loss allocated to each load can be calculated

as the follows:

DPj ¼ dPj

P
ðLÞ
jP

ji2GþðjÞ
Pij þ P

ðLÞ
j

: ð4:64Þ

If the loss is to be allocated to each generator, the model is similar. In such a

situation, the network loss balance equation becomes:

dPi ¼
X

k¼ij2GþðiÞ
ðDPij þ aiðkÞdPjÞ i ¼ 1; 2; . . . ;N; ð4:65Þ

where k is the index of branches ij; aiðkÞ is the factor that dPj is transmitted from

node j to node i, along the incoming line ij,

aiðkÞ ¼
PijP

ij2G�ðjÞ
Pij þ P

ðGÞ
j

; ð4:66Þ

where P
ðGÞ
j is the generator power at node j.
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After all the node loss dPj are calculated, the loss allocated to each generator can

be obtained by the following equations:

DPj ¼ dPj

P
ðGÞ
jP

ij2G�ðjÞ
Pij þ P

ðGÞ
j

: ð4:67Þ

Equation (4.62) or (4.65) in above models can be solved by a conventional linear

equation solution method. After getting node loss dPjðj ¼ 1; 2; . . . ;NÞ, one can

then allocate loss to each load or generatorDPjð j ¼ 1; 2; . . . ;NÞ by (4.54) or (4.67).
However, we can use a more efficient and simple algorithm to allocate loss to

loads or generators avoiding solving (4.62) or (4.65). The algorithm is based on the

graph theory which can be found in Sect. 4.4.4. The following is the algorithm for

loss to allocate to loads.

Step 1: Set the initial condition including a load flow run, and forming the set

GþðjÞ, G�ðjÞ, dþðjÞ, d�ðjÞ, ðj ¼ 1; 2; . . . ;NÞ
Step 2: Search node j satisfying d�ðjÞ ¼ 0. Since no incoming lines at node j,

dPj ¼ 0; or dPj having been cumulated according to (4.62), and set node j as the
node to be eliminated

Step 3: Calculate loss allocation to the load at node j by (4.64)

Step 4: For all the node i (ji 2 GþðjÞ), cumulate loss dPi, and decrease d�ðiÞ of
node i by 1

Step 5: Set d�ðjÞ as –1, flagging the node has been eliminated

Step 6: Back to Step 2, Search for the next node without incoming lines, until all

nodes are eliminated.

In the following, an example is introduced based on the 24-node IEEE-RTS

System [95]. In the load flow calculation, node 23 is set as the balance node, all

other generator nodes are set as PV node. The total network loss is 40.731 MW, or

per unit is 0.40731.

First, we allocate the loss to all load nodes. The order of node eliminating is

showed in Table 4.16. From the table, we can find that the first node to be

eliminated is node 1, and branches 1–3 are eliminated at the same time; the second

eliminated node is 2, and branches 4 and 5 are eliminated at the same time; the

third eliminated node is 7, and branch 11 is eliminated at the same time. After all

nodes are eliminated according to the order, the final loss allocation results are

obtained as presented in Table 4.17.

For comparison, the results for allocating loss to generators are shown in

Table 4.18.

4.4.3 Usage Sharing Problem of Transmission Facilities

The theories and algorithms of usage sharing problems of transmission facilities are

discussed in this section. First, based on the two current decomposition axioms in
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Sect. 4.4.1, the model of sharing cost of transmission facilities is proposed.

The characteristics of directed load flow graph are investigated to find out the

efficient algorithm. The research shows that there exists no directed circuit in a load

flow directed graph. According to this theorem, a very efficient solution to this

distribution factor problem is developed.

For a specified operation mode, the power flow along branches (transmission

lines and transformers) can be achieved by a load flow calculation. The main

problem at present is how to determine the users’ (IPPs or utilities) power distribu-

tion in each branch.

In the following, we will discuss the generator power distribution problem,

i.e., the generators’ distribution factors on transmission facilities. The load power

distribution factor model and algorithm can be deduced in the similar way.

Table 4.16 Calculation process of loss allocation to load

Eliminated

order

Node Branch Eliminated

order

Node Branch Eliminated

order

Node Branch

1 1 1, 2, 3 9 16 23, 28 17 24 7

2 2 4, 5 10 14 19 18 3 6

3 7 11 11 19 32 19 9 8, 12

4 22 30, 34 12 23 21, 22,

33

20 4

5 21 25, 31 13 13 18, 20 21 8 13

6 15 24, 26 14 11 14, 16 22 10 9, 10

7 18 29 15 12 15, 17 23 5

8 17 27 16 20 24 6

Table 4.17 Allocated loss and loss rate to loads

Load
node

Allocated
loss

Allocated
loss rate

Load
node

Allocated
loss

Allocated
loss rate

3 0.057469 0.031666 10 0.039106 0.020054

4 0.015793 0.021342 14 0.069593 0.035873

5 0.011249 0.015844 15 0.016692 0.005266

6 0.049263 0.036223 19 0.049815 0.027522

8 0.047754 0.027926 20 0.019094 0.015578

9 0.031485 0.017991 Total 0.407310 –

Table 4.18 Allocated loss and loss rate to generators

Generator

node

Allocated

loss

Allocated

loss rate

Generator

node

Allocated

loss

Allocated

loss rate

1 0.012743 0.006673 16 0.017297 0.011159

2 0.025549 0.025773 18 0.036400 0.009100

7 0.052097 0.017366 21 0.073100 0.018275

13 0.052158 0.009135 22 0.105882 0.035294

15 0.017548 0.011321 23 0.014536 0.002202
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Assume a power system with N nodes, NG generators and NB branches. Thus our

problem is to determine a NB � NG matrix F, its elements are defined:

fðkÞm ¼ PðkÞm
	
PðkÞ ¼ IðkÞm

	
IðkÞ; ð4:68Þ

where PðkÞ, IðkÞ are the active power and current of branch k; PðkÞm, IðkÞm are the

active power and current components supplied by generator m in branch k.
Obviously, the element fðkÞm in matrix F is the distribution factor of generator m

in branch k. Therefore, we have

XNG

m¼1

fðkÞm ¼ 1 k ¼ 1; 2; . . . ;NB: ð4:69Þ

To establish the mathematic model, the axioms in Sect. 4.4.1 need to be utilized.

Based on axiom 1, the distribution factor fðkÞm of generatorm are the same at the two

nodes of branch k in (4.68). Thus the powers PðkÞm, PðkÞ and currents IðkÞm, IðkÞ can be
set the value of either node. The axiom 2 in Sect. 4.4.1 states that the current

component of an injected current in an outgoing line at the node is proportional to

the current of the outgoing line. The axiom 2 can be expressed as

IðkÞm ¼ Imi
IðkÞ
Ii

; ð4:70Þ

where Imi is the injection current of generator m in node i, Ii is the total injection

current in node i. Multiplying the voltage of node i, (4.70) can be expressed as

PðkÞm ¼ Pmi

PðkÞ
Pi

;

where Pmi is the injection power of generator m at node i. Pi is the total injection

power at node i. Substituting the above equation into (4.68), we have

fðkÞm ¼ PðkÞm
PðkÞ

¼ Pmi

Pi
: ð4:71Þ

Therefore, if we can obtain injection power Pmi, the distribution factor of generator

m at node i can be calculated through the above equation. To do so, we first establish
the relationship between each generator power and total injection power at each

node.

For the load flow distribution of N node system, we have the following

relationship.

Pg ¼ APn; ð4:72Þ
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where Pg ¼ ½P1g;P2g; . . . ;Png�T is the vector of generator powers; Pn ¼
½P1;P2; . . . ;Pn�T is the vector of total node injection powers; A is a N � N matrix,

elements of which are defined by

aji ¼
1 i ¼ j
Pji=Pi ji 2 G�ðiÞ
0 otherwise

(
; ð4:73Þ

where ji 2 G�ðiÞ means that branch ji belongs to the incoming lines of node i.
After running a load flow, the total injection power at each node and the load

flow in each branch are known, hence the elements of matrix A are known.

Equation (4.72) can be reversed:

Pn ¼ A�1Pg; ð4:74Þ
where A�1 represents the contribution rates of each generator to total injection

power at each node. We can further obtain the relationship between total injection

power at each node and the outgoing line powers:

PB ¼ CPn; ð4:75Þ

where PB ¼ ½Pð1Þ;Pð2Þ; . . .PðkÞ; . . . ;PðNBÞ�T is the vector of initial branch powers.

C is NB � N matrix, elements of which are defined by

CðkÞi ¼ PðkÞ=Pi k 2 GþðiÞ
0 otherwise

�
; ð4:76Þ

where k 2 GþðiÞ means branch k belongs to the outgoing line of node i.
Substituting (4.74) into (4.75), we have

PB ¼ CA�1Pg ¼ BPg; ð4:77Þ

where

B ¼ CA�1: ð4:78Þ

According to (4.77), the contribution of generators at node i to the load flow of

branch k can be calculated by

PðkÞi ¼ bðkÞiPig: ð4:79Þ

Therefore, according to (4.53), the distribution factor of source i to branch k is

fðkÞi ¼ PðkÞi=PðkÞ ¼ bðkÞiPig=PðkÞ: ð4:80Þ
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In summary, to get F, matrix A should be first established and inversed, then the

matrix B can be achieved based on (4.78). Finally the elements of F can be obtained

according to (4.80).

In the next section the methodology of the graph theory will be introduced. The

method not only can quickly calculate the distribution factors of each generator to

braches, but also can conveniently solve the loss allocation problem discussed in

Sect. 4.4.2.

4.4.4 Methodology of Graph Theory

A marked-load flow distribution graph is a directed graph, and its circuit configura-

tion is the corresponding base graph. Different operation modes correspond to

different directed graph. At this stage, the direction of each branch is determined

by the direction of its active power flow. Each branch has its initial node and terminal

node, while each node has its outgoing lines and incoming lines. The number of

outgoing lines at node i is denoted by dþðiÞ, the number of incoming lines by d�ðiÞ.
The set of outgoing lines is denoted by GþðiÞ and the set of incoming lines by G�ðiÞ.

A directed path is formed along the direction of branches. When the initial node

and terminal node of a directed path are identical, we have a directed circuit. In a

load flow graph, we use RðkÞ;XðkÞ;PðkÞ;QðkÞ to denote the resistance, reactance,

active, and reactive power flow of branch k, and we have the following theorem.

Theorem 1 If the following relationship holds for each branch along the direction
of its active power in a load flow graph,

PðkÞXðkÞ > QðkÞRðkÞ

the graph has no directed circuit.

Proof. We use the methodology of reduction to absurdity. If there is a directed

circuit in the graph, then the following relationship holdsX
k2L

DyðkÞ ¼ 0; ð4:81Þ

where DyðkÞ is the phase angle difference between the two nodes of branch k and can
be expressed by

DyðkÞ ¼ arctan
ðPðkÞXðkÞ � QðkÞRðkÞÞ=VðkÞ

VðkÞ þ ðPðkÞXðkÞ þ QðkÞRðkÞÞ=VðkÞ

� �
: ð4:82Þ

The variables in (4.82) take the values at the terminal node of branch k. When

PðkÞXðkÞ > QðkÞRðkÞ, then DyðkÞ > 0, thus (4.81) cannot hold. Therefore, the directed

circuit cannot exist in the situation.
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It should be noted that the condition is a sufficient condition, which is satisfied

for most load flow distributions. In case there is a branch not satisfied the condition,

it does not mean that there exists a directed circuit. In this situation the power flow

along the branch is certainly negligible, thus we can consider the branch is open. □

Theorem 2 When a directed graph has no directed circuit, there are at least two
nodes, which satisfied dþðiÞ ¼ 0 and d�ðjÞ ¼ 0 respectively.

Proof. The proof is also based on the methodology of reduction to absurdity.

Assume dþðiÞ > 0 holds for all nodes, i.e., each node has at least one outgoing

line. Thus setting out from any node n1, we can travel to next node n2 along its

outgoing line. And from n2 we can travel further to n3 by similar reason, and so on.

Thus there are only two possible outcomes: one is that we have an infinite travel.

This is impossible for a finite graph; the other is that there exist directed circuits.

This contradicts the condition of the theorem. Hence we can conclude that there is

at least a node with dþðiÞ ¼ 0. Similarly, we can prove the other half of the

theorem, i.e., there is at least one node that satisfies d�ðjÞ ¼ 0. □

Combining Theorem 1 and 2, we obtain the next corollary.

Corollary 4 On a load flow graph, there at least exist one node without outgoing
line and one node without incoming line.

Before the next theorem is presented, we give the following definition. Assume

i is a node with d�ðiÞ ¼ 0 on a load flow graph D, the process of eliminating node

i and its outgoing lines GþðiÞ is called eliminating process for node i.

Theorem 3 In a load flow graph, all branches can be eliminated through a
recursive node eliminating process.

Proof. Denote the node set of a load flow graph by V, and the branch set by

U. Because directed graph D(V, U) has no directed circuit, there at least exists one
node i1 with d�ði1Þ ¼ 0. Carrying out an eliminating process for node i1 in Gþði1Þ,
we get subgraph D0ðVni1;UnGþði1ÞÞ. Because D 	 D0, D0 also has no directed

circuit. Hence, there is at least one node, say i2 with d�ði2Þ ¼ 0 in D0. Then we can
carry out an eliminate process for node i2, and so on. Thus we can eliminate all

branches by a finite (less than N step) recursive eliminating process.

Now we explain the eliminating process by a simple example, as shown in

Fig. 4.6a. This directed load flow graph has no directed circuit and d�ð1Þ ¼ 0.

Thus we can first eliminate node 1 and its outgoing lines (1), (2), (3). After

eliminating node 1, the subgraph D0 is formed as shown in Fig. 4.6b, in which

d0�ð2Þ ¼ 0. Therefore we can further eliminate node 2 and its outgoing line (4).

After node 2 is eliminated, subgraph D00 is formed, as shown in Fig. 4.6c, where

dð�4Þ ¼ 0. Hence we can eliminate node 4 and its outgoing line (5), and thus we

complete the eliminating process.

In the above eliminating process, the node with d�ðiÞ ¼ 0 and its outgoing lines

GþðiÞ are successively eliminated, which is called eliminating outgoing lines

process. Eliminating process can also be carried out by successively eliminating

the node with dþðiÞ ¼ 0 and its incoming lines G�ðiÞ, which is called eliminating

incoming lines process. The corresponding definitions and theorems are similar to
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the discussion above. We will not discuss it in detail. The two eliminating processes

are the basic framework of distribution factor problem and loss allocation problem.

Usage of the two algorithms can allocate the sharing cost of transmission facilities

and loss to generators or loads. □

[Example 3] Solve the distribution factor problem of the simple system shown

in Fig. 4.6a. This system includes four nodes and five branches, two loads and two

generators. The power flow on each branch is illustrated in the figure.

[Solution] From Fig. 4.6a we can see that node 1 has no incoming line, so it can

be eliminated first. Here P1 ¼ 400, PG
1 ¼ P1;1 ¼ 400, Gþð1Þ ¼ ð1Þ; ð2Þ; ð3Þf g,

According to (4.80), we have

fð1Þ1 ¼ fð2Þ1 ¼ fð3Þ1 ¼ 400=400 ¼ 1:

According to (4.73), the injection power P1;1 at node 1 can transfer to other nodes

2–4 through transfer coefficients aji,

P2;1 ¼ 400� 59=400 ¼ 59;

P3;1 ¼ 400� 218=400 ¼ 218;

P4;1 ¼ 400� 112=400 ¼ 112:

Thus we complete eliminating node 1 and its outgoing lines. The system is now

simplified to the subsystem as shown in Fig. 4.6b.

In Fig. 4.6b, node 2 has no incoming line because of d�ð2Þ ¼ 0. Hence we now

eliminate node 2. Here P2 ¼ 173, P2;1 ¼ 59, P2;2 ¼ 114, Gþð2Þ ¼ ð4Þf g.
According to (4.71), we have

fð4Þ1 ¼ 59=173 ¼ 0:34104;

fð4Þ2 ¼ 114=173 ¼ 0:65896:

3300 200

82 (5) 83

218

225 60 59 173

112 171

(2) (3)

(1)

(4)

4 3 4 43

(4)

(5) (5)

2 2

115

1 400 114

a b c

Fig. 4.6 Eliminating outgoing line process
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According to (4.73), the injection power P2;1, P2;2 can transfer to other node 4

through transfer coefficients aji,

P4;1 ¼ 59� 171=173 ¼ 58:31792;

P4;2 ¼ 114� 171=173 ¼ 112:68208:

Thus we complete eliminating node 2 and its outgoing lines. The system is now

simplified to the subsystem as shown in Fig. 4.6c.

Finally, node 4 has no incoming line in Fig. 3c, thus we now eliminate node 4.

Here P4;1 ¼ 58:31792þ 112 ¼ 170:31792, P4;2 ¼ 112:68208, P4 ¼ 283,

Gþð4Þ ¼ ð5Þf g.
According to (4.80), we have

fð5Þ1 ¼ 170:31792=283 ¼ 0:60183;

fð5Þ2 ¼ 112:68208=283 ¼ 0:39817:

Thus we complete the whole eliminating process. The distribution factors of the

simple system are shown in Table 4.19.

4.5 Available Transfer Capability of Transmission System

4.5.1 Introduction to Available Transfer Capability

The ATC is very important for secure and reliable operation of the power systems.

In traditional vertical-regulation situation, ATC is considered by system operators

as a measure of margin between constraints and the current operating state. In the

power market environment, the uncertainties of power system operation increase,

and electricity trading, hence operation mode, varies frequently. Accidents that

cause overload of branches and voltage violation are more likely to happen. How to

evaluate the remaining transfer capability in the transmission network accurately

and efficiently becomes hot topic in power research.

Table 4.19 Distribution factors of simple system in Fig. 4.6

Lines Generator 1 Generator 2

(1) 1.0 0.0

(2) 1.0 0.0

(3) 1.0 0.0

(4) 0.34104 0.65896

(5) 0.60183 0.39817
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Research on the transfer capability of transmission system can be traced back to

1970s, but it did not catch enough attention of researchers and engineers until FERC

issued an order in 1996 that requires electric utilities calculate ATC and post ATC

information to power market participants [96]. NERC defines ATC as the measure

of the transfer capability remaining in the physical transmission network for further

commercial activity above already committed uses [97]. This shows that in power

market ATC is not merely the traditional energy-exchange capability between

regions but the maximal transfer capability from a node in a region to a node in

another region considering the existing transmission contracts and the constraints of

power system’s safety and reliability. ATC is the measure of actual transfer

capability of transmission network over and above the existing transmission

contracts, and it can be conceptually defined as

ATC ¼ TTC � TRM � CBM� ETC;

where, TTC is the total transmission capability, it denotes the maximal transfer

capability of interconnection line between regions subject to the safety and reliabil-

ity constraints of power systems; TRM is transmission reliability margin, as amount

of transmission transfer capability needed to ensure that the interconnected-trans-

mission network is secure under a reasonable range of uncertainties in system

conditions. Capacity benefit margin (CBM) is the amount of transmission transfer

capability reserved by load serving entities to ensure access to generation form

interconnected systems to meet generation reliability requirements; existing trans-

mission commitments (ETC) means the transfer capability occupied by the existing

transmission contract. Transmission contracts can be further described as ‘‘non-

recallable,’’ ‘‘recallable,’’ ‘‘reserved,’’ and ‘‘scheduled’’ according to the stability of

ETC contracts. If large energy-exchange exits between interconnected network and

system reliability could be threatened by random disturbance, part of transmission

contract should be curtailed. Thus congestion occurs.

From the above definition of ATC, it can be seen that the uncertainty of power

system have significant impacts on ATC. Contingency of transmission line or

generator can result in a tremendous decrease of ATC. Therefore, how to treat

the impact of the uncertainty and stochastic factors on ATC is the vital problem in

calculating ATC.

ATC is used to measure the transfer capability remainder in the transmission

system for a period of time (1 h, 1 day, or a longer period) in the future. According

to the requirement on the length of this time period, ATC can be classified as online

ATC and off-line ATC calculation.

When evaluating off-line ATC, uncertainties have more influence on ATC calcula-

tion. Generally speaking, the longer is the time period, the more influence has the

uncertainty.Therefore, the probabilisticmodel is usually adopted inoff-lineATCstudy.

When calculating online ATC, only the several most serious contingencies are

considered, thus the computation burden decreases greatly. The deterministic

model is often used in online ATC calculation.

The above two models of ATC are briefly introduced as follows.
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4.5.1.1 ATC Calculation Based on Deterministic Model

At present, the calculation methods based on deterministic model mainly includes

(1) Linear programming model [98]. Considering the constraints imposed on the

transmission network due to thermal and stability limitation, the method uses

linear programming to calculate ATC based on DC flow model. DC flow model

ignores the impacts of voltage and reactive power; thus, the method cannot be

applied in heavily loaded system where reactive power support and effective

voltage control means may be not sufficient. Furthermore, the computation time

of linear programming increases tremendously with expand of power systems,

so this method is not suitable for calculating ATC of large scale systems.

(2) Continuation power flow (CPF) model [99]. CPF can trace the change of power

flow. From a basic operation point, increasing the power flow between the two

regions, we solve the resulting power flow problem step by step, until static

voltage stability limit is reached, and thus the critical maximal power flow is

obtained. The impacts of voltage, reactive power, and other nonlinear factors

are considered in CPF. Compared with linear programming model, the ATC

value obtained by CPF is more accurate. But the load factor in CPF is not

changed when the load and generation power output increase, ignoring the

optimal distribution of load and generation output. This may cause the ATC

result conservative.

(3) OPF model [100]. ATC evaluation based on OPF is an improvement on CPF.

OPF can deal with all kinds of system constraints, static contingencies and

optimize resource dispatch. OPF is suitable to calculate ATC. However, CPF

must solve nonlinear equations and OPF must find the optimal dispatch in ATC

calculation, their computational burden is forbidding.

(4) Distribution factor model [101]. It is also called sensitivity analysis model. This

model overcomes the computational burden at cost of computation accuracy,

and can get approximate ATC value very fast.

(5) Genetic algorithm (GA) model [102]. This model utilizes the ability of search-

ing global optimum of GA to find the maximal transmission capability between

regions. Generally, GA is better than CPF in ATC calculation from the point

view of computation time and accuracy.

(6) Online ATC evaluation software package (TRACE) [103]. The soft package is
developed by EPRI associated with some electricity companies in late 1996. It

is the first software package that can be used in real power system to calculate

ATC. TRACE can calculate ATC and TTC of the specified paths with the real-

time state-estimation data from energy management system (EMS). Thus,

TRACE can optimize the energy trading of the system. The fast contingency-

capture program embedded in TRACE can identify the emergent contingencies,

so TRACE is a very efficient tool for online ATC evaluation.

The framework for online ATC calculation is shown in Fig. 4.7. The ATC

program exchange information with the following modules in EMS: state estimator

(SA), security analysis (SA), current operating plan (COP), and open access
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same-time information system (OASIS). The current system state is obtained from

SE; the contingency list is obtained from SA and the load forecast, generation

schedules and information of outage equipment come from the COP system. The

obtained ATC values are transferred for posting at the OASIS.

4.5.1.2 ATC Calculation Based on Probabilistic Model

Off-line ATC calculation needs to consider large amount of uncertain factors.

If dealing with all the factors one by one, the computation burden is forbidding

for practical application. Therefore, off-line ATC calculation is usually based on

probabilistic approach.

There are three models based on probabilistic approach for ATC calculation:

(1) Stochastic programming model [104]. This algorithm considers the uncertainty

of the availability of generators and transmission lines as well as load forecast

error. The availability of generators and transmission lines is considered as

random variables of the binomial distribution, and the load forecast error is

represented by random variables of the normal distribution. The original dis-

crete variables are first transformed into continuous random variables based on

two-stage stochastic programming with recourse (SPR). Then chance con-

strained programming (CCP) is employed to treat the continuous variables. At

last, the ATC and corresponding probability distribution can be obtained.

Stochastic programming involves the stochastic power flow, discrete and con-

tinuous variables, so its computing speed is usually not satisfactory.

(2) Enumeration method [105]. This model combines the system state enumeration

and optimization to evaluate ATC value. Because the enumeration method has

exponential complexity, it cannot be applied in large scale power system.

(3) Monte Carlo simulation method [106]. As mentioned in Sect. 3.5, the algorithm

is composed of the Monte Carlo simulation and optimization algorithm. The

Monte Carlo simulation can generate and deal with huge scenarios resulting

from large number of uncertain factors. With the increase of system scale and

network complexity the computing time of this method does not increase

ATC

SA

ATC
Solver

SE

COP

OASIS

Fig. 4.7 Framework of online

ATC calculation
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significantly. Therefore, the Monte Carlo simulation can be applied in evaluat-

ing ATC of large-scale power systems.

With the ATC calculation method based on probabilistic model, we can get the

expected ATC value, its probability density and distribution function curve.

The confidence interval of ATC under a certain confidence level can be estimated.

The stochastic information of ATC can guide the arrangement of power system’s

operation and forecast the electricity price.

In the following, an off-line ATC calculation algorithm is introduced. This

algorithm is the combination of Monte Carlo simulation and sensitivity analysis

method, which can compute the ATC value between the generation node and the

load node. The Monte Carlo simulation is used to sample system state. In this way,

huge amount of uncertain factors can be treated effectively and lots of stochastic

information of ATC can be obtained. Sensitivity-analysis method is a well under-

stood method and can be implemented easily. It is used to solve the optimization

problem involved in ATC calculation. The algorithm can provide the accurate ATC

value within a reasonable computing time.

4.5.2 Application of Monte Carlo Simulation
in ATC Calculation

Usually, three kinds of uncertainties are considered in the off-line ATC calculation,

including uncertainties of generator outages, transmission line outages and nodal

load forecasting errors. Generators and transmission lines have two states: opera-

tion and failure, and the availability of generators and transmission lines are

considered as random variables of the binomial distribution. The load is simulated

by the normal distribution, Nðm; s2Þ, m is the expected value of node load and can be

represented by forecasted load; s is the standard variance of load.

There is a probability PðxÞ corresponds to a certain system state x. The ATC

value for sampled system state x is denoted by ATCðxÞ. According to the probability
theory, for a given load level, the expected ATC value can be calculated by

EðATCÞ ¼
X
x2X

ATCðxÞPðxÞ: ð4:83Þ

The expected value ofATCðxÞ in the Monte Carlo simulation, ÊðATCÞ, is defined as

ÊðATCÞ ¼ 1

N

XN
i¼1

ATCðxiÞ; ð4:84Þ

where xi is the ith sampled state, N is the number of total sampled states, ATCðxiÞ is
the ATC value for state xi.
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From (4.84) it can be seen that ÊðATCÞ is only the expected value of ATCðxÞ,
not the real value. Because x and ATCðxÞ are both stochastic variables, ÊðATCÞ is
also a stochastic variable. The variance of ÊðATCÞ is formulated as

V½ÊðATCÞ� ¼ VðATCÞ
N

; ð4:85Þ

here VðATCÞ is the variance of ATC, its estimate value is V̂ðATCÞ.

V̂ðATCÞ ¼ 1

N � 1

XN
i¼1

½ATCðxiÞ � ÊðATCÞ�2: ð4:86Þ

According to the probability theory, if the probability density curve is bell

shaped, the confidential interval of ÊðATCÞ with a confidence 1� 2a can be

approximated by

½ÊðATCÞ � ua

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ðATCÞ

q
; ÊðATCÞ þ ua

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ðATCÞ

q
�; ð4:87Þ

here ua is the a upside fractile of standard normal distribution Nð0; 1Þ. ua can be

obtained from the distribution table.

The variance coefficient b is usually used to evaluate error of the expected value.

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V½ÊðATCÞ�

q
ÊðATCÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðATCÞ=Np
ÊðATCÞ : ð4:88Þ

Equation (4.88) indicates that the computational burden of the Monte Carlo simu-

lation is not sensitive to the system scale and complexity. Therefore Monte Carlo

simulation is effective to treat the uncertainties and suitable to calculate ATC for

large-scale power systems. Furthermore, it can be seen that decrease of VðATCÞ
and increase of N can reduce the variance coefficient b and improve the computa-

tion accuracy.

The flow chart of ATC calculation is shown in Fig. 4.8.

4.5.3 ATC Calculation with Sensitivity Analysis Method

Sensitivity analysis method is a useful tool widely used in power system planning

and control. It evaluates the impact of a particular variable on power system

performance by analyzing the relation of the operation index to this variable.

Furthermore, measures to improve the operation index can be suggested based on

the analysis. The sensitivity method for ATC calculation is based on the relation of

power flow in transmission line to nodal input power.
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According to the DC power flow and branch power flow equations, the sensitivi-

ty equation of the branch power flow to nodal input power can be obtained (suppose

the branch number is b and node number is n),

DLk ¼ S0DP; ð4:89Þ

S0 ¼ BlAB
�1; ð4:90Þ

where DLk is the incremental vector of the branch flows; DP is the incremental

vector of the nodal power injection (including the active power change at the slack

node); Bl is the diagonal matrix composing of the line admittance b� b; B is the

square matrix composing of imaginary part of the nodal admittance matrix; A is the

branch-node incidence matrix.

S0 is a b� ðn � 1Þ sensitivity matrix, and it represents relation between the node

power injection and the line flow, its element S0k;i is the incremental of power flow in

the line k due to increasing a unit of power injection in the node i.
Matrix S0 is calculated taking the slack node as reference, thus when we expend

it to a b� n matrix S, its elements corresponding to the slack node are all zeros.

The element Sk;i of S has the same meaning like the element S0k;i in S0.

Set i = 0

System state sampling xi

i = i + 1

Calculation ATC(xi)

Is i equal to the given
sampling times N?

N

Calcualte the stochastic indexs of
ATC with Eqs. 4.84, 4.87 and 4.88

Y

End

Fig. 4.8 Flow chart of ATC

calculation with Monte Carlo

simulation
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Sensitivity analysis model can solve the following problems related to ATC

evaluation:

1. Adjusting system state

2. Calculating ATC between two given nodes on the condition that the input power

at other nodes keeps constant (noted by ATC1 in the following discussion)

3. Calculating ATC between two given nodes when considering adjustment of

generators’ outputs (noted by ATC2 in the following discussion)

Now, let us discuss these problems in some detail.

4.5.3.1 Adjusting System State

In the Monte Carlo simulation, a sampled system state xi is assessed to check that

whether state xi meets system security requirements. When investigating ATC1, if

state xi does meet security constraints, ATC between two given nodes is zero. We

set ATC1 ¼ 0. When investigating ATC2, necessary correcting measure should be

used to adjust the system to normal state before ATC2 is calculated. The correcting

principals include

(1) When the load is higher than the generators’ output because of generator outage

or nodal load fluctuation, curtail system load until power balance is reached.

In power market, the nodal load should be curtailed according to the signed

electricity contracts. To make problem simple, we curtail all nodal load in

proportion.

(2) If some transmission lines overload due to network branch failure, adjust the

nodal active power using sensitivity analysis method, or curtail system load

until overload is eliminated.

In the following we introduce a heuristic approach based on analyzing the influence

of ‘‘adjusting generators output’’ and ‘‘reducing system load’’ on eliminating

overload. Adjusting output of generators should be used first to reducing load

curtailment. The adjusting process of generator output is as follows:

(1) Select the most serious overloaded line k.
(2) Select a pair of generators at node i and j to be adjusted: When line k overloads in

positive direction, decrease the output of generator i with the maximal positive

sensitivity value, and increase the output of generator j with the maximal

negative sensitivity value. When line k overloads in negative direction, the

adjusting actions are converse.

(3) Determine adjustment amount Dp of generators at node i and j. To eliminate

overload of branch k, Dp can be derived from (4.89),

Dp ¼ Lkj j � �Lk
Sþmax
k;i � S�max

k;j

; ð4:91Þ
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where Sþmax
k;i is the positive sensitivity value of node i, S�max

k;j denotes the

negative sensitivity value of node j, Lk is the load flow of branch k, �Lk is the

transmission capacity of branch k.

If the adjust amount computed by (4.91) is too large, violation of the generator’s

maximal and minimal output constraints may occur. In this situation, Dp should be

reduced appropriately:

(4) Adjust the output of generators at node i and j
(5) Update power flow according to (4.89) and (4.90)

(6) Repeat steps (1)–(5) until overload is eliminated or adjusting output has no

effect on alleviating the overload

If overload still exists after the above adjusting, curtailing system load must be

carried out to eliminate overload. The curtailing process is similar to generators’

output adjustment.

4.5.3.2 Calculating ATC1

For each transmission line, calculate the possible maximal power change at the

given node pair ðA;BÞ when the power flows through the transmission line reach its

limit. The calculating formula is

Dpg;A ¼ Dpl;B ¼
Lk � Lk

Sk;A � Sk;B
Sk;A � Sk;B > 0

�Lk � Lk
Sk;A � Sk;B

Sk;A � Sk;B < 0

8>>><
>>>:

ðk ¼ 1; . . . ; bÞ; ð4:92Þ

where, Dpg;A is the amount of generator output increment at node A, Dpl;B is the

amount of the load increment at node B.
Branch k that makes Dpg;A or Dpl;B the minimal is the bottle-neck line influen-

cing ATC1. Accordingly, the minimal Dpg;A or Dpl;B is ATC1.

4.5.3.3 Calculating ATC2

ATC between a given pair of nodes can be increased by adjusting the generators’

output. In the following, we give the steps of calculating ATC2 between a given

pair of nodes ðA;BÞ with the sensitivity analysis method:

(1) Increase all generators’ output at node A by Dp, to their maximal output. At the

same time, increase the load at node B by the same amount Dp.
(2) Updating the branch power flow according to (4.89) and (4.90), find out whether

there is overload. If no branch overloads, the ATC2 between the given node

pair ðA;BÞ is Dp. Otherwise, adjust other generators’ output to eliminate the
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overload, as discussed above. If the adjustment eliminates the overload, the

ATC2 between given node pair ðA;BÞ is also Dp. Otherwise, go to step (3).

(3) Properly reduce Dp, set other generators’ outputs to their initial values. Then go
to step (2).

From the above calculating process, it can be seen that sensitivity analysis method

can calculate ATC1 between two given nodes very fast, while calculating ATC2

may need to adjust the generators’ outputs repeatedly, thus its calculating time may

be longer than calculating ATC1.

[Example 4] Calculate ATC1 between generator node 5 and load node 2 in a

five-node power system as shown in Fig. 4.9.

[Solution] The system has five nodes, seven branches, and nine generators. Its

total generation capability is 1,164 MW. Suppose that the variance of forecasted

load is s2 ¼ 0:02, i.e., load of each node obeys normal distribution Nðu; 0:02Þ. The
sampling number is 10,000, variance coefficient b < 0:002. Node 5 is the slack

node. The initial data are shown in Tables 4.20 and 4.21.

The Monte Carlo simulation is used to sample system state xi. The state of

equipment is determined by a random number which is generated by computer. The

random numbers of equipments and the corresponding equipment states in one

system state sampling are shown in Tables 4.22–4.24. The system state xi is

composed of the states of all the equipments. Then the system state is assessed by

the following three steps:

(1) Analyzing the network topology under system state xi, check whether node 5

and node 2 are connected. It is obviously that the node 5 and node 2 are

connected if no branch failure occurs.

(2) Evaluate whether the generators’ output is less than the system load. Under

system state xi, the system output is 919 MW including the AGC generator’s

297 MW, and the total load of the system is 703.29 MW. Thus generator output

is larger than load. The system can keep balance by adjusting the output of AGC

generator.

(3) Check whether the power flows along branches are within their transmission

capacity limits. Here DC power flow model is used to calculate the power flow

for simplicity. The sensitivity matrix S of branch power flow to nodal injected

power can be obtained according to (4.90) (the last column is the extended

column of slack node, so all elements are zero).

200MW

160MW

370MW
AGC
generator

500MW

4 2

1

3 5

Fig. 4.9 The graph of five-node

system
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Table 4.21 Parameters of branch

Branch

number

Nodes of

branch

Branch

reactance

Branch

capacity (MW)

Branch fault

probability

1 1–2 0.2500 305 0.000438

2 1–3 0.3500 175 0.000582

3 2–3 0.3000 305 0.000445

4 2–4 0.0300 400 0.001653

5 2–4 0.0300 400 0.001653

6 4.5 0.0300 400 0.001653

7 4.5 0.0300 400 0.001653

Table 4.22 Generator state defined by Uð0; 1Þ random number

No. of generator 1 2 3 4 5 6 7 8 9

Random number 0.038 0.531 0.435 0.371 0.332 0.286 0.774 0.509 0.977

FOR of generator 0.04 0.04 0.03 0.03 0.05 0.05 0.01 0.01 0.01

Generator state Down Up Up Up Up Up Up Up Up

Table 4.23 Branch state defined by uniform distribution Uð0; 1Þ random number

Branch
number

1 2 3 4 5 6 7

Random

number

0.040282 0.531725 0.858605 0.601367 0.113788 0.122979 0.329386

Branch

fault
probability

0.000438 0.000582 0.000445 0.001653 0.001653 0.001653 0.001653

Branch

state

Operation Operation Operation Operation Operation Operation Operation

Table 4.20 Parameters of generator

Generator

number

Generator node

number

Rated power

(MW)

Actual output

(MW)

Generator fault

probability

1 4 155 125 0.04

2 4 155 125 0.04

3 4 155 125 0.04

4 4 155 125 0.04

5 5 197 197 0.05

6 5 197 AGC generator 0.05

7 5 50 33 0.01

8 5 50 AGC generator 0.01

9 5 50 AGC generator 0.01
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The sensitivity matrix S0 is

0:3889 �0:3333 �0:0000 �0:3333 0:0000
0:6111 0:3333 0:0000 0:3333 0:0000
0:3889 0:6667 0:0000 0:6667 0:0000
0:0000 �0:0000 �0:0000 �0:5000 0:0000
0:0000 �0:0000 �0:0000 �0:5000 0:0000
0:5000 0:5000 0:5000 0:5000 0:0000
0:5000 0:5000 0:5000 0:5000 0:0000

2
666666664

3
777777775
:

The load flow of each branch is calculated by (4.89) (the base of per unit is 100

MW):

P1 = �1.043804, P2 = �0.198456, P3 = 0.638305, P4 = �1.875000, P5 =

�1.875000, P6 = �1.641469, P7 = �1.641469.

These values are all less than the transmission capacity limits of the corres-

ponding lines.

In the above state assessment process, if the two nodes do not connect, or the

total generator output is less than system load, or a transmission line is overload, the

power system cannot securely operate under state xi. Thus ATC1ðxiÞ ¼ 0 and

sensitivity analysis algorithm is not needed. In this example, the system can operate

normally under state xi.
The next step is to calculate ATC1 from node 5 to node 2 using sensitivity

analysis method. According to (4.92), estimate the allowable amount of power

exchange between node 5 and node 2 when each branch reaches its capability limit:

DP1 ¼ 3:05000� ð�1:043804Þ
0� ð�0:33333Þ ¼ 12:281412;

DP2 ¼ �1:75� ð�0:198456Þ
0� 0:33333

¼ 4:654631;

DP3 ¼ �3:05000� ð0:638305Þ
0� 0:66666

¼ 5:532457;

DP4 ¼ 1;

DP5 ¼ 1;

DP6 ¼ �3:50000� ð�1:641469Þ
0� 0:50000

¼ 6:717062;

DP7 ¼ �3:50000� ð�1:641469Þ
0� 0:50000

¼ 6:717062:

Table 4.24 Correction of node load with random number obeying Nð0; 1Þ
Number of node 1 2 3

Random number �2.529600 0.480062 0.161125

Node load’s correction amount (p.u.) �0.3578 0.0679 0.0228

The node load after correction (p.u.) 1.2422 2.0679 3.7228

The node load after correction (MW) 124.22 206.79 372.28
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Of the seven branches, branch 2 hits its transmission capacity limit, the maximal

amount of power increment between node 5 and node 2 is 465.46 MW. Then,

consider the influence capability of generator at node 5 on this power increment: the

total installed capacity at node 5 is 544 MW and its output is 328.29 MW, thus the

maximal amount of increment is 215.71 MW. This value is less than 465.46 MW,

so the maximal amount of power increment between node 5 and node 2 is 215.71

MW when considering both branch and generator capacity constraints. According

to the definition of ATC, power increment 215.71 MW is ATC1 from node 5 to

node 2 under system state xi, and the generator at node 5 is the bottle-neck

equipment. The bottle-neck equipment denotes the equipment whose constraint is

active in ATC calculating. The information of bottle-neck equipment is very

important to system operating in power market.

ATC1 of all pair of generator nodes to load nodes is calculated and shown in

Table 4.25. For example, the expected ATC1 from generator node 5 to load node

2 is 273.00 MW, its standard variance is 80.67 MW. The probability of the

sampling ATC1 value belongs to interval [139.89 MW, 406.11 MW] is 97.5%.

And the output constraint of generator at node 5 is active with the probability

93.52%. The data on bottle-neck equipment shown in Table 4.25 imply that the

shortage of installed generator capacity is the main cause hindering increase of

ATC between nodes.

Table 4.25 ATC1 from generator node to load node (unit: MW)

Generator
node

Load
node

ATC1

under
initial

state

ÊðATC1Þ SðATCÞ Confidence
interval of

ÊðATC1Þ at
confidence 97.5%

Bottle-neck
equipment (active

probability PM)

4 1 120.00 113.61 13.55 [88.80, 120.00] Generator at node

4 (98.37%)

4 2 120.00 113.67 18.31 [88.80, 120.00] Generator at node
4 (93.52%)

4 3 120.00 113.61 13.55 [88.80, 120.00] Generator at node
4 (98.37%)

4 5 120.00 113.61 13.55 [88.80, 120.00] Generator at node
4 (98.37%)

5 1 290.00 254.88 69.90 [139.67, 354.38] Branch 1–3
(69.68%)

Generator at

node 5

(28.74%)

5 2 314.00 273.00 80.67 [139.89, 406.11] Generator at node

5 (93.52%)

5 3 314.00 273.00 80.67 [139.89, 406.11] Generator at node

5 (93.54%)

5 4 314.00 273.00 80.67 [139.89, 406.11] Generator at node

5 (93.52%)

4.5 Available Transfer Capability of Transmission System 253



Note: The PM ¼ ðN1=NÞ100%, where N denotes the sampling times; N1 is the

times that the constraint of equipment is active.

Thinking and Problem Solving

1. Discuss the effect of electricity markets on the operation of electrical power

systems.

2. Why can the optimal load flow not solve such issues as startup–shutdown of

generator units and the economical dispatch of hydropower stations?

3. What characteristics do optimal load flow problems have from the viewpoint of

mathematical optimal algorithms? What are the requirements of the optimal

load flow algorithm?

4. State the basic idea and key algorithm of an interior point algorithm for the

optimal load flow.

5. Give the optimal dispatching model when a system loses a power resource,

according to the congestion management method introduced in this chapter.

6. Discuss the effect of congestion on real-time prices.

7. Set up the real-time price model based on the optimal load flow.

8. Discuss the reasonability of loss allocated according to load–power proportion-

al and load–power-squared allocation methods.

9. Design an approach to determine loss coefficients for each transmission cus-

tomer during a certain period (such as each month or each year) based on a loss

allocation model.

10. Propose several schemes for determining transmission pricing.

11. What is the effect of ATC evaluation on system dispatching under an electricity

market environment?

12. Compare the advantages and disadvantages of deterministic and probabilistic

models of ATC calculation.

13. What measures are there to improve ATC?

14. Discuss the limitation of ATC calculations based on the sensitivity method.
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Chapter 5

HVDC and FACTS

5.1 Introduction

The bulk power transmission from generators to load centers is one of the main

study areas in electric power engineering. Electrical power engineers and research-

ers have been exploring new ways of power transmission for decades while making

efforts to enhance the capability of existing power grids. Multiple-phase transmis-

sion was proposed by American researchers in 1972. The transmission capacity can

be increased dramatically by utilizing multiple three-phase lines, for example, 6, 9,

or 12 phases. The main benefits are lower phase-to-phase voltage than a single

three-phase system, and the reduction of line-to-line spacing to save the land usage.

Compact transmission was introduced by ex-Soviet researchers in 1980. The surge

impedance loading can be improved by optimizing line and tower structures:

increasing the number of sub-conductors in each phase to smooth the electric

field distribution around conductors, and reducing the phase-to-phase spacing.

The concept of fractional frequency transmission system (FFTS), presented by one

of the authors in 1995 [107], is under investigation. It uses low frequency on trans-

mission system, for example, one third of normal frequency, to reduce impedance –

so-called electrical distance. Dutch scientists discovered superconductors in 1911.

Superconductor technology could also be applied in power transmission. Small

capacity generators, transformers, and cables have been manufactured using super-

conductors. However, there is a long way to go before industrial application.

Wireless transmission has the possibility to transport electric power without trans-

mission lines. This concept can be traced back to Tesla’s test in 1899. Current study

and feasible industrialized application are mainly on microwave, laser, and vacuum

tube transmission. Wireless transmission has been studied for over 30 years. There

are a lot of technical problems to be solved, and it is far from industrial utilization.

High voltage direct current (HVDC) and flexible AC transmission system

(FACTS) are electric power transmission facilities utilizing electronic technology.

In the early stages of power industry development, Thomas Alva Edison (1847–

1931) was leading the group supporting a complete DC system from generation to

transmission; while George Westinghouse (1846–1914) was in favor of an AC

system. AC systems finally dominated the power industry because of their economical
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and technical advantages: the successful synchronized operation of multiple

generators, the development of transformers, and the invention of three-phase

induction motors. With respect to generation and voltage transformation, AC

systems have well-known advantages over DC systems. While for transmission,

DC has its merits over AC. DC systems have three advantages compared to AC: (1)

The stability due to synchronization phenomena in AC increases the cost of

building long, high capacity transmission lines dramatically. As the transmission

length reaches a certain distance, DC transmission becomes economically attractive

over AC. Converter stations are the major cost of building DC lines. As power

electronics technology advances, converting valves, the key element of converter

station, have much higher voltage and current ratings, thus driving down the price

of DC transmission. (2) With the development of modern control technology,

power transported through DC lines can be adjusted very quickly (in milliseconds)

through valve control. This can be applied to enhance the stability of the AC

system. (3) DC lines can be used to connect power systems with different frequen-

cies. This is called a back-to-back DC system and is the most convenient way to

connect multiple power grids while maintaining their independent operation. The

above three advantages have increased the competitively of DC transmission.

Today, HVDC is to be found in more and more power networks around the

world. Modern power systems often include both AC and DC transmission.

To meet the ever growing demand for bulk power transmission over long

distance, one solution is to build HVDC transmission lines. On the other hand,

increasing the capacity of existing transmission lines can achieve the same objec-

tive. There are many more AC lines than DC lines in today’s power networks.

Technical renovation could greatly enhance the utilization of existing AC lines,

which can be more cost effective than building new lines.

The concept of FACTS was introduced by N.G. Higorani in the late 1980s

[108–109]. FACTS does not have a strict and well-recognized definition. FACTS

uses power electronic equipment to control and adjust operation and network

parameters to optimize system operation and transmission capacity. HVDC could

be seen as an example of FACTS according to the above definition. However, since

it has been developed into a specific transmission technique, HVDC is not classified

as FACTS equipment in present day terminology.

Themaindriving force forFACTSdevelopment is as follows.The increasing system

loadmakes the existing power system incapable of carrying sufficient power over long

distances. The difficulties of obtaining new rights of way, as well as environmental

protection requirements, constrain the building of new lines. One of the main

approaches to meet the transmission requirements is to improve the usage and capacity

of existing lines. The improving manufacturing technology for high power electronic

apparatus is leading to lower prices, which make FACTS a feasible solution for

renovating existing grids. Rapid development in computation and control techniques,

as well as the widespread use of computers, opens the way to FACTS implementation

for fast, flexible, and secure control action. Furthermore, deregulation of electric power

markets complicates the systemoperation. Power systems demand stronger self-control

capability tomeet various technical and economic requirements ofmarket participants.
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For a conventional power system, without FACTS equipment, the network para-

meters are fixed. The possible adjustment and control during system operation relies

primarily on the control of the real and reactive power of generators. There are other

types of adjustment measure such as tap changing transformers, series capacitor

compensators, and shunt capacitor or reactor compensators to change network para-

meters. Transmission lines being put into or out of service can also change network

topology. All these measures are accomplished through mechanical means. Their

response speed is not compatible with the fast system transients. There is no

corresponding control mechanism for the conventional transmission network compa-

rable to various fast governor and voltage control facilities for generators. Because of

the above restrictions, power flows are determined by Kirchhoff’s current and voltage

laws, and Ohm’s law, given the system generation and load. This is called natural

power flow. Generators and power networks have been gradually established for a

long time. It is very difficulty to achieve reasonable operation for all system conditions

through planning. In fact, natural power flows are hardly the optimal power flows for

the existing conventional power systems. For example, the loop flow will increase the

system loss in many circumstances. For parallel flows, current distributes in inverse

proportion to the line impedance. It is often the case that one line has reached its

thermal limit while the other line is still below its normal loading. The adjustment of

generation can hardly optimize system operation or even obtain the desired operation

mode. The thermal limits of transmission lines are determined by the size of cross-

section area of the conductors. It is usually the relatively short lines that reach their

thermal limits in conventional power systems. Another constraint on transporting

energy through the network is the stability limit of synchronization. It is much more

complicated to determine the stability limits than thermal limits. They depend on

network structure, operationmodes, control measurements, line location, and possible

fault types and locations. Conventional power systems do not have fast and flexible

control over the transmission networks. Their stability limits are usually less or far less

than their thermal limits. This means that the power transport capabilities of existing

power networks are not fully utilized. FACTS has emerged to implement fast and

flexible control over transmission networks through power electronic devices. FACTS

can increase the capacity of the transmission network in coordination with various fast

control measures for generators.

Conventional power systems provide some control mechanisms for transmission

networks. For example, there is series capacitor compensation in appropriate locations

to reduce line impedance. The installation of shunt capacitors/reactors, static VAR

compensator, and on-load tap changing transformers are used to control bus voltage.

Phase shifters are applied to change phase angle differences between the voltages at

the two terminals of transmission lines, and hence adjust the sharing of load among

parallel paths. However, the increase of transmission capability is limited by the lack

of rapid and continuous adjustment of controlled parameters for these devices.

There are various types of FACTS equipment. The literature [110] has recom-

mended the terminology and definition of FACTS. Conventional power systems have

some experience in the use of series and shunt compensation, phase shifters and tap

changing transformers. The above apparatus equipped with power electronic devices
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represents the relatively mature FACTS technology. The power electronic devices

help execute the predesigned control schemes through fast, continuous adjustment

of their parameters. The objective is to achieve the desired dynamic performance of

power systems, raise stability limits and transmission capacity. For the past 20

years, FACTS technology has been under continual development, and has more and

more industrial application. The analysis methodology and control mechanisms of

HVDC and FACTS under various operation modes, as well as suitable power flow

calculation methods, have become important research fields in power engineering.

5.2 HVDC Basic Principles and Mathematical Models

This section will introduce the basic principles and modeling of HVDC by the

analysis of normal operation modes of converters.

5.2.1 HVDC Basic Principles

The diagram of a basic HVDC system is shown in Fig. 5.1. This is a simple system

with two converters C1 and C2, and one DC line. Based on the polarity of DC lines,

HVDC systems are classified as monopolar, bipolar, and homopolar systems. The

system in Fig. 5.1, a monopolar system, has only one DC line that normally has

negative polarity and uses the ground as the current return path. The monopolar

system is mainly implemented to reduce the cost of line construction. The physical

conditions of earth will affect the current flow. It may also have a negative impact

on underground facilities, causing heavy erosion to various metal pipelines in the

current path. Bipolar systems can eliminate these problems by using two DC lines,

one positive and the other negative. In Fig. 5.1, the converter has a single bridge.

Multibridge converters, comprising several bridges connected in series, can

increase the line voltage and reduce harmonics. Multibridge converters can use

bipolar and homopolar connections. Figure 5.2a, b shows the bipolar and homopolar

connections. All lines have the same polarity in the homopolar connection.

A monopolar connection is often used as the first phase of bipolar or homopolar
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Fig. 5.1 HVDC basic connection diagram
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connections. A converter station is usually called a terminal of the DC transmission

system. Monopolar two-terminal, bipolar two-terminal, and homopolar two-termi-

nal systems are shown in Figs. 5.1 and 5.2a,b, respectively. HVDC can actually

have multiple terminals connecting three or more AC systems. Figure 5.2c shows a

monopolar three-terminal system.

The main equipment in a converter station includes converters, converter trans-

formers, smoothing reactors, AC filters, DC filters, reactive power compensation

devices, and circuit breakers. The converter is to transfer energy between AC and

DC. Converting AC to DC is implemented by rectifiers while converting DC to AC

is by inverters. The main element in a converter is the valve. Modern HVDC

systems use thyristors as converter valves. Thyristors are usually rated 3–5 kV in

voltage and 2.5–3 kA in current. Due to the limited ratings, converters usually

consist of one or more converter bridges connected in series or parallel. The HVDC

converter bridge is a three-phase converter bridge circuits as shown in Fig. 5.3.

Each converter bridge has six branches of valves. The DC terminals of a converter

connect to DC lines and the AC terminals to AC lines. The converter transformer is

a conventional transformer with on-load tap changers. The turns-ratio of the

converter transformer can then vary to manage the converter operation. The ‘‘DC

side’’ of the converter transformer is usually delta or Y connected with ungrounded

neutral, so that the DC line can have an independent voltage reference relative to

the AC network. Harmonic voltages and currents arise during converter operation.

Harmonics deteriorate the power quality, interfere with wireless communication,

and should be filtered out with filters having appropriate parameters. The inductance

a bBipolar Homopolar

Fig. 5.2 HVDC connection
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of the smoothing reactor is very large and can reach 1 H. Its main function is to

reduce the harmonic voltages and currents on the DC lines, to prevent commutation

failure of inverters, to maintain continuous current under light loading, and to

curtail short-circuit current in converters during faults. Converters consume a

great amount of reactive power in operation. The reactive power in steady operation

can be 50% of the real power transmitted on the DC lines, with much more

consumption during system transients. Reactive power compensation near the

converters is used to provide the reactive power source for converter operation.

HVDC is used to convert energy fromAC to DC, to transport the energy as DC, and

to convert it back from DC to AC.When AC system 1 transports energy to AC system

2 throughDC lines, C1 runs in rectifyingmodeandC2 in invertingmode.HenceC1 can

be seen as source and C2 as load. Given the resistanceR of DC line, the line current is

Id ¼ Vd1 � Vd2

R
: ð5:1Þ

Thus the power sent out from C1 and received at C2 is

Pd1 ¼ Vd1Id

Pd2 ¼ Vd2Id

)
: ð5:2Þ

The difference between the two represents the energy loss in the DC line. The

power transmitted through DC lines is purely real power. Note that the DC voltage

Vd2 of converter C2 has the opposite direction to the DC current Id. If Vd1 is greater

than Vd2, there will be a DC current going through DC line as indicated in (5.1). The

adjustment of DC voltage can control the quantity of power transported on the line.

It is important to point out that if the polarity of Vd2 remains unchanged, a higher

Vd2 than Vd1 cannot make power flow from C2 to C1. The current in (5.1) cannot be

negative since converters only allow current to flow in one direction. To change the

power flow direction, the polarities of both converters at the two terminals should

be reversed at the same time by the converter control, making C1 operate as an

inverter and C2 as a rectifier.

As indicated in (5.1) and (5.2), the current and power on DC lines are determined

by the DC voltage at the two terminals, irrespective of frequencies and voltage

phase angles of the connected AC systems. The adjustment of DC voltage is

achieved through the control of the firing angle of the converter bridge instead of

the voltage magnitude of the AC systems. The adjustment ranges of DC voltage are

much greater than AC. HVDC can provide a high power carrying capacity over

long distance without any stability constraints, while an AC system would face

more difficulties under the same situation. The HVDC control uses electronics to

achieve rapid control action. During system transients, fast and large changes of

transmission power result in system frequency variation, while generators in the AC

system do not take up all the power imbalances. For example, increasing the power

transmission will lower the frequency in AC system 1 and raise the frequency in AC

system 2. This converts the rotating kinetic energy in AC system 1 into electric
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energy and passes it to AC system 2. Eventually, the frequency control devices in

AC system 1 will trigger output increases of generators in the system to restore the

frequency. The fast response of HVDC is therefore very important when AC system

2 requires emergency power support.

Here we are going to introduce the working principles of converters and their

basic equations with the following general assumptions:

1. AC systems are three-phase symmetric without neutral shift and sinusoidal with

a single frequency and no harmonics.

2. DC current is constant without fluctuation.

3. Converter transformer is an ideal transformer without magnetizing reactance,

copper loss, or saturation.

4. The distributed characteristics of DC line parameters are not considered.

If readers are interested only in power flow calculation of AC/DC interconnected

system and not in the operation principles and introduction of the basic equations,

they should directly browse to Fig. 5.15 and the basic equations (5.37)–(5.39).

5.2.2 Converter Basic Equations Neglecting Lc

Figure 5.3 demonstrates the equivalent circuits and valve symbols of a three-phase

whole-wave bridge converter. The normal operation of valves has two modes: on

and off. There are two conditions for a valve to be switched from off to on: first

having a higher anode voltage than its cathode or a positive voltage across the

valve; secondly receiving a firing pulse. A positive valve voltage without a firing

pulse keeps the valve in the off state. A normal diode is unable to be off with a

positive voltage. The valve will maintain conducting once it is turned on even

without any firing pulse. The valve will be changed to the off state after the valve

current reduces to zero and the valve voltage has been negative for a short period

(milliseconds). The equivalent resistance of an on state valve is approximately zero.

In the off state, the valve can withstand very high positive or negative voltage

between its anode and cathodes without being turned on (having very small leakage

current). The equivalent resistance of an off state valve is approximately infinity.

The valve is an ideal valve when neglecting its on state voltage drop and the off

state leakage current.

Based on the general assumptions, theAC system (including converting transformer)

consists of an ideal voltage source having constant frequency and voltage and a series

connected reactance Lc. The instantaneous voltage of the ideal voltage source is

ea ¼ Em cos otþ p=3ð Þ
eb ¼ Em cos ot� p=3ð Þ
ec ¼ Em cos ot� pð Þ

9>=
>;: ð5:3Þ
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The phase-to-phase voltage is

eac ¼ ea � ec ¼
ffiffiffi
3

p
Em cos otþ p=6ð Þ

eba ¼ eb � ea ¼
ffiffiffi
3

p
Em cos ot� p=2ð Þ

ecb ¼ ec � eb ¼
ffiffiffi
3

p
Em cos otþ 5p=6ð Þ

9>>=
>>;: ð5:4Þ

Figure 5.4a shows the waveforms of (5.3) and (5.4).

First we will analyze zero-delayed firing angle a. A zero ameans once the anode

voltage of the valve is higher than its cathode, a firing pulse is sent to its control

gate. The valve is turned on immediately, when neglecting Lc. In Fig. 5.3, the valves
in the upper bridge are labeled as 1, 3, 5 and the lower bridge as 4, 6, 2. The number

actually indicates the sequence of valve conduction from the analysis below. The

cathodes of valves 1, 3, and 4 are connected together. When the phase-to-ground

voltage of phase a is higher than the phase-to-ground voltages of phases b and c,
valve 1 is turned on. Since the voltage drop across a conducting valve is ignored, the

cathode voltages of valves 3 and 5 equal phase voltage ea due to a conducting valve 1.
It is higher than the anode voltages of valves 3 and 5, so they are turned off.

Similarly, the anodes of valves 2, 4, and 6 are connected. When the phase-to-ground

voltage of phase c is lower than phases a and b, valve 2 is turned on while valves 4

and 6 are turned off.

Based on the waveforms of Fig. 5.4a, when ot 2 [�120�, 0�], ea is greater than
eb as well as ec. In this period, valve 1 in the upper bridge is on. When ot 2 [�60�,
60�], ec is less than ea as well as eb. In this period, valve 2 in the lower bridge is on.
With zero Lc, there is one conducting valve in both upper and lower bridges under

normal converter operation. During the period of ot 2 [�60�, 0�], valve 1 in the

upper bridge and valve 2 in the lower bridge are on while all other valves are off. In

the same period, the cathode voltage of the upper bridge is ea and the anode voltage
of the lower bridge is ec. Apparently, the source voltage in the DC loop is eac¼ ea�
ec; AC current ia¼�ic¼ Id; ib¼ 0. The same analysis applies to other time periods.

Before ot¼ 0�, valve 1 is on. After ot¼ 0�, once eb is greater than ea, valve 3 is
triggered to conduct. The cathode voltage of valve 1 is eb after valve 3 is on. Valve 1
is then turned off due to its negative valve voltage because eb is greater than ea.
The turn-on of valve 1 and turn-off of valve 3 occur at the same time ofot¼ 0� with a
zero Lc. In Fig. 5.4a, ea is always greater than eb when ot 2 [0�, 120�] to keep valve
3 conducting. Note the conducting status of the lower bridge. When ot 2 [0�, 60�],
valve 3 is on in the upper bridge and valve 2 is on in the lower bridge. The source

voltage of the DC loop is ebc ¼ eb � ec; AC current ib ¼ �ic ¼ Id; ia ¼ 0. It is

referred to as commutation when valve 1 is switched from on state to off state and

valve 3 from off state to on state. The source voltage in the DC loop is changed from

eac to ebc.
Before ot ¼ 60�, valve 2 is on. After ot ¼ 60�, once ea is less than ec, valve 4 is

triggered to conduct. The anode voltage of valve 2 is ea after valve 4 is on. Valve 2
is then turned off due to its negative valve voltage. The turn-on of valve 4 and turn-

off of valve 2 occur at the same time of ot ¼ 60� with a zero Lc. In Fig. 5.4a, ea is
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always less than ec when ot 2 [60�, 180�] to keep valve 4 conducting. Note the

conducting status of the upper bridge. When ot 2 [60�, 120�], valve 3 is on in the

upper bridge and valve 4 is on in the lower bridge. The source voltage in the DC

loop is eba ¼ eb � ea; AC current ib ¼ �ia ¼ Id; ic ¼ 0.

Before ot ¼ 120�, valve 3 is on. After ot ¼ 120�, once ec is greater than eb,
valve 5 is triggered to conduct. Valve 3 is then turned off. When ot 2 [120�, 240�],
valve 5 is always on. When ot 2 [120�, 180�], valve 5 is on in the upper bridge

and valve 4 is on in the lower bridge. The source voltage in the DC loop is eca ¼ ec
� ea; AC current ic ¼ �ia ¼ Id; ib ¼ 0.

Before ot¼ 180�, valve 4 is on. After ot¼ 180�, once eb is less than ea, valve 6
is triggered to conduct. Valve 4 is then turned off. Whenot 2 [180�, 300�], valve 6 is
always on. When ot 2 [180�, 240�], valve 5 is on in the upper bridge and valve 6

is on in the lower bridge. The source voltage in the DC loop is ecb ¼ ec � eb; AC
current ic ¼ �ib ¼ Id; ia ¼ 0.

Before ot ¼ 240�, valve 5 is on. After ot ¼ 240�, once ea is greater than ec,
valve 1 is triggered to conduct. Valve 5 is then turned off. When ot 2 [240�, 360�],
valve 1 is always on. When ot 2 [240�, 300�], valve 1 is on in the upper bridge

and valve 6 is on in the lower bridge. The source voltage in the DC loop is eab ¼
ea � eb; AC current ia ¼ � ib ¼ Id; ic ¼ 0.
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The above process will repeat periodically. The upper and lower parts in Fig.

5.4b represent the valves in the upper and lower bridges. The source in the DC loop

changes phases when one valve is switched from on state to off state and another

valve from off state to on state. For example, at ot¼ 0� valve 1 is off and valve 3 is
on. The source voltage in the DC loop is changed from eac ¼ ea � ec to ebc ¼ eb �
ec. The commutation instantly completes with a zero Lc. There are only two valves

numbered in sequence being on at any moment, one in the upper bridge; the other in

the lower bridge. When Lc is not zero, current cannot undergo a sudden change due
to inductance. Commutation cannot then complete. The electric angle correspond-

ing to the time needed is called commutation angle g. We will discuss the case with

nonzero commutation angles.

The above analysis can generate the waveforms of three phase currents on the AC

side. Figure 5.4c shows the current of phase a. The smoothing reactors, filters, and

zero Lc produce the rectangular waves. In fact, Id is the average DC current. We will

study its magnitude later. Figure 5.4b displays the conducting period of each valve.

Figure 5.4a shows the waveform of the DC instantaneous voltage nd. This is the

voltage across the anode of the upper bridge and the cathode of the lower bridge.

From the above analysis, there are six commutations in a complete AC cycle of

ot 2 [0�, 360�] and the waveform of DC instantaneous voltage vd has six ripples of
equal length. Hence the three-phase whole-wave converter is also called six-pulse

converter. Rippled DC voltage vd can be mathematically transformed by Fourier

analysis to obtain its DC component voltage Vd. The DC component Vd is the

average of vd.
The average DC voltage is Vd0 when the delayed firing angle a is zero and

commutation angle g is zero, as indicated by the waveforms of instantaneous

voltage vd in Fig. 5.4a

Vd0 ¼ 1

2p

Z 360�

0�
vddy ¼ 3

ffiffiffi
6

p

p
E; ð5:5Þ

where E is the r.m.s. (root mean square) value of phase-to-ground voltage of the AC

source.

The above is the analysis of the DC voltage and current when the firing angle

delay is zero. If there is a time delay ta in firing after the valve voltage becomes

positive, the electric angle ota ¼ a is the delayed firing angle. Figure 5.4 shows the
firing moment of each valve when a ¼ 0�. If a is not zero, the electric angles at the
moment of conducting for valves 3, 4, 5, 6, 2, and 1 are 0� þ a, 60� þ a, 120� þ a,
180� þ a, 240� þ a, and 300� þ a. When a 6¼ 0� and neglecting Lc, the waveforms

of DC instantaneous voltage vd are shown in Fig. 5.5a. The conducting periods of

each valve are displayed in Fig. 5.5b. As stated in the two necessary conditions of

valve conduction, the range of the delayed firing angle a is [0�, 180�] in order to

turn the valve on. If the delayed firing angle a is beyond this range, the valve cannot
be triggered to conduct, as the valve voltage is negative as seen from the waveforms

of the AC source. Take valve 3 as an example. Valve 1 is on before valve 3 is turned

on. The cathode voltage of valve 3 is ea and its anode voltage is eb. The waveforms
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of ea and eb in Fig. 5.4 indicate that eb is greater than ea when ot 2 [0�, 180�] and
valve 3 has positive valve voltage eba. Valve 3 can be triggered to conduct if a is

less than 180�. When a is greater than 180�, eb is less than ea so valve 3 does not

meet the conduction condition and cannot be turned on. The same analysis applies

to other valves.

Based on Fig. 5.5a, when the delayed firing angle a 2 [0�, 180�], the average of
DC voltage is

Vd ¼ 1

2p

Z 300�

�60�
vddy ¼ 6

2p

Z 0�þa

�60�þa
eacdy ¼ Vd0 cos a: ð5:6Þ

From the above equation, the average DC voltage Vd is less than Vd0 when a is not

zero. When a increases from zero to 90�, Vd decreases from Vd0 to zero; when a
increases from 90� to 180�, Vd decreases from zero to �Vd0. When DC voltage

becomes negative, the direction of DC current does not change due to the unidirec-

tional valve characteristics. In this case, the product of DC voltage and current is

negative, i.e., the power consumption from the AC system is negative. The real

power actually flows from the DC system to the AC system under this operation

mode. When a converter provides real power for the AC system, it converts DC

energy into AC energy and passes the energy into the AC system. This type of

converter operation is called inversion.

Below we will explore the phase-angle relationship between AC fundamental

frequency current ia1 and AC voltage ea to find out how the converter operation

changes from rectification to inversion as the firing angle delay increases.

The commutation in the above analysis instantly completes when neglecting

Lc. By comparing Figs. 5.4b and 5.5b, the electric angle corresponding to the

ebc ebaeab

ea

a

a

wt

eac eca

eceb

eceb ea

ecb

-120°

a

b

120° 180° 240°-60° 60°0°   a°

Id
-Id

i3i1

i2 i4i6

i5
a wt

-120°

6 2 4 6

531

120°0°a° 240°

180°60°-60°

Fig. 5.5 (a) a 6¼ 0, g¼ 0, Waveform of DC instant voltage vd (b) conducting periods of each valve
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conducting period for each valve is 120� regardless whether the delayed firing angle
a is zero or not. The valve current is a rectangular wave lasting for 120� with a

magnitude of Id. Figure 5.4c shows the current waveform of ia with a ¼ 0�. Let us
consider the phase relationship between ia and AC source ea. When a increases

from zero, the waveform of ia is unchanged and shifted to the right. Based on

Fourier analysis, it is not difficult to obtain the fundamental frequency ia1 from ia.
The delayed phase angle of ia1 with regard to the AC source ea is the delayed firing

angle a. The r.m.s. value of the fundamental frequency current is

I ¼ 2ffiffiffi
2

p
p

Z 30�

�30�
Id cos x dx ¼

ffiffiffi
6

p

p
Id: ð5:7Þ

We assume that there are ideal filters on both AC and DC sides. The harmonic

power is zero. Neglecting the power loss of the converter, AC fundamental fre-

quency power equals DC power

3EI cos’ ¼ VdId; ð5:8Þ
where ’ is the leading phase angle of the fundamental frequency voltage over

current and is called power factor angle of the converter. Substituting (5.6) and (5.7)

into (5.8), we have

3E

ffiffiffi
6

p

p
Id cos’ ¼ Id

3
ffiffiffi
6

p

p
E cos a ð5:9Þ

Hence

cos’ ¼ cos a: ð5:10Þ

The above verifies that the phase angle difference between AC fundamental

frequency voltage and current is the firing angle delay a. From the above analysis,

the complex power of the AC system is

Pþ jQ ¼ 3
ffiffiffi
6

p

p
EId cos aþ j sin að Þ: ð5:11Þ

Equations (5.6) and (5.7) indicate that the ratio between AC fundamental frequency

current and DC current is fixed during conversion from AC to DC or from DC to

AC; while the ratio between voltages is determined by the firing angle delay a.
Equation (5.11) gives the complex power that the AC system sends to the DC

system through the converter. In other words, it is the complex power that the DC

system obtains from the AC system. This power is controlled by the firing angle

delay. When a 2 [0�, 90�], real power is positive, the DC system obtains real power

from AC, converting energy from AC to DC. When a 2 [90�, 180�], real power is
negative, the converter provides real power to AC system, converting energy from

DC to AC. Further, (5.11) indicates that the rectifier (a 2 [0�, 90�]) and inverter
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(a 2 [90�, 180�]) consume reactive power from AC system, although the DC system

only transports real power.

5.2.3 Converter Basic Equations Considering Lc

In Fig. 5.3, the inductance Lc is the equivalent inductance of the converter trans-

former, which is nonzero in real systems. Lc prevents the current from undergoing

sudden changes. The converter cannot switch its connection with AC source from

one phase to another instantly and needs a period of time tg to complete the

commutation. tg is called the commutation period. The electrical angle

corresponding to commutation period, g ¼ otg, is named the commutation angle.

During commutation, the current of the valve turning onwill increase from zero to Id,
and the current of the valve turning off will decrease from Id to zero. Under normal

operation, commutation angle is less than 60�. The typical value of the commuta-

tion angle is around 15–25� during full load. For g 2 [0�, 60�], there are three

conducting valves in the converter during commutation. Among them, one is in the

noncommutation state with valve current of Id; the second is to be conducting with

valve current migrating from zero to Id; the third one is to stop its conduction with

valve current migrating from Id to zero. There is one valve conducting in both the

upper bridge and the lower bridge in between commutation. Figure 5.6a,b shows

the valve conducting states under two conditions when fire angle delay a is zero:

1. The commutation angle r is zero

2. The commutation angle g is nonzero

The electric angle difference between the start of two consecutive commutations

is 60�; the noncommutation period is 60��g. If g is greater than 60�, the noncom-

mutation period becomes negative. In other words, a new commutation begins

before the previous one completes. This is the case where there are more than

three valves conducting at the same time and is an abnormal operation. The average

−120°
−60° wt

wt

60°−g

g

g

g =20°

g =20°

60°

5

5

6 2 4 6

1 3 5

6 2 4 6

1 3 5
60° 180°

120°0° 240°

Fig. 5.6 Valve conducting state (a) a ¼ 0, g ¼ 0 (b) a ¼ 0, g 6¼ 0
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DC voltage will decrease as the DC current increases due to the existence of the

commutation angle.

Now we are going to analyze the factors affecting the magnitude of the commu-

tation angle and the impact of the commutation angle on DC voltage.

Because of commutation angles, the ranges of delayed firing angle adjustment

decrease to [0�, 180��g] as seen from waveforms of the AC source. We will explain

the reason later.

Figure 5.7 shows the valve conducting states when the delayed firing angle a 2
[0�, 180��g] and the commutation angle g 2 [0�, 60�]. Take valve 3 as an example.

At ot ¼ 0� þ a, valve 1 starts the commutation to valve 3. At ot ¼ 0� þ a þ g ¼
0� þ d, the commutation completes. d is the sum of the delayed firing angle and the

commutation angle, called extinction angle. Note that at the beginning of the

commutation (ot ¼ a), the current of valve 1 i1 is Id and i3 of valve 3 is zero.

At the end of the commutation (ot¼ aþ g¼ d), i1 is zero and i3 is Id. In Fig. 5.7, we
can see that valves 1, 2, and 3 are conducting during the commutation, ot 2 [a, d].
The equivalent circuit of the converter is shown in Fig. 5.8.

−120° γ

γ

α

α

α
δ

δ

120°0° 240°
180°−60°

1

6 2 4

3 5

Fig. 5.7 Conducting states when a [0�, 180� � g] and g[0�, 60�]
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Fig. 5.8 Equivalent circuits of commutation from valve 1 to 3
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The loop voltage equation in the one made of valves 1 and 3 is

eb � ea ¼ Lc
di3
dt

� Lc
di1
dt

:

We call voltage eb � ea the commutation voltage and current i3 the commutation

current. Since Id ¼ i1 þ i3, the above equation can be rewritten by combining with

(5.5).

ffiffiffi
3

p
Em sinot ¼ 2Lc

di3
dt

: ð5:12Þ

Based on boundary conditions, the solution for current isZ i3

0

di3 ¼
Z t

a=o

ffiffiffi
3

p
Em

2Lc
sinot dt;

i3 ¼
ffiffiffi
3

p
Em

2oLc
cosot

����
a=o

t

¼ Is2 cos a� cosotð Þ;
ð5:13Þ

where

Is2 ¼
ffiffiffi
3

p
Em

2oLc
: ð5:14Þ

The commutation current has two components based on (5.13). One of them is a

constant component and the other is sinusoidal. The constant component is related

to the firing angle delay a. The phase angle of the sinusoidal component lags the

commutation voltage eab by 90
�. It is not difficult to understand this case. As shown

Fig. 5.8, valves 1 and 3 are conducting during the commutation. This corresponds to

a two-phase short circuit between phase a and b through two Lc. The commutation

current i3 is actually the short circuit current of AC source eb. The constant

component is the free component of the short circuit current, resulting from the

fact that current cannot suddenly change in an inductive circuit. The sinusoidal

component is the forced component of the short circuit current. Since the short

circuit loop is purely inductive, the phase angle of the current lags its source voltage

by 90�. is2 is the peak of the forced component of the short circuit current. Hence the

steady-state converter operation is that two-phases are short circuits in commuta-

tion and one-phase is an open line during the noncommutation period.

The commutation completes with i3 ¼ Id when ot ¼ a þ g ¼ d. The magnitude

of the commutation angle reflects the time for the commutation current to rise from

zero to Id. From (5.13), we have

Id ¼
ffiffiffi
3

p
Em

2oLc
½cos a� cosðaþ gÞ�: ð5:15Þ

The above equation indicates that the commutation angle g is related to operation

parameters Id, Em, a, and network parameter Lc. The greater the Id, the greater the
commutation angle will be; the greater Em, the less the commutation angle. When
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a ¼ 0� or approaching 180�, the commutation angle reaches its maximum value

with regard to a. At a ¼ 90�, the commutation angle obtains its minimum value.

Besides, the greater Lc, the greater the commutation angle is. As Lc approaches
zero, so does the commutation angle, giving rise to the case of neglecting Lc as we
discuss before. It is necessary to point out that the sum of the currents of valves 1

and 3 is Id during commutation, so the magnitude of the commutation angle has no

direct impact on DC current Id. The relationship between AC fundamental frequen-

cy current and DC current, as stated in (5.7), is still valid.

We will examine the impact of the commutation angle on DC voltage below.

During the commutation, as shown in Fig. 5.8

vp ¼ va ¼ vb ¼ eb � Lc
di3
dt

:

As indicated in (5.12)

Lc
di3
dt

¼
ffiffiffi
3

p
Em sinot
2

¼ eb � ea
2

:

Thus

vp ¼ va ¼ vb ¼ eb � eb � ea
2

¼ ea þ eb
2

:

Note that if neglecting the commutation angle, the voltage of converter negative

pole vp is equal to eb once the valve is on. While considering the commutation

angle, vp equals (ea þ eb)/2 during commutation. vp will equal to eb after the

commutation completes. Figure 5.9 shows the voltage waveform during commuta-

tion from valve 1 to 3. Note the three areas below when ot 2 [0�, 60�].

The average voltage
between vale 1
and vale 3 during
commutation

The anodic voltage after
commutation

0−ωt

ea+eb
2
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e c

δ
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γ
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Fig. 5.9 Voltage waveforms in commutation from valve 1 to 3
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A0 ¼
Z 60�

0�
eb � ecð Þdot ¼

Z 60�

0�

ffiffiffi
3

p
Em cos ot� 30�ð Þdot ¼

ffiffiffi
3

p
Em; ð5:16Þ

Aa¼
Z a

0�
eb�eað Þdot¼

Z a

0�

ffiffiffi
3

p
Emcos ot�90�ð Þdot¼

ffiffiffi
3

p
Em 1�cos að Þ; ð5:17Þ

Ag ¼
Z d

a
eb � ea þ eb

2

� �
dot ¼ 1

2

Z d

a
eb � eað Þdot

¼
ffiffiffi
3

p

2
Em cos a � cos dð Þ:

ð5:18Þ

Based on (5.16), the average DC voltage having no firing delay and a zero

commutation angle is

Vd0 ¼ A0

p=3ð Þ ¼
3

ffiffiffi
3

p

p
Em:

This is consistent with (5.5). Based on (5.16) and (5.17) with firing delay and zero

commutation angle, the average DC voltage is

Vd ¼ A0 � Aa

p=3ð Þ ¼
ffiffiffi
3

p
Em cos a
p=3ð Þ ¼ Vd0 cos a:

This is consistent with (5.6). As shown in Fig. 5.9, nonzero commutation angle

reduces the average DC voltage. In a full cycle, there is one commutation every 60�.
From (5.18), we can find the voltage drop due to the commutation angle as

DVd ¼ 6Ag

2p
¼ Vd0

2
cos a� cos dð Þ: ð5:19Þ

In the above equation, use (5.15) to substitute cos a�cos d

DVd ¼ 3

p
oLcId ¼ RgId; ð5:20Þ

where

Rg ¼ 3

p
oLc ¼ 3

p
Xc: ð5:21Þ

Rg is the equivalent resistance. Please note that Rg does not represent a real resistor.

It does not consume real power. Its magnitude represents the ratio with which the

average DC voltage decreases as DC current increases. Rg is a network parameter

and does not change with the operation modes.

The average DC voltage, taking into consideration both firing angle delay and

commutation angle, is

5.2 HVDC Basic Principles and Mathematical Models 271



Vd ¼ A0 � Aa � Ag

p=3ð Þ ¼ Vd0 cos a� DVd ¼ Vd0 cos a� RgId: ð5:22Þ

The above equation explains that the DC voltage of the converter is a function of

firing angle delay a, DC current Id and AC source voltage Em. In HVDC operation,

DC voltage can be controlled by adjusting the firing angle delay and the voltage of

AC system. From (5.1) we know that the DC current Id is determined by the DC

voltages generated by the converters at the two terminals. The introduction of Rg

makes the commutation angle g disappear from (5.22). The effect of commutation is

reflected in the product of commutation resistor and DC current. Please note that a

valid equation (5.22) requires a 2 [0�, 180��g] and g 2 [0�, 60�]. A larger DC

current can force the commutation angle beyond 60� and the converter into abnor-

mal operation.

As discussed previously, neglecting commutation angle, the converter is a

rectifier when a 2 [0�, 90�] and an inverter when a 2 [90�, 180�]. Considering
the commutation angle, combining (5.19) with (5.22) yields

Vd ¼ Vd0 cos a� DVd ¼ Vd0

2
ðcos aþ cos dÞ: ð5:23Þ

The way to identify a converter as a rectifier or inverter is whether DC voltage Vd is

positive or negative. We use at to represent a when Vd is zero. From the above

equation

Vd ¼ Vd0

2
½cos at þ cosðat þ gÞ� ¼ 0:

Obtaining

at ¼ p� g
2

: ð5:24Þ

When considering the commutation angle, the angle separating rectification from

inversion is reduced by g/2 from 90�.
Asmentioned earlier, the normal operating range of the firing angle delay decreases

when the commutation angle is considered. Here we identify the cause of the change

by analyzing the commutation from valve 1 to 3. Note that valve 1 is conducting

before valve 3 is triggered to conduct, so the cathode voltage of valve 3 is va. The
conduction condition of valve 3 is that vb is greater than va. From Fig. 5.9 we can

see that vb > va when ot 2 [0�, 180�]. Due to the existence of commutation angle,

valve 1 cannot be immediately turned off when valve 3 is triggered to conduct. The

turn-off of valve 1 is delayed to ot ¼ d ¼ a þ g. To guarantee a successful

commutation and turn-off of valve 1, the extinction angle d must be less than

180�. Otherwise, vb is less than va, which makes the valve voltage of valve 3

negative, turning off valve 3, and keeping valve 1 on. This is a commutation failure.

Hence 0� � a � 180� � g.
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5.2.4 Converter Equivalent Circuits

In the above analysis, there are three angles: the delayed firing angle a, the

commutation angle g, and the extinction angle d. In engineering analysis, a and d
are dedicated to represent rectifier operation while the leading firing angle b and the

leading extinction angle m for inverter operation. The commutation angle g is used
for both rectifier and inverter. There are the following relationships

b ¼ p� a

m ¼ p� d

g ¼ d� a ¼ b� m

9>=
>;: ð5:25Þ

When the converter is an inverter, a is between 90� and 180�. So b and m are

between 0� and 90�. In this way, the leading firing angle and the leading extinction

angle of inverters have similar values as the firing angle delay of rectifiers. We can

apply the previous equations directly to rectifiers. For inverters, applying (5.25) in

(5.22)

Vd ¼ Vd0 cosðp� bÞ � RgId ¼ �ðVd0 cos bþ RgIdÞ: ð5:26Þ

On the basis of Fig. 5.1, we denote Vd1 and Vd2 the voltages of the rectifier and the

inverter. Note that the voltage reference direction of rectifier and inverter are

opposite to each other. We have

Vd1 ¼ Vd0 cos a� RgId; ð5:27Þ

Vd2 ¼ Vd0 cosbþ RgId: ð5:28Þ

From the above, we can derive the equivalent circuits for converters in rectification

and inversion modes as shown in Fig. 5.10a, b. Both the voltage and current in the

diagram are average values. No matter whether the converter is in rectification

mode or inversion mode, DC current always flows from valve anode to cathode so

the commutation resistor carries a negative sign in Fig. 5.10b. We know from (5.5)

that Vd0 is related to AC system voltage. DC current is determined by (5.1). The

control variables in DC system are AC system voltage and converter firing angle. In

αcosVd0
βcosVd0 μcosVd0

Id Id Id

Vd1 Vd2

γR γR γR−
Vd2

a Rectification b Inversion Using Leading

βFiring Angle 

c Inversion Using Leading
μExtinction Angle

Fig. 5.10 Converter equivalent circuits
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(5.28) the inverter control variable is the leading firing angle. The voltage repre-

sentation of rectifier and inverter is different. When using the leading extinction

angle for inverter, their representations have the same appearance. Substituting

(5.25) into (5.23) and the extinction angle d with leading extinction angle m, we
obtain

Vd ¼ Vd0

2
cos a� cos mð Þ:

Use the above equation in (5.23) to eliminate a

� Vd ¼ Vd0 cos m� RgId:

Since the voltage reference direction of an inverter is opposite to a converter, we

have

Vd2 ¼ Vd0 cosm� RgId: ð5:29Þ

The corresponding equivalent circuit is shown in Fig. 5.10c.

Figure 5.11 shows the voltage waveforms and valve conducting state when the

converter operates in inverter mode.

We will identify the relation between AC and DC quantities when considering

the commutation angle below.

After considering the commutation angle, the AC current is no longer rectangu-

lar. Figure 5.12 gives the waveform of phase b current. The waveforms of the other

two phases can be drawn similarly. The representation of its positive increasing side

is (5.13). Its positive decreasing side can be represented by the current of valve 3

during commutation from valve 3 to 5. From (5.13)
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Fig. 5.11 Voltage waveforms and valve conducting state when converter operates in inverter

mode
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i5 ¼ Is2½cos a� cosðot� 120�Þ� ot 2 ½120� þ a; 120� þ d�
i3 ¼ Id � i5 ¼ Id � Is2½cos a� cosðot� 120�Þ� ot 2 ½120� þ a; 120� þ d� :

Fourier analysis gives rise to AC fundamental frequency current when considering

the commutation angle

I ¼ k a; gð Þ
ffiffiffi
6

p

p
Id; ð5:30Þ

where

k a; gð Þ ¼ 1

2
cos aþ cos aþ gð Þ½ �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g csc g csc 2aþ gð Þ � ctg 2aþ gð Þ½ �2

q
: ð5:31Þ

Under normal operation, the values of a and g make k(a,g) approach 1. For

simplicity of analysis, we take k(a,g) approximately as constant, kg ¼ 0.995. The

relationship between AC fundamental frequency current and DC current is

I ¼ kg

ffiffiffi
6

p

p
Id: ð5:32Þ

From (5.23) and (5.5), we obtain the relationship between DC voltage and AC

voltage

Vd ¼ 3
ffiffiffi
6

p

p
cos aþ cos d

2
E: ð5:33Þ

Using the same logic as (5.8), AC real power equals DC power. From (5.32) and

(5.33), we have

3 kg

ffiffiffi
6

p

p
Id

� �
E cos’ ¼ 3

ffiffiffi
6

p

p
cos aþ cos d

2
E

� �
Id:

120° + g

120° +a
180° +a

180° +d

300° +d
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Fig. 5.12 Phase b current with commutation angle
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Hence

kg cos’ ¼ cos aþ cos d
2

: ð5:34Þ

Substituting the above into (5.33), we obtain the relationship between DC voltage

and AC voltage when considering commutation angle

Vd ¼ kg
3

ffiffiffi
6

p

p
E cos ’: ð5:35Þ

In the above we deduce the operation conditions of a single bridge and its basic

(5.27), (5.29), (5.32), and (5.35).

5.2.5 Multiple Bridge Operation

Real HVDC systems usually apply multiple bridges to achieve higher DC voltage.

Multiple bridge converters generally have an even number of bridges connected in

series on the DC side while connected in parallel on the AC side. Figure 5.13 shows

the connection of a double-bridge converter. The dotted lines are drawn for ease of

understanding. Since the currents on the two dotted lines are equal and have

opposite direction, they do not exist in a real system. With the dotted lines, the

double-bridge converter can be treated as two independent single bridge converters

connected in parallel. Below we identify the characteristics of a double-bridge

converter. In Fig. 5.13, the connection of two converter transformers is different,

one Y/Y; the other Y/D. This connection makes the phase-angles of AC voltages on

the two bridges have a difference of 30�. We use vdu and vdl to represent the pulsed

Ld

vdu

Vd

vdl

1′ 3′ 5 ′

4 ′ 6′ 2′

1 3 5

4 6 2

Fig. 5.13 Connection diagram of a double-bridge converter
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DC voltages of the upper and lower bridge, respectively. The pulsed DC voltage vd
of the double-bridge is the sum of vdu and vdl. Based on the previous analysis, the

waveform of vdu is as shown in Fig. 5.7a. Note that there is a 30� phase-angle

difference between the upper bridge and lower bridge. Thus, the waveform of vdl is
that of vdu shifted to the right by 30�. The waveform of vd is the sum of vdu and vdl.
Apparently, the sum of two 6-pulse waveforms with 30� phase-angle difference

produces a 12-pulse waveform and results in smaller magnitudes of pulses. It is

easy to understand that the DC voltage of a double-bridge converter is the sum of its

two single bridge converters. The DC voltage fluctuation is reduced in comparison

with a single-bridge converter. A double-bridge converter is also called 12-pulse

converter.

Now we show the AC current analysis. The AC current of the upper bridge is

shown in Fig. 5.4c. The current waveform on the secondary side of the lower bridge

converter transformer is the current of the upper bridge shifted to the right by 30�.
Since the transformer has Y/D connection, its phase currents are the combination of

line currents

iap ¼ 2ibl þ iclð Þ=3
ibp ¼ 2icl þ ialð Þ=3
icp ¼ 2ial þ iblð Þ=3

9=
;; ð5:36Þ

where subscript p and l indicate phase and line components. The current waveforms

on the primary side of the converter transformer have the same shape as the

Y Y

Y Δ

Y Y

Y Δ

a

b

c

6 - pulse Y-Y bridge

6 - pulse Y-D bridge

12 - pulse bridge

One period

Fig. 5.14 AC current waveforms in multibridge converters
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secondary except being shifted to the left by 30�. Taking phase a as an example,

Fig. 5.14 gives the waveforms of AC currents of multibridge converters. From Fig.

5.14c we can see that the combined current of a double-bridge converter is more

like a sinusoidal wave. This will greatly reduce the harmonic current on the AC

side, saving on AC filter investment. Using a similar analysis as the double-bridge

converter, three or four bridge converters are known as 18 or 24 pulse converters.

The number of pulses in their DC voltage is 18 or 24, respectively. The more

bridges there are, the less will be the harmonic components and their magnitudes,

and the less DC voltage fluctuation. However, the connection of converter trans-

formers and the DC control systems become very complicated when using more

than two bridges. Hence the 12-pulse converters are most commonly used in the

industry.

Below we are going to derive an equivalent single-bridge converter model from

the multibridge converter analysis, as shown in Fig. 5.15. The converter transformer

is now assumed to be an ideal transformer with kT as the transformer ratio. The

equivalent reactance Xc of the converter transformer is represented in the converter

basic equations. Vt and It are the fundamental frequency voltage and current on the

primary side of the converter transformer. Ptdc þ jQtdc is the power that the DC

system takes from AC system. Pts þ jQts is the power injected into the AC bus.

Suppose that the converter has nt bridges. Based on the analysis of a double-bridge

converter, the DC voltage output of a multibridge converter is the sum of individual

bridge DC voltage outputs. AC fundamental frequency current is the sum of the

fundamental frequency currents of individual bridges. It is important to note that the

physical variables mentioned are those on the secondary side of the converter

transformer. E in (5.5) is the phase voltage on the secondary side of the converter

transformer. Thus E ¼ kTVt=
ffiffiffi
3

p
. Corresponding to the equations of single-bridge

converter 5.27, 5.29, 5.35, and 5.32, the multibridge converter has

Vd ¼ nt Vd0 cos yd � RgId
� 	 ¼ 3

ffiffiffi
2

p

p
ntkTVt cos yd � 3

p
ntXcId; ð5:37Þ

Vd ¼ nt kg
3

ffiffiffi
6

p

p
E cos’

� �
¼ 3

ffiffiffi
2

p

p
kgntkTVt cos’; ð5:38Þ

Vt

AC

Ptdc+jQtdc

Pts+ jQts

1:kT

DC
Vd

Id

It

Fig. 5.15 AC/DC interconnected systems and converter
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It ¼ kgntkt

ffiffiffi
6

p

p
Id: ð5:39Þ

Note that (5.37) is a common equation that can be used for both rectifier and

inverter. yd is generalized to represent the control angle of the converter. In fact,

it is the firing angle delay a of a rectifier and the leading firing angle m of an inverter.

Besides, note that the reference direction of the inverter DC voltage is opposite to

the rectifier. As shown in Fig. 5.15, we will use the reference direction of the

rectifier DC voltage when we do not distinguish a rectifier and an inverter. For an

inverter, multiplying the value obtained from (5.37) by �1 results in the same as

shown in Fig. 5.15.

The above three equations are the general basic equations of the converter and

will play an important role in the analysis of AC/DC interconnected transmission

systems.

5.2.6 Converter Control

Take the two-terminal DC transmission systems in Fig. 5.1. Substituting (5.37) into

(5.1) yields

Id ¼ GS kT1Vt1 cos a1 � kT2Vt2 cos m2ð Þ; ð5:40Þ

where

GS ¼
ffiffiffi
2

p 

Xc1 þ p

3nt
Rþ Xc2

� �
ð5:41Þ

is a constant parameter with the unit of inductance. From the above equations and

(5.2) we know that the adjustment of converter control angles (a1, m2) and the ratios
(kT1, kT2) of converter transformers can control the power transported on the DC

lines. The AC system voltages Vt1, Vt2 at the two terminals of the DC lines have

direct impact on the transmitted power. It is far more convenient to adjust the

transported power by changing the converter control angles and transformer ratios

than directly controlling AC voltages Vt1, Vt2. When fast power control is required,

the control of Vt1, Vt2 is not normally used. The control of transformer ratios is

carried out by adjusting tap changers. Note that the manufactured design requires

that tap changers of transformers operate in steps. This makes the ratio a discrete

variable. Also, tap changers are mechanical devices, with one step change taking

5–6 s. The adjustment of converter firing angles is carried out by modifying the

electrical parameter of the control circuits. The response speed of firing angle

control is very high, ranging from 1 to 10 ms. Due to this characteristic of firing

angle control, HVDC can adjust the transported power accurately and rapidly, and

play an important role in emergency power support for AC systems. The general
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control process in power system operation is as follows. First, use an automatic

control system to adjust firing angles (a1, m2) to make power systems operate in a

proper state. Then, set the tap changers of converter transformers to put the

converter firing angles into appropriate ranges. Finally, make the system run in an

ideal condition through AC system optimization.

We need to pay attention to the following issues regarding the operation control

of the DC system in steady state.

First, since GS in (5.41) is very large, a small variation of AC voltage Vt1, Vt2 in

system operation can give rise to a huge change in DC current. It is necessary that

fast adjustment of converter firing angles is applied, to follow the variation of AC

voltages and to prevent large fluctuations of DC current, in order to achieve normal

operation of the DC system.

Next, the converter steady-state operation adjustment should maintain DC

voltage around its rated value. Although converter bridges can withstand high

over-voltage; DC voltage in operation should not be higher than its rated value

for a long period to safeguard the equipment of the whole DC system. On the other

hand, DC voltage should not be much lower than its rated value. Given a certain

amount of transmitted power, lower voltage requires higher current. As shown in

(5.39), AC fundamental frequency current is proportional to DC current. A higher

DC current increases the loss on DC lines as well as AC system. From (5.15) and

(5.24), a higher DC current also enlarges the commutation angle and reduces the

range of firing angle adjustment.

Also, the converter steady-state operation should maintain a power factor as high

as possible. The benefit is obvious. First, it reduces the reactive power compensa-

tion requirements of the AC system. Next, it increases the capacity of real power

that can be processed by converters and converter transformers as well as the

transmission capacity. It also reduces power losses. To operate with a higher

power factor, a rectifier should have a small firing angle delay and an inverter

should have small leading extinction angle, as seen in (5.34). However, in real

operation, there is a minimum constraint for rectifier firing angle delay a, a > amin.

This is to make sure that valves have adequate positive voltage before firing to

provide sufficient energy for the firing generation circuits. For 50 Hz systems, amin

is around 5�. Normal system operation uses 15�–20� to leave a certain margin.

Similarly, inverters need to have adequate time to complete commutation under

positive valve voltage after firing. As shown in Fig. 5.11, the leading extinction

angle m of zero is a theoretical critical value. In fact, the commutation angle g varies
with AC voltage and DC current (refer to (5.15)). There must be some margin left

for leading extinction angles. Thus, there is a minimum constraint for m, normally m
> mmin. For 50 Hz systems, mmin is 15

�.
Finally, AC/DC interconnected system operation requires designating control

schemes for every converter based on operation requirements. The most common

control scheme is: adjust the rectifier firing angle to maintain a constant DC current,

called fixed current control; adjust the inverter firing angle to maintain a constant

leading extinction angle, called fixed extinction angle control. Power flow calcula-

tion usually includes the following control schemes:
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1. Fixed current control

Id � Ids ¼ 0 ð5:42Þ

2. Fixed voltage control

Vd � Vds ¼ 0 ð5:43Þ

3. Fixed power control

VdId � Pds ¼ 0 ð5:44Þ

4. Fixed angle control

cos yd � cos yds ¼ 0 ð5:45Þ

5. Fixed ratio control

kT � kTs ¼ 0; ð5:46Þ

where the variables with subscript are predefined constants.

In the above, we introduce the basic concept of HVDC by deriving its basic

equations (5.37)–(5.39).

5.3 Power Flow Calculation of AC/DC Interconnected Systems

When there are HVDC systems, the nonlinear algebra equations representing the

whole system will have variables related to the DC system and the additional

equations for the DC part. Power flow calculation cannot be directly carried out

as stated in Chap. 2. Since the methods introduced in Chap. 2 are mature and are

widely used in the industry, the most common power flow calculations of AC/DC

interconnected systems are based on those approaches. There are mainly two ways:

integrated iteration and alternating iteration.

The integrated iteration is based on the Newton algorithm in the form of polar

coordinates. It is an integrated iteration process to solve for AC bus voltages, phase

angles together with DC voltages, currents, converter transformer ratios, converter

power factors, and control angles. This method has good convergence, and can

achieve reliable solutions for different network topologies, parameters, and various

DC control schemes. This method is also called the unified method.
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The alternating iteration is a simplified integrated method. During iterations, it

solves AC equations and DC equations separately. When solving AC, use the

known real power and reactive power to represent the DC system. While solving

DC, model the AC system as a constant voltage on the converter AC bus. Below we

determine the per unit normalization for converters, build the mathematical model

for power flow calculations of AC/DC interconnected systems, and introduce the

detail process of integrated and alternating iterations.

5.3.1 Converter Basic Equations in the per Unit System

In power flow calculations, the DC system should use the per unit normalization as

for the AC system. We will transfer the converter basic equations (5.37)–(5.39) into

the per unit system so that they can be used with AC per unit equations. There are

many ways to define the base values of various DC quantities, giving rise to

different appearances of per unit basic equations. The base variables in the DC

system are labeled with the dB subscript. The base variables should satisfy the same

kind of relationship as the actual variable

VdB ¼ RdBIdB
PdB ¼ VdBIdB

�
: ð5:47Þ

We can set two of the four base variables in the above so the other two are derived

from the above equation. The base variables of AC quantities in the primary sides of

converter transformers use the B subscript. Taking into consideration the coordina-

tion with AC systems, we define

PdB ¼ SB ¼
ffiffiffi
3

p
VBIB: ð5:48Þ

To make the converter basic equations have a concise form, we make

VdB ¼ 3
ffiffiffi
2

p

p
ntkTBVB; ð5:49Þ

where kTB is the converter transformer base ratio, that is, rated ratio.

We can derive the base values of DC current and resistor from (5.47).

IdB ¼ PdB

VdB

¼ pffiffiffi
6

p
ntkTB

IB ð5:50Þ

RdB ¼ VdB

IdB
¼ 3

p
ntXcB

XcB ¼ 6

p
ntk

2
TBZB

9>=
>;: ð5:51Þ

282 5 HVDC and FACTS



Equations (5.48)–(5.51) are the per unit system for converters. Dividing both

sides of (5.37)–(5.39) by the corresponding base values and using ‘‘*’’ subscript to

represent the per unit variables, we have

Vd� ¼ kT�Vt� cos yd � Xc� Id� ; ð5:52Þ

Vd� ¼ kgkT�Vt� cos’; ð5:53Þ

It� ¼ kgkT� Id� : ð5:54Þ

We introduce a constant Xc� to simplify (5.52). Note that Xc� ¼ Xc=XcB 6¼ Xc=RdB.

Variable yd and ’ are the angles so they do not have base values or per unit values.

The above three equations form the per unit converter basic equations. Below we

are going to use per unit values in our analysis. For simplicity, we will ignore the

per unit subscript ‘‘*’’.

5.3.2 Power Flow Equations

We identify a bus as a DC bus or a AC bus based on whether it is connected with a

converter transformer or not. The bus connecting to the primary side of a converter

transformer is called a DC bus. The bus having voltage Vt in Fig. 5.15 is a DC bus.

Apparently, a bus without connection to a converter transformer is a pure AC bus.

Assume that the total bus number in a system is n, and the number of converters is

nc. The number of DC buses is the same as the number of converters. The number of

pure AC buses is na ¼ n�nc. For the simplicity of description, the numbering

sequence of system buses is: the first na are AC buses and the next nc are DC buses.

The basic principle of building power flow models for AC/DC interconnected

systems is as follows. First use the extraction and injection power, Ptdc þ jQtdc of

converter transformers at DC buses to represent converter transformers and the DC

system behind them (refer to Fig. 5.15). Thus, the system topology does not have

any converter transformers and associated DC systems, and becomes an AC

network. Then we build the system bus admittance matrix using the methods

introduced in Chap. 1. We can now establish the bus power equations as stated in

Chap. 2. Note that the system may become several separate systems due to the

removal of DC systems. As shown in Fig. 5.1, suppose that there is no other

connection between system 1 and 2 other than the DC connection. The removal

of DC system generates two separated AC system networks. Note that this does not

mean that the two systems are de-coupled with each other. Their coupling is

represented by the DC power at their DC buses. They are combined into one system

when forming the bus admittance matrix. The above process applies to the case of

two systems having different frequencies. As for power flow solution, frequency

affects only network parameters and will not appear in bus power equations. Here

the reference direction of rectifier DC voltages is from anode to cathode, and the
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opposite is true for inverters. The reference direction of DC current is always from

valve positive pole to its negative pole.

1. Node power equations

Power equations are the same as (2.13) for AC buses

DPi ¼ Pis � Vi

P
j2i

Vj Gij cos yij þ Bij sin yij
� 	 ¼ 0

DQi ¼ Qis � Vi

P
j2i

Vj Gij sin yij � Bij cos yij
� 	 ¼ 0

9>=
>; i ¼ 1; 2; . . . ; na: ð5:55Þ

Note that j in the above equation can be an AC bus as well as a DC bus.

For a DC bus, suppose that converter transformer numbered k connects to bus i.
The complex power extracted from the bus is

Pidc þ jQidc ¼ ViIiðcos’k þ j sin’kÞ:

Substituting (5.54) into the above yields

Pidc þ jQidc ¼ kgkTkViIdkðcos’k þ j sin’kÞ: ð5:56Þ

We have assumed that there are ideal filters on both AC and DC sides so that

harmonic power is zero. Neglecting the converter power loss, AC fundamental

frequency power equals DC power. We have another expression of the extracted

power

Pidc ¼ VdkIdk

Qidc ¼ VdkIdk tg ’k

)
: ð5:57Þ

The above two expressions are equivalent. AC bus voltage does not appear in

(5.57). For easy programming, we will use (5.57). The difference between the DC

bus power equation and (5.55) is an additional item of DC power

DPi ¼ Pis � Vi

X
j2i

Vj Gij cos yij þ Bij sin yij
� 	� VdkIdk ¼ 0

DQi ¼ Qis � Vi

X
j2i

Vj Gij sin yij � Bij cos yij
� 	� VdkIdk tg ’k ¼ 0

9>>=
>>;

i ¼ na þ k; k ¼ 1; 2; . . . ; nc; ð5:58Þ

where positive and negative signs correspond to inverters and rectifiers, respective-

ly. Equations (5.55) and (5.58) make up the whole system power equations.

Comparing with the conventional power equation (2.13), the difference is that

DC bus power (5.58) has new variables Vdk, Idk, and ’k. Thus, the number of
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unknown variables is more than the number of equations. To make the power flow

solvable, we need to add the following new equations.

2. Converter basic equations

Based on (5.52) and (5.58), for converter k we have

Dd1k ¼ Vdk � kTkVnaþk cos ydk þ XckIdk ¼ 0 k ¼ 1; 2; . . . ; nc; ð5:59Þ

Dd2k ¼ Vdk � kgkTkVnaþk cos’k ¼ 0 k ¼ 1; 2; . . . ; nc: ð5:60Þ

3. DC network equations

DC network equations are the mathematical model of DC lines that describes the

relationship between DC voltage and current. For multiterminal DC systems, pay

attention to the reference directions of DC voltage and current. Eliminating the

intermediate buses, we have

Dd3k ¼ �Idk �
Xnc
j¼1

gdkjVdj ¼ 0 k ¼ 1; 2; . . . ; nc; ð5:61Þ

where gdkj is the element of bus admittance matrixGd after eliminating intermediate

buses. The DC voltage and current in the above equation are converter output

voltage and current, since the intermediate buses are removed. The positive and

negative signs correspond to rectifiers and inverters, respectively.

For a simple two-terminal DC system as shown in Fig. 5.1, based on (5.1) and Id1 ¼
Id2 we have its DC network equations as

Id1
�Id2

� 

¼ 1=R �1=R

�1=R 1=R

� 

Vd1

Vd2

� 

: ð5:62Þ

Note that DC line resistor R approaches zero when the electric distance between the

two converters in a two-terminal system is very short (e.g., the back-to-back DC

system connecting two systems having different frequencies). Neglecting this

resistor, (5.62) becomes

Vd1 ¼ Vd2

Id1 ¼ Id2

�
:

For easy programming, we will have a small enough R and still use (5.62) as the DC

network equation.

4. Control equations

We introduce two new variables in the above three supplemental (5.59)–(5.61):

converter transformer ratio kTk and converter control angle ydk. Based on the given

control scheme, (5.42)–(5.46) can provide the values of the two variables to make
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the number of variables equal to the number of equations. To make the programs

generally applicable, people usually add the two supplemental control equations.

Note that the two converter variables must be independent. For example, the

rectifier in a two-terminal DC system as shown in Fig. 5.1 uses fix current and fix

voltage control scheme. As indicated in (5.62), the inverter current and voltage are

determined by the rectifier control. Hence we should select other variables for the

inverter. Generally, we use fixed ratio and fixed current control for rectifiers, and

fixed ratio and fixed control angle for inverters. We have the common control

equations as follows:

Dd4k ¼ d4k Idk;Vdk; cos ydk; kTkð Þ ¼ 0 k ¼ 1; 2; . . . ; nc; ð5:63Þ

Dd5k ¼ d5k Idk;Vdk; cos ydk; kTkð Þ ¼ 0 k ¼ 1; 2; . . . ; nc: ð5:64Þ

As seen in (5.42)–(5.46), the four variables, Idk, Vdk, kTk, and cosydk, do not all

appear in the real control equations; also ydk appears as cosydk in the above. To

reduce the nonlinearity of equations (5.59), (5.63), and (5.64), we use cosydk as the
unknown variable instead of ydk.

The bus power equations (5.55), (5.58), supplemental equations (5.59)–(5.61),

(5.63), and (5.64) make up the entire system equations. Comparing with the

conventional power flow equations, AC/DC interconnected systems need to com-

pute bus voltages and phase angles of all n buses, as well as DC voltage, DC current,

control angle, converter transformer ratio, and converter power factor. For each

converter, there will be five additional unknown variables and five additional

equations.

Below we introduce the integrated iteration method, which uses similar basic

principles as references [111, 112] while the per-unit system and approximations

are different.

5.3.3 Jacobian Matrix of Power Flow Equations

From the mathematical point of view, the power flow equations established above

have no difference in nature to the conventional power flow equations (2.13). They

are both nonlinear multivariable algebraic equations. Thus, the Newton formula to

solve (2.13) in Chap. 2 can be used to solve power flows for AC/DC interconnected

systems as an extension of the existing methods. The extended equations include

converter equations, DC network equations, and control equations. The extended

variables are

X ¼ VT
d ITd KT

T WT
d FT

� �T
;
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where

Id ¼ Id1 Id2 	 	 	 Idnc½ �T;
KT ¼ kT1 kT2 	 	 	 kTnc½ �T;
W ¼ w1 w2 	 	 	 wnc½ �T¼ cos yd1 cos yd2 	 	 	 cos ydnc½ �T;
F ¼ ’1 ’2 	 	 	 ’nc

� �T
:

We use notations DPa and DPt to represent power mismatches of pure AC buses and

DC buses, respectively. Correspondingly, bus voltages and phase angles will use

the same subscript. The mismatch equations for power flow of AC/DC inter-

connected systems corresponding to (2.40) are

DPa

DPt

DQa

DQt

Dd1
Dd2
Dd3
Dd4
Dd5

2
6666666666664

3
7777777777775
¼

Haa Hat Naa Nat 0 0 0 0 0

Hta Htt Nta Ntt A21 A22 0 0 0

Jaa Jat Laa Lat 0 0 0 0 0

Jta Jtt Lta Ltt A41 A420 0 0 A45

0 0 0 C14 F11 F12 F13 F14 0

0 0 0 C24 F21 0 F23 0 F25

0 0 0 0 F31 F32 0 0 0

0 0 0 0 F41 F42 F43 F44 F45

0 0 0 0 F51 F52 F53 F54 F55

2
6666666666664

3
7777777777775

Dya
Dyt

DVa=Va

DVt=Vt

DVd

DId
DKT

DW
DF

2
6666666666664

3
7777777777775
; ð5:65Þ

where

DPa ¼ DP1 DP2 . . . DPna½ �T;
DPt ¼ DPnaþ1 DPnaþ2 . . . DPnaþnc½ �T;

(DQa, DQt), (Dua, Dut), and (DVa/Va, DVt/Vt) have the similar expression structure

as (DPa, DPt). While

Ddm ¼ Ddm1 Ddm2 . . . Ddmnc½ �T m ¼ 1; 2; 3; 4; 5:

It is not difficult to find the order of the above sub-matrices. It is clear that the order of

the coefficient matrix (power flow Jacobian matrix of AC/DC interconnected sys-

tems) expands by 5nc comparing to conventional power flow calculations. We use

sub-matrices A, C, and F to represent the extended parts of the coefficient matrix.

Below we are going to identify the actual expression of Jacobian matrix elements.

Since the DC power in bus power (5.58) takes the form of (5.57), the bus voltage

magnitudes and phase angles do not appear in the equation. The part of the Jacobian

matrix corresponding to conventional power flow is not changed by the introduction

of DC transmission systems. The formation method of sub-matrices H, N, J, and L

in (5.65) is the same as in (2.50). We can directly use expression in (2.41)–(2.49).

Designate E as unit matrix of nc order. From the established power flow calculation

equations of AC/DC interconnected systems and the definition of a Jacobian matrix,

it is not difficult to obtain
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A21 ¼ @DPt

@Vd

¼ diag �Idk½ �; ð5:66Þ

A22 ¼ @DPt

@Id
¼ diag �Vdk½ �; ð5:67Þ

A41 ¼ @DQt

@Vd

¼ diag �Idk tg’k½ �; ð5:68Þ

A42 ¼ @DQt

@Id
¼ diag �Vdk tg’k½ �; ð5:69Þ

A45 ¼ @DQt

@F
¼ �diag VdkIdk sec

2 ’k

� �
; ð5:70Þ

F11 ¼ @Dd1
@Vd

¼ E; ð5:71Þ

F21 ¼ @Dd2
@Vd

¼ E; ð5:72Þ

F31 ¼ @Dd3
@Vd

¼ �Gd; ð5:73Þ

F12 ¼ @Dd1
@Id

¼ diag Xck½ �; ð5:74Þ

F32 ¼ @Dd3
@Id

¼ E; ð5:75Þ

F13 ¼ @Dd1
@KT

¼ �diag Vnaþkwk½ �; ð5:76Þ

F23 ¼ @Dd2
@KT

¼ �diag kgVnaþk cos’k

� �
; ð5:77Þ

F14 ¼ @Dd1
@W

¼ �diag kTkVnaþk½ �; ð5:78Þ

F25 ¼ @Dd2
@F

¼ diag kgkTkVnaþk sin’k

� �
; ð5:79Þ
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C14 ¼ @Dd1
@Vt

Vt ¼ �diag kTkVnaþkwk½ �; ð5:80Þ

C24 ¼ @Dd2
@Vt

Vt ¼ �diag kgkTkVnaþk cos’k

� �
: ð5:81Þ

When all of the DC buses are PQ buses, the above sub-matrices are all nc-order
square matrices. All of them except F31 are diagonal. When a DC bus is a PV bus,

the voltage magnitude on the bus is given. We should remove the corresponding

columns in C14 and C24 and corresponding rows in A41 and A42. Sub-matrices

F41–F45 and F51–F55 are related to the control schemes of the converters. Since the

controlS (5.42)–(5.46) have very simple expressions, their sub-matrices are quite

sparse. Besides, the corresponding rows in (5.73) for inverters should be multiplied

by a negative sign, as shown in (5.62), due to the fact that we use the convention of

load representation as the reference direction of inverter DC voltages and currents.

5.3.4 Integrated Iteration Formula of AC/DC Interconnected
Systems

The power flow of interconnected systems can be solved by using the calculation

process of the Newton algorithm for the conventional power flow. We can give the

initial values of the n-bus voltage magnitudes and phase angles based on the flat

start principle. The specialty here is to estimate the initial values for the variables

associated with the extended equations and the control constraints.

Based on the estimated power or given power, we can use the converter basic

equations to obtain the initial values of the extended variables. During the evalua-

tion, we directly convert a variable into a constant if it is given in the converter

control scheme. The initial values of bus voltages are 1.0 or the given voltages if the

buses are PV buses. The power factors of converters are initialized to 0.9. The

general evaluation process is as follows. If VTk and kTk are both unknown, take kTk
as 1.0 and compute VTk from (5.60). If one of them is known, compute the other. If

both are known, compute cos ’k as power factor initial instead of assuming 0.9. In

(5.59), if Idk is unknown, compute it from (5.57) using estimated DC power Pidc.

After Idk is known, compute cos ydk as the initial of ok from (5.59). If the resulted

ok is greater than 1.0, take 1.0 as initial ok.

Operational constraints on extended variables can be similarly handled to vari-

able limits in conventional power flow calculations. We set the extended variables

to their limits if they go beyond their limits. Note that the minimum constraint

on control angles corresponds to the conversion ok ¼ cos ydk, i.e., less than arccos

ydk min. DC voltages and currents have maximum constraints, and transformer ratios

have both upper and lower limits. Also, the transformer ratios are discrete variables

but are treated as continuous variables in the above calculations.
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We have discussed the basic principles of the Newton algorithm in power flow

calculation of AC/DC interconnected systems. Although the Newton algorithm has

good convergence, it requires repeated updates of the Jacobian matrix during

iterations, resulting in low calculation efficiency. In a conventional power flow,

the P�Q decoupled method can increase the overall speed of calculation. With

regard to the characteristics of the Jacobian matrix in AC/DC interconnected

system, it is not difficult to consider applying a similar approximation to AC/DC

interconnected systems to increase calculation speed. There are many simplification

methods and iteration processes with the same basic concept. Below we will

introduce one of them. To balance the convergence and calculation speed, we are

going to take only the approximation conditions in the conventional P�Q
decoupled method.

Using the approximation conditions of the P�Q decoupled method, (5.65) can

be simplified by applying (2.81) and (2.82) in the form of the three low-order

equations below

DP=V ¼ B0VDuþ A1DX; ð5:82Þ

DQ=V ¼ B00DVþ A2DX; ð5:83Þ

DD ¼ C0
2DVþ FDX; ð5:84Þ

where

DX ¼ DVT
d DITd DKT

T DWT DFT
� �T

;

DD ¼ DdT1 DdT2 DdT3 DdT4 DdT5
� �T

;

A1 ¼ 0 0 0 0 0

A21 A22 0 0 0

� 

; ð5:85Þ

A2 ¼ 0 0 0 0 0

A41 A42 0 0 A45

� 

; ð5:86Þ

C0
2 ¼

0 0 0 0 0

C0T
14 C0T

24 0 0 0

� 
T
: ð5:87Þ

Note that in (5.84), voltage mismatch DVi is not divided by Vi as in (5.65). The

partial derivative corresponding to (5.80) and (5.81) is not multiplied by Vi. Thus

C0
14 ¼

@Dd1
@Vt

¼ �diag kTkwk½ �; ð5:88Þ
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C0
24 ¼

@Dd2
@Vt

¼ �diag kgkTk cos’k

� �
; ð5:89Þ

From (5.83) we have

DV ¼ B00�1 DQ=V� A2DX½ �: ð5:90Þ

Substituting (5.90) into (5.84) yields

DD� C0
2B

00�1DQ=V ¼ F� C0
2B

00�1A2

� �
DX ð5:91Þ

Solving DX from (5.91) and substituting into (5.90) and (5.82) can obtain the values

of DV and VDu. Let

B00�1DQ=V ¼ yq; ð5:92Þ

B00�1A2 ¼ YA: ð5:93Þ

The solution process of (5.82)–(5.84) is

B00yq ¼ DQ=V; ð5:94Þ

B00YA ¼ A2; ð5:95Þ

DD� C0
2yq ¼ F�C0

2YA

� �
DX; ð5:96Þ

DV ¼ yq � YADX; ð5:97Þ

B0VDy ¼ DP=V� A1DX: ð5:98Þ

Figure 5.16 shows the calculation process.

From the analysis in 2.4 we knowmatrices B00 and B0 are constant matrices. They

only need to be generated once before iterating and only require LU decomposition

once:

1. Solve vector yq from (5.94). This step is consistent with the conventional P–Q
decoupled method and computation.

2. Solve matrix YA from (5.95). Since A2 changes in each iteration, it is built by

(5.68)–(5.70). Apparently matrix A2 consists of 3nc sparse vectors with one

nonzero element in each vector and 2nc zero vectors because sub-matrices A31,

A31, and A35 are all zero matrices. Thus, the corresponding sub-matrices YA13,

YA23, YA14, and YA24 of YA are all zero matrices (refer to (5.99)). The formation

of YA can be quickly accomplished by the sparse matrix method discussed in

Chap. 2. As we know, the fast forward substitution of a sparse vector requires
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(n � l þ 1)(n � l þ 2)/2 times of multiplication if only the lth element of sparse

n-order vector is nonzero. To save computation time, we should make l as large
as possible. For example, the fast forward substitution of ncth column of A2,

corresponding to l ¼ n, needs only one multiplication according to (5.68) and

(5.86). Hence it is necessary to put the bus power equations of pure AC buses at

the beginning. This is to designate higher numbers to DC buses so that the only

nonzero elements in A2 stay near the bottom of column vectors. When nc is not
large, the optimization of bus numbering should focus on the computation

reduction of forming the factor table.

N

Y

Input data

Build factor tables of B� and B�

Iteration No. K = 1

Initialization

Output results End

Compute DD  from Eqs. 5.59～5.61, 5.63 and 5.64;
Computebus power mismatch DP/V and DQ/V from Eq. 5.55 and 5.58

|| DD ||, || DP/V ||, || DQ/V|| < ε?

Build F from Eq. 5.71～5.79 and DC Control Eq. 5.61 and 5.64; 
Build matrices A1 and A2 from Eq. 5.66～5.70;Build Matrix C�2 from Eq. 5.87～5.89 

Solve Eq. 5.94 and obtain vector yq

Solve Eq. 5.95 and obtain matrix YA

Solve Eq. 5.96 and obtain mismatch DX

Eq. 5.97 yields mismatch DV

Solve Eq. 5.98 and obtain mismatch Dq

Use DX, DV and Dq to modify X, V and q

K   K+1

Fig. 5.16 Flowchart of PQ decoupled method
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3. Establish the 5nc-order coefficient matrix F � C0
2 YA of (5.96). We know C0

2 is

highly sparse from (5.87)–(5.89). Partitioning YA and multiplying by C0
2 yields

C0
2YA ¼ 0 0 0 0 0

C0T
14 C0T

24 0 0 0

� 
T
YA11 YA12 0 0 YA15

YA21 YA22 0 0 YA25

� 

:

The last three columns of the above equation are zeros. The first two columns are

C0
14YA21 C0

14YA22 0 0 C0
14YA25

C0
24YA21 C0

24YA22 0 0 C0
24YA25

� 

; ð5:99Þ

where the orders of the sub-matrices in the first and second rows ofYA are na � nc
and nc � nc matrices. Note that C0

14 and C
0
24 are both nc-order diagonal matrices,

thus

C0
i4YA2j

� 	
lm
¼ C0

i4

� 	
ll
YA2j

� 	
lm

i ¼ 1; 2;

j ¼ 1; 2; 5;

l ¼ 1; 2; . . . ; nc;

m ¼ 1; 2; . . . ; nc:

9>>>>>>=
>>>>>>;

ð5:100Þ

The computation of vector C0
2 yq is as follows

C0
2yq ¼

0 C0
14

0 C0
24

0 0

0 0

0 0

2
6666664

3
7777775

yq1

yq2

" #
¼

C0
14yq2

C0
24yq2

0

0

0

2
6666664

3
7777775
; ð5:101Þ

C0
i4yq2

� �
l
¼ C0

i4

� 	
ll

yq2

� �
l
;

i ¼ 1; 2;

l ¼ 1; 2; . . . ; nc:

9>>=
>>; ð5:102Þ

We can see that 2nc among the 5nc elements of C0
2 yq are nonzero.

4. Building the vectors A1DX in (5.98). From (5.85) we have

A1DX ¼ 0 0 0 0 0

A21 A22 0 0 0

� 

DVT

d DITd DKT
T DWT DFT

� �T
¼ 0

A21DVd þ A22DId

� 

:

ð5:103Þ
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Equations (5.66) and (5.67) yield

A21DVd þ A22DIdð Þk¼ � IdkDVdk þ VdkDIdkð Þ; k ¼ 1; 2; . . . ; nc: ð5:104Þ

We have introduced the integrated iteration power flow calculations of inter-

connected systems.

5.3.5 Alternating Iteration for AC/DC Interconnected Systems

The alternating iteration method is a further simplification to the P–Q decoupled

method in the integrated iteration power flow calculations. Based on the basic

converter (5.52) and (5.53), the impact of AC systems on DC systems relies on

the primary voltages Vt of converter transformers. If the AC voltages Vt of all

converters in a multiterminal DC systems are known, the DC system will have

(5.59)–(5.61), (5.63), and (5.64), a total of 5nc equations and 5nc unknown vari-

ables. We can obtain the 5nc unknown DC variables by solving only the DC system

equations. The power taken out of, or injected into, AC systems, Pidc þ jQidc from

converter transformers, represents the impact of DC systems on AC systems. If the

power withdrawn from or injected into AC systems is known, power flow calcula-

tions of AC systems are not affected by DC systems. The ideal process is to

designate the primary voltages of nc converter transformers

V
0ð Þ
t ¼ V

0ð Þ
naþ1 V

0ð Þ
naþ2 . . . V

0ð Þ
naþnc

h i
:

Obtain solution of DC variables X(0). Substituting X(0) into (5.57) yields the

power of all converters Pdc
(0) and Qdc

(0). Using converter power in AC system

equations for conventional power flow calculations gives rise to convergent solu-

tion V 1ð Þ ¼ V 1ð Þ
a V

1ð Þ
t

h i
. Ideally the calculation completes if V

ð1Þ
t equals V

ð0Þ
t .

Generally V
ð1Þ
t is not the same as V

ð0Þ
t . The calculation is an iteration process.

Based on the above, AC and DC system equations are separately solved in

alternating iterations. When solving AC system equations, we use the known

power at the DC buses to represent the corresponding DC systems. While solving

DC system equations, we model AC systems as constant voltages at the AC buses of

converters. At each iteration, the solution of the AC systems provides the converter

AC bus voltages for the next DC iteration; the solution of DC systems in turn

produces the equivalent real and reactive power of converters for the further AC

iteration. The iteration goes on and on until convergence is achieved. We must point

out that the convergence of this method is mathematically related to the Gauss–

Seidel iteration. In fact, the alternating iteration is not a complete Gauss–Seidel

iteration. For the AC system equations in the alternating iteration method, we

usually use the Newton algorithm or P–Q decoupled algorithm. For DC system

equations, the Newton algorithm is the most common approach [114]. The Gauss–

Seidel algorithm applies only to the coupling between AC and DC equations.
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With the above assumption, DC powers in the AC bus power (5.58) and AC

voltages in the DC system (5.59), (5.61), (5.63), and (5.64) are also known

constants. Sub-matrices A and C in (5.65) are all zero matrices to decouple AC

and DC systems. Going one step further, using PQ decoupling method in AC

equations results in the solution of the following three groups of equations for

AC/DC interconnected power flow

Start

Input data

Set initial values

||DD || <ε?

Compute DD from Eqs. 5.59    5.61, 5.63 and 5.64

KP = KQ = 1

Compute the equivalent load Pidc and Qidc at the AC
buses of converters from Eq. 5.57

Output data

End

KP = 0

KQ = 0 ?

Y

N

N

Y
N

Y

Y

N

N

Y

N
Y

Y

N

Build factor tables of B� and B�

Compute DD  from Eqs. 5.59    5.61, 5.63 and 5.64;

Build Jacobi matrix F of DC system from Eqs. 5.71
5.79  and DC control Eqs. 5.63 and 5.64

Solve Eq. 5.96, so obtain mismatch DX and then modifyX

Solve Eq. 5.108, so obtain mismatch DV and then modify V

Compute bus power mismatch DP/V from Eqs. 5.55 and 5.58

|| DP/V || < ε?

KQ = 1

Solve Eq. 5.98, so obtain mismatch Dq and Then modify q

Compute bus power mismatch DQ/V from Eqs. 5.55 and 5.58

KQ = 0

KP = 0?

KP = 1

||DQ/V || < ε? || DD || < ε?

KQ = 0?

Fig. 5.17 Flow chart of alternating iteration method
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DD ¼ FDX; ð5:105Þ

DP=V ¼ B0VDu; ð5:106Þ

DQ=V ¼ B00DV: ð5:107Þ

Comparing the above three groups of equations with (5.82) and (5.84), we can find

out that alternating iterations are equivalent to ignoring sub-matrices A and C0
2 in

integrated iterations. Figure 5.17 shows the flow chart of alternating iterations for

AC/DC interconnected systems. e in the figure represents the convergence toler-

ance. The whole system solution is the one that makes bus real power equations, bus

reactive power equations and DC system equations all convergent. In the iteration

process, DC variable X determines converter real and reactive powers. Any

correction in DC variables forces reconfirmation of convergence with the new X,

no matter whether the previous solution is convergent or not. The magnitudes of AC

bus voltages, not their phase angles, affect the DC equations. The modification of

AC bus voltages requires confirmation of convergence under the new V no matter

whether the previous DC and real power equations were converged or not. Similar-

ly, phase angle correction requires renewed convergence confirmation of reactive

power.

Some DC variables can be outside of their ranges in iterations. There are various

approaches to process over-limit scenarios. Take the converter transformer ratio kT
as an example. There is a voltage control terminal in a multiterminal DC system. If

kT is over its high limit, we can lower the given voltage at its voltage control

terminal, and vice versa. If a control angle a or m is less than its amin or mmin, we can

change the terminal control scheme to fixed control angle to force it to its limit or

another value, and release the previous given variable in the control equations.

There are some methods to solve DC (5.105) other than the above Newton

algorithm. Below we introduce a simple and effective approach.

A practical operation control scheme for multiterminal DC systems is to desig-

nate one terminal to enforce voltage control; that is, to use fixed DC voltage as its

control strategy. To be general, assume that converter nc is voltage control terminal

with DC voltage setting of Vds. Fixed current and fixed power control apply to other

terminals. As we pointed out before, the control angles of all converters should be

as small as possible to reduce reactive power consumption. Based on this principle,

suppose that the voltage control terminal of a DC system operates at the minimum

control angle. Its control (5.63) and (5.64) become

Vd ¼ Vds

yd ¼ ydmin

)
: ð5:108Þ

The control equations of nonvoltage control terminals are

Idk ¼ Idks or VdkIdk ¼ Pdks k ¼ 1; 2; . . . ; nc � 1: ð5:109Þ
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Besides fixed current and fixed power control, we have the following additional

equations to minimize the control angles

cos ydk ¼ ky cos ydkmin k ¼ 1; 2; . . . ; nc � 1; ð5:110Þ

where coefficient ky is given beforhand. We can obtain control angle yd with known
ky. The above is a fixed control angle scheme in nature. Usually ky is set to 0.97.

Taking (5.110) into (5.59) gives rise to converter equations of nonvoltage control

terminals

Dd1k ¼ Vdk � kykkTkVnaþk cos ydkmin þ XckIdk ¼ 0 k ¼ 1; 2; . . . ; nc � 1: ð5:111Þ

Equations (5.110) and (5.111) make up the converter control equations of

nonvoltage control terminals.

For DC network equations, Gauss–Seidel iteration can be conveniently used due

to the usually small nc. We build bus resistance matrix of DC systems for easier

iteration. Note that DC voltage in the DC network (5.61) is the voltage across the

two poles of the converter. Thus the admittance matrix Gd is an indefinite admit-

tance matrix and is singular. Taking bus nc as DC voltage reference bus in the DC

network, it is not difficult to build bus resistance matrix of the DC network fromGd.

Thus

Vdk ¼ Vds þ
Xnc�1

j¼1

rkjIdj k ¼ 1; 2; . . . ; nc � 1; ð5:112Þ

where gkj is the element of bus resistance matrix. Substituting (5.109) into (5.112)

we only have nc�1 unknown DC voltages.

Below we list the steps of interconnected system power flow calculations:

1. Set all DC voltage initials to Vds. Use Gauss–Seidel iteration to solve (5.112) for

convergent Vd.

2. Find DC current Id ¼ Pds/Vd of fixed power control converters based on known

Vd.

3. For each converter, compute secondary AC voltages kTVt of their converter

transformers. Calculation steps are as follows: For voltage control terminal,

kTVt can be found from (5.52) as Vd, Id, and yd are known from (5.108) and

the above step. For nonvoltage control terminals, kTVt can be calculated from

(5.111).

4. Compute converter power factor cos ’ from (5.53).

5. Compute converter real and reactive power from (5.57).

6. Carry out AC system power flow calculations to find a convergent solution using

converter power from Step 5.
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7. Compute each converter transformer ratio kT based on the primary voltage Vt in

Step 6 and the secondary voltage kTVt of converter transformers in Step 3.

8. If the ratios obtained are within their limits, calculation finishes. Otherwise go to

Step 9.

9. Adjust the DC voltage at the voltage control terminal as follows. Select the

maximum over-limit ratio kTworst among all over-limit ratios. Suppose its upper

and lower limits are kTmax and kTmin. If kTworst > kTmax, take Vds � kTmax/kTworst
as new voltage control value; otherwise take Vds � kTmin/kTworst as the new

voltage control value. Return to Step 1.

The above steps are the main steps of this method. Its basic characteristics are the

simplicity in theory and in programming. Comparing with Newton’s iteration for

DC equations, it saves considerable memory. When assuming the converter trans-

former ratio is a continuous variable and with no over-limits, DC and AC system

power flow solution can be attained in one computation. With necessary amend-

ment to the above method, it can be applied to power flow calculations for fixed

control angle control, discrete transformer ratio changes, etc. In which case, itera-

tion is required. The details can be found in [115].

In the above we have discussed the two major types of power flow calculation

methods for AC/DC interconnected systems. Integrated iteration takes into consid-

eration the complete coupling between AC and DC systems, and has good conver-

gence for various conditions of network and system operation. The Jacobian matrix

has a higher order than for pure AC systems. The approach requires more program-

ming, uses more memory, and needs longer computation time. Alternating iteration

can be accomplished by adding DC modules to the existing power flow programs,

due to its separated solution of AC and DC equations. It is easier to take into

consideration the constraints on DC variables and the adjustment of operation

modes. However, the convergence of alternating iteration is not as good as

integrated iteration. The computational practice indicates that its convergence is

good when the AC system is strong. If the AC system is weak, its convergence

deteriorates, requiring more iterations or even becoming nonconvergent. This is the

shortcoming of the alternating iteration method. The strength of AC systems is

related to the rated capacity of converters. Taking the converter rated power PdcN as

the base, the reciprocal of per unit equivalent reactance of AC system, as viewed

from the AC bus of converters, is called the short-circuit ratio (SCR). The larger the

SCR, the higher is the system strength. A weak AC system (SCR less than 3) has a

larger equivalent reactance, making the AC bus voltage of the converter very

sensitive to variation of the reactive power injection. Alternating iteration separates

the solution of AC and DC equations, assuming constant Vt andQtdc at the boundary

between AC and DC systems to neglect their coupling. If the AC system is weak,

the variation of Qtdc can bring potential change to Vt. This results in computational

oscillation between Qtdc and Vt in alternating iterations and worsening convergence

[116]. There have been some improved calculation methods [117] for alternating

iteration to make it applicable to weak AC systems. We are not going to discuss

them here for brevity.
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5.4 HVDC Dynamic Mathematical Models

We have introduced the steady-state models of HVDC systems in the previous

section. The HVDC transients are quite complicated. The main causes of the

complexity are as follows. (1) The firing pulses of bridge valves are triggered at

discrete time points. In transients, the firing angle is regulated by the controller to

make the corresponding time unevenly distributed. Thus the firing angle is a

discrete variable with regards to computation. (2) We assume that AC systems

are symmetric in steady-state analysis. From the steady-state analysis of converter

valves we know that the valve on/off states are closely related to the commutating

voltages, the time of firing, and the magnitudes of commutation angles. When firing

angles or commutation angles are too large, commutation may fail. In transient

states, AC systems are actually unsymmetrical. Some valves could have negative

valve voltage and could not been turned on when firing pulses occur if commutation

voltages are severe unsymmetrical. For HVDC systems under transient states, we

need to establish derivative equations to take into consideration the variations of

commutation voltages and firing angles as well as other exceptional conditions. The

solution of these derivative equations reveals the time of valve state changes. (3)

We should consider the distributed characteristics of DC lines for long distance

transmission. Under such circumstances, the variations of voltage and current on

DC lines become wave processes.

Due to the above conditions, we need to solve ordinary differential equations and

partial differential equations with both continuous and discrete variables to calculate

accurately the transients of HVDC transmission systems. From the mathematical

point of view, it is not difficult to solve these equations. Many previous works [118–

120] used detailed mathematical models resulting in huge computational require-

ments. We should simplify the transient DC models as much as possible without

losing engineering accuracy. In general we can take a simple DC model for stability

analysis, if AC systems are relatively strong; otherwise a detailed DC model is

required. The general assumptions that we make in deriving DC steady-state models

still apply to most analysis of power system stability. Thus we can use the steady-

state mathematical models of converters (5.52), (5.54) as their dynamic models.

Here we are going to introduce the mathematical models of control systems.

The controllers in HVDC systems consist of electronic circuits. Their basic

working principles are as follows: receiving control inputs, sending outputs to

phase-control circuits, and pulse generation device to set converter firing angles

in order to control converter operation. Different control signals and different

control strategies result in different controller structures and control characteristics,

as well as the dynamics of DC systems or even the whole power system. To achieve

better operation characteristics, the adjustments of rectifiers and inverters should be

coordinated. As stated before, the basic control mode is fixed current or fixed power

for rectifiers, and fixed voltage or fixed extinction angle for inverters. The trans-

former ratio adjustment is slow and is a discrete variable. The ratio is not changed
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very often and is an ancillary means to optimize the converter operation point.

Figure 5.18 shows the transfer function of the four basic control modes.

The transfer function of fixed current control is shown in Fig. 5.18a. It compares

Id, the output of DC current, and given current Idref. The difference is amplified and

goes through a proportional plus integral process. Then the signal is passed to the

phase-shift control circuits to change the converter firing angle and to enforce the

fixed current function.

The transfer function of fixed power control is shown in Fig. 5.18b. HVDC

systems are usually required to transport power as planned. Fixed power is a basic

control method. When the variations of AC voltages on both terminals are not large,
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Fig. 5.18 Transfer function block diagrams of HVDC control systems
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using fixed current and fixed extinction angle can actually achieve fixed power

control. When taking into consideration AC voltage fluctuations, using fixed cur-

rent and fixed voltage can obtain exact fixed power control. These two control

methods are to determine the DC current setting based on the given power and DC

operation voltage at the control terminal. However DC voltage is related to DC

current, so it is very difficult to set DC current beforehand. To overcome this

problem, special control devices are set up for fixed power control. Fixed current

control has high response speed, is capable of quickly constraining overcurrent to

prevent converter overload, and is easy to set up. Power control devices are usually

based on fixed current control and receive additional inputs rather than directly

acting on phase control circuits. In the diagram, the DC power is compared with its

target value. The difference is amplified and sent to the input of the fixed current

controller. This works by changing the current setting of the fixed current control

dynamically.

The transfer functions of fixed voltage and fixed extinction angle controls are

shown in Fig. 5.18c,d. They share the same structure as Fig. 5.18a with different

parameters. We need to point out that extinction angles cannot be directly

measured. They are indirectly obtained by measuring the time interval between

valve voltage and current zero-crossing points.

Although we do not show the quantity limitation block in the above diagrams,

attention has to be paid to the constraints on various physical variables. There are

minimum firing angle constraints for rectifier fixed current control, minimum

extinction angle constraints for inverter fixed voltage control, etc.

We need to notice that the controllers here are all for DC internal adjustments.

DC systems can be used to affect AC system operation through these DC internal

adjustments. The inputs of controllers may include AC system operation para-

meters, line power, the velocity of some generators, system frequency, and so on.

This kind of control is the integrated control of AC/DC systems, also called external

adjustments. The control strategy and control signals in these cases are an important

field of power system research.

5.5 Basic Principles and Mathematical Models of FACTS

After the introduction of the FACTS concept, many FACTS devices have been

proposed. We can classify them into three groups based on the maturity of the

technology. The first group has been applied in the power industry, such as static

VAr compensators (SVR), thyristor controlled series capacitor (TCSC), and static

synchronous compensators (STATCOM). The second group has industrial sample

machines and is still under investigation, such as unified power flow controller

(UPFC). The third group has only a theoretical design without any industrial

application, such as static synchronous series compensator (SSSC), thyristor con-

trolled phase shifting transformer (TCPST). We will introduce their basic principles

and mathematical models in this section. The power flow calculation for systems

having these devices will be discussed in the next section.
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FACTS devices can be classified based on their connection types as series, shunt,

and combined types. SVC and STATCOM are shunt type. TCSC and SSSC are

series type. TCPST and UPFC are combined type. Designed by US Electrical

Power Research Institute (EPRI), manufactured by Westinghouse, and installed at

AEP power system in USA for industrial testing operation, UPFC is the most

powerful FACTS device proposed as of today. Its control strategy is presently

under further research.

5.5.1 Basic Principle and Mathematical Model of SVC

A common practice of system voltage adjustment is shunt reactive power compensa-

tion. The synchronous condenser was historically an important tool of shunt reactive

power compensation. Since it is a rotatingmachine, its operation and maintenance are

quite complicated. New synchronous condensers are now seldom installed. The static

shunt reactive power compensation, as opposed to the rotating synchronous condens-

er, has wide industrial application due to its low cost and simple operation and

maintenance. Conventional static shunt reactive power compensation is to install

capacitors, reactors, or their combination, at the compensated buses to inject or

extract reactive power from the system. Mechanical switches are used to put the

shunt capacitor/reactors into or out of operation. There are three disadvantages in this

type of compensation. First, their adjustment is discrete. Second, their control actions

are slow and cannot meet system dynamic requirements. Third, they have negative

voltage characteristics. When system voltages drop (rise), the reactive power injec-

tion of shunt capacitors decreases (increases). However, they are widely applied in

power systems due to their economic advantages and easy maintenance.

Modern SVR with FACTS technology integrate power electronic elements into

conventional static shunt reactive power compensation devices to achieve fast and

continuously smooth adjustment. Ideal SVCs can maintain nearly constant voltages

at the compensated buses. The good steady and dynamic characteristics render them

widely applicable. Their basic elements are thyristor controlled reactors (TCRs) and

thyristor switched capacitors. It is not difficult to understand other types of SVCs if

we know the working principles of these two. Figure 5.19 shows their basic dia-

grams. To save cost, most SVCs connect to systems through step-down transfor-

mers. The valve control of the SVC produces harmonics. Filters are installed with

SVCs to reduce harmonic contamination. They are capacitive as regards to funda-

mental frequency and inject reactive power into systems. Figure 5.20a, b shows

TCR and TSC branches. Below we will analyze the control theory of TCR and TSC.

TCR branch consists of reactors connected with two back-to-back thyristors

as control elements. The system voltage on the branch is sinusoidal and shown in

Fig. 5.21a. The valve delayed firing angle is a 2 [p/2, p]. The firing time is

ot ¼ aþ kp k ¼ 0; 1; 2; . . . :
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Apparently the inductor current is zero when the two valves are off. When the valve

conducts, neglecting the resistance in the reactor, the inductor current is

L
diL
dt

¼ Vm sinot; ð5:113Þ

where L is the inductance of the reactor, Vm is the magnitude of the system voltage.

Its general solution is

iL ¼ K � Vm

oL
cosot; ð5:114Þ

where K is the integral constant. Since the inductor current is zero at firing, the

above equation yields

iL ¼ K � Vm

oL
cos aþ kpð Þ ¼ 0:

iL

L

TCR

iC

C

TSC

VmSin wt VmSin wt

Fig. 5.20 TCR and TSC branches

L
TCR

C1 C3C2

TSC

High-voltage bus

F
ilter

Step-down transformer

Fig. 5.19 SVC basic diagram
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Substituting the solution of K into (5.114) gives rise to the inductor current.

iL ¼ Vm

oL
cos aþ kpð Þ � cosot½ � k ¼ 0; 1; 2; . . . : ð5:115Þ

Based on the above equation, inductor current returns to zero at ot ¼ (k þ 2)p � a.
Thus the valve conducting period is

ot 2 ½kpþ a; ðk þ 2Þp� a� k ¼ 0; 1; 2; . . . :

The waveform of inductor current is shown in Fig. 5.21b. The width of a single

ripple of inductor current is

ðk þ 2Þp� a� kpþ að Þ ¼ 2 p� að Þ ¼ 2b:

b ¼ p � a is called the conducting angle.

To make sure that there is always one valve conducting at any moment, we

should have

k þ 2ð Þp� a ¼ k þ 1ð Þpþ a; k ¼ 0; 1; 2; . . . :

One valve should conduct the moment and another one is turned off, so a ¼ p/2.
This operation mode corresponds to connecting the shunt reactor directly to the

system. From the waveforms we can see that the valve conducting period decreases

from p to zero as the firing angle rises from p/2 to p. Now the two valves are turned

off at all times, corresponding to reactors out of service. Besides when a is less than

Fundamental component

V

iL
iL

iL1

a

b

VmSinωt

ωt

α

α π 2π-α

π-α 3π-α 3π+α 5π-α ωt3π

4π-α 4π2π+α2π

Fig. 5.21 (a) TCR voltage waveforms (b) TCR current waveforms
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p/2, the moment at which the current of a conducting valve returns to zero is later

than the firing moment of the off valve as

ðk þ 2Þp� a > ðk þ 1Þpþ a:

In this case, the conducting valve has not been turned off when the other valve

receives a firing pulse. The off valve cannot be triggered on due to zero valve

voltage. One of the two valves is off at any moment. Thus the main component

of inductor current is DC. The normal operating ranges of TCR firing angles are

a 2 [p/2, p].
Based on (5.115) and the waveforms, the current passing through the reactor

is irregular and no longer sinusoidal due to valve control. The adjustment of

firing angles changes the current peak values and conducting periods. Applying

Fourier analysis to the current yields the magnitude of the fundamental frequency

component

IL1 ¼ 2

p

Z2p�a

a

Vm

oL
cos a� cos yð Þ cos ydy ¼ Vm

poL
2 a� pð Þ � sin 2a½ �:

And the instantaneous value of fundamental frequency component is

iL1 ¼ IL1 cosot ¼ Vm

poL
2b� sin 2bð Þ sin ot� p=2ð Þ: ð5:116Þ

The equivalent fundamental frequency reactance of the TCR branch is

XL bð Þ ¼ poL
2b� sin 2b

b 2 0;
p
2

h i
: ð5:117Þ

Thus the TCR equivalent reactance of fundamental frequency components is the

function of conducting angle b or the firing angle a. The control of firing angle a can
smoothly adjust the equivalent shunt reactance. The reactive power consumed by

TCR is

QL ¼ _V _I�L1 ¼
V2

XL bð Þ ¼
2b� sin 2b

poL
V2: ð5:118Þ

As shown in Fig. 5.20b, the TSC branch consists of a capacitor connected in series

with two thyristors connected in parallel and in opposite directions. The TSC source

voltage is the same as TCR. Its waveforms are in Fig. 5.21a. The TSC creates two

operating states for the capacitors through valve control: shunt capacitors in service

or out of service. Stopping the firing can simply put the capacitor out of service.

Note that the natural switch-off from conduction happens when the capacitor
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current is zero and its voltage at the peak of source voltage. Neglecting the capacitor

leakage current, capacitor voltage maintains the peak value if firing stops after the

natural switch-off. We need to pay attention to the timing of putting the capacitor

into service. The principle is to reduce the impulse current in capacitors at the

moment of in-service operation. We should use the correct valve based on the sign

of the capacitor initial voltage, and put the capacitor into service at the moment

when source voltage equals capacitor initial voltage. So the transient component of

capacitor current is zero when put into service. After capacitors are in service,

we need a ¼ p/2 to keep one valve conducting at all times. Ideally the capacitor

voltage is the peak of source voltage. Using a ¼ p/2 makes no transients for the in-

service operation. In reality, the source voltage and the capacitor initial voltage

cannot be exactly the same. There is a small inductor in the TSC branch to reduce

the possible impulse current. From the above analysis, we can see that the main

difference between TSC and mechanically switched capacitors (MSC) is the fast

control of in-service or out-of-service operation by valves in TSC. TSC dynamic

characteristics can meet system control demands.

The reactive power injection of the capacitors is

QC ¼ oCV2; ð5:119Þ

where C is the capacitance of the capacitor. From (5.118) and (5.119) we have the

reactive power injection from the SVC is

QSVC ¼ QC � QL ¼ oC� 2b� sin 2b
poL

� �
V2: ð5:120Þ

The SVC reactive power injection can be smoothly adjusted when b 2 [0,p/2]. To
expand the regulation ranges of SVC, we can have many TSC branches in one SVC,

based on the compensation requirements. Figure 5.19 shows an SVC with three

TSCs. When all three TSCs are in service, the C in (5.120) is C1 þ C2 þ C3. To

guarantee a continuous adjustment, the TCR capacity should be slightly larger than

a group of TSCs, that is, oC1 < 1/oL.
Based on (5.120), the equivalent reactance of SVC is

XSVC ¼ � oC� 2b� sin 2b
poL

� ��1

¼ poL
2b� sin 2b� po2LC

: ð5:121Þ

The SVC equivalent voltage–current characteristics are the combination of TCR

and TSC. As b increases from zero to p/2, XSVC will change from capacitive

maximum to inductive maximum. Generally, the control signal of SVC is derived

from the voltage of the bus to which they are connected. Figure 5.22 shows that as

the voltage V changes, the SVC equivalent reactance varies with b.
In Fig. 5.22, there is a straight line going through the original corresponding to

every b. The slope of the straight line is XSVC. Suppose that the system voltage
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characteristic is V1. The control scheme is to make the TCR conducting angle

b1 ¼ p/2, corresponding to maximum equivalent inductive reactance. The SVC

operating point is the crossover point A between system voltage characteristic V1

and the straight line b1. With system voltage characteristic V2 and TCR conduction

angle b2 < b1, XSVC decreases and the SVC operating point shifts accordingly.

Until system voltage characteristic is V6 and conduction angle b6 ¼ 0, SVC

equivalent reactance is maximum capacitive with operating point B. Apparently,
voltage at B is higher than at C. When voltage changes between V1 and V6, the

adjustment of b puts voltage under control. All the operating points constitute the

straight line AB. The slope of AB and the crossover point with voltage axis Vref is

determined by the control scheme of b. From voltage control point of view, the

slope of AB is zero at best, without steady-state error. To maintain the control

stability, SVC should have a small steady-state error and the slope of AB is around

0.05. Taking into consideration the steady-state control scheme, the SVC voltage–

current characteristics are shown in Fig. 5.23.

When system voltage varies within the SVC control range, SVC can be seen as a

synchronous condenser having source voltage of Vref and internal reactance of Xe.

V ¼ Vref þ XeISVC; ð5:122Þ

where Xe is the slope of the straight line AB in Fig. 5.23, V and ISVC are the SVC

terminal voltage and current. When system voltage is out of the SVC control range,

SVC becomes a fixed reactor, XSVCmin or XSVCmax.

ISVC

V

AV2

V1

V3

V5

V4

V6
B

C

b6 = 0 b5
b4 b3 b2 b1 = p/2

Fig. 5.22 Equivalent reactance

variation with b as voltage changes

B

ISVC

V

Vref

XSVGmin = −1/wC

XSVGma = (wL) (1 − w2LC)

b1 = p/2

b6 = 0

Fig. 5.23 Voltage–current

characteristic
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SVC is considered as a variable shunt reactor in system stability and control

analysis. SVC controller determines its admittance. Reference [122] provided the

controller block diagram.

We have introduced SVC basic principles. Special attention needs to be paid in

industrial applications of SVC to capacity settings of reactors and capacitors, control

strategy, flexibility of adjustments, protection, elimination of harmonics, etc.

For example, in practical operation of an SVC, the range of the control angle is

slightly less than [p/2, p] to make sure that valves can be triggered on and turned off

securely.

5.5.2 Basic Principle and Mathematical Model of STATCOM

A STATCOM is also called an advanced static Var generator (ASVG). Its function

is basically same as SVC with wider operation ranges and faster responses. As

stated before, the control element of SVC is a thyristor, a semi-controllable element

that can only be turned off when valve current crosses zero. STATCOM is made of

fully controllable elements. Gyugyi et al. [123] presented the basic principles of

using gate turn off thyristors (GTOs) to build a STATCOM. As yet, there have been

several samples STATCOM operated in real systems [124–126].

The basic connection of a STATCOM is shown in Fig. 5.24. Its control element

is the fully controlled valve (GTO). The ideal GTO switch characteristic is that the

valve is turned on under positive valve voltage with positive control current on its

gate; valve is turned off with negative control current on its gate. Valve resistor is

zero when it conducts, and is infinity when it is turned off. A GTO can manage the

switch-off by gate control in comparison with the thyristor where switch-off is only

possible at current zero-crossing. STATCOM in Fig. 5.24 is a voltage type self-

commutation full-bridge inverter according to power electronic theory.

The capacitor DC voltage acts as an ideal DC voltage source to support the

inverter. The regular diode connected in the opposite direction and parallel with the

GTO is a path for continuous current, providing route for the feedback energy from

the AC side. The inverter normal operation is to transfer the DC voltage into AC

voltage having controllable magnitude and phase angle at the same frequency as the

AC system. The sum of instantaneous power of a symmetric three-phase system is a

vc +
−

ia
ib
ic.. .

. . . V
•

ASVC

Fig. 5.24 Circuit of STATCOM
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constant. Thus the reactive power exchanges periodically within phases instead of

between source and load. There is no need to have an energy storage element on the

DC side, if considering the inverter as a load. However, the interacting power

among harmonics produces a small amount of reactive power exchange between

the inverter and the system. The capacitor on the inverter DC side will provide both

DC voltage and energy storage. The electrical energy stored in the capacitor is

W ¼ 1

2
CV2

C:

If the above energy is not considered as energy support for AC systems during

power system dynamic events, the value of capacitor C can be small while the

reactive capacity provided by the STATCOM is much more than the stored energy.

We will see later that the maximum reactive power capacity of a STATCOM

depends on the inverter capacity. The STATCOM does not need large size reactors

and capacitors as the SVC does.

Generally, there are three output voltage control modes for voltage-type inver-

ters: phase-shift adjustment, pulse-width modulation, and direct DC source voltage

control. The DC voltage of STATCOM is the charged voltage of the capacitor, not a

DC source. So phase-shift adjustment and pulse-width modulation, instead of direct

DC source voltage control, are usually used in STATCOMs. For brevity, we are not

going to discuss the inverter working principles in detail. The width of the output

voltage square waves y is controlled by the GTO gates (the magnitude of voltage

square waves is the DC voltage on the capacitor). By Fourier analysis, we have the

fundamental frequency voltage on the AC side

VASVG ¼ KVC sin
y
2
; ð5:123Þ

where K is a constant related to inverter structure; VC is the capacitor DC voltage; y
is the control variable.

STATCOM connection to the systems is shown in Fig. 5.25. It must connect to

systems through reactors or transformers because the use of voltage-bridge circuits.

The connection reactor is needed to link the two unequal voltage sources, STAT-

COM and AC system. Its other function is to suppress the high-order harmonics in

the current. Its inductance does not need to be large. The reactor in the figure is the

transformer equivalent leakage reactance or the connection reactor. The resistor is

the equivalent copper loss of the transformer or STATCOM loss. STATCOM is

represented as an ideal synchronous condenser. Using the system voltage as the

P

I
•

r + jx QASVG

C

V
•

S
V

•

ASVG

Fig. 5.25 STATCOM connection

to systems
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reference vector, the fundamental frequency component of the inverter output

voltage is VASVG and lagged phase angle is d. With y ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ x2

p
, a ¼ arctg

r/x, we have the real power consumed by the inverter as

P ¼ VsVASVGy sin dþ að Þ � V2
ASVGy sin a: ð5:124Þ

The reactive power injection from STATCOM is

QASVG ¼ Im � _Vs
_I�

� � ¼ Im Vs

VASVG ff d� Vs

r � jx

� 


¼ VsVASVGy cos d� að Þ � V2
s y cos a: ð5:125Þ

In steady state, the inverter neither consumes nor generates real power. Based on

(5.124), making P zero yields

VASVG ¼ Vs

sin dþ að Þ
sin a

: ð5:126Þ

Taking (5.126) into (5.125) and (5.123) yields

QASVG ¼ V2
s

2r
sin 2d; ð5:127Þ

VC ¼ Vs sin dþ að Þ
K sin a sin y=2ð Þ : ð5:128Þ

From the above two equations, we know that the adjustment of phase angle d while
maintaining constant pulse width y can change the output reactive power as well as
the capacitor voltage. The simultaneous adjustment of y and d can maintain

capacitor voltage and change the reactive power output. The vector diagram of

STATCOM steady-state operation is shown in Fig. 5.26. We use the equivalent

resistance r to represent the inverter real power loss so that the inverter model

neither consumes nor generates real power. In the diagram, compensation current _I

is perpendicular to inverter output voltage _VASVG. The inverter injects reactive

power into the system when _I leads _VASVG. Otherwise it consumes reactive

power. While an SVC changes its equivalent inductance through adjusting the

timing of its connection to the system, the STATCOM controls the magnitude

and phase-angle of its output voltage.

As shown in the vector diagram, the reactive power provided by STATCOM is

QASVG ¼ �IVs cos d: ð5:129Þ
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Note that d is the angle by which vector _VASVG lags _Vs. The positive sign corre-

sponds to a greater than zero d; the negative sign to a less than zero d. Substituting
the above into (5.127) yields the magnitude of compensation current as

I ¼ �Vs

r
sin d: ð5:130Þ

The phase angle of the compensation current is �(p/2�d) as shown in Fig. 5.26.

The real and reactive power components of the compensation current are

IP ¼ I cos
p
2
� d

� �
¼ Vs

r
sin2 d ¼ Vs

2r
1� cos 2dð Þ; ð5:131Þ

IQ ¼ �I sin
p
2
� d

� �
¼ Vs

2r
sin 2d: ð5:132Þ

Figure 5.27 shows the system voltage adjusted by STATCOM. Voltage Vs0 is the

voltage setting value Vref under STATCOM output voltage of VASVG0 and compen-

sation current of I0. When system operating conditions vary and the bus voltage

a STATCOM Inject Reactive
Power into System

b STATCOM Consumes 
Re-active Power from System

rI
•

I
•

jxI
 •

rI
•

jxI
•

d d

I
•

V
•

ASVG

V
•

S

V
•

ASVG

V
•

S

Fig. 5.26 STATCOM steady-state vector diagram
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Fig. 5.27 STATCOM voltage

adjustment
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decreases, STATCOM increases d to inject more reactive power. The compensation

current is I1 while the voltage is maintained as Vref. The STATCOM keeps system

voltage constant through the adjustment of its control parameters. A practical

STATCOM usually implements bus voltage mismatch control. From the above

analysis, the operation characteristics of STATCOM are shown in Fig. 5.28, and

approach rectangular. The constraints of maximum voltage and current are deter-

mined by the STATCOM capacity. Voltage setting is determined by the control

scheme. Comparing with SVC inverse triangular operational characteristics,

STATCOM has wider operation ranges.

We must notice that only one of the two control variables of the STATCOM is

independent. The adjustment of d will change both the magnitude and phase angle

of the compensation current. The control variable y is constrained by (5.128). As d
changes, y should vary accordingly to maintain a constant capacitor voltage. The

range of d variation is very limited. When a STATCOM consumes reactive power

from the system, _Vs lags _VASVG by d. We can see from the vector diagram in Fig.

5.26b that d is always less than a. The equivalent resistance r is much less than

equivalent reactance x so that a is very small. When a STATCOM injects reactive

power into the system, _Vs leads _VASVG by d. As seen in (5.130) a small r makes d
less constrained by compensation current. Hence (5.132) indicates an approximately

linear relationship between reactive compensation current and d. To neglect resis-

tance r for approximate analysis, setting a and d to zero in (5.124) and (5.125)

yields

P ¼ 0; QASVG ¼ Vs

VASVG � Vs

x
:

Now the free control variable of STATCOM is y, and VASVG is determined by

(5.123). If VASVG is greater than VS, the STATCOM injects reactive power into the

system, otherwise it consumes reactive power.

A STATCOM can be represented as a shunt connected, controllable current

source as noted in (5.130) for power system stability and control analysis. The

magnitude and phase angle are determined by the STATCOM controller.

I

ICmax ILmax

Vref

VFig. 5.28 STATCOM volt–
ampere characteristics
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5.5.3 Basic Principle and Mathematical Model of TCSC

TCSC can rapidly and continuously change the equivalent reactance of the com-

pensated line, to maintain a constant power flow on the line within certain operating

conditions. In system transients, the TCSC can increase system stability through its

fast variation of line reactance. The earliest TCSC was first put into operation in

USA in 1991. TCSC have many different structures. One of its basic formations is

shown in Fig. 5.29.

Figure 5.29 shows a fixed capacitor and a parallel connected TCR. Its control

element is the thyristor. We have seen TCR utilization in the above analysis of

SVC. Since SVC is shunt-connected, the voltage on TCR is considered to be

sinusoidal. However, the current flowing through TCR is irregular due to valve

control, as shown in Fig. 5.21b. The TCR in a TCSC operates in different conditions

as compared to those in an SVC. Note that the TCSC is series connected in the

transmission line. The current flowing through the TCSC, the line current, is

sinusoidal, due to harmonic filtering requirements and to physical operating con-

straints. Hence the irregular current in the TCR due to valve control will generate a

nonsinusoidal capacitor voltage. This is the main difference between the two.

Below we introduce the TCSC equivalent reactance at fundamental frequency to

understand its working and control principles.

The reference directions of various physical variables are shown in Fig. 5.29.

The line current is sinusoidal with the waveforms shown in Fig. 5.30a.

i ¼ Im sin ot ð5:133Þ

Suppose that the circuits are in steady state. When the valve conducts, we have the

following equations based on circuit theory

i ¼ iL þ iC; v ¼ L
diL
dt

; iC ¼ C
dv

dt
: ð5:134Þ

From the above we have

iL þ LC
d2iL
dt2

¼ Im sinot: ð5:135Þ

This is a nonhomogeneous differential equation of the inductor current. Its particu-

lar solution is the steady-state solution of the second-order circuit as follows:

vi iC

iL L

C

Fig. 5.29 Basic structure of TCSC
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isL ¼ D sinot; D ¼ l2

l2 � 1
Im

l ¼ o0=o; o0 ¼ 1=
ffiffiffiffiffiffi
LC

p

9>=
>;: ð5:136Þ

The complementary solution to homogeneous equation is

ifL ¼ A coso0tþ B sino0t; ð5:137Þ

where A and B are the undetermined coefficients. The general solution to (5.135) is

iL ¼ A coso0tþ B sino0tþ D sinot: ð5:138Þ

Denote a as the firing angle and assume its value in [p/2, p]. A is the electrical angle

from capacitor voltage crossing zero to the time of firing. Under steady state, the

waveform of inductor current is symmetric to the time point of capacitor voltage

crossing zero. The capacitor voltages at the moments of valve turning on and off are

equal in magnitude and opposite in direction. Supposing that capacitor voltage

magnitude is V0 when valves turn on and off, the corresponding electrical angles are

yk ¼ a� p
2
þ kp; dk ¼ 3p

2
� a þ kp; k ¼ 0; 1; 2; . . . : ð5:139Þ
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Fig. 5.30 (a) TCSC line current and capacitor voltage waveforms (b) inductor current waveforms
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Based on the initial conditions of inductor current and capacitor voltage: inductor

current of zero and capacitor voltage of V0 at turning on (refer to Fig. 5.30a), we

have the following equations

A cos lyk þ B sin lyk þ D sin yk ¼ 0; ð5:140Þ

L �o0A sin lyk þ o0B cos lyk þ oD cos ykð Þ ¼ �1ð ÞkV0: ð5:141Þ

The capacitor voltage is V0 at the turning off time of the valve

L �o0A sin ldk þo0B cos ldk þoD cos dkð Þ ¼ �1ð Þkþ1V0: ð5:142Þ

The solution to the above three equations yields

A ¼ �D
sin yk
cos lb

cos l
2k þ 1

2
p

� �
; ð5:143Þ

B ¼ �D
sin yk
cos lb

sin l
2k þ 1

2
p

� �
; ð5:144Þ

V0 ¼ DL o sin aþ o0 cos a tg lbð Þ; ð5:145Þ

where b ¼ p � a, is called the conducting angle having a value within [0, p/2].
Substituting A and B in (5.138) yields the inductor current when the valve conducts

as

iL ¼ D sinotþ �1ð Þk cos a
cos lb

cos l ot� p
2
� kp

� �� 

: ð5:146Þ

We can obtain the capacitor voltage from (5.134) as

v ¼ DL o cosot� �1ð Þk cos a
cos lb

o0 sin l ot� p
2
� kp

� �� 

: ð5:147Þ

The conducting period is

ot 2 a� p
2
þ kp

� �
;

3p
2

� aþ kp
� �� 


; k ¼ 0; 1; 2; . . . :

The capacitor current iC ¼ i þ (�iL). There are two components in capacitor

current, one is the line current; the other has the same magnitude and opposite

direction to the inductor current.
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We have assumed that the firing angle is within [p/2, p]. The reason for such an

assumption is the same as for the TCR in SVC. As seen from the waveforms of

inductor current, to make one valve conduct at any time we have

3p
2
� aþ kp ¼ p

2
þ aþ kp:

There is one valve turned on when the other is turned off, so a ¼ p/2. The inductor
current, as indicated in (5.146), is

iL ¼ D sinot:

This is the inductor current when the inductor connects directly with the capacitor

in parallel. We usually call this bypass mode. When a increases from p/2 to p, the
valve conducting period decreases from p to zero, corresponding to the turning-off

of two valves at any moment. This is as if the inductor is not in operation, called off

mode. Besides, if a is less than p/2, the time at which the current of the conducting

valve crosses zero is later than the firing time of the other nonconducting valve.

Thus

3p
2
� aþ kp > a� p

2
þ kpþ p:

In this case the nonconducting valve cannot be triggered on with a zero voltage

across it at the time of firing since the conducting valve is not turned off. Thus one

of the valves is always nonconducting at any time, making DC current the main

component in inductor current.

Under normal operation, the firing angle of TCR in TCSC has an operating range

of [p/2, p].
When both valves are turned off

ot 2 p
2
� aþ kp

� �
; a� p

2
þ kp

� �h i
; k ¼ 0; 1; 2; . . . :

The inductor current is zero while the capacitor current is the line current. The

capacitor voltage is

C
dv

dt
¼ Im sinot:

The solution is

v ¼ K � Im
oC

cosot: ð5:148Þ
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We know from (5.147) that the absolute value of capacitor voltage when the valve

conducts is V0. Take ot ¼ a � p/2 þ kp as the moment of valve turns on in the

above, so

�1ð ÞkV0 ¼ K � Im
oC

cos a� p
2
þ kp

� �
:

Obtaining integral constant K and substituting into (5.148) yields capacitor

voltage as

v ¼ �1ð Þk Im
oC

sin aþ V0

� 

� Im
oC

cosot: ð5:149Þ

Equations (5.147) and (5.149) give the capacitor voltages when valves are turned on

and off, respectively. Apparently, the capacitor voltage is not sinusoidal when a 6¼
p/2. Figure 5.30a, b shows the waveforms of capacitor voltage and inductor current.

The Fourier analysis of nonsinusoidal capacitor voltage provides the fundamen-

tal frequency component

V1 ¼ 2

p

Z a�p=2

0

Im
oC

sin aþ V0 � Im
oC

cos y
� �

cos y dy

þ 2

p

Z 3p=2�a

a�p=2
DL o cosot� cos a

cos lb
o0 sin l ot� p

2

� �� 

cos y dy

þ 2

p

Z p

3p=2�a
�V0 � Im

oC
sin a� Im

oC
cos y

� �
cos y dy

: ð5:150Þ

The integral of the first item above equals the integral of the third. The sum of the

two is

F1 þ F3 ¼ 4

p
V0 cos a� Im

4oC
2a� pþ sin 2að Þ

� 

: ð5:151Þ

Taking into account (5.136), the integral of the second item is

F2 ¼ 2

p
DL obþ o

2
sin 2a� 2o0

l2 � 1
l tg aþ tg lbð Þ cos2 a

� 

: ð5:152Þ

Substituting (5.145) into (5.151) and rearranging yields the fundamental frequency

reactance of TCSC

XTCSC ¼ V1

Im
¼ F1 þ F3 þ F2

Im
¼ KbXC; ð5:153Þ
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where

XC ¼ �1=oC; ð5:154Þ

Kb ¼ 1þ 2

p
l2

l2 � 1

2 cos2 b

l2 � 1
ltg lb � tgbð Þ � b� sin 2b

2

� 

: ð5:155Þ

As shown in (5.155), the adjustment of the firing angle changes the reactance

XTCSC that is series connected in the line, rendering a controllable equivalent

line reactance. The valve control scheme is predefined. TCSC ideal dynamic

responses can allow the transmission line capacity to reach its thermal limit.

TCSC usually has oL < 1/oC and l2 around 7 to reduce its cost. Figure 5.31

shows the Kb � b curve at l ¼ 3. When b 2 [0, p/2l], Kb is greater than zero and

TCSC is capacitive. When b 2 [p/2l, p/2], Kb is less than zero and TCSC is

inductive. In the off mode, b ¼ 0, Kb ¼ 1. In by-pass mode, b ! p/2, Kb ! 1/

(1� l2). When b! p/2l, Kb!1 due to tglb!1, corresponding to parallel LC

resonance. To prevent TCSC resonance over voltage, b is prohibited from being

operated near p/2l.
TCSC shown in Fig. 5.29 is a single module. A practical TCSC usually consists

of many modules connected in series. Each module has its independent firing angle.

The firing angle combination of different modules gives the TCSC equivalent

reactance a wider range of variation and smoother adjustment. To protect the

TCSC from damage due to overvoltages and overcurrents, there are various protec-

tion devices installed and corresponding operation constraints [127].

For power system stability and control analysis, a TCSC can be represented as a

variable reactor series connected in the transmission line. The reactance is deter-

mined by the TCSC controller.

Fig. 5.31 Kb � b curve
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5.5.4 Basic Principle and Mathematical Model of SSSC

TCSC is a series compensation device using semi-controllable power electronic

elements. There are many types of series compensation with fully controllable

elements. Here we are going to introduce the SSSC built with GTO voltage-type

inverters. The STATCOM discussed before uses voltage-type inverters.

Connected to systems in parallel via reactors or transformers; the SSSC employs

voltage-type inverters connected in series in a transmission line through transfor-

mers. Neglecting the line-ground branches, the basic connection is shown in

Fig. 5.32, where r þ jx is the line impedance. Note that the inverter is different to

STATCOM as a DC source may be present on the DC side. With a DC source,

SSSC can provide reactive power compensation as well as real power compensation

to AC systems. When an SSSC only supplies or consumes reactive power, the

capacity of its DC source can be small or even zero (the SSSC loss being provided

by the AC system).

We know (from the introduction of the STATCOM) that the magnitude and

phase angle of inverter output AC voltages are controllable. Hence we can consider

the voltage of an SSSC, connected in series on a line, as an approximately ideal

voltage source, as shown in Fig. 5.33a. Denote VSSSC the voltage magnitude of the

ideal voltage source and d the voltage leading phase angle regarding voltage at bus

l. The vector diagram is shown in Fig. 5.33b, where ’ is the leading phase angle of

voltage at bus l with regards to line current. Apparently

i j
r + jx

DC power source

Voltage source
inverter

Fig. 5.32 SSSC basic connection

r+jxl

a b

VSSSC

VSSSC

I
Vl′

Vl′Vl′

VlI

j
d

Fig. 5.33 (a) SSSC equivalent circuit (b) SSSC vector diagram
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_V 0
l ¼ _Vl þ _VSSSC: ð5:156Þ

For pure reactive power compensation, the inverter vector _VSSSC is perpendicular to

line current _I

dþ ’ ¼ �p=2: ð5:157Þ

In this way, SSSC corresponds to a reactor connected in series on a transmission

line, denoting XSSSC its equivalent reactance, so

_Vl � _V 0
l ¼ jXSSSC

_I ¼ � _VSSSC;

XSSSC ¼ �VSSSC=I:
ð5:158Þ

When _VSSSC leads _I, it is capacitive with negative sign; otherwise it is inductive

with positive sign. Note that in the above equation, VSSSC is not related to line

current and is controlled by the inverter. Hence the adjustment of VSSSC can change

the equivalent reactance. In system analysis, once XSSSC is given, the line current

can be determined by

_I ¼
_Vl � _Vm

r þ j xþ XSSSCð Þ : ð5:159Þ

Thus

VSSSC ¼ I XSSSCj j
d ¼ �p

2
� ’

9=
;: ð5:160Þ

When XSSSC is less than zero, use positive sign; otherwise use negative sign.

Generally, the source branch in Fig. 5.33a can be represented as a current source

and impedance connected in parallel as shown in Fig. 5.34a by Norton’s theorem.

The current source is

_Ic ¼ _VSSSC= r þ jxð Þ: ð5:161Þ

r+jx ml

Plc+jQlc Pmc+jQmc

r+jx

ba

l

Ic

Fig. 5.34 (a) Use equivalent current source (b) use equivalent power injection
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In power system analysis, the bus power injection is used in most cases, further

simplifying Fig. 5.34a, b.

As indicated in (5.161)

Plc þ jQlc ¼ � _Vl
_I�c ¼ � _Vl

_VSSSC

r þ jx

� ��

Pmc þ jQmc ¼ _Vm
_I�c ¼ _Vm

_VSSSC

r þ jx

� ��

9>>>=
>>>;
:

Note that the phase angle of _VSSSC is yl þ d, so

Plc ¼ VlVSSSC b sin d� g cos dð Þ
Qlc ¼ VlVSSSC g sin dþ b cos dð Þ

)
; ð5:162Þ

Pmc ¼ VmVSSSC g cos ylm þ dð Þ � b sin ylm þ dð Þ½ �
Qmc ¼ �VmVSSSC b cos ylm þ dð Þ þ g sin ylm þ dð Þ½ �

)
; ð5:163Þ

where

g ¼ r

r2 þ x2

b ¼ �x

r2 þ x2

ylm ¼ yl � ylm

9>>>>=
>>>>;
: ð5:164Þ

The power generated by SSSC is

PSSSCþ jQSSSC ¼ _VSSSC
_I� ¼ _VSSSC

_VSSSCþ _Vl� _Vm

rþ jx

� ��
;

PSSSC ¼ gV2
SSSCþ gVSSSC Vl cos d�Vm cos ylmþ dð Þ½ �þbVSSSC Vl sind�Vm sin ylmþ dð Þ½ �,

ð5:165Þ

QSSSC ¼� bV2
SSSC þ gVSSSC Vl sin d� Vm sin ylm þ dð Þ½ �

� bVSSSC Vl cos d� Vm cos ylm þ dð Þ½ �: ð5:166Þ

Apparently PSSSC is zero for pure reactive power compensation. Neglecting line

resistance, d satisfies the following for pure reactive power compensation

Vl sin d ¼ Vm sin ylm þ dð Þ: ð5:167Þ
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In (5.166), the reactive power compensated by SSSC is not related to the line

current directly since the adjustment of VSSSC is not related to the line current.

The power flows from bus l to bus m is:

Plm þ jQlm ¼ _Vl
_I� ¼ _Vl

_VSSSC þ _Vl � _Vm

r þ jx

� ��
;

Plm ¼ gV2
l þ gVl VSSSC cos d� Vm cos ylm½ � � bVl VSSSC sin dþ Vm sin ylm½ �

Qlm ¼ �bV2
l � gVl VSSSC sin dþ Vm sin ylm½ � � bVl VSSSC cos d� Vm cos ylm½ �

)
:

ð5:168Þ

So the power on the line is controlled by two parameters. For pure reactive power

compensation, SSSC has only one independent control variable due to the con-

straint of (5.167) and has one control objective.

In power system stability and control analysis, SSSC can also be represented as a

voltage source connected in series in the line. The controller determines the

magnitude and phase angle. The voltage vector is always perpendicular to line

current for pure reactive power compensation.

5.5.5 Basic Principle and Mathematical Model of TCPST

Thyristor controlled phase shifting transformer is abridged as TCPST. Phase

shifters using mechanical switches to change the tap positions have been utilized

in power systems for a long time. It is also called a series voltage booster. Since the

response speeds of mechanical switches are slow in tap changing, this type of

shifter can only be used in power system steady-state adjustment. Furthermore, the

short operational life is a major drawback of this type of shifter. Substituting

mechanical switches with thyristors can provide the phase shifter with faster

responses and wider application. There are many types of implementation [130,

131]. We are going to use a relative simple type to introduce the working principles

and mathematical models.

Figure 5.35 shows a basic connection of TCPST.

Phase shifters consist of parallel transformer (ET), series transformer (BT), and

switches. Parallel and series transformers are also called excitation transformer and

boosting transformer. Figure 5.35 shows only phase c of the secondary side of

parallel transformer and secondary and the primary side of the series transformer.

The other two phases have the same structure. Switch S is made up of a pair of

thyristors connected in parallel in opposite directions, having the same working

principles as discussed in TCSC. S1–S5 can only have one conducting and all others

are turned off under all circumstances. We can see that the ratio of the parallel

transformer varies with the conducting conditions of S1–S4. When S1–S4 are all

turned off, S5 must conduct to short-circuit the primary of the series transformer.
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This is to prevent series connection of the series transformer excitation reactance

into the transmission line.

Notice the relationship between the primary voltage of the parallel transformer

and the line phase voltage. Phase a, b, and c on the primary of the parallel

transformer correspond to phase b, c, and a of the line voltage, respectively.

Since the parallel transformer has D connection, the relationship between the

primary voltages of the parallel transformer and the line phase voltages are

_VEa1 ¼ _VEb � _VEc

_VEb1 ¼ _VEc � _VEa

_VEc1 ¼ _VEa � _VEb

9>=
>;: ð5:169Þ

Supposing that the ratios of parallel and series transformers are kE and kB, respec-
tively, and neglecting the voltage loss of transformers, the phase voltages on the

secondary of the parallel transformer have the following relationship with the line

phase voltages

_VEa2 ¼ kE _VEb � _VEc

� 	
=

ffiffiffi
3

p ¼ jkE _VEa

_VEb2 ¼ kE _VEc � _VEa

� 	
=

ffiffiffi
3

p ¼ jkE _VEb

_VEc2 ¼ kE _VEa � _VEb

� 	
=

ffiffiffi
3

p ¼ jkE _VEc

9>>=
>>;: ð5:170Þ

The phase voltages on the secondary of the series transformer are

_VBa2 ¼ kB _VBa1 ¼ kB _VEa2 ¼ jkBkE _VEa

_VBb2 ¼ kB _VBb1 ¼ kB _VEb2 ¼ jkBkE _VEb

_VBc2 ¼ kB _VBc1 ¼ kB _VEc2 ¼ jkBkE _VEc

9>=
>;: ð5:171Þ

*

*

*

** * *

I1aa

b

c

a b c

x y zVEa1 VEb1 VEc1

VE VP

VEC2

VBC1

I2a

IEC2

I2b

I2c

I3b I3c I3a

I1b

I1c

ET

s1

s2

s3

s4

IBC1

5s
BT

Fig. 5.35 TCPST basic configuration
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Using a single phase expression to replace the above three-phase we have

_VB ¼ jkBkE _VE; ð5:172Þ

where _VE and _VB are input voltage of the parallel transformer and output voltage of

the series transformer. Similarly we can obtain the expression for the currents

_I3 ¼ �jkBkE _I2: ð5:173Þ

The vector diagrams are shown in Fig. 5.36.

From (5.172), (5.173), and Fig. 5.35 we can obtain

_VP ¼ _VE þ _VB ¼ 1þ jkBkEð Þ _VE; ð5:174Þ

_I1 ¼ _I2 þ _I3 ¼ 1� jkBkEð Þ _I2: ð5:175Þ

Hence we can represent phase shifter as a transformer having complex ratio as

follows:

_KP ¼
_VP

_VE

¼ 1þ jkBkE ¼ KP ff’

’ ¼tg�1kBkE

KP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kBkEð Þ2

q
¼ sec’

9>>>>>=
>>>>>;
: ð5:176Þ

Since the ratio of the parallel transformer, kE is related to the on/off state of switches
S1–S5, we can change ’ by controlling switch states. Apparently ’ is a discrete

variable. Note that the product of kE and kB is much less than 1. VP is a little larger

than VE. The main function of phase shifters is to change the phase angle ’ of VE.

Based on (5.174) and (5.175), we can use the phase shifter equivalent circuits

shown in Fig. 5.37 for power system stability and control analysis.

VPcVBc

VEc

VPb

VBb

VEb

VPa

VBa

VEa I3a

I2a I1a

I1c

I1b
I2c

I2b

I3c
I3b

j

j
j

j j

j

Fig. 5.36 Phase shifter vector diagram
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The above phase shifter is also called a quadrature boosting transformer (QBT)

since its output voltage _VB is always perpendicular to _VE. A new type of phase

shifter has been proposed to use a series voltage source _VB, and its voltage

magnitude and phase angle can both be continuously adjusted to provide easier

implementation. Generally, this type of phase shifting transformer (PST) has the

mathematical model shown in Fig. 5.37. The control variables are voltage _VB

magnitude and phase angle. Note that the phase shifter is an inactive element.

Neglecting its loss, phase shifter output complex power equals its input complex

power. So

_VB
_I�2 ¼ _VE

_I�3 : ð5:177Þ

The power generated from the series transformer is consumed by the shunt

current source. Thus

_VB

_VE

¼
_I�3
_I�B
¼ k ff’;

where k ¼
_VB

_VE

����
����:

The adjustment of _VB magnitude and phase angle can control k and ’. Both

phase angle and magnitude of _VP are controllable, distinguishing this from QBT.

There are two independent control variables. This type of phase shifter is similar to

a UPFC and we are not going to discuss it in detail.

5.5.6 Basic Principle and Mathematical Model of UPFC

The FACTS devices that we discussed above manipulate only one of the three

parameters affecting power transmission. TCSC and SSC compensate a line parame-

ter. SVC and STATCOMcontrol a bus voltagemagnitude. TCPST adjusts bus voltage

phase angle. The UPFC [132] is a combination of the above FACTS devices and can

adjust the three parameters at the same time. In June 1998, the first UPFCwas put into

trial operation at AEP in the United States. Its application and control strategy are still

under investigation. The basic structure of UPFC is shown in Fig. 5.38.

Fig. 5.37 Phase shifter equivalent

circuit
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UPFC is like a combination of SATCOM and SSSC. The two GTO voltage

inverters share a capacitor to couple the STATCOM and the SSSC.

Nabavi-Niaki and Iravani [133] presented a dynamic model of UPFC at funda-

mental frequency and for symmetrical operation. The converters utilize sinusoid

pulse width modulation (SPWM). Here we are going to introduce this model. The

control variables of SPWM are modulation ratio and phase angle of sinusoidal

control signal. As shown in Fig. 5.38, we can separate UPFC into an AC part and a

DC part using transformers as the delimiters. The output voltages of the two

converters are

_VE ¼ 1

2
ffiffiffi
2

p mEvdc ff dE mE 2 ½0; 1�; ð5:178Þ

_VB ¼ 1

2
ffiffiffi
2

p mBvdc ff dB mB 2 ½0; 1�; ð5:179Þ

where mE and mB are parallel and series converter modulation ratios; dE and dB are

the phase angles of sinusoidal control signals; vdc is the instantaneous voltage on the
DC capacitor. It is not difficult to understand that there is the following relation

between the variation rate of electrical energy on the capacitor and the real power of

the converter

Cdcvdc
dvdc
dt

¼ Re _VE
_I�E � _VB

_I�B
� �

; ð5:180Þ

where _IE and _IB are AC currents on the parallel and series converters. In power

system stability analysis, we use a sub-steady-state model for power networks.

Parameter setting

VEt

VE VB

Parallel Converter

I1 I2

IE
IB

I3 = It + Iq

Cdc

vdc

Idc

+
VEc

VEa VEb VBb

VBa
VBc

Controller
Measurements

TB

TE

Variable Reference

VBt
VP

Series Converter

Fig. 5.38 UPFC basic configuration
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Correspondingly, the AC currents of the converters and the voltages on AC side

have the following relation using the reference direction in Fig. 5.38

rE þ jolEð Þ _IE ¼ _VEt � _VE; ð5:181Þ
rB þ jolBð Þ _IB ¼ _VB � _VBt; ð5:182Þ

where impedances ZB and ZE are equivalent impedances of parallel and series

transformers and the converter losses; _VEt and _VBt are the voltages transferred

from UPFC terminal to converter side. Below we will convert (5.178)–(5.182)

into the per unit system. To determine the voltage base, we generally assume that

the converter output voltages are rated values when vdc reaches its rated value vdcN
and modulation ratios approach 1. In the design of UPFC physical parameters, we

have

V 0
EN ¼ TEVEN ¼ TE

ffiffiffi
2

p

4
� 1� vdcN

� �
¼ kEVN

V 0
BN ¼ TBVBN ¼ TB

ffiffiffi
2

p

4
� 1� vdcN

� �
¼ kBVN

9>>>=
>>>;
; ð5:183Þ

where TE and TB are parallel and series transformer ratios; VN is the AC network

rated voltage; V0
EN and V 0

BN are the AC side voltages transformed from rated

converter output voltages; kE and kB are the two parameters of UPFC. Due to

voltage static security constraints, kE and kB must not be too large, for instance, 1.2

and 0.3, respectively. As seen from the above two equations, ratios of parallel and

series transformers are different.

Having VN as the voltage base of the AC network, we use the following voltage

bases for converters to work with the network per unit system while considering

(5.183):

VEB ¼ VN

TE
¼ vdcN

2
ffiffiffi
2

p
kE

; ð5:184Þ

VBB ¼ VN

TB
¼ vdcN

2
ffiffiffi
2

p
kB

: ð5:185Þ

We now have the corresponding current base and impedance base of converters

from the above voltage base. DC voltage base is vdcN.
The expressions of (5.178) and (5.179) in the per unit system are

_VE� ¼ kEmEvdc� ff dE; mE 2 ½0; 1�; ð5:186Þ

_VB� ¼ kBmBvdc� ff dB; mB 2 ½0; 1�: ð5:187Þ
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In the per unit system, (5.181) and (5.182) are unchanged. On dividing the two

sides of (5.180) by the power base leaves, the right side is unchanged and the left

side is

Cdcvdc
SB

dvdc
dt

¼ 2

SB
� 1

2
Cdcv

2
dcN

� �
vdc
vdcN

� �
dvdc=vdcN

dt

� �
;

Cdcvdc
SB

dvdc
dt

¼ 2

SB
� 1

2
Cdcv

2
dcN

� �
vdc
vdcN

� �
dvdc=vdcN

dt

� �
¼ vdc�Tu

dvdc�

dt

where Tu is the UPFC time constant with the following value

Tu ¼ 2W

SB
¼ 2

SB
� 1

2
Cdcv

2
dcN: ð5:188Þ

The time constant of a UPFC is related to the rated electrical energy stored in the

DC capacitor. Equation (5.180) in the per unit system becomes

vdc�Tu
dvdc�

dt
¼ Re _VE� _I�E � _VB

_I�B
� �

: ð5:189Þ

For the convenience of expression, we remove the subscripts for per unit system. In

power system stability analysis, we need to use the two algebraic equations together

with network equations. Substituting (5.186) and (5.187) into (5.181), (5.182), and

(5.189), and separating real and imaginary parts we have

rE �xE
xE rE

� 

IEx
IEy

� 

¼ VEtx

VEty

� 

� kEmEvdc cos dE

kEmEvdc sin dE

� 

; ð5:190Þ

rB �xB
xB rB

� 

IBx
IBy

� 

¼ kBmBvdc cos dB

kBmBvdc sin dB

� 

� VBtx

VBty

� 

; ð5:191Þ

Tu
dvdc
dt

¼ kEmE IEx cos dE þ IEy sin dE
� 	

� kBmB IBx cos dB þ IBy sin dBy
� 	

:
ð5:192Þ

Equations (5.190)–(5.192) constitute UPFC dynamic models in the per unit

system.

In steady-state operation, UPFC is an inactive device and has constant capacitor

voltage, so

Re _VE
_I�E � _VB

_I�B
� � ¼ 0: ð5:193Þ
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Hence, UPFC can be represented as two branches having impedance, connected

in series with ideal voltage sources, as shown in Fig. 5.39. _VB and _VE are adjusted

by GTO gate control signals from the parallel and series converters.

Parallel branch current _I3 can be separated into two components _It and _Iq as

shown in Fig. 5.39.

_I3 ¼
_VEt � _VE

ZE
¼ _It þ _Iq; ð5:194Þ

where _It and _Iq components are in phase and perpendicular to bus voltage _VEt. The

parallel branch power is

PE ¼ Re _VEt
_I�3

� 	 ¼ _VEt
_I�t ¼ �VEtIt; ð5:195Þ

jQE ¼ jIm _VEt
_I�3

� 	 ¼ _VEt
_I�q ¼ �jVEtIq: ð5:196Þ

In (5.195), we use a negative sign when current is in opposite phase with voltage. In

(5.196), we use a positive sign when current leads voltage; otherwise a use negative

sign. For the parallel branch, the magnitude and phase of _VE determine the

magnitudes of It and Iq from (5.194). We can see from the above two equations

that Iq is the reactive power component of the parallel branch to provide parallel

reactive power compensation as in the STATCOM; It is the real power component

to consume or inject real power into the AC system. This is to maintain constant DC

voltage Vdc and make the phase of the series voltage source _VB to be 360�

controllable. The power generated from the series voltage source is

SB ¼ PB þ jQB ¼ _VB
_I�2 : ð5:197Þ

If we control the phase of _VB to make it perpendicular to line current, the function of

the series voltage source is like the SSSC series compensation. Generally, the phase

and magnitude of _VB are fully controllable. TCPST and SSSC do not have this kind

of capability. Such a function of UPFC comes from the fact that the real power in

PE = PB

Iq

I1

I3
I2 I2It

I1
ZB ZB

ZE

Pc + jQc Pc + jQc

VB VB
VPVEt

VE

VP
VEt

a b

Fig. 5.39 Equivalent circuit of UPFC
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(5.197) is provided by the parallel branch. The control of two voltage sources under

the conditions of (5.193) means that the real power generated or consumed by the

series voltage source equals to that consumed or generated by the parallel voltage

source. Apparently in this case, the electric field energy stored in the DC capacitor

does not change and DC voltage is constant. This is the steady state of the UPFC.

On the basis of the above analysis, the relationships for the variables in Fig. 5.39

under steady-state conditions are given:

_Vp ¼ _VEt þ _VB � _I2ZB; ð5:198Þ

_I2 ¼ _I1 � _It � _Iq; ð5:199Þ

_It þ _Iq ¼
_VEt � _VE

ZE
; ð5:200Þ

It ¼ Re _VB
_I�2

� 	
=VEt

�� ��; ð5:201Þ

arg _It
� 	 ¼ arg _VEt

� 	þ 0 Re _VB
_I�2

� 	 � 0

arg _VEt

� 	þ p Re _VB
_I�2

� 	
> 0

(
; ð5:202Þ

arg _Iq
� 	 ¼ arg _VEt

� 	� p=2; ð5:203Þ

where arg represents the phase angle of the vector. Equations (5.201) and (5.202)

correspond to (5.193). Although the magnitudes and phases of voltage sources _VB

and _VE can be continuously adjusted, the constraint of (5.193) reduces the number

of independent variables from four to three

0 � VB � VBmax

0 � ’B � 2p

0 � Iq � Iqmax

9>=
>;; ð5:204Þ

where ’B is the phase angle of parallel voltage source; VBmax and Iqmax are

constants related to UPFC rated capacity. The phase vector diagram for UPFC

steady-state operation is shown in Fig. 5.40.

For the convenience of analysis, ZB is ignored in the vector diagram. The series

connected _VB changes the bus voltage from _VEt to _Vp. The change of _VB makes _Vp

vary within the circle centered at _VEt to control the real and reactive power on

the line directly. Note that the compensation of _Iq makes the magnitude of _VEt

controllable by the UPFC. One UPFC has three independent control variables to

manipulate three operation variables Pc, Qc, and VEt. The steady-state equivalent

circuit of UPFC can also be represented as shown in Fig. 5.39b.
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We know from the previous analysis of STATCOM and SSSC that both of them

require DC voltages VC to be constant in steady-state operation. The converter AC

voltage VASVG of a STATCOM is perpendicular to the AC current flowing out of

the system; the VSSSC of SSSC is perpendicular to the AC current on the transmis-

sion line. VASVG is to satisfy (5.126) and VSSSC to satisfy (5.160). Their phase

angles cannot be freely adjusted. Although UPFC still needs to maintain a constant

DC voltage, the coupling between the two converters through the DC capacitor

allows the real power consumed by the STATCOM to be sent back through the

SSSC or vice versa. The magnitude and phase angle of series transformer output _VB

can then be freely adjusted. The parallel transformer can provide not only reactive

power compensation but also the real power transfer between the system and the

series transformer. The functional difference between UPFC and PST is due to

(5.193) and (5.177). Iq in UPFC is a free variable. For PST, the real power and

reactive power taken from the system by the parallel branch are injected into the

system by the series branch due to the constraint (5.177). Hence UPFC has

STATCOM function while PST does not.

Thinking and Problem Solving

1. What are the factors that limit power transmission distance and capacity?

2. What are the advantages and disadvantages of AC transmission?

3. Discuss the advantages and disadvantages of DC transmission and the applica-

tions for which DC transmission is more suitable.

4. What are the characteristics of other new power transmission modes being

studied at present?

5. What is the free load flow?

o

VB

Iq

It

Vp

VEt

VB max

Bϕ

I2

I1

−It

−Iq

Iq max

Reference phase vector

Fig. 5.40 Phase vector diagram for UPFC
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6. Why should flexible electrical power systems be introduced?

7. Can we contemplate Id < 0 when V2d > V1d in (5.1)? Why?

8. Why can DC transmission lines only transmit active power, but the converters

absorb reactive power from the AC system?

9. What is the physical significance of phase-shifter resistance Rg in (5.21)?

10. Distinguish trigger delay angle, phase-shifter angle, extinguish angle, trigger

lead angle, and extinguish lead angle, paying attention to their operating areas.

11. Discuss the steady load flow control method of DC transmission.

12. Compare load flow calculation models with and without DC transmission lines.

13. Give an appropriate value L, C, and draw the curve of SVC equivalent

reactance XSVC–b denoted in (5.121).

14. Draw V–b curve according to (5.121), in which V 2 [0.9,1.1], when per unit

value Vref ¼ 1.05, Xe ¼ 0.05 in (5.122).

15. Draw the equivalent circuit diagram when S5 is also tripped with S1–S4 tripping
in Fig. 5.35.

16. In steady state, UPFC can be regarded equivalently as two voltage source

converters (VSC), with voltage amplitude values VB and VE, respectively,

and phase angles dB and dE, respectively. Analyze why UPFC can only control

three operational variables (active power Pc, reactive power Qc, and nodal VEt

on a transmission line) in the steady state?

17. Discuss the capacitive and inductive value range of XTCSC when conduction

angle b should avoid the resonance region according to (5.153)–(5.155). Then

discuss whether line transmission active power Pc ¼ Plp controlled by TCSC

can vary continuously.
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Chapter 6

Mathematical Model of Synchronous

Generator and Load

6.1 Introduction

The continuous increase of power system complexity and installation of more and

more new equipment in power systems has demanded better methods for power

system analysis, planning, and control. At present, analysis of modern power

systems is generally based on digital computers. Hence, establishment of a mathe-

matical model, describing the physical processes of a power system, is the founda-

tion for the analysis and investigation of various power system problems. Correct

and accurate computation for power system analysis requires a correct and accurate

mathematical model of the power system.

Transient processes of the power system are very fast. This is why power system

operation heavily relies on the applications of automatic control. With the installa-

tion of many different automatic control devices, the operation of which largely

depends on the application of electronic and computing technology, modern power

system operation has reached a very high level of automation. For such large-scale

and complex systems, the mathematical description is nonlinear and high dimen-

sional, consisting of a large number of nonlinear equations. Hence it is both

appropriate and practical that the analysis and computation of such a system

ought to start from simple local devices and be completed finally for the complex

overall system. Therefore, in modeling of large-scale and complex power systems,

these systems are first decomposed into independent basic components, such as

synchronous generators, transformers, transmission lines, governors and automatic

voltage regulators (AVR), etc. Then those components are modeled separately

according to circuit theory or other related principles. Models of those components

are building-bricks to construct the mathematical model of whole power systems.

For the study of different problems on the same system, different models are

required. Mathematically, a power system is a nonlinear dynamic system. When the

steady-state operation of a dynamic system is studied, the mathematical description

of the system is in the form of algebraic equations. Differential equations (some-

times partial differential equations) give a mathematical description of system
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dynamics. For the study of some specific problems, model parameters could be

time-variable and variables may not be continuous. In addition, to meet the require-

ment of different computing accuracy, different models could be used. Obviously, a

mathematical model for qualitative analysis could be simpler than that for quanti-

tative analysis. Computing accuracy and speed are always two conflicting factors

which need to be considered carefully when a power system model is established.

The more accurate the computation is, the more the computing work and hence the

longer the computing time. On the other hand, to sacrifice some computing accuracy

will be compensated with high computing speed, which has been a common

practice in modeling power systems and developing computing algorithms. In

this aspect, the effort has been to develop a mathematical model of a power system

and the associated solution methods, such that the need for both computing accura-

cy and computing speed is met. Often, the result is a compromise between those two

requirements based on available computing tools.

There are two major issues in mathematical modeling. The first one is to describe

a subject under investigation mathematically in the form of equations. There are

two methods to establish those mathematical equations. The first method, the

analytical method, is to derive those mathematical descriptions by using special

knowledge and theory about the subject; the second is to identify them by carrying

out experiments or using data obtained from its operation. That is the method of

system identification in control theory. The second major issue in mathematical

modeling is to obtain parameters of the mathematical description of the subject. No

matter whether the plant is described by algebraic or differential equations, various

parameters in those equations need to be obtained. Generally, for simple compo-

nents of the subject, model parameters can be derived from design parameters

according to certain physical (such as mechanical or electrical) principles. For

example, four parameters of an overhead line, i.e., resistance, inductance, capaci-

tance, and conductance to earth, can be obtained by applying electromagnetic

theory to the way the line is arranged in space, the materials of the line, and the

natural environment where the line is located. That is a typical analytical method.

However, for complex components or systems, usually there is certain difference

between the actual parameters and design parameters. A typical example is the

generator parameter which could be affected by variations of power system

operating conditions, saturation, and a series of complex conversion processes

among mechanical, electrical, magnetic, and thermal energy. Therefore, in addition

to the method of theoretical derivation, there is another important way to obtain

model parameters of complex components and systems. This is the method of

parameter estimation which is one of the methods in system identification. Param-

eter estimation and system identification is a research field which will not be

discussed in this book.

In Chap. 1, the mathematical model of a power network has been introduced.

Mathematical models of HVDC and FACTS are discussed in Chap. 5. Hence, in

this chapter the focus is the introduction to mathematical models of generator and

load, including the mathematical models of synchronous generator, excitation

systems, and governing systems.
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6.2 Mathematical Model of Synchronous Generator

The dynamics of a synchronous generator is the basis for the study of the dynamic

behavior of the power system. In the history of developing the mathematical model

of a synchronous generator, two milestones are the establishment of two-reaction

theory in 1920s [146, 147] and the proposal of Park’s transformation [148]. Under

the ideally assumed conditions and by using two-reaction principle, Park derived

the basic mathematical equations of a synchronous generator in dq0 coordinate

system. Since then, mathematical models of synchronous generators have been

based on Park’s contribution with further major development regarding the number

of equivalent windings to model the generator rotor winding, different assumptions

about when a synchronous generator should be described by transient or subtran-

sient parameters, different ways to describe magnetic saturation, etc. Details of all

these points above can be found in [149–152]. In this section, we shall focus on

those mathematical descriptions of the synchronous generator which have been

widely used. Readers should note that in other references, different symbols,

defined positive directions of physical variables, form of transformation matrix,

and selection of base values may be used.

From the structure of a synchronous generator we know that on the rotor, the

field winding is a physical winding; while damping windings may just be electri-

cally equivalent windings. For a salient-pole generator, damping windings repre-

sent the damping function of damping rods distributed on the rotor. While for a

round rotor generator, they simulate the damping function produced by the eddy

current inside the whole rotor. Since they are just equivalent windings, the damping

function can be represented by a single or multiple damping windings. In theory,

the more the equivalent damping windings, the more accurate the representation

can be. However, if more equivalent damping windings are used, there could be two

problems. The first is the increase of the order of differential equations in the

mathematical model, adding computational burden for their solution. The second

problem is that it is more difficult to obtain the relative electrical parameters

accurately. Hence in the commonly used mathematical model of a synchronous

generator, the number of equivalent damping windings is usually not more than

three. Since the damping rods on the rotor of a salient-pole generator are more like

real windings than the whole rotor of a round rotor generator and the magnetic

circuit of the salient-pole generator is different in d and q directions, the damping

function of the salient-pole generator is usually represented by two damping wind-

ings, one in the direction of direct axis (d), denoted as D damping winding and

another in that of the quadrature axis (q), denoted as Q damping winding; For the

round rotor generator, in addition to D and Q damping windings, one more

equivalent damping winding in the quadrature direction (g winding) is used. Q
and g winding represents the weaker and stronger eddy current effect, respectively.

According to the theory of electric machines, the ideal assumptions about the

synchronous generators are that the magnetic circuits are symmetrical, saturation is

negligible, and flux waveforms have sinusoidal space distribution. In the following,
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we shall first derive the mathematical model of an ideal synchronous generator with

D, g, and Q damping winding, followed by introduction of a method considering

magnetic saturation effects.

6.2.1 Basic Mathematical Equations of Synchronous Generator

6.2.1.1 Three-Phase Mathematical Equations

Figure 6.1a, b shows the structure of a synchronous generator and winding circuit

diagram. We consider the general case of a salient-pole generator withD, g,Q three

damping windings and treat a round rotor generator as a special case since it has

only D, Q two damping windings. In the figures, the defined positive direction of

voltage, current, and magnetic flux is related to the three-phase armature windings

abc, field winding f and damping winding D, g, Q. It must be pointed out that the

positive direction of magnetic flux related to the three-phase armature windings is

opposite to that induced by the armature current of each winding in the positive

direction; while magnetic flux associated with rotor windings is defined in the same

direction as that induced by the current in each winding in the positive direction;

q-axis leads d-axis by 90� in the rotational direction of the generator rotor. In

addition, the positive direction of all flux axes is chosen to be those of the

corresponding magnetic flux.
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Fig. 6.1 Structure of synchronous generator and winding circuit. (a) Structure of synchronous

generator (b) winding circuit
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From Fig. 6.1b, the following voltage equation for all the windings can be

obtained

va
vb
vc
��
vf
0

0

0

2
66666666664

3
77777777775
¼

Ra 0 0 0 0 0 0

0 Ra 0 0 0 0 0

0 0 Ra 0 0 0 0

0 0 0 Rf 0 0 0

0 0 0 0 RD 0 0

0 0 0 0 0 Rg 0

0 0 0 0 0 0 RQ

2
66666666664

3
77777777775

�ia
�ib
�ic
��
if
iD
ig
iQ

2
66666666664

3
77777777775
þ p

’a

’b

’c

��
’f

’D

’g

’Q

2
66666666664

3
77777777775
; ð6:1Þ

where p ¼ d
dt denotes the differentiation operator.

For an ideal synchronous generator, magnetic saturation effects can be ignored.

Hence magnetic flux linkage of each winding can be written in the form of self-

inductance and mutual inductance as shown by the following flux linkage equation

’a

’b

’c

��
’f

’D

’g

’Q

2
66666666664

3
77777777775
¼

Laa Mab Mac Maf MaD Mag MaQ

Mba Lbb Mbc Mbf MbD Mbg MbQ

Mca Mcb Lcc Mcf McD Mcg McQ

Mfa Mfb Mfc Lff MfD Mfg MfQ

MDa MDb MDc MDf LDD MDg MDQ

Mga Mgb Mgc Mgf MgD Lgg MgQ

MQa MQb MQc MQf MQD MQg LQQ

2
66666666664

3
77777777775

�ia
�ib
�ic
��
if
iD
ig
iQ

2
66666666664

3
77777777775
: ð6:2Þ

From circuit theory we know that the above coefficient matrix is symmetrical. From

Fig. 6.1a we can see that due to the rotor rotation, the reluctance of the magnetic

circuit of some windings changes periodically with the variation of rotor position.

Hence the self-inductance and mutual inductance of those windings are a function

of rotor position. According to the assumptions of an ideal synchronous generator,

both the magnetomotive force (mmf) induced by armature current and mutual flux

between armature windings and rotor windings have sinusoidal space distribution.

Rotor position can be described by the angle between d-axis and flux axis of phase a
armature winding y¼ y0 þot. Hence the self-inductance and mutual inductance of

each winding can be expressed as follows [153].

1. Self-inductance and mutual inductance of armature windings

Laa ¼ l0 þ l2 cos 2y

Lbb ¼ l0 þ l2 cos 2ðy� 2p=3Þ
Lcc ¼ l0 þ l2 cos 2ðyþ 2p=3Þ

9>=
>;; ð6:3Þ

Mab ¼ �½m0 þ m2 cos 2ðyþ p=6Þ�
Mbc ¼ �½m0 þ m2 cos 2ðy� p=2Þ�
Mca ¼ �½m0 þ m2 cos 2ðyþ 5p=6Þ�

9>=
>;: ð6:4Þ
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Under the assumptions of an ideal synchronous generator, it can be proved that

l2¼m2. Furthermore, for a round rotor generator, reluctance of magnetic circuits

related to the self-inductance and mutual inductance of armature windings does

not vary with rotor rotation, and we have l2 ¼ m2 ¼ 0. Hence those self-

inductance and mutual inductance above are constant.

2. Mutual inductance between armature and rotor windings

Maf ¼ maf cos y

Mbf ¼ maf cosðy� 2p=3Þ
Mcf ¼ maf cosðyþ 2p=3Þ

9>=
>;;

MaD ¼ maD cos y

MbD ¼ maD cosðy� 2p=3Þ
McD ¼ maD cosðyþ 2p=3Þ

9>=
>;; ð6:5Þ

Mag ¼ �mag sin y

Mbg ¼ �mag sinðy� 2p=3Þ
Mcg ¼ �mag sinðyþ 2p=3Þ

9>=
>;;

Mag ¼ �maQ sin y

Mbg ¼ �maQ sinðy� 2p=3Þ
Mcg ¼ �maQ sinðyþ 2p=3Þ

9>=
>;: ð6:6Þ

3. Self-inductance and mutual inductance of rotor windings

Since rotor windings rotate with the generator rotor, for salient-pole or round

rotor generator, reluctance of magnetic circuits does not vary with the change of

rotor position. Hence self-inductance and mutual inductance of rotor windings

are constant. D, f winding on direct axis (d) is vertical to g, Q winding on

quadrature axis (q). Hence mutual inductance between them is zero, that is

Mfg ¼ MfQ ¼ MDg ¼ MDQ ¼ 0: ð6:7Þ

6.2.1.2 Basic Equations in dq0 Coordinate

From the discussion above we know that the self-inductance and mutual inductance

of generator windings are not constant and some of them vary with the position of

the generator rotor. Hence (6.1) and (6.2) are time-variant differential equations

which are difficult to solve. To transfer these into time-invariant differential

equations, some of methods of coordinate transformation have been proposed,

among which the dq0 transformation proposed by Park [148] has been most widely

used. In dq0 coordinate, flux linkage equations become time invariant. Hence the

mathematical model of a synchronous generator is presented as a group of time-

invariant differential equations. In the following, we shall discuss the details of

Park’s transformation.

Park’s transformation converts three-phase flux linkage, armature current, and

voltage into d, q, 0 components in the dq0 coordinates, through an equivalent

coordinate transformation. It can be written as

Ad

Aq

A0

2
4

3
5 ¼ 2

3

cos y cosðy � 2p=3Þ cosðy þ 2p=3Þ
� sin y � sinðy � 2p=3Þ � sinðy þ 2p=3Þ
1=2 1=2 1=2

2
4

3
5 Aa

Ab

Ac

2
4

3
5: ð6:8Þ
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For simplicity of expression, the equation above can be written in the compact

form as follows

Adq0 ¼ PAabc: ð6:9Þ

The inverse Park’s transformation is

Aa

Ab

Ac

2
4

3
5 ¼

cos y � sin y 1

cosðy � 2p=3Þ � sinðy� 2p=3Þ 1

cosðy þ 2p=3Þ � sinðy þ 2p=3Þ 1

2
4

3
5 Ad

Aq

A0

2
4

3
5 ð6:10Þ

or Aabc ¼ P�1Adq0: ð6:11Þ

In (6.8)–(6.11), symbol A represents current, voltage, or flux linkage, i.e.,

idq0 ¼ Piabc; vdq0 ¼ Pvabc;Cdq0 ¼ PCabc; ð6:12Þ

iabc ¼ P�1idq0; vabc ¼ P�1vdq0;Cabc ¼ P�1Cdq0: ð6:13Þ

Applying the transformations of (6.12) and (6.13) as well as (6.3)–(6.7), (6.1)

and (6.2) can be converted into the following equations in dq0 coordinates
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2
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3
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2
666666664

3
777777775
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Ld 0 0 maf maD 0 0

0 Lq 0 0 0 mag maQ

0 0 L0 0 0 0 0

3maf =2 0 0 Lf mfD 0 0

3maD=2 0 0 mfD LD 0 0

0 3mag=2 0 0 0 Lg mgQ

0 3maQ=2 0 0 0 mgQ LQ
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3
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; ð6:15Þ

where

Ld ¼ l0 þ m0 þ 3l2=2; Lq ¼ l0 þ m0 þ 3l2=2; L0 ¼ l0 � 2m0;

Lf ¼ Lff ; LD ¼ LDD; Lg ¼ Lgg;

LQ ¼ LQQ;mgQ ¼ MfD;mgQ ¼ MgQ

ð6:16Þ

and o ¼ dy
dt

is the angular speed of the synchronous generator.
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Park’s transformation, in fact, replaces three-phase armature windings by their

three structurally equivalent windings – d winding, q winding, and 0 winding. The

difference is that the magnetic flux axis of three-phase armature windings is

stationary in space; while that of dq0 windings rotates in space at rotor speed.

The positive direction of magnetic flux axis of d winding and q winding is as same

as that of d- and q-axis of generator rotor, respectively, to describe the behavior of

electrical variables in the direction of d- and q-axis; while 0 winding represents the
zero-sequence component in the three-phase armature current, voltage and flux

linkage. Ld, Lq, and L0 in (6.16) is the self-inductance of equivalent d, q, and
0 winding, corresponding to d, q, and 0 synchronous reactance, respectively.

From (6.16) we can see that the coefficient matrix in (6.15) is a constant matrix.

Hence the mathematical model of (6.14) of synchronous generator has been

transformed into a set of time-invariant differential equations.

Equation (6.14) indicates that the phase voltage of the synchronous generator

consists of three parts. The first part is the voltage drop across the resistance of

armature windings; the second is the EMF induced from the variation of flux

linking the armature windings, which is usually called the transformer voltage of

a synchronous generator; the third part is the EMF due to the rotation of the

synchronous generator which is termed speed voltage. The value of speed voltage

is much greater than that of transformer voltage. The coefficient matrix in (6.15) is

nonsymmetrical, i.e., the mutual inductance between windings on generator rotor

and d, q, and 0winding is not reciprocal. That is caused by the transformation. If the

current in rotor windings is multiplied by 3/2, or an orthogonal transformation

matrix is adopted, these mutual inductance will become reciprocal. From (6.16) we

can see that for a salient-pole generator Ld > Lq and round rotor generator Ld ¼ Lq
because l2 ¼ 0. This difference makes it applicable to represent round rotor

generators by the mathematical model of the salient-pole generator.

According to the reference direction of current and voltage given in Fig. 6.1b,

the total output power from the three-phase armature windings is

po ¼ vaia þ vbib þ vcic ¼ vTabciabc: ð6:17Þ

Applying Park’s transformation to the equation above, from (6.13) we can obtain

the output power from armature windings in dq0 coordinates to be

po ¼ ðP�1vdq0ÞTðP�1idq0Þ ¼ 3

2
ðvdid þ vqiq þ 2v0i0Þ: ð6:18Þ

6.2.1.3 Per Unit Equations of the Synchronous Generator

The per unit system is commonly used in power system analysis and calculation due to

itsmany advantages. Parameters of synchronous generator are alsousually given in per

unit. Hence we need to convert the mathematical model of synchronous generator of

(6.14) and (6.15) using actual values of various variables into the per unit equations
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where variables are described by per unit values. When we introduce the per unit

equations used in HVDC in 4.3.1, we have mentioned the principle that, in a per

unit system, the base values of different physical variables must have the same

relationship that they have when using actual values. Hence in a per unit system,

some base values are defined by users and others are derived from the physical

relationships among variables. Obviously, the difference in defining those base

values by users will lead to different per unit systems. This book will adopt a widely

used per unit system – ‘‘unit excitation voltage/unit stator voltage’’ base value

system. Subscript B is still used to denote base values of various physical variables

and ‘‘*’’ to represent per unit variables.

Firstly we define the base value for generator speed to be the synchronous

angular speed os. Because ot ¼ y and y is dimensionless (without base value),

oBtB ¼ 1 which can lead to the base value for time t. Hence

oB ¼ os

tB ¼ 1=os

)
: ð6:19Þ

On the generator stator side, we define the magnitude of armature current and

voltage as their base values. From the definition, we can derive the base values for

power, impedance, and flux linkage as follows

SB ¼ 3� VBffiffiffi
2

p � IBffiffiffi
2

p ¼ 3

2
VBIB; ð6:20Þ

ZB ¼ VB

IB
¼ 3

2
� V2

B

SB
; ð6:21Þ

’B ¼ ZB
oB

IB ¼ ZBIBtB ¼ VBtB: ð6:22Þ

In a per unit system, there should be only one base value for power. Hence for f, D,
g, and Q, four rotor windings, we have

VfBIfB ¼ VDBIDB ¼ VgBIgB ¼ VQBIQB ¼ 3

2
VBIB ¼ SB: ð6:23Þ

Due to the constraint of above equation, we can only define one base value between

current and voltage, for each rotor winding, and then derive the other. After the base

values for the voltage and current of rotor windings are obtained, base values for

impedance and flux linkage can be found from the following equations

ZfB ¼ VfB=IfB; ZDB ¼ VDB=IDB; ZgB ¼ VgB=IgB; ZQB ¼ VQB=IQB;

’fB ¼ VfBtB; ’DB ¼ VDBtB; ’gB ¼ VgBtB; ’QB ¼ VQBtB:
ð6:24Þ
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With base values introduced, we can convert the mathematical equations of (6.14)

and (6.15) into the description in per unit as follows.

Dividing both sides of each voltage equations of (6.14) by corresponding base

voltage value and using the relationships among various base values as given in

(6.19)–(6.24), we can obtain

vd�
vq�
v0�

vf �
0

0

0

2
66666666664

3
77777777775
¼

Ra� 0 0 0 0 0 0

0 Ra� 0 0 0 0 0

0 0 Ra� 0 0 0 0

0 0 0 Rf � 0 0 0

0 0 0 0 RD� 0 0

0 0 0 0 0 Rg� 0

0 0 0 0 0 0 RQ�

2
66666666664

3
77777777775

�id�

�iq�
�i0�

if �
iD�

ig�
iQ�

2
66666666664

3
77777777775
þp�

’d�

’q�

’0�

’f �

’D�

’g�

’Q�

2
66666666664

3
77777777775
�

o�’q�

�o�’d�

0

0

0

0

0

2
66666666664

3
77777777775
; ð6:25Þ

where p* is differentiation operator in per unit:

p� ¼ p

oB

¼ tB � d

dt
¼ d

dt�
;

Ra� ¼ Ra=ZB

Rf � ¼ Rf

ZfB
¼ 2

3
� Rf

ZB
� IfB

IB

� �2

RD� ¼ RD

ZDB
¼ 2

3
� RD

ZB
� IDB

IB

� �2

Rg� ¼ Rg

ZgB
¼ 2

3
� Rg

ZB
� IgB

IB

� �2

RQ� ¼ RQ

ZQB
¼ 2

3
� RQ

ZB
� IQB

IB

� �2

: ð6:26Þ

Using the similar procedure for (6.15), we can obtain

’d�

’q�

’0�

’f �

’D�

’g�

’Q�

2
66666666664

3
77777777775
¼

Xd� 0 0 Xaf � XaD� 0 0

0 Xq� 0 0 0 Xag� XaQ�

0 0 X0� 0 0 0 0

Xaf � 0 0 Xf � XfD� 0 0

XaD� 0 0 XfD� XD� 0 0

0 Xag� 0 0 0 Xg� XgQ�

0 XaQ� 0 0 0 XgQ� XQ�

2
66666666664

3
77777777775

�id�
�iq�

�i0�

if �
iD�

ig�

iQ�

2
66666666664

3
77777777775
; ð6:27Þ
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where

Xd� ¼ oBLd=ZB

Xq� ¼ oBLq=ZB

X0� ¼ oBL0=ZB

Xf � ¼ oBLf
ZfB

¼ 2

3
� oBLf

ZB
� IfB

IB

� �2

XD� ¼ oBLD
ZDB

¼ 2

3
� oBLD

ZB
� IDB

IB

� �2

Xg� ¼ oBLg
ZgB

¼ 2

3
� oBLg

ZB
� IgB

IB

� �2

XQ� ¼ oBLQ
ZQB

¼ 2

3
� oBLQ

ZB
� IQB

IB

� �2

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð6:28aÞ

Xaf � ¼ oBmaf

ZB

IfB
IB

� �
;

Xag� ¼ oBmag

ZB

IgB
IB

� �
;

XfD� ¼ 2

3
� oBmfD

ZB

IfBIDB
I2B

� �
;

XaD� ¼ oBmaD

ZB

IDB
IB

� �

XaQ� ¼ oBmaQ

ZB

IQB
IB

� �

XgQ� ¼ 2

3
� oBmgQ

ZB

IgBIQB
I2B

� � : ð6:28bÞ

In addition, dividing both sides of (6.18) by SB, from (6.20) we can obtain the output

power from synchronous generator in per unit to be

po� ¼ vd� id� þ vq� iq� þ 2v0� i0� : ð6:29Þ

We should note that the per unit equations of the synchronous generator of (6.25)

have the similar form to those using actual values of (6.14). However, in the per unit

equations, the coefficient matrix in flux linkage equation of (6.27) is symmetrical,

i.e., the mutual inductance between stator and rotor windings becomes reciprocal.

Furthermore, with proper choice of base values for inductance, we can make the per

unit values of inductance to be equal to that of reactance. Hence the coefficient

matrix in the flux linkage equation can also be expressed by use of per unit

reactance.

6.2.2 Mathematical Equations of Synchronous Generator
Using Machine Parameters

For simplicity of expression, in the following discussion we shall use per unit

system and omit the subscript ‘‘*’’ to express per unit variables.

6.2 Mathematical Model of Synchronous Generator 343



In the mathematical equations of the synchronous generator of (6.25) and (6.27),

a total of 18 parameters are presented in (6.26) and (6.28). We regard those 18

parameters as basic parameters of a synchronous generator which are decided by

physical design and materials used. Strictly speaking, for two generators of the

same type and same model, the parameters will not be exactly the same. Usually it

is extremely difficult to obtain the values of those parameters through analytical

calculation. Therefore, in practice we convert those 18 basic parameters of a

synchronous generator into a group of 11 steady-state, transient, and subtransient

parameters. These 11 parameters are called machine parameters and can be

obtained directly from machine experiments. They are resistance of stator winding

(Ra), q- and d-axis synchronous reactance (Xd, Xq), transient reactance (X
0
d;X

0
q), and

subtransient reactance (X00
d ;X

00
q ) as well as the four time constants (T0

d0; T
0
q0; T

00
d0; T

00
q0).

Because machine parameters are fewer than the basic parameters, certain assump-

tions are needed for the conversion between these two sets of parameters.

Firstly, from the basic (6.25) and (6.27) of a synchronous generator we can see

that the magnetic field in space generated by zero-sequence component, i0, is zero
and hence it has no impact on any electrical variables associated with generator

rotor. Therefore, the zero-sequence equation in (6.25) and (6.27) and the parameter

X0 can be ignored. Equation (6.25) now becomes

vd
vf
0

2
4

3
5 ¼

Ra 0 0

0 Rf 0

0 0 RD

2
4

3
5 �id

if
iD

2
4

3
5þ p

’d

’f

’D

2
4

3
5�

o’q

0

0

2
4

3
5; ð6:30Þ

vq
0

0

2
4

3
5 ¼

Ra 0 0

0 Rg 0

0 0 RQ

2
4

3
5 �iq

ig
iQ

2
4

3
5þ p

’q

’g

’Q

2
4

3
5þ

o’d

0

0

2
4

3
5: ð6:31Þ

Equation (6.27) can be written as

’d

’f

’D

2
4

3
5 ¼

Xd Xaf XaD

Xaf Xf XfD

XaD XfD XD

2
4

3
5 �id

if
iD

2
4

3
5; ð6:32Þ

’q

’g

’Q

2
4

3
5 ¼

Xq Xag XaQ

Xag Xg XgQ

XaQ XgQ XQ

2
4

3
5 �iq

ig
iQ

2
4

3
5: ð6:33Þ

We can assume that there exist relationships as shown in the following (6.34)

among basic parameters in (6.32) and (6.33) [154]

Xaf XD ¼ XaDXfD

XagXQ ¼ XaQXgQ

)
: ð6:34Þ
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d-axis machine parameters are related to basic parameters as follows:

1. The definition of d-axis synchronous reactance Xd is that when f and D winding

are open-circuited and there exists only the d-axis component of current in the

armature winding, the measured armature reactance is Xd. From the definition

we know that in (6.32) when if ¼ iD ¼ 0, we have

’d ¼ �Xdid;

i.e., basic parameter Xd is machine parameter Xd.

2. d-axis transient reactance X0
d is defined such that when f winding is short-

circuited, D winding open-circuited and only a d-axis component of current

suddenly flows through the armature winding, the measured armature reactance

is X0
d. From the definition we know that with D winding being open-circuited,

iD¼ 0; and with fwinding being short-circuited, at the moment of sudden flow of

current through the armature winding, ff ¼ 0. Hence in (6.32) we have

’d ¼ �Xdid þ Xaf if

’f ¼ �Xaf id þ Xf if ¼ 0

)
:

Canceling if in the above equations we obtain

’d ¼ � Xd �
X2
af

Xf

 !
id:

Therefore

X0
d ¼

’d

�id
¼ Xd �

X2
af

Xf
: ð6:35Þ

3. The definition of d-axis subtransient reactance X00
d is that when f and D winding

are short-circuited and only a d component of current suddenly flows through the

armature winding, the measured armature reactance is X00
d . According to the

definition, with ff ¼ fD ¼ 0 in (6.32), we have

’d ¼ �Xdid þ Xaf if þ XaDiD

’f ¼ �Xaf id þ Xf if þ XfDiD ¼ 0

’D ¼ �Xadid þ XfDif þ XDiD ¼ 0

9>=
>;:

By canceling if and iD in the above equation, we obtain

’d ¼ � Xd �
XDX

2
af � 2Xaf XfDXaD þ Xf X

2
aD

XDXf � X2
fD

 !
id:
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That is

X00
d ¼ ’d

�id
¼ Xd �

XDX
2
af � 2Xaf XfDXaD þ Xf X

2
aD

XDXf � X2
fD

: ð6:36Þ

From the first equation, on the previous assumption of (6.34), we can find XfD.

By substituting it into (6.36) we have

X00
d ¼ Xd � X2

aD

XD
: ð6:37Þ

4. The definition of d-axis open-circuit transient time constant is the decaying time

constant of ifwhen d andD winding are open-circuited. This means that in (6.30)

and (6.32), we have id ¼ iD ¼ 0, fd ¼ fD ¼ 0. Hence

vf ¼ Rf if þ p’f

’f ¼ Xf if

)
:

In per unit we have Xf ¼ Lf. From the equation above we can obtain

vf ¼ Rf if þ Lf
dif
dt

:

Hence

T0
d0 ¼ Lf =Rf ¼ Xf =Rf : ð6:38Þ

In fact, when d and D winding are open-circuited, f winding becomes an isolated

winding. Hence the decaying time constant of the winding current is the time

constant of f winding itself.

5. d-axis open-circuit subtransient time constant T00
d0 is defined to be the decaying

time constant of D winding when d winding is open-circuited and f winding
short-circuited. From the definition we have id ¼ 0, vf ¼ 0 in (6.30) and (6.32).

Hence

Rf if þ p’f ¼ 0

RDiD þ p’D ¼ 0

’f ¼ Xf if þ XfDiD

’D ¼ XfDif þ XDiD

9>>>>=
>>>>;
:

That is

Xf XfD

XfD XD

� �
p

if
iD

� �
¼ �Rf 0

0 �RD

� �
if
iD

� �
:
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This is obviously a second-order electrical circuit and hence there are two time

constants. Because usually Rf is very small we can assume Rf ¼ 0. By canceling if in
the above equation we have

XD � X2
fD

Xf

 !
piD ¼ �RDiD:

Hence

T00
d0 ¼ XD � X2

fD

Xf

 !,
RD: ð6:39Þ

So far we have established the relationship between five d-axis machine parameters

and basic parameters. In the similar way, from the definition of various q-axis
machine parameters, q-axis voltage equation of (6.31), flux linkage equation of

(6.33), and the assumption of (6.34), we can also obtain the relationship between

five q-axis machine parameters and basic parameters. In total, the relationship

between 11 machine parameters and 18 basic parameters can be listed as follows

(on the left side of equations are the machine parameters and the right side the basic

parameters).

Ra ¼ Ra;Xd ¼ Xd ;Xq ¼ Xq; ð6:40aÞ

X0
d ¼ Xd � X2

af=Xf

X0
q ¼ Xq � X2

ag=Xg

)
; ð6:40bÞ

X00
d ¼ Xd � X2

aD=XD

X00
q ¼ Xq � X2

aQ=XQ

)
; ð6:40cÞ

T0
d0 ¼ Xf =Rf

T 0
q0 ¼ Xg=Rg

)
; ð6:40dÞ

T00
d0 ¼ XD � X2

fD=Xf

� �
=RD

T 00
q0 ¼ XQ � X2

gQ=Xg

� �
=RQ

9>=
>;: ð6:40eÞ

Eleven machine parameters can be obtained through experiment. We should point

out that the relationship between machine and basic parameters of (6.40) depends

on the assumption given in (6.34). Different assumption may be made that will lead

to different relationship between the machine and basic parameters such as that

given in; while different relationships will result in different mathematical equa-

tions of a synchronous generator represented by using machine parameters. How-

ever, values of machine parameters are only affected by their definitions, irrelevant

of the initial assumptions.
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In the following, we will establish the mathematical equations of synchronous

generators represented by machine parameters. To do so, we first introduce the no-

load voltage that is proportional to the current of various rotor windings, and

transient and subtransient excitation voltages that are proportional to the flux

linkage of rotor windings as follows.

No-load voltage:

eq1 ¼ Xaf if

ed1 ¼ �Xagig

eq2 ¼ XaDiD

ed2 ¼ �XaQiQ

9>>>=
>>>;
: ð6:41Þ

Transient and subtransient voltage:

e0q ¼ ðXaf =Xf Þ’f

e0d ¼ �ðXag=XgÞ’g

e00q ¼ ðXaD=XDÞ’D

e00d ¼ �ðXaQ=XQÞ’Q

9>>>>=
>>>>;
: ð6:42Þ

In the mathematical equations of a synchronous generator represented by basic

parameters of (6.30)–(6.33), we can express current and flux linkage of all rotor

windings by the associated voltage defined in (6.40)–(6.42). By using the relation-

ship between basic and machine parameters of (6.40) and the assumption of (6.34),

we will obtain the following mathematical equations of a synchronous generator

represented by machine parameters.

Flux linkage equation of armature windings

’d ¼ �Xdid þ eq1 þ eq2

’q ¼ �Xqiq � ed1 � ed2

)
: ð6:43Þ

Flux linkage equation of rotor windings

e0q ¼ �ðXd � X0
dÞid þ eq1 þ Xd � X0

d

Xd � X00
d

eq2

e00q ¼ �ðXd � X00
dÞid þ eq1 þ eq2

e0d ¼ ðXq � X0
qÞiq þ ed1 þ

Xq � X0
q

Xq � X00
q

ed2

e00d ¼ ðXq � X00
qÞiq þ ed1 þ ed2

9>>>>>>>>>=
>>>>>>>>>;
: ð6:44Þ

Voltage equation of armature windings

vd ¼ r’d � o’q � Raid

vq ¼ r’q þ o’d � Raiq

)
: ð6:45Þ
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Voltage equation of rotor windings

T0
d0re

0
q ¼ Efq � eq1

T 00
d0re

00
q ¼ �X0

d � X00
d

Xd � X00
d

eq2

T0
q0re

0
d ¼ �ed1

T00
q0re

00
d ¼ �X0

q � X00
q

Xq � X00
q

ed2

9>>>>>>>>>=
>>>>>>>>>;
; ð6:46Þ

where

Efq ¼ Xaf

Rf
uf : ð6:47Þ

Efq is the voltage across the armature winding when synchronous generator is

connected to no load at the steady-state operation. In fact, vf/Rf is an imaginary field

current due to vf at steady state. During the transient process, it is not equal to the

actual if. From the definition of (6.41) we can see that the product of this steady-

state field current and Xaf gives the no-load voltage. Hence Efq is called the

imaginary voltage.

To express eq1, eq2, ed1, and ed2 directly from the flux linkage equation of rotor

windings of (6.44), we have

eq1 ¼ Xd � X00
d

X0
d � X00

d

e0q �
Xd � X0

d

X0
d � X00

d

e00q

eq2 ¼ �Xd � X00
d

X0
d � X00

d

e0q þ
Xd � X00

d

X0
d � X00

d

e00q þ ðXd � X00
dÞid

ed1 ¼
Xq � X00

q

X0
q � X00

q

e0d �
Xq � X0

q

X0
q � X00

q

e00d

ed2 ¼ �Xq � X00
q

X0
q � X00

q

e0d þ
Xq � X00

q

X0
q � X00

q

e00d � ðXq � X00Þiq

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

: ð6:48Þ

Substituting (6.48) into (6.43) and (6.46) we can obtain the flux linkage equation of

the armature windings

’d ¼ e00q � X00
d id

’q ¼ �e00d � X00
qiq

)
ð6:49Þ

and the voltage equation of rotor windings
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T0
d0re

0
q ¼ �Xd � X00

d

X0
d � X00

d

e0q þ
Xd � X0

d

X0
d � X00

d

e00q þ Efq

T00
d0re

00
q ¼ e0q � e00q � ðX0

d � X00
dÞid

T0
q0re

0
d ¼ �Xq � X00

q

X0
q � X00

q

e0d þ
Xq � X0

q

X0
q � X00

q

e00d

T00
q0re

00
d ¼ e0d � e00d þ ðX0

q � X00
qÞiq

9>>>>>>>>>=
>>>>>>>>>;
: ð6:50Þ

In (6.47) we still have two basic parameters Xaf and Rf. To avoid these two

parameters in the expression, we need to choose proper base values such that in

per unit system we have Xaf ¼ Rf and hence Efq ¼ vf. This choice of base values is
usually called ‘‘unit excitation voltage/unit stator voltage’’ per unit system. The

details are as follows.

As we have introduced previously, SB is decided by the choice of base values on

the generator stator side. For each winding on the rotor, we have to choose a base

value for either voltage or current and derive the other. In the ‘‘unit excitation

voltage/unit stator voltage’’ per unit system, we first choose the base value for the

voltage of the field winding VfB and then derive the base value for field current IfB
from (6.23). We choose VfB such that when synchronous generator operates at

steady state, is subject to no load and rotates at synchronous speed, the voltage of

stator winding is equal to the base value of stator voltage. Obviously, VfB can be

gained by experiment. From the above definition about VfB, in (6.14) and (6.15) we

only have if 6¼ 0, we have

vd ¼ 0

vq ¼ oBmaf if ¼ VB

vf ¼ Rf if ¼ VfB

9>=
>;:

So we can obtain

VfB ¼ Rf

oBmaf
VB:

Because ZfB ¼ VfB=IfB, we have

Rf � ¼ Rf

ZfB
¼ Rf IfB � oBmaf

Rf VB

¼ oBmaf

ZB

IfB
IB

� �
:

Comparing the above equation with Xaf � in (6.28), we can see Rf* ¼ Xf*. Hence in

per unit

Efq ¼ Xaf

Rf
vf ¼ vf : ð6:51Þ

Up to this point, we have established the mathematical model of synchronous

generator represented by 11 machine parameters that consists of the voltage

350 6 Mathematical Model of Synchronous Generator and Load



equation of armature windings (6.45), flux linkage equation of armature windings

(6.49), and voltage equation of rotor windings (6.50). We should point out that this

model only needs the specific choice of base value for field winding. Base value for

the voltage or current of damping windings can be selected according to (6.23).

Besides, voltage of field winding vf is affected by excitation control and hence Efq in

(6.50) will be discussed further in Sect. 6.3.

6.2.3 Simplified Mathematical Model of Synchronous Generator

In the above discussion, we established the mathematical model of synchronous

generator where four rotor windings, f, g, D, and Q, are used. From (6.50) we can

see that the electromagnetic transient of rotor windings is depicted by four differ-

ential equations. In a modern power system, there could be over 1,000 generators in

synchronous operation. Higher-order differential equations could result in numeri-

cal difficulty in power system analysis and calculation. Therefore, in practice the

mathematical model of a synchronous generator is often simplified according to

requirements of computing accuracy, and only for those generators that we are

particularly concerned about are higher-order models used. The simplification can

be classified according to how to ignore certain rotor windings, leading to three

rotor-winding model, two rotor-winding model, nondamping-winding model and

constant e0q model (classical model). All these models can be derived from the full

four rotor winding model of a synchronous generator.

1. Three rotor winding model (f, D, Q). For a salient-pole generator, usually we

only consider one equivalent damping winding Q on q-axis and ignore the

existence of g winding. This means that in the four rotor winding model, ig ¼
fg ¼ 0. Hence in (6.41), ed1 ¼ 0 and in (6.42), e0d ¼ 0 and X0

q ¼ Xq. The voltage

equations of rotor windings are reduced to an order three model

T0
d0re

0
q ¼ �Xd � X00

d

X0
d � X00

d

e0q þ
Xd � X0

d

X0
d � X00

d

e00q þ Efq

T00
d0re

00
q ¼ e0q � e00q � ðX0

d � X00
dÞid

T00
q0re

00
d ¼ �e00d þ ðX0

q � X00
qÞiq

9>>>=
>>>;
: ð6:52Þ

There is no change in the voltage and flux linkage equation of the armature

windings.

2. Two winding model (f, g or double-axis model). We only consider one damping

winding g on q-axis and ignore D, Q damping winding. This is the same as the

assumption iD ¼ iQ ¼ fD ¼ fQ ¼ 0 in four winding rotor model. Hence in

(6.41), we have eq2 ¼ ed2 ¼ 0 and in (6.42), e00q ¼ e00d ¼ 0. The flux linkage

equation of armature windings becomes
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’d ¼ e0q � X0
did

’q ¼ �e0d � X0
qiq

)
: ð6:53Þ

Voltage equation of rotor windings is reduced to a second-order model

T0
d0re

0
q ¼ �e0q � ðXd � X0

dÞid þ Efq

T0
q0re

0
d ¼ �e0d þ ðXq � X0

qÞiq

)
: ð6:54Þ

There is no change in the voltage equation of armature windings.

3. Nondamping winding model (f, or variable e0q model). Ignoring damping wind-

ings, we have iD¼ iQ¼ ig¼ fD¼ fQ¼ fg¼ 0. Hence in (6.41), ed1¼ eq2¼ ed2
¼ 0 and in (6.42), e0d ¼ e00q ¼ e00d ¼ 0. The flux linkage equation of armature

windings becomes

’d ¼ e0q � X0
did

’q ¼ �Xqiq

)
: ð6:55Þ

Voltage equation of rotor winding is reduced to a first-order model

T0
d0re

0
q ¼ �e0q � ðXd � X0

dÞid þ Efq: ð6:56Þ

There is no change in the voltage equation of armature windings.

4. Constant e0q model. We neglect damping windings and transient of field winding.

Also we consider the right-hand side of (6.56) to be zero due to the control

function of AVR, i.e.,

e0q � ðX0
d � XdÞid þ Efq ¼ constant:

Thus the mathematical model of synchronous generator is comprised of only the

voltage and flux linkage equation of armature windings of (6.45) and (6.55).

There is no differential equation for the rotor windings. Constant e0q model

usually is used when the rotor motion equation of the synchronous generator is

described by electrical torque.

5. Classical model. This is to use X0
d ¼ X0

q to further simplify the expression of

output electrical power of a synchronous generator.

The discussion above is the simplification of depicting rotor windings to reduce

the order of the mathematical model of a synchronous generator. On the other hand,

in the analysis of power system steady-state operation, the voltage equation of

armature windings can be simplified in the following two ways:
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1. Ignoring the electromagnetic transient of armature windings. This is to neglect

the induced voltage due to the variations of ’d and ’q in the voltage equation

of armature windings. Thus the voltage equation of armature winding

becomes

vd ¼ �o’q � Raid

vq ¼ o’d � Raiq

)
: ð6:57Þ

For power system stability studies the above simplification is very important.

From the flux linkage equation of armature winding (6.49) we can see that the

differential of flux linkage of armature windings with respect to time will

involve that of armature current with respect to time. Because the armature

windings of a synchronous generator are connected to a transmission network

that is formed by a certain topology of resistance, inductance, and capacitance,

the differentiation of armature current with respect to time will require the

description of the network by differential equations. This will greatly increase

the order of the mathematical model of whole power system. In addition, if the

electromagnetic transients of armature windings and network are not ignored,

the armature current of the synchronous generator will contain high-frequency

components. Under this circumstance, we must take very small integration time

steps to achieve the required computing accuracy in the numerical solution of

power system mathematical equations. For a modern large power system,

increase of the order of its mathematical model and decrease of the required

integration time step would add a heavy computational burden such that normal

calculation would become impossible. In fact, compared to the electromechani-

cal process of the synchronous generator, the electromagnetic transient behavior

of the power network is sufficiently fast that it can be ignored as far as its

influence on power system stability analysis and computation is concerned.

From (6.57) we can see that when the electromagnetic transient of armature

windings of synchronous generator is neglected, its voltage equations become

algebraic equations, i.e., those depicting steady-state operation of the synchro-

nous generator.

2. In the voltage equation of armature windings, we consider the rotor speed of

synchronous generator o always to be the synchronous speed. This does not

mean that during the transient, the rotor speed of synchronous generator

does not change. It is because the range of o is small due to the existence

of various control functions in generator operation. Hence in the voltage equa-

tion of the armature winding, the numerical variation caused by the small change

of o is very small and hence can be ignored. This simplification does not

result in great saving in computation. However, it has been shown that taking

o ¼ 1 in the voltage equation of the armature winding of synchronous

generator can partly correct the computational errors caused by ignoring the
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electromagnetic transient [153]. Therefore, the voltage equation of armature

winding becomes

vd ¼ �’q � Raid

vq ¼ ’d � Raiq

)
: ð6:58Þ

6.2.4 Steady-State Equations and Phasor Diagram

Mathematically, transient analysis of power systems is to solve a group of differen-

tial equations depicting power system transient behavior. Usually the steady-state

operating point is the initial condition to solve the differential equations. In the

following, we will derive the formula to calculate the initial conditions from the

steady-state equations of the synchronous generator.

In steady-state operation, the generator rotates at synchronous speed, all electri-

cal variables are balanced and the current of damping windings is zero. Current id,
iq, if, and eq1 associated with if as well as flux linkage of all windings are constant. In
the following, we shall use capital letters to denote various steady-state electric

variables.

1. Steady-state equations represented by synchronous reactance

From (6.43) we have

Fd ¼ �XdId þ Eq1

Fq ¼ �XqIq

)
: ð6:59Þ

At steady state

Eq1 ¼ Xaf If ¼ Xaf
Vf

Rf
¼ Efq:

Substituting (6.59) into (6.58) we obtain

Efq ¼ Vq þ RaIq þ XdId

0 ¼ Vd þ RaId � XqIq

)
: ð6:60Þ

After load flow calculation, we have had terminal voltage _Vt and current _It of
the synchronous generator in x�y coordinate. To obtain Vd, Vq, Id, and Iq in d�q
coordinate, we need to find the connection between these two coordinate sys-

tems, i.e., to find the angle between them. For this purpose, we multiply the first

equation of (6.60) by j and add it to the second equation

jEfq � jðXd � XqÞId ¼ _Vt þ ðRa þ jXqÞ _It:
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We can define an imaginary voltage _EQ according to the above equation to be

_EQ ¼ _Vt þ ðRa þ jXqÞ _It: ð6:61Þ

Because _EQ and jEfq are in the same phase, from phasor diagram (Fig. 6.2a), we

can see that the angle between _EQ and x, d, is that between d–q and x–y
coordinate. Hence from (6.61) we can find d and obtain the transformation

between two coordinate systems as follows

Ad

Aq

� �
¼ sin d � cos d

cos d sin d

� �
Ax

Ay

� �
; ð6:62Þ
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Fig. 6.2 Phasor diagram of steady-state operation of synchronous generator (a) when synchro-

nous reactance is used (b) when transient reactance is used (c) when subtransient reactance is used
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Ax

Ay

� �
¼ sin d cos d

� cos d sin d

� �
Ad

Aq

� �
; ð6:63Þ

where A denotes current, voltage, flux linkage, and various EMF. After Vd, Vq,

Id, and Iq are found, from (6.60) we can calculate the initial value of vf, Vf ¼ Efq.

2. Steady-state equations represented by transient reactance

From the first and third equation in (6.44) we have

E0
q ¼ �ðXd � X0

dÞId þ Eq1

E0
d ¼ ðXq � X0

qÞIq

)
:

Noting Eq1 ¼ Efq at steady state and canceling Xd and Xq by substituting the first

and second equation in (6.60) into the first and second above equation, we have

E0
q ¼ Vq þ RaIq þ X0

dId

E0
d ¼ Vd þ RaId � X0

qIq

)
: ð6:64Þ

3. Steady-state equations represented by subtransient reactance

From the second and fourth equation of (6.44), we can have

E00
q ¼ �ðXd � X00

dÞId þ Eq1

E00
d ¼ ðXq � X00

qÞIq

)
:

Taking the similar procedure, from (6.64) we can obtain

E00
q ¼ Vq þ RaIq þ X00

dId

E00
d ¼ Vd þ RaId � X00

qIq

)
: ð6:65Þ

Equations (6.60), (6.64), and (6.65) comprise steady-state equations of a synchro-

nous generator adopting the four rotor winding model. From those three equations

we can calculate the initial values of five state variables, vf, e
0
q; e

0
d; e

00
d , and e00q .

Phasor diagrams related to those three equations are shown in Fig. 6.2.

When a simplified model of the synchronous generator is used, we can

calculate required initial values of state variables directly from the above

steady-state equations of the four rotor winding model. For example, when the

damping windings are ignored, we have

Efq ¼ Vq þ RaIq þ XdId

0 ¼ Vd þ RaId � XqIq

E0
q ¼ Vq þ RaIq þ X0

dId

9>=
>;:
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6.2.5 Mathematical Equations Considering Effect
of Saturation

In the above discussion, we have established mathematical equations of the syn-

chronous generator under the condition that the magnetic circuit of machine is

unsaturated. In practice, to save materials, the design and manufacture of synchro-

nous generator usually makes the iron core of both stator and rotor slightly saturated

when operating at rated conditions. At some particular operating conditions, with

the increase of flux density, saturation would become very obvious and serious. In

system planning and operation analysis, errors caused by ignoring saturation are

small. However, in certain applications, such as in transient stability analysis, with

detailed model of AVR and its limiters included, the effect of machine saturation

can greatly affect the accuracy of analysis and calculation.

Study on the effect of saturation started as early as about 60 years ago. The

mathematical model of a synchronous generator will become extremely complicated

if machine saturation is modeled in great detail. This is because the extent of

saturation of a magnetic circuit is closely related to the total mmf in the machine

air gap. It is required to combine d- and q-axis mmf to air-gap total mmf and then to

find the corresponding magnetic flux and linkage from the saturation curve. Even

though air-gap total mmf has a strict sinusoidal distribution in space, mmf varies

in different positions. Thus saturation at various positions in space is different,

which will cause distortion of the flux wave in the air gap. Therefore, in practice,

considering the simplicity of model used, effectiveness of parameters and accuracy

of computation, proper approximation is applied to take account of the

effect of machine saturation [155–158]. In the following, we shall introduce a

method commonly used in stability analysis [156]. The assumptions to apply the

method are:

1. The effect of saturation is simply considered on d- and q-axis separately.

The difference of magnetic reluctance in d- and q-axis magnetic circuits is

only caused by that of length of air gap in the direction of d- and q-axis.
2. On a same axis, the extent of saturation depends on the Potier voltage

behind Potier reactance Xp. The higher the Potier voltage, the more serious

the saturation. Potier voltage on d- and q-axis is given by the following

equation

vdp ¼ vd þ Raid � Xpiq

vqp ¼ vq þ Raiq þ Xpid

)
: ð6:66Þ

In addition, the extent of saturation of voltage and flux linkages of armature and

rotor windings is approximately considered to be same on the same axis.

3. The distortion of the distribution wave of air-gap flux does not affect the self-

inductance and mutual inductance of various windings and the unsaturated

values of winding reactance.
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The extent of saturation is described by saturation factor. For d-axis, saturation
factor Sd can be calculated from the saturation characteristic of machine in no-load

operation. This is because vqp is equivalent to the voltage of qwinding induced from
the resultant d-axis air-gap flux. From Fig. 6.3 of no-load saturation characteristic

of synchronous generator, we can find the unsaturated value of vqp0 from a certain

value of vqp. Hence we can define Sd to be

Sd ¼ f ðvqpÞ ¼ vqp0
vqp

� 1: ð6:67Þ

Obviously, the bigger the value of Sd is, the more saturated is the synchronous

generator. Zero Sd indicates the case of no saturation. For q-axis, the saturation

characteristic is difficult to obtain through experiment. Hence from the first as-

sumption above, the saturation factor Sq is also determined by using the no-load

saturation characteristic of synchronous generator, using the following equation

Sq ¼ Xq

Xd
f ðvdpÞ: ð6:68Þ

To calculate the saturation factor, one commonly used method is to approximately

fit the no-load saturation characteristic curve of Fig. 6.3 by an analytical function,

such as

if ¼ aVt þ bVn
t :

Obviously when b ¼ 0, we have the characteristic curve without saturation

if0 ¼ aVt:

Hence according to triangle similarity of Fig. 6.3, we have

Sd ¼ vqp0
vqp

� 1 ¼ vqp0 � vqp
vqp

¼ if � if0
if0

¼ avqp þ bvnqp � avqp

avqp
¼ b

a
vn�1
qp :

if

(Vqp)

if0

Vf0

if0

Vf

Vf
The unsaturated
characteristics

The no-load
saturated

characteristics

Fig. 6.3 No-load saturation

characteristic of synchronous

generator
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That is

Sd ¼ cvn�1
qp ; ð6:69Þ

where c ¼ b/a. Similarly, from (6.68) we have

Sq ¼ c
Xq

Xd
vn�1
dp : ð6:70Þ

In the following, we shall discuss the voltage equations of the field winding, voltage

and flux linkage equations of armature windings of a synchronous generator, taking

account of the saturation effect. From the derivation of voltage equations of field

winding of (6.50) without considering saturation effect, we can see that on the right-

hand side of the equations we have the voltage drop across the equivalent resistance

of the field winding caused by field current and the external voltage applied on the

rotor windings (i.e., the excitation voltage Vf). Hence there should no problem of

saturation about this part in the equations. Hence when we consider the saturation

effect, we shall still use unsaturated values for those on the right-hand side of the

equations. On the other hand, on the left side of the equations, we have the induced

voltage by variations of flux linkage with time. Hence when saturation effect is

taken into account, for those terms on the left-hand side of the equations we should

use their saturated values associated with actual flux linkage. According to the

previous assumption (2) and (6.67), we know that on d-axis, the ratio of unsaturated
value to the saturated of each voltage and flux linkage is (1 þ Sd). Similarly, on q-
axis, the ratio is (1 þ Sq). Therefore, when we consider the saturation effect, the

voltage equations of the field winding of a synchronous generator are

T0
d0re

0
qs ¼ �Xd � X00

d

X0
d � X00

d

ð1þ SdÞe0qs þ
Xd � X0

d

X0
d � X00

d

ð1þ SdÞe00qs þ Efq

T00
d0re

00
qs ¼ ð1þ SdÞe0qs � ð1þ SdÞe00qs � ðX0

d � X00
dÞid

T0
q0re

0
ds ¼ �Xq � X00

q

X0
q � X00

q

ð1þ SqÞe0ds þ
Xq � X0

q

X0
q � X00

q

ð1þ SqÞe00ds
T00
q0re

00
ds ¼ ð1þ SqÞe0ds � ð1þ SqÞe00ds þ ðX0

q � X00
qÞiq

9>>>>>>>>>=
>>>>>>>>>;
; ð6:71Þ

where subscript s denotes the saturated value of each voltage.

Taking saturation effects into account, we have the flux linkage equations of

armature windings of (6.49) becoming

ð1þ SqÞ’qs ¼ �ð1þ SqÞe00ds � X00
q iq

ð1þ SdÞ’ds ¼ ð1þ SdÞe00qs � X00
d id

)
: ð6:72Þ

When we do not consider the saturation effect, from the voltage equations of

armature windings of synchronous generator (6.58) and the definition of Potier
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voltage of (6.66), we can obtain the relationship between the Potier voltage and flux

linkage of armature windings to be

vdp0 ¼ �’q � Xpiq

vqp0 ¼ ’d þ Xpid

)
: ð6:73Þ

According to the relationship between saturated and unsaturated value, we can have

ð1þ SqÞvdp ¼ �ð1þ SqÞ’qs � Xpiq

ð1þ SdÞvqp ¼ ð1þ SdÞ’ds þ Xpid

)
:

Substituting (6.72) into the above equation we can establish the relationship

between the Potier voltage and the EMF with saturation considered, to be

vdp ¼ e00ds þ
X00
q � Xp

1þ Sq
iq

vqp ¼ e00qs �
X00
d � Xp

1þ Sd
id

9>>>=
>>>;
: ð6:74Þ

Substituting the above equation into the defining equation of the Potier voltage, we

have the voltage equations of armature windings with saturation being considered,

to be

vd ¼ e00ds � Raid þ
X00
q � Xp

1þ Sq
þ Xp

� �
iq

vq ¼ e00qs � Raiq � X00
d � Xp

1þ Sd
þ Xp

� �
id

9>>>=
>>>;
: ð6:75Þ

Equations (6.66), (6.67), (6.71), and (6.75) form the mathematical model of syn-

chronous generator with machine saturation being taken into account. From the

model it would be straightforward to derive the steady-state equations of a syn-

chronous generator. In practice, we often assume that stator leakage flux does not

saturate. Hence we can use Xs as the Potier reactance Xp.

6.2.6 Rotor Motion Equation of Synchronous Generator

6.2.6.1 Rotor Motion Equation of Stiff Rotor

If we consider the prime mover and generator rotor to be a single mass, the rotor

motion equation of the whole generation unit is
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dd
dt

¼ ðo� � 1Þos

TJ
do�
dt

¼ Tm� � Te�

9>=
>;; ð6:76Þ

where TJ ¼ 2Wk/SB, d is the electrical angle between q-axis of generator rotor and a
reference axis x that rotates at synchronous speed. This angle is a dimensionless

number and can be measured in radians (rad), TJ is the moment of inertia of

generation unit measured in seconds (s), Wk the rotating kinetic energy of the

rotor rotating at synchronous speed and measured in Joules (J), SB the base value

of generation capacity in V A; Tm� and Te� are the output mechanical torque of

prime mover and the electromagnetic torque of the generator in per unit; their base

value is SB/Os measured in radian/second (rad s�1), where Os is the mechanical

synchronous speed of rotor. The positive direction of Tm� and Te� is taken to be as

same as and opposite to that of rotation of the rotor, respectively. In some refer-

ences, the mechanical inertia is represented by H ¼Wk/SB. Obviously, TJ ¼ 2H. In
addition, we ought to note the following two issues:

1. Since the product of torque and speed is the power and O/Os¼o/os¼o*, in per

unit we can have

Pm� ¼ Tm�o�
Pe� ¼ Te�o�

)
; ð6:77Þ

where Pm� is the output mechanical power from the prime mover and Pe� the

electromagnetic power of the synchronous generator. As pointed out before,

various functions of power system stability control result in a small change of

o*. Hence in order to save computational time, sometimes we can just simply

take o* to be 1. Thus in per unit, torque is equal to power.

2. Rotor rotation is always subject to air resistance and friction between bearing

and shaft. This results in a damping torque to rotor motion. Often we assume that

this damping torque is approximately proportional to rotor speed and represent it

by the product of a damping coefficient D and speed o*.

Considering what has been discussed above, when time is also represented in per

unit, the rotor motion equation becomes

dd
dt�

¼ o� � 1

TJ�
do�
dt�

¼ �Do� þ Pm� � Pe�

9>>=
>>;: ð6:78Þ

We would point out that the mechanical torque and power involved in the above

rotor motion equation are subject to the control of the governing system of genera-

tion unit. Hence the appearance of mechanical torque and power will lead to

the establishment of equations for the governing system. This will be discussed in

Sect. 6.4.
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In (6.78), we consider a combined rotor of generator and prime mover to be a

single lumped mass. This consideration will usually bring about no obvious errors

when carrying out transient stability analysis. However, when the subsynchronous

resonance of power systems is studied, we cannot ignore the existence of rotor shaft

elasticity, since large steam-turbine generation units often consist of multiple stage

turbines and their shafts can be as long as several tens of meters. In this case, we can

consider the exciter, generator rotor, and each turbine section to be separate lumped

masses. Thus elasticity of the whole shaft system can be treated as torsional springs

between each mass. Therefore, with elasticity being taken into account, rotation

speed of each mass could be different during a transient process, resulting in

difference in relative angular position of each mass. The motion equation of each

mass forms the motion equation of the whole shaft system. Detailed discussion can

be found in [159].

6.2.6.2 Electromagnetic Torque and Power of Synchronous

Generator

In the rotor motion equation of (6.78), mechanical torque (or power) from prime

mover and electromagnetic torque (or power) of synchronous generator are intro-

duced. The former is included in the mathematical model of the prime mover and

governing system of the generation unit, which will be discussed in Sect. 6.4. Here

we shall introduce the computing model of electromagnetic torque and power.

Electromagnetic torque represents the function of force applied on the rotor from

the mutual electric and magnetic interactions between stator and rotor of the

synchronous generator. Theoretical proof has been provided that electromagnetic

torque is equal to the partial differentiation of total magnetic field energy stored in

various windings to rotor angle [148], i.e.,

Te ¼ @WF

@y
; ð6:79Þ

where y is the angle between d-axis and a-axis of armature winding (see Fig. 6.1a)

and WF is the total magnetic energy stored in three-phase armature windings and

rotor windings, which can be represented as

WF ¼ � 1

2
ð’aia þ ’bib þ ’cicÞ þ

1

2
ð’f if þ ’DiD þ ’gig þ ’QiQÞ: ð6:80Þ

Because the reference positive direction of armature current is opposite to that of

associated flux linkage, we have a negative sign in the above equation. From the

base value for torque TB ¼ SB/OB and (6.2)–(6.7), we can obtain
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Te� ¼ ’d� iq� � ’q� id� : ð6:81Þ

The above equation shows that electromagnetic torque is independent of zero-

sequence components, because they do not couple with rotor windings. In addition,

although the above equation has been established from the four winding model, it is

applicable to other higher or lower winding models with only slight differences in

derivation.

When the four rotor winding model is used, substituting the flux linkage equa-

tion of (6.49) into the above equation, we can obtain the expression of electromag-

netic torque to be

Te� ¼ e00d� id� þ e00q� iq� � ðX00
d� � X00

q� Þid� iq� : ð6:82Þ

From the above expression and (6.77), we can directly establish the expression of

electromagnetic power where state variables o*, e
00
d , and e00q are included. This will

bring about a heavy computing burden in the solution. Hence to solve this problem,

we can substitute the voltage equation of armature windings of (6.45) into (6.81)

and use (6.77) to obtain

pe� ¼ ud� id� þ uq� iq� þ Ra� i2d� þ i2q�
� �

� id�p�’d� � iq�p�’q� ; ð6:83Þ

where Ra� i2d� þ i2q�
� �

is the copper loss of the armature windings. When the

transient of armature windings is ignored, from the comparison of the above

equation with the output power expression of the synchronous generator in

(6.29), we can see that the electromagnetic power of the generator is the sum of

generator output power and copper loss of generator armature windings. Finally we

would like to mention here that (6.83) is also applicable to cases when other types of

rotor winding model is used and/or machine saturation is considered.

6.3 Mathematical Model of Generator Excitation Systems

In (6.50) we introduced variable Efq in the per unit system as ‘‘unit excitation

voltage/unit stator voltage,’’ that is equal to voltage vf applied to the field winding.

Hence we need to establish the mathematical model of generator excitation

systems.

The basic function of a generator excitation system is to provide the generator

field winding with appropriate DC current to generate a magnetic field in the

distributed space of the generator armature windings. In earlier times, the excitation

system regulated the excitation voltage through manual control, to maintain the

required terminal voltage of the generator and reactive power supply from the

generator. More recently, various types of excitation and AVR were proposed
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and used. In the 1960s, the proposal and application of power system stabilizers

(PSS) further enhanced the role played by excitation control systems to improve

power system stability. With the advancement of control theory and computer

control technology, further new types of excitation regulators have been proposed.

Their control tasks have been extended from simple terminal voltage regulation of

the generator to multiple excitation control functions. Feedback signals used have

developed from a single deviation of generator terminal voltage to the superimposi-

tion of various signals on the voltage deviation, based on factors such as electro-

magnetic power, electrical angular speed, system frequency, armature current, and

deviation of excitation current or voltage and their combinations. The control

strategy started with simple proportional control and has been enhanced by apply-

ing proportional–integral–differential (PID) control, multivariable linear system

control schemes, self-tuning control, adaptive control, fuzzy control, and nonlinear

control. In recent years, digital excitation controllers based on microprocessors or

microcomputers have been developed and installed. In the near future, research

into, and innovative applications of, excitation control will involve the develop-

ment of digital excitation control systems realized by microcomputers and using

modern control theory. Relatively accurate analysis of power system dynamics

must be supported by mathematical models of the excitation system. Development

and design of new types of excitation controller need to establish mathematical

models for simulation to check if the dynamic performance is satisfactory. In this

section, we shall only introduce the mathematical models of widely used excitation

systems and the design principle of excitation regulators will not be discussed. Also

we shall not discuss the newer type of excitation controllers, such as linear optimal

excitation controller (LOEC), nonlinear optimal excitation controller (NOEC),

because they are still at the stage of further theoretical research and testing. Figure

6.4 shows the construction of a general excitation system.

The exciter provides field current to the field winding of the generator. The

regulator controls the field current. The measurement unit for generator terminal

voltage and load compensation measures generator terminal voltage _Vt and com-

pensates for the load current of generator _It, respectively. The auxiliary control

signals are sent through the auxiliary controller. One of the most widely used

Reference
Regulator Exciter Generator

Protection and
limiter

Terminal voltage measurement and
load compensation

Auxiliary
controller

To power
network

Fig. 6.4 Excitation system of generator

364 6 Mathematical Model of Synchronous Generator and Load



auxiliary controllers is PSS. Protection and limiter are incorporated to ensure the

generator’s operation within various allowed constraints.

In Sect. 6.2, we have discussed the mathematical model of a synchronous

generator. In the following we shall introduce the mathematical models of excita-

tion systems of generators for power system stability analysis, as shown in Fig. 6.4,

block by block. These models are applicable to power system operation when

system frequency deviation is within 5% and system oscillation frequency is

below 3 Hz. Generally speaking, for the study of SSR or other problems of shaft

torsional oscillations, these models would not be precise enough.

6.3.1 Mathematical Model of Exciter

According to the different means of providing excitation power sources, exciters

can be classified into three types: DC exciter systems, AC exciter systems, and

static excitation systems. The two former types are also called rotational excitation

systems. In the following, we shall introduce each of the three types of exciter.

6.3.1.1 Mathematical Model of DC Exciter

Due to the high cost of maintenance, DC exciters have not been used in recently

built large generation units. However, in some power systems, we can still see DC

exciters in operation. Hence it is necessary to introduce their mathematical model.

We shall introduce the establishment of a mathematical model of the general case

of a DC exciter that has both self-excitation and separate excitation. Figure 6.5

shows the configuration of the DC exciter.

In Fig. 6.5, E represents armature of the exciter; Ref and Lef, Rsf and Lsf is the
resistance and self-inductance of the self-excited and separately excited windings,

respectively; ief, isf, and icf are the currents of the self-excitation, separate excitation,

isf

ief

icf

Rc

Rsf Ref

VfE

Vsf

Lsf Lef

if

Fig. 6.5 Configuration of a DC exciter
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and compound excitation, respectively; vsf is the voltage externally applied on the

separately excited winding; and Rc is a variable regulating resistor. For simplicity of

analysis, we assume that self-excited and separately excited windings have the

same number of turns, or number of turns and parameters of the separately excited

winding have been transferred to the side of the self-excited winding. Hence we can

obtain the following voltage equations and flux linkage equations (without consid-

ering magnetic saturation).

vf ¼ Rcief þ Ref ðicf þ ief Þ þ p’ef

vsf ¼ Rsf isf þ p’sf

)
; ð6:84Þ

’ef ¼ Lef ðicf þ ief Þ þMesisf

’sf ¼ Mesðicf þ ief Þ þ Lsf isf

)
: ð6:85Þ

In the above flux linkage equations, we can approximately consider that the self-

excited winding and the separately excited winding are coupled completely. Hence

leakage reactance of each winding is zero and unsaturated self-inductance and all

mutual inductance have the same value. From (6.85) we can have

’L0 ¼ ’ef ¼ ’sf ¼ LifS; ð6:86Þ

where

L ¼ Lef ¼ Lsf ¼ Mes

ifS ¼ icf þ ief þ isf

)
: ð6:87Þ

’L0 is the flux linkage of the self-excited winding and separately excited, winding

without considering saturation, ifS is the total excitation current provided by the DC

exciter.

If the saturation effect is considered, the relationship between the actual flux

linkage ’L and the total excitation current provided by DC exciter ifS is determined

according to Fig. 6.6a, which shows the saturation characteristic curve of the DC

exciter. Similarly to (6.67), we define the saturation factor of the DC exciter to be

SE ¼ ’L0

’L

� 1 ¼ ifS
ifS0

� 1: ð6:88Þ

As shown in Fig. 6.6, in (6.88), ifS0 is the total excitation current required to

generate ’L without considering saturation. The value of SE represents the level

of saturation of the DC exciter, describing the relationship between saturated flux

linkage ’L and unsaturated flux linkage ’L0. It is usually obtained from the load

characteristic curve of the exciter. Figure 6.6b shows that because the load of the

exciter is fixed, i.e., when the influence of excitation current of generator if on the

366 6 Mathematical Model of Synchronous Generator and Load



armature voltage of the exciter during transients is ignored, the output voltage of

exciter is approximately proportional to its internal EMF. If the variation of speed is

neglected, flux linkage ’L is proportional to voltage vf.
Hence the unsaturated characteristic in Fig. 6.6b can be expressed as

vf0 ¼ bifS: ð6:89Þ

b is the slope of the unsaturated load characteristic curve of exciter, measured in

Ohms. From the equation above and (6.86) we can obtain

’L0 ¼
L

b
vf0:

Because flux linkage ’L is proportional to voltage vf, the equation above can be

extended to be

’L ¼ L

b
vf : ð6:90Þ

Dividing both sides of the first equation, (6.84), by Rc þ Ref, the second equation by

Rsf and adding these two equations, as well as using (6.86), (6.87), and (6.90) we

can obtain

vf
Rc þ Ref

þ vsf
Rsf

¼ ifS � Rc

Rc þ Ref
icf þ 1

b
L

Rc þ Ref
þ L

Rsf

� �
rvf : ð6:91Þ

The saturated
characteristics

The saturated
characteristics

The unsaturated
characteristics

The unsaturated
characteristics

0

vf

vf

vf 0
vf 0 = bif ∑

a b

yL

yL0
yL0=Lif ∑

if ∑

if ∑ if ∑

if ∑

if ∑0 if ∑0

yL

Fig. 6.6 Saturation characteristic curve of DC exciter (a) Relationship between flux linkage and

excitation current (b) Load characteristic curve
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From (6.90), (6.88), and (6.89) we have

vf ¼ b
L
’L ¼ b

L

’L0

1þ SE
¼ b

L

LifS
1þ SE

¼ bifS
1þ SE

:

Substituting the above equation into (6.91) and canceling variable ifS, we can

obtain

SE þ 1� b
Rc þ Ref

� �
þ ðTef þ Tsf Þr

� �
vf ¼ b

Rsf
vsf þ bRc

Rc þ Ref
icf ; ð6:92Þ

where

Tef ¼ L=ðRc þ Ref Þ
Tsf ¼ L=Rsf

)
; ð6:93Þ

where Tef and Tsf are the time constants of self-excited and separately excited

windings, respectively (measured in seconds). Equation (6.92) gives the relation-

ship between input vsf, icf, and output vf of the exciter using physical units. In order

to combine it with the mathematical model of generator in per unit, established in

Sect. 6.2, we need to convert (6.92) into per unit form. Here we should use the same

base value VfB that has been chosen in Sect. 6.2 for vf. To decide the base value for

vsf and icf, we divide both sides of (6.92) by VfB. Then we can see that when base

voltage for the excitation current and voltage of the separately excited winding of

the exciter are chosen according to the following equation, the equation in per unit

is in the most simple form.

IfSB ¼ VfB=b

VsfB ¼ Rsf VfB=b

)
: ð6:94Þ

Hence (6.92) in per unit becomes

ðSE þ KE þ TErÞvf � ¼ vsf � þ Kcf icf � ; ð6:95Þ

where

KE ¼ 1� b=ðRc þ Ref Þ
TE ¼ Tef þ Tsf

Kcf ¼ Rc=ðRc þ Ref Þ

9>=
>;: ð6:96Þ

KE, TE, and Kcf are termed self-excitation factor, time constant, and gain of

compound excitation, respectively. By changing variable resistance Rc, these

three parameters can be adjusted properly. Equation (6.95) is the mathematical

368 6 Mathematical Model of Synchronous Generator and Load



model of the exciter shown in Fig. 6.5. Figure 6.7 is its block diagram where the per

unit subscript * has been omitted.

Using the same method that has been adopted to consider the saturation effect in

synchronous generators, in Sect. 6.2, we can obtain the relationship between

the saturation factor SE and output voltage of the DC exciter. To match the saturated

load characteristic of the exciter by an approximate function, we can derive the

following equation, as we have done (6.69)

SE ¼ aEv
nE�1
f =bE: ð6:97Þ

1. The case without separately excited winding is equivalent to Rsf ¼ 1, vsf ¼ 0.

Hence from (6.93) and (6.96) we have TE ¼ Tef.
2. The case with only a separately excited winding is equivalent to Rc¼1, icf ¼ 0.

Hence from (6.93) and (6.96) we have TE ¼ Tsf and KE ¼ 1.

6.3.1.2 Mathematical Model of AC Exciter

An AC exciter uses a synchronous machine (alternator), usually rotating on the

shaft of the generator. AC output from the armature winding of the exciter is

rectified through a three-phase noncontrollable, or controllable, bridge rectifier to

supply current to the field winding of the generator. There are two types of

rectifiers, stationary rectifiers and rotating rectifiers, and two methods of excitation:

self-excitation and separate excitation. Hence there are different combinations of

types of rectifiers and means of excitation. In the following, we shall first discuss

the mathematical model of the exciter and then that of the rectifiers.

The majority of AC exciters use separate excitation. In this case, we can use the

mathematical model of a synchronous generator, established in Sect. 6.2, to repre-

sent the AC exciter. However, the load of an AC exciter is the field winding of the

generator and its operating conditions are much simpler than the generator’s. Hence

to reduce the effort in analysis and calculation, we need not describe an AC exciter

in such detail as we have done for a generator. There are several methods to

simplify the mathematical model of a synchronous generator to derive a mathemat-

ical model of an AC exciter. Here we shall introduce one simple and commonly

used method as follows.

∑ ∑

Kcf

vsf vf

icf

sTE

1+

+
+

KE + SE

Fig. 6.7 Block diagram of DC

exciter

6.3 Mathematical Model of Generator Excitation Systems 369



Because the load of the exciter is the field winding of the generator, the armature

current of the exciter is almost purely inductive. Hence the q component of

armature current of exciter is approximately zero. In the mathematical model of a

synchronous generator without damping windings considered, ignoring (6.55)

and (6.58), we can obtain the voltage equation of the armature winding of the

exciter to be

vd ¼ 0

vq ¼ ’d ¼ e0q � X0
did

)
: ð6:98Þ

In the above equation, we can further ignore the influence of stator current of the

exciter on stator voltage. This leads to stator voltage being equal to the transient

voltage. In (6.56), due to the adoption of the base value system of ‘‘unit excitation/

unit stator voltage’’, Efq is equal to field voltage. Using the same assumption,

denoting the exciter’s field voltage by vR, stator voltage by vE, stator current by
iE, using subscript E to denote synchronous reactance, transient reactance, and

various time constants of the exciter and following a similar procedure as for

deriving (6.56), we can establish the mathematical model of the exciter without

considering saturation as follows

TErvE ¼ vR � eqE

eqE ¼ vE þ ðXdE � X0
dEÞiE

)
: ð6:99Þ

With saturation being considered, similarly to the procedure for deriving (6.71), we

can obtain

ð1þ SEÞvE ¼ eqE � ðXdE � X0
dEÞiE; ð6:100Þ

where we use the same method to gain the saturation factor of exciter SE as we have
done for a DC exciter, i.e., to fit the saturation curve of exciter by the approximate

function

SE ¼ aEv
nE�1
E =bE: ð6:101Þ

We should note that stator voltage vE and current iE only enter the field winding of

the generator after rectification. The relationship between vE and vf will be estab-

lished later in the mathematical model of rectifier. Here we shall derive the

connection between iE and if first.
When the exciter supplies the field winding of the generator through a three-

phase noncontrollable bridge rectifier, output current from the rectifier if is the field
current of the generator that is approximately proportional to the input current of the

rectifier, i.e., armature current of exciter iE. Hence replacing ðXdE � X0
dEÞiE in

(6.100) by KDif, we can describe this relationship as
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TErvE ¼ vR � eqE

eqE ¼ ð1þ SEÞvE þ KDif

)
: ð6:102Þ

From this, the mathematical model of a separately excited AC exciter, using a three-

phase noncontrollable bridge rectifier, can be expressed by the block diagram of

Fig. 6.8.

For self-excited exciter, replacing (1 þ SE) in (6.102) and Fig. 6.8 by (KE þ SE)
we can obtain its mathematical model [160], where KE is self-excitation factor and

KE < 1.

Because an AC exciter is connected to the field winding of the synchronous

generator through a rectifier, base values of its armature and field voltage and

current must not only satisfy various rules used when the mathematical model of

synchronous generator is established in Sect. 6.2, but also be related to the mathe-

matical model of the rectifier. This will be discussed in Sect. 6.3.1.3.

6.3.1.3 Mathematical Model of Power Rectifier

An AC exciter usually supplies excitation to the generator through a three-phase

noncontrollable or controllable rectifying circuit. In the following, we shall intro-

duce a mathematical model of a noncontrollable rectifier. The input to the rectifier

is the stator voltage of the AC exciter vE, the output voltage and current are the field
voltage and current of the synchronous generator, respectively.

It is very complicated to accurately model the transient response of a rectifier.

Engineering practice also suggests that a transient rectifier model is unnecessary.

Consequently, a so-called quasisteady-state mathematical model is usually adopted.

That is, although during a transient vE, vf, and if satisfy the transient equations of the
rectifier, for their instantaneous values in numerical solutions we approximate them

as satisfying a steady-state equation. In this way, the transient process is approxi-

mated as a series of continuous steady-state processes.

A rectifier has three operational modes according to the value of its commutating

angle, g, being less than, equal to, or greater than 60�. When g is less than 60� and
harmonics are ignored, the steady-state equation of the rectifier using actual values

of variables is

Vf ¼ 3
ffiffiffi
2

p

p
VE � 3Xg

p
If ; ð6:103Þ

∑ sTE

1

1 + SE

∑
KD

+

+

+
vR vE

eqE

if

Fig. 6.8 Block diagram of transfer

function of separately excited AC

exciter
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where VE is the effective value of stator line voltage of the AC exciter, Xg is the

commutating reactance of the rectifier (that is often taken to be the subtransient

reactance or negative-sequence reactance of the exciter). Comparing with (4.37),

we can see that the equation above in fact treats the three-phase uncontrollable

bridge rectifier as for the case of a six-pulse rectifier in HVDC when its firing angle

a is zero. In the above equation, 3Xg If/p reflects commutating voltage drop.

To connect with the mathematical model of a generator, we need to convert

(6.103) into per unit form. Hence, we divide both sides of the equation by the base

value of field voltage of the generator VfB

Vf � ¼ FEXVE� ; ð6:104Þ

where

VE� ¼ 3
ffiffiffi
2

p
VE

pVfB
; ð6:105Þ

FEX ¼ 1� IN=
ffiffiffi
3

p

IN ¼ KCIf �=VE�

KC ¼ Xg=ð
ffiffiffi
3

p
pZfBÞ

ð6:106Þ

and KC is a constant. We should point out that commutating angle g is not included
in (6.106). In fact, when g is less that 60�, IN is in the range of (0–0.433). It can be

proved that when g is equal to or greater that 60�, (5.104) can still be used as the

mathematical model of the rectifier. However, in this case, the relationship between

FEX and IN has changed. When IN is between zero and 1, FEX is given by the

following equation.

FEX ¼
1 � IN=

ffiffiffi
3

p
0 � IN < 0:443ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:75� I2N
p

0:443 � IN � 0:75ffiffiffi
3

p ð1� INÞ 0:75 < IN < 1

8>><
>>: : ð6:107Þ

To use the above model, IN must be nonnegative and less that 1. If for some reason,

the value of IN is greater than 1, FEX should be set to zero. From (6.104), (6.106),

and (6.107), we can obtain the block diagram of the transfer function of the rectifier,

and the relationship of FEX and IN as shown in Fig. 6.9, where the subscript of per

unit has been omitted as before.

In the following, we shall discuss the base value of various variables in the

mathematical model of an AC exciter. Because we have established the mathemat-

ical model of an exciter directly by using that of a synchronous generator, choice of

per unit system of the exciter should be kept consistent with that of the synchronous

generator. From (6.105) and noting that VE is the effective value of stator line

voltage of the exciter, obviously the base value of stator line voltage of the exciter,

VLEB, should be
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VLEB ¼ p

3
ffiffiffi
2

p VfB:

From the relationship between line and phase voltage as well as effective and

maximum value, we can obtain the base value of the maximum value of stator

phase voltage of the exciter to be

VEB ¼
ffiffiffi
2

pffiffiffi
3

p VLEB ¼ p

3
ffiffiffi
3

p VfB: ð6:108aÞ

From (6.20), we can give the base value of the maximum value of stator phase

current of the AC exciter to be

IEB ¼ 2
ffiffiffi
3

p
SB

pVfB
: ð6:108bÞ

The base value of field voltage of the exciter VRB should be decided through

experiment according to the principle of ‘‘unit excitation voltage/unit stator volt-

age.’’ Base value of the field current of exciter is obtained by (6.23) to be

IRB ¼ SB=VRB: ð6:109Þ

In (6.102), KDif represents the load effect of the exciter. From previous derivation of

(6.102) we have known that if is approximately proportional to iE, that is, if ¼ kiE
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π

Fig. 6.9 Mathematical model of power rectifier (a) FEX–IN relationship curve (b) block diagram

of transfer function (c) simplified representation of block diagram of transfer function
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where k is a coefficient of proportionality. From the second term on the right-hand

side of (6.100), we have

ðXdE� � X0
dE� ÞiE� ¼ XdE � X0

dE

ZEB
� iE
IEB

¼ XdE � X0
dE

ZEB
� if
kIEB

¼ XdE � X0
dE

kZEB
� IfB
IEB

if � :

Hence, KD in (6.102) is given by the following equation as

KD ¼ �XdE � X0
dE

kVEB

IfB: ð6:110Þ

When an AC exciter supplies generator excitation by use of a controllable rectifier,

the AC exciter itself often is excited in the form of self-excitation. The voltage

regulator of the exciter controls the firing angle of its rectifiers to maintain an

approximately constant output voltage. In this case, the mathematical model of the

exciter is simplified. In addition, in this case, terminal voltage of the AC exciter is

set at a high level. This results in relatively small commutating voltage drop for the

controllable commutating bridge. At normal operating conditions, commutating

voltage drop can be ignored. Only under automatic field-forcing or reduction, is

commutating voltage drop represented as KCIf in the upper limit of output voltage.

Hence when an AC exciter provides generator excitation through controllable

rectifiers, the mathematical model of the AC exciter is a unit with bidirectional

limiters, as shown in Fig. 6.10. We shall discuss input–output relationships of

various limiters later.

6.3.1.4 Mathematical Model of Stationary Exciter

A stationary exciter takes terminal voltage or terminal current plus voltage as the

power source of excitation for the generator. The former is called a self-excited

potential-source system; the latter is a self-excited compound-source system. In a

self-excited potential-source system, generator terminal voltage is reduced via an

exciter transformer to supply generator excitation through a controllable rectifier.

Firing angle of the controllable rectifier is set by a regulator. The block diagram of

the transfer function of the self-excited potential-source system is shown in Fig.

6.11. We can see that it is very similar to that of the AC exciter of Fig. 6.10. This is

because the only physical difference between the two is that of the excitation power

VRmin

VRmax−KCIf
VR Vf

Fig. 6.10 Mathematical model of

AC exciter when generator

excitation is provided through
controllable rectifier
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source. This difference is demonstrated in the output limiters of the two excitation

systems. In self-excited potential-source system, the excitation power source is the

generator itself. Hence upper and lower limit of output voltage is related to the

terminal voltage of generator Vt to be VtVRmax � KCIf and VtVRmin, respectively.

VRmax and VRmin, respectively, are the maximum and minimum value of no-load

voltage of the rectifier when Vt ¼ 1.

In a self-excited compound-source system, the power source of the controllable

rectifier is supplied by an exciter voltage transformer and current transformer.

Measured voltage and current can be accumulated before or after rectification in

the form of parallel or series addition. This results in many different types and here

we shall not introduce their mathematical models. Details can be found in [160].

6.3.2 Voltage Measurement and Load Compensation Unit

The function of an AVR is to maintain generator terminal voltage at an ideal level.

The voltage measurement unit takes generator terminal voltage _Vt to convert it into

a DC signal through stages of voltage reduction, rectification and filtering, etc. The

voltage measurement and conversion unit can be described by a first-order simple

lag, as shown by the block diagram transfer function of Fig. 6.12. The function of

load compensation is to compensate the load current of generator _It so as to

maintain the required constant voltage at a controlled voltage point in steady-

state operation when the load changes. RC þ jXC represents the impedance between

the controlled voltage point and generator terminal. When RC and XC are positive,

the controlled voltage point is inside the generator; otherwise, outside the generator.

In addition, automatic distribution of reactive load among electrically close gen-

erators is related to the voltage droop of the generator; while the voltage droop of

the generator is realized by adjusting parameter RC and XC. For simplicity, often RC

is ignored and set to zero. When XC is greater than zero, we have positive droop;

that is, the larger the load current, the higher the terminal voltage. On the other

hand, when XC is less than zero we have negative droop. Terminal voltage

decreases with the increase of load current. In the case without compensation,

Vf

VtVRmax−KCIf

VtVRmin

VR
Fig. 6.11 Mathematical model of
stationary exciter

1+sTR

1 +
−

Vref

VMV·t (Rc + jXc)I
•

tcV = V·t +
I·t

Vc Σ

Fig. 6.12 Voltage measurement and load compensation
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parameters RC, and XC are zero. Voltage measurement and load compensation units

may have different time constants. For simplicity, usually we just use a single time

constant TR for their description. TR is called the time constant of the measurement

unit and usually is less than 60 ms. For many systems, it is very close to zero. Hence

in computation, we often take it to be zero. Its output voltage VM is compared

against reference voltage Vref. After amplification, the error signal is used as the

control signal of the excitation system of the generator. Although the reference

voltage Vref is set artificially, it reflects the ideal value for the controlled voltage

point of the generator and must satisfy the initial steady-state operating conditions

of the whole power system.

6.3.3 Limiters

In the mathematical model of an excitation system, due to functional limitations,

physical limits, or the existence of saturation, the output of certain units is subject to

limitations, which we represent via limiters. There are two types of limiters, windup

limiters and nonwindup limiters. Limiters often appear in integral units, the first-

order simple lag and lead-lag units. Figure 6.13a, b show block diagrams of those

two types of limiters. In the following, we shall discuss the example of an integral

unit and its input–output relationship. We leave those of windup and nonwindup

first-order simple lag and lead-lag units for readers to establish.

Equation of an integral unit is dv/dt ¼ u. The limiting function of the two types

of limiters is different. For a windup limiter, if variable v is greater than lower limit

B and lower than upper limit A, output variable y is v; If v is greater or equal to upper
limit A, output variable y is constrained to be upper limit A; If v is less or equal to
lower limit B, output variable y is constrained to be lower limit B. We should note

that variable v is not constrained and only the next output variable y is. If v is

beyond limitation, output variable y is constrained to be the value of the upper or

lower limit. For a nonwindup limiter, output variable y is directly constrained

between upper and lower limit. If y is within the limits, input–output relationship is

dv/dt¼ u. If y is equal to upper limit and tends to increase with time, i.e., dy/dt> 0,

input–output relationship is dy/dt ¼ 0 and y takes the value of upper limit A. If y
is equal to lower limit and tends to decrease, i.e., dy/dt < 0, the relationship is

dy/dt ¼ 0 and y takes value of lower limit B. When the output variable y takes the
value of the upper or lower limit, once input variable u changes sign, y enters within

s
1u v

A

B

y y

B

A
u

a b

s
1

Fig. 6.13 Limiters (a) integral unit
with windup limiter (b) integral

unit with nonwindup limiter
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the limits. However, for a windup limiter, only when variable v returns within the

limits, so does the output variable.

6.3.4 Mathematical Model of Power System Stabilizer

Power system stabilizer (PSS) is a widely used auxiliary regulator in excitation

control. Its function is to suppress power system low-frequency oscillations or

increase system damping. Its basic principle is to provide the AVR with an auxiliary

control signal to make the generator produce an electrical torque in phase with the

deviation of rotor speed. Details about the PSS principle, parameter setting, and

installation locations can be found in [153]. There are several forms of PSS.

Here we give a commonly used block diagram of a PSS transfer function as

shown in Fig. 6.14.

In Fig. 6.14, block� is the gain of PSS; � is the measurement unit with a time

constant T6 (usually very small and can be ignored); � is a wash-out unit or low-

frequency filter to block steady-state input signal to disable PSS at steady-state

operation. T5 usually is as large as about 5 s.�; and �; are two lead-lag networks.

PSS should consist of at least one lead-lag network. �; is a limiter. Input signal to

PSS, VIS, usually is generator speed, terminal voltage, power, system frequency, or

combination of some of them. Output signal Vs is superimposed on the AVR input

signal. For PSS to play an effective role, its installing location must be selected and

parameters be set properly.

6.3.5 Mathematical Model of Excitation Systems

The function of an AVR is to treat and amplify the input control signal to generate a

suitable excitation control signal. The AVR usually consists of power amplifier,

excitation system stabilizer, and limiters. In the following, we shall introduce

mathematical models of different excitation systems. In each block diagram

shown below, basic input signal VC is the output from voltage measurement and

load compensation unit of Fig. 6.12 and Vs is an auxiliary regulation signal of the

AVR, such as the output signal from a PSS.

ks 1 + sT6

1 5sT 1 + sT1
1 + sT3

1 + sT2
1 + sT4

VS

VS min

VS max

VIS V1 V2 V3 V4

1
2 3 4 5

6
1 + sT5

Fig. 6.14 Block diagram of transfer function of power system stabilizer
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6.3.5.1 Excitation System with DC Exciter

With different types of AVR being used, there are three types of DC excitation

systems: controllable phase compound regulator, compound excitation plus load

compensation, and thyristor-controlled regulator. The former two DC excitation

systems are usually used for small generation units (100 MW or below) and have

been gradually passing out of use. The block diagram of an excitation system

adopting controllable phase compound regulator is shown in Fig. 6.15, where _Vt

and _It are the terminal voltage and current of generator, respectively. Block �;

represents phase compound excitation, blocks �; and �; are load compensation

and measurement unit, �; is composite amplifying unit, �; is limiter with input

signal being compound excitation current of exciter, � and � are units of the DC

exciter. To improve performance of the excitation system, a soft negative feedback

unit� is often used to provide a series adjustment to field voltage of the generator.

Control parameters that can be set are KV, KI, RC, XC, KE, KA, TA, KF, and TF. For
the excitation system adopting compound excitation plus load compensation, the

block diagram can still be used except that block �; needs to be replaced by a

simple amplifier of It.
Figure 6.16 shows the block diagram of a DC excitation system using thyristor-

controlled regulator. TB and TC are time constants of the excitation regulator itself.

They are usually very small and considered to be zero. Time constant and gain of

composite amplifying unit is TA and KA. Due to the saturation of the amplifier and

limitation of power output, the block for the amplifier has a nonwindup limiter. VF
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Fig. 6.15 Block diagram of transfer function of AVR of DC exciter using controllable phase
compound excitation
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Fig. 6.16 Block diagram of transfer function of a DC excitation system
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is the output of the soft negative feedback unit of excitation voltage to improve the

dynamic performance of whole excitation system. VR is the excitation voltage of the

DC exciter. Parameters to be set for the normal operation of excitation control are

RC, XC, KE, KA, TA, KF, and TF.

6.3.5.2 Excitation System with AC Exciter

Excitation system with an AC exciter is widely used for 100 MW or above

generation units. Most excitation systems with AC exciter adopt uncontrollable

power rectifier. They can be classified into two groups: stationary rectifier excita-

tion systems and rotating rectifier excitation systems. Here we introduce one type of

AC excitation system as shown by the block diagram of Fig. 6.17. Introduction to

other types of AC excitation systems can be found in [160]. In Fig. 6.17, parameters

TB, TC, KA, TA, KF, and TF describe three blocks belonging to the excitation

regulator similar to that in Fig. 6.16. The input signal to the series regulation unit

is the no-load voltage eqE of the AC exciter (6.102). Another kind of arrangement is

to use the field voltage of the generator Vf as the feedback input signal. Field current

If is also an input signal of the excitation regulator and constant KD represents the

equivalent load effect of the AC exciter. In Fig. 6.17, the exciter is separately

excited. When self-excitation is used, we need to replace the block 1 þ SE by kE þ
SE, where kE and SE are the self-excitation coefficient and saturation factor of the

AC exciter, respectively. Because the input to rectifier requires VE not to be

negative, in the block of the exciter the integral unit represented by TE has a

single-directional windup limiter to prevent VE from becoming negative. Para-

meters to be set for the normal operation of excitation control are RC, XC, KE, KA,

TA, KF, and TF.
The block diagram of an AC excitation system adopting a controllable rectifier

to supply generator excitation is shown in Fig. 6.18. The rectifier is controlled by an

independent voltage regulator and hence its output is kept approximately constant.

Therefore, the mathematical model of an AC exciter and controllable rectifier is

shown in Fig. 6.10. In Fig. 6.18, this has been combined with an equivalent
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Fig. 6.17 Block diagram of transfer function of excitation system with AC exciter adopting

uncontrolled power rectifier
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composite amplifying unit, where time constant TA and gain KA depict the dynamic

performance of the controllable rectifier and its regulator. To improve system

dynamic performance, this type of excitation system usually adopts a series regula-

tor instead of a shunt regulator. The time constants of the series regulator are TB and
TC. We should point out that the load of the controllable rectifier is limited to ensure

IN between 0 and 0.433 (6.107). Load effect of the excitation system is reflected in

the upper limit of the bidirectional limiter. Parameters to be set for the normal

operation of excitation control are RC, XC, KA, TA, TC, and TB. Here, because an

independent AC exciter is used, the values of upper and lower limits of the bi-

directional nonwindup limiter are not connected to the terminal voltage of the

generator.

6.3.5.3 Stationary Excitation System

Figure 6.19 shows the block diagram of a self-excited potential-source system and

controllable rectifier described by a bi-directional limiter. As has been introduced

before, the power into stationary excitation is from the generator terminal. Hence

the value of upper and lower limit is related to the terminal voltage of the generator.

This type pf excitation system can provide very high automatic field forcing
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+
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Fig. 6.18 Block diagram of transfer function of excitation system with AC exciter adopting
controllable power rectifier
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voltages. To avoid overloading of generator field and rectifier, the field current of

generator If is constrained by KLR and ILR in the diagram. Proportional unit KLR has

a windup lower limit. To avoid this unit we can simply set KLR to zero. KA and TA
are the system composite equivalent gain and time constant, respectively. Both

series regulation and shunt regulation are displayed in the diagram. Usually only

one of them is used. Hence when series regulation is used, we can set KF to zero. Or

when shunt regulation is used, we just set time constants TB and TC to zero. Time

constants TB1 and TC1 are for the increase of system dynamic gain. Usually we have

TC1 > TB1. To simplify the model, this unit can be ignored by setting both of these

time constant to zero. Here we should point out that the block diagram of Fig. 6.19

can represent the excitation system adopting full-wave controllable rectifying

bridge. When a half-wave controllable rectifying bridge is used, we can simply

set the lower limit of the bidirectional limiter at the system output to zero. Para-

meters to be set for the normal operation of excitation control are RC, XC, KA, TA,
KF, TF, TC, TB, KLR, and ILR. In [160], we can find more about the mathematical

model and block diagrams of other types of stationary excitation system.

6.4 Mathematical Model of Prime Mover

and Governing System

Variable Pm in the rotor movement equation of the generator (6.78) is the mechani-

cal power output from the prime mover. Pm is related to the operating condition of

the prime mover and controlled by a governing system. Excluding wind, sun, and

wave power generation, there are two types of prime mover used for large-scale

power generation, hydraulic turbines, and steam turbines. The hydraulic turbine (or

steam turbine) converts hydraulic energy (or steam thermal energy) into rotating

kinetic energy of the prime mover which is then converted into electric power by

the generator. Obviously, the amount of power being converted is associated with

the opening position of the wicket gate of a hydraulic turbine and steam valve of a

steam turbine. Because the generator rotor is driven by the prime mover and rotates

on the same shaft with the prime mover, if we assume that the generator output

power is fixed, when the opening position increases, the generator will accelerate;

and conversely it decelerates. Therefore, regulation of the gate or valve position

will change the output power from the prime mover to control generator speed.

Hence it is easy to see that the main control signal to the opening position should be

generator speed. From the rotor movement equation (6.78) we can see that when a

power system is subject to a disturbance at steady-state operation, electric power

output from the generator changes. This change destroys the balance between

electric power output from the generator and mechanical power input to the

generator from the prime mover, leading to variation of the generator speed.

Change of generator speed results in a response of the governing system to adjust

the opening position of the wicket gate (of a hydraulic turbine) or steam valve (of a
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steam turbine). The disturbance causes the system to engage in a complex transient

process of mechanical, magnetic, and electrical interactions. Therefore, when the

function of the governing system is considered, resulting in the variable Pm, we

need to establish a mathematical model of the prime mover and the governing

system in order to quantitatively analyze electromechanical transients in power

systems.

6.4.1 Mathematical Model of Hydroturbine
and Governing System

6.4.1.1 Mathematical Model of Hydraulic Turbine

Dynamics of hydraulic turbines are closely related to those of water flow through a

penstock, whereas the characteristics of water flow through a penstock are affected

by many factors, such as water inertia, water compressibility, and pipe wall

elasticity in the penstock. For example, due to water inertia inside a penstock,

change of water flow inside a hydraulic turbine lags the opening position change of

the wicket gate. When the opening position of the wicket gate increases suddenly,

water volume at the wicket gate increases. However, due to the water inertia, speed

of water flow at other points inside the pipe cannot increase immediately. This

results in input water pressure of the hydraulic turbine decreasing instead of

increasing for a short of period of time after the change, leading to a decrease of

input power of the hydraulic turbine instead of an increase. On the other hand, when

the opening position of the wicket gate decreases suddenly, input water pressure

and input power will increase temporarily and then decrease. This phenomenon is

usually called the water hammer effect. Furthermore, for the movement of a

compressible fluid inside an elastic pipe, the change of water flow volume and

pressure at each point inside the pipe is a wave movement, quite similar to the wave

process of transmission lines with evenly distributed parameters. A detailed deri-

vation of the mathematical model of input water pressure on the turbine with wave

effects considered requires extensive application of fluid mechanics. This is only

necessary for the case with a long pressure pipe. In the following, we shall establish

a mathematical model of a hydraulic turbine, useful for the analysis of power

system stability, with the wave effect of water flow ignored. That is, to assume

that the pressure pipe is inelastic, and water is not compressible. Additionally we

shall only consider an ideal hydraulic turbine, i.e., (1) neglecting the mechanical

power loss caused by the resistance against water flow from the penstock wall; (2)

power output of the hydraulic turbine being proportional to the product of net water

head and water flow volume; and (3) speed of water flow being proportional to the

product of the opening position of the wicket gate and square root of the stationary

water head. Hence we can obtain the hydraulic equations as follows:

U ¼ KUm
ffiffiffiffi
H

p
; ð6:111Þ
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Pm ¼ KPHU; ð6:112Þ

dU

dt
¼ � g

L
ðH � H0Þ; ð6:113Þ

where U is the water velocity; KU the proportional constant; H the net water head

of hydraulic turbine; m the opening position of wicket gate; Pm the mechanical

power output of hydraulic turbine; KP the proportional constant; g the gravity

acceleration constant; L the length of penstock; and H0 is the steady-state value

of H.
Taking the initial value of various variables as their base value, the above

hydraulic equations can be converted into the following per unit form (subscript *

is omitted as before)

U ¼ m
ffiffiffiffi
H

p
; ð6:114Þ

Pm ¼ HU; ð6:115Þ

dU

dt
¼ � 1

Tws
ðH � 1Þ; ð6:116Þ

where

Tw ¼ LU0=ðgH0Þ ð6:117Þ

Tw is the time constant of equivalent water hammer effect and physically it is the

time required for water head H0 to accelerate water flow in penstock from a

stationary state to the flowing speed U0. We ought to point out that this time

constant is affected by U0, i.e., related to the load condition of the hydraulic turbine.

The heavier the load is, the higher the time constant. Usually under full load

condition, Tw is set by the manufacturer between 0.5 and 4 s.

Assuming that at initial steady state, the operating point of the hydraulic turbine

shifts slightly due to small disturbances from the load, the above hydraulic equa-

tions can be linearized at the initial steady-state operating point and after Laplace

transformation they become

DU ¼
ffiffiffiffiffiffi
H0

p
Dmþ 1

2

m0ffiffiffiffiffiffi
H0

p DH; ð6:118Þ

DP ¼ H0DU þ U0DH; ð6:119Þ

TwsDU ¼ �DH: ð6:120Þ
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Eliminating variables DH and DU in the above three equations we can obtain (per

unit value of H0 is 1)

DPm ¼ 1� Tws

1þ 0:5Tws
Dm: ð6:121Þ

The model above is called the classical model of a hydraulic turbine. Its transfer

function block diagram is shown in Fig. 6.20.

In the analysis of power system stability, the above classical model of a

hydraulic turbine is used. From the assumptions used to derive the model we

know that the classical model is applicable to cases with relatively small variations

of load. When load changes over a wide range, the model may cause a large

computational error [161]. In the following, we shall establish a nonlinear model

of a hydraulic turbine. Basic assumptions will be the same as those for deriving the

classical model except that mechanical power loss and dead zone are taken into

account. Opening position of wicket gate m in (6.111) is that of an ideal wicket gate

with the dead zone of the hydraulic turbine caused by factors such as friction being

ignored, i.e., it is assumed that when m changes from 0 to 1, operation of the

hydraulic turbine goes from no load to full load. With mechanical power loss

being considered, position change of the wicket gate from closing to opening,

initially has to overcome stationary friction forces in the hydraulic turbine without

causing the turbine to start rotation immediately. Hence we need to replace the ideal

opening position m by the actual one g. From Fig. 6.21, we can see their relationship

to be

m ¼ Atg; ð6:122Þ

where

At ¼ 1

gFL � gNL
: ð6:123Þ

1 + 0.5TwS
1−TwSΔm ΔPmFig. 6.20 Transfer function of

classical model of hydraulic

turbine
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Fig. 6.21 Relationships between

actual and ideal opening position
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When the actual opening position is gNL, the hydraulic turbine is still at no-load.

When it is gFL, the hydraulic turbine operates at full load. With power loss being

considered, hydraulic equations (6.112) become

Pm ¼ KPHU � PL; ð6:124Þ

PL ¼ KPUNLH; ð6:125Þ

where PL is no-load loss of the hydraulic turbine; UNL critical water speed when the

hydraulic turbine changes from stationary to rotating. Obviously that is when the

actual opening position is gNL. Taking the rated parameters of the hydraulic turbine

as the corresponding base value, we can convert (6.111), (6.113), (6.124), and

(6.125) into the following per unit form

U ¼ m
ffiffiffiffi
H

p
; ð6:126Þ

Pm ¼ ðU � UNLÞH; ð6:127Þ

dU

dt
¼ � 1

TW
ðH � H0Þ; ð6:128Þ

where TW ¼ LUB

gHB

: ð6:129Þ

TW is the time constant of the equivalent water hammer effect at rated load. From

(6.117) we can see that the relationship of the time constant between any load

condition and at rated load is

Tw ¼ U0HB

UBH0

TW: ð6:130Þ

In (6.127), base value of power is the rated power of the hydraulic turbine. To

connect it to the mathematical model of the generator, we can convert the base

value of power to the rated power of generator SB

Pm ¼ PrðU � UNLÞH; ð6:131Þ

Pr ¼ PB=SB: ð6:132Þ

Rewriting (6.126)

H ¼ U

m

� �2

: ð6:133Þ
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From (6.122) and (6.133) we can eliminate H in (6.128) and (6.131) to obtain

dU

dt
¼ � 1

TW

U

Atg

� �2

�H0

 !
; ð6:134Þ

Pm ¼ PrðU � UNLÞ U

Atg

� �2

: ð6:135Þ

The two equations above are the nonlinear model of a hydraulic turbine. From the

physical meaning of UNL we know that when the actual opening position of wicket

gate g is gNL, acceleration of water flow is zero. From (6.134) we have

dU

dt

				
U¼UNL

¼ � 1

TW

UNL

AtgNL

� �2

�H0

 !
¼ 0;

UNL ¼ AtgNL
ffiffiffiffiffiffi
H0

p : ð6:136Þ

Normally H0 is 1 and hence UNL is a constant. From (6.122), (6.133), (6.128), and

(6.131) we can show the nonlinear model of the hydraulic turbine in Fig. 6.22.

6.4.1.2 Mathematical Model of Governing System of Hydraulic Turbine

Modern generation units usually use an electrical-hydraulic governing system.

However, the principle of mechanical hydraulic governing system is easier to

illustrate. Hence we shall take it as representative to establish the mathematical

model of a governing system of a hydraulic turbine. Figure 6.23 shows the config-

uration of a governing system using a centrifugal pendulum (fly-ball governor). In

the following we shall present the equation of motion of each component of the

governing system, where variables are in per unit and their positive direction is

indicated in Fig. 6.23. Compressibility of hydraulic oil will be neglected:

1. Equation of the centrifugal pendulum. The function of the centrifugal pendulum
(fly balls) is to measure generator speed. Relative ring position of the fly balls is

denoted by �. When generator speed increases, the fly balls move away from

each other due to the increase of centrifugal force and consequently � decreases.
On the other hand, when generator speed decreases, the fly balls come closer

because of the decrease of centrifugal force and hence � increases. Ignoring the

At sTw

1 TmPr
μ Pmγ
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+

+
ππ Σ Σ

Fig. 6.22 Block diagram of transfer function of hydraulic turbine
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mass of the fly balls and damping of motion, � is approximately proportional to

the deviation of generator speed with a proportional coefficient kd, that is

� ¼ kdðo0 � oÞ: ð6:137Þ

2. Equation of pilot valve. If the servomotor does not function (point D in Fig. 6.23

is fixed) and the inertia of the pilot valve is ignored, the relationship between

position of pilot valve, s, and that of point B, z, is

s ¼ � � B: ð6:138Þ

3. Equation of relay valve. Position of relay valve, m, is the integral of the position
of the pilot valve, s, with respect to time, i.e., position speed of relay valve is

proportional to position of pilot valve, s. The proportional constant is called the

time constant of the relay. Hence

Tsrm ¼ s: ð6:139Þ

4. Feedback equation. From Fig. 6.23, we can see that when � increases, s
increases accordingly and m also increases. Increase of � and m results in an

increasing z, leading s to decrease and m to decrease accordingly. Hence z is a
position variable exhibiting feedback from m. There are two parts in z, z1, and z2.
z1 is a soft feedback due to the existence of a spring and dashpot; while z2 is

proportional to m and hence it is a hard feedback. We have

B ¼ B1 þ B2 ¼
kbTis

1þ Tis
mþ kam; ð6:140Þ

where ka¼ a/d, kb¼ b/d, d¼ 1/kd. kb and Ti are the gain and time constant of the

soft feedback, respectively; ks the gain of hard feedback; d the sensitivity of
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Fig. 6.23 Illustration of governing system of a centrifugal pendulum
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measuring component; b coefficient of soft feedback; and a is the droop

coefficient. Due to the inertia, water flow cannot follow the change of opening

position of the wicket gate quickly. Hence when speed deviation of the generator

changes fast, the governor needs a strong negative feedback from the

opening position m to slow down the change of opening position of wicket

gate such that water flow and output power from the hydroturbine can follow

that of m. For slow variations of generator speed in steady-state operation, the

governor needs to respond promptly. Hence the gain of the negative

feedback should take a small value. From (6.140) we can see that dynamic

gain of the whole negative feedback unit is high. When t¼ 0, it is the summation

of kb and ka. The time constant of the soft negative feedback is large, usually

between 0.5 and 5 s. At steady state, the steady-state gain of the soft negative

feedback is zero and the gain of the whole negative feedback is only that of

the hard feedback ka. This provides the generator with a certain droop coefficient
at steady-state operation, such that a generator speed decrease will increase

generator output. The droop characteristic ensures stable load sharing among

multiple generation units in parallel steady-state operation, to realize the func-

tion of primary frequency control. ka and kb are often about 0.04 and 0.4,

respectively.

Opening position of both pilot valve and wicket gate have certain limitations

imposed. In addition, due to the existence of mechanical friction and gap, there

exists a certain dead zone of the governing function. Hence in the mathematical

model, there are associated limiters and a nonlinear unit representing the dead zone.

From (6.137) to (6.140) we can obtain the transfer function block diagram of the

governing system of a hydraulic turbine as shown in Fig. 6.24.

The function of an electrical-hydraulic governing system of a hydraulic turbine

is quite similar to that of the mechanical hydraulic system introduced above, but

more simple and flexible as far as the regulation of basic parameters is concerned. A

mathematical model of an electrical-hydraulic governing system of the hydraulic

turbine adopting PID control can be found in [162, 163].
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6.4.2 Mathematical Model of Steam Turbine
and Governing System

6.4.2.1 Mathematical Model of Steam Turbine

Dynamics of steam turbines are mainly related to the volume effect of steam. In the

following, we shall first derive the time constant for the general steam volume

effect. As shown in Fig. 6.25, volume of the vessel is V (m3) and input and output

steam mass flow rates are Qin and Qout (kg s�1), respectively.

We have

dW

dt
¼ V

dr
dt

¼ Qin � Qout; ð6:141Þ

where W is the weight of steam in the vessel (kg) and r is the density of steam

(kg m�3).

Assuming that the output steam flow is proportional to steam pressure in the

vessel, we have

Qout ¼ QN

PN
P; ð6:142Þ

where P is steam pressure in the vessel (kPa), PN the rated steam pressure in the

vessel (kPa), and QN is the rated output of steam out of the vessel (kg s�1).

With the steam temperature in the vessel being constant, we have

dr
dt

¼ dP

dt

@r
@P

; ð6:143Þ

where the rate of change of steam density with pressure, at a given temperature,

∂r/∂P, can be obtained from steam parameter tables and is a constant. From

(6.141) to (6.143) and after Laplace transformation, we have

Qout ¼ 1

1þ sTV
Qin; ð6:144Þ

where TV ¼ PN

QN
V
@r
@P

: ð6:145Þ

V

Qin
Qout

Fig. 6.25 Steam vessel
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TV is called the time constant of steam volume effect. From (6.145) we can see

that the bigger the volume of the vessel, the higher is the time constant of volume

effect. From (6.144) we can see that when the input steam flow increases (or

decreases) suddenly, the output steam flow will not increases (or decreases) imme-

diately because the pressure inside the vessel cannot increase (or decrease) instantly.

Change of output steam flow lags that of input steam flow. This is the steam volume

effect phenomena.

There are many types of configuration of steam turbines. Modern steam turbine

units consist of multiple-stage steam turbines to drive a single generator. According

to the difference in rated operating steam pressure, multiple-stage turbines can be

classified as high pressure (HP), intermediate pressure (IP), and low pressure (LP)

turbines.

Medium and small steam turbine units may have only a one-stage turbine. To

increase thermal efficiency, modern steam turbine units usually have an intermedi-

ate reheater (RH). Figure 6.26 shows the configuration of a steam turbine with

reheater.

From Fig. 6.26 we can see that the high-pressure high-temperature steam from

the boiler enters the HP stage through a main valve and steam chest. We should note

the existence of a certain volume of steam in the pipe and chest from the main valve

to the nozzle of the HP stage. Exhaust steam from the HP stage is sent into the

reheater section to raise temperature before entering the IP stage. Similarly we

ought to note that there exists a certain volume of steam between the output point of

the HP stage and input point of IP stage. Exhaust steam from IP stage enters the LP

stage through crossover that also has a certain volume. Volume effects of the three

volumes mentioned above can be described by time constant TCH, TRH, and TCO,
respectively. Usually TCH is between 0.2 and 0.3 s, time constant of reheater TRH is

large, between 5 and 10 s, and TCO is about 0.5 s.

Output mechanical torque of the steam turbine is proportional to the steam flow

at the nozzle. In addition, we assume that input steam flow to the HP stage is

approximately proportional to the opening position of the main steam valve m. We

denote the proportionality coefficient of mechanical power of HP, IP, and LP stages

to be FHP, FIP, FLP. Usually FHP, FIP, FLP is 0.3, 0.3, 0.4 and their summation is one.

Steam
 valve

HP IP

Reheater crossover

LPLP

To condenser

shaft shaftshaft

From boiler
Q0

Q1

Q2 Q3

Fig. 6.26 Illustration of a multistage steam turbine
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From the analysis above and taking proper base values for per unit expressions, we

can obtain the mathematical model of the steam turbine in per unit to be

Q1 ¼ 1

1þ TCHs
Q0

Q2 ¼ 1

1þ TRHs
Q1

Q3 ¼ 1

1þ TCOs
Q2

9>>>>>>=
>>>>>>;
; ð6:146Þ

m ¼ Q0

TmH ¼ FHPQ1

TmI ¼ FIPQ2

TmL ¼ FLPQ3

Tm ¼ TmH þ TmI þ TmL

FHP þ FIP þ FLP ¼ 1

9>>>>>>>>>=
>>>>>>>>>;
; ð6:147Þ

where TmH, TmI, TmL is the output mechanical torque of HP, IP, and LP turbines,

respectively, flows Q0–Q3 are shown in Fig. 6.26. Block diagram of the transfer

function of the mathematical model above is shown in Fig. 6.27. Other types of

mathematical models of steam turbines can be found in [164, 165].

6.4.2.2 Mathematical Model of Governing System of Steam Turbine

Basic functions of the governing system of a steam turbine include normal primary

frequency control, secondary frequency control, over-speed control, over-speed

generation shedding and generation starting and stopping control in normal opera-

tion, as well as auxiliary steam pressure control. Normal primary frequency control

and secondary frequency control of the steam turbine is quite similar to those of a

hydroturbine. Primary frequency control provides a droop around 4–5% to ensure

stable load sharing among parallel generation units. Secondary frequency control is

achieved through adjusting the load reference. In modern steam turbine units,

usually there are more control valves in addition to the main valve shown in Fig.

6.26. For example, in a steam turbine unit equipped with a reheater there is a stop

1 + sTcH 1 + sTco1 + sTRH

1μ
Q0 Q1 Q2 Q3

1

TmH

+

1

Σ

mIT+ TmL
+

+ Tm

ω

PmΣ

FIPFHP FLP

π

Fig. 6.27 Block diagram of transfer function of a multi-stage steam turbine
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valve behind the RH stage. When over-speeding generation requires an emergency

reduction of output power from the steam turbine, it would not be enough to just

turn off the main valve, because the steam volume of the RH stage is very large.

Under this circumstance, usually the main valve and stop valve must be turned off

simultaneously. Primary frequency control and secondary frequency control func-

tion only by adjusting the main valve shown in Fig. 6.26. Usually in the study of

power system stability, only the control of the main valve is considered and that of

other valves is ignored. However, if emergency stop and generation shedding are

used as the method for stability control, the control function of other valves needs to

be taken into account. In this book, we shall only introduce the control model of the

main valve. The control model of other valves can be found in [164, 165].

Governing systems of steam turbines can be classified into three types, mechan-

ical hydraulic, electrohydraulic, and power-frequency electrohydraulic. The princi-

ple of mechanical hydraulic governing system is the same as that of a centrifugal

pendulum governor introduced previously, except that the governing system of a

steam turbine does not need the soft feedback unit and only uses hard feedback. The

coefficient of hard feedback is 1. Hence a mechanical hydraulic governing system

of a steam turbine can be shown by the transfer function block diagram of Fig. 6.28,

where the simple lag with time constant T1 represents the pilot valve in the

governor. The value of T1 usually is small and hence this unit can be ignored. In

an electrohydraulic governor, the low power output unit in the mechanical hydrau-

lic governor, i.e., the part from speed measurement to servomotor, is realized by an

electronic circuit. Compared to the mechanical hydraulic governor, an electrohy-

draulic governor is of better applicability and flexibility, with quicker responds

speed. In order to obtain better performance and linear response, the feedback

channel from steam flow (or steam pressure at the first stage in the HP turbine)

and valve position of the servomotor is introduced in the electrical-hydraulic

governor. The transfer function block diagram is shown in Fig. 6.29.

The transfer function block diagram of the power-frequency electrohydraulic

governor is shown in Fig. 6.30. By comparing frequency and power signals with the

given reference, an error signal is obtained and then amplified. A PID controller

conditions the amplified signal. Its output electrical signal is converted into a

hydraulic signal by an electrical-hydraulic converter to drive a relay and servomo-

tor to regulate the main valve of the steam turbine. In Fig. 6.30, kP, kI and kD are the

gains of proportional, integral, and differential units, respectively; TEL the time

constant of the electrical-hydraulic converter; and Ts is the time constant of the

relay.

ω −
+

0ω

Σ δk +
η

Σ
−

ζ

δεk
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1
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+

μ
maxρ

minρ
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Fig. 6.28 Block diagram of mechanical hydraulic governing system of steam turbine
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In the recent 20 years, digital governing systems for steam turbines have been

developed, in which the operating unit of the main valve of the steam turbine is

connected to a digital controller via a digital-analogue hybrid unit. The control

function is realized by software. A digital governor provides more flexible and

universal functions than an electrical-hydraulic governor. Response speed is en-

hanced greatly with the time constant being about 0.03 s. More details about digital

governors can be found in [167].

We ought to point out that (6.147) is equivalent to ignoring the transients of the

thermodynamic system. If thermodynamics is considered, obviously Q0 will be

determined by a mathematical model describing the thermodynamic system. As far

as the time scale for the computation of power system stability (usually for 5 s

following a disturbance) is concerned, the time constant of the thermodynamic

system is very large. Hence the thermodynamic system can be considered as

operating in steady state. However, for long-term power system stability analysis,

involving system dynamics for several minutes after a disturbance, the dynamics of

the thermodynamic systems, such as the boiler, will play an important role. Mathe-

matical modeling of the thermodynamic system is still a research subject at the

moment.

6.5 Mathematical Model of Load

Load is an important part in a power system. To study power system behavior in

various operational states, we need to establish a mathematical model of system load.

It is not difficult to establish a mathematical model of certain power-consuming
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Σ
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skD
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−
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Fig. 6.30 Transfer function of power-frequency electro hydraulic governor
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Fig. 6.29 Block diagram of transfer function of electrohydraulic governing system
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equipment in the power system. However, it is neither necessary nor possible

mathematically to describe each of hundreds and thousands of loads in detail.

Hence in this section, power system load refers to all electrical equipment

connected at a common node in the power system. It includes not only various

end-users of power-consuming equipment but also under-load tap changing trans-

former, distribution network, various kinds of reactive power compensators, volt-

age regulation units, and even some small generators, etc. The relationship between

active and reactive power absorbed, by all those mentioned above, at the node and

the node voltage and system frequency constitutes the mathematical model of nodal

load. Obviously, for different types of node, such as residential, commercial,

industrial, and rural, the composition of load is quite different. Besides, for the

same node, during different time periods, such as different seasons in a year,

different days in a week, and different hours in a day, the composition of nodal

load can vary. Due to the variety, randomness, and time variance of load, it is an

extremely difficult problem to establish an accurate load model. A large number of

studies have demonstrated that the conclusions from power system analysis are

greatly affected by whether the mathematical model of the load has been estab-

lished properly or not. From the point of view of system operation analysis and

control, improper mathematical modeling of the load will result in analytical

conclusions being poorly matched with practical results, either being too conserva-

tive – leading to inefficient utilization of the system, or too optimistic – causing

hidden risks to system operation. An even more difficult problem is that at the

moment there is no way to know if a certain load model is always conservative or

optimistic under any disturbance. The importance and complexity of establishing

mathematical models of the load has become a special research field, resulting in a

large number of studies over many years [168–170].

There are many methods for the establishment of mathematical models of load,

but these can be classified into two groups: ‘‘method of theoretical aggregation’’

[170] and ‘‘method of identification aggregation’’ [171]. In theoretical aggregation,

nodal load is considered to be the combination of various individual users. Firstly

those users are electrically categorized and average characteristics of each category

are determined. Then a statistical percentage of each category of users is worked

out and finally the total load model is aggregated. The method of identification

aggregation uses collected field data. After a proper structure for the load model is

chosen, the model parameters are identified by using field data. The two methods

have their own merits and disadvantages. The former is simple and easy to use, but

its accuracy is not satisfactory. The latter can produce more accurate mathematical

models by treating and analyzing field data using modern identification theory.

However, it is still difficult to obtain an accurate dynamic model of load because

voltage and frequency of the real power system cannot vary over a large range.

Therefore, power system load modeling remains a research topic to be pursued and

no fully matured method is available.

There are quite a few methods to classify power system load models. With

regard to whether the load model can describe load dynamics, a model is categor-

ized as either static or dynamic. Obviously, a static load model is a set of algebraic
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equations, while a dynamic model includes differential equations. Other classifica-

tions include: linear load model or nonlinear load model and voltage-related model

or frequency-related model. Conventionally, we consider load models related to

both voltage and frequency to be frequency-related models. According to the way

that the model is established, we have derived-model or input–output model.

A derived model has clear physical meaning and can easily be understood. It is

usually adopted when few types of load are considered. Nonderived models only

concern the mathematical relationship between load input and output. Due to the

limitation of space, in this section, we shall only introduce several commonly used

types of load.

The simplest load model is to use a constant impedance to represent the load.

That is, to assume that the equivalent impedance of the load does not change during

system transients and its value is determined by the node voltage and power

absorbed by the load at steady state before the occurrence of a disturbance. This

load model is rather rough. However, due to its simplicity, it is still widely used

when requirements on computational accuracy are not high.

6.5.1 Static Load Model

The static characteristic of load is the relationship between node voltage or fre-

quency and power absorbed by the load, when voltage or frequency varies slowly.

The usual forms of static load model are as follows.

1. Static load voltage or frequency characteristic described by a polynomial.
Without considering variations of frequency, the relationship between node

voltage and power absorbed by load is taken to be

PL ¼ PL0 aP
VL

VL0

� �2

þ bP
VL

VL0

� �
þ cP

" #
¼ PL0 aPV

2
L� þ bPVL� þ cP


 �

QL ¼ QL0 aQ
VL

VL0

� �2

þ bQ
VL

VL0

� �
þ cQ

" #
¼ QL0 aQV

2
L� þ bQVL� þ cQ


 �

9>>>>>=
>>>>>;

ð6:148Þ

where PL0, QL0, and VL0 are the active, reactive power absorbed by the load and

node voltage before the occurrence of a disturbance. Parameters, aP, bP, cP, aQ,
bQ, and cQ have different values for different nodes and satisfy

aP þ bP þ cP ¼ 1

aQ þ bQ þ cQ ¼ 1

)
: ð6:149Þ

From (6.148) we can see that this model is in fact equivalent to representing the

load in three parts. Coefficient a, b, and c represent the percentage of constant
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impedance (Z), constant current (I), and constant power (P) in the total nodal

load, respectively. Hence this type of load model is also called a ZIP model.

Because system frequency does not vary much during transients, static

frequency characteristics of load can be represented linearly. Without consider-

ing variation of node voltage, the relationship between node power and system

frequency is

PL ¼ PL0 1þ kP
f � f0
f0

� �

QL ¼ QL0 1þ kQ
f � f0
f0

� �
9>>>=
>>>;
; ð6:150Þ

where PL0, QL0, and f0 are the active, reactive power absorbed by load and

system frequency before the occurrence of a disturbance, respectively. Para-

meters kP and kQ have different values at different nodes and their physical

meaning is the differential of node power to variation of system frequency at

steady state, that is

kP ¼ f0
PL0

dPL

df

				
f¼f0

¼ dPL�

df�

				
f¼f0

kQ ¼ f0
QL0

dQL

df

				
f¼f0

¼ dQL�

df�

				
f¼f0

9>>>=
>>>;
: ð6:151Þ

With variation of voltage and frequency being taken into account, the mathe-

matical model of load is the product of the two per unit model expressions above,

that is

PL� ¼ aPV
2
L� þ bPVL� þ cP


 �
1þ kPDf�ð Þ

QL� ¼ aQV
2
L� þ bQVL� þ cQ


 �
1þ kQDf�

 �

)
: ð6:152Þ

We would like to point out here that in statistical computation, various base

values must be converted to maintain consistency with system base values.

2. Static load voltage characteristics expressed by exponentials. Without con-

sidering variation of frequency, static load voltage characteristics can be de-

scribed by the following exponential form

PL ¼ PL0

VL

VL0

� �a

QL ¼ QL0

VL

VL0

� �b

9>>>=
>>>;
: ð6:153Þ

For composite load, power a usually is between 0.5 and 1.8, b changes signifi-

cantly between different nodes, typically between 1.5 and 6.

With the effect of frequency change being taken into account, we have
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PL

PL0

¼ VL

VL0

� �a

1þ kP
f � f0
f0

� �
QL

QL0

¼ VL

VL0

� �b

1þ kQ
f � f0
f0

� �
9>>>=
>>>;
: ð6:154Þ

Although static load models are widely used in routine computation of power

system stability due to their simplicity, computational errors could be very high

when the magnitude of node voltage involved in the computation varies over a

wide range. For example, discharge lighting load takes over 20% of commercial

load. When the per unit voltage value reaches as low as 0.7 p.u., the light goes off

and the load consumes zero power. When the voltage recovers, the light goes on

after a short delay. Some induction motors are equipped with low voltage

protection. When the voltage decreases below a certain level, the motor will

be disconnected from the network. Also, due to transformer saturation at higher

voltages, reactive power absorbed is very sensitive to changes in the magnitude

of nodal voltage. All these factors make static load models inapplicable when

nodal voltage varies over a large range. A common method to cope with this

problem is to use different model parameters in different voltage ranges or to use

a simple constant impedance load when the node voltage is below 0.3–0.7 p.u.

Other algebraic forms of static load model can be found in [170].

6.5.2 Dynamic Load Model

When node voltage changes quickly over a large range, adoption of purely static

load models will bring about excessive computational errors; especially in the study

of voltage stability (or load stability) where high accuracy is required in load

modeling. Many studies using different types of load model have shown that at

sensitive nodes, dynamic load models should be used [172–175]. In computational

practice, those nodal loads are considered to consist of two parts: static and

dynamic. Although there are many different types of industrial load, induction

motors takes the largest share. Hence, load dynamics are mainly determined by

the transient behavior of an induction motor. In the following, we shall introduce

mathematical models of induction motors of two types: a model considering only

mechanical transients and a more detailed model including both electromechanical

transients and mechanical transients. Induction motors of large and small capacity

have obviously different dynamics. For small capacity motors, only mechanical

transients need to be considered [168].

6.5.2.1 Dynamic Load Model Considering Mechanical Transients

of an Induction Motor

In this type of model, electromechanical transients of an induction motor are

ignored, with only the mechanical transient being taken into consideration. From
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machine theory we know that the dynamics of an induction motor can be described

by the equivalent circuit of an induction motor as in Fig. 6.31, where X1 and X2 are

leakage reactance of armature and field windings, respectively; Xm the mutual

impedance between armature and field windings; R2/s the equivalent rotor resis-

tance. If system frequency and motor speed are denoted by o and om, respectively,

machine slip speed s ¼ (o � om)/o ¼ 1 � om* should satisfy the following

equation of motion of the rotor

TJM
ds

dt
¼ TmM � TeM; ð6:155Þ

where TJM is the equivalent moment of inertia of the machine rotor and mechanical

load and TmM and TeM are the mechanical torque of load and machine electrical

torque, respectively. Derivation of above equation is the same as that used to derive

the rotor motion equation for a synchronous generator, noting its reference positive

direction of torque is just opposite to that for the synchronous generator. From the

above equation we can see that when load torque is greater than electrical torque,

slip speed of the induction motor increases, i.e., motor speed decreases. Ignoring

electromechanical transients, electrical torque of an induction motor can be

expressed to be

TeM ¼ 2TeM max

s

scr
þ scr

s

VL

VLN

� �2

; ð6:156Þ

where TeM max is the maximal electrical torque of the induction motor at rated

voltage and scr is the critical slip speed for steady-state stability of the induction

motor. For a certain induction motor, TeM max and scr are constant when change of

frequency is not considered. VL and VLN are the terminal voltage and rated voltage

of the induction motor, respectively. Mechanical torque of an induction motor is

related to the characteristics of the mechanical load and often a function of motor

speed. Traditionally it is given as

TmM ¼ k½aþ ð1� aÞð1� sÞpm �; ð6:157Þ

where a is the portion of mechanical load torque that is independent of motor speed,

pm the exponent associated with the characteristic of the mechanical load, and k is

VL

R1 + jX1

μμ jXR +

jX2

R2 /s

Fig. 6.31 Equivalent circuit of

induction motor
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the percentage of motor load. To achieve better flexibility and wider applicability of

computation, currently mechanical torque is expressed as the summation of poly-

nomial and exponential forms [168]

TmM

TmM0

¼ am
om

om0

� �2

þ bm
om

o0

þ cm þ dm
om

om0

� �g

; ð6:158Þ

where TmM0 and om0 are mechanical torque and motor speed before occurrence of

disturbance. am, bm, cm, dm, and g are the characteristic parameters of mechanical

torque. Parameter cm is calculated from the following equation

cm ¼ 1� ðam þ bm þ dmÞ: ð6:159Þ

From Fig. 6.31, we can obtain the equivalent impedance of an induction motor to be

ZM ¼ R1 þ jX1 þ ðRm þ jXmÞðR2=sþ jX2Þ
ðRm þ R2=sÞ þ jðXm þ X2Þ ; ð6:160Þ

where ZM is a function of motor slip speed. Rotor motion equation of an induction

motor (6.155), electrical torque ignoring electromechanical transients (6.156), load

mechanical torque (6.157), (6.158), or (6.159), and equivalent impedance (6.160)

form the mathematical model of an induction motor load with electromechanical

transients neglected. Input variables to the model are node voltage and system

frequency. Output variable is the equivalent impedance. Hence when VL and o, as
functions of time, are known, s can be found by solving the above equations to

obtain the equivalent impedance ZM at any time.

As pointed out previously, nodal load includes all electrical equipment

connected at the node. Because so many types of electrical equipment may be

connected, the dynamics of nodal load are very complicated. In the following, we

shall introduce a method of simplifying nodal load by use of the classical model of

an induction motor. The key issue in the simplification is to obtain the equivalent

impedance of nodal load at any time.

Step 1. We separate the total power PL(0) andQL(0) absorbed by the nodal load, in

steady-state operation, into two parts. One part is expressed by a static load model

with power PLS(0) and QLS(0). The corresponding equivalent impedance is denoted

as ZLSð0Þ ¼ V2
Lð0Þ
�½PLSð0Þ � jQLSð0Þ�. Another part is modeled by an induction motor

with only mechanical transients considered. The power of this part is denoted as

PLM(0) and QLM(0) with corresponding equivalent impedance ZLMð0Þ ¼ V2
Lð0Þ
�

½PLMð0Þ � jQLMð0Þ�. Equivalent impedance of nodal load is ZL(0) ¼ ZLS(0) þ ZLM(0).

Step 2. It is approximated that all equipment connected at the node, with their

dynamics being considered, is a certain typical induction motor. Model parameters

of the typical motor are s(0), TJM, TeM max, scr, R1, X1, R2, X2, Rm, Xm and k, a, pm or

am, bm, dm, g. From (6.160) we can find the steady-state equivalent impedance of

the typical motor ZM(0). Obviously, steady-state equivalent impedance of the typical
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motor does not have to be equal to the steady-state equivalent impedance of an

equivalent motor.

Step 3. In a system transient, node voltage and system frequency vary with time.

By using some numerical methods to solve system equations and rotor motion

equation of the typical motor (details about the numerical method are introduced in

Chaps. 7 and 8), we can obtain the slip speed s(t) of the typical motor, nodal voltage

magnitude VL(t) and system frequency o(t) at time t. From (6.160) we then can

calculate the equivalent impedance of the typical motor ZM(t) at time t. From the

static load model we can find the equivalent impedance of static load ZLS(t).
Step 4. We suppose that at any time, the ratio between the equivalent impedance

of equivalent motor and equivalent impedance of typical motor is a constant. Hence

at any time t, the equivalent impedance of the equivalent motor is

ZLMðtÞ ¼ ðcr þ jciÞZMðtÞ; ð6:161Þ

where the proportionality constant can be found from steady-state conditions

cr þ jci ¼ ZLMð0Þ=ZMð0Þ: ð6:162Þ

Finally we obtain the equivalent impedance of nodal load at time t to be

ZLðtÞ ¼ ZLSðtÞ þ ZLMðtÞ: ð6:163Þ

6.5.2.2 Load Dynamic Model with Electromechanical Transients

of Induction Motors Considered

Compared to the model introduced above, this model considers electromechanical

transients of the field winding of induction motors. Similar to the case of a

synchronous generator, because the transient of the armature winding is very fast,

we do not consider the electromechanical transient of armature windings for an

induction motor either. Details about deriving the mathematical model of an

induction motor with electromechanical transients of the field winding being

taken into account can be found in [153]. In the following, we shall give a simple

derivation method by use of the mathematical model of a synchronous generator

established in Sect. 6.2.

In fact, as far as the transient equation of the machine is concerned, an induction

motor can be considered to be a synchronous generator being completely symmet-

rical in the two directions of d- and q-axes. Hence in some algorithms of power

system transient stability analysis, modeling of induction motors and synchronous

generators is treated in the same way. When an induction motor is considered

individually; for simplicity, the subtransient process of a synchronous generator is

ignored. In the mathematical model, the f winding has the same structure as that of
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the g winding but is short-circuited. Under these conditions, in equations of the

synchronous generator ((6.43)–(6.46)), letting Xd ¼ Xq ¼ X, X0
d ¼ X0

q ¼ X,

eq2 ¼ ed2 ¼ e00q ¼ e00d ¼ 0, p’d ¼ p’q ¼ 0, T0
d0 ¼ T 0

q0, o ¼ 1 � s, Ra ¼ R1, we

have per unit equations of an induction motor to be

vq ¼ ð1� sÞðe0q � X0idÞ � R1iq

vd ¼ ð1� sÞðe0d þ X0iqÞ � R1id

T0
d0pe

0
q ¼ �e0q � ðX � X0Þid

T0
d0pe

0
d ¼ �e0d þ ðX � X0Þiq

9>>>>=
>>>>;
; ð6:164Þ

where machine parameters, X, X0, and T 0
d0 can be derived from Fig. 6.31. Because d-

and q-axis are completely symmetrical and the structure of f and g windings is the

same, in (6.32) and (6.33) we have

Xaf ¼ Xag ¼ Xm: ð6:165Þ

Hence according to the definition of synchronous reactance, we have the following

equation for the stator side,

X ¼ Xd ¼ Xq ¼ X1 þ Xm: ð6:166Þ

Similarly on the rotor side, we have

Xf ¼ Xg ¼ X2 þ Xm: ð6:167Þ

Substituting (6.166) and (6.167) into (6.40b), we can obtain

X0 ¼ X0
d ¼ X0

q ¼ X1 þ X2Xm

X2 þ Xm
: ð6:168Þ

We denote the resistance in (6.30) and (6.31) Rf ¼ Rg as R2. Substituting (6.167)

into (6.40b) we have

T0
d0 ¼ T0

q0 ¼ ðX2 þ XmÞ=R2: ð6:169Þ

Equation (6.164) can be simplified by converting it in d�q coordinates from (6.62)

to system unified x�y coordinates. Differentiation of (6.62) to per unit time can

result in

p
Ad

Aq

� �
¼ sin d � cos d

cos d sin d

� �
p

Ax

Ay

� �
þ cos d sin d

� sin d cos d

� �
Ax

Ay

� �
pd: ð6:170Þ
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From the geometrical meaning of a and (6.78) we know pd ¼ �s. Hence in x�y
coordinates (6.164) becomes

vx ¼ ð1 � sÞe0x þ ð1� sÞX0iy � R1ix

vy ¼ ð1 � sÞe0y � ð1� sÞX0ix � R1iy

)
; ð6:171Þ

T0
d0pe

0
x ¼ T0

d0se
0
y � e0x þ ðX � X0Þiy

T0
d0pe

0
y ¼ �T0

d0se
0
x � e0y � ðX � X0Þix

)
: ð6:172Þ

At quasisteady state, multiplying the second equation in (6.171) and (6.172) by j

and adding to the first equation, we have

_VL ¼ ð1� sÞ _E0
M � ½R1 þ jð1� sÞX0� _IM; ð6:173Þ

T0
d0p

_E0
M ¼ �ð1þ j sT0

d0Þ _E0
M � jðX � X0Þ _IM; ð6:174Þ

where _VL ¼ Vx þ jVy, _IM ¼ Ix þ jIy, _E0
M ¼ E0

x þ jE0
y.

However, with subtransient process ignored, the mathematical model of a

synchronous generator cannot be converted into the form of (6.173) and (6.174)

if d- and q-axis are not symmetrical.

Treating an induction motor as a synchronous generator and from (6.81), (6.43),

and (6.44), we can obtain the electrical torque of an induction motor to be

TeM ¼ �ðe0qiq þ e0didÞ ¼ �ðe0xix þ e0yiyÞ; ð6:175Þ

where the negative sign is because the positive reference direction of electrical

torque of an induction motor is just opposite to that of a synchronous generator.

Because a generator model is used, the reference direction of current is going out of,

instead of into the induction motor. Therefore, the mathematical model of an

induction motor considering electromagnetic transients consists of (6.155),

(6.173)–(6.175) and the load mechanical torque of (6.157) or (6.158).

For nodal composite load, we can use the same method adopted previously

with mechanical transients being considered. For the typical motor, p _E0
M ¼ 0 in

steady-state operation, from (6.173) and (6.174) we can find _IMð0Þ; _E0
Mð0Þ. Hence

the equivalent impedance of the typical motor at steady state is ZMð0Þ ¼
� _VLð0Þ

�
_IMð0Þ. Equivalent impedance of the equivalent motor can be calculated

from nodal voltage and load power at steady state. Thus the ratio between equiva-

lent impedance of typical and equivalent motors can be computed from (6.162).

During transients, solving the combined equation describing the typical motor and

system we can obtain _IMðtÞ, _VLðtÞ, and ZM(t). Hence the equivalent impedance of

equivalent motor and composite load can be calculated from (6.161) and (6.163).

During transients, variation of slip speed has little effect on armature voltage,
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numerically. It can be ignored in a simple computation and hence in the armature

voltage equation of the motor, (6.173), s is taken to be a constant 0. Typical

parameters of induction motors can be found in [168, 176].

There are other forms of load dynamic model. For some special loads with large

capacity, such as large rolling machines, electric-arc furnaces, electric trains, large

units of temperature control, and synchronous motors in pumping or energy storage

power plants, etc., the model needs to be established individually. For long-term

stability analysis, transformer saturation, adjustment of under-load tap changing

transformers, voltage regulation arising from reactive compensators, and the action

of low-frequency low-voltage load-shedding equipment, etc., ought to be repre-

sented within the load models. Overall, load modeling is still a developing subject.

Thinking and Problem Solving

1. How is the relationship between the electrical quantities in stator and rotor of a

synchronous generator set up?

2. Does the mutual inductance between stator winding and rotor winding vary

with time, according to whether the generator is round-rotor or salient-pole?

3. What is the function of Park conversion?
4. In the state equation of (6.1), each winding flux linkage is a state variable.

Considering the motion equation of the rotor, the electrical rotational speed o
of generator is also a state variable. Discuss the nonlinearity of the generator

model according to this formula.

5. Discuss the physical significance of the right-hand three items in (6.14), and

thereby explain the electrical mechanism of power output of a generator.

6. What are the usual applications of round-rotor generators and salient-pole

generators in electrical power systems, and why?

7. The form of synchronous generator model will be influenced by such factors as

the choosing of positive direction of magnetic axis, the suppositions taken

during converting original parameters into rotor parameters, selection method

of base values, and so on. By consulting other books, compare the common and

different points of synchronous machine models with the forms that are intro-

duced in this book.

8. By consulting books on synchronous generator experiments, find out about and

describe the methods that can be used to empirically determine the parameters

of a synchronous generator.

9. During a transient in an electrical power system, the electromagnetic transient

process in the electrical network is much faster than the rotor flux dynamics of

the generator, so in the synchronous generator model that is used to analyze the

electromechanical transient process, the time derivative of stator winding flux

linkage is taken to be zero. Analyze the effect of this approximation on

calculation quantity.

Thinking and Problem Solving 403



10. There are three kinds of coordinates used to describe the electrical quantities of

a generator. These are the electrical quantities in three-phase static coordinates

a, b, c; three-axis rotating coordinates d, q, 0; and complex plane x – y. Discuss
the relationship among these three kinds of description.

11. Given one salient-pole synchronous generator, its terminal voltage _Ut ¼ 1:0,
and unit power output P þ jQ ¼ 1.0 þ j0.1. The parameters of the generator

unit are Xd ¼ 1.0, Xq ¼ 0.6, X0
d ¼ 0:3;X0

q ¼ 0:2;X00
d ¼ 0:15;X00

q ¼ 0:1. If the

stator resistance is neglected, calculate the emfs E0
q;E

0
d;E

00
q , and E00

q of this

generator.

12. During the formulation of a synchronous generator model, in which formulae

can the electrical rotational speed o be considered approximately as invariable,

and in which formulae can the electrical rotational speed o not be considered

approximately invariable? Why?

13. Discuss the effect of excitation current on the operating state of a synchronous

generator, according to (6.50) and (6.51).

14. Discuss the working mechanism of the Washout link in PSS (in Fig. 6.14).

15. Discuss the necessity and difficulty of building steady and dynamical synthetic

load models.
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Chapter 7

Power System Transient Stability Analysis

7.1 Introduction

The mechanical–electrical transient of a power system that has experienced a large

disturbance can evolve into two different situations. In the first situation, the

relative rotor angles among generators exhibit swing (or oscillatory) behavior, but

the magnitude of oscillation decays asymptotically; the relative motions among

generators eventually disappear, thus the system migrates into a new stable state,

and generators remain in synchronous operation. The power system is said to be

transiently stable. In another situation, the relative motions of some generator rotors

continue to grow during the mechanical–electrical transient, and the relative rotor

angles increase, resulting in the loss of synchronism of these generators. The system

is said to be transiently unstable. When a generator loses synchronization with the

remaining generators in the system, its rotor speed will be above or below what is

required to produce a voltage at system frequency, and the slip motion between the

rotating stator magnetic field (relative to system frequency) and rotor magnetic field

causes generator power output, current and voltage to oscillate with very high

magnitudes, making some generators and loads trip and, in the worst case, causing

the system to split or collapse.

A necessary condition that a power system maintains normal operation is the

synchronous operation of all generators. Therefore, analyzing the stability of a

power system after a large disturbance is equivalent to analyzing the ability of

generators to maintain synchronous operation after the system experiences a large

disturbance, this is called power system transient stability analysis.

The aforementioned power system transient stability analysis typically involves

the short-term (within some 10 s) dynamic behavior of a system, nevertheless,

sometimes we have to study system midterm (10 s to several minutes) and long-

term (several minutes to tens of minutes) dynamic behavior, this would be termed

power system midterm and long-term stability analysis.

Midterm and long-term stability mainly concerns the dynamic response of a

power system that experiences a severe disturbance. A severe disturbance can

cause system voltages, frequency, and power flows to undergo drastic changes;

therefore, it is meaningful to look into certain slow dynamics, control, and protection
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performance that are not addressed in a short-term transient stability analysis. The

response time of devices that affect voltage and frequency can be from a few

seconds (such as the response time of generator control and protection devices) to

several minutes (such as the response time of a prime mover system and on-load tap

changing regulators, etc.)

A long-term stability analysis focuses on the slow phenomenon with long

duration that occur after a large disturbance has happened, and the significant

mismatch between active/reactive power generation and consumption. The phe-

nomena of concern include: boiler dynamics, water gate and water-pipe dynamics

of hydraulic turbines, automatic generation control (AGC), control and protection

of power plant and transmission system, transformer saturation, abnormal frequency

effects of load and network, and so forth. When performing long-term stability

analysis, one is often concerned about the responses of a system under extremely

severe disturbances that are not taken into consideration in system design. After the

occurrence of an extremely severe disturbance, a power system can undergo

cascading faults and can be split into several isolated parts. The question a stability

study has to answer is whether or not each isolated part can reach acceptable stable

operation after any load-shedding occurs.

Midterm response refers to response whose timeframe is between that of short-

term response and long-term response. Midterm stability study investigates the

synchronous power oscillations among generators, including some slow phenome-

na and possibly large voltage and frequency deviations [177].

Large disturbances are severe threatens to power system operation, but in reality

they cannot be avoided. The consequence of losing stability after a power system

experiences a disturbance is in general very serious, it can even be a disaster. In fact

the various large disturbances, such as short circuit, tripping or committing of large

capacity generator, load, or important transmission facility, appear as probabilistic

events, therefore when designing and scheduling a power system, one always

ensures that the system can maintain stable operation under a set of reasonably

specified credible contingencies, rather than requiring that the system can sustain

the impact of any disturbance. Because every country has their own stability

requirements, the selection of credible contingencies can be based on different

standards.

To check if a power system can maintain stable operation under credible

contingencies, one needs to perform transient stability analysis. When the system

under study is not stable, efficient measures that can improve system stability need

to be sought. When a system experiences extremely severe stability problems,

fault analysis is required to find the weak points in the system, and develop

corresponding strategies.

In power system stability analysis, the mathematical models of system compo-

nents not only directly relate to the analysis results, but also have a significant effect

on the complexity of the analysis. Therefore, if appropriate mathematical models

for each system component are developed, stability analysis can be made simple

and accurate. This is a crucial step in stability analysis.
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Figure 7.1 conceptualizes the mathematical model of all system components for

power system stability studies. From the figure one can see that the mathematical

model consists of the models of synchronous machines and the associated excita-

tion systems, prime mover and speed-governing system, electrical load, and other

dynamic devices and electrical network. Apparently, all the dynamic components

of the system are independent; it is the electrical network that connects them with

each other.

Mathematically, the complete system model can be described as a set of differ-

ential-algebraic equations as follows:

dx

dt
¼ fðx; yÞ; ð7:1Þ

0 ¼ gðx; yÞ: ð7:2Þ

This chapter first introduces the composition of the component models for

transient stability analysis and the numerical solution algorithms for differential-

algebraic equations, then describes the mathematical relationship between dynamic

components and electrical network, followed by an exposition of how to model

network switches and faults. The chapter also presents in detail the solution algo-

rithms for simple transient stability analysis and for analysis of systems with

FACTS devices represented by full mathematical models.

7.2 Numerical Methods for Transient Stability Analysis

Power system transient stability analysis can be viewed as an initial value problem

of differential-algebraic equations. In this section we first introduce the numerical

methods for ordinary differential equations, and then discuss the numerical methods

for differential-algebraic equations. We provide a general procedure for transient

stability analysis at the end of the section.
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Fig. 7.1 Conceptual framework of mathematical models for stability studies

7.2 Numerical Methods for Transient Stability Analysis 407



7.2.1 Numerical Methods for Ordinary Differential Equations

7.2.1.1 Fundamental Concept

Consider the following first-order differential equation:

dx

dt
¼ f ðt; xÞ; xðt0Þ ¼ x0: ð7:3Þ

In general, the function f in the above equation is a nonlinear function of x and t.
In many real world situations, f is not an explicit function of time t, therefore the

above equation reduces to

dx

dt
¼ f ðxÞ; xðt0Þ ¼ x0: ð7:4Þ

In power system stability analysis, the right-hand side of all the differential

equations does not contain explicitly the time variable t.
When f in (7.4) is a linear function of x, one can easily obtain the closed-form

solution of the differential equation. For example, consider the following differen-

tial equation:

dx

dt
¼ x: ð7:5Þ

The closed-form solution is given as

x ¼ A et; ð7:6Þ

where A is a constant. Equation (7.6) represents a family of integral curves.

Given an initial condition in the form of x(t0)¼ x0, one can determine a solution

curve. For instance, if x(0)¼ 1, then from (7.6) the integral constant can be found as

A ¼ 1, thus the solution curve is as follows:

x ¼ et: ð7:7Þ

The differential equations of real world engineering problems appear to be more

complex, the right-hand sides of the equations are typically not integrable, therefore

closed-form solutions, like (7.6), of such differential equations cannot be obtained.

To solve these differential equations, one must rely on numerical methods. The idea

of numerical methods is to employ a certain integral formula to solve for the ap-

proximate value of xn at each instant in the time series tn ¼ t0 þ nh, n ¼ 1,2, . . .
(here h is the step size) in a step-by-step fashion, starting from the initial state (t ¼
t0, x ¼ x0). This method of solving differential equation is called step-by-step

integration.
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In the following, we illustrate the basic idea of step-by-step integration using

Euler’s method as an example.

Suppose that the exact solution of the first-order differential (7.3) at t0 ¼ 0, x(t0)¼
x0 is as follows:

x ¼ xðtÞ: ð7:8Þ

The graph of the function, that is, the integral curve of the differential (7.3)

passing through the point (0, x0) is depicted in Fig. 7.2 .

Euler’s method is also called the Euler’s tangent method or Euler’s polygon

method. The idea of the method is to approximate the integral curve by an Euler’s

polygon, the slope of each Euler’s polygon is obtained by solving for (7.3) with the

initial value of the Euler’s polygon as input. Specifically, the computational steps

are as follows:

For the first segment, the slope of the integral curve at point (0, x0) is

dx

dt

����
0

¼ f ðx0; 0Þ:

Replacing the first segment with a straight line which has a slope of dx
dt

��
0
, one can

find the incremental of x at t1 ¼ h (h is the step size) as follows:

Dx1 ¼ dx

dt

����
0

h:

Therefore the approximation of x at t1 ¼ h should be

x1 ¼ x0 þ Dx1 ¼ x0 þ dx

dt

����
0

h:

t

x

x0

t1 t2 t3

x2

x1

x3true solution
x  = x(t)

0

Fig. 7.2 Illustration of Euler’s
method for solving differential

equations
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For the second segment, the integral curve will be approximated by another

straight line segment, the slope of which can be obtained by substituting the initial

value of the segment (that is, the starting point of the segment (t1, x1)) into (7.3):

dx

dt

����
1

¼ f ðx1; t1Þ:

An approximate value of x at t2 ¼ 2h can be found based on

x2¼ x1 þ dx

dt

����
1

h

as illustrated in Fig. 7.2. The above procedure can be repeated to find an approxi-

mate value of x3 at t3 and so forth. In general, the recursive formula for computing

an approximate value of the n þ 1 point is as follows:

xnþ1¼ xn þ dx

dt

����
n

h; n ¼ 0; 1; 2; . . . : ð7:9Þ

Now we turn to analyzing the error introduced by this recursive formula which is

used to compute (tnþ1, xnþ1) from (tn, xn). To do so, expand the integral function

(7.8) at (tn, xn) using Taylor’s formula as follows:

xnþ1 ¼ xn þ x0nh þ x00n
h2

2!
þ � � � þ x

ðrÞ
xn

hr

r!
; ð7:10Þ

where x0n; x
00
n ; . . . are the first-order, second-order,. . . derivatives of the integral

function with regard to variable t. The symbol xn represents a number in the interval

[tn, tnþ1], and x
ðrÞ
xn

is the residual of the Taylor’s series. When r ¼ 2, (7.10) becomes

xnþ1 ¼ xn þ x0nhþ x00x0n
h2

2!
ð7:11Þ

or in an alternative form

xnþ1 ¼ xn þ dx

dt

����
n

hþ d2x

dt2

����
x0n

h2

2!
: ð7:12Þ

Here the symbol x0n still represents a number in interval [tn, tnþ1] and in general

x0n 6¼ xn.
Obviously, Euler’s recursive (7.9) can be obtained after neglecting the residual

term d2x
dt2

���
x0n

h2

2! in (7.12).
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Therefore when computing the function value at point n þ 1 from that at n, the
error introduced by the approximation is

Enþ1 ¼ d2x

dt2

����
x0n

h2

2!
: ð7:13Þ

Suppose that within the computing interval [0,tm], the maximum value

of d2x
dt2

¼ f 0ðx; tÞ is M, then the error Enþ1 should satisfy

Enþ1 � M

2
h2; ð7:14Þ

where M is independent of the choice of step size h. The errors in (7.13) and (7.14)

are due to the approximationmadewhen computing the function value at point nþ 1

from that at n, it is called local truncation error. The truncation error of Euler’s

formula is in proportion to h2, and often expressed as of order h2 or 0(h2).
It should be noted that before obtaining xnþ1, xn is solved using the same

recursive formula, therefore xn itself also contains error. As a matter of fact,

when computing xnþ1 based on (7.9), one should take into account the impact of

the error of xn, in addition to the impact of the local truncation error associated with

neglecting residual term. This error is called global truncation error or simply put

truncation error. Consequently the error introduced by the inaccuracy of Euler’s

formula is larger than the local truncation error expressed in (7.13) and (7.14). It can

be proved that the global truncation error of Euler’s formula is in proportion to h, in
other words, it is 0(h).

Based on the above discussion, a smaller step size h should be selected to reduce
the computational error of the Euler’s formula. But it is false to assert that the

smaller the step size h is, the smaller the error would be.

In the aforementioned discussion, we did not take into consideration the round-

off error of the computer. When a small step size h is used, the computational effort

adversely increases; thus, the impact of rounding errors increases, as illustrated in

Fig. 7.3. In the figure, hmin is the step size associated with the minimum error,

therefore we cannot merely rely on reducing the step size to reduce computational

error. If higher computational precision is desired, a better computational algorithm

has to be used.

In the above calculations, when computing the function value at tnþ1, only the

function value xn at the previous point tn is required, this algorithm is called a

single-step algorithm. The algorithms to be presented in this section belong to this

category. There are multistep or multivalue algorithms which are more accurate.

These algorithms require the information of previous steps (tn, xn), (tnþ1, xnþ1), . . . ,
(tn�kþ1, xn�kþ1) when solving for the value xnþ1 corresponding to time tnþ1.
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7.2.1.2 Modified Euler’s Method

The large error of Euler’s method comes from the fact that the derivative
dx
dt

��
n
¼ f ðxn; tnÞ of the starting point of an Euler’s polygon is used for the entire

segment [tn, tnþ1]. In other words, the slope of each Euler’s polygon is entirely

determined by the starting point of the polygon. If the slope of an Euler’s segment is

replaced with the average of slopes of starting point and end point, we should

expect improved solution precision. This is the basic idea of the modified Euler’s

method.

For first-order differential equation (7.3), let the initial value is given as t0 ¼ 0,

x(t0) ¼ x0, in what follows we introduce the computational steps of the modified

Euler’s method.

To find out the function value x1 at t1 ¼ h, first compute an approximate value of

x1 using Euler’s method:

x
ð0Þ
1 ¼ x0 þ dx

dt

����
0

h; ð7:15Þ

where dx
dt

��
0
¼ f ðx0; t0Þ.

When x
ð0Þ
1 is obtained based on (7.15), substitute t1, x

ð0Þ
1 into (7.3) to solve for the

derivative at the end point of the segment:

dx

dt

����
ð0Þ

1

¼ f ðxð0Þ1 ; t1Þ:

error

h
hmin

truncation
error

round-off
error

minimum
error

Fig. 7.3 Relationship between error and step size
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Now the average of dx
dt

��
0
and dx

dt

��ð0Þ
1

can be used to calculate an improved solution

of x1 as follows:

x
ð1Þ
1 ¼ x0 þ

dx

dt

����
0

þ dx

dt

����
ð0Þ

1

2
h: ð7:16Þ

The solution x
ð1Þ
1 computed this way better approximates the true solution x1 than

does x
ð0Þ
1 which is computed using a standard Euler’s method. Figure 7.4 provides a

geometrical explanation.

To compute (tnþ1, xnþ1) from (tn, xn), the following general formula can be used

dx

dt

����
n

¼ f ðxn; tnÞ

x
ð0Þ
nþ1 ¼ xn þ dx

dt

����
n

h

dx

dt

����
ð0Þ

nþ1

¼ f ðxð0Þnþ1; tnþ1Þ

xnþ1 ¼ x
ð1Þ
nþ1 ¼ xn þ

dx

dt

����
n

þ dx

dt

����
ð0Þ

nþ1

2
h

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

: ð7:17Þ

Eliminate xn in (7.17), the fourth formula of (7.17) can be modified as

xnþ1 ¼ x
ð0Þ
nþ1 þ

dx

dt

����
a

nþ1

h; ð7:18Þ

tt1t2

x

0

(0)

1

dx
dt

x  =  x(t)
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(0)x1
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h

Fig. 7.4 Geometrical explanation

of the modified Euler’s method
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where

dx

dt

����
a

nþ1

¼ 1

2

dx

dt

����
ð0Þ

nþ1

�dx

dt

����
n

 !
:

As such, the general formula of the modified Euler’s method can be summarized

as follows:

dx

dt

����
n

¼ f ðxn; tnÞ

x
ð0Þ
nþ1 ¼ xn þ dx

dt

����
n

h

dx

dt

����
a

nþ1

¼ 1

2
f ðxð0Þnþ1; tnþ1Þ � dx

dt

����
n

� �

xnþ1 ¼ x
ð1Þ
nþ1 ¼ x

ð0Þ
nþ1 þ

dx

dt

����
a

nþ1

h

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

: ð7:19Þ

When solving for xnþ1 based on (7.19), because it takes the same form as that of

x
ð0Þ
nþ1, the computer code can be simplified. In addition, xn need not be saved after

x
ð0Þ
nþ1 is obtained, thus computer memory can be saved.

In what follows we discuss the local truncation error of modified Euler’s method.

To do so, recall the Taylor’s expansion formula of equation (7.10):

xnþ1 ¼ xn þ x0nhþ x00n
h2

2!
þ x000x00n

h3

3!
; ð7:20Þ

where x000x00n
h3

3!
is the residual term of the Taylor’s expansion.

The fourth equation of the modified Euler’s method (7.17) can be re-cast as

x
ð1Þ
nþ1 ¼ xn þ x0n

h

2
þ h

2
f ðxð0Þnþ1; tnþ1Þ:

Substituting the first formula in (7.17) into the above equation, one obtains

x
ð1Þ
nþ1 ¼ xn þ x0n

h

2
þ h

2
f ðxn þ x0nh; tn þ hÞ: ð7:21Þ

Expand the third term in the right-hand side of the above equation using Taylor’s

formula,

h

2
f ðxn þ x0nh; tn þ hÞ ¼ h

2
f ðxn; tnÞ þ h2

2

@f

@x

����
n

x0n þ
h2

2

@f

@t

����
n

þ 0ðh3Þ:
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Since

x00n ¼
@f

@x

����
n

x0n þ
@f

@t

����
n

;

therefore

h

2
f ðxn þ x0nh; tn þ hÞ ¼ h

2
x0n þ

h2

2
x00n þ 0ðh3Þ;

substituting the above formula into (7.21), it follows

x
ð1Þ
nþ1 ¼ xn þ x0nhþ x00n

h2

2
þ 0ðh3Þ; ð7:22Þ

subtracting the above formula from (7.20), we have

Enþ1 ¼ xnþ1 � x
ð1Þ
nþ1 ¼ x000x00n

h3

3!
� 0ðh3Þ:

The above equation shows that the local truncation error of the modified Euler’s

method is 0(h3). By the same token, it can be proved that the global truncation error

of the modified Euler’s method is 0(h2).
[Example 7.1] Solve the following differential equation by the modified Euler’s

method

dx

dt
¼ x� 2t

x
;

where the initial values are t0 ¼ 0 and x0 ¼ 1.

[Solution] Taking 0.2 as step length, the computational results are summarized

in the following table:

The true solution of this differential equation is

x ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2tþ 1

p
:

n tn xn

dx

dt

����
n x

ð0Þ
nþ1 tnþ1

dx

dt

����
0

nþ1

dx

dt

����
n

þ
dx

dt

����
ð0Þ

nþ1

2 xn

0 0 1 1 1.2 0.2 0.8667 0.9333 1.18667

1 0.2 1.18667 0.84959 1.35658 0.4 0.7669 0.8083 1.34832

2 0.4 1.34832 0.75499 1.49932 0.6 0.6990 0.7270 1.49372

3 0.6 1.49837 0.69036 1.63179 0.8 0.6513 0.6708 1.62788

4 0.8 2.62790 0.64500 1.75690 1.0 0.6185 0.6318 1.75430

5 1.0 1.75430
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When t ¼ 1, x ¼ 1.73205, therefore the error is equal to

1:73205 � 1:7543j j ¼ 0:02225:

The modified Euler’s method can also be employed to solve first-order differen-

tial equations. For instance, for the following differential equations:

dx

dt
¼ f1ðx; y; tÞ

dy

dt
¼ f2ðx; y; tÞ

9>=
>;: ð7:23Þ

Let the initial values be t0, x0, y0, when step length h is determined, for the first

segment, one can compute the approximate value of the true solution as follows:

x
ð0Þ
1 ¼ x0 þ dx

dt

����
0

h

y
ð0Þ
1 ¼ y0 þ dy

dt

����
0

h

;

where

dx

dt

����
0

¼ f1ðx0; y0; t0Þ
dy

dt

����
0

¼ f2ðx0; y0; t0Þ
:

From t1 ¼ h; x
ð0Þ
1 ; y

ð0Þ
1 , we have

dx

dt

����
ð0Þ

1

¼ f1ðxð0Þ1 ; y
ð0Þ
1 ; t1Þ

dy

dt

����
ð0Þ

1

¼ f2ðxð0Þ1 ; y
ð0Þ
1 ; t1Þ

;

thus the true solution of the differential equation at t should be

x1 ¼ x0 þ
dx

dt

����
0

þdx

dt

����
ð0Þ

1

2
h ¼ x

ð0Þ
1 þ dx

dt

����
a

1

h;

y1 ¼ y0 þ
dy

dt

����
0

þ dy

dt

����
ð0Þ

1

2
h ¼ y

ð0Þ
1 þ dy

dt

����
a

1

h;
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where

dx

dt

����
a

1

¼ 1

2

dx

dt

����
ð0Þ

1

� dx

dt

����
0

 !

dy

dt

����
a

1

¼ 1

2

dy

dt

����
ð0Þ

1

� dy

dt

����
0

 !

and so forth.

From (7.17), it can be concluded that the modified Euler’s method applied to one

segment requires computational effort, that is, two times of that of the Euler’s

method. On the other hand, if the same step length is used, the modified Euler’s

method provides more accurate calculation results than the Euler’s method. As

discussed before, the truncation error of the modified Euler’s method is 0(h2), while
the Euler’s method is 0(h). Figure 7.5 illustrates that, when the tolerance is equal to
e1, the difference between the required step length of the modified Euler’s method

h01 and the Euler’s step length h1 is small. Under such circumstance, the computa-

tional effort required by the modified Euler’s method is larger than that of the

Euler’s method. When the tolerance is equal to e2, the required step length of the

modified Euler’s method h02 is significantly larger than the Euler’s step length h2.
Obviously, if h02 > 2h2, then the total computational effort of the modified Euler’s

method is smaller than that of the Euler’s method.

7.2.1.3 Runge–Kutta Method

The modified Euler’s method is based on the observation that xnþ1 can be estimated

using the derivatives or slopes of two points in the interval [tn, tnþ1], and since the

Taylor’s series of the integral function is approximated by the first three terms, the

local truncation error is 0(h3). This has motivated the following question: is it

possible to estimate xnþ1 using the derivatives ofmore points in the interval [tn, tnþ1],

h
h2 h1h2′ h1′

Modified Euler Method

Euler Method

e 1

e

e 2
Fig. 7.5 Comparison between the

modified Euler’s method and

Euler’s method
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such that more terms of the Taylor’s series can be included? The answer to this

question is positive. The well-known Runge–Kutta method is built upon this idea.

The most popular Runge–Kutta method is the fourth-order method. In this method,

xnþ1 is estimated using the derivatives of four points in the interval [tn, tnþ1], thus

the first five terms of Taylor’s series are included in the approximation:

xnþ1 ¼ xn þ x0nhþ x00n
h2

2!
þ xð3Þn

h3

3!
þ xð4Þn

h4

4!
þ 0ðh5Þ:

The local truncation error of the method is 0(h5), and the global truncation

error is 0(h4).
For differential (7.3), the following Runge–Kutta formula should be used:

xnþ1 ¼ xn þ 1

6
ðk1 þ 2k2 þ 2k3 þ k4Þ

k1 ¼ hf ðxn; tnÞ

k2 ¼ hf xn þ k1
2
; tn þ h

2

� �

k3 ¼ hf xn þ k2
2
; tn þ h

2

� �
k4 ¼ hf ðxn þ k3; tn þ hÞ

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð7:24Þ

to solve for x1, x2, x3, . . ..
[Example 7.2] Solve the first-order differential equation in Example 7.1 using

the Runge–Kutta method

[Solution] Let the step length h ¼ 0.2, the computational steps are described in

the following table:

The above table shows that, based on the Runge–Kutta method, the value of x at
t¼ 1 is x¼ 1.732141. Comparing this result with the true solution, the error is equal

to

1:73205� 1:732141j j ¼ 0:00009;

which is a much better result in comparison with the result obtained in Example 7.1.

tn xn k1
tn þ h

2
xnþ k1

2 k2
tn þ h

2
xnþ k2

2 k3 tn þ h xn þ k3 k4

0 1 0.2 0.1 1.1 0.1836364 0.1 1.0918182 0.1817274 0.2 1.181727 0.1686478

0.2 1.1832292 0.1698342 0.3 1.267746 0.1588930 0.3 1.262676 0.1574990 0.4 1.340728 0.1488074

0.4 1.3416668 0.1490788 0.5 1.416026 0.1420188 0.5 1.412676 0.1409600 0.6 1.482627 0.1346506

0.6 1.483281 0.1348528 0.7 1.550707 0.1295786 0.7 1.548070 0.1287436 0.8 1.612025 0.1238970

0.8 1.612513 0.1240546 0.9 1.674541 0.1199240 0.9 1.672475 0.1192452 1.0 1.731759 0.1153728

1 1.732141
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The Runge–Kutta method can also be used to solve first-order differential

equations. As an example, the differential equation (7.23) can be solved using the

following recursive formula:

xnþ1 ¼ xn þ 1

6
ðk1 þ 2k2 þ 2k3 þ k4Þ;

ynþ1 ¼ yn þ 1

6
ðl1 þ 2l2 þ 2l3 þ l4Þ;

where

k1 ¼ hf1ðxn; yn; tnÞ

k2 ¼ hf1 xn þ k1
2
; yn þ l1

2
; tn þ h

2

� �

k3 ¼ hf1 xn þ k2
2
; yn þ l2

2
; tn þ h

2

� �
k4 ¼ hf1ðxn þ k3; yn þ l3; tn þ hÞ

9>>>>>>>>=
>>>>>>>>;
;

l1 ¼ hf2ðxn; yn; tnÞ

l2 ¼ hf2 xn þ k1
2
; yn þ l1

2
; tn þ h

2

� �

l3 ¼ hf2 xn þ k2
2
; yn þ l2

2
; tn þ h

2

� �
l4 ¼ hf2ðxn þ k3; yn þ l3; tn þ hÞ

9>>>>>>>>=
>>>>>>>>;
:

Although the Runge–Kutta method has the advantage of higher precision, it

requires larger computational effort which is four times that required by the Euler’s

method. The trend is that multiple-step methods, which require less computational

effort, are replacing Runge–Kutta methods when higher computational accuracy is

required. Runge–Kutta methods are typically used as auxiliary methods only to

initiate multiple-step methods in the first few steps.

7.2.1.4 Implicit Integration Methods

Explicit and implicit methods are the major categories of solution methods for

differential equations. The methods described in the previous sections belong to

the category of explicit methods. From (7.9), (7.17), and (7.24), one can see that the

right-hand sides of the formulas are known quantities; therefore, the value of the

end point xnþ1 can be directly computed using those recursive formulas. In contrast,

an implicit method does not work with recursive equations, it first converts differ-

ential equations into difference equations, then solves for the value xnþ1 using the

methods of difference equations.

Let us first introduce the method of the trapezoidal rule.
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When xn at tn is known, the function value xnþ1 at time tnþ1 ¼ tn þ h of the

differential equation (7.3) can be solved using the following formula:

xnþ1 ¼ xn þ
Z tnþ1

tn

f ðx; tÞdt: ð7:25Þ

The solution of the definite integral of the above equation is equal to the area of

the shaded region in Fig. 7.6. Observe that if the step size h is sufficiently small, the

graph of the function f(x, t) between tn and tnþ1 can be approximated by a straight

line as illustrated in the figure. Apparently the area of the shaded region is equal to

the area of the trapezoid ABCD. Equation (7.25) can thus be reformulated as

xnþ1 ¼ xn þ h

2
½f ðxn; tnÞ þ f ðxnþ1; tnþ1Þ�: ð7:26Þ

This is the difference equation of the trapezoidal rule.

Obviously, one cannot rely on certain recursive formula to compute xnþ1

because the right-hand side of (7.26) also includes unknown xnþ1. Equation (7.26)

has to solve as an algebraic equation to find xnþ1.

Generally speaking, the idea of implicit methods is to transform a numerical

initial value problem of differential equations into a sequence of algebraic equation

problems. For example, given starting point t0 and x0, according to (7.26) the

difference equation for the first step should be

x1 ¼ x0 þ h

2
½f ðx0; t0Þ þ f ðx1; t0 þ hÞ�;

where the only unknown variable is x1, which can be solved for using the methods

for solving algebraic equation. Given t1 and x1, based on (7.26), the difference

formula for the next step should be

x2 ¼ x1 þ h

2
½f ðx1; t1Þ þ f ðx2; t1 þ hÞ�

from which x2 can be computed, and so forth.

A B

C
D

t
tn tn+1

f (xn, tn)
f (xn+1, tn)

dx
dt

0

Fig. 7.6 Geometrical illustration
of trapezoidal rule
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If f(xn, tn) and f(xnþ1, tnþ1) are viewed as the slopes of the integral curve at the

starting point and terminating point of the interval [tn, tnþ1], then it is reasonable to

term the implicit trapezoidal rule as an implicit modified Euler’s method. In other

words, difference equation (7.26) can be viewed as the solution formula of the

implicit modified Euler’s method. In fact, the idea of implicit methods are applica-

ble not only to the modified Euler’s method, but also to the previously mentioned

Euler’s method, Runge–Kutta method, and multistep methods. For example, the

recursive formula of the Euler’s method (7.9) can be rewritten as

xnþ1 ¼ xn þ x0nþ1h ¼ xn þ f ðxnþ1; tnþ1Þh: ð7:27Þ

Changing the derivate value x0n of the starting point of the interval [tn, tnþ1] to

x0nþ1, one obtains the implicit Euler’s method. Equation (7.27) is the difference

formula of the implicit Euler’s method.

The difference equations (7.26) and (7.27) can be nonlinear as a result of the

nonlinearity of the function f(x, t) in (7.3). Therefore the algorithms for implicit

methods are more complex than those of explicit methods.

It is not difficult to find out that the truncation error of implicit trapezoidal rule is

introduced by the approximation of replacing the trapezoid with the shaded area

(see Fig. 7.6). Using the same arguments as before, one can prove that the local

truncation error of difference equation (7.26) is 0(h3).
The advantage of implicit methods over explicit methods is that a larger step size

can be used. This issue involves the numerical stability of numerical initial value

problems; readers are referred to relevant references. Here we illustrate using a

simple example.

Suppose we have the following differential equation:

dx

dt
¼ �100x: ð7:28Þ

The initial values are t ¼ 0 and x0 ¼ 1.

For the above differential equation, the true solution is x ¼ e�100t.

This is an exponential function, as depicted in Fig. 7.7.

When the step length is equal to h ¼ 0.025, the numerical solution using the

Euler’s method is as follows:

Observe that the function value oscillates as time increases, and the magnitude of

the oscillation increases, as illustrated in the dotted line in Fig. 7.7. Mathematically,

Steps tn xn x0n x0nh

0 0.000 1 �100 �2.5

1 0.025 �1.5 150 3.75

2 0.050 2.25 �225 �5.625

3 0.075 �3.375
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this indicates that the numerical solution obtained using the Euler’s method is not

stable.

This situation can be avoided if the implicit Euler’s method is used. Let us first

transform (7.28) into a difference equation as follows:

xnþ1 ¼ xn þ x0nþ1h ¼ xn � 100xnþ1h:

Thus

xnþ1 ¼ xn
1þ 100h

:

When h ¼ 0.025,

xnþ1 ¼ xn
3:5

:

One obtains the following calculation results:

The function value in the above table decays as time increases, see Fig. 7.7.

0.0250 0.05 0.075
t

x

Implicit

Euler Method
Euler method

Fig. 7.7 Illustration of solutions
obtained using different methods

Steps tn xn

0 0.000 1

1 0.025 1/3.5

2 0.050 (1/3.5)2

3 0.075 (1/3.5)3
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To explain the relationship between step size and numerical solutions, we

rewrite differential equation (7.28) into more general form:

dx

dt
¼ � x

T
; ð7:29Þ

where the constant T has the unit of time, which is termed the time constant.

Substituting (7.29) into the Euler’s equation (7.9), we have

xnþ1 ¼ xn 1� h

T

� �
:

Therefore

xnþ1 ¼ x0 1� h

T

� �nþ1

: ð7:30Þ

Obviously in order for x to be a monotonically decaying function, the right-hand

side of (7.30) has to meet the following condition:

0 < 1� h

T
< 1:

Thus the step size should be selected such that

h < T: ð7:31Þ

For (7.28), the step size must satisfy the inequality h < 0.01 to find a stable

solution using the explicit method.

The difference equation of (7.29) in the setting of the implicit method is

xnþ1 ¼ xn � h

T
xnþ1:

After simple manipulation:

xnþ1 ¼ 1

1þ h=T

� �
xn:

Therefore we have

xnþ1 ¼ x0
1

1þ h=T

� �nþ1

: ð7:32Þ
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From the above formula we conclude that, using an implicit Euler’s method, any

choice of step size can meet the requirement that the function x is monotonically

decaying.

In general, the choice of step size in an explicit method is restricted by the time

constants in the differential equations under study. If this restriction is violated, one

can expect false computational results. An implicit method allows a larger step size

and therefore is not subject to such a restriction.

7.2.1.5 Choosing a Numerical Method for Ordinary Differential Equations

As discussed before, numerical methods for ordinary differential equation fall into

the category of explicit or implicit methods and single-step or multistep methods. In

an explicit method, the integration formula can be directly applied to solve each

differential equation, therefore the method requires less computational effort but is

numerically less stable; in an implicit method, each differential equation is implicitly

integrated and solved as a set of algebraic equations, obviously the method is more

complicated but guarantees higher numerical stability. A single-step method requires

only the information of the previous step. Therefore it is self-starting and superior

when the right-hand side function of the differential equation contains any disconti-

nuity. A multistep method requires the information of previous steps, thus in theory it

is more efficient, but it requires a restart when the right-hand side function of the

differential equation exhibits a discontinuity. To determine which numerical solution

method to use, at least the following three aspects should be investigated:

(1) Accuracy of the method: There are two classes of errors involved in the

numerical solution of differential equations; these are round-off error and

truncation error. The occurrence of round-off errors is due to the inability of

computers to represent real numbers perfectly; thus to reduce this type of error,

the only means is to use computing with a higher degree of precision.

The difference between the true solution and computed solution is mainly

caused by truncation error, which determines the required precision of the

solution method. The magnitude of truncation error is dependent on the specific

integration formula. Obviously, the higher the order of the method, the higher is

the precision offered, for the same step size. Furthermore, local truncation errors

are accumulated as integration proceeds, therefore the difference between the

true solution at a certain instant and the computed solution is called accumulated

truncation error.

(2) Numerical stability of the method: Roughly speaking, the numerical stability of

an integration method is related to the propagation of numerical errors in the

integration process. In a numerically unstable method, errors are accumulated

and increase step by step, and in the end they distort the true solution. In a

numerically stable method, errors do not increase, in fact, they can even

decrease sometimes.
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There are a variety of definitions of numerical stability, which will not be

discussed here. To make a comparison, we define two broad classes of methods:

those ‘‘very stable’’ and those ‘‘very unstable.’’ In general, implicit methods

have better stability properties than their explicit counterparts.

(3) Adaptability to stiff differential equations: Stiffness of differential equations is a
property that corresponds to ill-conditioning in algebraic equations. In general,

if the difference between the largest time constant and the smallest time constant

in a differential equation is large, the differential equation is considered stiff (or

ill-conditioned). More precisely, stiffness is measured by the largest eigenvalue

divided by the smallest eigenvalue.

For a stiff problem, to ensure that the truncation error is below a numerically

safe threshold, a numerical method that is relatively unstable would require a

very small step size to capture the fast components in the system response. To

obtain solutions with the same degree of accuracy, a numerically stable integra-

tion method allows the use of a larger step size, because it tolerates higher

errors.

With the exception of simple classical models, the differential equation

models for power system transient stability analysis are typically stiff, and the

degree of stiffness increases as the complexity of the synchronous machine

model increases, as a result of the diversity of time constants. The algebraic

equations in transient stability analysis are also often poorly conditioned; this is

particularly true when loads are not represented as impedances. There are also

discontinuities in the differential-algebraic equations, and regulator limits in the

models of generating units, etc.

Of the wide variety of solution methods for initial value problems of differen-

tial equations, very few are suitable for power system applications. This is mainly

due to the characteristics of the differential equation models for stability studies.

To choose a specific numerical solution method, one should take into account the

requirements for computational speed and precision, numerical stability, adapt-

ability to stiffness, and modeling flexibility (in dealing with discontinuity and

limit actions). Research into these aspects has been extensively reported, with

many successful applications. For the time being, the explicit methods, such as the

Euler’s method, modified Euler’s method, and Runge–Kutta method, together

with the implicit trapezoidal rule, have all been used with a degree of success.

These methods are available in many production-grade commercial packages.

7.2.2 Numerical Methods for Differential-Algebraic Equations

In power system transient stability analysis, what needs to be done is to obtain the

solution of a set of simultaneous differential-algebraic equations. The key here is to

deal with the interfacing between differential equation (7.1) and algebraic equation

(7.2). Either an alternate solution method or a simultaneous solution method, to be

described below, can be used for this purpose.
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7.2.2.1 Alternate Solution Method

In an alternate solution method, a numerical integration algorithm is applied to the

differential equations first, to compute x, and then the algebraic equations are

solved to obtain the solution of y. Clearly, the solution algorithms for integration

and for algebraic equation solution can be independent. In general x and y can be

solved for, alternately in a specified manner. In the setting of alternate methods, an

explicit method for the differential equations is quite different from an implicit

method. The following describes two examples which demonstrate how to solve

for x(tþDt) and y(tþDt) at tþ Dt, given x(t) and y(t). (By convention, for power system
stability analysis, a variable with subscript (t) represents the calculated value at t,
and Dt means step size.)

Based on the Runge–Kutta formula in (7.24), we have the following computa-

tional procedure:

(1) Compute k1 ¼ Dtf(x(t), y(t))

(2) Compute x1 ¼ xðtÞ þ 1
2
k1 and solve algebraic equation 0 ¼ g(x1, y1) to get y1,

then compute k2 ¼ Dtf(x1, y1)

(3) Compute x2 ¼ xðtÞ þ 1
2
k2, then solve algebraic equation 0 ¼ g(x2, y2) to get y2,

then compute k3 ¼ Dtf(x2, y2)

(4) Compute x3 ¼ x(t) þ k3, then solve algebraic equation 0 ¼ g(x3, y3) to get y3,

then compute k4 ¼ Dtf(x3, y3)

(5) Finally compute xðtþDtÞ ¼ xðtÞ þ 1
6
ðk1 þ 2k2 þ 2k3 þ k4Þ and solve the corres-

ponding algebraic 0 ¼ g(x(tþDt), y(tþDt)) for y(tþDt)

To solve the differential equations according to the implicit trapezoidal rule

(7.26), one needs to solve the following algebraic equations:

xðtþDtÞ ¼ xðtÞ þ Dt
2

fðxðtþDtÞ; yðtþDtÞÞ þ fðxðtÞ; yðtÞÞ
h i

; ð7:33Þ

0 ¼ gðxðtþDtÞ; yðtþDtÞÞ: ð7:34Þ

The alternate solution steps for the above nonlinear algebraic equations are as

follows:

(1) Given initial estimate y
½0�
ðtþDtÞ of y(tþDt), solve for the estimated value x

½0�
ðtþDtÞ of

x(t þDt) based on (7.33); that is, solve the following equation:

x
½0�
ðtþDtÞ ¼ xðtÞ þ Dt

2
fðx½0�ðtþDtÞ; y

½0�
ðtþDtÞÞ þ fðxðtÞ; yðtÞÞ

h i
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(2) Compute the improved solution y
½1�
ðtþDtÞ of y(tþDt) using x

½0�
ðtþDtÞ and (7.34), that is,

solve the following equation for y
½1�
ðtþDtÞ:

0 ¼ gðx½0�ðtþDtÞ; y
½1�
ðtþDtÞÞ

(3) Replace y
½0�
ðtþDtÞ with y

½1�
ðtþDtÞ, return to step (1). This procedure continues until

convergence is reached

To obtain better starting values for the purpose of reducing the number of

iterations, y
½0�
ðtþDtÞ can be set to the value of the previous step, it can also be

calculated by extrapolation using the values of previous steps. From the above

iteration sequence, it is not difficult to find that the solutions x(tþDt) and y(tþDt) need

not be consistent unless the number of iterations is unlimited. That is, x(tþDt)

and y(tþDt) cannot satisfy (7.33) and (7.34) to the same degree of precision, this

error is termed interfacing error. Obviously, the only means to reduce interface

error is to increase the number of iterations, which necessarily increases the

computational burden.

7.2.2.2 Simultaneous Solution Method

Simultaneous solution methods typically use implicit methods. The basic steps are

as follows. First transform the differential equations into algebraic equations

according to an implicit integration formula. The transformed equations together

with the original algebraic equations form a set of simultaneous algebraic equa-

tions. By solving this set of simultaneous algebraic equations, one obtains the

desired result. Evidently this solution method does not have the problem of inter-

facing error. If the implicit trapezoidal rule is applied, the simultaneous method is

equivalent to solving (7.33) and (7.34) simultaneously. Normally the simultaneous

algebraic equations are solved using the Newton method. To improve computational

efficiency, the sparsity of the Jacobian matrix should be fully exploited.

7.2.3 General Procedure for Transient Stability Analysis

The basic idea of transient stability study is to compute the dynamic response of a

power system after a disturbance occurs, and judge if the system is stable based on

the dynamic response.

In fact, the differential-algebraic equation (7.1) and (7.2) for modeling the

dynamic behavior of a power system should be nonautonomous and discontinuous

because of the nature of the power system. The composition and/or form of the
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differential-algebraic equations can change during a transient stability study period

depending on the occurrence of faults or switching. A power system can be subject

to a variety of faults or switching; for example, short circuits, removal of transmis-

sion facilities, action of relays and auto-reclosing, forced connection/disconnection

of series capacitors and braking resistors, etc. Under these circumstances, the

topology and/or parameters of a power network change; as a result, the algebraic

equations must be modified accordingly. As further examples, the tripping of a

generator, the activation of a high-speed excitor, and the fast control of a valve can

all change the model/parameters of a generator, thus the algebraic equations under-

lying the models have to be correctly adjusted. Aside from faults and switching, the

existence of hard limits in regulator models also results in discontinuity in the

differential-algebraic equations for stability study.

The faults or switching occurring at various times introduce discontinuities into the

differential-algebraic equations for stability study, causing the operating variable y(t)
to exhibit jump behavior. However, a fundamental fact about differential equations

is that the solution of a differential equation depends continuously on initial values.

This ensures that the state variable x(t) changes in a continuous pattern. As a matter

of the fact, the entire transient stability study period can be divided into multiple

time intervals identified by the times at which faults or switch changes occur.

Within each interval, the structures of the functions f and g remain constant, and

the differential-algebraic equations for each interval are autonomous. At the end of

an interval (instant t�0) and the beginning of next interval (instant tþ0), the structure

and parameters of (7.1) and (7.2) should be appropriately modified to reflect the

fault or switch operation. Since x(tþ0)¼ x(t�0), the modified network equations can

be solved viewing x(tþ0) as a known parameter. Similarly, y(tþ0) can be computed.

Having x(tþ0) and y(tþ0) for the new interval, the solution methods introduced in

Sect. 7.2.2 can be applied to solve the differential-algebraic equations.

Normally the time at which the system under study suffers a major disturbance is

set to the starting time (i.e., t ¼ 0 s). In the process of solving the differential-

algebraic equations, the stability of the system is determined based on certain

criteria evaluated from the system operating state. The basic computational proce-

dure for a transient stability study is illustrated in Fig. 7.8.

Before starting the procedure, one should compute the prefault operating state of

the system under study, using a load flow program. More specifically, one uses a

load flow program to calculate the voltage and power injection at each node, and

compute the operating variables y(0), then compute the initial values of state

variables x(0), as illustrated in blocks 1 and 2.

In block 3, differential equations for each system component are formed, and the

corresponding network equations are set up according to the specified solution algo-

rithm. It should be noted that the network model used for transient stability study is

different from that used in regular loadflowstudy. The former should take into account

the effect of generators and loads. Later in this chapter we will revisit this issue.

The formal transient stability calculation starts in block 4. In existing produc-

tion-grade code, integration step size Dt is fixed to be a constant. If we assume that

the computation reaches the point t, then x(t) and y(t) are known quantities. Before
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proceeding to compute x(tþDt) and y(tþDt), one should check if there is a fault or

switch change at instant t. If the answer to the question is yes, then the differential-

algebraic equations should be appropriately modified, as shown in blocks 5 and 6 in

the figure. Furthermore, if the fault or switching occurs in the network, system

operation variables y(t) can exhibit jump behavior therefore the network equation

must be resolved to get the postfault or postswitching system variable y(tþ0), as in

blocks 7 and 8 in the figure. Because the state variables do not have jump behavior,

the prefault x(t) and postfault x(tþ0) are identical.

Block 9 is for solving the differential-algebraic equations, that is to solve

for x(tþDt) and y(tþDt) given the known quantities x(t) and y(t) using an alternating

method or a simultaneous method. Then in block 10 the stability is checked against

certain criteria (e.g., if the maximum relative rotor angle among generators exceed

Form differential-algebraic equations

If a fault /switch occurs

Modify differential or algebraic equation

If a fault /switch occurs

Check if the system stable

Output results, stop

Input data
Perform pre-fault load flow study, and
calculate initial value )0(y

Solve network equations
and re-calculate )( ty

Compute )( tt Δ+y & )( tt Δ+x

Set ttt Δ+=

maxtt ≥

1

2

3

4

5

6

7

8

9

10

11

13

Yes

Yes

Yes

No

No

No

No

12

Compute initial values of  x(0)

Set t  = 0

Fig. 7.8 Basic procedure for
transient stability study
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180�, the system is considered unstable). If the system becomes unstable, then the

calculation results can be output, and the procedure stops (block 13); otherwise,

increase the time by Dt, via block 11, to proceed to the next iteration. The calcula-

tion is repeated until the prespecified termination time tmax is reached (block 13).

The choice of tmax is related to the problem under study. If only the first swing is

of interest, tmax¼ 1� 1.5 s. Transient stability computations of this type allow for a

number of simplifications. For instance, the governor responses of generators can

be neglected, thus the outputs of prime movers are viewed as constants. The role of

excitation systems is approximated as keeping generator voltage sources constant

during the transient stability study period. The stability analysis under these

assumptions will be described in detail in Sect. 7.4. For a large-scale interconnected

power system, the process of loss of stability slowly develops. Typically the

simulation needs to be performed for several, even a dozen, seconds in order to

obtain meaning results. Under such circumstances, detailed component models

should be assumed. For example, excitation systems, prime movers and speed-

governing systems, HVDC systems, and other controls must be correctly modeled.

This is the topic of Sect. 7.5.

Most importantly, it is worth noting that a commercial-grade transient stability

study code must fulfill the following basic requirements:

(1) The code provides sufficiently accurate results: the errors of generator rotor

angles during the entire study period should be less than a few percent.

(2) The algorithm is reliable: the numerical stability of the solution algorithm and

the convergence performance of the iteration process should meet minimum

requirements.

(3) The code requires sufficiently low memory space: this allows one to perform

large system stability studies using a computer with limited memory space.

(4) The code should be flexible and provide easy maintenance: this allows a user to

perform customized studies using different component models.

The development of commercial code must make a trade-off among computa-

tional speed, precision, reliability, memory, and flexibility.

7.3 Network Mathematical Model for Transient

Stability Analysis

Similar to load flow and short circuit studies, the node voltage model of the network

for transient stability study can be represented in vector form as follows:

YV ¼ I; ð7:35Þ
where I and V denote network node current injection and node voltage in vector

form, respectively, Y denotes the node admittance matrix. Network equation (7.35)

is linear, and the admittance matrix Y is determined by network topology and

parameters only.
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In subsequent analysis, the network equation is cast in real-number formulation:

G11 �B11

B11 G11

� �
� � � G1i �B1i

B1i G1i

� �
� � � G1n �B1n

B1n G1n

� �
..
. ..

. ..
.

Gi1 �Bi1

Bi1 Gi1

� �
� � � Gii �Bii

Bii Gii

� �
� � � Gin �Bin

Bin Gin

� �
..
. ..

. ..
.

Gn1 �Bn1

Bn1 Gn1

� �
� � � Gni �Bni

Bni Gni

� �
� � � Gnn �Bnn

Bnn Gnn

� �

2
6666666666664

3
7777777777775

Vx1

Vy1

� �
..
.

Vxi

Vyi

� �
..
.

Vxn

Vyn

� �

2
6666666666664

3
7777777777775
¼

Ix1
Iy1

� �
..
.

Ixi
Iyi

� �
..
.

Ixn
Iyn

� �

2
6666666666664

3
7777777777775
;ð7:36Þ

where n denotes the number of nodes,Gij and Bij denote the real and imaginary parts

of the elements Yij of the network admittance matrix, respectively, Ixi, Iyi, Vxi, and

Vyi denote the real and imaginary parts of node current injection and node voltage,

respectively.

In an interconnected power system, dynamic devices which seem independent

from each other are interconnected via the transmission network. At any instant during

a transient stability study period, current injections of these dynamic devices follow

their operating characteristics, the currents in the entire network follow the fundamen-

tal Kirchhoff’s law. The former is determined by the algebraic equations of the

dynamic device, while the later is reflected in the network equations. Therefore, to

solve the network equations, the algebraic equations of dynamic devices have to be set

up so that the network equations and device equations can be solved as a set of

simultaneous equations. Generally speaking, the current injections introduced from

dynamic devices are the state variables, and they are functions of corresponding node

voltages. Deriving the formula of these functions is the main objective of this section.

Faults or network switching occurring during a stability study period can cause

changes to the network topology and parameters. Particularly, if the fault or switch-

ing is unsymmetrical in the setting of the three-phase system, the topology and

parameters of the network equations are dependent on positive sequence network as

well as negative sequence and zero sequence network. Thus the network equations

under various fault or switching conditions, during a transient stability study period,

have to be carefully laid out.

7.3.1 The Relationship Between Network and Dynamic Devices

7.3.1.1 The Relationship Between Generators and the Network

For the various synchronous machine models discussed in Sects. 6.2.2 and 6.2.3, the

stator voltage equation under d � q coordinates can be unified as follows:

Vd

Vq

� �
¼ �Ed

�Eq

� �
� Ra � �Xq

�Xd Ra

� �
Id
Iq

� �
; ð7:37Þ

7.3 Network Mathematical Model for Transient Stability Analysis 431



where �Ed , �Eq, �Xd, and �Xq denote the d-axis and the q-axis voltage and impedance,

respectively. Depending upon the model used to represent the machine, their values

can be determined by comparing (7.37) with the original stator voltage equation, as

summarized in Table 7.1.

Apply the coordinate transformation (6.62) to (7.37), the stator voltage equation

under x � y coordinate is obtained as

sin d � cos d
cos d sin d

� �
Vx

Vy

� �
¼ �Ed

�Eq

� �
� Ra � �Xq

�Xd Ra

� �
sin d � cos d
cos d sin d

� �
Ix
Iy

� �
: ð7:38Þ

After simple manipulations, the generator current injections can be derived from

(7.38) as follows:

Ix
Iy

� �
¼ gx bx

by gy

� �
�Ed
�Eq

� �
� Gx Bx

By Gy

� �
Vx

Vy

� �
; ð7:39Þ

where

gx ¼ Ra sin d� �Xd cos d
R2
a þ �Xd

�Xq
bx ¼ Ra cos dþ �Xq sin d

R2
a þ �Xd

�Xq

by ¼ �Ra cos d� �Xd sin d
R2
a þ �Xd

�Xq
gy ¼ Rag sin d� �Xqg cos d

R2
a þ �Xd

�Xq

Gx ¼ Ra � ð �Xd � �XqÞ sin d cos d
R2
a þ �Xd

�Xq
Bx ¼

�Xd cos
2 dþ �Xq sin

2 d
R2
a þ �Xd

�Xq

By ¼ � �Xd sin
2 d� �Xq cos

2 d
R2
a þ �Xd

�Xq
Gy ¼ Ra þ ð �Xd � �XqÞ sin d cos d

R2
a þ �Xd

�Xq

9>>>>>>>>>>>=
>>>>>>>>>>>;

: ð7:40Þ

Substituting the current injection formula derived from (7.39) into network

equation (7.36), and applying some simple manipulations, one can conclude that

the interconnection of a generator is equivalent to a current injection at the

corresponding node:

I0x
I0y

� �
¼ gx bx

by gy

� �
�Ed
�Eq

� �
:

Table 7.1 Machine model and parameters

Models Parameters

�Ed
�Eq �Xd

�Xq

Varying E0
q, E

00
q, E

0
d, and E00

d or varying E0
q, E

00
q, and E00

d E00
d E00

q X00
d X00

q

Varying E0
q and E0

d E0
d E0

q X0
d X0

q

Varying E0
q or constant E

0
q ¼ C 0 E0

q X0
d Xq

E0 ¼ E0
q ¼ C, Xq ¼ X0

d 0 E0
q X0

d X0
d
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This current is termed generator pseudocurrent. Furthermore, the corresponding

block of the admittancematrix of the network should be added to by amatrix as follows:

Gx Bx

By Gy

� �
:

It is not difficult to see that, after connecting a generator into the system, the

network equations during the stability study period are still linear, however, the

generator pseudocurrents and the corresponding admittance matrix are functions of

the generator variables �Ed, �Eq, and d. Thus these linear equations are time varying.

If simpler synchronous machine models are used in the study, the network

equations can be simplified too. These simplified equations appear as n-order
equations in the complex plane. Unless there is a fault or switch change, the

network equations remain unaltered. Thus during the study period, the coefficient

matrix of the network equations needs to be refactorized using triangular factoriza-

tion only when there is a fault or switch change. In what follows we discuss the

network model associated with two simplified machine models.

If the effect of damper windings is not considered, the varying E0
q or E

0
q ¼ C

model for synchronous machines in Table 7.1 should be applied. In this case, (7.39)

can be reformulated as

Ix
Iy

� �
¼

Ra � X0
d � Xq

2
sin 2d

R2
a þ X0

dXq

X0
d þ Xq

2
þ X0

d � Xq

2
cos 2d

R2
a þ X0

dXq

�X0
d þ Xq

2
þ X0

d � Xq

2
cos 2d

R2
a þ X0

dXq

Ra þ X0
d � Xq

2
sin 2d

R2
a þ X0

dXq

2
6666664

3
7777775

� E0
q cos d� Vx

E0
q sin d� Vy

� �
: ð7:41Þ

From the above, one obtains the formula of generator current into node i repre-
sented in the complex domain:

_Ii ¼ _I0i � Y0
i
_Vi; ð7:42Þ

where

Y0
i ¼

Rai � j 1
2
ðX0

di þ XqiÞ
R2
ai þ X0

diXqi
; ð7:43Þ

_I0i ¼
Rai � jXqi

R2
ai þ X0

diXqi

_E0
qi � j

1
2
ðX0

di � XqiÞ
R2
ai þ X0

diXqi
ej2di _̂Vi

_E0
qi ¼ E0

qie
jdi

9>=
>;: ð7:44Þ
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The concept underlying (7.42) can be explained using the circuit model illu-

strated in Fig. 7.9, where Y0i is called generator pseudoadmittance and is dependent

only on generator parameters. The generator pseudoadmittance can be incorporated

into the network admittance matrix; _I0i is the generator pseudocurrent injection

which is related to generator terminal voltage. The network equations are now

nonlinear, thus can only be solved using an iterative procedure. As one example,

assume an initial value of voltage _Vi, compute _I0i based on (7.44), then solve the

network equations for an improved solution of _Vi, taking _I0i as current injection. This
procedure is repeated until convergence is reached. In normal computational steps,

the iteration converges within 2–3 steps; while under fault or switching conditions,

it may take a few more steps to obtain a converged solution [196].

If synchronous machines are represented by classical models, the effects of

damper windings and salient poles are neglected; in addition, the transient voltages

E0 of generators behind X0
d are assumed to be constants during the stability study

period. This situation is shown in Table 7.1, where E0 ¼ E0
q ¼ C and Xq ¼ X0

d.

Correspondingly, from (7.42)–(7.44), it follows that

Y0
i ¼

1

Rai þ jX0
di

; ð7:45Þ

_I0i ¼
1

Rai þ jX0
di

_E0
i

_E0
i ¼ E0

ie
jdi

9>=
>;: ð7:46Þ

Obviously generator pseudocurrent _I0i is independent of generator terminal

voltage _Vi; thus, once pseudoadmittance Y0i is incorporated into the network

admittance matrix, the network equations can be solved by direct Gauss elimination

since _I0i is a known quantity.

7.3.1.2 Relationship Between Loads and Network

Depending upon the characteristics of loads, the ways loads are treated are different:

1. If loads are represented by constant impedance models, the constant impedances

can be incorporated into the network admittance matrix.

V
·
i

Yi′

I·i

I·i′

io

o

Fig. 7.9 Generator equivalent
circuit when damper winding is not

considered
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2. If loads are modeled as dynamic devices and only the mechanical–electrical

interactions of induction motors in synthesized loads are taken into consider-

ation, loads are still modeled as impedances. However, these impedances are not

constant during the stability study period, but vary as the slip-speeds of the

induction motors vary. Therefore the impedances representing induction motor

loads must be updated, given the slips of the induction motors in each step of the

transient stability computation. This means that the diagonal elements of the

network admittance matrix are varying in the calculation. The network admit-

tance matrix has to be refactorized in each step of the transient stability calcula-

tion when solving the network equations.

3. Again, if loads are modeled as dynamic devices and only the mechanical–

electrical interactions of induction motors in synthesized loads are taken into

consideration, they can be represented using the Norton equivalent circuit

described in Sect. 5.5.2, as illustrated in Fig. 7.10. That is, the load impedances

R þ jX and KM (r1 þ jx0) are incorporated into the network; thus, the loads

become simple current sources. This treatment is similar to the way generators

connected to the network are treated.

In the above load representations, the underlying networks are linear.

4. If loads are modeled based on steady-state voltage characteristics, the

corresponding node current injections are nonlinear functions of node voltage;

as a result, the network equations are nonlinear. According to (6.148) and

(6.153), the steady-state voltage characteristics of loads have two formulations,

these are the second-order polynomial formulation and exponential formulation:

Pi ¼ Pið0Þ aP
Vi

Við0Þ

� �2

þ bP
Vi

Við0Þ

� �
þ cP

" #

Qi ¼ Qið0Þ aQ
Vi

Við0Þ

� �2

þ bQ
Vi

Við0Þ

� �
þ cQ

" #
9>>>>>=
>>>>>;

Pi ¼ Pið0Þ
Vi

Við0Þ

� �m

Qi ¼ Qið0Þ
Vi

Við0Þ

� �n

9>>>=
>>>;
: ð7:47Þ

Note that the active and reactive powers in the above equations are the loads

absorbed from the network.

Network

VM

R+jX Me ′

KM (r1 + jx′)

KM (r1 + jx′)

Fig. 7.10 Load representation
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Node voltage, current injection, and power injection are connected by the fol-

lowing relationship:

� Pi � jQi ¼ _Vi
_̂Ii ¼ ðVxi þ jVyiÞðIxi � jIyiÞ

from which it is easy to find the relationships between load current injections and

node voltages.

If loads are represented by second-order polynomial forms, the load current

injections are found to be

Ixi ¼�Pið0ÞaPVxiþQið0ÞaQVyi

V2
ið0Þ

�Pið0ÞbPVxiþQið0ÞbQVyi

Við0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xiþV2

yi

q �Pið0ÞcPVxiþQið0ÞcQVyi

V2
xiþV2

yi

Iyi ¼
Qið0ÞaQVxi�Pið0ÞaPVyi

V2
ið0Þ

þQið0ÞbQVxi�Pið0ÞbPVyi

Við0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xiþV2

yi

q þQið0ÞcQVxi�Pið0ÞcPVyi

V2
xiþV2

yi

9>>>>>=
>>>>>;
;

ð7:48Þ

where the terms proportional to the square of voltages can be incorporated into the

network admittance matrix as constant admittances, thus (7.48) is reduced to the

last two terms only.

If loads are represented by exponential functions, the load current injections are

found to be

Ixi ¼ �Pið0ÞVm�2
i Vxi

Vm
ð0Þ

� Qið0ÞVn�2
i Vyi

Vn
ð0Þ

Iyi ¼
Qið0ÞVn�2

i Vxi

Vn
ð0Þ

� Pið0ÞVm�2
i Vyi

Vm
ð0Þ

9>>>>=
>>>>;
: ð7:49Þ

7.3.1.3 The Relationship Between FACTS Devices and the Network

Here we will only describe the relationship between SVC/TCSC and the network;

also the relationship between the other FACTS devices and the network can be

derived following the same concept.

1. SVC: In general an SVC is connected to a high-voltage bus of the network

through a transformer (let the index of this bus be i). Thus the shunt susceptance
of the device is equal to

j
BSVC

1� XTBSVC

:
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From the relationship between nodal voltage _Vi and current injection _Ii it is
not difficult to find the real and imaginary parts of the current injection as

follows:

Ixi ¼ BSVC

1� XTBSVC

Vyi

Iyi ¼ � BSVC

1� XTBSVC

Vxi

9>>=
>>;; ð7:50Þ

where XT is the impedance of the transformer, BSVC is the equivalent suscep-

tance of the SVC, Vxi and Vyi are the real and imaginary parts of the voltage of

the high-voltage bus.

2. TCSC: Regardless of the place where the TCSC is connected in series in a line,

it is always possible to put two nodes around the TCSC, let the nodes be i and j.
As a matter of the fact, the role a TCSC plays is equivalent to two current sources

having the same magnitude but opposite directions at node i and j, the current

injections are easily derived as

Ixi ¼ �Ixj ¼ BTCSCðVyi � VyjÞ
Iyj ¼ �Iyi ¼ BTCSCðVxi � VxjÞ

)
; ð7:51Þ

where BTCSC is the equivalent susceptance of the TCSC, Vxi, Vyi, Vxj, and Vyj are

the real and imaginary parts of the voltages of the two nodes.

7.3.1.4 The Relationship Between Two-Terminal HVDC and the Network

Let variables with subscript ‘‘d’’ denote quantities on the DC side, and subscripts

‘‘R’’ and ‘‘I’’ denote rectifier and inverter sides (they have the same meaning in

subsequent text), respectively. From (5.52)–(5.54) and (5.57) (where kg � 1), the

steady-state equations of the rectifier are as follows:

VdR ¼ kRVR cos a� XcRIdR

VdR ¼ kRVR cos’R

IR ¼ kRIdR

PR ¼ VdRIdR ¼
ffiffiffi
3

p
VRIR cos’R

QR ¼ PRtg’R

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð7:52Þ
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and the inverter side steady-state equations:

VdI ¼ kIVI cos bþ XcIIdI

VdI ¼ kIVI cos’I

II ¼ kIIdI

PI ¼ VdIIdI ¼
ffiffiffi
3

p
VIII cos’I

QI ¼ PItg’I

9>>>>>>>>=
>>>>>>>>;
: ð7:53Þ

Based on (7.52) and (7.53), the power injections into the AC system by the DC

system can denoted by functions of Id, a, b, VxR, VyR, VxI, and VyI.

The power injection into the AC bus from the rectifier is given by

PR ¼� PR ¼ �VdRIdR ¼ XcRI
2
dR � kRIdR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xR þ V2

yR

q
cos a

QR ¼� QR ¼ PR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2RV

2
R � V2

dR

p
VdR

¼ �IdR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2RV

2
R � V2

dR

q

¼� IdR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2RðV2

xR þ V2
yRÞ sin2 aþ 2kRXcRIdR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xR þ V2

yR

q
cos a� X2

cRI
2
dR

r

9>>>>>>>=
>>>>>>>;

ð7:54Þ

and the power injection from the inverter is

PI ¼ PI ¼ VdIIdI ¼ XcII
2
dI þ kIIdI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xI þ V2

yI

q
cos b

QI ¼ QI ¼ PI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2I V

2
I � V2

dI

p
VdI

¼ IdI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2I V

2
I � V2

dI

q

¼ IdI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2I ðV2

xI þ V2
yIÞ sin2 b� 2kIXcIIdI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xI þ V2

yI

q
cosb� X2

cII
2
dI

r

9>>>>>>>=
>>>>>>>;
: ð7:55Þ

Thus the current injections into the AC system from the rectifier and inverter are

obtained as

IxR ¼ PRVxR þQRVyR

V2
xR þ V2

yR

; IyR ¼ PRVyR � QRVxR

V2
xR þ V2

yR

IxI ¼ PIVxI þ QIVyI

V2
xI þ V2

yI

; IyI ¼ PIVyI � QIVxI

V2
xI þ V2

yI

9>>>>=
>>>>;
: ð7:56Þ

Substituting (7.54) and (7.55) into (7.56), and eliminating variables PR, QR, PI,

and QI, the current injections IxR and IyR become functions of IdR, a, VxR and VyR,

and IxI and IyI are functions of variables IdI, , bVxI, and VyI.
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7.3.2 Modeling Network Switching and Faults

When a fault or switch change is applied to a network, the network admittance

matrix needs to be correctly modified. If the fault or switch is three-phase symmet-

rical, for example, a three-phase short circuit, the removal of three phases of a

device, the forced connection of a series capacitor, the introduction or removal of a

braking resistor, etc., the modification to the admittance matrix is straightforward

because such a fault or switching operation results in a parameter change in a shunt

branch or series branch of the network.

Most of short circuits and device removals are unsymmetrical, and thus have to

be analyzed using a symmetrical components method. In addition to dealing with

the positive sequence network of the power system under study, one has to consider

the negative sequence and zero sequence networks. On the other hand, in stability

studies we are mostly interested in the quantities of the positive sequence network,

paying little if any attention to the quantities of the negative and zero sequence

networks. The effects of the negative and zero sequence networks can be modeled

using an equivalent impedance viewed from the positive sequence network.

When analyzing unsymmetrical problem using the concept of symmetrical

components, phase A is often taken as the reference, the boundary conditions of

various types of short circuit or open-conductor are expressed in terms of the

sequence quantities of phase A. When a short circuit or an open-conductor occurs,

the phase that exhibits different behavior compared with the other two phases is

called the special phase. For instances, the special phase in a single-line-to-ground

fault is the phase connected to ground; the special phase in a double-line-to-ground

or line-to-line fault is the phase that is not faulted. The special phase in a single-

line-open-conductor is the phase that is open, and the special phase in a double-line-

open-conductor is the phase that is intact. When the special phase of a short circuit

or open-conductor is phase A, the three sequence networks can be directly

connected to form the so-called composite sequence network according to certain

boundary conditions. This is equivalent to connecting supplementary impedance to

the faulted terminals of the positive sequence network. The size of the supplemen-

tary impedance depends on the type of fault, as illustrated in Tables 7.2 and 7.3.

Here the ‘‘faulted terminals’’ mean, in a short circuit the terminals between faulted

bus and ground and in an open-conductor fault the two nodes resulting from the

open-conductor. The network admittance matrices under these circumstances can

be easily formed.

Table 7.2 Supplemental impedances of short circuits

Type of short circuit Supplemental impedance

Single-line-to-ground Z
ð2Þ
S þ Z

ð0Þ
S

Double-line-to-ground Z
ð2Þ
S Z

ð0Þ
S =ðZð2Þ

S þ Z
ð0Þ
S Þ

Line-to-line Z
ð2Þ
S

Z
ð2Þ
S is the self-impedance of the short circuit in negative sequence network,

Z
ð0Þ
S is the self-impedance of the short circuit in zero sequence network
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When the special phase is not phase A, there is a complex operator a ¼ ej120
�
in

the boundary conditions, therefore the three sequence networks cannot be directly

connected to form a combined sequence network. However, we can connect the

three sequence networks via three ideal transformers with ratios 1:n0(0), 1:n0(1), and
1:n0(2) in the zero, positive, and negative sequence networks. The two sides of these
transformers have the same voltage/current ratios thus the transformers introduce

no losses. For different special phases, these transformers have different ratios in

different sequence networks, as described in Table 7.4.

After introducing ideal transformers, the various types of unsymmetrical short

circuit and open-conductor can be classified into two categories: series and shunt

(or parallel) faults based on the topology of the three sequence networks. The faults

belonging to the series category include single-line-to-ground, double-line-open-

conductor, and single-line-to-ground of a series capacitor. The boundary conditions

of these faults are as follows: the sum of three sequence voltages is zero, and the

sequence currents are identical in the nonstandard ratio side of the transformer. The

faults belonging to the shunt category include double-line-to-ground, single-line-

open-conductor, and double-line short circuit of capacitors. The boundary condi-

tions of this class of faults are as follows: in the nonstandard ratio side of the

transformer, the sum of sequence currents is equal to zero, and the sequence

voltages are equal.

When simultaneous short circuits or open-conductors occur, and they occur in

different phases, the method for handling single faults can still be applied to modify

the admittance matrix of the positive sequence network, but now the concept of

supplementary impedance is generalized to that of synthesized impedance matrix.

In what follows, we introduce the basic concept of synthesized impedance matrix

using single-line-to-ground and single-line-open-conductor faults as examples.

Suppose a single-line-to-ground fault occurs at bus k (let this be fault 1), and a

single-line-open-conductor occurs between buses i and j (let this be fault 2), and the
two faults occur in different phases. By the boundary conditions of the three

sequence components at the place where a fault occurs, the combined sequence

Table 7.3 Supplemental impedances of open-conductor

Type of open-conductor Supplemental impedance

Single-line-open-conductor Z(2)Z(0)/(Z(2) þ Z(0))

Double-line-open-conductor Z(2) þ Z(0)

Z(2) is the equivalent impedance of the open-conductor terminals in the

negative sequence network, Z(0) is the equivalent impedance of the open-
conductor terminals in the zero sequence network

Table 7.4 The ratios of ideal transformers

Special phase Sequence

Zero Positive Negative

A 1 1 1

B 1 a2 a

C 1 a a2
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network can be obtained as in Fig. 7.11a. In the figure, n
0ð1Þ
1 , n

0ð1Þ
2 , n

0ð2Þ
1 , and n

0ð2Þ
2 are

the ratios of ideal transformers, the specific values of them depending on the special

phases. For ease of mathematical manipulation, let us recast the combined sequence

network in Fig. 7.11a as that in Fig. 7.11b. It is not difficult to see that the ratios in

the two figures obey the following relationships:

n
ð2Þ
1 ¼ n

0ð2Þ
1 =n

0ð1Þ
1 ; n

ð2Þ
2 ¼ n

0ð2Þ
2 =n

0ð1Þ
2 ; n

ð0Þ
1 ¼ 1=n

0ð1Þ
1 ; n

ð0Þ
2 ¼ 1=n

0ð1Þ
2 :

In the following, we derive the impedance matrix Zf viewed from the fault buses

of the positive sequence network into the negative and zero sequence network based

on the combined sequence network. We call Zf the synthesized impedance matrix

of simultaneous faults.

In Fig. 7.11b, the single-line-to-ground part on the left forms a loop circuit, let

the loop current be _I
ð1Þ
1 , and the single-line-open-conductor part on the right forms

two independent loop circuits, let the currents in these circuits be _I
ð1Þ
2 and _I

ð0Þ
2 .

Therefore the currents _I
ð2Þ
1 , _I

ð2Þ
2 , _I

ð0Þ
1 , and _I

ð0Þ
2 of the faulted buses in the negative and

zero sequence networks can be obtained in terms of these loop currents as follows:

IS ¼ CIL; ð7:57Þ

where C the coincidence matrix is dependent on fault conditions. The definitions of

the symbols are

IS ¼

_I
ð2Þ
1

_I
ð2Þ
2

_I
ð0Þ
1

_I
ð0Þ
2

2
6664

3
7775; IL ¼

_I
ð1Þ
1

_I
ð1Þ
2

_I
ð0Þ
2

2
64

3
75; C ¼

1 0 0

0 �1 �1

1 0 0

0 0 1

2
664

3
775: ð7:58Þ

Positive
sequence

Negative
sequence

zero
sequence

Positive
sequence

Negative
sequence

Zero
sequence

1:)1(
1n ′ )1(

2:1 n ′

k

o

i

j

k

o

i

)1(
1I

1:)2(
1n

j

k

o j

i

k

o

i

j

k

o j

i

k

o

i

j

)1(
1V

)2(
1I

)2(
1V

)0(
1V

)0(
1I

)1(
2I

)1(
2V

)2(
2I

)2(
2V

)0(
2I

)0(
2V

)2(
2:1 n

1:)0(
1n )0(

2:1 n

1:)2

a

b

(
1n ′ )2(

2:1 n ′

• •

•

•

•

•

•
•

•

•

•

•

Fig. 7.11 Combined sequences of two simultaneous faults
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Based on loop voltage equations, the relationship among the voltages of the

faulted buses in each sequence can be obtained as

VL ¼ CTVS; ð7:59Þ
where CT is the transpose of matrix C and

VL ¼
_V
ð1Þ
ok

_V
ð1Þ
ji

0

2
64

3
75; VS ¼

_V
ð2Þ
1

_V
ð2Þ
2

_V
ð0Þ
1

_V
ð0Þ
2

2
6664

3
7775: ð7:60Þ

From the transformer nonstandard ratio side point of view, the relationship

among the currents and voltages of negative and zero sequence networks is

expressed as

_V
ð2Þ
1

_V
ð2Þ
2

" #
¼ Z

ð2Þ
11 Z

ð2Þ
12

Z
ð2Þ
21 Z

ð2Þ
22

" #
_I
ð2Þ
1

_I
ð2Þ
2

" #
; ð7:61Þ

_V
ð0Þ
1

_V
ð0Þ
2

" #
¼ Z

ð0Þ
11 Z

ð0Þ
12

Z
ð0Þ
21 Z

ð0Þ
22

" #
_I
ð0Þ
k

_I
ð0Þ
i

" #
: ð7:62Þ

Because of the existence of ideal transformers in negative and zero sequence

networks, the impedance matrices in (7.61) and (7.62) are unsymmetrical, in

general. The computation of the elements of these matrices will be introduced in

subsequent sections. Let us incorporate (7.61) and (7.62) into a single equation:

_V
ð2Þ
1

_V
ð2Þ
2

_V
ð0Þ
1

_V
ð0Þ
2

2
6664

3
7775 ¼

Z
ð2Þ
11 Z

ð2Þ
12 0 0

Z
ð2Þ
21 Z

ð2Þ
22 0 0

0 0 Z
ð0Þ
11 Z

ð0Þ
12

0 0 Z
ð0Þ
21 Z

ð0Þ
22

2
6664

3
7775

_I
ð2Þ
1

_I
ð2Þ
2

_I
ð0Þ
1

_I
ð0Þ
2

2
6664

3
7775 ð7:63Þ

or in compact form:

VS ¼ ZIS: ð7:64Þ

Making use of the matrix Z and coincidence matrix C, the relationship between

positive sequence voltage and current can be derived. To this end, substituting

(7.64) and (7.57) into (7.59), the relationship between faulted loop voltage and

current is found to be

VL ¼ ZLIL; ð7:65Þ
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where ZL is termed the loop impedance matrix, defined by

ZL ¼ CTZC: ð7:66Þ
In this example,

ZL ¼
1 0 1 0

0 �1 0 0

0 �1 0 1

2
4

3
5

Z
ð2Þ
11 Z

ð2Þ
12 0 0

Z
ð2Þ
21 Z

ð2Þ
22 0 0

0 0 Z
ð0Þ
11 Z

ð0Þ
12

0 0 Z
ð0Þ
21 Z

ð0Þ
22

2
6664

3
7775

1 0 0

0 �1 �1

1 0 0

0 0 1

2
6664

3
7775

¼
Z0
11 Z0

12 Z0
13

Z0
21 Z0

22 Z0
23

Z0
31 Z0

32 Z0
33

2
4

3
5: ð7:67Þ

Eliminating current _I
ð0Þ
2 in (7.65), it follows:

_V
ð1Þ
ok

_V
ð1Þ
ji

" #
¼

Z11 Z12

Z21 Z22

" #
_I
ð1Þ
1

_I
ð1Þ
2

" #
; ð7:68Þ

where the elements Zmn (m and n can be equal to 1 or 2) of the impedance matrix are

computed based on:

Zmn ¼ Z0
mn �

Z0
m3Z

0
3n

Z0
33

; ð7:69Þ

(7.68) is rewritten in compact form as

Vf ¼ ZfIf : ð7:70Þ

Finally, the impedance matrix Zf, viewed from the faulted buses of the positive

sequence network into the negative and zero sequence networks, is obtained.

Equation (7.70) can also be expressed in the form of synthesized admittance

matrix as follows:

If ¼ YfVf ; ð7:71Þ

where Yf ¼ Z�1
f . Once Yf is determined, the elements of the matrix can be

incorporated into the correct position of the admittance matrix of the positive

sequence network. In this example, notice that

_V
ð1Þ
ok ¼ � _V

ð1Þ
k ; _V

ð1Þ
ji ¼ _V

ð1Þ
j � _V

ð1Þ
i ; _I

ð1Þ
k ¼ � _I

ð1Þ
1 ; _I

ð1Þ
i ¼ � _I

ð1Þ
2 ; _I

ð1Þ
j ¼ _I

ð1Þ
2 :

ð7:72Þ
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The above relationships together with (7.71) give us the relationship among the

voltages and currents at node k, i and j in the positive sequence network:

_I
ð1Þ
k

_I
ð1Þ
i

_I
ð1Þ
j

2
64

3
75 ¼

Y11 Y12 �Y12

Y21 Y22 �Y22

�Y21 �Y22 Y22

2
64

3
75

_V
ð1Þ
k

_V
ð1Þ
i

_V
ð1Þ
j

2
64

3
75: ð7:73Þ

In summary, the calculation of synthesized impedance matrix includes the fol-

lowing steps:

1. Form the impedance matrix of the faulted buses of the negative and zero

sequence network (refer to (7.63))

2. By use of the coincidence matrix that represents the boundary conditions of

simultaneous faults, form the loop impedance matrix ZL (refer to (7.66) and

(7.67))

3. Eliminate the closed circuit from the synthesized impedance matrix Zf (refer to

(7.68) and (7.69))

In what follows we describe the above steps in detail.

(1) Forming the impedance matrices of the faulted buses of the negative and zero
sequence networks: In a transient stability study, the admittance matrices of

each sequence network should be formed first, followed by calculation of the

triangular factors for these matrices. In this way the impedance matrices of the

faulted buses of each sequence network can be easily obtained given the fault

information.

For the negative sequence network, observing Fig. 7.11b it is not difficult to

see that, if one injects unity current into the nonstandard ratio node k of the ideal

transformer with zero current injections to the other nodes, that is, _I
ð2Þ
k ¼ 1 and

_I
ð2Þ
m ¼ 0 (m is a node other than node k), then solve the equation of the negative

sequence network including the ideal transformer for voltages _V
ð2Þ
k and

_V
ð2Þ
ij ¼ _V

ð2Þ
i � _V

ð2Þ
j . These quantities are the desired quantities for the first

column Z
ð2Þ
11 and Z

ð2Þ
21 of the impedance matrix in (7.71).

More specifically, injecting unity current into node k of the nonstandard

transformer is equivalent to injecting into node k of negative sequence network

a current _I
0ð2Þ
k ¼ n̂

ð2Þ
1 , thus after performing sparse forward substitution and

backward substitution on the admittance matrix of the negative sequence

network, voltages _V
0ð2Þ
k and _V

0ð2Þ
ij ¼ _V

0ð2Þ
i � _V

0ð2Þ
j are obtained; in addition, we

have _V
ð2Þ
k ¼ n

ð2Þ
1

_V
0ð2Þ
k and _V

ð2Þ
ij ¼ n

ð2Þ
2

_V
0ð2Þ
ij .

By the same token, injecting into nodes i and j of the negative sequence

network currents þn̂
ð2Þ
2 and �n̂

ð2Þ
2 , and performing sparse forward substitution
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and backward substitution, one obtains voltages _V
0ð2Þ
k and _V

0ð2Þ
ij z ¼ _V

0ð2Þ
i � _V

0ð2Þ
j ,

furthermore, _V
ð2Þ
k ¼ n

ð2Þ
1

_V
0ð2Þ
k , _V

ð2Þ
ij ¼ n

ð2Þ
2

_V
0ð2Þ
ij , the quantities which we seek for

the elements Z
ð2Þ
12 and Z

ð2Þ
22 of the second column in the impedance matrix in

(7.61).

The same principle applies to compute the elements of the impedance matrix

in (7.62).

(2) Forming loop impedance matrix from the coincidence matrix: As discussed

before, the combined sequence network of a series fault is formed by putting the

three sequence networks together in series, therefore there is only one indepen-

dent loop circuit. The combined sequence network of a shunt fault is formed by

putting together the three sequence networks in parallel, resulting in two

independent loop circuits. Besides, a line-to-line fault is viewed as a special

shunt fault.

From (7.57) and (7.59), the coincidence matrix C expresses the relationship

between the loop current of the boundary circuit of the combined sequence

network and the current of the faulted buses of the negative and zero sequence

networks. Thus the number of rows of the coincidence matrix equals the

dimension of IS, that is, two times the number of simultaneous faults (when a

line-to-line fault occurs, an empty faulted bus in the zero sequence network is

designated). The number of columns of the coincidence matrix equals the

dimension of IL. A series fault occupies one column in the coincidence matrix

as illustrated below:

0 � � � 0 1 0 � � � 0½|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
corresponding to the current of the

faulted bus in negative sequence network

0 � � � 0 1 0 . . . 0 �T|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
corresponding to the current of the
faulted bus in zero sequence network

;

where the column number of the nonzero is equal to the index number of the

fault among all faults. A shunt fault occupies two columns in the coincidence

matrix as illustrated below:

0 � � � 0 �1 0 � � � 0

0 � � � 0 �1 0 � � � 0

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

corresponding to the current of the
faulted bus in negative sequence network

0 � � � � � � � � � � � � � � � 0

0 � � � 0 1 0 � � � 0

�T
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

corresponding to the current of the
faulted bus in zero sequence network

;

where the first column contains the information on how the negative sequence

network is connected with the positive sequence network, while the second

column describe the connectivity between the zero sequence and negative

sequence networks. The column number of the nonzero corresponds to the

index number of the fault among all faults. For a line-to-line fault, the coinci-

dence matrix has only the first column because there is no circuit connection

between negative and zero sequence networks.
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Based on the above principle, we can easily find the coincidence matrix that

represents the boundary conditions of arbitrarily complex simultaneous faults

given the types of the faults. For example, if three faults simultaneously occur,

and the faults are, in order, single-line-to-ground, single-line-open-conductor,

and line-to-line, then the coincidence matrix is as follows:

C ¼

1

0

0

1

0

0|{z}
single�line
�to�ground

0 0

�1 �1

0 0

0 0

0 1

0 0|fflfflfflfflffl{zfflfflfflfflffl}
single�line

�open�conductor

0

0

�1

0

0

0|{z}
line�to�line

2
6666666664

3
7777777775

9>=
>;negative sequence part

9>=
>;zero sequence part

���������������
:

With the coincidence matrix that describes the boundary conditions of com-

plex simultaneous faults, the loop impedance matrix of the combined sequence

network can be obtained using (7.66) and (7.67). The manipulations on these

matrices can be accomplished by simple addition and subtraction operations.

(3) Eliminating the closed circuit of shunt faults to form synthesized impedance
matrix: The order of the loop impedance matrix equals the number of indepen-

dent loop currents in the combined sequence network. To seek the synthesized

impedance matrix, the currents of zero and negative sequence network must be

eliminated (refer to (7.68) and (7.69)).

7.4 Transient Stability Analysis with Simplified Model

For a regional power system, the duration of losing synchronous stability is very

short, typically a simulation study of the first swing (1–1.5 s) after a disturbance is

applied suffices to judge whether or not the system can maintain synchronous

operation. In stability studies like this, the effects of speed-governing systems can

be neglected, thus the output of prime movers can be assumed to be constant, the

reason is that the inertias of the prime movers are sufficient to keep the outputs of

the prime movers constant; besides, because the time constants of the excitor

windings are relatively large, their flux linkages do not change drastically in a

short range of time, as a result the effect of the excitation system can be modeled as

keeping generator transient voltages E0
q or E0 constant. In other words, the free

current components of excitor windings are compensated by the regulation of

excitation systems, thus the flux linkages cf of excitor windings remain constant.

Correspondingly, the effects of damper windings are also ignored.

The simplified models for transient stability analysis are widely used in power

system operation and planning. Specific applications include feasibility studies on
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system topologies and operating schedules, computation of maximum transfer

capabilities, calculation of critical clearing times, and investigations into the effects

of stability controls, etc.

Using different models for generators, loads, and network, one can build codes

for various simplified stability analyses. Which portfolio of models to use depends

on the fundamental characteristics of the problem under study. To explain the

principles and procedures of simplified transient stability analysis, the subsequent

sections assume the following mathematical models and solution algorithms have

been applied to the transient stability analysis procedure:

Generators: Generator transient voltage E0
q remains constant

Loads: Small loads are modeled as constant impedances, while larger loads are

modeled as motors with mechanical–electrical interactions

Network: Modeled with admittance matrix

The differential equations are solved by the modified Euler’s method while the

network equations are solved by Gauss elimination method.

The overall procedure for a transient stability calculation is still as described in

Fig. 7.8. The computer implementation of the calculation is provided below.

7.4.1 Computing Initial Values

Before starting the numerical integration, the initial values of the differential

equations should be calculated based on the prefault operating state obtained by

performing a load flow study. In a simplified transient stability study, the calcula-

tion of initial values include prefault generator transient voltages, rotor angles, the

output of prime movers, and the slips and equivalent admittances of motors

representing loads, etc. These parameters do not change discontinuously at the

instant immediately after the fault is applied. In what follows the initial value

variables are marked with subscripts (0).

First we describe how to calculate the initial values of generators.

From a load flow study the generator terminal voltages before the disturbance

and the generator powers are given by _Vð0Þ ¼ Vxð0Þ þ jVyð0Þ and S(0) ¼ P(0) + jQ(0).

Furthermore, the generator currents injected into the network are computed by

_Ið0Þ ¼ Ixð0Þ þ jIyð0Þ ¼
Ŝð0Þ
_̂Vð0Þ

: ð7:74Þ

Thus by (6.61), one can find the pseudovoltage _EQð0Þ as

_EQð0Þ ¼ EQxð0Þ þ jEQyð0Þ ¼ _Vð0Þ þ ðRa þ jXqÞ _Ið0Þ: ð7:75Þ

Subsequently, the generator rotor angles are calculated by

dð0Þ ¼ arctgðEQyð0Þ=EQxð0ÞÞ: ð7:76Þ
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Under steady-state operation, generators rotate at synchronous speed, therefore:

oð0Þ ¼ 1: ð7:77Þ
Using coordinate transformation formula (6.62), the d, q components of genera-

tor stator voltages and currents are given by

Vdð0Þ
Vqð0Þ

� �
¼ sin dð0Þ � cos dð0Þ

cos dð0Þ sin dð0Þ

� �
Vxð0Þ
Vyð0Þ

� �
Idð0Þ
Iqð0Þ

� �

¼ sin dð0Þ � cos dð0Þ
cos dð0Þ sin dð0Þ

� �
Ixð0Þ
Iyð0Þ

� �
: ð7:78Þ

Now based on (6.64), the values of transient voltages are obtained as

E0
qð0Þ ¼ Vqð0Þ þ RaIqð0Þ þ X0

dIdð0Þ: ð7:79Þ
In addition, the electrical powers Pe(0) of generators under steady-state operation

are equal to the mechanical powers of the prime movers Pm(0), that is,

Pmð0Þ ¼ Peð0Þ ¼ Pð0Þ þ ðI2xð0Þ þ I2yð0ÞÞRa: ð7:80Þ
The calculation of the initial values of loads is simple.

The prefault node voltages _Vð0Þ and powers S(0) consumed by loads are ob-

tained from a load flow study, therefore the equivalent admittances of loads are

computed by

Yð0Þ ¼
Ŝð0Þ
V2
ð0Þ

: ð7:81Þ

When loads are modeled as constant impedances, the corresponding equivalent

admittances remain constant in the study period, and thus can be incorporated into

the network admittance matrix as discussed earlier. For loads representing motors

with mechanical–electrical interactions, since the slips of motors do not jump at the

instant of disturbance, the equivalent admittances of loads do not change. In other

words, the equivalent admittances of loads after the disturbance are identical to

those of loads under normal steady-state operation.

7.4.2 Solving Network Equations with Gauss Elimination Method

In this solution method, the network equations are represented in the domain of real

numbers, as in (7.36). Before starting the simulation, the loads represented by

constant impedances should be incorporated into the network to obtain the network

with constant impedance loads, this set of network equations remains constant

during the simulation period.
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Suppose a motor load is connected at node j. In the transient period the motor

slip sj is time varying, and given the sj at an instant, the actual impedance of the

motor load can be calculated based on (6.160):

ZMj ¼ R1 þ jX1 þ ðRm þ jXmÞðR2=sj þ jX2Þ
ðRm þ jXmÞ þ ðR2=sj þ jX2Þ

	 

ZMjð0Þ
ZMð0Þ

; ð7:82Þ

where ZMj(0) and ZM(0) are the equivalent impedance of all the motors under normal

operation and the equivalent impedance of a typical motor. The admittance asso-

ciated with the actual impedance can be rewritten as

YMj ¼ 1

ZMj
¼ GMj þ jBMj: ð7:83Þ

Now suppose a generator is located at node i of the network. When the generator

is represented by a varying E0
q model, with reference to Table 7.1, in (7.39) let

Edi ¼ 0, Eqi ¼ E0
qi, Xdi ¼ X0

di, and Xqi ¼ Xqi, the formula for generator current is

as follows:

Ixi
Iyi

� �
¼ bxi

gyi

� �
E0
qi �

Gxi Bxi

Byi Gyi

� �
Vxi

Vyi

� �
; ð7:84Þ

where the elements can be rewritten, based (7.40), as follows:

bxi ¼ Rai cos di þ Xqi sin di
R2
ai þ X0

diXqi
;

Gxi ¼ Rai � ðX0
di � XqiÞ sin di cos di
R2
ai þ X0

diXqi
;

Byi ¼ �X0
di sin

2 di � Xqi cos
2 di

R2
ai þ X0

diXqi
;

gyi ¼ Rai sin di � Xqi cos di
R2
ai þ X0

diXqi

Bxi ¼ X0
di cos

2 di þ Xqi sin
2 di

R2
ai þ X0

diXqi

Gyi ¼ Rai þ ðX0
di � XqiÞ sin di cos di
R2
ai þ X0

diXqi

9>>>>>>>>=
>>>>>>>>;
:

ð7:85Þ

Substitute the generator current representations (7.84) into the network equa-

tions with constant impedance loads, and do the same for the equivalent admittance

[(7.83)] of motors, we obtain the new set of network equations. Obviously, the new

network equations are just modifications of the original network equations: the

diagonal elements of the admittance matrix are modified, and there are nonzero

pseudocurrents in elements of the current vector associated with generators, the

current injections of other nodes are zero, that is:

The ith diagonal block of the admittance matrix is changed to

Gxi þ Gii Bxi � Bii

Byi þ Bii Gyi þ Gii

� �
ð7:86Þ
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and the jth diagonal block changes to

GMj þ Gjj �BMj � Bjj

BMj þ Bjj GMj þ Gjj

� �
: ð7:87Þ

The pseudocurrent injections at generator nodes are given by

I0xi
I0yi

� �
¼ bxi

gyi

� �
E0
qi: ð7:88Þ

Now the linear equations obtained in each integration step can be solved by

Gauss elimination or the triangular factorization method. This gives us the real and

imaginary part Vx and Vy of the network voltages for this step. Finally, based on

(7.84), the generator currents Ix and Iy can be found.

7.4.3 Solving Differential Equations by Modified Euler’s Method

In a transient stability analysis using simplified models, the differential equations

comprise the motion (6.76) of generator rotors and the motion (6.155) of motor

rotors representing loads:

ddi
dt

¼ osðoi � 1Þ
doi

dt
¼ 1

TJi
ðPmi � PeiÞ

dsj
dt

¼ 1

TJMi
ðMmMj �MeMjÞ

9>>>>>>=
>>>>>>;
: ð7:89Þ

Suppose the simulation of mechanical–electrical interactions has been com-

pleted up to time t, now let us discuss how to calculate the system states for time

t + Dt. Before calculating system states for the next step, whether or not there is a

fault or switch operation at time t should be checked first. If the answer is no, then

one proceeds to compute the states of the next step, given the states of time t;
otherwise, one has to calculate the postswitch or postfault network operating

parameters first, and then continue the calculation for the next step. The computa-

tional procedure for solving differential equations based on the modified Euler’s

method is as follows:

(1) Given generator di(t) and motor sj(t) at time t, compute system voltages Vx(t) and

Vy(t), and generator currents Ixi(t) and Iyi(t) based on the method described in Sect.

7.4.2.
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(2) Based on (7.89), compute the derivatives for time t:

ddi
dt

����
t

¼ osðoiðtÞ � 1Þ
doi

dt

����
t

¼ 1

TJi
ðPmi � PeiðtÞÞ

dsj
dt

����
t

¼ 1

TJMi
ðMmMjðtÞ �MeMjðtÞÞ

9>>>>>>>=
>>>>>>>;
; ð7:90Þ

where generator power Pei(t) is calculated by

PeiðtÞ ¼ ðVixðtÞIixðtÞ þ ViyðtÞIiyðtÞÞ þ ðI2ixðtÞ þ I2iyðtÞÞRai: ð7:91Þ

The mechanical torque TmMj(t) of generators and electrical torque TeMj(t) of

motors are computed based on (6.157) and (6.156) as follows:

MmMjðtÞ ¼ k½aþ ð1� aÞð1� sjðtÞÞ2�

MeMjðtÞ ¼ 2MeMmax

sjðtÞ
scrj

þ scrj
sjðtÞ

V2
jxðtÞ þ V2

jyðtÞ
V2
jxð0Þ þ V2

jyð0Þ

9>>>=
>>>;
; ð7:92Þ

in which Vjx(0) and Vjy(0) denote the real and imaginary parts of prefault node

voltage at node j.
(3) Compute an initial estimate of state variables for time t + Dt:

d½0�iðtþDtÞ ¼ diðtÞ þ ddi
dt

����
t

Dt

o½0�
iðtþDtÞ ¼ oiðtÞ þ doi

dt

����
t

Dt

s
½0�
jðtþDtÞ ¼ sjðtÞ þ dsj

dt

����
t

Dt

9>>>>>>>=
>>>>>>>;
: ð7:93Þ

(4) Similar to step (1), given generator d½0�iðtþDtÞ and motor s
½0�
jðtþDtÞ, compute system

node voltages V
½0�
xðtþDtÞ and V

½0�
yðtþDtÞ, generator currents I

½0�
xiðtþDtÞ and I

½0�
yiðtþDtÞ

based on the method of Sect. 7.4.2.

(5) Similar to step (2), compute the estimated derivatives

dd½0�i

dt

����
tþDt

;
do½0�

i

dt

����
tþDt

; and
ds

½0�
j

dt

����
tþDt

for step t + Dt. To this end, one should replace

oi(t), Pei(t), MmMj(t), and MeMj(t) in (7.92) with o½0�
iðtþDtÞ, P

½0�
eiðtþDtÞ, M

½0�
mMjðtþDtÞ,

and M
½0�
eMjðtþDtÞ. To compute them, one should also replace Vix(t), Viy(t), Iix(t),
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Iiy(t), sj(t), Vjx(t), and Vjy(t) with V
½0�
ixðtþDtÞ, V

½0�
iyðtþDtÞ, I

½0�
ixðtþDtÞ, Iiy(t), sj(t), V

½0�
jxðtþDtÞ,

and V
½0�
jyðtþDtÞ.

(6) Finally, compute the variable values for step t + Dt, that is:

diðtþDtÞ ¼ diðtÞ þ Dt
2

ddi
dt

����
t

þdd½0�i

dt

�����
tþDt

" #

oiðtþDtÞ ¼ oiðtÞ þ Dt
2

doi

dt

����
t

þdo½0�
i

dt

�����
tþDt

" #

sjðtþDtÞ ¼ sjðtÞ þ Dt
2

dsj
dt

����
t

þds
½0�
j

dt

�����
tþDt

" #

9>>>>>>>>>>>=
>>>>>>>>>>>;

: ð7:94Þ

[Example 7.3] Consider the 9-bus system in Fig. 7.12 [178]. This system

consists of three generators, three loads, and nine branches. The generator and

branch parameters are listed in Tables 7.5 and 7.6, respectively. The system load

flow under normal operation is illustrated in Table 7.7, and the system frequency is

60 Hz.

[Solution] A stability analysis based on the simplified system model will be

described below. The disturbances are as follows: at time zero a three-line-to-

ground fault occurs in line 5–7 at the node 7 side, the fault is cleared five cycles

(about 0.08333 s) later by the removal of line 5–7.

Generators are modeled as constant E0
q, loads are modeled as impedances, the

network is modeled by admittance matrix, the differential equations are solved by

the modified Euler’s method, and the network equations are solved by a direct

method.

1

2 3

1

2 3

4

5 6

8

18kV

9

13.8kV230kV

16.5kV

7

Fig. 7.12 Single-line diagram of 9-bus system
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Based on the general procedure described in Fig. 7.8 and the method described in

the previous section, the transient stability analysis can be summarized below:

1. Initial value computation: Compute the equivalent shunt admittances of loads

according to (7.81), and the results are as follows:

Load (node 5): 1.26099 � j0.50440
Load (node 6): 0.87765 � j0.29255
Load (node 8): 0.96898 � j0.33914

Then compute, based on (7.74)–(7.80), generator transient voltage E0
q, initial

rotor angle d(0), and mechanical power Pm(0). The results are in Table 7.8. The

Table 7.5 Branch data

From-end

bus

To-end

bus

Resistance

(in per
unit)

Reactance

(in per
unit)

Half of the

admittance
(in per unit)

Non-standard

ratio
of transformer

4 5 0.010 0.085 0.088

4 6 0.017 0.092 0.079

5 7 0.032 0.161 0.153

6 9 0.039 0.170 0.179

7 8 0.0085 0.072 0.0745

8 9 0.0119 0.1008 0.1045

1 4 0.0 0.0576 1.0

2 7 0.0 0.0625 1.0

3 9 0.0 0.0586 1.0

Table 7.6 Generator data

Generator Bus TJ Ra Xd X0
d Xq X0

q T0d0 T0q0 D

1 1 47.28 0.0 0.1460 0.0608 0.0969 0.0969 8.96 0.0

2 2 12.80 0.0 0.8958 0.1198 0.8645 0.1969 6.00 0.535 0.0

3 3 6.02 0.0 1.3125 0.1813 1.2578 0.2500 5.89 0.600 0.0

The units for all time constants are ‘‘seconds,’’ the units of all damping coefficients D, resistances
and impedances are in ‘‘per unit’’

Table 7.7 Load flow under normal system operation

Bus Voltage Generator Load

Magnitude Phase angle

(degree)

Active

power

Reactive

power

Active

power

Reactive

power

1 1.040 0.0000 0.7164 0.2705

2 1.0250 9.2800 1.6300 0.0665

3 1.0250 4.6648 0.8500 �0.1086

4 1.0258 �2.2168

5 0.9956 �3.9888 1.2500 0.5000

6 1.0127 �3.6874 0.9000 0.3000

7 1.0258 3.7197

8 1.0159 0.7275 1.0000 0.3500

9 1.0324 1.9667

7.4 Transient Stability Analysis with Simplified Model 453



initial values of generator rotor angles are set to o1(0) ¼ o2(0) ¼ o3(0) ¼ 1. In the

calculations to be described below, the effect of generator salient poles is

neglected, which is to say E0
q ¼ C and Xq ¼ X0

d. This is the classical model of

generators.

2. The fault-on system and post-fault system model: In the fault-on system, a shunt

branch with zero impedance is connected at node 7, to model this shunt branch,

the diagonal element Y77 of the admittance matrix Y is set to a very high value

(say 1020). The admittance matrix of the fault-on system is YF.

In the postfault network, branch 5–7 is removed. Because the contribution of

line 5–7 to admittance matrix is equal to:

5 7

Ylð5�7Þ ¼
5

7

..

. ..
. ..

.

� � � 1

r þ jx
þ jb � � � � 1

r þ jx
� � �

..

. ..
. ..

. ..
. ..

.

� � � � 1

r þ jx
� � � 1

r þ jx
þ jb � � �

..

. ..
. ..

.

2
6666666666664

3
7777777777775
;

where r¼ 0.032, x¼ 0.161, and b¼ 0.153. Thus the postfault admittance matrix

is YP ¼ Y � Yl(5–7).

3. Integrating the differential-algebraic equations: We will only compute the

transient duration from the instant the fault occurs to time equals 2 s. Thus the

system for the duration 0–2 s is divided into two autonomous systems: that is, the

fault-on system for duration 0–0.08333 s, and the postfault system for duration

0.08333–2 s. The step size for numerical integration is 0.001 s. Table 7.9 lists the

rotor angles d(t) and relative maximum rotor angles, with and without consider-

ation of the effect of salient pole. The later is also depicted in Fig. 7.13.

From Fig. 7.13, observe that the system is stable, whether or not the salient

pole effect is taken into consideration. When the salient pole effect is considered,

the maximum relative rotor angle is d21 ¼ 151.48396� (t ¼ 0.80133s). When the

Table 7.8 E0
q, d(0), and Pm(0) of generators

Generator Neglecting the effect of

salient poles

With the effect of sa-

lient poles

Pm(0)

E0
q d(0) E0

q d(0)
1 1.05664 2.27165 1.05636 3.58572 0.71641

2 1.05020 19.73159 0.78817 61.09844 1.63000

3 1.01697 13.16641 0.76786 54.13662 0.85000
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salient pole effect is not considered, the maximum relative rotor angle is d21 ¼
85.65788� (t ¼ 0.44633 s), and the angle of the second swing d21 ¼ 85.43378�

(t ¼ 1.53433 s), which is smaller than that of the first swing.

Lastly, the critical clearing times, with and without consideration of salient pole

effects, are calculated. It turns out that the critical clearing time under the former

circumstance is between 0.162 and 0.163 s, and it is between 0.085 and 0.086

s under the second condition. The swing curves under these circumstances are

provided in Figs. 7.14 and 7.15, respectively.

7.4.4 Numerical Integration Methods for Transient Stability
Analysis Under Classical Model

In a modern energy management system (EMS), to assess system security, transient

stability under various prespecified contingencies is predicted online within a

limited amount of time. Because the number of contingencies is quite large, to

meet the requirement of online assessment, each transient stability analysis must be

completed rapidly. Obviously the traditional integration methods for transient

stability analysis are no longer suitable because of the limitation of speed, fast

methods customized for online applications need to be developed.

Dynamic security assessment is one of the ‘‘hot’’ areas in the power system

stability field. As early as 1983, IEEE established a transient stability analysis

working group, the responsibility of which was to lead and review the research in
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this area. A dynamic security assessment method must be extra-rapid, especially in

an online environment. Though the requirement on computational precision can be

relaxed to some extent, reliability and robustness are still required. Currently, the

methods for improving the speed of online dynamic security assessment include no

more than: first, simplifying the mathematical model for stability analysis; and

second, developing rapid algorithms for stability analysis. In what follows we

introduce a rapid algorithm for transient stability analysis based on a classical

model.

1. The classical model of power system stability: The ‘‘classical model’’ places the

following assumptions on the mathematical model:

(1) Assume that the generator mechanical power remains constant during the

transient stability period, and neglect the effects of damper windings

(2) Assume that generator transient voltage E0 does not change during the

transient stability study period, and furthermore the phase angle of this

voltage is equal to the rotor angle

(3) Loads are modeled as constant impedances

With the above assumptions, the motion equation of the ith generator is

obtained as

ddi
dt

¼ osðo� 1Þ
doi

dt
¼ 1

TJi
ðPmi � PeiÞ

9>>=
>>; i ¼ 1; 2; . . . ;m: ð7:95Þ

From a load flow study one finds the transient voltage:

_E0
i ¼ E0

iffdið0Þ ¼ _Við0Þ þ ðRai þ jX0
diÞ

Pið0Þ � jQið0Þ
_̂Við0Þ

: ð7:96Þ

And the normal operation conditions give

oið0Þ ¼ 1: ð7:97Þ

Based on (7.42), (7.45), and (7.46) in Sect. 7.3.1, which describe the

generator–network relationship, we can incorporate the pseudoadmittances

of generators (see (7.45)) and load equivalent admittances (see (7.81)) into

the network. The diagonal elements of the admittance matrix of the network

(7.35) should have the generator pseudoadmittances or load equivalent
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admittances added. The right-hand side vector, as given by (7.46), contains

nonzeros in rows corresponding to generator nodes only, the other rows are

zero.

The expression for electromagnetic power of generators is easily obtained

as

Pei ¼ Re _E0
i

_̂E
0
i � _̂Vi

Rai � jX0
di

 !
: ð7:98Þ

2. Solving for the network equations: First perform triangular factorization on the

admittance matrix Y (a symmetrical matrix):

Y ¼ UTDU; ð7:99Þ

where U is an upper triangular matrix, D is a matrix with nonzeros on the

diagonal only. After performing the following forward substitution and back-

ward substitution, one obtains the voltage:

F ¼ D�1U�TI; ð7:100Þ

V ¼ U�1F: ð7:101Þ

Vector I in the above equations is a sparse vector. To compute the electro-

magnetic powers of generators, it is only necessary to know the generator

voltages. Thus the unknown vector V is also sparse. Therefore, the network

equations can be solved using rapid forward and backward substitutions. The

experience of medium size computations demonstrates that, some 1/3 computa-

tional effort can be saved if a sparse vector method is used to perform rapid

forward and back substitution.

When solving the network equations with a sparse vector method, the major-

ity of the time is spent in factorizing the admittance matrix. In dynamic security

assessment, the admittance matrices for fault-on and postfault networks under

different contingency scenarios are different. If these admittance matrices are

factored every time, it would take a large amount of computer time. However, in

general, the fault-on and postfault network admittance matrices differ from the

prefault network admittance matrix only in a few places. This allows the

utilization of compensation methods for solving network equations. The idea of

a compensation method is to avoid matrix refactorizations, thus computational

burden can be greatly relieved.

Consider network equation:

ðYþ DYÞV ¼ I; ð7:102Þ
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where Y is the prefault network admittance matrix, and DY is the adjustment to

Y due to network switching or a fault and can be represented as

DY ¼ MdyMT; ð7:103Þ

where dy is a (q� q) matrix, including the information for the adjustment toY, q
is in general of order 1 or 2, andM is a (n � q) coincidence matrix related to the

specific fault or switch.

By the matrix inversion lemma, (7.102) and (7.103) become

V ¼ ðY�1 � Y�1MCMTY�1ÞI; ð7:104Þ

where the (q � q) matrix C is equal to

C ¼ ½ðdyÞ�1 þ Z��1; ð7:105Þ

while the (q � q) matrix Z is

Z ¼ MTY�1M: ð7:106Þ

Thus according to (7.104), taking into account (7.99), the computational steps

for solving the network (7.102) using compensation are as follows:

Preparatory calculation:

ð1Þ W ¼ U�TM

ð2Þ ~W ¼ D�1W

ð3Þ Z ¼ ~W
T
W

ð4Þ C ¼ ½ðdyÞ�1 þ Z��1

9>>>>>>=
>>>>>>;
: ð7:107Þ

Solving the network equations:

ð1Þ ~
F ¼ U�TI

ð2Þ DF ¼ �WC~F
T~F

ð3Þ F ¼ ~Fþ DF

ð4Þ V ¼ U�1D�1F

9>>>>>>>=
>>>>>>>;
: ð7:108Þ

The forward and backward substitutions in (7.107) and (7.108) are all com-

pleted using a sparse vector method.
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3. A numerical integration algorithm for second-order conservative systems: The
differential equations in (7.95) can be rewritten in the following compact form:

d2d

dt2
¼ fðdÞ; ð7:109Þ

where

d ¼ ½d1; . . . ; dm�T

fðdÞ ¼ ½f1ðdÞ; . . . ; fmðdÞ�T

fiðdÞ ¼ os

TJi
ðPmi � PeiÞ

9>>>=
>>>;
: ð7:110Þ

The right-hand side functions of the differential equations in (7.109) do not contain

arguments with first-order derivatives, the equations are thus termed a second-order

conservative system. Compared with solving two first-order equations, the equa-

tions can be solved by direct differencing which results in an efficiency one level

higher. Consider the Stormer and Numerov integration formula [186]:

dkþ2 ¼ 2dkþ1 � dk þ h2fðdkþ1Þ; ð7:111Þ

dkþ2 ¼ 2dkþ1 � dk þ h2

12
½fðdkþ2Þ þ 10fðdkþ1Þ þ fðdkÞ�: ð7:112Þ

Equation (7.111) is an explicit second-order method, while (7.112) is an implicit

forth-order method. To solve the differential (7.109) based on (7.111) requires a

smaller step size because of the poor numerical stability. To solve (7.109) based on

(7.112) allows a larger step size because the method has higher order and has a

larger region of absolute stability. However this method still takes a large amount of

computational effort because it involves solving a set of nonlinear simultaneous

equations. On the other hand, if good initial estimates d
½0�
kþ2 are provided when

solving (7.112), the convergence can be speeded up. This suggests the application

of a predictor–corrector method for solving (7.109); specifically, the explicit

method (7.111) is adopted for the predictor, while the implicit method (7.112) is

adopted for the corrector.

Let P and C represent the application of one predictor and one corrector, E

represent computing function f(d) once, the pair of predictor–corrector is formed as

PECE. More concretely, one computes d
½0�
kþ2 based on the predictor, and calculates

f
½0�
kþ2 ¼ fðd½0�kþ2Þ, substitute the result into the corrector to obtain d

½1�
kþ2, and finally

compute f
½1�
kþ2 ¼ fðd½1�kþ2Þ.
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The above method falls into the category of multistep methods, the procedure

can be started using the following special fourth-order Runge–Kutta formula [185]:

dkþ1 ¼ dk þ hd0k þ
h2

6
ðk1 þ 2k2Þ

d0kþ1 ¼ d0k þ
h

6
ðk1 þ 4k2 þ k3Þ

k1 ¼ fðdkÞ

k2 ¼ f dk þ h

2
d0k þ

h2

8
k1

� �

k3 ¼ f dk þ hd0k þ
h2

2
k2

� �

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

: ð7:113Þ

The classical model for transient stability analysis applies to ‘‘first swing’’ (about

1.5 s after the disturbance). This model is free from the stiffness problem and

therefore permits the use of larger step size (0.1–0.2 s).

7.5 Transient Stability Analysis with FACTS Devices

To study in detail the transient stability of a large scale interconnected power

system experiencing various large disturbances and to analyze the effects of control

devices on system stability, often for the purpose of seeking mechanisms for

improving stability, a detailed component model for transient stability analysis is

required.

As the technology of HVDC develops, HVDC systems are widely used in long‐
distance transmission, under‐sea cable transmission and system interconnection.

The technology of flexible AC transmission (FACTS), matured only in recent years,

is also receiving much acceptance from the industry. FACTS devices not only help

to improve system steady‐state performance, they also improve the dynamic per-

formance of power systems to a certain degree, as a result system transfer capabil-

ities are enlarged considerably. The dynamic performance of a power system is also

affected by generator prime movers and speed‐governing systems, excitation sys-

tems, PSSs, and other control devices. A power system with increasing scale, and

increasing installations of dynamic devices, exhibits complex behavior after it

experiences a disturbance. The mechanical–electrical interaction of such a system

lasts longer, and the duration of oscillation of the system before loss of stability

occurs can be as long as several seconds to a dozen seconds.

This section introduces the basic transient stability analysis method for large‐
scale interconnected power systems with many dynamic devices which are modeled

in detail. It should be noted that the material presented does not address the detailed

implementation of a commercial code, rather it concerns the basic principles.
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The mathematical models for the dynamic devices are as follows: synchronous

machines which are modeled by a sixth‐order model with varying E0
q, E

00
q, E

0
d, E

00
d,

and rotor variables; hydroprime mover and their speed‐governing system; excita-

tion systems with thyristor‐based DC excitors, PSSs with generator speed deviation

as input; two‐terminal HVDC; SVC and TCSC of the FACTS family; constant

impedance loads or loads with second‐order voltage characteristics. If a different

model other than those described above is used for a component, the same principle

applies.

The above large scale dynamic system is a typical stiff system because of the

existence of dynamic devices with drastically different time constants. To solve

such systems with an explicit numerical method, a very small step size has to be

assumed because the stability region is relatively small. The implicit trapezoidal

rule is a second‐order algorithm with the left half plane being the stability region,

therefore it allows for the use of a larger step size. In early commercial codes

explicit methods such as forth‐order Runge–Kutta method were quite popular.

Because of their better numerical properties, adaptability to stiffness, and the

introduction of fast control schemes with small time constants, the second‐order
trapezoidal rule has become almost an industry standard since the 1970s. Many

commercial grade codes, for example, the transient stability analysis package

developed by Bonneville power administration (BPA), the power system analysis

software package, are based on this method. In a typical transient stability analysis,

the trapezoidal rule with constant step size, between 0.01 and 0.02 s (or even

longer), is assumed. The difference and algebraic equations are solved by a

simultaneous method or a sequential method.

In the large‐scale transient stability analysis procedure to be presented below,

the implicit trapezoidal rule is used to solve the differential equations, while a

Newton method is used to solve the simultaneous difference‐algebraic equations of
the detailed system model.

7.5.1 Initial Values and Difference Equations of Generators

7.5.1.1. Generators

The mathematical model of a synchronous machine comprises rotor motion equa-

tions, rotor electromagnetic equations, etc., together with stator voltage equations

and the expressions for electromagnetic powers. Based on (6.1)–(6.4), these equa-

tions can be rewritten as follows:

Rotor motion equations:

dd
dt

¼ osðo� 1Þ
do
dt

¼ 1

TJ
ðPm � Pe � DoÞ

9>>=
>>;: ð7:114Þ
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Rotor electromagnetic equations:

dE0
q

dt
¼ 1

T0
d0

½Efq � kdE
0
q þ ðkd � 1ÞE00

q �
dE00

q

dt
¼ 1

T00
d0

½E0
q � E00

q � ðX0
d � X00

dÞId�
dE0

d

dt
¼ 1

T0
q0

½�kqE
0
d þ ðkq � 1ÞE00

d �

dE00
d

dt
¼ 1

T00
q0

½E0
d � E00

d þ ðX0
q � X00

qÞIq�

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

; ð7:115Þ

where kd ¼ Xd � X00
d

X0
d � X00

d

and kq ¼
Xq � X00

q

X0
q � X00

q

Stator voltage equations:

Vd ¼ E00
d � RaId þ X00

qIq

Vq ¼ E00
q � X00

dId � RaIq

)
: ð7:116Þ

The electrical power is equal to the output power plus stator copper loss:

Pe ¼ Pout þ _I
�� ��2Ra ¼ VxIx þ VyIy þ ðI2x þ I2y ÞRa: ð7:117Þ

Given a load flow solution, some of the initial values of generators can be

computed based on (7.74)–(7.78). Note that the current flows in damper windings

under steady‐state operation are equal to zero, based on (6.60), (6.64), and (6.65),

the initial values of generator no‐load synchronous voltages, transient voltages, and
sub‐transient voltages can be easily obtained as

Efqð0Þ ¼ Vqð0Þ þ RaIqð0Þ þ XdIdð0Þ; ð7:118Þ

E0
qð0Þ ¼ Vqð0Þ þ RaIqð0Þ þ X0

dIdð0Þ

E0
dð0Þ ¼ Vdð0Þ þ RaIdð0Þ � X0

qIqð0Þ

)
; ð7:119Þ

E00
qð0Þ ¼ Vqð0Þ þ RaIqð0Þ þ X00

dIdð0Þ

E00
dð0Þ ¼ Vdð0Þ þ RaIdð0Þ � X00

qIqð0Þ

)
: ð7:120Þ

Besides, the electrical power Pe(0) of generators under steady‐state operation can
be computed directly from (7.117):

Peð0Þ ¼ Pð0Þ þ ðI2xð0Þ þ I2yð0ÞÞRa: ð7:121Þ
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Set do
dt ¼ 0 in (7.114), the prime mover outputs Pm(0) are equal to

Pmð0Þ ¼ Peð0Þ þ D: ð7:122Þ
To solve the difference equations we first apply the trapezoidal rule for the rotor

motion (7.114),

dðtþDtÞ ¼ dðtÞ þ osDt
2

ðoðtþDtÞ þ oðtÞ � 2Þ; ð7:123Þ

oðtþDtÞ ¼ oðtÞ þ Dt
2TJ

ðPmðtþDtÞ � PeðtþDtÞ � DoðtþDtÞ þ PmðtÞ � PeðtÞ � DoðtÞÞ:
ð7:124Þ

From (7.124) one obtains the expression for o(tþDt), substituting this into

(7.123), it follows that:

dðtþDtÞ ¼ aJðPmðtþDtÞ � PeðtþDtÞÞ þ d0; ð7:125Þ

where

aJ ¼ osðDtÞ2
4TJ þ 2DDt

; ð7:126Þ

d0 ¼ dðtÞ þ aJ PmðtÞ � PeðtÞ þ 4TJ
Dt

oðtÞ

� �
� osDt: ð7:127Þ

In (7.126), aJ is a function of step size Dt and some other constants. If a fixed step

size is assumed, it becomes a constant. As for d0 in (7.127), it is a constant only in

difference equation (7.125), it takes different values in each computational step.

After d(tþDt) is found, o(tþDt) is calculated based on (7.123):

oðtþDtÞ ¼ 2

osDt
ðdðtþDtÞ � dðtÞÞ � oðtÞ þ 2: ð7:128Þ

Now applying the trapezoidal rule to the electromagnetic equation (7.115), it

follows:

E0
qðtþDtÞ ¼ E0

qðtÞ þ
Dt
2T0

d0

½EfqðtþDtÞ � kdE
0
qðtþDtÞ þ ðkd � 1ÞE00

qðtþDtÞ

þ EfqðtÞ � kdE
0
qðtÞ þ ðkd � 1ÞE00

qðtÞ�

E00
qðtþDtÞ ¼ E00

qðtÞ þ
Dt
2T00

d0

½E0
qðtþDtÞ � E00

qðtþDtÞ � ðX0
d � X00

dÞIdðtþDtÞ

þ E0
qðtÞ � E00

qðtÞ � ðX0
d � X00

dÞIdðtÞ�

9>>>>>>>>=
>>>>>>>>;
; ð7:129Þ
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E0
dðtþDtÞ ¼ E0

dðtÞ þ
Dt
2T0

q0

½�kqE
0
dðtþDtÞ þ ðkq � 1ÞE00

dðtþDtÞ

� kqE
0
dðtÞ þ ðkq � 1ÞE00

dðtÞ�

E00
dðtþDtÞ ¼ E00

dðtÞ þ
Dt
2T00

q0

½E0
dðtþDtÞ � E00

dðtþDtÞ þ ðX0
q � X00

qÞIqðtþDtÞ

þ E0
dðtÞ � E00

dðtÞ þ ðX0
q � X00

qÞIqðtÞ�

9>>>>>>>>>=
>>>>>>>>>;
: ð7:130Þ

Eliminating variables E0
q(tþDt) and E0

d(tþDt) in (7.129) and (7.130), we have

E00
qðtþDtÞ ¼ �a00dðX0

d � X00
dÞIdðtþDtÞ þ a00dad1EfqðtþDtÞ þ E00

q0; ð7:131Þ

E00
dðtþDtÞ ¼ a00qðX0

q � X00
qÞIqðtþDtÞ þ E00

d0; ð7:132Þ
where

E00
q0 ¼ a00d ad1EfqðtÞ � ðX0

d � X00
dÞIdðtÞ þ 2ð1� kdad1ÞE0

qðtÞ
n

þ ad1ðkd � 1Þ þ 1

ad2
� 2

� �
E00
qðtÞ




E00
d0 ¼ a00q ðX0

q � X00
qÞIqðtÞ þ 2ð1� kqaq1ÞE0

dðtÞ
n

þ aq1ðkq � 1Þ þ 1

aq2
� 2

� �
E00
dðtÞ




9>>>>>>>>>>=
>>>>>>>>>>;
; ð7:133Þ

ad1 ¼ Dt
2T 0

d0 þ kdDt
; aq1 ¼ Dt

2T0
q0 þ kqDt

ad2 ¼ Dt
2T 00

d0 þ Dt
; ad2 ¼ Dt

2T00
d0 þ Dt

a00d ¼ ½ad1ð1� kdÞ þ 1=ad2��1; a00q ¼ ½aq1ð1� kqÞ þ 1=aq2��1

9>>>>>>=
>>>>>>;
: ð7:134Þ

The coefficients ad1, ad2, a00d, aq1, aq2, and a00q in (7.134) are all constants if a fixed
step size Dt is assumed, while in (7.133), E00

q0 and E
00
d0 are known quantities at step t,

although they take different values in each step.

After E00
q(tþDt) and E00

d(tþDt) are calculated, now based on (7.129) and (7.130),

E0
q(tþDt) and E0

d(tþDt) can be obtained by

E0
qðtþDtÞ ¼ ad1

2T0
do � kdDt
Dt

E0
qðtÞ þ EfqðtþDtÞ þ EfqðtÞ þ ðkd � 1ÞðE00

qðtþDtÞ þ E00
qðtÞÞ

� �

E0
dðtþDtÞ ¼ aq1

2T0
qo � kqDt

Dt
E0
dðtÞ þ ðkq � 1ÞðE00

dðtþDtÞ þ E00
dðtÞÞ

� �
9>>>=
>>>;
:

ð7:135Þ
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7.5.1.2 Exitation System and PSS

Taking the DC exitor with thyristor‐based regulator, illustrated in Fig. 6.16, as an

example, let us derive the differential‐algebraic equations based on the transfer

function diagram. We will neglect the effects of RC, and equivalent time constants

TB and TC of the analog regulator. Under the ‘‘one per unit exitation voltage/one per
stator voltage’’ system, by (6.51) it follows that Vf ¼ Efq.

The measurement and filter system

dVM

dt
¼ 1

TR
ðVC � VMÞ; VC ¼ _V þ jXC

_I
�� �� ð7:136Þ

The transient droop feedback:

dðKFEfq � TFVFÞ
dt

¼ VF ð7:137Þ

The amplifier:

f ¼ 1

TA
½KAðVREF þ VS � VM � VFÞ � VR�

if VR ¼ VRMAX and f > 0;
dVR

dt
¼ 0; VR ¼ VRMAX

if VRMIN < VR < VRMAX;
dVR

dt
¼ f

if VR ¼ VRMIN and f < 0;
dVR

dt
¼ 0; VR ¼ VRMIN

9>>>>>>>>>>=
>>>>>>>>>>;

ð7:138Þ

The exiter

dEfq

dt
¼ 1

TE
½VR � ðKE þ SEÞEfq�; ð7:139Þ

where the saturation coefficient SE is modeled as an exponential function according

to (6.101). Under one per unit excitation voltage/one per unit stator voltage system,

(6.101) is simplified to

SE ¼ CEE
NE�1
fq : ð7:140Þ

The saturation function can also be piece‐wise linearized as follows:

SEEfq ¼ K1Efq � K2: ð7:141Þ
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From Fig. 6.14 we have the PSS equations:

dV1

dt
¼ 1

T6
ðKSVIS � V1Þ

dðV1 � V2Þ
dt

¼ 1

T5
V2

dðT1V2 � T2V3Þ
dt

¼ V3 � V2

dðT3V3 � T4V4Þ
dt

¼ V4 � V3

9>>>>>>>>>>>=
>>>>>>>>>>>;

: ð7:142Þ

The limits of PSS output are

If V4 
 VSmax; VS ¼ VSmax

If VSmin < V4 < VSmax; VS ¼ V4

If V4 � VSmin; VS ¼ VSmin

9>=
>;: ð7:143Þ

The initial values of excitation system variables can be found by setting, in the

transfer function diagram, s ¼ 0, or alternatively setting the left‐hand side of the

differential equations of the excitation system to zero. The effects of limiters can in

general be ignored since the variables with limiters under normal operation do not

in general exceed their corresponding limits. In the following, we describe how to

compute the initial values of the excitation system mentioned above, the other

excitation systems can be dealt with likewise.

Setting the left‐hand side of (7.139) to zero, one obtains the initial value for the

amplifier

VRð0Þ ¼ ðSEð0Þ þ KEÞEfqð0Þ; ð7:144Þ
where the saturation coefficient is calculated based on (7.140), that is,

SEð0Þ ¼ CEE
NE�1
fqð0Þ :

Setting the left‐hand side of (7.136), (7.137), and (7.138) to zero, it follows:

VFð0Þ ¼ 0; VMð0Þ ¼ _Vð0Þ þ jXC
_Ið0Þ

�� ��
VREF ¼ VMð0Þ þ

VRð0Þ
KA

9=
;: ð7:145Þ

Setting the left‐hand side of (7.142) to zero, and taking into account the relation-
ship expressed in (7.142), we have the initial value of PSS:

VSð0Þ ¼ V4ð0Þ ¼ V3ð0Þ ¼ V2ð0Þ ¼ 0

V1ð0Þ ¼ KSVISð0Þ ¼ 0

)
; ð7:146Þ

where VIS is equal to zero since it often takes the form of speed, or change of active

power.
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Applying the trapezoidal rule to (7.136), we have the difference equations of

measurement and filter systems:

VMðtþDtÞ ¼ aRVCðtþDtÞ þ VM0; ð7:147Þ
in which

aR ¼ Dt
2TR þ Dt

; ð7:148Þ

VM0 ¼ aRVCðtÞ þ 2TR � Dt
2TR þ Dt

VMðtÞ; ð7:149Þ

VCðtþDtÞ ¼ _VðtþDtÞ þ jXC
_IðtþDtÞ

�� ��
VCðtÞ ¼ _VðtÞ þ jXC

_IðtÞ
�� ��

)
: ð7:150Þ

Applying the trapezoidal rule to (7.137), we have

VFðtþDtÞ ¼ aFEfqðtþDtÞ þ VF0; ð7:151Þ
where

aF ¼ 2KF

2TF þ Dt
; ð7:152Þ

VF0 ¼ 2TF � Dt
2TF þ Dt

VFðtÞ � aFEfqðtÞ: ð7:153Þ

When limiters are not taken into consideration, applying the trapezoidal rule to

(7.138), we have the difference equation:

VRðtþDtÞ ¼ aAðVSðtþDtÞ � VMðtþDtÞ � VFðtþDtÞÞ þ VR0; ð7:154Þ
where

aA ¼ KADt
2TA þ Dt

; ð7:155Þ

VR0 ¼ aAð2VREF þ VSðtÞ � VMðtÞ � VFðtÞÞ þ 2TA � Dt
2TA þ Dt

VRðtÞ: ð7:156Þ

Substituting (6.141) into (6.139), and applying trapezoidal rule, we have the

difference equations of the excitor:

EfqðtþDtÞ ¼ aEVRðtþDtÞ þ VE0; ð7:157Þ

where

aE ¼ Dt
2TE þ ðKE þ K1ÞDt ; ð7:158Þ
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VE0 ¼ aE½VRðtÞ � 2ðKE þ K1ÞEfqðtÞ þ 2K2� þ EfqðtÞ: ð7:159Þ
Applying the trapezoidal rule to (7.142), it follows:

V1ðtþDtÞ ¼ a1VISðtþDtÞ þ V10

V2ðtþDtÞ ¼ a2V1ðtþDtÞ þ V20

V3ðtþDtÞ ¼ a3V2ðtþDtÞ þ V30

V4ðtþDtÞ ¼ a4V3ðtþDtÞ þ V40

9>>>>=
>>>>;
; ð7:160Þ

in the above formula

a1 ¼ KSDt
2T6 þ Dt

; a2 ¼ 2T5
2T5 þ Dt

; a3 ¼ 2T1 þ Dt
2T2 þ Dt

; a4 ¼ 2T3 þ Dt
2T4 þ Dt

; ð7:161Þ

V10 ¼ a1VISðtÞ þ 2T6 � Dt
2T6 þ Dt

V1ðtÞ

V20 ¼ 2T5 � Dt
2T5 þ Dt

V2ðtÞ � a2V1ðtÞ

V30 ¼ 2T2 � Dt
2T2 þ Dt

V3ðtÞ � 2T1 � Dt
2T2 þ Dt

V2ðtÞ

V40 ¼ 2T4 � Dt
2T4 þ Dt

V4ðtÞ � 2T3 � Dt
2T4 þ Dt

V3ðtÞ

9>>>>>>>>>>>=
>>>>>>>>>>>;

: ð7:162Þ

Eliminating the intermediate variables V1(tþDt), V2(tþDt), and V3(tþDt) in (7.160),

it follows:

V4ðtþDtÞ ¼ a4a3a2a1VISðtþDtÞ þ V40 þ a4½V30 þ a3ðV20 þ a2V10Þ�: ð7:163Þ

If the input of the PSS is set to VIS = o � os, apparently VIS(t) = o(t) � os.

Substituting VIS(tþDt)¼o(t¼Dt) � os into (7.163), and making use of (7.128) to

eliminate variable o(tþDt), we have

V4ðtþDtÞ ¼ aSdðtþDtÞ þ VS0; ð7:164Þ
where

aS ¼ 2a4a3a2a1
osDt

; ð7:165Þ

VS0 ¼ V40 þ a4½V30 þ a3ðV20 þ a2V10Þ� � aSdðtÞ þ a4a3a2a1ð2� os � oðtÞÞ:
ð7:166Þ

If the limits of PSS outputs are not considered, obviously we get

VSðtþDtÞ ¼ V4ðtþDtÞ: ð7:167Þ

If PSS takes other forms of input signals, following the same derivations, we

should be able to find the corresponding expressions.
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Eliminating the intermediate variables V4(tþDt), VS(tþDt), VM(tþDt), VF(tþDt), and

VR(tþDt) in (7.164), (7.167), (7.147), (7.151), (7.154), and (7.157), the difference

equations of the excitation system without taking into account the affects of limiters

are obtained as

EfqðtþDtÞ ¼ b1dðtþDtÞ � b2 _VðtþDtÞ þ jXC
_IðtþDtÞ

�� ��þ Efq0; ð7:168Þ
where

b1 ¼
aEaAaS

1þ aEaAaF
; b2 ¼

aEaAaR
1þ aEaAaF

; ð7:169Þ

Efq0 ¼ VE0 þ aE½VR0 þ aAðVS0 � VM0 � VF0Þ�
1þ aEaAaF

: ð7:170Þ

7.5.1.3 The Prime Movers and Their Speed-Governing Systems

Taking the hydrogenerator and its speed-governing system illustrated in Fig. 6.24 as

an example, based on the transfer function we have the differential-algebraic

equations:

The acentric flyball

� ¼ KdðoREF � oÞ ð7:171Þ

The valve

The dead zones are

If � eKd

2
< � � x <

eKd

2
; s ¼ 0

If � � x 
 eKd

2
; s ¼ � � x� eKd

2

If � � x � � eKd

2
; s ¼ � � xþ eKd

2

9>>>>>=
>>>>>;
: ð7:172Þ

The limits of value position are

If sMIN < s < sMAX; s ¼ s

If s 
 sMAX; s ¼ sMAX

If s � sMAX; s ¼ sMIN

9>=
>;: ð7:173Þ

The servo system

dm
dt

¼ s
TS

ð7:174Þ
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The limits of the valve

If mMIN < m < mMAX; m ¼ m

If m 
 mMAX; m ¼ mMAX

If m � mMAX; m ¼ mMIN

9>=
>; ð7:175Þ

The feedback system

d½x� ðKb þ KiÞm�
dt

¼ 1

Ti
ðKim� xÞ ð7:176Þ

The hydrogenerator

dðPm þ 2KmHmÞ
dt

¼ 2

To
ðKmHm� PmÞ; ð7:177Þ

where parameter KmH is defined as follows:

KmH ¼ PHðMWÞ
SBðMVAÞ : ð7:178Þ

In general, the parameters of a prime mover and its speed-governing system are

provided in the per unit system with the nominal capability of the generator being

the base. With the introduction of parameters KmH, Pm, and Pe all expressed in per

unit system with system base SB.
Similar to the calculation of excitation system initial values, the initial values of

prime mover and speed-governing systems can be found by setting, in the transfer

functions, s = 0, or alternatively by setting the left-hand side of the differential

equations to zero. Again the dead zones of measurement systems and various

limiters need not be considered in general. Setting the left-hand side of (7.177),

(7.176), and (7.174) to zero, and making use of the linear relationships in (7.171),

(7.172), (7.173), and (7.175), together with (7.77), we have the initial values of each

state variable:

mð0Þ ¼ mð0Þ ¼
Pmð0Þ
KmH

; �ð0Þ ¼ xð0Þ ¼ Kimð0Þ; sð0Þ ¼ sð0Þ ¼ 0;

oREF ¼ oð0Þ þ
xð0Þ
Kd

¼ 1þ xð0Þ
Kd

:

9>>=
>>; ð7:179Þ

Based on (7.171), the equation corresponding to instant t + Dt for the acentric

flyball is as follows:

�ðtþDtÞ ¼ KdðoREF � oðtþDtÞÞ: ð7:180Þ
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Neglecting the measurement dead zone, based on (7.172), it follows:

sðtþDtÞ ¼ �ðtþDtÞ � xðtþDtÞ: ð7:181Þ
Also neglecting the limits on valve position, and based on (7.173), obviously we

have:

sðtþDtÞ ¼ sðtþDtÞ: ð7:182Þ
Applying the trapezoidal rule to (7.174), we obtain the following difference

equation:

mðtþDtÞ ¼ aSsðtþDtÞ þ m0; ð7:183Þ
where

aS ¼ Dt
2TS

; ð7:184Þ

m0 ¼ aSsðtÞ þ mðtÞ: ð7:185Þ

Neglect again the limit on valve position, based on (7.175), we have

mðtþDtÞ ¼ mðtþDtÞ: ð7:186Þ
Applying the trapezoidal rule to (7.176), we have the difference equation of the

feedback block:

xðtþDtÞ ¼ aimðtþDtÞ þ x0; ð7:187Þ

where

ai ¼ Ki þ 2TiKb

2Ti þ Dt
; ð7:188Þ

x0 ¼
2Ti � Dt
2Ti þ Dt

½xðtÞ � KimðtÞ� �
2TiKb

2Ti þ Dt
mðtÞ: ð7:189Þ

Applying the trapezoidal rule to (7.177), the difference equations of hydroge-

nerators are obtained, as follows:

PmðtþDtÞ ¼ �aHmðtþDtÞ þ P0; ð7:190Þ

where

aH ¼ KmHð2To � DtÞ
To þ Dt

; ð7:191Þ
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P0 ¼ To � Dt
To þ Dt

PmðtÞ þ KmHð2To þ DtÞ
To þ Dt

mðtÞ: ð7:192Þ

Eliminating the intermediate variables Z(tþDt), sðtþDtÞ, s(tþDt), mðtþDtÞ, m(tþDt),

and x(tþDt) in (7.180), (7.182), (7.183), (7.186), (7.187), and (7.190), and eliminat-

ing variable o(tþDt) based on (7.128), we find the difference equations for step tþDt
of hydrogenerators and their speed-governing systems, without consideration of

limiters:

PmðtþDtÞ ¼ b3dðtþDtÞ þ Pm0; ð7:193Þ
in which

b3 ¼
2aHaSKd

ð1þ aSaiÞosDt
; ð7:194Þ

Pm0 ¼ P0 � b3dðtÞ þ
aH½aSKdð2� oREF � oðtÞÞ þ aSx0 � m0�

1þ aSai
: ð7:195Þ

Finally, substituting (7.117) of Pe(t + Dt) and (7.193) of Pm(t + Dt) into (7.125), and

substituting difference equation (7.168) of Efq(t + Dt) into (7.131), together with

(7.132) we obtain the difference equations of generators for step t + Dt. Let us
transform the state currents under d–q coordinates into those under x–y coordinates,
for notational simplicity, neglecting the subscripts (t + Dt), it follows:

ð1� aJb3Þdþ aJ½VxIx þ VyIy þ RaðI2x þ I2y Þ� � aJPm0 � d0 ¼ 0

E00
q þ a00dðX0

d � X00
dÞðIx sin d� Iy cos dÞ � a00dad1b1d

þ a00dad1b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVx � XCIyÞ2 þ ðVy þ XCIxÞ2

q
� a00dad1Efq0 � E00

q0 ¼ 0

E00
d � a00qðX0

q � X00
qÞðIx cos dþ Iy sin dÞ � E00

d0 ¼ 0

9>>>>>=
>>>>>;
:

ð7:196Þ
The set of simultaneous (7.196) consists of three equations, the first reflects the

mechanical motion of the generators, while the other two reflect the electromagnet-

ic interactions. Based on (7.39), generator currents Ix and Iy are functions of Vx, Vy,

d, E00
q, and E00

d (refer to (7.258) for details), and therefore can be eliminated. The

above set of simultaneous equations thus has three state variables d, E00
q , and E00

d ,

plus two operating parameters Vx and Vy.

7.5.2 Initial Values and Difference Equations
of FACTS and HVDC

7.5.2.1 SVC

Here we will focus on an SVC model comprising a fixed capacitor (FC) and a

thyristor-controlled reactor (TCR). For ease of exposition, we will take a proportional

regulator-based SVC as an example; its transfer function is illustrated in (7.16).
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An SVC is generally connected to a high-voltage system via a transformer. The

equivalent admittance of TCR is controlled by the firing angle a of a thyristor, thus

the equivalent admittance BSVC of the SVC is manipulated. This mechanism

facilitates the control of voltage V given the input VREF. The mathematical model

of the SVC is obtained easily from Fig. 7.16 as

dBS1

dt
¼ 1

TS
½KSðVREF � VÞ � BS1�

dðTS2BS2 � TS1BS1Þ
dt

¼ BS1 � BS2

9>>=
>>;: ð7:197Þ

The limit on SVC output is

If BC � BL < BS2 < BC; BSVC ¼ BS2

If BS2 
 BC; BSVC ¼ BC

If BS2 � BC � BL; BSVC ¼ BC � BL

9>>=
>>;; ð7:198Þ

where BC = oC is the susceptance of the fixed capacitor, BL = 1/oL is the

susceptance of the reactor, the output BSVC is the equivalent susceptance of the

SVC. The upper limit of the SVC corresponds to the point at which the thyristor is

completely shut off, while the lower limit corresponds to the point at which the

thyristor is like a lossless conductor. The position between the limits corresponds to

a point at which the thyristor is partially closed.

Although an SVC is connected at the low-voltage side of a transformer, it can

still be viewed as a reactive power source at the high-voltage side, intended to

control the voltage at the high-voltage side bus of the transformer. Therefore, the

high-voltage bus can be effectively set as a PV node in load flow studies (P = 0, V =

VSP). From the result of a load flow study, one obtains _Vð0Þ ¼ VSPffyð0Þ and the

power injection from the SVC S(0) = jQ(0). Let the reactance of the transformer be

XT, the power injected into the network from the SVC is given by

Qð0Þ ¼
V2
ð0Þ

1

BSVCð0Þ
� XT

: ð7:199Þ

Σ−V

VRef
+

1+sTS

KS 1+sTS1

1+sTS2

BS1 BS2

BC

BC −BL

BSVC

Fig. 7.16 A simple model of SVC
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Setting both sides of (7.197) to zero, and noticing the relationship in (7.198) and

(7.199), we find the initial values of the SVC as

BSVCð0Þ ¼ BS2ð0Þ ¼ BS1ð0Þ ¼ 1

XT þ V2
ð0Þ

Qð0Þ

VREF ¼ VSP þ BSVCð0Þ
KS

9>>>>=
>>>>;
: ð7:200Þ

Applying the trapezoidal rule to the first (7.197), it follows:

BS1ðtþDtÞ ¼ �n1VðtþDtÞ þ BS10; ð7:201Þ

where

n1 ¼ KSDt
2TS þ Dt

; ð7:202Þ

BS10 ¼ n1ð2VREF � VðtÞÞ þ 2TS � Dt
2TS þ Dt

BS1ðtÞ: ð7:203Þ

And applying the trapezoidal rule to the second equation in (7.197), and elim-

inating BS1(t + Dt) from (7.201), it follows:

BS2ðtþDtÞ ¼ BSVC0 � nS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xðtþDtÞ þ V2

yðtþDtÞ
q

; ð7:204Þ

where

nS ¼ n1
2TS1 þ Dt
2TS2 þ Dt

; ð7:205Þ

BSVC0 ¼ 2TS1 þ Dt
2TS2 þ Dt

BS10 þ 2TS2 � Dt
2TS2 þ Dt

BS2ðtÞ � 2TS1 � Dt
2TS2 þ Dt

BS1ðtÞ: ð7:206Þ

If the limit of the SVC is ignored, then BS(tþDt) ¼ BS2(tþDt), thus:

BSVCðtþDtÞ ¼ BSVC0 � nS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xðtþDtÞ þ V2

yðtþDtÞ
q

: ð7:207Þ

7.5.2.2 TCSC

A thyristor-controlled series compensator (TCSC) is connected into a transmission

line in series, it changes its equivalent admittance thus achieving the goal of

controlling the equivalent admittance of the transmission line. Here we will only
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give the mathematical model of a TCSC composed of FC and TCR connected in

parallel (similar to an SVC):

dBT1

dt
¼ 1

TT
½KTðPREF � PTÞ � BT1�

dðTT2BT2 � TT1BT1Þ
dt

¼ BT1 � BT2

9>>=
>>;; ð7:208Þ

where the input signal PT is the power flowing through the line in which the TCSC

is connected, the output BTCSC is the equivalent susceptance of the TCSC.

The limits of the TCSC are

If BMIN
TCSC < BT2 < BMAX

TCSC; BTCSC ¼ BT2

If BT2 
 BMAX
TCSC; BTCSC ¼ BMAX

TCSC

If BT2 � BMIN
TCSC; BTCSC ¼ BMIN

TCSC

9>>=
>>;; ð7:209Þ

where the specific values of BMAX
TCSC and BMIN

TCSC depend on the sizes of L and C. They
can be computed based on (5.153)–(5.155).

As usual a load flow study provides BTCSC(0) and PT(0) = PSP, similar to

computing the initial values of an SVC, we have

BTCSCð0Þ ¼ BT2ð0Þ ¼ BT1ð0Þ

PREF ¼ PTð0Þ þ
BTCSCð0Þ

KT

9=
;: ð7:210Þ

If the measured value of PT of TCSC flows from bus i to bus j, the expression of
PT is easily obtained as

PT ¼ BTCSCðVxiVyj � VyiVxjÞ: ð7:211Þ

Apply the trapezoidal rule to the first equation in (7.208), one obtains

BT1ðtþDtÞ ¼ �z1PTðtþDtÞ þ BT10; ð7:212Þ

in which

z1 ¼
KTDt

2TT þ Dt
; ð7:213Þ

BT10 ¼ z1ð2PREF � PTðtÞÞ þ 2TT � Dt
2TT þ Dt

BT1ðtÞ: ð7:214Þ

478 7 Power System Transient Stability Analysis



Now applying the trapezoidal rule to the second equation of (7.208), eliminating

BT1(tþDt) and PT(tþDt) based on (7.212) and (7.211), we have

½1þ zTðVxiðtþDtÞVyjðtþDtÞ � VyiðtþDtÞVxjðtþDtÞÞ�BT2ðtþDtÞ � BTCSC0 ¼ 0; ð7:215Þ

in which

zT ¼ z1
2TT1 þ Dt
2TT2 þ Dt

; ð7:216Þ

BTCSC0 ¼ 2TT1 þ Dt
2TT2 þ Dt

BT10 þ 2TT2 � Dt
2TT2 þ Dt

BT2ðtÞ � 2TT1 � Dt
2TT2 þ Dt

BT1ðtÞ: ð7:217Þ

If the output limits of the TCSC are neglected, obviously we have BTCSC(t + Dt) =

BT2(t + Dt), then

½1þ zTðVxiðtþDtÞVyjðtþDtÞ � VyiðtþDtÞVxjðtþDtÞÞ�BTCSCðtþDtÞ � BTCSC0 ¼ 0: ð7:218Þ

7.5.2.3 HVDC Systems

In stability studies, the network equations of the AC system appear in terms of

positive sequence quantities, this places a fundament limitation on the model of an

HVDC system. In particular, commutation failure in the HVDC system cannot be

predicted. A commutation failure may be the result of a severe three-line-to-ground

fault occurring close to the rectifier, an unsymmetrical fault on the AC side of the

rectifier, or saturation of HVDC transformer operating during a transient period.

Earlier HVDCmodels included the dynamic characteristics of transmission lines

and converter dynamics. In recent years, there is a trend toward adopting simpler

models. Two models for an HVDC system are popular, these are, a simplified

model and a steady-state model.

1. The simplified model

An HVDC system some distance away from the study area has little impact on the

results of a stability study, and thus can be modeled using a simple model:

the system is viewed as a pair of active and reactive power sources connected at

the converter AC substation.

A more realistic model is termed the steady-state model. Based on (5.2), the DC

line is modeled by the algebraic equation of a resistor:

VdR ¼ VdI þ RdcId; ð7:219Þ

where Rdc denotes the resistance of the line.
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Noticing that IdR ¼ IdI ¼ Id, from (7.52) and (7.53), eliminating VdR and VdI in

(7.219), it follows:

RId ¼ kRVR cos a� kIVI cos b; ð7:220Þ

where

R ¼ Rdc þ XcR þ XcI: ð7:221Þ

The pole control action is assumed to be instantaneous; many of the control

functions are represented in terms of their net effects, rather than actual character-

istics of the hardware. This model appears in the form of an algebraic equation, the

interaction between AC and DC system is similar to that in a load flow model.

2. Quasi-steady-state model

If the short circuit currents in any of the converters are relatively low, then the

dynamics of DC system elements has a non-negligible impact on the AC system. As

a result, a more detailed DC model is necessary for conducting a transient stability

analysis.

In a quasi-steady-state model, the converter characteristics are still modeled by

the equation governing the relationship between average DC values and the nomi-

nal values of fundamental frequency components. In this setting, the DC transmis-

sion line can adopt different models given different requirements on precision. The

simplest DC line model is just that of a steady-state model, as in (7.220). A more

detailed model is based on an R–L circuit:

L
dId
dt

þ RId ¼ kRVR cos a� kIVI cos b; ð7:222Þ

where R is defined in (7.221), besides,

L ¼ Ldc þ LR þ LI; ð7:223Þ

where Ldc, LR, and LI are the reactance of DC line, and the smoothing reactors.

For the control system, taking the control mode of constant current and constant

voltage as an example, from the transfer function given in Fig. 5.18, we have the

differential equations:

dx1
dt

¼ 1

Tc3
ðId � x1Þ

dðKc1x1 � �aÞ
dt

¼ Kc2

Tc2
ðIdREF � x1Þ

9>>=
>>;: ð7:224Þ
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The limits on delayed ignition angle include

If aMIN < �a < aMAX; a ¼ �a

If �a 
 aMAX; a ¼ aMAX

If �a � aMIN; a ¼ aMIN

9>=
>;; ð7:225Þ

dx4
dt

¼ 1

Tv3
ðVdI � x4Þ

dðKv1x4 � �bÞ
dt

¼ Kv2

Tv2
ðVdREF � x4Þ

9>>=
>>;: ð7:226Þ

The limits on ignition advance angle include

If bMIN < �b < bMAX; b ¼ �b

If �b 
 bMAX; b ¼ bMAX

If �b � bMIN; b ¼ bMIN

9>=
>;: ð7:227Þ

When the rectifier is under constant current control, and the inverter is under

constant voltage control, we have Idð0Þ ¼ ISPd and VdIð0Þ ¼ VSP
dI . From a load flow

study we have VR(0) and VI(0). Based on (7.224)–(7.227), noticing the relationships

in (7.219) and/or (7.222), and (7.52) and (7.53), it follows:

IdREF ¼ x1ð0Þ ¼ Idð0Þ

að0Þ ¼ �að0Þ ¼ cos�1
VdIð0Þ þ ðRdc þ XcRÞIdð0Þ

kRVRð0Þ

� �
VdREF ¼ x4ð0Þ ¼ VdIð0Þ

bð0Þ ¼ �bð0Þ ¼ cos�1
VdIð0Þ � XcIIdð0Þ

kIVIð0Þ

� �

9>>>>>>>>=
>>>>>>>>;
: ð7:228Þ

Applying trapezoidal rule to (7.224), we find

x1ðtþDtÞ ¼ g1IdðtþDtÞ þ x10; ð7:229Þ

where

g1 ¼
Dt

2Tc3 þ Dt
; ð7:230Þ

x10 ¼ g1IdðtÞ þ
2Tc3 � Dt
2Tc3 þ Dt

x1ðtÞ: ð7:231Þ
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Using the second formula in (7.224), and eliminating x1(tþDt) by making use of

(7.229), we have

�aðtþDtÞ ¼ g2IdðtþDtÞ þ a0; ð7:232Þ

where

g2 ¼ g1 Kc1 þ Kc2Dt
2Tc2

� �
; ð7:233Þ

a0 ¼ Kc1 þ Kc2Dt
2Tc2

� �
x10 þ �aðtÞ � Kc2Dt

Tc2
IdREF � Kc1 � Kc2Dt

2Tc2

� �
x1ðtÞ: ð7:234Þ

Neglecting the limits on ignition angle a, it is obvious that:

aðtþDtÞ ¼ �aðtþDtÞ: ð7:235Þ

Applying the trapezoidal rule to the first formula of (7.226), it follows:

x4ðtþDtÞ ¼ g3VdIðtþDtÞ þ x40; ð7:236Þ

where

g3 ¼
Dt

2Tv3 þ Dt
; ð7:237Þ

x40 ¼ g3VdIðtÞ þ 2Tv3 � Dt
2Tv3 þ Dt

x4ðtÞ: ð7:238Þ

Applying the trapezoidal to the second formula in (7.226), making use of (7.236)

to eliminate x4(tþDt), and noticing the relationship in (7.53) allows VdI(tþDt) to be

eliminated, after simple manipulations, we have

�bðtþDtÞ ¼ g4VIðtþDtÞ cos bðtþDtÞ þ g5IdðtþDtÞ þ b0; ð7:239Þ

in which

g4 ¼
g3
nI

Kv1 þ Kv2Dt
2Tv2

� �
; g5 ¼ g4nIRcI; ð7:240Þ

b0 ¼ Kv1 þ Kv2Dt
2Tv2

� �
x40 þ �bðtÞ �

Kv2Dt
Tv2

VdREF � Kv1 � Kv2Dt
2Tv2

� �
x4ðtÞ: ð7:241Þ
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Neglecting the limits on ignition angle b, it follows:

bðtþDtÞ ¼ �bðtþDtÞ: ð7:242Þ

Under a quasi-steady-state model, different difference equations can be devel-

oped, with or without consideration for the transient duration of the DC transmis-

sion line.

If the transient duration of the DC line is not considered, the DC line is modeled

based on (7.220), where Id can be expressed as a function of a, b, VxR, VyR, VxI, and

VyI:

Id ¼ kR
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xR þ V2

yR

q
cos a� kI

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xI þ V2

yI

q
cos b: ð7:243Þ

Let us eliminate �aðtþDtÞ and Id(tþDt) in (7.232), (7.235), and (7.243), we then

obtain the difference equation of the rectifier under constant current control, when

the limits on a are not considered:

aðtþDtÞ � r1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xRðtþDtÞ þ V2

yRðtþDtÞ
q

cos aðtþDtÞ

þ r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xIðtþDtÞ þ V2

yIðtþDtÞ
q

cos bðtþDtÞ � a0 ¼ 0;
ð7:244Þ

where

r1 ¼
kR
R
g2; r2 ¼

kI
R
g2: ð7:245Þ

Similarly, eliminating variables �bðtþDtÞ and Id(tþDt) in (7.239), (7.242), and

(7.243), we get the difference equation of the inverter under constant voltage

control, when the limits on b are not considered:

bðtþDtÞ � r3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xRðtþDtÞ þ V2

yRðtþDtÞ
q

cos aðtþDtÞ

� r4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xIðtþDtÞ þ V2

yIðtþDtÞ
q

cos bðtþDtÞ � b0 ¼ 0;
ð7:246Þ

where

r3 ¼
kR
R
g5; r4 ¼ g4 �

kI
R
g5: ð7:247Þ

If the transient response of the DC line is considered, the DC line is modeled by

(7.222), applying the trapezoidal rule to this equation, it follows:

IdðtþDtÞ ¼ g6VRðtþDtÞ cos aðtþDtÞ � g7VIðtþDtÞ cos bðtþDtÞ þ Id0; ð7:248Þ
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where

g6 ¼
kRDt

2Lþ RDt
; g7 ¼ g6

kI
kR

; ð7:249Þ

Id0 ¼ g6VRðtÞ cos aðtÞ � g7VIðtÞ cos bðtÞ þ
2L� RDt
2Lþ RDt

IdðtÞ: ð7:250Þ

Now eliminating �aðtþDtÞ and Id(tþDt) in (7.232), (7.235), and (7.248), we find the

difference equation of the rectifier, under constant current control, when the limits

on a are not considered:

aðtþDtÞ � r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xRðtþDtÞ þ V2

yRðtþDtÞ
q

cos aðtþDtÞ

þ r6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xIðtþDtÞ þ V2

yIðtþDtÞ
q

cos bðtþDtÞ � u0 ¼ 0;
ð7:251Þ

where

r5 ¼ g2g6; r6 ¼ g2g7; ð7:252Þ

u0 ¼ a0 þ g2Id0: ð7:253Þ

By the same token, eliminating �bðtþDtÞ and Id(tþDt) in (7.239), (7.242), and

(7.248), we find the difference equation of the inverter, under constant current

control, when the limits on b are not considered:

aðtþDtÞ � r7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xRðtþDtÞ þ V2

yRðtþDtÞ
q

cos aðtþDtÞ

þ r8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xIðtþDtÞ þ V2

yIðtþDtÞ
q

cosbðtþDtÞ � n0 ¼ 0;
ð7:254Þ

where

r7 ¼ g5g6; r8 ¼ g4 � g5g7; ð7:255Þ

v0 ¼ b0 þ g5Id0: ð7:256Þ

7.5.3 Forming Network Equations

The network equations expressed in the domain of real numbers are provided in

(7.36). In transient stability studies, the nodes in the network are divided into three

classes: nodes connected in parallel with dynamic devices (including generator

nodes, SVC nodes, and load nodes); nodes connected in series with dynamic
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devices (including the AC buses of an HVDC system, TCSC nodes, etc.); and the

faulted nodes or nodes not connected with any device. Substitute the network

current expressions of each dynamic device, illustrated in Sect. 7.3.1, into the

network equations, and properly dealing with a fault or switch, as described in

Sect. 7.3.2, we obtain the network equations ready for subsequent simulation.

7.5.3.1 Nodes Connected in Parallel with Dynamic Devices

If a dynamic device is connected at node i, then the network equation for this node

is

DIxi ¼ Ixi �
X
k2i

ðGikVxk � BikVykÞ ¼ 0

DIyi ¼ Iyi �
X
k2i

ðGikVyk þ BikVxkÞ ¼ 0

9>>=
>>;: ð7:257Þ

The expressions for currents Ixi and Iyi at node i depend on what device is

connected.

(1) Connected with a generator: Note that a generators is represented using a

varying E0
q, E

00
q, E

0
d, and E00

d model, therefore assigning the corresponding values

to the elements in (7.40), based on Table 7.1, it turns out that the expression for

the generator current (7.39) can be rewritten as

Ixi ¼ 1

R2
ai þ X00

diX
00
qi

ðRai cos di þ X00
qi sin diÞE00

qi þ ðRai sin di � X00
di cos diÞE00

di

n

� ½Rai � ðX00
di � X00

qiÞ sin di cos di�Vxi � ðX00
di cos

2 di þ X00
qi sin

2 diÞVyi

o
Iyi ¼ 1

R2
ai þ X00

diX
00
qi

ðRai sin di � X00
qi cos diÞE00

qi � ðRai cos di þ X00
di sin diÞE00

di

n

þ ðX00
di sin

2 di þ X00
qi cos

2 diÞVxi � ½Rai þ ðX00
di � X00

qiÞ sin di cos di�Vyi

o

9>>>>>>>>>>=
>>>>>>>>>>;
:

ð7:258Þ

(2) Connected with a load: As described in Sect. 7.3.1, if the load is a constant

impedance, it can be incorporated in the network. If the load is modeled as a

second-order polynomial function, it is modeled as a current injection in (7.48),

note that the constant impedance part of the load can also be incorporated into

the network. The last two terms in (7.48) are treated as current injections. If the

load is modeled as an exponential function of voltage, it can be viewed as a

current injection (7.49).
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(3) Connected with an SVC: The expression of the current injection of an SVC is

given in (7.50).

7.5.3.2 Nodes Connected with Series Devices

If a dynamic device is connected in series between node i and node j, the network
equations between node i and j are

DIxi ¼ Ixi �
X
k2i

ðGikVxk � BikVykÞ ¼ 0

DIyi ¼ Iyi �
X
k2i

ðGikVyk þ BikVxkÞ ¼ 0

DIxj ¼ Ixj �
X
k2j

ðGjkVxk � BjkVykÞ ¼ 0

DIyj ¼ Iyj �
X
k2j

ðGjkVyk þ BjkVxkÞ ¼ 0

9>>>>>>>>>>>=
>>>>>>>>>>>;

: ð7:259Þ

The currents Ixi, Iyi, Ixj, and Iyj take different forms, depending upon what device

is connected between node i and j.

1. Series TCSC

The expressions for currents Ixi, Iyi, Ixj, and Iyj are given by (7.51).

2. Series HVDC system

If the AC–DC system is solved by a simultaneous approach, the expressions for

DC currents Ixi, Iyi, Ixj, and Iyj injected into the AC nodes are given in (7.56). In the

formula of (7.54) and (7.55), the DC current Id can be replaced by (7.243) or

(7.248), thus the current injections are functions of a, b, VxR, VyR, VxI, and VyI only.

7.5.3.3 A Connection Node or Faulted Node

A connection node has zero current injection. As discussed before, any type of fault

can be modeled by adjusting the admittance matrix of the positive sequence

network based on the concept of the synthesized impedance matrix. Therefore, in

the faulted node of the extended positive sequence network, there is no current

injection. The faulted node is therefore a connection node. The network equation of

a connection node or faulted node is

DIxf ¼ 0�
X
k2f

ðGfkVxk � BfkVykÞ ¼ 0

DIyf ¼ 0�
X
k2f

ðGfkVyk þ BfkVxkÞ ¼ 0

9>>=
>>;: ð7:260Þ
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7.5.4 Simultaneous Solution of Difference and Network
Equations

All the equations of the system for step t þ Dt have been given, they include the

network equations and the difference equations of each dynamic device. In this

system of equations, the unknowns include the operating variables of the power

system under study Vx and Vy; all the state variables of dynamic devices, for

example, d, E00
q, and E00

d of each generator, the BSVC of each SVC, the BTCSC of

each TCSC, and the a and b of the HVDC system. Assume that there are n nodes, nG
generators, nS SVCs, nT TCSCs, nD HVDC systems, then the number of unknowns

is equal to 2n þ 3nG þ nS þ nT þ 2nD, which is just equal to the number of

equations. The system of equations is well defined.

Network equations (7.257), (7.259), (7.260), generator difference (7.196), SVC

(7.207), TCSC (7.218), together with HVDC difference equations (7.244), (7.246)

or (7.251), (7.254) comprise a set of nonlinear equations. The current injections and

the difference equations are time varying, while the network equations assume the

same structure, except for the steps at which a disturbance (either a fault or a switch

operation) occurs. To compute the system states immediately after a disturbance,

only the network equations need to be resolved. The state variables d, E00
q, E

00
d, BSVC,

BTCSC, a, and b of the dynamic devices should take the values obtained before the

disturbance. The set of nonlinear equations comprising the difference and network

equations is solved in a recursive manner to provide the states of the study system at

each integration step.

The above set of nonlinear equations is typically solved using a Newton method.

Since the Newton method is already fairly familiar, the computational procedure of

the method will only be briefly described below:

1. Set, for step t + Dt, the initial values of generator state variables d, E00
q, E

00
d, the

initial values of SVC state variables BSVC, the initial values of TCSC state

variables BTCSC, the initial values of HVDC state variables a, b, and the initial

values of network voltage Vx and Vy. These initial values either can be set to the

values at step t, or may be extrapolated from the values of the previous steps.

2. For the set of nonlinear equations comprising generator difference equations,

SVC difference equations, TCSC difference equations, HVDC difference equa-

tions, and the network equations, compute the Jacobian matrix and mismatches

given the initial values obtained in step (1), then solve the linear equations for

the updates to the variables.

3. Check if the iteration has converged. If yes, stop; otherwise, return to step (2).

The iteration continues until convergence is reached.

4. After the quantities of the state variables for t + Dt are obtained, proceed to

compute the values of the other dynamic variables according to the difference/

algebraic equations derived in Sects. 7.5.1 and 7.5.2. These values will be useful

for the computation of the next step. It should be noted that, the effects of

limiters should be considered in this step.
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Thinking and Problem Solving

1. What is meant by the transient stability of electrical power systems? What

methods can be adopted to analyze it? How can we judge the transient stability

of electrical power systems?

2. What are the consequences of loss of transient stability in a power system?

3. What suppositions are made within the transient stability analysis model of

electrical power systems and what is the underlying theory?

4. What main measures exist to improve the transient stability of electrical power

systems? What is the principle of each measure?

5. Give the method used to modify an admittance matrix when short-circuit

failures at different locations and of different fault types occur on one trans-

mission line in an electrical network, and list essential calculation formulas.

6. What aspects should be considered in choosing appropriate integration meth-

ods when numerical integration is used to analyze the transient stability of

electrical power systems?

7. What kinds of initial value problems of differential equations belong to the

class of ‘‘stiff’’ problems? What requirements are there for numerical integra-

tion methods to solve stiff problems?

8. What are the advantages and disadvantages of the alternating solution method

and the simultaneous solution method in solving initial value problems of

differential-algebraic equations?

9. How can we deal with limiters when a numerical integration method is used to

find the time-domain solution of each state variable in an electrical power

system?

10. Although there are many numerical integration methods, the implicit trapezoi-

dal integration method obtains wide application in transient stability analysis of

electrical power systems, why?

11. During dynamic security evaluation, it is required to carry out rapid transient

stability analysis of electrical power systems under each contingency. What

aspects can be considered to improve the speed of the transient stability

analysis?

12. When analyzing the transient stability of electrical power systems, each gener-

ator can be represented by one of the following models: E0 = C; E0
q = C; E0

q vary;

E0
q, E

0
d vary; E

0
q, E

00
q, E

00
d vary; E

0
q, E

00
q, E

0
d, E

00
d vary. Explain the applicability of each

model.

13. It can be seen from the numerical solution of the transient stability analysis of a

real electrical power system that the current on an inductance and the voltage

across the two terminals of a capacitance will change significantly at the second

that failure occurs, which seems to not satisfy the law of electromagnetic

induction. Why?

14. During transient stability calculation using the improved Euler’s method, when

considering the transient process of the excitation winding and the influence of

excitation system, select a type of excitation system, and list the relevant

formulas of the transient process calculation for one step.
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Chapter 8

Small-Signal Stability Analysis of Power Systems

8.1 Introduction

Small-signal stability analysis is about power system stability when subject to small

disturbances. If power system oscillations caused by small disturbances can be

suppressed, such that the deviations of system state variables remain small for a

long time, the power system is stable. On the contrary, if the magnitude of oscilla-

tions continues to increase or sustain indefinitely, the power system is unstable.

Power system small-signal stability is affected by many factors, including initial

operation conditions, strength of electrical connections among components in the

power system, characteristics of various control devices, etc. Since it is inevitable

that power system operation is subject to small disturbances, any power system that

is unstable in terms of small-signal stability cannot operate in practice. In other

words, a power system that is able to operate normally must first be stable in terms

of small-signal stability. Hence, one of the principal tasks in power system analysis

is to carry out small-signal stability analysis to assess the power system under the

specified operating conditions.

The dynamic response of a power system subject to small disturbances can be

studied by using the method introduced in Chap. 7 to determine system stability.

However, when we use the method for power system small-signal stability analysis,

in addition to slow computational speed, the weakness is that after a conclusion of

instability is drawn, we cannot carry out any deeper investigation into the phenom-

enon and cause of system instability. The Lyapunov linearized method has provided

a very useful tool for power system small-signal stability analysis. Based on the

fruitful results of eigensolution analysis of linear systems, the Lyapunov linearized

method has been widely used in power system small-signal stability analysis. In

the following, we shall first introduce the basic mathematics of power system

small-signal stability analysis.

The Lyapunov linearized method is closely related to the local stability of

nonlinear systems. Intuitively speaking, movement of a nonlinear system over a

small range should have similar properties to its linearized approximation.
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Assume the nonlinear system described by

dx

dt
¼ f ðxÞ:

Its Taylor expansion at the origin is

dDx
dt

¼ ADxþ hðDxÞ; ð8:1Þ

where

A ¼ @fðxe þ DxÞ
@Dx

����
Dx¼0

¼ @fðxÞ
@x

����
x¼xe

:

If in the neighborhood of Dx = 0, h(Dx) is a high-order function of Dx, we can
use the stability of the following linear system

dDx
dt

¼ ADx: ð8:2Þ

To study the stability of the nonlinear system at point xe

(1) If the linearized system is asymptotically stable, i.e., all eigenvalues of A have

negative real parts, the actual nonlinear system is asymptotically stable at the

equilibrium point.

(2) If the linearized system is unstable, i.e., at least one of eigenvalues of A has a

positive real part, the actual nonlinear system is unstable at the equilibrium

point.

(3) If the linearized system is critically stable, i.e., real parts of all eigenvalues of

A are nonpositive but the real part of at least one of them is zero, no conclusion

can be drawn about the stability of the nonlinear system from its linearized

approximation.

The basic principle of the Lyapunov linearized method is to draw conclusions about

the local stability of the nonlinear system around the equilibrium point from the

stability of its linear approximation.

When carrying out small-signal stability analysis of a power system, we always

assume that the system at normal operation at equilibrium point x¼ xe or Dx¼ 0 is

disturbed instantly at the moment t ¼ t0 when system state moves from 0 to Dx(t0).
Dx(t0) is the initial state of system free movement after disappearance of the

disturbance. Because the disturbance is sufficiently small, Dx(t0) is within a suffi-

ciently small neighborhood of Dx ¼ 0. Thus in the neighborhood of Dx ¼ 0, h(Dx)
is a high-order indefinitely small variable. Hence according to the Lyapunov

linearized method, we can study the stability of the linearized system to investigate

that of the actual nonlinear power system.

Linearizing the differential-algebraic dynamic description of a power system of

(8.1) and (8.2) at steady-state operating point (x(0), y(0)), we can obtain
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dDx=dt
0

� �
¼

~
A

~
B

~
C

~
D

� �
Dx
Dy

� �
; ð8:3Þ

where

~
A ¼

@f1
@x1

� � � @f1
@xn

..

. ..
.

@fn
@x1

� � � @fn
@xn

2
666664

3
777775

x¼xð0Þ
y¼yð0Þ

; ~
B ¼

@f1
@y1

� � � @f1
@ym

..

. ..
.

@fn
@y1

� � � @fn
@ym

2
666664

3
777775

x¼xð0Þ
y¼yð0Þ

;

~
C ¼

@g1
@x1

� � � @g1
@xn

..

. ..
.

@gm
@x1

� � � @gm
@xn

2
666664

3
777775

x¼xð0Þ
y¼yð0Þ

;
~
D ¼

@g1
@y1

� � � @g1
@ym

..

. ..
.

@gm
@y1

� � � @gm
@ym

2
666664

3
777775

x¼xð0Þ
y¼yð0Þ

:

R denotes the set of real numbers, Rn is the n-dimensional space of real vectors,

R
m�n is the set of m-row n-column real matrices. We define R

n to be R
n�1, i.e.,

elements in R
n are column vectors. On the other hand, elements in R

1�n are row

vectors. Obviously in the above equation,
~
A 2 R

n�n,
~
B 2 R

n�m,
~
C 2 R

m�n,
~
D 2 R

m�m.

Deleting Dy in (8.3), we have

dDx
dt

¼ ADx; ð8:4Þ

where

A ¼ ~
A� ~

B
~
D

�1~
C: ð8:5Þ

Matrix A 2 R
n�n is often referred to as the state matrix or coefficient matrix.

Therefore, small-signal stability studies local characteristics of the power sys-

tem, i.e., asymptotic stability of an equilibrium point before the system is disturbed.

Obviously, the theoretical basis to study power system small-signal stability by

using the Lyapunov linearized method is that the disturbance must be sufficiently

small. When the power system is subject to any such disturbance, state variables of

the transient system model vary over a very small range. Hence asymptotic stability

of the linearized system can guarantee a certain type of asymptotic stability of the

actual nonlinear system.
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We know that when the power system is subject to a sufficiently small distur-

bance at steady-state operation, there can be two consequences. One is that the dis-

turbance approaches zero with time (i.e., disturbed movement approaches the

undisturbedmovement and all eigenvalues of correspondingmatrixA have negative

real parts) in this case the system is asymptotically stable at steady-state operation.

The disturbed system will eventually return to the steady-state operation before the

occurrence of disturbance. Another possible consequence is that disturbance Dx
increases indefinitely with time, no matter how small the disturbance is (i.e., the real

part of at least one of the eigenvalues ofA is positive). Obviously the system is then

unstable at this steady-state operating point. For the operation of a real power

system, study of the critically stable situation is not so important, except that we

can see it as the limiting case of small-signal stability.

Here we need to point out that in our previous discussion about system stability,

we assumed that the disturbance was instantaneous. That is, the system state

moves instantly from Dx ¼ 0 to Dx(t0), and the disturbance disappears when the

movement happens. However, the same theory is applicable to the study of stability

when the system is subject to a permanent disturbance, because we can consider this

as a case of stability subject to an instantaneous disturbance but operating at a new

equilibrium point.

Furthermore, for certain operating conditions in which the system is unstable in

terms of small-signal stability or lacks damping, we can determine relationships

between some controller parameters and the system eigenvalues (representing

system stability) by using eigensolution analysis. In doing so, we can find certain

ways to improve the power system small-signal stability. Hence small-signal

stability analysis is a very important aspect of power system analysis and control.

Therefore, power system analysis for operation at a steady state and subject to

small disturbances includes:

(1) Computation of steady-state values of various variables of the power system at a

given steady-state operating condition,

(2) Linearization of the differential-algebraic description of power system nonline-

ar dynamics to obtain the linearized differential-algebraic equations,

(3) Formation of system state matrix A from the system linearized differential-

algebraic equations to determine system stability by calculation of the eigen-

values of A.

In our above discussion, only the electromechanical oscillations between generators

are considered in small-signal stability analysis. That is, we consider generators to

be lumped rigid masses. However, the mechanical structure of real large-scale

steam-turbine generation units is very complicated. It consists of several major

lumped masses, such as turbine rotor, generator rotor, exciter rotor, etc. These

lumped masses are connected by a rigid shaft of limited length. When generation

units are disturbed, rotational speeds of the lumped masses are different during the

system transient, due to elasticity between the lumped mass. This leads to torsional

oscillations between each lumped mass. Because the inertia of each lumped mass is

smaller than the total inertia of generation units, and taking into account the
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relevant stiffness, the frequency of torsional oscillations between each lumped mass

is higher than that of electromechanical oscillations between generation units.

Frequency of torsional oscillation is between about 10 and 50 Hz. This oscillation

is often referred to as sub-synchronous oscillation (SSO).

When SSO occurs, there is an oscillating torsional torque between lumped

masses connected by the common shaft of a generation unit. Fatigue accumulation

due to repeated episodes of torsional oscillation on the shaft will reduce shaft

operating life. If the torsional torque exceeds a certain limit, shaft cracking, even

breaking, can happen. Occurrence of SSO is mainly related to excitation control,

governing control, HVDC control, and interaction between transmission line and

series compensation of the line. When carrying out torsional oscillation analysis,

we need to first establish a mathematical model of the shaft system of the steam

turbine and generator. In addition, because frequency of torsional oscillation is

high, a quasi-steady-state model of various components cannot be used. Instead, the

electromagnetic transients in the power system need to be considered. Detailed

analysis on torsional oscillation is outside the scope of this book.

In this chapter, we first derive linearized models of various dynamic components

in power systems, to establish the linearized equations of the whole system, in order

to demonstrate the basic steps for computation of small-signal stability in power

systems. Then, we will discuss the eigensolution problem in power system small-

signal stability analysis and the analytical methods required to study power system

oscillations.

8.2 Linearized Equations of Power System

Dynamic Components

In power system small-signal stability analysis, we need to linearize various

dynamic components in the power system. In linearization, limiters in control

devices often need not be considered. This is because in normal steady-state

operation, the values of state variables associated with control devices are within

the range determined by the limiters. If disturbances are sufficiently small, varia-

tions of state variables will not go beyond these limitations. As far as dead zones

associated with certain control devices are concerned, we generally consider the

dead zone to be small and hence ignored. If the dead zone is large, we can simply

consider that in this case the control device does not function.

8.2.1 Linearized Equation of Synchronous Generator

8.2.1.1 Linearized Equation of Each Part of a Synchronous Generator

(1) Synchronous generator: For a synchronous generator described by (7.114)–

(7.116) at a given steady-state operating condition, steady-state values of
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various variables are d(0), o(0), E
0
q(0), E

00
q(0), E

0
d(0), E

00
d(0), Id(0), Iq(0), Vd(0), Vq(0),

Pm(0), Pe(0), Efq(0) which can be calculated from (7.74–7.78) and (7.118–7.122).

Linearizing each equation at these steady-state values, we obtain the linearized

equation of a synchronous generator

dDd
dt

¼ osDo

dDo
dt

¼ 1

TJ
�DDo� Iqð0ÞDE00

q � Idð0ÞDE00
d þ DPm

n
� E00

dð0Þ � X00
d � X00

q

� �
Iqð0Þ

h i
DId � E00

qð0Þ � X00
d � X00

q

� �
Idð0Þ

h i
DIq
o

dDE0
q

dt
¼ 1

T0
d0

�kdDE0
q þ ðkd � 1ÞDE00

q þ DEfq

h i
dDE00

q

dt
¼ 1

T00
d0

DE0
q � DE00

q � X0
d � X00

d

� �
DId

h i
dDE0

d

dt
¼ 1

T0
q0

�kqDE0
d þ ðkq � 1ÞDE00

d

	 

dDE00

d

dt
¼ 1

T00
q0

DE0
d � DE00

d þ X0
q � X00

q

� �
DIq

h i

9>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

;

ð8:6Þ

DVd ¼ DE00
d � RaDId þ X00

qDIq

DVq ¼ DE00
q � X00

dDId � RaDIq

)
: ð8:7Þ

(2) Excitation system: Taking an excitation system consisting of a DC exciter with

thyristor-controlled regulator as an example, we can derive the linearized

equation of (7.136–7.140) as follows.

For measurement unit with VC ¼ _V þ jXC
_I

�� ��, from coordinate transformation

of (6.63), d, q components of voltage and current at generator terminals can be

represented as

_V ¼ ðVd þ jVqÞejðd�p=2Þ; _I ¼ ðId þ jIqÞejðd�p=2Þ: ð8:8Þ
Obviously we have

VC ¼ ½ðVd þ jVqÞ þ jXCðId þ jIqÞ�ejðd�p=2Þ�� ��
¼ ðVd þ jVqÞ þ jXCðId þ jIqÞ
�� ��

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVd � XCIqÞ2 þ ðVq þ XCIdÞ2

q : ð8:9Þ

Linearizing the above equations at steady-state values, we can obtain

DVC ¼ KcdðDVd � XCDIqÞ þ KcqðDVq þ XCDIdÞ; ð8:10Þ
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where

Kcd ¼ ðVdð0Þ � XCIqð0ÞÞ=VCð0Þ; Kcq ¼ ðVqð0Þ þ XCIdð0ÞÞ=VCð0Þ

VCð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVdð0Þ � XCIqð0ÞÞ2 þ ðVqð0Þ þ XCIdð0ÞÞ2

q
9=
;: ð8:11Þ

Linearizing (7.136), substituting (8.10) into it to cancel DVC, we can obtain the

linearized equation of measuring and filtering unit to be

dDVM

dt
¼ 1

TR
ð�DVM þ KcqXCDId � KcdXCDIq þ KcdDVd þ KcqDVqÞ: ð8:12Þ

Representing the saturation characteristic of the exciter by (7.140) and lineariz-

ing (7.139) at steady-state operating point, we can have the linearized equation

of the exciter to be

dDEfq

dt
¼ 1

TE
� KE þ nEcEE

nE�1
fqð0Þ

� �
DEfq þ DVR

h i
: ð8:13Þ

Finally, linearizing (7.137, 7.138) and rearranging them together with (8.12) and

(8.13), we can obtain the linearized equation of the whole DC excitation system

to be

dDEfq

dt
¼ �

KE þ nEcEE
nE�1
fqð0Þ

TE
DEfq þ 1

TE
DVR

dDVR

dt
¼ � 1

TA
DVR � KA

TA
DVF � KA

TA
DVM þ KA

TA
DVS

dDVF

dt
¼ �

KF KE þ nEcEE
nE�1
fqð0Þ

� �
TETF

DEfq þ KF

TETF
DVR � 1

TF
DVF

dDVM

dt
¼ � 1

TR
DVM þ KcqXC

TR
DId � KcdXC

TR
DIq þ Kcd

TR
DVd þ Kcq

TR
DVq

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

: ð8:14Þ

(3) Power system stabilizer: For a Power system stabilizer (PSS) of Fig. 6.14, from

(7.142) and (7.143) we can establish the following linearized equations when

input to PSS is the deviation of rotor speed, VIS = o � os

dDV1

dt
¼ KS

T6
Do� 1

T6
DV1

dðDV1 � DV2Þ
dt

¼ 1

T5
DV2

dðT1DV2 � T2DV3Þ
dt

¼ DV3 � DV2

dðT3DV3 � T4DVSÞ
dt

¼ DVS � DV3

9>>>>>>>>>>>=
>>>>>>>>>>>;

: ð8:15Þ

After rearrangement, we can obtain linearized state equations of the PSS as

follows
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dDV1

dt
¼ KS

T6
Do� 1

T6
DV1

dDV2

dt
¼ KS

T6
Do� 1

T6
DV1 � 1

T5
DV2

dDV3

dt
¼ KST1

T2T6
Do � T1

T2T6
DV1 � T1 � T5

T2T5
DV2 � 1

T2
DV3

dDVS

dt
¼ KST1T3

T2T4T6
Do� T1T3

T2T4T6
DV1 � T3ðT1 � T5Þ

T2T4T5
DV2 � T3 � T2

T2T4
DV3 � 1

T4
DVS

9>>>>>>>>>>>=
>>>>>>>>>>>;

:

ð8:16Þ
(4) Prime mover and governing system: For the hydraulic turbine and its governing

system, of Fig. 6.24, we can obtain its linearized equation from (7.171)–(7.177)

to be

dDm
dt

¼ �Kd

TS
Do � 1

TS
Dx

dDx
dt

¼ �KdðKi þ KbÞ
TS

Do þ Ki

Ti
Dm� 1

Ti
þ Ki þ Kb

TS

� 

Dx

dDPm

dt
¼ 2KmHKd

TS
Doþ 2KmH

To
Dmþ 2KmH

TS
Dx� 2

To
DPm

9>>>>>>>=
>>>>>>>;
: ð8:17Þ

8.2.1.2 Matrix Description of Linearized Equation of Synchronous

Generator Unit and Coordinate Transformation

(1) Matrix description of generation unit: For a generation unit described by (8.6),

(8.7), (8.9), (8.15) and (8.17), its state variables can be arranged to form the

following vector:

Dxg ¼ ½Dd;Do;DE0
q;DE

00
q;DE

0
d;DE

00
d;DEfq;DVR;

DVF;DVM;DV1;DV2;DV3;DVS;Dm;Dx;DPm�T
: ð8:18Þ

We define

DVdqg ¼ ½DVd;DVq�T; DIdqg ¼ ½DId;DIq�T: ð8:19Þ
Linearized differential equations of each generation unit can be written in the

following matrix form

dDxg
dt

¼ �AgDxg þ �BIgDIdqg þ �BVgDVdqg: ð8:20Þ

Linearized equations of armature voltage equations can be arranged as

DVdqg ¼ �PgDxg þ �ZgDIdqg: ð8:21Þ
In the two equations above, elements in the coefficient matrices �Ag; �BIg;
�BVg; �Pg; �Zg, can be obtained easily by comparing (8.20) and (8.6), (8.9),

(8.15), (8.17) and comparing (8.21) and (8.7) as follows:
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If different models of synchronous generator, excitation system and governing

system are adopted, using the same procedure we can always first derive the

linearized equation of each unit and then represent them in the form of (8.20) and

(8.21). Of course, in (8.18), the sequential arrangement of state variables can be

different, which would lead to different coefficient matrices.
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(2) Coordinate transformation: In (8.20) and (8.21), DVdqg and DIdqg are the

deviation of d, q voltage and current components of each generator, respective-

ly. Hence we must convert them into a representation in a unified x–y coordinate
rotating at the same speed, so that they can then be connected to a common

power network.

Coordinate transformation for the terminal voltages of the generator is given

by (6.62)

Vd

Vq

� �
¼ sin d � cos d

cos d sin d

� �
Vx

Vy

� �
: ð8:22Þ

Steady-state values Vd(0), Vq(0), Vx(0), Vy(0), and d(0) should also satisfy (8.22).

That is

Vdð0Þ
Vqð0Þ

� �
¼ sin dð0Þ � cos dð0Þ

cos dð0Þ sin dð0Þ

� �
Vxð0Þ
Vyð0Þ

� �
: ð8:23Þ

Linearizing (8.22) at steady-state values we have

DVd

DVq

� �
¼ sin dð0Þ � cos dð0Þ

cos dð0Þ sin dð0Þ

� �
DVx

DVy

� �
þ cos dð0Þ sin dð0Þ

� sin dð0Þ cos dð0Þ

� �

� Vxð0Þ
Vyð0Þ

� �
Dd: ð8:24Þ

From (8.23) we can rewrite (8.24) as

DVd

DVq

� �
¼ sin dð0Þ � cos dð0Þ

cos dð0Þ sin dð0Þ

� �
DVx

DVy

� �
þ Vqð0Þ

�Vdð0Þ

� �
Dd ð8:25Þ

that can be written simply as

DVdqg ¼ Tgð0ÞDVg þ RVgDxg; ð8:26Þ

where

DVg ¼ DVx

DVy

� �
; RVg ¼ Vqð0Þ 0 � � � 0

�Vdð0Þ 0 � � � 0

� �
;

Tgð0Þ ¼ sin dð0Þ � cos dð0Þ
cos dð0Þ sin dð0Þ

� �
:

Note that Tg(0) is an orthogonal matrix, satisfying

T�1
gð0Þ ¼ TT

gð0Þ: ð8:27Þ
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Similarly, for generator current we can obtain

DIdqg ¼ Tgð0ÞDIg þ RIgDxg; ð8:28Þ
where

DIg ¼ DIx
DIy

� �
; RIg ¼ Iqð0Þ 0 � � � 0

�Idð0Þ 0 � � � 0

� �
:

Substituting (8.26) and (8.28) into (8.21) to cancel DVdqg and DIdqg, we have

DIg ¼ CgDxg þ DgDVg; ð8:29Þ

where

Cg ¼ TT
gð0Þ½�Z�1

g ðRVg � �PgÞ � RIg�
Dg ¼ TT

gð0Þ�Z
�1

g Tgð0Þ

9=
;: ð8:30Þ

Substituting (8.26) and (8.28) into (8.20) to cancel DVdqg and DIdqg and using

(8.29), (8.30) to cancel DIg, we can obtain

dDxg
dt

¼ AgDxg þ BgDVg; ð8:31Þ

where

Ag ¼ �Ag þ �BIg
�Z
�1

g ðRVg � �PgÞ þ �BVgRVg

Bg ¼ ð�BIg
�Z
�1

g þ �BVgÞTgð0Þ

9=
;: ð8:32Þ

Equations (8.31) and (8.29) consist of linearized equations of every generator, in

the form of the state equation and output equation for a general time-invariant

linear system.

8.2.2 Linearized Equation of Load

In small-signal stability analysis, a static load model is usually adopted. If a certain

amount of induction motor load needs to be considered, we can use procedures

similar to those used to derive the linearized equations of a synchronous generator,

to establish the linearized equations of an induction motor.

No matter which form is adopted to model the static voltage characteristics of

load, deviation of injected current into the load has the following relationship to

nodal voltage:

DIl ¼ YlDVl; ð8:33Þ
where

DIl ¼ DIx
DIy

� �
; Yl ¼ Gxx Bxy

�Byx Gyy

� �
; DVl ¼ DVx

DVy

� �
: ð8:34Þ
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The coefficients can be calculated from the following relationship between

injected current and nodal voltage at the load node

Gxx ¼ @Ix
@Vx

����Vx¼Vxð0Þ
Vy¼Vyð0Þ

; Bxy ¼ @Ix
@Vy

����Vx¼Vxð0Þ
Vy¼Vyð0Þ

;

Byx ¼ �@Iy
@Vx

����Vx¼Vxð0Þ
Vy¼Vyð0Þ

; Gyy ¼ @Iy
@Vy

����Vx¼Vxð0Þ
Vy¼Vyð0Þ

:

ð8:35Þ

If the static voltage characteristic of the load is modeled by a quadratic polynomial,

we can use the relationship of (8.48) between injected current and node voltage and

(8.35) to calculate relevant coefficients in (8.34) directly

Gxx ¼
Pð0ÞV2

xð0ÞðbP þ 2cPÞ þ Qð0ÞVxð0ÞVyð0ÞðbQ þ 2cQÞ
V4
ð0Þ

� Pð0Þ
V2
ð0Þ

Bxy ¼
Qð0ÞV2

yð0ÞðbQ þ 2cQÞ þ Pð0ÞVxð0ÞVyð0ÞðbP þ 2cPÞ
V4
ð0Þ

� Qð0Þ
V2
ð0Þ

Byx ¼
Qð0ÞV2

xð0ÞðbQ þ 2cQÞ � Pð0ÞVxð0ÞVyð0ÞðbP þ 2cPÞ
V4
ð0Þ

� Qð0Þ
V2
ð0Þ

Gyy ¼
Pð0ÞV2

yð0ÞðbP þ 2cPÞ � Qð0ÞVxð0ÞVyð0ÞðbQ þ 2cQÞ
V4
ð0Þ

� Pð0Þ
V2
ð0Þ

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

: ð8:36Þ

When an exponential function is used to model static voltage characteristics of the

load, the relationship between load injected current and node voltage, of (7.49), can

be used jointly with (8.35) to derive relevant coefficients in (8.34) directly as

Gxx ¼
Pð0Þ
V2
ð0Þ

ð2� mÞ
V2
xð0Þ
V2
ð0Þ

� 1

 !
þ Qð0Þ

V2
ð0Þ

ð2� nÞVxð0ÞVyð0Þ
V2
ð0Þ

 !

Bxy ¼
Qð0Þ
V2
ð0Þ

ð2� nÞ
V2
yð0Þ
V2
ð0Þ

� 1

 !
þ Pð0Þ
V2
ð0Þ

ð2� mÞVxð0ÞVyð0Þ
V2
ð0Þ

 !

Byx ¼
Qð0Þ
V2
ð0Þ

ð2� nÞ
V2
xð0Þ
V2
ð0Þ

� 1

 !
� Pð0Þ
V2
ð0Þ

ð2� mÞVxð0ÞVyð0Þ
V2
ð0Þ

 !

Gyy ¼
Pð0Þ
V2
ð0Þ

ð2� mÞ
V2
yð0Þ
V2
ð0Þ

� 1

 !
� Qð0Þ

V2
ð0Þ

ð2� nÞVxð0ÞVyð0Þ
V2
ð0Þ

 !

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

: ð8:37Þ

Especially, when there is not enough information about the static voltage

characteristics of the load, a normally acceptable load model is to represent load

active power by a constant current (i.e., taking m ¼ 1) and load reactive power by a

constant impedance (i.e., taking n ¼ 2).
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8.2.3 Linearized Equation of FACTS Components

1. SVC

From (7.197) and (7.198) we can obtain the following linearized equation

directly

dDBS1

dt
¼ �KS

TS
DV � 1

TS
DBS1

dðTS2DBSVC � TS1DBS1Þ
dt

¼ DBS1 � DBSVC

9>>=
>>;: ð8:38Þ

Because V2 ¼ V2
x þ V2

y , after linearization we have

DV ¼ Vxð0Þ
Vð0Þ

DVx þ
Vyð0Þ
Vð0Þ

DVy: ð8:39Þ

Substituting the above equation into (8.38) and after rearrangement we obtain

dDxs
dt

¼ AsDxs þ BsDVs; ð8:40Þ

where

Dxs ¼
DBS1

DBSVC

� �
; DVs ¼

DVx

DVy

� �

As ¼
� 1

TS
0

TS�TS1
TSTS2

� 1
TS1

" #
; Bs ¼ � KS

TSVð0Þ

Vxð0Þ Vyð0Þ
TS1
TS2

Vxð0Þ TS1
TS2

Vyð0Þ

" #
9>>>>=
>>>>;
: ð8:41Þ

In addition, from (7.50) we can obtain the relationship of deviation between

SVC injected current and nodal voltage to be

DIs ¼ CsDxs þ DsDVs; ð8:42Þ

where

DIs ¼
DIx
DIy

� �
; DVs ¼

DVx

DVy

� �

Cs ¼ 1

ð1� XTBSVCð0ÞÞ2
0 Vyð0Þ
0 �Vxð0Þ

" #
; Ds ¼

BSVCð0Þ
1� XTBSVCð0Þ

0 1

�1 0

� �
9>>>>=
>>>>;
:

ð8:43Þ
Hence (8.40) and (8.42) form the linearized equation of the SVC.

2. TCSC

From (7.208) and (7.209) we can obtain the following linearized equation

directly
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dDBT1

dt
¼ �KT

TT
DPT � 1

TT
DBT1

dðTT2DBTCSC � TT1DBT1Þ
dt

¼ DBT1 � DBTCSC

9>>=
>>;: ð8:44Þ

From (7.211) we have

DPT ¼ ðVxið0ÞVyjð0Þ � Vyið0ÞVxjð0ÞÞDBTCSC þ BTCSCð0ÞVyjð0ÞDVxi

� BTCSCð0ÞVxjð0ÞDVyi � BTCSCð0ÞVyið0ÞDVxj þ BTCSCð0ÞVxið0ÞDVyj

: ð8:45Þ

Substituting the above equation into (8.44) and after rearrangement we have

dDxt
dt

¼ AtDxt þ BtDVt; ð8:46Þ
where

Dxt ¼
DBT1

DBTCSC

� �
; DVt ¼ DVxi DVyi DVxj DVyj

	 
T

At ¼
� 1

TT

KT

TT
ðVyið0ÞVxjð0Þ � Vxið0ÞVyjð0ÞÞ

1

TT2
� TT1
TT2

1

TT

TT1
TT2

KT

TT
ðVyið0ÞVxjð0Þ � Vxið0ÞVyjð0ÞÞ � 1

TT2

2
664

3
775

Bt ¼
KTBTCSCð0Þ

TT

�Vyjð0Þ Vxjð0Þ Vyið0Þ �Vxið0Þ

� TT1
TT2

Vyjð0Þ
TT1
TT2

Vxjð0Þ
TT1
TT2

Vyið0Þ �TT1
TT2

Vxið0Þ

2
4

3
5

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

:

ð8:47Þ

In addition, from (7.51) we can directly obtain the relationship of deviation in

TCSC injected current and nodal voltage to be

DIt ¼ CtDxt þ DtDVt; ð8:48Þ
where

DIt ¼ DIxi DIyi DIxj DIyj
	 
T

Ct ¼

0 Vyið0Þ � Vyjð0Þ
0 Vxjð0Þ � Vxið0Þ
0 Vyjð0Þ � Vyið0Þ
0 Vxið0Þ � Vxjð0Þ

2
6664

3
7775; Dt ¼ BTCSCð0Þ

0 1 0 �1

�1 0 1 0

0 �1 0 1

1 0 �1 0

2
6664

3
7775

9>>>>>>>=
>>>>>>>;
: ð8:49Þ

Thus (8.46) and (8.48) form the linearized equations of a TCSC.

8.2.4 Linearized Equation of HVDC Transmission System

When transient behavior of an HVDC transmission line is considered, the control

equations of HVDC transmission line, rectifier, and inverter are given by (7.222),

8.2 Linearized Equations of Power System Dynamic Components 503



and (7.224)–(7.227). Canceling VdI in (7.226) by using the first equation in (7.53)

and ignoring the limitation on a and b, we can obtain the following linearized

equation around steady state

dDId
dt

¼ �R

L
DId �

kRVRð0Þ sin að0Þ
L

Daþ kIVIð0Þ sinbð0Þ
L

Db

þ kR cos að0Þ
L

DVR �
kI cos bð0Þ

L
DVI

dDx1
dt

¼ 1

Tc3
ðDId � Dx1Þ

dðKc1Dx1 � DaÞ
dt

¼ �Kc2

Tc2
Dx1

dDx4
dt

¼ XcI

Tv3
DId � 1

Tv3
Dx4 �

kIVIð0Þ sin bð0Þ
Tv3

Dbþ kI cos bð0Þ
Tv3

DVI

dðKv1Dx4 � DbÞ
dt

¼ �Kv2

Tv2
Dx4

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

:

ð8:50Þ

Relationships between the magnitude of AC bus voltages of rectifier and inverter

and their x, y components are V2
R ¼ V2

xR þ V2
yR, V

2
I ¼ V2

xI þ V2
yI .

Linearizing the above equations, we have

DVR ¼ VxRð0Þ
VRð0Þ

DVxR þ
VyRð0Þ
VRð0Þ

DVyR

DVI ¼
VxIð0Þ
VIð0Þ

DVxI þ
VyIð0Þ
VIð0Þ

DVyI

9>>>=
>>>;
: ð8:51Þ

Substituting (8.51) into (8.50) to cancel DVR and DVI and after rearrangement we

obtain

dDxd
dt

¼ AdDxd þ BdDVd; ð8:52Þ

where

Dxd ¼ DId Dx1 Dx4 Da Db½ �T

DVd ¼ DVxR DVyR DVxI DVyI

	 
T
)
; ð8:53Þ

where coefficient matrices Ad and Bd can be easily obtained by comparing (8.52)

and the original equation.
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Algebraic equations of a two-terminal HVDC transmission system can be

derived from relationships of power and current on the AC and DC sides of the

converter. For the rectifier, the power relationship is

VxRIxR þ VyRIyR ¼ XcRI
2
d � kRIdVR cos a: ð8:54Þ

Linearizing the above equation we have

VxRð0ÞDIxR þ VyRð0ÞDIyR ¼� IxRð0ÞDVxR � IyRð0ÞDVyR þ 2XcRIdð0ÞDId
� kRVRð0Þ cos að0ÞDId � kRIdð0Þ cos að0ÞDVR

þ kRIdð0ÞVRð0Þ sin að0ÞDa

: ð8:55Þ

In addition, from the third equation in (8.52) we have

I2R ¼ I2xR þ I2yR ¼ k2RI
2
d : ð8:56Þ

The linearized form of the above equation is

IxRð0ÞDIxR þ IyRð0ÞDIyR ¼ k2RIdð0ÞDId: ð8:57Þ

Substituting (8.51) into (8.55) to cancel DVR and noting the reactive power injection

into the AC system from the rectifier, QR(0) = VyR(0) IxR(0) � VxR(0) IyR(0), is always
nonzero, we can derive the deviation of node injected current from (8.55) and (8.57)

and have the following matrix form

DIR ¼ CRDxd þ DRDVR; ð8:58Þ

DIR ¼
DIxR

DIyR

" #
; DVR ¼

DVxR

DVyR

" #

CR ¼ 1

VxRð0ÞIyRð0Þ � VyRð0ÞIxRð0Þ

C11 0 0 C14 0

C21 0 0 C24 0

" #

C11 ¼ 2XcRIdð0ÞIyRð0Þ � kRVRð0ÞIyRð0Þ cos að0Þ � k2RIdð0ÞVyRð0Þ

C14 ¼ kRVRð0ÞIyRð0ÞIdð0Þ sin að0Þ

C21 ¼ �2XcRIdð0ÞIxRð0Þ þ kRVRð0ÞIxRð0Þ cos að0Þ þ k2RIdð0ÞVxRð0Þ

C24 ¼ �kRVRð0ÞIxRð0ÞIdð0Þ sin að0Þ

DR ¼ 1

VxRð0ÞIyRð0Þ � VyRð0ÞIxRð0Þ

�D11 �D12

D21 D22

" #

D11 ¼ IyRð0Þ IxRð0Þ þ
kRVxRð0ÞIdð0Þ cos að0Þ

VRð0Þ

� �
; D12 ¼ IyRð0Þ IyRð0Þ þ

kRVyRð0ÞIdð0Þ cos að0Þ
VRð0Þ

� �

D21 ¼ IxRð0Þ IxRð0Þ þ
kRVxRð0ÞIdð0Þ cos að0Þ

VRð0Þ

� �
; D22 ¼ IxRð0Þ IyRð0Þ þ

kRVyRð0ÞIdð0Þ cos að0Þ
VRð0Þ

� �

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

:

ð8:59Þ
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Power relationship of the inverter is

VxIIxI þ VyIIyI ¼ XcII
2
d þ kIIdVI cos b: ð8:60Þ

After linearization we have

VxIð0ÞDIxI þ VyIð0ÞDIyI ¼� IxIð0ÞDVxI � IyIð0ÞDVyI þ 2XcIIdð0ÞDId
þ kIVIð0Þ cosbð0ÞDId þ kIIdð0Þ cos bð0ÞDVI

� kIIdð0ÞVIð0Þ sin bð0ÞDb:

ð8:61Þ

Similarly from the third equation in (8.53) and after linearization we have

IxIð0ÞDIxI þ IyIð0ÞDIyI ¼ k2I Idð0ÞDId: ð8:62Þ

Again, substituting (8.51) into (8.61) to cancel DVI, from (8.61) and (8.62) we

obtain the following matrix form for current and voltage deviation

DII ¼ CIDxd þ DIDVI; ð8:63Þ
where

DII ¼ DIxI
DIyI

� �
; DVI ¼ DVxI

DVyI

� �
: ð8:64Þ

Equation (8.58) and (8.63) form the algebraic equation of the DC system

DId ¼ CdDxd þ DdDVd; ð8:65Þ

where

DId ¼ DIR
DII

� �
; DVd ¼ DVR

DVI

� �
; Cd ¼ CR

CI

� �
; Dd ¼ DR 0

0 DI

� �
: ð8:66Þ

When different mathematical models of the DC system are used, we can follow

similar procedures to derive linearized equations like (8.52) and (8.65).

8.3 Steps in Small-Signal Stability Analysis

8.3.1 Network Equation

For convenience of expression, we write the network equation of (8.36) in the form

of block matrices. Noting that the network equation is itself linear, we can write the

linear equation for the relationship between deviation of node injection current and

node voltage in x–y coordinates directly, to be
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DI1
..
.

DIi
..
.

DIn

2
666664

3
777775 ¼

Y11 � � � Y1i � � � Y1n

..

. ..
. ..

.

Yi1 � � � Yii � � � Yin

..

. ..
. ..

.

Yn1 � � � Yni � � � Ynn

2
666664

3
777775

DV1

..

.

DVi

..

.

DVn

2
666664

3
777775; ð8:67Þ

where

DIi ¼ DIxi
DIyi

� �
; DVi ¼ DVxi

DVyi

� �
; Yij ¼ Gij �Bij

Bij Gij

� �
;

i; j ¼ 1; 2; . . . ; n:

ð8:68Þ

For load nodes, we can substitute the relationship between deviation of injected

current and node voltage into the above equation to cancel the current deviation at

the load node. Assuming load is connected at node i, then the network equation after
canceling this node is just a simple correction to the original network equation of

(8.67): current deviation at node i becomes zero, the ith diagonal block in the

network admittance matrix changes to Yii � Yli and nothing more.

Without loss of generality, we assume the sequence of nodes in the network is:

firstly each generator node, then each SVC node followed by two-terminal nodes of

TCSC, then AC bus nodes of each HVDC transmission line (the node on the

rectifier side first and inverter side second), and finally the remaining nodes.

Canceling current deviation of all load nodes, we have the following block-matrix

form of the network equation

DIG
DIS
DIT
DID
0

2
66664

3
77775 ¼

YGG YGS YGT YGD YGL

YSG YSS YST YSD YSL

YTG YTS YTT YTD YTL

YDG YDS YDT YDD YDL

YLG YLS YLT YLD YLL

2
66664

3
77775

DVG

DVS

DVT

DVD

DVL

2
66664

3
77775; ð8:69Þ

where DIG and DVG are vectors consisting of deviation of injected current and node

voltage of all generators, respectively; DIS and DVS vectors of deviation of node

injection current and node voltage of all SVC nodes; DIT and DVT all TCSC nodes;

DID and DVD those at AC busbars of all converters; DVL associated with voltage of

remaining nodes. All those vectors can be written as

DIG ¼ DIg1 DIg2 � � �½ �T; DVG ¼ DVg1 DVg2 � � �½ �T
DIS ¼ DIs1 DIs2 � � �½ �T; DVS ¼ DVs1 DVs2 � � �½ �T
DIT ¼ DIt1 DIt2 � � �½ �T; DVT ¼ DVt1 DVt2 � � �½ �T
DID ¼ DId1 DId2 � � �½ �T; DVD ¼ DVd1 DVd2 � � �½ �T
DVL ¼ DV1 DV2 � � �½ �T

9>>>>>>=
>>>>>>;
: ð8:70Þ
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8.3.2 Linearized Differential Equations of Whole Power System

Equations of all generation units are formed from (8.31) and (8.29) to be

dDxG
dt

¼ AGDxG þ BGDVG; ð8:71Þ

DIG ¼ CGDxG þ DGDVG; ð8:72Þ

where

AG ¼ diagfAg1 Ag2 � � �g; BG ¼ diagfBg1 Bg2 � � �g
CG ¼ diagfCg1 Cg2 � � �g; DG ¼ diagfDg1 Dg2 � � �g

)
: ð8:73Þ

Equations (8.40) and (8.42) of each SVC can form equations of all SVCs to be

dDxS
dt

¼ ASDxS þ BSDVH; ð8:74Þ

DIS ¼ CSDxS þ DSDVS; ð8:75Þ

where

AS ¼ diagfAs1 As2 � � �g; BS ¼ diagfBs1 Bs2 � � �g
CS ¼ diagfCs1 Cs2 � � �g; DS ¼ diagfDs1 Ds2 � � �g

)
: ð8:76Þ

TCSC equations are formed from (8.46) and (8.48)

ðA� s1IÞvA ¼ ðlA � s1ÞvA
ðA� s2IÞvA ¼ ðlA � s2ÞvA

)
; ð8:77Þ

DIT ¼ CTDxT þ DTDVT ; ð8:78Þ

where

AT ¼ diagfAt1 At2 � � �g; BT ¼ diagfBt1 Bt2 � � �g
CT ¼ diagfCt1 Ct2 � � �g; DT ¼ diagfDt1 Dt2 � � �g

)
: ð8:79Þ

All two-terminal HVDC transmission lines have the following equations

dDxD
dt

¼ ADDxD þ BDDVD; ð8:80Þ

DID ¼ CDDxD þ DDDVD; ð8:81Þ
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where

AD ¼ diagfAd1 Ad2 � � �g; BD ¼ diagfBd1 Bd2 � � �g
CD ¼ diagfCd1 Cd2 � � �g; DD ¼ diagfDd1 Dd2 � � �g

)
: ð8:82Þ

Substituting (8.72), (8.75), (8.78), and (8.81) into (8.69) to cancel DIG, DIS, DIT,
and DID, together with (8.71), (8.74), (8.77), and (8.80), we can obtain the matrix

formulations, as required by (8.3):

Dx ¼ DxG DxS DxT DxD½ �T

Dy ¼ DVG DVS DVT DVD DVL½ �T

9=
;

~
A ¼

AG 0 0 0

0 AS 0 0

0 0 AT 0

0 0 0 AD

2
6664

3
7775

~
B ¼

BG 0 0 0 0

0 BS 0 0 0

0 0 BT 0 0

0 0 0 BD 0

2
6664

3
7775; ~

C ¼

�CG 0 0 0

0 �CS 0 0

0 0 �CT 0

0 0 0 �CD

0 0 0 0

2
6666664

3
7777775

~
D ¼

YGG � DG YGS YGT YGD YGL

YSG YSS � DS YST YSD YSL

YTG YTS YTT � DT YTD YTL

YDG YDS YDT YDD � DD YDL

YLG YLS YLT YLD YLL

2
6666664

3
7777775

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

: ð8:83Þ

Obviously,
~
A,

~
B, and

~
C are sparse block matrices, as is

~
D which is also an

admittance matrix. Using matrices
~
A,

~
B,

~
C and

~
D, and from (8.5) we can obtain

the system state matrix A. By now, we have obtained the linearized equations of a

power system at a steady-state operating point.

Finally, we would like to point out:

1. If this linearized system is asymptotically stable, i.e., the real part of all eigen-

values of matrix A are negative, the actual nonlinear system is asymptotically

stable at this equilibrium point.

2. The method used to form matrix A is different in various commercial software

packages. In the above, we only give one way to form it to introduce the

principles and techniques used in forming matrixA [189, 190]. There are various

alternative formats of matrices
~
A,

~
B,

~
C, and

~
D in (8.83) that are related with the

sequence order of state variables, format of network equations, algebraic equa-

tions of various dynamic components and ways to treat the network equations.
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Different methods determine the complexity of, and flexibility in developing, the

program, but do not change the resulting eigensolution.

3. In the formation of the above linearized equations, we have considered genera-

tion units, SVC, TCSC, two-terminal HVDC transmission lines. We can also

treat other dynamic components in power systems in similar ways. For example,

for dynamic components (such as induction motor loads) we can derive their

linearized equation in the same way as treating generators; for multiterminal

HVDC transmission lines, we can obtain the linearized equation as we have done

in treating two-terminal HVDC transmission lines. We can then arrange the

linearized equations into the equation of the whole power system.

4. Matrix A, as formed, must have a zero eigenvalue. A zero eigenvalue exists

because the absolute angle of the generator rotors is not unique. In other words,

there is a redundant rotor angle in a power system model. In fact, power distribu-

tion among generators is determined by the relative rotor angle of generators. If

the absolute rotor angle of all generators is added to by a fixed value, the power

distribution does not change at all. Hence this does not affect system stability. To

eliminate the zero eigenvalue, we only need to choose the rotor angle of any

particular generator as a reference and then use the relative rotor angle of other

generators as the new state variable. In doing so, the dimension of state matrix A

and the corresponding state variable vector is reduced by one.

5. In the case that all generator torques are not directly related to rotor speed, i.e.,

when there is no damping term in the swing equation and the governing effect is

ignored; matrix A will have another zero eigenvalue. Similarly, to remove this

zero eigenvalue, we only need to choose the rotor speed of any generator as a

reference and use the relative rotor speed of the other generators as new state

variables. Again, in doing so, the order of matrix A and the corresponding state

variable vector is reduced by one.

Knowing the origin of the zero eigenvalues, we do not have to apply the treatment

of (4) and (5) above, but simply eliminate the corresponding zero eigenvalues in our

computational results. However, due to errors in load flow calculation and in the

computation of eigenvalues, we should note that the theoretically zero eigenvalues

will be computed as eigenvalues with very small magnitude.

8.3.3 Program Package for Small-Signal Stability Analysis

From what we have discussed previously, we can develop a program package for

small-signal stability analysis of an AC/DC power system with FACTS devices

such as SVC and TCSC installed. Basic steps in developing the stability analysis

program are:

1. Load flow calculation at a given steady-state operating condition of the power

system. This includes finding the voltage, current, and power at each node in the

system.

2. Formation of the admittance matrix in (8.67).

3. Treatment of load. Load power and voltage at steady-state operation are known

to be P(0), Q(0), Vx(0), and Vy(0). From parameters of the static voltage character-

istics of load, we calculate matrix elements Gxx, Bxy, Byx, and Gyy in (8.34) from
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(8.36) or (8.37). These will be used to adjust diagonal blocks related to loads in

the admittance matrix.

4. Establishment of linearized equations of dynamic components in the system.

Firstly we calculate initial values of all variables of generators from (7.74)–

(7.78) and (7.118)–(7.122). Then we can form matrices Ag, BIg, BVg, Pg, and Zg

in (8.20) and (8.21) as well as matrices Tg(0), RVg, and RIg in (8.26) and (8.28).

Finally we calculate matrices from (8.30) and (8.32) to establish the linearized

equation of generators. In a similar way we can obtain linearized equations of all

dynamic components in the power system.

5. Formation of system state matrix A from (8.5). This is obtained by forming

matrices
~
A,

~
B,

~
C, and

~
D from (8.71)–(8.83).

6. Calculation of all eigenvalues of the state matrix A by using the QR method

[187, 188]. The result of this calculation is used to determine system small-

signal stability. The QR method to calculate all eigenvalues of matrix A will be

introduced in Sect. 8.4.

[Example 8.1] Single-line diagram of the 9-node power system, line data,

generator parameters, and load flow at a steady-state operating condition is given

in Fig. 7.7, Tables 7.5–7.7, respectively. System frequency is 60 Hz.

All loads in the system are modeled by constant impedance. Generator 1 uses the

classical model, generators 2 and 3 the double-axis model with self-excited poten-

tial-source excitation system. Parameters of the exciter are:

XC ¼ 0; KA ¼ 200; TR ¼ 0:03 s; TA ¼ 0:02 s; TB ¼ 10:0 s; TC ¼ 1:0 s:

In addition, the damping coefficient of each generator Di is 1.0.

[Solution] In the following, we will demonstrate the process of small-signal

stability analysis for the example power system. For simplicity of expression, a

blank in the matrix will represent either zero or a zero matrix:

(1) From load flow calculation, (7.74)–(7.78) and (7.118)–(7.122) we calculate

initial values of all variables of generators shown in Table 8.1. Equivalent

admittance of loads has been calculated in example 8.1 which is included in

the power network model.

(2) Establishment of linearized equations of generators using the method intro-

duced in Sect. 8.2.1.

Generator 1

We can calculate coefficient matrices in (8.20), (8.21), (8.26), and (8.28) as follows:

Table 8.1 Initial values of generator variables

d(0) Vq(0) Vd(0) Iq(0) Id(0) Efq(0) E0
q(0) E0

d(0)

1 2.27165 1.03918 0.04122 0.67801 0.28716 1.05664

2 61.09844 0.63361 0.80571 0.93199 1.29015 1.78932 0.78817 0.62220

3 54.13662 0.66607 0.77909 0.61941 0.56147 1.40299 0.76786 0.62424
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A1 ¼
Dd1
Do1

0:0 376:99112

0:0 �0:02115

� �
; BI1 ¼

0:0 0:0

0:0 �0:02235

� �
; BV1 ¼

0:0 0:0

0:0 0:0

� �
;

P1 ¼
0:0 0:0

0:0 0:0

� �
; Z1 ¼

0:0 0:0608

�0:0608 0:0

� �
;

T1ð0Þ ¼
0:03964 �0:99921

0:99921 0:03964

� �
; RV1 ¼

1:03918 0:0

�0:04122 0:0

� �
;

RI1 ¼
0:67801 0:0

�0:28716 0:0

� �
:

From (8.32), (8.30), and the matrices above, we can obtain matrices in the linear-

ized equation of the generator of (8.29) and (8.31) to be

A1 ¼
0:0 376:99112

�0:38198 �0:02115

� �
; B1 ¼

0:0 0:0

�0:01457 0:36729

� �
;

C1 ¼
17:36532 0:0

0:68886 0:0

� �
; D1 ¼

0:0 �16:44737

16:44737 0:0

� �
:

Generator 2

In a similar way, we can obtain coefficient matrices of the linearized equation of

generator 2 to be

2

2

2

2 2

2

2

2

376.99112 
0.07813 0.07281 0.10079

0.16667 0.16667
1.86916 ,

0.10000 4.90000 1000.0
50.0000 10000.0

33.33333

q

d

fq

R

M

E
E
E
V
V

δ
ω

⎡ ⎤Δ
⎢ ⎥− − −Δ ⎢ ⎥
⎢ ⎥−′Δ
⎢ ⎥−′= Δ ⎢ ⎥
⎢ ⎥− − −Δ
⎢ ⎥

− −Δ ⎢ ⎥
⎢ ⎥−Δ ⎣ ⎦

A

2 2

0.05422 0.06935
0.12933

1.24785 , ,

26.20186 20.60518

I V

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

B B

512 8 Small-Signal Stability Analysis of Power Systems



 
2 2

1.0 0.0000 0.1969
, ,1.0 0.1198 0.0000

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

P Z

2(0)

0.87545 0.48331
,0.48331 0.87545

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
T

 
2 2

0.63361 0.93199
, ,0.80571 1.29015V I

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

R R

2

376.99112
0.58783 0.07813 0.52542 0.25140
0.86982 1.24624 0.16667

4.01549 8.20664 ,
0.10000 4.90000 1000.0

50.0000 10000.0
33.33333

⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− −
⎢ ⎥−= ⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−⎣ ⎦

A

 

2

0.08958 0.56646
0.52177 0.94512
5.54816 3.06294 ,

32.89707 5.37531

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

B

 
2

7.25066 7.30761 2.45458
,1.14659 4.03428 4.44617

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

C

2

1.38295 7.58377
.5.84220 1.38295

− −⎡ ⎤
= ⎢ ⎥

⎣ ⎦
D
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Generator 3

Similarly we have

 
3

3

3

3 3

3

3

3

376.99112
0.16611 0.10289 0.09327

0.16978 0.16978
1.66667 ,

0.10000 4.90000 1000.0
50.0000 10000.0

33.33333

q

d

fq

R

M

E
E
E
V
V

δ
ω

⎡ ⎤Δ
⎢ ⎥− − −Δ ⎢ ⎥
⎢ ⎥−′Δ
⎢ ⎥−′= Δ ⎢ ⎥
⎢ ⎥− − −Δ
⎢ ⎥

− −Δ ⎢ ⎥
⎢ ⎥−Δ ⎣ ⎦

A

3 3
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(3) Linearized equations of the system

Obviously, matrices in (8.3) (see 8.83) are

~A ¼ AG; ~B ¼ BG 0½ �; ~C ¼
�CG

0

" #
; ~D ¼

YGG � DG YGL

YLG YLL

" #
;

AG ¼

A1 0 0

0 A2 0

0 0 A3

2
6664

3
7775; BG ¼

B1 0 0

0 B2 0

0 0 B3

2
6664

3
7775; CG ¼

C1 0 0

0 C2 0

0 0 C3

2
6664

3
7775;

DG ¼

D1 0 0

0 D2 0

0 0 D3

2
6664

3
7775;

 33.80848
33.80848

1.38295 23.58377
,21.84220 1.38295

0.71964 22.06033
21.58508 0.71964

GG G
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⎢ ⎥
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From (8.5) we can obtain the state matrix

A ¼ AG � BG 0½ � YGG � DG YGL

YLG YLL

� ��1 �CG

0

� �

¼ AG þ BG½YGG � DG � YGLY
�1
LLYLG��1

CG:

(4) Eigenvalues and eigenvectors of state matrix A

All eigenvalues of A are obtained by using the QR method as

l1 ¼ �53:05299; l2 ¼ �51:80217; l3 ¼ �30:41762; l4 ¼ �28:21401;

l5;6 ¼ �0:75497� j12:86370; l7;8 ¼ �0:15154� j8:67125;

l9 ¼ �5:58205; l10 ¼ �3:72276;

l11;12 ¼ �1:13701� j0:91540; l13;14 ¼ �0:48432� j0:657417;

l15 ¼ �0:04571; l16 ¼ 0:00000:

Obviously, except the zero eigenvalue we expect, the real part of the remaining

eigenvalues is negative. Hence the power system is stable in terms of small-signal

stability.
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8.4 Eigenvalue Problem in Small-Signal Stability Analysis

Nonlinear system stability, when the system is subject to small disturbances, can be

analyzed from the stability of its linearized system as determined by the eigenva-

lues of state matrix A. Hence, in the following, we shall introduce the method of

eigensolution analysis for a state matrix A.

From the discussion above we can see that state matrix A is a real asymmetric

matrix. Hence, in the following, all our discussion will be under the condition that

A 2 R
n�n. We denote the set of complex numbers by C, n-dimensional complex

vector space (column vector) by C
n, and set of all m-row n-column complex

matrices by C
m�n. Operations of scalar multiplication, addition and multiplication

of complex matrices are similar to those for real matrices. However, transposition

of a complex matrix is taken as conjugate transposition (denoted by superscript H),

i.e., C ¼ AH ) cij ¼ âji. Dot product of n-dimensional vector x and y is

s ¼ xHy ¼Pn
i¼1

x̂iyi. In addition, unit vector (normalized vector) under norm p is a

vector x satisfying kxkp = 1. For example, unit vectors x under 1-norm, 2-norm, and

infinite norm, respectively, are

xj j1 ¼ x1j j þ � � � þ xnj j ¼ 1

xj j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1j j2þ � � � þ xnj j2

q
¼

ffiffiffiffiffiffiffiffi
xHx

p
¼ 1

xj j1 ¼ max
1�i�n

xij j ¼ 1

9>>>=
>>>;
: ð8:84Þ

The process to convert a vector to a unit vector is called normalization.

8.4.1 Characteristics of State Matrix Given by Its Eigensolution

8.4.1.1 Eigenvalue

For a scalar l 2 C and vector v 2 C
n, if equation

Av ¼ lv ð8:85Þ
has a nonsingular solution (i.e., v 6¼ 0), l is an eigenvalue of matrix A.

To calculate eigenvalues, (8.85) can be written as

ðA � lIÞv ¼ 0: ð8:86Þ
A sufficient and necessary condition for existence of a nonsingular solution of the

equation is

detðA� lIÞ ¼ 0: ð8:87Þ

8.4 Eigenvalue Problem in Small-Signal Stability Analysis 519



Expansion of the determinant in the above equation gives the following polynomial

equation

a0 þ a1lþ � � � þ an�1l
n�1 þ ð�1Þnln ¼ 0: ð8:88Þ

It is called the characteristic equation of matrix A. The polynomial on the left side

of the above equation is called the characteristic polynomial. Because the coeffi-

cient of ln is nonzero, there are a total of n roots. The set of all roots is called the

spectrum and is denoted by l(A). If lðAÞ ¼ fl1; � � � ; lng, we have

detðAÞ ¼ l1l2 � � � ln:

In addition, if we define the trace of A to be

trðAÞ ¼
Xn
i¼1

aii:

Then trðAÞ ¼ l1 þ l2 þ � � � þ ln, can be proved.

Eigenvalues of a real asymmetric matrix can be real or complex numbers.

Complex eigenvalues always appear in the form of conjugate pairs. Moreover,

similar matrices have the same eigenvalues and transposition of a matrix does not

change its eigenvalues.

8.4.1.2 Eigenvectors

For any eigenvalue li, any nonzero vector vi 2 C
n satisfying equation

Avi ¼ livi i ¼ 1; 2; . . . ; n ð8:89Þ

is called a right eigenvector of matrix A corresponding to eigenvalue li. Since it is a
homogenous equation, kvi (k is a scalar) is also the solution of the equation to be a

right eigenvector of matrix A corresponding to eigenvalue li. In the following

(unless explicitly stated otherwise) ‘‘eigenvector’’ refers to ‘‘right eigenvector.’’ An

eigenvector defines a one-dimensional subspace that remains invariable under the

operation of left multiplication by matrix A.

Similarly, any nonzero vector ui 2 C
n satisfying equation

ATui ¼ liui i ¼ 1; 2; . . . ; n ð8:90Þ

is called a right eigenvector of matrix AT corresponding to eigenvalue li. Taking
transposition on both sides of equation, we have

uTi A ¼ liuTi ; i ¼ 1; 2; . . . ; n: ð8:91Þ
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We call row vector uTi the left eigenvector of matrix A corresponding to eigenvalue

li.
To express the eigensolution of matrix A clearly, we form a diagonal matrix L

consisting of all eigenvalues of matrix A, a matrix XR of all right eigenvectors

arranged in columns, a matrix XL of all left eigenvectors in rows. That is

L ¼ diag l1 l2 � � � lnf g
XR ¼ ½v1 v2 � � � vn�
XL ¼ u1 u2 � � � un½ �T

9>=
>;: ð8:92Þ

These three n-dimensional square matrices are called modal matrices.

Using (8.92), (8.89), and (8.91) can be expressed in the following matrix form:

AXR ¼ XRL

XLA ¼ LXL

)
: ð8:93Þ

Premultiplying the first equation above by XL, and postmultiplying the second by

XR, we have

ðXLXRÞL ¼ LðXLXRÞ ð8:94Þ

or

ljuTi vj ¼ liuTi vj; i; j ¼ 1; 2; . . . ; n:

Obviously, left and right eigenvectors corresponding to different eigenvalues are

orthogonal; for the same eigenvalue their product is a nonzero number that can be

converted to 1 after normalization of left and right eigenvectors. That is

uTi vj ¼
0 i 6¼ j
1 i ¼ j

�
: ð8:95Þ

Please note that uTi vj is not the normal inner product of two vectors. The matrix

form of above equation is

XLXR ¼ I; X�1
L ¼ XR: ð8:96Þ

From (8.93) and (8.96) we have

X�1
R AXR ¼ L: ð8:97Þ
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8.4.1.3 Free Movement of Dynamic System

From the state equation, (8.4), we can see that the rate of change of every state

variable is a linear combination of all state variables. Hence due to the coupling

among state variables, it is difficult to clearly see the system movement.

To cancel the coupling among state variables, we introduce a new state variable

vector z. Its relationship with the original state variable vector Dx is defined to be

Dx ¼ XRz: ð8:98Þ

Substituting the above equation into (8.4) and using (8.14), the state equation can be

written as

dz

dt
¼ Lz: ð8:99Þ

The difference from the original state equation is that L is a diagonal matrix, while

A usually is not. Equation (8.99) can be expressed as n decoupled first-order

differential equations

dzi
dt

¼ lizi; i ¼ 1; 2; . . . ; n: ð8:100Þ

Its solution in the time domain is

ziðtÞ ¼ zið0Þelit; ð8:101Þ

where initial values of zi, zi(0) can be expressed from (8.98) by uTi and Dx(0)

zið0Þ ¼ uTi Dxð0Þ: ð8:102Þ

Substituting (8.101) and (8.102) into the transformation of (8.98), we have the

solution of the original state vector in the time domain to be

Dx ¼
Xn
i¼1

vizið0Þelit;

where solution of the ith state variable in the time domain is

DxiðtÞ ¼ vi1z1ð0Þel1t þ vi2z2ð0Þel2t þ � � � þ vinznð0Þelnt;
¼ 1; 2; . . . ; n; ð8:103Þ
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where vik is the ith element of vector vk. The above equation is the time response of

system free movement expressed by eigenvalues, left and right eigenvectors.

Eigenvalue li represents the ith mode of the system, with corresponding time

characteristic elit. Hence, time response of system free movement is the linear

combination of n system modes. Therefore, system stability is determined by the

eigenvalues:

(1) A real eigenvalue represents a nonoscillatory mode. A negative real eigenvalue

is a decaying mode and the bigger its absolute value, the faster it decays. A

positive real eigenvalue indicates nonperiodic instability. Eigenvectors, and z
(0), corresponding to real eigenvalues are real valued.

(2) Complex eigenvalues always appear in conjugate pairs, i.e.,

l ¼ s� jo: ð8:104Þ

Each pair of complex eigenvalues represents an oscillation mode. Eigenvectors, and

z(0), corresponding to complex eigenvalues are complex valued. Hence

ðaþ jbÞeðs�joÞt þ ða� jbÞeðsþjoÞt ¼ estð2a cos otþ 2b sin otÞ

should exhibit as est sin(ot + y).
Obviously, the real part of the eigenvalue describes system oscillation damping

and the imaginary part gives the frequency of oscillation. A negative real part is a

decaying oscillation mode and positive an increasing oscillation mode. Oscillation

frequency (Hz) is

f ¼ o
2p

: ð8:105Þ

Damping ratio is defined to be

z ¼ �sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þo2

p : ð8:106Þ

This determines the decay rate property of the oscillation magnitude.

8.4.2 Modal Analysis of Linear Systems

8.4.2.1 Mode and Eigenvector

From the discussion above we know that the relationship among system time

response, vectors Dx and z are

DxðtÞ ¼ XRzðtÞ ¼ ½v1 v2 � � � vn�zðtÞ ¼
Xn
i¼1

viziðtÞ

zðtÞ ¼ XLDxðtÞ ¼ u1 u2 � � � un½ �TDxðtÞ

9>=
>;: ð8:107Þ
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Variables Dx1, Dx2, . . ., Dxn are the original state variables depicting system

dynamics. Variables z1; z2; � � � ; zn are state variables after transformation, each of

which represents a mode of the system.

From the first equation of (8.107) we can see that right eigenvectors decide the

form of exhibition of each mode, i.e., when a specific mode is excited, the relative

activity of each state variable is described by the right eigenvector. For example,

when the ith mode is excited, the kth element vki of right eigenvector vi gives the
level of influence of this mode on state variable xk. Magnitude of each element in vi
represents the level of activity of each of the n state variables resulting from the ith
mode; while the angle of each element represents the effect of the mode on the

phase shift of each state variable.

From the second equation of (8.107) we can see that the left eigenvector uTi
represents the way the original state variables combine to effect the ith mode.

Therefore, the kth element in the right eigenvector vi measures the level of activity

of state variable xk in the ith mode; while the kth element of the left eigenvector uTi
weights the contribution of the exhibited activity to the ith mode.

8.4.2.2 Eigenvalue Sensitivity

Firstly we consider the sensitivity of an eigenvalue to each element akj in matrix A

(the k-row, j-column element in A). Taking partial derivatives to akj on both sides of
(8.89), we have

@A

@akj
vi þ A

@vi
@akj

¼ @li
@akj

vi þ li
@vi
@akj

: ð8:108Þ

Premultiplying both sides of the above equation by uTi and from (8.91) and (8.95)

we can obtain

@li
@akj

¼ uTi
@A

@akj
vi: ð8:109Þ

Obviously, in @A=@akj the kth-row, jth-column element is 1 and remaining ele-

ments are zero. Hence

@li
@akj

¼ ukivji ð8:110Þ

where, nji is the jth element in vi and uki is the kth element in ui.

Assuming a is a scalar, A(a) is an n-order square matrix with elements being

akj(a) and for all k and j, akj (a) is a differentiable function, we have

dAðaÞ
da

¼ dakjðaÞ
da

� 

: ð8:111Þ
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Therefore, similarly we can find the eigenvalue sensitivity to scalar a to be

@li
@a

¼ uTi
@A

@a
vi: ð8:112Þ

8.4.2.3 Participation Factor

To determine the relationship between state variables and system modes, we

establish a so-called participation matrix P by combining right and left eigenvectors

to measure the level of coupling between state variables and system modes.

l1 li ln

P ¼

Dx1

Dxk

Dxn

u11n11 � � � u1in1i � � � u1nn1n

..

. . .
. ..

. . .
. ..

.

uk1nk1 � � � ukinki � � � uknnkn

..

. . .
. ..

. . .
. ..

.

un1nn1 � � � uninni � � � unnnnn

2
66666664

3
77777775
:

ð8:113Þ

Element pki = uki nki in matrix P is called a participation factor [193] that measures

the level of participation of the ith mode and the kth state variable Dxk with

each other. The ith row of matrix P, pi, is the participation vector of the ith
mode. Since nki measures the level of activity of Dxk in the ith mode and uki weights
the contribution of the activity to the mode, their product pki can measure the pure

participation. The product of corresponding elements in left and right eigenvectors

is a dimensionless result, independent of the dimensions selected for the eigenvectors.

Assuming Dx(0) = ek, i.e., Dxk (0) = 1 and Dxj 6¼ k (0) = 0, from (8.102) we have zi
(0) = uki. From (8.103) we can obtain

DxkðtÞ ¼
Xn
i¼1

vkiukie
lit ¼

Xn
i¼1

pkie
lit: ð8:114Þ

This equation shows that the ith mode excited by initial value Dxk (0) = 1 partici-

pates in response Dxk (t) with a participation coefficient pki. That is why it is called a
participation factor.

For all modes or all state variables, it is easy to prove that

Xn
i¼1

pki ¼
Xn
k¼1

pki ¼ 1: ð8:115Þ

To set t = 0 in (8.114), we can easily obtain the summation of the kth-row elements

of P to be 1. Summation of the ith-column elements of matrix P is equal to uTi vi
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which is 1 according to (8.95). In addition, from (8.110) we can see that participa-

tion factor pki in fact is the sensitivity of eigenvalue li to diagonal element akk of
matrix A, i.e.,

pki ¼ @li
@akk

: ð8:116Þ

8.4.3 Computation of Eigenvalues

8.4.3.1 QR Method

Among numerical methods to compute all the eigenvalues of a general matrix, the

QR method is usually the first choice. It was proposed by J. G. F. Francis in 1962,

and has advantages such as strong robustness and fast speed of convergence. It has

been found to be the most effective method of eigensolution so far.

For a given A 2 R
n�n and orthogonal matrix Q0 2 R

n�n, we have the following

iteration:

A0 ¼ QT
0AQ0;

k ¼ 1; 2; . . . ;

Ak�1 ¼ QkRk ðQRdecompositionÞ;
Ak ¼ RkQk;

ð8:117Þ

where each Qk 2 R
n�n is an orthogonal matrix and Rk 2 R

n�n upper triangular

matrix. By an inductive approach we have

Ak ¼ ðQ0Q1 � � �QkÞTAðQ0Q1 � � �QkÞ: ð8:118Þ

Hence each Ak is similar to A. Because matrix A has complex eigenvalues, Ak will

not converge to a strict ‘‘eigenvalue exposed’’ upper triangular matrix, but satisfy a

computational real Schur decomposition.

An upper triangular matrix with diagonal elements being 1 � 1 blocks or 2 �
2 blocks is called an upper quasi-triangular matrix. Real Schur decomposition is a

real operation to reduce a matrix to an upper quasi-triangular matrix. If A 2 R
n�n,

there exists an orthogonal matrix Q 2 R
n�n to lead to

QTAQ ¼
R11 R12 � � � R1m

0 R22 � � � R2m

..

. ..
. . .

. ..
.

0 0 � � � Rmm

2
6664

3
7775; ð8:119Þ
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where Rii is either a 1 � 1 matrix or 2 � 2 matrix. If it is 1 � 1, the element is an

eigenvalue of matrix A; if 2 � 2, the eigenvalues of Rii are a pair of conjugate

complex eigenvalue of A.

To effectively complete a Schur decomposition, we select the initial orthogonal

matrix of a similarity transformation as in (8.117) Q0 to make A0 become an upper

Hessenberg matrix. Doing so, the computational complexity of one iteration is

reduced from O(n3) to O(n2).
In an upper Hessenberg matrix, except for the sub-diagonal elements, those

below the diagonal are zero. For example, in a 6 � 6 upper Hessenberg matrix,

nonzero elements are distributed as shown below:

� � � � � �
� � � � � �

� � � � �
� � � �

� � �
� �

2
6666664

3
7777775
:

This form of matrix can be obtained by performing a series of Householder

transformations. Since Householder transformation is a symmetrical orthogonal

similarity transformation, the upper Hessenberg matrix obtained has the same

eigenvalues as the original matrix.

Finally, if values of elements of A have large differences, implementation of the

iterative method could result in large computational errors in eigenvalues. The level

of sensitivity of eigenvalue computation to round off can be reduced by a balancing

operation. Since usually errors of eigensolution from numerical computation are

proportional to a Euclidean norm, the idea of the balancing operation is to make the

norm of corresponding rows and columns as close as possible through similarity

transformation. Thus, the total norm of the matrix is reduced without changing the

eigenvalues of the matrix.

Implementation of the balancing operation is to determine the diagonal matrix D

through O(n2) computation such that

~
A ¼ D�1AD ¼ ½c1; c2; . . . ; cn� ¼ ½r1; r2; . . . ; rn�T ð8:120Þ

with k rik1 	 k cik1, i = 1,2, . . ., n. Diagonal matrix D is selected to have the form

D ¼ diag bi1 ; bi2 ; . . . ; binf g, where b is the floating-point base. Thus round off in

computing
~
A is avoided. AfterA goes through the balancing operation, computation

of eigenvalues will become more accurate.

8.4.3.2 The Power Method

In practical applications, often we do not need to compute all eigenvalues of matrix

A, but only that with largest modulus (often called the dominant eigenvalue). The
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power method is a very effective iterative method to calculate the dominant

eigenvalue.

Assuming that A 2 C
n�n can be diagonalized and X�1 A X = diag (l1, l2, . . .,

ln), where X = [x1, x2, . . ., xn], jl1j > jl2j 
 � � � 
 jlnj. For a given initial unit

vector under the 2-norm vð0Þ 2 C
n, the power method generates the following series

of vectors v(k)

zðkÞ ¼ Avðk�1Þ

vðkÞ ¼ zðkÞ= zðkÞ
�� ���� ��

2

lðkÞ ¼ ½vðkÞ�HAvðkÞ

9>>=
>>;; k ¼ 1; 2; . . . : ð8:121Þ

Obviously, the series of vectors in the above iteration v(k) are unit vectors under the

2-norm.

Because

distðspanfvðkÞg; spanfx1gÞ ¼ O
l2
l1

����
����
k

 !

and

l1 � lðkÞ
��� ��� ¼ O

l2
l1

����
����
k

 !
:

Obviously, only l2/l1 < 1, when k ! 1, we have

lðkÞ ! l1; vðkÞ ! x1: ð8:122Þ

The power method is of linear convergence and its applicability depends on the

ratio |l2| / |l|1, which reflects the rate of convergence.

After the dominant eigenvalue of A is obtained by using the power method, we

can compute the remaining eigenvalues through a deflation technique. There are

many deflation methods but only a few of them are numerically stable. In the

following, we shall introduce a deflation method based on similarity transformation.

Assuming l1 and v1 are known, we can find a Householder matrix H1 to satisfy

H1 v1 = k1 e1 and k1 6¼ 0. From A1 v1 = l1 v1, we have H1A1ðH�1
1 H1Þv1 ¼ l1H1v1.

Obviously, H1A1H
�1
1 e1 ¼ l1e1, that is, the first column of H1A1H

�1
1 is l1 e1.

Denoting

A2 ¼ H1A1H
�1
1 ¼ l1 bT1

0 B2

� �
; ð8:123Þ

where B2 is an (n � 1)th-order square matrix that obviously has eigenvalues to be

l2, . . ., ln. Under the condition that |l2|> |l3|, we can use power method to compute

the dominant eigenvalue of B2, l2, and corresponding eigenvector, y2, where
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B2 y2 = l2 y2. Assuming A2 z2 = l2 z2 and to calculate z2, assuming a a constant to

be found and y an (n � 1)th dimensional vector, we have

z2 ¼ a
y

� �
;

l1aþ bT1y ¼ l2a

B2y ¼ l2y

(
:

Because l1 6¼ l2, we can choose y = y2, a ¼ bT1y

l2�l1
, thus we can find z2. v2 ¼ H�1

1 z2

is the eigenvector of A corresponding to l2.
With application of the above method and Householder matrix, we have

k1 ¼ �sgnðeT1v1Þ v1j jj j2
b ¼ v1j jj j2 v1j jj j2þ eT1v1

�� ���� ��� �	 
�1

u ¼ v1 � k1e1

A2 ¼ H1A1H
�1
1 ¼ ðI� buuTÞA1ðI� buuTÞ

9>>>>=
>>>>;
: ð8:124Þ

After l2 and v2 are computed, we can continue to deflate B2 to calculate the rest of

the eigenvalues and eigenvectors. In theory, if eigenvalues of A are arranged

according to their modulus and those with higher values can be separated, we can

use the above method to compute those eigenvalues. A drawback of the deflation

method is that it changes elements of the original matrix, so that any sparsity in the

matrix cannot be maintained during deflation.

Finally, we would like to point out that it is not so straightforward to compute the

dominant eigenvalue and corresponding eigenvector by using the power method as

introduced above, because we only discussed the case of a single dominant eigen-

value. In fact, l1 could be one of a set of multiple real eigenvalues or l1 and l2 could
have the same modulus but are real eigenvalues with opposite sign, or l1 and l2 are
a pair of conjugate complex eigenvalues. For those different cases, the power

method will be slightly different. Details can be found in [187].

8.4.3.3 The Inverse Power Method

Eigenvalues of inverse matrix A
�1 of a nonsingular matrix A are reciprocal values

of the eigenvalues of A. Hence the reciprocal of the dominant eigenvalue of A�1 is

the eigenvalue of A with smallest modulus. Applying the power method on A�1

is called the inverse power method (or inverse iterative method) to compute the

eigenvalue of the nonsingular matrix A with smallest modulus and corresponding

eigenvector.

For a given initial unit vector under the 2-norm, vð0Þ 2 C
n, the inverse power

method generates the following iterative series

AzðkÞ ¼ vðk�1Þ

vðkÞ ¼ zðkÞ= zðkÞ
�� ���� ��

2

lðkÞ ¼ ½vðkÞ�HAvðkÞ

9>>=
>>;; k ¼ 1; 2; . . . : ð8:125Þ
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When k ! 1,

lðkÞ ! 1

ln
vðkÞ ! xn ð8:126Þ

Another more useful form of inverse power method is to apply the power method to

matrix (A � tI)�1, where t is a real or complex constant. For a given initial unit

vector under the 2-norm, vð0Þ 2 C
n, the iterative process is as the following:

ðA� tIÞzðkÞ ¼ vðk�1Þ

vðkÞ ¼ zðkÞ= zðkÞ
�� ���� ��

2

lðkÞ ¼ ½vðkÞ�HAvðkÞ

9>>=
>>;; k ¼ 1; 2; . . . : ð8:127Þ

When k ! 1,

lðkÞ ! 1

lp � t
tþ 1

lðkÞ
! lp

vðkÞ ! xp

9>=
>;; ð8:128Þ

where lp is that closest to t among all eigenvalues of A and xp is the corresponding

eigenvector. We need to explain (8.128) further as follows.

Because eigenvalues of nonsingular matrix A � tI are lj � t (j = 1, 2, . . ., n),

those corresponding to matrix (A� t I)�1 are 1
lj�t ðj ¼ 1; 2; . . . ; nÞ. Applying the

power method to matrix (A � tI)�1, we obtain eigenvalue 1
lp�t with largest

modulus that means lp � t with smallest modulus. Hence lp is the closest to t.
Hence if we need to compute the eigenvalue of matrix A with a value closest to

number t and corresponding eigenvector, we can use the inverse power method

given by (8.127). Another application of the inverse power method is that with a

known approximation t of an eigenvalue of matrix A, we can use the inverse power

method to compute the corresponding eigenvector and improve the accuracy of

computation of the eigenvalue.

Using (8.127), we can apply triangular decomposition on matrix A � tI,

A� tI ¼ LU;

where L is a unit lower triangular matrix and U upper triangular. Then equation of

solution becomes

LUzðkÞ ¼ vðk�1Þ:

8.4.4 Eigensolution of Sparse Matrix

In small-signal stability analysis, the dynamics of a power system are described by

differential-algebraic equations of (8.3). From (8.83) we can see that
~
A,

~
B,

~
C, and

~
D are all sparse matrices. When we obtain matrix A from (8.5) to compute its
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eigenvalues, we can find that matrixA has lost its sparsity almost completely. Since

the implementation of the QR method cannot take advantage of matrix sparsity, it is

not important whether A is sparse or not when we compute its eigenvalues.

However, when other iterative methods, such as power method, inverse power

method, and sub-space method (to be introduced later), are used to compute part

of the eigenvalues of matrix A; if we can take full advantage of the sparsity of the

original matrices to compute those eigenvalues directly from (8.3), computational

efficiency will be greatly enhanced.

For an eigenvalue of A, l, a nonzero vector v 2 C
n satisfying the following

equation

~
A

~
B

~
C

~
D

" #
v

w

� �
¼ l

v

0

� �
ð8:129Þ

is the right eigenvector of A, corresponding to this eigenvalue. The matrix on the

left-hand side of above equation is called the augmented state matrix.

It is not difficult to prove the above conclusion. In fact, from (8.129) we have

w ¼ � ~
D�1 ~Cv. Canceling w and from (8.5), we can obtain

ð ~A� ~
B
~
D

�1 ~
CÞv ¼ Av ¼ lv: ð8:130Þ

Hence we can compute eigenvalues and eigenvectors of matrix A from the

eigensolution of the augmented state matrix of (8.129) without destroying system

sparsity. In the following, we shall introduce the sparse realization of the power

method and the inverse power method. In addition, the sparse expression of

eigenvalue sensitivity to scalar a will be presented.

8.4.4.1 Sparse Realization of Power Method of (8.121)

Since the relationship between z
(k) and v

(k�1) given by the equation

zðkÞ

0

" #
¼

~
A

~
B

~
C

~
D

" #
vðk�1Þ

wðk�1Þ

" #

is equivalent to z(k) = Av(k �1), computation of the first equation in (8.121) can be

replaced by the following equations:

~
Dw

ðk�1Þ ¼ � ~
Cv

ðk�1Þ

zðkÞ ¼ ~
Av

ðk�1Þ þ~Bðk�1Þ

9=
;: ð8:131Þ

Before the iteration of (8.121) is implemented, we only apply sparse triangular

decomposition on
~
D once, i.e.,

~
D. Hence computation of (8.131) in each iteration is
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only the multiplication of some sparse matrices and vectors and solution of two

triangular equations.

8.4.4.2 Sparse Realization of Inverse Power Method of (8.127)

Since the relationship between z
(k) and v

(k �1) given by the equation

~
A � tI ~

B
~
C

~
D

" #
zðkÞ

wðkÞ

" #
¼ vðk�1Þ

0

" #
ð8:132Þ

is equivalent to (A� tI)z(k) = v(k � 1), solution of the first equation in (8.127) can be

replaced by that of (8.132) to obtain vector z(k).

For a given number t, we first calculate
~
D

� ¼ ~
D � ~

C ð~A� tIÞ�1 ~
B and apply

sparse triangular decomposition
~
D

� ¼ LU. Noting ð~DÞ is a diagonal block matrix (a

diagonal block is from a dynamic component in power system), we can obtain

ð~A� tIÞ�1
by calculating the inverse of diagonal block matrices directly. In

addition,
~
D� and

~
D have the same sparse structure (2 � 2 block sparse matrix).

Hence solution of (8.132) can be summarized in the following steps:

(1) Calculate w(k) from solution of the equation

~
D

�
wðkÞ ¼ �~

Cð~A� tIÞ�1
vðk�1Þ

(2) Calculate zðkÞ ¼ ð~A� tIÞ�1ðvðk�1Þ �~BwðkÞÞ

8.4.4.3 Eigenvalue Sensitivity to Scalar a

Similar to (8.129), for a left eigenvector we have

uT yT
	 
 ~

A
~
B

~
C

~
D

� �
¼ l uT 0
	 


: ð8:133Þ

Hence using a similar derivation, we can obtain

@li
@a

¼ uTi yTi
	 
 @

~
A

@a
@
~
B

@a

@
~
C

@a
@
~
D

@a

2
6664

3
7775 vi

wi

� �
ð8:134Þ
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8.4.5 Application of Eigenvalue Sensitivity Analysis

In analysis of power system operation and design of power system controllers, we

often need to investigate the influence of certain parameters, such as the gain and

time constant of a controller, on power system stability. This will help in the

selection or setting of those parameters to stabilize the power system or to improve

system stability.

Since system state matrix A is a function of a system parameter a, i.e., A(a), any
eigenvalue of matrix A, li, is also a function of parameter a, i.e., li (a), i = 1, 2, . . .,
n. When parameter a varies, li (a) will accordingly change. Variation of li (a)
represents the influence of variation of parameter a on power system stability.

Assuming that parameter a changes from a(0) to a(0) + D a, the corresponding

change of system eigenvalue is from li (a(0)) to li (a(0) = D a). Taylor expansion of

li (a(0) + D a) at a(0) is

liðað0Þ þ DaÞ ¼ liðað0ÞÞ þ @liðaÞ
@a

����
a¼að0Þ

Daþ @2liðaÞ
@a2

����
a¼að0Þ

ðDaÞ2 þ � � � :

When D a is very small, change of li can be approximately expressed as

Dliðað0Þ;DaÞ ¼ liðað0Þ þ DaÞ � liðað0ÞÞ ¼ @liðaÞ
@a

����
a¼að0Þ

Da; ð8:135Þ

where partial derivative ∂ li/∂ a is the first-order sensitivity of eigenvalue li to
parameter a, referred to simply as eigenvalue sensitivity. Hence if we can calculate

∂ li/∂a, D a can be approximately determined from the required change of

eigenvalue D li.
Calculation of the first-order sensitivity of eigenvalue li to parameter a can be

summarized as follows:

(1) Set a = a(0) to form state matrix A(a(0))
(2) Calculate eigenvalue ofA(a(0)), li, and corresponding left and right eigenvector

uHi and vi such that uHi vi ¼ 1

(3) Calculate
@AðaÞ
@a

���
a¼að0Þ

(4) @liðaÞ
@a ¼ uHi

@AðaÞ
@a

���
a¼að0Þ

vi

In the following, we shall give an example taking the gain KS, time constant T1, T2,
T3, and T4 of lead-lag network of PSS as parameter a to demonstrate the calculation

of
@AðaÞ
@a . In the equations of generation unit g of (8.20) and (8.21), except

Ag;BIg;BVg;Pg, and Zg are independent of a. In addition, RIg, RVg, and Tg(0) are

also independent of a. Hence from (8.30) and (8.32) we have

8.4 Eigenvalue Problem in Small-Signal Stability Analysis 533



@Bg

@a
¼ @Cg

@a
¼ @Dg

@a
¼ 0;

where matrix
@Ag

@a can be calculate from matrix Ag in (8.20).

Obviously in the equation of the whole system, from (8.83) we can obtain

@~A

@a
¼

@AG

@a 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
664

3
775; @~B

@a
¼ 0;

@~C

@a
¼ 0;

@~D

@a
¼ 0;

where ∂AG/∂a can be calculated from (8.73). Moreover, from (8.5) and the

equation above we have

@A

@a
¼ @

~
A

@a
:

The partial derivative of matrix A to other parameters can be calculated similarly.

In the analysis of eigenvalue sensitivity, in addition to the eigenvalue sensitivity

to parameters introduced above, eigenvalue sensitivity to power system operating

conditions has been proposed. To enhance computational accuracy, second-order

eigenvalue sensitivity has also been suggested, with some effective computational

methods proposed. Details can be found in references [215–218].

8.5 Oscillation Analysis of Power Systems

A power system cannot operate without proper control. System operators can

satisfy the predicted load demand through automatic generation control, and also

through switching on, or off, various other controllable devices. Certain automatic

control devices, such as the governor and AVR of a generator, HVDC control and

FACTS control, etc., carry out the task of fast automatic regulation to maintain

system frequency and voltage within required limits, when the power system is

subject to disturbances.

Since the middle of the twentieth century, the power industry has found that

interconnection of regional power systems can lead to more reliable and economi-

cal operation of power systems. This has resulted in the increasing scale of modern

power systems. In the 1960s, the interconnection of two Northern American power

systems suffered from increasing oscillations. Power system oscillations have

subsequently been reported in many countries. Investigation into power system

oscillations has revealed that when regional power networks are connected through

long-distance transmission lines, the resulting weak coupling of large power gener-

ation centers implies weak damping of interarea power oscillations. Another cause

of reduced, or even negative, damping of power system oscillation is the application
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of high-gain, fast-acting excitation systems. Electrical engineers have found that

through the introduction of a supplementary control signal from PSS, system

damping can be increased. Experience of Northern American power system inter-

connection has shown that application of PSS is very effective in damping power

system oscillations. Increasing oscillations prevent power networks from exploiting

interconnection. In some interconnected power systems, power exchange between

interconnected networks has to be kept below a certain limit to avoid the occurrence

of oscillations. This greatly reduces the value of interconnecting regional power

networks. In some interconnected power systems, low-gain AVR have to be

adopted to avoid the oscillation problem. Hence before the scheme of asynchronous

interconnection via HVDCwas proposed, further interconnection was abandoned in

some power systems.

Since the 1940s, it has been known that excitation control can enhance the

stability limit of a synchronous generator. Since in some cases, excitation control

can successfully improve power system dynamic performance, in addition to the

control being fast and efficient, electrical engineers have held high expectations of

the function of excitation control. However, effectiveness of excitation control is

not unlimited. Fast-acting excitation systems can improve synchronous torque to

enhance system first swing stability. However, fact-acting excitation is often a

negative feedback system with high gain that has little influence on oscillation

damping after the first swing. Sometimes it could provide negative damping. When

a power system exhibits negative oscillation damping, fast-acting excitation control

(usually with high gain) often increases the negative damping to the detriment of

system operating conditions.

In an m machine interconnected power system, there are a total of m � 1

electromechanical oscillation modes. From field records of real power system

oscillation [229] and extensive experience from power system simulation, these

oscillation modes can be classified, according to the area of coverage, into two

types [189], local modes and interarea modes:

(1) Local modes only involve power swings of generation units in a power plant to

the rest of the power system. Oscillation frequency usually is between 1 and

2 Hz.

(2) Interarea modes are power swings of a group of generators in an area to another

group of generators in another area. This interarea oscillation often occurs

between two or more generators in a weakly connected power system. Because

the moment of inertia of the equivalent generator in each area is very large, the

oscillation frequency of an interarea oscillation is lower than that of local-mode

oscillation, being in the range of 0.1–0.7 Hz. When the oscillation is exhibited

between two groups of generators, oscillation frequency is between about 0.1

and 0.3 Hz. When it is an oscillation among multiple groups of generators,

oscillation frequency is about 0.4–0.7 Hz.

Since the frequency of those two types of oscillation is low, they are often called

power system low-frequency oscillations. In addition to electromechanical oscilla-

tion modes, control modes and torsional oscillation modes may exist in a power
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system. Torsional modes have been previously introduced. Control modes are

related to various control devices installed in the power system. Since regulation

of control devices is fast and controllers have small time constant, frequency of

control modes is usually high. Here we are only concerned about electromechanical

oscillation modes. Analysis regarding control modes and torsional modes is out of

the scope of this book.

Small disturbances can lead to power system low-frequency oscillations. If the

oscillations of all modes are decaying, the power system is stable in terms of small-

signal stability. However, in real power system operation, usually only where the

damping ratio of electromechanical oscillation modes is greater than 0.05, is the

power system operation acceptable. Of course this value is not fixed. With varia-

tions of system operating conditions and small changes of oscillation modes, lower

damping ratios (such as 0.03) could also be acceptable.

It is apparent that small-signal instability of real power systems is mainly due to

system oscillations caused by lack of damping. In 1969, Demello and Concordia

[218] obtained conditions of power system small-signal stability with regard to the

operation of a thyristor-controlled excitation system for a single-machine infinite-

bus power system. These are certain requirements on the setting of AVR gain and

the introduction of an auxiliary control signal of generator rotor deviation. Their

work clearly revealed the cause of power system oscillation in the single-machine

infinite-bus model and laid down a solid theoretical foundation for the design of

PSSs. Based on their idea and principles proposed, researchers have attempted

extensions into multimachine power systems for the analysis of local-mode oscilla-

tions, and further to interarea oscillations in interconnected power systems. How-

ever, we have to point out that some of the simple extensions are often found to be

inappropriate.

A large-scale multimachine power system is a typical nonlinear dynamic system.

Increasing oscillations caused by disturbances are dependant on many factors.

Network topology and parameters, characteristics of dynamic components, system

operating conditions, control strategies and parameters of various controllers all

play an important role in system oscillations. It is a challenging task to clearly

analyze the cause of power system electromechanical oscillations and to propose

effective measure to overcome the problem. With the increasing demand of eco-

nomics in a modern society, especially with the trend toward electricity markets,

more and more load is required to be carried over existing power networks.

However, economics and security of the power system are two conflicting require-

ments. When a power system operates under a light load condition before it is

disturbed, damping windings of generators can provide adequate torque proportion-

al to rotor speed. This damping can usually absorb the energy involved in system

oscillations and thus the magnitude of oscillations decays continuously. The power

system is stable in terms of small-signal stability. If the power system operates at

heavy load conditions before it is disturbed, damping windings of generators cannot

completely dissipate the energy involved in the system oscillations, so that the

oscillations can grow continuously. The power system is unstable in terms of small-

signal stability. Moreover, to increase the capability of power transmission and to
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improve system transient stability or other system performance aspects, large

numbers of various types of controller are installed in the power system. Some of

these may clash with the damping of system oscillations, due to improper control

strategies or parameters, or mismatch among controller functions. This may again

lead to unstable system oscillations. The purpose of oscillation analysis of power

systems is to study key factors affecting oscillation modes, so that useful measures

can be worked out to suppress oscillations effectively.

[Example 8.2] In Example 8.1, all the eigenvalues of the system state matrix

have been calculated. In the following, we shall study system oscillation modes.

[Solution] Table 8.2 gives oscillation frequency and damping ratio of several

oscillation modes; corresponding left and right eigenvectors and participation

vectors are given in Tables 8.3 and 8.4.

In the following we will carry out modal analysis from the results in Tables 8.3

and 8.4, where all vectors have been normalized to unit vectors under the infinite

norm. Firstly, we identify electromechanical oscillation modes from the participa-

tion vector of specified modes: if the component with largest modulus in a partici-

pation vector is related to generator speed, we identify that the mode is an

electromechanical oscillation mode. Then we can observe the exhibition of

modes from right eigenvectors: for those components in right eigenvectors related

to generator speed, a group of components with similar modulus and directional

phase identifies a group of coherent generators. Incoherent generators are asso-

ciated with those components with opposite phase. The right eigenvector of a local

mode is dominated by variables related to one or a group of closely located

generators. Components of the right eigenvector of an interarea mode evenly

distribute in all regions in a power system.

For oscillation mode l5,6, the element with largest modulus in its participation

vector is related to Do3. Hence it is an electromechanical oscillation mode. Besides,

in its right eigenvector, components associated with Do1, Do2 have small modulus

(being 0.00018 and 0.00121, respectively) and similar phase (being �170.62� and
�166.98�, respectively); the component associated with Do3 has large modulus

(0.00411) and opposite directional phase to those above (being 10.52�). Hence
this mode will exhibit as an electromechanical oscillation between generator 1,

2 and generator 3. It is a local oscillation mode with oscillation frequency being

2.04732 Hz.

Table 8.2 Oscillation frequency and damping ratio of several
oscillation modes

l5,6 l7,8 l11,12 l13,14

f 2.04732 1.38007 0.14569 0.10463

x 0.05859 0.01747 0.77893 0.59313
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Similarly, for l7,8, the element with largest modulus in its participation vector is

related to Do2. Hence it is an electromechanical oscillation mode. In addition, in its

right eigenvector, components associated with Do2, Do3 have relatively large

modulus (being 0.00261 and 0.00141, respectively) and the same direction (phase

being 64.08� and 67.20�, respectively); component associated with Do1 has small

modulus (0.00093) and opposite direction. Hence this mode will exhibit as electro-

mechanical oscillation between generator 1, 2 and generator 3. It is also a local

oscillation mode with oscillation frequency being 1.38007 Hz. Though this mode is

stable, the damping ratio (0.01747) is not sufficient, exhibiting poor dynamic

performance as far as oscillation decay is concerned.

For mode l11,12, the element with largest modulus in its participation vector is

related to D VR2; for l13,14, element with largest modulus in its participation vector

is related to D E0
q3. Hence those modes are not electromechanical oscillation modes

but control modes.

[Example 8.3] We take the 39-node 10-machine simplified New England

system as an example to demonstrate the procedure of power system oscillation

analysis [221]. In the power system, ten machines are at nodes 30–39 and the

machine at node 39 is an equivalent generator. Generators at nodes 30–38 have fast

static excitation systems installed.

[Solution] We obtain the system linearized equation by using the methods

introduced above and then compute all eigenvalues of the system state matrix.

Damping of nine modes associated with electromechanical oscillations is not

sufficient and some of eigenvalues have positive real parts. For two eigenvalues

0.1022 � j7.215 (mode 1) and 0.037 � 4.301 (mode 9), components associated

with generator speed in their right eigenvectors are given in Table 8.5.

From Table 8.5 we can see that in the eigenvector of the first mode, there are

three components with large modulus (highlighted by bold figures), among these

the direction of the first component (with phase being 0�) is opposite to that of the

Table 8.5 Components associated with generator speed in right eigenvectors of mode 1
and 2

Generator number Mode 1 Mode 9

Modulus Phase (degree) Modulus Phase (degree)

30 1.0 0.0 0.5574 �9.9

31 0.1408 �44.5 0.4757 �3.4

32 0.0797 241.9 0.5208 �5.5

33 0.1851 152.3 0.7601 �5.3

34 0.4777 �32.1 1.0 0.0

35 0.7935 170.2 0.7961 �5.7

36 0.7797 170.5 0.7977 �6.8

37 0.3468 10.1 0.5084 �12.4

38 0.1664 111.4 0.6694 �3.3

39 0.0170 191.3 0.4052 �179.6
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other two (with phase being about 170�). This indicates that the mode mainly

exhibits as an electromechanical oscillation between generator 30 and generators

35, 36; with oscillation frequency being 7.215/2p ¼ 1.148 Hz. This is a local

oscillation mode. In the eigenvector of the second mode, except for the component

associated with generator 39 with relatively small modulus, other components have

similar values of modulus. Moreover, the first nine components have opposite

direction (with phase being about 0�) to that of the last one (with phase being

about �180�). This indicates that this mode exhibits mainly as an electromechani-

cal oscillation between generators 30–38 and generator 39 (the equivalent generator

that can be seen as a regional network). Hence this is an interarea oscillation with

oscillation frequency being 4.301/2p ¼ 0.685 Hz.

In addition to identifying electromechanical oscillation modes, participation

vectors can also be used to estimate the relative effects of generator controls on

specified oscillation modes. For example, a component associated with rotor speed

in a participation vector gives eigenvalue sensitivity to the variation of damping

applied on the associated generator. If it is zero, this indicates that installation of

PSS on the generator will have no impact in improving oscillation damping. If it is a

large positive number, this shows that the associated generator is a good candidate

place to install PSS, to effectively increase damping of the relevant oscillation

mode. In Table 8.6, components associated with generator rotor speed are given.

From Table 8.6 we can see that for the local mode, a component in the participation

vector associated with generator 30 has the largest value, about equal to the sum of

components associated with generators 35 and 36. Hence applying damping control

at generator 30 should almost be equivalent to similar applications at both gen-

erators 35 and 36 simultaneously. For the interarea oscillation mode, a component

associated with generator 39 has the largest modulus. However, generator 39 is an

equivalent machine and damping control cannot be applied there. The sum of

components associated with generators 30–38 is about equal to the component

related to generator 39. This means that damping control applied at generators 30–

38 will achieve a similar effect as that applied at generator 39. Moreover, we should

note that although some generators have large participation factors, there will be

little effect in applying damping control on those generators if their capacity is

small. Applying damping control on generators with large capacity will be more

effective than applying it on those with small capacity, as far as increased oscilla-

tion damping is concerned.

Table 8.6 Components in participation vector

Generator number 30 31 32 33 34 35 36 37 38 39

Mode 1 1.0 0.01 0.005 0.02 0.13 0.42 0.43 0.07 0.02 0.001

Mode 2 0.17 0.09 0.12 0.22 0.33 0.26 0.21 0.07 0.18 1.0

Values in the table are estimated from graphs presented in [221]
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Thinking and Problem Solving

1. What are the purpose and significance of small-signal stability analysis for

electrical power systems?

2. What are the basic principle and basic procedures of small-signal stability

analysis?

3. What are the main methods to solve the eigenvalues of a linearized electrical

power system? What are their advantages and disadvantages?

4. Why is the QR method not suitable for the eigenvalue analysis of large-scale

electrical power systems?

5. What is the critical eigenvalue? What methods are there for calculating critical

eigenvalues of large-scale electrical power systems? What advantages and

disadvantages are there for each method?

6. How can we apply sparse matrix techniques to critical eigenvalue calculations

for large-scale electrical power systems? Can the sparse matrix technique be

used in the QR method?

7. How are the eigenvalue and corresponding left and right eigen vectors used to

represent the modes of a linear system?

8. What is the participation factor? Why can the participation factor be used to

represent both the observability and controllability of a system?

9. What are the main causes of increasing amplitude, low-frequency oscillation?

10. What are the major manifestations of low-frequency oscillation? Why is the

oscillating frequency among local generators lower than that among generators

in a plant, and the oscillating frequency among regional generators is lower

than that among local generators?

11. What are the main measures to control low-frequency oscillation?
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Simplified models for transient stability, 446

Simultaneous solution method, 425, 427

Single-step algorithm, 411

Slack node, 76, 83, 85, 90, 94, 174, 216,

247, 250

Small-signal stability, 489–493, 500,

506–518, 530, 536

Smoothing reactor, 259, 260, 264, 480

Sparse vector method, 22, 38–43, 460, 461

Sparsity techniques, 1

Spot pricing, 195, 196, 219–221

SPWM, 326

SSSC, 301, 302, 319–322, 326, 329, 331

STATCOM, 301, 302, 308–312, 319, 326,

329, 331

State matrix, 492, 509–511, 518, 519, 533

State space, 139, 145, 150

Static load model, 394–397, 399, 400, 500

Static ordering scheme, 44–46

Static security analysis, 73, 113–114, 189

Stationary exciter, 374, 375

Steady-state equations, 354, 356, 360,

437, 438

Steam turbine, 362, 381, 382, 389–393,

492, 493

Step-by-step integration, 408, 409

Step size, 143, 199, 408, 409, 411, 412,

420, 421, 423–426, 428, 454, 462–464,

466, 467

Stiff differential equations, 425

Stiff rotor, 360–362

Stochastic programming, 244

Stormer and Numerov integration formula,

462

Sub-synchronous oscillation, 493

Sub-transient parameter, 335, 344

SVR, 301, 302

Symmetric, 13, 16, 19, 32, 34, 38, 51, 102,

104, 105, 125, 261, 299, 308, 314

Synchronous generator, 334–340, 343, 344,

347–363, 365, 369–372, 398, 400–402,

493–496, 498, 500, 535

Synthesized impedance matrix, 440, 441,

444, 446, 486

System contingency, 124

System performance index, 124, 126, 127

Taylor series, 79, 81, 84, 86, 168, 169

TCPST, 301, 302, 322, 323, 325, 329

TCR. See Thyristor controlled reactors

TCSC, 301, 302, 313, 314, 316–319, 322,

325, 436, 437, 464, 477–479, 485, 487,

502, 503, 507, 508, 510

Telegen’s theorem, 124

Three rotor winding model, 351

Three-winding transformer, 10, 11

Thyristor controlled reactors, 302–307, 313,

316, 476, 478

Thyristor switched capacitors, 302

Time domain, 522

Torsional oscillations, 365, 492, 493

Torsional torque, 493

Transformation matrix, 170, 335, 340

Transient parameter, 335, 344

Transient stability, 357, 362, 400,

405–407, 425, 427–431, 435, 444, 446,

447, 450, 453, 457, 459, 463, 464, 480,

484, 537

Transmission open access, 193, 221

Transmission right, 222, 224

Trapezoidal rule, 419–421, 425–427,

464, 466, 470, 471, 474, 477–479,

482, 483

Triangular decomposition, 27–34,

530–532

TRM, 242

TSC, 302, 303, 305, 306

TTC, 224, 242, 243

Two winding model, 351–352

Uniform distribution, 136–137, 148–150,

154, 158, 251

UPFC, 301, 302, 325–331

Usage sharing problem, 234

Variance, 134–137, 140, 141, 145–147,

155, 157, 159, 160, 168, 245,

246, 394

Voltage regulators (AVR), 333, 352, 357,

363, 375, 377, 378, 534–536

XB algorithm, 106

Index 559


	Cover
	Modern Power Systems
Analysis
	ISBN 038772852X
	Preface
	Contents
	Chapter 1: Mathematical Model and Solution of Electric Network
	1.1 Introduction
	1.2 Basic Concepts
	1.2.1 Node Equation and Loop Equation
	1.2.2 Equivalent Circuit of Transformer and Phase-Shift Transformer

	1.3 Nodal Admittance Matrix
	1.3.1 Basic Concept of Nodal Admittance Matrix
	1.3.2 Formulation and Modification of Nodal Admittance Matrix

	1.4 Solution to Electric Network Equations
	1.4.1 Gauss Elimination Method
	1.4.2 Triangular Decomposition and Factor Table
	1.4.3 Sparse Techniques
	1.4.4 Sparse Vector Method
	1.4.5 Optimal Ordering Schemes of Electric Network Nodes

	1.5 Nodal Impedance Matrix
	1.5.1 Basic Concept of Nodal Impedance Matrix
	1.5.2 Forming Nodal Impedance Matrix by Using Nodal Admittance Matrix
	1.5.3 Forming Nodal Impedance Matrix by Branch Addition Method

	Thinking and Problem Solving

	Chapter 2: Load Flow Analysis
	2.1 Introduction
	2.2 Formulation of Load Flow Problem
	2.2.1 Classification of Node Types
	2.2.2 Node Power Equations

	2.3 Load Flow Solution by Newton Method
	2.3.1 Basic Concept of Newton Method
	2.3.2 Correction Equations
	2.3.3 Solution Process of Newton Method
	2.3.4 Solution of Correction Equations

	2.4 Fast Decoupled Method
	2.4.1 Introduction to Fast Decoupled Method
	2.4.2 Correction Equations of Fast Decoupled Method
	2.4.3 Flowchart of Fast Decoupled Method

	2.5 Static Security Analysis and Compensation Method
	2.5.1 Survey of Static Security Analysis
	2.5.2 Compensation Method

	2.6 DC Load Flow Method
	2.6.1 Model of DC Load Flow
	2.6.2 Outage Analysis by DC Load Flow Method
	2.6.3 N-1 Checking and Contingency Ranking Method

	Thinking and Problem Solving

	Chapter 3: Stochastic Security Analysis of Electrical Power Systems
	3.1 Introduction
	3.2 Basic Concepts of Probability Theory
	3.2.1 Probability of Stochastic Events
	3.2.2 Random Variable and its Distribution
	3.2.3 Numeral Characteristics of Random Variable
	3.2.4 Convolution of Random Variable
	3.2.5 Several Usual Random Variable Distributions
	3.2.6 Markov Process

	3.3 Probabilistic Model of Power Systems
	3.3.1 Probabilistic Model of Load
	3.3.2 Probabilistic Models of Power System Components
	3.3.3 Outage Table of Power System Components

	3.4 Monte Carlo Simulation Method
	3.4.1 Fundamental Theory of Monte Carlo Simulation Method
	3.4.2 Sampling of System Operation State
	3.4.3 State Evaluation Model
	3.4.4 Indices of Reliability Evaluation
	3.4.5 Flowchart of Composite System Adequacy Evaluation
	3.4.6 Markov Chain Monte Carlo (MCMC) Simulation Method

	3.5 Probabilistic Load Flow Analysis
	3.5.1 Cumulants of Random Distribution
	3.5.2 Linearization of Load Flow Equation
	3.5.3 Computing Process of Probabilistic Load Flow

	3.6 Probabilistic Network-Flow Analysis
	3.6.1 Introduction
	3.6.2 Network-Flow Model
	3.6.3 Lower Boundary Points of Feasible Flow Solutions
	3.6.4 Reliability of Transmission System

	Thinking and Problem Solving

	Chapter 4: Power Flow Analysis in Market Environment
	4.1 Introduction
	4.1.1 Transmission Owner
	4.1.2 Independent Operator
	4.1.3 Power Exchange
	4.1.4 Ancillary Service
	4.1.5 Scheduling Coordinator

	4.2 Optimal Power Flow
	4.2.1 General Formulation of OPF Problem
	4.2.2 Approaches to OPF
	4.2.3 Interior Point Method for OPF Problem

	4.3 Application of OPF in Electricity Market
	4.3.1 Survey
	4.3.2 Congestion Management Method Based on OPF

	4.4 Power Flow Tracing
	4.4.1 Current Decomposition Axioms
	4.4.2 Mathematical Model of Loss Allocation
	4.4.3 Usage Sharing Problem of Transmission Facilities
	4.4.4 Methodology of Graph Theory

	4.5 Available Transfer Capability of Transmission System
	4.5.1 Introduction to Available Transfer Capability
	4.5.2 Application of Monte Carlo Simulation in ATC Calculation
	4.5.3 ATC Calculation with Sensitivity Analysis Method

	Thinking and Problem Solving

	Chapter 5: HVDC and FACTS
	5.1 Introduction
	5.2 HVDC Basic Principles and Mathematical Models
	5.2.1 HVDC Basic Principles
	5.2.2 Converter Basic Equations Neglecting Lc
	5.2.3 Converter Basic Equations Considering Lc
	5.2.4 Converter Equivalent Circuits
	5.2.5 Multiple Bridge Operation
	5.2.6 Converter Control

	5.3 Power Flow Calculation of AC/DC Interconnected Systems
	5.3.1 Converter Basic Equations in the per Unit System
	5.3.2 Power Flow Equations
	5.3.3 Jacobian Matrix of Power Flow Equations
	5.3.4 Integrated Iteration Formula of AC/DC Interconnected Systems
	5.3.5 Alternating Iteration for AC/DC Interconnected Systems

	5.4 HVDC Dynamic Mathematical Models
	5.5 Basic Principles and Mathematical Models of FACTS
	5.5.1 Basic Principle and Mathematical Model of SVC
	5.5.2 Basic Principle and Mathematical Model of STATCOM
	5.5.3 Basic Principle and Mathematical Model of TCSC
	5.5.4 Basic Principle and Mathematical Model of SSSC
	5.5.5 Basic Principle and Mathematical Model of TCPST
	5.5.6 Basic Principle and Mathematical Model of UPFC

	Thinking and Problem Solving

	Chapter 6: Mathematical Model of Synchronous Generator and Load
	6.1 Introduction
	6.2 Mathematical Model of Synchronous Generator
	6.2.1 Basic Mathematical Equations of Synchronous Generator
	6.2.2 Mathematical Equations of Synchronous Generator Using Machine Parameters
	6.2.3 Simplified Mathematical Model of Synchronous Generator
	6.2.4 Steady-State Equations and Phasor Diagram
	6.2.5 Mathematical Equations Considering Effect of Saturation•
	6.2.6 Rotor Motion Equation of Synchronous Generator

	6.3 Mathematical Model of Generator Excitation Systems
	6.3.1 Mathematical Model of Exciter
	6.3.2 Voltage Measurement and Load Compensation Unit
	6.3.3 Limiters
	6.3.4 Mathematical Model of Power System Stabilizer
	6.3.5 Mathematical Model of Excitation Systems

	6.4 Mathematical Model of Prime Mover and Governing System
	6.4.1 Mathematical Model of Hydroturbine and Governing System
	6.4.2 Mathematical Model of Steam Turbine and Governing System

	6.5 Mathematical Model of Load
	6.5.1 Static Load Model
	6.5.2 Dynamic Load Model

	Thinking and Problem Solving

	Chapter 7: Power System Transient Stability Analysis
	7.1 Introduction
	7.2 Numerical Methods for Transient Stability Analysis
	7.2.1 Numerical Methods for Ordinary Differential Equations
	7.2.2 Numerical Methods for Differential-Algebraic Equations
	7.2.3 General Procedure for Transient Stability Analysis

	7.3 Network Mathematical Model for Transient Stability Analysis
	7.3.1 The Relationship Between Network and Dynamic Devices
	7.3.2 Modeling Network Switching and Faults

	7.4 Transient Stability Analysis with Simplified Model
	7.4.1 Computing Initial Values
	7.4.2 Solving Network Equations with Gauss Elimination Method
	7.4.3 Solving Differential Equations by Modified Euler´s Method
	7.4.4 Numerical Integration Methods for Transient Stability Analysis Under Classical Model

	7.5 Transient Stability Analysis with FACTS Devices
	7.5.1 Initial Values and Difference Equations of Generators
	7.5.2 Initial Values and Difference Equations of FACTS and HVDC
	7.5.3 Forming Network Equations
	7.5.4 Simultaneous Solution of Difference and Network Equations

	Thinking and Problem Solving

	Chapter 8: Small-Signal Stability Analysis of Power Systems
	8.1 Introduction
	8.2 Linearized Equations of Power System Dynamic Components
	8.2.1 Linearized Equation of Synchronous Generator
	8.2.2 Linearized Equation of Load
	8.2.3 Linearized Equation of FACTS Components
	8.2.4 Linearized Equation of HVDC Transmission System

	8.3 Steps in Small-Signal Stability Analysis
	8.3.1 Network Equation
	8.3.2 Linearized Differential Equations of Whole Power System
	8.3.3 Program Package for Small-Signal Stability Analysis

	8.4 Eigenvalue Problem in Small-Signal Stability Analysis
	8.4.1 Characteristics of State Matrix Given by Its Eigensolution
	8.4.2 Modal Analysis of Linear Systems
	8.4.3 Computation of Eigenvalues
	8.4.4 Eigensolution of Sparse Matrix
	8.4.5 Application of Eigenvalue Sensitivity Analysis

	8.5 Oscillation Analysis of Power Systems
	HeadingsSec31_8

	: Index
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Springnew-Regular
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.001 841.997]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Springnew-Regular
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.001 841.997]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


