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Preface to the First Edition

This text is intended to cover a two-year course on communication system
engineering at B.Sc. level. The subject material is based upon courses which
I have taught at both the University of Wales and the University of London.

Chapter 1 concentrates upon the use of Fourier methods in the analysis
and processing of waveforms. It provides the mathematical groundwork
upon which the rest of the book is based.

The communication channel and the problems it presents to the system
designer are studied in chapter 2.

Chapters 3, 4 and 5 are concerned with the various methods of modulat-
ing a sinusoidal carrier. Much of the material presented in these chapters is
standard and has been well-documented in other undergraduate texts. None
the less, I have attempted to introduce modern techniques wherever
possible. In particular, I have tended to stress such system implementations
as lead naturally to integrated-circuit fabrications. For example, in chapter
4, the principle of frequency discrimination and the desirable features
required of a practical discriminator are considered, leading to a description
of the Travis discriminator. Instead of following the usual policy and
covering the Foster-Seeley and ratio detectors in great detail, the available
space has been devoted to introducing that quite-different frequency
detector: the phase-locked loop. This system module is now available as an
integrated circuit. It is cheap, requires little trimming and involves no
transformers. It must, surely, become the major means of attaining fre-
quency detection, even in domestic receivers, in the near future.

The titles of chapters 3, 4 and 5 are ‘Envelope Modulation’, ‘Angle
Modulation’ and ‘Composite Modulation’, respectively. Single-sideband
systems, being a combined envelope and phase modulation, therefore
appear in chapter S. It is common policy, in most texts, to include them with
envelope (amplitude) modulation. I hope that the slightly unusual classifica-
tion employed here will help the student to appreciate the nature of
single-sideband waveforms more clearly.

Digital techniques are discussed in chapters 6, 7 and 8 in greater detail
than has been customary in most undergraduate texts. Notwithstanding
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the small amount of time commonly devoted to these topics,
they represent the major growth area in communication system installation
at the present time; in particular, digital-data links are becoming an area of
great importance. In this respect, I hope that the discussions of both digital
coding and data transmission reflect modern practice with reasonable
accuracy and provide an indication of trends in the immediate future.

In a text of this nature, space is at a premium and, if the cost of the final
work is not to become excessive, some omissions are inevitable. It is with
regret, for example, that I have not been able to include descriptions of
differential pulse code modulation and delta modulation. The latter
system, particularly, is of increasing interest to many engineers. However, it
has not yet found extensive practical application in communication systems.

Let me reiterate the function of this book before defending the omission
of one major topic. The objective is to teach undergraduates about
communication systems. Communications is a vast field; one that is capital-
intensive and makes heavy demands on available skilled manpower. The
book, then, must attempt to present the principles upon which modern
communication system design is based. It must also, perhaps to a lesser
extent, present an outline of current practice. A conflict in aims, therefore,
tends to arise when we come to consider the suitability of including such
subjects as statistical decision theory and information theory. Practice makes
it evident that profitable systems are not, in the main, designed as a
consequence of the application of the principles which derive from these
disciplines.

Thus the techniques used in the design of data modems do not, in practice,
derive from decision-making strategies suggested by statistical decision
theory. Nor does the use of frequency modulation result from the applica-
tion of the methods of information theory. It is true that information theory,
and in particular Shannon’s well-known theorem

information transfer=channel bandwidth X transmission time
xlog (1+signal/noise ratio)

throws light on the efficacy of the tradeoff between bandwidth and signal-
to-noise ratio evidenced by frequency-modulation systems. It is also argu-
able that Shannon’s theorem provides us with upper bounds beyond which
we cannot expect to improve the performance of communication systems;
perhaps it does. Unfortunately, it is rarely the case that the postulates used
in deriving the theorem are all encountered in a real system. Also, most real
systems exhibit a performance level well below the Shannon bound. Finally,
information theory suggests no way of designing systems so that the bound is
approached. Hence its omission in favour of topics of greater practical
importance to the young engineer about to seek employment.

Let me conclude by extending my appreciation to the people who have
helped me during the preparation of this book, I would like to thank my
colleagues, David Armitage, David Everett and Robert Newton for many
helpful discussions and for reading and criticising the manuscript with such
diligence. For his assistance in preparing and executing the diagrams,
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particularly some of the more difficult, I would like to thank my father,
Stafford Coates, Principal Lecturer, Southampton College of Technology.
Finally, thanks are due to my mother, Mollie, and my wife, Gillian, for their
support and encouragement during the writing of this book.

October 1974 RODNEY COATES

Preface to the Second Edition

In the short period of seven years since the publication of the first edition of this
book, many significant and, in some respects unforseeable, changes in communica-
tion system technology have emerged. In particular the ‘microprocessor revolution’,
the rapid escalation in complexity of computing microcircuitry, has provided the
communication engineer with powerful, yet flexible and easily implemented proces-
sing capabilities. Taken in conjunction with fibre optic and satellite technology
and the need to sustain ever-expanding computer data-bases and communication
facilities, such capabilities pave the way for a second revolution: the ‘information
revolution’ predicted for the closing decade of this century.

Respecting the pace and nature of communication system developments, I
have included a new chapter: ‘The Integrated Services Digital Network’. This will
I hope provide an orientation for the engineer in a field of some complexity—
namely, the structure and organisation of the future international telephony and
data-transfer network—which, in social terms, must profoundly affect us all.

In chapters 6, 7 and 8 I have added new material emphasising the importance
of digital techniques in the communications industry. Indeed, much of the material
included in chapter 6 (in particular, that concerning differential pulse code and
delta modulation) had to be deliberately omitted from the first edition, being at
that time insufficiently important to warrant inclusion. Now, both techniques are
essential material for the understanding of the integrated circuit ‘CODEC’. This
device (described in detail in chapter 6) will, it has been predicted, account for a
major proportion of the revenue of the integrated circuit fabrication industry by
the end of the present decade.

Changing social attitudes and the volume and sensitivity of commercial informa-
tion transfer have persuaded me to include in chapter 7 discussions of the use of
coding techniques in speech and data communication to achieve security and
privacy. In chapter 8, consideration is given to advanced data keying systems and
modem techniques. Finally, new material providing a resumé of the significance
of fibre optic communications in modern communication networks is to be found
in chapter 2.
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Despite the inclusion of considerable new material, much has, inevitably, been
left unsaid. It is my hope, however, that within the following pages, the engineer
will find a helpful overview of this vast, expanding and vitally important field of
human endeavour. Finally, I am indebted to Larry Lind for reading and correcting

the manuscript and for his many useful suggestions throughout the production of
this new edition.

May, 1982 RODNEY COATES



1 The Analysis and
Synthesis of Waveforms

Speech is in many ways typical of communication waveforms. When
converted into an electrical signal and displayed on an oscilloscope it is seen
to have a continuously fluctuating waveshape which is extremely compli-
cated. Faced with the problem of analysing and manipulating a complicated
waveform, we naturally look for some ‘lowest common denominator’,
something which allows us to classify all such signals. Then we may be able
to isolate categories of signals, or processing techniques, which are of some
particular benefit to us. In this first chapter, we shall examine one waveform,
the sinewave or sinusoid, which is very often used as the basis for analysis
and synthesis. It is not the only one which could be adopted but it is the most
convenient for our purposes, since it is relatively easy to handle, both
mathematically and electronically.

Following from our discussion of the sinusoid, we shall consider the
problems of specifying and analysing both periodic and aperiodic
waveforms. This will provide us with the essential mathematical groundwork
upon which we may base our examination of communication systems and
their operation.

We shall also examine the manner in which the content of a waveform
may be altered by the process of linear filtering. Finally, we shall consider
the determination of power- and energy-density spectra, since these proper-
ties tell us how the waveform occupies its transmission bandwidth.

1.1 The Sinusoid

In our investigations into the nature and development of communication
systems, we shall repeatedly come into contact with the sinusoidal time
function. There is indeed good reason why this should be so. Many natural
and physical systems principally contain energy-storage and dissipation
elements. Often these elements may be regarded as lumped or individual
components of the system. When this is the case, we can write first- or
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second-order differential equations describing the system. When solved,
such equations exhibit natural modes of response which are exponential, or
damped sinusoidal functions of time.

The sinusoid, as we shall see, is of great value both as a fundamental
waveform ‘type’ from which other, more complicated waveforms may be
built up and as a signalling waveform in its own right. We may express the
sinusoid as

v(t)=A cos(wt+¢) allt (1.1)

This equation is a time domain mathematical specification of the sinusoid.
The phrase ‘time domain’ is used because the independent variable in the
equation is time, t. Notice that t is unrestricted. The condition ‘all £’ merely
states that the sinusoid, as defined, was always ‘switched on’, so that no
transient conditions need be considered. The sinusoid is specified by three
parameters: A, the amplitude, measured typically in volts or amps; w, the
angular velocity, sometimes also referred to by communication engineers as
the radian frequency, measured in radian s™' and ¢, the phase angle,
measured in radians. Note that the radian frequency is related to the period,
T, of the sinusoid and to its frequency, f, measured in hertz (Hz)

f=w/2w
T=1/f
Another important mathematical (not pictorial) representation of the

sinusoid is as a rotating phasor. In order to facilitate our discussion of the
phasor, let us first recollect de Moivre’s theorem. That is

exp(j6) = cos(0)+j sin(8)

We refer to exp(j0) as a cisoid, in the same sense that we refer to cos 6 and
sin  as sinusoids. exp j6 may be represented on the complex plane as a line
of unit length inclined at an angle 8 to the real axis; see figure 1.1a. ‘cisoid’
simply stands for cos+i sinusoid. The precise definition of the term ‘phasor’
depends on the area of application. In circuit theory, the phasor is a complex

Imaginary
axis !

>

Imaginary
axis 1

1 '

/ | .
, sin8
[
|

(]

Real
le«— cos8 —p OXis

¢— cos 6 —>

(a) (b)

Figure 1.1 (a) The cisoid phasor exp(j@) depicted on the complex plane. (b) Generation
of the sinusoid cos(8) as the sum of two cisoids
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Imaginary
axis

Figure 1.2 Generation of the sinusoid v(t) = A cos(wt + ¢) as the real part (horizontal
projection) of a rotating phasor of length A

quantity, V, chosen such that

Re{V exp(jwt)}= A cos(wt+ @)
It follows that
V=A exp(jo)

Thus the phasor conveys the essential information regarding amplitude and
phase of a fixed frequency sinusoid. Being a complex quantity, the phasor
may be depicted on the complex plane as a fixed line of length A, inclined at
an angle ¢ to the real axis. The term ‘vector’ may, in some texts be
synonymous with the term ‘phasor’ defined as above. However, modern
usage reserves the former expression for quantities defined spatially, such as
electromagnetic fields.

For communication applications, the phasor is defined to be the entire
quantity

V exp(jot)

This, when represented on the complex plane, consists of a rotating line,
inclined at an angle ¢ at time t=0, the real part of which generates the
sinusoid A cos(wt+¢) as a function of time. Figure 1.2 illustrates this effect,
which is analogous to the familiar process of generation of a sinusoid as the
projection onto the horizontal of a uniformly rotating rigid member pivoted
at one end.

An alternative definition of the sinusoid makes use of de Moivre’s
theorem, quoted above. It is easily shown that

cos(8) =3{exp(+j6)+exp(—j6)}

Figure 1.1b illustrates this complex addition, or ‘phasor sum’. It follows
directly from this relationship that

A cos(wt+¢) =3A exp{+j(wt+¢)}+3A exp{—j(wt+d)} (1.2)
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Imaginary
axis

n"

Figure 1.3 Generation of the sinusoid v(t) = A cos(wt + ¢) as the sum of two rotating
phasors

This equation describes the phasor sum of two rotating phasors. Their
respective rotations are of opposite sense +w and they start at time t=0
symmetrically disposed about the real axis with initial phase angles *¢.
Consequently, the imaginary parts of the phasors cancel on phasor addition,
generating the purely real sinusoid, as figure 1.3 shows.

We may extend both phasor representations of the sinusoid, figures 1.2
and 1.3, to create spectral representations which are of great value in the
analysis of systems. Considering first figure 1.2, we see that the phasor itself
may be defined in terms of its length, A, initial phase angle, ¢, and angular
velocity, . We find it convenient to depict the sinusoid graphically, plotting
A and ¢ versus w. Thus a specific sine wave

Ao cos(wot+ o)

for which A=A, and ¢ = ¢, when w = w, is shown in the manner illustrated
in figure 1.4a.

In contrast, when we examine figure 1.3, we see that we must spectrally
identify two phasors. Because they rotate in opposite directions, we draw a
‘two-sided’ spectrum encompassing both positive and negative angular
velocities. The spectral lines in this case are of length A, and initial phase
angles *do; see figure 1.4b.

‘Frequency domain’ diagrams such as those shown in figures 1.4a and b
may be referred to as ‘sinusoid-based’ and ‘cisoid-based’ spectra, respec-
tively. Either of these forms may occur in the literature. As might be
expected, the cisoid representation tells us no more than the sinusoid
representation. Indeed, it merely appears to complicate the issue. While this
is a valid argument when we are concerned only with the analysis of simple
waveforms, the cisoid representation offers definite advantages when we
come to study complex systems and waveforms. In fact its use can make the
mathematics very much easier.

Our general sinusoid

v(t)= A cos(wt+¢)
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Figure 1.4 Representation of the sinusoid A, cos(w.t + &) as (a) single-sided sinusoid-
based and (b) two-sided cisoid-based amplitude and phase spectra

may be represented in one further, and often very useful, way. Expanding
the equation we may write

v(t) = X cos(wt)+ Y sin(wt) (1.3)

where X = A cos(¢) and Y=—A sin(¢). We refer to the terms X cos(wt) and
Y sin(wt) as the in-phase and quadrature components of v(t), respectively.
Instead of representing the sinusoid in the frequency domain, as in figures
1.4a and b as amplitude and phase spectra, we may alternatively represent it
as in-phase and quadrature-component spectra; see figures 1.5a and b.

XA XA

P IR
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@Wo

(3 4
€
+
&
ey

(a) (b)

Figure 1.5 Representation of the sinusoid A, cos(w.t + ¢,) as (a) single-sided and (b)
double-sided in-phase and quadrature-component spectra
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(a) (b)

Figure 1.6 Block diagram representation of the sinusoidal-waveform generator; (a)
fixed frequency, (b) variable frequency or ‘voltage controlled oscillator’ (vco)

All our spectra, whether sinusoid-based or cisoid-based have been plotted
against an abscissa w; the angular velocity of the phasor generating the
wave. We could equally well have plotted them against frequency, f, and in
the case of the cisoid-based spectra this would naturally lead us to define
negative frequencies. As long as we recall the origin of the concept of
negative frequencies, this form of presentation should cause no problems. In
fact, we normally employ a frequency abscissa since it is common practice
for communication engineers to work in terms of frequency rather than
angular velocity.

Finally, to emphasise the ‘functional block’ aspect of the communication
system, in which we consider the system ‘macroscopically’, we regard the
sinusoid as the output of a system module. By this, we mean that it is very
often the case that the detailed operation or construction of a system
module, or block, is immaterial. There are, for example, many ways of
generating sinusoids. We are only concerned that the sinusoid generator
should be that system module which has a sine wave at its output; see figure
1.6.

1.2 Operations with Sinusoids

1.2.1 Addition
The addition of two sinusoids

v1(t)= A, cos(wit+d,)
and
v2(t) = A, cos(w2t+ )

leads to a superposition of their spectra, as figure 1.7 shows.

1.2.2 Multiplication

The effect of taking the product of the two sinusoids v:(t) and v(t) is also
illustrated in figure 1.7 and corresponds to the mathematical manipulations

v:(t) v2(t) = A1 A; cos(wit+ ¢1)cos(wat+ ¢2)
=% A LA; [cos{(w:+ w)t+ (D2t D))}
+cos{(w2— w1)t+(d2— d1)}]

The phenomenon described by these equations is directly analogous to the
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Figure 1.7 Operations with sinusoids: addition and multiplication

‘beating’ effect which is perceptible to the ear when two acoustic waves, or
‘tones’ are struck from tuning forks at the same time. The beating, or
envelope fluctuation, is most pronounced when the two wave frequencies
(w2+ ) and (w2~ w,) are close together. The envelope fluctuation occurs at
a frequency equal to one-half of the difference frequency: % [(w; + wi)—
(w, — w;)] = wi. This envelope fluctuation is imposed upon a sinusoid at a
frequency of one-half of the sum frequency:  [(w; + w)) + (w; — w))] = w,.

The multiplication results in a frequency translation of the low-frequency
wave vi(f) so that it is relocated at frequencies (w;+w;) and (w:—w),
adjacent to the higher frequency wave. This translation effect we refer to as
a modulation. Modulation, as we shall see, is of great importance to us as a
method of signal processing prior to transmission and also as a fundamental
operation in the analysis of the spectral content of signals.

1.3 The Periodic Waveform
A periodic waveform may be defined thus
v(t)=v(t+mT) allt, minteger (1.4)

where T is an epoch referred to as the period of the function v(t). The period
is related to the fundamental frequency, f,, by the expression

i=1T (1.5)
The sum of a set of periodic functions vy, v, ... with arbitrary amplitudes
and shapes but related fundamental frequencies

f" = nfl (l .6)

will also be periodic, with a fundamental frequency f; as figure 1.8 indicates.
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Figure 1.8, The sum of periodic waves with related fundamental frequencies f, = nf, isa
wave with fundamental frequency f,

If we choose a convenient set of functions, sinusoids in this case, which are
periodic and related in the manner specified by equation 1.6, we may
uniquely assemble almost any periodic waveform by suitably adjusting the
amplitudes and phases of the component waveforms. In fact, any waveform
which is physically realisable may be synthesised in this way. ‘Physically
realisable’ simply means that the waveform can actually be created with a
suitable physical system, and is not just a convenient mathematical abstrac-
tion. For example, a waveform

v(t) =tan(2wft)

would contain infinitely high peaks and would possess an infinite discon-
tinuity as it passed through values of its argument 27ft equal to odd-integer
multiples of w/2; that is, /2, 37/2, 57/2 and so on. Because of this it could
not be exactly reproduced by a real electronic system in which only finite
voltage-excursions may be tolerated.

Although it must be possible to synthesise any realisable waveform as the
sum of sinusoids, there are also some non-realisable waveforms which can
be constructed in this way. One example, which we shall examine in detail
shortly is the square-pulse train. Here, transitions between states occur
infinitely rapidly. The waveform cannot, therefore, be exactly reproduced by
a physical system, which always involves some form of inertia. It follows that
it is not merely the existence of discontinuities which prohibits our synthesis-
ing a waveform from sinusoids. The necessary condition, met by the square
wave, but not by the ‘tan’ wave, is that the discontinuities be finite in size.



THE ANALYSIS AND SYNTHESIS OF WAVEFORMS 9

Another waveform which could not be realised, although it contains no
discontinuities and is periodic of period T, is the function

v(t) =sin(1/t)

defined over the interval O=<t<T. Such a function contains an infinite
number of maxima and minima, since the sinusoid has a frequency which
increases to infinity as t tends to zero. It can be shown that a function v(t)
possessing

(1) a finite number of finite discontinuities
(2) afinite number of maxima and minima within the period
(3) a finite value to the integral of |v(t)|

is capable of synthesis as a suitably chosen sum of sinusoids. This sum is
known as a Fourier series and the method of choosing it, Fourier series
analysis. The conditions (1) to (3) are known as the Dirichlet conditions. The
Dirichlet conditions are of great theoretical importance, although they are
rarely responsible for our being unable to synthesise or analyse a waveform.
This we might expect, since our interest lies either with realisable waveforms
or with ‘sensible’ abstractions such as the square wave and sinusoid.

We shall now consider the problem of Fourier analysis in detail. It is fairly
easy to see how analysis may be achieved electronically, and examining the
problem from this standpoint allows us a certain amount of insight into the
formal, mathematical approach, which we shall consider shortly.

Given that the periodic waveform is composed of sinewaves, related in
frequency as specified above, each component will have the form

A, cos(2wfint+ d.)
Applying equation 1.3, this statement may be written in the form

X. cos(2wfint)+ Y, sin(2mf,nt)
where
Xn= An cos(d.)
and
Y.=—A., sin(¢.)

Consider the block diagram, shown in figure 1.9, of a simple electronic
sp:ctrum-analyser. The input wave, being presumed periodic and, therefore,
the sum of a set of sinusoidal components, will have the form

v(t)=Xo+ X, cos2nfit)+. .. + X, cos(2mf.t)+. ..
+Y,sinQ2wfit)+...+ Y.sin2uf.t)+. ..
The result of taking the product
X, cos(2mf.t)cos(2mf.t)

and subsequently smoothing is illustrated in figure 1.10a. A d.c. level is
present at the output of the smoothing circuit which is proportional to X..
Contrast this with the effect of taking the product

X. sin(2wf.t)cos(2mfat)

and smoothing. Now the smoothed output is zero, figure 1.10b.
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— X > % X,
*cos(ZTrf,,!}
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+sin[21rf,,t}
L X — % -,

Figure 1.9 A simple electronic spectrum-analyser; the output lowpass filters approximate
the operation of averaging by smoothing

X, cos(2mf,t)

X, cos(2wf,t)
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cos(2r f,t)

-

IV

sin(2wf,t)
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X, cos®(2mf,t)

X, cos(2wf,t) sin(2wf,t)
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r,___
- |

=Y

N

Figure 1.10 (a) Output from the smoothing circuit is equal to the area under the curve
which is positive and proportional to X.. (b) Output from the smoothing circuit is zero,
since the area under the curve is zero
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In exactly the same way, the product of Y, sin(27f.t) and the second local
oscillator output sin(27f,t) will yield a zero frequency difference term Y, at
the output of the second smoothing circuit. Thus we may establish the
amplitudes of the sine and cosine components of the periodic function in a
fairly straightforward manner and, consequently, we have achieved the
required waveform analysis.

1.4 Orthogonality

The operation of the spectrum analyser relies on our ability to distinguish
between sine terms and cosine terms of particular frequencies by means of
the multiplier and filter combination. That is

X. cos(2wf.t)cos(2mf.t) = (X./2)+double frequency (2f.) terms

whereas
X. cos(2wf.t)sin(2wf.t) = double frequency terms alone
Similarly
Y. sin(2wf.t)cos(27f.t) = double frequency terms alone
but
Y. sin(2wf.t)sin(2w fut) = (Y./2)+double frequency terms

All the ‘double frequency’ terms are eliminated by the filter. The effect
described by these operations is summed up mathematically in the concept
of orthogonality. In this context, if two waveforms are orthogonal, the
implication is that they contain no shared, or common components. Strictly
they are said to be orthogonal in the interval t, to t, if the integral of their
products in that interval is zero

J i Um(Dva(t) dt=0 m#n
#0 m=n
Sinusoids in general form an orthogonal set since if

Um (1) = cos(2m fint)
and
va(t) =cos(2mfut)
then
sz V() 0a(1) dt = JTT; cos(2m fat)cos(2mfut) dt :‘}/2 ::: :} (1.7)

-T/2

In the following mathematical discussion of the signal analysis procedure,
we shall find two other properties of the sinusoid set of importance

+T/2
J sin(2mf.t)sin(2mf.t) dt=0 m#n
2

=T/2 m=n (1.8)
+T/2
I sin(2mfat)cos(2mf.t) dt=0 allmandn
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1.5 Fourier Series Analysis in Terms of Sinusoids

We have deduced that a periodic waveform may be synthesised from
sinusoidal components, provided that the amplitudes of those components
are suitably chosen and their frequencies are related in the manner indicated
by equation 1.6. They will then be integer multiples of the frequency of the
periodic wave itself

fa=nfy

We may summarise this conclusion by writing a waveform synthesis equation
v(t)= i X, cos(2mfint)+ Y, sin(2wfint) (1.9)

n=0
Here, v(t) is the synthesised periodic wave of frequency f,. It is formed by

the summation of sinusoidal components of amplitude
A= (Xa+ Yo
and phase
¢.=—tan"' (Y./X,)
so that the nth component may be written as

A, cos(2nfint+d,)
instead of
X. cos(2mfint)+ Y. sin(2wfint)

The synthesis equation may then equally well be written as
o(t)= 3 A.cos(2mfint+dn) (1.10)
n=0

Although the formation of equation 1.9 is a fairly straightforward process,
we have yet to find a method of determining the coefficients X, and Y.. This
may be achieved by applying the orthogonality relations deduced in the
previous section. Thus, consider the integral

+T/2
J. v(t)cos(2mfint) dt (1.11)
-T2
This we may write in expanded form

me i {Xn cos(2mfimt)+ Y. sin(2mfimt)}cos(2wf,nt) dt

-T/2 m=0

All terms but the nth in the series, when multiplied by cos(2wfint) will
integrate to zero over the period. The nth term, by virtue of equation 1.7,
will integrate to give

X.T/2 (1.12)

Thus we derive, from equations 1.11 and 1.12 the first analysis equation

2 +T/2
Xn=-fj v(t)cos(2mfint) dt
-T/2

=% f " o(i)cos(2mfit) dt (1.13)

T/2
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TABLE 1.1 COEFFICIENTS OF FOURIER SERIES

v(1) X. Y. b. A.
EVEN Exists for
v(t)=v(—1) some n Y.=0 ¢.=0 A= X,
ODD _ Exists for _,m _
v(t)=—v(-1) X.=0 some n ¢”—+2 A=Y,

A closer inspection of the derivation of this result will show that it is valid
for n=1, 2, 3, ... but not for n=0. If n=0, then

+T/2

J:;:z v(t)cos(2wfint) dt= J v(t) dt

-T2

+T/2 o«

= I { Y X cos2mfimt)+ Y sin(2~rrf,mt)} de
-T/2 m=0

Now all terms but the first, that for m =0, integrate to zero over the period,

leaving

+T/2
J' X() dt=XOT

T2

It follows that we may write

1 +T/2
. d
Xo=7 J o)

and, incidentally, that
Yo=0

The reader may easily verify the second analysis equation, forn=1, 2, ...
+T/2
Y. =2 J v(t)sin(2mf,nt) dt (1.14)
T -T/2

To summarise, equation 1.9 is known as a Fourier series and is a synthesis
equation. Equations 1.13 and 1.14 are analysis equations which enable us to
calculate the coefficients of the Fourier series. We may sometimes ease the
task of calculating the Fourier series coefficients. For example, if v(t) is an
even or an odd function only one of the coefficients need be calculated, as
table 1.1 shows.

1.6 Fourier Analysis of a Rectangular-pulse Train

We shall use the methods of the previous section to analyse a rectangular-
pulse train. This provides us with a simple example, while allowing us to
evaluate a result which will be of importance in our later considerations of
sampling and pulse transmission.

Consider the pulse train illustrated in figure 1.11a. This is defined
mathematically as

v(t)=v, —-tistst

=(0 elsewhere within its period
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v(t) y

e

(@) (b)

Figure 1.11 Rectangular-pulse train (a) analysed into Fourier series in-phase com-
ponents, (b) sinusoid-based single-sided spectrum

and
v(t)=v(t+mT) integer

First, we observe that this function is even in t, since

v()=v(-t)

Consequently, we need only evaluate the coefficients X,, and Y.=0 all n.
Then, for n=1, 2, 3, ...

X.

jmz o()cos(2mfunt) dt

-T/2
Y
1

Il

J v, cos(2wf,nt) dt

[v, sin(21r[,nt)]"'
21rf|n

—4v sin(2wfint,)

- 1

2mn

2
T
2
T
2
T

-t

This expression has a form very similar to the sinc function sinc(x)=
sin(zx)/7x which is frequently encountered in system analysis. To express the
Fourier coefficients in terms of the sinc function, we need only write

x = 2fint,
so that
X.=(@4v:t)/T)sinc(x) n=1,2,3,...
and (1.15)
Xo=201f1/T

The spectrum then has the form shown in figure 1.11b.
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1.7 Fourier Series Analysis in Terms of Cisoids

We have seen, in section 1.5, equations 1.9, 1.13 and 1.14, how the Fourier
series equation

o()= T {X. cos(2nfynt)+ Y, sin(2wfini)}

may be constructed by applying the analysis integrals

+T/2

2 v(t)cos(2wf,nt) dt

n=
T -T/2

+T72
Xo= j v(t) dt

-T/2
2 +T/2
Yn=i.-j v(t)sin(2wf,nt) dt
—T/2
Yo=0

We may express these equations in a more compact form by rewriting them
in terms of cisoids. If we let

V.. =%(x, ~iY.)

) n=+1,4+2,+3... (1.16)
V—n = _2— (Xn + ]Yn)
and
Vn=Xn
then
l +T/2
Va =-J v(t)exp(—2mjfint) dt (1.17)
T ~T/2

This equation requires that n takes on all values, both positive and negative.
Recall from section 1.3 that negative values of n in the cisoid argument
(2mjfint) correspond to negative angular velocity of the rotating phasor
exp(2wjfint). Recall also that two phasors, one rotating in a positive sense,
the other in a negative sense, are needed to construct a sinusoid, thus

cos(2wfint) = % {exp(+2mjfint) + exp(—2mjfint)}
Modifying the Fourier series equation to comply with this change of notation

o()= ¥ V. exp(+2mjfint) (1.18)

n=-o

Equations 1.17 and 1.18 are a generalised set of equations. They allow us to
analyse a waveform into a cisoid-based spectrum.

1.8 Properties of Generalised Fourier Series
1.8.1 Relation to Sinusoid-based Spectra

Providing v(t) is a real function, which for practical purposes we may take it
to be, then equation 1.16 relates V., to X, and Y.. Note that the cisoid
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nor f

Yo

Figure 1.12 Complex conjugate spectral symmetry of a real function of time

spectrum of a function will have complex conjugate symmetry; see figure
1.12.

V.= V%, (1.19)

and that the X, and Y. may be calculated, if only the V., are known
Xom Vat Vo 1.20)

Yn:j(vn—v-n) ( '

1.8.2 Effect of a Displacement in Time

If v(t) has a Fourier series V,, then v(t+ 1) has a Fourier series V,, where
V.=V, exp2mjfint) (1.21)

This we may prove in the following way
+T/2
V.== J v(t)exp(—2wjfint) dt
-T/2

+T/2
V£.=—J v(t+T7)exp(—2mjfint) dt
~-T/2

Let t+7=A then dt=dA and

+T/2
V;=-,}-_ J v(A)exp(2mjfint)exp(—2mjfini) dA
-T/2
= V. exp(2wjfint)

Thus, a time shift of the function v(t) with respect to the origin t=0
corresponds to a phase shift of all components in v(t). This may be more
clearly appreciated if we examine the sinusoid-based spectra. Applying
equations 1.20 and 1.21, we may establish the equivalent expressions

X=X, cos(2mfint)— Y, sin(2wfint)
Y.=Y. cos(2wfint)— X, sin(2mfint)
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Or, in polar form
AL= A,
and
&r=d.+2mfint

1.9 The Analysis of Aperiodic Waveforms

We have seen how periodic waves may be analysed by deriving their Fourier
series and how they may be represented in the frequency domain by line
spectra. While the Fourier-series technique is of great practical importance,
it is none the less true that almost all communication signals are aperiodic. It
may be convenient for us to employ periodic signals in the testing or analysis
of systems, since they are relatively easy to generate or handle mathemati-
cally, but it must be remembered that they are not informational.

Since we are frequently interested in the nature of informational
waveforms, it is important that we find a method for analysing aperiodic
signals. We may classify aperiodic signals in three ways

(1) As finite-energy deterministic waveshapes—‘pulse waveforms’

(2) As finite-energy random, or partially random, waveshapes—
‘random pulse waveforms’

(3) As finite-power (and consequently infinite energy) random
waveforms—‘noise-like waveforms’

In practice, we can only analytically handle waveforms which fall into the
first class, producing an algebraic statement of the analysis result. ‘Deter-
ministic’ simply means specifiable as a straightforward algebraic function. A
random waveform cannot be so specified; it is not deterministic and
consequently no starting equation exists to be algebraically manipulated to
give an equivalent frequency-domain function.

1.10 The Fourier Transform

The principle behind the following derivation of Fourier transform from
Fourier series is very simple. We require the spectrum of an isolated
finite-duration pulse. First we form a periodic repetition of this pulse, then
we calculate its line spectrum. Finally, we let the period of the periodic wave
tend to infinity. The spectral-line spacing then tends to zero forming a
continuous spectrum which is representative of the isolated pulse.

Let the isolated pulse be v(t)

v()=0 nst<t,

and with t, and t, within the range —T/2 to +T/2, as shown in figure 1.13. We
establish a periodic function w(t) of period T, so that

w(t)=w(t+mT)
for all integer values of m. Then

w()=v(t) —-T/2<t<T/2
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v(t)A
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1
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w(t)A
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Figure 1.13 Formation of a periodic function w(t) from the aperiodic function v(t)

This periodic function is also illustrated in figure 1.13. It has a fundamen-
tal frequency

fi=T"
and its spectrum consequently has a line spacing
f=T"

Thus as T becomes large (without altering the pulse shape) 8f will become
small. We postulate, as the limiting condition as T—> o, that the spectrum
will become continuous; and we express it as V(f). This quantity will be a
spectral density measured in volt Hz™', assuming v(f) and w(t) to be voltage
waveforms, In contrast, W,, the line spectrum of the periodic w(t) is a
voltage spectrum. Each line is measured in volts. Consider the continuous
spectral density sketched in figure 1.14. This approximates to the line

v(f)

it U s

f, f
Figure 1.14 Relationship between the line spectrum W, and the spectral density V(f)
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spectrum shown, with

V(f.) 8f=W,
or (1.22)
V(f,)=W.T
Now

1 +T/2
W..=T, I_m w(t)exp(—2mjfa.t) dt
so that with w(t)=v(t) over the range of integration, it follows that

+T/2

W,.T=j v(t)exp(—2mwjf.t) dt
-T/2

Now, strictly, the approximation, equation 1.22, becomes an equality when
we write

V(f.) =Lim(W,T)

+T/2

=Lim J' v(texp(—2mjfat) dt
T—e J_ 112

= j v(t)exp(—2mjf.t) dt
Normally, we express this equation in a slightly neater form by replacing f.
with f

V(f)= I 3 v(exp(—2mwjft) dt (1.23)

This, then, is the Fourier transform which performs analysis. We may
construct the synthesis transform by examining the Fourier series synthesis
equation

w(t)= f W. exp(2mjfat)

Now
wn = V(f") 8f
= Lim(V(f.) 8f)
so that

+o0

w(f)=Lim Z V(f.)exp(2m jf.t) 8f

+oo

=Lim Y. V(n8f)exp(2mijn 8ft) 8f
=v(t) —1/8fst<+1/8f

This limiting summation is the definition of an integral, so that

o(f)= j':V(f)exp(zw ift) df (1.24)
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1.11 Properties of Fourier Transforms

Fourier transforms have many interesting and useful properties. It is
possible to postulate theorems which govern the effect of time and frequency
displacements, differentiation, integration and so on. These various
theorems are, for completeness, summarised in table 1.2. In general, the
proofs of the results quoted in this table can be left to the reader. Should he
require assistance, there are many excellent texts on the subject of Fourier
analysis. Of these a selected few’** are listed in the bibliography.

In the remaining sections of this chapter, the more important results
concerning Fourier transform methods, which we shall require frequently in
later work, will be discussed in detail.

TABLE 1.2 PROPERTIES OF FOURIER TRANSFORMS

Property Time Domain Frequency Domain
C‘i;’:;‘:;’f‘om o(f)= j V(flexp(2mift) dt V(f) = J' v(t)exp(—2mwift) dt
Addition 0:(t) = v,(t) + (1) Vi(f) = Vi(f) + Vu(f)

(Superposition)
o B)=0.(0u() Vi = [ viovig-n aa

- j”v,(f— M) Vi(A) dA
Filtering vs(t) = J‘“v,(-r) v(t—7)dr  Vi(f) = Vi(f) Va(f)
= [Tot=mur) ar

Time v(at) (1/la])V(f/a)

Scaling la| v(t/a) V(af)
Amplitude av(t) aV(f)

Scaling
Time Delay v(txT) exp(x2mjfr) V(f)

or Shift
Differentiation 9%({—) 2mwjfV(f)
Integration J' v(r)dr (12=if)V(f)
Mencion " R@=tim [ outee
Energy ( v(1) finite E(f)=|V(HI

Density energy

Spectrum

R(7)

Power v(t) finite P(f)= I_T,im T'|\V)

Density power -

Spectrum
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1.12 The Application of Fourier Transforms

Most students, on encountering the Fourier transform for the first time, have
difficulty in ‘seeing how the transforms are actually done’. Now, the use of
transforms does not necessarily imply a need to do them, in the sense of
performing an operation to obtain an analytic statement of the transform
result. Often we use the concept of a transform as an aide-mémoire, or
mental shorthand, while considering the processing of signals within a
system. The signal itself may be arbitrary. Examples of the use of the
transform technique in this way occur throughout the remainder of this
book.

Again, some random waveforms, because they cannot be specified as a
mathematical equation, are incapable of being analytically transformed to
yield a mathematical result.

None the less, there are many functions, both periodic and aperiodic,
which are capable of analytic transformation. The transforms of such
functions are of value in many physical problems, and tables (of which an
example is provided in appendix I) have been compiled.

Given, then, that we shall frequently find it necessary to use transform
techniques, it is appropriate that we discuss the actual method of evaluating
the transform integrals, equations 1.23 and 1.24, and that we examine the
situations in which transform methods may definitely not be used.

1.12.1 Evaluating the Fourier Transform
Let us consider the simplest example of a transformation. Suppose we wish
to evaluate the Fourier transform of a rectangular pulse
v()=v; —hsSt<+t
=0 elsewhere
The first step is simply to insert this function into the integral 1.23. Notice

that the integral may be split into three constituent integrals, covering the
ranges t=—o to —t;, t=—t;, to +t; and t=+t; to +.

v(f) = j:o(:)exp(—zw ift) de

- +

= J: llv(t)exP(—Z'n'jft) dt+j 'lv(t)exp(—z-n-jft) dt

-1,

+ j " o(t)exp(=2mift) dt

I+t

Only in the range t=—t, to +1t, is v(t), and hence the integral over the range,
non-zero. Consequently, we need only evaluate

V()= J:l]vl exp(—2jft) dt
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From this point onwards, the problem is simply one of evaluating a definite
integral, and

V(f)=vl[§l‘l’_(—_23jﬁ]“'

—2mjf 1
=ﬂ{exg(zwjftl)—exp(—21rjft1)}
«f 2j
=;vr—'f sin(2wft,)

This result is sufficient, as it stands, as a statement of the transform of v(t).
However, it is common practice to express it in terms of the sinc function
introduced in section 1.6. That is, we write

_ sin(27ft,)
V(f) 2uity 21Tft1
= 2u1H sinc(2f11)
Of course, the problem we solved was the simplest we could devise. More
complex functions are generally more difficult to evaluate, but all basically
require only the evaluation of the integral of the quantity
v(t)exp(—2wjft)

This integration is often quite difficult, so we tend to consult the work of
others by using ‘Transform Tables’ such as those given in appendix I.
Naturally, the tables cannot give every possible transform, so we may need
to resort to the shift and scaling theorems quoted in table 1.2. For example,
if our rectangular pulse extended not from t=—t, to t=+t, but from t=+t,
to t=+3t,, then we could either alter the limits of the integral to t, and 3¢,
and recalculate its value, or we could apply the shift theorem, noting that the
new pulse is equal to v(t—2t,) and that its transform (from the result quoted
in table 1.2) must therefore be

2v1t; sinc(2fty)exp(— 4mjft1)

It is sometimes the case that complex pulses can be broken into abutting
sections which are of the form of relatively simple known pulses. Take, for
example, the staircase waveform defined by the expression

v()=1 O0st<1
=2 1=st<2
=3 2=t<3
This waveform we may regard as the superposition (or summation) of three
constituent rectangular pulses
n(=1 0=t<1
n()=2 1st<2
v1:()=3 2=<t<3
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so that
(1) =v:(t)+v2(t) +v3(1)

It follows, by virtue of the superposition principle, that

V(f) = Vi(f) + Va(f) + V()

and all three transforms on the right-hand side of this last equation are easily
evaluated by referring to appendix I for the transform of a basic rectangular
pulse of unit height extending from t=—3 to t=+; and applying the shift and
amplitude-scaling theorems as appropriate.

1.12.2 Where not to use Fourier Transforms: Non-linearity

The Fourier series and the Fourier transform essentially embody the
principle of superposition. They state that a function is the superposition of
its components. Doubling the size of the function will only double the size of
each component. Thus they are employed in the analysis of linear systems,
where superposition is possible. A non-linear system will not permit
superposition. A simple example will suffice to illustrate this. Consider a
system element with a transfer characteristic g(v,). The linear system
element will give an output

v2=g(v1)
= kv,
Thus, if
V1= Vst
then
v2= kv +kvp

and the output of the sum of inputs is the same as the sum of the outputs
corresponding to each input considered separately.
A non-linear system, for example

V2= g(vl)
=ko}
will produce an output when both v, and v, are present at the input which is
v2=k(va+v5)?
= kv2+kvi+2kvavs (1.25)

Applied separately, v. and v, give outputs kv and kv; respectively. The sum
of these outputs is

v2=kv2+ ko (1.26)

Clearly superposition does not apply, since the two results, equations 1.25
and 1.26, are not the same.

In general, there is no point in attempting to use Fourier methods to solve
non-linear system problems. For example, it is usually not possible to use
Fourier transforms to obtain the spectra of output waveforms from non-
linear devices given an arbitrary input v(t) and an arbitrary transfer function
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g(v)

[ stotorexp(-2mife) a

Only when g(v) is a linear function of v can this be done.

1.13 The Delta Function

We shall frequently find it very useful to have recourse to a mathematical
concept known as the ‘delta function’. The delta function is defined thus

&(x)=0 x#0
JWS(x) dx=1

This means that, at all points on the x-axis except the point x=0, the delta
function is zero valued. At the point x=0, the amplitude of the delta
function is strictly undefined, but may be thought of as being infinitely large.
We thus have a unit area, infinitesimally thin impulse at the origin.

The location of the delta function on the x-axis may be altered. An
impulse occurring at a point x = a is accommodated by writing

8(x—a)

Then the argument of the delta function x—a is zero only at the point x=a.
The size of a delta function may be altered by scaling, so that a delta
function of area A is written

Ad(x)
Then

J Ad(x)dx=A

One very important use of the delta function is in providing a means of
sampling a value from some other function of x. For example, given a function
f(x) the value of that function at a point x = a is determined by the sampling
operation defined by the integral

[ 71 8- a) dx = (@)

This identity, known as the ‘sifting integral’ is of considerable theoretical
value in the analysis of sampled-data communication and control systems.

The delta function is also widely employed in providing a means of
specifying the response of linear networks and systems to a wide variety of
input signals. This is because a delta function, or impulse, in the time domain
has a spectrum which is ‘white’—it contains an equal measure of all frequency
components. We may show that this is so by evaluating its Fourier transform.
Merely inserting

v(t)=8(1)

into equation 1.23 does not help very much of course. We have to use a
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Figure 1.15 (a) The formation of the delta function from a constant-area pulse of

gradually diminishing width (curves I to IV) and the corresponding spectral alteration.

(b) Representation of the delta function against an arbitrary axis and with arbitrary
location

mathematical trick to attain our end. The spectrum of the impulse may easily
be found by applying the Fourier transform to a voltage pulse

1
2t,

and letting t, tend to zero as shown in figure 1.15a. Then
Lim{v(1)} = 8(1)

v(t) =

—h=stst

From the transform tables in appendix I, the Fourier transform of v(t) is

V(f) = sinc(2f1)

To find the spectrum of the delta function we evaluate, by applying
L’Hospital’s rule

Lim[V(H)]=1

and thus we derive the transform pair
() 1

In section 1.15 we shall see that the delta function in the frequency domain
provides us with a means of representing line spectra corresponding to
periodic functions in conjunction with the voltage spectral density of
aperiodic functions. To allow us to distinguish between delta functions in the
frequency domain and spectral lines, or, indeed, the y-axis of spectral graphs
we shall adopt the graphical convention shown in figure 1.15b.
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1.14 The Use of the Fourier Transform
in Spectral Analysis

Given a voltage waveform v(t), either random or deterministic, the voltage
spectral density of v(t) is given by its Fourier transform, V(f). Since v(t) is a
real function of time, V(f) will exhibit complex conjugate symmetry

V(f) = I_;”u(t)exp(—zﬂjfz) dt
~ X()+§Y() (1.27)
where
X(f)= j_ v(t)cos(2mft) dt (1.28)
Y(f)= - J’ruv(t)sin(Z'nft) dt (1.29)

It follows that X (f) is an even function of frequency, since, from equation 1.28

xe-n=|

= X(+f)

since cos(—2ft) = cos(+2wft). Similarly, Y(f), from equation 1.29, is an odd
function of frequency

+ o0

v(t)cos(—2wft) dt

Y(=f)=-Y(f)
Consequently, V(f) must exhibit complex conjugate symmetry with
V(=f)= V*(+f) (1.30)

Often, we find it easier to think in terms of amplitude and phase spectra
(rather than the real and imaginary parts of V(f)) when considering the
structure of a waveform. We may express V(f) in polar form thus

V(f) = A(f)exp{jd(f)}
A() ={X*(f) + Y(f)}
o(f) = tan " {Y(f)/X(f)}

The amplitude and phase spectra exhibit even and odd symmetry respectively
A(=f)=A(+f)
¢ (=f)=-o(+f)

with

and

1.15 The Use of the Fourier Transform in Determining
the Line Spectrum of Periodic Functions

We have established that the Fourier transform may be used to determine the
continuous spectrum of aperiodic functions. However, we often encounter
situations where a periodic function or component may be present in a
waveform we are studying. To handle such a component we should normally
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v(f)

Figure 1.16 Spectralrepresentation of the cisoid A, exp(2wjf.t) < A, 8(f—f.)

invoke the methods of Fourier series analysis. This would yield a line
spectrum, with line height representing the amplitude of a given spectral
component. It is not permissible to superimpose the line spectrum of a
periodic function on top of the voltage spectral density of an aperiodic
component. This is because Fourier series analysis yields Fourier coefficients
which are the amplitudes of the sinusoidal components of the periodic wave.
These coefficients are measured in volts. In contrast, the Fourier transform
yields a voltage spectral density, measured in volt Hz™' or volt s.

We can easily unify these two forms of spectral analysis by making use of
the delta function introduced in section 1.13. In the frequency domain, a delta
function

A 8(f= 1)

consists of an infinitesimally thin impulse of area A, located at a frequency
f=f.. On a voltage-spectral-density graph, it is areas that denote voltage,
ordinates only denote voltage density. As a consequence, if we superimpose
the delta function specified above upon the axes on a voltage-spectral-
density graph, we obtain the equivalent to a spectral line of length A, at a
frequency f. on a voltage line-spectrum; see figure 1.16. Since this spectral
line is equivalent to the fundamental cisoid building-block, we have a
transform pair

A, exp(2mijfat) & An 8(f—fa)

We can now construct the Fourier transform of the other fundamental
trigonometric functions. The reader is invited to verify the results quoted in
table 1.3.

TABLE 1.3 FOURIER TRANSFORM OF TRIGONOMETRIC

FUNCTIONS
v(t) V(f)
A, exp(2mijf.t) A, 8(f—f.)
A, exp(—2mijf.t) A, 8(f+f.)
A, sinf.) — B8~ £) -8 (+ £}

A, cos(2mfat) % (8(f—f.)+8(f+£.)}
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General periodic functions may be similarly treated by comparing the
delta-function representation with the Fourier-series coefficients thus

o= Y Viexp2mifut) (1.31)

n=-o

from which we establish a spectrum

V(= % Vaslf-1) (1.32)

n=—

Here, f_-.=—f..

1.16 The Use of the Fourier Transform in
Describing Linear Filtering

A linear filter is a system unit which is capable of modifying the amplitude
and phase of certain frequency components in a signal. The modification
usually involves the elimination of unwanted frequency bands. However, the
term filter may also be applied to other operational blocks, such as
integrators, differentiators and phase shifters. The term linear is applied
because, if the input signal to the filter is increased in size by a given factor,
the output signal will increase in size by the same factor, without other
alteration to its waveshape.

Given a signal v,(t) with a spectrum V(f), unwanted components may be
eliminated from V,(f) by multiplication with a filter transfer function, H(f).
Thus the spectrum of the filtered signal will be

Va(f) = Vi(H H(f) (1.33)

Application of the inverse Fourier transform will yield v.(t), the required
filtered signal.

Just as the spectra Vi(f) and V2(f) are, in general, complex, so also is the
filter transfer function, H(f). In the next sections, we shall examine some
idealised filters for which H(f) is a real function of frequency. None the less,
all practical electronic wave filters have a complex transfer function which is
often expressed as a gain characteristic, A(f), and a phase characteristic,

&(f), thus
H(f) = A(f)exp(jo(f)) (1.34)

The gain and phase characteristics may be calculated from a known transfer
function by separating out the real and imaginary parts of H(f)

H()=X(+jY(f)

and performing the manipulations

AN ={X(H+Y(HY
o(f) =tan"{Y(f)/X(f)}
Although we most readily think of the filtering operation as the
frequency-domain manipulation, or scaling, of a signal spectrum, we may

also regard it as a time-domain operation. Recall from section 1.13 that the
Fourier transform of a unit delta or impulse function is a white spectral

(1.35)
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density of 1 volt Hz™'. Thus if we apply an input signal to the filter
vi(t)=8(1)
the response, in the frequency domain, will simply be
Va(f)=H(f)x 1
If we denote the Fourier transform of H(f) by h(t) it follows that
v2(t)=h(1)

h(t) is, as a consequence, known as the impulse response of the filter.
The concept of filtering as a time-domain manipulation is of even greater
consequence than this. The frequency-domain manipulation

Vz(f) = Vl(f)H(f)

corresponds to the mathematical process known as ‘convolution’

vo(t)= J::h('r)vl(t—r) dr

+oc

= J: h(t—7)vi(7) d7 (1.36)

This is fairly easily demonstrated. We take the Fourier transform of both
sides of the convolution integral

Va(f)= J‘*‘J‘wh('r)ul(t- T)exp(—2wjft) dt dr

0 J—ao

We next interchange the order of integration

+ 400

Va(f) = J’_:h(-r)J:m vi(t—7)exp(—2mijft) dt dr

and define a new variable
A=t—1
so that
da =dt
Then

Va(f) = '[th('r) Ljv,(k)exp(—ijfA) dA exp(—2wijfr) dr
= Vi(f) J:h(f)exp(—zwjff) dr
=V, (f)H(f)

On infrequent occasions, particularly when we have to handle the
description of communication systems by means of differential equations, we
find the time-domain notation representing convolution to be of conveni-
ence. We employ the symbol & to denote convolution so that

v2(t)=v:(t) @ h(t)
=h(t) ® vi(1)



30 MODERN COMMUNICATION SYSTEMS

We shall not use the convolution integral directly in the calculation of
filter or system responses. However, the concept of the ‘impulse response’ is
very important, since it is a defining characteristic for some types of wave
filter. It can also provide considerable insight into the behaviour and
suitability of a filter for certain kinds of application, as we shall see in the
next section.

1.17 1deal Filters

We shall now examine the response of two kinds of ideal filter, those with a
rectangular (sharp cut-off) amplitude characteristic and those with the more
gentle gaussian amplitude characteristic.’® Neither of these two characteris-
tics can be exactly reproduced in practice, although both can be approached
quite closely if a sufficiently complicated electronic filter is constructed. The
reason for this lies in the nature of their impulse responses. Both classes, as
we shall see, exhibit a response to an impulse occurring at time t =0 which
starts at time t=—x. Both, therefore, defy the principle of causality, in that
their output starts before their input has arrived, an effect which clearly
demonstates the futility of attempting an exact ‘realisation’. (The principle
of causality very simply and reasonably states that an effect must be
preceded by its cause.)

Although these ideal filters are not realisable, they are mathematically
easy to specify and can be very useful for theoretical work. The rectangular
filter may be taken to represent a design target for filtering analogue signals
to remove unwanted, out-of-band components. It is less useful for proces-
sing digital signals, since its impulse response is characterised by severe and
sustained ringing. This has the effect of spreading signal energy from any one
digit into adjacent digits, causing ‘inter-symbol interference’. In contrast, the
gaussian characteristic has an impulse response which does not ring at all. It
is, therefore, quite a suitable design aim if digital-data waveforms are to be
filtered. Of course, the amplitude characteristic cuts off rather too slowly to
be of great benefit in filtering analogue signals.

In the remainder of this section, we shall consider the four basic kinds of
rectangular characteristic—lowpass, highpass, bandpass and bandstop and
compare their properties. We shall then examine the lowpass and bandpass
gaussian filters. (The highpass and bandstop gaussian filters are rarely
encountered.) All these filters will be assumed to exhibit no frequency-
dependent phase shift. The effect of a non-zero phase function, ¢(t), we shall
then consider separately.

1.17.1 Rectangular Lowpass Filter

The rectangular characteristic

AlN=1 IfI<fo
=0 elsewhere
do(f)=0 all f

is shown, normalised, in figure 1.17a. The impulse response may be
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Figure 1.17 (a) Amplitude characteristic and (b) impulse response of the ideal rectan-
gular lowpass filter

evaluated by forming the transfer function

Ho(f) = Ao(f)exp(jdo(f))

and Fourier transforming

ho(i) = j:Ho(f)exp(zwj ) df
= [ expamifiy af
= 2f, sinc(x)
where
X = 2fyt

The impulse response is illustrated in figure 1.17b and clearly illustrates the
severe ringing which occurs when a sharp-cut-off filter is employed. In
practice, a very sharp cut-off is not usually necessary and may even be
undesirable. This is because a filter which can be realised (that is, actually
constructed) will have related amplitude and phase characteristics. The
relationship between them is too complex to discuss here, but may be
summarised in the following way.

A sharp cut-off always implies phase non-linearity in the cut-off region.
Good phase linearity, which is desirable if the filter is not to give rise to
distortion of the signals passed through it, can, therefore, only besachieved at
the expense of selectivity. Consequently, filter design is always something of
a compromise between selectivity and phase linearity.

1.17.2 Rectangular Highpass Filter
The rectangular highpass filter is defined thus
Ai()=0 Ifl<fo
=1 elsewhere

&:(f)=0 allf

This characteristic is illustrated in figure 1.18a and will be seen to be simply
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Figure 1.18 (a) Amplitude characteristic and (b) impulse response of the ideal rectan-
gular highpass filter

an inverted lowpass filter. Hence it follows that
Hi(f) =1-Ho(f)

Now, the Fourier transform of Hi(f) gives the highpass-filter impulse
response, hi(t). Applying the superposition principle, and recalling the
Fourier transform pair

1 e 8(1)

hi(1) = 8(1) — ho(t)

Hence, we may easily illustrate the impulse response of the ideal rectangular
highpass filter, figure 1.18b.

we see that

1.17.3 Rectangular Bandpass Filter
The bandpass filter is defined by the relation
AN)=1 fi<|fl<fo

=0 elsewhere
¢:(f)=0 allf

and is illustrated in figure 1.19a. This transfer function may be formed as the
sum of the lowpass and highpass transfer functions

H:(f) = Hi(f) + Ho(f)— 1
where Hy(f) and H,(f) have cutoff frequencies f,and f, with f; < f;so
that, by superposition

ha() = ha(1) + ho(1) — 8(t)

where in(for)
- sSin ‘ﬂ'tot
d ho(‘) 2f0 27Tfot
an

_ g SINQ2wfit)
hi()= 8(1) 2f, —2Tf1'tL
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Hence
sin(2mfot) fsin(21rf,t)
27fot Y 2wfut

hz(t) = 2fo

=-:—t {sin(2nfot) ~sin(2wfn)}

This expression may be manipulated into a convenient and revealing form
if we introduce two new and common filter parameters. These are the filter
centre-frequency, f., and the bandwidth, B. The centre frequency we define
to be the arithmetic mean of the two cut-off frequencies

f=loxh (1.37)

Such a definition is not uniform in the literature. Many filters have a
centre frequency which is defined as the geometric mean of the cut-off
frequencies

fe=(fofo)?

There is a reason for this. Some filters are symmetrical about f. only when
plotted against a logarithmic frequency-scale. Then an arithmetic mean on
the logarithmic axis becomes a geometric mean against a normal linear
frequency-scale.

The filter bandwidth is defined as the separation between the cut-off
frequencies

B=fo—f (1.38)
It follows from equations 1.37 and 1.38 that

B

fo=fc+7

fi=f-3

A, (f)
€ 8 >
—fy —f, ] +f, +f_o- >
(a) (b)

Figure 1.19 (a) Amplitude characteristic and (b) impulse response of the ideal rectan-
gular bandpass filter
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I )

Compressing this equation

Then

ha() == sin(2m z t)cos(21rf¢t)

= B sinc(x)cos(27f.t)
where

x = Bt
We see that the impulse response, sketched in figure 1.19b, consists of a
sinusoid at the filter centre-frequency with a sinc(x) envelope. The rate at
which fluctuations of the envelope occur is inversely proportional to the
bandwidth of the filter. Thus a narrow filter will exhibit an impulse response
which stretches over a long period, encompassing many cycles of carrier.
1.17.4 Rectangular Bandstop Filter
The bandstop filter is defined as
As()=0 fi<|fi<fo

=1 elsewhere
&:(f)=0 all f

and is illustrated in figure 1.20a. Its transfer function may be derived from
that of the bandpass filter and is

Hs(f) =1 "Hz(f)
hs(t) = 8()— ha(t)

This impulse response is shown sketched in figure 1.20b.

Consequently

ZXUN hyt) f

(a) (b)

Figure 1.20 (a) Amplitude characteristic and (b) impulse response of the ideal rectan-
gular bandstop filter
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Figure 1.21 (a) Amplitude characteristic and (b) impulse response of the ideal gaussian
lowpass filter

1.17.5 Gaussian Lowpass Filter’’
Here, the definition of the filter is

Ao(f) = exp{—0.347(f/fo)}
¢o(f)=0 allf

This characteristic is illustrated in figure 1.21a. Fourier transformation
yields an impulse response which is also gaussian

ho(t) = fo(27/0.694)! exp(—t*n’f3/0.347)

and which is shown normalised in figure 1.21b.

Note that, unlike the rectangular filter, the gaussian filter shows no region
of very rapid attenuation. The frequency f, is referred to as the nominal
cut-off frequency and defines the point at which

Ao(fo)=(2)*=0.707

That is, the frequency corresponding to an attenuation of 3 dB.

Again, the gaussian filter contrasts vividly with the rectangular filter in
that its impulse response shows no ringing whatsoever. For this reason it is
well-suited to the filtering of digital data.

1.17.6 Gaussian Bandpass Filter

The gaussian bandpass characteristic is illustrated in figure 1.22a and is

defined thus
Az(f)=exp(—1.388(1ﬁf)2)

B
¢:(f)=0 all f

f- and B are the centre frequency and nominal (-3 dB) bandwidth of the
filter, respectively. Again, as with the lowpass gaussian-filter, the bandpass
version does not have regions of rapid attenuation with frequency. Thus at
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Figure 1.22 (a) Amplitude characteristic with f,=f.+ B/2 and f,=f.— B/2 and (b)
impulse response of the ideal gaussian bandpass filter

frequencies

B
fo=ft75

and
fl =fc_§

the amplitude characteristic has values
Axlfo)= Ax(fi)=(2) = 0.707
The impulse response, in this case, is given by
ha(t) = (B/2)(2m/0.694) exp(—t*nw>B?/1.388)cos (27 f.t)

Again, we see that a shifting of the lowpass transfer function has the effect of
modulating the envelope of a sinusoid of a frequency equal to the filter
centre-frequency, figure 1.22b. The modulation corresponds to a suitably
scaled version of the lowpass impulse response. This is not a perfectly
general rule, however. Many bandpass filters do not have characteristics
which are simply shifted and expanded versions of a prototype lowpass
characteristic. This is particularly true of those filters which are arithmeti-
cally unsymmetrical about f. when plotted on linear frequency-scales.

1.17.7 Effect of a Non-zero Phase Characteristic
In all of the filters described above, the phase characteristic was specified as
& (f)=0 allf;k=0,1,20r3

The effect of a non-zero phase shift is to produce signal delay. If the phase
characteristic is a linear function of frequency a single delayed version of the
input signal will be present at the output of the filter. It is this type of phase
characteristic that we shall now examine. A non-linear phase shift with
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frequency produces multiple delayed and attenuated replicas of the input
signal and may, as a consequence, give rise to severe signal distortion. This
subject is discussed in more detail in section 8.3 since it is very important in
the transmission of digital data.

Suppose that we choose to specify the linear phase-characteristic of any of
the foregoing filters, thus

ou(f)=—2wfr

where 1 determines the slope of the phase function. The effect of introducing
this phase characteristic is the same as cascading the original filter with a
filter of transfer function

H(f) = exp{jéx(f)}

To find the impulse response of the cascaded pair, we apply the impulse
response of the phase-shifting filter H(f) to the prototype, filter H,(f),
and determine the new output. The impulse response of the phase shifter
is easily evaluated

‘[jexp(—21'rjf'r)exp(21-rjft) df= J:exp{ij f(t— )} df

=8(t—1)

The effect of phase shifting on an impulse occurring at time t =0 is to
produce a delayed impulse. The overall effect, therefore is to delay the
impulse response of the prototype filter by a time 7 as well. Hence, a filter
with a characteristic

Hi(f) = Au(f)exp(=2mjfr)
has precisely the same impulse response as a filter

H(f)= A(f)

except for the time delay 7.

1.18 Calculating the Transfer Function of
Practical Electronic Filters

A good example of the determination of a filter transfer-function, given an
electronic circuit, is provided by the simple ‘R-C section’ illustrated in figure
1.23, which approximates to the ideal lowpass filter. We may specify the
output voltage, V5, in terms of the input voltage, Vi, by using j-notation.
Then

V2= Vi(1+2mjfCR)™

This equation describes the steady state behaviour of the circuit. That is,
given a sinusoid V, at the input, a sinusoid V; of the same frequency and
calculable amplitude and phase will appear at the output. Since the filter is a
linear electrical network, the principle of superposition may be applied.
Hence, if we replace Vi and V, with spectral representations V,(f) and V(f)
of waveforms v:(t) and v,(t) respectively, then since Vi(f) and V.(f) are
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Figure 1.23 (a) The first order RC lowpass filter (b) its amplitude and phase charac-
teristics, (c) its impulse response and (d) Bode plots of amplitude and phase response
plotted against a logarithmic frequency scale

sin}ply the summation of all sinusoidal components in v,(t) and v,(t), we may
write
Vi(f) = Vi(f)(1 +2wjfCR) ™
Comparing this equation with equation 1.33, we see that
Ho(f)=(1+27jfCR)™ (1.39)

and we have calculated the required transfer function.
As we observed in section 1.16, the transfer function may be expressed,
by means of equations 1.35, in the more readily interpreted form of a gain
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and a phase characteristic, figure 1.23b
Ao(f)=(1+(2nfCR)*)
¢o(f) =tan™'(—2nfCR)

These equations are usually written in terms of a nominal cut-off frequency,
fo, such that

Ao(fo) = (2)_% =-3dB
Thus
fo=(nCR)™

Ao(f) =1+ (flfo))
&o(f) =tan™' (= f/fo)

Notice that, when f is large

and consequently

Ao(f) = fo/ f

A curve of (fo/f) plotted on logarithmic frequency and amplitude scales, as in
figure 1.23d, corresponds to a straight line falling with a slope of —20 dB
decade™' and intersecting with the frequency axis (that is at 0 dB) when
f=fo. The filter amplitude characteristic approaches this line asymptotically
with increasing frequency. It therefore provides a convenient aid for
sketching log-gain versus log-frequency plots for first-order filter sections.

We may evaluate the impulse response by Fourier transforming equation
1.39 (for example, by utilising the table of transforms listed in appendix I) to
yield the result, sketched in figure 1.23c

ho(t)=(CR)™" exp(~t/CR)

Of course, this equation could have been obtained by other means. For
example, the impulse places upon the capacitor an amount of charge

Q=R"
so that the initial voltage across the capacitor plates is
V=Q/C=(CR)™'

This initial voltage decays to zero exponentially as the capacitor discharge
current flows through the resistor. Although it is probably easier to use
elementary circuit theory to solve this particular problem, rather than to
determine the impulse response by using Fourier transformation, compli-
cated circuits yield more readily to the latter method.

The impulse response is often written in terms of a time constant

To = RC
so that
ho(t)=Ts" exp(—1/To)

It is frequently the case that a filter transfer function is specified by an
equation which determines the transient rather than the steady-state be-
haviour of the circuit. If this is the case, then the ‘s’ operator'® will almost
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always be used. In the case of the RC section we find that
V2= Vi(1+sCR)™’

To obtain the j-notation version of any such function of s, replace s by 2=jf
throughout.

More complex filter structures may be analysed after the fashion of our
simple RC lowpass filter. Many texts have been written which treat the
complementary problem of filter synthesis (the design of a filter to suit a
given application) in great detail. Two books which the reader may find
helpful if he wishes to pursue this topic further are given in the bibliog-
raphy.ll.IZ

1.19 Energy-density and Power-density Spectra

Before investigating the derivation and properties of energy- and power-
density spectra, let us define the terms power and energy. When a signal v(t)
feeds a load of resistance R, the power dissipation at any time, ¢, is

R

In most theoretical work, the resistance value R is of secondary impor-
tance, so that it is common policy to normalise the power dissipation by
assuming a standard 1 load. This is never a serious restriction, since

(1) denormalisation is easily achieved, when necessary,
(2) we often work in terms of power or energy ratios measured across
the same load value, so that de-normalisation is not even necessary.

We shall adopt this convention, and we shall define the instantaneous power
dissipation as
pi()=v*(1) volt? (1.40)

Electrical power may be converted at a load into a variety of other
forms—thermal, acoustic, optical or mechanical. Often it is not the instan-
taneous power dissipation which is our greatest concern but the averaged, or
smoothed, power dissipation. Frequently this is because the load itself
imparts some inertia in the conversion of power from the electrical state. For
example, a resistance dissipating heat cannot follow rapid fluctuations of the
quantity pi(t), and so tends to impart its own smoothing.

Averaging is performed in many electrical power-measuring instruments
in just this way. The technique involves measuring the mean square voltage
across a load of known resistance. The mean square voltage is obtained by
measuring the thermal output from a standard resistance in parallel with the
load by means of a thermocouple. The thermocouple output-voltage is
amplified and applied to a suitable meter movement.

Suppose we regard the time origin, t=0, as the start of the measurement
interval. Then the averaging process, taking place over a time interval, T, is
described by the usual averaging integral, yielding

p(T) =—1T- J: V(1) dt
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If the waveform is periodic, the averaging interval may be made equal to the
period. In most practical situations, irrespective of the nature of the
waveform, we attempt to average over as long a time interval as possible. If
the waveform is noise-like, the reason for this strategy is fundamental. We
need to consider as long a segment of the process as possible to ensure a
statistically significant result. We therefore define the average power in a
waveform v(t) as

—_ : 1 T 2 2
pa= IFLT[TJ; v*(t) dt] volt (1.41)
Over the time interval, T, the waveform v(t) will yield, to a normalised 1 (
load, an energy of

+T
e(T)= J; v3(t)dt  volt’s (1.42)
The total energy that the waveform can yield is the integral over all time
e.= J v3(t)dt  volt’s (1.43)

If the waveform has non-zero mean power (for example, any periodic wave
or noise-like wave of infinite duration) then the total energy dissipated at the
load will be infinite. This is because the total energy is then the accumulation
of finite mean power over an infinite time.

We are often particularly interested in the way in which a signal occupies a
frequency band. The techniques used for determining band occupancy
depend on the nature of the signal. For bounded amplitude, finite-energy
signals we employ the concept of the energy spectral density, E(f), meas-
ured in units of volt’s per Hz, or volt’s’. Such signals may be of finite
duration or band-limited, or neither, but may certainly not be both time-
and band-limited.

If the signal is of finite mean power (for example a sine wave) and, as
defined, capable of supplying infinite energy since it is of infinite duration,
then the concept of energy density is no longer adequate. We use instead,
the concept of power spectral density, P(f), measured in units of volt® per
Hz or volt’s.

1.20 Energy Spectral Density of Finite-energy Pulses

We shall introduce the concept of the energy spectral density of waveforms
by examining a simple physical measuring system which could be used to
obtain a close approximation to the required spectrum. We may define an
energy-density spectrum, E(f), such that E(f) 8f is the total energy in a
narrow band at the output of an ideal rectangular bandpass filter of width 8f
and centre frequency f.. A hypothetical measuring system is illustrated in
figure 1.24. By repeating the basic measurement of the energy at the output
of the narrowband filter for a number of different centre frequencies, a
graph approximating to E(f) may be drawn. From this graph, we could
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Figure 1.24 The experimental determination of energy spectral density
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estimate the total energy output as
e= J E(f)df volt’s (1.44)

From equation 1.43, we have the alternative expression

e= J v¥()dt volt’s (1.45)

—o0

We may now derive a simple relationship between V(f), the Fourier
transform of v(t) and the energy spectral density E(f). From equation 1.45

o= _[wo(:){EV(f)exp(znj ft) df} dt

-[ :"v(f){ [ olexp(2mif) dt} of
- [T vipve-r of (1.46)

Comparing equations 1.44 and 1.46, we see that
E(f)=V({)V(-f)
From the complex conjugate symmetry property of V(f)
V(=)= V*(f)

E(f)= V() V*(f)
=|V(f)} volt*s’ (1.47)

so that

Thus the energy spectral density is quite simply related to the voltage
spectral density of the finite-energy waveform (normalised to a 1  load).

It is frequently important for us to be able to estimate the energy
distribution of a finite-energy pulse after it has passed through some linear
electronic system. The most common such system is the wave filter
introduced in section 1.16. We know, from equation 1.47 that the energy
spectral density of the input and output signals, v.(t) and v(t) respectively,
of the filtering process defined by equation 1.33 are

E.(f)=|V:i(HI
E:(f)=|V2(f)[’

The filtering operation is defined thus

Vz(f) = Vl(f)H(f)
So that
V2Dl =IVa(HH(f)|
=|Vi(Hl |H(f)]

It follows that
V2D = Vi (HI* IH(P
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In terms of the energy spectral density, we may immediately write

Ex(f)=E.(f) [H(O (1.48)

and this equation may readily be applied to determine the effect of filtering
on the (known) spectrum of the input waveform.

1.21 Energy Spectral Density of the Delta Function

Although we employ energy spectral density for finite-energy pulse-type
waveshapes, the delta function or impulse is the exception to this general
rule. Although the delta function, introduced in section 1.13, is defined to
have unit area, it does not have unit energy. In fact, it has infinite energy.
The energy in any voltage waveform is given by the integral

e.= J'_m{v(t)}2 de

In the case of the rectangular pulse

== —f<t<
v 2‘1 Lstst,
the energy transferred by the pulse is
o=
"2n

As t, increases, therefore, this energy becomes infinite. This agrees with the
energy content as assessed from the energy spectral density

€= I:E(f) df
where
E(f)=|V(H)*

=1 volt*s’

for the impulse, yielding a total energy
e= j df—> ©

In practice, we generate impulse-like waveforms which must have finite
duration and therefore finite energy. These would correspond to passing an
ideal impulse into a system with a necessarily restricted bandwidth. No
practical electronic circuit can have an infinite bandwidth.

1.22 Power Spectral Density of Finite-power
Periodic Functions

We have seen that the concept of energy spectral density may be employed
to allow us to examine the band occupancy or distribution of energy within a
given finite-energy signal. Many of the waveforms we commonly work with
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are not finite-energy processes, as they are defined. That is, the mathemati-
cal statement of these waveforms is directed towards analytical convenience,
rather than realisability. Almost all periodic functions fall into the category
of containing finite mean power. An exception to this general rule is the
periodic impulse train, which conveys infinite power. Since all periodic
functions are defined to exist for all time, and since the product of mean
power and duration yields the energy conveyed, an infinite amount of energy
is contained within any periodic function. We know, for example, that the
sinusoid has a Fourier transform which consists of a pair of delta functions
displaced equally about the origin (f=0). Since the sinusoid contains infinite
energy, we cannot depict it on an energy spectral density graph, since the
energy spectrum would then consist of a pair of infinite energy delta
functions.

To avoid the problems which arise when we attempt to obtain a measure
of the band occupancy of signals by means of energy spectral density we turn
to the concept of ‘power spectral density’. In much the same manner as we
used to define E(f), we specify a power spectral density P(f) such that
P(f.) df is the average power in a narrow band &f at the output of an ideal
rectangular filter with a centre frequency f.. A simple hypothetical system
for estimating power spectral density may be obtained if we replace the
integrator in figure 1.24 with an averaging circuit. This circuit approximates
the averaging integral defined in equation 1.41 and may be realised by
means of a lowpass filter with an extremely low cut-off frequency.

The power spectral density cannot be calculated from the energy spectral
density, since the latter is derived by integrating an ‘instantaneous’ power
spectrum over all time. The resulting function of frequency does not contain
information which tells us how the energy was accumulated as a function of
time. Nor, indeed, can an instantaneous power spectral density be obtained
from an averaged power spectral density, although the reverse would in
principle be possible. This is because a loss of detailed information occurs
during the averaging process.

The power spectrum of periodic functions may be easily deduced if we
have a knowledge of the power spectrum of the sinusoid

Ao cos(2mfot)

This sinusoid has an average power obtainable by means of equation 1.41
which is

;AL volt’s
The transform of the sinusoid consists of two delta functions at frequencies

+fo and —f, respectively. Hence we deduce that the power spectral density
consists of two delta functions each of area

1A% volt’s

Here, the two delta functions have the role of pinpointing locations on the
frequency axis

P(f) =3 AHB(f - fo) +8(f+ fo)}
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Using this spectral representation we may construct, by using the superposition
principle, the power spectral density of any periodic function.

123 Power Spectral Density of Finite-power
Aperiodic Functions

We cannot apply transform techniques directly to estimate the power spectrum of
finite-power aperiodic functions such as noise waves, noise-like signals or carrier
waves modulated with noise-like signals. This is because such waves contain a
strong random component which cannot be specified in algebraic form. We are
forced, as a consequence, to resort to methods of inference. For example, we may
have some prior knowledge of the nature of a signal spectrum and a specification
of the various stages of processing that it has undergone. Then we can estimate a
good approximation to the spectrum. This is the method most commonly employed
when we have to handle noise waveforms. Many noise sources produce waveforms
which have a power spectral density that is white, uniform over all,frequencies of
interest. An absolutely white spectrum

P(f)=N constant;all

is an impossibility, since then the total power in the waveform

-

J+°° P(f) of

—oo

would be infinite. Consequently, we define an initial source power spectral density
thus

P(f)=N constant;all f of interest

and typically this will be a reasonable approximation over a band of frequencies
from a few hundred Hz to tens or hundreds of MHz. (The subject of noise sources
is discussed in more detail in chapter 2 and appendix II1.)

We have seen, in section 1.20 how the passage of a finite-energy signal through
a linear system such as a wave filter results in a predictable modification to the
energy spectral density. If the signal applied to the filter is not of finite energy,
but of finite power and therefore characterised by a power spectral density P, (f),
then the power spectral density at the filter output, P,(f), may be obtained by
the equivalent relationship

P,()=P,(f) | H() | (1.49)

If, as is often the case when the input signal is a noisewave, P (f) is a ‘white’
spectrum then

P,(f)=NI|H(f)|?

where N is the input noise power spectral density measured in volt? s.

1.24 The Cross- and Autocorrelation Functions
and the Correlation Coefficient

We saw in section 1.4 that the orthogonality integral

“ty
J U (D, (2) det
3]
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is a measure of the ‘alikeness’ of the two functions vy, (¢) and v,(¢). Specifically,
if, when m # n, this integral is zero, the two functions are said to be orthogonal,
or unalike. They then contain no shared Fourier components. If the two functions
are not strictly orthogonal, the integral provides some measure of their similarity
over the interval £ = ¢ to t = t,. A positive value of the integral suggests an affinity
between v,,(¢) and v,(¢). The greater the value, the greater the similarity. A nega-
tive value indicates that v,,(¢) more closely resembles —v, (¢) than +v,,(¢).

There are circumstances, however, when v,,(¢) bears a closer resemblance to a
delayed version of v,(¢) than to v,(?) itself. For a variety of reasons which will
become apparent in this and the last sections of this chapter, the ability to search
for such intricate similarities is of great value to us. A somewhat more general
measure of the alikeness between our two waveforms is provided by the integrals

+T/2
g VU (Do, (¢ + 1) dt
—-T)/2
and

F+T/2
S U (2 + 1), (2) dt

-T2

Here, 7 is a hypothetical separation, an artificially imposed delay upon one or the
other waveform which may be varied to yield a measure of alikeness of the two
functions v,, (¢) and v, (¢) within the epoch of duration T

—TR2<t<+T/)2

If v,,(¢) and v,(¢) are finite-energy waveforms of possibly infinite duration
then we may write these integrals in their most general form

+ oo

Ryun(7) =S U (o (¢ + 7) d2

—o0

volt? s (1.50)

—o00

= S . U, (2 + Dy, (2) dt

R,,.(7) is referred to as the cross-correlation function of v, (¢) and v, (2). If v, ()
and v,(¢) are infinite-energy finite-power waveforms, periodic or aperiodic in
nature, the cross-correlation integral, equation 1.50, would become infinite at
least for some values of 7. Instead, we employ a relationship modified after the
manner described in section 1.19

1 (*+7T/2
Rypn(7) = Lim — S U (), (¢ +7) dt
ree T -1 volt? (1.51)

1 (*+7/2
= Lim -—S U (t + T, (1) dt
T—>co -T2
This function is also known as the cross-correlation between v,,(¢) and v, ().
Naturally, we must exercise care in selecting the method whereby we calculate
R,,,(7), choosing the appropriate relationship, either equation 1.50 or equation
1.51, depending on the nature of v,,(¢) and v,(¢). It should be noted that the
cross-correlation functions of finite-energy and finite-power waveforms are not
directly comparable, since they are dimensionally different.
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Although the application of the correlation integral to the determination
of the alikeness of two different functions is a technique of fairly obvious
utility, it is also frequently useful to be able to determine the alikeness of a
function to itself, subject to a temporal displacement 7. That is, we apply
equations 1.50 or 1.51 to calculate R, (7). It is worth noting that, if v, (t) is a
finite-energy waveform, then

Ron(0)=

+a

om(t) dt (1.52)

=total energy in v.(t) volt’s

If v.(1) is a finite-power waveform, then
. 1 +T/2 )
Ran(@)=Lim 1. [ 2(0) s (1.53)

=T/

=average power in v.(f) volt®

The quantity R..(7) is known as the autocorrelation function of the
waveform v.(t). In the next two sections of this chapter we shall see that the
autocorrelation function is of importance in providing a method of calculat-
ing energy spectral density and, in particular, power spectral density. The
latter can often not be calculated directly—particularly if the waveform
being analysed is random in nature.

One problem which arises when correlation functions are assessed is the
fact that the result, R...(7) or R...(7), is not presented in a normalised form.
If the waveforms v.(t) and v.(f) were scaled so that they contained only unit
energy or power, as appropriate, then a direct comparison of correlation
functions of waveform pairs of the same physical type would be possible.
Such a normalisation requires that we determine the correlation functions of
waveforms

Vm(t) va (1)
RoOF ™ R.OF

Alternatively, we may simply evaluate the normalised cross-correlation and
autocorrelation functions

Ron(T){Ronm (0) Rnn (0)} (1.54)
and
R (7)/Rmm(0) (1.55)
respectively.
From equation 1.54 we may derive a simple normalised measure of the
similarity between two waveforms. This is the correlation coefficient, po.,,
which may be expressed as

Prin = Rua(0){ Rrum(0) R1n (0)} (1.56)
This quantity may only take on values within the range
-1<p..<+1

The range of values which the correlation coefficient may assume may be
interpreted thus: if v.(t) exhibits a likeness to va(t), p~. Will be positive, with
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-its maximum value of +1 when v.(t) =v.(t). If v..(t) exhibits a likeness to
—va(t), pmn Will be negative, with its minimum value of —1 when v.(f)=
—va(1). If v.(t) and v.(t) are uncorrelated, they will contain no common
spectral components and p.. will be zero.

Strictly, both the correlation coefficient and the correlation functions are
defined in terms of statistical averages rather than time averages. However,
for the majority of situations which the communication engineer has to
handle, time and statistical (ensemble) averages are interchangeable.

1.25 The Use of the Autocorrelation Function
in Determining Power Spectra

The power spectrum of a finite-power waveform and its autocorrelation
function may be shown to be a Fourier transform pair. We shall, for
simplicity, omit the subscripts used in the previous section, writing v(t) for
the finite-power waveform, P(f) for its power spectrum and R(7) for its
autocorrelation function. Both P(f) and R(7) are real functions with

P(f)= J anR('r)exp(—21'rjf'r) dr (1.57)

—oc

+

and
+T/2

R(T)=I;LT%~I_T/2 v(v(t+7) dt (1.58)

R(7) is of value in the determination of power spectra for random or
noiselike signals for the following reasons

(1) It may be possible to deduce R(r) from a knowledge of the statistics
of a random process. A very important example of this class of problem is
afforded by the random digital-data signal. This waveform is examined in
detail in section 1.27.3.

(2) In some situations, the experimental determination of power
spectra by means of tuned filters followed by power meters (figure 1.24 with
the integrator replaced by a lowpass or ‘averaging’ filter) may not be
advisable. Experimental methods of determining R(7) have been devised
and can provide a useful, if indirect, alternative.

The experimental determination of correlation functions is also of great
value to control engineers since it provides a means of assessing the transfer
functions of linear control plant while it is in normal operation.

The transform pair quoted above is often referred to as the Weiner-
Khintchine theorem. Its proof is not particularly difficult, but is rather
lengthy. The proof may be obtained by a two-part argument. First we
establish a necessary result. Suppose that the waveform v(t), aperiodic and
of infinite duration, is segmented in the manner shown in figure 1.25 by
multiplying it with a window function w(t) to form a finite-energy pulse v,(t)

(1) =v()w(t)

wt)=1 —-TR2<t<+T/2
=(0 elsewhere

where
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Figure 1.25 The extraction of a finite-energy segment v,(t) = v(t)w(t) from an infinite-
energy waveform v(t) by means of a window function w(t)

The energy-density spectrum of v,(f) will be given by the relation
E(f)=Vi()Vi(-f) volt*s?

and the energy contained in a narrow band of width &f centred at the
frequency f will be

e;=E\(f) 8f volt’s

Suppose that the average power contributed by this narrow band of
frequencies during the interval —T/2<t<+T/2 is p,. Then

pr1T=total energy
= El(f) 8f

However, we may also relate the total power output to the power spectral
density Pi(f), since

p1=Pi(f) 8f
Consequently it follows that

Pl(f) =E}1£f) = Vl(f)¥l(_f)

If we allow the window function to increase in width, then as T— ,
vi(t)— v(1) and P,(f)— P(f). It follows that

The second part of the proof commences with a statement of the inversion
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transform
R@)= [ P(expaifo) of
-[ Lim[ YOUED lexponifr) of
~Lim 1 [ Vi) Vi(-fexp(2nife) of
But

+o

Vi(-f)= ,L vi(t)exp(2mjft) dt

which, by virtue of our definition that v,(t) be zero-valued beyond the limits
+T/2 may be rewritten in the form

Vi(-f)= J:/z vi(t)exp(2wjft) dt
Thus

R(r)=Lim % j: v, (f){f;: oi(t)exp(2mifi) dt}exp(Z'n'j fr) df

~Lim 1 j_;j;zvl(t){J_le(f)exp(27rjf(t +7) df} dt

T

Using the shift property quoted in table 1.2 we may write

+T/2

|
R(r)=Lim 7 Lm vi(t)vi(t+7) dt

Finally, since v,(t) is the same as v(t) between the stated limits of integration
we may equally well write

+T/2

R)=Lim [ o(io(r+n) a

—T/

and the required result has been obtained.

1.26 The Use of the Autocorrelation Function
in Determining Energy Spectra

The energy spectrum of a finite-energy waveform and its autocorrelation
function may be shown to be a Fourier transform pair. As in the previous
section, we shall omit subscripts, writing v(t) for the finite-energy waveform,
E(f) for its energy-density spectrum and R(7) for the autocorrelation
function. Again, E(f) and R(7) are real functions, with

E(f)= J'_NR(-r)exp(—Zcrj fr) dr (1.60)
and

R(r)= J:jv(t)v(t+f) dt (1.61)

The proof of these results follows exactly the same line of reasoning as that
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used in the previous section to relate the autocorrelation function of
finite-power waveforms and their power spectra. The results themselves,
although of interest in completing the pattern of Fourier manipulations of
waveforms, are less often of assistance to us in practical situations than those
derived in section 1.25.

1.27 Some Examples of the Calculation and Use of
the Autocorrelation Function

To illustrate the use of the results derived in the previous sections, we shall
evaluate the autocorrelation function of several frequently encountered
waveforms.

1.27.1 The Sinusoid
v(t) = Ao cos(2mfot+ o)
Since this function is a finite-power waveform, we employ equation 1.58,
writing
+T/2

R(7)= ]FLT ’Il“ J Ao cos(2mfot+do) Ao cos(2mfo(t+ 1)+ o) dt

This integral may be evaluated analytically. It requires only the application
and manipulation of simple trigonometric relationships to derive the result

R(7) =%§ cos(2mfor)

Notice that, as equation 1.53 requires

2
R(0)=%9=average power in v(t)

Furthermore the normalised autocorrelation function
R(1)/R(0) =cos(2mfor)

is restricted (as indeed it must be) to values lying in the range —1 to +1. It
may be interpreted thus: when its value is +1, v(t) and v(t+71) have been
shifted by increments

T=Tn,2T0, 3T0,... Tn=fal

Thus v(t) and v(t+7) must be identical. Shifts of
_To 3T, 5T,

=207 02
cause v(t) and v(t+7) to be in antiphase, with the result that the normalised
autocorrelation function is —1. Shifts of

T 3T, 5T,
T"4°74 ' 4

cause v(t) and v(t+7) to be in phase quadrature and therefore orthogonal.
Thus for these values the autocorrelation function is zero.
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Figure 1.26 The autocorrelation function and energy spectral density of a rectangular
voltage-pulse

Determination of the power spectrum is simply a matter of Fourier
transforming the autocorrelation function. This may be achieved by consult-
ing the table of transforms listed in appendix I. We find that

P(f) =3 AHB(f+ fo) +8(f— fo)}

1.27.2 The Rectangular Pulse

We shall consider next the autocorrelation function of a finite-energy
waveform, the rectangular pulse

v()=A n<tst,
=0 elsewhere

The autocorrelation function of this pulse may be determined from equation
1.61 by inspection. Consider the waveforms depicted in figure 1.26. R(7) is
determined by the area beneath the curve v(t)v(t+7). As |7] increases, this
area decreases as a linear function of |r|. The area falls to zero when
|7|=(t—1.) so that the function depicted for R(7) may be deduced. Again,
inspection of the table of results provided in appendix I allows us to obtain
the Fourier transform of this function, yielding the energy-density spectrum

E(f) = A%(t; — 1) sinc{f|(t; — )]}

1.27.3 The Rectangular Random-digit Sequence

Our final example is the digital-data waveform depicted in figure 1.27. We
assume the digits to be equiprobable. We also suppose that successive digits
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Figure 1.27 The autocorrelation function and power spectral density of a random
digital-data signal

are independent. If 7 is zero, the value R(0) will be equal to the mean power in
the waveform, that is, 42. A shift such that |7 |= T will result in independent
binary digits being multiplied together in combinations

Ax A= +42
Ax-A=-42
v()u(t +7) Ax A=-A2
—Ax —A=+A42

These combinations will occur with equal probability and will average to zero, so
that R(2T) will be zero. Between 7 =0 and |7 | = T, the same argument that was
applied to determine the autocorrelation function of the isolated rectangular
pulse may be applied, so that we derive the autocorrelation function shown in
figure 1.27. Fourier transformation yields the power spectrum

P(f) = A% T sinc®(fT)
Note that although the form of the autocorrelation function of the isolated
rectangular pulse and that of the random digit sequence are the same, the units are

different. The transform of the autocorrelation function yields in the first case an
energy spectrum and in the second, a power spectrum.

128 Fourier Transforms: A Credibility Gap?

Having, hopefully, carefully followed the foregoing discussion on the derivation
and application of the Fourier transform method, the student may begin to
experience misgivings. For example, he may correctly suppose that he cannot
actually create an ideal rectangular pulse. That would obviously imply circuitry
with infinite bandwidth which, pragmatically, will be rejected as an unreasonable
presumption. Even worse, the Fourier transform might be thought to lend mathe-
matical credence to the concept of non-causal filtering because an ideal rectangular
transfer function can, in fact, be shown to produce a sinc-shaped impulse response
starting at ¢ = —oo, After all, can you have it both ways? Surely either non-causal
filtering is wrong or Fourier transforms make mistakes.

To resolve these and other paradoxes we should, perhaps, recall that the basic
transform method might best be thought of not as an engineering utility but as an
abstract mathematical mapping between two arbitrary domains of convenience.
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This viewpoint may be easier to appreciate if we write the Fourier transform pair
in less problem-specific notation. Thus we might attempt to express transformation
between o- and g-domains by writing f(a) < F(B). Since these domains are abstract,
we may readily conceive of whole ranges of definable functions of infinite extent
or infinitesimally short discontinuity which we should baulk at, were we asked to
create them as aspects of ‘reality’. One such, might be the delta function. No
problems arise in its abstract definition. Place units of volt.seconds upon its area
and time on its abscissa and the delta function purports to convey infinite energy!

If, then, we accept that the transform pair is, in essence, an abstract notion
then no question of physical reality arises and establishing transform pairs becomes
simply an exercise in pure mathematics. For example, the transform pair rect
(a) ¢ sinc(B) assumes the philosophical significance of a geometrical proposition
and has as little, fundamentally, to do with the physical ‘realities’ of engineering
as might a postulate abstracted from Euclid. Problems only arise when the engineer
presumes equivalence between abstraction and reality and thereby ascribes dimen-
sion to that which is, in essence, dimensionless. Thus if ‘rect(a)’ is given units of
voltage and « is given units of time, then ‘sinc(8)’ will necessarily have dimensions
of volt.seconds and will be a spectral density and g will be a frequency measured
in reciprocal seconds. Do not blame Fourier if you cannot make the rect-function,
or if your channel will not support the bandwidth demanded by the sinc-spectrum.
You put the units there; there was nothing wrong with his transform pairs. In fact,
as long as this distinction between abstraction and reality is borne in mind, the
tutorial value of ‘idealised’ functions is unimpaired and the extreme usefulness of
transform procedures based upon cisoid orthogonality is reaffirmed.

Problems

1.1 Figure 1.3 illustrates the generation of a wave A, cos(wg? +@g) as the
sum of two phasors. Sketch in a similar manner the generation of the sinusoid
Ay sin(wg? + ¢¢) determining first its equivalent expression as a phasor sum.

1.2 For purposes of comparison, sketch the spectra of the two waves specified
in question 1.1. Use spectral representations plotting amplitude and phase as
functions of frequency and also representations plotting the in-phase and quad-
rature components as functions of frequency. In both cases take (as in section 1.1)
the function cos(w?) as the basis for phase reference.

1.3 Sketch spectra corresponding to the following functions
() Ao cos(wgt) + By sin(wgt)
(b) Ao Cos(wot)Bo Sin(wot)
(c) Ag cos(wgt)Bg cos(wet)
(d) A4¢ sin(wg?)Bg sin(wgt)

In what important particular does the spectrum of (b) differ from those of (c) and

(d)?

1.4 Suppose that functions of period 2m: csq(x) and ssq(x) are defined over
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the interval —w<x=<+r such that

csq(x) =sgn{cos(x)}
ssq(x) = sgn{sin(x)}
where the sgn function is defined thus

sgn(y)=+1 y>0
=-1 y<O

Sketch these functions and note that they are square waves with the
appearance of ‘hard limited’ sinusoids. Confirm that they both obey the
definition of periodicity, equation 1.4.

1.5 The functions csq(x) and ssq(x) could be used as synthesis functions for
the construction of any given periodic waveform, v. A typical synthesis
equation would be

()= i X, csq(2mnfit)+ Y. ssq(2mwnfit)

Comment on the possibility of forming an analysis equation to determine the
coefficients X, and Y.. How is this operation affected by the orthogonality
properties of the set of functions csq(nx) and ssq(nx)? (Hint Are the
functions in this set, in general, orthogonal? Can you find a single example of
functions within the set which are not orthogonal?)

1.6 If the functions in the set csq(nx) and ssq(nx) are not orthogonal, does
this raise the possibility that synthesis of a waveform may take place in more
than one way? (The reader intrigued by speculations as to the possibility of
spectral analysis based upon other functions than sinusoids may be interested
to learn that a ‘square-wave-like’ set of functions—‘Walsh functions’—can
be used for just this purpose.’)

1.7 By comparison with the result given in section 1.6 show that the
function csq(2wf,t) may be analysed to yield a Fourier series

v(t) = (4/m) 20 (-1)"2n+1)"" cos{2mw(2n+ 1)f.t}

Show, by applying the shift theorem quoted in section 1.8.2 that the Fourier
series corresponding to the function ssq(2wfit) is

v(t)=(4/m) Y. 2n+1)"'sin{2mw(2n+1)f.t}
n=0
1.8 The differential of a sawtooth wave is a function of ssq form. Show that

the Fourier series of the sawtooth is the integral of the Fourier series of the
ssq function and is given by the relation

v(t)=—(2/fim’) i (2n+1)? cos{2m(2n+1)f.t}

Comment on the linearity of the operation of integration. Why is linearity of
importance in being able to deduce Fourier series of functions after the
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manner suggested by this question? (Hint The material in section 1.12 may
throw some light on these latter considerations.)

1.9 Prove the amplitude and abscissa scaling theorems quoted in table 1.2.
(Hint While the first of these theorems is not difficult to prove, the second is
a little less obvious. Attempt to find the transform of v(at) by substituting
A =at and replacing t and dt in the transform integral as appropriate.)

1.10 Prove the shift theorem quoted in table 1.2. (Hint In this case, try
substituting A =t+7 and then, again, eliminating t and dt in the transform
integral.)

1.11 Determine the transform of the staircase waveform used as an
example in section 1.12 both from first principles and by means of the
transform tables in appendix 1. The two answers should, of course, be the
same!

1.12 Verify the transform of the gaussian pulse given in appendix I
working from first principles. (Hint Proceed by writing down the transform
equation and combining the exponential terms. The argument of the
exponential term will have the form —(at’+bf), with a and b constants.
Force this into the form —(t+cf)?, with ¢ a constant. Let A=(t+cf) and
rewrite the integral. Integrate, noting that [*Z exp(—x?) dx=1r.)

1.13 Determine from first principles the Fourier transform of the
rectangular-pulsed sinusoid
v(t)=A cos2mfot) —T/2<t<+T/2

checking your answer by referring to the results listed in appendix L.

1.14 Determine from first principles the Fourier transform of a unit-step
function u(=1 t=0

=0 <0
Does this function implicitly obey the requirements for transformability?

(Hint Start by obtaining the transform of a pulse for which the Dirichlet
conditions, section 1.3, for T — =, are obeyed, such as u(t)exp(—at), a
positive, and let a — 0, determining the transform of u(t) in the limit.)

1.15 Which of the following waveforms exhibits a power spectrum, and
which an energy spectrum, and why?

(a) The pulsed sinewave defined in question 1.13.

(b) White gaussian noise.

(c) A voltage impulse. (Hint Work from first principles starting with a
narrow rectangular pulse whose height is inversely proportional to its width.)

(d) A continuous sinusoid

v()= A cos(2mfot) allt
() A waveform composed of the sum of the continuous sinusoid
defined in (d) above and the pulsed sinewave defined in (a) above.
(f) A waveform composed of the sum of a continuous sinusoid and
white gaussian noise.
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1.16 Can you obtain a measure of the power in a white gaussian
noisewave? Can such a waveform exist in real life? What about the
continuous sinusoid, considered in the same manner?

1.17 For the pulsed sinusoid defined in question 1.13 what is the effect on
the energy spectrum of increasing

(a) the pulse width T
(b) the pulse amplitude A
(c) the frequency of the tone burst, f,

Sketch your answer carefully, paying attention to detail, such as the effect on
points where the energy spectrum is zero valued, or has a maximum.

1.18 What, dimensionally, is the difference between an energy spectrum
and a power spectrum? Do these two functions have the dimensions of
power and energy respectively? Suggest two finite-energy functions and two
finite-power functions other than those listed in question 1.15 above.

1.19 For the pulsed sinusoid of question 1.13, show, by referring to the
results presented in appendix II (Integral Relationships), that the area
beneath the spectrum remains invariant if T is increased while A remains
constant. Hence show that the Fourier transform of the sinusoid

v(t)=A cos(2mfot) allt

V() =(A12){3(f+ fo) +8(f - fo)}

is

1.20 A periodic wave has the general spectrum

V()= ¥ Vas(ff)

n=—

where

Answer the following questions.

(a) What is V,, how is it obtained and in what units is it measured, if
v(t) is measured in volts?

(b) What is 8(f—f,) and what is its significance?

(c) In what units is V(f) measured? The units of V(f) and those of V,
are different. How do you explain this difference, and what part does 3(f—f,)
play in keeping the equation dimensionally correct?

1.21 Show that, if v(¢) is real, and if we write

V()= X()+jY(f)
then

+oc

v(t)cos(2wft) dt

x(=|

Y(f)= —J:m v(t)sin(2wft) dt
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Show that X(f) is an even function and Y(f) an odd function of frequency.
Comment on the statement made above ‘... v(t) is real...’.

1.22 Parseval’s theorem states that

[ ooy a= [ vora

Taking as your example a rectangular pulse, demonstrate the validity of this
theorem. (Hint One of the results in appendix II (Integral Relationships)
may be of assistance in answering this question.)

1.23 If a signal consists of sinusoidal components thus
v(t)= Z Ax COS(2’n’fkt+ d)k)
k

show that its mean square value is given by the expression
1 2
SLA
2 ; y
How does this result relate to Parseval’s theorem, quoted in question 1.22?

1.24 The performance of many filters is usefully characterised by an
‘impulse response’. However, the impulse is a strictly unrealisable entity.
One reason for its being unrealisable is that it is an infinitely high
voltage-spike. A second reason is connected with its energy content. What is
this second reason?

Because we cannot apply impulses to determine experimentally the
response of filters, we often turn to ‘step-response’ testing. The input is the
unit step, u(t), defined in question 1.14. How is the step response of a linear
filter related to the impulse response? Why is it important that the filter be
linear?

1.25 A filter has a step response

v(t) =exp(—6284t)

Sketch this response and determine and sketch the impulse response. What
kind of filter does this step response characterise and what is its cut-off
frequency.

1.26 Given the power spectrum of the continuous sinusoid
v(t)= A cos(2mfot) allt

what will be the power spectrum of the continuous sinusoid
v(t)= A sinQnfot) all ¢

and what, by deduction, will be its autocorrelation function. (Hint Does a
power spectrum or autocorrelation function convey phase information? Is
either quantity uniquely related to a given time function, v(t)?)



2 The Information Source and
Communication Channel

In its most basic form, a communication system consists of an information
source and an information sink connected by a channel. Often, the
informaticn-bearing waveform is of a nature which makes it incompatible
with effective transmission through a given channel. Then the complementary
operations of modulation and demodulation are invoked to yield a signal that
is compatible with effective transmission.

Both the information source and the channel present constraints on the
design of the overall communication system. Ideally, by carefully selecting the
modulation method, we should be able to maximise the rate of information-
transfer per unit of channel bandwidth, subject to whatever signal corruption
is encountered in the channel. Unfortunately it must be admitted that such a
maximisation operation is simply not possible, being as yet beyond our
mathematical and technological capability. Certainly attempts have been
made to place the theory of communication on a formal mathematical footing.
For example, much effort has been devoted to the development of informa-
tion theory and modulation theory but these disciplines have made relatively
little impact on the design of real communication systems.

It is because of this situation that advances in communication system design
have retained a closer correspondence to the state of electronics technology at
large, rather than to far-reaching theoretical precedent. In short, it is often
possible to justify and refine a system design by applying theoretical methods.
It has rarely been the case that theory has predicted a major area of
development.

In this chapter we shall investigate the nature and properties of information
waveforms, the communication channel and the operation of modulation.

2.1 The Primary Information Source

A convenient idealised model of the primary information source in a com-
munication system consists of a module delivering a random, or partially
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| P(f)

lo - T

Figure 2.1 Information waveforms and their spectra. (a) White noise-like signal; (b)
speech signal; (c) random digital-data waveform

-t.\r

random waveform of infinite duration and finite mean power. We cannot
realise such a source, if only because any experimental or practical system
must deliver a waveform of finite duration. None the less, the modelis of value
in that it closely approximates all the practical information sources in which
we shall be interested.

Since such a model involves a signal which is of finite mean power, the
energy that it is capable of delivering to a load is infinite. Consequently, the
concept of power spectral density, P(f), must be applied as a method of
characterising the band occupancy of the output waveform. Because the mean
power of the signal must be finite, it follows that P(f) must be band-limited.
Normally we find that P(f) is baseband in nature, with most of the signal
power concentrated at relatively low frequencies. That is

P(f)—=>0 as f—o

Figure 2.1 illustrates several typical information waveshapes, together with
their power spectral densities. Both the noise-like signal and the speech
waveform are classified as analogue processes, because their waveforms can
take on any amplitude value. In contrast, the data waveform is typical of
digital processes, in that only two amplitude levels corresponding to the
binary numbers 0 and 1 are permitted. Data waveforms are produced by
computing and telegraphy systems as primary information-bearing signals.
Itis generally considered that a channel is most economically used when the
information waveform has a white or uniform power spectral density. This is
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Figure 2.2 The meaning and measurement of probability -distribution functions

because the channel noise is also often white, in which case a white signal will
maximise the ratio of signal-to-noise power spectral density over the signal
band. If all the signal components are presumed to be of equal importance,
the corrupting influence of the noise will then be minimised. It will be seen
that neither the speech signal, nor the data signal illustrated in figure 2.1 have
power spectra which approach the optimum. It is sometimes considered
worthwhile to pass the information-bearing waveform through a filter de-
signed to ‘whiten’ the signal spectrum before transmission, thereby improving
the signal-to-noise ratio after detection.

It is worth noting that, although the power spectrum provides a useful
means of categorising signals, it cannot be used uniquely to identify any given
signal: waveforms of radically different superficial appearance may all have
identical power spectra. This is because, in assessing the power spectrum of a
signal, either theoretically or by experiment, phase information is lost.

Another very useful method of characterising a signal which we have not so
far considered is the amplitude probability-distribution function, pDF; this
quantity we denote p(v). The PDF is a measure of the probability that a
waveform v,(t) lies between voltage levels v and v + 8v when §v tends to zero.
Its nature may be understood by considering the hypothetical PDF measuring
system illustrated in figure 2.2. As the diagram shows, an electronic timer
measures the length of time during which the source waveform v,(t) lies
between voltages v and v +8v. From this measurement, the ratio of ‘on’ to
‘off’ time of the timer switch can be calculated. This ratio is the probability
that the waveform v.(t) lies between the prescribed voltage levels. By
repeating the experiment for many different values of v, a histogram which
approximates to p(v) may be constructed. The accuracy of the approximation
improves as the voltage level separation decreases, although too small a
separation would lead to a prohibitively lengthy experiment and, because of
the presence of noise within the measuring system, might lead to increased
experimental inaccuracy as v approached the noise level.

The amplitude pDF of a waveform, it must be stressed, is not related to the
power spectral density or to the Fourier transform of that waveform.
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Normally we think of a noise-like signal, such as is shown in figure 2.1, as
conveying the greatest amount of information. Noise-like waveforms are
characterised by an amplitude pDF of a special kind, known as a gaussian
distribution. The gaussian distribution is defined thus

p(v) = (27p.)* exp(—v?/2p.) (2.1)

where p. is the average power (strictly the mean square voltage) in the
noise-like signal. This distribution is illustrated in figure 2.3.

On an intuitive basis, it is not surprising that the gaussian distribution
typifies both highly informational analogue signals and also highly corrupting
noisewaves. A signal with a high information content cannot be predictable.
Conversely, a predictable waveform is non-informational. It is largely be-
cause of this inherent ‘randomness’ (to the recipient, if not to the sender) that
the analogue signal often matches so well to the gaussian PDF.

The gaussian distribution is often encountered in nature, usually as the
statistical description of a variable which results from the interaction of many
independent events. An example is afforded by the process of generation of
‘thermal noise’, which we shall discuss in greater detail in the next section.
This waveform originates in the agitation of electrons by thermally excited
atoms in a resistor. Many electrons, all moving independently and randomly,
produce across the resistor a small noisewave with gaussian statistics.

Actually, a formal proof of the hypothesis that a highly informational signal
must have gaussian statistics is possible. The proof places one constraint on
the waveform, however, requiring that it be unbounded. This simply means
that v(t) must be able to accept all values in the range

-y <+

Just as we think of an unbounded signal as having the greatest informa-
tional capacity when its distribution is gaussian, so also we think of an
unbounded gaussian noisewave as offering the greatest corrupting influence,

p(v)“
------ ~€-(2mp,)"2
F T T T T —> 1
-3 -2 -1 [¢] +1 +2 +3 v(p) K

Figure 2.3 Normalised gaussian probability -distribution function



64 MODERN COMMUNICATION SYSTEMS

at least for analogue, as opposed to digital, signals. Certainly it is reasonable that
the ‘worst-case’ noise. would have a very similar appearance to the signal it was to
corrupt, simply because it would then be very difficult to tell them apart.

Other kinds of distribution function occur from time to time in the study of
communication systems. We shall not find it necessary to delve very deeply into
the formal mathematics of probability theory, even though this subject is of great
importance to the communication engineer in permitting him to predict noise
performance. Should the reader require further information on this subject,
several of the texts!*2:13 [isted in the bibliography will supply it.

2.2 The General Properties of Communication Channels

Just as there are many types of information signal, all with different characteristics,
so there are many different types of channel. We shall take the channel to include
everything following the ‘modulator’, which prepares the information signal for
transmission, and preceding the ‘demodulator’ or ‘detector’, which reconstitutes
it. Thus it may include, in addition to the physical medium which actually conveys
the signal, transmitter and receiver hardware which can introduce additional signal
impairments. The ‘best’ channel, from our point of view, would be linear in its
voltage-transfer characteristic, so that an input voltage v; would be related to an
output voltage, v,, according to a law

Upy = kvl (2 '2)

Additionally, it should produce no attenuation distortion or phase distortion of
the signal spectrum. That is, with a channel transfer characteristic

Va(f)
Vi(f)

= A(fexpio(f)} 2.3)
we should hope that
A(f)=1 ad =0

within the signal band. As it happens, none of these characteristics of the ideal
channel are likely to be encountered in practice. Often non-inearity derives from
those stages of signal processing in a receiving equipment which precede the actual
operation of detection. Attenuation and phase distortion may result both from
the receiving equipment and from the medium separating the transmitter and
receiver.

The effect of nondinearity is twofold. It may, obviously, cause amplitude
distortion of the signals passed through the channel. Typically this might take
the form of clipping (amplitude limiting) of the transmitted signal. This can be
quite a serious problem when certain kinds of communication system are employed,
notably those which rely on amplitude fluctuations of a carrier wave to convey
the information.

A second problem arises when a number of different signals are present in a
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non-inear channel. Since the non-linear transfer characteristic can be expanded as
a power series, it generates at its output products of the input signal components.
These products give rise to a phenomenon known as cross-modulation, because
the product theorem, section 1.2.2, may be applied to yield component sum-and
difference-frequencies. These new spectral components overlap the transmitted
spectral components and cannot be removed by filtering.

Another natural and unavoidable phenomenon that we have to contend with in
the design of a communication system is channel noise. Noise is usually a problem
because it places a lower limit on the signal power inserted into the channel. We
usually prefer not to utilise a higher transmitter power than is absolutely necessary
because the higher the power the more costly is the transmitter equipment. As a
result, much effort has been devoted to the design of systems with some inherent
noise immunity.

The sources of noise are many and varied. Some of the most important sources
of electromagnetic noise which arise outside the electronic parts of a communica-
tion system, and are therefore beyond control, are solar and stellar radiation,
lightning discharge and other atmospherics and arcing contacts in electrical mach-
inery. Within the electronic parts of the communication system we find noise
sources which may, to a certain extent, be controllable. Appendix III indicates
how the careful choice of circuitry and selection of components can minimise the
contribution of thermal, shot and other noise occurring within the electronic
system. Thermal noise occurs because electrons are moved within a metallic resist-
ance of value RQ by the random thermal agitation of atoms. Its mean square
value at temperature T Kelvin, and over a single-sided bandwidth B Hz is given by

(v?)= 4kTBR

Shot noise is encountered in amplifying devices and is caused by the discrete
nature of electron flow and other charge-transfer processes. The current does not
behave as a continuous fluid, but as a stream of particles with known statistical
properties. The mean square random perturbation caused by shot noise, given a
mean current flow 7 is

(i*)=2IeB

In these expressions, k is Boltzmann’s constant (= 1.38 x 10723 K ") and e is
the charge on an electron (= 1.6 x 10719 (). _

Both thermal and shot noise exhibit a power spectral density which is white
to frequencies of hundreds of megahertz and present a gaussian-amplitude prob-
ability-distribution function. Impulsive noise is also spectrally white, but is of non-
gaussian distribution. It is extremely difficult to define statistically, and its effects
on a given communication system can usually be determined only by means of
‘field trials’. Unfortunately it is the most commonly encountered type of noise in
line communication systems within the switched telephone-network and is particu-
larly deleterious to digital communication systems.

In the next sections of this chapter we shall discuss the nature of the propagation
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medium itself. We shall restrict our attention to electromagnetic propagation
through the atmosphere and through free space, guided wave propagation along
transmission lines and optical communication by means of light-guides (fibre-optic
cables). Since these media sustain the bulk of information transfer, we shall not
consider the various other experimental media (taken in the context of long-haul
communication applications) such as waveguide or acoustic systems.

One serious problem which our discussion of baseband signal sources and chan-
nels brings to light is the incompatibility of the signal with the concept of electro-
magnetic propagation. By this we infer that the baseband signal must be transmitted
across free space and one way of achieving this is to employ electromagnetic
propagation. Unfortunately, very low frequency signals do not propagate well,
and also require extremely large antennae systems. To alleviate this problem we
employ the techniques of modulation, which serve to relocate the signal spectrum
at a high frequency where the problems of achieving propagation are not so great.

2.3  Electromagnetic Propagation Through the Atmosphere!®

In considering the propagation of radio waves through the atmosphere, we shall
examine only the gross behaviour of the medium. Both radio waves and light are
electromagnetic wave motions, although the latter has much the higher frequency.
Consequently, they share the same basic properties of straight-line propagation,
reflection, refraction, diffraction and scattering. The spatial scale on which these
phenomena take place is, however, different by many orders of magnitude.

For our purposes, the atmosphere may be regarded as being divided into two
principal regions of interest. These are the troposphere, the region closest to the
earth’s surface and extending to a height of about 10 km and the ionosphere,
lying above the troposphere and extending from about 50 km to 500 km.

Depending on the nature and location of the antennae and the frequency of
the signal a variety of different propagation modes can exist for the electromagnetic
transmission of information through the atmosphere, of which the most important
are

(1) line-of-sight propagation

(2) ground- or surface-wave diffraction
(3) ionospheric reflection

(4) forward scattering

Line-of-sight propagation occurs at all frequencies whenever the transmitter
and receiver antennae are so located as to be visible, one from the other. This
mode assumes its greatest importance at frequencies in excess of 30 MHz, however,
since then the ionosphere presents a ‘window’ to electromagnetic radiation and
will not sustain a long-range reflected wave.

For frequencies up to about 10 GHz, attenuation is low, so that relatively small
transmitters can be conveniently employed to cover ranges of the order of tens of
kilometres. This has the attendant advantage that geographical separation may be
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used to permit different transmitters to operate on the same frequency allocation,
thereby extending the usage of the electromagnetic spectrum very considerably.

At about 10 GHz, absorption of energy from the propagated wave rises rapidly
because of the spin resonance of water molecules present in the atmosphere. This
causes signal attenuation and can present problems in the transmission of signals
at frequencies in excess of 10 GHz. Since frequencies of the order of 10 to 50 GHz
are employed in ‘pole hop’ line-of-sight microwave relays, deep fading caused by
rainstorms passing between antennae can give rise to troublesome reception con-
ditions. At even higher frequencies absorption takes place because of other
molecular resonances.

The presence of rainstorms in the vicinity of line-of-sight links can lead to
another interesting effect if the signal frequency is sufficiently high. In the super
high frequency region (SHF—3 to 30 GHz) and above the refraction of waves
within the body of the rainstorm can be quite pronounced. This can lead to a
situation in which components of the received wave have travelled along paths of
different length, being bent towards the receiver antennae within the rainstorm.
Because the received signal-component path lengths differ, so also do the phases
of the sinusoidal components contained therein. When added together these
components may, because of the relative phase differences involved, sum destruc-
tively, resulting in a partial cancellation of the received signal. This effect is known
as multipath transmission and, as far as line-of-sight systems are concerned, may
be minimised by employing two parallel paths separated by a suitable geographical
distance. Since heavy rainstorms in temperate climates are usually very localised,
it is improbable that both links will be out of service simultaneously.

The surface-wave mode is caused by the diffraction of electromagnetic waves
around the surface of the earth. In this respect the mode of propagation is not
dissimilar to the effect whereby we hear acoustic waves around corners. We cannot
see the sound source because the wavelength of light is too small to permit diffrac-
tion to the degree which would be required. The surface-wave mode will usefully
sustain information transfer at frequencies below 1.5 MHz although long-range
transmission is usually restricted to frequencies below 500 kHz. Long-range
propagation in the region above 500 kHz is usually achieved by making use of
ionospheric reflection.

Reflection occurs in the ionosphere because of the presence of ionised molecules.
The ionisation is caused by a variety of natural radiations of which the most
important are solar emissions. Because the molecular density of the ionosphere is
low, recombination of the ions takes place slowly. Consequently the ionosphere
has, as a whole, conductive properties. Furthermore the effective ‘refractive index’
of the medium is not uniform. At very low levels in the ionosphere, where the
molecular density is high and recombination rapid, the conductivity is relatively low.
The same is true of the very high regions, because the molecular density is so low
that very few molecules exist to be ionised. An oblique radio wave, entering the
ionosphere, may be diffracted in such a manner that it is bent back into the lower
atmosphere. As it happens the amount of bending decreases with increasing signal
frequency, so that a frequency will be encountered, depending on the angle of propa-
gation, at which the signal is not reflected in this way. In general, ionospheric
reflection is only useful at frequencies within the high frequency band (HF—3 to
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30 MHz). Spurious physical conditions may permit operation at frequencies
up to 50 MHz, although such a condition of operation is unreliable, being
prone to deep fading.

One significant advantage of ionospheric reflection is the possibility of
obtaining propagation beyond the visual horizon at frequencies well in excess
of the upper range of ground-wave propagation. This may be accomplished by
means of a single ‘hop’ from transmitter to receiver, or by ‘multiple hops’
resulting from reflection of the downward signal from the earth’s surface,
which is a conductor, albeit rather a poor one. The range of a transmitter thus
tends to be governed by the height of the reflecting ionospheric layers. In
general the high radiation levels from the sun during daylight produce intense
ionisation right through the ionospheric region. At night a high ionised
layer exists, so that long-distance propagation takes place most readily after
dark.

At frequencies between about 100 MHz and 10 GHz, another technique
may be employed, particularly in terrain which prohibits the installation of the
many antennae needed for normal line-of-sight working. This technique is
known as tropospheric-scatter propagation and makes use of an effect
whereby over-the-horizon propagation may be obtained by forward scatter-
ing in the troposphere. It is usually necessary to design the transmitter
antennae to radiate a highly directional, very powerful signal. The receiver
antennae must also be highly directional and, because troposcatter systems
are prone to multipath propagation and hence deep fading, the receiver
organisation may embody the principle of ‘diversity’.

Diversity is the duplication of receiver (and sometimes also transmitter)
hardware in much the same manner as was described above, as a means of
compensating for multipath propagation in line-of-sight links. One techni-
que, known as space-diversity detection, requires that two or more antennae
be supplied at the receiving station. These antennae are separated by dis-
tances of several hundred metres, so that the signals received by each are
largely uncorrelated, in so far as transmission paths and hence depth of fade
are concerned. The receiver outputs are then averaged to yield a signal with a
statistically reduced depth of fade.

Another diversity technique is to separate the transmitted information on
two carriers of different frequency and then to receive these carriers on
antennae at nominally the same location. This method is known as frequency
diversity.

A method of obtaining high-frequency long-distance communication
which has assumed great importance during the past decade is the use of
communication satellites. The first communication satellites were passive in
nature: large metallised balloons which were allowed to inflate when in orbit
around the earth. Highly directional antennae were then used to bounce
signals off the surface of the balloon. The reflected signals were detected by
receivers with high-gain low-noise antennae. Current practice is to employ
active satellites which act in much the same manner as microwave relay
stations. These employ solar-cell batteries to provide a power source. Re-
transmission is always at a different frequency to reception by the satellite.
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Since they can be designed to handle signals in the ultra high frequency
(uHF—300 MHz to 3 GHz) and sHr bands, they are potentially capable of
handling a considerable quantity of information and already form a viable
alternative to submarine cable for intercontinental telephone and television
communication.

2.4 The Transmission Line as a Communication Medium

Next, we examine the properties of transmission lines as they affect the
communication of information. In so doing, we shall restrict our attention
only to those features of the transmission line that will be of direct concern to
us. The subject of transmission lines is a study in itself of such breadth as to
defy inclusion in a single chapter.

Transmission lines act to convey electromagnetic energy, the energy fields
being guided by and localised in the vicinity of the line. Furthermore, they
always involve the use of two conductors connecting source to load. Since this
is so they can, in principle at least, handle baseband signals. In practice, a.c.
coupling of other circuits within the line system may eliminate or distort
low-frequency signal components, but this is the result of system organisation
and design rather than a fundamental physical limitation of the line itself. In
this respect, transmission lines differ from waveguides, in which d.c. levels
cannot be sustained, since there is no return conductor. For waveguides, both
upper and lower frequency limits exist.

Both waveguides and transmission lines operate, none the less, by setting
up guided electromagnetic waves. Performance may be described for both
these systems by the application of Maxwell’s equations governing elec-
tromagnetic wave motion. Indeed this is the usual method of analysing
waveguide operation. Transmission lines are most often analysed by applying
circuit theory methods, and it is this approach which we shall adopt, since it
yields convenient line transfer-functions with predictable effects on different
signals and modulations. We shall not attempt to derive similar results for
waveguide systems. Most waveguides operate at frequencies greatly in excess
of the propagated carrier bandwidths so that their performance may be
characterised as typically narrow-band in nature, giving rise to little attenua-
tion within the signal band. Thus the waveguide operates very much as an
ideal channel, as far as modulated sinusoidal carriers are concerned.

The physical structure of transmission lines plays an important role in
determining their electrical properties. For example, on ‘local’ telephone
circuits—those which connect the subscriber to his local exchange—it is
frequently the case that suspended open-wire pairs are used. The wire is
either copper, copper-clad steel or aluminium alloy and is insulated from the
supporting poles by ceramic bobbins. The wire-pair separation is usually
about twelve inches. Typically such a circuit will exhibit the following
electrical properties

Capacitance between conductors 0.01 wF mile™
Conductor resistance 3-10 Q mile™!
Leakage conductance between conductors 1 wmho mile™
Inductance 3 mH mile™’
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These parameters, which are known as the primary electrical parameters, will
vary slightly with prevailing weather conditions. Consequently, for long-
distance telephone connections, ‘trunk’ circuits connecting exchanges,
bunched twisted-conductor pairs are employed. Here the wires are individu-
ally insulated with paper or polyethylene and are twisted together to reduce
crosstalk between pairs. Many such wire-pairs are bunched together and the
bunch itself is sheathed in plastics. A layer of steel wire or tape armouring may
be laid onto this first plastics sheath to provide resistance to mechanical
damage, the armouring being itself sheathed with a further layer of plastics.
Typical primary parameters for such cable are

Capacitance between conductors 0.1 wF mile™’
Conductor resistance 30-300 Q mile™’
Leakage conductance between conductors 0.1-100 pmho mile™*
Inductance 1 mH mile™

For applications requiring extremely wide bandwidth, the considerably
more expensive coaxial cable is used. Here, the two conductors consist of a
central copper core surrounded by a copper sheath separated from it by a
dielectric. The dielectric may be solid polyethylene or air. In the latter event,
the correct spacing between the sheath and the central core is maintained by
means of thin polyethylene discs at intervals of a few centimetres. The sheath
of copper may be woven from fine wire strands. This is the usual method of
construction if a solid dielectric is employed. If an air dielectric is used, an
outer conductor of copper tape is preferred. The entire assembly is then
sheathed in plastics for both electrical and mechanical protection.

Depending on the nature of the excitation and the medium in which the
wave is to propagate, guided-wave structures may sustain a number of
different ‘modes’ of oscillation. The mode concept may be aided by the
following simple analogy. A plucked string will normally vibrate at its natural
frequency, with a node at each end; this is the principle ‘mode’ of oscillation.
If the string is damped at its midpoint, at the instant at which it is plucked and
is then allowed to vibrate freely, the first harmonic of the natural frequency
will be set up. This is a second ‘mode’ of oscillation. Many other modes may
also be set up, providing only that the frequency of oscillation which is
initiated is compatible with the existence of nodes at the ends of the string.

Waveguides are usually capable of sustaining a great number of modes of
oscillation and care is usually required to ensure that they only operate in their
‘dominant mode’. Transmission lines, on the other hand, usually only enter
higher modes of oscillation when excited at extremely high frequencies, so
that non-dominant mode formation presents no problems.

One important difference between waveguides and transmission lines lies
in their frequency of operation. In the main, waveguides are used to connect
UHF and SHF antennae to other system units. As yet they are not employed in
long-haul communications applications, although there is interest in the use
of circular waveguides in extremely high-capacity communication links.
Coaxial cables are employed at rather lower frequencies, extending typically
to tens or hundreds of megahertz.
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2.5 The Physics of Line Operation

The physical structure of a transmission line suggests that the line will possess
certain electrical properties. It is obvious, for example, that the line will
exhibit a resistance to current flow. Likewise, because the medium separating
the two conductors is never a perfect dielectric, it will also exhibit some
conductance, permitting a current leak to occur between the line conductors.
Again, it is fairly obvious from the physical nature of the line that a
capacitance will exist between the conductors. Finally, as with any conducting
wire, each cable in the line pair will exhibit self-inductance.

Although we may associate these electrical properties with the transmission
line, the line itself differs from a normal electrical circuit in one very important
respect. That is, its electrical properties are distributed in nature. This means
that we cannot think of the transmission line as a simple LCR circuit with a
transfer function specified by the methods described in chapter 1. However,
we can consider an infinitesimally short section of the line in this manner and
by applying the methods of differential calculus we may determine transfer
characteristics which describe the attenuation and phase shift of the line in
exactly the same manner as the transfer function of a filter.

The transfer function of the transmission line, in contrast to that of the
lumped-component filter must be specified in terms of one additional
parameter, the length of the line from the source to the point of inspection. To
aid our calculations, and to comply with standard practice, we further specify
the fundamental electrical properties of the line in terms of impedances per
unit length.

Figure 2.4 shows how an infinitesimally short section of the transmission
line may be represented by means of lumped components. Given that the
length of the line so represented, 3x, does tend to zero, it follows that the
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leakage current between the conductors will be sufficiently small that it can be
neglected for loop voltage calculations so that

o ()= [ 254

In a similar manner the voltage drop along this section of the line will be
negligible in the calculation of node currents, so that

+ Rz,(t)] dx+v (t)+a°‘(')

i,(t)=[ avgt(t)+Gv,(t)]8x+1,(t)+al"(t) x
Simplifying, we find that
L a';ft)+R (1) = "';—’f‘) (2.4)
2201 Gy, (1= - 20 2.5)

We require a differential equation in v,(t) in order to establish a transfer
function in V,(f). This we may obtain by differentiating these equations and
substituting appropriately. It is a straightforward exercise in partial differenti-
ation to obtain the result

v,(t)+G dvi(t)_19 v,(t)+Rax,(t)

¢ at’ at L ox’ L ox

Further substitution of the second equation given above eliminates the
extreme right-hand term

v, 9 v,(t) avx(t)

ax’

M_1c +(RC+LG) 22 4 RGu.(1)

We may express this equation in terms of the Fourier transform V.(f) of v.(t)
by recalling the result quoted in table 1.2, namely

B o amifv(r)
this result is still valid when applied to the partial derivatives of v,(t) with

respect to time. Thus

20 o, 2mifvi(f)

il "*‘" o Qmif)*Vilf)

It follows that we may write

%ﬁ = (2mjf)’LCVi(f) + 2mjf(RC + LG) Vi(f) + RG V()
= (R +2mjfL)(G +27jfC) Vi(f)
If for convenience we let
(R +27jfL)(G + 27jfC) = v* (2.6)
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we then have a simple second-order differential equation in x

8*Vi(f)

x> = 'szx(f)

which has a general solution

Vi(f) = A(f)exp(—vyx) + B(f)exp(+yx)

where A (f) and B(f) are parameters determined from the boundary condi-
tions. We know that, as x — ®, V,(f) — 0, so that B(f) must be zero. Hence

Vi(f) = A(f)exp(—yx)
A(f) we may find simply by inserting the condition x = 0, so that

Vo(f) = A(f)exp(0) = A(f)
Thus the general solution for the transmission line is

V(f) = Vo(f)exp(—vyx)
which yields a transfer function

H.(f) =20

Vo(f)
= exp(—yx) 2.7)

Returning to equation 2.6, we find on expansion that

=a+] >

=a—jB <0
where

1
a= [% {(R*+4m*fL*)(G*+ 41r2f2C2)}5‘+ (RG- 41r2f2LC)]]2 (2.9)
= attenuation per unit length of the transmission line
expressed in nepers (one neper equals 8.686 decibels)

and
B= [% [(R? +4n*f2L7)(G*+ 4m**CO~ (RG — 4w LO)] |} (2.10)

= phase shift per unit length of the transmission line measured in radians

These expressions are somewhat cumbersome. We shall see in the next five
sections how they may be simplified to describe the performance of transmis-
sion lines operating under typical conditions.

2.6 The Terminated Line

In the previous section we analysed what was, effectively, a semi-infinite line.
The line was assumed to be of infinite length from the source in the direction
of positive x, and this assumption was invoked when we deduced that the
boundary condition B(f) was zero as the result of progressive energy drain as
the voltage waveform passed along the line. Naturally, no real line can be
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semi-infinite. It must be terminated at some point in a load, and the load will
have some impedance, Z. In fact, the equations for the semi-infinite line hold
for a terminated line, provided the terminating impedance is selected with
care. Restating equation 2.4

_on(1) _ azx(t)
" =Ri,(t)+ L——
Applying the Fourier transform
-2V (R + 2mifL)L()
But
Vif) = Vo(f)exp(—vx)
so that
WD - —yvi(frexp(-vo)
= '-'va(f) '
and hence
YVif) = (R +2mjfL) L(f)
so that
Vi(f) _ R+27jfL
L(f) Y
_ (R+27jfL\;
B (G +21rij) (2.11)

This result gives us the impedance of the line at any point x. Note that its
value isindependent of x and consequently provides a secondary line constant
which we denote Z, and refer to as the characteristic impedance. If we
terminate the line at any point in its characteristic impedance, then, to signals
progressing along the line, no discontinuity will exist at the point of termina-
tion and the line will behave exactly as a semi-infinite line at all points up to
the load location. Energy which would have been dissipated in the distributed
resistance and conductance of the semi-infinite line will now be dissipated by
the resistive component in the terminating impedance. The voltage across this
impedance and the current passing through it will be exactly the voltage v (t)
and the current i.(t) which would have been present at the same point on a
semi-infinite line.

If the line is not terminated by a load of value equal to the characteristic
impedance, reflections are set up which travel back down the line to the
source. If the source impedance is also not equal to the characteristic
impedance, further reflections will occur, contaminating the propagated
signal very severely. We shall only consider the performance of lines which
are correctly matched to both source and load. This is standard practice in
telecommunication engineering and wherever possible is particularly closely
adhered to for line communication systems.

The reader might imagine that matching with a complex impedance Z, as
given by equation 2.11 would be extremely difficult. In general this would
indeed be true, but normal operating conditions, as we shall see, result in the
characteristic impedance becoming predominantly resistive with an easily
determined value.
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2.7 The ‘Lossless’ Line

If the transmission line has no energy-dissipation components, so that R =
G =0, then it is easily shown from equations 2.9 and 2.10 that « =0 and
B = 2wf(LC):. Consequently, the line transfer-function is

H.(f) = exp(—2mjfx(LC)})

As we have seen in section 1.17.7, such a transfer function imposes only a
delay on the waveform, so that

0 (t) = vo(t — £eXx)
where
t,=(LC)* s distance unit™

We refer to t, as the group delay. It is related to the velocity of propagation of
the signal
u,=t;' distance units'

and u, is known as the group velocity. (Sometimes the term ‘envelope’ is used
instead of ‘group’.) Figure 2.5 illustrates the propagation of a baseband signal
pulse along a lossless transmission line.

It can be shown' that group delay is related to the phase characteristic of a
line or a lumped linear network in the following way

ts(w) = dgfow)

For the lossless line, t,(w) is independent of frequency, because the phase
characteristic is a linear function of frequency.

Strictly, the group velocity defines the speed of propagation of a narrow-
band pulse (see for example question 1.13, with fo» T') or wavepacket.
Generally, the group velocity will depend upon the centre frequency of the
pulse spectrum. If the signals being handled by the transmission line are,
themselves, inherently narrow-band modulated radio-frequency-carrier

—
Distance x

Figure 2.5 Propagation of a voltage pulse along a lossless transmission line. The pulse

may be visualised as a lamina free to slide along the transmission line at the propagation

velocity u,. No change in pulse shape or height will occur, since the line is lossless. The

fluctuation of voltage at any point x = a on the line may be visualised as a function of time

by imagining a card to be superimposed upon the ‘model’ as depicted above. If the slit is

located at the required inspection point, the height of the lamina showing through it will
describe the function of time alone, v.(t)
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waves, then the line will only impose a delay upon the demodulated informa-
tion signal. This delay will be equal to the group delay at the carrier frequency;
no waveform distortion will be incurred, even if the group velocity is not
independent of frequency. In contrast, if a baseband signal, such as the pulse
waveform illustrated in figure 2.5, is inserted into a line which has a
frequency-dependent group delay, then the different parts of the signal
spectrum will propagate at different speeds. This causes the frequency
components to separate spatially as the pulse moves along the line and
consequently its shape will alter with distance—a phenomenon known as
signal dispersion. Dispersion causes severe degradation to signals for which
waveform shape is important. Digital signals fall into this class, whereas
speech signals remain intelligible after transmission through a line system
with a quite severely non-uniform group-delay characteristic. We refer to the
signal corruption imposed by a line which is dispersive as phase- or group-
delay distortion.

It is interesting to note that the propagation of a steady-state sinusoid of
radian frequency w, follows the same general pattern, with peaks of voltage
‘rolling’ down the line, much as waves may be shaken along a piece of rope.
The velocity of any one peak is u, and is derived from the phase characteristic
as

- (tel)

o

u, is referred to as the phase velocity of the line. The corresponding phase
delay, t,, is given by t,= u;'. In the case of the lossless line, u, = u, so that, for
example, a carrier and its ‘sidebands’, which contain the transmitted informa-
tion, will propagate with the same velocity. The distinction between phase
velocity and group velocity, then, is that the former describes a steady state,
and the latter a transient condition.

2.8 Multicore Telephone Cable

Multicore telephone cable exhibits low dielectric loss and, because the cable
pairs are twisted together and therefore closely packed, low inductance and
high capacitance. At audio frequencies, G « 2wfC and R » 2wfL, with the
result that

a =B =~ (wfCR)
and
Zo~(1-j)(R/4mfC):

Notice that the amplitude characteristic is non-uniform. Consequently, multi-
core cables cause attenuation distortion to speech signals. In section 2.9, we
shall see how the attenuation distortion may be reduced by artificially
increasing the line inductance. Although the phase characteristic is non-linear
and therefore dispersive, it does not cause severe degradation to speech
signals, since the human ear is relatively insensitive to phase distortion. It is
particular damaging to digital signals, however, and methods of ‘phase
equalisation’, used to linearise the overall channel phase-characteristic (see
section 2.10) are applied to reduce its effects.
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2.9 The Distortionless Line

The main reason for the poor attenuation characteristic of multicore tele-
phone cable is the relatively low inductance of the wire pairs, in comparison
with the shunt capacitance between the two conductors. Indeed, if we assume
that R and G are non-zero, we may calculate the minimum attenuation, a, by
differentiating with respect to L, the line inductance. It can be shown that « is
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Figure 2.6 The effect of loading on transmission-line performance. Curve 1: unloaded
twisted -pair cable; curve 11: lumped loading; curve III: distributed loading
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minimised when

-CR
L‘G

Substitution of this value yields the secondary line constants
a=(RC): B=2mf(LC)

We see that, by increasing L until it has the value specified above, a
distortionless line may be achieved.

Ideally, the inductance should be added in a distributed manner; that is,
evenly along the entire length of the cable. However, for economic and
technological reasons this is not usually possible. Instead, lumped inductances
are inserted at regular intervals along the line. These inductances are referred
to as loading coils. Figure 2.6 illustrates the effect of adding inductance to
polyethylene-insulated cable. Notice that distributed loading results in a
uniform attenuation and a linear phase-shift per unit distance as a function of
frequency. By carefully selecting and placing the loading coils within the line
the attenuation over the operating band may be kept low but because the
loading is lumped, not distributed, the line will exhibit a sharp increase in
attenuation at some ‘cut-off frequency’, usually at about 4 kHz.

In the region of the cut-off frequency, the phase characteristic exhibits
severe non-linearity. Consequently the lump-loaded line, although free from
attenuation distortion in the audio region, exhibits signal dispersion and is
unsuitable for the transmission of digital data except after suitable pre-
transmission processing (see chapter 8) and careful phase equalisation (sec-
tion 2.11).

2.10 Coaxial Cable"’

For wideband operation, coaxial cable is used almost exclusively. The band-
width of modern coaxial cable links is 12 MHz, with proposed developments
indicating use to 60 MHz. Because of the wide range of frequencies involved,
the behaviour of the transmission line is complex. In particular, the ‘skin
effect’ causes the conductor resistance to rise in proportion to the square root
of the signal frequency, a dominant effect until extremely high signal frequen-
cies (far above 12 MHz) are reached. The physical construction of the coaxial
line results in the line-constant inequalities

2nf>» R/L » G/C

Under these circumstances, the line equations simplify to yield the secon-
dary constants

a=kft  B=2xf(LC)
and
Zo = L/C

Thus such a cable is dispersion-free, offers small attenuation per unit distance
(but implicitly requires attenuation equalisation) and, from the nature of its
physical construction, results in a characteristic impedance of the order of 50
to 75 Q.
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2.11 Repeaters and Equalisers

In the previous sections we have investigated the limitations of practical cable
systems. Irrespective of the nature of the signal distortion that may be caused
by the cable, a progressive attenuation with distance will occur. Furthermore
noise will be added, so that the signal-to-noise ratio will progressively degrade
with distance from the signal source. To some extent, this effect can be
combated by the inclusion of repeater amplifiers spaced at suitable intervals
along the line (see section 9.1).

If the transmission is analogue in nature, such as an audio-band voice-
telephony signal, the repeater must have a linear amplification law and will,
therefore, amplify signal and line noise equally. Consequently however
frequently repeaters may be spaced along the line the signal-to-noise ratio at
the end of a long line may become intolerably low.

Because analogue signal repeaters result in a worsening of signal-to-noise
ratio, there has been a general move towards pulse code modulation te-
lephony, in which the analogue transmission is coded in digital form. The
repeaters can then be made to reconstruct and retime the original digital
signal, completely eliminating both line noise and the adverse effects of
band-limiting on the pulse shape as seen at the repeater input. Such repeaters
are referred to as being ‘regenerative’ in nature.

Attenuation and phase distortion can arise within a variety of ancillary
equipment, as well as within the lines themselves. Even those lines described
in the previous section as being in some way inherently distortion-free will,
when installed, be a part of a system presenting to the user both kinds of
distortion, in some measure.

The process of correcting deviations of the practical channel characteristics
A.(f) and ¢.(f), from the ideal, specified in section 2.2 is referred to as
equalisation. Attention has to be paid to the correction of attenuation
distortion in analogue-signal links, in which the preservation of signal
waveshape by ensuring phase linearity is not of the greatest importance. In
contrast, digital links require careful phase equalisation to ensure the preser-
vation of the digit waveshape.

To achieve equalisation, we attempt to find networks with transfer func-
tions A.f) and @.(f) such that A.(f)exp{jo.(f)}A.(f)exp{jda(f)} ap-
proaches as closely as possible to the ideal. We may equalise in this way either
before transmission through the channel, pre-distorting the signal spectrum
which is transmitted, or afterwards, correcting distortion incurred during
transmission.

Often, the equalisation networks employed are passive and time-invariant
in nature. However, because of the possibility that signal paths through a large
communication network may be changed during transmission, this is by no
means always the case. Thus in many modern high-speed data-transmission
systems, adaptive equalisers are employed. These are active networks, often
digital in nature, which monitor the channel characteristics and automatically
vary the equalisation characteristic as the channel characteristic changes.

A limit to the equalisation bandwidth (that is, the bandwidth over which
equalisation is attempted) is set by the noise levels encountered within the
channel. Usually, the gross effect of a transmission line is to attenuate
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high-frequency signal components. When the most severely attenuated of such
components have fallen to a power level which is comparable with that of the
system noise, attempts at equalisation will result in an unacceptably low signal-to-
noise ratio.

2.12 Optical Communications®?

In the foregoing sections of this chapter, we have discussed the properties and uses
of transmission lines. Wire-based line plant has, for reasons of economy and con-
venience, been the dominant factor in determining the evolution of the telephony
network throughout its history. However, at the time of writing, the telecom-
munication industry may be regarded as having arrived at a crossroads of extreme
significance. We now enter an era in which the emphasis will lie not on wire-based
but on optical line-plant systems, utilising glass-fibre light-guides. This transition to
optical communication has profound implications so far as network structuring is
concerned, primarily because light-guide systems effectively remove bandwidth
constraints on the choice of modulation format. Consequently, even in trunk
applications, classical bandwidth-efficient modulation procedures (employed to
‘frequency multiplex’ many users on a single physical carrier) will be superseded
by digital ‘time multiplexed’ schemes. The ‘integrated services digital network’,
as we shall see in chapter 9, offers massive advantages in message routeing and the
provision of advanced subscriber facilities. These advantages can most conveniently
be provided by means of integrated digital switching circuits under computer
control. In the future, the impact of optical-fibre systems will be felt throughout
the network, from the subscriber loop (which connects the user to the local
exchange) through urban and intercity connections to trans-oceanic cable connec-
tions. Fibre-optic systems exhibit, in addition to increased bandwidth, the following
further advantages over wire-based communication systems.

(1) Freedom from crosstalk and electromagnetic interference, conferring a
quality benefit in adverse environments. This benefit is manifest in substantially
increased repeater spacing (by about an order of magnitude) over typical require-
ments for wire-based systems, where spacings of 1 or 2 km are commonplace. It
should, perhaps, be noted that wire-system digital transmission involves the use of
signal amplitudes of several volts which are thus greatly in excess of ‘thermal’
noise levels at the detector. By contrast, optical systems operate with detected
photon fluxes which are sufficiently small to make gaussian noise, rather than
general and perhaps poorly characterised line impairments, a matter for concern,
For these two competing systems, the factors determining repeater spacing are
thus somewhat different in ‘kind’.

(2) Elimination of frequency-dependency (and temperature-variability of
frequency-dependency) conferring a benefit in the elimination of line-loading and
complex transfer function equalisation.

(3) Reduced cost as the ‘per user, per kilometre’ price of light-guide cable
falls below that of copper-wire cable.

(4) Probable reduced long-term maintenance owing to the chemical and
mechanical properties of the glass-based optical system.

The most significant fibre-optic cable parameters relate to cable loss. Attenua-
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tion, caused by the presence of material inhomogeneities, has been reduced over
the decade to 1980 by some three orders of magnitude. Current practical attenua-
tion figures of about 1 to 5 dB km™! (depending upon glass properties and operat-
ing frequency) are now competitive with the attentuation figures for wire-based
cables. However, from the system viewpoint, the critical parameter of repeater
spacing is, for other reasons, much improved for optical links, as we have already
seen. Figure 2.7 illustrates the loss-spectrum typical of transmission through high-
quality silica-glass fibre, doped with germanium to improve its optical properties.
The loss curve is lower-bounded by Rayleigh scattering loss caused by material
contaminants and inhomogeneities and by infrared absorption loss. Other loss
mechanisms, attributable to the presence of hydroxyl ions trapped in the fibre,
give rise to the resonance peaks in the experimental loss curve. A loss-minimum
is observable at 1.3 um wavelength (2.3 x 10'% Hz) within the near infrared band
which extends from 0.78 um to 3 um (the visible light spectrum extends from red
at 0.78 um to violet at 0.4 um).

A second loss component, known as ‘microbending loss’, is caused by the
unintentional introduction of small (‘millimetre’) radius bends in the fibre. Such
loss can be virtually eliminated by suitable mechanical design of the cable system.

Another important optical-fibre characteristic is dispersion, which causes
different light frequencies to travel with differing group velocities (a phenomenon
evident, for example, in the dissociation of light into its colour-spectrum by a glass
prism). This effect is clearly deleterious to pulse-shape in the transmission of
extremely broadband (high-rate) signals and would lead to unacceptable waveform
degradation. It may be minimised by appropriate fibre design and appears not to
be a dominant problem in the installation of state-of-the-art light-guide systems.
In this context, ‘fibre design’ relates primarily to the precise control of doping
profile across the fibre diameter. Doping profile governs refractive index and
consequently determines mode paths for the different modal states which can be
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propagated, as figure 2.8 shows. Typically, a narrow-core, step-refractive-index
fibre grading would be used to establish a profile suitable for single-mode trans-
mission.

Figure 2 9q illustrates (for the same fibre type as was characterised in figure 2.7)
the dispersion, which can be seen to fall towards zero in the vicinity of minimum
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loss. Pulse spreading caused by dispersion is thus seen to be minimised by restrict-
ing pulse bandwidth. Furthermore, spreading increases with distance. Consequently,
system bandwidth effectively decreases with increasing fibrelength, is maximised
at minimum group-delay and is characterised as a bandwidth—distance product, as
figure 2.9b indicates.

Two optical source technologies are currently used: gallium arsenide (GaAs)
light-emitting diodes (LEDs) and injection lasers. The technical attributes of these
alternatives are compared in table 2.1. It should be noted that neither source can
be coherently modulated (that is, modulated in amplitude or phase, or both, with
reference to some absolute value of phase). This is because, even for the laser, the
4 nm spectral width, representing as it does, a fractional bandwidth of 0.5% at
0.8 um, implies a carrier bandwidth in excess of 10'2 Hz even before modulation
is attempted. Modulation is thus essentially the power control of a noise-like
carrier, power being fluctuated in sympathy with the modulating signal.

The critical parameter determining effective available source bandwidth is the
optical pulse risetime, typically in the low nanosecond region. Source bandwidth
is thus constrained to some few hundreds of megacycles. The higher power output
of the injection laser, together with its superior conversion efficiency and better
coupling properties (it generates relatively few modes and thus loses proportion-
ately less power when coupling into a single-mode fibre), taken in conjunction
with its poor linearity, make it most suitable for long-haul (up to ~ 60 km) digital
applications. The LED, by contrast, is adequate for medium-haul (~ 10 km) digital
or short (~ 1 km) videoband (5 MHz) analogue links. It should be noted that the
performance requirements on analogue and digital links are distinctly different.
The former place heavy dependency upon high signal-to-noise ratio (typically in
excess of 40 dB). The latter can operate at low bit-error rates at substantially
smaller signal-to-noise ratios (of the order of 10 dB); thus, in a transmission con-
text which is not, itself, bandwidth constrained, they are to be preferred. In other
words, whenever possible it is better to digitise, rather than transmit raw analogue
signals, in an optical communication context.

Optical detection is performed by means of a photodiode. Two types are used:
the p-i-n diode and the avalanche diode. The term ‘p-i-n’ signifies a three-layer
structure, in which a lightly doped p- or n-layer (the ‘i-layer’) is sandwiched
between more heavily-doped p- and n-type layers. The avalanche photodiode,
reversed-biased into the avalanche region where secondary breakdown can occur
during optical stimulation, provides a photomultiplication capability and hence
higher detection sensitivity. Of these two devices, the high linearity of the p-i-n
diode makes its use mandatory for high-quality analogue links. Otherwise, the
avalanche photodiode offers preferable performance, although the requirement
for a high supply voltage, to ensure bias into the avalanche region can introduce
logistical problems in system development. Good performance figures in respect
of response time, low dark-current and good quantum efficiency (the ratio between
generated electron—hole pairs and incident photons) are consistently obtained with
silicon devices, which are suitable for wavelengths of 0.8—0.9 um. However, silicon
devices exhibit a rapidly diminishing response for wavelengths in excess of 0.9 um.
To accommodate applications making use of the attenuation minimum at 1.3 um,
referred to above, germanium-based devices, which exhibit good long-wavelength
sensitivity, are being developed.

Overall system performance may be gauged in terms of transmission margin.
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We presume that the optical system transmits binary data. Binary ‘zero’ is repre-
sented by zero photon flux incident upon the detector. Binary ‘one’ is represented
by a mean incident photon flux of M photons per T second-long digit. Quantum
theory tells us that a photodiode will generate (per T seconds) NV electron—hole
pairs from the M photons (with N <M assuming no detector gain) according to a
Poisson distribution

N
on) =220

If a binary ‘one’ is transmitted, and detection of that fact is accomplished if at
least one electron—hole pair is released during the T second digit period (the
theoretical minimum required for detection), then the probability of failure must
simply be Q(0) = exp(—M). 1t is frequently the case that an error rate of 1 in 10°
transmitted digits is used to indicate performance of the optical link. Then Q(0) =
107%, and we find that M = 21. We therefore note that an exceptionally low error
rate of 1 in 10° is indicated, provided that at least 21 photons reach the detector
photodiode per transmitted binary ‘one’. Such an argument provides an upper
bound to system performance. It ignores detection efficiency and the contribution
of dark-current noise; it also takes no account of the comparative performance of
subsequent detection circuitry. The combined effect of such additional factors
serves to increase the required photon flux fora 10~° errorrate to perhaps M = 200
for an avalanche diode, with a gain of 100 or to about 20 000 for a unity-gain
p-i-n diode.

The energy per photon is given as (hf) Joules, where i is Planck’s constant
(6.62 x 10—34 I 5) and f is the optical transmission frequency. The peak transmit-
ted power is thus Mhf/T or MhfR where R is the digit rate. Applying this formula,
and assuming f=2.3 x 10'% Hz, corresponding to transmission at the minimum
loss wavelength of 1.3 um, we find that the required received power is as plotted
on figure 2.10. Superimposed upon this graph are typical output domains for LED
and injection lasers, taken (in part) from table 2.1. (At high digit rates, thermal
effects within the optical source force a lowering of average output power.) Thus
a system configured using a LED source and a p-i-n diode detector, operating at
4Mb s~ may be expected to yield (for an error rate of 1 in 109) a transmission
margin ‘A’ of about 35 dB. With a fibre loss of, say, 1 dB km_l, this margin will
have reduced to zero at 35 km, at which distance regeneration and retransmission
will be necessary if the error rate is not to degrade.

2.13 Modulators

The system block that will be of major interest to us in the following chapters is
the modulator. A modulator is a device which operates on an input carrier wave-
form v(¢) with a modulating waveform to provide some related output waveform.
The operation is functional, in that

V(1) = f{vm (), ve(D} (2.12)

where f( ) represents some non-linear function of the two variables v, () and
vc(?). By ‘non-linear’, we mean that doubling either input does not merely double
the output. '

Almost always, the carrier waveform is either sinusoidal, square or an impulse
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Figure 2.10 Transmission margin for the optical fibre system

TABLE 2.1
Property GaAs LED Injection Laser
Typical power to 0.1-10 mW 1 mW-100 mW
fibre (substantially higher at
low duty cycle)
Transfer linearity Excellent On—off nonlinearity
Conversion efficiency 0.025% 0.25%
(electrical: optical (many modes launched) (few modes launched because
into cable) of lasing action, so coupling
efficiency high)
Peak emission wavelength 800—1000 nm 800—1000 nm
Spectral width 30—60 nm 4 nm typically
Lifetime 10" h Variable: to 10°® h at best;
10% h typically
Risetime 2—-10nS 1nS

train. On occasion, noise-like carriers have been employed, mainly in experimental
systems. A case in point would be the modulation of the power output of an
infrared or optical source as has been discussed in the previous section.

The broad purpose of modulation is to insert the information contained in
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vm(t) into the waveform v,(t) in such a manner that v,(t) will have some
preferred properties which v.(t) did not, itself, possess. This is achieved by
varying some parameter, or parameters of v.(t) in sympathy with v.(1).
Naturally, the modulation process must produce a signal from which v.(1)
may be regained in a demodulation process. Assuming that demodulation can
be achieved, the modulation operation will result in the output signal v.(t)
having one or both of two important properties

(1) It may spectrally relocate the baseband information v.(t) at a
suitably high frequency, thereby easing the problems of propagation between
transmitter and receiver.

(2) It may provide a measure of immunity for the signal, protecting it
against the corrupting effect of the channel.

Note, finally, that we cannot in general apply Fourier methods to determine
the spectrum of the modulated wave V,(t) in terms of Vi(t) and V.(t) or their
spectra. This is because the modulation operation is non-linear, and as we saw
in section 1.12, non-linear systems cannot be handled by means of Fourier
transforms, since superposition does not apply. This is not to say that, given
certain modulations, Fourier transforms may not be used; in special cases the
method may be helpful. It is simply that a general expression

Vo(f) = F{Vau(f), Ve(f)}

cannot be found which corresponds to the modulation operation
vo(t) = f{om(1), ve(1)}
2.14 Sinusoidal Modulation
We have, as our specification of the sinusoid, the equation
v(t) = A cos(2wft + ¢)

When we perform a sinusoidal modulation, we vary one or more of the
parameters of v(t) in sympathy with a modulating signal vx(t). In order that
we may establish a coherent theory of modulation, it is necessary that we
should discuss in some detail the implications of allewing v(t) to have
time-varying parameters. In its most general form, we may express the
modulated wave as

v(t) = A(t)cos{0(t)} (2.13)

where both A(t) and 6(t) are as yet unspecified functions of the modulating
signal.

Equation 2.13 has a phasor representation, figure 2.11, which consists of a
rotating member of length A (t) making an angle 6(t) with the abscissa. Since
this phasor is rotating, it will have an angular velocity 6(t). In the case of a

completely unmodulated sinusoid, since 6(t)=2wft+ ¢ it follows, as we
might expect, that §(t) = 2wf. We may conveniently think of the quantity
0(t)/2m as a time- -varying frequency and as a consequence we refer to it as the
instantaneous frequency of the wave v(t). Furthermore, we regard the instan-
taneous frequency as being composed of some fluctuation about a fixed value,
much as a general time waveform is composed of a fluctuation about a ‘d.c.
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—
t

Figure 2.11 The general modulated sinusoid v(t) = A (t)cos{6(t)}

level’. To this end, we write

IO I0)

—2?— f+¥ (214)
so.that, when we integrate to obtain 6(t), we obtain
0(t) =2wft+ (1) (2.15)

In so defining the sinusoid, we see that the frequency, f, is not a parameter that
may be varied as a function of a modulating signal. Instead, frequency
variation corresponds to a fluctuation of 6(t)/2w and hence of ¢(t)/2w. We
shall discuss the implications of this, and the nature of both frequency and
phase modulations at greater length in chapter 4.

We have, then, a general sinusoid with time-varying parameters

v(t) = A(t)cos{2nft+ & (1)} (2.16)

from which we may isolate the three basic classes of modulation summarised
in table 2.1.

TABLE 2.2 THREE BASIC CLASSES OF MODULATION

Case Condition Practical Examples
Envelope A(t) = g, {v.(1)} ‘Product’ modulation
Modulation ¢(t) = constant Conventional amplitude modulation
Phase modulation
Angle A(t) = constant Frequency modulation
Modulation & (1) = g{va(1)} Frequency modulation with

pre-emphasis
Single sideband
Asymmetric sideband
Composite A (1) = gi{va(1)} Independent sideband
Modulation & (1) = g{va(1)} Vestigial sideband
Compatible single sideband
Single-sideband Fm




88 MODERN COMMUNICATION SYSTEMS

Problems

2.1 A gaussian noisewave defined by the distribution
p(v) =0.04 exp(—0.005v?)

is added to a sinewave of amplitude 10 volts. Determine the signal-to-noise
power ratio and express it in decibels.
(Answer 0.5, -3 dB)

2.2 Thenoisewave defined in question 2.1 is presumed to be band-limited to
the range |f| <3.4 kHz. If the spectrum is presumed white in this range,
determine the value of the noise-power spectral density.

(Answer 0.03 volt’> Hz)

2.3 A channel has a transfer function

H(f) =3 {1+ cos(afifo} IfI<fo
=0- elsewhere

Sketch this transfer function and state its effect on signals passing through it.
Show that the channel may be represented by a parallel bank of filters

H(f) = H.(f) + Huo(f) + H(f)
where

H(f)=5 allf
HL(f) = exp(+infifo)

H(f) = 3 exp(-jnfifo

Show that the effect of the channel is to pass an attenuated replica of any input
signal, plus two echoes.

2.4 Distinguish clearly between the kinds of distortion introduced by (a) a
linear channel with a non-ideal transfer function and (b) a non-linear channel
with an ideal transfer function.

2.5 State two important reasons for utilising modulation to prepare a signal
for transmission. Is the modulator a linear device, in general, and is its
operation capable of specification as a transfer function as would be the case
with a linear filter?

2.6 Show that a transfer function H(f) will act upon a white noise source of
power spectral density 1 to yield a power spectral density

P(f)=n [H()I
How would you determine the mean square noise-voltage (that is, the total
noise power) at the output of the transfer function H(f)?

2.7 Itis sometimes useful, in assessing the performance of communication
systems to have recourse to the concept of the ‘noise-equivalent bandwidth’,



THE INFORMATION SOURCE AND COMMUNICATION CHANNEL 89

B, of a filter. The noise-equivalent bandwidth is the bandwidth of an
ideal rectangular filter which would yield an output-noise power spectral
density that was white and conveyed the same noise power.

Gaussian noise of uniform spectral density 7 is applied to a first-order RC
lowpass filter. Show that the spectral density of the output noise is

P(f) = n{1+(Q2wfCR)*}"

and that the total noise power is mqCR volt®>. Hence show that the noise-
equivalent bandwidth is mCR/2 Hz.

2.8 A phase detector, used as the first stage of a frequency demodulator,
exhibits at its output a noisewave of uniform spectral density n within the
range |f|<B/2. The phase detector is followed by a differentiator which is
used to convert the phase detector to a frequency detector. Determine and
sketch the noise spectrum at the differentiator output and calculate the total
noise power as a function of B. (Hint First obtain the transfer function of the
differentiator from table 1.2.)

2.9 A narrow-band process is one for which f. » B where f. is the nominal
band-centre frequency and B is the nominal bandwidth. Such a process may
be regarded as a sinusoid

v(t) = A(t)cos{2f.t + (1)}
or, alternatively, this expression may be written as
v(t) = x(t)cos(2wf.t) + y(t)sin(2wf.t)

(a) Determine x(t) and y(t) as functions of A(t) and ¢(t), and vice versa.

(b) Discuss the statement: ‘A(t) and ¢(t) will be slowly varying fluctu-
ations, relative to the fluctuations of the wave v(t)’.

(c) Discuss the statement: ‘x(t) and y(t) must be independent baseband
processes of bandwidth B/2’.

2.10 An envelope-modulated carrier

ve(t) ={Ac+ va(t)}cos(2mfct)
modulated with a sinusoid
Um(t) = Am cOS(2Tfmt)

has a spectrum consisting of a carrier 8-function plus a symmetrical pair of
sidéband &-functions spaced a distance f. on either side of the carrier. Show
this to be the case and hence show, by analogy, that the most rapid fluctuations
of the envelope of the general narrow-band process defined in question 2.9
will be of period T~1/B

2.11 If the narrow-band process described in question 2.10 is simply the
noisewave in a typical communication channel, then v(t) will have a gaussian
distribution. It is also the case that x(t) and y(t) will have gaussian distribu-
tions. If the power in x(t) and y(t) is

p=py =P
calculate the average power in v(t).



3 Envelope Modulation

We have defined the general modulated sinusoid, in section 2.14, as
v(t) = A(t)cos{2nf.t + o (1)}

The amplitude and phase terms are some functions of the modulating signal
Um(t), as yet undefined, so that

A1) = gi{om(1)}
o(t)= gz{vm(t)}
There are three principle reasons for modulating a sinusoidal carrier

(1) To relocate baseband information so that it is spectrally adjacent to
the high-frequency carrier. This frequency translation makes electromag-
netic propagation much easier. Both transmission power and antenna size
may be reduced as the carrier frequency is increased.

(2) To provide the capability of frequency division multiplexing many
baseband channels .

(3) To increase the transmitted signal (that is, the modulated carrier)
redundancy, thereby gaining a measure of immunity to the signal corruption
introduced by the channel.

In this chapter, we shall examine the class of modulations in which only A(t)
is varied, and then linearly in sympathy with the modulating signal so that

A(t) < vn(t)
¢(t) = a constant

This class we refer to as linear envelope modulation. In its most general form,
linear envelope modulation is defined by the equation

v(t) = (kvm(t) + c)cos(2nfct + dc) (3.1)

where k, ¢ and ¢. are constants.
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Figure 3.1 The product modulator. v.(t): modulating signal; v(t): modulated carrier

3.1 Product Modulaticn

The envelope modulation, equation 3.1, has its simplest form when k=1
and ¢ = 0. If we choose to regard the carrier as phase reference, then we may
set ¢. to be zero as well, so that

v(t) = va(t)cos(2mfct) 3.2)

This equation we shall take to define product modulation of a sinusoid by a
modulating signal v.(t).

We may commence our examination of product modulation by defining
the system block which performs the modulation operation. This block is
simply a multiplier, figure 3.1. Next we shall consider the operation in the
time domain, figure 3.2. The time-domain waveform corresponding to the
modulator output can be seen to be a sinewave with a time-varying en-
velope. The zero crossings, which loosely define the ‘frequency’ of the
modulated carrier are unchanged by the modulation process, so that no
‘frequency’ modulation is taking place. At points A in figure 3.2 it will be

Vm(t)
A A A
T P v

cos(2wf.t)

Figure 3.2 Product-modulation waveforms
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seen that rapid phase reversals of the modulated carrier take place when the
modulating signal changes sign. This effect is characteristic of product mod-
ulation. We shall see in chapter 8 how it can be turned to advantage in
allowing us to think of digital-product modulation as a form of digital-phase
modulation.

Next we examine the spectral properties of the modulated carrier. Al-
though we have been at pains to stress that Fourier methods cannot, in
general, be employed when a non-linear operation is involved, product
modulation is an exception to this rule because superposition still applies.

Suppose that the modulating signal v.(t) and the modulated carrier v(t)
have Fourier transforms (that is, voltage spectra) V.(f) and V(f) respec-
tively. Then, as we shall show shortly, it follows that

V() =3 {Valf = £+ Valf + ) (3.3)

The frequency translation defined by this equation is illustrated in figure
3.3. Notice that the baseband spectrum is sketched as having complex
conjugate symmetry. Notice also that the modulated carrier occupies twice
the bandwidth of the baseband signal. Another feature of the modulated
carrier spectrum should also be apparent. The two halves of the spectrum
above and below the carrier convey the same information. The spectrum
exhibits gross redundancy—a feature which, as we shall see in section 3.10,
can be turned to our advantage when we consider the noise performance of
linear envelope-modulation systems. We refer to the two halves of the

Re [Vin(£)]

Im '_'v‘.,.\rflj

Figure 3.3 Spectra corresponding to product modulation; A: upper sideband, B: lower
sideband
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modulated carrier spectrum as the ‘upper and lower sidebands’ of the signal.
By deleting one or the other of these by means of a suitable filter, we may
form a non-redundant ‘single-sideband’ waveform. Such waveforms are
extensively employed in voice communication systems and we shall consider
them in detail in chapter 5. They are not suitable material for this chapter,
however, since the deletion of one sideband results in the generation of a
modulated carrier in which both amplitude and phase are functions of the
modulating signal: a composite modulation.

Another feature of the product-modulated wave is apparent from either
figure 3.3 or from equation 3.3. Although a carrier wave cos(2wf.t) is used in
the generation of v(t), no component of this wave other than that which
results from the d.c. level in v.(t), if any, is present in the modulated carrier.
For this reason the product-modulated carrier is sometimes referred to as a
suppressed carrier amplitude-modulated wave. The fact that a ‘suppressed
carrier’ is involved in the modulation process is sometimes depicted on
sketches of spectra relating to the modulated carrier by a broken §-function
(see, for example, figure 5.10).

The proof of equation 3.3 is not particularly difficult. We have first the
Fourier transform integral

+o

V(f) = .L v(t)exp(—2wjft) dt

However, v(t) is defined by equation 3.2 as
v(t) = vm(t)cos(2wf.t)

= v—z@ {exp(2mijfet) + exp(=2mifct)}
so that .
V() =5 | valiHexp(@mifa) + exp(~2nif)lexp(~2mift) dt
1
2

_[jv.,,(t)exp{—z-rrj(f —fot}de +% J:v,.,(t)exp{—an(f +f)t}de
If, now, we let

A= f— fc

Az = f+ fc
Then

V(f)

Um(t)exp(—2mjAit) dt +% J Um(t)exp(—2jA.t) dt

I

= N N
——

V(A1) + Va(X2)}

S AValf = £+ Valf + £}

If we make the assumption that the carrier frequency is sufficiently high,
and the bandwidth of the baseband function V,(f) is sufficiently low that the
shifted bandpass functions Vun(f—f.) and Va(f+f.) do not overlap in the
region of zero frequency, then we may express the power spectrum P(f), of
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the modulated carrier v(t) in terms of the power spectrum, P.(f), of the
modulating signal v.(t).

P(f) = {Pu(f+ £+ Pulf ~ 1) (3.4)

The assumption quoted above is not a very restrictive one, since it is almost
always the case that modulated carriers are ‘narrow-band’ processes or at
least have minimal spectral overlap at zero frequency.

Before proceeding with a discussion of the detection of product-modulated
waves, it is worth noting that the modulation operation

v(t) = vau(t)sin(2wf.t) 3.5)
generates a spectrum

V()= 211 (Valf = f) = Valf + £} (3.6)

The proof of equation 3.6 is virtually identical with that quoted above for
equation 3.3 and can therefore be left to the reader to complete. We shall find
this result of particular use to us when we come to consider the generation of
single-sideband waves in chapter 5.

3.2 The Detection of Product-modulated Waves

The modulation operation defined by equation 3.2 may easily be reversed to
yield once more the modulating signal. Figure 3.1 shows how this may be
accomplished. The modulated carrier is passed into a second multiplier and
the product

vo(t) = v(t)cos(2wf.t)

is taken. The wave v.(i) contains a mean value which follows vn(t), plus
components at twice the carrier frequency. The mean value, being a baseband
process, may be extracted by lowpass filtering.

Formally, this conclusion may be substantiaied thus

v(t) = vm(t)cos(2mfct)
0o(t) = vm(t)cos’(2nf.t)

= % Vm(t) +—;— vm(t)cos{2m(2f.)t}

so that the output from the lowpass filter is, indeed, directly proportional to
vm(t).

The detection process requires that the ‘local oscillator’, the source of the
wave cos(2mfct) at the demodulator, be in frequency and phase lock with the
modulator oscillator. We could discuss the implications of a loss of lock at
great length. However, this is a rather sterile study since the product-
modulation process is not widely used for analogue-signal communication.
This is largely because of the severe detected-signal degradation which results
from a loss of lock. Should the reader wish to pursue this aspect of the system
performance further, the appropriate results will now be quoted. If the local
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oscillator produces a signal cos(2wfit + ¢,) the detector will deliver an output
proportional to

vm(t)cos{2m(f. — fi)t}cos(dy)

which is an attenuated baseband-signal with a superimposed sinusoidal
amplitude-fluctuation at the difference frequency (f. — f,). This fluctuation will
cause, assuming a relatively small frequency separation, slow, deep fades and
these cannot be combatted by any form of automatic gain-control within the
receiver because they fade to zero amplitude.

None the less, product modulation is employed in three important areas.
First, it is employed as a functional block within transmitter or receiver
systems. Then the modulation/demodulation operations can be performed
with precision because a single master oscillator will be locally available to
drive all modulators. One example of this kind of application is encountered
in the generation of single-sideband waves by the phase-shift method de-
scribed in section 5.2. Second, product modulation is encountered in 180°
phase-shift keying of a carrier by a data waveform. We shall discuss this
application in more detail in section 8.6. Suffice it to say that an accurate
reference certainly is needed at the receiver to permit coherent detection of
the received binary-digit waveforms and that great care is taken to ensure that
this reference is available. Third, it is encountered as a subcarrier modulation
in broadcast stereophony. In this instance a ‘pilot tone’ at the subcarrier
frequencyisalso transmitted and provides the means of establishing a coherent
local oscillator signal for product demodulation of the modulated subcarrier
at the receiver.*’

3.3 Conventional Amplitude Modulation

We have discussed product modulation, the simplest form of envelope
modulation, in the preceding sections and have arrived at the conclusion that,
for broadcast pruposes, the resulting demodulate can be rather unreliable.
We turn next to examine ‘conventional amplitude modulation’, and we shall
see that, not only is the detection system very much simpler than that required
for product modulation, but also it does not suffer from the same deep
fading which results from the lack of a phase- and frequency-locked local
oscillator. These factors make the system very attractive for large-scale
commercial use.

We may define conventional amplitude modulation in terms of our general
linear envelope modulation, equation 3.1, as

v(t) = {va(t) + AJcos(2nf.t) 3.7
We define a modulation index, m, thus

r.m.s. value of vn(t)
m= -
r.m.s. value of unmodulated carrier

(3.8)

Such a definition allows us to specify a typical operating value for the
modulation index even when the modulating signal is ‘noise-like’. Many texts
define the entire modulation operation in terms of a sinusoidal test-
modulating signal. As we shall see in section 3.6, such an approach fits in
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Figure 3.4 Conventional AM waveforms

perfectly well with our more general definition, even though it does not
describe a very realistic transmission condition.

Figure 3.4 illustrates the form of the modulated carrier when vm(t) is
noise-like. We could certainly demodulate such a waveform by applying the
product detector described in the previous section. However, if we do, we are
bound by exactly the same restrictions on frequency and phase stability of the
local oscillator.

Examination of the amplitude-modulated carrier in figure 3.4 indicates that
we may recover the information in the waveform by detecting its envelope.
This we may achieve by means of the rectifier and lowpass-filter circuit shown
in figure 3.5. The lowpass filter simply performs a smoothing operation on the
rectified waveform.

Note that, provided

vm(t)=—-A.

envelope detection will detect the received signal quite adequately without
reference to either the frequency or the phase of the received carrier

(a) (b)

Figure 3.5 (a) The envelope detector as a system block-diagram and (b) as a simple
electronic-circuit implementation
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component. If the condition specified above is not met, for example within the
region AA’ in figure 3.4, the phase reversal which typifies the process of
product modulation becomes apparent. The envelope detector then rectifies
the demodulate, folding it upwards about the line corresponding to the
condition

val(t) = —A.

Such a rectification is subjectively appreciated by the recipient of a communi-
cation as severe distortion. To prevent its occurrence, we choose such a value
of modulation index as to make this condition of modulation extremely
unlikely. For example, if the modulating signal were truly noise-like, then a
value of modulation index of 0.67 would result in distortion of this kind
occurring for less than 0.25 per cent of the transmission time.

3.4 Band Occupancy of Conventional am

By expanding equation 3.7, we see that v(t) is the sum of a product-
modulated wave

vm(t)cos(2mfct)
plus a carrier component
A, cos(2mfct)

Applying equation 3.3 it follows that the spectrum of v(t) has the form shown
in figure 3.6 and is given by the relation

V) =3 {Valf = )+ Valf+ 143 A -8 +£} (3.9)

Re [Vin(f)]

Re [V(f)]

Im [V(F)]

4
Figure 3.6 Spectra corresponding to conventional AM



98 MODERN COMMUNICATION SYSTEMS

Normally, with the modulation index below unity, the carrier would be
relatively large. If the modulation index is increased to a value in excess of
unity, however, we approach the product-modulation condition of operation
and the carrier component becomes small. Product-modulated waves are
sometimes injected on purpose with a small carrier component to provide an
accurate phase and frequency reference for demodulation.

If the maximum frequency component in the modulating signal, va(t), is fm
then by inspecting the spectra in figure 3.6, we see that the required channel
bandwidth for the modulated carrier must be

B =2f.,

3.5 Transmission Efficiency in Envelope Modulation

We may define the transmission efficiency, n, of a modulation system as the
ratio of the transmitted power actually conveying intelligence, p;, to the total
transmitted power, p.. Thus

=P
n D

The total transmitted power will be the integral of the power spectral density,
P(f), of the modulated carrier

p= [ P() of

By applying equation 3.9 and, as in section 3.1, assuming the carrier to be a
narrow-band process, P(f) may be found to be

P(f) =3 (Palf~ £+ Palf + £} + 3 AHBG ~f+8( +£}  (3.10)
Noting that
IMP,..(f) df = {r.m.s. value of va(t)}’

-

and that this integral is unaffected by a frequency translation, and also that,
from equation 3.8

2 2
{r.m.s. value of v.(1)}’ = -m—zAi
it follows that
m’Al Al
PETT T2

The first term is the power in both sidebands. If we choose to regard the power
in just one of the sidebands as all that is necessary to convey the information,
then

_m?Al

p’ 8



ENVELOPE MODULATION 99

711}

0.4+

0.3

0.14

Figure 3.7 Transmission efficiency in envelope modulation. Region A: normal working
range for envelope detection, assuming a .noise-like modulating signal. In region B
envelope detection would result in distortion

and hence
m 2

M= 2(m?+2)

A plot of transmission efficiency versus modulation index is shown in figure
3.7. Obviously as m becomes small, then since the sideband power also
becomes small, so does the efficiency. Most of the transmitted power is wasted
in generating the relatively large carrier component. At the other extreme, as
m becomes very large, the efficiency rises towards a maximum value of 50 per
cent. The carrier is now entirely suppressed and the modulation is purely
multiplicative.

If we choose the ‘reasonable’ value of modulation index of 0.67, so that
relatively little distortion occurs in envelope detection, the efficiency is
approximately 9 per cent. This is the price we must pay for ease of detection
and detector simplicity. In the case of commercial broadcast transmission, the
penalty is not severe. The transmitter has access to a good source of power,
and the expense of heavy-duty transmitting equipment is offset by the very
large audience that can be reached. Other applications might preclude the use
of conventional AM, however. A good example would be the transmission of
information from a space probe or an earth satellite. Here the power available
is limited by the number of solar cells or batteries provided, and these in turn
are limited by the launching-rocket payload capability. Since the designer will
wish to obtain as much data from his spacecraft as possible, he will employ
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very efficient modulators and low-power transmitters, exchanging the saving
in power-source electronics for more telemetry equipment.

3.6 Conventional AM and the Sinusoidal Test Signal

Many texts define the entire operation of amplitude modulation in terms of a
sinusoidal modulating wave. Such a wave is non-informational, but is a
convenient test signal that may be employed for system calibration. The
defining equation, 3.8, remains valid when we apply a sinusoidal test signal
and produces the more common definition of modulation index

An
A

This result is easily demonstrated. The modulated carrier has the form
v (1) = {vm(1) + AcJcos(27f.t)

m:

where, in this case

Um(t) = A cOS(2Tfmt)
Thus
v(t) = Anm cos(2mfmt)cos(2mf.t) + A. cos(2mfct) (3.11)

We identify from this equation the carrier component as A.cos(2mf.t).
Consequently we may calculate modulating signal and carrier r.m.s. values as
(2)*An and (2)*A.. Inserted into equation 3.8, these values yield the
equation quoted above.

The spectrum of the envelope-modulated sinusoid defined by equation
3.11 may be deduced either from equation 3.9, or by applying a simple
trigonometric argument. We shall adopt the latter procedure here. Expanding
the product-modulation term in equation 3.11, we have

An coS(2mfnt)cos(2mf.t) = % Anfcos{2n(fo+ fu)ty+ cos2a(f. — fu)t}]

The terms
% Ancos{2m(f-+fu)t} and % Ancos{2m(fe— fu)t}

are, respectively, the upper and lower-sideband components of the mod-
ulated carrier respectively. They produce (see table 1.3) pairs of spectral lines
thus

3 An cOS(Z(fe+ )t} < & AnlS{f + (fot fu)}+8(F = (fo+ )l

3 Ancos(2n(fe~ )t} < 5 Aul8(F+ (fo~ fu)}+8(f — (f.~ f)}]

The carrier component in equation 3.11 transforms to yield the pair of
spectral lines

7 AdB(F+ £+ 8(F - )
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The value of modulation index may be calculated from measurements
made on an oscilloscope display of the modulated waveform. From equation
3.7, we see that the envelope of v(t) is

vm(t) + A
which has maximum and minimum values
a=A.+A,
and
b=A.—A.

respectively. Solving these equations for A, and A. and substituting in the
relation we have derived for the modulation index, given sinusoidal modula-
tion

_a-b

“a+b

m

Further insight into the process of envelope modulation, which will be of
value for the purpose of comparison when we come to examine narrow-band
frequency modulation, can be obtained by considering the phasor representa-
tion of conventional amplitude modulation. The components forming the
modulated carrier are obtained by expanding equation 3.11

o(t) = %_— An cos{2n(f. + fm)t}+—;- An cos{2m(fo— f) 1} + A. cos(2mf.1)
If we take the carrier phasor to be the phasor of reference, we may consider
it to remain fixed and erect at all instants of time. Relative to the carrier
phasor, the sideband phasors will rotate with angular velocities +wn and

—wm. The phasor sum of the carrier and the two sidebands describes the
envelope of the modulated carrier, figure 3.8. By allowing the carrier phasor

ﬁ Envelope of v(t)

Radius of circle An/2

Ac

Figure 3.8 Phasor representation of conventional AM
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to rotate, instead of remaining fixed, the endpoint of the phasor sum would
inscribe, within the envelope, an amplitude-modulated sinusoid. With w. >»
wn, this sinusoid would execute many cycles to each cycle of modulation.

3.7 System Implementation: Modulators

3.7.1 Amplitude Modulators and Mixers'®'**

In this section we shall discuss the principles of envelope modulator and
‘mixer’ design. The term ‘mixer’ is commonly applied to the low-power
amplitude modulators used very frequently in radio receivers to translate a
radio-frequency spectrum to a lower band, the ‘intermediate frequency’
band. The reason for doing this is to make the filtering amplifiers in the
receiver easier to design and cheaper to construct than the equivalent
radio-frequency versions.

The basic operation of product modulation may be performed by applying
the sum of the modulating signal and unmodulated carrier to a square-law
device -with a transfer function

v2(1) = {v: (1)}
Then, with

0:(t) = vm(t) + cos(2mfct) (3.12)
it follows that

va(t) = {om(O)F +% [1+ cos{2m(2f.)t}] + 2vm(t)cos(2f.1)

In this wave, the first and second components are at frequencies respectively
much lower and much higher than the carrier frequency (assuming that the
carrier frequency itself is much greater than the baseband-signal bandwidth,
as would normally be the case). They can therefore be eliminated by bandpass
filtering, so that the modulation system is that depicted in block form in figure
3.9. '

Any second-order non-linearity

Uz(t) =ao+av,(t)+ a»Z‘{vl(t)}2

wili generate an envelope-modulated wave, since by inserting equation 3.12

v(t)

Data Vm(t)‘ vy(t) vp(t)
source i

cos(2wf.t)

©

Figure 3.9 The generation of a product-modulated wave by means of a square-law
non-linearity

a2
l
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Figure 3.10 (a) The semiconductor diode characteristic corresponding to a small signal,
or power-series law and (b) corresponding to a large signal, or piecewise-linear law

we find that
02(t) = a0+ a1vm(t) + a1 cos(2mf.t) + ax{va(t)}’

+ 221+ cos@n(2f)t}]+ 2azva(t)cos(2nf.)

The output from a bandpass filter following the non-linearity is a wave
v(t) = {a: +2a:v.(t)}cos(2f.t)

which corresponds directly with the form of a conventional AM wave, equation
3.7.

Unfortunately, devices with perfect second-order non-linearities are rare.
Non-linearities in general, however, are quite easy to come by. These fall into
two broad categories '

(a) Power-law non-linearities (characterised by a smooth curve) which
have the general form

02(t) = a0+ a10m(t) + ax{va()) + as{va ()} +. ..
(b) Piecewise-linear non-linearities.

It is often the case that the power-law non-linearity characterises the
‘small-signal’ behaviour of a device, whereas the piecewise-linear non-
linearity characterises its ‘large-signal’ behaviour. To provide an illustrative
example of this, consider the diode p—n junction law

i =i{exp(eV/kT)—-1}

A typical device characteristic is sketched in figure 3.10 for both small- and
large-signal behaviour.

If we choose a suitably small signal swing we may expect a second-order
equation to provide a good fit to any smooth curve. (Given an extremely small
signal swing, even a first-order curve would be a good fit to a given function,
providing the function contains no discontinuities. Differential calculus is
based on this principle.)

It follows that the power-law curve corresponds most closely to low-level
Mixer operation, rather than large-signal modulation prior to transmission. A
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Figure 3.11 A small-signal superheterodyne receiver mixer and first intermediate-
frequency amplifier stage. Block A provides bandpass filtering at the intermediate
frequency

typical circuit employed for this purpose is shown in figure 3.11. The small
amplitude radio-frequency signal picked up by the antenna is summed with a
small signal generated by the local oscillator. The oscillator, which is usually
an integral part of the first stage of transistor amplification, has a frequency
which is variable in sympathy with the tuning frequency of the antenna
resonator. Thus the difference frequency between the local oscillator and the
incoming radio-frequency signal is maintained constant. The transistor is
biassed into a non-linear region of operation and provides gain. Consequently
the collector voltage is a modulated sinusoid at the difference, or ‘inter-
mediate’, frequency. This signal is passed to the ‘intermediate frequency’
amplifier—a bandpass amplifier with a centre frequency equal to the differ-
ence frequency and a bandwidth just sufficient to pass the two sidebands of the
modulated difference-frequency sinusoid. The intermediate-frequency amp-
lifier usually consists of several stages of tuned, transformer-coupled transis-
tor amplification. This method of achieving highly selective bandpass filtering
of the incoming radio-frequency signal is known as superheterodyne recep-
tion.

It is useful, before passing on to examine the use of piecewise-linear
approximations in the development of modulators, to examine the effect of
applying too large an input signal, v,(t), to the non-linear device. Suppose, for
example, that as a result of making just this mistake, we cause the curve to be
most closely approximated over our larger signal range, by a third-order
equation

v2(t) =ao+ av,(t) + az{vl(')}z + aJ{Ul(‘)}3

If now we insert equation 3.12 into this expression and gather terms, we arrive
at an equation of the form

02(t) = {Ao+ Bovm(t) + CovZ(t) + Dovi(t)}
+{A+ Bjva(t) + Civi(t)}cos(2mf.t)
+{A2+ Bovn(t)}cos(2mw2f.t)
+{A;}cos(2m3f.t)
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Here the coefficients Ao, A, . . . are all functions of the coefficients ao, a,, a»
and a;. The second term, which consists of an envelope-modulated carrier,
contains a component

Civa(t)cos(2mf.t)

which contributes, on demodulation, a signal proportional to the square of the
modulating signal, and therefore gives rise to distortion. Note that the
distortion cannot be removed by filtering; all we can do to reduce it is to
decrease the input signal strength applied to the non-linearity until the signal
range is such as to encompass, effectively, only a second-order law.

The piecewise-linear (large-signal) law may be employed to obtain conven-
tional amplitude modulation in a variety of ways. If we take as our model the
diode characteristic sketched in figure 3.10, we may construct a simple
modulator after the fashion of figure 3.12.

The first step in the modulation process is the summation of the analogue-
data waveform v.(t) and the carrier waveform cos(2wf.t) to form the input
waveform v,(t) which is applied to the non-linearity. The excursions of the
modulating signal are arranged to be rather smaller than the amplitude of the
carrier. If this is not the case gross distortion of the modulating signal will be
evident, on detection. The non-linearity effectively rectifies v,(t) forming the
waveform v,(t) from which the conventional AM wave v(t) may be extracted
by bandpass filtering.

A very simple circuit which might be developed into a practical modulator
operating in this manner is shown in figure 3.13. Here i, and i, are the carrier

p
——— _ h
. )
e | vy(t)
I 4 |
T T
Lo
A
N J

v(t)

Dota | vm(t) v,(t) v,(¢t)
source + >
fcos(wa,t)

©

Figure 3.12 Generation of conventional AM using a piecewise-linear non-linearity. The
circuit shown in inset A obeys a law: v,(t) = v,(t) when v,(t) > 0. Otherwise, v,(t) =0

22
l
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Figure 3.13 (a) A class C tuned-collector transistor modulator, and (b) the non-linear
transistor-characteristic

and modulating -signal current waveforms. These current waveforms feed the
modulating transistor. The transistor is biassed for class C operation so that it
is switched off when the sum of i, and i, is negative and operates virtually
linearly when the sum of i; and i, is positive. Operation is therefore ‘large-
signal’. The collector circuit is tuned to the carrier frequency and serves to
isolate the modulated carrier components about the carrier frequency.

This type of modulator circuit is only suitable at small values of modulation
index. To obtain a deep modulation, it is necessary to cascade two or more
such stages. If this is not done, the linear relationship between the envelope of
the modulated carrier and the modulating signal will not be preserved.

3.7.2 The Transconductance Multiplier

In the previous section we discussed the generation of envelope-modulated
waves as the result of applying the sum of modulating signal and unmodulated
carrier to a suitable non-linearity. We saw that conventional amplitude
modulation could be obtained fairly easily, and at high power-levels if
necessary, by employing piecewise-linear modulators. We also saw that low
power-level mixing could be achieved with circuitry that was fairly economi-
cal of components, figure 3.11. Both types of modulator, although simple in
principle, have one serious drawback—they both require the use of transfor-
mers to provide a.c. signal coupling, summation and bandpass filtering. Since
transformers are both bulky and costly, there has been a general trend
towards the design and use of special-purpose integrated circuits making use
of either the small-signal ‘transconductance multiplier’ principle, or the
large-signal ‘chopper bridge’. In this section we shall consider the first of these
two techniques. The second is described in section 3.7.3.

The transconductance multipler is a well-known circuit for high-speed
multiplication in analogue computers. Historically, the problems of circuit
complexity, temperature stability and consequent high cost have limited its
field of application. Recent advances in integrated-circuit technology have
resulted in the development of complex linear circuits in which precise control



ENVELOPE MODULATION 107

of component values is possible. This, together with the close thermal tracking
of components placed on the same substrate, has allowed manufacturers to
reproduce the analogue transconductance multiplier very cheaply as an
integrated-circuit chip. The device has the additional very desirable features
that transformer coupling is not required, and that the multiplier output,
being a true product, does not need to be bandpass filtered.

The heart of the transconductance multiplier is the differential transistor
amplifier shown in figure 3.14a. The important features of this circuit are as
follows

(1) The input signal swing is small and fluctuates about the level vs.

(2) The collectors of the transistors act as current sources. This means
that the current issuing from each will not fluctuate with changes in load
resistance (no resistors are shown in figure 3.14a because this transistor pair
will be used to feed two more such pairs). It does not mean that the collector
currents do not themselves fluctuate, only that such fluctuations as result
because of the applied input signal are independent of changes of load. This is
because the transistor is a device with an output impedance which is relatively
large in comparison with the load values chosen to be operated in conjunction
with it.

(3) The currents issuing from the collectors have the same bias value,
corresponding to the condition v, = 0, or balanced operation, of i./2.

(4) The collector current fluctuations, which are in antiphase, vary in
sympathy with the fluctuations in v, and are proportional in magnitude to i..

(5) It follows that the circuit performance may be summarised by the
relations

ic, = +klvlic+ 15/2
icz= —klvlie+ 13/2

where k; is a constant of proportionality, and
i, +ic, = ic

If, next, we apply the collector currents i., and i., to two more differential
amplifiers, as figure 3.14b indicates, the following relations will be found to
exist

ic, = +kovaic, +ic,/2
ico= —kovaic, + i, /2
ic; = —Kavaic, + ic,/2
ice = +Kavzic, + ic,/2
Solving, we find that
iey +ic, = 2k k201020 + /2
x V0,

By simply implementing this equation electronically, we arrive at the basis for
an integrated circuit which may be used either as a mixer, or if its output is fed
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to a suitable high-frequency power amplifier, a high-quality product mod-
ulator. By suitable injection of a carrier component prior to power amplifica-
tion a conventional AM wave may be generated.

Provided that it is used in the small-signal mode, the transconductance
multiplier is capable of ‘four-quadrant’ operation. This means that it will
deliver a correct product when v, and v, are either positive or negative. If we
attempt to run the multiplier in the configuration sketched in figure 3.14c ina
large carrier-signal mode, to obtain the sharp-edged ‘chopper-modulated’
waveform which characterises this type of modulation, we find that the device
will yield only two-quadrant operation. This is because, with a large carrier
swing, the two upper differential transistor pairs operate as switches, and are
either ‘hard oN’ or ‘hard OFF’. As a consequence, the collector currents i., and
ic, are either blocked, or pass straight through the collectors of those of the
upper transistors which happen to be in the ‘hard oN’ state. Thus the negative
half-cycles of carrier do not appear in i., and the positive half-cycles do not
appear in i.,. The problem can be resolved by generating the sum

ey + ey — ey — cq

This can be achieved very easily by feeding the collector currents i., and i,
into another collector resistance of the same value as that fed by i., and i., and
differencing the two resulting output voltages by applying them to another
differential pair. In the next section we shall see how we may arrive at this
same basic integrated-circuit configuration as the logical development of the
traditional ‘diode ring modulator’.

3.7.3 Ring Modulators'®

In this section we shall discuss the development of modulators and mixers
based upon signal processing by means of square-wave carriers. Let us
consider a function of period T defined thus

csq(2mft)=+1 -T/4<t<+T/4
=—1 elsewhere within the range —T/2 <t <+T/2

This function is analogous to the sinusoid cos(2wf.t) and may be regarded as a
hard limited version of that waveform. We may generate a conventional
amplitude-modulated wave by applying a csq carrier in the modulator block
diagram shown in figure 3.12, in place of the sinusoidal carrier generator. The
process of formation of such a modulated carrier in this way is shown in figure
3.15. Of particular importance to usis the pre-filtered waveform, v.(t), which,
by inspection, contains a modulated csq carrier, an unmodulated csq carrier
and a component proportional to the modulating signal. This last component
and the harmonics in the csq components are eliminated by the bandpass
filter. The general form of the wave v.(t) before filtering, by inspection, is

v2(t) = vm(t)csq(2mfet) + kivm(t) + k2 csq(2wfct) (3.13)

where k, and k. are constants. By choosing from different combinations of
+vn(t) and £csq(27f.t) we may eliminate the second and third terms in this
expression. These terms represent, respectively, the csq carrier and the
modulating-signal components at the output from the non-linearity. Their
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Figure 3.15 Generation of conventional AM by means of a csq carrier

elimination before the filtering process is of significance in that it implies that
we may be able to design a large-signal modulator, operating on a switching
principle, without the need for a filter and hence bulky and expensive
inductive reactances. This in turn means that the circuit would be suitable for
integration. The modulated carrier generated by such a modulator is still of
the basic ‘csq’ form. As it stands, this is unsuitable for propagation, butis quite
suitable for many signal-processing applications.

The elimination of the second and third terms in equation 3.13 is most
easily grasped by inspection of typical system waveforms, figure 3.16, which
indicates that four-quadrant modulation may be obtained if we form the sum

‘—11 (va— o+ Va— V) = Um(t)csq(2mfct)

This sum, in which the csq carrier is suppressed, may be implemented by the
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Figure 3.16 System waveforms for four-quadrant chopper modulation

system illustrated in figure 3.17, from which the classical ‘diode ring mod-
ulator’ follows directly as perhaps the simplest and most obvious practical
implementation. In fact, the carrier, v., is usually applied as a sinusoid, if only
because the transformer T, may then be tuned to resonate at the carrier
frequency, to provide a suitably large amplitude to switch the diodes. The
action within the bridge of the carrier is still that of a ‘csq’ switching
waveform. If this modulator circuit is required for transmission purposes, or a
narrow-band modulated sinusoid is needed, then the output transformer, T
may also be tuned to resonance at its secondary terminals. It should be noted
that if this is done the resulting waveform is a product modulation in which the
sinusoidal carrier is suppressed.

A considerable improvement in performance may be obtained by replacing
the diode bridge in the ring modulator by a switching transistor-bridge. Such
transistor bridges as the one illustrated in figure 3.18 are commercially
available as integrated circuits. Because all the transistors are fabricated on
the same substrate, close temperature-tracking of the transistor parameters is
possible. This minimises carrier and signal leakage through the bridge to the
output transformer. This circuit configuration provides a close link between
the discrete-component diode-ring modulator and the entirely-integrated
‘chopper’ modulator.

Transformers T, and T; incorporated in both the transistor and diode
bridge modulators essentially serve the purposes of phase splitting and signal
summation respectively. As figure 3.19 indicates, they may be replaced by
differential transistor amplifiers. The entirely integrated large-signal mod-
ulator is then easily deduced, in its prototype form, by comparing circuit
functions and suitably redrawing the transistor bridge after the fashion of
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Figure 3.17 Switching diode-modulators. (a) A block diagram of the basic ‘chopper
modulator’ and (b) the diode ‘ring modulator’

figure 3.20. The reader will notice the many similarities between this circuit
and the transconductance modulator circuit shown in figure 3.14¢. It will also
be noticed that the chopper modulator can be used for small-signal transcon-
ductance modulation and is consequently the more flexible circuit design.
However, since the chopper modulator is rather more complex, it tends to be
more expensive to incorporate in a system, although it must be admitted that,
with integrated-circuit technology, it is not so much complexity as popularity
which finally determines cost.

We have seen that, by virtue of their design, the modulators depicted in
figures 3.14¢, 3.17, 3.18 and 3.20 operate to produce a product-modulated
wave in which the carrier term is suppressed. Because of the intrinsic
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Figure 3.18 The transistor-ring modulator, with the transistor ring fabricated as an
integrated circuit

symmetry of the manner in which they function, these circuits are often
referred to as balanced modulators.

3.8 System Implementation: Demodulators

The demodulator for product-modulated waves is, as we have seen, a product
modulator itself. Consequently, we need only concern ourselves with the
detectors employed for conventional amplitude-modulated signals: ‘en-
velope detectors’.

The simplest, and by far the most common implementation of the envelope
detector consists of a half-wave rectifier followed by a smoothing circuit,

)
VaT klvg=vp)
(b) Tk(v,,—v,,) Yo v
v,i e

Figure 3.19 (a) Phase splitters, and (b) signal differencers
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o eV,

Figure 3.20 An integrated-circuit prototype for a transistor-bridge modulator. A, B:
input-signal phase splitters; C: transistor bridge ; D: differencing amplifier

figure 3.5. Normally, the smoothing circuit merely consists of a capacitor
strapped across the diode load resistor. This is entirely adequate as a lowpass
or carrier-rejection filter because the carrier component is, for commercial
broadcast aMm, at a very much higher frequency than the modulating signal
which is to be extracted.

A product detector could, alternatively, be used to demodulate a conven-
tional AM wave and, in view of the availability of a large carrier-reference
component and the increasing cheapness of quite complicated integrated
circuits, this approach is beginning to find favour with some receiver design-
ers. None the less, it is difficult to conceive of a simpler demodulation circuit
than the envelope detector.

As we shall see in the next three sections, the product detector and
envelope detector exhibit the same performance in a noisy channel, provided
that the carrier power is slightly greater than the noise power. If the noise
power predominates, however, the envelope detector exhibits a rapidly
worsening performance, the detector output noise-level rising to obscure the
signal completely. The point at which this effect has its onset is known as the
detector ‘threshold’.
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3.9 The Effect of Noise in the Detection
of Envelope-modulated Waves

During transmission, the modulated carrier will become corrupted by channel
noise. This noise may take several forms, of which the most common are

(1) Cross-talk, or co-channel noise arising because adjacent broadcast
channels have spectra which overlap the spectrum of the signal being de-
tected.

(2) Impulse noise, such as is caused by lightning discharge or com-
mutator arcing in electrical machinery.

(3) Gaussian noise, both natural and artificial.

We choose to examine the third of these, since it provides us with a fairly
standard and reproducible test of the performance of detectors.

First let us consider the nature of the noise in more detail. We suppose that
it has a white power spectrum. This is very frequently the case in practice
since, even if the total noise environment is non-white, the narrow-band
nature of the pre-detection filters in the receiver makes the relatively narrow
band of noise which enters the detector to all intents and purposes white. In a
modern communication receiver, designed for professional use, the pre-
detection filtering will be carried out by one or more intermediate-frequency
amplifiers. The current trend is towards the use of monolithic quartz filters
within the intermediate-frequency amplifiers, so that they are extremely
selective. Even in domestic receivers, the use of ceramic resonators, as
opposed to the more conventional single- or double-tuned intermediate-
frequency transformers, is gaining ground. Although not quite so selective as
the quartz filters, these still give a remarkably fast cut-off beyond the
passband. As a consequence, we may feel justified in assuming that the
pre-detection filters closely correspond to the ideal rectangular filter intro-
duced in chapter 1. It follows that the noisewave applied to the detector will
have a power spectrum of the form illustrated in figure 3.21a.

Such a bandpass noisewave could be synthesised in the following way. We
require two independent baseband noise sources delivering gaussian
noisewaves x(t) and y(t), figure 3.21b. These are used to modulate in-phase
and quadrature oscillators at the carrier frequency. This yields a bandpass
noisewave of the most general form

n(t) = x(t)cos(2mf.t) + y(t)sin(2wf.t) (3.14)

Furthermore, if the noise power in each of the baseband waves x(t) and y(t) is
p- volt?, then

1 +T
=Lim == I x2(t) dt
== 2T (3.15)

— . 2
= an T j (t) de

The power in the noisewave n(t) may be evaluated by expressing it first in
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Figure 3.21 Noise-power density spectra in the detection of envelope -modulated waves

polar form
n(t) = {x(t) + y(t)} cos{2nf.t + d(1)}

& (1) =tan"{y(t)/x(1)}

where

It follows that
n’(t) = {x*(t) + y*(t)}cos’{2mfct + ¢ (1)}
- % (x2(t) + y (O} 1 +cos{dnfut + 26 (1)}]

Performing the integration

Lim == J*T (¢ dt
e 2T ). "

we find that the power in the noisewave n(t) is simply p. volt?, the
contribution from the double-frequency carrier term averaging to zero.
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3.10 Signal-to-noise Ratio at the Output
of the Product Demodulator

The product-modulated carrier, as we saw in section 3.1, may be expressed as
vm(t)cos(2mf.1)

The sum of noise and carrier, the waveform applied to the detector is then,
from equation 3.12, given by

{vm(t) + x(t)}cos(2mf.t) + y(t)sin(27f 1)

The detector multiplies this wave with the local-oscillator output, which is the
wave cos(2mf.t). Thus the detected waveform is

{vm(t) + x(t)}cos’(2mf.t) + y(t)sin(2mf.t)cos(2mf.t)
= % {vm(t) + x(t)}+ high-frequency terms

After lowpass filtering, the detector output may be written as
Vo) = vm(t) +x(1)

We know that the output signal power is

+T
ps= lezTJ vm(t) dt

and that the power in the noise component, x(t), is defined in equation 3.15 to
be p.. We also know that the channel-noise power is p,, this result having been
derived in the previous section. Finally, the modulated carrier power is given
by the integral

L o _ 1 J”Tl 5
Lim 5T J:T (t)dt= Lim = T vm(){1 +cos(4wf.1)} dt
=p./2

It follows that the output signal-to-noise ratio, s, may be written in terms of
the carrier-to-noise ratio, p, as

$= Ps/Pn

Figure 3.22 illustrates the detection performance of this law. It should be
noticed that the product demodulator offers an improvement in signal-to-
noise ratio as the result of the detection operation of +3 dB. This improve-
ment is obtained at the expense of requiring twice the baseband bandwidth
through which to transmit the modulated carrier. The reason for the improve-
ment may be explained in non-rigorous terms as follows.

During the detection operation the demodulation of the upper and lower-
sideband components to baseband results in the summing of sideband-
component amplitudes. This applies to both signal and noise components
within the transmission band. However, the signal components are related in
phase whereas the noise components at any two frequencies (f.£f,) have
independent phase terms. Thus the demodulated-signal components double
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Figure 3.22 Envelope modulation: detector-noise characteristics. Curve 1: product
detector; curve I1: envelope detector

in amplitude relative to the demodulated-noise components. The signal at
baseband has a power increase by a factor of four, in comparison with the
noise, which exhibits a power increase by a factor of two. Consequently, the
signal acquires an advantage of +3 dB over the noise during demodulation.

3.11 Signal-to-noise Ratio at the Output
of the Envelope Detector

The received and noise-corrupted carrier for this detection system has the
general form

{vm(t) + AcJcos(2mfct) + x(t)cos(2f.t) + y(t)sin(2wf.t)

If we write, for compactness

U = Un(t)
x=x(t)
y=y()

then this equation may be expressed in the form
(vm+ Ac+x)cos(2mf.t) +y sin(2nf.t)

The envelope of this wave, which is the output of the envelope detector, is
simply

{(vm+ Ac+x)*+y2) (3.16)

Two conditions of operation are amenable to further analysis
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(1) Input carrier-to-noise ratio very high, so that both x and y are much
less than the carrier amplitude A.. To simplify the analysis of this condition we
also assume that the modulation index is small, so that v, is much less than A..

(2) Input carrier-to-noise ratio very low, so that both x and y are much
greater than the carrier amplitude.

Since both x and y are noisewaves with a gaussian distribution, it follows
that, however large the signal-to-noise ratio, these variables will, on occasion,
assume very large values. The reader will appreciate that condition 1 specified
above refers to a most typical, rather than a guaranteed operating state for a
high carrier-to-noise ratio.

Continuing with our analysis of the envelope detector, we expand equation
3.16 to yield the detector output signal v,

0= (A4 v+ X7+ Yy + 2A00 + 200X + 2A.X)} (3.17)

Under the stated condition 1, we may write this expression in a form suitable
for expansion by the binomial theorem. First, we divide throughout by A2

Vo= A1+ (Vn/A) +(X/A)+ (YA + 20m/Ac+20mX/ Ac+ 2x/ AP

Rejecting the second-order terms, which are small under the conditions of
operation quoted above, we may express the detector output as

Vo= Al +2(vn+x)/AJ (3.18)
Because the term
2(Um + x)/Ac

is itself much less than unity if the carrier-to-noise ratio is large it follows that
we may employ the binomial theorem to simplify equation 3.18 further, so
that

Vo= Ac+v(t)+x(1)

We are only interested in the effect of the noise on the information; that is, in
the waveform

vo=0(t)+ x(t)

This result is identical to that which we derived in analysing the product
detector so that the same performance graph applies to the envelope detector,
providing that the carrier-to-noise ratio is large and the modulation index is
fairly small.

If we turn now to the stated condition of operation 2, we may rewrite
equation 3.17 in the form

\ A4+ 004 20nA+ 20X +2xA\ S
— 2 22 c m m c m c
vo(t) =(x +)’)(1+ x2+yz )

again we may employ the binomial theorem to expand and simplify this
expression, thus

(AZ2)+ VnAct+ XU+ xAc)

vo(r)=(x2+y2)%+( 34y
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Now we see that the signal term v., is always multiplied by a noise term of
some form. Consequently the signal is entirely suppressed, and the detector
output consists only of noise. This effect of complete takeover of the detector
by the noise is manifest when x and y are much larger than A.. This in turn
occurs most frequently at very low values of carrier-to-noise ratio. At
intermediate values, the effect is present for a proportion of the transmission
time determined by the noisewave being actually, as opposed to statistically,
much larger than the carrier. Consequently, we observe a deterioration of the
performance of the detector. A typical plot of signal-to-noise ratio for an
envelope detector is shown in figure 3.22. A slope of 2 may be found for the
detection curve below the threshold by applying advanced mathematical
methods. This corresponds to a square-law fall-off. The actual threshold
location depends upon the diode law, but usually occurs at a carrier-to-noise
ratio of about unity, or zero decibels.

Although, as we remarked in section 3.10, the envelope detector may be,
and sometimes is, replaced by a product detector—in which case the threshold
effect would not present a problem—it must be admitted that without further
signal processing, at a carrier-to-noise ratio of zero decibels, the output
signal-to-noise ratio of 3 dB is all but unusable. The fact is that for the great
majority of users of domestic AM receiving equipment, the carrier-to-noise
ratio never approaches the threshold value, so that the problem does not
arise.

Problems

3.1 Derive equations to illustrate the effect of loss of phase and frequency-
lock during product detection of a product-modulated sinusoid by assuming a
local oscillator signal

(a) cos(2mft+ )
(b) cos{2w(f.+Af)t}

Discuss your results, explaining why product modulation is not used to convey
information in practical radio-communication systems.

3.2 Show that, if a product-modulated wave is applied to a square-law
non-linearity, a component at twice the carrier frequency may be extracted
and further processed to yield a phase and frequency-locked local-oscillator
signal. State the further processing which is required and draw a suitable
system block-diagram. If the transmitter and receiver are moving rapidly with
respect to each other, Doppler frequency shifts will occur. How well will your
system cope with such an effect?

3.3 An envelope-modulated wave is defined by the equation

v(t) ={10+3 cos(2w10°t)}cos(2w10’t)

Identify the amplitude and frequency of the unmodulated carrier and the
modulating signal. Determine the modulation index, the power in the two
sidebands and the total power in the carrier.
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3.4 For the envelope-modulated wave defined in question 3.3, calculate the
transmission efficiency both from first principles and by using the result
derived in section 3.5.

3.5 An envelope-modulated carrier is defined by the equation

v(t) ={10+ 3 cos(2w100t) + 4 sin(2w200t)}cos(2w10°t)

Sketch the modulating signal, and the general shape of the modulated carrier.
Write down an expression for the modulating signal and determine its mean
square value. (Hint Refer to question 1.23 for guidance on the latter point.)
Determine the modulation index and state whether envelope detection will be
possible without distortion.

3.6 Carefully sketch the frequency spectrum of the amplitude modulation
defined in question 3.5 taking care to identify the phase relationships of the
various components in the upper and lower sidebands. Sketch also, to scale,
the power spectrum of the specified wave.

3.7 Whatis a superheterodyne receiver and how does it differ in operation
from a tuned radio-frequency receiver? Determine the value of the local-
oscillator frequency if a 98 MHz radio-frequency signal is to be translated to
an intermediate frequency of 10.7 MHz?

3.8 A square-law device is proposed as a detector for a conventional
amplitude-modulated signal. Show that its output contains a term propor-
tional to the modulating signal. What further processing is required to isolate
this component?

Show that a distortion term is present and indicate how it is best minimised.
Contrast the operation of the square-law detector with that of an idealised
piecewise-linear (or large signal) rectifier detector.

3.9 Explain why phase coherency of the sidebands during product detec-
tion leads to a +3 dB advantage in output signal-to-noise ratio over input
signal-to-noise ratio. How does envelope detection differ from product
detection in its behaviour in the presence of noise?

3.10 A sinewave of amplitude 4.2 volts is modulated with another sinewave of
amplitude 2 volts and frequency 100 Hz. This second sinewave may be considered
representative of the maximum modulating-signal frequency within the particular
system under consideration. The modulated sinusoid is immersed in white gaussian
channel-noise of spectral density 0.1 volt> Hz~!. Show that the system as specified
operates below the threshold for envelope detection and determine the input
signal-to-noise ratio applied to the detector.

3.11 Ifforthe system described in question 3.11, the threshold is taken to be
the point of intersection of the asymptotes

s=2p
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and
s xp’

and is taken to occur at a value of p =0 dB, determine the system output
signal-to-noise ratio.

3.12 Prove that, if
v(t) = vm(t)sin(2mfct)
V() = (12 Valf = f) = Valf + fo)}
Sketch the spectrum of V(f) if
Vm(t) = Am cos(2mfmt)

then

What change occurs if
Vm(t) = A sin(2mfat)?



4 Angle Modulation

In the introduction to chapter 3, we stated that modulation of a sinusoidal
carrier was employed to effect a spectral relocation of baseband information.
We saw that linear envelope-modulation, defined by the relation

v(t) = {kvm(t) + c}cos(2mf.t + ¢.)

also provided a small improvement in noise immunity. When the carrier is
immersed in gaussian noise, we find that the signal-to-noise ratio at the
detector output is 3 dB higher than the carrier-to-noise ratio at its input. This
improvement is only obtained at the expense of additional transmission
bandwidth, since the spectrum of the modulated carrier occupies twice the
bandwidth of the spectrum of the baseband modulating-signal.

As it happens, we can substantially improve upon this detection perfor-
mance if, instead, we employ angle modulation. Angle modulation involves
maintaining a constant carrier-amplitude and allowing the phase term ¢(t) to
fluctuate in proportion to the modulating signal. Not only does angle modula-
tion improve upon the detection performance of linear envelope-modulation,
albeit at the expense of an even greater channel bandwidth, it is also immune
to channel non-linearity. This is because the information is conveyed not in
the envelope, which remains constant, but in the zero crossings of the carrier,
the time instants at which v(t) is zero. Consequently, any amplitude distortion
introduced by the channel, which would seriously corrupt an envelope-
modulated wave, has no effect on the detectability of an angle-modulated
wave.

Because of these properties, angle-modulation systems are widely em-.
ployed forhigh-quality linkshandling both analogue and digital data—but only
when bandwidth is not at a premium. Since transmission quality is obtained by
trading bandwidth for noise immunity, it is usually the case that angle
modulation is confined to relatively high carrier-frequencies. The reason for
this is twofold. At low frequencies, the radio spectrum is heavily loaded with
traffic. At higher frequencies (in the vHF band and above, at frequencies in
excess of 30 MHz) not only is there less traffic, but the propagation mode is
line-of -sight and consequently of relatively short range. Hence, providing
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their geographical separation is sufficient, many transmitting stations may
share the same frequency allocation, conveying different local information.
Line-of-sight propagation is enforced because the ionosphere has a microwave
window and will not reflect very-high-frequency carriers.

As we shall see in chapter 8, digital data is used to angle-modulate very-
low-frequency carriers for line-transmission purposes. This can result in the
relatively inefficient use of the line in comparison with the performance that
would be obtained if envelope modulation were used. However, angle
modulation offers the advantages of a communication scheme that is both
robust and economical.

4.1 The General Angle-modulated Sinusoid®'
The general modulated sinusoid was defined in section 2.14 by the relation
v(t) = A(t)cos{2mf.t + & (1)}

A(t) = gi{om(1)}

& (1) = g2{vm(1)}

The angle-modulated sinusoid is defined by restricting the amplitude term to
be time-invariant

where

and

A(t)=A.

Current practice requires that we need only consider linear relations between
vm(t) and ¢(t), of which the simplest is

& (1) =k,vn(t)+c (4.1)

This equation allows us to define the condition of operation known as phase
modulation. For simplicity, we may, without unduly restricting our analysis,
set the constant c to zero. Then

v(t) = A. cos{2mf.t + k,va(t)} (4.2)

The coefficient k, is a ‘modulator constant’, specified in units of radian volt .
It defines the extent of phase excursions of a hypothetical electronic phase-
modulator circuit. In practice, it is a quantity which may be determined, for a
real modulator, by experiment as we shall see in section 4.6.

We might be tempted to define ‘frequency modulation’ as the variation of
the parameter f. in sympathy with the modulating signal. To be absolutely
accurate, this is certainly not the case, although under conditions of operation
which cause the ‘frequency’ fluctuations imposed by vn(t) to take place very
slowly, it is the superficial appearance presented by the modulated carrier.

When we discussed the nature of the general modulated sinusoid in section
2.14, we saw that our concept of frequency as the reciprocal of the period (the
distance between adjacent zero crossings of the same sense) was quite
inappropriate when the phase of the sinusoid was permitted to be time-
variant. This loose definition of frequency is basically incorrect.

Let us return to the phasor representation of the modulated sinusoid first
introduced in section 2.14. This representation is illustrated in figure 4.1. We



ANGLE MODULATION 125

A Imaginary
axis
‘V(c)
1
A, N
I
'
a(t) !
: Real gxis
1
1
—> v(t) <~
)

Figure 4.1 Generation of the angle-modulated carrierv(t) = A.cos{0(t)}

think of the phasor as a rigid, rotating member of length A. making an angle 6
with the real axis. Since the phasor rotates, 6 is time-variant, 6(t). The
sinusoid is generated as the real part of the phasor (the horizontal projection
of the rotating member) so that

v(t) = A. cos{0(1)}

The rotation of the phasor is further defined by its angular velocity, which is

the derivative of the total phase angle 6(t), that is 6(t) radians™'.

In this respect, angular rotation is the direct analogue of linear motion, with
0(t)=x(t)
6(1)=1x(1)

x(t) and x(t) being, respectively, the displacement and velocity of a particle
constrained to move along a straight line.
For an unmodulated sinusoid, the angular velocity is constant

0(1) = w.
= 2xf.

where f. is the frequency of the sinusoid as we should conventionally define it.
By integrating the angular velocity, we may obtain the total phase angle and
hence specify the unmodulated sinusoid in full.

0(1) = Jé(‘r) dr
=27uf.t+0(0)
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Here, 6(0) is the constant of integration. It has been our practice to write 6(0)
as ¢., so that

v(t) = A cos(2mf.t+ bo)

as we should hope.

In the case of the modulated sinusoid, we argue as follows. The phasor will
continue to rotate at a ‘frequency’ close to f, since the object of modulation is
to relocate baseband information in this region. Strictly, we wish to make the
angular velocity deviate slightly about its mean value of 2wf.. Let us then
regard the quantity 2xf. as equivalent to a d.c. level, and superimpose upon
this a small a.c. fluctuation which, conveniently, we may write as ¢(t). Then

0(t) =2nf.+ (1)

Thinking in terms of frequency rather than angular velocity we may rewrite
this equation as

6(1) _, . 6
E 7t Cag

We regard the quantity 6(t)/2m as the ‘instantaneous frequency’ of the
rotating phasor. Integrating, to establish the equation for the angle-
modulated carrier, we find that

0(t) =2mft+ (1)
v(t) = Ac cos{2mf.t + d(t)} 4.3)

so that

The connection between equations 4.2 and 4.3 is immediately apparent.
The latter defines a phase-modulated wave provided that

¢ (1) = k,va(t)

It is less obvious that, defining ¢(t) in a different manner, equation 4.3 also
describes ‘frequency modulation’. We have arrived at the conclusion that
when a wave is angle-modulated it is only correct to discuss the properties of
the wave in terms of ‘instantaneous frequency’. We define frequency mod-
ulation to be the fluctuation of the instantaneous frequency in sympathy with
the modulating signal.

02L1tr) = koa(t)+c
Retaining the convention used above, we let
c=f.
and rewrite this expression as
0(t) = 2mf. + kovm(t) (4.4)

so that, integrating, we obtain the total phase angle

8(t) = 2mfut + kzj' vul) dr
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1t follows that .
v(t) = A. cos{2-rrfct + sz Um(T) d-r} (4.5)
0

Again, we have a phase-modulated wave with
(1) = sz Um(7) d7
0

but one in which the instantaneous frequency is linearly related and directly
proportional to the modulating signal. The phase term is also linearly related
to vm(t)—integration is a linear mathematical operation.

The constant k. in equations 4.4 and 4.5 is, like k, in equations 4.1 and 4.2,
a modulator constant. Its units are radian s™' volt™' and it may be determined
experimentally for real modulators by means of the method outlined in
section 4.6.

Having defined the phase- and frequency-modulated sinusoids mathemati-
cally we should like to examine their properties in the time domain. To
simplify this task, we reiterate the very common constraint that the modulated
carrier be narrow-band. This amounts to demanding that the ‘d.c. component’
in the instantaneous frequency, that is, the parameter f., is much greater than
the fluctuation amplitude, or ‘a.c. component’, ¢(t)/2w. In fact this constraint
is not a condition implicit in the definition of either phase or frequency
modulation. It is applied only to make visualisation of the phasor or time-
domain operations easier. Another constraint is that the bandwidth of the
modulating signal be much less than f.. Then fluctuations of instantaneous
frequency occur slowly, over many hundreds of cycles of carrier. Conse-
quently, the period of each cycle will very closely approximate to the

vm(t),f'm(t)‘

Vem

Figure 4.2 Frequency- and phase-modulation waveforms
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reciprocal of the instantaneous frequency. Since the instantaneous frequency
is proportional to the differential of the total phase angle

2nft+ (1)

it follows that adjacent zero crossings of the modulated carrier will group
together for high values of ¢ (t) and become spaced apart for low values. Thus
if the wave is ‘frequency modulated’ (and narrow-band) its apparent fre-
quency, estimated in the non-rigorous manner as equal to the reciprocal of the
distance between adjacent zero-crossings of the same sense, will fluctuate in
sympathy with the modulating signal. In contrast, if the wave were phase-
modulated the ‘frequency’ would fluctuate in sympathy with 9.(t). In both
cases the amplitude of the wave will remain constant at a value A.. Figure 4.2
illustrates typical phase- and frequency-modulated carriers as functions of
time.

4.2 The Problem of Spectral Analysis

Having described the angle-modulated wave in the time domain, we naturally
wish to investigate its properties in the frequency domain. Specifically, we
should like to estimate or calculate V(f), the Fourier transform of v(t), since
this quantity will lead to a determination of the carrier power spectral density
P(f). The power spectrum will, in turn allow us to predict the carrier
bandwidth and hence determine the necessary channel bandwidth required if
the wave is to be conveyed without severe band limiting. Before we embark
upon this task, it is useful to examine the general problem of spectral analysis
for angle-modulated waves more closely.
We have that

v(t) = Ac cos{2nf.t + & (1)}

&(1) = g2{vm(1)}
To be completely general, we could rewrite this equation as

v(t) = f{oa(1)}

where f( ) is a highly non-linear function. Ideally, we should like to be able
to determine a parallel equation

V(f) = F{Va(f)}

where F( ) was inferred, or calculated from f( ). Indeed, we were able to
achieve just this in the previous chapter when we deduced the spectrum of a
product-modulated wave

where

V() =5 {Valf = £+ Valf + )
from the defining equation

v(t) = vm(t)cos(2wf.t)

Now, any modulation process (including product modulation) is inherently
non-linear. Those modulations in which the envelope is linearly related to the
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modulating signal and in which the phase term ¢ is constant do at least permit
superposition to be applied. To appreciate the implications of this statement,
suppose that

vm(tz) = vm(h)

It does not follow that, for a product-modulated wave
v(t) =v(ty)

since cos(2mf.t.) may have quite a different value to cos(2wf.t,). Consequently
the modulation is strictly a non-linear operation. However, suppose that

vi(t) = Ai(t)cos(2mf.t)

and that
At)= Z Ai(t)
Then if
v(t) = A(t)cos(2mf.t)
= Z Ai(t)cos(2mf.t)
it follows that
v(t) =) v(1)

Thus even though the modulation is non-linear, superposition still applies and
consequently Fourier methods can be employed. That is, if we determine the
spectrum for a sinusoidal modulating-signal, we may infer its spectrum for any
other modulating signal by decomposing that signal into the sum of its
constituent sinusoids, employing as appropriate either Fourier series or
Fourier transform methods to achieve this.

In contrast, if we write

vi(t) = Ac cos{2nf.t + i (1)}
and form the sum

(1) = Z (1)

then it is immediately apparent that

A. cos{21rfct +2 d),(t)} # 3, Ac cos{2mfct + di(1)}

Hence superposition does not apply, Fourier methods may not be used and
the search to specify the function F( ) from a knowledge of the function f( )
is a fruitless one.

4.3 A Quasi-linear Spectral Analysis

We have seen that a general relationship prescribing V(f) as a function of
Va(f) does not exist. However, under one restricted set of conditions, a very
simple linear relationship does exist between V(f) and ®(f), the Fourier
transform of ¢ (t).

Since we have constrained ¢(t) to be a linear function of v.(t) it is by no
means difficult to express ®(f) in terms of V.(f) to determine spectra for
specific phase or frequency modulations.
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First let us examine the defining equation
v(t) = A. cos{2mf.t + (1)}
We may expand this to yield
v(t) = A cos(2mf.t)cos{¢d (1)} — Ac sin(2nf.t)sin{d (1)}
We know that both cos{¢(t)} and sin{¢ (t)} may be expanded as power series

cos(d>)—1—¢;+(£| (g'+
¢ & 9

sin(¢) = —37+57— =7+
It follows for small values of ¢, | (t)|« 1, that
cos{o(1)}~1
sin{¢(t)} = ¢
v(t)= A. cos(2nf.t) — A (t)sin(2mwf.1) (4.6)

and

Thus

We shall examine the effect of larger values of ¢ shortly. Notice that the
second term in this expression corresponds to a product modulation. Since
this is so, it is an easy matter to write down the spectrum of the general
angle-modulated wave for small phase deviations as

V() =5 AdB( - f)+8( +f)+HO(-fa - B+ O] (47)
If the carrier is phase-modulated, then with

(1) = k,vm(t) (4.8)
it follows that

V()= % ALS(f = f) +8(f + f) +jk{Vn(f = f) = Va(f +fI}]  (4.9)

This spectrum s illustrated in figure 4.3. The power spectrum, again assuming
narrow-band conditions (f. » B) is given as

P() =3 AXB(F— 1048+ £+ kIPalf~ f)+ Pulf+10}]  (4.10)

where Pn(f) is the power spectrum of v.(t). If equation 4.10 is compared with
equation 3.10 it will be seen that both have the same form and would, indeed,
by identical if k,= A:'. Thus although AM and narrow-band pMm are quite
different time- waveforms their power spectra are of identical form.

Inspection of the spectra shown in figure 4.3 shows that the signal band-
width is determined by the relation

B =2fn
As we increase the phase deviation so that the condition |¢(t)|« 1 no longer
applies, more of the power terms in the series expansions of cos ¢ and sin ¢
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Figure 4.3 Spectrum of narrow deviation phase-modulated wave ; B = 2f,,

given above become significant. Since multiplication in the time domain is
equivalent to convolution in the frequency domain, the result is a spreading of
the power spectrum so that, when ¢(t) is no longer small the transmission
bandwidth is substantially greater than that required for the various envelope
modulations: B » 2f.. Indeed, if ¢(t) is large, all terms in the expansion must
be included and B — ». However, the convolution process tends to retain
most of the carrier power in a band adjacent to the carrier so that, for practical
purposes, the modulation scheme is still narrow-band, despite having small
components at frequencies remote from f..

An interesting comparison exists between the phasor representation of the
generation of conventional aM (figure 3.8) and the phasor representation of
the generation of phase modulation in the manner described by equation 4.6.
In the latter case, the product-modulated component has a carrier in phase
quadrature with the larger, main-carrier phasor. Comparison of figures 3.8
and 4.4 shows that in the first instance, at time t = 0, the endpoints of the
phasors start from point A and move in opposite rotational sense with angular
velocities +wm and —wm, so that their sum has a locus which passes through the
point A perpendicularly.

In the second instance—the generation of phase modulation—the sidebands
again rotate in opposite sense but they start at time ¢t = 0 at the point B. Their
sum has a locus which passes horizontally through point B. Notice that the
horizontal locus through B results in the modulated carrier exhibiting a small
amplitude-fluctuation. A fixed amplitude, phase-modulated carrier should
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Figure 4.4 Phasor representation of narrow deviation phase-modulation

not, of course, exhibit amplitude fluctuation, and for this to be the case, the
endpoint of the modulated carrier phasor should move on a circular locus CC’
about the point D (figure 4.4). Providing the phase excursions of the mod-
ulated carrier are kept small, equation 4.6 leads us to a practical method of
obtaining phase modulation: the ‘Armstrong phase modulator’, which is
described briefly in section 4.7.2.

4.4 A Quasi-static Spectral Analysis

We have considered in the previous section the quasi-linear analysis of
angle-modulated waves which is applicable when the amplitude of the
modulating signal and consequently the excursions of the phase function ¢ (t)
are very small.

Another very simple method of estimating power spectra for angle modula-
tion, known as quasi-static analysis, may be employed when the bandwidth of
the modulating signal is small in comparison with the fluctuations of instan-
taneous frequency. The quasi-static method involves the same approximation
that was employed in section 4.1 when we discussed the time-domain
representation of the angle-modulated wave. That is, we choose to apply it
only when the fluctuations of instantaneous frequency occur sufficiently
slowly that the ‘instantaneous frequency’ and the ‘zero-crossing-count fre-
quency’ are virtually interchangeable quantities. Basically, the method re-
quires that we regard the modulated carrier as a moving 8-function. Some-
times the rather graphic phrase ‘moving finger in the frequency domain’ is
used to describe the carrier. The moving finger slides along the frequency axis
in sympathy with the modulating signal. The overall effect is very similar to
considering the modulator as a mechanistic system consisting of a variable-
frequency sinewave oscillator, the dial of which is rotated through an angle
proportional to the modulating-signal amplitude at any given instant of time.

We shall consider first the spectral analysis of a frequency-modulated wave,
and then discuss the application of the method to phase modulation. To see
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how the model of the modulating process described above allows us to predict
the power spectrum, recall that P(f) may be experimentally obtained by
measuring the mean power at the output of a narrow bandpass filter centred at
a frequency f,. If the mean power is p. and the filter bandwidth &f, then

~P
PR ~&;
The approximation improves as 3f becomes small. Next, consider figure 4.5.
The proportion of time during which the moving finger resides in the narrow
band 5f at the frequency f, is equal to the proportion of time during which the
modulating signal resides in an equivalent narrow strip 3v at a voltage v,. It
follows that the power spectrum will be proportional to the amplitude
probability-density distribution of the modulating signal and must be suitably
scaled so that

[ Pprar=3a

The procedure involved in determining P(f) for a modulating signal of
specified distribution function is most clearly demonstrated by an example.
Let the signal frequency modulating a sinusoidal carrier be a gaussian

[v(f)|

-y

[H(F) !

1.0
*’1:”8'

A

Ye Yt

Figure 4.5 Quasi-static spectral analysis. v, is the switch voltage applied to trigger an

electronic timer to measure the probability that v., lies in the narrow strip 3v and hence

that the frequency-domain & -function lies within the range of the bandpass filter (see also
figure 2.2)
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noisewave of power p, with a distribution

p(vm) =~7'(_2%75?) exp(—v2/2p.)

The quasi-static method implies that the power spectrum will also be gaus-
sian. We define a peak carrier deviation, Af, which could be thought of as the
result of clipping v.(t) to ensure the practical requirement that both it and the
deviations of the carrier were bounded. We also define an r.m.s. carrier
deviation f,. Since the general gaussian distribution has the form

1
p(x)= e, 2m) exp(~x’/207)
where
o =r.m.s. value of x

we may deduce a carrier power spectrum, by analogy, which has the form

P(f) =4 AL 15wy [expl=( ~ f72f3+ exp{=(f+ £2F] (4.11)

A common choice of the ratio of peak to r.m.s. carrier deviation in analogue
FM systems is

?—f= 3 (4.12)
so that

P =3 AL T af LexPL—4.5( ~ fIAF}+ expl=4.5(7 + £)°/AFY)
(4.13)

This ratio of Af to f, ensures that the carrier deviation is clipped by the bounds
fex Af for approximately 0.1 per cent of the time. The distortion which arises
as the result of this small probability of exceeding the bound is held to be
negligible. The general form of the power spectrum is shown in figure 4.6.

+P(r‘]

Figure 4.6 Power spectrum of a carrier frequency-modulated with gaussian noise:
quasi-static analysis
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Spectral analysis of a phase-modulated wave can be inferred in the follow-
ing way. A phase modulator can be formed by preceding a frequency
modulator with a differentiator. If we can either calculate or estimate the
probability-density distribution of the differential of the modulating signal,
we can deduce the power spectrum. To use, once again, the example of a
noise-like modulating signal we note that since a differentiator is a linear
filter, the signal at its output will also be gaussian. If the input noisewave has a
white spectrum, the output noisewave will be ‘coloured’. However, the
spectral shape of the modulating signal is not of importance in a quasi-static
analysis. We need only to know the power in the noisewave at the differen-
tiator output.

In section 1.23 we saw that the power spectrum at the output of a linear
filter with a transfer function H(f), given an input-power spectrum P;(f) is

P(f) = H(f)I* P(f)
If we assume a white modulating signal of power p, and bandwidth fn., then
P.(f) =§}& volt Hz'  —fn<f<fn
The differentiator, from table 2.1, has a transfer function

H(f) = 2mjf
so that

=P 422 _f <f<
Pf)=frdm'f ~fasf<fn

=0 elsewhere
The total power in the output wave is given by the integral
fon 4 202
L P.(f) df = _‘”éﬂm&
Since the output wave from the differentiator is gaussian, so also will be the

power spectrum of the phase-modulated wave. The maximum carrier-
deviation of the phase-modulated wave is given by the ratio

Afem _ r.m.s. of derivative of modulating signal

Afem r.m.s. of modulating signal
or
22\ L
AfPM = AfFM (ﬁ%h) (4-14)

Consequently, a phase modulator produces a carrier spectrum which has a
width dependent on both the modulating-signal amplitude and its bandwidth.

4.5 Band Occupancy of Angle-modulated Waves

In the previous sections we have seen that for small phase-deviations, a
quasi-linear spectral analysis may be used to estimate the carrier spectrum
bandwidth. Given a baseband modulating signal of bandwidth f. the carrier
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bandwidth is
B =2fn (4.15)

As the phase deviation increases, the bandwidth of the modulated carrier
becomes substantially larger than this value. For very large phase-
deviations we can apply the quasi-static spectral analysis and we then find that

B =2 Af (4.16)

where Af is the peak carrier deviation.

We may take the ratio Af/fn to be a ‘universal constant’ for all angle
modulations and we shall denote this constant by the symbol m, referring to it
as the modulation index or deviation ratio. We shall see why this is permissible
in the next paragraph, but for the moment let us take the result on trust. The
bandwidth specification derived for the quasi-static case may be written as

B =2mf,

and applies only when m is large, since this constraint implies that f., must be
much less than Af, or that sweeps of instantaneous frequency take place
slowly. The quasi-linear result applies when the modulation index and hence
the amplitude of fluctuation of both instantaneous frequency and its integral,
the total phase angle, are small. Thus

B=2f, m«l1
B =2mfn m>»1

We may unify these two equations by writing
B =2fn(m+1) (4.18)

and this result empirically determines the required channel bandwidth for any
given modulation index. This general formula is known as Carson’s rule, after
its innovator, and is widely accepted as a criterion of band occupancy for all
angle-modulation systems in which the modulating signal is analogue in
nature, rather than digital.

In order to derive Carson’s rule, which in itself is a very important criterion
in the design of angle-modulation communication systems, we used the fact
that the quantity

(4.17)

m=% (4.19)

was a universal constant for such systems. Naturally, we must be able to justify
such a sweeping statement. We employ the concept of ‘modulation index’
because it allows us to think in terms of a normalised modulation operation.
Any results that we obtain which are in terms of this normalising variable,
rather than Af and f. we may subsequently denormalise to suit any particular
cases of operation that are of interest to us. We are at present concerned
essentially with spectral analysis. What conditions, we may ask, lead us to a set
of spectra of the same detailed ‘shape’ or ‘form’ with, as the only permitted
differences between members of this set, a possible frequency-scale or
amplitude-scale expansion or contraction? As table 1.2 states, a time-scale
expansion by a factor k leads to a frequency-scale contraction also by a factor
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k, together with an amplitude scaling of 1/k
v(1) & V(f)
v(k) © L V(ilk)

If v(1) is our angle-modulated carrier, a time-scale expansion to give v(kt)
must also involve a time-scale expansion of vm(t) to vm(kt). This will resultin a
frequency-scale contraction, the highest frequency component in vm(kt) being
kfm.In the same way, the phase term in the carrier ¢ (t) will become ¢ (kt) with
a differential k¢ (t). The maximum instantaneous frequency must therefore
also increase by a factor k to preserve the shape of both time- and frequency-
domain processes. We see that all modulated carriers in which the ratio, for a
given modulating waveform shape, of Af to f. is kept constant will have
spectra of the same shape. The band occupancy, suitable scaling included, will
be the same for all.

In the next section we shall see that the sinusoidal test signal provides a
simple example of just this phenomenon—although the test signal itself is
quite unrepresentative in many respects of typical modulating waveforms,
which tend to be noise-like in appearance.

4.6 The Sinusoidal Test Signal

In the earlier sections of this chapter we found it necessary to specify
modulator constants k; and k. for phase and frequency modulators respec-
tively. The estimation of these constants is often of value in the assessment of
practical systems. It may sometimes be possible to achieve modulator calibra-
tion by means of a static test. That is, we apply a voltage displacement to the
modulator input and measure the resulting change in either ¢ or ¢ from its
rest position. Such a test may prove difficult or unreliable for a variety of
reasons. One simple technical obstacle that can render the static method
unworkable is the presence of a.c. coupling at the modulator input. Again, a
dynamic calibration may produce different values of k, or k. than would be
obtained by means of a static calibration because the ‘a.c.’ and ‘d.c.’ equiva-
lent circuits of the modulator are not the same. Furthermore, the measure-
ment of a phase difference by a direct method is inherently difficult, even
allowing that an ambiguous result may occur if the phase difference is greater
than 2 radians.

To avoid these problems, we may utilise a dynamic test procedure involving
a sinusoidal modulating signal. This is because the sinusoid creates a discrete
line-spectrum of predictable form, with properties inherently suitable for the
measurements we wish to make.

Let the modulating signal, then, be

Um(t) = Am cOS(2Tfmt)

Then the frequency-modulated wave may be written as

v(t)=A. cos{2~n—ft ? sm(21-rf,.,t)}
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Differentiation of the total phase angle yields the instantaneous frequency

fo+ k;ﬁ’" cos(27fmt)

Since the maximum and minimum values of cos(2wf.t) are +1 it follows that
the peak carrier-deviation is

_ kZAm
Af= o (4.20)
Consequently we may write the modulated carrier as
v(t) = A. cos{2'n-fct —%sin(wamt)}
= A. cos{2wf.t — m sin(2nfnt)} (4.21)

The reader may care to verify for himself that precisely the same equation is
obtained when the wave is phase modulated. Coincidentally, if the modulat-
ing signal is a sinewave, the modulation index also specifies the maximum
phase deviation. This is not generally the case, however. For the phase-
modulated carrier, we arrive at an equation which is the equivalent of
equation 4.20

%f =k Anm (4.22)
If we expand equation 4.21 in the usual way, we find that

v(t) = Ac cos(2mfct)cos{m sin(2mfnt)}
+ A sin(2wf.t)sin{m sin(2wfnt)} (4.23)

This leaves us with the problem of handling the terms

cos{m sin(2mfnt)}
and
sin{m sin(2mfnt)}

As it happens, both of these quantities are equivalent to trigonometric series.
To provide a general statement of the results we need, we write

cos{m sin(¢)} = Jo(m) + 2{Jo(m)cos(2¢) + Jo(m)cos(4¢) +. ..} (4.24)
sin{m sin(¢)} = 2{J,(m)sin(¢) + Js(m)sin(3¢Y) +. . .} (4.25)

Here, the quantities J«(m) are known as ‘Bessel functions of order k, of the
first kind’. Bessel functions, like trigonometric functions (cos, sin, etc.) are
tabulated. That is to say, tables of values of J.(m) have been calculated by
means of digital computers and are available in handbooks of mathematical
functions.”” Figure 4.7 illustrates the first four orders of Bessel functions
against an abscissa which is the argument, m.
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Figure 4.7 First four orders of Bessel function of the firstkind: J, (m).1: Jo(m); I1: J,(m);
I1: J.(m); 1V: J.(m)

Rearranging equations 4.23, 4.24 and 4.25, and using the identity

Ja(m)=(=1)"J-.(m) (4.26)
we find that
(1) = Ac i Ju(m)cos{2m(f. + nfm)t} (4.27)

n=-x

Fourier transforming, we obtain the spectrum

V() =3 A T I (m)S{f— (ot nfa)} 43 + (et nfu)l]  (4.28)

which yields a power spectrum

P() =5 AL L Bm)S{f— (o nfa)b+8(+ (et nf)l]  (4.29)

On examination of equation 4.29, we see that the power spectrum consists of
spectral lines disposed symmetrically about the carrier component at the
frequency f.. The line spacing is equal to the frequency, f=, of the modulating
signal. Figure 4.8 depicts the effect of changing the modulation index by
increasing the carrier deviation Af and maintaining a constant modulation
frequency. Atlow values of modulation index, only the carrier and the first pair
of sidebands are significant. All other sidebands are of vanishingly small
amplitude. This is as we should expect from the quasi-linear analysis de-
scribed in section 4.3. As the modulation index rises, more and more
sidebands become significant in their contribution to the form of v(t). This
means that the required transmission bandwidth must become larger than the
width

B =2fn

and confirms Carson’s rule, stated in the previous section.

To return to our initial problem of devising a method of calibrating angle
modulators, the reader will notice, on closer inspection of figure 4.7, that, at
certain particular values of modulation index, the carrier amplitude falls to
zero. Thus figure 4.7 indicates a first zero when m is about 2.4 and a second
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Figure 4.8 Pcwer spectral density for frequency modulation. Linear scales of modulation

index, frequency and power spectral density have been used. Notice that, as modulation

index increases, so also does the band occupancy of the spectrum. The heavily shaded

ends of the laminae at the cut m = 7 illustrate the magnitudes of the spectral components
atthat value of modulation index

zero when m is about 5.5. Likewise, all the sidebands exhibit zeros as m is
increased. If we use a wave analyser to isolate one suitable spectral compo-
nent, say the carrier, and apply a known-frequency sinusoidal modulation, its
amplitude may be adjusted from an initial value of zero to such a value as
causes the carrier component to decrease to zero for the first time. We then
know that m is 2.4 and we can estimate, from m and the modulating
frequency, the carrier deviation

Af = mfn,

Since a precise measurement of the amplitude of the modulating sinusoid is
not difficult, we can also estimate, by means of equation 4.20, the modulator
constant

_ 2w Af

k. AL

(4.30)
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Figure 4.9 Voltage-controlled oscillator calibration. WA: wave analyser, used to
determine the Bessel zeros; F: digital frequency-meter, 1o measure f.; V: digital
voltmeter, to measure A,,

(A phase modulator can be calibrated in the same way, except that we
employ equation 4.22, not equation 4.20, for the last step in the calculation.)

Figure 4.9 illustrates a typical test circuit. Suppose, for example, that
fm=4.158 kHz and that a first carrier zero is obtained when A, = 3.46 volts.
Then with m = 2.4, we calculate

Af=2.4x4158
and, from equation 4.30

K, 2:4x4158
27346

= 2890 Hz volt™*

By suitably extending this method, a detailed calibration of the modulator
may be effected, indicating, for example, linearity of deviation with mod-
ulating signal amplitude. To facilitate such studies, the values of the first few
zeros of the carrier and the first sidebands are given in table 4.1. It is worth
noting that the first carrier disappearance occurs at a deviation of precisely
1 kHz when the modulating frequency is set to 416 Hz. A corollary to this
observation is that a deviation of k kHz occurs in conjunction with a
modulation frequency of k X416 Hz.

TABLE 4.1 ZEROS OF CARRIER AND FIRST SIDEBANDS

Modulation Index

Zero Point Carrier 1stSB
First 2.405 3.832
Second 5.520 7.016

Third 8.654 10.173
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4.7 System Implementation: Modulators

4.7.1 Direct Frequency Modulators

One intuitively obvious method of obtaining frequency modulation, which
stems from a quasi-static appreciation of the nature of the modulated
carrier, is to cause the natural frequency of an oscillator to fluctuate in
sympathy with the modulating signal. Numerous and ingenious variations on
this theme have been employed in both instrumentation and communication
circuitry. However, a simple example will serve to demonstrate the princi-
ples involved.

Figure 4.10a shows a simple LC oscillator circuit, the oscillator frequency
being given by the law

f.=(4w’LC)* (4.31)

e T

(b)

Figure 4.10 (a) A simple LC oscillator circuit. The transformer secondary (the

left-hand winding) is connected to ensure positive feedback at high gain. This results in

a self-sustaining oscillation. (b) Frequency modulation by means of a varactor diode,

D + C is the entire capacitance within the hatched enclosure. C, and L, act as blocks to
low- and high-frequency signals respectively
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If either L or C is made voltage variable

L=L(vm)
or

C=C(vm)

then it follows that f, will also fluctuate. Of course, f, will not, in general, be
linearly related to fluctuations of v.. However, the basic law, equation 4.31,
contains no discontinuities, so that, for suitably small signal-swings we may
expect the frequency deviation to respond linearly. Differentiating equation
4.31 with respect to C, for example, yields a slope value

dfe _ _fo

dC 2C
so that the fractional change in f, is directly proportional to the fractional
change in C, providing the fraction is sufficiently small—a condition entirely

compatible with the narrow-band nature of most modulation processes.
That is

df._ _dC
fo 2C
The same basic relation holds if we modulate the inductance value
df. __ dL
fo 2L

The two methods most frequently employed to obtain a voltage-variable
reactance involve the use of either the ‘varactor’ diode principle or a
‘reactance device’. The varactor diode is a specially fabricated p—n junction
which operates in the following way. The diode is reverse-biassed to set up a
depletion layer at the junction. Superimposed upon the bias voltage is a
small modulation component. Since the depletion-layer width depends on
the magnitude of the reverse bias, the modulation component causes this
width to fluctuate. Being free from charge carriers, the depletion layer acts
as a dielectric, and the p-n junction is therefore a small capacitance
(usually in the range 10 to 100 picofarads) of voltage-variable dielectric
width. Thus the capacitance of the varactor diode will vary with the
modulating signal. A typical circuit configuration for a modulator employing
a varactor diode is shown in figure 4.10b.

The reactance device is somewhat more involved in its mode of operation.
Figure 4.11a illustrates a prototype circuit for a voltage-variable reactance
based upon the reactance device principle. In the past, vacuum tubes have
been designed to have characteristics which are particularly suited to this
application. However, field-effect transistors (FET) have similar characteris-
tics to reactance tubes and in many applications might be employed as a
more convenient alternative, being compatible in their power-supply re-
quirements with the semiconductor devices now favoured in most modern
communication circuitry.

The circuit function may be understood from figure 4.11a. The FET gate
voltage is the sum of the bias voltage and a sinusoidal contribution derived
from the carrier component applied across the reactance terminals AA’. The
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Figure 4.11 Reactance-device modulation: (a) the voltage-variable reactance circuit;
(b) the modulator, incorporating the voltage-variable reactance

bias voltage is proportional to the modulating signal v, and it is presumed
that fluctuations of v. take place much more slowly than fluctuations (cycles)
of the carrier. The sinusoidal contribution at the gate of the FET is effectively
obtained by lowpass filtering the carrier component through the RC
network. If the time constant of this network is chosen to be large in
comparison with the carrier period (that is, its nominal cut-off frequency is
much smaller than the carrier frequency) the carrier component appearing at
the gate of the FET will be severely attenuated and will suffer a phase shift of
very nearly w/2 radians. The FET drain-current is given by the relation

id = _‘gmvg

where gn is the device transconductance. It follows that is will be in
antiphase with v, and hence in phase-quadrature with the applied voltage
va. By a suitable choice of component values, the current through the RC
filter and bias system can easily be made negligible in comparison with is s0
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that

iAzid
It follows that i, and va will be in phase-quadrature and that, as a
consequence, the entire circuit between terminals AA’ is a reactance.

The reactance is voltage variable by means of the bias voltage because the
FET has a non-linear transconductance characteristic. Specifically

. 2
la € Vg

The transconductance is given by the partial derivative

2]
8m gl, ¢

Hence a linear relationship exists between g. and v,. As the slowly varying
modulation component in v, alters, so also does gn and consequently iq.
Since the ratio between iy and va varies, the value of the reactance also
varies, and in proportion to the modulating signal.

It must be stressed that the reactance circuit depicted in figure 4.11a only
produces a voltage-variable reactance. To modulate the centre frequency of
an oscillator, it is necessary to strap this circuit across the tank circuit of the
oscillator, after the manner of figure 4.11b.

Many extremely linear low-frequency (below 10 MHz) modulators have
been developed from sawtooth generator circuits. Recently, this type of
modulator has found extensive application in voltage-controlled oscillator
and phase-locked loop integrated circuits. The principle of operation is very
simple. A linear voltage-ramp may be generated by the constant current
charging of a capacitor. If the current direction is reversed when the ramp
attains some predetermined voltage, a discharge ramp with exactly the same
magnitude of slope will result. Recharge is restored when the discharge
ramp falls to some predetermined minimum voltage. A circuit schematic for
such a modulator is shown in figure 4.12. By making the current source
output proportional to vm(t), the frequency also becomes proportional to
Um(t). The reader is reminded, should this be necessary, that a current source
produces a current that is unaffected by changes in its load. Circuits
functioning in the manner described here are often referred to as serrasoid
(sawtooth) modulators.

4.7.2 Phase Modulators and Indirect Frequency Modulators

We saw in section 4.3 that an angle-modulated wave could be obtained by
means of a product modulator, provided that the maximum phase-excursion
was small.

From equations 4.6 and 4.8

v(t) = Ac cos(2mf.t) — Ackiva(t)sin(2mf.t)

This equation shows that we may generate a phase-modulated wave as the
sum of a carrier component and a small product-modulated wave. A system
block-diagram for a modulator based upon this principle is shown in figure
4.13. This system, known as the ‘Armstrong phase modulator’ after its
inventor, may be used to establish a frequency-modulated carrier if the
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Figure 4.12 The serrasoid frequency modulator. Note that the current sources produce
an output proportional in magnitude to the modulating signal, v... (See figure 6.9 for a
definition of the operation of the comparator modules)

modulating signal is first integrated before it is multiplied by the phase-
shifted carrier.

4.7.3 Wide Deviation Modulation

With the exception of the serrasoid modulator, all the systems that have so
far been described in section 4.7 suffer from the distinct disadvantage that
swings of instantaneous frequency must be kept to a small fraction of the
modulator nominal centre-frequency. Wide excursions of instantaneous
frequency would result in a non-linear modulation characteristic. Further-
more, many of the modulators described in the previous sections are
inoperable at very high frequencies, so that some form of frequency
translation is necessary. An increase in deviation can be obtained by
applying the modulated carrier to a severe non-linearity. This generates
harmonics of the carrier frequency, any one of which may be isolated by
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Figure 4.13 The Armstrong phase modulator

means of a bandpass filter. If the nth harmonic is extracted in this manner,
the modulated carrier will become

v'(t) = Al cos{2mnf.+ nd (1)}

Thus frequency translation and increased phase and instantaneous
frequency-deviation may be obtained. Further spectral relocation may, of
course, be performed by means of a mixer circuit (see section 3.7).

4.8 System Implementation: Demodulators

The operation of a frequency-modulation detector may be defined in terms
of the modulated carrier

v(t) = Ac cos{2mf.t + ¢ (1)}

as the extraction and differentiation of the phase term ¢(t). Phase-
modulation detectors may be realised by integrating the output of an Fm
detector. Alternatively, a product modulator may serve to provide phase
detection if a locally generated and phase- and frequency-locked version of
the quadrature carrier

A’sin(2mf.t)

is available. In this context, a low index phase-modulated wave would yield
the required carrier component most readily.

In this section, we shall confine our interest to the two most commonly
encountered frequency demodulators: the FM discriminator and the phase-
locked loop.

4.8.1 rm to aAM Conversion: The Discriminator

Many different types of discriminator have been devised, most of which
operate on the principle of converting frequency fluctuations to amplitude
fluctuations by means of some frequency-sensitive network and following
this conversion by envelope detection.

The simplest such discriminator is illustrated in figure 4.14. Its operation
may be analysed very easily. The FET small signal drain current is given in
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v(t)

Figure 4.14 ¥M detection: the use of an inductance as an FM to aM converter (block A)
followed by envelope detection (block B)

terms of the input voltage v(t) (the frequency-modulated carrier) as

i(t)=gmo(t)
It follows that

i(t)=gmAc cos{2mft + (1)}
The a.c. voltage developed across the inductor is

UL(t) = —Ld‘;_(tt)

= gnAL{27f. + d(t)}sin{2wf.t + (1)}
={md(t) + c}sin{2wf.t + (1)}

This is an envelope. and frequency-modulated wave and the envelope
fluctuations occur in direct proportion to ¢(t). Since, for a frequency-
modulated wave

& (t) = kavn(t)
it follows that
v (t) = {kamon(t) + c}sin{2wft + (1)}

The envelope detector, as was remarked in section 3.10, is insensitive to
phase or frequency fluctuations of the carrier. Consequently, its output will
be proportional to vam(t).

This very simple form of discriminator is not widely used because,
although it is highly linear its frequency-to-voltage conversion factor is
small: 6 dB octave™ of frequency swing.

The discriminator conversion factor may be substantially improved by
employing an off-resonance tuned circuit as the frequency-sensitive ele-
ment. Figure 4.15 illustrates such a circuit and compares its frequency-to-
voltage conversion characteristic with that of the simpler, single-inductor
circuit. Interpretation of the conversion characteristic may be aided by
thinking of the modulated carrier from a quasi-static viewpoint, as a moving
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finger in the frequency domain. Providing sweeps of the carrier are restricted
to a suitably small range about the nominal carrier frequency f., operation of
the frequency-to-voltage converter is close to linear and the distortion will
be low. As a rule of thumb, good linearity can be achieved by operating the
discriminator with the carrier at the point of inflexion of the conversion
characteristic.

While this circuit has a high sensitivity, the carrier deviation must
necessarily be restricted if distortion is to be avoided. To overcome this
difficulty, we may form a frequency-to-voltage conversion characteristic
which is much wider, is linear and has a high sensitivity, by combining
two off-resonance tuned circuits as shown in figure 4.16. This type of
detector is known as a ‘“Travis discriminator’ and is not dissimilar in its cost
and complexity to those other circuits, the Foster—Seeley discriminator and
the ratio detector which have, in the past, found extensive application in Fm
detection equipment.
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Figure 4.15 ¥Mm detection: (a) the use of a tuned circuit to enhance the sensitivity of the
FM to AM conversion, and (b) the resulting frequency response of the detector. Curve I:
tuned-circuit converter; curve II: inductance converter
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Figure 4.16 FM detection: (a), the Travis discriminator, and (b) its frequency response.

Curves 1 and 11 are the frequency responses of the upper and lower tuned-circuits

respectively. Curve 111 is the difference between these curves and is the result of
connecting the two tuned circuits together in the sense indicated on the circuit diagram

One feature of all the discriminators described above is their inherent
sensitivity to carrier amplitude-fluctuations, as well as phase fluctuations.
Carrier amplitude-fluctuation may occur for many reasons and is quite a
common phenomenon. To prevent it affecting the detection operation it is
customary to precede the discriminator with a high-gain amplifier known as
a limiter. Often the function of the limiter is combined with pre-detection
bandpass filtering. The effect of the limiter is to remove all amplitude
fluctuations from the modulated carrier, while preserving the relative
positions of the zero crossings.

4.8.2 The Phase Locked Loop as a
Frequency Detector®**

All the circuits mentioned in the previous section suffer from the disadvan-
tage that they require inductors or transformers. These components are both
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Figure 4.17 ¥M detection: an FM receiver incorporating a phase locked loop demod-
ulator

bulky and costly and the more complicated of the discriminator circuits are
difficult to align in such a way as to produce a linear frequency-to-voltage
conversion characteristic. None are suitable for integrated-circuit fabrica-
tion.

An economical and convenient solution to the problem of frequency
detection is found in a subsystem known as the phase locked loop,** (PLL). An
FM detector incorporating a pLL. demodulator is shown in figure 4.17 and
functions in the following way. The incoming modulated carrier

v(t) = A. cos{2nf.t+ ¢ (1)}
is multiplied by the voltage-controlled oscillator (vco) output
Ul(t) =A Sin{2’rrfct + d)l(t))

to yield sum- and difference-frequency terms. The difference-frequency
term is proportional to
sin{ (1) — 1 (1)}

and for small phase differences, this quantity may be expressed as

b (1) — (1)

This difference, or error signal, is applied to the vco in such a sense as to
drive its frequency towards ‘lock’.
When in lock
d(t)=o(1)

so that the input to the vco, which is a frequency modulator, will be
proportional to ¢(t) and hence to vm(t). It follows that the loop output is a
close approximation to the modulating signal when lock has been attained.

As it happens, not only is the phase locked loop preferable to the FM
discriminator for reasons of economys, its noise performance is substantially
better than that of the discriminator at low values of carrier-to-noise ratio.
We shall discuss this property at greater length in section 4.11.

4.9 Noise Analysis: Frequency Modulation

In this section, we shall study the performance of a simple FM detector when
the carrier is immersed in white, gaussian channel noise. We shall derive
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results which present the detector output signal-to-noise ratio, s, as a
function of the input carrier-to-noise ratio, p. These results will be compared
with those obtained in the previous chapter which pertain to the detection of
envelope-modulated waves. In the next section we shall discuss the noise
analysis of phase-modulated carriers and we shall show that, if we suitably
scale the amplitude of the modulating signal so that the channel bandwidth
requirements are the same as those of the FM system and the noise and
carrier powers are equal, the performance of the two systems is identical
when judged on the basis of signal-to-noise ratio curves. We shall also see
that the output-noise spectra are different in shape, even though they yield
the same signal-to-noise ratio. The noise spectrum at the Fm detector output
is coloured, having predominantly high-frequency components whereas that
at the pMm detector output is white. This difference makes pM more attractive
for some applications. We shall extend this argument to systems which are
part way between FM and pM. These systems employ a frequency modulation
in which the modulating signal is passed through a pre-modulation filter
which serves to distort the signal spectrum, enhancing high-frequency
components to obtain a substantial improvement in the detected signal
quality.

Our model of the FMm detector consists of a system block, the ‘dis-
criminator’, which extracts from the modulated carrier

v(t) = A: cos{2wf.t + o (1)}

the differential ¢ (t). We shall find it convenient to think of the discriminator
as a phase detector followed by a differentiator, although in practice these
operations are not usually separable.

The modulated carrier is immersed in white noise. To minimise the
noise-power corruption of the carrier, it is customary to precede the
discriminator with a bandpass filter of width B, determined by Carson’s rule

B =2fn(m+1)

In the following work, we shall assume a reasonably large value of
modulation index (greater than unity, certainly) because this is a common
condition of operation. We may then approximate the bandwidth as

B =2mf. =2 Af (4.32)

During transmission, long-term fluctuations of the received signal am-
‘plitude may occur. This type of effect, which may come about for a variety of
reasons, is known as ‘fading’. Since many discriminators are amplitude
sensitive as well as phase sensitive it is common practice to include, either
within the discriminator or within the bandpass-filter circuitry, a high-gain
saturating amplifier—or limiter—which removes all amplitude fluctuations
before detection.

As we shall see, the discriminator output-noisewave has spectral compo-
nents outside the frequency range of the baseband information signal.
Consequently, it is usual to follow the discriminator by a rapid-cut-off
lowpass filter. The complete system model is then as shown in figure 4.18.

We shall assume that both the pre-detection and post-detection filters
have an ideal rectangular characteristic. As we saw in section 3.9, this is a
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Figure 4.18 The FM discriminator: noise analysis

very reasonable assumption to make for the pre-detection filter. However, it
is not entirely a necessary assumption. A fairly poor pre-detection filter
could be used—a gaussian characteristic for example—without unduly
degrading the system performance. In contrast, a sharp-cut-off post-
detection filter most certainly is necessary to realise the full effectiveness of
the system. We shall return, very briefly, to discuss the requirements of the
lowpass post-detection filter at the end of this section.

At the output of the pre-detection bandpass filter we have a wave which is
the sum of the modulated carrier v(t) and the band-limited noise process
n(t). We discussed the nature of the noise process at some length in section
3.9. Briefly to summarise our conclusions, we may think of n(t), of power
p-~ and bandwidth B as the sum of an in-phase and a quadrature component

n(t) = x(t)cos(2mf.t) + y(t)sin(2wf.t)
where x(t) and y(t) are white, baseband gaussian-noisewaves of power p,
and bandwidth B/2.

As a first step in our analysis, we shall assume an unmodulated carrier.
This is not as severe a restriction as it might at first sight appear. It can be
shown’' that, when a quasi-static spectral analysis of the modulated carrier
waveform is valid (that is, for reasonably large values of modulation index)
modulation does not affect the noise performance of the detector.

We let

v(t) = A. cos{2nf.t+ ¢ (1)}

and set ¢(t) to zero, so that
v(t) = A. cos(2mf.t)
The process at the output of the bandpass filter is a waveform
v(t)+n(t) = Ac cos(2mf.t) + x(t)cos(2mf.t) + y(t)sin(2wf.t)
=[{A+x(F +y* ()} cos(2nf.t — tan"'[y(){A+ x(1)}])

This is a rather formidable expression, and indeed further analysis of the
detection process would be very difficult without additional simplification.
First, we note that the limiter removes amplitude fluctuations so that the
detector has only to determine the instantaneous frequency of the wave

cos(2mf.t—tan"'[y(t)/{ A+ x(t)}])
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We may identify, here, a noise-induced phase modulation

oa(t) =tan [y (1) {Ac+ x(1)}]
If we assume a reasonably large carrier-to-noise ratio, then

A+x(t)=A.
so that
éa(t) =tan"{y(t)/A}

~y(t)/A.
Thus the input to the discriminator is essentially the wave
cos{2mft —y(1)/A}

With a phase detector constant of one volt per radian, the wave at the output
of the detector will simply be y(t)/A. and since y(t) has a mean square value
p» (see section 3.9) the mean square value of the output-noise wave will be
p-/A?. Recall also that y(t) is white and gaussian. We may define, as a
consequence, the noise power spectrum at the detector output as

P.(f) =p./A2B volt’ Hz ™' (4.33)

for the range of frequencies —B/2 < f <+ B/2. This spectrum is sketched in
figure 4.19. The noise process at the differentiator output will have a power
spectrum P;(f), given in terms of the differentiator transfer-function H(f) as

Po(f) = H(f) P:(f)

Since, from table 1.2, for a differentiator, we have that

H(f) = 2mjf
it follows that

Py(f) = 4m’f’p./AIB -B/ngs““B/z} (4.34)

=0 elsewhere

As figure 4.19 shows, the output-noise power spectral density produced by
an M discriminator is parabolic. (Contrast this with the output-noise power
spectral density produced by the phase detector, under nominally the same
conditions, which is uniform.)

The next step in analysis is simply to estimate the total output-noise power
emerging from the post-detection filter. Assuming, as we stated above, a
sharp-cut-off filter, this power is

+f, 2,3
- _8mfap._ ,
Lm Pu(f) df =375 = p (4.35)

In order to determine the signal power at the detector output, we must
specify the nature of the signal waveform. It is customary to assume a
sinusoidal modulation, so that with a phase detector constant of 1 volt rad™
and a differentiator giving an output of 1 volt per volts™', the discriminator
constant is 2w volt Hz™'. Thus with a modulating signal

Um(t) = Am cos(2mfmt)
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Figure 4.19 Noise spectra in FM detection: carrier unmodulated

a maximum frequency deviation of Af will result, yielding a detected signal
amplitude of 2w Af volts. Hence the signal power will be

2 2
‘—‘lf‘—f— volt® (4.36)

Combining equations 4.35 and 4.36, we may calculate the signal-to-noise
ratio at the detector output as

s=3Af7(AY2)

fu N
=3m’p (4.37)
Equation 4.37 may be expressed thus
s(dB) = p(dB) + 30 logq.(1.44m) (4.38)

where m is the modulation index and the modulating signal is a sinusoid.
Recall the condition specified above that the modulation index should be
reasonably large and we see that the performance of the FM system is
substantially better than that of the AM system, which, as we saw in section
3.10 yields a result

s(dB)=p(dB)+3 (4.39)
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At low modulation-index values, the performance equations derived
above predict that the output signal-to-noise ratio should fall to zero.
However, we have assumed that m was large in pursuing this analysis. In
fact, the results presented in equations 4.37 and 4.38 are reasonably
accurate for modulation-index values as low as m = 3. For small values of m,
when the system becomes quasi-linear and the modulator and demodulator
can be implemented with product modulators, the best we can hope to do is
approach the optimum curve for product demodulation quoted above,
equation 4.39.

It is worth comparing equation 4.38 with the result that is obtained when
the modulation is noise-like. Both types of signal are presumed to produce a
peak deviation Af. The mean square deviation and thus the output signal
power generated by the noise-like modulation on the assumption quoted in
the previous section that the peak-to-r.m.s. deviation ratio should be three is
Af?/9. Thus the power in the noise-like signal, is only two-ninths of the
power in the sinusoidal signal. This corresponds to a uniform decrease in
performance of the detector of 6.5 dB below the figure quoted above.

It would appear then, that FM is as good as, and for high modulation-index
much superior to, all forms of linear envelope modulation. In fact this is not
necessarily so. When the noise power becomes comparable with the carrier
power (at low values of carrier-to-noise ratio) a condition can arise whereby
a very serious corruption state can occur. If it happens that the carrier has a
low instantaneous frequency and the noise a high instantaneous frequency
and the phase of the noise is momentarily in opposition to that of the carrier,
it is possible for an extra pair of zero crossings to be inserted into the
detected carrier. This sudden doubling of frequency produces a pulse at the
discriminator output. Viewed on the same time scale as baseband events,
this pulse has the appearance of an impulse of area 2 radians (one extra
cycle having been slipped in). A similar effect occurs when the carrier has a
high instantaneous frequency and the noise has a low instantaneous
frequency, except that in this case a cycle is dropped out rather than
inserted, producing a negative impulse of area 21 radians. As the carrier-to-
noise ratio falls, the expected number of noise impulses per second
increases. The actual value of this impulse rate is*’

E ze_x%a) vm(t) impulsess™

The spectrum of such an impulse train is uniform for all frequencies and of a
power spectral density which increases with decreasing p. The result is a
substantial worsening of the output signal-to-noise ratio when exp(—p)
becomes significantly large. This occurs at about 10 dB carrier-to-noise
ratio. As with the envelope detector described in section 3.11 a severe
threshold effect is produced, resulting in the set of curves shown in figure
4.20.

One final point with respect to the above-threshold performance of the Fm
discriminator is worth mentioning. We have assumed in the preceding
analysis that the post-detection filter has a sharp cut-off. This is, in fact,
necessary if the full noise-improvement capability of the FM system is to be
realised. For example, a first-order filter, with an asymptotic roll-off of
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Figure 4.20 Noise performance of the FM discriminator

—6 dB octave™' will only attenuate the out-of-baseband noise to the extent
of flattening the parabolic spectrum in this region. Thus a considerable block
of unwanted noise is admitted together with the received signal. The careful
design of a post-detection filter is of greatest importance when the modula-
tion index is large. For small modulation indexes, a post-detection filter of
any sort is largely redundant. If m =1, then f.= B/2 and all the baseband
noise will be admitted by the post-detection filter anyway.

Another way of looking at this phenomenon is to regard the pre-detection
filter as performing all the necessary filtering at low values of modulation
index. This observation is of some importance when we come to discuss
digital-data transmission which, for reasons of economy of bandwidth is
customarily operated at low values of modulation index.

4.10 Noise Analysis: Phase and Pre-emphasised
Frequency Modulation

In this section, we wish to demonstrate that the noise performance of a
phase-modulation system is identical to that of a frequency-modulation
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Figure 4.21 Comparative performance of PM and FM detectors in the presence of noise.
The pM system is realised by differentiating the modulating signal and applying it to an
FM generator. Integration follows the frequency-detection operation to yield the original
modulating signal

system operating under equivalent conditions. We shall assume that the
carrier amplitude and the noise-power spectral density for both modulations
shall be the same. In order that both systems operate at identical carrier-to-
noise ratios, the bandwidth in both systems must be identical. We shall
assume a noise-like, band-limited modulating signal. The two systems are
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illustrated in figure 4.21, the phase modulator being regarded as a frequency
modulator preceded by a differentiator. This is simply to afford an easy
comparison of the operations being performed on the modulating signal
throughout the system.

The signal power at point a, figure 4.21, common to both phase- and
frequency-modulation systems is p,. At point b the spectrum is modified by
differentiation

P(f) = P.(f) [H(P)I

= ipﬁ; 4n’f?

By suitably scaling the amplitude of the signal, a parabolic spectrum
containing a total power p, is obtained at point c. It follows that both
frequency modulators will have at their inputs signals of the same power and
with gaussian distributions. (A linear filter, such as the differentiator, does
not alter the amplitude distribution of a zero-mean gaussian-noisewave,
save in changing the mean square value of that distribution.) Admittedly, the
power spectra of the two signals are different but the spectrum of the
frequency-modulated carrier at reasonably high values of modulation index,
where the quasi-static analysis may be said to apply, is independent of this
property. It follows that the carrier deviations and transmission bandwidths
at points d and e are the same.

At points f and g the parabolic FM noise spectrum is the same for both
detectors. Likewise, the signal power is the same, although, again, the
spectra differ. It follows that the signal-to-noise ratios at this point must be
identical. Since the integrator operating on the signal and noise at point gis a
linear device and both power spectra have the same shape, being square-
law, and the same bandwidth, f., the signal-to-noise ratio as measured at
point h is identical to that at point g. It follows that the noise performance
graph for the FM discriminator, figure 4.20, applies equally well to the phase
detector, provided that the phase-modulated carrier is operated with the
same modulated carrier bandwidth. To operate the phase-modulated carrier
in this way does, however, mean scaling the input signal amplitude by a
factor 2mfn/V3.

Although the performance graphs for both systems are identical, the noise
performance as such does differ, in that the noise spectrum at the output of
the discriminator post-detection filter is parabolic, whereas that at the
output of the phase detector is uniform. Depending on the nature of the
analogue transmission this difference may determine our choice of modula-
tion method. For example, suppose that we employ an angle modulation to
transmit a bank of AM multiplexed telephony channels. If we specify a ‘worst
case’ or maximum value of noise spectral density to which any ‘subcarrier’ is
to be subjected, this value will only be encountered by the channel with the
highest subcarrier frequency if FM is employed. All other channels will be
operating under conditions far less noisy. The reader may, at first, feel that
this is a good thing to have achieved, but in fact it is not. All the subcarriers
at the output of a pPM system are immersed in noise of the same (worst case)
value, but since the spectrum is uniform the total noise output is much
larger, corresponding to a greater input-noise power and in turn a lower
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carrier-to-noise ratio. In fact the carrier-to-noise ratio for the phase-
modulation main carrier system need only be one-third of that of the
frequency-modulation system to guarantee the same worst case subcarrier-
noise spectral density. Thus, under these conditions of operation, the
phase-modulation system has a very significant 4.8 dB advantage.

Unfortunately, other properties of PM systems give rise to detection
problems. For the multichannel telephony system outlined in the previous
paragraph, the 4.8 dB advantage will be realised if the lowest frequency
subcarrier is not too close to d.c. This is because the signal spectra, as seen at
points b and g are of low absolute spectral density in the vicinity of the
ordinate (when f=0). Thus any ambient system-noise (other than the
channel noise) will swamp the signal components in this region. For just this
reason, a normal, single-channel baseband modulation, extending to a low
frequency, will also be adversely affected by low-frequency system-noise.
To alleviate this problem, we can effect a compromise, by designing
angle-modulation systems which behave like FM systems towards low-
frequency signal components and like pMm systems towards high-frequency
components.

Another way of looking at this problem is suggested by the conclusion
reached in section 2.1, that for given noise and signal powers, and a white
signal spectrum, the signal would be least adversely affected if the noise were
also white. If we assume a white signal spectrum, the high-frequency signal
components are badly contaminated by the large high-frequency compo-
nents in the parabolic FM noise spectrum.

The PM noise spectrum would be a much better background to work
against, but for the objections stated above. Indeed, with typical audio-
signal spectra of the form shown in figure 2.1, the position is even worse.
Such spectra possess most of their power at low frequencies. Consequently a
severe degradation of the high-frequency signal-to-noise ratio takes place
with FM transmission. Unfortunately, the human ear is more sensitive to high
frequencies than it is to low frequencies, and this further compounds the
issue.

To reduce the cumulative effect of all these phenomena, we ‘pre-colour’
the modulating-signal spectrum, amplifying the high-frequency components
preferentially. At the detector, a complementary network removes the
spectral distortion, restoring the original modulating signal. In the process it
also serves to reduce the high-frequency noise power. The process of signal
pre-colouring is known as pre-emphasis or, in some television picture
transmission systems, pre-distortion and the restoration process is known as
de-emphasis. A typical pre-emphasis characteristic is shown in figure 4.22
and corresponds to a transfer function of the form

H.(f) = k(1 +2wjfCR)

The constant k is chosen so that the signal power applied to the modulator
remains constant, ensuring the same quasi-static spectrum for a noise-like
modulation and hence the same band occupancy and carrier-to-noise ratio.
The general angle-modulation could, in fact, be written as

(1) = A cos(2mfur + kj va(r) d)
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Figure 4.22 (a) Pre-emphasis circuit and (b) its transfer function plotted on logarithmic
frequency and amplitude scales

where

Vi(t) = va(t) @ h(t)
and

h.(t) & Hi(f)

and where our three linear angle-modulation subclasses are given by

H.(f)=1 (frequency modulation)
=1+27wjfCR (FM with pre-emphasis)
=2wjfCR (phase modulation)

The de-emphasis circuit, located after the Fm discriminator, is typified by the
transfer function
1
H:f) = G5 2mifcR)

which is illustrated in figure 4.23. The reader will find that many texts apply
this transfer function to the normal parabolic noise-spectrum at the output
of the FM discriminator, and calculate the decrease in total noise power
which this produces. The calculation is simple in principle and necessitates
evaluation of the integral

+[m
j Pu(f) [ HAF) df

1/CR w

Hy(f)
(a) (b)

Figure 4.23 (a) De-emphasis circuit, and (b) itstransfer function
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where P,(f) is defined by equation 4.34. This integral gives us the output-
noise power after de-emphasis. Common practice has it that the ratio
between this quantity and the noise power before de-emphasis is the same
as the improvement in output signal-to-noise ratio. It can be shown that,
with the conventionally agreed values

CR=75uS and f.=15kHz

this improvement is about 13 dB. As it happens, few texts take into account
the effect of the de-emphasis network on the signal spectrum. Without going
into details, the mathematical effect is substantially to reduce the 13 dB
improvement quoted above. The extent of the reduction depends on the
nature of the transmitted-signal spectral shape, and is therefore difficult to
quantify. However, the subjective improvement, together with the reduction
of system (as opposed to channel) noise is sufficient to make the use of some
form of pre-emphasis virtually mandatory for analogue-signal transmission
by means of angle modulation.

Because the noise at the output of envelope-modulation systems is
uniform and of relatively small bandwidth (usually 3 to 4 kHz) the effect of
pre-emphasis on such systems is small. As a consequence, the use of
pre-emphasis is restricted to angle modulation.

4.11 The Threshold and its Importance in System Design

In many applications the power available at a transmitter is limited. If the
channel noise level rises, the system performance will deteriorate. One
possible strategy when this situation is encountered is to increase the carrier
deviation. This results in an increase of the modulation index and since

s=3m’p

brings about an increase in the output signal-to-noise ratio, s. Thus a
doubling of the carrier deviation causes m to double and p to halve
(assuming no change in the transmitter power). Consequently a fourfold
increase in s will occur.

Unfortunately, when the system is at, or close to, the threshold, increasing
the carrier deviation and consequently decreasing p will take the system
over the threshold and s will decrease. Figure 4.24 illustrates this
phenomenon.

An important corollary to these observations is that, when transmitter
power is at a premium, the modulation index is best selected to bring about
operation of the system as close to (but above) the threshold as possible. In
practice it might be necessary to operate the system some way above the
threshold for most of the time, the closeness of the operating point to the
threshold being determined by the statistics of the communication channel
itself. That is, a channel with a wide fluctuation of relative noise power
would require that the system be operated well above the threshold for most
of the time. A very constant ambient relative noise level would permit
operation close to the threshold.

Because the threshold plays such an important role in determining the
performance of angle-modulation systems, many techniques have been
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Figure 4.24 The threshold as a limiting factor in system performance. The illustrated
trajectory has as its initial values, m = 1 andp = 14 dB

devised to reduce its value, thereby extending the geographical range or
permitting a reduction in output power from the transmitter. The most
widely used threshold-extension detector is the phase locked loop®*** which
we have discussed in section 4.8.2.

The reader should recall, from section 4.9, that the FM discriminator
exhibits at its output a noise waveform that consists of a parabolic spectrum
quasi-gaussian component plus an impulse component. The quasi-gaussian
component occurs because the zero crossings of the modulated carrier
‘jitter’ as the result of the impressed channel noise. The impulse component,
which only begins to appear at values of carrier-to-noise ratio below about
10dB, is caused by the skipping or insertion of cycles of carrier before
detection. This causes an impulsive halving or doubling of instantaneous
frequency. The result of the relatively rapid onset of impulse generation
when the carrier-to-noise ratio falls below 10 dB is a sudden deterioration in
detection performance. It is this rapid deterioration which is referred to as
the FMm threshold and which places the limit on the utility of angle-
modulation systems.

In part, the early onset of impulse formation may be ascribed to the rapid
dynamic response of the discriminator. Under the common condition of
narrow-band operation (B« f., not low modulation-index operation)
changes of instantaneous frequency take place over many thousands of
cycles of operation. It is quite unnecessary for the detector to be able to
respond to sudden doublings or halvings of instantaneous frequency. The
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phase locked loop exhibits a much lower impulse rate than a conventional
discriminator simply because of its inherent ‘inertia’ to changes in instan-
taneous frequency. Its operation may be likened to that of a heavy flywheel,
being slowly run up to a given speed by a long succession of ‘pushes’, of
slowly increasing frequency, against its rim. If one push is omitted or an
extra push included, the effect on the instantaneous rotation speed will not
be noticeable. The rotation speed will certainly not halve or double and then
return immediately to its old value.

The above-threshold performance of the phase locked loop is exactly the
same as that of the FM discriminator, since its action is to yield at its output,
the differential of the total phase angle of the incoming wave. Typically, the
reduced impulse rate at the output of the phase locked loop causes a
corresponding decrease in the threshold of between 5 and 10 dB.

Problems

4.1 Itis quite easy to determine the spectrum of an amplitude-modulated
carrier when the modulating signal is a pair of sinusoids (see for example,
question 3.5). Why is it much more difficult to determine the spectrum of a
frequency- or phase-modulated carrier, given the same modulating signal?
Under what circumstance can such an analysis become reasonably tractable?

4.2 Show that both the modulation index and the nominal carrier fre-
quency of a frequency-modulated wave may be increased in integer
multiples by applying it to a severe non-linearity and filtering the output.

4.3 What would be the result of applying a low modulation-index
frequency-modulated wave to a hard limiter, in spectral terms? Assume a
white, band-limited noise-like modulating signal and sketch spectra of both
the input and output signals.

If the input-signal carrier frequency is 100 kHz and its bandwidth is
40 kHz, what is the maximum frequency multiplication which can be
achieved without serious spectral overlap?

(Answer 3)

4.4  Which of the following frequency modulators are inherently capable of
producing wideband frequency-modulation without further processing

(a) Integrator plus Armstrong phase modulator

(b) Serrasoid modulator

(c) Reactance-device modulator

(d) Varactor diode or capacitor microphone modulator?

4.5 What advantages does narrow-band frequency modulation have over
conventional amplitude modulation? What disadvantages does it exhibit?
(Hint Compare noise performance, efficiency, channel capacity, effect of
channel non-linearity.)

4.6 If broadband frequency-modulation is to be obtained from a
reactance-device modulator by following a narrow-band frequency modula-
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tion with a fairly large frequency multiplication, what will be the effect on
the stability of centre frequency of the final frequency modulation?

Which type of modulator would offer the best stability under these
circumstances, and why?

4.7 A frequency-modulated wave is generated by an Armstrong phase
modulator preceded by an integrator. The modulation index is 0.2. If the
modulating-signal bandwidth is nominally 15 kHz, what is the maximum
carrier deviation and, by Carson’s rule, what is the required signal band-
width?

(Answer 3 and 36 kHz)

4.8 Given that you wished to verify experimentally that the conditions
imposed in question 4.7 were met, how would you achieve this, using a
sinusoidal test signal and the method of Bessel zeros?

4.9 Suppose, for the modulator specified in question 4.7, that pre-
emphasis was required. Sketch the basic modulator block-diagram and
show, by means of sketches of the overall transfer-function of the networks
placed before the phase modulator, that pre-emphasis results in the
frequency modulation of low-frequency signal components and phase mod-
ulation of high-frequency signal components.

4.10 A modulating signal has a bandwidth of 4kHz and is used to
frequency modulate a carrier of 100 kHz. The modulation technique
establishes a narrow-band frequency-modulated signal. It is required to
obtain a broad-band frequency-modulated signal with a modulation index of
3 at a carrier frequency of 120 MHz. Describe a system which could be used
to achieve this, specifying the values of any frequency multipliers and mixer
local-oscillator frequencies, required.

What channel bandwidth will be required for the signal? Does your
proposed system place any unduly stringent demands on the system modules
you specify?

(Answer 32 kHz)

4.11 The use of quasi-static spectral analysis is required when slow sweeps
of frequency occur in the modulated carrier. A random binary-digit
sequence is used to frequency modulate a carrier of amplitude 10 volts and
frequency 2x 10’ Hz. The amplitude of the digit sequence is adjusted to
make the maximum frequency deviation £200 Hz. The digit duration is
50 ms and the digits are presumed equiprobable. The waveshapes corre-
sponding to the binary digits 0 and 1 are so(t) and s.(t) respectively, with

s1(t) = —so(t)

Two types of modulating digit waveshape are proposed

(a) Isosceles triangular
(b) Rectangular
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Show that the power spectra associated with these pulse shapes are

(a) P(f)=0.06025 volt’ Hz"' 1.8x10°<|f|<2.2x10’
(b) P(f)=12.5{5(f+1.8x 10*)+8(f — 1.8 X 10°)

+3(f+2.2x10%) —8(f—2.2x 10%)}

4.12 Sketch the spectra derived in question 4.11 and comment on the
extent to which you feel they may be representative of the real spectra of
such waveforms.

If the digits are not equiprobable, what will happen to the power spectrum
of the modulated carrier? If, for the triangular pulse shape, the occurrence
probability of the binary 1 is 0.8 and that of the binary 0 is 0.2, re-evaluate
the power spectrum.

4.13 Given a frequency-modulated sinusoid, modulated by a sinusoidal
test signal at a sufficiently large modulation index for quasi-static analysis to
be meaningful, what will be the effect of applying this wave to a simple RCL
bandpass filter which is sufficiently narrow to invalidate Carson’s rule (that
is, it is too narrow to accommodate sweeps of the carrier)? How may the
effect you deduce affect the detection performance of the frequency
detector?

4.14 Draw phasor diagrams illustrating the processes of amplitude and
frequency modulation, given the defining equations
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