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Preface 

A few decades ago mathematics played a modest role in life sciences. 
Today, however, a great variety of mathematical methods is applied 
in biology and medicine. Practically every mathematical procedure 
that is useful in physics, chemistry, engineering, and economics has also 
found an important application in the life sciences. 

The past and present training of life scientists does by no means 
reflect this development. However, the impact of the fast growing number 
of applications of mathematical methods makes it indispensable that 
students in the life sciences are offered a basic training in mathematics, 
both on the undergraduate and the graduate level. This book is primarily 
designed as a textbook for an introductory course. Life scientists may 
also use it as a reference to find mathematical methods suitable to their 
research problems. Moreover, the book should be appropriate for 
self-teaching. It will also be a guide for teachers. Numerous references are 
included to assist the reader in his search for the pertinent literature. 

Life scientists are hardly interested in going deeply into mathe
matics. Therefore, this course differs in many ways from a course 
offered to mathematicians. Each concept is introduced in an intuitive 
way. The reader is being kept informed why he is learning a particular 
method. The relevance of all procedures is proven by examples that 
have been selected from a wide area of research in the life sciences. It 
is not intended to distract the student of biology from his main field 
of activity and to train him as a competent mathematician. The aim is 
rather to prepare him for an understanding of the basic mathematical 
operations and to enable him to communicate successfully with a 
mathematician in case he needs his help. 

Many illustrations and some historical notes are inserted to encourage 
the life scientist who is perhaps somewhat reluctant to be involved 
with the abstract side of mathematics. Most problems were tested in 
class. Sections and problems marked with an asterisk are not necessarily 
more difficult, but may be omitted on first reading. 

The book avoids as much as possible the introduction of cookbook 
mathematics. This requires a somewhat broad presentation. As a conse
quence no attempt is made to comprise all mathematical methods that 
are important for life scientists. For instance, computer techniques and 
statistics are omitted. These two areas can only be presented in special 
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volumes. However, the reader will be prepared for an easier understanding 
of all topics that could not be covered in this book. 

In the beginning I was encouraged to prepare the manuscript by 
Dr. Sidney R. Galler, Smithonian Institution. Numerous friends supported 
the idea and gave me valuable advice and inspiration. I am unable to 
list all of them. I am very obliged to those biologists who read some 
chapters and offered valuable criticism and suggestions, especially to 
Dr. J. P. Hailman, University of Wisconsin, Dr. J. Hegmann and 
Dr. R. Milkman, both at the University of Iowa, Dr. W. M. Schleidt, 
University of Maryland. 

I gratefully. acknowledge the encouragement and considerable sup
port which I received by Dr. Eugene Lukacs, Director of the Statistical 
Laboratory at Catholic University, Washington, D.C. Some of the 
more difficult illustrations were made by Mr. C. H. Reinecke with finan
cial support by the Office of Naval Research. I also enjoyed the advice 
by Dr. V. Ziswiler. The text was carefully typewritten by Mrs. Amelia 
Miller and Mrs. Phyllis Spathelf for whose patience I wish to express 
my gratitude. Stylistic, grammatical errors, and other shortcomings were 
corrected by Dr. Inge F. Christensen and Dr. Maren Brown with great 
care. I am also indebted to my wife and to Mrs. Eva Minzloff for proof
reading and to the staff of the Springer-Verlag for the careful edition. 

I would appreciate it if the readers would draw my attention to 
errors, obscurities and misprints that might still be present in print. 

Zurich, October 1971 Edward Batschelet 
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CHAPTER 1 

Real Numbers 

1.1. Introduction 

The purpose of the first chapter is to review some laws and rules of 
algebra. Only a selection emphasizing the needs of life scientists will be 
offered. At the same time we add important concepts which are usually 
neglected in textbooks on mathematics. 

1.2. Classification and Measurement 

Categorizing objects and events is the simplest method of measure
ment. We assign words, symbols, or numerals to the objects. This is the 
most primitive kind of a scale. It is called a nominal scale (from Latin 
nomen = name). We also say that we are working at a nominal level. 

When categorizing biological species, classifying different behavior 
of animals, or distinguishing among weather conditions, we are working 
at a nominal level. 

One may regret the lack of quantitative information, but a clear-cut 
distinction of objects is already a scientific achievement. 

Example 1.2.1. Chemistry is able to distinguish among hundreds of 
thousands if not millions of different substances. First of all, each 
substance is either a pure chemical or a mixture of chemicals. Second, 
among the pure chemicals there is no overlapping. Each one is uniquely 
defined. Ice, water, and water vapor belong to the same category, 
whereas a clear distinction is made between different sorts of sugar. 
This is quite different from everyday language where words such as 
sugar, salt, wax, alcohol are not well defined. 

We obtain a more useful way of scaling if we succeed in ranking 
objects and events. It is easy for us to distinguish two different tones 
with respect to musical pitch. Not only do we categorize the tones, we 
are able to rank them as lower or higher. If we are able to rank objects 
and events we are working with an ordinal scale (from Latin ordo = order, 
rank). We also say that we reach the ordinal lel'el. 
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Example 1.2.2. A medical research worker distinguishes a few cate
gories of kidney failure due to excessive consumption of certain 
chemicals. He may also be able to rank these categories according to 
severity. It is quite convenient for him to assign the number 0 to 
"no failure", the number 1 to "weak failure", the number 2 to "modest 
failure", and the number 3 to "severe failure". He introduces an ordinal 
scale with scores or rank numbers 0, 1, 2, 3. Notice that it is not possible 
to conclude that the increase from weak to modest failure is the same as 
the increase from modest to severe failure although the numerical 
difference between the ranks is 1 in either case. 

Example 1.2.3. Mineralogists have proposed a hardness scale for 
solid minerals. A specimen S is said to be harder than a specimen T 
if S scratches T when the two are rubbed together. In this way we can 
rank the minerals according to hardness. They may be numbered 
1, 2, 3, .,. with increasing hardness, but there is no way of comparing 
the intervals between consecutive degrees of hardness. 

Example 1.2.4. The intelligence quotient (I.Q.) is an attempt to 
measure human intellectual performance. The I.Q. is typically a 
measure at the ordinal level. To what extent ranking of intelligence 
can be done in a one-dimensional way is a matter of controversy, 
however. 

We reach an even higher level of scaling when intervals become 
meaningful. Consider the Celsius (DC) temperature scale (formerly 
called centigrade scale). The zero point 00 C is quite arbitrarily set as the 
freezing point of water under one atmosphere pressure. But 1 ° C, 2° C, 
30 C, etc. do not simply mean ordered temperatures as with an ordinal 
scale. An interval of 10 C has a true physical meaning: The mercury of a 
thermometer rises by the same amount when the temperature increases 
by 10 C. 

Whenever we have a scale with meaningful intervals we call it an 
interval scale. We also say that we are working at an intervallevel. 

Example 1.2.5. Altitude is typically associated with an interval 
scale. The reference point, altitude zero, is arbitrary. It could be chosen 
as floor level, ground level, sea level, etc. But various altitudes have 
well-defined differences that can be expressed in meters. The intervals 
do not depend on the choice of the reference level. 

Example 1.2.6. TIme t is measured by an interval scale. There is no 
natural phenomenon which would indicate a universal reference point 
t = O. We always choose a zero point suitable for our particular need. 
But intervals between time instances have an absolute physical meaning. 



Classification and Measurement 3 

Example 1.2.7. Electric potential measured in volts can only be 
defined versus an arbitrary potential zero, but a difference in electric 
potential, e.g. along a nerve fibre, has a precise physical meaning. There
fore, electric potential is measured by an interval scale. 

Example 1.2.S. Directions in a plane are measured by angles with 
an arbitrary zero direction. If north is chosen as the zero direction, and 
if the angles increase in the counter-clockwise sense, directions are 
measured by their azimuth. The interval between azimuth 0° and 90° is 
the same as between 90° and 180°, namely a right angle. Thus directions 
are determined at an interval level. 

There are scales which are even more useful than those at a nominal, 
ordinal, or interval level. Consider the weight of a body. Here we do 
not have to set an arbitrary zero point. Weight zero is quite a natural 
reference point. For this reason, it makes sense to say that one animal 
weighs twice as much as another one or that the weight increases by 
two percent. Since the ratio of two weights has a true meaning, we call 
such a scale a ratio scale. We also refer to a ratio level. 

Notice how foolish it would be to say that a body of 20° C is twice 
as warm as a body of 10° C. Similarly, it makes no sense to state that 
time has advanced 50 % or that one direction is ten times as "great" as 
another direction. Therefore, at an interval level, ratios need not have a 
proper meaning. 

Example 1.2.9. Length, height, thickness, and volume of a body are 
all measured on ratio scales. However, we have to discriminate between 
the height of a body and the altitude of a location which is not on a ratio 
scale (see Example 1.2.5). Height may be interpreted as a difference 
between two altitudes and, therefore, has a clear reference point, the 
difference zero. Altitude, on the other hand, has an arbitrary reference 
point. In the everyday language, altitude is referred usually to sea 
level, and this level is considered to be absolute. Only under this 
condition does it make sense to call Mount Everest twice as high as 
Mount Rainier. 

Example 1.2.10. Temperature has a lowest point, the temperature of 
approximately - 273° C. It is therefore possible to define a ratio scale 
for the temperature. Thus by using the intervals of the Celsius scale 
the Kelvin scale was created. Here 273° K means the freezing point 
and 373° the boiling point of water under one atmosphere pressure. 
With degrees Kelvin, it makes sense to say that 180° K is 80% higher 
than 100° K. 
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Summary. For adequate use of algebraic rules we have to be aware 
of different types of measurement. The main properties are listed in the 
following box: 

level of 
measurement: 
nominal 
ordinal. 
interval. 

ratio .. 

properties: 
no ranking indicated 
ranking possible, intervals not defined 
ranking possible, intervals defined, reference 
point arbitrary, ratios are meaningless 
ranking possible, intervals defined, reference 
point is absolute, ratios and percentages are 
meaningful 

For a more detailed treatment, see Hammond and Householder (1963). 

1.3. A Problem with Percentages 

Does 20 % + 20 % = 44 %? Certainly not. And yet, numerical work 
of beginners may result in a paradox like this. Assume that a biologist 
is studying the growth of a foal. When he starts his investigation the foal 
weighs 50 kg. The number is simplified for ease of presentation. Within 
a month the weight increases by 20%, that is 1/5 of 50 kg, and reaches 
60 kg. Assume that in a second month the weight increases again by 
20 %; then we are inclined to say "the total increase is 20 % + 20 % = 40 %". 
However, the calculation leads to a different result: 20 % of 60 kg is 
12 kg so that the final weight is 72 kg which is 22 kg or 44 % more than 
the original weight of 50 kg (see Fig. 1.1). 

+ 20 '}o 
+ 20 '}o=? 

• w 

50 kg 60 kg 

Fig. 1.1. Growth of a foal 
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Intuitively the two gains have to be added. But an addition that is 
intuitively clear need.not be an addition in the strict sense of algebra. 
A correct treatment of this example will result in a multiplication 
rather than an addition. Let w denote the initial weight of the foal. 
After a month the weight will increase to w + 0.2 w which is 1.2 w. Hence, 
to obtain the weight after a monthly period we have to multiply by 1.2. 
The same operation is applied again for the second monthly period 

resulting in 1.2 x 1.2 w = 1.44 w = w + 1~~ w. 

We get a deeper insight in the preceding example if we slightly 
generalize it. Let w be again the initial quantity!, e.g. a weight or a 
length, and p be the percentage of increase. Then the increase is 

The increased quantity is therefore 

w + 1~ . w = w (1 + 1~)· (1.3.1) 

To get from the initial quantity w to the increased quantity we have to 

multiply w by the factor 1 + 1~ . For a second increase with the same 

percentage we have to multiply again by 1 + 1~ . Thus we get 

(1.3.2) 

for which we simply write 

(1.3.3) 

The same operation may be applied over and over again. After the 
elapse of n time intervals we get for the weight 

(1.3.4) 

This result will be used in Chapter 6 for the introduction to exponential 
functions. 

1 Letters signifying quantities were used for the first time around 1600. This change 
may appear to us as a trivial improvement. In reality it has caused such a rapid 
development of algebra that it may be called an explosion of knowledge. 
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1.4. Proper and Improper Use of Percentages 

As we pointed out in Section 1.2, percentages can only be applied for 
quantities that are measured on a ratio scale. 

In the everyday language, as well as in newspapers, magazines, 
announcements, changes are often described in terms of percentages 
although this may not be adequate. It is therefore important to carefully 
study a variety of situations. 

Example 1.4.1. It makes little sense to talk about a 40 % increase in 
productivity of a laboratory as long as the scale is not specified. Does 
40 % refer to the number of man-hours, to the amount of laboratory 
equipment in use, or to the scientific papers published? Assume that the 
idea is to talk about a 40 % improvement of the quality of scientific 
papers. Then we can hardly accept this idea since quality is best 
measured on an ordinal scale. Even if 40 % refers to the number of publi
cations, we should be suspicious. To be sure, "number of publications" 
is at the ratio level, but if, in absolute numbers, the increase is from 
5 to 7 publications, the ratio 40% indicates an accuracy which is by no 
means reached. 

Example 1.4.2. When a physician observes 6 new cases of tuber
culosis in October and 8 new cases in November, then it is arithmetically 
valid to figure out an increase of 33~ %. But this number is misleading. 
The occurrence of new cases is subject to random fluctuations. The ups 
and downs in a monthly sequence such as 6, 8, 5, 9, 5, 7, etc., do not 
mean that the risk of infection is changing. Larger deviations would be 
necessary to signify a true change. The claim that a change has occurred 
must be supported by a statistical test of the significance of the observed 
deviations. Even in case of significance one should avoid a percentage, 
unless the error is small enough. Otherwise an accuracy is suggested 
that does not exist. If, for instance, the true percentage could range 
between 10% and 50%, it is ridiculous to report 33~%. 

Example 1.4.3. Assume a machine for mass production has an 
output of 8 defectives among 100 items. If the rate can be reduced to 
6: 100, this may be called a 2 % improvement. It is more impressive, 
however, to describe it as a 25 % improvement. All one has to do is to 
take the 8 defective items as 100%. 

Example 1.4.4. A 50 % increase and a subsequent 50 % decrease do 
not cancel each other. If, for instance, the crop of an apple tree increases 
from 120 kg to 180 kg within a year, then we call this a 50% increase. 
A subsequent 50% decrease, however, is usually related to 180 kg as 
100 %. Thus the crop is reduced to 90 kg instead of the original 120 kg. 
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Example 1.4.5. A ratio scale may be mathematically and physically 
meaningful without being biologically adequate. Take for instance our 
hearing capacity. Children can recognize acoustic waves of frequencies 
up to 20,000 Hz. The upper limit decreases with age2• A forty-year-old 
person can hardly hear beyond 16,000 Hz. It may strike him that he 
has lost a range of 4,000 Hz, that is 20 % of the original capability. How
ever, this is the wrong way to judge our ear. The interval between two 
tones has to be measured by the ratio of their frequencies. Hence, the 
loss is measured by the ratio 20,000: 16,000 = 5: 4. In music this means 
a small interval, called a third (the same interval as from do to mi). 
Compared with the ten octaves that we can hear, the loss is irrelevant 
for our life. We obtain a better scale for musical pitch by replacing the 
frequencies with their logarithms (see Section 6.6). 

1.5. Algebraic Laws 

To improve our capabilities, but also to prepare ourselves for 
Boolean algebra in Chapter 2, we have to review the algebraic laws 
which we all have frequently, but most often unconsciously applied 
since childhood. 

Easiest are the two commutative laws, one for addition, the other 
one for multiplication: 

a + b = b + a (commutative law of addition) 

ab=ba (commutative law of multiplication) 

(1.5.1) 

(1.5.2) 

In words: The order in which we add or multiply two numbers may be 
interchanged. 

Example 1.5.1. If an animal loses weight in a first period by 30 % 
and in a second period by 10%, will we obtain the same result if we 
interchange the order of reduction? The answer is yes. Indeed, if w 
denotes the original weight or 100 %, the decrease in the first period is 

expressed by multiplying by the factor 1 - :~ = 1~. To figure the 

second ~edu~tion we multiply the result by 1 - 1~ = :0. Thus, the 
final weIght IS 

1 Hertz (Hz) is the unit of frequency and means cycles per second. Heinrich Rudolf 
Hertz (1857-1894) was the German physicist who discovered the electromagnetic waves. 
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a result which remains unchanged by applying the commutative law of 
multiplication. 

As an introduction to the associative laws consider the addition 

28 + 13 + 87. 

One way of carrying out the calculation is to add 28 + 13 = 41 and in 
a second step to calculate 41 + 87 = 128. This procedure may be 
indicated by parentheses as follows 

(28 + 13) + 87 . 

There is, however, a smarter way to obtain the result. We first carry 
out the addition 13 + 87 = 100 which leads to a round number. The 
second step, 28 + 100 = 128, is then particularly simple. This time we 
followed the rule 

28 + (13 + 87) . 

Similarly, when multiplying 

658 x 2 x 5, 

there are two ways without touching the order of the three factors. 
Either 

(658 x 2) x 5 = 1316 x 5 = 6580 
or 

658 x (2 x 5) = 658 x 10 = 6580 . 

Needless to say that the second way is much faster. In general, the 
rules are 

(a + b) + c = a + (b + c) (associative law 
of addition) 

(ab) c = a(bc) (associative law 
of multiplication) 

(1.5.3) 

(1.5.4) 

In words: If more than two numbers have to be added or to be multiplied, 
it does not matter which two of the numbers we add or multiply first. 

Example 1.5.2. We return to formula (1.3.2). There it is quite in-

convenient to multiply wand 1 + 1~ first, as indicated by the brackets. 

It facilitates our task that we are allowed to multiply the second and 
third factor first which leads to formula (1.3.3). 
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There is a fifth law which combines addition and mUltiplication. 
When carrying out the calculation 

(4 x 32) + (4 x 68) 

we can do it in a complicated way, that is, 

4 x 32 = 128 , 4 x 68 = 272 , 128 + 272 = 400 , 

or in an easy way, that is, 

4 x (32 + 68) = 4 x 100 = 400. 

The two versions lead to the same result due to the following law: 

I ab + ac = a(b + c) (distributive law) I (1.5.5) 

In words: Instead of multiplying two numbers by a common factor and 
adding the products, we may first add the two numbers and then multiply 
their sum by the factor. 

For an example see also formula (1.3.1). 
In this connection we should throw a glance at some convenient 

ways of writing formulas. In 

ab+c 

we may have doubts whether the multiplication or the addition has to 
be performed first. The results would not be the same! However, there .. 
is agreement that multiplication is first when parentheses are omitted. 
Thus ab + c actually means 

(ab)+c. 

A similar rule is applied when the horizontal line for fractions is 
replaced by an oblique stroke 3 . We should learn to clearly distinguish 
among the four expressions 

1 + p/100 , (1 + p)/l00 , p/100 + 1 , p/(lOO + 1) 

3 The oblique stroke I, also called solidus, was proposed in 1845 by the English 
mathematician Augustus de Morgan (1806-1871). For a typist or a printer it is more 

economical to set p1100 than 1~ . 



10 

which in turn mean 

P 
1 + 100' 

Real Numbers 

l+p 
100 ' 

P 
100 + 1, 

p 

100+ 1 

Only the first and the third expressions are of equal value. The 
parentheses are used to indicate the order in which the operations 
are performed. 

1.6. Relative Numbers 

In comparing numbers with each other we frequently have to observe 
positive and negative signs. Obviously, a temperature of - 50 C is 
quite different from + 50 C. We therefore deal with relative numbers. 
The temperature scale gives us a clue how to arrange the relative 
numbers along a line, the so-called real number line (Fig. 1.2). 

i i i f i i 

i\ 
i 3\ i i .. 

-5 -4 -3 -2 -1 0 2 4 5 

-{5 f2 71 

Fig. 1.2. The real number line 

The numbers are represented by points on the line. As a rule positive 
numbers are depicted to the right of zero, negative numbers to the left. 
If we are given two different numbers, one of them is located to the right 
of the other number, that is, the real numbers are ordered. In the case of 
temperatures, the number to the right represents the higher temperature. 
In general, we say that the number to the right is greater than the number 
to the left, and, conversely, the number to the left is less than the number 
to the right. Thus + 2 is greater than - 5, and 0 is greater than - to. 
For "b greater than a" we write 

b>a. (1.6.1) 

For instance, 2> ( - 5) and 0> (-to). Symmetrically, for "a is less 
than b" we write 4 

a<b. (1.6.2) 

For instance, 0 < 7 and (-7) < O. Notice that the large end of the signs 
> and < faces the greater number and the tip the smaller number. 

The two temperatures - 50 C and + 50 C are equally distant from 
the point 00 C on the real number line. To express this fact we say that 
both temperatures have the same absolute value. More precisely, the 

4 According to Cajori (1928) the symbols> and < were invented in England in 1631 
by Thomas Harriot. 
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absolute value of a positive number is the number itself, whereas the 
absolute value of a negative number is the opposite (positive) number. 
Thus we write for the absolute value 5 

1+ 51 = + 5 , 1- 51 = + 5 . 

The number zero is neither positive nor negative. We define 101 = O. 
Hence, the absolute value of a number is positive except for the number 
zero. When a number is written without sign, it is positive unless it is 
zero. Thus 5 and + 5 are the same number. 

Clearly, the greater the distance from 0, the greater is the absolute 
value. Thus 1-51>1+21, whereas (-5)«+2). Also 1-81>1-31, 
whereas ( - 8) < ( - 3). 

When three or more numbers are compared with each other, we 
may write for instance a < b < c < d < .... If a variable x is permitted to 
take values between 0 and 6, say, we write 

0<x<6 

and call 0 the lower bound and 6 the upper bound of x. For the same 
relationship we may also write 

6>x>0. 

But it is against the rule to use two different symbols, > and <, in the 
same relationship. Never write 5 < x > y. Nor is it permitted to reduce 
a statement such as "x < 2 or x> 5, but not between" to 2> x > 5. 

Occasionally, x ~ y used is to indicate that x is either greater than y 
or less than y, but not equal to y. But for such a statement it is better 
to write 

with the sign =t= meaning "not equal". 
If a variable, say y, is allowed to take the value of its upper bound b 

or its lower bound a, we may write 

(1.6.3) 

We say "y is less than or equal to b" and "y is greater than or equal to a". 
In print the symbols ~ and ~ often appear as ~ and ::s;. 

Notice that a + b > c means (a + b) > c, but the parentheses are 
usually not written. 

Every relation using the sign > or < is called an inequality. 
Inequalities occur frequently in classification problems. For instance, 
a patient is classified as diabetic if the concentration c of glucose in the 

5 The two vertical bars as symbol for the absolute value were introduced by the 
German mathematician Karl Weierstrass (1815-1897), according to Cajori (1929). 
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blood exceeds the value of 1.80 gil an hour after intake of 50 g of 
glucose. In symbols 

c> 1.80 gil. 

The number zero plays an exceptional role in division. Divisions 
such as 0/5 = 0 or 0/( - 7) = 0 are not problematic, since the inverse 
operation 0 x 5 = 0, 0 x (-7) = 0 leads to a correct result. However, 
when the denominator is zero, the division cannot be performed. 
5/0 is not a number, because no number x would satisfy the inverse 
statement x . 0 = 5. Nor has % any meaning, since the inverse statement 
x . 0 = 0 would be correct for an arbitrary number x. We conclude that 
the denominator is not allowed to be zero. In later chapters we will 
frequently have quotients, say p/q, and then add "provided that q > 0". 
It is worth keeping the following rule in mind 6 : 

Never divide by zero 

1.7. Inequalities 

Quite similar to an equation such as 

2x- 5=x+3 

which we have to solve for x we also find "inequations" like 

3x-5<x+3 (1.7.1) 

in numerous applications. The word "inequation" is hardly ever used 
despite its appeal. We accept the usual term inequality. 

The method of solving an inequality is much the same as for an 
equation. In our problem (1.7.1) we first add 5 on both sides. This will 
not change the proposed imbalance of the two sides. Thus we get 

3x<x+ 8. 
Next we subtract from both sides the same amount x and obtain 

2x<8. 

Again we do not disturb the imbalance when dividing both sides by 2. 
Hence 

x<4 

which solves our problem (1.7.1). 

6 Readers who are familiar with the symbol 00 signifying infinity might be inclined 
to write 3/0 = 00. However, this is not correct for two reasons. First, 00 is not a number 
so that the sign of equality is not applicable. Second, if 3/0 = 00 were true, 3/0 = - 00 

would also be true. This point will be clarified in Section 8.4. 
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Great care should be taken when we have to multiply or to divide 
by a negative number. For instance 

(-6» (-10) (1.7.2) 

is equivalent to (+ 6) < (+ 10). Hence, upon multiplication with -1, 
the inequality sign changes from > to <. The general rule is: When we 
multiply or divide an inequality by a negative number we have to reverse 
the sign of inequality. 

Example 1.7.1. Solve the inequality 

u(u - 1) > p - 4u + u2 (1.7.3) 

for u. First, we remove the parentheses by applying the distributive 
law (1.5.5). Second, we subtract u2 from both sides. Third, we add 4u 
on both sides. and finally, divide by 3. Thus we obtain consecutively 

u2 - u > p - 4u + u2 , 

-u> p-4u, 

3u>p, 

u> p13. 

We may reach the same solution upon multiplying - u > p - 4u by ( - 1), 
then by subtracting u and adding p on both sides. Thus 

u < - p + 4u ("less than" sign!) , 

p<3u, 

pl3 <u. 

For biological applications of such inequalities see Section 3.7. 

When the unknown quantity is squared as in 

. x 2 <2, (1. 7.4) 

the solution cannot be found by a simple extraction of the square root. 
We have to observe the plus and minus signs. Thus (1.7.4) leads to 

-V2<x<V2 

which means that x is any number on the real axis between the 
opposite numbers - 0 and + 0· We may also write Ixl < 0. 

Notice that 
(1.7.5) 

implies that 
x>3 or x< -3, 

a result which could be written in the simple form Ixl > 3. 
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1.8. Mean Values 

When a quantity changes with time or when an experiment is repeated 
several times, we have to reduce the amount of data for practical pur
poses. One way to do this is to calculate averages or mean values. 

In this section we will introduce two sorts of mean values only from 
the algebraic point of view. 

When the quantity under consideration is measured on an interval 
or ratio scale (see Section 1.2), the most common mean value is the 
arithmetic mean. For two measurements Xl and X2 we define 

(1.8.1) 

The bar over the X indicates the arithmetic mean. 
There are occasions when the arithmetic mean loses its biological 

significance. Consider the growth of a foal as described in Section 1.3. 
At equidistant time intervals the foal attains the weights 

50 kg , 60 kg , 72 kg . 

The sequence was the result of multiplying 50 kg repeatedly by the con
stant factor 1.2. We feel that 60 kg is the proper mean between 50 kg and 
72 kg. However, the arithmetic mean would be (50 kg + 72 kg)/2 = 61 kg. 
We may try the geometric mean which is defined by the formula 

Xg = V Xl X2 . (1.8.2) 

We obtain V 50 x 72 = V 3600 = 60 which is the desired value. 
There are other formulas for mean values possible. The choice of 

the one to be applied depends on the nature of the problem. This is 
discussed further in Section 6.5. Sometimes the decision has to be 
based on a statistical analysis. 

Notice that a mean value formula cannot be used at the ordinal 
level. Three different results may have the scores 3, 7, 20. When the 
somewhat arbitrary scoring system is changed, the same results may 
take the scores 2, 15, 18. Obviously, a mean value could be manipulated 
to fall between the first two or likewise between the last two results. 

1.9. Summation 

Assume that a measurement is repeated n times where n is one of the 
numbers 2, 3,4, .... Let Xl' X 2 , X3' ... , Xn denote the n measurements. 
Then the arithmetic mean is 

n 
(1.9.1) 
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It is convenient to abbreviate a sum of similar terms by using the 
summation sign ~ (the upper-case Greek Sigma)? Each term of the sum 
is of the form Xi where the variable subscript i stands for one of the 
numbers 1, 2, ... , n; i = 1 is the lowest and i = n the highest value. Now 

i=n n 

the sum is written L Xi or more frequently L Xi' in print also ~?= 1 Xi· 
i= 1 i= 1 

The sum is read "Summation of X sub i, i ranging (or running) from 
1 to n". Formula (1.9.1) may then be rewritten in one ofthefollowing ways: 

1 n n 

X = - L Xi = L Xi/n . 
n i=1 i=1 

(1.9.2) 

Notice that an arbitrary letter can be used for the subscript without 
changing the meaning. For instance, 

n n n 

XI + X 2 + ... + Xn = L Xi = L Xk = L Xv· 
i=1 k=1 v=1 

Usually a research worker is interested not only in a mean value, 
but also in the deviations from the mean value. Consider the differences 

or briefly Xi - X for i = 1, 2, ... , n. Since some of the values Xi are 
greater and some are smaller than x, the differences Xi - x take positive 
as well as negative values. From (1.9.1) we conclude that the sum of the 
differences equals zero: 

n 

;= I (1.9.3) 
= XI + X 2 + ... + Xn - nx = o. 

This formula is very useful for checking the numerical value of x. 
In order to judge the magnitude of a deviation Xi - x it does not 

matter whether the deviation is positive or negative. We introduce the 
absolute value of Xi - x, in symbols 

(1.9.4) 

with two vertical bars (Section 1.6). Instead of listing all n deviations 
IXi - xl it is more convenient to consider the arithmetic mean of the 
deviations, that is, 

1 n 

- L lXi-xi· 
n i= 1 

7 The summation sign came into common use around 1800. 
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The result gives us some idea of the dispersion of the n measurements. 
Unfortunately, the expression containing absolute values is very hard to 
manage algebraically. A mathematician would say that it has "nasty 
properties". To avoid the difficulties it was an excellent idea of Laplace 
and Gauss 8 around 1800 to replace the absolute values by the squares 
of the deviations. Indeed, squaring removes the negative sign. For 
instance (- 5)2 = + 25. Therefore, the arithmetic mean of the squares 
of deviation 

1 n 

- L (Xi-:XY 
n i= 1 

(1.9.5) 

is used to judge the amount of dispersion. The expression (1.9.5) is called 
the variance of the n measurements Xl' X 2 , ... , X n . In statistics the 
denominator n is frequently replaced by n - 1 for reasons which cannot 
be explained in this connection. 

1.10. Powers 

In a variety of biomathematical problems and statistical techniques, 
powers are involved. To calculate the surface and the volume of a 
spherical cell we use the formulas 

S=4nr2 , v = (4/3) nr3 (1.10.1) 

with the second and third powers of the radius and the number 
n = 3.14 .... In Section 1.9 we mentioned the sum of squares of deviations. 
And in form\lla (1.3.4) we see that a problem with percentages forced 
us to consider powers. 

In a power such as 
an , 

a is called the base and n the exponent, whereas the term power is 
reserved for the full expression. We read the power "a to the power n", 
but this should not distract us from calling n an exponent. 

Powers are useful to rewrite large and small numbers in a con
venient form: 

100= 102 , 

1000= 103 , 

10000 = 104 , etc. 

8 Pierre Simon Laplace (1749-1827), a French mathematician, and Carl Friedrich 
Gauss (1777--1855), a German mathematician, both contributed to the development of 
statistics. 
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The base is 10 and the exponents are 2, 3, 4, .... It is practical to extend 
the list in the opposite way and to generalize the concept of power: 

10= 101 , 

1 = 10°, 

1/10 =0.1 = 10- 1 , 

1/100 =0.01 = 10- 2 , 

1/1000 = 0.001 = 10- 3 , etc. 

Here we have introduced powers with negative exponents. 
The statement 10° = 1 has puzzled many people. The left side seems 

to indicate "a product consisting of no factor", whereas the right side 
is one and not zero as might be expected. The following argument may 
help the reader to understand this detail: Start with 103 = 1000. Take 
one factor 10 away. This is equivalent to dividing by 10 (not a subtrac
tion!). We get 102 = 100. Continue dividing by 10. We obtain 101 = 10, 
and in the next step 10° = 1. Thus the number 1 results since "taking a 
factor 10 away" means a division by 10. If we continue to divide by 10, 
we will further have 10- 1 = 1/10, 10- 2 = 1/100, etc. These results may 
also be obtained by applying the rule 10"/10'" = 10"-m and extending 
it to the case m = n and then to the case m> n. Thus, for instance, 

104/102 = 102 , 103/102 = 101 = 10, 103/103 = 10° = 1 , 

102/103 = 10- 1 = 1/10. 

For quantities such as 378000 km or 0.0074 mg we should write 

3.78 x lOS km and 7.4 x 10- 3 mg. 

The main advantage is that calculations are easier to perform with 
decimal powers than with numbers consisting of too many decimals 9. 

Negative powers occur frequently. Let x be any base (except 0). 
Then we find by subsequent division X3/X=X2, x2/X=X=X 1, x/x 
= 1 =xo, 1/x=x- 1, x- 1/X=X- 2, x- 2/x=x-3, etc. 

Hence reCiprocals such as 1/ A are also written as A - 1. Similarly we 
find m sec- 1 instead of m/sec for the unit of velocity. 

In connection with powers of ten we mention the phrase "order of 
magnitude". Different writers use this terminology in slightly different 
ways. When two quantities are said to be of different orders of 
magnitude, it could either mean that they are not comparable in size 
or that one quantity is at least ten times bigger than the other one. 
'Two orders of magnitude" would then mean a factor of about 
102 = 100, etc. 

9 Another reason for this form is to mark the significant digits (see Section 1.12). 
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Example 1.10.1. Consider the oxygen production of green plants 
including plankton under sunlight. It is estimated that all plants of the 
earth produce 0.9 x 1013 kg O2 yearly. This is the net production which 
does not include the amount of O 2 consumed by the plants themselves. 
How many years would it take for the plants build up the oxygen of the 
earth's atmosphere if no animal life and no fire consume it? The 
atmosphere of the earth contains approximately 1.2 x 1018 kg O2 . We 
have to divide this amount by 0.9 x 1013 kg and obtain approximately 
1.3 x 1018 - 13 or 1.3 x 105 years. It would take little over a hundred 
thousand years, a time interval which is very small compared with the 
age of the earth of perhaps 5 x 109 years. 

Example 1.10.2. Lampert and Bahr (1969) measured the dry mass 
of herpes simplex virus particles (strain 11140) by means of an electron 
microscope. The core weighs 2 x 10- 16 g, the empty naked capsid 
5 x 10- 16 g, the full naked capsid 7 x 10- 16 g, and the enveloped 
nucleocapsid 13 x 10- 16 g. Of course, these are approximate weights, 
but the order of magnitude is clearly determined. The weight of a 
complete herpes simplex virus particle is of the order magnitude 10- 15 g. 
We may compare this number with the weight of an oxygen molecule, 
which is approximately 5 x 10- 23 g. 

Example 1.10.3. Cells in living tissue are remarkably uniform in size. 
The length10 of a typical cell is around 3 x 10- 6 m = 3 .urn. Its volume 
is around 6 x 10- 18 m3 = 6 Jlm3 . 

Example 1.10.4. In a bacterial cell, there are the following numbers 
of molecules (average): DNA 2.1 x 104, RNA 4.2 x 104, lipids 4.1 x 107, 

polysaccharide 1.0 x 106 , protein 4.7 x 106 (from Setlow and Pollard, 
1962). Therefore, the total number of these molecules is 107 (0.0021 
+ 0.0042 + 4.1 + 0.1 + 0.47) or approximately 4.7 x 107 . 

1.11. Fractional Powers 

In the previous sections the exponents were always integers, either 
positive, negative or zero. Now we introduce exponents that are 
fractions. Using an intuitive approach we consider an equality such as 
23 = 8. Let n be one of the integers 2, 3, 4, ... and raise each side of the 
equality to the n-th power. This gives (23)" = 8" or by a well-known 
rule for the power of a power: 23 " = 8n• Conversely we reduce the last 
equality when we divide each exponent by n. Extending the procedure, 
let us apply the last step also to exponents that are not multiples of n. 

10 1 11m = 1 micrometer (formerly called a micron). 1I1m=IO-6m=10-3mm. 
A cubic micrometer (11m3) is therefore 10- 18 m3 = 10- 9 mm3. 
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Consider again 23 = 8 = 81 and divide each exponent by n. We obtain 

23/n = 81/n . 

In the special case of n = 3 we get 23/3 = 81/3 or 81/3 = 2. This is the 
inverse operation of 23 = 8. It is usually written in quite a different 
manner, namely VS = 2. For the same reason we have 91/2 = V9 = 3, 
81 1/4 = VSi = 3,6213 = ~ = V36. Thus roots and fractional powers 
are the same thingll. 

All the rules for powers with integers as exponents can be extended 
to fractional powers. For instance a2/3 . a1/2 = a2/3 + 112 = a4/6 + 316 = a 7/6. 

The same operation with the radical sign, namely ;;az. va, would be 
rather complicated to perform. Also X- 1/2 is easier to handle than 1/0. 

For the typist or the printer it is simpler to write 8113 than VS. 
That is why in modem printing the radical sign is disappearing. 

Among the roots square roots are especially common in biological 
and medical research work, so common that manufacturers offer desk 
calculators with square rooting. Unless hundreds of square roots have 
to be taken, the use of tables is almost as fast and more economical. For 
the beginner the shift of the decimal point causes some difficulties. We 
know that 4 1/2 = V4 = 2, 4001/2 = 20, 40000112 = 200, etc. The radicands 
are 4, 400, 40000, etc., such that the decimal point is shifted by two 
places or by a multiple of two. On the other hand, the square roots are 
2, 20, 200, etc., with a shift of the decimal point by only one place. 
Similarly we get 0.04 1/2 = 0.2, 0.00041/2 = 0.02, etc. However, for 401/2 

we get quite different figures from a table, namely 401/2 = 6.32 .... 
Applying the rule for the decimal point we obtain for instance 
40001/2 = 63.2 .,. and 0.4 1/2 = 0.632 .... Similarly, when a table yields 
389 112 = 19.72, we conclude that 3.891/2 = 1.972, 0.0389 1/2 = 0.1972, 
and 38900112 = 197.2. But we have to look up 38.9 1/2 at a different place 
in the table, either in a column headed V10n or at the entry 3890. There 
we find 38901/2 = 62.37, hence 38.9 1/2 = 6.237. 

Note that the square root of a negative number such as (_4)112 is 
not a real number, since the square of a real number, such as ( + 2)2 and 

II The origin of the radical sign is not known. It consists of two parts, ~/ and -, the 
first part indicating the operation, the second part meaning the same as parentheses 
today. Thus a + b stood for (a + b). According to Cajori (1928) the radical sign was 
widely accepted at the end of the seventeenth century. 

Powers such as a2 , x3 appeared in print for the first time in 1637 in a work by the 
French philosopher and mathematician Rene Descartes (1596-1650), also known under 
his Latin name Cartesius. In 1655 the English mathematician and theologian John Wallis 
(1616-1703) introduced powers with negative and fractional exponents such as x- n 

and xl/n. These generalized powers were propagated by the English physicist and 
mathematician Isaac Newton (1642-1727). Nevertheless it took a long time before they 
became popular on the European continent. 
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(_2)2, is always greater than or equal to zero. New numbers have to 
be invented to solve an equation such as x2 = -4. We will deal with 
them in Chapter 15. 

1.12. Calculations with Approximate Numbers 

Research workers are often concerned with the inaccuracy of figures. 
One source is errors in counting or uncertainties in reading instruments. 
Another source is the random fluctuations in sampling. Finally, the 
inevitable rounding-off errors also cause some difficulties. 

In this chapter statistical aspects cannot be discussed. Nor will we 
try to account for all the rules that are useful in dealing with approximate 
numbers. For a detailed treatment with instructive biological examples 
we refer the reader to a monograph by Anderson (1965). 

Assume a number such as 14.07 has an error not exceeding 0.005, 
that is, an error not greater than half of the last digit. Then the last 
decimal 7 is exact, and we say that 14.07 has four significant digits 
(or figures). 

The number of significant digits is quite independent of the decimal 
point. Clearly 140.7 m and 0.1407 km are the same quantities and 
consequently have the same degree of accuracy. Zeros that are only 
required to mark the decimal point should not be counted as significant 
figures. Thus 0.01407 and 0.001407 contain only four significant figures. 
In numbers such as 14070 and 140700 it is not clear whether the zeros 
add to the precision or not. To avoid ambiguity we write these numbers 
in the form 1.407 x 104 and 1.407 x 105 . Notice that 3.8 x 102 has two 
and 3.80 x 102 has three significant digits. Therefore, the two numbers 
are quite different in accuracy. The error is at most 0.05 x 102 for the 
first number and at most 0.005 x 102 for the second number. Without 
powers both numbers would be 380, thus not indicating the accuracy. 

In practical applications we are usually forced to carry one digit 
beyond the last significant figure. For instance, when a measurement 
or a calculation results in 3.47 mg with an error of at most 0.02 mg, 
the digit 7 is not significant, but dropping this figure and properly round
ing off the quantity to 3.5 mg may cause a loss of relevant information. 
On the other hand, if the error were 0.1 mg, the digit 7 would be 
meaningless and should be dropped. Then 3.5 mg would have only one 
significant figure, namely 3, with an additional digit 5 containing valuable 
information. In another example, when it is known that the quantity 
23.8165 mm is subject to an error of 0.2 mm, it would be ridiculous to 
carry the last three digits. The result should be rounded off to 23.8 mm. 
Only the first two digits are significant. 
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Rounding-off is performed according to the following rules. The 
digits 1, 2, 3, 4 are rounded down, that is the preceding figure is left 
unchanged. The digits 6, 7, 8,9 are rounded up, that is, the preceding figure 
is increased by 1. For a 5 some "randomness" should be maintained. 
It can be enforced by the rule: 5 is rounded down whenever the preceding 
figure is even, and it is rounded up whenever the preceding figure is odd. 
Thus 4.65 and 4.75 are rounded off to 4.6 and 4.8, respectively. 

Occasionally a rounding rule has to be violated, when a side con
dition is present. Thus 19.36%+ 34.17%+46.47%= 100% may be 
rounded off to 19.3 % + 34.2 % + 46.5 % = 100% with a minimal violation 
for 19.36%. But if 46.47% is a term that is known to be less accurate than 
the other terms, it is preferable to put 19.4 % + 34.2 % + 46.4 % = 100%. 

When adding or subtracting approximate numbers, we frequently 
lose significant figures. For instance, 18.7 + (0.814) = 19.5 and not 19.514. 
The last digit of 19.5 is not necessarily significant. Similarly we obtain 
(0.493) - (0.4871) = 0.006 with at most one significant digit. 

For multiplication and division there exists an easy rule of thumb 
which we state here without proof: 

The result of a multiplication or a division has approximately the 
same number of significant digits as the term with the fewest significant 
digits. 

Thus in 14.04 x 2.3/39.7 = 0.813 the term with the fewest significant 
digits is 2.3. It has one, at most two significant digits. Hence 0.813 has 
not more significant digits. The result should be rounded off to 0.81 in 
case the factor 2.3 has only one significant digit. 

Occasionally the number of significant digits is increased. This can 
happen with the arithmetic mean of ten or more measurements if the 
dispersion is small enough. For reasons that cannot be explained here, 
the accuracy of the arithmetic mean is higher than that of the single 
measurements. For instance, assume ten leaves of a tree are selected at 
random and their lengths measured in em are: 

5.8 6.1 5.7 5.6 6.2 5.8 5.9 6.2 6.0 5.9. 

Each measurement contains two significant digits. The arithmetic mean 
calculated by formula (1.9.1) should be written 5.92 and has a higher 
accuracy than two significant digits. 

For lengthy computations it cannot always be recommended to 
round off intermediary results since this might cause an accumulation 
of errors. A suitable number of additional digits has to be carried, but 
the final result should be properly rounded off. A typical example of 
this sort is given in Problems 1.18 and 1.19 at the end of this chapter. 
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*1.13. An Application 

To illustrate the use of fractional powers in biology, we consider 
the shape of quadrupeds (Fig. 1.3). Let I denote the length of a quadruped 
measured from hip to shoulder and h denote the width which is the 
average thickness of the body measured in the vertical direction. Then 
the torso is compared with a uniform bar of length I and width h 
supported at its ends. Gravity causes sagging of the bar. Physics shows 
that the ratio 

(1.13.1) 

1 
h 

1 

Fig. 1.3. The torso of a quadruped may collapse under gravitation unless its length is 
limited. The bigger the animal is, the smaller is its length relative to its width 

is limited by some value. If the ratio exceeds this value, the bar collapses. 
For a proof see Rashevsky (1960, Vol. 2, p. 262). Although the torso of 
an animal is a complicated system consisting of bones, muscles, and 
tendons and thus quite different from a uniform bar, application of the 
ratio (1.13.1) indicates roughly the limitation ofthe length of quadrupeds. 
Some of the highest values reached by quadrupeds are 12: 

h I : h2 / 3 

Ermine (Mustela erminea) 12cm 4cm 4.8: 1 
Dachshund 35cm 12cm 6.7: 1 
Indian tiger (Panthera tigris) 90cm 45cm 7.1: 1 
Llama (Lama glama) 122cm 73cm 7.0: 1 
Indian elephant (Elephas maximus) 153cm 135cm 5.8: 1 

Most other quadrupeds have a ratio considerably smaller than 7: 1. 
Their torso is less endangered by gravity. 

Notice that the ratio depends on the unit of length. If we worked 
with inches or meters, we would obtain a different ratio. 

12 I am indebted to Mr. H. P. Friedrich for measuring some quadrupeds at the Zoo 
of Zurich, Switzerland, and to the director of the Zoo, Dr. H. Hediger, for his permission. 
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As we see from the above table, the shoulder-hip length of a 
dachshund is almost three times as great as the width. Let us imagine 
an animal of the same shape but much larger, say I = 350 cm and 
h = 120 cm. Then I: h2 /3 = 14: 1. Such an animal could hardly stand 
on its feet. The torso would probably touch the ground 13. 

The numerical evaluation of h2/3 may cause a practical difficulty. 
The term can be rewritten as a cube root, namely VJi2. For squares 
and cube roots we may use a slide rule or a table. For an elephant with 
I = 153 cm and h = 135 cm, we obtain h2 = 18.2 X 103 and VJi2 
= 2.63 x 10. Hence, I: h2 /3 = 153: 26.3 = 5.8: 1 as shown in the above 
table. An alternative way of evaluating a fractional power is by the 
use of logarithms (see Section 6.4). 

1.14. Survey 

The system of real numbers contains the following classes of 
numbers: 

Natural numbers 1, 2, 3, ... 
The zero 0 
Integers 0, ± 1, ± 2, ± 3, ... 

(the symbol ± means "plus or minus") 
Rational numbers 1/2, 2/3, 8/5, 7/1, - 2/9, 4.88, - 1.5 
Irrational numbers 14 21/2 = 1.414 ... 

1t=3.14159 ... 
log 2 = 0.30103... 

Notice that natural numbers are a special case of integers and integers 
a special case of rational numbers. 

For real numbers the following laws are valid: 

commutative law 

associative law 

Addition: 

a+b=b+a 

a+(b+c)=(a+b)+c 

Multiplication: 

commutative law ab = ba 

associative law a(bc) = (ab) c 

(1.14.1) 

(1.14.2) 

13 Advanced knowledge on the stability of animal bodies is offered by Kummer (1959). 
14 A rational number is the result of dividing two integers. The word "rational" is 

derived from the Latin word "ratio" meaning a fraction. Thus "irrational" is used for a 
number that cannot be conceived as the fraction of two integers. 
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Addition and Multiplication: 

distributive law a(b + c) = ab + ac (1.14.3) 

For the inverse operations, subtraction and division, similar laws 
hold: 

a-b=(-b)+a 

a- (b - c)= (a - b)- (-c)= a- b + c 

alb = a· (lib) = (lib)· a (b =l= 0) 

(ab)/(cd) = (alc) . (bid) (c =l= 0, d =l= 0) 

(a + b)/c = (alc) + (blc) (c =l= 0) 

Other rules: 

(a+ bf = a2 + 2ab+ b2 

(a - b)2 = a2 - 2ab + b2 

(a + b)(a - b) = a2 - b2 

(1.14.4) 

(1.14.5) 

(1.14.6) 

(1.14.7) 

For positive or negative integers m and n and for a =l= 0, b =l= 0, 

(an)m = anm 

an. bn = (ab)n 

(1.14.8) 

(1.14.9) 

(1.14.10) 

The formulas (1.14.8) through (1.14.10) are also valid if m and n are 
fractional numbers and if a > 0, b > 0. 

Recommended tables for powers, roots, and reciprocals: 
Allen (1947), Comrie (1962), Davis and Fisher (1962), Diem (1962), 

Meredith (1967). 

Recommended for further reading: 
Defares and Sneddon (1961), Guelfi (1966), c. A. B. Smith (1966). 

Problems for Solution 

1.1. The radium isotope 228Ra loses 9.8 % of its intensity of radiation 
every year. If 10 denotes the original intensity, what is the intensity 
after one and two years? Find a formula analogous to (1.3.4) for 
the intensity In after n years. 

1.2. Given a = 4, b = 5, c = 6. Calculate a + blc, (a + b)/c, alb + c, 
al(b + c). Also write the four expressions with the horizontal 
fraction line. 
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1.3. Work out the expression x{y + z) + [zx + y{x + z)] and count 
how many times the commutative, associative and distributive 
laws are used. 

1.4. Applying the laws of algebra simplify the following calculations: 
a) (17 x 19)+(13 x 19), 
b) 25 x 17 x 4, 
c) 33 x 125 x 5 x 8. 

1.5. Modern medical research tries to develop electrocardiography for 
automatically diagnosing heart diseases. Assume that it is possible 
to get a correct diagnosis in 70% of all patients with heart trouble. 
What meaning may be expressed by a statement such as "by a 
certain improvement the number of misclassifications is reduced 
by 20 %"? Give two different answers. 

1.6. Some people are able to taste phenylthiocarbamide as a bitter 
substance, others find it tasteless. The trait of being a taster or a 
non taster is inheritable. In a randomly selected sample the ratio 
of tasters to nontasters was 1,139: 461. Calculate the percentages 
of each group. (Data from Li, 1961, p. 30.) 

1.7. 15 % of the members of a population were affected by an epidemic 
disease. 8 % of the persons affected died. Calculate the mortality 
with respect to the entire population. 

1.8. Write the following sums by means of the summation sign: 

a) Xl + X2 + X3 + X4 + X5 , b) Zo + Zl + ... + Zk, 

c) a3 + a4 + ... + an , d) ai + a~ + a~ + aL 
e) (a 1 + b1)2 + (a2 + b2)2 + ... + (aN + bN)2 . 

n n n 

1.9. Show that L (Xi + Yi) = L Xi + L Yi· 
i=l i=l i=l 

m m 

1.10. Show that L CUk = C L Uk· 
k=l k=l 

n n 

1.11. Show that L (xj+a)= L xj+na. 
j= 1 j= 1 

n n n 

1.12. Show that L (Xi + a)2 = L X; + 2a L Xi + na2 . 
i=l i=l i=l 

1.13. Calculate 

a) (_1)2 + (_ 2)2 + (_ 3)2, 
c) (_1)2 ( _ 2)2 ( _ 3)2, 

b) (-1)(-2)(-3), 
d) (+5) (-8) (-200) (+ 125). 
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1.14. Reduce to lowest terms 

a) x2y2/axy, b) a3 bc/ab2c, 
c) (a 2 + 2ab)/(2a - a2), d) (X2 -i)j(x + y) . 

1.15. Perform the following additions and subtractions: 

a) (l/x) + (l/y) , 

c) (l/u) - (1/u 2 ) , 

b) (1/2) - (l/t) , 
d) (5/3x2y)-(2/xy2). 

1.16. In statistics the t test is used to find out whether two means x 
and yare significantly different or not. If x = 3.74, Y = 4.01, 
s = 0.905 are approximate values, calculate the statistic t = [x - )i1/s. 
With how many figures should t be written? 

1.17. Eleven herring have the following weights Xi in grams: 

77.8 36.9 12.7 39.1 60.2 46.5 75.9 41.2 41.4 88.0 82.7 

(data from Anderson, 1965, p. 5: 7). 
Find 

a) the arithmetic mean x, 
b) the differences Xi - x, 
c) the sum of differences as a check of calculation, 

d) the sum of squares of deviations. 
n 

1.18. By applying formulas (1.14.6) and (1.9.1) show that L (Xi - X)2 
i= 1 

can be rewritten in the following three forms which are often 
useful in computation: 

a) LX? - nx2 , 

c) LX? - x(L x;) . 

2 1 2 b) LXi - -(LX;) , 
n 

1.19. Apply the three formulas of problem 1.18 to the numerical data 
of problem 1.17. What are the advantages and disadvantages of 
the different formulas? 

1.20. Which of the following statements are true and which are false? 
Correct the false statements. 

a) 3/4> 0.75, 

d) [-5[ >4, 

b) (- 5) < 5, 

e) (-1)<0<1, 

c) (- 6) > 5, 

f) (- 5) > ( - 1) > 0 . 

1.21. A biologist wants to study phytoplankton in relation to salinity 
of sea water. He decides to subdivide the full range of salinity into 
three classes, from 3.0% up to and including 3.3%, from 3.3% up 
to and including 3.5 %, and from 3.5 % up to 3.8 %. Denote the 
salinity by s and write the three inequalities describing the classes. 
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1.22. The arithmetic mean of 4 and 9 is 6.5. It is greater than the geo
metric mean which is 6.0. Show that the arithmetic mean of two 
positive numbers a and b is always greater than or equal to the 
geometric mean. (Hint: Square both means and reduce the 
inequality to the obvious statement (a - b)2 ~ 0.) 

1.23. The diameter of an H 20 molecule is approximately 2.5 x 10- 10 m. 
In 1 mole = 18 g of water there are 6.02 x 1023 molecules (Avo
gadro's number). How long would a "chain" of these molecules be? 
Compare the result with the distance from earth to sun, which is 
approximately 1.5 x 108 km. 

1.24. The mechanical work that is done when one stroke volume of 
about 100 ml of blood is pumped through the vascular tree against 
a pressure of about 100 mm Hg is 1.32 X 107 erg. This energy is 
transformed to heat by friction. Find the corresponding amount 
in calories. (Hint: Use the well-known mechanical equivalent of 
heat 4.2 x 107 erg/cal.) This problem is adapted from Randall, 
1958, p. 161. 

1.25. By means of a table find the square roots of 

8830, 883, 88.3, 8.83, 0.883, 0.0883. 

1.26. Write the following roots as fractional powers: 

1 1 

V3 vp. 
1.27. Round off the following numbers to one decimal: 

8.06 4.01 18.35 20.85 0.7445 0.1555 

1.28 Round off the following percentages to integers such that their 
total remains 100 %: 78.3 %, 11.4 %, 10.3 %. Consider 78.3 % as less 
accurate than the other two percentages. 

1.29. Calculate 25% of 108.52 if a) 25% is a precise percentage; 
b) 25 % is an approximate percentage with an error of not more 
than 1 % (the range is 24 % to 26 %). 

1.30. Let 372 have three significant figures. How many significant 
figures has 3722 = 138384? (Hint: Square 371.5 and 372.5 and 
compare the differences.) 

1.31. Find the error in the following calculation: Assume that a and b 
are equal numbers. Then a = b, ab = b2 , ab - a2 = b2 - a2 , a(b - a) 
= (b + a) (b - a), a = b + a, a = a + a, a = 2a, 1 = 2. (Hint: Read 
end of Section 1.6.) 



CHAPTER 2 

Sets and Symbolic Logic 

2.1. "New Mathematics" 

What is today called "new mathematics" is a popular expression for 
a development of mathematics which began early in the last century. 
For a long time mathematics was considered an area of research dealing 
with quantities such as distances, areas, angles, and weights. Indeed, 
elementary algebra as well as calculus indicate that countable and 
measurable items are objects of mathematical operations. However, 
mathematicians became slowly aware that logical problems, axioms, 
operations with abstract symbols, and the structure of space are more 
typical of mathematical thinking. Symbolic logic and set theory were 
founded before 1850 and abstract algebra before 1900. Today it is a 
mistake to define mathematics just as the study of quantities. 

Applied mathematics was slow in adjusting to the new aspect. 
A breakthrough came around 1925 when quantum physicists succeeded 
in applying group theory, an area dealing with abstract elements and an 
operation on the elements. Since then modern mathematics has rapidly 
entered other areas of scientific research including the life sciences. 

In this chapter we are mainly concerned with sets and operations on 
sets. At the end of the chapter we will discover a relationship between 
set theory and logic. 

2.2. Sets 

The language contains many words to designate a collection of 
objects. Biologists use categories such as order, family, genus to collect 
animals and plants that have certain characteristics in common. 
Economists subdivide the population of a country into different social 
classes. When statisticians select individuals from a population, they use 
the word sample. And when they classify measurements, they speak of 
groups. Psychologists deal with batteries of tests and physicians with 
syndromes, that is with groups of symptoms. All the words collection, 
selection, totality, category, class, group, etc., have some common 
meaning. For a rigorous treatment mathematicians prefer the term set. 
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A set is a collection of any kind of objects - people, animals, plants, 
phenomena, stimuli, responses, genetic traits, methods, ideas, logical 
possibilities. A set is well defined when it is clear whether an object belongs 
or does not belong to the set. Ambiguity is not allowed. From now on we 
will use the term element or member of a set rather than object. A set may 
contain a finite or an infinite number of members. Correspondingly it is 
called a finite or an infinite set. A set may contain only a single member. 
Even the empty set or null set that contains no member whatsoever 
turns out to be a useful concept. 

Examples 

1. It is easy to define the set of patients in a hospital in an unambigu
ous way, but it is hardly possible to establish the set of patients suffering 
from rheumatism since the term rheumatism is used in an ambiguous 
way and since a diagnosis is sometimes doubtful even for a well-defined 
disease. 

2. It is easy to define the set of all plants that produce O2 , since they 
contain chlorophyll. However, it is difficult if not impossible to define 
the set of broad-leaved plants. The judgment of "broad-leaved" is 
subjective and causes ambiguity. 

3. The set of all countries located on the Australian continent con
sists of one single member, namely Australia. The set of all countries 
located on a polar cap is an empty set. 

4. The set of all chemical elements is well defined. It is finite, but 
not yet completely known. It is also clear what we mean by the set of all 
chemical compounds although most of them have yet to be discovered. 
This set is probably infinite. 

5. Ecologists are interested in the set of resources and in the set of 
environmental conditions usually called habitat. Notice that the two 
sets have common members such as light. This example and subsequent 
ecological examples are adapted from Patten (1966). 

2.3. Notations and Symbols 

We denote sets by capital letters such as A, B, C, .... The empty set 
has a standard symbol 0, a figure zero crossed by a bar. Members of a 
set are collected by braces. For example 

S = {sight, hearing, smell, taste, touch} 

is the set of the traditional five senses. Similarly, the infinite set of 
natural numbers may be written 

N={1,2,3, ... }. (2.3.1) 
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To indicate that an object is a member of a set we use the symbolE 
which was originally the Greek letter epsilon 1. Thus 

aE T (2.3.2) 

means that "a is a member of T" or that "a belongs to T". The con
trary is expressed by rt meaning "is not a member of' or "does not 
belong to". For instance 

5 EN, but t rt N 

where N denotes the set (2.3.1) of natural numbers. 
Two sets are said to be equal, in symbols 

A=B, (2.3.3) 

if they contain exactly the same members. Since {I, 2, 3} and {3, 1, 2} 
have the same members, they are equal sets. Moreover, {I, 2, 3} 
= {l, 2, 2, 3} for the same reason. For a set A containing only members 
of a set B, but not necessarily all the members of B we write 

ACB (2.3.4) 

and say "A is contained in B". A is called a subset of B. The symbol C 
reminds us of < for "less than", but has of course a different meaning. 
The definition of a subset allows us to say that a set is a subset of itself, 
e.g. B is a subset of B. For this reason some mathematicians write 
Be B. However, we will restrict the sign C for a proper subset, that is, 
for a subset not containing all members of the original set. Thus, (2.3.4) 
means that A is a proper subset of B. If it is undecided whether a subset 
is a proper subset or not, we write 

A~B, (2.3.5) 

in analogy with the sign ~. The empty set is considered as a subset of 
every set, that is, 

0~A . (2.3.6) 

The same statement as in (2.3.4) or in (2.3.5) is made by 

B)A, B~A, (2.3.7) 

respectively. We read "B contains A" and "B contains A or is equal 
to A". The analogy with> and 2 is obvious 2 . 

I The symbol E was proposed by the Italian mathematician Giuseppe Peano 
(1858-1932). 

2 The symbols J and c were proposed by the German mathematician Ernst 
Schroder (1841-1902). 
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Frequently, sets of any sort of members are represented by sets of 
points. For simplicity of drawing, points in a circle or in a rectangle 
are used. In this way, the relationship (2.3.4) is graphically represented 
in Fig. 2.1. 

Such a presentation is called a Venn diagram 3. 

Examples 

1. The set of three numbers {l, 2, 3} has the following subsets: 
{l, 2, 3} itself and the proper subsets {l, 2}, {l, 3}, {2,3}, {l}, {2}, {3}, 
and the empty set 0. Notice that {3} is not the same as 3. The first symbol 

Fig. 2.1. Venn diagram of the relationship "A is contained in B" 

designates a set, the second a member. Consequently we write 
{3}C{1,2,3}, but 3E{l,2,3}. Also note 0c{l,2,3}, but 0¢{1,2,3}. 

2. Certain minerals constitute a subset of the set of nutrients. 
3. For a social worker the blind persons form a subset of all invalids, 

and the invalids a subset of all handicapped people. This relationship 
may be symbolically written as Bel c H. 

4. There are roughly 5000 species of ants. Each species is a member 
of one of 170 genera. Each genus is a subset of the family F ormicidae 
and this family is a subset of the order Hymenoptera. 

5. Let A be the set of patients with any type of chest pain and B be 
the set of patients with Angina pectoris. Then A) B. 

6. Consider quadrilaterals as geometric configurations. Let R be 
the set of all rectangles (quadrilaterals with four right angles) and P be 
the set of all parallelograms (quadrilaterals with two pairs of parallel 
sides). Then Rep, since each rectangle has two pairs of parallel sides. 

3 After the English logician and theologian John Venn (1834-1923). In Venn 
diagrams, size and shape of the figures are not related to the number of members in each set. 
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2.4. Variable Members 

For large sets it is inconvenient or impossible to list the members. 
Instead we try to characterize the members by words or by mathematical 
statements. For instance, we are unable to enumerate all numbers greater 
than 5, because this set includes not only integers, but also rational and 
irrational numbers. Therefore, we introduce a variable member, say x, 
and characterize the members by stating x> 5. The set is then written 

{xlx>5}. 

We read "the set of all numbers x such that x is greater than 5". The 
vertical bar means "such that" or "given that"4. 

x need not be a number. For instance, let x stand for any chemical 
compound. Then the set of acids is denoted by 

{xix = acid} . 

Set theory may be applied to present the solutions of mathematical 
problems. For instance the equation x 2 = 4 has the two solutions x = 2 
and x = - 2. These values form the solution set of our equation. Hence 
we may write 

Similarly we find 
{tI3t-4=5}={3}. 

We add three examples of inequalities and their solutions: 

{xI2x+5<7}={xlx<1}, 

{y I y2 < 4} = {y I - 2 < y < 2} = {y Ilyl < 2} , 

{z I zt < 8} = {z I 0 ~ z < 64} . 

2.5. Complementary Set 

When a population is subdivided into two parts, say into sick and 
healthy individuals, into male and female, or into active and passive we 
speak of complementary parts or sections. In set theory we would use a 
slightly different language. Let U be the set whose subdivision is being 
studied. We call U the universal set. Let A be a subset of U, that is A CU. 
Then we are interested in those members of U that do not belong to A. 
They form a new set which is called the complement of A in U. We denote 
this complement by If using a horizontal bars. The Venn diagram for 
If is shown in Fig. 2.2. 

4 Some authors prefer a colon to the bar and write for our example {x: x > 5}. 
5 There exists unfortunately no standard notation for the complement. Instead of 

it some authors write A', ,4, - A, U - A, or U\A. 
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Whenever two sets are given, such as U and A, and we form a new set 
from the given sets, in our case A, we perform an operation on sets. In 
the following two sections we will define other operations. 

In symbolic writing the complement A in U is defined by 

A={xlxEU,x¢A}. (2.5.1 ) 

Examples 

1. If U = {1, 2, 3,4, 5} and A = {2, 5}, then A = {1, 3, 4}. 
2. Consider all species belonging to the order Hymenoptera as the 

universal set U and the family of Formicidae as a subset F of U. Then 
F consists of all species belonging to Hymenoptera, but not to F ormicidae. 

t'U 

Fig. 2.2. Venn diagram of the complement 

2.6. The Union 

With two arbitrary sets, say A and B, we can always form a new set, 
say C, by simply combining the members. We call this new set the union 
and write symbolically 

C=AuB. (2.6.1) 

We read it "A union B". The symbol u reminds us of the letter u in the 
word "union". C contains exactly those members which are contained 
in A or in B or in both of them. The same member occurs only once in 
the union. Fig. 2.3 shows the Venn diagram of the union. 

The operation u resembles somewhat an addition. However, it 
should be noted that A u A = A and, if Be A, that B u A = A. 

In symbolic writing the union of two sets A and B is defined by 

Au B = {x I x E A or x E B} . (2.6.2) 

Notice that the word "or" is used here in the sense "and/or". 
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Examples 

1. {1, 2} u p, 5, 6} = {1, 2, 5, 6}. The member 1 is listed once. 
2. Patients suffering from either Rhinitis atopica (hay fever, etc.) 

or from Urticaria are considered to be allergic. These patients form 
two sets. The union consists of all patients having Rhinitis atopica or 
Urticaria or both diseases. 

3. An ecologist may be interested in the union of the sets "resources" 
and "habitat" when he studies the totality of influences on a biota. 

Fig. 2.3. The members of A and B are combined to a new set, called the union 

4. A primitive mammal, the tenrec, makes an ultrasound when the 
light intensity is changed (stimulus set L) or when a noise is made 
(stimulus set N). Then S = Lu N is the set of all known stimuli that 
produce the ultrasonic response 6. 

5. If A is a subset of a universal set U and A the complement of A, 
then the union of A and A is the universal set, that is, 

AuA=U. 

2.7. The Intersection 

In addition to the operations "take the complement" and "take the 
union" we will introduce a third operation of great practical value. 
Consider first two intersecting straight lines. Both lines can be con
ceived as infinite sets of points. The two sets have one point in common, 
the point of intersection. More generally, let A and B be any two sets. 
We may be interested in the question whether the two sets are over
lapping, that is, whether the two sets have some members in common. 
We call the set of all common members, whether it is empty or not, the 
intersection of A and B and write 

D=AnB. (2.7.1) 

6 I am indebted to Dr. Jack P. Hailman, University of Wisconsin, for this example. 
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We read "D is equal to A intersection B". If A and B have no common 
member, then D is an empty set, that is, A nB = 0. The two sets are then 
called disjoint. 

The symbol n was not derived from a letter of the alphabet. It was 
simply chosen in contrast to the symbol u for union 7. 

The Venn diagram shown in Fig. 2.4 gives an intuitive idea of the 
new concept. 

A 

Fig. 2.4. The common members of A and B form a new set, called the intersection 

In symbolic writing the intersection of two sets A and B is 
defined by 

AnB={xlxEA and xEB} . (2.7.2) 

Notice that the word "and" is used · here in the sense "both .. . and .. . ". 
The reader should compare (2.7.2) with (2.6.2) and learn that "and" 
is associated with "intersection" and "or" associated with "union". 

Examples 

1. {3,4,5,6}n{4,6,8}={4,6}, {l,2}n{3, 4}=0. 
2. Two families of the same order are by definition disjoint, that is, 

they have no species in common. Their intersection is an empty set. 
3. Consider lines as infinite sets of points. The intersection of two 

straight lines in a plane is a single point if the lines have different direc
tions, or the empty set if they are parallel, or a line if the two given 
lines fall together. 

4. In an ecosystem let E denote the set of all environmental factors 
(habitat) and R denote the set of all resources. Then light is a member 
of both E and R since it acts as stimulus for activity and is also a resource 
required for the synthesis of chemicals. If I denotes light, we may write 
IE (E n R) or, as usual, without parentheses lEE n R. 

5. Consider the M N blood groups. Each individual has the antigen 
M or the antigen N or both of them. Let U be a population, .A and JV 

7 The symbols u and n were proposed by the Italian mathematician Giuseppe 
Peano in 1888. Occasionally the symbol u is called a cup and the symbol n a cap. 
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the subsets of individuals having the antigens M and N, respectively8. 

Then .,I{ n.AI is the subset of all individuals having both antigens. 
6. Consider. quadrilaterals as geometric configurations. Let R be 

the ~et of all rectangles (quadrilaterals with four right angles) and S be 
the set of all rhombuses (quadrilaterals with four equal sides). Then the 
squares form the intersection RnS. Indeed, squares (and only squares) 
have the property of having four right angles and four equal sides. 

7. Among mammalian cells, if I is the set of all insulin-producing 
cells and A is the set of all antibody-producing cells, then InA = 0 
because these two specialized molecules are produced by entirely 
distinct cell types. If, however, we designate by A' the subset of all 
cells producing antibody of one specificity, and by An the subset of all 
cells producing antibody of some other specificity, then whether 
An nA' = 0 is a question which has been highly debatable. At present 
immunologists would probably agree that the intersection is empty 
for any two distinct specificities. 

8. If A is a subset of a universal set U and A the complement of A, 
then 

AnA=0. 

9. If A is a subset of B, that is ACB, then AnB=A. 

*2.8. Symbolic Logic 

There are many research workers who believe that logic is part of 
our common sense and that it needs no further development. In their 
opinion formal logic is superfluous or, at least, it would not offer 
additional help in their scientific work. However, these people overlook 
the ambiguity and the lack of clarity of many statements in science and 
in daily life. They also forget that scientific thinking becomes more and 
more complex and calls for a simpler and faster way of presentation. 

A story may illustrate the ambiguity involved in communication. 
A research group working in human genetics was concerned with the 
relationship between allergic diseases. The head of the group asked his 
assistant to collect from the hospital's catalog all cases with asthma 
bronchiale and with atopic rhinitis (hay fever, etc.). On a slip of paper 
he wrote symbolically A + Rh. The assistant as well as the head was 
convinced that the task was quite clear. The assistant inspected 
thousands of cards and made notes about all patients suffering from 

8 In the same problem different notions should be designated by different symbols. 
Thus, if M and N signify the antigens, we have to find other symbols for the sets, for 
instance script letters, "" and %, or letters with asterisks, M* and N*, or letters from the 
Greek alphabet. 
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asthma bronchiale as well as atopic rhinitis, that is from both diseases. 
Unconsciously he interpreted the symbol + in the sense of "as well as". 
The head of the group, however, meant "and/or" with his symbol +. 
He wanted all patients listed who sutTered from at least one of the 
diseases. Thus the assistant had to do the time-consuming work over 
again. 

With this section on symbolic logic we pursue two purposes, first 
to provide an unambiguous language and second to find a universal 
shorthand, thus avoiding lengthy and wordy sentences. Progress in 
science was accelerated when relationships such as the equation 
x2 - 2x + 5 = 0 or the chemical reaction CO2 + H 20 ~ H 2C03 could 
be written without words. 

We begin with the term "proposition". There exists no explicit 
definition. But we call any statement a proposition if the statement is 
either true or false. Further distinctions such as "nearly true" or 
"sometimes false" are excluded. For instance, "the earth has the general 
shape of a ball" or "the earth is a flat disk" are two propositions. The 
first of them is true, the second is false. The proposition "127 is a prime 
number" cannot be quickly verified, but there is no doubt that it is 
either true or false. 

We denote propositions by capital letters such as P, Q, .... The 
symbol V is used for the word "or". Then if P and Q are propositions, 
we generate a new proposition writing 

P V Q (read "P or Q") . (2.8.1) 

The new proposition is true if P is true, or if Q is true, or if both P and Q 
are true. Otherwise P V Q is false 9. 

For instance, the proposition "Adrenaline is an enzyme or a 
hormone" is true, since adrenaline is a hormone. But the proposition 
"Adrenaline is a vitamin or an enzyme" is false, because adrenaline is 
neither a vitamin nor an enzyme. 

To find a bridge from logic to set theory we use an illustration. Let x 
be a variable meaning any chemical compound and let E and H denote 
the sets of all enzymes and all hormones, respectively. Then we consider 
the following two propositions 

P: x E E meaning x is an enzyme, 

Q: x E H meaning x is a hormone. 

9 The symbol V was originally the letter v in the Latin word "vel" meaning "or", 
or more precisely "and/or". The meaning should not be confused with "either - or" which 
is expressed in Latin by "aut - aut". The symbol V came into common use in 1910 and 
has been since then a standard symbol. 
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From (2.6.2) it follows that 

EuH={xIPVQ}, 

or in words: The union of the sets of all enzymes and hormones consists 
of all compounds x for which the proposition P or Q is true. This shows 
how "union" and "or" are related with each other. Notice the similar 
shape of the symbols u and V. 

The symbol /\ is used to designate the logical operation "and" in 
the sense of "as well as" or "both ... and ... ". /\ is not derived from a 
letter of the alphabet but was chosen in contrast to the sign V for 
"or" 10. If P and Q denote propositions, 

P /\ Q (read "P and Q") (2.8.2) 

is a new proposition which is true if P is true and Q is true. Otherwise, 
the proposition P /\ Q is false. 

For instance, the proposition "the brown bear is carnivorous and 
herbivorous" is true, because this bear eats animal food as well as plant 
food. But the analogous proposition about a lion instead of a bear 
would be false. 

To interconnect again logic with set theory we use an illustration. 
Let x be a variable meaning any mammal, and let C and H denote the 
sets of carnivores and of herbivores, respectively. Then we consider the 
two propositions 

P: x E C meaning x is carnivorous, 

Q: x E H meaning x is herbivorous. 

Then from (2.7.2) it follows that 

CnH = {xiP /\ Q}, 

or in words: The intersection of the sets of carnivorous and herbivorous 
mammals consists of all mammals for which the propositions P and Q 
are both true. This shows how "intersection" and "and" are related with 
each other. Notice the similar shape of the symbols nand /\. 

*2.9. Negation and Implication 

The logical negation is another operation demonstrating the analogy 
between set theory and symbolic logic. Let P be any proposition. Then 

~ P (read "not P") 

10 The symbol 1\ for "and" is not yet standard. Some mathematicians prefer a 
squarelike dot • or the familiar symbol &. 
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signifies a proposition which is false if P is true, and true if P is false 11 • 

To show how the negation is formed we use an example: The negation 
of "Birds have feathers" is "It is not true that birds have feathers". The 
proposition "The ewe is a male sheep" is false, since an ewe is a female 
sheep. The negation is "The ewe is not a male sheep" which is true. 
Notice that the negation does not claim that the ewe is a female sheep. 

Consider now the universal set U of all vertebrates and let x be a 
variable meaning any kind of vertebrate, that is, x E U. The class of 
birds forms a subset, say B, that is Be U. Let P be the proposition 
"x has feathers". Then'" P means "x has no feathers". This proposition 
corresponds to the complement B in U (see Section 2.5). Hence we get 
the relationship 

B={xIP}' B={xl"'P} (2.9.1) 

indicating the correspondence between "complement of a set" and 
"negation of a proposition" 12. 

The meaning of the logical symbols V, A, '" may be summarized 
by a so-called truth table: 

Given It follows 
P Q PVQ PAQ -P 

true true true true false 
true false true false false 
false true true false true 
false false false false true 

There is a further analogy between symbolic logic and set theory. 
The statement "set A contains set B", in symbolic writing A J B, 
corresponds to "proposition P implies proposition Q", in symbolic 
writing 

P-+Q. 

For instance, let M be the set of all mammals and K be the set of all 
kangaroos. Then M J K. Moreover, let P be the proposition "mammals 
feed their young by milk" and Q the proposition "kangaroos feed their 
young by milk". Then P implies Q, because kangaroos are some sort 
of mammal. 

11 The symbol _ for the logical negation has been used since 1910. Some writers 
prefer the symbol --, for the negation. 

12 Sometimes the language of mathematics uses the negation to avoid listing two 
or more properties. Thus "a non-negative number" is a convenient phrase to replace 
"a number which is positive or zero". 
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When we connect two propositions by an equality sign, say 

P=Q, 

it means that both propositions have the same "truth value", that is, 
that the propositions are either both true or both wrong. P implies Q 
and vice versa. 

The truth table may serve as an aid in manipulating these 
relationships. As an example, assume the following propositions: 

P = mammals feed their young by milk, 

Q = kangaroos feed their young by milk, 

R = birds feed their young by milk. 

We know that P and Q are true but R is false. What is the truth value of 

P V (Q 1\ R)? 

Let Q 1\ R = S. From the truth table it follows that S is false (that is, 
that Q 1\ R is false) because R is false. However, P V S is true since P 
is true. Therefore, P V (Q 1\ R) is true. 

*2.10. Boolean Algebra 

In applying set theoretical and logical operations to two or more 
sets or propositions a peculiar algebra emerges which is called 
Boolean algebra 13. It is easy to verify the commutative law for the 
operations "union", "intersection", "or", "and", that is 

AuB=BuA, AnB=BnA, 

PVQ=QVP, PI\Q=QI\P. 
(2.10.1) 

Now we examine the case of three sets. We adapt an example pre
sented in Thrall, Mortimer, Rebman, and Baum (1967, Example PE4) 
dealing with blood types. The individuals of a certain population are 
tested for the presence of one or more of the antigens A, B, and Rh. 
A and B are antigens in the ABO-blood group and Rh is the antigen in 
the Rhesus-blood groups. We designate the population as the universal 
set U and denote the subsets of individuals carrying the antigens A, B, 
Rh by .91, flJ, ~, respectively. Let u be a variable denoting any individual 

13 The inventor is the logician and mathematician George Boole (1815-1864). 
He was born in England, but lived in Ireland in his later years. Today Boolean algebra 
is applied to sets, to propositions, and to electrical networks. Attempts are also made to 
understand complicated neural nets by means of Boolean algebra. 
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of the population, that is U E U. Then in symbolic writing we get 

d = {ulu has antigen A}, 

fJB = {u I u has antigen B} , 

f:1t = {u I u has antigen Rh} . 

We may ask for those subsets of individuals that carry at least two of the 
antigens. These subsets are intersections, namely 

d nfJB = {ulu has antigens A and B}, 

d nf:1t = {ulu has antigens A and Rh}, 

f14 n f:1t = {u I u has antigens Band Rh} . 

To obtain the subset of individuals carrying all three antigens we 
have several possibilities: 

These sets are identical. The result is depicted in the Venn diagram of 
Fig. 2.5. We have, therefore, proved the associative law for the 

A 

Fig. 2.5. The shaded area represents the intersection of three sets 

operation "intersection". In general, if E, F, G denote any three sets, 
the equality 

(EnF)nG=En(FnG) (2.10.2) 

is satisfied. Interpreting the law we may say that the parentheses are 
unnecessary and can be omitted. Thus for the intersection of three sets 
we simply write EnFnG. 
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A corresponding result holds for the union of three sets. First, in 
combining two sets we get 

du!!J= {ulu has antigen A or B}, 

du~= {ulu has antigen A or Rh}, 

fJlu!!ll= {ulu has antigen B or Rh}. 

Second, to obtain the subset of individuals carrying at least one of the 
antigens, that is, A or B or Rh, we have several possibilities: 

(du!!J)u~ or (du~)u!!J or du(fJlu!!ll). 

Fig. 2.6. The shaded area represents the union of three sets 

These sets are identical as shown in Fig. 2.6. In general, any three sets 
E, F, G satisfy the associative law for the operation "union": 

(EuF)uG = Eu(FuG). (2.10.3) 

As a consequence, the parentheses are superfluous and can be omitted. 
We simply write EuFuG. 

In Section 1.12 we stated the commutative and associative laws for 
addition and multiplication of numbers. So far the algebra for the 
operations "intersection" and "union" is quite analogous. Now we try 
the distributive law. For numbers, the law states a(b + c) = ab + ac. 
Notice that addition and multiplication playa different role. By inter
changing the two operations we would obtain a + (bc) = (a + b) (a + c) 
which is wrong, since a + bc =1= a2 + ac + ab + bc. For sets we do not 
know if intersection and union will correspond to multiplication and 
addition. Hence, we have to try both alternatives. Consider first 

Eu(F nG) = (EuF)n(EuG). (2.10.4) 
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For a proof we look at Fig. 2.7. In (a) the union of E and (FnG) is 
shown. This corresponds to the left side of Eq. (2.10.4). In (b) the 
intersection of (EuF) and (EuG) is depicted by the doubly hatched 
area. This corresponds to the right side of the equation. The two 
results are equal which completes the proof. 

Fig. 2.7. Proof of the distributive law (2.10.4) by means of a Venn diagram 

Fig. 2.8. Proof of the distributive law (2.10.5) by means of a Venn diagram 

Second, we consider the other possibility: 

En(FuG) =(EnF)u(EnG). (2.10.5) 

The proof is shown in Fig. 2.8. In (a) the doubly hatched area is the 
intersection of E and (F u G) which is the left side of the equation. In (b) 
the union of (EnF) and (EnG) is depicted by the hatched area which 
corresponds to the right side of the equation. Both results are equal so 
that (2.10.5) is proved. 

The fact that both distributive laws are valid is a remarkable 
property of Boolean algebra. Together with the properties A u A = A 
and A n A = A this shows that Boolean algebra is quite different from the 
ordinary algebra of numbers. 

For the corresponding laws for propositions we refer the reader ru 
problem 2.11 at the end of this chapter. 

In Fig. 2.5 we see that the population of U is subdivided into eight 
disjoint sets. They correspond to eight mutually exclusive classes of blood 
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types. All of them can be expressed with the symbols for intersection 
and complement. In biomedical writing, presence of A and B is sym
bolized by AB, absence of A and B as 0, presence of Rh by Rh +, and 
absence of Rh by Rh -. With these notations we obtain the following 
classes of blood types: 

d nfJIn~ = {u I type (AB, Rh +)}, 

d nfJIn~ = {u I type (AB, Rh-)}, 

d n;jn~ = {u I type (A, Rh+)}, 

d n;jn~ = {u I type (A, Rh-)}, 

.9i n fJI n ~ = {u I type (B, Rh + )} , 

.9i nfJI n~ = {u I type (B, Rh -)} , 

.9i n;j n ~ = {u I type (0, Rh +)} , 

.9i n;jn~ = {u I type (0, Rh-n. 

These equalities may be proved by means of the Venn diagram. 
A similar classification in ecology is presented in Patten (1966, p. 594). 

Recommended for further reading: Arbib (1964), Feinstein (1967), 
George (1961), Hays (1963), Kerlinger (1964), Lefort (1967), Nahikian 
(1964), Rashevsky (1960, Vol. 2), Stibitz (1966), Tarski (1965). 

Problems for Solution 

2.1. In a plane we draw a circle and a straight line. Interpret both lines 
as point sets and list three possibilities for the intersection of the 
two lines. 

2.2. Interpret planes in the three-dimensional space as point sets. 
Distinguish three cases for the intersection of two planes. What 
cases are possible for three planes? 

2.3. What is the relationship between the two sets of numbers, 
C = {xix> 5} and D = {xix?: 5}? 

2.4. Find the solution sets of 

a) {xlx+7<12}, 
c) {xlx=3(x+3)-x}, 
e) {xI3x-5?:x+7}, 

b) {YI3y=15-y}, 

d) {ulu 2 =10}, 

t) {tlt2 >O}. 
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2.5. Consider M N blood groups. An individual has either an M 
antigen or an N antigen or both of them. Let U be a given 
population and At and % be the subsets of all individuals with 
antigen M and N, respectively. Using a Venn diagram describe 
the subsets Ji, Y, At n %, At u %, Ji n %, Ji u %. 

2.6. Consider quadrilaterals as geometric configurations. Let U be 
the set of all quadrilaterals, P be the subset of parallelograms, 
R the subset of rhombuses, T the subset of rectangles, and S the 
subset of squares. What are the relationships among these sets? 

2.7. Find the solution set of 

a) {xl(x-3)(x+2)=x2} 

c) {xlx2 < 16} 
b) {tI2t+3=2(t-1)} 

d) {yly2>9}. 

e) {XIX2_4=(x+2)(x-2)}. 

Notice that a solution set can be an empty set or consist of an 
infinite number of values. 

2.8. In a study of AB 0 blood-groups, 6000 Chinese were tested. 
2527 had the antigen A, 2234 the antigen B, and 1846 no antigen. 
How many individuals had both antigens? (Adapted from Li, 
1958, p. 48). 

*2.9. Let A and B be subsets of the universal set U and assume that 
AnB =1= 0. By using a Venn diagram show that 

(AnB)u(BnA) 

is the set of all members that belong either to A or to B, but not 
to both sets A and B. 

*2.10. Electrical switching circuits are used in the study of neurons in 
the brain. In Fig. 2.9(a) and (b), two basic circuits are depicted. 
In Fig. 2.9(a) the switches are said to be in series. An electric 
current can only flow if switch a as well as b is closed. Let A be the 
proposition "a is closed" and B the proposition "b is closed". Then 
the condition for flow is A A B. In Fig. 2.9(b) the switches are 
said to be in parallel. The current can flow if switch a or switch b 
or both switches are closed. Here the condition for flow is A V B. 
Find the corresponding statements in Fig. 2.9(c) and (d). 

*2.11. Find electrical networks which represent the propositions 

a) A A(B V C), 

c) (AAB)V(CAD), 

b) (A V B)A(CV D), 

d) (AAB)V(CV D). 
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Fig. 2.9. Boolean algebra is applied to electrical switching circuits 

*2.12. Using a truth table (Section 2.9) prove that for arbitrary pro
positions P, Q, R the following rules are valid: 

a) PV P=P, PAP=P, 

b) (P A Q) A R = P A (Q A R), 

(P V Q) V R = P V (Q V R), (associative laws) 

c) P V (Q A R) = (P V Q) A (P V R), 

P A (Q V R) = (P A Q) V (P A R) (distributive laws). 



CHAPTER 3 

Relations and Functions 

3.1. Introduction 

In the life sciences not all relationships are of a quantitative nature. 
Although future scientists may be able to understand cells, viruses, 
genes, antibodies, etc. in terms of molecules, their structure is so 
complex that a description will be more or less qualitative. The study of 
interconnections between cells, either by chemical or by electrical 
exchange, calls for mathematical tools that are not simply formulas. 
How an organ operates, its response to a stimulus, or how an individual 
behaves can hardly be expressed by numbers alone. Therefore, in this 
chapter we give definitions that are wide enough to comprise qualitative 
as well as quantitative properties. 

Using set theory we will give a mathematical definition of what is 
generally called a relation. The notion of a function will appear as a 
special case. The chapter will end with a review of the linear function. 

3.2. Product Sets 

We consider first an introductory example. The ABO blood groups 
are theoretically explained by three genes or alleles at the same gene 
locus. We denote the alleles by a, b, o. The alleles a and b are dominant 
over o. Individuals carrying the gene combination 00 have neither 
antigen A nor B in their blood. With the combination aa or ao the 
blood contains the antigen A, with the combinations bb or bo it contains 
the antigen B, and with the combination ab the blood contains both 
antigens. To get all possibilities for genetical recombination we introduce 
the set of alleles 

S={a,b,o} . 

Each gamete (egg or sperm cell) carries one of the three alleles. We 
represent the possible alleles of the sperm cell by points on a horizontal 
line and the possible alleles of the egg cell by points on a vertical line 
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(see Fig. 3.1). Then we draw parallel lines through each series of points 
and obtain nine points of intersection, the so-called lattice points. 
Each lattice point represents a possible recombination of alleles in a 
zygote (fertilized cell). There are nine different types of recombinations, 
namely the ordered pairs 

0 

b 

a 

(a, a) 

(b, a) 

(a, b) 

(b, b) 

(a, 0) 

(b,o) 

(0, a) (0, b) (0,0) . 

(a ,0) (b.o) 

(a, b) ( b.b) 

(a ,a) ( b,a) 

a b 

(0,0) 

(o.b) 

(o,a) 

0 

Fig. 3.1. Representation of all possible gene combinations in a zygote 

(3.2.1 ) 

One of the genetic laws says that the order of the two alleles is 
irrelevant. For instance, individuals with (a, b) and (b, a) cannot be 
distinguished from each other. However, when a similar representation 
is applied to other objects of investigation, the order may well be of 
importance. 

The pairs in (3.2.1) form a new set which was generated by an 
operation ·on the original set S = {a, b, o}. The new set is called a 
product set or a Cartesian product! and denoted by S x S. We read 
.. s cross S", and by definition we may write 

S x S = {(a, a), (a, b), (a,o), (b, a), (b, b), 

(b,o), (0, a), (0, b), (0, on. 
(3.2.2) 

The new operation on sets should not be confused with a multi
plication of numbers. 

1 Cartesius is the Latin name for the French philosopher and mathematician 
Rene Descartes (1596-1650). He invented the coordinate system with two axes. Today 
the coordinate system is viewed as a special application of the concept of Cartesian product. 
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. 
In the preceding example we studied the product set of finite sets. 

With continuously varying quantities, however, a set may be infinite. 
Being concerned with fever we are interested in the relationship between 
body temperature and pulse rate. Both quantities can be measured 
with high accuracy. Let t be the temperature in degrees Celsius ranging 
from 35° in healthy to 41 ° in ill persons, and let f be the pulse frequency 
ranging from 50 to 150 cycles per minute. Both quantities vary con
tinuously. Now we form the two sets 

A = {tI35° :$; t :s::41 O} , 

B = U150:$; f:$; 150} . 

Combining temperature and pulse frequency we obtain the ordered 
pairs (t, f) which constitute the product set A x B. This set is infinite. 

The best known application of product sets is the Cartesian plane. 
Let Rl denote the set of real numbers. Then by definition the Cartesian 
plane is the set of all ordered pairs (x, y) with real numbers x and y, 
namely the product set 

(3.2.3) 

The graphical presentation consists of two perpendicular axes inter
secting each other at the point with coordinates x = 0, y = O. But neither 
the right angle nor the particular point of intersection are true require
ments. In most applications the units on the two axes are different. We 
also call the Cartesian plane. a two-dimensional space and denote it by 

(3.2.4) 

whereas Rl may be interpreted as a one-dimensional space. 
Notice that a pair (x, y) is ordered if we distinguish (x, y) from (y, x). 

Two ordered pairs (Xl' Yl) and (xz' yz) are equal if Xl = Xz and Yl = Yz; 
otherwise they are unequal. 

The first number is called abscissa, the second number ordinate, and 
both are called coordinates. The x and the Y axes are graphs of the set 
Rl of real numbers. The two sets are sometimes denoted by X and Y. 
Both axes together form a coordinate system. Each ordered pair is re
presented by a point in the Cartesian plane. Two different pairs corre
spond to two different points. The converse is also true: Two different 
points are associated with two different ordered pairs of numbers. 
Such a relationship is called a one-to-one correspondence and is sym
bolically written 1- 1. For brevity (x, y) is frequently called a point 
(x, y), although a pair of numbers and a point are by no means identical. 
The point (0,0) is called the origin of the coordinate system. For some 
peculiarities of presentation see Fig. 3.2. 
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y 

Ix,Y) 

Y 

Yo 

x x 
Fig. 3.2. A point (x, y) is depicted together with its coordinates x and y. The letter x is 
placed at the point (x, 0) just below the point (x, y) and the letter y is usually placed at the 

center of a vertical line connecting the points (x, y) and (x, 0) 

Summary. A product set A x B consists of all ordered pairs (a, b) such 
that a is a member of the set A and b a member of the set B. The Cartesian 
plane consists of all points (x, y), that is, of all members of the product 
set Rl x Rl where Rl is the set of real numbers. 

3.3. Relations 

An example may lead us to the definition of the term "relation". 
We discuss the interaction between neurons (nerve cells in the brain). 
In Fig. 3.3a we consider the set 

S = {a, b, c, d, e,n 
of six neurons labeled in arbitrary order (cf. Thrall, Mortimer, Rebman, 
and Baum, 1967, Model CE 1). A neuron is or is not able to send an 
impulse directly to another neuron. Biologically an impulse is trans
mitted by a rather complicated mechanism consisting of an axon, 
a synapse and a dendrite, a mechanism which is schematically depicted 
by ---( --- in Fig. 3.3a. The impulse goes only in one direction: 
Neuron a can send to neurons band d, but cannot receive impulses 
from band d, etc. The relationship "a can send an impulse to b" is 
mathematically represented by an ordered pair (a, b). The product set 
S x S with its 36 members contains all imaginable connections of the 
six neurons. The existing connections form a subset of S x S and are 
shown by heavy dots in Fig. 3.3b. We denote the subset by R. It 
contains only the following ten members: 

R = {(a, b), (a, d), (c, a), (b, d), (b, c), 

(c, d), (d, e), (c,!), (d,!), (j, en. 
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transmitting neuron 
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Fig. 3.3. The interconnection of neurons presented as a relation within a product set 

According to Section 2.3 we write 

RCSxS. (3.3.1) 

The subset R reveals the relationship between the neurons. In mathe
matics R is simply called a relation in the product set S x S. To state 
that an ordered pair (a, b) actually occurs in the relation R we also write 

aRb 

and read it "a is R-related to b". In our example aRd, eRd, bRd, 
etc. But bRa, eRe, fRfwould be wrong. 

Another example of a relation is taken from physics. Let 

A = {H, He, Li, Be, B, C, N, 0, ... } 

be the set of chemical elements ordered according to their atomic 
number and let 

N = {1, 2, 3, 4, ... } 

be the set of all imaginable atomic weights (rounded-off to integers). 
Then an ordered pair such as (He,4) means a helium isotope of 
weight 4, the same as 4He in standard physical notation. All isotopes 
existing in nature or artificially produced in the laboratory form a 
subset of the product set A x N. Again, this subset is called a relation 
in the product set A x N. Part of this relation is depicted in Fig. 3.4. 

A relation can also be determined by a mathematical formula. For 
instance, 

(3.3.2) 
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Fig. 3.4. Stable isotopes are marked by filled circles. They form a relation in the product 
set A x N. Unfilled circles mark unstable isotopes. They form another relation. Both 

types of circles together form a third relation 

has an infinite number of ordered pairs (x, y) as solutions. Among them 
are (3, - 2), (3, 2), ( - 3, 2), ( - 3, - 2), (0, 117), (0, - 117), (Vli, 0), (1, V20/3). 
The set 

(3.3.3) 

is a subset of Rl x Rl. and hence a relation in the Cartesian plane. 
A graph of R is shown in Fig. 3.5. 

y 

o x 

Fig. 3.5. Graph of the relation (3.3.3). The points constitute an ellipse 
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Similarly, an inequality such as 

y>x 

53 

defines a subset of Rl x Rl which IS again called a relation. In 
symbolic writing the relation is 

R={(x,y)lxER 1 , YER I , y>x}, 

but in "every day language" of mathematics we simply say "the 
relation y> x". A graph of this relation is shown in Fig. 3.6. 

y 

x 

Fig. 3.6. Graph of the relation y> x. The shaded area is the subset of points with y 
greater than x 

Summary. Let A x B be a product set consisting of all ordered pairs 
(a, b) where a is a member of A and b is a member of B. Then any subset 
of A x B is called a relation. 

3.4. Functions 

Consider a human population, say a set U of persons, and the set 
of fingerprints of these persons, say F. Each person has ten fingerprints. 
Since the relationship of fingerprints and persons is of practical 
interest, we introduce ordered pairs 

(fingerprint, person) . 

These pairs are members of the product set F x U. Certain fingerprints 
belong to certain persons so that such pairs form a subset of F x U. We 
call this subset a relation as in the preceding section. In our example 
the relation has a remarkable property: Each fingerprint x is associated 
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with exactly one person y. Given a fingerprint we can uniquely identify 
the person. Such a relation is called a mapping or a function 2. 

Quite similary, when we observe a group of people in sunlight, each 
person has exactly one shadow. Thus, we may state that the relation
ship is a function. One variable is the person x, the other variable the 
shadow y. Both variables are of the nominal type (see Chapter 1). 

With each biological species there is associated a typical number of 
chromosomes (pathological cases disregarded). Therefore, this asso
ciation is called a function. Here, the species is a variable of the nominal 
type but the number of chromosomes a quantitative variable. 

Notice in all of these cases that the uniqueness of association is in 
one direction only. Each person y has more than one fingerprint x; 
a given shadow y may belong to more than one person x (if, for example, 
they are standing close together); a chromosome number y may be 
characteristic of a large number of species x. To speak of a function, 
therefore, we require uniqueness of association in only one direction, as 
expressed by the ordered pairs (fingerprint, person); (person, shadow); 
(species, chromosome number). 

When both variables x and yare quantitative, either at the interval 
or the ratio level, we obtain more familiar examples of functions. For 
example, the pressure of a gas is a function of its temperature provided 
that the volume is kept constant. 

A very special kind of function is given by a formula, for instance 
by y = x 2 • With each value of a numerical variable x there is associated 
only one number y. This association is therefore a function. It is 
customary to say that y is a quadratic function of x. Notice, however, 
that the term "function" means a relationship, not the special variable y. 

We introduced a function as a special sort of relation. But not all 
relations are functions. For instance, in Fig. 3.4 the same chemical 
element can have different atomic weights. Therefore, atomic weight is 
not a function of chemical element. Similarly, we recognize in Figs. 3.5 
and 3.6 that more than one y value is associated with a single x value. 

In neither case do we have a function. 
In general, let x and y denote any two variables of a nominal, 

ordinal, interval, or ratio level. The variable x may stand for the mem
bers of a set A and y for the members of a set B, symbolically x E A, 

2 Both words need some explanation. Mapping was originally used for depicting a 
landscape. To each object of a landscape there corresponds a unique mark on a map. 
In modern mathematics the word "mapping" is used for any kind of unique association. 

The word "function" has quite a different history. In the 17th century mathematicians 
conceived the idea of variable quantities. A dependent variable was called a function of 
an independent variable. It was given by a formula such as y = x + 3 or y = a 0, etc. 
During the last hundred years the notion of a function was more and more generalized. 
Today x and y may denote not only numbers but members of any kind of sets. 
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y E B. Assume that to each x there is associated a unique y, then we call 
this relation a function. We write 

x--+ y or x--+ f(x) or y = f(x). (3.4.1 ) 

The first two notations are modern, the third is traditional 3 . 

x is called the independent, y the dependent variable. The set A of the x 
variable is called the domain of the function. If the set B is defined in such 
a way that all members of B are associated with members of A, then B 
is called the range of the function. 

" "" c 

"' 

y 

OI~--~_~-=-=-=-=-~d~o~m~a~,~n~A-=====~--)X~ 

Fig. 3.7. The domain and the range of a function 

Example 3.4.1. Fig. 3.7 depicts a piece of a curve. The ordinate y of 
a point of this curve is uniquely associated with an abscissa x. Hence, 
the curve defines a function. We may denote the association by y = f(x). 
The curve is called the graph of the function. The domain A and the 
range B are also shown in the figure. 

Example 3.4.2. With each electromagnetic wave of wave length A 
(Greek lambda) taken from the approximate domain 

A = {AI3.8 X 10- 7 m <A < 7.8 x 10- 7 m} 

the human eye perceives a specific spectral color which mayor may not 
have a name. This association is a function. The dependent variable, the 
color, is a quality of the ordinal level. The range is the infinite set of all 
spectral colors. 

Example 3.4.3. Some functions may be defined by a formula such as 
y = ax + b, y = l/x, y = X 1/2 . Each of these formulas associates a unique 
y value with a given x value. In each case we should specify a domain A 
and a range B. 

3 The symbol -+ has three different meanings in mathematics. It could mean 
"logical implication" (see Section 2.9), convergence of a variable to a limit (see Section 8.1), 
or a mapping as in the present section. 
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For y = ax + b, the variable x can take on any real value. Thus, we 
may identify the domain A with the set Rl of all real numbers. In 
applications to the natural sciences, however, the domain A is usually 
a finite interval since x cannot be arbitrarily small or large. 

In the case of y = l/x any real value qualifies for x except x = 0 since 
we cannot divide by zero. Thus, the domain A can be any set on the x axis 
which does not contain the point x = o. 

For the formula y = xt we have to exclude all negative numbers x 
if we are to avoid imaginary numbers. Hence, the domain A is the set 
{xlx~O} or any subset of it. 

The graphs of these three functions are lines which we will study in 
future sections. 

Notice that not every formula constitutes a function. As we already 
know, formula (3.3.2) defines a relation, but y is not uniquely associated 
with x. 

Example 3.4.4. The graph of a function of numerical variables is not 
always a curve. The domain as well as the range may consist of isolated 
points. This is for instance true for an empirical function with a finite 
number of measurements Yl' Y2, ... , Yn which are associated with given 
values Xl' X2' .•. , Xm respectively. The domain as well as the range consist 
of a finite number of members as long as we do not interpolate. 

Example 3.4.5. While natural scientists are accustomed to search for 
a formula which would represent a given function, no such formula need 
exist. For instance, the prime numbers x = 2,3,5,7,11, ... may be enu
merated in their natural order by Y = 1,2,3,4, .... This establishes a 
function, but no formula exists for this function. 

Summary. Three things are required to establish a function, namely 
a set A, a set B, and a rule whereby each member of A is associated with 
exactly one member of B. We say that each member of the domain A is 
mapped into a member of the range B. 

Natural scientists tend to believe that some causality must be involved 
in the term "function". For instance, the temperature of a solution may 
vary as a function of energy release. However, we should be cautious by 
introducing a cause into the concept of function. Sometimes the cause 
relationship is not well established. Even if the cause is known, the result 
need not lead to a unique association of y with x. Indeed, a repetition of 
an experiment could lead to different y values for the same x. The main 
reason, however, why causality fits poorly into the concept of function 
is the following: For many functions there exists a so-called inverse 
function, but causality is one-sided and cannot be reversed. If, for 
instance, y = x 2 , then x = yt. Thus, "y is a function of x" as well as "x is a 
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function of y", but if y is "caused" by the amount of x, the converse 
cannot be true. 

Finally, even if the modern definition of a function is accepted, the 
word "function" is often used in an ambiguous way. Strictly speaking, 
phrases such as "y is a function of x" and "the function varies between 
o and 1" are wrong. The function is a relationship and cannot have 
numerical values. Moreover, as an established relationship a function 
cannot vary. Nevertheless, such phrases are widely used in the everyday 
scientific language and can hardly be eradicated. When a misunder
standing is unlikely, we will sometimes accept a more liberal use of the 
word function. 

3.5. A Special Linear Function 

One of the easiest functions is given by the formula 

y=ax (3.5.1) 

where a is a constant number. In the Cartesian plane this function is 
represented by a straight line through the origin. The fact that the graph 
is a straight line accounts for the term linear function. 

As an illustrative example we shall discuss the absorption of po
tassium (K) by leaf tissue of Zea mays (corn) as a function of time. We 
follow a report by Rains (1967). The independent variable is the time t, 
measured in hours. The dependent variable y is the amount of absorbed 
potassium, measured in IlMoles per unit weight of leaf tissue (which is 
not specified here). The function y = at fits the data very well for a domain 
{t I 0 ~ t ~ 4}. When the experiment is performed in darkness, the con
stant takes on the value a = 1.8 IlMoles per unit weight per hour. If, 
however, the tissue is illuminated (by light intensity of roughly 2 x 104 

lumenjm2 ), then the constant turns out to be a = 4.0 IlMoles per unit 
weight per hour. The constant a is called the rate of absorption. Hence 
the result of the experiment may be summarized as follows: The rate of 
absorption in the light is about twice the rate in the dark. The two straight 
lines are shown in Fig. 3.8. 

Formula (3.5.1) means that y is proportional to x. For this rela
tionship the symbol oc is sometimes used. Thus if the type of function 
is more important than the specific value of a, we write 

yocx 

and read "y is proportional to X,,4. 

(3.5.2) 

4 The proportionality sign oc is very practical, but not widely used. Mathematicians 
apply it rarely. However, the symbol is quite popular in biophysics. 
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Fig. 3.8. Potassium absorption by leaf tissue of Zea mays in light and in dark. Adapted 
from Rains (1967) 

The constant proportion y/x = a is called a rate, especially if the 
independent variable is time. Thus we speak of a rate of reaction, a rate 
of absorption, a rate of mutation, etc. In the Cartesian plane the constant 
a plays the role of a slope. If a = 0, the straight line coincides with the x 
axis. For a > 0 the straight line ascends from left to right and for a < 0 
it descends. Some caution is required: A large value of a does not neces
sarily mean that the straight line is steep. All depends on the units we 
choose on the x and the y axes. The same linear relationship can be 
depicted in different ways. The two diagrams in Fig. 3.9 represent ex
actly the same functions as in Fig. 3.8, but in Fig. 3.9a the reader is under 
the impression that the two absorption rates are small, whereas Fig. 3.9b 
evokes the opposite impression. The impression of steepness is highly 
subjective. It is a well-known trick for advertisement or for political 
purposes to manipulate the steepness. A humorous as well as instructive 
example is presented in Huff (1954) and reproduced in Fig. 3.10. 

In this connection we conclude that the angle of inclination of the 
straight line has no meaning in general. There are a few exceptions. In 
calibration, for instance, x means a variable measure read on the scale 
of an instrument, whereas y is the corresponding exact measure given 
by a suitable norm. Here, x and yare written in the same units and, by 
convention, also plotted on the same scale. Slightly more general is the 
case where two experimental procedures are compared with each other 
and corresponding results x and yare plotted against each other. In 
such cases the angle of inclination may be quite relevant. An example is 
shown in Fig. 3.11. 
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Fig. 3.9. The steepness of the straight lines depends on the choice of the units on the 
x and the y axes 
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Fig. 3.10. Two different plots of the same fact: The increase of national income in a year. 
From Huff (1954, p. 62) 
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• Systolic pressure 
x Dias tolic pressure 

Blood Pressure, Direct Manometer 

• 

2SO 
mmHg 

Fig. 3.11. The blood pressure measured in two different ways. Let x and y denote the 
measurements at the same individual. Without errors of measurements we would have 
y = x. The graph is a straight line with ex = 45° as angle of inclination (from Sunderman 

and Boerner, 1949, after a paper by Steele) 

Provided that x and yare plotted in the same units, the angle (X of 
inclination can be determined from the equation 

tan (X = a (3.5.3) 

by means of a table. For a positive slope, that is a> 0, (X ranges from 
0° to 90°. For a negative slope, that is, a < 0, (X ranges from 90° to 180° 
(the lower and upper bounds are excluded). For the definition of tan 
see formula (5.5.6). 

3.6. The General Linear Function 

We consider now the equation 

y=ax+b. (3.6.1 ) 

The right side consists of two terms, the linear part ax discussed in the 
previous section and the constant b. Correspondingly, the graph of the 
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function can be obtained from the straight line y = ax passing through 
the origin by adding the (positive or negative) constant b to each 
ordinate (see Fig. 3.12). This procedure leads to a parallel straight line 
which we also get when we shift the straight line y = ax in the y direction 
by the constant b. The point of intersection with the y axis is (0, b), and 
b is therefore called the y-intercept. The y-intercept is seen in a graph 
only if the x axis intersects the y axis at the point (0,0). 

The constant b does not contribute to the slope of the straight line. 
The slope of (3.6.1) is the same as that of y = ax, namely a. We get a 

y 

b 
b 

b 
b y == ax 

x 
o 

Fig. 3.12. Construction of the straight line of the equation y = ax + b using the graph 
of y=ax 

deeper insight in the meaning of slope when we write the equation of 
the straight line in a different and often more practical way. Let (xo, Yo) 
be an arbitrary, but fixed point of the straight line, and let (x, y) be a 
variable point of the same line (see Fig. 3.13). The differences 

(3.6.2) 

are called the incrementsS of x and y. They can be positive, negative, or 
zero. Assume now that A x =1= 0. Then from Fig. 3.13 we see that the 
slope a of the straight line is 

a = Ay/Ax, (3.6.3) 

no matter how large or how small A x is chosen. In other words: While 
the variable point (x, y) is moving along the straight line, we get always 
the same ratio Ay/Ax unless the variable point (x, y) coincides with the 
fixed point (xo, Yo). For Ax = ° formula (3.6.3) breaks down, since we 
cannot divide by zero. 

S LI is the upper case Greek letter delta. This symbol is used in mathematics to 
indicate a diiference.Cf. the use of LI in Section 4.4. In formulas, Llx should not be confused 
with a multiplication of two numbers LI . x. 
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We may also say that L1y is proportional to L1x and write 

L1yocL1x. 

Formula (3.6.3) will playa major role in Chapter 9 on calculus. 
By means of (3.6.2), formula (3.6.3) can be rewritten in the form 

y- Yo -'-----'-''- = a . (3.6.4) 
x-xo 

y 

I--------~X------I 

y 

x 

Fig. 3.13. The increments LI x and LI y for a linear function 

This is an equation which restricts the variable point (x, y) to lie on the 
straight line through the point (xo, Yo) and with slope a. Hence, (3.6.4) 
is another form of the Eq. (3.6.1). On rearranging the terms in (3.6.4) 
and comparing with (3.6.1) we obtain for the constant term 

b = yo-axo. 

Now we are prepared to solve a frequent problem in applied 
mathematics: Given a straight line in a Cartesian plane, find its equation. 
And conversely: Given a linear function, plot the straight line. We will 
illustrate the solution by an example taken from McNaughton (1967). 
In a study of the reduction of 2,6-dichlorophenol-indophenol by light, 
the author reports that the photochemical reaction in Typha latifolia 
(broad-leaved cattail) is the more efficient, the higher the altitude is at 
which plants of this species grow. More precisely, McNaughton found 
that the so-called Hill activity is an almost linear function of the frost
free period at the place where the plants live. Fig. 3.14 is a diagram of 
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the straight line fitted to the data 6. Let us first determine the equation. 
We denote the frost-free period by x (in days) and the Hill activity by Y 
(in Hill units = IlMoles of 2,6-dichlorophenol-indophenol per mg of 
chlorophyll per tninute). On the straight line we choose two points that 
are not close together, say 

50 
y 

40 

>.'" _ .-= 30 
:~ ~ 
u = 20 

~ ~ 10 
:r: 

Xo = 100 days 

Xl = 300 days 

Yo = 42 Hill units 

Yl = 21 Hill units 

100 200 300 x 
fros t- free per iod (days) 

Fig. 3.14. Typha latifolia growing at places with a shorter frost-free period show a greater 
Hill activity than at places with a longer frost-free period 

(read with the highest accuracy that the graph allows). Using (3.6.2) and 
(3.6.3), where we replace (x, y) by (Xl' Yl)' we obtain 

Ll X = Xl - Xo = 200 days (positive) 

Lly = Yl - Yo = -21 Hill units (negative) 

a= -21/200 Hill units/day = -0.105 Hill units/day. 

Now, formula (3.6.4) furnishes the equation of the straight line (the units 
are omitted for simplicity) 

y-42 
X _ 100 = -0.105 

or, on rearranging the equation, 

Y = (-0.105) X + 52.5. (3.6.5) 

We may check the result by comparing the constant term (that is 
52.5 Hill units) with the y-intercept in Fig. 3.14. 

The converse problem, that is to plot the diagram, is solved in the 
reverse order. Given is the Eq. (3.6.5). Then we determine the co
ordinates of an arbitrary point of the straight line, for simplicity the 

6 For an analytic method of fitting a straight line to a scatter diagram, see 
Section 12.3. 
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point (0, b), in our example (0,52.5). We plot this point and from there 
we proceed in the direction given by the slope a. Knowing that 
A y = aA x we choose an arbitrary step A x to the right and from there 
another step up or down with the corresponding value of A y. In our 
example we may choose Ax = 300 days (for good accuracy Ax should 
be at least one half of the width of the diagram). The corresponding 
value of A y is 

Ay = a A x = (-0.105) x 300 = - 31.5 (Hill units). 

Hence, from the point (0, 52.5) we proceed x = 300 steps to the right 
and y = - 31.5 steps in the perpendicular direction (down). This leads 
us to a second point of the straight line. 

A slightly different way to plot the straight line is based on calcu
lating the coordinates of two points. In our example we may choose 
Xo = 100 days and Xl = 300 days. From (3.6.5) we get Yo = 42 and 
Yl = 21 (Hill units). With the two points (xo, Yo) and (Xl' Yl) the straight 
line is determined. 

As in Section 3.5 we have to warn the reader that the slope a has in 
general nothing to do with the angle of inclination. Only in the special 
case where both x and yare measured and plotted in the same units to 
the same scale, the angle rJ. of inclination may be meaningful. It can be 
determined from (3.5.3). 

For completeness, the domain of a function ought to be specified. 
In our example, the relationship between Hill activity and frost-free 
period is only valid for {x 150 < x ;:;; 365} . For X < 50 the relationship 
is not supported by the experiment. 

*3.7. Linear Relations 

In applications of mathematics linear functions often occur impli
citly. An example shall serve as illustration. It is known that 100 g of 
dried soybeans contain 35 g of protein and 100 g of dried lentils contain 
26 g of protein. Men of average size living in a moderate climate need 
70 g of protein in their daily food 7. Assume a man wants to provide for 
these 70 g of protein by eating soybeans and/or lentils. Let x be the 
amount of soybeans and y be the amount of lentils daily (x and y 
measured in units of 100 g). What is the relationship between x and y? 

The protein taken with soybeans is 35x and with lentils 26y a day 
(both measured in g). The total daily amount of protein is 70 g. Hence 
we obtain the equation 

35x+26y=70. (3.7.1) 

7 The figures were taken from Diem (1962), p. 498 and 505. 
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By rearranging the terms we can express y as a function of x: 

35 70 
y= - 26 x + 26 or y=(-1.35)x+2.69. (3.7.2) 

We call an equation such as (3.7.1) an implicit function and an 
equation such as (3.7.2) an explicit function. 

A listing of all possible pairs (x, y) that satisfy (3.7.1) or equivalently 
(3.7.2) is impossible, since there is an infinite number of them even if we 
observe the obvious side conditions x ~ 0 and y ~ O. But a diagram 
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Fig. 3.15. Possible combinations of food represented by points of a segment 

offers a good survey of all possibilities. The function (3.7.2) is repre
sented by a straight line with y-intercept 2.69 and slope - 1.35 (see 
Fig. 3.15). The segment satisfying the side conditions x ~ 0, y ~ 0 is 
shown by a heavy line. All suitable pairs (x, y) are located on this segment. 

For preparing the diagram it is not necessary to express y explicitly 
as a function of x. We could immediately use Eq. (3.7.1). For x = 0 we 
get y = 70/26 = 2.69, and for y = 0 we get x = 70/35 = 2.00. The latter 
amount is the x-intercept. 

Generalizing this example we consider the linear equation 

Ax+By+C=O (3.7.3) 

which is equivalent to the explicit formula 

A C 
Y = - - x - - or y = ax + b 

B B 
(3.7.4) 

provided that B =1= O. If B = 0, y cannot be a function of x. 
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Let us now slightly generalize the previous example. Assume that 
a man wants to eat soybeans and lentils to get at least 70 g of protein 
a day. Then we have to replace the sign of equality in (3.7.1) by the 
sign for "greater than or equal to". Thus we obtain the inequality (also 
called inequation) 

35x + 26y~ 70. (3.7.5) 

Inequalities of this type usually occur in problems of "mixing" two 
kinds of "opportunities", such as mixing nutrition, supplies, plankton, 
bacteria cultures, etc. 

The question is the same as before: What are the possible pairs 
(x, y) that satisfy the inequality (3.7.5)? To find a practical way we first 
solve the inequality (3.7.5) with respect to y. From both sides we 
subtract 35x and then divide by 26 in the same way as we would 
proceed for an equation: 

35x + 26y ~ 70 

-35x - 35x 

26y ~ - 35x + 70 

26y - 35x + 70 
-->-----

26 = 26 

Thus we obtain the explicit inequality 

y ~ ( - 1.35) x + 2.69 . (3.7.6) 

The inequality (3.7.6) differs from the Eq. (3.7.2) only by the sign ~. 
Whereas the Eq. (3.7.2) associates a unique value of y with a specific 
value of x, this is no long true for the inequality (3.7.6). Therefore, y is 
not a function of x, but according to Section 3.3 the inequality may still 
be called a relation. More specifically we call (3.7.6) a linear relation. 

From what we just said it is easy to plot the relation given by (3.7.6). 
In Fig. 3.15 we add to the points on the straight line all those points 
that have a higher value of y. Thus we get the set of all points above the 
straight line. Such a set is called a half-plane. For our specific problem 
of nutrition we have also to observe the inequalities x ~ 0 and y ~ O. 
The admissible points lie in the shaded area of Fig. 3.16. 

Biological problems of this type are sometimes more complex. 
Instead of only three inequalities, more of them have to be satisfied. In 
addition some optimal property may be required. Problems of this 
type are today treated under the heading linear programming. We 
conclude this section with a typical example. In a laboratory there are 
two bacteria counters available. Counter C1 can be operated by a gradu-
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Soybeans ( u ni t 100g) 

Fig. 3.16. Possible combinations of food to provide for a least required amount of protein 

ate student who earns $ 2.00 per hour. On the average he is able to 
count six samples an hour. Counter C2 is faster, but also more 
sophisticated. Only a well trained person earning $ 5.00 an hour can 
operate it. With the same precision as C1 , counter C2 allows ten 
countings an hour. Given are 1000 samples to be counted within a time 
period not exceeding SO hours .. How long should each of the two 
counters be used in order to perform the task at a minimum cost? 

Let x denote the number of hours counter C1 is operated, and y the 
corresponding number for C2 . Then we get the following table: 

Counter Samples Wages Number 
counted per hour of hours 
per hour in operation 

6 $2.00 x 

10 "$ 5.00 Y 

Since the task should be performed within SO hours, we obtain the 
inequalities 

O;;;;x;;;;SO, 

O;;;;y;;;;SO. 

C1 counts 6x and C2 counts lOy samples. Altogether they count 

6x + lOy = 1000 

(3.7.7) 

(3.7.S) 
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167 
Bacter i a Counter C, (hou rs ) 

Fig. 3.17. Construction of the optimal point in the use of bacteria counters 

samples. The cost for operating C 1 is 2x, and for C2 the cost is 5 y (both 
amounts in dollars). Hence the total cost is 

2x + 5y, (3.7.9) 

and this amount should be minimized. 
We solve the problems by means of a diagram. In Fig. 3.17 the 

shaded square contains the points (x, y) that satisfy the inequalities 
(3.7.7). In addition, the linear Eq. (3.7.8) has to be fulfilled which means 
that the points (x, y) lie on the corresponding straight line. To satisfy 
all conditions the admissible points have to be located on the inter
section of the square (shaded) and the straight line. This intersection is 
plotted as a heavy segment. We calculate the coordinates of the end
points. For the upper endpoint we know that y = 80, and from (3.7.8) 
we obtain x = 33 (rounded off to the nearest integer). For the lower 
endpoint we find x = 80 and y = 52. Now we calculate the cost for the 
operation of the counters along the segment. From (3.7.8) we get 
y=(-0.6)x+ 100. With this value of y the total cost (3.7.9) becomes 

2x + 5 y = 2x + 5(( - 0.6) x + 100) = 500 - x . 

Hence, the cost is a linear function of x. When we move from the upper 
to the lower endpoint, that is when x increases from 33 to 80, the total 
cost decreases from 467 to 420 dollars. Thus the final result is: The 
expense is minimized if counter C1 is used 80 hours and counter C2 is 
used 52 hours. 
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Recommended for Further Reading: Defares and Sneddon (1961), 
Guelfi (1966), Hays (1963), Kerlinger (1964), Lefort U967), Nahikian 
(1964), c. A. B. Smith (1966), Stibitz (1966). 

Problems for Solution 

3.1. Determine the product set of A = {O, 1} and B = {O, 2, 4} and 
plot a graph. Show that A x B =F B x A which means that the 
commutative law is not valid for the cross product. 

__ --,,..--__ d 

e __ -,..--__ 
k 

Fig. 3.18. 

3.2. In the pedigree shown in Fig. 3.18 the squares are symbols for 
males and the circles symbols for females. The individuals are 
denoted by a, b, c, ... , n. Establish the following relations using 
graph paper: 

a) x is brother or sister of y, 

b) x is a descendent of y, 

c) x is an ancestor of y. 

3.3. Let A = {O, 1,2,3, 4}. The inequality x + y ~ 3 defines a relation 
in the product set A x A. Find a graphical representation of this 
relation. How many of the 25 pairs (x, y) satisfy the inequality? 

3.4. In a marine ecosystem phytoplankton is either eaten up by 
zooplankton, or by omnivores, or it decays. Zooplankton is 
eaten up by omnivores, or by carnivores, or it decays. Finally, 
omnivores and carnivores eat themselves up or they decay. With 
this situation in mind define a relation in the product set S x S 
where S = {phytoplankton, zooplankton, omnivores, carnivores, 
decay} and find a suitable graph (cf. Patten, 1966, p. 595). 

3.5. Twenty experimental mice numbered 1,2, ... ,20 are tested 
whether they react to a certain dose of strychnine. We associate 
the number one with a mouse if it reacts positively, otherwise 
the number zero. This association is a function. Why? Determine 
the domain and the range of this function. 
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3.6. Let x E N = {1, 2, 3, ... } and y be the remainder 0, 1,2 or 3 which 
results after dividing x by 4. Why is the association of y with x 
a function? Plot a diagram of this function and specify its domain 
and range. 

3.7. In which of the following cases is it correct to say that x-members 
are mapped into y-members or, equivalently, that the association 
of y with x is a function? 
a) x = pulse rate, y = body temperature of a particular patient, 

x and y being measured several times, 
b) x = triangle, y = area of the triangle, 
c) x = frequency of electromagnetic wave, y = spectral color, 
d) x = section of a road, y = average speed of an automobile on 

a particular trip, 
e) x = speed of a particular car, y = shortest stopping distance, 

x and y being measured under different road conditions. 

3.8. The ability of a person to discriminate spectral colors is measured 
by establishing at each frequency Vo the closest frequency that 
can be distinguished, say v l' The absolute value of the difference, 
that is, (j = IV1 - Vol may be plotted as ordinate with the reference 
frequency Vo as abscissa. (j is minimal at frequencies near the 
boundaries between two hues (such as blue, green, red) and 
maximal at frequencies near the center of hues. Do (j and Vo 

constitute a relation? a function? a linear function? 8 

3.9. According to TimofeetT-Ressovsky and Zimmer (1947, p. 36), the 
number of sex related mutations in Drosophila melanogaster 
increases almost linearly with the dose of X-rays provided that 
the dose does not exceed 6 kr (kilo-Roentgen). Let x denote the 
dose measured in kr and y be the mutation rate (percentage). 
For dose 0 no mutation is observed. With a dose of 3 kr the 
mutation rate is 8.4 %. Plot a diagram and establish the equation 
for y and x. What is the domain and the range of the function? 
Is the angle of inclination meaningful? 

3.10. A leaping animal, such as a cat, a porpoise, or a flea, falls in such 
a way that the vertical speed of its center of gravity increases by 
9.81 m/sec every second. What is the equation of the vertical 
speed, if the time zero is chosen at the instant when the vertical 
speed is zero (at the point of culmination)? What are the vertical 
speeds for t = 0.1 sec, 0.2 sec, etc.? Plot a diagram. Interpret the 
values of the function for negative values of t. 

8 Suggested by Dr. Jack P. Hailman, University of Wisconsin. v is the Greek letter nu. 
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3.11. The pressure of water is proportional to its depth. Let d denote 
the depth (meters) and p the pressure (atmospheres). In seawater 
the following measurement was made: d = 98.0 m, p = 10.21 atm. 
Express p in terms of d. If an error in p ofless than 1 % is negligible, 
the domain of the function is approximately {d I 0 ~ d ~ lOOO}. 
What is the corresponding range? 

3.12. Plot the function y = 8.8x - 20 using a unit on the y axis that is 
only one tenth of the unit on the x axis. 

3.13. Plot the function y = 0.35x + 25 with equal units on the x and y 
axis, but with an "interrupted" y axis in order to save space. 

3.14. Plot the straight lines given by the equation y - 3 = a(x - 2) for 
a = 0, 0.6, 1.3, 2.8, - 0.9, - 1.6. (Hint: Compare with Eq. (3.6.4). 
To plot the slope choose an arbitrary L1x, for instance L1x= 10, 
determine .1 y, and proceed .1 x steps to the right and .1 y steps 
up or down.) 

3.15. As a rule biological experiments are time consuming. The cost 
consists of two parts: 
1. a fixed amount for purchase of instruments, equipment, 
animals or plants, 
2. a variable amount increasing daily by a salary rate for the 
experimenter and/or his assistant, and the cost rate for food, 
supplies and power. Let f be the fixed amount, r the daily rate 
of increase, t the time in days, and F the total cost. Find the 
equation expressing F in terms of t. Check that .1 F / .1 t is constant. 

3.16. If a helical spring is under the influence of a force, its length is a 
linear function of the force unless the force exceeds a certain bound 
(Hooke's law). Let F be the force (measured in Newtons) and 
I be the length of the spring (cm).lo denotes the initial length when 
no force acts. Let a = .11/.1 F be the rate of increase. Express I in 
terms of F. 

3.17. Are the following three points located on the same straight line? 

Xo = 1.5 
Yo= -2.0 

Xl =4.5 
YI = 2.5 

x 2 = 12.0 

Y2 = 13.75 

(Hint: Calculate .1 Y/ .1 x for different pairs of points.) 

3.18. Simpson, Roe, and Lewontin (1960, p. 218) report that in females 
of the snake Lampropeltis polyzona the total length y is a linear 
function of the tail length x with great accuracy. The domain is 
the interval from 30 mm to 200 mm, and the range is the interval 
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from 200 mm to 1400 mm. The following two points are given: 

xo= 60mm 

yo=455 mm 

XI = 140mm 

YI = 1050mm. 

Find the equation of y as a function of X and plot a diagram with 
suitable units for X and y. Is the angle of inclination meaningful? 

3.19. A copper rod, part of an instrument, is exposed to different 
temperatures. Its length I is almost a linear function of the 
temperature t provided that t < 150° (Celsius). Find the equation 
for I using the following measurements: 

tl = 15°, II = 76.45 cm and t2 = 100°, 12 = 76.56 cm. 

3.20. The temperature on the Celsius scale, denoted by x, and the 
same temperature on the Fahrenheit scale, denoted by y, are 
connected by the linear relation 5 y - 9 x = 160. Express y as a 
function of x and plot the function. Prepare a conversion table for 
x = 36.0°, 36.1 0, 36:'2°, ... , 37.0°. 

3.21. Solve the following inequalities with respect to y and plot the 
relations in the Cartesian plane: 

a) x+ y< 5 

c) x + 2y > 8 

b) x-y<5 

d) 3x-3y<10. 

3.22. Given the two inequalities 

A: x>y B: 3x<y. 

Find graphically all pairs (x, y) for which 

a) A as well as B, 

b) A and/or B, 

c) either A or B 
are satisfied. 

3.23. Find graphically the intersection and the union of the sets 

{(x, y)lx + y- 5 > O} and {(x, y)lx - 2y + 2 >O}. 

*3.24. Assume an adult needs at least 300 g of carbohydrates in his daily 
food. What possibilities does he have if he wants to fulfill this 
condition by eating a combined food consisting of potatoes and 
soybeans? 100 g of raw potatoes contain 19 g and 100 g of dried 
soybeans 35 g of carbohydrates (data from Diem, 1962, p. 505). 
Show the result in a diagram. 

*3.25. Find the solution of the problem at the end of Section 3.7 
assuming that the wages are $ 2.00 and $ 3.00 for the operators 
of bacteria counters C I and C2 , respectively. 
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*3.26. An area of at most 10 ha should be planted with wheat and 
potatoes. To avoid mono culture it is required that at most 70% 
of the area actually cultivated be reserved for wheat or for 
potatoes. Let x be the number of hectares planted with wheat 
and y the corresponding number for potatoes. Find graphically 
all pairs (x, y) that fulfill these conditions. 

*3.27. In a developing country an area of at most 10 km2 (= 1000 ha) 
is being planted with potatoes and corn. To fight against insects 
and against plant diseases it is required that not more than 70 % 
of the area actually used be planted with potatoes or corn. The 
crop of potatoes is estimated to be 8.3 t (metric tons) per ha and 
of corn 7.7 t per ha. Each kilogram of raw potatoes contains 20 g 
of protein whereas the corresponding amount for fresh corn is 
32 g (data from Diem, 1962, p. 505). It is required that the total 
amount of protein in the crop is not less than 200 1. If x denotes 
the number ofkm2 planted with potatoes and y the corresponding 
number for corn, what are the pairs (x, y) that satisfy all con
ditions? Solve the problem graphically. 



CHAPTER 4 

The Power Function and Related Functions 

4.1. Definitions 

In Section 3.5 we studied the special linear function y = ax, that is, 
y is proportional to x. The variable x may be written as the first power 
Xl, and then the linear function appears to be a particular case of 

(4.1.1) 

where a and n are constant numbers. A function of this type is called 
a power function. (4.1.1) says that y is proportional to xn , a property 
which we may write as 

(4.1.2) 

Fig. 4.1. Power functions with positive exponent 



Examples of Power Functions 75 

using a symbol introduced in formula (3.5.2). The behavior of a power 
function is mainly determined by the exponent n. Fig. 4.1 gives a survey 
of some power functions with positive exponents n. For simplicity we 
choose a = 1 and restrict the domain to x ~ O. The greater n is, the 
faster y increases. 

In (4.1.1) the constants a and n characterize a power function, that 
is, specific values of a and n belong to one and only one power function. 
In general, constants with such a property are called parameters of a 
function. We also say that (4.1.1) is a two-parametric function. Another 
example of a two-parametric function is y = ax + b with the slope a and 
the y-intercept b as parameters. 

In this chapter we will deal not only with power functions, but also 
with polynomials which are sums of power functions. 

4.2. Examples of Power Functions 

As a first application we study a jumping or leaping animal such as 
a flea, a cat, or a porpoise. Galilei's law! states that the center of gravity 
is subject to the same acceleration for all bodies provided that the air 
resistance can be neglected. The movement of the center of gravity is 
described by this law no matter what action the animal performs during 
the jump. Consider the highest level reached by the center of gravity. Let 
t = 0 be the time instant when the highest level is reached and let s denote 
the vertical distance of the center of gravity measured from its highest 
level (see Fig. 4.2). Then 

(4.2.1) 

where 9 is the acceleration of the center of gravity. The vertical distance 
is proportional to the square of the time. If t is measured in sec and s 
in cm, then 9 = 981 cm/sec2 for the surface of the earth. 

From (4.2.1) we derive the table: 

t (sec) 

s(cm) 
981 . 
-2- tlmes 

o 0.1 

o 0.01 

0.2 0.3 0.4 ... 

0.04 0.09 0.16 ... 

While the time increases in constant steps of 0.1 sec, the vertical distance 
increases as the squares 12 = 1, 22 = 4, 32 = 9, 42 = 16, etc., that is, with 
acceleration. Formula (4.2.1) defines a power function. Since the exponent 

1 Galileo Galilei, Italian physicist and astronomer (1564-1642). 



76 The Power Function and Related Functions 

Fig. 4.2. A leaping porpoise. The center of gravity describes a parabola no matter how the 
porpoise acts during the motion 

s (em) 

50 

40 
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10 

-0.3 - 0 .2 -0.1 o 0 .1 0 . 2 0 .3 
t (se c ) 

Fig. 4.3. The graph of the vertical distance as a function of time is a parabola 

is n = 2, the function is also called a function of the second degree or 
a quadratic function. We may include negative values oft, that is, consider 
the time before the animal reaches culmination. Then s is still the vertical 
distance from the level of culmination. The graph of the function is 
a quadratic parabola (see Fig. 4.3). 

Biophysics furnishes important applications of power functions. 
Consider a unicellular being of spherical shape. Let r be the radius of 
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the sphere. Then the surface 2 S and the volume V of the cell are given by 

S = 4nr2, (4.2.2) 

4 
V = - nr3 

3 
(4.2.3) 

with n = 3.14 .... The surface S is a quadratic function of r. If the radius 
grows by a factor 2, 3, etc., the surface increases by a factor 4, 9, etc. 
(see Fig. 4.4). The volume V is a cubic function of r. Thus if the radius 

," 

Fig. 4.4. Two spheres of different radius. If r2 = 2r" the surface is four times as large 

is doubled, the volume increases by a factor 8. When a living cell grows, 
its volume increases faster than its surface. Conversely, as long as the 
cell is small in size, the surface is relatively large. Assume that the various 
physical and chemical properties ofthe cell components remain unaltered 
while the cell grows. Then the flow of chemicals, such as O2 and CO2 , 

through the surface increases at a slower pace than the metabolic 
capacity of the cell, which is proportional to the volume. The same is 
true for the light energy received through the surface. A proper balance 
between flow through the surface and metabolism inside is only possible 
for a cell that is not too large and not too small. On one hand, if the 
radius is less than a lower critical value, say r < r1 , the metabolism 
presumably collapses since the volume is not sufficient relative to the 

2 Unfortunately the word surface is used ambiguously. It could mean the set of all 
points that form the face of a solid, a meaning that is expressed by the notion boundary 
in modern mathematics. A second meaning of the word surface is the measure of the boundary, 
that is, a number. 
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efficiency of the surface. On the other hand, for a radius greater than an 
upper critical value, say r > r 2 , the chemical exchange and the energy 
flow through the surface may break down since the surface is too small 
relative to the capacity of metabolism. Only for r1 < r < r2 is the cell 
competitive and able to survive in the struggle for existence. Future theo
retical research may furnish numerical values for r1 and r2 and thus 
suggest why unicellular beings are of the size observed in nature. 

Fig. 4.5. The body of an animal is subdivided into rectangular solids in order to show that 
the volume is proportional to the third power of a linear dimension 

For plants and animals with a shape that is more complicated than 
a sphere, there is still an easy geometric relationship between surface 
and volume of the body. For better understanding we introduce the term 
of a linear dimension. The total length of a body, its height, or its width 
are linear dimensions. Also any distance between well-defined points of 
a body such as the shoulder-hip distance may serve as a linear dimension. 
In the special case of a spherically shaped cell we used the radius r as 
a linear dimension. Now we consider bodies of different size, but exactly 
the same shape. Such bodies are similar in the geometric sense. Let I be 
a suitably chosen linear dimension. Then we will express the volume as 
a function of I. For this purpose we subdivide the body into a large 
number of cubes of different sizes (or of rectangular solids as in Fig. 4.5). 
Let V be the total volume of these cubes. It is close to the volume of the 
body. We can perform the subdivision in such a refined way that the 
error of approximation is arbitrarily small. 

We number the cubes by i = 1,2,3, ... and denote the side of the ith 
cube by Si' Then 

(4.2.4) 
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Now we increase all linear dimensions of the body by the same 
factor, say by c> 1. If we denote the new sizes by primes, we obtain 

l' = cl , s; = cS j (i = 1,2,3, ... ), 

(4.2.5) 

It follows that 
V' =c3 V, (4.2.6) 

that is, the volume has to be multiplied by the third power of c. 
We may reformulate the result by considering I, Sj and Vas variable 

quantities. For each value of a linear dimension I, the sides Sj and the 
volume V are uniquely determined. They may be considered as functions 
of I. Since Sj grows proportional to I we may write 

sjocl (i=1,2,3, ... ). 

But, as formula (4.2.5) indicates, the volume grows as sr Therefore, V is 
proportional to st and in turn to 13. Thus we may write 

(4.2.7) 

In words: The volume of a body of any shape is proportional to the cube 
of any of its linear dimensions. 

Similarly, we may subdivide the surface of a body into a large number 
of squares of different sizes. If S denotes the total surface, we obtain by 
the same method as before the result 

EJ· (4.2.8) 

In words: The surface of a body of any shape is proportional to the square 
of any of its linear dimensions. 

Special applications of formulas (4.2.7) and (4.2.8) are found in the 
formulas (4.2.2) and (4.2.3) for the sphere. Here, the radius r is used as 
linear dimension. 

Multicellular plants and animals of a size considerably larger than 
a single cell cannot exist unless they have a sufficiently large surface. 
This follows from our discussion of a spherical cell. Gills, lungs, intestines, 
kidneys for animals, roots and leaves for plants are devices for an in-
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creased surface in order to stimulate diffusion of molecules or absorption 
of energy. All these devices are appropriate as long as the body size 
remains within certain limits. 

As an illustration take a mouse. A giant mouse, geometrically similar 
in shape to an ordinary mouse but with a linear dimension ten times 
greater, could hardly survive. Its volume has grown 103 = 1000 times, 
whereas the surface (including the inner surface of lungs, intestines, etc.) 
has increased by the factor 102 = 100 only. Thus, gas exchange, food 
resorption, and the renal functions would not suffice. Conversely, a dwarf 
mouse, geometrically similar in shape to an ordinary mouse but with 
a linear dimension one tenth as great, is also handicapped. The surface 
is 1/100 that of the ordinary mouse, whereas the volume has dropped 
to 1/1000. Metabolism, also decreased to 1/1000, would be unable to 
maintain the necessary functions, especially since a mouse is a warm
blooded animal and has to compensate for heat loss which is pro
portional to the surface. 

It is an experimental fact that muscle strength is approximately pro
portional to the muscle volume provided that we compare muscles of 
the same shape. Hence, muscle strength is approximately proportional 
to 13. Consider now a flea (Ctenocephalis canis). A leaping flea can reach 
a height nearly 200 times its own height. The energy required to do this 
is approximated by the formula "weight x height of leap". Imagine a 
giant flea, geometrically similar in shape but 10 times larger in its linear 
dimension. The energy required to jump 200 times as high as its own 
height would be 103 x 10 = 104 times as much as for the ordinary flea. 
This, however, cannot be done by the giant flea since its muscle strength 
has increased by a factor 103 only. Thus, it could reach a height of only 
20 times its own height. By the same token, a "supergiant" flea, 100 times 
larger in its linear dimension than an ordinary flea, could leap to a height 
that is only twice its own height despite a tremendous leaping muscle. 

Slightly generalizing this example we see that animals in running 
away from predators or in searching for food consume energies that are 
approximately proportional to the fourth power of their linear dimensions, 
whereas the energy supply is proportional to the third power only. We 
conclude that an animal species is able to compete with other species, 
only if the body size is subject to certain restrictions. For more examples 
of this type see Schips (1922), Slijper (1967), J. M. Smith (1968), and 
Thompson (1917, 1961). 

In general, if the linear dimensions of an organism are changed, the 
physical and chemical properties will change. They can be kept constant 
only over a small range of increase or decrease. Jonathan Swift's six-inch 
tall Lilliputians are most entertaining. In Gulliver's Travels they are able 
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to perform like humans. However, they remain fiction. Biology cannot 
work that way. 

So far we have considered power functions with exponents n = 2, 3, 
or 4. There are also biological applications of power functions with 
fractional exponents. However, they will be treated either in connection 
with a double-logarithmic coordinate system (Section 7.3) or in con
nection with allometric growth (Section 11.6). 

4.3. Polynomials 

Sometimes the quadratic function y = ax 2 appears in a slightly gen
eralized form. Linear terms, say bx + c, are added. Thus we get the 
general quadratic function 

y=ax2 +bx+c (a =1=0) (4.3.1) 

with three parameters a, b, c. We also call the right-hand expression 
a polynomial in x of the second degree. 

Polynomials of higher degree are occasionally used in biology. The 
expression 

(4.3.2) 

is called a polynomial in x of the n-th degree with parameters a j 

(i = 0, 1,2, ... , n) if an =1= ° and if all exponents of x are positive integers. 
We will confine ourselves to second degree polynomials. 

We know that a graph of the special quadratic function y = ax 2 is 
a quadratic parabola with vertex at the origin. It is a pleasant property 
of the general quadratic function that its graph is also a quadratic 
parabola. Only now, the vertex need not be at the origin. We show this 
fact with a numerical example (Fig. 4.6). Consider 

1 
y = - x2 (4.3.3) 

2 
We shift each point (x, y) of the parabola three units to the right and two 
units down. A point (x, y) moves then into the new point (x + 3, y - 2). 
We denote its new coordinates by x' and y' (x prime, y prime). Thus we get 

x' = x + 3, y' = y - 2 . (4.3.4) 

In this manner we want to shift all points of the parabola. The vertex 
is shifted to the point (3, - 2). To obtain the equation of the shifted 
parabola we solve the Eq. (4.3.4) with respect to x and y: 

x = x' - 3, y = y' + 2. (4.3.5) 

Then, in (4.3.3) we replace x and y by the expressions (4.3.5). Thus we get 
1 

y' + 2 = 2 (x' - 3)2 
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Fig. 4.6. Shifting a quadratic parabola three units to the right and two units down 

or 

Finally, we drop the primes for simplicity. Then the quadratic function 
becomes 

1 2 5 
Y= -x -3x+-

2 2 
(4.3.6) 

which is of the form (4.3.1). Notice that the quadratic term has not 
changed, but that a linear expression - 3x + 5/2 has been added. 

4.4. Differences 

For tabulating and checking the values of a polynomial, we recom
mend the use of differences. We explain the method using the special 
polynomial (4.3.6). For x = 0, 1,2,3,4 it is easy to calculate y. We get 

x y 

0 2.5 
1 0 
2 -1.5 
3 -2 
4 -1.5 
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These values may be compared with the corresponding coordinates in 
Fig. 4.6. Now we form the differences of consecutive· y-values. If the 
y-values are denoted by Yo, Y1' Y2' ... and the differences by 

we obtain 3 

.1 Yo = Y1 - Yo = 0 - 2.5 = - 2.5 

LlY1 = Y2 - Y1 = (- 1.5) - 0 = - 1.5 

LlY2 = Y3 - Y2 = (- 2) - (-1.5) = - 0.5 

LlY3 = Y4 - Y3 = (-1.5) - (- 2) = +0.5. 

We see that Lly increases from - 2.5 to 0.5. To get further insight, we 
form the "differences of the differences". They are denoted by .1 2 Y and 
are called second differences 4 . In our example we get 

Ll2Yo=LlY1-LlYo=(-1.5)-(-2.5)= +1 

Ll 2Y1 =LlY2 -LlY1 =(-0.5)-(-1.5)= + 1 

.1 2 Y2 = LlY3 - L1Y2 = (+ 0.5) - (- 0.5) = + 1 . 

Hence, the second differences remain constant. The question arises 
whether this occurred by chance, or whether there exists a rule for 
quadratic functions. We will show in what follows that the second alter
native is true. Let 

y=ax2+bx+c (4.4.1 ) 

be a quadratic function. We choose any fixed value of x and denote the 
corresponding value of Y by Yo' Then we increase x by 1. Thus we obtain 
the new value 

Y1 = a(x + 1)2 +b(x + l)+c 

= ax2 +2ax +a+bx+b +c. 
The difference is 

.1 Yo = Y1 - Yo = 2ax + a + b . (4.4.2) 

If we consider x as a variable and write L1y instead of L1yo, we see that 
L1y is a linear function of x. For this new function we again form a 

3 The upper case Greek letter delta is generally used to symbolize a difference. The 
symbol .1 stands in front of the variable from which a difference has to be formed. It indicates 
an operation. For this reason, mathematicians call .1 a difference operator. 

4 In a second difference, the operator .1 is applied twice. We may write .1 (.1 y), but it is 
convenient to abbreviate this expression by L1 2 y, much in the same way as we abbreviate a 
multiplication a . a = a2 • The term .1 2 y is read "delta two y". Correspondingly, differences 
of higher order are L1(L1 2 y)=L1 3 y, L1(L1 3 y)=L1 4 y, etc. 
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JYo=2ax+a+b, 

JYl = 2a(x + 1) + a + b = 2ax + 3a + b, 

,12 Yo = JYl - Jyo = 2a. 

This second difference is independent of x and, therefore, a constant. 
For all values of x we get 

(4.4.3) 

Summarizing we have the following rule: 
For a quadratic polynomial, the first differences form a linear function, 

the second differences remain constant. In our numerical example, we 
have a= t. Hence, J2 y =2a= 1 in agreement with the values of J 2 yo, 
,12 Yl, ,12 Y2 obtained above. 

The property of constant second differences may be used not only for 
checking numerical tables of quadratic functions but also for extending 
the tables. The procedure is shown in the following table: 

x y Lly 

o + 2.5 

-2.5 

0 + 1.0 

-1.5 

2 - 1.5 + 1.0 

-0.5 

3 - 2 + 1.0 

4 

+0.5~ 

- 1.5~ ~+1.0 

o ~+1.5 
5 + 1.0 

+2.5 

6 + 2.5 + 1.0 

+3.5 

7 + 6.0 + 1.0 

+4.5 

8 +10.5 
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We first extend the column headed by ..1 2 y. Then we add ..1 2 y to the last 
value of L1y, in our example, (+ 0.5) + 1 = + 1.5. Then we add theresult 
to the last value of y, in the example, ( - 1.5) + 1.5 = O. Thus we obtain 
a new value of y (in the example y = 0 for x = 5). The procedure may be 
repeated as many times as desired. It is much faster than recalculating 
the polynomial over and over again. Notice that no squaring and no 
multiplication are required. If more digits are involved, an adding 
machine can perform all calculations. 

4.5. An Application 

We consider the flow of blood in a blood vessel. A piece of an artery 
or of a vein may be conceived as a cylindric tube of constant width. 
Assume that the cross section is a circle of radius R. Like any liquid the 
blood has an inner friction which is called viscosity and denoted 
by 1J (Greek letter eta). The viscosity 1J is measured in poise 5 which is 
cm -1 g sec -1 in the CGS-system (cm = centimeters, g = grams, sec 
= seconds). There is also friction at the walls of the tube. Immediately 
at the wall the velocity of the blood is zero. The speed is highest along 
the center axis of the tube. If the velocity does not exceed a certain critical 
value, the flow is laminar, that is, all particles of the liquid move parallel 
to the tube and the velocity increases regularly from zero at the wall 
toward the center (see Fig. 4.7a, b). We may think of an infinite number 
of cylindrical laminae (Latin word for layers) which move like the tubes 
of a telescope. The velocity increases toward the center. If, however, the 
speed exceeds the critical value, for instance in a vessel that is partially 
occluded, the flow is turbulent and sound can be heard (Fig. 4.7 c). 

Now we assume laminar flow. Let r be the distance of any point of 
the liquid from the axis. Then the velocity v is a function of r. We may 
write v = v(r). The domain of the function is the interval 0 ~ r ~ R. The 
function was experimentally discovered by 1. L. Poiseuille. Later it could 
be derived in a theoretical way. The velocity v (cm sec-i) is 

p 
v= _(R2_r2) 

41JI 
(4.5.1 ) 

where I denotes the length of the tube (cm) and P the pressure difference 
between the two ends of the tube (dyne/cm2 =cm- 1 gsec- 2 ). Rand 1J 
were introduced earlier. Clearly v = 0 for r = R. For r = 0 the velocity 
reaches its maximum. Thus the range of the function is 0 ~ v ~ P R2/41JI. 

5 The word poise for the unit of viscosity is an abbreviation of the name Poiseuille. 
Jean Louis Poiseuille (1799-1869) was a French physiologist and physician. He dis
covered the law of laminar flow. 



86 The Power Function and Related Functions 

b 

J _~ ___________ I _______ _ 

c 

Fig. 4.7. The flow of blood in a cylindric tube. (a) and (b) laminar flow. (c) turbulent flow 

See Beier (1962, p. 337-363), McDonald (1960), Randall (1962, p. 210 
to 223), Ruch and Patton (1965), Thrall, Mortimer, Rebman, and Baum 
(1967, Example OA 4). 

To get more insight into Poiseuille's law we study a numerical 
example which is chosen to be as realistic as possible. Take arterial blood 
with its high concentration of O 2 bound to hemoglobin. For human 
blood its viscosity is somewhat lower than that of venous blood, on the 
average 1'/ = 0.027 poise (from Diem, 1962, p. 548). The blood is assumed 
to flow through an arteriole (wide arterial capillary) of length 1=2 cm 
and radius R = 8 X 10- 3 cm. At one end the pressure is assumed to be 
higher than at the other end such that the difference is P = 4 X 103 

dyne/cm -2 (= 3 mm mercury). Then (4.5.1) becomes 

4 x 103 -6 2 1 
V = 4 x 0.027 x 2 (64 x 10 - r) (cm sec- ) 

or 
(4.5.2) 

According to the definition, v is a quadratic function of r. Hence the 
graph is a section of a quadratic parabola (see Fig. 4.8 and 4.7b). The 
peak velocity is 1.185 cm sec -1. 
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Fig. 4.8. Graph of the function (4.5.2) showing the distribution of velocities in laminar flow 

4.6. Quadratic Equations 

At the end of this chapter we deal with a question which frequently 
arises in connection with quadratic functions: For what values of x is 
y = ax2 + bx + c = O? Or, where does the quadratic parabola intersect 
the x axis? To answer this question we have to solve the quadratic equation 

(4.6.1) 

with a '* O. Eq. (4.6.1) is also called the standard form of a quadratic 
equation since all terms are on the left side in an expanded form. 

It is not worthwhile to study the way the solution is found. Rather 
it is economic to learn the solution by heart 6 : 

x= 
- b ± (b2 - 4ac)1/2 

2a 
(4.6.2) 

The expression the square-root of which must be taken is called the 
discriminant of the quadratic equation. We denote it by D: 

D=b2 -4ac. (4.6.3) 

If D < 0, the square root of D is not a real number so that no real solu
tions exist. The condition for real solutions is, therefore, 

D~O. (4.6.4) 

6 For readers who are curious to know the proof, the main steps are indicated here: 

The quadratic Eq. (4.6.1) is rewritten in the form (x + ~)2 = b2 
- 4ac . Then square 

2a 4a2 

roots are taken on both sides of this equation. 
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For D > ° there exist two different solutions Xl and X2' But if D = 0, the 
two solutions fall together in one single solution Xl = X2' The two values 
Xl and X2 are also called zeros of the polynomial ax2 + bx + c or roots 
of the quadratic Eq. (4.6.1). 

A biological example may illustrate the procedure. Kramer (1964, 
p. 517) studied a genetical problem of recombination of chromosomes. 
Let p be the recombination fraction with the limitation 0 ~ p ~ t, and 
let 1 - p be the nonrecombination fraction. In that study the behavior 
of the product p(1 - p) had to be discussed. Let 

y=p(1-p). (4.6.5) 

This is a quadratic function of p with domain 0 ~ p ~ t. It follows that 
y ~ O. For a given value of y the question arises whether there exists 
a corresponding value of p and, if so, how to find p. Eq. (4.6.5) leads to 
a quadratic equation. By rearranging the terms we find the standard form 

(4.6.6) 

Comparing with (4.6.1) we identify X by p, a by 1, b by -1, and c by y. 
From (4.6.2) we obtain 

p= 
1 ±(1_4y)I/2 

2 
(4.6.7) 

A real solution exists only if 1 - 4 y ~ 0 which implies y ~ 1/4. Since p is 
limited by 0 ~ p ~ 1, one of the two solutions (the one with +) is not 
admissible if y < t. Hence the final solution of (4.6.6) is 

1 - (1 - 4y)1/2 

2 
p= (4.6.8) 

Recommended for further reading: Defares and Sneddon (1961), Guelfi 
(1966), Lefort (1967), c. A. B. Smith (1966). 

Problems for Solution 

4.1. Choose for the power function y = ax2 a domain consisting of all 
real numbers. Plot the function for different values of the parameter 
a, for instance for a = 1, 2, 3, 0.5, 0.1, - 1, - 2, - 0.5, - 0.2. What 
is the range of the function? 

4.2. Consider a spherical cell of volume Vand surface S. Express Vas 
a function of S. What type of function is it? How does doubling S 
influence V? (Hint: In formulas (4.2.2) and (4.2.3) eliminate the 
radius r). 

4.3. Assume that all linear dimensions of an animal increase by 12 %. 
Then the animal will have the same shape. How do the surface, the 
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volume, and the weight (under the assumption of a constant 
specific gravity) increase? Give the percentage of increase. 

4.4. Converse problem: All linear dimensions (height, length, diameter, 
etc.) have grown at a uniform rate such that the volume increases 
by 60 %. By what percentage does the surface increase? 

4.5. Given the function y = 3 + x - i x 2 • Calculate y for x = - 2, -1, 
0, + 1, ... , + 7 by using first and second differences. Then plot 
a diagram. 

4.6. Show that for the cubic function f(x) = x3 the third differences are 
constant. Begin with numerical values for x = -1, 0, + 1, 
+ 2, ... , + 6. Then generalize showing that the first difference 
..1f(x) = f(x + 1) - f(x) is a quadratic function of x, the second 
difference ..1 2 f(x) is a linear function of x, and that the third dif
ference ..1 3 f(x) is a constant. 

4.7. Given the function y = 6x - x 2 • Find the intersections of the graph 
with the x and y axes. How does the function change if the curve 
is shifted one unit to the left and three units upwards. Plot the old 
and the new function. 

4.8. For the function given by formula (4.5.2) calculate the velocity vof 
bloodforr=Ocm, 1O- 3 cm,2 x 1O- 3 cm,3 x 10- 3 , ... ,8 x 1O- 3 cm 
and compare the result with Fig. 4.8. Check the values of v by 
means of first and second differences. 

4.9. Wright (1964, p. 27) in an analysis of Mendelian heredity was led 
to the equation 4x2 - 2x - 1 = O. Find the roots. 

4.10. Fisher (1965, p. 131), discussing the breeding of animals with long 
pregnancy and only one offspring at birth, considers the equation 
8,F - 8A + 1 = 0 where A is the Greek letter lambda. Solve this 
equation. 

4.11. Verify that Xl = 3 and X2 = -1 satisfy the equation (x - 3) (x + 1) = O. 
Then work out the multiplication on the left side and find the 
standard form of a quadratic equation. Check the result by using 
the standard solution. 

4.12. Find the standard form of a quadratic equation with roots Xl = 1/2 
and X2 = - 1/3. Also find the standard form in terms of Xl and X2 

if the numerical values are not specified. 

4.13. Li (1958, p. 216) in an analysis of decreasing heterozygosis studies 
the quadratic equation in A: 

2NA2-2(N-1)A-l=0. 
Show that the equation has two different real roots for all values 
of the constant N except for N = O. 



CHAPTER 5 

Periodic Functions 

5.1. Introduction and Definition 

This chapter deals with some mathematical tools that are required 
for the study of biological rhythms. The best known rhythms are seasonal 
variations, menstruation, daily cycles, breathing and heart beat. It is 
typical of rhythms that the same or nearly the same pattern is repeated 
from cycle to cycle. Phenomena of this type are also called periodic. 

Fig. 5.1 depicts an electrocardiogram with several cycles. The curve 
may be interpreted as the graph of a function y = f(t) with the time t 
as independent variable and the voltage y plotted perpendicularly versus 
the time axis. Whereas a real electrocardiogram is not exactly periodic, 
Fig. 5.1 shows a somewhat idealized behavior: In consecutive time inter
vals of equal length the same curve repeats itself. The constant interval 
is called the period 1. We denote it by I. Each point on the curve represents 
a particular phase of the rhythm. Points that differ by one, two, or more 
periods are said to be in equal phase. 

A less intuitive, but mathematically precise definition of a periodic 
function is as follows: Let x be any value for which the function y = f(x) 
is determined, that is, let x belong to the domain of the function. Let I 
denote a constant positive number. Assume that x + I, x + 21, x + 31, ... 

Fig. 5.1. The scheme of an electrocardiogram 

1 The word ··period" has many different meanings. In mathematics it is exclusively 
used in the sense of an interval required to complete a cycle. 
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also belong to the domain. The values of y at these points of the x axis 
are given by f(x), f(x + I), f(x + 21), etc. Then the function y = f(x) is 
called periodic with period I if 

f(x) = f(x + I) = f(x + 21) = ... (5.1.1) 

is valid for all possible values of x. 
Some of the simpler periodic functions can be generated by a rotating 

wheel. Fig. 5.2 shows some cycloids that are curves generated by a wheel 
rolling along a line. The trigonometric functions such as the sine and the 

Fig. 5.2. CycJoids as illustration for periodic curves. They are traced by a point on a wheel 
rolling along a straight line 

cosine may also be generated by a rotating wheel. Before we can define 
them we have to introduce angles and polar coordinates in the coming 
two sections. The treatment of polar coordinates will lead us to another 
sort of biological application, namely to the study of animal orientation. 
Periodicity in lecif-arrangement will be mentioned in Section 8.5. For an 
application to population dynamics see Fig. 11.10 and 11.12. 

5.2. Angles 

An angle is a measure ofthe amount of rotation. For a precise defini
tion we consider a rectangular coordinate system with x and y axes and 
an origin O. We introduce a half-line h and assume that it originally coin
cides with the positive x axis (see Fig. 5.3). Now we rotate the half-line h 
in the counter-clockwise direction keeping the point 0 fixed. When h 
coincides for the first time with the positive y axis, then h is said to form 
a right angle with the positive x axis 2 • On subdividing this rotation into 

2 The word "angle" has a double meaning. If we speak of a right angle, we mean the 
configuration. In saying "an angle is 90°"' we mean the measure of the angle. 
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ninety equal steps we get a traditional unit for measuring angles, the 
degree. An angle IX between 0° and 90°, that is 0° < IX < 90°, is cal1ed acute. 

Now we continue the rotation of the half-line h. When h coincides 
for the first time with the negative x axis, then h is said to form a straight 
angle with the positive x axis (IX = 180°). Angles in size between the right 
and the straight angle are cal1ed obtuse. They satisfy the inequality 
90° < IX < 180°. There is no upper bound in the amount of rotation. An 
angle of 360° is the measure for a ful1 rotation. We may easily go beyond 
that and consider angles such as 450°, 720°, etc. 

Fig. 5.3. The rotation of a half-line h generating positive and negative angles 

For many applications it is essential to distinguish between the two 
directions of rotation. On rotating the half-line h from its original position 
on the positive x axis in the clockwise direction we generate negative 
angles. When, for instance, h coincides for the first time with the negative 
y axis, it forms the angle IX = - 90° with the positive x axis. - 360° is the 
measure for a full rotation in the clockwise direction. 

The subdivision of a right angle into 90 degrees is a rather arbitrary 
procedure and often inconvenient for the study of trigonometric func
tions. Let us, therefore, introduce another unit for the angle, the radian, 
which is more natural. For this purpose we have to assume that on the x 
and the y axes the same unit of length is chosen (Fig. 5.4). We draw a circle 
around the origin whose radius is of unit length. This particular circle 
is called the unit circle. We again rotate the half-line h from the positive 
x axis in the counter-clockwise direction. Let A and B be the points of 
intersection of h with the unit circle before and after the rotation. Then 
we measure · the angle by the arc from A to B. Since the circumference 
of a circle of radius r is 2nr, and since the unit circle has radius r = 1, 
the full rotation is measured by the number 2n = 6.28318 .... We say 
that this angle is 2n radians. By comparison with degrees we may write 

360° = 2n radians . (5.2.1) 
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In mathematics the unit radian is often dropped and the angle treated 
as a pure number. Hence it is also correct to write 360° = 2n. The straight 
angle is measured by 2n/2 = n = 3.14... and the right angle by 2n/4 
= n/2 = 1.57 .... From (5.2.1) it follows that 

1 ° = 2n/36O = 0.01745 ... (radians) (5.2.2) 
and 

1 radian = 360° /2n = 57.295° .... (5.2.3) 

y 

h 

x 
A 

Fig. 5.4. An angle may be measured by the arc on the unit circle 

The arc of this angle is equal to the radius. Conversion of degrees into 
radians and conversely is usually done by tables (see recommendations 
at the end of Chapter 5). 

It may surprise the reader that the result in (5.2.3) is not given in 
degrees, minutes, and seconds. One minute is 1/60 degree and one second 
is 1/60 minute. It is rather tedious to work with minutes and seconds. 
They are also impractical for computers. Therefore, they are more and 
more being abandoned in favor of decimal fractions (cf. Stibitz, 1966, 
p. 181). It is much easier to perform calculations with an angle of 7.315°, 
say, than with the old-fashioned 7° 18'54". Newer trigonometric tables 
are made up in the decimal system (see recommendations at the end of 
Chapter 5). 

For clockwise directed angles, the minus sign should be observed. 
Thus, for instance, - 90° = - n/2 radians. Any real number can be inter
preted as an angle measured in radians. 
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5.3. Polar Coordinates 

K. von Frisch discovered the language of honey bees. When a bee 
has found a plentiful source of food, she flies back to the hive, makes 
known the smell, and dances on the vertical surface of a honeycomb. If 
the food is more than a hundred meters away, the bee runs straight 
ahead for a short distance, returns in a semicircle to the starting point, 
again runs through the straight stretch, describes a semicircle in the 
opposite direction, and so on in regular alternation. On the straight part 
of the run, the bee is vigorously wagging her abdomen. A path vertically 

Fig. 5.5. The tail-wagging dance. Four followers are receiving the message (from von Frisch, 
1967, p. 57). By the dance the polar coordinates of the food source are transmitted 

upwards means that the food is in the direction of the sun. If it is 30° 
to the right of the vertical, it signifies that the source is 30° to the right 
of the sun, etc. (Fig. 5.5). The distance is mainly signaled by the number 
of runs per time unit. For instance, for a distance of 1000 m the explorer 
bee performs about 18 runs per minute (for more details see von Frisch, 
1967). 

From this brief description of the language we learn that bees do 
not use rectangular x- and y-coordinates. Instead they work with an 
angle and a distance or, in other words, with polar coordinates. In animal 
behavior, particularly in the study of orientation of birds and of fish, 
polar coordinates playa major role (for the mathematics used in animal 
orientation see Batschelet (1965»). 

Fig. 5.6 illustrates the relationship between polar and rectangular 
coordinates. We assume again that x and yare measured in the same 
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unit oflength. Let P be an arbitrary point in the plane, but different from 
the origin 0. Then the position of P is uniquely determined by its distance r 
from 0 and by an angle IX between the positive x axis and the line OP. 
The numbers r and IX are called the polar coordinates of P. r is the polar 
distance and IX the polar angle. The origin 0 plays a somewhat exceptional 
role: Its position is already determined by the statement r = 0, and the 
polar angle is not defined. 

The positive x axis characterized by IX = 0 is called the polar axis. 

y 
p 

x x 

Fig. 5.6. Rectangular and polar coordinates of a point P 

For polar coordinates there is usually no need to use angles greater 
than 360° or 211: radians. Instead of IX = 390°, say, we could as well operate 
with IX = 30°. Therefore, some limitation is practical, for instance 

0° ~ IX < 360° or 0 ~ IX < 211: (radians). (5.3.1) 

In some applications another way of limitation is preferred: By using 
negative angles we may assume that 

-180° ~ IX < 180° or - 11: ~ IX < 11: (radians). (5.3.2) 

Here the absolute value of IX cannot exceed 1800 or 11: radians. With either 
of the two limitations (5.3.1) or (5.3.2), a point P (that does not coincide 
with 0) determines its polar coordinates uniquely. 

The conversion of polar coordinates into rectangular coordinates and 
conversely requires trigonometrie functions and will be treated in 
Section 5.5. 

5.4. Sine and Cosine 

Let IX be an angle, positive or negative, not limited in size. Let P be 
the point with polar coordinates r = 1 and IX (see Fig. 5.7). As in Section 
5.2, the. point P lies on the unit circle. Let x and y be the rectangular 
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coordinates of P. They are both uniquely determined by IX. Then cosine 
and sine of IX are defined to be the functions 

x = cos IX , 

Y = sin IX . 
(5.4.1) 

With each value of IX, the cosine associates a unique value x and the sine 
a unique value y. The domain of these two functions is the set RI of all 
real numbers: IX E R I . The values of x and y, however, reach a 
maximum, namely + 1, and a minimum, namely -1. For instance, 

y 

x 

Fig. 5.7. The definition of sine and cosine for arbitrary values of IX 

cosO° = + 1, cos 1800 = - 1, sin 90° = + 1, and sine - 90°) = - 1. Hence 
the range of the two functions is the interval from - 1 to + 1 : 

- 1 ~ cos IX ~ + 1 , 

- 1 ~ sin r:x. ~ + 1 . 
(5.4.2) 

If we add the angle ofa full rotation, 360° or 2n radians, to any angle 
IX, then the point P with polar angle IX keeps its original position. Therefore, 
x and y remain unchanged, and from (5.4.1) it follows that 

cos (IX + 360°) = COSIX , 

sin (IX + 360°) = sin r:x. • 
(5.4.3) 
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Hence, according to (5.1.1), the functions cosa and sina are periodic 
with period 360° or 211: radians. A graph of the two functions is shown 
in Fig. 5.8. 

It may help the intuition when we compare the unit circle with 
a rotating wheel. The wheel is assumed to have a fixed center and to 
rotate with constant speed. Let P be a point on the circumference of the 
wheel. The projection of P on the x axis is by definition a point with 
x = cosa where a is the polar angle of P. While P is rotating with constant 
speed, the projection is oscillating between the points with x = + 1 and 

Fig. 5.8. Graphs of the functions cosO( and sin 0( 

x = - 1. Similarly, the projection of P on the y axis is a point with 
ordinate y = sin a, and this point oscillates within the interval from 
y = + 1 to Y = - 1 (see Fig. 5.9). 

Most tables of trigonometric functions list the values of cosine and 
sine only for the interval from 0° to 90°. All other values have to be 
derived. This is done by means of the following relations: 

cos( - a) = cos (360° - a) = + cosa , 

sine - a) = sin (360° - a) = - sin a, 

cos(180° - a) = - cos a, sin (180° - a) = + sin a, 

cos(180° + a) = - cosa, sin(180C + IX) = - sina. 

(5.4.4) 

(5.4.5) 

All these formulas follow directly from the definitions of cosine and sine. 
Fig. 5.10 may help the reader find the details. 
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y 

Fig. 5.9. When P rotates with constant speed, its projection on the y axis oscillates as the 
values of y = sin IX 

II 

COS(- od 

II I IV 

sin 0 800-

Fig. 5.10. Proof of formulas (5.4.4) and (5.4.5) 
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If we subdivide the plane into the four quadrants I, II, III, IV in the 
counter-clockwise direction, the trigonometric functions have the fol
lowing signs: 

Table 5.1 

Quadrant Interval cosine sine 

OO<cx< 90° + + 
II 900 <cx<180° + 

III 180° < cx < 270° 
IV 270° < cx < 360° + 

5.5. Conversion of Polar Coordinates 

Now we are prepared to obtain the conversion of polar coordinates 
into rectangular coordinates. In Fig. 5.11, a point P is plotted in the 
plane with polar coordinates r, IX and rectangular coordinates x, y. It is 
assumed that P does not coincide with the origin O. Let P' be the point 
where the line OP intersects the unit circle, and let x', y' be the rec
tangular coordinates of P'. Since P' has polar coordinates 1, IX, it follows 
from definition (5.4.1) of cosine and sine that 

x' = cos IX , y' = sinlX . (5.5.1 ) 

Moreover, the two right triangles with legs x, y and x', y', respectively, 
are similar. Hence 

x:r=x':l, y:r=y':1. (5.5.2) 

(' 

p 

Fig. 5.11. The conversion of polar coordinates into rectangular coordinates 
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In these proportions x, y and x', y' can take negative values, but x has 
always the same sign as x' and y the same sign as y'. From (5.5.2) we 
conclude that 

x = rx' , y = ry' 

and hence from (5.5.1) it follows that 

x = r cos (X , Y = r sin (X • (5.5.3) 

This is the solution of our conversion problem. 

n ort h X 

do e as t 
y 

p 

Fig. 5.12. Homing of pigeons. Polar coordinates are converted into rectangular 
coordinates 

Example 5.5.1. In an experiment on orientation and navigation, some 
pigeons were released 72 km away from their loft. If we consider the loft 
as the center of a polar coordinate system, the point of release had an 
azimuth of 241 0 (azimuth = angle measured clockwise from the north 
direction to the point of release). How many kilometers is the point of 
release southward and how many westward of the loft? 

To solve this problem we first adjust a rectangular coordinate system 
to the geographical map, assuming for simplicity that the surface of the 
earth is flat (Fig. 5.12). The origin 0 is at the loft. The positive x axis 
points northward and the positive y axis eastward. Let P be the point 
of release. Then r = 72 km and (X = 241 0 are the polar coordinates of P. 
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The problem is now equivalent to finding the rectangular coordinates 
x, y of P. From formulas (5.5.3) we obtain 

x=72cos241°, y=72sin241° (km). 

Now 241 ° = 180° + 61°. Using (5.4.5) we get cos(180° + 61°) = - cos61 ° 
and sin(180° + 61°) = - sin61 0. From a table we find cos61 ° = 0.485 and 
sin 61 ° = 0.875. Hence 

x = 72( - 0.485) = - 34.9 , y = 72( - 0.875) = - 63.0 (km) . 

The point of release is therefore 34.9 km southward and 63.0 km west
ward of the loft. 

The inverse problem consists of finding the polar coordinates when 
the rectangular coordinates are given. We solve this problem in three 
steps. 

First, we apply the Pythagorean theorem to the triangle with legs x, y 
in Fig. 5.11 : 

(5.5.4) 

By square rooting we calculate the polar distance r. Second, from (5.5.3) 
we obtain 

cos IX = x/r, sin IX = y/r. (5.5.5) 

Third, from a table of trigonometric functions we find the polar angle IX. 

The proper quadrant can be determined by Table 5.1. 
The origin 0 plays an exceptional role. From x = 0 and y = 0 it follows 

that r = 0, and hence (5.5.5) cannot be applied. Thus a polar angle is 
not defined. 

Example 5.5.2. We consider again an experiment on orientation and 
navigation in pigeons. Assume that the point of release is 23.5 km south
ward and 65.7 km eastward from the loft. We adjust the same coordinate 
system as in Fig. 5.12. Thus we get x = - 23.5 and y = + 65.7 (km). What 
are the polar coordinates? 

Formula (5.5.4) yields 

r2 = (- 23.5)2 + (+ 65.7)2 = 4869, r = 69.8 (km). 

From (5.5.5) we obtain 

cos IX = (- 23.5)/69.8 = - 0.337, sin IX = (+ 65.7)/69.8 = + 0.941. 

Table 5.1 indicates that 90° < IX < 180°. For the acute angle 180° -IX = IX', 

say, we get COSIX' =0.337 and sin IX' =0.941. In a table of trigononl~tric 
functions we find IX' = 70.2°. Hence IX = 180° - 70.2° = 109.8°. The polar 
distance r and the polar angle IX (azimuth) have thus been calculated. 
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Some writers recommend a slightly different procedure. They use the 
function tan IX which is defined in terms of cosine and sine by 

sin IX 
tan IX = -

cos IX 
(5.5.6) 

provided that cos IX =j:: O. The two formulas (5.5.5) are replaced by the 
single formula 

tan IX = y/x (x =j:: 0). (5.5.7) 

There are advantages in using (5.5.7) to determine IX in that only a single 
trigonometric function occurs and r need not be known. However, there 
is also a serious disadvantage. Before we can detect it, we have to study 
a property of the function tan IX. 

From (5.5.6) and (5.4.5) it follows that 

sin(180° -IX) 
tan (180° -IX) = ----,---

cos (180° -IX) 

sin (180° + IX) 
tan(180° + IX) = ----

cos (180° + IX) 

smlX 
(5.5.8) --- = -tanlX, 

- cos IX 

-smlX 
(5.5.9) --- =tanlX. 

- cos IX 

The latter formula proves that the function tan IX is periodic with period 
IX = 180° or n radians. Thus the function tanlX repeats its pattern already 
after half the period as compared with sinlX and COSIX. This property can 
also be seen from a graph of tan IX as shown in Fig. 5.13. 

Now we are prepared to discuss the disadvantage of using (5.5.7). 
This equation does not determine IX uniquely. If IX is a solution of (5.5.7), 

Fig. 5.13. A graph of the function tan (l 
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oe + 180° is also a solution because of (5.5.9). For example, the equation 
tanoe = 0.2679 has two solutions, oe = 15° and oe = 195°. The ambiguity 
can only be removed by observing the signs of x and y or by drawing 
a graph. 

Nevertheless, formula (5.5.7) provides a good check of calculation. 
In Example 5.5.1 we obtain for instance 

tanoe = tan241° = tan61° = y/x =( - 63.0)/( - 34.9)= 1.805. 

On the other hand, we get from a table tan 61 ° = 1.804 which corresponds 
well to our calculated value. 

Similarly, in Example 5.5.2 we obtain 

tanoe = tan 109.8° = - tan 70.2° = y/x = (+ 65.7)/( - 23.5) = - 2.80. 

On the other hand, we get from a table tan 70.2° = 2.79. The difference 
can be explained by rounding-off errors. 

5.6. Right Triangles 

We denote the two acute angles by oe and p, the leg adjacent to oe by 
x, and the leg adjacent to p by y, and the hypotenuse by r. As Fig. 5.14 
shows, this is a special case of what we previously treated. Formula 
(5.5.5) leads to 

leg adjacent to oe . p 
cosoe = xlr = = sin , 

hypotenuse 

leg opposite oe p 
sinoe = y/r = = cos . 

hypotenuse 

From (5.5.7) we obtain 
leg opposite oe 

tan oe = y /x = -,-----=-=-----
leg adjacent to oe . 

Also sometimes used is 
cotoe = l/tanoe. 

Fig. 5.14. The right triangle as a special case 

(5.6.1 ) 

(5.6.2) 

(5.6.3) 
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Example 5.6.1. When we observe a cylindrical tissue structure under 
the microscope, we most likely see an oblique cut. Fig. 5.15a depicts a 
side view of a fiber whose cross section is a circle with diameter d. 
Fig. 5.15 b shows an oblique cut as viewed under the microscope. It is 
easy to measure the diameter d. In addition, we can also measure two 
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Fig. 5.15. An oblique cut of a cylindrical tissue structure as observed under the microscope. 
The thickness t of the layer in relation to the diameter d of the cylinder 

distances a and b which are explained by Fig. 5.15 b. We are interested 
in the thickness t of the layer under the microscope. The meaning of t 
becomes clear from Fig. 5.15c which shows a side view of the layer. 

To calculate the thickness t in terms of the observed quantities a, b, 
and d, we introduce two right triangles in Fig. 5.15c. In triangle ACE, 
the right angle is at E, and the legs are a and t. If IX denotes the acute 
angle at C, we obtain from formula (5.6.2) 

t = a tan IX • (5.6.4) 
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Here we have to eliminate the unknown angle oc. For this purpose we 
consider the second triangle ABF. The diameter d of the cylinder forms 
one leg joining Band F, and b is the hypotenuse. By the Pythagorean 
theorem we get for the other leg 

AF = Vb2 - d2 • (5.6.5) 

Since AB is assumed to be parallel to CD, the acute angle at A is the same 
as the angle oc at C. It follows from the right triangle ABF that 

d 
tanoc= l~' 

Vb -d 
(5.6.6) 

Finally, by combining formulas (5.6.4) and (5.6.6) we obtain the desired 
formula 

ad 
t= ---,==~ Vb 2 -d2 • 

(5.6.7) 

Example 5.6.2. Fig. 5.16 shows a human femur3• The axis of the femoral 
shaft is GE. The knee-joint determines the condylar axis GH. The two 
axes span the frontal plane which is vertical when the person is standing 
upright. The axis EB of the femoral neck does not fall into the frontal 
plane. Instead, together with the line GE it spans another plane, the 
antetorsion plane. The new plane forms an acute angle oc with the frontal 
plane. It is called the antetorsion angle. This angle oc and the obtuse 
angle P between the lines GE and EB play an important role in ortho
pedics. Various amictions such as a hip-joint dislocation may be caused 
by improper angles. 

In a patient the angles oc and P cannot be measured directly. X-ray 
pictures do not show the true angles since they are projections of the 
femur. For instance, when the patient is lying with horizontal condylar 
axis, the X-ray being vertical, the axis EB of the femoral neck is projected 
into a line ED in the frontal plane. The angle PI between ED and GE 
differs slightly from p. A correction is required. In order to obtain exact 
formulas we introduce the plane ABCD which is horizontal when the 
person is standing upright. From the right triangles CBE and CDE we get 

tan(180° - p) = BCjCE, tan (180° - PI) = CD/CE . 

From this we deduce by means of formula (5.5.8) 

-CD/CE CD 
tanPdtanp= -BCjCE = BC' 

3 I am indebted to Dr. E. Morscher, University of Basel, Switzerland for his kind 
permission to reproduce his figures. 



106 Periodic Functions 

Fig. 5.16. A photographic and a schematic view of a human femur. For diseases of the 
hip-joint, improper size of the angles ex and f3 may be responsible. The photograph is 
reproduced from Morscher (1967). The drawing was made with minor changes after the 

same paper 

On the other hand, from the right triangle CDB we get cosa = CD/Be. 
Combining the results we obtain the exact relationship between /31 and /3: 

tan/31 / tan/3= cosa. (5.6.8) 

Sometimes the angle f> between the axis EB of the femoral neck and 
the frontal plane is considered. f> should not be confused with a. For the 
exact relationship between the two angles see Problem 5.10 at the end 
of this chapter. 

Example 5.6.3. Another biological application refers to the control 
of equilibrium in the guppy (Lebistes reticulatus) . It is well known that 
the guppy uses not only gravitation but also the incident light to adjust 
its upright position in water. Fig. 5.17 depicts the behavior when light 
enters vertically or from the side. We imagine that the guppy is under 
the influence of two forces, one force F, vertical, caused by gravitation, 
and the other force L, parallel to the incident rays, caused by light 
sensation. These two forces generate a resultant force R which determines 
the upright position of the guppy. 
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Let rl and P be the angles between F and R and between Land R, 
respectively. Then y = rl + P is the angle between F and L. The problem 
consists in finding a relation between rl and P in terms of F and L. In 
Fig. 5.17 c we may express the height h in two ways: 

h = F sin a. and h = L sin P . (5.6.9) 

B 

A 

Fig. 5.17. Control of equilibrium in the guppy by gravitational force and by light. The 
figure is adapted from Lang (1967) 

Eliminating h we find 
sin a. 
sinp 

L 
F' 

(5.6.10) 

This is the desired relationship. It may be used for calculating the ratio 
L/F when a. and P have been measured 4 . 

5.7. Trigonometric Relations 

Among the hundreds of identities for trigonometric functions there 
are a few that are essential for a basic background in mathematics. 
Formulas that occur frequently should be learned by heart. 

Application of the Pythagorean theorem to Fig. 5.7 yields 

(COSa.)2 + (sinrl)2 = 1 (5.7.1) 

for any angle rl. Thus cosa. and sina. are numerically interrelated. It is 
customary to write cos2a. and sin2 a. instead of (COSrl)2 and (sina.)2, 
respectively. 

4 The relationship (5.6.10) may also be derived by applying the law of sine. This law 
is skipped here. 
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The following two formulas will be proven in Section 15.4 by means 
of complex numbers: 

cos(rl + p) = COSrl cosp - sin rl sinp , 

sin(rl + P) = sin rl cosp + COSrl sinp. 
(5.7.2) 

These formulas show how the cosine and the sine of the sum of two 
angles can be resolved. Sometimes two angles have to be subtracted 
instead of added. All we have to do in formulas (5.7.2) is replace p with 
- p. Then from (5.4.4) we get 

cos (rl - p) = cos rl cos P + sin rl sin p , 
sin (rl - p) = sin rl cos p - cos rl sin p . 

For rl = P formulas (5.7.2) become 

cos2rl = cos2 rl- sin2 rl, 

sin 2rl = 2 sin rl cos rl . 

For later purposes we also need the formulas 

. . 2' cP+1p CP-1p 
sm cP + sm 1p = sm --2- cos --2- , 

. . 2 CP+1p. CP-1p 
sm cP - sm 1p = cos --2- sm --2-' 

cp+1p CP-1p 
cos cP + cos 1p = 2 cos --2- cos --2- , 

2 · cp+1p . CP-1p cos m - cos 1p = - SIn --- sm ---
'r 2 2' 

(5.7.3) 

(5.7.4) 

(5.7.5) 

(5.7.6) 

(5.7.7) 

(5.7.8) 

written with the Greek letters cp (phi) and 1p (psi). These formulas are 
derived from (5.7.2) and (5.7.3) by adding or subtracting the equations 
and by replacing rl + p with cp and rl - P with 1p. 

*5.8. Polar Graphs 

In plotting a periodic function y = f(x) it is somewhat redundant to 
show the same cycle over and over again. A more natural way of present
ing periodic functions is by a polar graph or a polar diagram. For sim
plicity we choose a new unit for x such that the period I becomes 3600 or 
2n radians corresponding to a full rotation. In this way we have intro
duced a new variable which may be interpreted as an angle; let us denote 
it by rl. The introduction of a new variable is called a transformation. 
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The relationship between ex and x is given by one of the following so-called 
transformation equations: 

3600 

ex= --x 
I 

2n 
or ex=-x 

I 
(5.8.1) 

depending on whether degrees or radians are preferred. As x increases 
from 0 to I, ex increases from 0° to 360° or from 0 to 2n radians, respec
tively. The inverse transformation is given by 

(5.8.2) 

respectively. 
In the original function y = f(x), we first replace x by the expression 

(5.8.2). Second, we interpret y as the polar distance r. Transforming x 
and replacing y with r finally leads to a new equation which we write 
r = g(ex). When ex increases from 0° to 360° (or from 0 to 2n radians), 
a closed curve appears. With ex taking on higher and higher values, the 
curve repeats itself. 

We call ex the phase angle since its value determines the actual phase 
within a cycle. 

Since it is assumed that r is nonnegative, that is, positive or zero, 
polar graphs are suitable only for those periodic functions for which y 
avoids negative values. 

Example 5.8.1. Consider the periodic function 

y=a(l+cosx) (a>O). (5.8.3) 

As plotted along a horizontal x axis, the graph is a sine wave with period 
2n. The values of y oscillate between 0 and 2a. To avoid redundancy in 
plotting, we switch to polar coordinates. We interpret x as a polar angle 
ex and y as a polar distance r. Thus we rewrite formula (5.8.3) in the form 

r=a(l+cosoc) (a>O). (5.8.4) 

For simplicity we choose a as our unit of length. Then for equidistant 
values of ex, say for ex = 00 , 150 ,30°,450 , ••• ,360°, we determine 1 + cos ex 
by means of a table. Finally, we plot r versus ex in a polar coordinate 
system. The result is shown in Fig. 5.18a. The curve is called a cardioid. 

Fig. 5.18 exhibits six examples of periodic functions together with 
their polar graphs. Absolute values were taken in cases (d), (e), and (0 
to avoid negative values. The coefficient a is an arbitrary positive constant. 

The curve (a) is named cardioid because of its alleged resemblance to 
a heart. Curve (d) looks somewhat similar to curve (a), but is not similar 
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(a) r = .(1 + COS ot) 

(bJ r = a I I + e cos ot ) 

(<1 r = 71 -+-.-C-O $-<X-

Fig. 5.18. Some periodic functions with their polar diagrams. In (b) and (c), the constant e 
is e=0.8 

in the strict geometric sense. Curve (c) is an ellipse for all values of the 
constant e from the interval - 1 < e < + 1. The origin 0 of the polar 
coordinate system coincides with one of the two focuses. 

All six functions have period 3600 or 2n radians, but for curves (e) 
and (f) there exist also smaller periods. They are 1200 for curve (e) and 
72° for curve (f). 

The curves of Fig. 5.18 are pleasant because of their symmetries. 
Each one is axially symmetric. The curves (a) through (d) have a hori
zontal axis of symmetry. The curve (e) has three and the curve (f) even 
five axes of symmetry. For more polar diagrams of periodic functions 
see Thompson (1961, p. 282-284, or an earlier edition). Statistical applica
tions of polar diagrams are offered in Batschelet (1965). 

Nonperiodic functions can also be plotted in a polar diagram, but 
the curves are then not closed. If the value of y is steadily increasing, its 
polar diagram is called a spiral. Some spirals will be treated in Section 6.7. 
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*5.9. Trigonometric Polynomials 

Data concerning biological rhythms can often be approximated by 
sine curves. Fig. 5.20 is an example. In order to fit the data, the function 
y = cos ex has to be adjusted in four steps 5. 

First, the independent variable is the time t with known or unknown 
period I. The phase angle ex has to be transformed into the time t. This 
is done by formula (5.8.1) wherein we replace x by t: 

360° 2n 
ex = -1- t or ex = -1- t . (5.9.1) 

The coefficient is 360°/1 or 2n/1 depending on whether we measure ex in 
degrees or in radians. In the following we simply write w for this coef
ficient (w = Greek letter omega): 

w=3600/1 or w=2n/1. (5.9.2) 

w may be considered as a scale factor which introduces a new unit on 
the horizontal axis. Sometimes w is called angular frequency, because 
w indicates how often the period I is contained in a full rotation of the 
angle ex. 

The transformation (5.9.1) is now written ex = wt. It takes the function 
y = cos ex into the form 

y = coswt. (5.9.3) 

A graph of this function is shown in Fig. 5.19a. 
Second, suppose our curve is such that there is no peak at t = O. So 

assume that a peak occurs at time to where 0 < to < I. This calls for 
shifting the curve in the direction of the t axis by the amount to. It 
simply means that we add to the old variable t the constant to so that 
the new variable, say t', is 

t' = t+to' (5.9.4) 

The inverse transformation is t = t' - to. Thus (5.9.3) turns into 
y = cosw(t' - to). For simplicity we drop the prime and write 

y = cosw(t - to) . (5.9.5) 

Fig. 5.19b depicts the new function. The constant to indicates the posi
tion of the first peak to the right of the origin. For this property, to is 
called acrophase 6 • 

5 Whether coscx or sincx is applied, is mathematically equivalent. Both functions are 
graphically represented by sine curves as shown in Fig. 5.8. 

6 The term "acrophase" was coined by Dr. F. Halberg, University of Minnesota, 
Minneapolis. 
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a--~------~~------------~~--------------~ 

b--~~------~----~.-------------~----~ 

c--~~ ______ ~ ______ ~~ ____________ ~L-______ • 

d--~O~------U---------------------------~ 
to 

Fig. 5.19. Four different steps are shown to transform the function y = cos IX into the 
function (5.9.7) 

Third, we have to adjust the function for a different amplitude. By 
amplitude we mean the greatest deviation of an oscillation from its 
center. The graphs of (5.9.3) and (5.9.5) have amplitude 1. If, instead, the 
amplitude is a known or unknown constant c =F 1, we have to multiply 
the cosine by c. The positive constant c may be interpreted as a scale 
factor for the y axis. (5.9.5) turns into 

y = c cos w(t - to) . (5.9.6) 

For a graph see Fig. 5.19c. 
Fourth, y could oscillate around a value Co which may be different 

from O. This calls for shifting the curve in the direction of the y axis by 
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Fig. 5.20. A sine curve is fitted to telemetric measurements of intraperitoneal temperatures 
of an adult female rat. The rat is subject to a special lighting regimen which influences the 
acrophase. Data were obtained in preparation for a space shot (Reprinted from Halberg, 

1969) 

the amount Co. It simply means that we have to add Co to all values of y. 
Thus we finally obtain 

y = Co + C cosw(t - to) . (5.9.7) 

A graph is shown in Fig. 5.19d. Co is sometimes called the mean level. 
It might be wise to make a brief check: For t=to we get y=co 

+ c cosO° = Co + c which is the highest value that y can take. This is in 
agreement with our assumption that to is the phase of a peak. For 
t = to + I we obtain wet - to) = wi = 3600 and y = Co + c cos 360° = Co + c. 
Hence, after the elapse of one period, y takes again its maximum value. 

The function (5.9.7) contains the four parameters co' c, w, to. When 
data are given which are subject to random fluctuations, a statistical 
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procedure is required to estimate the parameters. It would go far beyond 
the scope of this presentation to deal with estimation procedures. We 
refer the reader to Bliss and Blevins (1959), Halberg, Engeli, Hamburger, 
and Hillman (1965), Halberg, Reinberg (1967), and Halberg, Tong, John
son (1967). The result of such an estimation procedure is shown in 
Fig. 5.20. 

In certain cases ordinary statistical procedures fail to be applicable. 
Then a rather advanced method, the so-called time series analysis, has 
to be used. For treatments that do not require high level mathematics 
we refer the reader to Stumpff (1937), Blume (1965), Kendall and Stuart 
(1966). For a bibliography on the vast literature on biological rhythms 
see Sollberger (1965). 

The function (5.9.7) is sometimes written in a different form. From 
(5.7.3) it follows that 

cosw(t - to) = cos(wt - wto) = coswt coswto + sinwt sinwto . 

The factors coswto and sinwto are constants. Hence (5.9.7) becomes 

y = Co + a coswt + b sinwt (5.9.8) 

with a = c coswto and b = c sinwto. In this form, the amplitude c and the 
acrophase to do not appear explicitly. Instead new parameters a and b 
have been introduced. 

Occasionally two or more sine curves are superposed. We begin with 
a special case which is important for the interference oflight. We assume 
that two sine curves have the same amplitude and the same angular 
frequency, but that they may differ in acrophase. The equations are 

y = c cosw(t - to) and y = c cosw(t - t1 ). 

Superposition means that we add the two ordinates. Writing again y 
for the new ordinate we obtain 

y = c cosw(t - to) + c cosw(t - t1 ) • 

Applying formula (5.7.7) we get 

t1 -to ( to+tl) y=2ccosw--2-cosw t- --2- . 

Abbreviating the constant 2c COSW(tl - t o)/2 by C and the term (to + t 1)/2 
by t we obtain 

y=Ccosw(t-t). (5.9.9) 

Hence the graph is again a sine curve. Its amplitude is C and its acrophase 
t. For to = tl we get C = 2c, which means doubling of the amplitude. On 



Trigonometric Polynomials 115 

no phas e sh i ft phase shift Ih 

1 st /\. /\. /' /\. /\. /" 
I\JV ~V component I I 
I 

I 

2 nd 
A 

/\. " :A. /\. :v-v ~'" component 

superposit ion W 
double ampl itude zero ampl itude 

Fig. 5.21. Superposition of sine curves with equal frequency and amplitude. A biological 
application is found in the colors of a peacock. They are generated by interference of 

light and not by pigments 

the other hand, for a phase difference of half the period, that is, for 
t1 - to = 1/2, we obtain 

w tl -to = 360° ~ =900 
2 I 4 

and, therefore, C = 2c cos 90° = o. Superposition of two such functions 
leads to the trivial function y = o. The two cases are depicted in Fig. 5.21. 

If the process of superposing sine waves is interpreted as interference 
of light waves, we get maximum amplification for to = t1 and extinction 
for t1 - to = 1/2. The beautiful colors of a peacock are generated by 
interference of daylight and not by pigments in the feathers . Indeed, 
photographs of a feather made by an electron microscope reveal a fine 
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regular structure which causes amplification or extinction of light waves 
depending on their frequencies. 

Superposition of sine waves with different frequencies, amplitudes, 
and phases may lead to periodic curves that do not necessarily resemble 
a sine curve. Thus we may add terms of the form 

(i=1,2,3, ... ). 
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Fig. 5.22. Mean logarithmic attack rates of measles for each month and fitted trigonometric 
polynomial (upper diagram). Separate plot of the components (lower diagram). Reprinted 

from Bliss and Blevins (1959) 

In order to get periodicity we have to choose the angular frequencies Wi 

as multiples of a certain w, that is, w, 2w, 3w, 4w, etc. This assumption 
corresponds to periods I, 1/2, 1/3, 1/4, etc. Thus we are led to a function 

y=ao+alcoswt+azcos2wt+ ... +ancosnwt 

+ bl sin wt + bz sin 2wt + ... + bn sin nwt 
(5.9.10) 

with 2n + 1 terms and period I. For any natural number n such a function 
is called a trigonometric polynomial. Fitting periodic data by a trigo
nometric polynomial is called harmonic analysis or Fourier analysis 7. The 
application of trigonometric polynomials in the life sciences is described 

7 Jean Baptiste Joseph Fourier (1768-1830), French Physicist and mathematician. 
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in Bliss (1970), Bliss and Blevins (1959), and Waterman (1963). An 
application from medicine is shown in Fig. 5.22. 

We conclude the chapter by mentioning a famous mathematical 
result: Any continuous or reasonably discontinuous periodic function can 
be represented by a trigonometric polynomial (5.9.10) with any degree of 
accuracy. To obtain a high accuracy, the number of terms has to be large 
enough. When n tends to infinity, the trigonometric polynomial turns 
into a Fourier series. 

Recommended tables: 

For trigonometric functions: 
a) from 0° to 90° in steps of 0.001 0: Salzer and Levine (1962); 
b) from 0° to 90° in steps of 0.1°: Selby (1968), Meredith (1967); 
c) from 0° to 360° in steps of 1 ° or 

from 0 h to 24 h in steps of 4 min: Batschelet (1965). 
For conversion of degrees into radians: Allen (1947), Meredith (1967). 

Recommended for further reading: Defares and Sneddon (1961), Guelfi 
(1966), Lefort (1967), c. A. B. Smith (1966), Sollberger (1965). 

Problems for Solution 

5.1. Let x be any natural number 1,2,3, ... and y be the remainder 
after dividing x by 5. Thus, if x = 19, then y = 4. Show that y is 
a periodic function with period 1= 5. Is l' = 10 also a period? 

5.2. Express the angles 30°,45°,60°, 120°, 135°,270°,450° in radians 
(Example: 90° = nl2 radians). 

5.3. Verify graphically that 
a) sinI56°=sin24° 
c) cos( - 70°) = cos 70° 

b) sin 240° = - sin 1200 = - sin 60° 
d) cos 105° = - cos 75°. 

5.4. By means of a table find numerical values for 
a) sin( - 37.5°) b) cos 110° 
c) tan 128° d) cos( - 68.1 0) 
e) sin 195° f) tan( - 65.6°). 

5.5. In a behavioral experiment three turtles were released at a pointO 
and later observed resting. To measure their position, a polar 
axis was chosen with origin 0 and oriented toward east. Polar 
angles were measured counter-clockwise. The polar coordinates 
of the three turtles were: 

r1 =27.5m OC 1 = 73° 
r2 = 18.7 m OC 2 = 165° 
r3 = 31.3 m OC 3 = 106° 
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Convert these polar coordinates into rectangular coordinates 
assuming that the origin is at 0, that the x axis points eastward 
and the y axis northward. 

5.6. Assume the same situation as in the previous problem. This time 
the rectangular coordinates are given: 

Xl = 20.5 m X z = - 2.8 m X3 = 15.3 m 

Yl = 3.8 m Yz = 15.6 m Y3 = - 8.5 m 
Find the corresponding polar coordinates. 

5.7. Find the following solution sets: 
a) {0:Isino:=0.500} b) {Plsinp~0.500} 

c) {cplcoscp>0.914} d) {0:Itano:=1.804} 

5.8. In a table we find sin 37.4° = 0.6074 and cos 37.4° = 0.7944. With 
these values check the equality sin z 0: + cosz 0: = 1. 

5.9. Using formulas (5.7.1) and (5.7.4) show that 

cos 20: = 2 cosz 0: - 1 = 1 - 2 sinz 0: . 

5.10. In a study of the human femur the two angles 0: and b are intro
duced as shown in Fig. 5.16. Prove that tanb/tano: = COS(Pl - 90°). 

5.11. The slope of a straight line in a rectangular coordinate system is 
measured by a = L1y/L1x (cf. Section 3.6). Assume that L1x and L1y 
are measured in the same unit of length. Then it is meaningful to 
ask for the angle of inclination. It is the angle 0: by which we have 
to rotate the X axis in the counter-clockwise direction until it 
coincides (for the first time) with the given straight line. The angle 
of inclination is limited by 0° ~ 0: < 180°. We are given 

a) L1x= 15cm, L1y= 7cm 
b) L1 x = 8 cm, L1 y = - 6 cm 
c) L1x=-5cm, L1y= 3cm 
d) L1 x = - 5 cm, L1 y = - 9 cm . 

Find the angle of inclination graphically and then numerically 
using formula (3.5.3). 

*5.12. Plot the polar graph of 

a) r=lsino:l b) r=lsin20:1. 

*5.13. A certain biorhythm can be approximately described by the 
formula 

360° 
y = 2.5 + 1.5 cos 24 h (t - 5 h) (h = hours) . 

Plot the function for t = 0, 1, 2, ... , 24 h. What is the period, the 
amplitude, and the phase of maximum y value (acrophase)? 



CHAPTER 6 

Exponential and Logarithmic Functions I 

6.1. Sequences 

We began the first chapter considering the growth of a foal. It was 
assumed that the weight increases at a rate of 20% during consecutive 
time intervals of equal length. Let w be the initial weight and p be the 
rate of growth. Then the weights at the end of 0, 1, 2, ... time intervals are 

w, W(l+ 1~0)' W(l+ l~r, W(l+ l~r 
With the abbreviating notation 

the weights are 

p 
q= 1 + 100 

W, wq, wq2, wq3, wq4, '" . 

(6.1.1) 

(6.1.2) 

An ordered arrangement of values such as (6.1.2) is an example of a 
sequence. To get a definition of a sequence we begin with the set of 
natural numbers 

1,2,3, ... 

and choose this set as the domain of a function y = f(x). Then the y 
values, arranged in the same order as the natural numbers, are 

f(l), f(2) , f(3) , .... 

This arrangement is called a sequence. 
Sometimes the domain is {O, 1,2, ... }, that is, it also contains 0, or 

it is finite, say {5, 6, 7, 8, 9}, or we prefer the negative integers, say 
{- 1, - 2, ... }. 

Therefore, a sequence may be conceived as a special type of function: 
The domain (values of x) consists of consecutive integers and the range 
(values of y = f(x)) of correspondingly ordered values. Our Example 
(6.1.2) could be written as a function: 

y = wqX , X E {O, 1,2, ... } . (6.1.3) 



120 Exponential and Logarithmic Functions I 

We take another example: Under ideal conditions a cell may sub
divide into two cells in a certain time interval. The new cells subdivide 
again after the elapse of the same time interval, etc. We assume that the 
time is measured in units that coincide with the time interval needed for 
a cell division. Let t denote the time and N the number of cells. Then 
we obtain the sequence 1,2,4,8,16, ... or 

N=2', te{0,1,2, ... }. (6.1.4) 

Still another sequence arises when a radioactive substance decays. 
The carbon isotope 14C has a half-life of 5760 years. This means that the 
number N of 14C atoms in the substance is reduced to N/2 after the 
elapse of 5760 years. Thus if t denotes the time measured in units of 
5760 years and No the number of 14C atoms in the substance at time 
t = 0, we get the sequence 

N=No ·2-', te{0,1,2, ... }. (6.1.5) 

We notice that in all three examples the independent variable is an 
exponent of a power. Whenever this occurs, the sequence is called geo
metric. The general form of a geometric sequence is a, aq, aq2, aq3, ... or 

y=aqX, xe {O, 1,2, ... }. (6.1.6) 

Two consecutive terms of a geometric sequence have a constant ratio, in 
our notation q. Let aqn and aqn+l be two consecutive terms. Then we 
get indeed aqn+ l/aqn = q. The number q is called the common ratio. 

Geometric sequences are strongly related to the geometric mean which 
we introduced in formula (1.8.2). We consider three consecutive terms of 
(6.1.6), say 

aqn-l, aqn, aqn+l. 

Then we take the geometric mean of the first and the third term and 
obtain 

V aqn-l . aqn+l = Va2q2n = aqn, 

that is, we get the second term. In other words: Every term of a geometric 
sequence is the geometric mean of the preceding and the following term. 

Geometric sequences may be compared with arithmetic sequences 
which are of the form 

b , a + b , 2a + b , 3a + b , 4a + b , ... 

or 
y = ax + b , X e {O, 1, 2, ... } . (6.1.7) 
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This may be interpreted as a linear function with a domain consisting 
of consecutive integers. The arithmetic sequence has properties similar 
to those of the geometric sequence: 

Two consecutive terms of an arithmetic sequence differ by a constant 
value, in our notation by the quantity a. This number is called the common 
difference. 

We consider three consecutive terms of an arithmetic sequence, say 

a(n-1)+b, an+b, a(n+1)+b. 

o~------~~~~----*-------------~ 

Fig. 6.1. Construction of a geometric sequence 

The second term, an + b, is the arithmetic mean of the other two terms. 
In other words: Every term of an arithmetic sequence is the arithmetic 
mean of the preceding and the follOWing term. 

For a better intuitive understanding we compare geometric with 
arithmetic sequences by graphical presentations. We begin with Fig. 6.1. 
An angle with vertex 0 and sides g and g' is intersected by two sets of 
parallel lines, AA' II BB' II CC' etc. and A' B II B' Cli C'D etc. Since the 
triangles OAA' and OBB' are similar, we get for the lengths of the cor
responding sides 

OA/OB=OA'/OB' . 

In the same way we get from the similar triangles OBA' and OCB' 

OA'/OB' =OB/OC . 

Combining the two results, we obtain 

OA/OB =OB/OC 

so that OA, OB, OC form three consecutive terms of a geometric sequence. 
The argument can be easily extended to more than three terms. The 
segments OA, OB, ~C, ... of Fig. 6.1 are interpreted in Fig. 6.2a as ordi-
nates Yl' Y2' Y3' ... on a Y axis. 
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On the other hand, if we replace the sides g and g' of an angle by 
two parallel lines and apply then the same procedure, we obtain an 
arithmetic sequence Y1' Yz, .. , as shown in Fig. 6.2b. This presentation 
of geometric and arithmetic sequences is adapted from Gebelein and 
Heite (1951, p. 32). 

y,k------j 

y5k--------''''"I 

y,k------i 

y,k------"'"I 

a 
y2k--------'i 

o o 

Fig. 6.2. Geometric and arithmetic sequences constructed by two sets of parallel lines 

6.2. The Exponential Function 

An animal does not grow in steps. It grows continuously. Therefore, 
we may ask whether the sequence (6.1.3) has any meaning if x does not 
only take on integers but also fractional or even real numbers. Mathe
matically speaking, we try to replace the domain {a, 1,2, ... } by the set 
Rl of all real numbers. To begin with, we extend the sequence 2, 22 , 23 , 

24 , ... in the opposite direction: 2°=2, 2- 1=!, 2- 2 =1/4, .... Thus 
negative integers as exponents do not cause any difficulty. Next we con
sider fractional exponents, for instance 2°·5 = 2-1-. With the radical sign 
this is V2 = 1.414 .... Similarly, 2°·25 = 21/4 = \12 = 1.189 ... ,2°.75 = 23/4 

= \IS = 1.681 ... ,21.25 = 25/4 = '!j32 = 2.378 ... , etc. The values that we 
have found so far are plotted in Fig. 6.3. With tables of square and cube 
roots we could quickly find many more values of the function Y = 2x. 
As long as x is a rational number, the function Y = 2X is well defined. 
When x is an irrational number such as x = V2 or x = Jr, it is not so 
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easy to define 2X (for a definition see Section 10.5). At this stage, however, 
the reader may take it for granted that a definition is possible and that 
the function y = 2x is represented by the smooth line drawn in Fig. 6.3 
for all real values of x, that is, for x E R1 . 

The function y = 2X and, more generally, the function 

(6.2.1) 

y 

4 

3 y =2 
x 

-2 -) o x 
Fig. 6.3. Graph of the function y = 2X 

with two parameters a and q is called an exponential function. The 
assumption q > 0 is required since values such as 0- 1 and (- 1)"~ are 
either not defined or are not real numbers. The name "exponential 
function" is derived from the property that the independent variable is 
an exponent. The reader is warned not to confuse an exponential function 
with a power function y = axn. In a power function the exponent is 
a constant and the independent variable is the base of a power. The 
reader is invited to compare the graphs of some power functions in 
Fig. 4.1 with the graph of a typical exponential function in Fig. 6.3. 

As we have seen, a geometric sequence is only a special case of an 
exponential function in that the domain is restricted to consecutive 
integers. It would be desirable to abandon the historic word "geometric" 
in this connection and to speak of an exponential sequence. By the same 
token, an arithmetic sequence should rather be called a linear sequence 
(cf. formula (6.1.7»). 

In Chapter 10, we will give a definition of an exponential function 
which avoids the difficulty of x being an irrational number. There, by 
means of the calculus, we will define the natural logarithm and then find 
a way to the exponential function ~ with base e=2.718 .... 
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6.3. Inverse Functions 

We introduced the exponential function y = aqX in connection with 
growth, and the special function N = 21 in connection with doubling 
the number of cells. The following question arises frequently: We are 
given the value of y or N, that is, the value of the dependent variable. 
At what time of growth or cell division does the function reach the given 
value? Thus we are asked to calculate the value of the independent 
variable x or t. In trying to answer this question it would be in vain to 

Fig. 6.4. Graph of a function which is not monotone. Therefore, the inverse function does 
not exist. To a given y there correspond several x values 

apply the operations of addition, subtraction, multiplication, division, or 
root extraction. A new operation is required, the use of logarithms. 
Before we enter this area, we introduce the notion of an inverse function. 

For a linear function y = ax + b it is easy to find x in terms of y. We 
get x = (y - b)la provided that a =1= O. Here y appears as the independent 
and x as the dependent variable. For each value of y, the quantity x is 
uniquely determined. Hence, x is a function of y, called the inverse 
function. 

In the case of a power function y = axn, we can also solve the equation 
with respect to x. We obtain x = (yla)!!n provided that yla > O. However, 
there may be ambiguity. Consider, for example, the quadratic function 
y = x 2 . For a given positive value of y, we find two different solutions, 
x = Vy and x = - vy. Due to this ambiguity, x cannot be called a func
tion of y unless we accept some restriction. Fig. 6.4 depicts the graph of 
a function whereby the problem of finding x, given y, leads to even 
greater ambiguity. 
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To avoid the difficulty, we have to exclude functions whose values 
go up and down. We have to restrict ourselves to functions that are 
either increasing or decreasing but not both. A glance at Fig. 6.3 shows 
that y = 2X increases for all values of x. We say that this function is 
monotone increasing since 2X2 > 2X ' whenever X2 > Xl' 

In general, let the domain of a function y = f(x) be an interval on the 
X axis and let Xl and X2 be two values in this interval. If the property 

(6.3.1) 

holds whenever X 2 > Xl' the function is called monotone increasing. 
Similarly, if the property 

(6.3.2) 

holds whenever X2> Xl' the function is called monotone decreasing 1. 

A function is monotone if it is either monotone increasing or mono
tone decreasing. 

Examples. 1. The linear function y = ax + b is monotone increasing 
for all values of X (that is, X E RI ) if a> 0, and monotone decreasing if 
a < O. In the first case the slope is positive, in the second case negative. 

2. The power function y= 1jx=x- 1 is mQnotone decreasing. In 
Fig. 6.5a the function is depicted for the domain x> O. 

3. The power function y = X2 is monotone increasing for the domain 
X ~ O. But for X ~ 0, y = X2 is monotone decreasing. With no restriction 
for the domain, y = X2 is not monotone at all (see Fig. 6.5b). 

4. The exponential function y = 2 - x is monotone decreasing for all 
values of X (that is, for X E RI)' A graph is shown in Fig. 6.5 c. 

5. The trigonometric function y = sinO( is monotone increasing, 
monotone decreasing or not monotone depending on the choice of its 
domain. For instance, if - 90° < 0( < 90°, the sine is monotone increasing. 
For 90° < 0( < 270° it is monotone decreasing. But for 0° < 0( < 180° the 
sine is not monotone (cf. Fig. 5.8). 

Now we are prepared to understand an important result: A monotone 
function y = f(x) has always an inverse function. The proof is illustrated 
in Fig. 6.6 a-c. In Fig. 6.6a the function is monotone increasing in a 
certain interval of the X axis. It is assumed that the function does not 
make any jump. Under this condition the range of the function is an 

, Sometimes it is important to distinguish between weakly and strictly monotone. 
A function satisfying !(X2) ~!(x,) or !(x2) ~!(x,) whenever X2 > X" is called monotone 
in the weak sense. Such a function can remain constant in some intervals. In the above 
text and later we use the word monotone in the strict sense. 

The word "monotone" is used in mathematics as adjective and as adverb. The words 
"monotonic" and "monotonically" would sound more familiar. 
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a b c 

Fig. 6.5. Examples of monotone functions 

a b c 

yt-----;~----[ 

-----~ 7 
domain 

.. 
domain domain 

Fig. 6.6. A monotone function has an inverse function in that x is uniquely determined by y 

interval on the y axis. If y is a value from the range, the line through the 
point (0, y) parallel to the x axis hits the curve in exactly one point. Thus 
the x value corresponding to y is uniquely determined. The same is true 
for a monotone decreasing function without jump as shown in Fig. 6.6 b. 
Finally in Fig. 6.6c it is assumed that the function has a jump at x = xo 
(discontinuity). Whereas the domain is an interval of the x axis, the 
range consists of two nonadjacent intervals. But, again, if y belongs to 
the range, there exists exactly one value of x that is associated with y. 
Thus, in all these cases, x is uniquely determined by y. The inverse func
tion exists indeed. 
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Let y = f(x) be a monotone function. Then we may denote the inverse 
function by x = g(y). Whereas y = f(x) maps the domain into the range, 
x = g(y) maps the range into the domain. Often the inverse function of 
y = f(x) is designated by x = f -1 (y). The superscript - 1 should not be 
confused with an exponent, even though this symbol was chosen because 
of some analogy with a reciprocal. 

Sometimes the inverse function is studied quite independently of the 
original function. Then it is convenient to change notation and to use x 

Fig. 6.7. The function y = x2 for x ~ 0 and its inverse function y = Vx. On both axes the 
same unit of length is chosen. Then the two curves are reflections of each other about 

the line y=x 

again for the independent and y for the dependent variable. Thus, 
instead of x = g(y) we would write y = g(x). As a consequence, the x and 
y axes, as well as range and domain, have to be interchanged. This 
procedure removes the graph of the original function and puts it in 
a new position. In the special case where x and yare measured in the 
same unit of length, the displacement may be interpreted as a reflection 
about the line y = x (see Fig. 6.7). 

Examples. 1.). = x2 with domain x ~ 0 and range y ~ O. The inverse 
function is y = V x with domain x ~ 0 and range y ~ 0 (see Fig. 6.7). 

2. y = sin (X with domain - 90° ~ (X ~ + 90° and range - 1 ~ y ~ + 1. 
The inverse function is called the arcsine function and we write (X = arcsin x 
or (X = sin- 1 x with domain -1 ~ x ~ + 1 and range - 90° ~ (X ~ + 90°. 
In sin -1 x the superscript is not an exponent, and sin -1 x should not be 
confused with 1jsinx. 

3. y = 1jx with domain x> 0 and range y> O. The inverse function 
is identical with the original function. 
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Notice that the inverse function of a monotone increasing function 
without jump is also increasing. Monotone decreasing functions have an 
analogous property. 

6.4. The Logarithmic Functions 

The function y = 2X with domain Rl (set of all real numbers) and 
range y> 0 is monotone increasing (cf. Fig. 6.3). The same is true for 
every exponential function y = aqX with a> 0 and q> 1. Therefore, the 
inverse function exists. It is called a logarithmic function. In the particular 
case of y = 2X we write for the inverse function x = log2Y or, on inter
changing x and y, 

(6.4.1) 

The original as well as the inverse function are plotted in Fig. 6.8. The 
domain of the logarithmic function (6.4.1) is the interval x> 0, that is, 
we can take logarithms only of positive numbers. The range is R1, that 
is, a logarithm can take on every real number. The inverse statement of 
23 = 8 is log28 = 3. Similarly, log2(1/16) = - 4 stems from 2- 4 = 1/16. 

In the following we will concentrate on the common logarithm 2 . Its 
base is 10. Instead of 10g10 we simply write log. We list a few statements 
together with the inverse statements (the decimal fractions are rounded 
oft): 

103 =1000, log 1000 3 
102.30103 200, log 200 2.30103 
102 100, log 100 2 
101.30103 20, log 20 1.30103 
101 10, log 10 1 
10°·30103 2, log 2 0.30103 
10° 1, log 1 0 
10-0.69897 = 0.2, log 0.2 = - 0.69897 = 0.30103 - 1 
10-1 0.1 , log 0.1 =-1. 

To each positive number there corresponds a unique logarithm. The 
original positive number is called the antilogarithm. Thus the anti
logarithm of 0.30103 is 2. It is also true that to each logarithm there 
corresponds a unique antilogarithm. Hence, there is a one-to-one mapping 
between logarithms and antilogarithms. 

2 The natural logarithm with base e = 2.71828 ... will be introduced in Chapter 10. 
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y 

Fig. 6.8. An exponential function and its inverse function 

We will derive four basic rules for logarithms: 

logab = loga + 10gb 

log l/a = -loga 

loga/b = loga - 10gb 

logan = n loga 

(a>O, b>O) 

(a>O) 

(a>O), b>O) 

(a>O, neR1). 
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(6.4.2) 

(6.4.3) 

(6.4.4) 

(6.4.5) 

The proofs are based on some well-known rules for powers (see 
Section 1.14). Let 

Then 

a = 10", that is, u = loga, 

b = lOv , that is, v = 10gb. 

ab = 10"· lOv = 10"+v 

which implies logab =:= u + v = loga + 10gb as stated in (6.4.2). Moreover, 

l/a = 1/10" = 10- 11 

which implies log l/a = - u = -loga as stated in (6.4.3). From (6.4.2) 
and (6.4.3) it follows that 

loga/b= 10ga(1/b) = loga+ 10gl/b= loga-logb 

which proves (6.4.4). Finally 

an = (10")" = lOnll 

which implies logan = nu = n loga. This proves (6.4.5). 
Notice that (6.4.5) includes fractional and negative powers since n 

can be any real number. Thus, for instance, 

logifa = 10ga1/3 = (1/3) loga. 
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Formula (6.4.2) reduces the multiplication of two numbers a and b 
to a simple addition. The idea is applied in the slide rule, a handy and 
inexpensive instrument that is going to survive the computer age. Notice, 
on the other hand, that the logarithm of a sum, say log(a + b), cannot 
be expressed in terms of loga and log b. 

The numerical value of a common logarithm consists of two parts 
called characteristic and mantissa. In a logarithmic table we find the 
mantissa which is the fractional part of a logarithm. For instance, in 
a four digit table the mantissa of log73 is 8633. We know that log73 
falls between log 10 = 1 and log 100 = 2. Hence the integral part or the 
characteristic is 1 and log 73 = 1.8633. Changing the decimal point only in
fluences the characteristic, not the mantissa. Indeed, log 730 = log 10 x 73 
= log 10 + log 73 = 1 + 1.8633 = 2.8633. Similarly, log 7300 = 3.8633, 
log 73000 = 4.8633, etc. In the opposite direction we get log 7.3 = log 73/10 
= log73 -log 10 = 1.8633 - 1 = 0.8633. Similarly, logO.73 = 0.8633 -1, 
log 0.073 = 0.8633 - 2, logO.0073 = 0.8633 - 3, etc. 

6.S. Applications 

1. The quantity of timber in a young forest grows almost exponentially. 
We may assume that the yearly rate is 3.5 %. What increase is expected 
within ten years? 

To answer this question we calculate first the factor q = 1 + p/100 
with p = 3.5 % (see formula (6.1.1)). We obtain q = 1.035. As explained in 
Section 1.3, the growth in ten years is determined by the factor ql0. To 
get this value numerically we apply logarithms: 

logqlo = 10 logq = 10 log 1.035 = 10 (0.01494) = 0.1494. 

The antilogarithm is 1.41. Hence the quantity of timber has increased in 
ten years by 41 %. 

2. We assume again that the growth rate of timber is p = 3.5 %. How 
many years will it take until the quantity of timber has doubled? 

Let n be the unknown number of years and q = 1 + p/loo. Then we 
obtain the equation 

(6.5.1) 

Such an equation is called an exponential equation, since the exponent 
is the unknown quantity. 

Exponential equations are solved by logarithms. From (6.5.1) and 
(6.4.5) we get 

logqn = n logq = log2, n = log2/logq . 
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With q = 1.035 we obtain n = 0.30103/0.01494 = 20.1. Hence it takes a 
little over 20 years until the quantity of timber has doubled. 

3. Calloway (1965) suggested that the ages of experimental animals 
should be known as exactly as possible, because biological forms change 
rapidly with age, especially in the early periods of life. So far as feasible, 
experiments ought to be done on groups of animals of different ages. 
It would be ideal to use animals of ages following a geometric or 
exponential sequence. 

Let A be the age of the youngest group of animals. Then with a factor 
q > 1 the sequence of ages is 

A, Aq, Aq2, A q3, .... (6.5.2) 

Assume, for instance, A = 3 weeks and q = 1.5. Then the sequence is 

3 4.5 6.8 10.1 15.2 22.8 ... weeks. 

It is quite different from an arithmetic or linear sequence which, begin
ning with the same terms 3 and 4.5 weeks, would be 

3 4.5 6.0 7.5 9.0 10.5 ... weeks. 

4. When the ages of experimental animals are chosen such that they 
form a geometric or exponential sequence, the following problem may 
arise: Given the number of age groups, the lowest and the highest age, 
what are the terms of the sequence? 

Let A be the age of the youngest group, B the age of the oldest group, 
and n be the number of groups. With the unknown factor q the sequence is 

(6.5.3) 

The last exponent is n - 1, because the first term may be written Aqo 
and there are n terms altogether. The last term was assumed to be B. 
Hence we get the exponential equation (cf. Adler, 1966) 

Aqn-l = B. (6.5.4) 

The equation is solved by logarithms. With formulas (6.4.2) and (6.4.5) 
the Eq. (6.5.4) becomes 

Hence 
10gB,;= 10gAqn-l = log A + (n - 1) logq . 

1 10gB -logA 
og q = -"-------='---

n-1 
(6.5.5) 

A numerical example may illustrate the procedure. Given A = 4 weeks, 
B = 10 weeks, and n = 5. Then 

logq = (log 10 -log4)/4 = (1- 0.60206)/4 = 0.09948. 
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The antilogarithm is q = 1.257. To obtain the sequence (6.5.3) numerically 
it is easier to work with logq. The logarithms taken of the terms in (6.5.3) 
form the sequence 

10gA, 10gA+logq, logA+2logq,oo.,logA+(n-1)logq. (6.5.6) 

The numerical values are 

0.60206 0.70154 0.80102 0.90050 0.99998. 

The last term differs slightly from the exact value 10gB = 1. The dif
ference can be explained by rounding-off errors. The antilogarithms are 

4 5.03 6.32 7.95 10 weeks. 

This is the desired sequence of ages. 

5. The procedure in the previous example leads to an interesting 
mathematical result. Letting 10gA = c and logq = d, we get for the 
sequence (6.5.6) 

c, c+d, c+2d, c+3d,oo.,c+(n-1)d 

which is obviously linear. In general: If logarithms are applied to the 
terms of a geometric or exponential sequence, an arithmetic or linear 
sequence emerges. 

The result suggests another view of the geometric mean. For two 
positive numbers, say A and B, the geometric mean is defined to be 
(AB)t. The logarithm is (log A + logB)j2. Hence, application of logarithms 
transforms the geometric mean into the arithmetic mean. 

Furthermore, we consider the exponential function 

y=aqX (a>O, q>O) (6.5.7) 

and ask, as in Section 6.3, about the inverse function. Partly following 
the algebra that yielded formula (6.5.5), we obtain for the inverse function 

x = (logy -loga)jlogq. (6.5.8) 

*6.6. Scaling 

One of the important biological applications of exponential func
tions and of logarithms goes back to 1846 when E. H. Weber 3 studied 
the response of humans to physical stimuli. 

We assume that a person holds a weight of 20 g (grams) in his hand 
and that he is tested for the ability to distinguish between this weight 
and a slightly higher weight. Experiments show that a person is not able 

3 Ernest Heinrich Weber (1795-1878), German anatomist and physiologist. 
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to discriminate between 20.5 g and 20 g, but that he finds 21 g to be 
heavier than 20 g most of the time. The required increase of stimulus is 
1 g. With an initial weight of 40 g, the result is quite different. A person 
cannot reliably discriminate between 41 g and 40 g. The increase should 
be 2 g instead of 1 g. Similarly, experience shows that 63 g can be dis
criminated from 60 g, 84 g from 80 g, and 105 g from 100 g, but that the 
interval cannot be reduced. From these figures it follows that discrimina
tion is possible if the magnitude of stimulation is increased by one 
twentieth or 5 % of the original value. 

Analogous results were found for sound and light reception, as well 
as for smell and taste. In general, let s be the magnitude of a measurable 
stimulus and LI s the increase just required for discrimination. Then the 
ratio 

Lis 
r=

s 
(6.6.1) 

is constant, that is, it does not depend on s. In other words: Noticeable 
differences in sensation occur when the increase of stimulus is a constant 
percentage of the stimulus itself. This is Weber's law. The following list 
of approximate ratios LI sis may illustrate the sensitivity of human senses: 

Visual brightness 1 : 50 (s = light intensity) 

Tone 1 : 10 (s = sound intensity) 

Smell for rubber 1 : 8 (s = number of molecules) 

Taste for saline solution 1: 4 (s = concentration of solution). 

It should be emphasized, however, that Weber's law is at best a good 
approximation to reality. The law fails to be valid when the magnitude s 
of stimulation is either too small or too large. As is the case for most 
natural laws, Weber's law is only valid within a certain domain of s. 
For a more advanced discussion see Luce and Galanter (1963a, p. 193 
to 206). 

Strongly related to the problem of discrimination is the problem of 
scaling. As a rule, sensations are not measurable. Nevertheless, it is of 
great practical value to scale responses to stimuli. In 1860 Fechner4 

proposed a method of scaling which is based on Weber's law. Let r = LI sis 
be the constant ratio of Weber's law and let So be a fixed value of s. Then 
we calculate the nearest noticeably higher stimulus: 

Llso 
Sl = So + LI So = So + -- So = So + r So = So (1 + r) . 

So 

4 Gustav Theodor Fechner (1801-1887), German physicist and philosopher. 
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Abbreviating the factor 1 + r by q we obtain 

In our example of weight lifting we had So = 20 g, r = 1/20. Hence q = 1.05, 
S1 = 21 g. 

The next higher distinguishable stimulus is S1 q = So q . q = So q2, etc. 
Hence, noticeably different stimuli follow each other in a geometric or 
exponential sequence.' 

(6.6.2) 

The general term is 

sn=soqn (n=O, 1,2, ... ). (6.6.3) 

On the other hand, it is quite clear that the corresponding sensation 
does not follow a geometric sequence. We feel that sensation proceeds in 
equal steps and that it should be represented by an arithmetic or linear 
sequence. The simplest way to get a quantity that increases linearly, as s 
increases exponentially, is by proper choice of n. This quantity is a func
tion of Sm actually the inverse function of (6.6.3): 

n = (Jogsn -logso)/logq . (6.6.4) 

Abbreviating the constant l/logq by A and the constant -logso/logq 
by B and dropping the subscript n for simplicity, we derive from (6.6.4) 

n=A 10gs+B, (6.6.5) 

that is, n is a linear function of logs. For scaling sensation we could also 
take any multiple of n and add an arbitrary number. The new quantity 
would still be a linear function of logs. Hence, in general, if M denotes 
a suitable quantity for scaling sensation, we get 

M=alogs+b. (6.6.6) 

The constants a and b can be chosen freely subject to the restriction 
a * O. This formula is known as the psychophysical law of Weber-Fechner. 
It is not a law in the usual sense inasmuch as it fails to relate two or more 
measurable quantities to each other. Formula (6.6.6) should rather be 
interpreted as a suitable definition of M. In the absence of an objective 
measure of sensation, Fechner's formula is a useful way of scaling 
sensation 5. 

5 Based on a large number of psychophysical experiments S. S. Stevens and his 
coworkers claim that power functions are more suitable for a psychophysical law than 
Fechner's logarithmic formula. For details see e.g. S. S. Stevens (1970). A thorough 
discussion of the problem of scaling can be found in Luce (1959, Chap. 2) or in Luce and 
Galanter (1963 b). 
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Example 6.6.1. We consider the subjective impression of loudness. 
Experienced sensation is not proportional to the physical intensity of 
sound. Let / denote this intensity. Then, according to (6.6.6), loudness L 
is scaled by 

L=a log/ +b. 

The constants a and b can be chosen arbitrarily. It is customary, however, 
to fix a and b in the following way: At a frequency of 1000 Hz (Hz = Hertz 
= cycles per second) the threshold of audibility or lowest intensity that 
can be heard is nearly /0 = 10- 12 Watt/m2. Then L is made equal to 

L= 10(log/ -log/o)= 10 log (///0) . (6.6.7) 

The unit of L is called decibel6 and abbreviated by dB. For / = /0' L is 
zero decibel. 

For a tone of any frequency other than 1000 Hz, formula (6.6.7) and 
the unit dB cannot be used for the human ear, since the ear is not equally 
sensitive to tones of different frequencies. For any tone deviating from 
1000 Hz, for a mixture of tones, whether harmonious or noisy, a sub
jective manner of scaling is required. "Normal" observers match the 
loudness of a given sound with a tone of 1000 Hz frequency. When this 
tone is scaled L decibels, it is said that the given sound has L phons. For 
instance, ordinary conversation has 60 phons. This means that an equally 
loud tone of 1000 Hz (judged subjectively) has 60 dB (measured objec
tively). For comparison we mention that a whisper has roughly 10 phons, 
a quiet automobile 40 phons, a loud orchestra 80 phons, and thunder 
120 phons. For more details on scaling loudness see Stuhlman (1943, 
p. 287ft) and Randall (1958, p. 36 and 182-190). 

Example 6.6.2. Consider three tones which are equally spaced on 
the frequency scale, for instance the three tones with frequencies. 

300 Hz, 600 Hz, 900 Hz. 

People who hear these tones agree unanimously that the interval between 
the second and the third tones is considerably smaller than between the 
first and the second tones. Therefore, our sensation for musical pitch is 
not proportional to frequency. To get two consecutive intervals which 
are perceived as equal in size we have to adopt a geometric sequence. 
For instance, the three tones with frequencies 

300 Hz , 600 Hz , 1200 Hz 

proceed in intervals of octaves. A proper scale for musical pitch is based 
on the logarithm of frequency, quite in agreement with the law by 
Weber-Fechner. 

6 1 decibel = 1/10 Bel in honor of Alexander Graham Bell (1847-1922), born in 
Scotland; American scientist who is best known for his invention of the telephone. 
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Example 6.6.3. This example is known to astronomers. The ex
perienced brightness of a star is by no means proportional to the light 
energy received by the eye. Again we have a linear relationship between 
brightness and the logarithm of light intensity. A standard formula is 

m = c - 2.510gJ (6.6.8) 

where J is the light intensity and c a constant determined by the unit in 
which J is measured. m is called the apparent magnitude of a star. The 
brightest star, Sirius, has magnitude -1.6, Vega has magnitude 0.1, and 
Betelgeuse 0.9. The clumsiness of a negative magnitude might have been 
avoided if the magnitude zero had been placed better. 

Example 6.6.4. Perhaps the application of the Weber-Fechner law 
that is especially important for life scientists is the dose-response relation
ship in biological assay. When a certain dose of a chemical (drug, poison, 
vitamin, hormone, etc.) is administered to an animal, the response or 
reaction, whether it is qualitative or quantitative, cannot be linearly 
related to the dose. If, for instance, a dose of 10 mg is increased by 5 mg, 
it is likely that the response will vary. If, however, a dose of 100 mg is 
increased by 5 mg, the response will hardly change. In both cases the 
increase is 5 mg, but in the first case we have 50%, in the second case 
only 5 % of the original dose. It is this rate of increase which is relevant. 
Therefore, the law of Weber-Fechner is applicable. Although the re
sponse is usually of a qualitative nature and cannot be measured, it is 
assumed that the response is linearly dependent on the logarithm of the dose. 

As a consequence, when animals are tested for their response to doses 
of different levels, the doses should form a geometric or exponential 
sequence. Let do be the lowest dose and let q be a convenient factor 
greater than one. Then the chemical is administered in doses 

do, doq, doq2, doq3, •.. . (6.6.9) 

A sequence such as 10 mg, 20 mg, 30 mg, 40 mg, etc. is not suitable for 
doses. Beginning with the same terms it should be 10 mg, 20 mg, 40 mg, 
80 mg, etc. whereby do = 10mg and q = 2. 

Example 6.6.5. We conclude this section with an application of 
logarithms to chemistry. The hydrogen ion concentration, denoted by [H] 
or [H+], is an important factor in living tissue as well as in the soil where 
plants grow. A high concentration ranging from about 10- 1 to almost 
10- 7 moljl is present in acid solutions. For distilled water [H] = 10- 7 

molll approximately, a concentration which is called neutral. Lower con
centration down to about 10-12 moljl indicate an alkaline solution or 
a base. Because of this wide range, a logarithmic scale for judging the 
hydrogen ion concentration appears to be more practical. We may use 



Spirals 137 

the exponents of the above powers and get rid of the minus sign. Thus 
the quantity 

pH= -log[H] (6.6.10) 

is introduced. For a neutral solution pH = 7, for an acid solution pH < 7 
and for an alkaline solution pH> 7. For the human brain it was found 
that the cerebrospinal fluid has [H] = 4.8 x 10- 8 moljl on the average. 
Hence pH = - log(4.8 x 10- 8) = - (log 4.8 + log 10- 8 ) = - (0.68 - 8) 
= 7.32 (this value is from Diem, 1962, p. 594). 

*6.7. Spirals 

Molluscan shells, ammonites, the arrangement of seeds in sunflowers 
and of scales in pine cones all indicate that spirals occur frequently in 
nature. We restrict ourselves to those spirals that are plane curves and 
are generated as follows: We assume that y = f(x) is a monotone in
creasing function (see Section 6.3). Instead of a graph in a rectangular 
coordinate system we choose a polar graph. For this purpose we interpret 
x as the polar angle and y as the polar distance and put x = IX and y = r 
(see Section 5.8). Then the graph of r = f(lX) is called a spiral. 

Perhaps the simplest example of a spiral is given by a linear function 

r=alX+b (a>O, b~O) (6.7.1) 

with domain IX ~ 0 and range r ~ b. As IX grows, r increases linearly. For 
each full angle completed by IX, the polar distance r has increased by 2na 
provided that IX is measured in radians. Hence successive windings or 
whorls of the spiral have a constant width from each other. Such a curve 
is called a spiral of Archimedes 7 (see Fig. 6.9). An intuitive idea gives 
a coiled rope or a coiled snake. We may also think of a revolving gramo
phone disk on which the needle approaches the center with constant 
speed. 

Another famous spiral is the logarithmic spiral. It is the polar graph 
of an exponential function 

r=aq"- (a>O, q>l) (6.7.2) 

with domain IX E Rl and range r> O. With increasing IX, the polar distance 
grows faster than for a spiral of Archimedes (see Fig. 6.10). The name 
"logarithmic spiral" stems from the fact that logr is a linear function 
of IX. Indeed, from (6.7.2) it follows that logr = loga + IX logq. 

From a rectangular graph we know that y = aqX with q> 1 tends 
asymptotically to zero as x takes on smaller and smaller negative values 

7 Archimedes of Syracuse (Sicily), mathematician and physicist, died 212 B. C. 
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Fig. 6.9. A spiral of Archimedes. The polar distance r grows linearly as a function of the 
polar angle C( 

Fig. 6.10. A logarithmic spiral. The polar distance r is an exponential function of the 
polar angle C( 

(cf. Fig. 6.3). It follows that the logarithmic spiral winds infinitely many 
times around the origin 0 without ever reaching 0 when a decreases over 
negative values. 

Another property of the logarithmic spiral can be derived from a 
triangle OA I Al depicted in Fig. 6.10. Let al and al be two polar angles 
with a fixed difference Lla = a 2 - aI' and r l =OAl , r l =OA 2 the cor-
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responding polar distances. Then we conclude from Eq. (6.7.2) that 

(6.7.3) 

The ratio r 2/r I is determined by the choice of All(. Hence, no matter how 
big 1l(1 and 1l(2 are, the triangle OAl A2 has always the same shape and, 
therefore, the angle f3 = -9: OA 1 A2 is constant. With this property in mind, 
many points of a logarithmic spiral can be quickly constructed (see 
problems 6.20 and 6.21). 

Fig. 6.11. Nummulites (a) and ammonites (b) are examples of two different kinds of spirals 
(nummulites redrawn from Schaub, 1966) 

When All( tends to zero, the line joining Al and A2 tends to the tangent 
of the spiral and f3 tends to a limiting value which is denoted by y in 
Fig. 6.10. Hence the logarithmic spiral cuts the radii at a constant angle. 

As there are infinitely many monotone functions, there are also 
infinitely many spirals of different shapes. For curve fitting, however, 
the spiral of Archimedes and the logarithmic spiral are usually sufficient. 
In Fig. 6.11 two fossils are shown. Nummulites (A) resemble the spiral 
of Archimedes and ammonites (B) the logarithmic spiral. 

F or more details or other biological applications of spirals see Bourret, 
Lincoln, and Carpenter (1969), Fraenkel and Gunn (1961, Fig. 48), 
Steinhaus (1960, p. 139-145), Thompson (1917, p. 493ff, or 1961, p. 172ft). 

Recommended tables: 

F or common logarithms: four digits, Diem (1962), five digits, Meredith 
(1967), six digits, Allen (1947). 

For common antilogarithms: four digits, Diem (1962), ten digits, 
National Bureau of Standards (1953). 

Recommended for further reading: 

Lefort (1967), c. A. B. Smith (1966). 
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Problems for Solution 

6.1. Among the following sequences determine those that are arith
metic and/or geometric: 

a) 7, 11, 15, 19, .. . t) 0.3, 0.03, 0.003 .... 
b) 6.5, 5, 3.5, 2, .. . g) 18, 20, 21, 23, 25, 26, ... 
c) 2, 6, 18, 54, 162, ... h) 1, 4, 9, 16, 25, ... 
d) 4, 4, 4, 4, ... i) 1/2, 1/3, 1/4, 1/5, .. . 
e) (- 1/2), (- 3/2), (- 5/2), ... j) 4, 2, 1, 0.5, 0.25, .. . 

6.2. A culture medium is infected with No bacteria. The bacteria cells 
divide every two hours. How many bacteria will be in the medium 
24 h later? At what time had the number of bacteria reached 25 % 
of the previous total? 

6.3. In a tracer method the potassium isotope 42K is used for labeling. 
The half-life of 42K is 12.5 h. If No is the original number of 
atoms, how many are expected to remain after the elapse of two 
days and two hours? How many hours will it take until only 
(1/1024) No atoms remain? 

6.4. A female moth (Tinea pellionella) lays nearly 150 eggs. In one 
year there may live up to five generations. Each larva eats about 
20 mg of wool. Assume that 2/3 of the eggs die and that 50 % of 
the remaining moths are females. Estimate the amount of wool 
that may be destroyed by the descendants of one female within 
a year. 

6.5. Study the exponential function y = a . 2X for different values of the 
parameter a, for instance, for a = 2, 0.5, - 1, - 2, - 0.5. How does 
the parameter a influence the graph of the function? 

6.5a. The world's population in 1970 is estimated to be 3.7 x 109 

persons. The yearly growth rate is approximately 2 %. Under the 
assumption that the current growth rate remains constant, how 
large would the world's population be in the years 1980, 1990, 
and 2000? 

6.6. Find the increment L1y = f(x + 1) - f(x) for the exponential func
tion y = f(x) = aqX and show that this increment is also an ex
ponential function of x. 

6.7. Draw graphs of the following functions and decide which of them 
are monotone functions and which are not: 
a) y= 3-x 
b) y=4_X2 

c) y = i x 2 + X + 1 

with domain x E Rl , 

with domain - 2 ~ x ~ + 2 , 
with domain x> - 2 , 
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d) y=cosx with domain 0 ~ x ~ n , 
e) y= cosx with domain - n/2 ~ x ~ n/2 . 

6.8. Show that for the following functions inverse functions exist. Find 
the explicit expressions for these inverse functions. 

a) y= - 2x+ 3 
b) y=x2 +2 
c) y= x2 + 2 
d) y=1/x2 

e) y= 1 + (l/x) 

with domain x E Rl , 

with domain x ~ 0 , 
with domain x ~ 0 , 
with domain x > 0 , 
with domain x> 0 . 

6.9. Assume that the volume of timber contained in a particular tree 
grows at a yearly rate of 4.8 %. What is the percentage of increase 
in eight years? 

6.10. On his 13 th birthday a child was 112 cm tall, on his 14th birthday 
121 cm tall. Assume a constant monthly growth rate. What is 
this rate? 

6.11. The outcome of a certain experiment with mice is expected to 
be age dependent. A first group of mice is three weeks old, a second 
group five weeks old. What are the ages of two more groups, if 
a geometric sequence of ages is required? 

6.12. Same situation as in the previous problem. This time only three 
groups of experimental mice are planned. The youngest group is 
three weeks old, the oldest 10 weeks old. What age is desirable 
for the middle group? 

6.13. To test the content of vitamin A in carrots, pieces of this vegetable 
are fed to vitamin A deficient rats. The dose levels are arranged 
in a geometric sequence. If 20 g and 50 g are the first two doses 
of the sequence, how does the sequence continue? 

6.14. Same situation as in the previous problem. Assume that six dif
ferent dose levels are planned. The lowest dose is 20 g, the highest 
200 g. Find the sequence of doses. 

6.15. Using common logarithms find the inverse functions of the fol
lowing exponential functions: 

a) y= 2x 

b)y=a·lOx (a>O) 
c) r = !. 5t 

d) Q=2wx 

e) y= aq3X 

(w>O) 
(a>O, q>O) 

What are the widest possible domains and ranges for these func
tions and their inverses? 
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*6.16. Two tones of 1000 Hz frequency are assumed to have loudness 
30 dB and 45 dB. What follows for the ratio of their physical 
intensities II and 12? 

*6.17. By the chromatic scale the interval of an octave is subdivided 
into 12 equal intervals. This means that 13 tones follow each other 
such that their frequencies form a geometric sequence and that 
the last frequency is twice as high as the first frequency. What is 
the ratio of frequencies for two consecutive tones? 

*6.18. Find pH if a) [H] = 3.7 x 10- 5, b) [H] = 8.1 x 10- 8, c) [H] = 0.27 
x 10- 7 mol/I. 

*6.19. For human blood pH falls between 7.37 and 7.44. Find the cor
responding bounds for [H]. 

*6.20. Let 0 be the origin of a polar coordinate system. From the polar 
axis (denoted by ho) we rotate a half-line in steps of a fixed acute 
angle 0(. Thus we get the half-lines hI' h2' h3' .... On ho we choose 
a point Ao (different from 0) and put OAo = a. Then at Ao we 
draw a line perpendicular to ho and denote its intersection with 
hI by AI' From Al we proceed with a line perpendicular to hI 
and denote its intersection with h2 by A2, etc. Thus we get the 
broken line Ao Al A2 A3 .,. (Fig. 6.12). Find OA 1, OA2, etc. in terms 
of a and 0( and prove that the points Ao, AI, A 2 , ... lie on a 
logarithmic spiral. 

*6.21. Generalize the previous problem, replacing the right angles with 
an angle f3 =F 90°. Show that OAn+dOAn is constant for n = 0,1,2, ... 
and that, therefore, A o, AI' A2, ... lie on a logarithmic spiral. 

a • Ao 
Fig. 6.12. Construction of a logarithmic spiral 
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Graphical Methods 

7.1. Nonlinear Scales 

Our eye is very quick in recognizing pattern and shape. Information 
contained in mathematical relationships can often be presented in a 
graphical form which facilitates the understanding. 

Unless high accuracy is required, graphical representation, such as 
diagrams, histograms and nomograms may replace lengthy tables of 
functions. Sometimes even tedious numerical calculations can be avoided 
by employing graphical tools. 

Weare already familiar with rectangular and polar graphs. They are 
advantageous in that they clearly show intervals where a function is 
increasing or decreasing, where maxima and minima are located, etc. 
But there are also disadvantages. Sometimes appropriate space for the 
range of a function is lacking. Or the relationship of more than two 
variables should be presented in the plane. In such cases functional or 
nonlinear scales help considerably. 

To introduce the idea we consider a monotone function, for example 
the exponential function y = lOx with a graph plotted in Fig. 7.1. Now 
we want to economize the space required for representation: Starting 
with a particular value of the y axis we move parallel to the x axis. Then 
from the intersection with the graph we move parallel to the y axis until 
we reach the x axis. There we mark the particular y value just opposite 
the corresponding x value. Repeating this procedure we get a double 
scale, the y scale adjacent to the x scale. We may compare the result 
with a "river" and its two "banks". On one bank we have the x, on the 
other bank the y scale. The x scale is linear, that is, equally spaced 1. 

The y scale, however, is in general nonlinear. In our example the y scale is 
called a logarithmic scale since x = logy. 

A double scale fills only a one-dimensional space. Yet it contains the 
same information as a graph plotted in a two-dimensional space. There
fore, a double scale is space saving and economic. 

I A rigorous definition of a linear scale is based on the following condition: The 
distance between successive points of the scale is equal for equal increments of the variable. 
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Fig. 7.1. Transition from a graph of a function to a nonlinear scale. Construction of the 
logarithmic scale 

For preparing a double scale it is essential to assume that there is 
a one-to-one correspondence between the x and the y values. This prop
erty is guaranteed by assuming that y = f(x) is monotone (cf. Section 6.3). 

A double scale can be more quickly constructed when the function 
and its inverse are tabulated. In our example of y = lOX, the inverse 
function is the common logarithm x = logy. A brief table follows: 

y x=logy y x = logy y x = logy 

1 0 6 0.778 20 1.301 
2 0.301 7 0.845 30 1.477 
3 0.477 8 0.903 40 1.602 
4 0.602 9 0.954 50 1.699 
5 0.699 10 1.000 etc. 

On one side of a line we plot a linear scale for x, on the other side we 
insert the y values at their proper positions (see Fig. 7.2). The double 
scale is the same as in Fig. 7.1. 

Logarithmic scales are very practical for representing quantities with 
a large range such as paleontological ages, micro- and macroscopic 
dimensions, or frequencies of electromagnetic waves. A highly efficient 

:--- 0.602 ----
;-- 0.477--'. 

:-0.301-: : 

i1 ;2 :1 
o 0.) 

30 40 SO 
'I ! ! 

1 t.) 

Fig. 7.2. A logarithmic scale versus a linear scale 
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aid for multiplication and division based on the logarithmic scale is the 
slide rule. 

Linear and nonlinear scales are sometimes placed on curves, espe
cially in nomograms. An example may serve to explain how curvilinear 
scales are constructed. Let x be a quantity that increases linearly as 
a function of time, and y be a simultaneous quadratic function of time. 

o 
t = x 

y 

Fig. 7.3. Example of a curvilinear scale 

For a leaping animal, x may be interpreted as the horizontal, y as the 
vertical component of the trajectory (Fig. 7.3). We assume that 

x=at, y=ct2 (7.1.1) 

with certain constants a and c. Then we choose a sequence of t values, 
say t = 0.1, 0.2, 0.3, ... sec, and calculate the corresponding values of x 
and y. In a rectangular coordinate system we obtain a sequence of points 
labeled with the t values (Fig. 7.3). The points lie on a smooth curve 
and form a curvilinear scale. 

Should the t values be of no interest, then t could be eliminated from 
(7.1.1). We get t = x/a and y = c(x/a)2 = (c/a 2) x 2 • Hence, y is a quadratic 
function of x and the curve a quadratic parabola. The original equations 
(7.1.1) are called the parametric equations of the curve and the variable 
time t the parameter. In this connection the word "parameter" signifies 
an independent variable which determines two or more other variables 2. 

2 In mathematics the word "parameter" is used in different ways. For another 
meaning of this word see Section 4.1. 
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7.2. Semilogarithmic Plot 

When the x axis or the y axis, but not both axes, bears a logarithmic 
scale, the coordinate system is called semilogarithmic. 

Example 7.2.1. We consider a dose-response relationship reported by 
Copp, Cockcroft, and Kueh (1967). The objective was to prove that the 
hormone calcitonin is produced in the ultimobranchial glands (and not 
in the thyroid glands) in Squalus suckleyi (small shark, dogfish) and in 
Gallus domestica (chicken). Extracts from the ultimobranchial glands 
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Fig. 7.4. Semilogarithmic plot of a dose-response relationship. From CoPP. Cockcroft, 
and Kueh (1967) 

were administered to rats in several dose levels. The response was 
measured in terms of an area between the plasma calcium curves of 
treated and untreated rats. Fig. 7.4 exhibits the result. The dose levels 
are plotted on a logarithmic scale because the logarithm of a dose rather 
than the dose itself is biologically relevant (cf. Example 6.6.4). The response 
can be approximated by a linear function of the logarithmic dose. 

Example 7.2.2. Now we illustrate the use of a logarithmic scale in 
a case where one variable covers a wide range. A linear presentation 
would be virtually impossible. The example is taken from Strehler (1963, 
p. 114). The mortality rate measured in incidence per 100,000 of popula
tion varies between about 10° and 104 as a function of the age (Fig. 7.5). 

Occasionally the functional values range from 0 to a high value. If 
the value 0 is actually taken, an ordinary logarithmic scale could not 
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be applied since logO does not exist 3. In this case we recommend adding 
the number 1 to all values of y and then taking the logarithm, that is, 
plotting the quantity 

Y = log(y + 1). (7.2.1) 

This transformation was proposed by Bartlett (1947). An example is 
offered in problem 7.6 at the end of this chapter. 
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Fig. 7.5. Semilogarithmic plot of the age dependent mortality rate for 100,000 persons in 
the United States around 1960. From Strehler (1963, p. 114) 

There is still another reason for using a semi logarithmic coordinate 
system. When an exponential function 

(a>O, q>O) (7.2.2) 

with domain x E R 1 and range y > 0 has to be plotted, it is advantageous 
to apply the logarithmic transformation. First we obtain from (7.2.2) 

logy = loga + x logq. (7.2.3) 

3 As y tends to zero over positive numbers, x = logy tends to - OCJ as can be seen 
from Fig. 7.1. 
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Second, we introduce new variables and constants. It is customary to 
denote them with capital letters: 

Y=logy, A=logq, B=loga. 

Then (7.2.3) turns into the linear function 

Y=Ax+B. 

(7.2.4) 

(7.2.5) 

Of course, it is much simpler to draw a graph of (7.2.5) than a graph 
of the original function (7.2.2). Moreover, curve fitting to empirical data 
and the discussion of deviations are greatly facilitated. 

Example 7.2.3. To illustrate such a transformation we consider a 
method of determining the volume of blood plasma in a human or an 
animal body. A known quantity of thiosulfate is injected into the blood 
stream. If the thiosulfate mixed homogeneously with the blood plasma 
without any loss to other parts of the body, it would be easy to calculate 
the blood volume from the concentration of thiosulfate in the plasma. 
Instead, the substance is continuously excreted by the kidney, whereas 
mixing of thiosulfate with plasma is hardly completed before the elapse 
of 10 minutes. To cope with this problem several measurements of thio
sulfate concentration are made, and a graphical method is applied to 
extrapolate backward. Following Randall (1958 or 1962, p. 67) we con
sider an experiment: Into an animal, 0.5 g (grams) of thiosulfate was 
injected. Ten minutes after the injection and at successive 10-minute 
intervals the following plasma concentrations of thiosulfate were ob
tained: 

44 38 33 28 25 mg/lOO ml . 

As usual the excretion by the kidney leads to an exponential decrease 
of concentration. Therefore, we plot the data in a semilogarithmic co
ordinate system (Fig. 7.6). The dots lie on a straight line with considerable 
accuracy in agreement with formula (7.2.5). We are interested in the 
concentration as it was before the kidney began to excrete thiosulfate. 
Hence, we extrapolate the data back to obtain plasma concentration at 
the time of injection. Thus we get 50 mg/100 ml. Let V be the total 
plasma volume of the animal. Then 

and 
0.5g: V=50mg: 100ml 

V = 0.5 g x 100 ml = 1000 ml = 1.0 l. 
50mg 

More semilogarithmic presentations of exponential functions will be 
offered in problems 7.4, 7.5 and 7.5a. 



Double-Logarithmic Plot 149 

100 
-

80 
-

60 

c: 50 
.g 
"§ 40 
C 
OJ 
u 30 c: 
0 

U 

"-' ............ 
~~ 

"""- --------..... l-

I--. 
0 
E 20 III 

E 
u.. 

10 20 30 40 50 60 

Ti me after Iniect ion min 

Fig. 7.6. Semilogarithmic plot of plasma concentration after injection of 0.5 g of thio
sulfate. Adapted from Randall (1958, p. 68) 

7.3. Double-Logarithmic Plot 

When both axes of a coordinate system bear logarithmic scales, it is 
called double-logarithmic. The term log-log plot is also used. Let 

X= logx, y= logy. (7.3.1) 

Then Fig. 7.7 illustrates three ways of presentation. 
In Fig. 7.7 a both axes bear adjacent scales. The X and Y scales, both 

linear, are first drawn. Then the logarithmic scales for x and yare added 
as explained in Section 7.1. The values of x and y as well as their loga-
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Fig. 7.7. Three presentations of a double-logarithmic coordinate system 

108 , 2 
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rithms X and Yare shown. Because of the many details this presentation 
is scarcely used in print. 

Fig. 7.7b exhibits only the logarithmic scales. When the graduation 
is emphasized by lines drawn parallel to the axes, we speak of double
logarithmic paper. Dropping the linear scales is rather popular and fre
quently seen in print, but it is not always practical for research work. 
Neither plotting of measurements nor reading of coordinates is easy. 

Finally, Fig. 7.7 c is less spectacular but perhaps more economic than 
the other methods. Ordinary graph paper suffices. By a table of loga
rithms, values for logx and logy are determined and then plotted on 
linear scales. 

Double-logarithmic plots are employed for a variety of reasons: wide 
range of x and y, dose-response relationships, etc. A major application 
is the graphical representation of a power function: 

(7.3.2) 

with domain x> 0 and range y> O. We apply the logarithmic trans
formation. First, (7.3.2) yields 

logy = loga + n logx. 

Second, new variables and constants are introduced by 

Y=logy, X=logx, B=loga. (7.3.3) 

Thus (7.3.1) is transformed into 

Y=nX +B, (7.3.4) 

that is, into a linear relation. Hence, in a double-logarithmic plot the 
exponent n of a power function appears as the slope of a straight line. 
Examples with various values of n, including fractions and negative num
bers, are offered in Problem 7.7 at the end of this chapter. 

Example 7.3.1. As a first biological application we study the relation
ship between the length and weight of H eterodon nasicus (western hognose 
snake). Assume that all snakes of this species, whether young or old, have 
the same shape and the same specific gravity. Then, following Section 4.2, 
their weight W should be proportional to the cube of their length L, 
that is, 

with a certain constant a. Applying logarithms we obtain 

log W = loga + 310gL. 

(7.3.5) 

(7.3.6) 
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This is a linear relationship between 10gL and log W Hence, a double
logarithmic plot is a straight line with slope 3. Actual measurements 
show that the dots representing individual snakes deviate slightly from a 
straight line (see Fig. 7.8)4. 

Example 7.3.2. We plot the mean daily heat production of warm 
blooded animals against the average body weight (Fig. 7.9). Iflogarithmic 
scales for both quantities are used, the dots are very close to a straight 
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Fig. 7.8. Regression lines of weight versus length fitted to a sample of 158 male and 167 
female western hognose snakes (Heterodon nasicus) from Harvey County, Kansas. Males 
are represented by-filled and females by open circles. Small circles represent a single record 
and larger symbols represent from two to four records. Both the abscissa and ordinate 

are in logarithmic scale. From D. R. Platt (1969) 

line. This indicates that the relationship can be well approximated by 
a power function. 

Another instructive example is presented in Jerison (1970). For the 
use of double-logarithmic plots in allometric growth see Section 11.6. 

Summarizing the main results of Sections 7.2 and 7.3 we formulate 
a rule which is worthwhile to be learned by heart: 

4 D. R. Platt (1969) applied a statistical method to fit a straight line to his data. The 
result is an exponent 2.99 for males and 2.90 for females. Both exponents are very close 
to the theoretically predicted value 3. 
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Fig. 7.9. The daily heat production of warm blooded animals plotted against the body 
weight on logarithmic scales (after Benedict, 1938, from Davson, 1964, p. 221) 

For an exponential function we apply semilogarithmic, but for a power 
function a double-logarithmic plot. In each case the graph of the function 
is a straight line. 

*7.4. Triangular Charts 

We begin this section with a geometric proposition: Let P be a point 
in an equilateral triangle. Then the sum of the distances of P from the 
three sides is equal to the height of the triangle. In other words: The sum 
of the distances remains constant when we move the point P from any 
position to any other position inside the triangle. 

For a proof we look at Fig. 7.10. Let A, B, C be the vertices of the 
triangle such that AB=BC = CA. We denote the perpendicular distances 
of P from the sides by hl' h2' h3 and the height of the triangle ABC by h. 
Through P we draw three lines: LG II AB, F K II BC, and HEll CA. Also 
we draw HIli AB. These lines together with the sides of the triangle form 
four equilateral triangles P EF, PG H, P KL and CI H, since all angles 
are equal to 60°. Now, hl is height of triangle PGH, h2 heightoftriangle 
PKL, and h3 height of triangle PEF. Since HEll CA, triangle CI H has 
also height h2 . Arranging the three heights such that they are all perpen-
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h2 ____ ________ __ _ J 
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Fig. 7.10. The sum of three distances hI' h2' h3 of a point P from the sides of an equilateral 
triangle is equal to h, the height of the triangle 

npr rpnt " f r.omoo nent A 

Fig. 7.11. Trilinear chart for plotting variable concentrations of three components of a 
substance 
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dicular to AB we get immediately 

hl + h2 + h3 = h , Q.E.D. (7.4.1 ) 

Therefore, whenever three variables, say x, y, z, add up to a constant 
value, a trilinear chart is very convenient. The constant is plotted as 
height of an equilateral triangle. The sides are interpreted as axes and 
the distances x, y, z from the sides as triangular coordinates. 

Fig. 7.11 shows how such a chart is constructed. The three variables 
may be the concentration of three components A, B, C of a substance. 
They add up to 100%. 

4:"'"' ''''' ~ j B ~ ' 60 isorhizas 

80 c(!) 
'1'0 A 100 desmon emes 

~~----6~0~--4-0---2-0~-40 

Fig. 7.12. Distribution of nematocysts in the five tentacles of a female individual Hydra 
attenuata Pall. 

Example 7.4.1. A biological application is shown in Fig. 7.12. In the 
tentacles of Hydra attenuata Pall. (a fresh-water polyp) there are three 
kinds of nematocysts (thread cells) : the relatively large stenoteles, the 
isorhizas, and the desmonemes, both somewhat smaller. All three kinds 
were counted in the five tentacles of a female individuals. The results are: 

Tentacle Stenoteles Isorhizas Desmonemes 
No. freq . % freq. % freq. % 

1 124 5.6 334 15.0 1768 79.4 
2 124 7.2 298 17.4 1297 75.4 
3 123 6.7 302 16.5 1411 76.8 
4 114 5.8 310 15.6 1556 78.6 
5 148 8.4 319 18.1 1293 73.5 

5 I am indebted for the data to Mr. Adrian Zumstein, University of Zurich, Switzerland. 
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As we have three components, it is quite convenient to plot the per
centages in a trilinear chart (Fig. 7.12)6. 

Example 7.4.2. Interesting applications of trilinear charts are also 
known in genetics. Let A and a be two genes at the same locus. Indi
viduals are then either homozygotes AA, aa, or heterozygotes Aa. Let 
fAA' faa' fAa be the percentages of the three genotypes in a population. 
Then, by definition 

fAA + faa + fAa = 100%. (7.4.2) 

Fig. 7.13. The percentages of genotypes AA, Aa, aa plotted on a trilinear chart. Panmictic 
populations are represented by points falling on a parabola 

Each population is represented by a dot in a trilinear chart whose height 
is 100% and whose coordinates are fAA, faa' fAa' Under the assumption 
of panmixia (random mating) the Hardy-Weinberg law states that 

fla = 4fAAfaa· (7.4.3) 
It can be shown that populations satisfying (7.4.3) are represented by 
points located on a parabola (Fig. 7.13). For details and for advanced 
use of trilinear charts see Li (1958), Levene, Pavlovsky, and Dobzhansky 
(1954), Schaffer and Mettler (1970), Turner (1970), Wright (1969, p. 39, 
133, 139). 

*7.5. Nomography 

There are techniques for representing a functional relationship among 
three variables in a plane, thus avoiding the three-dimensional space. 
F or example, let w be the geometric mean of two quantities u and v, that is, 

w=0W (u>O, v>O). (7.5.1) 

6 The drawing of a hydra is made after Engelhardt (1962) and the drawing of tentacles 
after Brohmer (1964). 
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Squaring this equation and taking logarithms we obtain 

2logw = logu + logv. 

With new variables 

U = logu, 

the equation becomes 

V= logv, W=logw, 

2W= U+ V. 

W is the arithmetic mean of U and V 

b 

v 

u 2 3 4 5 10 20 

U 

(7.5.2) 

(7.5.3) 

(7.5.4) 

50 100 100 

Fig. 7.14. Cartesian charts. Chart (a) is for the arithmetic mean W = (U + V)/2. Numerical 
example: U = 1.8, V= 1.2, W= 1.5. Chart (b) is for the geometric mean w=VuV. 

Numerical example: u=40, v=90, w=60 

We may employ a rectangular coordinate system with a U and a 
V axis. Then for each fixed value of W, (7.5.4) is the equation of a straight 
line. For different values of W we get different straight lines. They are 
mutually parallel (Fig. 7.14 a). When we are given two values U and V, 
we find the point (U, V) falling on a particular straight line characterized 
by the corresponding value of W. 

Using (7.5.3) we may replace the linear scales with logarithmic scales, 
thus obtaining a graphical representation of the geometric mean (Fig. 
7.14b). 

Charts of the type shown in Fig. 7.14 are called Cartesian charts or 
concurrency nomograms. The lines W = const may also be interpreted 
as contour lines on a map. Therefore, concurrency nomograms are 
sometimes called topographic charts. 
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Under favorable conditions concurrency nomograms or topographic 
charts can be replaced with so-called alignment nomograms. They are 
usually more convenient. In the simplest form such a nomogram consists 
ofthree parallel straight lines which bear scales for three variables u, v, w. 

One way of constructing alignment nomograms is based on the use 
of an auxiliary x, y coordinate system. The dashed lines in Fig. 7.15 are 
the x and y axes. The units on the two axes need not be the same. Through 

U axis iy W axis V axis 
I 
I 
I 
I 
I 
I 
I 

! I W 
1 U 1 ill 

j : j 
x;;-l- -- - -01-- X':-c ----

v 

x=+ 1 
I 
I 
I 

Fig. 7.15. Construction of an alignment nomogram with three parallel lines 

the points (- 1,0) and (+ 1,0) we draw lines parallel to the y axis. They 
serve as linear U and V axes. We also draw a third axis parallel to the 
y axis through a point (c,O) where c is an arbitrary but fixed number 
(c ~ 1, c ~ - 1). We call it the W axis. All three axes are chosen such 
that they are linear with points U = 0, V = 0, W = ° on the x axis and 
that the unit is the same as on the y axis. 

Now, let I be a straight line that intersects the U, V, Waxes. The 
points of intersection are 

(- 1, U) on the U axis, 

(+ 1, V) on the V axis, 

(c, W) on the Waxis. 

The slope a of I can be calculated in different ways by the formula 
a = Lly/Llx. For the points of intersection of 1 with the V and Waxes we 
get a = (V - W)/(l- c), and for the points of intersection with the U and 
V axes a = (V - U)/2. Equating the results we obtain 

v-w 
1-c 

V-U 
2 

(7.5.5) 
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or, after cross multiplication and rearrangement of terms, 

U(1-c)+V(1+c)=2W. (7.5.6) 

The equation establishes a linear relationship among the variables U, V, 
and W. Every linear relationship can be adapted to formula (7.5.6). This 
permits construction of an alignment nomogram. 

As an example, we return to formula (7.5.4) which defines W as the 
arithmetic mean of U and V. In order to adjust this formula to (7.5.6) 

u w v u v 

+2 +2 +2 100 100 100 

+1 +1 +1 10 10 10 

o o o 

-1 -1 -1 0.1 0.1 0.1 

Fig. 7.16. Alignment nomograms (a) for the arithmetic mean W = (U + V)/2 and (b) for the 
geometric mean w = V;;-;;. When two values u and v are given, the corresponding points 
on the u and v axes are connected by a straight line I. At the intersection of I with the waxis 

we find the geometric mean w=V;;-;;. Numerical example: u=40, v=90, w=60 

we simply let c = O. Hence, the W axis coincides with the y axis. The 
nomogram is shown in Fig. 7.16a. For simplicity the x and y axes are 
not shown. 

By replacing the linear scales with logarithmic scales following (7.5.3), 
we obtain an alignment nomogram for the geometric mean (Fig. 7.16b). 

One of the three axes may be curvilinear. In order to construct such 
a nomogram we slightly generalize the previous concept. In Fig. 7.17 we 
assume that the curve bearing the values of w is represented in parametric 
form 

x= f(w) 

y= g(w) 
(7.5.7) 
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with parameter w as explained in Section 7.1. In the same way as we 
obtained (7.5.5) and (7.5.6), we now get 

V-y V-U 

1-x 2 
(7.5.8) 

and 
U(1- x)+ V(1 +x)= 2y. (7.5.9) 

Replacing x and y by the functions (7.5.7) and U and V by certain 
monotone functions 

U=h(u), V=k(v), 

"* U u 
OJ) 

~v 
OJ 
U 
OJ) 

> 

(7.5.10) 

Fig. 7.17. Construction of an alignment nomogram with two parallel and one curvilinear 
axes. U and V are scaled in the same manner as y, whereas u and v are represented, in 

general, by non-linear scales 

we derive from (7.5.9) the formula 

h(u) (1 - f(w») + k(v) (1 + f(w») = 2g(w) . (7.5.11) 

Hence, if we can write a functional relationship among three variables 
u, v, w in the form (7.5.11), there exists an alignment nomogram of the type 
shown in Fig. 7.17. 

Example 7.5.1. Consider the quadratic equation in w 

w2 +uw+v=0. (7.5.12) 

When the coefficients u and v are given, we want to determine graphically 
the positive roots of this equation. We may rewrite (7.5.12) in the form 

(7.5.13) 

with an arbitrary factor F. In order to adapt (7.5.13) to (7.5.11) we let 

h(u)=u, k(v)=v, 

1-f(w)=wF, l+f(w)=F, 2g(w)=-w2 F. 
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Eliminating F we get 

1-w 
f(w)= 1 + w ' 

w2 
g(w) = - --. 

1 +w 
(7.5.14) 

These functions of w specify the parametric Eg. (7.5.7). For various 
positive values of w we calculate x and y. Plotting the points (x, y) and 
labeling these points with the corresponding values of w we obtain the 
curvilinear scale depicted in Fig. 7.18. For simplicity, the auxiliary x and 
y axes are not shown. 

u v 

1 

0 0.5 0 

- 1 -1 

- 2 - 2 

- 3 - 3 

-. - 4 

- 5 - 5 

Fig. 7.18. An alignment nomogram for finding the positive roots of a quadratic equation 
w2 + uw + v = O. Numerical example: w2 - 5w + 4 = O. The line connecting the points 
u = - 5, v = 4 intersects the w scale at WI = 1 and w2 = 4. Thus the equation has two 

positive roots 

For more advanced alignment nomograms, especially in the area of 
life sciences, see Batschelet and Striebel (1952), Comroe (1965, p. 27), 
Consolazio, Johnson, and Pecora (1963), Diem (1962, p. 541, 546, 551, 
578,626,631-633), Hamilton (1947, p. 429), Hennig (1967, p. 114), Levens 
(1959, p. 252, 254, 260), Peters (1969, p. 36), Ricci (1967, p. 260), Schuler 
and Kreuzer (1969, p. 71), Severinghaus and Stupfel (1956), c. A. B. Smith 
(1966, p. 170), Sunderman and Boerner (1949, p. 96, 97), Swerdloff, 
Pozefsky, Tobin, and Andres (1967), Thews (1971), Waterman and 
Morowitz (1965, p. 10--12). 
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*7.6. Pictorial Views 

In the previous section we have shown how functional relations 
among three variables can be represented in a plane. This procedure of 
reducing three to two dimensions is primarily chosen for economic 
reasons. However, there are other considerations, such as clarity and 
quick intuitive understanding, which favor perspective or pictorial views 
of surfaces and curves. In addition, three-dimensional objects as studied 

x 

Fig. 7.19. Parallel-perspective presentation. Three mutually perpendicular axes are 
depicted by three lines in a plane. Lines parallel in space remain parallel in the drawing. 
The unit of length may be shortened in some direction. Circles are depicted by ellipses 

in morphology also call for a representation that is as close as possible 
to our everyday experience. A special case of perspective views occurs 
when a landscape is depicted. Then the drawing is usually called a block 
diagram. 

There are a variety of ways to obtain good and precise pictorial views. 
We begin with the parallel-perspective presentation. We introduce three 
mutually perpendicular axes and denote them by x, y and z. One ofthem, 
say the z axis, is depicted by a vertical line. For representing the x and 
y axes we choose lines that form acute angles (/. and {3 with a horizontal 
line (Fig. 7.19a). The unit of length may be plotted in its natural size or 
may be suitably shortened. In Fig. 7.19a we have assumed no shortening 
on the z and the y axes but some reduction on the x axis. The ratio of 
scales is i: 1 : 1. Lines that are parallel in space remain parallel in the 
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Fig. 7.20. Construction of an ellipse. (a) If the axes are not known, we obtain points of the 
ellipse by reducing segments p, q, r, ... located on lines parallel to the sides of the original 
square. The new segments p', q', r', ... are then proportional to p, q, r, .... (b) If the axes are 
known, we prepare a strip of paper and plot on a straight edge two adjacent segments a 
and b in the size of the half-axes. Then the strip is moved in such a way that one endpoint, 
say A, remains on a vertical axis and the other endpoint, say B, remains on a horizontal 

axis. Then the point C which separates a and b moves along the ellipse 

parallel-perspective illustration. With these rules in mind a cube is 
depicted in Fig. 7.19b. Each point in space can be exactly placed in the 
drawing as long as we know its rectangular coordinates x, y, z. We have 
simply to proceed from an origin by x steps in the x direction, by y steps 
in the y direction, and by z steps in the z direction, always observing the 
proper unit of length. 

Circles are represented by ellipses. Fig. 7.19b shows the pictorial view 
of three circles that are located on the surface of a cube. There should 
be no concern about constructing an ellipse. Fig. 7.20 explains the 
practical procedure. 

For plotting a surface a grid pattern is quite useful. In the x, y plane 
we draw equidistant lines parallel to the axes, that is, we prepare a pic-
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torial view of ordinary graph paper (Fig. 7.21). Then from each mesh 
point we plot the height of the surface. Finally we connect the points 
thus obtained by smooth curves in the direction of the x and/or the 
y axes. This procedure gives a precise and often a good intuitive view 
of a curved surface. 

For simplicity, two special cases of parallel-perspective presentation 
are often chosen: 

a) The isometric drawing. Here, rx = p = 30°. No shortening of the 
unit of length is required (ratio of scales 1: 1 : 1). An example is shown 
in Fig. 7.22. 

x 

y 

Fig. 7.21 . Parallel-perspective presentation of a surface. The points are plotted vertically 
above a grid pattern. The points are connected by smooth curves 

b) The oblique view. Here rx is zero and P is chosen between 30° and 
45°. The units along the x and z axes are not shortened, whereas the unit 
on the y axis is reduced. The ratio of scales is 1 : c : 1 with c between 0.5 
and 0.8. Fig. 7.23 shows an oblique view of a helix. The projection of this 
three-dimensional curve by rays parallel to the z axis into the x, y plane 
is a circle with radius r. The parametric equations of this circle are 

x= rcoscp 

y= r sin cp 
(7.6.1) 

with variable parameter cp (for the notion of parametric equations see 
Section 7.1). The angle cp may take on any real value and may be meas
ured either in degrees or in radians. As cp increases, the coordinate z 
increases proportionally. Hence, another parametric equation is 

z = kcp (7.6.2) 

with a certain constant k > O. When cp increases by 360° or 2n radians, 
the helix climbs by k · 360° or k· 2n, respectively. (7.6.1) together with 
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/ 

Fig. 7.22. Isometric drawing of the interaction between two competing species. N, and Nz 
are the number of individuals of species No.1 and 2. K" K2 denote saturation values 
and ex, P competition coefficients. The model was proposed by L. B. Slobodkin. The 

figure is taken from Slobodkin (1961, p. 66) 

Fig. 7.23. Oblique view of a helix. The ratio of scales on the x, y, z axes is 1 : %: 1 

(7.6.2) form the parametric equations of the helix. For an isometric 
drawing of a helix see Fig. 8.8. 

Another example of an oblique view is shown in Fig. 7.24. 

The parallel-perspective presentation is not always satisfactory. As 
seen with our eye, parallel lines converge into one point (cf. the two rails 
of a straight railroad track). Hence, particularly if lengthy segments on 
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Fig. 7.24. Oblique view of a response surface which was calculated from data by 
statistical methods. Three fertilizers were applied: a constant amount of nitrogen 
(400 pounds per acre) and variable amounts of potassium and phosphorus. The yield is 
measured in tons per acre. From Platt and Griffiths (1964, p. 49) after Welch, Adams, 

and Carmon (1963) 

9 

9 

Fig. 7.25. Two-point perspective view ofa complicated surface. The size of this surface may 
be estimated by the number of intersections with a straight line g. The figure is taken from 

Fischmeister (1967, p. 224) 
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Fig. 7.26. Three-point perspective presentation or a surrace showing the theoretical inter
relation or genotypes or host and pathogen in controlling the severity or a disease. 

Redruwn rrom Gowen (1952, p. 287) 

parallel lines have to be depicted, a so-called angular-perspective presen
tation is preferable. We begin with a special case: The x and z axes as 
well as lines parallel to these axes are drawn as in an oblique view, but 
the lines parallel to the y axis converge into one point (which is not 
necessarily part of the illustration). Such a presentation is called one
point perspective. An example is offered in Fig. 9.23. 

When convergence is chosen in two directions, the presentation is 
called two-point perspective. Fig. 7.25 is an application. 

An ordinary camera usually generates a three-point perspective view 
of lines that are parallel to three different directions. It may be recom
mended for a more sophisticated way of presentation. Fig. 7.26 and 7.27 
are examples. 
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In an angular-perspective view circles are still represented by ellipses 
so that the construction shown in Fig. 7.20 is applicable. However, 
shortening can no longer be performed at a constant ratio. In general, 
angular-perspective drawings are more time consuming than parallel
perspective drawings. A labor saving method is the use of a printed 
perspective chart that can be purchased. Fig. 7.28 depicts the principle. 

Fig. 7.27. Three-point perspective drawing of tissue components. The relation of successive 
sections is shown. For accurate drawing, a grid pattern is required in each section. The 

figure is from Mitchell and Thaemert (1965, p. 1480) 

Fig. 7.28. Converging lines in a three-point perspective chart 
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Computers with attached plotters are able to draw the more com
plicated pictorial views. They are even able to rotate a three-dimensional 
pattern and to replot it in various perspective views (see Rosenfeld, 1969). 
Programming, however, is time consuming and the process expensive. 
If hand drawing is feasible, it should be used since it is fast and in
expensive. 

For more pictorial views of biological objects see Elias and Hennig 
(1967), p. 155-163) and Weibel and Elias (1967, p. 90-94). Forblock 
diagrams see Jenks and Brown (1966). 

Recommended for further reading. D. S. Davis (1962), Karsten (1925), 
Levens (1959, 1962 and 1965), Schmid (1954), c. A. B. Smith (1966), 
Worthing and Geffner (1959). 

Problems for Solution 

7.1. Plot a double scale (or adjacent scales) for the function y = xt 
with scale values x = 0, 0.5, 1.0, ... ,4.0 and y = 0, 0.2, 0.4, ... ,2.0 
whereby 
a) the x scale is linear, 
b) the y scale is linear. 
Which of the two double scales seems to be more practical? 

7.2. Plot a double scale (or adjacent scales) for y= sinex with scale 
values ex = 0°, 10°, ... ,90° and y = 0, 0.1, 0.2, ... , 1.0 whereby the 
y scale is linear. 

7.3. Draw a curvilinear scale by means of the parametric equations 
x = 2 cosa, y = sina for the scale values ex = 0°, ISO, 30°, ... ,360°. 

7.4. The enzymatic activity of catalase is lost during exposure to 
sunlight in the presence of oxygen. Let y be the concentration of 
catalase (in J.lg/l0 ml) as a function of the time t (in minutes). Then 
we have approximately 

y = aqt (0 ~ t ~ 80) 

with certain parameters a and q. Estimate a and q graphically 
using the following data (from Mitchell and Anderson, 1965): 

t (minutes) 

y (J.lg/l0 ml) 

o 10 30 50 60 70 80 

121 74 30 12 6.7 3.7 2.0 

(Hint: Use a semi logarithmic plot). 
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7.5. Prepare a semilogarithmic plot of the following exponential 
functions: 
a) y=2'" b) y=5·2'" c) y = (1.25)'" 
d) y = (0.45) (1.25)'" e) y=(!)'" f) y= (0.33)"'. 

7.5a. Prepare a 
function 

semilogarithmic plot for the exponential growth 

w = w(n) = a ( 1 + 1~ r 
which we considered in Section 1.3. As domain for the independent 
variable n choose the interval from 0 to 50. For simplicity, let 
a = 1, and treat the cases p = 1 %, 2 %, 3 %. 

7.6. We are given the following empirical function: 

x = 1.5 2.5 3.5 4.5 5.5 6.5 7.5 (mg) 

y = 0 0.47 2.8 27.4 83 18.3 12.4 (min) 

Because of the large range of y, a semilogarithmic plot is required. 
Use the modified transformation Y = log(y + 1), since y can take 
on zero. 

7.7. For x> 0 represent the following power functions by straight 
lines using a double-logarithmic plot: 

7.8. 

a) y=x2 b) y=tx c) y=4/x 
d) y=x- 2 e) y=6.5x2 f) y=2xt 
g) y=X3 /2 h) y=x-t . 

We are given three empirical functions: 

a) x y b) x y c) x Y 
1.5 1.778 1.5 5.217 1.5 10.87 
2.5 2.611 2.5 7.328 2.5 5.047 
4.0 4.642 4.0 10.03 4.0 2.495 
5.0 6.813 5.0 11.64 5.0 1.782 
6.5 12.11 6.5 13.87 6.5 1.201 

Plot all three functions first in a semilogarithmic coordinate sys
tem and second in a double-logarithmic coordinate system. By 
inspection decide which of the three functions is best fitted by 
a power function or by an exponential function. 

*7.9. The plasma of human blood contains on the average 92% water, 
6 % proteins, and 2 % electrolyte (the percentages refer to the 
weight). Represent this data by a dot in a trilinear chart. How 
does the dot change its position when the first component (water) 
is successively reduced? 
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*7.10. Let A and a be two different alleles which mayor may not be 
present at a certain locus. Let p and q be the relative frequencies 
of A and a, resp., in a population (O~p~ 1, O~q~ 1, p+q= 1). 
Under the assumption of panmixia (random mating), the three 
genotypes AA, Aa, aa occur with relative frequencies pZ, 2pq, qZ, 
resp., according to the Hardy-Weinberg law. Plot these three 
frequencies in a trilinear chart for the following numerical values: 
a) p=0.2, q=0.8 b) p=O.4, q=0.6 
c) p=0.6, q=O.4 d) p=0.8, q=0.2 
e) p=l, q=O. 

*7.11. Find an alternative proof for formula (7.4.1). Instead of drawing 
paralleles to the three sides, draw the lines AP, BP, CPo Express 
the areas of triangles BPC, APC, AP B in terms of hl' hz, h3 and 
sum up these areas. 

*7.12. Draw a concurrency nomogram for the volume of a right circular 
cylinder, V = nrz h with n = 3.14. Use logarithms to get straight 
lines for constant values of V. 

*7.13. Find an alignment nomogram with three parallel scales 
a) for the weight of a cube, W = (!a3 where (! denotes the specific 

gravity, 
b) for the volume of a right circular cylinder, V = nr2 h with 

n=3.14. 
(Hint: In both cases take logarithms and adapt the result to 
formula (7.5.6)). 

*7.14. Find an alignment nomogram with three parallel scales for the 
exponential growth 

y = (1 + p/100Y = qX . 

The exponent x takes values from 1 to 50 and the base q takes 
values from 1.01 to 1.10 which correspond to the interval of p 
from 1 % to 10%. This nomogram is very useful in studies of 
population growth. (Hint: Take logarithms twice. Let U = logx 
- 1.5, V = log(logq) + 1.5, and W = ! log (logy). Apply formula 
(7.5.6)). 

*7.15. A rectangular solid has length 8 cm, width 5 cm and height 3 cm. 
Prepare a) an isometric drawing, b) an oblique view, c) a one-point 
perspective view, d) a three-point perspective view. 

*7.16. Find an isometric drawing of a helix. 

*7.17. Prepare a block diagram of the exponential function z = qX with 
q = 1, 2, 3,4 and x ranging between 0 and 2. The z axis should 
not be shortened, while shortening the q and x axes is optional. 



CHAPTER 8 

Limits 

8.1. Limits of Sequences 

The purpose of this chapter is to make differential and integral 
calculus understandable. With the study of limits we will obtain a most 
powerful tool for defining such concepts as (instantaneous) growth rate, 
rate of decay, reaction rate, diffusion rate and their counterparts, total 
amount of growth, of decay, etc. 

Let n be any natural number, that is, let n E {1, 2, 3, ... }. We consider 
any function of n and denote such a function either by I(n) or by an. 
The set of functional values 1(1),/(2),/(3), ... or a l , a2 , a3 , ••• arranged 
in their natural order is called a sequence (cf. Section 6.1). Some examples 
may illustrate the notion: 

an =3n generates the sequence 3,6,9, 12, 15, ... (8.1.1) 

3 
generates the sequence 

3 3 3 3 3 
a=- 3'2,1'4'5'6'7' ... (8.1.2) 

n n 

n-1 12345 
a=-- generates the sequence 0'3'4'5'6'7' ... (8.1.3) 

n n+ 1 

The usual notation for such a sequence is {an}. 
In the theory of limits we are interested in the behavior of a sequence 

when n takes larger and larger values or, in other words, when n tends 
to infinity. With increasing n the sequence (8.1.1) also tends to infinity. 
On the other hand, the sequences (8.1.2) and (8.1.3) behave quite differently. 
In both cases we have 

0~an~3. 

We say that the sequences remain bounded. A lower bound for an is 0 
and an upper bound is 3. 

In the history of mathematics the term "infinite" was obscure for a 
long period. On one hand, there were people claiming that infinity could 
be treated as a number and, consequently, could be involved in algebraic 
operations. On the other hand, working with infinity has led to several 
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contradictions. Bolzano 1 was able to rationalize the previously obscure 
notion of infinity. His concept is based on easy relations. Nevertheless, 
it takes some time to become familiar with his definition: 

A sequence {an} is said to tend or to diverge to infinity, if for any 
given C > 0 it is possible to find a natural number nc such that 

an>C 

holds whenever n > nco In symbols2 

(8.1.4) 

(8.1.5) 

In modern mathematics, r:IJ is not a number, and no algebraic 
operation is defined for this symbol. In connection with sequences, 
"infinite" simply means that an, from a certain n on, exceeds any bound C, 
no matter how big C is chosen. 

The reader unfamiliar with this way of thinking may study the 
following example: Let the term be an = n/100. We choose C = 105. 

Then an> C for every n> 107 • Hence, for the particular value of C 
there exists nc = 107 such that an> C whenever n > nco Had we chosen 
C = 1010 or any higher value, we could find another nc, namely nc = 1012 

or correspondingly higher. Therefore, the sequence {an} tends to infinity. 
Similarly, if a sequence such as -1, - 4, - 9, -16, ... with the term 

an = - n2 becomes smaller than an arbitrarily low bound - C, we say 
that {an} tends to minus infinity and write 

(8.1.6) 

Now we return to sequence (8.1.2). As n-+r:IJ, we see that an = 3/n 
becomes smaller and smaller without ever reaching the value zero. 
Nevertheless, 3/n approaches zero so that we are inclined to say that 
3/n tends to zero. The precise mathematical meaning of this statement 
may be formulated after Bolzano: 

A sequence {an} is said to tend or to converge to zero, if for any given 
8> 0 it is possible to find a natural number nt such that 

lanl <8 

holds whenever n > nt • In symbols3 

an --+ 0 or lim an = 0 . 
n-oo 

(8.1.7) 

(8.1.8) 

1 Bernhard Bolzano (1781-1848). Bohemian theologian, logician, and mathematician. 
2 The symbol 00 for infinity was proposed by the English mathematician and theologian 

John Wallis (1616-1703), according to Cajori (1929, p. 44). 
3 The Greek letter e (epsilon) has become a standard notation for an arbitrarily 

small positive number. The symbol lim is read "limit as n tends to infinity". For the 
printer it is easier to write limn~oo' n~oo 
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In our example an =3/n. If we choose B= 10- 5, then, for every 
n > 3 . 105, we get an < B. Hence, for the particular choice of B we have 
n. = 3.105 • Had we chosen B = 10-10 or smaller, we would get another n., 
namely n. = 3 . 1010 or correspondingly higher. Therefore, {an} tends to 
zero. The behavior of this sequence is depicted in Fig. 8.1. 

The two vertical bars in (8.1.7) signify the absolute value of an (see 
Section 1.6). This operation is required for a sequence which approaches 
zero from the negative side or even from both sides, such as - 1/2, - 1/4, 
-1/8, -1/16, '" or 1, -1/2, + 1/3, -1/4, ... , respectively. 

limit 

-Q a a 
I 111111111 I I 15 14 

o 2 3 

Fig. 8.1. The term a. = 3/n tends to zero. The points representing a. accumulate in the 
"neighborhood" of the point zero without ever reaching this point 

Finally, we consider the sequence (8.1.3). When n becomes large, 
say n = 1000, we have an = 999/1001. We guess that {an} tends to 1, 
that is, n-l 

----+1 
n+l 

1· n -1 1 or Im--= . 
n-oo n + 1 

In order to verify the statement we introduce a modified sequence {bn} 

where 
n-l 2 

b =a -1=---1=---
n n n+1 n+1' 

As n tends to infinity, {bn } tends to zero, since Ibnl < B for any arbitrarily 
small positive number B whenever n is large enough. It follows that an 
deviates from 1 by an arbitrarily small number for large values of n. 

The case of a finite limit is thus reduced to the special case where 
the limit is zero. In general, we say that a sequence {an} tends to a finite 
limit A if the modified sequence {bn} with term 

converges to zero. 
(8.1.9) 

Two convergent sequences may fulfill a peculiar relationship. For 
5 1 

example, let an = 2 - - and Cn = 2 - -. Here 
n n 

for every natural number n. But 

lim an = lim cn = 2 . 
n-"oo n-oo 
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Hence, two sequences can converge to the same limit, although the 
members of one sequence are smaller than the corresponding members 
of the other sequence. Therefore, from an < en we cannot conclude that 
lim an < lim en' The proper conclusion is 
n-oo n-oo 

lim an ~ lim en (8.1.10) 
n-oo n-oo 

which allows for the possibility of an equal sign. 

In the rest of this section we will learn how to determine limits of 
some sequences. Clearly, sequences such as 

{an = n2}, {an = n3}, ". 

tend to infinity. Conversely, 

tend to zero. When we are given a more complicated sequence {an}, for 
example with 

a = n 

100 - Sn + 3n2 

8 + lOn+2n2 ' 

we may find a limit by reducing the problem to simpler terms. For this 
purpose we divide the numerator and the denominator by the highest 
occuring power, in our example by n2 • We obtain 

100 S 
---+3 

n2 n 
an=~8----~10~--

-+-+2 
n2 n 

Here, 1oo/n2 , - S/n, 8/n2, and lO/n tend to zero. Hence, the numerator 
tends to 3, the denominator to 2, and the whole fraction to 3/2. Therefore, 

lim an = 3/2. 
n~oo 

Similarly we get 

1· n + 1 l' 1 + l/n -_ 1 1m -- = 1m ----'---
n~oon-2 n~ool-2/n ' 

1. n3 - 1000 l' 1 - 1000/n3 
1m = 1m = 1/5, 
n~ooSn3+20n2 n~oo S+20/n 

lim 10 + n = lim 1O/n2 + l/n =0. 
n~oo 2 + n2 n~oo 2/n2 + 1 
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A sequence such as 
111 1 

1, 1/2' 1/3 ' 1/4' 1/5 ' ... 

creates a particular problem. The denominator tends to zero. One is 
tempted to think that the sequence tends to 1/0. However, 1/0 has no 
mathematical meaning as we pointed out at the end of Section 1.6. We 

1 
get a correct result if we rewrite the general term an = l/n in the simple 

form an = n. Clearly, {an} diverges to infinity. Other examples of divergence 
are 

1 n 
= ->00 

(l/n) - (l/n)2 1 - (l/n) , 

2/n2 + 1 2/n + n 
_--'---c~ __ = ->00 
10/n2 + l/n 10/n + 1 ' 

n2 -100 n -100/n 
---- = ->00. 
n + 100 1 + l00/n 

In Section 6.1 we introduced the geometric or exponential sequence 
with the term 

(8.1.11) 

We may now study its limiting behavior. This depends only on the 
factor qn. Several cases have to be distinguished. For q = 1 we get qn = 1 
for all values ofn and hence, qn-> 1. For q > 1 the sequence qn is monotone 
increasing. Because of log q > 0 we see that log qn = n . log q tends to 
infinity. Therefore, {qn} tends also to infinity. For 0 < q < 1, however, 
the sequence {qn} is monotone decreasing. The reciprocall/q=ql' say, 
is greater than one. Thus l/qn = q~ tends to infinity. Therefore, {qn} 
tends to zero. 

For negative values of the base q the sign of the sequence {qn} 
alternates. For - 1 < q < 0 the sequence tends to zero from the positive 
as well as from the negative side. For q ~ - 1, however, the sequence 
does not tend to a single finite or infinite limit. We simply say that 
{q"} diverges. 

The results may be summarized as follows: As n tends to infinity 

qn->oo for q> 1, 

q"->1 for q= 1, 

qn->o for Iql< 1, 
(8.1.12) 

qn diverges for q~ -1. 
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Example 8.1.1. A biological application may illustrate the case 
q = - t. In man, and in fruitflies, there are two kinds of sex chromosomes, 
the X and the Y chromosome. An X X individual is female and an X Y 
individual is male. Let A and a be two alleles at a certain locus of the X 
chromosome for which there is no corresponding locus of the Y 
chromosome. Therefore, males can only be of genotype A . or a ., while 
females may be one of three genotypes AA, Aa, and aa. The theory 
shows that under the assumption of panmixia (random mating) the 
frequencies of A and a oscillate from generation to generation. The 
oscillation is damped so that the frequencies quickly converge to certain 
limits (see Li, 1958, p. 59-68). For the ease of presentation we skip the 
proof and confine ourselves to a numerical example. Let q1 be the 
initial frequency of the male genotype a ., and let q2' q3' ... be the corre
sponding frequencies of subsequent generations. Then 

qn=0.40+0.20(-tt- 1 for n= 1,2,3, .... 

For this particular example we obtain 

q1 =0.40+0.20 =0.60 

q2 = 0.40 + 0.20 ( - t) = 0.30 , 

q3 = 0.40 + 0.20 (i) = 0.45 , 

q4 = 0.40 + 0.20( - -1) = 0.375, etc. 

(8.1.13) 

As n tends to infinity, the sequence {( - t)n -1} tends to zero and, therefore, 

lim qn = 0.40 . 
n .... co 

The behavior of the sequence {qn} is depicted in Fig. 8.2. 

In calculus, convergence often appears in a somewhat different form. 
Instead of the independent variable n = 1,2,3, ... , a quantity h occurs 
which tends to zero. For simplicity we let 

h= lin (8.1.14) 

and then consider sequences such as 

When h -... 0, both the numerator and the denominator tend to zero. But 
010 has no meaning. Hence, we divide numerator and denominator by h. 
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Fig. 8.2. For sex chromosomes the frequency q. of the male genotype a· oscillates from 
generation to generation. The oscillation is damped so that q. tends to a limit (adapted 

from Li, 1958, p. 62) 

This is permitted since h =l= 0 because of (8.1.14). Thus we get 

2h-h2 
lim h = lim (2-h)=2. 
h-O h-O 

Similarly we obtain 

5h + 100h3 5 + 100h2 
lim = lim = 5/4 . 
h-O 4h-h2 h-O 4-h 

8.2. Some Special Limits 

In this section we deal with a few limits which will be used later. We 
begin with the sequence {an} whose general term is 

a = 1+-( 
1 )100 

n n 

For every natural number n, the base 1 + l/n is greater than one. Raising 
to the hundredth power will increase the value so that an> 1. On the 
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other hand, as n tends to infinity, 1 + lin -> 1. Since 1100 = 1, we guess 
limn_roan = 1. To verify the result we apply logarithms: 

IOgan =10010g (1+ ~). 
While the first factor remains constant, the second factor tends to log 1 
which is zero. Hence log an -> 0 and an -> 1. 

Now consider 

an = (1 + 1~ r = 1.01n . 

This is a special case of an exponential term (8.1.11). Since the base is 
greater than one, {an} tends to infinity. 

Combining a variable base with a variable exponent we are led to 
the particular term 

1 
an is a product consisting of n identical factors 1 + -. As n tends to 

n 

infinity, the base 1 + ~ tends to one. Thus we may think that the power 
n 

also tends to one. On the other hand, the exponent tends to infinity so 
that we may argue that the power itself tend to infinity. There exists a 
curious balance between a tendency of augmenting the power and a 
tendency of diminishing it. By means of logarithmus one can calculate 
some members of the sequence. In the following table an is rounded-off 
to five significant figures: 

n an n an 

1 2 1,000 2.71692 
2 2.25 10,000 2.71815 
5 2.48832 100,000 2.71827 

10 2.59374 1,000,000 2.71828 
100 2.70481 10,000,000 2.71828 

an tends to a limit which has the standard notation e: 

lim (1 + ~)n = e = 2.718281828459 ... 4 . 
n-oo 11 

(8.2.1) 

4 The letter e was chosen by Leonhard Euler (1707-1783). Born in Switzerland. he 
became a mathematician in Germany and later in Russia. 
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For a proof of convergence we refer the reader to textbooks on cal
culus. For an application of this limit in biophysics see Rashevsky 
(1960, vol. 1, p. 435). 

Another limit of importance concerns the sine function. Measuring 
angles in radians, we study the behavior of the quotient 

sinh 
h 

as h = 1jn tends to zero. In Fig. 8.3 a part of the unit circle is depicted 
(cf. Section 5.4). h is the length of the arc from Q to R. cos h and sin hare 

Iy ~ % 

1 

~" 
51 n h 

x 
o :P-- :Q 
-~--- ~ ~ ~~--cos h ---~ 

Fig. 8.3. Proof of formula (8.2.3) 

the rectangular coordinates of R, and SQ = tanh because of formula 
(5.6.2). Now we compare the areas of triangle OPR, of sector OQR, 
and of triangle OQS with each other. Using an obvious notation we 
obtain 

AoPR < AOQR < A oQS . (8.2.2) 

For a right triangle, the area is one-halfthe product ofthe two legs. Thus 

1 . 
AOPR = "2 cosh smh, 

1 1 sinh 
AoQs = -2 tanh= -2 --. 

cosh 

The area of a sector is proportional to the arc. Hence comparing the 
sector with the full circle of radius r = 1 we get 

AOQR : nr2 = h : 2nr . 

This yields AOQR = hj2. From (8.2.2) it follows that 

1 . h 1 sinh 
- cosh smh < - < - --
2 2 2 cosh 
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or, on multiplication by 2/sinh, 
h 1 

cos h < -·-h < --h-· 
sm cos 

(8.2.3) 

As h tends to zero, the lower bound cos h as well as the upper bound 
l/cosh tend to one. Hence h/sinh, which remains between the two 
bounds, must also tend to one. The same holds for the reciprocal sin h/h: 

1· sinh 1 
Im--= 
h~O h ' 

whereas both numerator and denominator tend to zero. 

Does 
8.3. Series 

0.99999 ... = 1 ? 

(8.2.4) 

(8.3.1 ) 

We obtain this peculiar equality by multiplying both sides of 
1/3 = 0.33333 ... by 3. Clearly 0.9 < 1, 0.99 < 1, 0.999 < 1, etc. No matter 
how many digits we add, the decimal fraction 0.9999 ... 9 is always less 
than one. Yet (8.3.1) need not be false. The sign of equality is correct if 
we understand the right side as the limit of the left side: 

lim 0.999 ... 9 = 1 . 
n-+oo~ 

n figures 

Avoiding decimal fractions we may rewrite the sequence as follows: 

Sl = 9/10, Sz = 9/10 + 9/100, S3 = 9/10 + 9/100 + 9/1000, .... 

The general term, 
Sn = 9/10 + 9/102 + ... + 9/1On , 

is called a partial sum. Formally, as n increases, the partial sum tends 
to a "sum with an infinite number of terms". 

In general, let {an} be any sequence. Then the partial sums 

Sn = a1 + az + ... + an (8.3.2) 

form a new sequence {sn}. As n tends to infinity, the sequence of partial 
sums is called a series. We are interested in the limiting behavior of a 
senes. 

A famous example is the geometric series. It is generated by a geometric 
sequence with terms an = aqn. Here, the partial sums usually include the 
term ao = aqo = a. Hence, 

(8.3.3) 
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The partial sum can be rewritten in a "closed" form. For this purpose 
we multiply both sides of (8.3.3) by q: 

qSn = aq + aq2 + aq3 + ... + aqn + aqn+l . 

Subtraction of (8.3.4) term by term from (8.3.3) yields 

Hence, 

provided that q * 1. 

1- qn+l 
Sn =a 

1-q 

(8.3.4) 

(8.3.5) 

With this "closed" form we can easily study the limiting behavior 
of Sn' According to (8.1.12) we get convergence, that is, a finite limit by 
assuming that 

Iql < 1. (8.3.6) 

Under this condition we get qn+l-+0 and, therefore, 

I. 1 
1m Sn =a-1--· n-ao _ q (8.3.7) 

The case q = 1 needs special attention: In (8.3.3) the n + 1 terms are all 
equal to a. Hence Sn = (n + l)a, and this does not tend to a finite limit 
(except in the trivial case where a = 0). 

The result contained in (8.3.7) is customarily written without the 
symbol "lim": 

a 
a + aq + aq2 + aq3 + ... = -- for Iql < 1 . 

1-q 

Some special geometric series are: 

a) a = 1, q = i: 1 + i + i- + k + ... = 2. 

(8.3.8) 

The partial sums are 1, 1.5, 1. 75, 1.875, etc. They are monotone 
increasing. 

b) a=l,q=-i: 1-i+t-k+"'=~' 

The partial sums are 1,0.5,0.75,0.625, etc. They are oscillating 
around the limiting value 2/3 = 0.666 .... 

c) a=0.9,q=0.1: 0.9+0.09+0.009+ .. · =0.999 ... = 1 

in agreement with (8.3.1). 
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Example 8.3.1. Neel and Schull (1958, p. 333) studied the occurrence 
of retinoblastoma under the influence of mutation, inheritance, and 
selection. Retinoblastoma is a kind of cancer of the eye in children. 
Apparently the disease depends upon a single dominant gene, say A. 
Let a be the normal allele. It is believed that mutation of a into A occurs 
at a rate of m = 2 x 10- 5 in each generation. We exclude the possibility 
of back-mutations (A into a). With medical care, approximately 70% of 
the affected persons survive. We further assume that survivors reproduce 
at half of the normal frequency. The net productive proportion of 
affected persons will thus be r = 0.35. Since A is extremely rare, practically 
all affected persons are of genotype Aa. Thus we may neglect individuals 
of genotype AA. Only half of the children of affected individuals are 
then expected to receive the pathogen allele A, but this reduction is 
compensated by the fact that each affected person shares reproduction 
with his unaffected mate. Starting with zero inherited cases in an early 
generation we obtain for the n-th consecutive generation a rate of 

m due to mutation in the n-th generation 

mr due to mutation in the (n - 1)st generation 

mr2 due to mutation in the (n - 2)nd generation 

mrn due to mutation in the original generation 
(which is numbered 0). 

For the total rate Pn of occurrence in the n-th generation we get 

1- r"+1 
Pn=m+mr+mr2 + ... +mrn=m---

1-r 

according to (8.3.5). 
As n-+oo, we obtain 

1. m 2x10- 5 -5 
P = 1m P = -- = - 3 08 x 10 

n--+oo n 1-r 1-(0.35) - . . (8.3.9) 

Therefore, the frequency of persons affected with retinoblastoma will 
finally be 3.08 x 10 - 5, that is, about 50 % higher than the mutation rate. 
It also follows from formula (8.3.9) that 

m=(1-r)p. (8.3.10) 

For this result we find a simple intuitive interpretation. In a steady state, 
the number of A alleles produced by mutation must be compensated 
by an equal number of losses. Thus, per generation, the production rate 
is m, whereas the loss rate is 1- r (nonproductive proportion) multiplied 
by P (frequency of affected persons). 
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For another instructive example of a geometric series in population 
genetics, see Sved and Mayo (1970, p. 294). 

We conclude this section by mentioning a few other series and their 
limiting behavior without proof: 

1 1 1 1 
1+-+-+-+-+···-+00 2 3 4 5 . (8.3.11) 

This is the so-called harmonic series whose terms are the reciprocals of 
all natural numbers. Although the terms tend to zero, the series diverges 
to infinity. But 

111 1 
1 - 2 + 3 - 4 + 5 ... = In 2 = 0.693 ... , (8.3.12) 

1 1 1 1 
1 - 3 + 5 - 7 + 9 - ... = n/4 = 0.785 ... , (8.3.13) 

1 1 1 1 
1 + - + -- + + + ... =e=2.718 ... , (8.3.14) 

1 1x2 lx2x3 1x2x3x4 

that is, the number introduced in (8.2.1). 

8.4. Limits of Functions 

When the domain of a function y = f(x) is not finite, the limiting 
behavior of y as x-+ 00 is of interest. For instance, it may be important 
to know whether y reaches some finite level, or whether y increases 
infini te I y. 

So far in our study of sequences the independent variable n was 
discrete; more precisely, it was restricted to the natural numbers 1,2,3, .... 
Now x is a continuous variable, that is, x takes on all real values from a 
certain Xo on. Fortunately, the theory of limits with continuously 
changing x differs only slightly from the theory with n increasing dis
continuously. The following definition resembles the first definition in 
Section 8.1: 

A function y = f(x) is said to tend or to diverge to infinity as x -+ 00, 
if for any given C > 0 it is possible to find a number Xc such that 

f(x) > C (8.4.1) 

holds whenever x> xc. In symbols 

f(x)-+oo as x-+oo. (8.4.2) 
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For instance, consider the common logarithm y = logx. We choose 
C = 1000. Then we try to find Xc such that log X > 1000 fo~ all values 
x> xc. A suitable bound is Xc = 101000. For all x> Xc we have indeed 
that logx> 1000. Similarly, for any other choice of C we can find a 
suitable xc. Hence, y = logx tends to infinity as x--> 00. 

Other functions that tend to infinity for x-+ 00 are: 
a) the linear function y = ax + b with a> o. 
b) The power functions y=x2 , y=x3 , ••• , y=X1/ 2 , y=X3 /2 , .•• , y=x1/n 

for any natural number n. 
c) The exponential function y = qX for q> 1. Cf. (8.1.12). 

The above definition can easily be modified for functions that tend 
or diverge to - 00 as x -+ 00. Examples of such functions are y = - x, 
y= _x2,y= _X1/ 2,y= _qX for q> 1, and y= -Iogx. 

There are functions that tend to zero as x -+ 00. For instance, y = l/x, 
y = 1/x2 , Y = qX for 0 < q < 1. The definition is as follows: 

A function y = f(x) is said to tend or to converge to zero, if for any 
given e > 0 it is possible to find a number x, such that 

If(x)1 < e (8.4.3) 

holds whenever x > x,. In symbols 

lim f(x)=O. (8.4.4) 
x-oo 

As an illustration we consider the exponential function y = (t)x. We 
choose e = 10- 2 and try to find a number x, such that y < e for x> x,. 
The inequality y < e is equivalent to x log! < loge or to x( - 0.30103) 
< ( - 2) which implies x> 6.65. Hence, if we put x, = 7, say, (8.4.3) is 
satisfied for all values x> x,. For any other choice of e > 0, we could also 
find a suitable x,. This proves that the function tends to zero. 

As x -+ 00, the graph of a function such as y = l/x, y = 1/x2 , or y = qX 
with 0 < q < 1 approaches the x axis from one side. The "distance" 
between the graph and the axis converges to zero, but the graph never 
exactly reaches the x axis. We call the x axis an asymptote of the graph. 
We also say that the graph reaches the x axis asymptotically. In Fig. 8.4 
several functions reaching the x axis asymptotically are plotted. 

Example 8.4.1. An application to biophysics may illustrate the theory. 
Let S be a source of radiation such as electromagnetic waves, sound 
waves, or nuclear radiation. Assume for simplicity that S takes a little 
space (a "point") and sends its energy uniformly into all directions of 
the three-dimensional space. Let E be the energy transmitted by the 
source per second. Then we ask: What is the intensity I of radiation 
received at a distance r from the source S? The intensity is defined to be 



Limits of Functions 185 

energy received per second and per unit area. Points of equal intensity 
are on the surface of a sphere with center in S. Therefore, I is the energy 
that passes through the surface per second, divided by the area of the 
surface (cf. formula (4.2.2)): 

(8.4.5) 

The greater r is, the smaller is the intensity I. More precisely: I is in
versely proportional to the square of r. Doubling of r, for instance, 

1 

o 4 x 
Fig. 8.4. Graphs of several functions that reach the x axis asymptotically. The graphs 

of y = Ijx and y = 1jx2 are called hyperbolas 

reduces I to one fourth of its original value. With the distance r tending 
to inifinity, we get lim I = o. 

A third definition is also required: 

A function y = f(x) is said to tend or to converge to a finite value A 
as x~ 00, if the modified function 

f(x)-A (8.4.6) 
tends to zero. In symbols 

lim f(x)=A. (8.4.7) 
x-oo 

Examples of functions tending to finite limits are: 
a) y = a - b/x. As x ~ 00, the second term tends to zero. Hence 

limy = a. The line with equation y = a is an asymptote. 

b) y = a + ~x with d of: O. To find the limiting behavior we divide 
c+ x 

. a/x+b 
the numerator and the denommator by x. Thus y = d . 

c/x+ 
For x~ 00, a/x and c/x tend to zero. Hence limy = bid. 
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c) y=a-bqX with O<q<1. As x--+oo, we have that qX--+O and 
limy = a. The graph reaches asymptotically the line with 
equation y = a. 

Notice that y = sin a oscillates between the values + 1 and - 1 as a 
approaches infinity. Therefore, sina does not tend to a limit. We say 
that y = sin a diverges as a --+ 00. 

Convergence and divergence of functions may also be studied when 
x --+ - 00 or when x --+ Xo where Xo is any fixed value of the independent 
variable. There is no difficulty in extending the preceding concept for 
x--+ - 00. We leave it to the reader to find the corresponding definitions. 

The case X--+Xo, however, needs special attention because it generally 
makes a difference whether x approaches Xo from the left or from the 
right. When x increases and tends to Xo from the left, we write 

XI Xo· 

Conversely, when x decreases and tends to Xo from the right, we use 
the symbol 

An example may illustrate the difference. Let y = l/x and Xo = O. 
Let x! O. Then l/x --+ + 00, since the denominator tends to zero over 
positive values. Conversely, if we begin on the negative x axis, l/x is 
always negative and, as x approaches zero, l/x tends to minus infinity. 
Thus 

lim l/x = + 00, lim l/x = - 00 . 
x.o xl0 

(8.4.8) 

The result is depicted in Fig. 8.5. 
This example shows that it is not correct to write 1/0 = + 00. First, 

the relation should be written with the symbol --+ instead of =, that is, 
l/x --+ 00. Second, the result is correct, only if x! O. In the opposite case, 
xjO, we would obtain l/x--+ - 00. 

Similarly, it is not correct to write tan 90° = + 00. It is true that 
tan a = sina/cosa--+ + 00 for aI90°. But for a!90° we get tan a--+ - 00. 

For a graph the reader is referred to Fig. 5.13. 
Another important example is the common logarithm y = logx. 

This function is only defined for x > O. But we may ask how logx behaves 
for x!O. Let x = l/u. Then 

logx = log l/u = -logu 

according to formula (6.4.3). Now x!O is equivalent to u--+ 00. We 
already know that logu--+ 00. Hence 

logx--+-oo as x!O. (8.4.9) 
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y 

o x 

Fig. 8.5. The behavior of y = llx as x approaches zero from the right and from the left. 
The y axis is an asymptote to the hyperbola 

The result is in agreement with the graph of the logarithmic function 
in Fig. 6.8. The graph reaches the negative y axis asymptotically. 

In terms of limits it is possible to define continuity of a function. Let 
Xo belong to the domain of a function y = f(x). Then the function is said 
to be continuous at xo, if both limits 

lim f(x) and lim f(x) 
xtxo xJ..xo 

exist and if they are equal. 
If one of the conditions is not satisfied, the function is called dis

continuous at Xo. In Fig. 8.6 the graph of a rather unusual function is 
plotted. At Xo the value of f(x) approaches a certain value f(xo) from 
both sides. Thus f(x) is continuous at Xo- The same is true at Xl despite 
the different angles under which the lines join at the point with coordinates 
Xl andf(x l )· At X2 the value off(x) isf(x2). But this value cannot be the 
common limit when X 2 is approached from the left and from the right. 
In Fig. 8.6 it is assumed that 

lim f(x) = f(x 2), but lim f(x) < f(X2) . 
xtX2 X,tX2 

Hence, f(x) is discontinuous at X2- We say that the value of f(x) jumps 
or has a saltus at x2. A different kind of discontinuity occurs at x 3 -

Here f(x) has no finite limit as X tends to X3-
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I 
I 

~ I 
I 

f( x2) I I f(x,) 
I I 
I 
I 
I 

Xo x, x2 X3 

Fig. 8.6. The graph of a function with two points of discontinuity (X2 and x 3 ) 

Examples of continuous and discontinuous functions: 

a) The power functions y = ax, y = ax2 , y = ax3 , ..• are continuous 
everywhere, that is, for all real values of x. 

b) The power functions y = X 1/2 , Y = X 3/2 , •.. are continuous in their 
full domain, that is, for x > o. 

c) The power function y = ax -1 = a/x is continuous everywhere 
except for x = O. There no finite limit exists, neither from the left 
nor from the right (see Fig. 8.5). 

d) The trigonometric functions y = sin rx, y = cos rx are continuous 
everywhere, that is, for all real values of the angle rx (see Fig. 5.8). 

e) The trigonometric function y = tanrx is continuous for all real 
values rx except for rx = ± 90°, ± 270°, ... (see Fig. 5.13). 

f) The exponential function y = aqX with q > 0 is continuous every
where, that is, for all real values of x. (See Fig. 6.8). 

g) The common logarithm y = logx is continuous for its full domain 
x> 0 (see Fig. 6.8). 

h) Let N = f(t) be the number of cats in a household as a function 
of time. Whenever birth or death occur, f(t) jumps by one or 
several units. Thus f(t) is discontinuous at those instants (see 
Fig. 8.7). A function that remains constant in an interval, then 
jumps to another value, remains constant in an adjacent interval, 
then jumps, etc., is called a step function. Thus N = f(t) is a step 
function. Similarly, the number of pulses or of scintillations is a 
step function. In statistics, step functions are especially useful. 

i) A function y = f(x) whose graph is a "broken line" is continuous 
in its full domain, since at the "joints" the value of f(x) tends to 
the same limit from both sides. Cf. Xl in Fig. 8.6. 
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N " f( t) 

, 
------" , 

L---.j , 

Fig. 8.7. Example of a step function: The number N of cats in a household. The function 
has a saltus at each instant when birth or death occurs 

*8.5. The Fibonacci Sequence 

In 1202 Fibonacci5 raised and solved the following problem: Rabbits 
breed rapidly. It is assumed that a pair of adult rabbits produces a pair 
of young rabbits every month and that newborn rabbits become adults 
in two months and produce, at this time, another pair of rabbits. Starting 
with an adult pair, how big will a rabbit colony be after the first, second, 
third, etc. month? 

During the first month a pair is born so that there are two couples 
present. During the second month the original pair has produced 
another pair. One month later both the original pair and the first born 
pair has produced new pairs so that two adults and three young pairs 
are present, etc. The figures are shown in Table 8.1. 

Table 8.1. Growth of a rabbit colony 

months adult young total 
pairs pairs 

1 1 2 
2 1 2 3 
3 2 3 5 
4 3 5 8 
5 5 8 13 
6 8 13 21 
7 13 21 34 
8 21 34 55 
9 34 55 89 

10 55 89 144 

5 Leonardo Pisano, often called Fibonacci (possibly 1170-1230), Italian mathematician. 
In his book "Liber abaci" he introduced arabic numerals into Europe. 
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Let an denote the number of adult pairs at the end of the n-th month. 
Thus we get the following sequence: 

(8.5.1) 

This is the famous Fibonacci sequence. It has the following remarkable 
property: 

2=1+1 or a3=al +a2 , 

3=1+2 or a4 =a2 +a3' 

5 = 2 + 3 or as = a3 + a4 , etc. 

Each number of the Fibonacci sequence is the sum of the two preceding 
numbers. In concise mathematical language this property may be stated 
by a so-called recursion formula,' 

(8.5.2) 

where n = 2, 3, 4, .... 
In order to study the growth rate of successive members, we form the 

following sequence of ratios 

Thus we get 

bl = 1 

b2 =2/1 =2 

b3 = 3/2= 1.5 

b4 = 5/3 = 1.66 ... 

bs = 8/5 = 1.60 

b6 = 13/8 = 1.625 

b7 = 21/13 = 1.615 .. . 

bs = 34/21 = 1.619 ... etc. 

(8.5.3) 

(8.5.4) 

This sequence seems to converge to a certain limit which falls between 
1.60 and 1.62. It would mean that the rabbit colony grows from one 
month to the next by a percentage that tends to a value slightly higher 
than sixty percent. 

The proof of convergence is left to the reader and may be discovered 
by working through problems 8.16 to 8.18 at the end of this chapter. 
Here we confine ourselves to calculating the exact limit. For this purpose 
we assume that 

(8.5.5) 

exists. This implies that the modified sequence 

(8.5.6) 
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tends to zero. From (8.5.2) it follows that 

By virtue of (8.5.3) and (8.5.6) this becomes 

1 
bn = -b- +1 

n-l 

and 
1 

b +cn = + 1. 
b + cn - 1 

Since Cn ---+ 0 for n ---+ 00 we get 
1 

b=- +1 
b 

which is equivalent to the quadratic equation 

b2 -b-1 =0. 
The only positive root is 

b = t(l + 0) = 1.618034 .... 

This is the desired limit of the sequence (8.5.4)6. 
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(8.5.7) 

(8.5.8) 

(8.5.9) 

(8.5.10) 

(8.5.11) 

Fibonacci numbers are found when arrangement of leaves (phyllotaxis) 
is studied. We consider the case where leaves around a stem follow a 
helical pattern (Fig. 8.8). Proceeding upwards we mark consecutive 
leaves by L 1 , L2, L 3, etc. Leaf L2 will be found standing at a certain 
angle away from Ll around the stem and at a certain distance along the 
stem. In Fig. 8.8 a special case is depicted where the angle is 144°. Leaf 
L3 is displaced from L2 in much the same way as L2 from L1 • We assume 
the same pattern for all following leaves. In our example it takes five 
angles of 144° to arrive at a leaf that has the same orientation as Ll 
since 5 x 144° = 720° = 2 x 360°. Thus we find a periodicity with a "period" 
consisting of two windings and five leaves. 

In general we may introduce two numbers: 
a) m = number of complete turns or windings in a period, 
b) n = number of leaves in a period. 
In Fig. 8.8 the special case m = 2, n = 5 is shown. The numbers m and n 

can also be defined for whorls of leaves. 
Actual countings on numerous plants have proven that m as well as n 

take most frequently values such as 1,2,3,5,8,13,21,34, ... , that is, 

6 The number b plays a major role in geometry and aesthetics. Divide a line AB 
at a point C such that AB: AC = AC: CB. Then the division is called the golden section 
or divine proportion. The ratio ABjAC is equal to b =t(1 + 0). 
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Fig. 8.8. Helical arrangement of leaves on a stem. In the figure it is assumed that the same 
pattern with five leaves is repeated after two full windings of the helix. This is the case 

in roses, some willows and cherries. Left: view from the side. Right: View from top 

numbers from the Fibonacci sequence. According to Schips (1922) we 
find the cases 

m=1, n=2 

m=1, n=3 

m=2, n=5 

m=3, n=8 

m=8, n=21 

m= 13, n=34 

in the two row leaves of several bulbous plants as 
well as the horizontal twigs of the elm, 

in sedges, the alder, and the birch, 

very frequent, in willows, roses, and stone fruit trees, 

in cabbage, asters, and hawkweed, 

scales of spruce and fir cones, 

scales of cones of Pinus taricio. 
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There are also exceptions, but Fibonacci numbers occur so frequently 
that they cannot be explained by chance. 

We find Fibonacci numbers also in florets of composite flowers. 
The following table is taken from a report by Wagner (1957) who counted 
the number of ray florets in composite flowers of alpine plants: 

Species: number of ray florets 

mean: range: 

Achillea macroph ylla 5 4- 7 
Achillea atrata 8 6--13 
Rudbeckia nit ida 8 6--10 
Arnica montana (side flowers) 11 7-17 
Rudbeckia speciosa 1 13 13-30 
Centaurea montana 13 10--17 
Senecio doronicum 1 13 11-21 
Senecio uniflorus 13 5-24 
Senecio doronicum 2 17-18 11-22 
Arnica montana (top flowers) 18-19 10--29 
Chrysanthemum leucanthemum 21 13-33 
Rudbeckia speciosa 2 21 13-30 
Senecio doronicum 3 21 11-22 
Doronicum Clusii 34 26--47 

As we see from the table, the number of ray florets is subject to random 
fluctuation. However, the mean values fall frequently on Fibonacci 
numbers. Exceptions are Arnica montana and Senecio doronicum 2. 

Biologists have tried to explain the peculiar prevalence of Fibonacci 
numbers in phyllotaxis. Symmetry may play a major role because 
symmetry maintains the mechanical equilibrium of a stem, gives the 
leaves the best exposure to light, and supports a regular flow of nutrients. 
However, science is still far away from a satisfactory explanation. Major 
works on phyllotaxis were written by Thompson (1917, p. 912-933) and 
Nelson (1954, p. 48-60). For remarks see also Weyl (1952, p.72). 

Occasionally Fibonacci numbers occur in population genetics. It 
would go well beyond the scope of this book to deal with this section 
of biology. We refer the reader to Li (1958, p.68-70, 118). 

For a mathematical treatment of the Fibonacci sequence we recom
mend Vorobyov (1961). A most amusing book on the divine proportion 
and on Fibonacci numbers was written by Huntley (1970). 

Recommended for further reading: 

Kynch (1955), Milhorn (1966, Chapter 10). 
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8.1. 

8.2. 

Limits 

Problems for Solution 

Find the limits of the following terms as n tends to infinity: 

a) (1+ ~)/(4- ~) b) 
2n+5 

3n+ lO 

c) 
lOOO- n 

d) 
4-2n+n2 

1-5n 4+2n-n2 

e) 
2n2 + 300 

f) 
1 +n3 

n2 -4n 1-n3 . 

Let h = l/n, and let n tend to infinity. Find the following limits: 

) I. 2 - h 
a Im--

h~O 4 + 5h 

4h-h2 
b) l~ 2h 

h3 -4h2 + 7h 
d) !i!!6 2h2 + 3h 

8.3. Find the limit of an = n/(n2 + l)t as n-> 00. 

(Hint: Divide numerator and denominator by n). 

8.4. How do the following terms behave as n-> oo? 

a) 100(tt b) (-tt c) (5/4t 

d) (1 + lO- 3t e) (1-lO- 3t. 

8.5. To work out a problem of imbreeding, Kempthorne (1957, p. 86) 
studies the sequence 

s 
Fn = 2 _ s [1 - (s/2)n] + (s/2t Fo, n = 1, 2, 3, ... 

whereby 0 < s < 1. Find the limiting behavior of Fn as n tends to 
infinity. 

8.6. Calculate the following partial sums: 

a) 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 

b) 2+2/11+2/112+ ... +2/115 

c) 1 - 1/2 + 1/4 - 1/8 + 1/16 - 1/32 + 1/64. 

8.7. Find a closed expression for the following partial sums: 

a) 1 + r + r2 + ... + r10 

b) 1 - r + r2 - r3 + r4 _ ... + r10 
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c) l/s + 1/s2 + 1/s3 + ... + l/sn 

d) e + e/5 + e/52 + ... + e/5k • 

8.8. Calculate the infinite sums: 

a) 1 + r + r2 + r3 + ... assuming that Irl < 1 

b) c+c/2+c/22 +c/23 + .. . 
c) 1 + l/s + 1/s2 + 1/s3 + ... assuming that lsi> 1. 

8.9. In finding the average life length of a harmful gene, Li (1961, 
p. 150) is led to the following infinite sum: 

U=1+2w+3w2 +4w3+ ... 

where 0 < w < 1. Find a closed expression for U. 
(Hint: Determine first the difference U - wU). 

8.10. Find the limiting behavior of 3/(2 - x) 

a) as xj2, b) as x!2. 

8.11. Find the limiting behavior of 1/x2 

a) as xjO, b) as xtO. 

8.12. Living tissue can only be excited by an electric current if the 
current reaches or exceeds a certain threshold which we denote 
by i. The threshold i depends on the duration t of current flow. 
Weiss' law states that i = a/t + b with positive constants a and b 
(cf. Defares and Sneddon, 1961, p. 71-72). Describe the behavior 
of the threshold i when t approaches zero and when t tends to 
infinity. 

* 8.13. Show that the partial sum of the Fibonacci numbers an as 
given by (8.5.1) can be written in the form 

(Hint: Add the following equalities al = a3 - a2, a2 = a4 - a3, etc.). 

*8.14. Again for Fibonacci numbers show that 

a) al +a3+aS+···+a2n-l=a2n 

b) a2+a4+a6+···+a2n=a2n+l-l. 

(Hint: Add the equalities al =a2,a3=a4-a2,aS=a6-a4' etc. 
For the proof of b) use the result of Problem 8.13). 
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* 8.15. Consider the sequence of the following fractions: 

1 1 1 
1'1+1' 1 1 ' etc. 

1+1+1 1+ 
1 

1+1+1 

Show that it is equal to the sequence 1/bl , 1/b2 , 1/b3 , .•• where 
bl , b2 , b3 , ••• are given by (8.5.4). 

* 8.16. By means of bi = 1, b2 = 2 and formula (8.5.7) show that 1 ~ bn ~ 2 
for all natural numbers n. 

* 8.17. Let cn be defined by (8.5.6). Assume that b = t(1 + VS), that is, 
satisfies the equation (8.5.10). Verify that 

1 b-1 
cn =l-b+ b =-cn - I b . 

+cn- I +cn- I 

* 8.18. From the result of the preceding problem conclude that 

a) Icnl < 0.7 for every n = 1, 2, 3, ... and 

b) cn-+O for n-+ 00. 

* 8.19. Without proof we present a formula for the Fibonacci numbers an. 
Let b = t(1 + 0) and C = t(1 - 0). Then 

1 
an = 0 (b"-cn). 

Check this formula for n = 1 and n = 2. Use the formula to prove 
that bn=an+t!an tends to b as n-+oo. 



CHAPTER 9 

Differential and Integral Calculus 

9.1. Growth Rates 

Differential calculus is based on the notion of rate of change. The 
notion appears implicitly in words such as growth rate, relative growth, 
velocity, acceleration, rate of reaction, density, and slope of a curve. We 
begin with some introductory examples: 

a) Let Nbe the number of individuals in an animal or plant popula
tion. N changes with time. Thus we may consider N as a function of 
time t: 

N =f(t). 

Let t1 and t2 be two time instants, and assume that t2 > t1. Then f(t1) 
and f(t 2) are the corresponding numbers of individuals. The difference 

(9.1.1) 

is the total change of population size in the time interval from t1 to t2. 
F or AN> 0 we have an increase, and for AN < 0 a decrease in size. To 
judge how fast the population size has changed we have also to consider 
the length of the time interval 

(9.1.2) 
The ratio 

AN f(t2) - f(t1) 

At t2-t1 
(9.1.3) 

informs us how much the population size changed per unit time. Strictly 
speaking, it is the average change per unit time within the time interval 
from t1 to t2. We call the quantity (9.1.3) the average rate of change or, 
if misunderstanding is not expected, simply rate of change. 

A numerical example may be useful. In a zoo, a colony of ducks 
oonsisted of 52 birds on October 1, 1967 ( = t1) and of 78 birds on October 
1, 1968 (= t2). Thus f(t1) = 52, f(t 2) = 78 and AN = 26. Let us measure 
the time in months. Then At = 12 months. Hence, the average rate of 
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change from October 1, 1967 till October 1, 1968 is 

AN / At = 26/12 months -1 = 2.17 months -1 , 

that is, on the average the colony grew by 2.17 "individuals" each month. 
Naturally, births were numerous in spring, and deaths were quite 
irregular over the year. Thus the true growth differs from month to 
month. The number 2.17 looks quite artifical. Yet it gives a good indica
tion of the average speed of growth. 

The ratio (9.1.3) is often called a growth rate. Actual growth occurs 
only for AN> O. If, instead, AN < 0, the population size is decreasing. 
Nevertheless, this property can be interpreted as negative growth. This 
justifies the general use of the expression "growth rate". 

b) In metabolism we are interested in the speed of a chemical reaction. 
Let M = f(t) be the mass of some nutrient as a function of time. We 
assume for instance that the nutrient disintegrates chemically and, con
sequently, that M decreases. Let t1, t2 be two consecutive time instances. 
Let At = t2 - tl be the length of the time interval and AM = f(t 2) - f(t1) 

the decrease in mass. Then 

--= 
At t2-t1 

(9.1.4) 

is called the rate ofreaction. Under our assumptions, AM/At is negative. 
Strictly speaking, AM/At is the average rate of reaction over the time 
interval from tl to t2. The chemical reaction need not have a constant 
rate. 

c) Quite similar is the rate of decay in nuclear physics. Let N = N(t) 
be the number of radioactive atoms in a sample at time instant t. Then 

AN 

At 

N(t2) - N(tl) 

t2 - tl 

is the average rate of decay over the time interval from tl to t2 • 

(9.1.5) 

d) What is ordinarily called velocity or speed is also a rate of change. 
Assume that a particle moves along a straight line. Suppose further that 
at each instant of time over the period of motion we mark its position 
as a displacement from a fixed point of reference on the line. Let s = s(t) 
denote the position at instant t. Then 

As s(t2)-S(tl) 
- = (9.1.6) 
At t2-t1 

is the average velocity of the particle over the time interval from tl to t2• 

Thus velocity is a rate of change. 
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e) Consider again the motion of a particle along a line. We may ask 
how fast the velocity increases or decreases. To answer this question we 
introduce the function v = v(t), that is, the velocity as a function of time. 
Then we choose two consecutive time instants t1 and t 2. The ratio 

LI v v(t2 ) - v(t1) 
- =-----'.-=------'--=-'---
LIt t2 -t1 

(9.1.7) 

is the average change of velocity per time unit. This quantity is usually 
called the average acceleration. For LI v> 0 the acceleration is positive. 
For LI v < 0 the velocity decreases, and the acceleration is negative. 

f) To define a rate of change, the independent variable need not be 
the time. Consider a spherical cell. Its volume V is a function of the 
radius r. Thus we may write V = /(r). As r increases, V also increases, 
and we may ask: How does V change relative to a change in r? To 
answer this question consider two radii, say r1 and r2 , where r2 > r1• 

Then Llr = r2 - r1 is the increase of r, and LI V = /(r2 ) - /(r1 ) is the cor
responding increase of V. The ratio 

LlV 

Llr 
(9.1.8) 

is the increase of the volume per unit length of the radius. LI V/Llr may 
again be called the rate of change. Strictly speaking, LI V / LI r is the average 
rate of change when the radius r increases from r1 to r2 . 

It is worth studying a numerical example. If r is measured in micro
meters (J.lm) 1, then 

4 
V = /(r) = - nr3 

3 

is the volume of the cell measured in cubic micrometers (J.lm 3). Let 
r1 = 5.00 J.lm and r2 = 8.00 J.lm. Then /(r1) = 4/3 x n x 53 J.lm3 = 0.524 
x 103 J.lm3 and /(r 2 ) = 4/3 x n x 83 J.lm3 = 2.144 x 103 J.lm3. Hence LI V 
= /(r2 ) - /(r1) = 1.62 x 103 J.lm\ and the rate of change 

LlV 
Llr 

1.62 X 103 J.lm3 = 0 54 103 2 
3 . x J.lm. 

J.lm 

This means that, on the average, the volume has grown by 0.54 x 103 J.lm3 
for each J.lm increase of the radius. 

g) Another example which belongs to this type of rate is the density 
or concentration. We consider here the simple case of particles that are 

1 1 micrometer = 1 ~ = 10- 6 m. A former notation for the same unit is 1 micron (11). 
The new notation is more consistent with the metric system and is becoming standard. 
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spread, regularly or irregularly, on the x axis. We count the number of 
particles between the origin 0 and a point P with positive abscissa x. 
Let N be the number of particles that fall into this interval 2 . Clearly, 
N = N(x) is a function of x. Let PI and P2 be two points on the x axis 
with coordinates Xl and X2' where X2 > Xl> O. Then,1N = N(x2) - N(xl ) 

is the total number of particles that fall into the interval between PI and 
P 2. To get a measure of how densely the particles lie between the points 
PI and P2 , we divide ,1N by ,1x = X2 - Xl and obtain 

,1N 

,1x 
(9.1.9) 

This ratio is called the density or concentration of the particles in the 
interval between PI and P2 • However, when the particles are not equi
distant, it is more accurate to call ,1 N /,1 X an average density or average 
concentration. 

Having studied several applications of the notion "rate of change", 
we are now prepared to deal with this notion from a purely mathematical 
point of view. Let y = f(x) be any function and let the interval between 
Xl and X 2 belong to the domain of this function (see Section 3.4 for the 
terms "domain" and "range"). The total change of y on the interval 
between Xl and X2 is ,1 Y = f(x 2 ) - f(xd. We relate this change to the 
increment ,1 X = X 2 - Xl by forming the fraction 

,1y 

,1x 
(9.1.10) 

We call this fraction an average rate of change or a difference quotient. 
In a graph of the function, the average rate of change has an intuitive 
meaning. In Fig. 9.1 the straight line I is drawn joining two points (Xl' YI) 
and (X2' Y2) of the graph of Y = f(x). According to the definition given 
in Section 3.6, the average rate of change is identical with the slope of I, 
that is, 

,1y 
a = ,1x . 

The line I is the extension of a chord of the graph. 

(9.1.11) 

It is not always satisfactory to consider the average of a rate of 
change. Intuitively, we are looking for a term which means something 
like an "actual" or "instantaneous" rate of change which would be 

2 For the sake of rigor it should also be stated whether a particle that falls exactly 
on 0 or on P is counted or not. 
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y2f-------------:;;(l~ 

y,f-----~::....------~ 

x, 

Fig. 9.1. The average rate of change in the interval between X, and X2 is the slope of the 
straight line joining the points (x" Y,) and (X2. Y2) 

opposed to an average. The transition from an average rate of change to 
an "instantaneous" rate is the basic idea in differential calculus. It is the 
creation of a new concept. For this purpose we must reduce the interval 
to a point. Hence. keeping Xl fixed we let X2 tend toward Xl' that is, in 
the notation of the preceding chapter, 

(9.1.12) 

Now, Ax is the denominator of A y/A x. In order that the quantity Ay/Ax 
will tend to a finite limit, we have to assume that not only Ax but also 
Ay tends to zero. This implies that y = f(x) must be a continuous function 
at X = Xl (see Section 8.4) and that the graph of the function must have 
a tangent at the point (Xl' Yl). Indeed, when X2 -.xl , the line I tends to 
the tangent t, if such a tangent exists at all. This process is shown in 
Fig. 9.2. 

Fig. 9.2. As xr-+ X,. the line I tends to the tangent t to the graph at (x,. Y,). The slope 
a = LI Y/ LI X of I tends to the slope ar of the tangent 
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When Jy and Jx both tend to zero, their quotient Jy/Jx, that is, 
the slope of the chord, tends to the slope of the tangent to the curve at 
the point (Xl' Yl)' Denoting this slope by a, we may summarize the 
limiting process as follows: 

x 2 ---->x l , Jx---->O, 

Y2 ----> Yl' Jy---->O, 
(9.1.13) 

Jy Jy 
a=- ---->a or lim --=a,. 

Jx ' Xl-Xl Jx 

In differential calculus the phrase "slope of a tangent" is sometimes 
replaced by the word gradient. 

In many applications the fraction Jy/Jx and its limit are not inter
preted as a slope of a tangent or as a gradient. Instead, the meaning is 
a rate of change. Thus we return to our original question of how to 
define an "instantaneous" rate of change. Here is the definition based 
on the process in (9.1.13): 

Let y = f(x) be a function defined in an interval which contains the 
point Xl' We assume that the limit 

1. Jy 
1m - (9.1.14) 

X2~Xl Jx 

exists. Then this limit is called the instantaneous rate of change of y at Xl' 

Notice that X 2 may tend to Xl either from the right, that is, X2 ! Xl' 

or from the left, that is, X 2 i Xl' 

When the limit (9.1.14) exists, we call the function y = f(x) differen
tiable at Xl' 

There is a variety of different notations for the limit of J y/ J x. All 
of them are frequently used. One notation is y' (read: y prime), a similar 

one f'(x l ); another notation is ~~ or ~~ , the same in print dy/dx or 

df/dx (for dy/dx we read: dy by dx); and still another notation is D f(x). 
Thus we have 3 

lim Jy =y'=f'(x l )= dy = df =Df(x). (9.1.15) 
X2~Xl J X dx dx 

-----
3 One of the inventors of the calculus, Isaac Newton (1642-1727), used the symbol y 

which is still popular in analytic mechanics. Our y' is similar to y. The other inventor, 

Gottfried Wilhelm Leibniz (1646--1716), introduced the symbol ~. He did not say 
dx 

that Ll y and Ll x tend to zero, but declared these increments as "infinitesimal" quantities 
and wrote for them dy and dx. The term "infinitesimal" or "infinitely small" caused 
confusion for about two centuries. Later mathematicians abandoned this term. In mathe
matics "infinitesimal" is not defined. When used, it has only intuitive meaning. In formulas, 
do not confuse dx with d . x, that is, with the multiplication of d by x. 
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The limit is called the derivative of the function y = f(x) at x = Xl' 

dy/dx is also called the derivative of y with respect to x. 

Applications 

a) If N = f(t) is the number of individuals in an animal or plant 
population, we cannot immediately apply the new concept of instan
taneous rate of change since N = f(t) is a discontinuous function of time 
(cf. Example (h) at the end of Section 8.4). When the population size 

X, 

Fig. 9.3. A smooth curve replaces the graph of a discontinuous function. At each point 
the smooth curve has a tangent. Its slope is called the instantaneous rate of change 

remains constant, the instantaneous rate of change is zero. When a birth 
or a death occurs, it would be infinite. 

It also appears to be impossible to consider an instantaneous rate of 
decay in nuclear physics because fission is spontaneous and not a con
tinuous process. However, the number of radioactive atoms in a sample 
is usually so high that we may replace the graph of a discontinuous decay 
by a smooth curve without committing a relevant numerical error. 
Fig. 9.3 illustrates the procedure. 

For a smooth curve there exists a tangent at each point. Thus we may 
define the instantaneous rate of decay at Xl as the slope of the tangent 
to the point with abscissa Xl' In the notation of differential calculus we get 

dN =N'(t l ) = lim AN. 
dt 12-+h At 

(9.1.16) 

For a very large animal or plant population we may employ the same 
procedure. This allows us not only to calculate an average rate of change, 
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but also an instantaneous rate of change. Examples of population growth 
will be studied in Chapter 11. 

b) A chemical reaction is, strictly speaking, a discontinuous process 
because of the molecular structure of matter. However, the number of 
participating molecules is usually so high that the process appears to 
be continuous. Thus it is possible to introduce the notion of an instan
taneous reaction rate. Following the notation in formula (9.1.4), we may 
write dM/dt = M'(tI) for this rate. 

c) According to the law of inertia, motion of a body is a continuous 
process. A body can neither accelerate or decelerate in zero time. Hence, 
there is no difficulty proceeding from an average velocity to the notion 
of instantaneous velocity at time t i . Applying formula (9.1.6) we define it by 

ds, . As 
-d = s (t I ) = lIm ----:;--. t t2 -tl LI t 

(9.1.17) 

Similarly the instantaneous acceleration at time tl is derived from 
formula (9.1.7) as follows: 

dv, . Av 
-d =v (tI)= lIm -. t t2~tl At 

(9.1.18) 

Notice that in this limiting process v(t) is the instantaneous velocity 
ds 

- as defined by formula (9.1.17). 
dt 

d) Finally we consider an example where time is not involved. 
Assume that a very large number of particles is spread on the x axis. 
Let N = N(x) be the number of particles that fall into the interval between 
the origin 0 and a point P with abscissa x. Strictly speaking, N(x) is 
a discontinuous function. But as in a) we may replace it by a smooth 
function. Then, based on (9.1.9), 

dN , . AN 
-d =N (x I )= lIm - (9.1.19) 

x X2~XI Ax 

is meaningful and signifies the density or the concentration of the par
ticles at the point Xl on the x axis. This density is "instantaneous" and 
not an average. 

9.2. Differentiation 

The operation of finding the derivative of a function is called dif
ferentiation. We say that we differentiate y = f(x) with respect to x. 

Differentiation is a special type of limiting process. It is somewhat 
easier to understand if we replace Xl by X and X2 by X + h. Thus A x = h. 
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The increment h may be positive or negative, but not zero. The value 
of y = f(x) at the point x + h is denoted by f(x + h). Thus, Lly = f(x + h) 
- f(x) and 

Lly 

Llx 

f(x + h) - f(x) 

h 

Fig. 9.4 illustrates the new notations. 

x+ h 

Fig. 9.4. An alternative approach for finding the derivative 

(9.2.1) 

In the limiting process, x remains a constant, but h tends to zero. 
Notice that we cannot simply put h = 0, since the fraction (9.2.1)"would 
turn into % which is meaningless. 

The derivative off(x) at x is now 

dy =f'( )=1· f(x+h)-f(x) 
d x 1m h ' x h-+O 

(9.2.2) 

provided that y = f(x) is differentiable at x. 

An example may· illustrate how the limiting pr;)cess is performed. Let 

y=f(x)=x2 

be a quadratic power function. The domain consists of all real numbers. 
Then, according to formula (1.14.5), we get 

Hence 
f(x + h) = (x + h)2 = x 2 + 2xh + h2 . 

f(x + h) - f(x) 

h 

2xh+h2 

h 
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Here x is a fixed abscissa, whereas h is a variable quantity tending to 
zero. Since h:j:: 0, we may simplify the fraction by dividing numerator 
and denominator by h. The fraction reduces to 2x + h. For h -+ 0, we 
obtain· the derivative 

y' = f'(x) = (x 2 )' = ~~ = 2x. (9.2.3) 

If x is given numerically, we have simply to double this number in order 
to get the rate of change or, geometrically speaking, the slope of the 
tangent. 

- 2 - 1 

Fig. 9.5. Tangents to the parabola with equation y = x 2• The slope of the tangents is y' = 2x 

During the limiting process, x was a fixed abscissa. Now we learn 
from (9.2.3) that the result has been found for an arbitrary value of x. 
To each given x, there exists a unique value of the derivative, namely 2x. 
Therefore, the derivative is a function of x. Fig. 9.5 depicts the graph of 
y = x 2 , a quadratic parabola, and shows some tangents to it. 

For x = 0 we get y' = o. Indeed, the tangent to the parabola at x = 0 
is the x axis with slope O. For x = 1 we find y' = 2 x 1 = 2. For x> 0 we 
obtain y' > 0, that is, all tangents on the positive side of the x axis are 
ascending. For x = - 1 we obtain y' = 2 x (- 1) = - 2. For x < 0, we get 
y' < 0, that is, all tangents on the negative side of the x axis are descending. 

In general, assume that y = f(x) is differentiable at each point of its 
domain. Then f' (x) is a function of x on the same domain. From this 
viewpoint it would be more appropriate to call the derivative a derived 
function. In our example, the derived function is y' = 2x. 

It is easy to treat the cubic function y = x 3 in the same way as y = x 2 • 

We leave it to the reader to prove that y' = (x 3 )' = 3x2 • However, it is 
difficult to find the derivative of a power function y = x", when n is a 
negative or a fractional number. Fortunately there exists a unified method 
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using logarithms. We will learn this method at the end of Section 10.7. 
Here we confine ourselves to state the result: 

(9.2.4) 

The formula is correct for all real values of n and all values of x that 
belong to the domain of y = x". It is worth learning the result by heart: 
The derivative of x" with respect to x is n times the (n -l)st power of x. 
The reader may check the special cases (x 2 )' = 2x and (x3 )' = 3x2 • Included 
also is the trivial case of a constant y = XO = 1 which must have derivative 
y' = O. Generally, for y = c, c being a constant, we get 

Y'= dy =0 
dx . 

Other special cases of (9.2.4) are 

(l/x), = (x- 1), = - x- 2 , 

(1/x2)' = (x- 2), = (- 2) x- 3 , 

qrx)' = (xt)' = t x- t . 

(9.2.5) 

(9.2.6) 

We will postpone the derivative of exponential and logarithmic func
tions to Chapter 10. But we are prepared to treat trigonometric functions. 
Let y = f(x) = sin x and assume that x is measured in radians (see Sec
tion 5.2). Then 

Lfy = f(x + h) - f(x) = sin (x + h) - sinx . 

By means of formula (5.7.6) we get 

. ( h)' 2 2x + h . h sm x + - sm x = cos 2 sm "2' 
Thus 

Lf y 2 2x + h . h _ ( h) sin h/2 
Lf x = h cos 2 sm 2" - cos x + 2" h/2 . 

As h-+O, we may apply formula (8.2.4). Since h/2 also tends to zero, we 
obtain 

sin h/2 -+ 1 cos (x + h/2) -+ cos x 
h/2 ' 

and therefore, 

(sin x)' = cosx I. (9.2.7) 
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The assumption that x is measured in radians was implicitly used with 
(8.2.4). 

Special values of this derivative are 

x (sin x)' 

0 1 

nl2 0 

n -1 

The reader may check these values by using Fig. 5.8. 
Also left to the reader (see Problem 9.6) is the proof of 

1 (cos x)' = - sinx I· (9.2.8) 

Knowing the derivative of a function y = f(x), we are able to find 
the derivative of another function y = c ·f(x) obtained by multiplying 
f(x) by a constant factor c: 

Lly 

Llx 

Therefore, 

cf(x + h) - cf(x) 

h 
=c 

f(x + h) - f(x) f'() 
h ->C x. 

(c ·f(x))' = c f(x) I· (9.2.9) 

We have simply to carry the same factor c. Thus for y = 5x2 we get 
y' = 5 x 2x = lOx. A trivial case is the special linear function y = ax. 
Here, y' = a in agreement with the fact that the factor a is the slope of 
the straight line with equation y = ax. 

Assume further that the derivatives of two functions y = f(x) and 
y = g(x) are known. Then the new function y = f(x) + g(x), that is, the 
sum of f(x) and g(x), has derivative 

(f(x) + g(x))' = f'(x) + g' (x) (9.2.10) 

Indeed, LI y = [f(x + h) + g(x + h)] - [f(x) + g(x)] = [f(x + h) - f(x)] 
+ [g(x + h) - g(x)]. Hence 

Lly 

Llx 
f(x+h)- f(x) + g(x+h)-g(x) f'() '() 

h h -> x +g x . 
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Examples: 
a) y=X2+X3, y'=2x+3x2; 
b) y = ax + b, y' = a + 0 = a (slope of a straight line); 

) . b du b . c u=asmt+ cost, dt =acost- smt. 

To differentiate a function such as y = x 2 • sin x, we have to apply the 
rule for differentiating the product y = f(x)· g(x) of two functions y = f(x) 
and y=g(x). We get 

Ay = f(x + h) g(x + h) - f(x) g(x) 

= f(x + h) g(x + h) - f(x) g(x + h) + f(x) g(x + h) - f(x) g(x) 

= [f(x + h) - f(x)] g(x + h) + f(x) [g(x + h) - g(x)] 

and, therefore, 

Ay = f(x + h) - f(x). ( h) f(). g(x + h) - g(x) 
Ax h g x + + x h . 

As h-.O, Ay/Ax tends to 

(f(x) . g(x»)' = f' (x) . g(x) + f(x) . g' (x) (9.2.11) 

Hence, to get the derivative of f(x) . g(x) we have first to differentiate 
f(x) and to multiply by g(x). Second, we have to differentiate g(x) and 
to multiply by f(x). Third, we have to add the two expressions. 

Example: 
y = x 2 • sinx. We identify f(x) = x 2 and g(x) = sinx. 
We know that f'(x) = 2x and g'(x) = cosx. Hence, 

(x2 . sinx)' = 2x· sin x + x 2 . cosx. 

Before we study the quotient oftwo functions, we derive the important 
rule for differentiating a "function of a function". We begin with an 
introductory example: y = sin2 x. This is the square of sin x. We may 
disentangle this function by introducing the auxiliary functior u = u(x) 
= sinx. Then y = u2. Hence, y is a quadratic function of u, whereas u 
is the sine of x. In general we may write 

y= f(u(x») (9.2.12) 

which means that u = u(x) and y = f(u). y is directly a function of u and 
indirectly a function of x. 



210 Differential and Integral Calculus 

Now, when x is increased by h, u = u(x) also changes in value, say 

Ll u = u(x + h) - u(x) = k =1= 0, 

provided that u(x) does not remain constant. As a consequence, y changes 
by 

Lly = f(u + k) - f(u). 

Hence, 

Lly 

Llx 

f(u + k) - f(u) 

h 

f(u+k)- f(u) .~ = 

k h 

f(u + k) - f(u) u(x + h) - u(x) 

k h 

f(u) and u(x) are assumed to be differentiable. Hence, for h->O we 
also get k -> 0, and 

~~ = (J(u(x»))' = f'(u)· u'(x). (9.2.13) 

This is the famous chain rule. It states that we have first to derive f(u) 
with respect to u, second, to derive u(x) with respect to x and third, to 
multiply the two expressions. 

Formula (9.2.13) may be rewritten in a form which can be easily 
memorized4 

df df du 
dx = du . dx . (9.2.14) 

Examples: 

a) y = sin2 x. Here, u(x) = sinx and f(u) = u2• Hence, dujdx = cosx, 
dfldu = 2u, and 

(sin2 x)' = 2u· cosx = 2sinx cosx 

b) y = VI + 5x. Here, u(x) = 1 + 5x andf(u) =ut . Hence, dujdx = 5, 
dfldu =1u-t, and 

(V1 +5x)' =1u-t. 5 =-i(1 + 5x)-t. 

c) K = sin(at + b). Here,u = u(t) = at + bandK = f(u) = sinu. Hence, 
dujdt = a, dKjdu = cosu, and 

(sin(at + b»)' = a . cos(at + b). 

4 The result resembles the rule for reducing a fraction to the lowest terms. However, 

it should be kept in mind that we introduced ~ and ~ as symbols and not as fractions 
du dx 

of df and du, or of du and dx, respectively. 
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An especially important application of the chain rule is the differ
entiation of 1/u(x). This is the reciprocal of a function u(x). We have to 
differentiate first 1/u with respect to u and second, u with respect to x. 
Formula (9.2.4) with n = - 1 yields (1/u), = - 1/u2. Therefore, 

1 
(1/u(x»)' = - U(X)2 . u'(x). (9.2.15) 

Further, to derive the quotient of two functions y = f(x) and y = g(x), 
that is, the new function y = f(x)/g(x), we may combine the formulas 
(9.2.11) and (9.2.15) as follows: 

( f(X»)' ( 1)" 1 (1, ) - = f(x)· - = f (x) . - + f(x)· - --. g (x) . 
g(x) g(x) g(x) g(X)2 

The result may be rewritten in the form 

( f(X»)' = g(x)f'(x) - f(x)g'(x) . 
g(x) g(xf 

(9.2.16) 

When learning it by heart, we may use the obvious formulation: 

( numerator )' 
denominator 

denominator x (numerator), - numerator x (denominator), 
denominator squared 

Examples: 

3x-5 
a) y = 2x + 7 ' y' = 

(2x + 7) . 3 - (3x - 5) . 2 
(2x + 7)2 

31 
(2x+ 7f . 

b) y = tanx. We assume that x is measured in radians. Then from 
(5.5.6) we get y=sinx/cosx and from (9.2.7) and (9.2.8) (sinx)' 
= cosx, (cos x)' = - sinx. Hence, 

tanx = -- = . ( )' (Sinx )' cos x(cos x) - sinx( - sin x) 
cosx cos2 X 

This becomes, by means of formula (5.7.1), 

(tan x)' = 1/cos2 X • (9.2.17) 

Finally, we determine the derivative of an inverse function. We 
introduced the notion of an inverse function in Section 6.3. Given 
y = f(x), we know that an inverse function x = g(y) exists when y = f(x) 
is monotone over the domain. Now we assume in addition that f(x) is 
differentiable and ask: Can we express g'(y) in terms of f'(x)? This is 
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indeed possible. Let h be an increment of x. Then we denote the corre
sponding increment of y by k. This means 

,1x=g(y+k)-g(y)=h, ,1y=f(x+h)- f(x)=k. 

For k =1= 0, it follows that 

1 1 
,1x/,1y = h/k = k/h = ,1y/,1x· 

When h-+O, we also have that k-+O, and 

,1x 
-= 
,1y 

g(y + k) - g(y) -+ '( ) = dx 
k g Y dy' 

~-+f'(x)= dy . 
,1x dx 

Hence, 

g'(y) = f'~x)· (9.2.18) 

The result is easy to memorize when we change notation: 

Examples: 

1 
dx/dy = dy/dx . 

a) y = 3x - 4, dy/dx = 3. The inverse function is x = j-(y + 4). Here, 
dx/dy = 1/3 which is the reciprocal of dy/dx = 3. 

b) y = Vx with domain x ~ 0. According to (9.2.4) we get for n = 1/2: 

dy _( t)'-.! -t- _1_ 
dx - x - 2 X - 2 Vx . 

Tha inverse function is x = y2. Here, dx/dy = 2y. Using y = Vx 
this becomes dx/dy = 2 Vx which is indeed the reciprocal of 
dy/dx. 

9.3. The Antiderivative 

It frequently happens that we know the derivative of a function, that 
is, y' = f'(x), and that we want to find y = f(x) itself. f(x) may be called 
the antiderivative of f'(x). For instance, if we are given y' = 2x, then we 
know that y = x2 is an anti derivative. 

The question then arises whether f'(x) has a unique antiderivative. 
The answer is "no". An example may serve to explain the reason. Let 
y' = f(x) = 2x. Then not only y = x 2 , but also y = x2 + c with an arbitrary 
constant c is a correct antiderivative. This follows from formulas (9.2.5) 
and (9.2.10). The same fact can be seen geometrically: y' = 2x associates 
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with each x a slope of a tangent, but the equation does not specify the 
point of tangency. Fig. 9.6 shows that every parabola with equation 
y = x2 + c satisfies the requirements stated by y' = 2x. 

Similarly, given y' = a, a being a constant, we get y = ax + c. The 
geometric interpretation is left to the reader. 

In general, given a derivative f'(x), there exists an infinite set of anti
derivatives f(x) + c. These anti derivatives differ from each other by an 
additive constant. 

Fig. 9.6. Every function y = x 2 + c is an antiderivative of y' = 2x 

From formulas derived or quoted in Section 9.2 we get the following 
table: 

derivative 

a (constant) 
n. X,,-l 

cosx 
-sinx 
1/cos2 x 

antiderivative 

ax+c 
x"+c 
sinx + c 
cosx + c 
tanx+c. 

Applying formulas (9.2.9) and (9.2.10) to these results, we can easily 
find a host of additional antiderivatives. Examples: 

a) y' = a· cosx. The antiderivative is y = a· sinx + c 
b) y' = a· sinx. The antiderivative is y = - a· cosx + c 
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c) du/dt = 2pt + 3qtz. Here we can take the antiderivative of each 
term separately. We obtain u = ptZ + qt3 + c. 

d) y' = xm. We know that y = xn implies y' = nxn- 1• We identify 
n - 1 by m, that is, n = m + 1. We also have to compensate for 
the missing factor n by dividing xm+ 1 by m + 1. Thus we obtain 
for the antiderivative of y' = xm 

X "'+ 1 

--1 +c. m+ 
(9.3.1 ) 

It is worth checking the result by differentiation. Notice that the 
division by m + 1 is only possible if m 9= - 1. The exceptional 
case m = - 1 is not covered by formula (9.3.1). We will postpone 
this case to Section 10.7. 

9.4. Integrals 

As we have seen, the major motivations for introducing the differential 
calculus are problems of growth rate, reaction rate, concentration, 
velocity, and acceleration. There exists another group of problems, 
equally important for life scientists, which leads to the integral calculus. 
We invite the reader to study some introductory examples: 

a) Let N = N(t) be the number of individuals in an animal or plant 
population as a function of time. In the beginning of Section 9.1 we 
introduced the average growth rate LJ N / LJ t. We denote this growth rate 
now by g and assume for simplicity that g > O. We consider a fixed time 
interval, say from to to tz 5. We subdivide this interval into a number, 
say n, of smaller intervals: 

interval from to length of 
No. interval 

1 to t, ,1t,=t,-to 
2 t, t2 ,1t2=t2-t, 
3 t2 t3 ,1t3=t3-t2 

n 

Let gl,gZ, ···,gn be the average growth rates in these subintervals, 
that is, gl = LJNdLJt1 , gz =LJN2/LJt 2 , ••.• Then we may ask: How big is 
the total increase in population size expressed in terms of g? In the first 

5 The notations to and t z were chosen to indicate that to and tz are prefixed time 
instants. z is the last letter of the alphabet and may thus help us to remember that tz is 
the final time. 
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of the subintervals the increase is ANI = gl . A tl , in the second 
AN2 = g2' At2, etc. Hence, the total increase is 1: ANi or, more precisely6, 

n 

L gi' Ati · (9.4.1) 
i=1 

Here we used the average growth rate. In case the growth rate 
changes continuously, that is, if 9 = g(t) is a continuous function of 
time, the solution of the problem is somewhat different. In formula 
(9.4.1) we may replace each gi by g(ti), which has not quite the same 
value. Thus we introduce an error. However, it is possible to reduce 
the error and to get a higher precision if we increase the number n of 
subintervals. The smaller the intervals are, the less gi differs from g(t;). 
We may even try to obtain an exact result by letting n tend to infinity 
and the length of all subintervals to zero. In Section 9.5 we will show 
that the sum tends to a limit 

n 

lim " g(t.). At. n~co ~ l , 

i=1 

(9.4.2) 

and that this limit is the exact increase in population size. 
Notice that we cannot simply put A ti = 0, for no matter how large 

the number of terms would be, the sum would be zero. Instead, we have 
to study a limiting process with A ti -+ O. 

The limit (9.4.2) is always written in the following standard notation: 

t% 

S g(t)dt . (9.4.3) 
to 

We read "integral from to to t z , g(t) dt". The word "integral" originated 
from the idea of making the "whole" out of parts 7 • 

b) Assume that particles are spread on the x axis. Let N denote the 
number of particles that lie between the origin 0 and a point P with 
abscissa X z • As in Section 9.1 we may introduce the notion of average 
density or average concentration. We may ask: Can we express N in 
terms of density or concentration? To answer the question we subdivide 
the segment from 0 to P into a number, say n, of subsegments. Let A Xi 

be the length of the i-th subsegment and A Ni the number of particles in 
this subsegment (i = 1,2, ... , n). Then, by definition, Ci = A NJ A Xi is the 

6 See Section 1.9 for the summation sign 1:. 

7 The notation in (9.4.3) is due to Gottfried Wilhelm Leibniz (1646-1716), a German 
philosopher, mathematician, and diplomat. The similarity of (9.4.2) and (9.4.3) is obvious. 
The integral sign f is a tall letter S signifying summation. dx was chosen to indicate that 
LI x tends to zero. 
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average concentration of particles in the i-th subsegment. Hence, 

JNi=Ci·JXi · 

The total number of particles, spread over the segment from 0 to P, is 
1: J N i , or, more precisely, 

n 

N= I Ci·JXi · (9.4.4) 
i=1 

In case C = C(x) is a continuously changing concentration, we replace 
Ci by a slightly different value C(xJ To reduce the error we increase 
the number n of sub segments. As we will show later, an exact result is 
obtained by a limiting process. We let n tend to infinity and the length 
of all subsegments tend to zero. Then 

n 

N = lim" C(x.)· Jx· n-oo ~ , l 
i=1 

(9.4.5) 

or, in standard notation, 

Xz 

N= S C(x)dx. (9.4.6) 
o 

c) We get still another integral when we determine the total distance 
traveled by a particle in a time interval from to to tz • Let Vi be the average 
velocity of the particle in the i-th of n subintervals J t1 , J t2 , .•• , J tn which 
subdivide the original interval from to to tz • Then the distances traveled 
are J S1 = V1 • J t 1 , J S2 = V 2 • J t 2 , etc. Total distance is 

n 

s= I Vi·Jt i · 
i=1 

(9.4.7) 

For a continuously changing velocity v = v(t), we adopt the same 
procedure as in Examples (a) and (b). We obtain 

(9.4.8) 

or, in standard notation, 

I z 

S = f v(t) dt . (9.4.9) 
10 

d) Assume that a force acts upon a helical spring. The more the 
spring is extended, the greater is the force F (see Fig. 9.7). To extend a 
spring by a first segment, say, Js1 , a variable force is required which 
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increases to a value that we denote by Fl. The mechanical work done by 
the force in extending the spring is calculated by 

mechanical work = segment x force. 

However, in this expression we have to use some average force, that is, 
a suitable value between the forces zero and Fl , say Fl. Hence, the 
mechanical work is Pl . Ll Sl . 

, 
:-6Si~ ;--5--; 

, , 

WWVVWWvt- F, 
, ~S) 

Fig. 9.7. A helical spring is extended by a variable force. The total mechanical work may 
be expressed by means of an integral 

To extend the spring by an additional segment Lls2 we have to apply 
a force which increases continuously from Fl to F2 (say). Let P2 be a 
suitable average between Fl and F2. Then the mechanical work is P2 . Ll S2. 

Let us repeat this process n times such that the total extension is 

Then we ask: What is the total mechanical work W? Physics shows that 
mechanical work is some form of energy and that it is additive. Hence, 

n 

W = L P; . Ll Si . (9.4.10) 
i=l 

It is quite inconvenient to operate with average forces Pi. It is more 
natural to introduce a variable force F = F(s) where s denotes the segment 
by which the spring is extended (Fig. 9.7). 

F(s) is a continuous function of s. Replacing Pi by F(Si) we commit 
a small error, but we can reduce the error by subdividing the total 
segment from 0 to Sz into smaller sub segments. When n tends to infinity 
and all Ll Si tend to zero, we get the exact mechanical work 

n 

W = lim L F(s.)· Lls., 
n-CO i=1 I , 

(9.4.11) 
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or, in standard notation, 

s% 

W = S F(s) ds. (9.4.12) 
o 

e) Morphologists have frequently to determine the area of plane 
figures. There is no difficulty in calculating the area of squares, rectangles, 
triangles, etc. However, when regions are bounded by curves, difficulties 

0114 un i t 01116 un i t 

V "\ 
/ • / 

/ • ( 
I . • f 

I • • 

~ / 

Fig. 9.8. Estimating an area by dot counting. The finer the mesh size is, the smaller the 
error. In our drawing we get 9 x 1/4 = 2.3 units with a course network and 39 x 1/16 = 2.4 

units with a finer network 

arise. We may subdivide the region into squares of equal size, but near 
the boundary there are squares which overlap the region only partly 
(see Fig. 9.8). A practical method for estimating an area is dot counting 
(see Hennig, 1967, and Fischmeister, 1967). The region is covered by a 
network of squares of equal size. When the center of a square is inside 
the boundary, it is marked by a dot. Then all dots are counted. Thus all 
squares that fall entirely into the region are counted, but only about half 
of the squares intersected by the boundary are counted. Finally the 
number of dots is multiplied by the area of a single square. This estimates 
the area of the region. 

To get a better approximation we may use a finer network, for 
instance with a mesh size that is only half of the former one. The process 
of refining the network may be continued infinitely such that the mesh 
size tends to zero. The limit is then expected to be the exact area. 

In principle, this idea leads again to the concept of an integral. In 
order to perform the process analytically, the boundary of the region 
under consideration or parts of it must be given by an equation. We 
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concentrate on a region R which is enclosed by a curve, by the x axis, 
and by two lines parallel to the Y axis (see Fig. 9.9). 

We introduce a segment or an interval on the x axis whose endpoint 
to the left has abscissa x =a and whose endpoint to the right abscissa 
x = b. The interval itself is usually denoted by [a, b]B. The curve is the 
graph of a continuous function Y = f(x) . In Fig. 9.9 it is also assumed 

y=fw 

X. X, Xl 
(=Q) 

Fig. 9.9. Region R between a curve and the segment [a, b] on the x axis. The area is found 
by a limiting process 

thatf (x) > 0 and that the function is monotone decreasing over the interval 
[a, b]. 

The region R is a point set and is bounded by the graph of Y = f(x), 
the x axis and lines parallel to the Y axis at the endpoints of [a, b]. 

We may approximate the region R by a set of rectangles. For this 
purpose we subdivide the interval [a, b] into n equal sub-intervals by 
introducing the abscissas 

We put 
b-a 

Xi - Xi-l = --- = Llx 
n 

The corresponding ordinates are 

(i=1,2, ... ,n). 

YO,Yl,Y2, ''',Yi, .. ·,Yn-l,Yn· 

8 [a, b] is a point set which can also be written by the general notation of Chapter 2 
as {xla;:;;;x;:;;;b}. Brackets are used to indicate that the two endpoints belong to the 
interval. In this case the interval is said to be closed. If one or both endpoints do not belong 
to the interval, parentheses are used. Thus (a, b] means that only the upper endpoint, 
[a, b) that only the lower endpoint belongs to the interval. Finally, (a, b) denotes an open 
interval where both endpoints are missing. 



220 Differential and Integral Calculus 

Let A be the unknown area of the region R. A can be approximated 
by the areas of n rectangles that are inside the region R or by the areas 
of n rectangles that cover R completely. In the first case the total area 
is too small, in the second case too large. We denote these approximations 
by A, (lower bound) and by Au (upper bound). From Fig. 9.9 we deduce9 

A, = Y1 . Ax + Y2' Ax + ... + Yn' Ax, 

Au = Yo' Ax + Yl . Ax + ... + Yn-l . Ax, 

A,~A~Au' 

(9.4.13) 

(9.4.14) 

To get an idea of the error of approximation we subtract A, from Au 
term by term: 

Au - A, = Yo' Ax - Yn' Ax. 

Since Yo = f(xo} = f(a) and Yn = f(xn) = f(b), the difference becomes 

Au - A, = (f(a) - f(b»)A x . (9.4.15) 

In Fig. 9.9 this difference is the total area of the small black rectangles. 
Now we proceed to finer and finer subdivisions of the interval [a, bJ. 
We let n tend to infinity. Then Ax--+O, and from (9.4.15) it follows that 
Au-A,--+O. Hence, Au and A, tend to the same limit, and (9.4.14) yields 

A = lim A, = lim Au . 
n-oo n-+oo 

This common limit is written with the integral sign in the form 

b 

A = Jf(x)dx. (9.4.16) 
a 

It is left to the reader to discuss the case where Y = f(x) is monotone 
increasing instead of decreasing and to show that the result is the same. 
If a function is not monotone, its domain may be split into subdomains 
where the function is monotone. 

9.5. Integration 

So far, we have introduced integrals as limits of a sum. Now we want 
to learn how to evaluate an integral. The operation of finding an integral 
is called integration. We will show that integration is, in some sense, the 
converse of differentiation and involves the anti derivative which we 
studied in Section 9.3. 

9 For calculating the area of such a rectangle by the formula "length x height" we 
have to assume that x and yare measured in the same unit of length. 
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To approach the main result we use the geometric interpretation of 
an integral as it was introduced in the previous section for a function 
y = f(x) with f(x) > O. There, the integral was the area of a region 
between a curve and an interval [a, b] on the x axis. Now we slightly 
change notation. We let b = x and consider x as variable. The abscissa x 
may take on any value from the domain of y = f(x). Let A~ be the area 
of the region between the graph of y = f(x) and the interval [a, x] (see 

Fig. 9.10. The area of a region between a curve and an interval [a, x] as a function of x 

Fig. 9.10). For x = a the interval is reduced to a point, hence A~ = A: = O. 
F or increasing x, A~ also increases. With each x there is uniquely 
associated an area A~. Hence, A~ is a function of x which is called area 
function. We may write 

A~=F(x) . (9.5.1) 

We already know that 

A:=F(a)=O. (9.5.2) 

The next step in our search for a technique of integration is rather 
surprising: We try to differentiate F(x) with respect to x. For this purpose 
let Ax = h be an increase of x, and let A~+h = F(x + h) be the new value 
of the area function. Then A F = F(x + h) - F(x) is the area of the shaded 
region in Fig. 9.10. AF can be approximated by the area of a rectangle. 
We consider two rectangles, one with sides hand f(x), the other one 
with sides hand f(x + h). Since, as in Fig. 9.10, f(x) is monotone in
creasing10, we get 

h·f(x)<AF<h· f(x+h). (9.5.3) 

10 The reader is invited to study the case where f(x) is monotone decreasing and to 
show that the limiting process leads to the same result. 
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It follows for the rate of change that 

L1F 
f(x) < - < f(x+ h). 

L1x 
(9.5.4) 

For h-.O the upper bound f(x) and the lower bound f(x + h) tend 
to the same limit f(x). Hence, the limit of L1 F/L1 x, that is, the derivative 
dF/dx = F'(x) exists and 

dF 
dx = F'(x) = f(x). (9.5.5) 

In words: The derivative of the area function F(x) is the given function 
f(x). Or in other words: The area function F(x) is a certain antiderivative 
of f(x). 

Let I(x) be an arbitrary antiderivative of f(x). Then we know from 
Section 9.3 that F(x) differs from I(x) only by a certain constant, that is, 

F(x) = I(x) + c. (9.5.6) 

For the particular value x = a we get from (9.5.6) and (9.5.2) F(a) = I(a) 
+ c = O. Hence, c = - I(a) and 

F(x) = I(x) - I(a). (9.5.7) 

Finally we return to our original interval [a, b]. In (9.5.7) we have simply 
to replace x by the fixed value b. Therefore, 

F(b) = A~ = I(b) - I(a). 

The standard notation for the area A~ is the integral (9.4.16). Thus 

b 

S f(x)dx = I(b) - I(a) (9.5.8) 
a 

In this integral the number a is called the lower limit and b the upper 
limit ll . To integrate a continuous function f(x) from a to b we proceed 
in the following three steps: 

1. Find an antiderivative I(x) of f(x). 
2. Take the special values I(a) and I(b) for the upper limit a and 

the lower limit b, respectively. 
3. Subtract I(a) from J(b). 

Example: 

Let y = f(x) = sinx where x is measured in radians. We want to 
calculate the area between an arc of the sine curve and the x axis (cf. 

11 The word "limit" is used in this connection quite differently from the usual sense. 
It is not the result of a limiting process. 
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Fig. 5.8). More precisely, we choose a = 0 and b = n. The interval [0, n] 
corresponds to [0°, 180°]. Thus we have to evaluate the integral 

1t 

J sinx dx. 
o 

We know that -cosx is an antiderivative ofsinx. Thus l(x) = -cosx. 
Then, l(a) = 1(0) = -cosO = -1, l(b) =1(n) = -cosn = -( -1) = + 1. Fi
nally, l(b) - lea) = + 1- (-1) = 2. Therefore the area of the proposed 
region is 2. 

The procedure is usually written in a rather stenographic way 
which is self-explanatory: 

1t 

J sinxdx =( -cosx)\o = (-cosn)-( -cosO)= -(-1) - (- 1) = 1 + 1 = 2. 
o 

In general, the antiderivative lex) is more often called an indefinite 
integral, since the constant c need not be determined. The indefinite 
integral is written without lower and upper limits: 

lex) = J f(x) dx . (9.5.9) 

Notice that the indefinite integral is a function of x with an arbitrary 
constant. On the other hand, the integral (9.5.8) is uniquely determined 
by a and b and is therefore called a definite integral. If a and b are fixed 
numbers, the definite integral is also a number. Sometimes the upper 
limit is considered to be a variable, say b = x. Then the integral is a 
function of its upper limit (see formula (9.5.7)). We called this function 
an area function. Its derivative is f(x) as shown in formula (9.5.5). We 
may reformulate the result in writing 

d x 

-d J j(x) dx = f(x). 
X a 

(9.5.10) 

Replacingf(x) by r(x) we also get 

x 

J r(x) dx = F(x). (9.5.11) 
a 

The last two formulas show that differentiation and integration are 
inverse operations. 

The function to be integrated is called the integrand. Thus in formula 
(9.5.8) f(x) is the integrand. x is called the variable of integration and 
[a, b] the interval of integration. 
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In a definite integral it makes no difference what letter is used for 
the variable of integration: 

b b b 

Sf(x)dx= Sf(u)du= !f(a)da. (9.5.12) 
a a a 

Indeed, the result is J(b) - J(a), and this expression is quite independent 
of the variable of integration. 

We derived the main result, formula (9.5.8), by interpreting the 
integral as an area. The pedagogical advantage of such an interpretation 

Fig. 9.11. Areas of regions above the x axis are positive, of regions below the x axis negative 

is obvious. However, to cover various applications it is essential to 
have a more "abstract" concept of integrals. The reader may review the 
beginning of this section and verify that all steps can be performed 
without referring to areas. He may also use the examples a) through d) 
of Section 9.4 for finding other interpretations of the same mathematical 
procedure. 

In general, the integrand may take negative values. Thus, if f(x) < 0 
in an interval [a,b], the integral as a limit of 1:f(x j )·,1x will also be 
negative. The geometric interpretation by areas requires that we assign a 
negative area to a region below the x axis (see Fig. 9.11). 

Now we learn a few rules which facilitate integration: 
1. The interval of integration may be broken up into a number of 

subintervals, and the integration performed over each interval separately. 
Thus, breaking [a, b] up into [a, c] and [c, b] we obtain 

b c b 

S f(x) dx = J f(x) dx + S!(x) dx . (9.5.13) 
a a c 

The result follows from the definition of an integral as the limit of a sum. 
2" 

Example: S sin x dx = (-cos x)16" = (-cos 2n) - (-cos 0) = (-1) 
o 

- ( -1) = - 1 + 1 = O. It may be surprising that the region between the 
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sine curve and the x axis has area zero. But when we break up the interval 
of integration into [0, n] and [n,2n] the reason becomes clear. Indeed, 

1t 

for angles between 0 and n, we find S sinxdx = +2 and, for angles 
o 

21t 

between nand 2n, we find S sin x dx = - 2. The second integral is negative 
1t 

since the region is below the x axis. Hence, 
27t 7t 21t 

S sinxdx= S sinxdx+ S sinxdx=2+(-2)=0. 
o 0 1t 

The two areas cancel each other. 

2. Interchanging the limits changes the sign of the integral, that is, 
b a 

S f(x) dx = - S!(x) dx. (9.5.14) 
a b 

b 

For a proof we apply formula (9.5.8). Then S!(x) dx = I(b) - I(a), 
a 

a 

whereas J f(x) dx = I(a) - I(b). 
b 

3. A sum of functions is integrated term by term. Thus 

S [f(x) + g(x)] dx = J f(x) dx + S g(x) dx . (9.5.15) 

Here the integrals may be definite or indefinite. This rule can be traced 
back to (9.2.10). 

x3 x2 

Example: J(x2 +x+ l)dx= J x 2 dx+ J xdx+ S dx ="3 + T +x+c. 

Notice that J dx stands for J 1 . dx. 

4. A constant factor of the integrand can be put in front of the integral 
sign: 

S k· f(x) dx = k J f(x) dx . (9.5.16) 

Here again, the integral may be definite or indefinite. The rule is based 
on formula (9.2.9). 

Example: S Rcostdt = R S costdt = Rsint + c. 

There are other rules of integration which cannot be learned so 
quickly, particularly "integration by parts" and "integration by substi
tution". It costs training of several weeks, if not months, to get used to 
them. For many life scientists it is hardly worth spending so much 
time on the technique of integration. Ifhe has to evaluate integrals such as 

S(l+x)tdx or Sxsinxdx, 
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he may ask a mathematician for help. There are also tables available 
in which most of the occurring integrals are listed. See Dwight (1961), 
Gradstejn and Ryzik (1965), Grabner and Hofreiter (1965,1966), Meredith 
(1967), Peirce (1929). 

9.6. The Second Derivative 

Discussion of graphs is a frequent task in all sciences. It is greatly 
facilitated by introducing the second derivative of the original function. 

Let y = f(x) be a differentiable function. The graph of the function 
is a certain curve. When the curve rises, its slope is positive, that is, 

f'(x»O. (9.6.1) 

Conversely, when the curve falls, the slope is negative, that is, 

f'(x)<O. (9.6.2) 

We may now ask what occurs at a point where 

f'(x)=O. (9.6.3) 

The curve neither rises nor falls at such a point. We say that the function 
remains stationary. Fig. 9.12 shows several points with this property. In 
case (a), y reaches a maximum value at the point with f'(x) = O. In the 
neighboring points y takes on smaller values. The point itself is called a 
maximum point. In case (b), y reaches a minimum value at a point with 
f'(x) = O. In the neighboring points y takes on greater values. The point 
itself is called a minimum point. In case (c), we have neither a maximum 
nor a minimum point but a point of inflection with horizontal tangent. 

Thus, a point where the function remains stationary can have quite 
different properties. We try now to make these distinctions by a more 

Fig. 9.12. A function remains stationary when f'(x) = O. In case (a) there is a maximum 
point, in case (b) a minimum point, and in case (e) a point of inflection 
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detailed study of the slope. In case (a), the slope is continuously decreasing 
when we move from the left to the right. To the left of the maximum point 
the slope is positive, to the right it becomes negative. If we consider 
the slope as a function of x, this function is decreasing in the neighborhood 
of a maximum point. We may reformulate this fact by using the rate of 
change of the slope. In our case, this rate of change is negative. Analyti
cally, the rate of change is the derivative of the slope, that is, the derivative 
of f'(x). This derivative is called the second derivative of y = f(x). We 
denote it by f"(x) (read: f double prime of x) or by 

(read: d second y by dx second) . 

In the neighborhood of a maximum point, and especially at the point 
itself, the second derivative is usually negative. 

F or practical applications the following rule is useful: 
A function y = f(x) reaches a maximum value at Xo if f'(xo) = 0 and 

f"(xo) < O. 
In case (b), when we move from the left to the right, the slope is an 

increasing function of x. To the left of the minimum point the slope is 
negative, to the right it becomes positive. Hence, the slope has a positive 
rate of change. In other words: The derivative of f'(x) or the second 
derivative of f(x) is positive. Thus f"(x) > 0 in the neighborhood of a 
minimum point, and usually at the point itself. 

Again, for practical applications we have the rule: 
A function y = f(x) reaches a minimum value at Xo if f'(x o) = 0 and 

f"(xo) > O. 

The second derivative is also helpful in deciding whether a curve 
turns clockwise or counter-clockwise when we move from the left to the 
right. In Fig. 9.13 two cases are distinguished. In case (a) the curve turns 
clockwise, the slope is decreasing, and therefore, f"(x) < 0 for all values 
of x. The same property may be formulated by saying that the curve is 
convex upward and concave downward. 

In case (b) the curve turns counter-clockwise, the slope is increasing, 
and therefore, f"(x) > 0 for all values of x. The same property may be 
formulated by saying that the curve is concave upward and convex 
downward. 

At a point of i1iflection the curve changes from a clockwise turn into 
a counter-clockwise turn or conversely. It follows that by passing 
through a point of inflection, f"(x) changes its sign. Hence, at a point 
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a b 

concave upward 

('(Xl> 0 

concave downward convex downward 

Fig. 9.13. Concavity and convexity of a curve can be judged by the sign of the second 
derivative f"(x) 

Fig. 9.14. At points of inflection PI and P2 , the second derivative is zero 

of inflection we must have 

f"(x) = O. (9.6.4) 

Fig. 9.14 depicts two points of inflection on a bell-shaped curve. 

Examples: 
a) y = f(x) = x 2 , f'(x) = 2x, f"(x) = 2. Since the second derivative is 

positive, the first derivative is an increasing function of x. The graph 
(see Fig.9.15) turns counter-clockwise. In other words, the graph is 
concave upward and convex downward. A minimum point is reached 
at x=O. 

b) y = f(x) = 2 - x 2 , f'(x) = - 2x, f"(x) = - 2. 
Since the second derivative is negative, the first derivative is a 

decreasing function of x. The graph (see Fig. 9.15) turns clockwise. In 
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Fig. 9.15. Concavity and convexity of two quadratic parabolas 

Fig. 9.16. Graph of a cubic function. The curve is called a cubic parabola 

other words, the graph is convex upward and concave downward. A 
maximum point is reached at x = O. 

c) y = f(x)=ix 3 -x, !,(x)=tx2 -1, f"(x) =x. 

The second derivative is negative for x < O. Hence, over the negative 
x axis the slope is decreasing and the curve turns clockwise (see Fig. 9.16). 
Over the positive x axis the second derivative is positive. Hence, the 
slope is increasing and the curve is turning counter-clockwise. At x = 0 
the second derivative is zero and, therefore, the curve has a point of 
inflection. Finally,!, (x) = 0 for x2 = 2. At x = V2 the curve has a minimum 
and at x = - V2 a maximum point. 
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The application of derivatives raises a logical problem, namely 
the distinction between different types of conditions. We have seen 
that a maximum point can occur at x only if !'(x) = O. Such a condition 
is said to be necessary, since it has to be satisfied. However, the condition 
!' (x) = 0 does not guarantee a maximum point, because it could also 
indicate a minimum or a point of inflection. Therefore, the condition is 
said to be not sufficient. A sufficient condition for a maximum point at x 
would be: !'(x) =0 and f"(x)<O. 

The two notions "necessary condition" and "sufficient condition" 
are very convenient. They have been standard in mathematics for several 
decades. Now they are entering the sciences slowly. A few more examples 
may help the reader to catch the idea: 

a) To get a contagious disease it is necessary to have the infectious 
agents. But the condition is not sufficient, because an infection need 
not result in a disease. 

b) To become poisoned it is sufficient to swallow ten grams of 
strychnine. However, the condition is not necessary. A dose of one gram 
would still suffice. Moreover, it need not be strychnine. There are other 
chemicals which may also cause poisoning. 

c) A triangle is equilateral if all three angles are of size sixty degrees. 
The condition "all angles measure sixty degrees" is sufficient. If one 
angle differs from sixty degrees, the triangle cannot be equilateral. 
Hence, the condition is also necessary. Thus the condition "all angles 
measure sixty degrees" is necessary and sufficient for a triangle to be 
equilateral. An alternative phrase to express the same statement is as 
follows: A triangle is equilateral if, and only if, all three angles are of 
size sixty degrees. 

The expression 
if, and only if, 

is abbreviated in hand-writing and occasionally in print by iff. 
The reader will find more examples in Problems 9.25 through 9.29 

at the end of this chapter. In addition he may enjoy exploiting Problem 2.10 
on networks (end of Chapter 2) for the establishment of numerous 
necessary and/or sufficient conditions. 

We conclude the section with another application of the second 
derivative: 

Let a particle move along a straight line and let s = s(t) be its distance 
from a fixed point on the line. Then we know from Section 9.1 that the 
derivative s'(t) is the (instantaneous) velocity of the particle: 

v = v(t) = :: = s'(t) . (9.6.5) 
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If the velocity is not a constant, we may ask for the (instantaneous) 
acceleration, that is, the rate of change of velocity. Hence, we have to 
differentiate v(t) with respect to t. Then v'(t) is the second derivative of 
s(t) and the first derivative of s'(t). Thus the acceleration of the particle is: 

a = a(t) = ~~ = v'(t) = ~:~ = s"(t) . (9.6.6) 

Example: 
For a falling body that is not subject to air resistance, Galilei 12 

found the formula 

t being the time and s the vertical distance traveled. When t is measured 
in seconds and s in meters, then g = 9.81 m/sec2 at the surface of the 
earth. From (9.6.5) and (9.6.6) it follows that v = gt and a = g. Hence, 
for a falling body the velocity increases linearly with time and the 
acceleration remains constant during the motion. 

9.7. Extremes 
During evolution all those functions of an organism that are essential 

for surviving under severe conditions have to be maximized. Conversely, 
"cost" such as requirement for food and protection have to be minimized. 
Thus in plants the leaves should receive a maximum amount of sunlight 
and the roots should have access to as many minerals as possible. On 
the other hand, the time required to adapt to changing conditions should 
be minimal. In animals the ability to obtain food and to protect against 
enemies should be as high as possible, whereas susceptibility to disease 
must be minimized. 

From these few examples we see that nature pursues economy in 
that some quantities are maximized and others minimized. If such a 
quantity can be expressed as a function of other variables, differential 
calculus provides a method for finding extreme values, that is, maxima 
and minima. 

Let y = f(x) be a function which is differentiable over an interval, 
say from a lower boundary x = a to an upper boundary x = b (see 
Fig. 9.17). As we have seen in Section 9.6, a sufficient condition for a 
maximum point at X=Xo if f'(xo)=O and !"(xo)<O. An example is 
the point Q in Fig. 9.17. 

For a minimum point the corresponding condition is f'(xo) = 0 and 
!"(xo) >0. In Fig. 9.17 the point P is such a minimum point. 

12 Galileo Galilei (1564-1642), Italian physicist and astronomer. 
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. We have also to consider a different type of extreme, namely extremes 
taken at boundary points. At the point R in Fig. 9.17 the function reaches a 
maximum, since all neighboring points of the curve are lower. Similarly, 
at S the function reaches a minimum. 

The property of a point being an extreme point is purely local. 
Thus we speak of local maxima and minima. Often, however, we are 
asked to find the highest maximum and the lowest minimum. Then we 
are concerned with the absolute maximum and the absolute minimum. 
In Fig. 9.17 the absolute maximum is taken at R and the absolute 

R 

y = fIx, 
Q _.- -- S 

p 

a b 

rig. 9.17. Extreme values of a function 

minimum at P. The two absolute extremes determine the range of the 
function. 

Examples: 
a) y = 1/ x defined over the interval from x = 1 to x = 3. The function 

is monotone decreasing in the interval. Hence, the maximum value is 
y = 1 for x = 1 and the minimum value is y = 1/3 for x = 3. The two 
extremes are taken at the boundary. There is no local extreme within the 
interval from x = 1 to x = 3. This is also revealed by the first derivative 
y' = -1/x2 which cannot vanish since equating y' = 0 yields no solution. 

b) f(u) = u3 - 6u 2 + 32 over the interval from u = -1 to u = 10. At 
the boundary we have the values f( -1) = 25 and f(10) = 432. The 
first derivative, f'(u) = 3u2 -12u, is positive for u = -1 as well as for 
u = 10, that is, at both boundary points the function is increasing. Hence, 
f( -1) = 25 is a local minimum and f(10) = 432 a local maximum. The 
first derivative, f'(u), vanishes twice within the interval, namely for 
u = 0 and u = 4. The second derivative, f"(u) = 6u -12, is negative for 
u = 0 and positive for u = 4. Hence f(O) = 32 is a local maximum and 
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f(4) = 0 a local minimum. Finally, the absolute maximum is f(1O) = 432 
and the absolute minimum f(4) = O. 

c) The bee's cell is a regular hexagonal prism with one open end 
and one trihedral apex (see Fig. 9.18a). We may construct the surface 
by starting with a regular hexagonal base abcdef with side s (Fig. 9.18 b). 

(a) 
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Fig. 9.18. The bee's cell. The figure is redrawn from Thompson (1917, p. 330) 

Over the base we raise a right prism of a certain height h and with top 
ABCDEF. The corners B, D, F are cut off by planes through the lines 
AC, CE, EA, meeting in a point Von the axis V N of the prism, and 
intersecting Bb, Dd, F f in X, Y, Z. The three cut-off pieces are the 
tetrahedrons ABCX, CDEY, EFAZ. We put these pieces on top of 
the remaining solid such that X, Y, and Z coincide with V. Hereby, the 
lines AC, CE, EA act as "hinges". The faces AXCV, CYEV, EZA V are 
rhombuses, that is, quadrilaterals with equal sides. The new body is 
the bee's cell and has the same volume as the original prism. The hexagonal 
base abcde is the open end. 

The bees form the faces by using wax. When the volume is given, 
it is economic to spare wax and, therefore, to choose the angle of 
inclination, ()= -r.NVX13, in such a way that the surface of the bee's 
cell is minimized. 

13 (J is the lower case Greek letter theta. This letter is frequently used to denote angles. 
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The problem can be solved mathematically as follows. Let L be the 
intersection ofCA and vx. Then L bisects the segment NB and, hence, 
N L = s/2. The segment CL is the height of the equilateral triangle BCN. 
Therefore, 

CL= ~ 0. 

In the triangle N L V we have the relationship 

s 
VL=-2' ()' sm 

(9.7.1 ) 

(9.7.2) 

The rhombus AXCV has its center in L and consists of four congruent 
right triangles with legs equal to CL and V L. Therefore, from (9.7.1) 
and (9.7.2) we get 

1 s 1 Ii S s20 
area AXC V = 4· -. - V 3· -- = --

2 2 2 sin () 2 sin () . 
(9.7.3) 

The surface of the bee's cell contains three such areas. 
The six lateral faces of the bee's cell, such as abX A, are congruent 

trapezoids. Since BX = VN, we obtain from triangle VN L 

(9.7.4) 

Hence, 

s S S2 
areaabXA= -(aA+bX)= -(h+h-BX)=hs- -cot(). 

2 2 4 
(9.7.5) 

The total area made of wax amounts to 

3 2 3 s20 
6hs - 2 s cot() + 2 sin() . (9.7.6) 

This area is a function of the variable angle () and, thus, we denote it 
by f(()). We may rewrite f(()) in the form 

(9.7.7) 

Only the expression in the parentheses contains the variable (). Some 
numerical values rounded-off to two decimals are given in the following 
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table: 

0 V3 -cotO+ --
sinO 

100 4.30 
200 2.32 
30° 1.73 
40° 1.50 
500 1.42 
600 1.42 
700 1.48 
800 1.58 
900 1.73 

The minimum of f(e) is reached somewhere between e = 50° and 
e = 60°. To get the optimal angle, say eo, we differentiate f(e) (cf. 
Problem 9.14): 

(9.7.8) 

The derivative vanishes if, and only if, 

1 = }l3cose. (9.7.9) 

Hence, cos eo = 1;V3 = 0.57735 and eo = 54.7°. Notice that the optimal 
angle eo is independent of the choice of sand h. 

It is worth comparing the result with the actual angle chosen by the 
bees. It is difficult to measure this angle. However, the average of all 
measurements does not differ significantly from the theoretical value 
eo = 54.7°. Therefore, the bees prefer strongly the optimal angle. It is 
unlikely that the result is due to chance. We may rather suppose that 
selection pressure had an effect on the angle e. 

For more details and for the amazing history of this problem see 
Thompson (1917, p. 323 ff.). For comments see also Bailey (1967, p. 8), 
Toth (1964) and Weyl (1952, p. 90). 

d) It is well known that homing pigeons avoid flying over large areas 
of water unless they are forced to do so. The reason for this behavior 
is not known at the present time. In our example we suppose that 
pigeons prefer a detour around a lake since at daytime the air is falling 
over the cool water, a phenomenon which increases the energy required 
for maintaining altitude in flight. 
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In Fig. 9.19 we assume that a pigeon is released from a boat (point B) 
floating on the west side of a lake, whereas the loft (point L) is located 
on the south-east bank. The shortest route from B to L is indicated by a 
dashed line. However, the pigeon makes a detour. First it heads to a 
certain point P on the southern bank, not too far away from B, then it 
follows the bank eastward to L. For simplicity, we assume that the 
bank is straight in the east-west direction. The question arises: Where 

Fig. 9.19. A pigeon released from a boat makes a detour when returning to its loft. It is 
assumed that the total energy required for homing be minimized 

should the point P be chosen in order to minimize the energy required 
for the flight from B to L? In other words, what is the optimal angle BP L? 

Let A be the point on the bank exactly south of B and let e = 1:: AP B. 
We put AB = rand AL = s. Then 

BP=r/sine, AP=r·cote. 

PL = AL - AP = s - r · cote. 
(9.7.10) 

We denote the energy required for flying one unit of length over the lake 
by e1 and along the bank by ez. We assume that no horizontal wind 
interferes. For reasons mentioned above, we have e1 > ez or e1 = eez 
with a certain constant e> 1. The energy required for flying from B to P 
is e1 . BP and for continuing from P to L is ez . P L. Hence, the total 
energy E turns out to be 

E=e1 · BP+ez ·PL 

= e1r/sine + ez(s - r· cote) 

= ezs + ezr(e/sin e - cote). 

(9.7.11) 

Only the expression in the last parentheses depends on e. Hence it 
suffices to minimize the function 

y = e/sine - cote. (9.7.12) 
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The angle (J ranges from its highest value 90° to its lowest value 4: P LB. 

U L is sufficiently far away, the optimal angle, say (Jo, is expected to fall 
in between. To determine (Jo, we differentiate y with respect to (J and 
equate the result to zero. By a calculation similar to that leading to 
formula (9.7.8) we get 

dy 
d(J 

1- c· cos(J 
sin 2 (J 

(9.7.13) 

This expression vanishes for 1 - c . cos (J = O. Hence, 

cos(Jo = 11c . (9.7.14) 

(Numerical example: c = 2, cos (Jo = t, (Jo = 60°). 
One may check that the energy E increases whenever (J deviates 

from (Jo' Notice that the optimal angle (Jo does not depend on rand s. 

e) The blood vascular system consists of arteries, arterioles, capillaries, 
and veins. The transport of blood from the heart through all organs of 
the body and back to the heart should be as effective as possible. With a 
minimal energy expenditure, the body should be fed quickly by the 
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Fig. 9.20. Branching of blood vessels and the search for an optimal angle 8 

" 

constituents of blood. Optimality has to be reached in several ways. 
For instance, each vessel should be wide enough to avoid turbulence, 
and erythrocytes should be kept at a size as to minimize viscosity. 

In our example, we restrict ourselves to a special optimization 
problem, that of vascular branching. We assume that a main vessel of 
radius r 1 runs along the horizontal line from A to B in Fig. 9.20. A 
point C should be reached by a branch ofa given radius r 2 • For simplicity, 
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we have chosen B such that CB is perpendicular to AB. Let CB = s 
and let D be the point where the axis of the branching vessel intersects 
the axis of the main vessel. We denote the angle BDC by (). The problem 
that we consider is then: Find the particular angle () = ()o which minimizes 
the total resistance of the blood along the path ADC. The smaller the 
resistance is, the less energy is spent by the pumping heart. 

To solve the problem, we need a law due to Poiseuille (cf. Section 4.5). 
In laminar flow, the resistance R is proportional to the length I of the 
vessel and inversely proportional to the fourth power of its radius r, 
that is, 

(9.7.15) 

k being a constant factor determined by the viscosity of blood. 
Let AB = 10, AD = 11' DC = 12, Then it follows by inspection of the 

right triangle BDC that 
S 

12 = sin() , 10 -11 =s· cot(). (9.7.16) 

This permits us to express 11 and 12 in terms of 10, sand (). The total 
resistance R along the path ADC is the sum of resistance Rl along 
AD and resistance R2 along DC. It follows from formula (9.7.15) that 

11 12 
R=R1 +R2=k~ +k~ r1 r2 

(9.7.17) 

and from (9.7.16) that 

R = k ( 10 - s . cot () s) 
rt + risin() . 

(9.7.18) 

R is a function of the variable angle () so that we may write R = R(()). 
To get the minimum of R we differentiate R(()). The calculation is similar 
to that leading to formulas (9.7.8) or (9.7.13). We obtain 

RI(())=k( s _ s.COS()) 
rt sin2 () ri sin2 () • 

(9.7.19) 

We may factor out s/sin2 (). The derivative vanishes if the expression in 
the parentheses is zero, that is, if 

_1 __ cos() =0 
rt ri . 

Hence, the optimal angle ()o is determined by 

cos ()o = ri/rt . (9.7.20) 
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To show that eo actually minimizes the total resistance, we 
confine ourselves to a numerical example: Let r2/r1 = 3/4. Then 
coseo = (3/4)4 = 0.316 and eo = 72°. For this angle, the resistance takes 
on the value (14.00) k/rt if 10 = 5 cm and s = 3 cm are chosen. For neigh
boring angles, say eo + 6° and eo - 6° we get R = (14.06) k/rt, that is, a 
value only slightly above the minimum. 

The problem of vascular branching may be raised in different ways. 
For more elaborate work we refer the reader to Rosen (1967, p. 42- 55). 

9.S. Mean of a Continuous Function 

In a laboratory, provision was made to keep the temperature at a 
constant level. A recording of temperature showed slight fluctuations. 
The problem arose: How to determine the mean temperature? Similar 
situations occur frequently in research. Humidity, light intensity, reaction 
rates, etc. change continuously. Yet, usually only mean values are of 
interest. In the study of biological rhythms all bodily activities are 
observed to vary in intensity. To get rid of the ups and downs one may 
ask for average intensities. For instance, the question may be: What 
is the average output of the kidneys per hour? 

n, 
r-

- n 
- -..!.... ___ ___ ___ ___ ____ .t-= ____ _______ __ __ _ 

~ 

Fig. 9.21. The arithmetic mean Ii is interpreted as the total area of the histogram divided 
by the number of bars 

We know how to determine an average in the case of discrete data. 
If we are given countings n1 , n2 , ••• , nk at k different times or k locations, 
we simply calculate the arithmetic mean 

_ n1 + n2 + ... + nk 1 k 

n= k = k.L ni • 
.=1 

(9.8.1) 

We may plot the countings using a histogram in which the area of each 
bar is denoted by the corresponding n (Fig. 9.21). The numerator in 
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formula (9.8.1) is then the total area of the histogram, and the average Ii 
is simply the total area divided by the number of bars. 

This interpretation provides us with a clue for defining the mean 
of a continuous function. Assume that a quantity u is a function of time, 
say u = f(t), over an interval from to to t1 (Fig. 9.22). Let T be the length 
of the time interval, that is, T = t1 - to. Then we determine the area 
over the interval which is measured in units [tJ . [u] where [t] and [u] 

u 
u = fet ) 

IT 

to t, 
- ---- T -----

Fig. 9.22. The mean Ii of a continuous function u = f(t) over an interval from to to t1 

denote the units of t and u, respectively. Finally we divide the area by T 
and call the result the time average or the mean of u over the interval 
from to to t 1. We denote this mean by u. Thus we obtain 

1 t1 

u= - S f(t)dt. 
T to 

(9.8.2) 

An even stronger geometric interpretation would proceed as follows: 
The figure with a curvilinear edge is replaced by a rectangle with the 
same base T and the same area. The height u of this rectangle is the 
desired mean of u. With this view in mind, it is not difficult to estimate 
u graphically. 

The independent variable need not be the time. In the following two 
applications, time is actually not involved. 

Applications: 
1. The investigation of the internal structure of tissue calls sometimes 

for estimating the volume of a component which is "randomly" included 
in the tissue. The term "random" is not well defined. In this connection 
it means "irregular, but not in clusters". Fig. 9.23 illustrates the situation. 
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A tissue can be investigated by sections. A tissue section is a slice not 
thicker than a few micrometers (10- 6 m). Such a section may be considered 
as a two-dimensional sample from a three-dimensional body. The 
question then arises: Can the composition of tissue be estimated from a 
thin slice? 

To answer this question we partly follow a presentation given by 
Weibel (1963,p. 12): Suppose that a cube with volume V=L3 contains 

y 

x 

Fig. 9.23. Estimation of the amount of granules in a tissue by means of a two-dimensional 
section. The figure is reproduced from Weibel (1963, p. 13) 

granules of any shape and size evenly, that is, without forming clusters. 
All granules together are of volume v < V, say 

v=(!·V ((!<1). (9.8.3) 

It is our purpose to estimate the rate (! by observing a thin slice. As 
shown in Fig. 9.23, we let one face ofthe cube coincide with the x, y-plane, 
another face with the x, z-plane, and a third face with the y, z-plane. 
Consider a slice of thickness dx parallel to the y, z-plane 14. Its volume is 

dV=L2 dx. 
In this slice, let 

(9.8.4) 
14 In Section 9.4 we used Llx to denote a quantity which tends to zero, whereas dx 

was a mere symbol. In applied mathematics, however, it is customary to use dx both 
with the meaning of Llx and as a symbol. 
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denote the volume occupied by segments of granules 15. The rate '1(x) 
depends on the position x where the slice is cut. Following formula (9.8.2) 
we introduce the average rate 

1 L 

if = - J '1(x) dx . (9.8.5) 
Lo 

Now, from formula (9.8.4) we get 
L L 

V = J dv = J '1(x) U dx = L 2 • J '1 (x) dx . 
o 0 

It follows from (9.8.5) that 

v=L2 ·L·if= V·if· 

Comparing the result with (9.8.3) we finally obtain 

e =if· (9.8.6) 

In words: The three-dimensional rate e of a tissue component is equal to 
the two-dimensional average rate if. This rule was discovered by Delesse 
in 1842 16. 

The experimenter measures '1 for a particular x and uses '1 as an 
estimate for if and indirectly for (J. For more details see Weibel (1963, 
p. 11 fT.) and Hennig (1967, p. 100). 

b) For another application of the mean of a continuous function, 
we return to the laminar flow of blood as considered in Section 4.5. 
A velocity diagram is depicted in Fig. 4.7 b. We may ask: What is the 
mean velocity of blood at a particular cross section of a blood vessel? 

Formula (4.5.1) states that the velocity v = vCr) is given by 

v(r) = C(R2 - r2) (0;:;; r;:;; R) (9.8.7) 

where c = P/4'11 is a constant. Now we subdivide R into a number, 
say n, of equal parts of length LI r. Thus R = n . LI r. Then we introduce 
the sequence of radii 

For a fixed value of i we consider the ring formed by the two circles of 
radii r; and r;+1 =r;+Llr, respectively. The area of this ring is approxi
mately 2nr; . LI r. Over the ring as part of the cross section, the velocity 
changes only slightly and may be approximated by v(rJ Hence, the volume 
of blood flowing through the ring per time unit is nearly 

2nr; . LI r . v(r;) . 

15 Q( = rho) and 'I( = eta) are lower case Greek letters. 
16 Achille Ernest Delesse (1817-1881), French geologist. 
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The total blood volume passing the cross section per time unit is approxi
mated by 

n-l 

L 2nri · v(ri)· L1r . 
i=O 

We can reduce the error by making a finer subdivision of R, that is, by 
increasing n. As n tends to infinity, the sum tends to a limit which is the 
exact volume of blood per time unit. We discussed similar procedures 
in Section 9.4. Thus we are led to the integral 

R 

I 2nr . v(r) . dr . (9.8.8) 
o 

To get the average velocity of blood, we simply divide the integral by 
the total area of the cross section, that is, by nR2. Thus we obtain 

1 R 
v = --2 J2nr. v(r) . dr . 

nR 0 

Formula (9.8.7) yields 

1 R 
v= --2 2n· c J (R 2 r-r3)dr 

nR 0 

= ~~ (R2. r; _ ~) 1:= ~~ (~4 _ ~4) 
and finally 

- C 2 V=2: R . (9.8.9) 

As (9.8.7) shows, the maximum velocity is Vmax = CR2. Therefore, our 
average speed v is just one-half of it, that is, 

- 1 
V = 2" Vmax • (9.8.10) 

9.9. Small Changes 

In systems analysis we study the interdependence of several parts of 
an organism. If the system is stable, a small change in one part will 
generate only small changes in other parts. The problem of determining 
small changes is solved by differential calculus provided that the vari
ables are continuous. 

Consider, for instance, the iris of our eye which acts as a diaphragm. 
How much does a small change of its width affect the intensity of the 
entering light? Let r be the radius of the pupil. Then its area (aperture) 
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is proportional to r2, and the same is true for the light intensity, say I. 
Hence, 

(9.9.1) 

for a suitable constant c. When r increases by a certain increment .1r, 
the corresponding increment of I is 

.1 1= c(r + .1 r)2 - cr2 = 2cr· .1 r + c(.1 r)2 . (9.9.2) 

Now we assume that .1r is small compared with r, say at most one-tenth 
of r. Then (.1 r)2 is so small compared with r· .1 r that the last term in 

-
$! .. 

rad , us of pupi l 

Fig. 9.24. A small increase (jr causes a small change M. The ratio M/(jr is approximately 
equal to the slope of the tangent, that is, the derivative dI/dr 

(9.9.2) can be neglected. To indicate that .1 r should be sufficiently small, 
it is customary to write (jr instead of .1 r 17. Therefore, (9.9.2) turns into 
the approximate formula 18 

{jJ ~ 2cr· br . (9.9.3) 

There is, however, a faster way to obtain formula (9.9.3). To explain 
the basic idea, we look at Fig. 9.24. The graph of the function (9.9.1) is 
a piece of a parabola. From a given point P with coordinates r, I we 
proceed to a new point Q with coordinates r + (jr, 1+ {jJ. However, we 
would reach nearly the same point by following the tangent to the 

[7 (j is the lower and .1 the upper case Greek letter delta. 
[8 The symbol ~ is read "is approximately equal to". Some authors prefer the 

symbols -, ~ or ~. 
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parabola up to the point Q' with abscissa r + ~r. Since the slope of the 
tangent is 

dI 
-=2cr 
dr ' 

(9.9.4) 

the ordinate of Q' is 1+ 2cr· ~r. Hence, M ~ 2cr· ~r in agreement with 
formula (9.9.3). Notice that the approximation would not be satisfactory 
if ~r were of the same order of magnitude as r (cf. Section 1.10 for the 
notion "order of magnitude"). 

In general, let y = f(x) be a differentiable function of x, and let bx 
be an increment which is sufficiently close to zero. The increment ~x 
may be positive or negative. Using the absolute value we can reformulate 
the condition imposed on bx by saying that I~xl has to be sufficiently 
small. With ~ y we denote the corresponding increment of y by ~ y. Then 
the ratio ~y/~x is approximately equal to the slope dy/dx = f'(x). There
fore, we get 

I ~y~f'(x)·bx. I (9.9.5) 

In each particular application, a special examination is required to 
determine the meaning of "sufficiently small". This depends on the pro
perties of the function as well as the desired accuracy. 

Applications: 

a) Consider a blood vessel of length I and of radius r. Then one of 
Poiseuille's laws states that the resistance R of the blood vessel is given 
by formula (9.7.15). How does a small change ~r ofr affect the resistance 
R? We differentiate R with respect to r and get 

(9.9.6) 

It follows from formula (9.9.5) that 

( 4kl) ~R ~ - ----;:s . ~r . (9.9.7) 

The result states that the resistance R diminishes as the radius r increases. 
The rate of change is - 4kl/r5 • 

b) We know that yar = a for a?; O. If we add a small quantity b to 
the radicand, we may ask: How far does Va2 + b deviate from a? To 
answer the question, we consider the function y = Vx = X 1/2 . We dif-
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ferentiate y with respect to x and deduce from formula (9.9.5) 

1 
by~--·bx. 2Vx 

With the new notations x = a2 , <5x = b, y = a, it follows that b y ~ b/2a 
and, hence, 

1~ b 
V a +b~a+~. (9.9.8) 

This formula is convenient for numerical calculations. Example: a = 50, 
b = 9. Then V2509 ~ 50 + 9/100 or 50.09. The exact value is V2509 
= 50.0899 .... The error of approximation is negligible. 

c) Formula (9.9.5) is also used in problems of error propagation. 
Suppose that an experimenter is unable to keep the electric resistance R 
of a wire constant. He observes fluctuations of the electric current within 
an interval 1+ M. The question is: Can we estimate the corresponding 
interval R ± bR for the resistance? In other words: How can an error of 
R be related to a deviation of I? Ohm's law states19 

V 
T=R. (9.9.9) 

We assume that the voltage V is constant. Therefore, R is a function of 1. 
We differentiate R with respect to I and obtain from (9.9.5) 

V 
bR ~ - J2. M . (9.9.10) 

Hence, the desired interval ranges approximately from R - V r 2 . M to 
R+ VI- 2 ·M. 

Recommended for further reading: Defares and Sneddon (1961), Gel
baum and March (1969), Guelfi (1966), Lefort (1967), McBrien (1961), 
C. A. B. Smith (1966), Stibitz (1966). 

Problems for Solution 

9.1. Assume that a population of size 25,000 (at time t = 0) grows 
according to the formula N = 25,000 + 45 t 2 where the time t is 
measured in days. Find the average growth rate in the time intervals 
a) from t = ° to t = 2, b) from t = 2 to t = 10, c) from t = 0 to t = 10. 

9.2. Assume that a protein (mass M in grams) disintegrates into amino 
acids according to the formula M = 28/(t + 2) where the time t is 
measured in hours. Find the average reaction rate for the time inter
vals a) from t = 0 to t = 2, b) from t = ° to t = 1, c) from t = 0 to t = i. 

19 Georg Simon Ohm (1789-1854), German mathematician and physicist. 
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9.3. Assume that a particle moves from the point s = 2 (meters) at time 
t = 1 (sec) to points with s> 2 along an s axis. The segment s 
(meters) is the following function of time t (sec): s = 2}1t. Find the 
average velocity of the particle in the time interval from t = 1 to 
t = 1 + h where h takes on the decreasing values 1, 0.1, 0.01, 0.001 
(sec). 

9.4. Find the difference quotient and the derivative of the function y = x3• 

9.5. Using the general formula for differentiating the function y = XR, 

find the derivatives of the following power functions: 
a) y=x- 2 b) u=w5 c) V=r2 /3 

d) M = 1/t3 e) A = VQ 0 Z = l/vP . 

9.6. Find the derivative of y = cosx by employing the method de
scribed in Section 9.2 for the function y = sinx. 

9.7. Find the derivatives of 
a) v=at+b/t+c b) U=az2 +bVz+c/Vz (a, b, care 

constants). 

9.8. The size of a slowly growing bacteria culture is approximately 
given by 

N=No+52t+2t2 (time t in hours). 

Find the growth rate at t = 5h. 

9.9. When protein was synthesized in a cell, the mass M of protein as 
a function of time t increased according to the formula 

M = p + qt + rt2 (p, q, r are constants) . 

Find the reaction rate as a function of t. 

9.10. In a metabolic experiment the mass M of glucose decreased ac
cording to the formula 

M = 4.5 - (0.03) t 2 (t in hours) . 

Find the rate of reaction a) at t = 0, b) at t = 2, c) in the interval 
from t = 0 to t = 2 (average). 

9.11. Find the derivative of y = (2x + 3)2 in two ways, a) by removing 
the parentheses, b) by the chain rule. 

9.12. Using the chain rule, find the derivatives ofthe following functions: 
a) y=(X+5)2 b) Y=(u2-3)2 c) s=1/(t-2) 
d) K = 2/(1- v) e) v = (4 - 3t)t 0 p = sin(4cx - 5). 
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9.13. Find the derivatives of the following products: 

a) dd (sinx·cosx) b) ~(2t-3)(t2+5) 
x dt 

d d 
c) -(u·cosu) d) -(l-w)Vw. 

du dw 
9.14. Differentiate 

a) 
x 

b) 
l+r 

y=-- K=--
x-3 1-r 

c) y = l/sine d) y = cote = cos e/sin e . 

The results of c) and d) are used in examples at the end of Section 9.7. 

9.15. The altitude of a right circular cone measures h = 20 cm. The 
radius r of the base (in cm) is increasing. The formula for the volume 
is V = 1 nr2 h. Find the growth rate of the volume. 

9.16. Find the antiderivatives of the following functions: 

a) y'=6x2 b) y'=8x-7 c) u'=at+b 
(a, b are constants) 

d) ~~ =5x3 e) ~7 =2t-8 t) ~~ =Uo+cosx 

g) y'=1cost h) U'=cos2x i) K'=1/u2 . 

9.17. Plot a graph of the function y = 5 + 2x - t x 2 over the interval 
from x = 0 to x = 3. Find 

9.18. 

3 

S ydx 
o 

a) approximately by the method of dot counting, b) exactly by 
integration. 

Evaluate the definite integrals 

2 1 1 

a) S - dr b) S (5 - w)dw 
1 r2 -I 

3 1 

d) S t dt e) S dx 
1 -I 

2 1 p 
g) S -du h) S sin ex dex lVu -p 

a+1 du s 

k) S - 1) S t 2/3 dt . 
u2 

a 0 

c) 

t) 

i) 

t 

S (at 2 + bt + c) dt 
o 

1[/2 

S cost dt 
-1[/2 

q 

S x2 dx 
P 

9.19. Find the second derivatives of the following functions: 

a) y=1-x3 b) u=2z5 -3z3 c) W=3/t d) p=2Vs. 
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9.20. Show that the first derivative of a quadratic function is linear, and 
that the second derivative is constant. Compare the results with the 
first and second difference introduced in Section 4.4. 

9.21. A flea leaping in a vertical direction reached the following height h 
(in m) as a function of the time t (in sec): 

h = (4.4) t - (4.9) t 2 • 

Find the velocity at time t = 0, the maximum height reached, and 
the acceleration caused by gravitation. 

9.22. Given that a particle is at rest at time t = 0 and from then on moves 
along a straight line with constant acceleration a, find the "law of 
motion", that is, find velocity v and distance s traveled as a function 
of time. 

9.23. By means of the second derivative, determine whether the graphs 
of the following functions are convex upward or downward: 
a) y = ~ x 2 + 3x - 5 b) F = 4 - 2t - t2 c) V = (- 1/3) u2 + u 
d) y=2x-4 e) y=x3 -x. 

9.24. Find maximum and minimum points of the following functions: 

a) y=x3 -x b) v=1+2t+~t2 c) u=p(l-p). 

9.25. Verify the statement "An integer is divisible by 6 if, and only if, it 
is divisible by 2 and by 3". 

9.26. Is the condition "all four sides are equal" a) necessary, b) sufficient 
for a quadrilateral to be a square? 

9.27. Is the condition "traffic light is green", a) necessary, b) sufficient for 
the right to cross an intersection? 

9.28. Assume that the graph of a function y = f(x) consists of two arcs 
which join at a point P. Thus P is a vertex. Is the function at P 
a) continuous, b) differentiable, c) neither, d) both? Is the con
dition "f(x) is continuous" necessary or sufficient for differenti
ability? 

9.29. Given y = X4. For x = 0, the second derivative is zero. Yet the graph 
has no point of inflection. Is the condition f" (x) = 0 necessary or 
sufficient for a point of inflection? 

9.30. Find local and absolute maxima and minima of the following 
functions: 

a) y=x2 -3x for 0~x~5, 

b) v = 1 + 2t + ~ t2 for - 3 ~ t ~ 3, 

c) U = 1/(2v + 3) 
d) y=x3 -3x 

for 1 ~v ~ 3, 
for -3 ~x~3. 
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9.31. In water and in solution the product of the concentrations of 
hydrogen ions, [H+], and the hydroxyl ions, [OH-], is very close 
to 10- 14 . Let 

S = [H+] + [OH-] . 

Determine the value of [H+] which minimizes S. (From Thrall, 
Mortimer, Rebman, Baum, 1967, ex. MA 7.2.) 

9.32. In an auto-catalytic reaction one substance is converted into a new 
substance called the product in such a way that the product 
catalyzes its own formation. We assume that the reaction rate is 
proportional to the amount x of the product at time t and also 
proportional to the still available amount of the original sub
stance. If a denotes the original amount of the substance, it de
creases to a - x at time t. Therefore, 

dx dt = kx(a - x) (k is a positive constant) . 

Find the particular value of x which maximizes the reaction rate 
(from Thrall, Mortimer, Rebman, Baum, 1967, ex. MA 8.2). 

9.33. Find the mean values of the following functions: 
a) Y=tx+3 for O~x~6, 
b) s = t 2 for 2 ~ t ~ 3, 

c) F=cosu 

d)K=r- 2 

9.34. The surface of a spherical cell is S = 4nr2 and the volume V = 1nr3. 
How are S and V affected by a small increase Jr of r? 

9.35. When a muscle contracts against a force F (e.g. a weight), the speed v 
of shortening decreases with increasing force. A. V. Hill discovered 
the following equation in 1938: 

(F+a)(v+b)=c 

with suitable positive constants a, b, c. Express v in terms of F. 
How is v affected by a small change JF of F? (For Hill's law see 
Abbott and Brady, 1964, p. 349). 

9.36. By inspection of Figure 9.24 prove that for Jx > 0 

(Minf'(x))· Jx ~ Jy ~ (Maxf'(x))· Jx. 

The minimum and maximum of f'(x) are taken in the interval from 
xtox+Jx. 



CHAPTER 10 

Exponential and Logarithmic Functions II. 

10.1 Introduction 

In the preceding chapter we carefully avoided applying calculus to 
exponential and logarithmic functions although these functions are of 
fundamental importance for all "kinds of mathematical and statistical 
treatment in the life sciences. The functions 

(10.1.1) 

which we considered in Chapter 6 are not easy to differentiate or integrate 
unless we introduce a special base, namely the number 

e = 2.718281828459 ... (10.1.2) 

which we defined in formula (8.2.1) as the limit of a special sequence. 
The particular exponential function which we have in mind is y = e", 
and the particular logarithmic function is y = loge x. 

At a glance it seems strange to use the complicated, irrational number 
e as a base. However, this is a purely SUbjective view. In fact, eX and 
logex have very simple derivatives. As we shall prove in the following 
sections, these derivatives are 

1 
(lo~x)' = -, x 

(10.1.3) 

that is, the derivative of e" is identical with e" itself, and the derivative 
of logex is simply the reciprocal of x. 

For this reason we consider e as a natural base for exponential and 
logarithmic functions. It is customary, indeed, to call1o&x the natural 
logarithm of x and to denote it by log natx or briefly by lnx. Conse
quently, we could call e" the natural exponential function, but this term 
is not frequently used. 

We conclude this introduction with the rule: Whenever exponential 
and logarithmic functions have to be differentiated or integrated, we 
rewrite the functions with the number e as a base. 
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In Section 10.2 we will first define lnx quite independently of the 
concept of a logarithm. In the following section we will study the pro
perties of this function which reveal some relationship to logarithms. 
In Section 10.4 we will introduce the exponential function eX as the 
inverse oflnx. This will include the proof that lnx is indeed a logarithm 
and identical with logex. 

There is no straightforward way to define these functions. The pro
cedure rather resembles a detective story. In spite of the complicated 
logical pattern, we hope that the reader will be able to follow each single 
step without undue effort. A real understanding of exponential and 
logarithmic functions opens the door for a host of applications. 

Before studying this chapter, the reader should be familiar with the 
major concepts of Chapters 6, 8, and 9. 

10.2. Integral of 1jx 

In formula (9.3.1) we learned that the antiderivative of xm is 
xm+ l/(m + 1) + C except for m = -1. Now we are going to investigate 
this exceptional case. For m = -1, xm reduces to l/x. In Fig. 10.1 the 
function y = l/t is plotted for positive values of t. The reason why we 

y 

b a 

Fig. 10.1. The definition of Ina for a> 1 and Inb for 0 < b < 1 

denote the abscissa by t and not by x will be clear when we look at 
formula (10.2.1). The same unit of length is chosen on both axes. Thus 
integration of the function is equivalent to finding the area of a 
"curvilinear quadrilateral" between an interval on the t axis and the 
graph of the function. We will consider two such intervals. First, let 
a> 1 be a fixed number. On the horizontal axis the point t = a is to the 
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right of the point t = 1. The area over the interval [1, a] is 

a 1 
I-dt. 
1 t 

We will denote this quantity by Ina and read "In of a". For the moment 
we forget that Ina has anything to do with a logarithm. Second, let 
0< b < 1 be another fixed number. The point t = b is to the left of the 
point t = 1. The area over [b, 1] is 

1 1 
I-dt. 
b t 

By means of formula (9.5.14) we can interchange the two limits of the 
integral which yields for the area 

b 1 
- I -dt. 

1 t 

The integral is of the same form as the integral over [1, a]. Hence, it is 
quite convenient to define 

b 1 1 1 
Inb=I-dt=-I-dt. 

1 t b t 

Thus, when 0 < b < 1, lnb is a negative number. 
Now we perform the same logical step as in Section 9.5 when we 

introduced the area function F(x). We consider the upper limit of the 
integral as a variable and denote it by x rather than by a or b. To each 
x > 0 there is assigned a unique value of the area. Hence, the area is a 
function of x. Therefore, In x is also a function of x: 

x 1 
lnx= I-dt (X>O)l. 

1 t 
(10.2.1) 

If x = 1, the interval collapses into one point so that the area is zero. 
Hence, In 1 = O. For x> 1, the function lnx takes on positive values. 
For x < 1, however, we have to interpret x as b in Fig. 10.1. We know 
already that In b < O. Therefore, In x takes on negative values for 0 < x < 1. 
Numerical values may be approximately determined by the method of 
dot counting (see Fig. 9.8 and Problem 10.1). A table of some values 

1 The function Inx can only be defined for positive values of x. If x were negative, 
the interval of integration would contain the point t = 0, but it follows from formula 
(10.3.10) that the integral would not be limited to finite values. 
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rounded off to five decimals follows: 

Table 10.1 

x lnx x lnx 

0.5 --{).69315 2.70 0.99325 
1.0 0 2.71 0.99695 
1.5 +0.40547 2.72 1.00063 
2.0 +0.69315 2.73 1.00430 
2.5 +0.91629 
3.0 + 1.09861 
3.5 + 1.25276 

In Fig. 10.2 the function y = In x is plotted. The curve reminds us of the 
graph of logz x represented in Fig. 6.8. 

y 

O r-------~--------r-----~-.--------r----

- 1 

Fig. 10.2. Plot of the function y = lnx. The domain is the positive x axis. The function 
is monotone increasing 

10.3. Properties of In x 

We defined Inx as the area of a "curvilinear quadrilateral" between 
the interval [1, x] and the graph of l/t. This area changes continuously 
as x changes. Hence, Inx is a continuous function of x. Moreover, we 
can differentiate Inx by applying formula (9.5.10) to the integral in 
(10.2.1). Thus we obtain 

d 1 
-d (lnx) = (lnx)' = - . 

x x 
(10.3.1) 
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The derivative of Inx is the integrand in (10.2.1) written with the 
variable x. Conversely, In x is an antiderivative of l/x. Hence, the 
indefinite integral of l/x is 

1 
f-dx=lnx+C (x>O) 

x 

where C is an arbitrary constant. 

(10.3.2) 

Now we study the composite function In(kx) where k is a positive 
number. The chain rule, stated in formula (9.2.14), allows us to 
differentiate the function. Letting u = kx we get 

d d du 1 1 
-(lnkx) = -(lnu)·- = -·k= -·k 
dx du dx u kx 

(10.3.3) 

or 
d 1 

-(lnkx) = -. 
dx x 

(10.3.4) 

Surprisingly, the result does not depend on k, that is, Inkx has the same 
derivative as Inx. Therefore, the antiderivatives differ only by a certain 
constant: 

Inkx=lnx+C. 

To determine C, we let x = 1 and get In k = In 1 + C = 0 + C or C = In k. 
It follows that Inkx = Inx + Ink. For convenience we rewrite this 
formula with letters a and b: 

Inab=lna+lnb (a>O,b>O). (10.3.5) 

In words: The function "In" applied to a product of two positive numbers 
is equal to the sum of the "In" taken for each single number. We have 
already encountered such a property in connection with logarithms 
(cf. formula (6.4.2)). 

For the particular value b = l/a we conclude from (10.3.5) that 

In (a. !) = Ina + In l/a or, by virtue of In (a. !) = In 1 = 0, that 

In1/a= -Ina (a>O). (10.3.6) 

For example, if a = 2, we get In 0.5 = -In2 (cf. Table 10.1). 
Furthermore, by replacing b with l/c in formula (10.3.5) and by 

observing (10.3.6) for a = c we get 

Ina/c = Ina -Inc (a >0, c >0). (10.3.7) 
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We may apply formula (10.3.5) repeatedly and derive 

Ina2 = Ina + Ina = 2 ·lna, 

Ina3 =lna2 +lna=2·lna+lna=3·lna, etc. 

In general, for any natural number n it follows that 

In an = n ·lna (a> 0, n = 1,2,3,4, ... ). (10.3.8) 

N ow we assume that a > 1. This implies In a > O. Then, as n tends to 
infinity, n ·lna also tends to infinity. Therefore, letting an = x, we obtain 
from (10.3.8) 

lnx-+ 00 as x-+ 00 . (10.3.9) 

If instead 0 < a < 1, we know that Ina < O. Hence, as n tends to 00, the 
product n ·lna tends to - 00. At the same time, x = an tends to zero 
(cf. formula (8.1.12)). Thus, (10.3.8) yields 

lnx-+ - 00 as x-+O. (10.3.10) 

Whereas the domain of the function is the positive x axis, the results 
(10.3.9) and (10.3.10) indicate that the range is the whole y axis. 
Cf. Fig. 10.2. 

10.4. The Inverse Function of lnx 

Since the derivative of lnx is l/x, and since l/x is posItIve for 
every x> 0, the function lnx increases whenever x increases. Hence, 
y = lnx is a monotone function for all x> o. We introduced this notion 
in Section 6.3. There we learned that a monotone function has always 
an inverse function. This means: With each value of y there is associated 
a unique value of x. For instance, if we choose y = 0, there exists only 
one corresponding value of x, namely x = 1. 

To write the inverse function of y = lnx in a convenient form, we 
consider first the special value y = 1. The equation In x = 1 has, as we 
know, a unique solution. From Fig. 10.2 we see that x-:::::,2.7 and, with 
higher accuracy, from Table 10.1 that x must be between 2.71 and 2.72. 
We denote this particular value of x bye. The reader will hardly be 
surprised to learn that e is identical with the number (10.1.2). The proof 
for the identity will be given later in Section 10.8. Now we claim that the 
exponential function 

is equivalent to y = In x. To prove this statement, we have only to take 
the "In" value on both sides, that is, lnx = IneY = y ·lne = y. 
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x 

Fig. 10.3. Graph of the exponential function y = eX obtained by reflection of the graph of 
y = Inx about the line y = x 

To form the inverse function, it is customary to exchange x for y 
(cf. Section 6.3). Thus, we obtain as the inverse function of y = lnx 

y = eX (read: e to the x), (10.4.1) 

that is, we get an exponential function with the special base e. To plot a 
graph of this function, we have only to interchange x and y in Fig. 10.2 
or, equivalently, to reflect the curve about the line y = x (see Fig. 10.3). 
The domain of y = r is the whole x axis, and the range is the positive 
yaxis. 

A brief table of the exponential function follows. The reader is in
vited to compare the numerical values with the graph of Fig. 10.3. 

Table 10.2 

x e' x eX 

-0.4 0.67032 +0.6 1.82212 
-0.2 0.81873 +0.8 2.22554 

0 1.00000 + 1.0 2.71828 
+0.2 1.22140 +1.2 3.32012 
+0.4 1.49182 + 1.4 4.05520 
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For eX there exists another notation which is especially suitable for 
typing and printing: 

eX=expx. (10.4.2) 

In the newer literature, this notation is frequently used. For instance, 
instead of e- tu2 one writes exp( - u2 /2). 

The inverse function of y = ~ is our original function y = In x. In 
Chapter 6 we called the inverse function of an exponential function a 
logarithmic function. Hence, y = In x is a special logarithmic function, 
namely the one with base e, that is, 

lnx= logex. (10.4.3) 

In x is called the natural logarithm2 of x. 
Since taking "In" and "exp" are inverse operations, they cancel 

each other. Therefore we may write 

In (exp x) = In eX = x (10.4.4) 
and 

exp(lnx) = e1nx = x . (10.4.5) 

10.5. The General Definition of a Power 

We already know that eX is defined for all real values of x. Now we 
try to investigate the more general power 

where a is any positive base. Our problem includes such strange powers 
as 

3\1'2 2" (~)-vs 113V2 , '2 ' V J • 

Instead of aX we may consider lnax . For the particular case where x is a 
natural number n = 1,2,3,4, ... , we already know that 

lnan = nIna 

(see formula (10.3.8)). The result can be extended to negative integers 
-1, - 2, - 3, ... as shown by a typical example 

1 
Ina- 3 = In-3 

a 

2 "In" was originally introduced as an abbreviation of the Latin logarithm us 
naturalis. In books on pure mathematics the symbol "In" is not common. Instead "log" 
is used since a confusion with other logarithms is not likely. 
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Here we apply formulas (10.3.6) and (10.3.8). Thus 

Ina- 3 = -lna3 =(-3)lna. 
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The exponent may also be lin where n = 1,2, 3, .... Consider for 
instance 

Ina 1/s . 

We multiply this expression by 5. It then follows from formula (10.3.8) 
that 

This reduces to 

Hence, on division by 5, 

1 
Ina 1/s = S ·lna. 

We may even go a step further and consider 

Ina3/s • 

Here formula (10.3.8) leads to 

Ina3/s = In(a 1/S )3 = 3lna1/s , 

and our previous result yields 

1 3 
Ina3/s =3· S lna= Slna. 

In all these cases we obtained 

(10.5.1) 

This formula is true for all fractional numbers x whether positive or 
negative, that is, for all rational numbers x (see the number system in 
Section 1.14). 

Formula (10.5.1) states that lnax is proportional to x for a fixed 
base a and for all rational numbers x. It is now a minor step to extend 
this formula for all real numbers x. Indeed, a real number can be con
sidered as a limit of a sequence of rational numbers, as for instance }13 
is the limit of the sequence 

1.7, 1.73, 1.732, 1.7320, .... 
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Therefore, we define Inax to be the product x ·Ina. Conversely, aX is the 
inverse function of Inax • Hence, we obtain the fundamental formula 

(10.5.2) 

That is, every power can be written with the special base e. 

Example 10.5.1. Calculate In3V2. From (10.5.1) we get for a = 3, 
x=V2 

In3V2 = V2 ·ln3 

and by means of V2 = 1.41421 and Table 10.1 

In3V2 = (1.41421) (1.09861) = 1.55367 

with an accuracy of five decimals. 

Example 10.5.2. Rewrite 2.51.22 as a power with the natural base e. 
Formula (10.5.2) yields 

2.51.22 = e(1.22)ln2.S 

or, since In 2.5 = 0.91629, 

2.51.22 = e(1.22)(O.91629) = e1.12. 

Here we rounded off the exponent assuming that 1.22 has only three 
significant digits (for a rule see Section 1.12). 

The following rules apply to the generalized powers : 

as·d=a'+t (a>O), 

(ab)S = aSbs (a> 0), (b > 0), 

(asy = ast (a >0). 

(10.5.3) 

(10.5.4) 

(10.5.5) 

To prove each formula we take the "In" value on both sides. This 
procedure reduces the three formulas to equalities which we already 
know. Indeed, (10.5.3) is equivalent to 

s ·Ina+ t ·Ina=(s+ t) Ina, 

(10.5.4) is equivalent to 

s(ln a + In b) = s . In a + s . In b , 

and (10.5.5) is equivalent to 

t . In as = s . t . In a . 



Relationship between Natural and Common Logarithms 261 

10.6. Relationship between Natural and Common 
Logarithms 

We know from Chapter 6 that 

10" = x (x> 0) 

is equivalent to 

a=logx 

(10.6.1) 

(10.6.2) 

where "log" means the common logarithm (base 10). In order to get a 
relationship between "log" and "In" we apply the natural logarithm 
to both sides of (10.6.1). In view of formula (10.5.1) we obtain 

a· In 10 = lnx. 

Herein we eliminate a by means of (10.6.2). Hence 

lnx = In 10 ·logx (x> 0). (10.6.3) 

The numerical value of In 10 is 

In 10 = 2.3025850 .... (10.6.4) 

Eq. (10.6.3) simply means: The natural logarithm is proportional to the 
common logarithm, that is, 

lnxoclogx. 

A few numerical values taken from logarithmic tables will illustrate 
the proportionality: 

Table 10.3 

x lnx logx lnx/logx 

5.0 1.6094 0.6990 2.303 
5.1 1.6292 0.7076 2.303 
5.2 1.6487 0.7160 2.303 
5.3 1.6677 0.7243 2.303 
5.4 1.6864 0.7324 2.303 

From this point of view, operating with natural logarithms is equivalent 
to operating with common logarithms. 

Why do we then learn both kinds of logarithms? The answer is two
fold. For numerical calculations, the common logarithm is much more 
practical than the natural logarithm. However, when differential or 
integral calculus is involved, the natural logarithm is preferable. This 
will be shown in the next section. 
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10.7. Differentiation and Integration 

From Section 10.2 we already know that 

x 1 
Inx = S -dt 

1 t 
and that 

1 
(lnx)' = -. 

x 

Now we will extend these results. 

(10.7.1) 

(10.7.2) 

In Chapter 11 we will have to integrate l/x in the case where x is 
negative. The anti derivative cannot be Inx since the logarithm of a 
negative number does not exist. We try with In( -x). According to the 
chain rule the derivative is -1/( - x) = 1/x. This is exactly what we 
wanted. It is convenient to replace - x by the absolute value of x, that 
is, by Ixl (see Section 1.6). Thus, a result can be stated which is valid for 
both positive and negative values of x: 

1 
S - dx = In Ixl + C (x =l= 0) . 

x 
(10.7.3) 

We may also be interested in differentiating logx where "log" means 
the common logarithm. By means of formulas (10.6.3) and (10.7.2) 
we obtain 

, (Inx)' 1 1 
(logx) = In10 = In 10 .~. (10.7.4) 

This formula is more complicated than (10.7.2). Therefore, we try to 
avoid it. 

The derivative (In x)' = 1/x will also serve us in finding the derivative 
of eX. For this purpose we use the formula for the derivative of an 
inverse function 

1 
dx/dy = dy/dx 

established at the end of Section 9.2. Since x = eY IS equivalent to 
y = Inx, it follows that 

d dx 1 1 1 
di eY = dy = dy/dx = d(lnx)jdx = 1/x =x=eY. 

Replacing y by x we obtain 

as predicted in (10.1.3). 

d 
- eX = (ex)' = (expx)' = ~ 
dx 

(10.7.5) 
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More frequently we have to differentiate composite functions such 
as e"'X with an arbitrary constant m =1= O. By the chain rule as stated in 
formula (9.2.13) we get 

(10.7.6) 

The antiderivative is therefore 

(10.7.7) 

where C is an arbitrary constant. 
Sometimes we are faced with the problem of differentiating the 

general exponential function aX (a > 0). By using formula (10.5.2) we 
introduce the special base e. Then we apply the chain rule as shown in 
formula (10.7.6). Thus we get 

(10.7.8) 

To avoid the clumsy factor Ina, it is preferable to express all powers in 
terms of the special base e. 

Finally, we exploit the exponential function e"'X for solving a 
problem which we left open in differential calculus, namely the problem 
of differentiating the power function y = x" where n is any real number. 
In formula (9.2.4) we merely anticipated the result. The proof is based 
on formula (10.5.2) and on the chain rule: 

Xn=e"·lnx for x>O, 

d d 1 n _(xn) = _(e".lnx)=en.1nX . n. - = xn. _ = nxn- 1 

dx dx x x 

for x> o. The formula may be extended to negative values of x if one 
assumes that n is an integer. The result is the same, but we skip the 
proof. 

10.S. Some Limits 

According to formula (9.2.2) the derivative of Inx is defined by 

(I )' -I· In(x + h) -lnx 
nx - 1m h . 

h-O 
(10.8.1) 

Since we know already the derivative of In x, we obtain the following 
limit of a difference quotient 

I. In(x + h) -lnx 
1m --'------

h-O h 

1 
(x>O) . (10.8.2) 

x 
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A numerical example may illustrate this result. Let x = 2. Then we get 
from a table of natural logarithms: 

h In(2 + h) 
In(2+h) -ln2 

h 

1 1.09861 0.405 
0.1 0.74194 0.488 
0.01 0.69813 0.498 
0.001 0.69365 0.499 

We see that the difference quotient approaches the value 1/x = 0.500 
as predicted by formula (10.8.2). For the particular value x = 1, we 
conclude that 

In(l + h) ~ 1 as h~O 
h 

since In 1 = O. Here we replace h by aln where a is any posItIve or 
negative constant and n is a natural number tending to infinity. Hence 

In ( 1 + :)1: = : . In ( 1 + :) ~ 1. 

We multiply by a and apply formula (10.3.8). Thus we get 

In (1 + : r ~a (10.8.3) 

or by employing the inverse function 

(1 + :r ~ea as n~oo (a real). (10.8.4) 

This is an important limit which occurs frequently both in theoretical 
and applied work. We already met the special case a = 1 in Section 8.2. 
With this result we are able to identify the base e with the number 
2.71828 ... which was established in Section 8.2. 

10.9. Applications 
No other functions have found such a diversity of applications in 

the life sciences as have the exponential and logarithmic functions. We 
have already studied various biological examples in Sections 6.5 and 
6.6. Now we are going to deal with many more applications in this section 
as well as in problems at the end of the chapter. 



Applications 265 

a) A chicken egg was incubated for three days at a temperature of 
to = 37° C. Subsequently during a period of 40 minutes, the temperature t 
was reduced and the number N of heart beats per minute measured 3 : 

WC) N t(O C) N 

36.3 154 31.1 82 
35.0 133 30.4 75 
33.9 110 24.7 38 
32.4 94 24.2 36 
31.8 83 

Show graphically that N can be approximately represented by an 
exponential function of t. Find the parameters for this exponential 
function. 

In Section 7.2 we introduced the semi logarithmic plot and we 
learned that the graph of an exponential function is a straight line. 
Thus we have to plot 10gN versus t. A slight change, however, is 
advisable. Instead of the temperature t it is more revealing if we plot 
the difference between t and 37°, that is, the quantity r (lower case 
Greek letter tau) defined by 

r = 37° - t. (10.9.1) 

For numerical purposes we operate with common logarithms. Thus 
the original table of data turns into the new table: 

TCC) 10gN TC C) 10gN 

0.7 2.188 5.9 1.914 
2.0 2.124 6.6 1.875 
3.1 2.041 12.3 1.580 
4.6 1.973 12.8 1.556 
5.2 1.919 

These data are plotted in Fig. 10.4. The dots with coordinates (r,logN) 
are located very close to a straight line. It is easy to adjust such a line 
by eye. It follows that 10gN is a linear function of r, that is, 

10gN=a+br (10.9.2) 

3 Unpublished data. The author is indebted to Dr. G. Wagner, Bern, Switzerland for 
the permission to use his data. 
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Fig. 10.4. Decrease of the pulse rate N in chicken eggs with decreasing temperature. 
The slope of the straight line means the decrease of 10gN per degree Celsius 

with certain posItive constants a and b. For r = 0 we get a = 10gN. 
From Fig. 10.4 we read a = 2.21. The coefficient of r is the slope b. In a 
right triangle with LI r = + 10, we read LI 10gN = - 0.496. Hence, 
b = ( - 0.496)110 = - 0.0496. By the slope b we mean the decrease of 
10gN per degree Celsius. The inverse function of (10.9.2) is 

N = lOa + bt = lOU· lObt = (antilog a)· 10bt = 162. lObt • 

However, it is customary to use e as a base for the exponential function. 
This is possible by applying formula (10.5.2) for a = 10 and x = br. 
We get 

N = 162· eb(ln 10)t , (b = -0.0496) 

or with the numerical value of In 10 listed in (10.6.4) 

N = 162 e-0.114t. (10.9.3) 

The function is of the form N = Noe- kt with parameters No and k. 
Here No = 162 means the number of heart beats per minute for r= 00 

or t = 37°. The second parameter is k = 0.114. 
When the rate of decrease is of interest, it follows from formula 

(10.9.3) that 

~~ = 162( -0.114) e-O.114t = -(18.5) e- 0 . 114t . (10.9.4) 
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This rate is negative and depends on r. For r = 0 it amounts to -18.5. 
This means: At the very beginning of the experiment the number of heart 
beats per minute decreased by 18.5 per 10 C. 

b) We consider a substance containing radioactive atoms and assume 
that only one sort of radioactive isotope occurs 4. Let N denote the 
number of radioactive atoms present in the substance at time t. Then 
experiments show that the radioactive decay follows the law 

N = Noe- At = No-' exp( - At) . (10.9.5) 

1---- ~t ----I 

Fig. 10.5. During the time interval of length LIt, half of the radioactive atoms decay 

No is the number of radioactive atoms af time t = O. The number A 
(lower case Greek letter lambda) is positive and is called the decay 
constant. Strictly speaking, N is an integer, but for reasons explained 
in Fig. 9.3 we may approximate the integer by a continuous variable. 

The decay constant A has no immediate intuitive meaning. There
fore, it is desirable to introduce the so-called half-life. This is the length 
LI t of a time interval in which 50% of the radioactive atoms decay. To 
relate LI t with A, we consider two time instances, say t 1 and t 2 = t 1 + LI t 
(see Fig. 10.5), and let Nl and N2 denote the number of radioactive 
atoms at these time instances. From formula (10.9.5) we get 

or 
(10.9.6) 

4 In many texts this assumption is not explicitly mentioned. However, the exponen
tial law (10.9.5) does not hold if two or more different radioactive isotopes are con
tained in the substance. 
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Since we assume that half of the radioactive atoms decay during the 
time interval, we get N2 =! N l . Then formula (10.9.6) yields 

-.h11 1 
e =2' 

1 
-A.L1t=ln 2 = -0.69315. 

Hence, the half-life L1 t is 

-lnO.5 
L1t= --

A 
0.69315 

A 
(10.9.7) 

The half-life increases when the decay constant decreases and conversely. 
Both parameters A and L1 t are typical for the isotope under consideration. 
Notice that L1 t neither depends on No nor on the time instant tl. This 
means: Whenever a time interval of length L1 t elapses, the number of 
remaining radioactive atoms is reduced by one half. 

From formula (10.9.5) and from the chain rule it follows that the 
rate of decay becomes 

dd~ =Noe-At(-A)=-AN. (10.9.8) 

Hence, the rate of decay is proportional to N, that is, to the number of 
remaining radioactive atoms. 

c) Several strains of tobacco virus, such as Aucuba, on leaves of 
Nicotiana sylvestris and other tobacco plants were exposed to X-rays 
of different wave lengths. By radiation, part of the virus particles were 
inactivated so that reproduction ceased. Gowen (1964) reports that the 
number y of surviving particles decreased exponentially with the roentgen 
dosage r applied. Hence, with satisfactory approximation 

y = yoe- ar = yo· exp( -ar) (10.9.9) 

where a is a certain positive constant depending on the biological 
material. 

We may ask: What is the proper dosage to inactivate 90% of the 
virus? To answer this question we let y = yo/1O and denote the required 
dosage by r 90 . Then formula (10.9.9) yields 

e- a · r90 = 1/10. 
Hence, 

-In 1/10 In 10 2.303 
(10.9.10) 

a a a 

d) In lakes and in the sea, plant life can only exist in the top layer 
which is roughly 10 meters deep since daylight is gradually absorbed by 
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the water. We may ask: How does light intensity decrease with in
creasing thickness of the layer? The answer is the Bouguer-Lambert laws. 
Consider a vertical beam entering the water with original intensity 1 0 , 

Let I be the reduced intensity in a depth of x meters. Then the law 
states that 

1= Ioe-I'x . (10.9.11) 

The parameter JI. > 0 is called the absorption coefficient (JI. is the lower 
case Greek letter mu). It depends on the purity of water and the wave 

depth 
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Fig. 10.6. Absorption of daylight in sea water follows an exponential law. With an 
increase of depth by 1 m, over 75 percent of the light is absorbed 

length of the beam. Strictly speaking, the intensity I will never be 
exactly zero. However, for sufficiently large x the remaining light can 
no longer be perceived. Fig. 10.6 illustrates how the light intensity 
decreases in fairly clean sea water (for JI. we assume the value 1.4 m - 1). 

The Bouguer-Lambert law is applicable to any homogeneous, 
transparent substance such as glass, plexiglass, liquids, and thin layers 
viewed under the microscope. In addition to light waves, other electro
magnetic waves, such as X-rays and gamma rays, behave the same way. 
The Bouguer-Lambert law is basic in photometry. 

5 Pierre Bouguer (1698- 1758), French scientist and explorer, studied the absorp
tion of light in the atmosphere. Johann Heinrich Lambert (1728-1777), Alsatian mathe
matician, astronomer and physicist, studied the law in general. 
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e) A more sophisticated application of the exponential function 
occurs in connection with mortality by natural causes. Fig. 10.7 depicts 
the number of surviving rats as a function of time (measured in months). 
The data were collected from 144 laboratory rats of the same strain. 
All these rats had reached an age of seven months. From then on their 
ages at the time of natural death were registered. The survival function 
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Fig. 10.7. Survival of 144 rats from their seventh month on. The dots represent the 
observed number of surviving rats as a function of time (months). The fitted line is 

a Gompertz curve. The Figure is reproduced from Miescher (1955, p. 34) 

is a step function, but it can well be approximated by a smooth curve 
according to a formula due to Gompertz 6: 

N = a· e-b'ekt = a exp( -b· expkt). (10.9.12) 

The formula contains three parameters a, b, k. They are all positive 
numbers. The number N of surviving animals is a composite function 
of the time t. It is essentially "an exponential function of an exponential 
function". The graph is S-shaped and therefore called a sigmoid curve. 

In (10.9.12), t = 0 does not refer to birth, but to some fixed age 
(in our example, t = 0 means the age of 7 months when the observations 
began). The initial number of animals is No = a exp( -b). 

The Gompertz formula is used by actuaries who have to estimate 
the risk of death in life insurance. Attempts have been made to justify 
the formula for biological reasons. See Strehler (1963, Chap. 4) for a 
thorough account. With a negative value of k, formula (10.9.12) is 
sometimes used in the study of growth (see Thrall et ai., 1967, CA 13. 4.). 

6 Benjamin Gompertz (1779-1865), English mathematician and actuary. 
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10.10. Approximations and Series Expansions 

For many functions y = f(x) it is a practical problem to find 
numerical values of y given corresponding values of x. Sometimes 
accurate figures are required; sometimes very rough approximations 
will do. There are many possible ways of calculating functional values 
with reasonable accuracy. Here we introduce a method which has 
proved to be especially successful in the area of exponential and 
logarithmic functions, the approximation of f(x) by polynomials in x. 

We begin with a polynomial of the first degree 

pdx)=aO+alx 

and try to determine the coefficients in such a way that 

holds in the vicinity of x = O. Assuming that f(x) is differentiable, we 
get simultaneously 

f(x)~aO+alx, 

f'(x)~al . 

We seek exact equality at x = O. Hence we put 

f(O) = ao , 1'(0) = a l . 

Thus Pl (x) turns out to be 

Pl (x) = f(O) + 1'(0)· x, f(x) ~ Pl (x). 

The accuracy of approximation cannot be judged in general. 

(10.10.1) 

We apply formula (10.10.1) first to f(x) = eX. Since f'(x) = eX and 
eO = 1, we get 

(10.10.2) 

for values of x that deviate slightly from O. This approximation is often 
used. Notice that the graph of the linear function y = 1 + x is the 
tangent to the graph of y = eX at the point x = 0, y = 1 (cf. Fig. 10.3). 
A numerical example may prove the usefulness of the approximation. 
For x = 0.02 we get from (10.10.2) eO.0 2 ~ 1.02, whereas the exact value 
is eO.02 = 1.0202 .... 

Another frequently used approximation deals with the composite 
function f(x) = In(l + x). Here f'(x) = 1/(1 + x), f(O) = In 1 = 0,1'(0) = 1. 
Hence, it follows from (10.10.1) that 

In(l + x)~x (10.10.3) 
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in the vicinity of x = O. For instance, if x = 0.02, we obtain In 1.02::::; 0.02, 
whereas the exact value is In 1.02 = 0.01980 .... 

If better approximations are required, we replace PI (x) by a second 
degree or higher degree polynomial in x: 

P2(X) = aD + a l x + a2x2-, 

P3(X) = aD + a l x + a2 x 2 + a3 x3 , 

Pn(x) = aD + alx + U 2 X2 + ... + unxn 

where n is a natural number. 

(10.10.4) 

We assume that f(x) has higher order derivatives. Then we try to 
approximate simultaneously 

We seek equality at x = 0, that is, we put 

f(O) = Pn(O) , 1'(0) = p~(O), 1"(0) = p~(O), etc. (10.10.5) 

Higher derivatives are denoted by jC3), jC41, ... , f(n) (read: fn prime). 
The derivatives of Pn(x) are 

p~(x) = a l + 2a2x + 3a3x2 + 4a4x3 + ... + nanxn- I , 

p~(x) = 2az + 2· 3a3x + 3· 4a4x2 + ... + (n -1) nanxn - z , 

p~3)(X) = 2· 3a3 + 2·3· 4a4x + ... + (n - 2) (n -1) nanxn- 3 , (10.10.6) 

p~n)(x) = 2 . 3 ·4 .. · (n - 1) nan' 

Here products of the form 2·3·4··· k appear frequently. They are 
called factorials. As a convenient abbreviation one writes 

1· 2·3 .. · k = k! (read: k factorial). (10.10.7) 

It follows from (10.10.6) that 

p~(O) = a l , p~(O) = 2az , p~3)(0) = 3! a3 , 

p~4)(0) = 4! a4, ... , p~n)(o) = n! an' 
(10.10.8) 

Finally, from the equalities (10.10.5) we obtain 

aD = f(O), a1 = 1'(0), Q 2 = ;! 1"(0), 

_ 1 f(3)(0) _ 1 f(n) (0) a3 - -3' ' ... , an - -, . . n. 
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Hence 

f(x) ~ f(O) + 1'(0) x + f~~O) X2 + ... + j<:~0) xn (10.10.9) 

in the vicinity of x = O. 

Again we apply the result to f(x) = eX. Since all higher derivatives 
of eX are eX, we get f(O) = 1'(0) = 1"(0) = '" = 1. Hence, (10.10.9) yields 

x 2 x 3 X4 xn 
eX~l+x+-+-+-+ ... +-

2! 3! 4! n! 
(10.10.10) 

in the vicinity of x = O. This formula is used by computers to calculate 
values of eX. 

In the case of our composite function f(x) = In(l + x), the higher 
derivatives are still relatively simple: 

1'(x) = (1 + X)-l , 1"(x) = (-1)(1 + x)- 2, 

f(3)(x) = (-1)( - 2)(1 + x)- 3 etc. 

Hence, 

l' (0) = 1, 1"(0) = - 1 , j<3)(0) = 2! , f(4)(0) = - 3 ! , etc. 

It follows from (10.10.9) that 

x 2 x 3 X4 x 5 xn 
In(l + x)~x - 2 + 3 - 4 + 5 - ... ± --;;- (10.10.11) 

in the vicinity of x = O. 

One is tempted to stress the accuracy and to ask: Does the poly
nomial Pn(x) with coefficients given in formula (10.10.9) converge to 
f(x) when n tends to infinity? In other words: Does the equality sign 
hold in 

( 
1"(0) f(n)(o) ) 

f(x) = 1~n;, f(O) + 1'(0) x + ~ x 2 + ... + -n-! - xn ? (10.10.12) 

To answer this question we would need mathematical tools which 
go far beyond the scope of this book. We will confine ourselves to 
remarking that convergence can be established for most differentiable 
functions. In the case of f(x) = eX, we have convergence not only in the 
vicinity 01 x = 0, but surprisingly for all values of x, that is, even for 
x = 1000 or x = - 1000. 

For most other functions, however, x has to be restricted to a 
suitable interval Ixl < C if (10.10.12) is to converge. For instance, the 
polynomial (10.10.11) converges to In(l + x) only if Ixl < 1. 
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Formula (10.10.12) may be interpreted by saying that we add an 
infinite number of terms. It is customary to call such a representation 
off (x) an expansion into a series. One even drops the symbol for the 
limit although this may cause difficulties of understanding. Thus one 
simply writes 

1"(0) 
f(x) = f(O) + 1'(0)· x + ~ x2 + ... (Ixl < C) (10.10.13) 

and, in particular, 

x 2 x 3 
eX = 1 + x + - + - + ... (all x) , 

2! 3! 
(10.10.14) 

x 2 x 3 X4 
In(l + x) = x - 2 + 3 - 4 + - ... (Ixl < 1). (10.10.15) 

Formula (10.10.13) is the famous Maclaurin series 7. 

* 10.11. Hyperbolic Functions 

In biological theory there are occasions when the sum or the 
difference of eX and e- X enter a formula. At such an occasion it is 
customary to rewrite the formula by making use of the following 
functions: 

The hyperbolic sine, defined by 

sinhx = ~ (eX - e- x ), (10.11.1) 

the hyperbolic cosine, defined by 

1 
coshx = "2 (eX + e- x ), (10.11.2) 

the hyperbolic tangent, defined by 

tanhx = sinh x/cosh x , (10.11.3) 

the hyperbolic cotangent, defined by 

coth x = cosh x/sinh x . (10.11.4) 

All four functions are called hyperbolic functions. Both the word 
hyperbolic as well as sine, cosine, etc. need a justification. For this 

7 Colin Maclaurin (1698-1746), Scottish mathematician. 
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purpose we calculate 

which leads to 

cosh 2 X - sinh 2 x = 1 . (10.11.5) 

This relationship is analogous to COS 2 oc + sin2 oc = 1 which we know 
from formula (5.7.1). The only formal difference is the minus sign in 
(10.11.5). Moreover, if oc is a variable polar angle, the points (x, y) with 

x = cosoc, y = sinoc, 

plotted in a rectangular coordinate system, are located on the circum
ference of the unit circle whose equation is x2 + y2 = 1 (see Section 5.4). 
In the same way, by plotting the points (x, y) with 

x = coshoc, y = sinhoc, (10.11.6) 

we find a curve with equation x2 - y2 = 1 because of formula (10.11.5). 
This curve is a hyperbola with asymptotes given by the equations y = x 
and y = - x. Thus the hyperbolic sine and cosine are related to a 
hyperbola in much the same way as the ordinary sine and cosine are 
connected with the circle. 

Even though the preceding results would offer enough justification 
for the terms hyperbolic sine and hyperbolic cosine, there exist more 
striking analogies. For instance, we may study the derivatives: 

(coshx), = :x ~ (eX + e- X) = ~ (eX - e- X) = sinhx, (10.11.7) 

(sinhx), = ddx ~ (eX - e- X) = ~ (eX + e- X) = coshx. (10.11.8) 

These formulas are quite analogous to (cosoc)' = - sinoc and (sinoc)' =cos oc. 
Despite many analogies there are also major differences. The hyper

bolic functions are not periodic. This is immediately seen from a graph of 
these functions (see Fig. 10.8). 

Readers interested in biological applications of hyperbolic functions 
are referred to K.S.Cole (1965, p. 141; 1968, p. 71ff.), Defares and 
Sneddon (1961, p. 599, 603), Fisher (1965, p. 124), Moran (1962, p. 27, 
137), Rashevsky (1960, Vol. 1, p. 56ff., 61, 316; Vol. 2, p. 177-178). 
The graph of tanhx is closely related to the logistic curve which will 
be treated in Section 11.5. 
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y=coshx 

o 
----+1-------------

y=tanh x 

-------------- -1--- ----------

Fig. 10.8. Graphs of three hyperbolic functions 

Brief list of formulas. It is worth learning the following formulas 
by heart: 

eU·eV=eU+V, 

(eU)' = eur , 

Ina + lnb = In(ab) 

Ina -lnb = In (a/b) 

In as = s ·lna 

lne = 1 , 

d _eX=eX 
dx ' 

d 1 
-lnx=-
dx x' 

eU/eV = eU- v , 

(a> 0, b > 0), 

(a> 0), 

S eX dx = eX + C (all x), 

1 
S - dx = In Ixl + C (x =!= 0), 

x 

eX~I+x } 
I (1) for x sufficiently close to zero. 
n +x ~x 

Recommended tables of eX and lnx: Up to six decimal places: 
Allen (1947), Diem (1962), Meredith (1967). Up to 18 decimal places: 
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National Bureau of Standards (1947), contains a table of ex for x 
ranging from - 2.5 to 10 in steps of 0.0001. National Bureau of 
Standards (1941), the four volumes contain tables of lnx for x ranging 
from 0.0001 to 5 in steps of 0.0001 and from 5 to 100,000 in steps of 1. 

Recommended for further reading: Bak and Lichtenberg (1966), 
Defares and Sneddon (1961), Lefort (1967). 

Problems for Solution 

10.1. Find an approximate value of 

3 1 
J -dx=ln3 
1 x 

by the method of dot counting (see Fig. 9.8) and compare the 
result with Table 10.1. 

10.2. Using formula (10.6.3) find numerical values of In8.45, In20 
and InO.4 (accuracy three decimal places). 

10.3. Find numerical values of exp 1.8 and exp( -1.8) using a table 
of common logarithms and loge~0.4343. 

10.4. Differentiate the following composite functions: 

d 
a) _e3x 

dx 

d 
d) -In(5x + 4) 

dx 

b) ~el-2U 
du 

d 
e) Tv In(v2 - 2) 

d 
h) d;(u ·ln3u) 

d (1 2) c) Tt exp - 2:t 

f) ~ln(l +~) 
ds s 

. d r 
1) dr In 1- r 

10.5. If f(x) is differentiable and f(x) > 0, prove that 

(Inf(x))' = f'(x)/ f(x). 

10.6. Find the indefinite integral of the following functions: 

d) ~ 
w 

1 
e)-

x+l 

c) exp( -x) 

1 
f) 2t + 5 
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10.7. Using formula (10.5.2) rewrite the following exponential func
tions in the form e'·· or exp ( ... ): 

a) 2X b) IOU c) 4.43S 

d) 2.8- 3t e) 0.77(1.65)x 

10.8. Rewrite e2x + 3 . 5 in the form A· eCx• 

10.9. When a body is surrounded by a cooling liquid of constant 
temperature To, the temperature of the body decreases according 
to the formula 

T= To + a· exp( -kt) 

where t is the time and a, k are positive constants. Plot a graph 
of this function. Find the rate of decrease, that is, dT/dt. 

10.10. Let x be the amount offertilizer applied to a certain cultivation. 
The yield y cannot be raised indefinitely by spending more and 
more fertilizer. Instead, there exists an upper bound B for y. 
A workable approximation is given by Mitscherlich's formula 

with a posItIve constant k. Show that y is a monotone in
creasing function and that the line y = B is an asymptote to 
the graph of the function (cf. Section 11.4). 

10.11. The exponential function y = exp( - x 2 ) plays a dominant role in 
probability and statistics in connection with the normal or 
Gaussian distribution. Show that 

a) y > 0 for all values of x, 
b) limy = 0 as x--+ 00 or x--+ - 00, 

c) the function reaches a maximum at x = 0, 
d) points of inflection are located at x = ± 1!V2, 
e) the graph is bell-shaped. 

10.12. In Drosophila melanogaster the reproduction rate drops sharply 
when the population density is increased. If x denotes the 
number of flies per bottle and y the progeny per female per 
day, it was found empirically that 

y = 34.53 e-O.018x. X- O.658 . 

Calculate y for x = 20. (The example is taken from Strehler, 
1963, p. 74.) 
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10.13. Let y = lnx. How does a small error t5x of x affect y? Solve the 
corresponding problem also for y = r. (Hint: use formula 
(9.9.5)). 

10.14. Consider the function 

y = c(e- at _ e- bt) 

with positive parameters a, b, c and domain t ~ O. Assume that 
b > a. Show that 

a) y = 0 for t = 0, 
b) y > 0 for t > 0, 
c) limy=Oast-HXJ, 
d) y reaches a maximum at t = 1/(b - a) ·lnb/a, 
e) the function has only one point of inflection. 

This function is used to fit the concentration-time relationship 
for a drug injected into the blood stream (see Heinz, 1949, p. 482, 
or Defares and Sneddon, 1961, p. 224). 

10.15. Find the half-life of the radioactive substances a) 1311, b) 18F 
whose decay constants are 0.086 d -1 and 0.371 h - \ respec
tively (see formula (10.9.7); notations: d = day, h= hour). These 
isotopes are used in medicine for diagnosis as well as for 
therapy. 

10.16. Radioactive decay follows the law given in formula (10.9.5). 
What proportion of atoms disintegrate in a time interval from 
t1 to t1 +t5t where t5t is sufficiently small? 

10.17. Consider the function (10.9.12) due to Gompertz for t> O. 
Show that the function is monotone decreasing. Determine the 
mortality rate dN/dt. Prove that the graph has a point of 
inflection at t = -(lnb)/k. 

10.18. Show that 

holds in the vicinity of x = O. 

10.19. Find an approximate value of e by means of formula (10.10.10) 
for n=4. 

10.20. For large values of n, the factorial n! = 1·2·3··· n is well 
approximated by Stirling's formula 

n! ~ V2nn. (n/et. 

The right side is particularly suitable for logarithmic evaluation. 
Find a rough approximation of 100L 
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*10.21. Prove the following formulas: 

a) sinh(-x)= -sinhx, 
b) cosh( - x) = cosh x, 
c) sinh x + coshx =~, 
d) sinh(x + y) = sinh x coshy + cosh x sinhy. 

*10.22. Show that 

d 
dx tanh x = 1/cosh2 x. 

*10.23. Using series expansions of ~ and e-X, find series expansions 
for sinh x and cosh x. The series converge for all values of x. 

*10.24. Verify that the function y=!(1 + tanh x) can be written in the 
form 

1 

This function is a special case of the logistic function discussed 
in Section 11.5. 



CHAPTER 11 

Ordinary Differential Equations 

11.1. Introduction 

When the derivative y' = f'(t) of an unknown function y = f(t) is 
given, we usually have to find the antiderivative. We treated this pro
blem in Sections 9.3 and 9.5. Sometimes the derivative y' is not given 
as a function of t, but is involved in an equation which contains also 
the unknown function y = f(t). As an example, consider the equation 

y' =ay + bt + c 

with known coefficients a, b, c. Such an equation is called a differ
ential equation since it contains not only the unknown function but 
also its derivative. The problem consists in finding a suitable function 
which satisfies the differential equation. 

Differential equations occur frequently in the analysis of physio
logical systems and of ecological systems. We may briefly speak of 
systems analysis. When a quantity varies in one part of a system, its 
rate of change usually depends on quantities in other parts. In addition, 
any change of a quantity may indirectly influence the quantity itself, 
a phenomenon which is called feedback. The study of feedback systems 
originated in engineering, but its application to the life sciences turns 
out to be most fruitful. 

The independent variable is usually time. Therefore, we denote it by t 
in most parts of this chapter. There are a few exceptions. Examples 
where the independent variable is not time are given in Application 
(e) of Section 11.3 and in Section 11.6 on allometry. 

Dependent variables are denoted by x = x(t), y = y(t), m = m(t), 
N = N(t), Q = Q(t), etc. 

Chapters 9 and 10 are prerequisites for the understanding of differ
ential equations. As the scope of this book is limited, we will not go 
deeply into the theory. A comprehensive study of differential equations 
would be a task covering several years. Fortunately, there are lists of 
differential equations and their solutions available. We recommend 
Kamke (1948). 
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There are differential equations whose solutions cannot be written 
in a manageable form. They are solved by computers either by ap
plying methods of numerical analysis or by computer simulation. In 
this introductory book we will not deal with these methods. 

11.2. Geometric Interpretation 

For a better understanding of differential equations and their solu
tions we introduce a conceptual device. We interpret y' = dy/dt as a 
slope in a rectangular t, y-coordinate system (see Section 9.2). Then a 
given differential equation assigns a slope y' to each point (t, y). As an 
example we consider the equation 

y' = y _ t 2 . (11.2.1) 

Here y' is uniquely associated with a point (t, y). Hence we can draw 
a straight line through each point (t, y) with slope y' determined by 
(11.2.1). Thus we get the plane full of slopes or directions. We call such a 
plane a slope field or a direction field. Fig. 11.1 depicts the slope field 
of Eq. (11.2.1). We check a few slopes: For the point (0,0) the equation 
yields y' = 0. With the point (0,2) there is associated the slope 
y' = 2 - ° = 2 (Choose Ll·t = 1 in the unit of the t axis. Then plot Ll y = 2 
in the unit of the y axis). Finally, for the point (2,1) we get y' = 1 - 22 = - 3 
(let Ll t = 1, then Lly = ,- 3). 

Fig. 11.1 seems to depict a moving liquid or gas. Two streamlines 
are also shown in the figure. At each point a streamline follows the 
slope given by the differential equation. Hence, the straight lines with 
slopes y' are tangents to the streamlines. Assume that a streamline can 
be represented by a function y = f(t). Then y' = df /dt is equal to 
y' = y - t 2 , that is, y = f(t) is a solution of the differential equation 
(11.2.1 ). 

Finding solutions of a differential equation is often called integra
tion of a differential equation. A solution is also called an integral, and 
the graph of such an integral is said to be an integral curve. Hence, 
streamlines and integral curves mean the same thing. 

We see from a slope field that a differential equation has not a 
single integral curve, but an infinity of them. Fig. 11.1 shows only two 
special integral curves, one of them passing through the point (0,1), 
the other through the point (0, 2.5). 

Since we found an infinite number of integral curves, there are 
also infinitely many solutions or integrals of a given differential equation. 
Each single one is called a particular solution or a particular integral. 
An expression which contains all particular solutions as special cases 
is called the general solution. 
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Fig. 11.1. Slope field given by the differential equation y' = y - t 2 • The slope field re
sembles the picture of a moving fluid or gas. The streamlines are the integral curves. The 

drawing is reproduced from Levens (1968, p. 751) 

Slope fields do not only contribute to the intuitive understanding 
of differential equations. They also provide an easy graphical method 
for finding approximate solutions. 

11.3. The Differential Equation y' = a y 

One of the simplest differential equations is 

dy 
- =ay 
dt 

(11.3.1) 

where a is a given constant. The integration is usually performed by a 
rather symbolic procedure. We know that dy/dt is the limit of the 
difference quotient Lly/Llt as Llt~O. However, we did not define dy/dt 
as a quotient of two quantities dy and dt. We treated dy and dt 
merely as symbols. Now, neglecting this fact, we multiply the Eq. 
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(11.3.1) by dt and get symbolically 

dy=ay·dt. ( 11.3.2) 

Next, upon division by y, the equation becomes 

ft = a . dt (y =l= 0). 
y 

(11.3.3) 

Here the variable y occurs only on the left side and t only on the 
right side. We say that we have separated the variables. Integration 
yields 

dy s- = S a·dt 
y 

or, according to formula (10.7.3), 

Iniyi=at+C (y=l=O) ( 11.3.4) 

where C is an arbitrary constant. We may remove the natural loga
rithm by applying the inverse function. Hence, the explicit solution 
of Eq. (11.3.1) is 

iyi = ear + c . 

However, the solution is seldom written in this form. Since eU + v = eU • eD, 
and since y can take on positive and negative values, we rewrite the 
solution in the form 

y = c . ear or y = c . exp(at) (11.3.5) 

where c stands for ± eC• The solution is an exponential function with 
given coefficient a and arbitrary constant c. As long as c is undetermined, 
we call (11.3.5) the general solution of the differential equation y' = ay. 

Since we derived the solution by a rather symbolic method, the 
result should be verified. From (11.3.5) it follows by differentiation that 

dy 
- =caear 
dt 

which can be rewritten in the form dy/dt=ay. Hence, (11.3.5) does 
indeed satisfy the differential equation (11.3.1). 

Fig. 11.2 illustrates the slope field for a = t. Depending on the 
choice of c, we get an infinite number of integral curves. A few of them 
are depicted (c = 0, c = t, c = !). 
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-3 - 2 -. 

Fig. 11.2. The slope field of y' = ay for a = 1. Also shown are three integral curves 

Applications 

a) Growth of a Cell. Assume a cell is of mass mo. In an ideal 
environment the cell grows. Thus its mass is a function of time, and 
we may write m = m(t) with m = mo at t = O. Assume that chemicals 
pass quickly through the cell wall, and that growth is only determined 
by the speed of metabolism inside the cell. Since the output of meta
bolism depends on the mass of participating molecules, it is reasonable 
to expect that the growth rate is proportional to the mass at each time 
instant, that is, dm/dtocm or 

dm 
-- =am 
dt 

(11.3.6) 

with a certain positive constant a. 
Of course, there is a limitation: If the mass m of the cell reaches 

a certain size, the cell will divide rather than continue to grow. Thus 
we add a restriction, say m < m1• 

The differential equation (11.3.6) is of the form (11.3.1). Therefore, 
the general solution follows from (11.3.5): 

m=c. eat . 
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By our assumption that m = mo at time instant t = 0, we can determine 
the constant c. We get c = mo. Hence the particular integral of (11.3.6) is 

(11.3.7) 

with the above mentioned restriction m < m1. 

With our assumptions we have gone slightly beyond experience. 
We have introduced some theoretical arguments. It is customary to 
say that we are model-making. Whether or not our model is biologi
cally meaningful can only be tested by experiments. Here and in sub
sequent models we share G. F. Gause's view (Gause, 1934, p. 10): 
"There is no doubt that [growth, etc.] is a biological problem, and 
that it ought to be solved by experimentation and not at the desk 
of a mathematician. But in order to penetrate deeper into the nature 
of these phenomena, we must combine the experimental method with 
the mathematical theory, a possibility which has been created by 
[brilliant researchers]. The combination of the experimental method 
with the quantitative theory is in general one of the most powerful 
tools in the hands of contemporary science." 

It is worth discussing the above growth model under different 
aspects. Since dm/dt was assumed to be proportional to m, we may 
introduce the specific or relative growth rate defined by 

(11.3.8) 

It is the ratio of the absolute growth rate dm/dt and the mass m. Our 
differential equation (11.3.6) then states: At each time instant, the specific 
growth rate remains constant. 

The notion of a specific growth rate needs some illustration. As
sume that a plant which has reached the mass m = 300 g, grows 12 g 
during the next 24 hours. Then the average growth rate is 12 g/24 hours 
= 0.5 g/h. Assuming that the growth rate does not fluctuate, we may 
consider 0.5 g/h as a good approximation of the instantaneous growth 
rate dm/dt. We may ask: Is this growth rate large or small? The answer 
depends very much on the present mass of the plant. For a plant of 
mass m = 10 g only, our growth rate would be tremendous, whereas 
for a large tree of (living) mass m = 1000 kg the same growth must be 
called tiny. Therefore, we have to relate 0.5 gjh with the present mass, 
in our case with 300 g. The ratio is 

0.5g/h =00017h- 1 
300g' . 
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This ratio is called the specific growth rate. With the same specific 
growth rate, the tree of (living) mass 1000 kg would gain 1.7 kg per 
hour. 

The specific growth rate is an important concept. There are two 
steps involved. First, when forming dm/dt, we relate the increase of 
mass with time which gives us some measure of velocity of growth. 
Second, we relate the velocity of growth with the mass present. 

Let us finally consider another aspect of the differential equation 
(11.3.6). With increasing m, the growth rate dm/dt also increases. This 
growth rate, in turn, determines future values of m. Thus we have a 
simple example of a feedback mechanism with a single loop: 

I 
m(t) 

t 

l
dm 

dt 
I 

b) A Birth Process. Let N stand for the number of individuals in 
an animal or plant population. This number is time dependent so 
that we may write N = N(t). Strictly speaking, N(t) takes on only 
integral values and is a discontinuous function of t (cf. Example (h) 
of Section 804). However, as we pointed out in Application (a) of 
Section 9.1, N(tL may be approximated by a continuous and differ
entiable function as soon as the number of individuals is large enough. 

In microorganisms reproduction occurs by simple cell division. In 
multicellular individuals we distinguish between vegetative and sexual 
reproduction. We will include all these possibilities in our study. 

We assume that the proportion of reproductive individuals remains 
constant in the growing population. In addition we assume constant 
fertility. Then the rate of birth is proportional to the number N(t) of 
individuals. If we finally exclude death, emigration and immigration, 
the growth rate coincides with the birth rate. Thus 

dN =AN 
dt 

(11.3.9) 

where A (lambda) is a certain constant. Referring to the concept 
introduced in (11.3.8), we may call A the specific birth rate. 

The differential equation (11.3.9) is of type (11.3.1). Hence the solu
tion is 

where No denotes the population size at t = O. 
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This birth process turns out to be quite realistic in a large popula
tion that grows under ideal conditions, that is, when all factors in
hibiting growth are absent. 

In a small population we cannot expect that the occurrence of 
birth is distributed evenly over time. Instead, we face random fluctua
tions. Then the process has to be modified in the light of probability 
theory. Such a refined model is called a stochastic birth process. For a 
presentation see Bailey (1964, Chap. 8), Chiang (1968, Chap. 3), Pielou 
(1969). 

c) A Birth-and-Death Process. Let us consider an animal or plant 
population under the conditions outlined in the preceding application. 
Now we will extend the model by allowing for death. The net change 
in population size may be positive or negative. Within a time interval 
of length LI t we get 

net change = number of births 
minus number of deaths 

or, in a convenient notation, 

Upon division by LI t we get the average rate of change 

LIN 
LIt 

LIB LID 
LIt LIt 

(11.3.10) 

As in previous cases we treat N = N(t) as a continuous and· differ
entiable function of time even though this means only an approxima
tion to reality. Similarly we assume a large number of births and 
deaths so that the number of births B = B(t) and of deaths D = D(t) 
may also be considered as differentiable functions. As LI t tends to zero, 
we obtain from (11.3.10) 

dN 

dt 
dB dD 
dt dt' 

(11.3.11) 

that is, the rate of net change is equal to the rate of birth minus the 
rate of death. The rate dN/dt may be positive or negative depending 
on whether occurrences of birth or of death prevail. 

In Application (b) we stated assumptions such that the birth rate 
becomes proportional to the number of individuals N(t). Under corre
sponding assumptions on death, the death rate also becomes proporti
onal to N(t). Hence, 

(11.3.12) 
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A denoting the specific birth rate and J.I. (mu) the specific death rate. 
Combining (11.3.11) and (11.3.12) we obtain 

dN at = AN - J.l.N = (A - J.I.)N . (11.3.13) 

If we identify A- J.I. with the coefficient a in (11.3.1), we can immedi
ately solve the differential equation (11.3.13) and obtain 

( 11.3.14) 

where No stands for the population size at time t = O. When the 
birth rate prevails, that is, when A> J.I., the population size increases 
exponentially. We have an eruption. When instead A < J.I., the popula
tion size decreases, and the population will die out. Only for A = J.I. 
will the population remain stable. 

This model of a birth-and-death process does not account for random 
fluctuations. It is therefore called non-stochastic or deterministic. 

d) Radioactive Decay. Let us assume that a substance contains 
only one sort of radioactive atom. The simplest assumption about 
decay is that there exists no preferred time for decay and that all 
atoms have the same chance of disintegration independent of each 
other. This implies that we expect twice as many scintillations per 
time unit with a supply of twice as many atoms, three times as many 
scintillations with a triple amount of atoms, etc. In general, the model 
requires that the rate of decay is proportional tp 'the number N of 
radioactive atoms present, that is, 

dN = -AN 
dt 

(11.3.15) 

where A is a certain positive constant called the decay constant. Since 
A is positive by definition and dN/dt must be negative, the minus 
sign in (11.3.15) is required. The differential equation is of the form 
(11.3.1) and its solution is therefore 

(11.3.16) 

No denoting the original number of radioactive atoms at time t = O. 
The result coincides with formula (10.9.5). The agreement with ex
perimental facts is excellent. 

In the second application contained in Section 10.9 we treated 
the exponential law for radioactive decay as a purely empirical fact. 
The model-making procedure in our present section offers the addi
tional advantage that we have found an intuitively simple explanation 
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for this law. The differential equation gives more insight into the pro
cess than does the solution. It is the purpose of all theoretical reasoning 
to find conceptual relationships which are both logically simple and 
empirically valid. 

e) Living Tissue Exposed to Ionizing Radiation. An ionizing beam 
of particles consists of either protons, neutrons, deuterons, electrons, 
y ray quanta, or the like. If high polymers such as proteins or nucleic 
acids are hit by an ionizing beam, they may be irreversibly altered. 
New bonds may be formed between chains or existing bonds may 
be broken. We simply say that polymers become damaged . 

. Let no be the original number of undamaged molecules of a specific 
chemical compound which are present in a cell and which are assumed 
to be susceptible to radiation. Let D be the number of ionizing parti
cles which cross the unit area of the target. We simply call D the 
dose of radiation. Let n be the number of undamaged molecules after 
exposure to radiation (n < no). The question then arises: How does n 
depend on the dose? 

When nand D are large numbers, we may operate with these 
quantities as if they were continuous variables. To answer our question 
we assume that n is a function of D. Then we consider the rate 
dn/dD after exposure to different doses of radiation. Since a higher 
dose inflicts more damage, the rate dn/dD must be negative. When 
building a model it is plausible to assume that dn/dD is proportional 
to n. Thus we get the differential equation 

dn 
-= -S·n 
dD 

(11.3.17) 

where S denotes a certain positive constant. This equation is again of 
type (11.3.1). We notice that the independent variable is not the time 
but the dose D. The differential equation leads once more to an ex
ponentiallaw: 

(11.3.18) 

This example is adapted from Ackerman (1962, p. 305). 

f) Radioactive Tracer. Before we treat a specific problem, let us 
introduce some generalities on a very useful method in biophysics, 
the compartment analysis. Milhorn (1966, p. 36) defines the term "com
partment" in the following way: 

If a substance is present in a biological system in several distinguish
able forms or locations, and if it passes from one form or location 
to another form or location at a measurable rate, then each form 
or location constitutes a separate compartment for the substance. 
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Milhorn illustrates the special case of a single compartment with a 
tracer dose of radioactive iodine 1311 injected into the blood stream. 
Let Qo be the original mass of iodine at time t = 0 and denote the 
mass remaining in the blood at time instant t by Q = Q(t). The blood 
stream plays the role of the compartment. We assume that the iodine 
is distributed evenly in the entire blood stream before any loss occurs. 
Part of the iodine leaves the blood and enters the urine. It is plausible 
to assume that the rate of loss is proportional to Q(t) at each time 
instant t. Hence, we may equate this rate to k1 Q where k1 is a certain 
positive constant. Another part of the iodine enters the thyroid gland 
at a rate which is also assumed to be proportional to Q(t). For this 
second rate we may write k2Q (k2 > 0). The total loss is therefore 

dQ = -k1Q-kzQ= -(k1 +k2)Q. (11.3.19) 
dt 

Writing k1 + kz = k for simplicity, the solution of the differential equa

tion becomes Q = Qo e -kt , (11.3.20) 

that is, the concentration of iodine in the blood decreases exponen
tially. This simple law is upheld even though the iodine leaves by 
multiple pathways at different rates. 

g) Dilution of a Substance. We consider a second problem that 
may be approached via compartment analysis. 

In a tube containing 2000 g of water, 50 g of sucrose are dissolved. 
By stirring, the sucrose will be distributed evenly at all times. Through 
a pipe, 10 g of water flow into the tube per minute, and through 
another pipe, 10 g of water leave the tube per minute removing some 
sucrose at the same time (Fig. 11.3). We may ask: How does the 
mass of sucrose decrease as a function of time? 

Let M = M(t) be the mass of sucrose in the tube. By assumption, 
we have Mo = 50 g at time t = O. In 10 g of water the mass of dis
solved sucrose is 

10 
M(t)· 2000 = (0.005) M . 

In a time interval of length LI t, the loss of sucrose from the tube 
amounts to 

LIM = (- 0.005)M LIt 

where M denotes a certain average of M(t) during the time interval. 
As LI t tends to zero, we get for the rate of decrease 

dM = ( _ 0.005)M . 
dt 

(11.3.21) 
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This implies an exponential decrease of sucrose. Our question is ans
wered by the function 

M = Moe-(o.oOS)t 

where t is measured in minutes. 

(11.3.22) 

h) Chemical Kinetics. Gaseous nitrogen pentoxide decomposes as 
stated by the equation 

G 
I 

~ 
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Fig. 11.3. Steady reduction of the concentration of a solute 

We are interested in the speed of this reaction when the temperature 
is kept constant. Let C = [N 2 0 sJ be the concentration of nitrogen 
pentoxide measured in moles per liter. The concentration C = C(t) is a 
decreasing function of time so that the derivative dCjdt is negative. 
This derivative is called the reaction rate. 

The reaction rate depends on the concentration C= [N20sJ. 
Intuitively we expect that the higher the concentration is, the more 
frequently collisions of two N 2 0 S molecules will occur with the pos
sible emergence of the new bonds N02 and O 2, One may theorize 
that under constant temperature the reaction rate is proportional to 
C, that is, 

dC = -kC 
dt 

(11.3.23) 

where k denotes a positive constant. The solution of this differential 
equation is 

(11.3.24) 

Co being the concentration of N 20S at time t = O. The experimental 
facts are in good agreement with this model. As (11.3.24) shows the 
concentration C will asymptotically tend to zero. It will never reach 
zero exactly. 
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11.4. The Differential Equation y'=ay+ b 

For b=O, this equation reduces to y'=ay which we studied in the 
preceding section. With b =l= 0, we are dealing with a.slight generaliza
tion. The differential equation is solved by the same method. Here are 
the steps: 

dy 
dt =ay+b (a =l= 0) , 

~ =a(y+ ~). 
dt a 

For simplicity, let b/a = p. Then we separate the variables: 

~=a.dt. 
y+p 

dy=a(y+p)dt, 

Upon integration we get 

J ~ = J a . dt , In Iy + pi = at + C, 
y+p 

y+p = ±e"t+c=c·e"t 

where c = ± eC• Finally, 

(11.4.1) 

(11.4.2) 

This is the general solution of the differential equation (11.4.1). It is 
valid for an arbitrary value of c as shown by verification of the 
result. Indeed, upon differentiation of (11.4.2) with respect to t we get 

~ = caeDt=a[ce"t -~] + b=ay+b 
dt a 

which is the given equation (11.4.1). 

Applications 

a) Restricted Growth. No organism and no population grow inde
finitely. There are limitations set by shortage of food supply or shelter, 
by lack of space, by intolerable physical conditions, or by some control 
mechanism. 

Assume that there exists a fixed upper bound for the size y of an 
individual, a tissue, a population or a crop. The size may be a volume, 
a weight, a diameter, a number, etc. We denote the upper bound by B. 
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Then y = y(t) may approach B asymptotically. This implies that the 
growth rate dyjdt tends to zero as B- y becomes smaller and smaller. 
A plausible mathematical formulation of such a model is given by the 
differential equation 

dy 
~ = k(B- y) 
dt 

(11.4.3) 

where k is a positive constant which determines how fast dyjdt tends 
to zero. If y is small relative to B, then we have approximately 
y' ~ kB = constant, that is, the size y increases approximately as a linear 
function of time. 

Eq. (11.4.3) may be rewritten in the form y' = kB - ky = ay + b 
with a = - k and b = kB. Thus, we get the general solution by re
writing (11.4.2): 

y=ce-kt+B. (11.4.4) 

Since y < B, the constant c of integration has to be negative. 
A particular solution is derived by assuming that y = 0 at time 

t = O. In this case, c = - Band 

(11.4.5) 

This model was proposed by E. A. Mitscherlich in 1939. Jt fits some 
experimental data in agriculture quite well. The reader is invited to 
draw a graph of formula (11.4.5) or to solve Problem 10.10 at the 
end of Chapter 10. 

For more details see von Bertalanffy (1951, p. 359). Cf. also Thrall 
et al. (1967, CA 13). Numerous biological examples are contained in 
Brody (1945, Chap. 5 and 16). 

Another model of restricted growth which is used more frequently 
will be studied in Application (a) of Section 11.5. 

b) A Birth-and-Immigration Process. In Application (b) of the pre
ceding section we studied a birth process. Several assumptions were 
made about the population. We maintain these assumptions with the 
exception that we now permit immigration of individuals at a constant 
rate. The rate is measured in number of individuals per time unit and 
denoted by v (Greek nu). Thus Eq. (11.3.9) turns into 

dN dt = A.N + v (A. > 0, v > 0) . (11.4.6) 

The differential equation is obviously of the form (11.4.1). Hence, the 
general solution is 

v 
N=ceAt -;:. 
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Assuming that N = No at t = 0, we obtain c = No + ~ . Thus the par

ticular solution of (11.4.6) is 

(11.4.7) 

Here the growth of the population depends on two terms. The first 
term is an exponential function determined by the specific birth rate 
alone. The second term is also rapidly increasing but it depends on 
both rates A. and v. 

c) Cooling. Consider a body without internal heating whose tempera
ture is higher than that of the surrounding medium. The body will 
then cool. We want to know how the temperature of the body drops 
as a function of time. 

Let T= T(t) be the temperature of the body at the time instant t, 
To its temperature at t = 0, and T. the constant temperature of the 
surrounding medium. 

The derivative d T / d t is called the rate of cooling. Since T de
creases, this rate is negative. It is dependent on the difference T - T.. 
With satisfactory approximation, the rate of cooling is proportional 
to T- T., that is, 

dT 
- = -k(T~ T) 
dt s 

(11.4.8) 

where k is a positive constant determined by the physical conditions 
of heat exchange. Since the right side can be written as (- k) T + k Ts' 

the differential equation is of the form (11.4.1). From (11.4.2) we de
duce the general solution and obtain 

T=ce-kt+Ts • (11.4.9) 

Finally we satisfy the initial condition T = To at time t = O. This leads 
to c = To - T. and 

(11.4.10) 

As t tends to infinity, the second term tends to zero, and T approaches 
T. asymptotically. 

This and the following application may be considered as illustra
tions of compartment analysis (cf. Application (f) of Section 11.3). 

d) A Diffusion Problem. We assume that a cell of constant volume 
is suspended in a homogeneous liquid which contains a solute of 
concentration Co, constant in space as well as in time. Let c = c(t) be 
the concentration of the solute inside the cell at the time instant t 
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and assume that the solute is almost equally distributed over the cell 
at all times so that c = c(t) depends only on the time. 

By diffusion, molecules of the solute will enter the cell from the 
surrounding liquid, but there will be also molecules of the solute which 
will leave the cell. Thus there is a flow of molecules through the cell 
membrane in both directions (Fig. 11.4). The net flow is from the 
liquid into the cell if Co is higher than c(t) and conversely. We are 
interested in finding the function c(t). 

Fig. 11.4. Diffusion of molecules through a cell wall. In the figure it is assumed that 
co> c(t) and, therefore, that more molecules enter the cell than leave the cell 

Let m = m(t) be the mass of solute in the cell, A be the area of the 
cell membrane, and V be the volume of the cell. Then by definition 
of concentration 

m(t) = V· c(t). (11.4.11) 

The derivative dm/dt is the rate of increase of m and may be called 
the net flow rate in our problem. Fick's law! states that dm/dt is 
proportional to the area of the membrane and to the difference in 
concentration on both sides of the membrane. Thus 

dm dt = kA(co - c) . (11.4.12) 

If c < co, that is, if the solute has a lower concentration inside the 
cell than outside, m will increase. Hence, k is a positive constant. This 
constant is determined by the structure and thickness of the membrane. 
It is called the permeability of the membrane for the particular solute. 

1 Adolf Fick (1829-1901), German physiologist and biophysicist. 
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By means of (11.4.11) we can replace dm/dt by V· dc/dt in our 
differential equation. Thus we obtain 

dc kA 
- = - (co-c). 
dt V 

(11.4.13) 

We integrate this equation by using the explicit solution (11.4.2) and 
get 

c = K . exp (- ~ t) + Co (11.4.14) 

where K denotes the constant of integration. As tends to infinity, 
c(t) approaches Co asymptotically. The constant K may be determined 
by some initial condition, say c = c* at time t = o. We leave it to the 
reader to discuss the two cases c* > Co and c* < Co. 

This application is adapted from Thrall et al. (1967, CA 10). 

e) Nerve Excitation. The cells of a nerve fiber may be conceived 
as an electric system. The protoplasm contains a large number of 
different ions, both cations (positive electric charge) and anions (nega
tive electric charge). When an electric current is applied to the nerve 
fiber, the cations move to the cathode, the anions to the anode, and 
the electric equilibrium is disturbed. This leads to an excitation of 
the nerve. The mechanism is not known in detail. 

Based on the observation that the excitation originates at the 
cathode, N. Rashevsky developed a theory which postulates that two 
different sorts of cation are responsible for the process. One sort is 
exciting, the other inhibiting. The two sorts are therefore said to be 
antagonistic factors. 

Let a = a(t) (Greek epsilon) be the concentration of the exciting 
cations and 1 = 1(t) be the concentration of the inhibiting cations near 
the cathode at time instant t. Then, the theory states that excitation 
occurs whenever the ratio ali exceeds a certain threshold value. De
noting the threshold value by c, the statement is as follows: 

a 
- 2: c excitation, 1 -

~ < c no excitation. 
1 

Let ao and 10 be the concentrations at rest of exciting and inhibiting 
cations, respectively. When a grows and 1 remains limited, excitation 
becomes likely; when instead a does not grow as fast as 1, excitation 
will not occur. 
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Denote the intensity of the stimulant electric current by I. For 
simplicity, I is assumed to be constant during a certain time interval. 
Then Rashevsky assumes that dsjdt consists of two terms, one term 
proportional to I and the second negative term proportional to s - So 

which accounts for the loss of cations by diffusion, that is, 

( 11.4.15) 

with positive constants K and k. Using formula (11.4.2) it is easy to 
solve this differential equation and to write an explicit formula for 
s=t;(t). 

Similarly, for j = j(t) the theory postulates a differential equation 

d' 
d'~ = MI -m(j -jo) (M, m positive constants) (11.4.16) 

for which an explicit solution can also be found. The ratio s(t)!i(t) 
finally determines whether excitation occurs and when. The result is 
in good agreement with experiments. 

For a full account ofthe theory see Rashevsky (1960, Vol. 1, Chap. 32). 
Critical reviews of competitive models are given in K. S. Cole (1968, 
p. 121 fT.) and Johnson, Eyring, Polissar (1954, Chap. 12). Similar differ
ential equations are used in a theory of the central nervous system 
(see Rashevsky, 1961, Chap. 5, or 1964, Chap. 24). 

11.5. The Differential Equation y' = a y 2 + by + c 

In the differential equation y' = ay + b which we have studied in the 
preceding section, the unknown terms y = yet) and y' = dyjdt are in the 
first power. Therefore, the equation is said to be linear. In the equation 

(11.5.1) 

the term y2 occurs. For this reason, (11.5.1) is called a nonlinear differ
ential equation. 

Before we solve the Eq. (11.5.1), we consider the quadratic polyno
mial on the right side and the related quadratic equation 

(11.5.2) 

We may solve this equati-on using formula (4.6.2). We denote the two 
roots by A and B and assume that they are two different real numbers. 
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The quadratic polynomial may then be rewritten in the form 

ay2 + by + c = a(A - y) (B - y). 
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(11.5.3) 

Indeed, if y = A, the factor A - y vanishes and hence the quadratic 
equation is satisfied. The same argument is valid if y = B. 

With (11.5.3) in mind we rewrite our original differential equation 
in the form 

dy 
- = a(A - y)(B- y) 
dt 

(kj= B). 

The method of separating the variables leads to 

dy 
------=a·dt. 
(A - y)(B- y) 

(11.5.4) 

( 11.5.5) 

To simplify integration, we rewrite the fraction on the left side in 
the form 

1 1 (1 1) 
(A - y) (B - y) = B - A y - B - Y - A . 

(11.5.6) 

This formula can easily be verified. It is valid only under the assump
tion A =!= B. The terms 1/(y - B) and 1/(y - A) are called partial fractions. 

Now we are able to solve (11.5.5). In view of (11.5.6), the differ
ential equation becomes 

(_1 __ _ 1_)dy =a(B-A)dt. 
y-B y-A 

Upon integrating term by term usil!g formula (10.7.3) we get 

lnly- BI-Inly-AI = a(B -A)t+ C 

where C is an arbitrary constant of integration. Then we rewrite the 
equation by virtue of the formula lnu-Inv = In (u/v) and obtain 

In Iy - BI = a(B - A)t + C. 
Iy-AI 

Applying the exponential function on both sides we get 

Iy - BI = ea(B-A)t+C. 

Iy-AI 

(11.5.7) 

Dropping the vertical bars and replacing ± eC by a constant + k or 
- k, the equation becomes 

y-B = _k.ea(B-A)t. 

y-A 
( 11.5.8) 
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The minus sign on the right side is no requirement, but it is conve
nient in some applications. Finally, we solve (11.5.8) with respect to y 
and obtain the explicit solution of (11.5.4): 

B-A 
y = A + 1 + kea(B A)t • (11.5.9) 

It is suggested that the reader verify the result by differentiation. 

Applications 

a) Restricted Growth. We return to the study of growth of popula
tions. Let y = y(t) be the number of individuals in a population at the 
time instant t. The differential equation y' = ay with a> 0 provides 
for an unrestricted exponential growth, whereas y' = a(B - y) with 
a> 0, B > 0 results in growth which is nearly linear in the beginning 
and levels off later (cf. applications to growth in the preceding sections). 

To get a model of growth which is biologically more meaningful 
we may combine the two approaches, that is, assume that y' is pro
portional to y as well as to B - y. This idea leads to the differential 
equation 

dy 
- = Ay(B- y) 
dt 

(11.5.10) 

where A is a certain positive constant 2. This equation is a special 
case of (11.5.4) with A = 0 and a = - A. Hence, the general solution 
follows immediately from (11.5.9): 

B 
y = 1 + ke - ABt • 

(11.5.11) 

In our model, y can never exceed B. Therefore, the denominator in 
(11.5.11) must be greater than 1, and k has to be restricted to positive 
values. The quantity y increases monotonically since the differential 
equation (11.5.10) implies that dy/dt>O. For t~ - 00, y tends to zero, 
and for t~ + 00, y tends to B. The growth starts slowly, then becomes 
faster and finally tapers off. Growth is fastest in the neighborhood of 
the point of inflection. To get its location we have to equate the 
second derivative of y = y(t) to zero (see formula (9.6.4)). Differentia
ting (11.5.10) we obtain 

~y [~ ~l ~ ~ =A -(B-y)-y- =A(B~2y)-. 
dt2 dt dt dt 

(11.5.12) 

2 Cf. rule at the end of Section 12.1. 



The Differential Equation y' = a y2 + by + c 301 

This expression can only vanish if B - 2y = 0 or 

y=B/2, (11.5.13) 

that is, the point of inflection is halfway between the lines y = 0 and 
y = B. To get the abscissa, we let y = B/2 in Eq. (11.5.11) and solve it 
with respect to t: 
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Fig. 11.5. Growth of a population of Drosophila under controlled experimental condi
tions. The figure is reproduced from Lotka (1956, p. 69). Data are attributed to R. Pearl 

and S. L. Parker 

This particular abscissa is positive or negative depending on whether 
k> 1 or k< 1. 

Fig. 11.5 shows a graph of the function (11.5.11) in a particular 
application. The curve is S-shaped or sigmoid. Formula (11.5.11) is 
generally known as the logistic function. It was introduced into popula
tion dynamics by Verhulst in 1838 3 . The graph of the logistic function 
is called the logistic curve 4 . There are numerous experimental growth 
data, especially for protozoa and bacteria, for which fitting a logistic 
curve was quite successful. But in some other populations the fit was 
poor, and prediction was misleading. 

3 P. F. Verhulst (1804---1849), Belgian mathematician. It is not clear when the word 
"logistic" was first used in this connection, nor does an explanation exist for the choice 
of this word. 

4 The logistic function can be derived from the hyperbolic function y = tanhx which 
we introduced in Section 10.11. Only a translation and a change of scale are required. 
As is known from tanhx, the sigmoid curve is symmetric about its point of iriflection. 
Cf. Problem 10.24 at the end of Chapter 10. 
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For more details and experimental data see D'Ancona (1954, p. 
58-77), Gause (1934, p. 35 ff.), Kostitzin (1939, Chap. 4), Lotka (1956, 
Chap. 7), Pielou (1969, Chap. 2). For critical remarks the reader is 
referred to Feller (1940) and Slobodkin (1961, p. 122). 

b) Spread of Infection. How does an infectious disease spread in a 
community of susceptible individuals? Of course, this depends on many 
circumstances. For simplicity, we will make a few assumptions. Into a 
population of equally susceptible individuals we introduce a single 
infective. By contact between individuals the disease will spread, that 
is, the number of infectives will increase. In the beginning, the number 
of infectives will increase slowly, then the process will accelerate and 
finally level off when most of the individuals have become infectives. 
Further we assume that an individual that is once infected will remain 
infective during the process and that no one is removed. 

Let x = x(t) be the number of susceptibles, y = yet) the number 
of infectives at time instant t, and n the total size of the population 
into which an infective was introduced. Thus, at any time, 

x+y=n+1. ( 11.5.15) 

As in previous work on population growth we treat x and y as 
continuous variables. The rate at which the number of infectives in
creases is then dyjdt. The more infectives and susceptibles are present, 
the more frequently will contacts occur that lead to infection. It is 
therefore plausible to assume that dyjdt is proportional to y as well as 
to x. Thus we get the differential equation 5 

dy 
- =f3yx 
dt 

where f3 is a posItIve constant called the specific infection rate. In 
virtue of (11.5.15) the equation becomes 

dy dt = f3y(n + 1 - y) . (11.5.16) 

This equation is of the form (11.5.10) and can be integrated imme
diately by formula (11.5.11): 

n+l 
(11.5.17) y= 1 + ke-fJ(n+l)t . 

So far the constant k is undetermined. We assume now that the pro
cess started at time t = 0 with the single infective. Thus from (11.5.17) 

5 See the rule at the end of Section 12.1. 
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we have y(O) = 1 = (n + 1 )/(1 + k) from which we deduce k = n. Hence, 
the particular solution is 

n+1 
(11.5.18) y = ----;;-;--;-:-;:c-1+ne p(n+l)t' 

Under our simplifying assumptions the spread of disease follows a 
logistic law. 

For more elaborate models on epidemics, both stochastic and deter
ministic, see Bailey (1957 and 1964) and Bartlett (1960). 

c) Chemical Kinetics. Let us consider the reaction of n-amyl fluoride 
and sodium ethoxide: 

Let A be the original concentration of n-amyl fluoride and B be the 
original concentration of sodium ethoxide, and assume that A =1= B. 
Since during the reaction one molecule of the first compound removes 
exactly one molecule of the second compound, A and B decrease by the 
same amount x = x(t) at any time t. Hence, the remaining concentrations 
of the components are A - x and B - x. 

We call dx/dt the reaction rate. Since the reaction requires collision 
of molecules of n-amyl fluoride with molecules of sodium ethoxide, it is 
plausible to assume that dx/dt is proportional to the number of 
molecules of both components present. This is equivalent to saying 
that dx/dt is proportional to A - x and to B - x. Hence, we obtain the 
differential equation 

dx 
- =r(A - x)(B-x) 
dt 

(11.5.19) 

with a specific reaction rate r > O. In order that r remain constant we 
have to assume that the temperature is kept constant during the 
reaction. The Eq. (11.5.19) is of the form (11.5.4)6 and the general 
solution is stated in (11.5.9). To satisfy the initial condition t=O, x=O, 
we must equate k with - B/A. After rearranging terms the particular 
solution may be written in the form 

(11.5.20) 

6 In chemistry this reaction is called a second order reaction and (11.5.19) is said to 
be a second order equation. However, it should be noted that in mathematics the 
term "second order" in connection with differential equations has quite a different 
meaning in that it refers to equations containing the second derivative y". 
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When t -+ 00, x tends either to A, if A < B, or to B, if A > B. It should be 
noted that this function is not a logistic function. 

There is good agreement between the model and the experiment. 
For a full account of this example see Latham (1964, p. 103). 

d) Autocatalysis. Another sort of chemical reaction leads to a 
related differential equation. Consider the process by which trypsinogen 
is converted into trypsin (an enzyme). The reaction starts only in the 
presence of some trypsin, that is, the product of reaction acts as a 
catalyst. 

Let Yo be the initial concentration of trypsin at time t = 0, and let 
y = y(t) be the additional concentration gained by the reaction at time t 
so that the total concentration is Yo + y(t). Let B denote the initial 
concentration of trypsinogen. Since each molecule of trypsinogen 
yields one molecule of trypsin, B decreases by the same amount as the 
trypsin concentration increases, that is, by y. Therefore, at time t the 
concentrations of trypsinogen and of trypsin are B - Y and Yo + y, 
respectively. 

It is reasonable to assume that the reaction rate dy/dt is propor
tional to Yo + Y and to B - y. Thus we get the differential equation 

dy 
dt = r(yo + y) (B - y) (11.5.21) 
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Fig. 11.6. Autocatalytic activation of crystalline trypsinogen. The curve fitted to the 
observed points is a logistic curve. The figure is reproduced from Northrop, Kunitz, 

and Herriot (1948, p. 126). See also B. Stevens (1965, p. 83) 
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where r is a constant. To compare this equation with (11.5.4) we let 
r = - a and Yo = - A so that a formal agreement is reached. The 
general solution, as indicated by (11.5.9), is 

B+yo 
y= -Yo+ 1+ke r(B+Yo)t' (11.5.22) 

With the initial condition t = 0, y = ° we are able to determine k. Thus 
we get a particular solution with k = B/yo. By comparison with 
(11.5.11) it is easy to see that the graph of (11.5.22) is a logistic curve. As 
shown in Fig. 11.6, the agreement with the experimental facts is 
satisfactory. 

11.6. The Differential Equation dyjdx = k· yjx 

It is easy to observe that a child's head grows more slowly than his 
body and that his eyes grow even more slowly than the head. This 
different pattern of growth is studied in allometry. 

Let x = x(t) be the size (length, volume, or weight) of an organ and 
y= y(t) the size of another organ or part in the same individual at time 
instant t. The growth rates of these two parts are dx/dt and dy/dt. When 
we state that one part grows more slowly than another part, we will 
not simply mean that dx/dt * dy/dt, since for example a part which is 
smaller in size than another part will naturally gain less per unit time. 
Rather we will mean that the specific or relative growth rates, introduced 
in (11.3.8), are different. In other words, our statement implies that 

~~*_1_~. 
y dt x dt 

Numerous empirical data support the claim that the specific growth 
rates are approximately proportional, that is, that the equation 

1 dy _ k 1 dx 
ydt-~dt 

(11.6.1) 

holds with satisfactory precision. The constant k is positive and depends 
only on the nature of the two organs or parts under consideration. The 
relationship (11.6.1) is called the allometric law. 

The differential equation (11.6.1) may be simplified by eliminating 
time. We first show that dy/dt divided by dx/dt simply yields dy/dx. We 
have only to recall that dy/dt and dx/dt are limits of the difference 
quotients Ay/ At and Ax/At. Since At * 0, we get 

Ay I Ax _ Ay 
Lit Lit- Ax' 
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as Llt-+O, we obtain the general formula 

dy I dx _ dy 
Tt Tt-Tx' ( 11.6.2) 

With this result, the Eq. (11.6.1) turns into 

~=kL. 
dx x 

(11.6.3) 

This new differential equation is solved by separating the variables 
( cf. Section 11.3): 

~=k~ 
y x ' 

Iny=klnx+C (x>O,y>O), (11.6.4) 
y = ek1nx + C = eC(e1nx)k 

or 
y=exk (x>O,y>O) (11.6.5) 

where e stands for eC• The Eq. (11.6.5) defines a power function (for a 
definition see Chapter 4). The exponent is the constant k > 0, and the 
coefficient of the power is e > 0. The function contains two parameters, 
e and k. 

For numerical and graphical purposes, it is practical to take 
common logarithms. Thus (11.6.5) is equivalent to 

log y = k· log x + loge 

or, in the notation of Section 7.3, 

Y=kX +B. 

(11.6.6) 

(11.6.7) 

A double-logarithmic plot of (11.6.5) is therefore a straight line with a 
slope k and Y -intercept B = loge. A typical example is shown in 
Fig. 11.7. 

The allometric law may be stated either by the differential 
equation (11.6.1), by the power function (11.6.5), or by the logarithmic 
equation (11.6.6). The three statements are equivalent. 

Notice that the allometric law is not primarily concerned with the 
speed of growth since time is eliminated. An individual may grow as a 
function of time following an exponential, a logistic or any other law. 
This leaves. the allometric relationship unaffected. 

The allometric law was applied successfully not only to the relative 
growth of parts of a body, but also to metabolism, to dose-response 
problems, to racial differences, and to evolutionary history. There exist 
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Fig. 11.7. Relationship between endocranial volume and foramen magnum area in 
five orders of mammals. Letters refer to straight lines fitted to the date of each group. 
I insectivores, R rodents, P prosimian primates, M new and old world monkeys 
combined, C fissiped carnivores, A artiodactyls. The figure is reproduced from Radinsky 

(1967) 

also attempts to justify the allometric law theoretically. For details see 
Grande and Taylor (1965), Huxley (1932), Rosen (1967, Chap. 5), Simpson, 
Roe, Lewontin (1960, p.396ft), Teissier (1960), von Bertalanffy (1951, 
p. 311-332), Wilbur and Owen (1964). 

11.7. A System of Linear Differential Equations 

In physiological systems as well as in populations there are usually 
two or even more functions of time under consideration. Let x = x(t) 
and. y = y(t) be two such functions of time. We assume some kind of 
interaction between the quantities x and y. Thus the rates of change 
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dx/dt and dy/dt may depend on both quantities x and y. A relatively 
simple case consists of the two simultaneous equations 

dx 
-=a·x+b·y 
dt ' 
dy 
Tt=c.x+d.y. 

(11.7.1) 

where a, b, c, d are given constants. The unknown functions x = x(t) 
and y = y(t) and their derivatives appear to the first power. Therefore, 
(11.7.1) is said to be a system of linear differential equations. 

It is worth studying the logical content of such a system. The 
quantities x and y interact in such a way that they fully determine the 
rates dx/dt and dy/dt. As time elapses, x and y will increase or decrease 
according to the rates dx/dt and dy/dt. Thus the rates will determine 
future values of x and y. The information originally given to dx/dt and 
to dy/dt is then "fed back" to x and y. We get two feedback loops as 
indicated in the following graphical presentation: 

x(t) y(t) 

1 

interaction 

1 
feedback feedback 

dx dy 
-
dt dt 

The system (11.7.1) is solved by the method of trial functions. We 
try the following special functions: 

(11. 7.2) 

where A, B, A are some constants to be determined later. To avoid 
trivial solutions we may assume that A =1= 0 and B =1= o. Substituting 
(11.7.2) in (11.7.1) we obtain 

AAeAt = aAe,\t + bBeAt , 

BAeAt = cAeAt + dBeAl 

or, after removing the common factor eAt and rearranging the terms 

(a-A)A+bB =0, 
cA + (d - A) B = 0 . 

(11.7.3) 

From this it follows that 

A b d-A 

B a-A C 
(11.7.4) 
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Thus we obtain two different expressions in terms of the unknown A 
which both equal AlB. This imposes some limitation on A. Indeed, 
from (11.7.4) we deduce the quadratic equation 

bc = (a - A)(d - A) 

or, in the standard form 

A 2 - (a + d)A. + (ad - bc) = O. (11.7.5) 

This equation can be solved with respect to A by means of formula 
(4.6.2). For simplicity, we assume that we get two different real roots 
A1 and A2' 

The Eq. (11.7.5) is called the characteristic equation of the system 
(11.7.1) of differential equations. So far we can only claim: If there 
exists a solution to (11.7.1) of the form (11.7.2), A has to be one of the 
roots of the characteristic equation. 

With A = A1 we find suitable constants A1 and B1 from (11.7.4): 

A1 b d-A1 
(11.7.6) 

B1 a-A1 c 

The coefficients A1 and B1 are not fully determined. One ofthem can be 
chosen arbitrarily. 

Sirrlilariy, with A = A2 we find A2 and B2 such that 

B2 a - A2 c 
(11.7.7) 

Thus we have obtained two particular solutions to (11.7.1): 

and 

To get the general solution we combine the particular solutions as 
follows: 

(11. 7.8) 
y = B1 eAtt + B2eA2t • 

In each pair of coefficients A 1, B1 and A2, B2, one coefficient can be 
chosen arbitrarily. Thus the general solution contains two arbitrary 
constants. To verify the result we have only to substitute x and y in 
(11.7.1) by the formulas (11.7.8) and to show that we get the same 
expressions on both sides of the equations. We leave this task to the 
reader. 
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The case where At and A2 are not real numbers will be discussed in 
Chapter 15. There exists also a mathematical theory dealing with 
the exceptional case At = A2' but we will omit this part. 

A numerical example may help the reader to understand the 
procedure. Let 

dx 
-=3x-2y 
dt ' 

dy 
Tt=2x-2y 

be the given system. According to (11.7.5) the characteristic equation is 

A2 -A-2=O. 

Its roots are At = - 1 and A2 = 2. Hence, particular solutions are of 
the form 

and 

From (11.7.6) and (11.7.7) we find two side conditions: 

Hence we may put At = k, Bt = 2k, A2 = 2m, B2 = m, with arbitrary, 
fixed values for k and m. Thus the general solution becomes 

x = ke- t + 2me2t , 

y=2ke- t + me2t • 

As t increases, e- t tends to zero, and e2t tends to infinity. Hence, x and y 
both tend to + 00 if m > 0 or to - 00 if m < O. In either case, the system 
(x, y) is "exploding". 

Applications 

a) Ecology. Let us consider a closed area which contains two 
animal or plant species. Let Nt = Nt (t) and N 2 = N 2 (t) be the number 
of individuals of the two species as a function of time. We assume that 
there is some interaction between the two species. The first species 
may be a food source for the second species. Or, one species consisting 
of trees may reduce the incident light on another plant species. But 
there are many other possibilities of interaction: One species may 
provide shelter for the other species; pollination of a plant species may 
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be performed by an animal species; soil may be poisoned by one 
species, thus inhibiting the growth of a plant species. 

During a given time interval of length LIt we may describe the 
process by the following equations: 

population 
of species 1: 

{
AN _ .} {Change in the} {Change due to} 

LJ I - net gam b " 
( I) = a sence of + mteractlOn 
or oss interaction with species 2 

population {LlN2 = net gain} {Change ?ue to} {Change in the} 
of species 2: (or loss) = mteractlO,n + absence, of 

With species 1 mteractlOn 

We divide both equations by LIt and assume that each term tends to a 
limit as LIt tends to zero. Thus the limiting process leads to 

__ 1_ = in the absence of + due to interaction 
dN { rate of change } { rate of change } 

dt interaction with species 2 

dN { rate of change } { rate of change } T = due to int,eraction + in the a~sence of 
t wIth species 1 mteractlOn 

In the absence of interaction we may assume, for simplicity, that in 
both populations there is a constant birth and death rate so that the 
rate of change becomes proportional to the size of the population 
(see Application (C) in Section 11.3). Also for simplicity, we may assume 
that the rate of change due to interaction is proportional to the size of 
the interfering population. This leads to differential equations such as 

dN 1 
--=a·N 1 +b·N2 

dt ' 
(11.7.9) 

where a, b, c, d, are certain constants (positive, negative or zero). 
The equations are of the form (11.7.1). The solution (11.7.8) indicates 

that much depends on the roots Al and A2 of the characteristic 
equation. If one or both Xs are positive, the ecological system will 
explode since exp (At) with A> 0 tends to infinity. If, on the other hand, 
Al and A2 are both negative, the population will decrease in size since 
exp (At) with A < 0 tends to zero. When the roots are not real, we will 
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have to postpone the discussion to Chapter 15. There we will show 
that the ecological system oscillates. 

For a more detailed discussion see Keyfitz (1968, p. 271-287). 

b) Passage of Food in Ruminants. Ruminants, such as deer, sheep, 
goats, oxen, have a complicated stomach. Newly eaten but unchewed 
food is passed to a storage compartment called the rumen. Later, when 
chewed, food passes through the omasum into the abomasum where 
it is further processed. From there it slowly enters the intestines. To get 
a mathematical description of the passage of food through the digestive 
tract, Blaxter, Graham, and Wainman (1956) proposed the following 
model: 

Let r = r(t) be the amount of food in the rumen at time instant t. 
At t = 0 this amount is a known quantity, say roo By u = u(t) we denote 
the amount of food in the abomasum at time instant t. At t = 0 we have 
u = O. The rate of decrease of r = r(t) is likely to be proportional to r. 
It is also reasonable to assume that du/dt consists of two terms: a rate 
of increase equal to the rate of decrease of r, and a rate of decrease 
proportional to u. Thus we obtain the linear differential equations 

dr 
di= -klr, 

(11.7.10) 
du at = + k1r- k2u 

where kl and k2 are positive constants. They may be called specific 
rates of digestion. We assume that kl =F k2 • The first equation contains 
a minus sign since r decreases. 

Further we denote the total amount of food that has entered the 
duodenum at time t by v = v(t) and the amount of faeces by w = w(t). 
Since the duodenum receives exactly the same amount that leaves the 
abomasum, we get the differential equation 

dv di = k2 u (11.7.11) 

where v = 0 at time t = O. Finally, we assume that the faeces leave the 
animal with a constant time delay which we denote by -r. Neglecting 
the loss of matter that enters the blood vessels, we get 

w (t) = v at time t - -r , 
that is, 

w(t)=v(t--r) for t>-r7. (11.7.12) 
7 The reader should not confuse the functional value v(t - T) with a product of two 

factors v and t - T. 
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The overall process may be summarized graphically by 

r __ =.!k1L--_, U __ ~k2,----_, V time delay , W. 

rumen abomasum duodenum raeces 

We first solve the Eqs. (11.7.10). By (11.7.5) the characteristic 
equation turns out to be 

A,2+(kl +k2)A.+k1k2=0 

so that A,l = - kl' A,2 = - k2 where by assumption A,l * A,2' As (11.7.8) 
indicates, the general solution may be written in the form 

r = Al e- k,t + A 2e- k2t , 

u=B1e- k,t +B2e- k2t . 

The coefficients have to satisfy (11.7.6) and (11.7.7). Thus8 

Al k2 -kl A2 k2 -k2 
=0, 

BI kl B2 kl 
or 

kl 
AI' A 2=0. BI = k -k 

2 I 

We have also imposed the initial conditions r = ro and u = 0 at time 
t = O. This leads to 

ro=A 1+A2,0=B1+B2 · 

Combining the results we get for the coefficients 

Thus we obtain the particular solution 

u= rOkl (e-klt_e-k2t). 
k2 -kl 

From (11.7.11) it follows by integration that 

t 

k S ()d ro (k e- k1t - k e- k2t) v = 2 U t t = '0 - k _ k 2 I . 
o 2 I 

(11.7.13) 

(11.7.14) 

8 Note that the formula AdBl = -bj(a - A.I) yields the indeterminate form 0/0, 
whereas the formula AliBI = - (d - A.I)/e gives the desired result. 
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Finally, (11.7.12) yields a formula for w=w(t) which originates from 
(11.7.14) by merely replacing t with t-r. 

Graphs of the functions r(t), u(t), w(t) are plotted in Figure 11.8. 
We have treated the digestive tract as a three-compartment system. 

Our application may then be interpreted as an example of compartment 
analysis (cf. Application (I) in Section 11.3). 

wetl 

uetl 

o 
Fig. 11.8. The passage of food through the digestive tract of ruminants. The amount 
of food in the rumen and in the abomasum are denoted by r(t), u(t), respectively. 
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Fig. 11.9. A two-compartment system with excretion 

c) Excretion of a Drug. We consider a drug D which is dissolved in 
the plasma of blood. By diffusion there is an exchange of molecules of D 
between the plasma and the tissue that is fed by the blood. Molecules 
of D are also being excreted by the kidneys into the urine. We may 
consider the plasma and the tissue as two compartments with one of 
them "leaking". The situation is schematically shown in Fig. 11.9. 

Under simplifying assumptions similar to those in Application (I) of 
Section 11.3, we are able to find a system of differential equations for the 
exchange. Let Ql = Ql(t) and Q2 = Q2(t) be the mass of D in the tissue 
and in the plasma, respectively. The rate of change dQt/dt is the sum of a 
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rate of increase (molecules from plasma to tissue) and a rate of decrease 
(molecules from tissue to plasma). These rates are assumed to be propor
tional to Q2 and QI' The rate dQ2/dt consists of three such terms, the 
third one meaning the rate of excretion. Thus we obtain 

(11.7.15) 

where kI' k2' k3 are positive constants. Upon factoring out Q2 in the 
second equation, we see that (11. 7.15) is of the form (11. 7.1). The behavior 
of the solution is determined by the roots of the characteristic equation. 
The roots Al and A2 turn out to be negative. The general solution (11.7.8) 
then reveals that the process tapers off steadily. 

Readers interested in learning more about compartment analysis 
are referred to Atkins (1969), Milhorn (1966), and Solomon (1960). 

11.8. A System of Nonlinear Differential Equations 

In Section 11.5 we considered a nonlinear differential equation, and 
in Section 11.7 we introduced a system of linear differential equations. 
In this section we will combine the two concepts. To give the reader the 
proper motivation for doing so, we will begin with a biological example. 

D' Ancona reported that in the years 1910-1923 the fish population 
in the upper Adriatic changed considerably. During the first world war, 
1914-1918, fishing was suspended. After the war, sharks and other 
voracious species became more numerous relative to herbivorous types 
of fish. D'Ancona concluded that the suspension of fishing allowed the 
fish population to grow and that this gave the predatory species an 
advantage over the prey species (see D'Ancona, 1954, p. 209). 

This observation stimulated a mathematical model on popUlation 
dynamics in the case where one species, called predator, feeds on another 
species, called prey. We assume that the prey population finds ample 
food at all times, but that the food supply of the predator population 
depends entirely on the prey population. We also assume that during 
the process the environment does not change in favor of one species, 
and that genetic adaptation is sufficiently slow. 

When the prey population increases in size, the predatory species 
obtains a larger food base. Hence, with a certain time delay it will also 
become more numerous. As a consequence, the growing pressure for 
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Paramecium aurelia 
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Fig. 11.10. Fluctuation of population size of Paramecium aurelia which feed upon 
Saccharomyces exiguus. The experiment was performed by G. F. Gause. The figure is 

reproduced from D'Ancona (1954, p. 244) 

food will reduce the prey population. After awhile food becomes rare 
for the predator species so that its propagation is inhibited. The size of 
the predator population will decline. The new phase favors the prey 
population. Slowly it will grow again, and the pattern in changing 
population sizes may repeat. When conditions remain the same, the 
process continues in cycles. Fig. 11.10 illustrates three such cycles. 

Let us consider the process during a time interval of length ,1t. The 
changes are given by the following equations: 

{
change in} {natural} 
the number = increase 
of prey III prey 

{
destructiOn} 

- of prey by 
predator 

{
change in} {inCrease in } {natural} 
the number = predator resulting - loss in 
of predator from devouring prey predator. 

(11.8.1) 

Let x = x(t) be the number of prey individuals and y = y(t) the number 
of predator individuals at time instant t. As in previous studies in popula
tion dynamics we assume that x(t) and y(t) are differentiable functions. 
By dividing both Eqs. (11.8.1) by ,1t and letting ,1t tend to zero, we obtain 
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the rates of change 

dx = {birth rate} 
dt of prey 

_ {destruction rate} 
of prey 

~ = {birth rate } _ {death rate Of} 
dt of predator predator . 
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(11.8.2) 

The birth rate of the prey species is likely to be proportional to x 
(cf. birth process in Section 11.3), that is, equal to a· x with a certain 
constant a> O. The destruction rate depends on x and on y. The more 
prey individuals are available, the easier it is to catch them, and the more 
predator individuals are around, the more stomachs have to be fed. It is 
reasonable to assume that the destruction rate is proportional to x and 
to y, that is, equal to b . xy with a certain constant b> O. 

The birth rate of the predator population depends on food supply as 
well as on its present size. We may assume that the birth rate is propor
tional to x and to y, that is, equal to c· xy with a certain constant c > O. 
Finally, the death rate of the predator species is likely to be proportional 
to y, that is, equal to d . y with a certain d> O. 

Under these simplifying assumptions the Eqs. (11.8.2) become 

dx 
-=a·x -b·xy 
dt ' 

dy 
--=c·xy-d· y 
dt 

(11.8.3) 

All four constants a, b, c, d are positive. This system is said to be 
nonlinear since the equations contain the product xy of two unknown 
functions x = x(t) and y = y(t). 

The prey-predator model was discovered by Lotka and indepen
dently by Volterra around 1925 9 • 

There exists no explicit solution of the differential equations (11.8.3). 
When numerical values or graphs of x(t) and y(t) are required, the 
integration can be performed by a computer employing methods of 
numerical analysis. Fortunately, it is possible to derive a rather easy 
relationship between x and y which discloses some properties of the 
solution. For this purpose we eliminate the time t. This is possible by 
applying formula (11.6.2). Thus upon dividing the second Eq. (11.8.3) 

9 Alfred James Lotka (1880---1949), born in Austria, American biophysicist. Vito 
Volterra (1860---1940), Italian mathematician. 
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by the first equation we get 

dy 
dx 

e· xy-d· y 

a·x -b· xy 

y(ex.- d) 
x(a - by) . 

(11.8.4) 

Since at a specific time instant t, the variable y is uniquely associated 
with x, we may consider y as a function of x. Hence, (11.8.4) is a 
differential equation for this function. Upon separating the variables 
we get 

(11.8.5) 

(x> 0, y> 0), 

a . In y - by = ex - d . In x + C (11.8.6) 

where C is an integration constant. It is not possible to solve this 
equation explicitly with respect to y. However, with rather laborious 
calculations that require some training in numerical analysis, it is 
possible to find pairs (x, y) which satisfy the Eq. (11.8.6). In a rectangular 
coordinate system, the points (x, y) form a closed curve. An example is 
shown in Fig. 11.11. 

y 
1000 

500 

----<)--.-----0---(( X,Y) 

x 
5.000 10.000 20.000 

Fig. 11.11. Double-logarithmic plot of points (x. y) that satisfy the equation (11.8.6) 
with the particular constants a = 1, b = 0.002, C = 0.00001, d = 0.08, C = 5.8. The solution 
set is a closed curve. If we consider x and y as functions of time, the point (x, y) moves 
along the closed curve in the counter-clockwise direction, thus describing cycle by 

cycle 
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Fig. 11.12. The ups and downs in the population size x(t) of a prey species and in the 
population size yet) of a predator species. The graph is based on the same constants 
as in Fig. 11.11. Notice that a maximum of x(t) is followed by a maximum of yet), and 

that the same sequence occurs for the minima 

We may also plot x and y versus time. Then we get a regular 
up-and-down in the two population sizes as shown in Fig. 11.12. 

Some experimental data are in agreement with the outcome of the 
Lotka-Volterra model, but disagreement in other experiments was 
also reported. The model may be modified and refined by adding more 
terms to the Eqs. (11.8.3) or by allowing for chance fluctuations. The 
reader will find many more details in the main works on the Lotka
Volterra model: D'Ancona (1954), Gause (1934), Kostitzin (1939), 
Lotka (1956), Volterra (1931). For more modem views and additions 
see Bailey (1964), Barnett (1962), Bartlett (1960), Chapman (1967), 
Chiang (1964), Kemeny and Snell (1962), Keyfitz (1968), Leigh et al. 
(1968), Leslie (1957), Leslie and Gower (1960), Levin (1969), Levins 
(1968), MacArthur and Connell (1966), Pielou (1969), Pearce (1970), 
Slobodkin (1961), J. M. Smith (1968), von Bertalanffy (1951), Watt (1968). 

Systems of nonlinear differential equations are also applied in the 
theory of epidemics (see Bailey (1957), Lotka (1956), Watt (1968)) and in 
enzyme synthesis (see Ackerman (1962), p.323, and J. M. Smith (1968), 
p.109). 
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*11.9. Classification of Differential Equations 

There are several ways to distinguish between different types of 
differential equations. 

We begin with the order of a differential equation. When only the 
first derivative occurs, an equation is said to be of the first order. Thus all 
differential equations discussed in the previous sections are first order 
differential equations. When the second derivative of an unknown 
function occurs, the equation is said to be of the second order. For 
instance, 

y" = ay' + by + c 

are second order equations. In general, by the order of a differential 
equation we mean the order of the highest order derivative appearing 
in it. This meaning of "order" should not be confused with the usage of 
the word "order" in chemical kinetics (cf. footnote in Application (c) 
of Section 11.5). 

A further distinction is concerned with the role of the highest order 
derivative. A differential equation is said to be explicit if the derivative 
of the highest order is given as a function of all the other variables. 
Otherwise, it is called implicit. All differential equations discussed so 
far are explicit. Examples of implicit equations are 

(y')2 = ay + b , 

y' + log y' = cy . 

Here, y' need not be a function of y. 
An important class of differential equations is formed by the 

linear equations. Such an equation may be written as a "linear 
aggregate" equated to zero. As an example we consider 

Here p and q are either constant or are functions of t, that is, p = p(t) 
and q = q(t). The second order equation 

y" = ay' + by + c 

is also linear if a, b, c are constants or known functions of the 
independent variable. 

Examples of nonlinear equations have been studied in Sections 
11.5 and 11.8. 
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Within the class of linear differential equations we distinguish 
between homogeneous and nonhomogeneous equations. A linear differen
tial equation is homogeneous if that particular term is missing which 
does not contain the unknown function. Thus 

y' = ay + c or y" = ay' + by + c 

are homogeneous if, and only if, c = O. A homogeneous equation has an 
important property: If y = u(t) is a particular solution, then any 
multiple k· u(t) with an arbitrary constant k is also a solution. In 
addition, if u(t) and v(t) are particular solutions, all linear combinations 
ku(t) + mv(t) with constants k, m are also solutions. 

In previous sections we dealt only with differential equations having 
constant coefficients. We did not consider a linear equation such as 

dy 
Yt=f(t).y+g(t). 

It would be more difficult to solve this equation than to solve 
dy/dt = ay + b with constant coefficients a and b. In linear differential 
equations, the distinction between equations with constant and variable 
coefficients is very important. 

Finally, there is a class of differential equations which contain the 
so-called partial derivatives. This concept will be introduced in 
Chapter 12. There we will consider a partial differential equation. All 
differential equations discussed so far are called ordinary differential 
equations to distinguish them from partial differential equations. 

Recommended for further reading: Atkins (1969), Defares and Sned
don (1961), Kynch (1955), Latham (1964), Lefort (1967), Milhorn (1966), 
Pielou (1969), Rashevsky (1964), Riggs (1963), Saunders and Fleming 
(1957), C. A. B. Smith (1966), B. Stevens (1965), von Bertalanffy (1951), 
Watt (1968). 

Problems for Solution 

11.1. Assume that a population grows in such a way that the specific 

growth rate _1_ ddN remains constant. Let N 1 be the number 
N t 

of individuals at the time instant t 1 • Find N = N(t). 
11.2. For the worker bees of the species Bombus humilis Ill. the 

specific death rate is approximately 0.04 d - 1 where d denotes 
day. Let y(t) be the number of worker bees at time t. Find the 
differential equation for y(t) and the half-life of the worker bees. 
(Adapted from Brian, 1965, p. 35). 
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11.3. Some 435 striped bass (Roccus saxatilis) from the Atlantic 
Ocean were planted in San Francisco Bay in 1879 and 1881. 
In 1899 the commercial net catch alone was 1,234,000 pounds 
(MacArthur and Connell, 1966, p. 122). Assume that the average 
weight of a bass fish is one pound and that in 1899 every tenth 
bass fish was caught. The growth of the population was so fast 
that it is reasonable to operate with the differential equation 
dN /dt = AN. Find a lower bound for A. 

11.4. Combining Application (c) of Section 11.3 with Application 
(b) of Section 11.4, find the differential equation for a birth
death-immigration process. Integrate the equations assuming 
that N = No at time t = O. 

11.5. In the birth-and-death process, assume that the coefficient 
A - f1 in Eq. (11.3.13) is not constant but proportional to N 1/k 

with a certain positive constant k. Find the modified differential 
equation and integrate it. The result seems to fit the population 
explosion in developing countries very well (see Watt, 1968, 
p.10). 

11.6. The growth of a cell depends on the flow of nutrients through 
the surface. Let W = W (t) be the' weight of the cell. Assume that 
for a limited time the growth rate dW/dt is proportional to the 
area of the surface. If the form of a growing cell does not 
change, the area of the surface is proportional to the square of 
a linear dimension (such as a diameter, as defined in Section 4.2) 
and therefore proportional to W 2 /3 . Hence, dW/dt = kW2/ 3 

with a positive constant k. Solve this differential equation and 
interpret the result (cf. von Bertalanffy, 1951). 

11.7. In formula (10.9.11) we stated an equation for the absorption 
of light in a transparent medium. What differential equation 
does the light intensity I = I (x) satisfy? 

11.8. Sketch the slope fields of the following differential equations: 
1 

a) y' = l/y b) y' =3(Y+ 1) 

1 
c) y'=_y2 

10 
d) dy/dx = x/y . 

11.9. Find the general solution of the following differential equations: 

a) y' = ay2 

d) dA/dt = A 2 t 

b) y' = k(a _ y)2 

e) dQ/dt = Qt2 

c) du/dx = ux 

f) dy/dx = x/y . 

11.10. By infusion the glucose concentration of blood is increased at a 
constant rate R (in mg/minute). At the same time, glucose is 
converted and excreted at a rate which is proportional to the 
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present concentration of glucose. Hence, if C = C(t) denotes 
this concentration, we obtain the differential equation 
dCjdt = R - kC with a constant k > O. Solve the differential 
equation. (Adapted from Defares and Sneddon, 1961, p.527.) 

11.11. To study the concept of feedback, consider the following 
feedback systems in human life: a) behavior of criminals -
effort of police, b) adjustment of youths in view of the generation 
gap, c) consequences of population explosion, d) application of 
insecticides in agriculture, e) quality of a performance under 
the influence of applause. 

11.12. Let r be an arbitrary constant. Verify that the functions y = rsinx 
and y = rcosx are particular solutions of the second order 
equation y" = - y. By linear combination find a general solution 
with two arbitrary constants of integration. 

* 11.13. Classify the following differential equations with respect to 
order, explicit-implicit, linear-nonlinear, homogeneous-non
homogeneous, constant-variable coefficients: 

a) u' = 5-u 

c) z"=az 

e) dy/dx = y. sinx 

g) y = 1/siny' 

b) dN /dt = atN 

d) z" = az2 

f) dv/dt = v + f(t) 

h) yy' = 1- y. 



CHAPTER 12 

Functions of Two or More Independent Variables 

12.1. Introduction 

We recall the formula 

z=(xy}t (x~O, y~O) (12.1.1) 

for the geometric mean of two numbers x and y. Consider x and y as 
variables whose values can be chosen independently of each other. Then 
with each pair (x, y) there is uniquely associated a number z, the 
geometric mean. In Chapter 3 we called such an association a function. 
We say that z is a function of the pair (x, y), or the pair (x, y) is mapped 
into z. It is also customary to call z a function of two variables x and y. 

The numbers x and yare known as independent variables, whereas 
z is called the dependent variable. The domain D of the function (12.1.1) 
is the set of all pairs (x, y) with x ~ 0 and y ~ O. In set theory (Chapter 2) 
we would denote this domain by 

D= {(x, y)lx ~O, y~O}. 

The range R of the function (12.1.1) is the set of all numbers z ~ 0 or 

R={zlz~O}. 

For a graph of a function of two independent variables we may use a 
three-dimensional coordinate system with pair-wise perpendicular x, y, z 
axes. A pair (x, y) is represented by a dot in the xy-plane. With each 
such dot there is associated a coordinate z plotted on a line through the 
dot and plotted perpendicular to the xy-plane. This coordinate deter
mines a point. We denote this point simply by 

(x, y, z). 

If z is a function of (x, y), the points (x, y, z) form a surface which may be 
continuous or not. Usually a perspective view of the coordinate system 
and of the surface is drawn. Fig. 12.1 depicts the surface defined by the 
function (12.1.1). 
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o 

Fig. 12.1. Graph of the geometric mean z = VXY in a rectangular coordinate system 

It is not always convenient to plot or to use a perspective view. 
Under certain conditions the relationship between x, y and z can be 
much better represented by a nomogram. For details we refer the reader 
to Section 7.5. A nomogram of the geometric mean is shown in Fig. 7.16b. 

A function of two or more variables is denoted in a way similar to 
that for a function of one variable. Thus, if z is a function of x and y, 
we write 

z=f(x,y). 

In Section 11.5 and later we were tacitly concerned with functions 
of two variables when we studied rates of change which are products 
of two variables. Consider, for instance, the destruction rate of a prey 
population inflicted by a predator population. We assumed that the 
destruction rate is proportional to the number x of prey individuals 
and also to the number y of predator individuals. Then we concluded 
that the destruction rate is equal to 

b·xy 

where b is a constant. 
A similar conclusion occurs frequently in the natural sciences. We 

state the following rule: 
When a quantity z = f(x, y) is proportional to x as long as y remains 

constant, and when z is proportional to y as long as x remains constant, 
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then z is proportional to the product xy, that is, 

z = c· xy (12.1.2) 

where c is a positive or negative constant. 
With the symbol rx introduced in Section 3.5 we may briefly write: 

From zrxx and zrxy it follows that zrxxy. 
To prove the statement we proceed in two steps. First, we keep y 

at a fixed value, say y = Yo' Since z is assumed to be proportional to x, 
we get z = A . x where A is a constant as long as y = Yo' Second, if we 
keep x at a fixed value, say x = xo, and vary y, we conclude from 
z = Ax that z = A . Xo' However, A is no longer a constant, but a function 
of y. Since z is proportional to y, we conclude that A must be of the form 
A = c y with a constant c. Replacing A in z = Ax with c y we finally get 
( 12.1.2). 

As an example consider the voltage V of an electric circuit. It is 
proportional to the resistance R when the intensity I of current is kept 
constant. The voltage V is also proportional to I when R is kept 
constant. Hence V = cRI. 

In model making, the assumption that we can keep one of the 
variables x and y constant is not always satisfied. Rather x and yare 
dependent on each other. Even then z is frequently expressed in the 
form (12.1.2). For examples see formulas (11.4.12), (11.5.10), (11.5.16), 
(11.5.19), (11.5.21), and (11.8.3). 

12.2. Partial Derivatives 

Rates of change for z = f(x, y) can be defined in much the same way 
as for functions of a single variable. First, we keep y fixed, say y = Yo, 
and study a change of x only. Let x increase (or decrease) from a value 
x = Xo by a certain amount Ll x = h to Xo + Ll x or Xo + h. Then the 
corresponding change of z is 

Llz = f(x o + h, Yo) - f(x o, Yo)· 

The average rate of change is defined by the difference quotient 

Llz 

Llx 
f(xo + h, Yo) - f(xo, Yo) 

h 

(12.2.1) 

(12.2.2) 

If this quotient tends to a limit as Ll x tends to zero, we call the result 
the instantaneous rate of change or simply rate of change: 

1· Llz l' f(xo+h,Yo)-f(xo,yo) 
1m -- = 1m h 

L1x~O Llx h~O 
(12.2.3) 
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This limit is also known as the partial derivative of z with respect to x 
at (xo, Yo). If the limit exists, we say that z = f(x, y) is differentiable with 
respect to x at (xo, Yo). The word "partial" indicates that we are only 
concerned with the rate of change in the x direction. 

Several notations are used for partial derivatives. The most frequent 
notations for the limit (12.2.3) are 

(12.2.4) 

The differentials dz and dx are no longer written with an ordinary 
letter d. Instead, a rounded 8 is used for a partial differential symbol. 
We read 8z/8x as follows: "partial dz by dx". 

If z is differentiable for any pair (x, y) belonging to a certain 
domain D, we drop the subscript zero and simply write: 

8z 
8x = fx(x, y), (x, y) ED. (12.2.5) 

Thus, the partial derivative 8z/8x is a function of x and y. 

In the same way we define the partial derivative of z with respect 
to y. We keep x fixed, say x = xo, and study a change of y only. Let y 
increase (or decrease) from a value Yo by a certain amount Liy = k to 
Yo + Liy or Yo + k. Then we get 

Liz = f(xo,yo+k)- f(xo, Yo) , 

Liz f(xo, Yo + k) - f(x o, Yo) 
Liy k 

and, if the limit exists, 

8z I f ( I' f(x o, Yo + k) - f(xo, Yo) 
-8 = y xo,Yo) = 1m k 

y xo. Yo k-O 

(12.2.6) 

We call the result the partial derivative of z with respect to y at (xo, Yo), 
We also say that z = f(x, y) is differentiable with respect to y at (xo, Yo). 
Assuming that z is differentiable for any pair (x, y) belonging to a certain 
domain D, we drop the subscript zero and write 

8z ay = fix, y), (x, y) ED. (12.2.7) 

Thus, the partial derivative 8z/8y is a function of x and y. 
As an example we consider again the geometric mean z = (xy)t. 

With y being kept constant, z is proportional to xi. Hence, using 
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formula (9.2.4), the partial derivative turns out to be 

az ,1 1 a; = yt. (xt) = yt. 2 x- t = 2 x-tyt. 

Similarly, when x is being kept constant, 

az .l. , , 1.l. .l. ay = X 2 • (y2) = 2 x' y- 2. 

Higher partial derivatives are also common. If we differentiate 
twice with respect to x, we obtain 

(Read: Partial d second z by dx second.) 
If we first differentiate a function with respect to x and then to y, 

we get 

Such a derivative is called a mixed derivative. 
As an example we consider the electric current I which flows through 

a resistor that is kept under constant temperature. According to 
Ohm's law, 

1= VIR (12.2.8) 

where V denotes the voltage and R the resistance. The current I is a 
function of two independent variables V and R. If the voltage V changes 
while R remains constant, we get for the rate of change of I 

(12.2.9) 

If, however, the resistance R changes while V remains constant, the 
rate of change becomes 

aI V -2 
-=--=-VR . aR R2 (12.2.10) 

Further differentiation leads to 

~(~) = _R- 2 
aR av ' (12.2.11) 
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To get the mixed derivative we first differentiated with respect to V and 
then with respect to R. Interchanging the order of differentiation we 
obtain 

a2 I a (aI) a _ 2 _ 2 
avaR = av aR = av (-VR )= -R , 

that is, the same result as in (12.2.11). 

In general, the order in which we differentiate does not matter, that is, 

a (az) a (az) ay ax = ax ay or fxix, y) = fyx(x, y) (12.2.12) 

provided that the mixed derivatives are continuous functions of x and y. 
We shall omit the proof. 

12.3. Maxima and Minima 

Partial derivatives are frequently applied in problems of optimization. 
We consider first an introductory example: 

(12.3.1) 

As a domain of this function we assume the whole xy-plane. Our aim 
is to find maxima and/or minima of z. In a rectangular coordinate 
system the graph of (12.3.1) is a surface with a single peak (Fig. 12.2). 
Since z is a differentiable function of x and y, we can apply differential 
calculus. 

In Section 9.7 we studied maxima and minima for a function f(x) 
of one independent variable. A sufficient condition for a maximum was 

f'(x) = 0, !"(x)< o. 

To apply these results to our function (12.3.1), we first keep y 
constant, say y = Yo, and ask for possible extrema when moving in the 
x direction. In terms of partial derivatives we find a maximum point if 

az =0 
ax ' 

and a minimum point if 

az =0 
ax ' 
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Fig. 12.2. Finding the maximum of the function (12.3.1) 

In our example 
(}z 1 (}2 Z 1 
~=2--x ox 3' ox2 3 . 

The first derivative oz/ox vanishes for x = 6, and the second derivative 
is always negative. Hence, for any fixed y we get a maximum point at 
x = 6. In Fig. 12.2 these points are located on a line which is denoted 
by L 1 . 

Second, we keep x fixed, say x = XC' and search for extrema when 
moving in the y direction. A maximum point is present if 

oz 
ay=O, 

and a minimum point if 

OZ 
ay=O, 

In our example 

02 Z 

oyl < ° 

1 
3 . 
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The first derivative vanishes for Y = 3, and the second derivative is 
always negative. Hence, for any fixed x we get a maximum point at 
Y = 3. In Fig. 12.2 such points are located on a line which is denoted by L 2 • 

In order that a point is a maximum or minimum point with respect 
to the x and the y directions, we have to satisfy the combined condition 

02 =0 
ox ' 

02 ay=o. (12.3.2) 

In our example there is only one pair which satisfies (12.3.2), namely 
x = 6, y = 3. It determines the intersection of L1 and L 2 • Fig. 12.2 shows 
that the point is a maximum point. At this point, 2 reaches its highest 
value, 2 = 7.5. For all other pairs (x, y) the ordinate 2 takes on smaller 
values. 

The condition (12.3.2) does not guarantee a maximum or a minimum 
point. For a counterexample the reader may solve Problem 12.5 at the 
end of this chapter. To get a sufficient condition for an extremum, we 
would have to add a condition for the second derivatives. Since this 
condition is rather complicated for functions of more than one variable, 
we will skip it. 

In general, assume that we are given a differentiable function of n 
independent variables. If t 1 , t 2 , ... , tn denote these variables and u the 
dependent variable, we may write 

(12.3.3) 

A necessary but not sufficient condition for a maximum or a 
minimum is that all n equations 

ou 
ot

2 
=0, ... , (12.3.4) 

must be satisfied at such a point. 

We add an example which also introduces the reader to the famous 
method of least squares. In Fig. 12.3 some data (Xl> Y1), (X2' Y2), ... , 
(xm, Ym) are plotted in a rectangular coordinate system. The dots are 
close to a straight line. It is our aim to find a straight line with equation 

y=ax+b (12.3.5) 

which fits the data "best". Of course, optimality could be defined in 
many different ways. For instance, one may postulate that no dot is 
farther away from the straight line than a given amount. However, it is 
customary to proceed as follows: 
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Consider the ordinates of the linear function (12.3.5) at Xl' X2' ... , Xm . 

They are 

(12.3.6) 

They need not coincide with the given ordinates Yl' Y2, ... , Ym. Instead 
we will have some positive or negative differences called deviations: 

aX l + b - Yl , aX2 + b - Y2' etc. 

8 o 

o 

o 

4 

/ 0 

o 10 

Fig. 12.3. Fitting a straight line to data by the method of least squares 

Let i = 1,2, ... , m denote a variable subscript. Then we introduce the 
general deviation (ji (delta sub i) by 

(ji = aXi + b - Yi (i = 1,2, ... , m) . (12.3.7) 

Which of the deviations are positive, negative or exactly zero depends 
on the choice of the parameters a and b. As a condition of optimality 
we minimize the sum of squares of deviations ("least squares"), that is, 
we determine a and b in such a way that 

(12.3.8) 

takes on the smallest possible value. In doing so we proceed along the 
lines which we already indicated in Section 1.9. 

We denote the expression (12.3.8) by S. In view of (12.3.7) we may 
write S in the form 

m 

S = L (axi + b - yy . (12.3.9) 
i= 1 
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Since Xi and Yi are given numbers and only a and b are not yet determined, 
S is a function of the two variables a and b. Thus we may also write 

S= S(a, b). 

If a minimum exists at all, the condition (12.3.2) must be satisfied. In 
our notation this is 

as =0 
oa ' 

as 
ob =0. (12.3.10) 

In order to differentiate (12.3.9) we could work out all the squares in 
the formula, but this would be rather tedious. It is easier to apply the 
chain rule. Thus, the derivatives of the general term become 

a 2 -(ax· + b - y.) =2(ax. + b -y.). x· aa I I I I I' 

a 2 -(ax· + b - y.) = 2(ax· + b- y.)·l ob' , , ,. 

It follows from (12.3.10) that 

2L(axi+ b - Yi) Xi= 0, 

2L(axi+b-Yi) =0 

or, by removing the factor 2 and by working out the sums, that 

a· LX? +b· LXi - LXiYi=O, 

a· LXi+ b· m - LYi=O. 
(12.3.11 ) 

These are two linear equations in a and b which can be solved without 
difficulty. A numerical example based on Fig. 12.3 shows the procedure: 

Xi Yi XiYi xf 

2 3 6 4 
3 4 12 9 
5 6 30 25 (m=6) 
6 5 30 36 
9 7 63 81 

12 8 96 144 

Total 37 33 237 299 

With these data the Eqs. (12.3.11) become 

299a + 37b = 237, 

37a+ 6b= 33. 
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To solve these simultaneous equations we have to eliminate one of the 
two unknown quantities. For eliminating b we multiply both equations 
by such numbers that the coefficients of b become opposite numbers. 
Thus we may multiply the first equation by + 6 and the second 
equation by -37: 

+1794a+222b= +1422, 

-1369a - 222b = -1221 . 

Now we add the two equations and obtain 

425a = 201 
from which 

a = 201/425 = 0.473 . 

By the same technique we find 

b = 1098/425 = 2.58 . 

The best line in the sense of "least squares" is given by the equation 

y = (0.473) x + 2.58 

with slope 0.473 and y-intercept 2.58. 

In general, that the solution really minimizes the function (12.3.9) 
may be seen by the following argument: A sum of squares, such as S, 
cannot be negative. For suitable values of a and b, the sum S takes on 
values as large as we want. Thus the function cannot have a maximum. 
On the other hand, S must reach a lowest value since the function is 
continuous and cannot take on negative values. There is only one such 
point where as/aa and as/ab vanish simultaneously. Hence, it must be 
a minimum point. This is also indicated by the fact that a2 s/aa 2 

=2Lx;>Oand that a2 S/ab 2 =2m>0. 
For instructive applications of maxima and minima to population 

genetics see Wright (1969, Vol. 2, Chapters 3,4). 

*12.4. Partial Differential Equations 

Whereas the whole of Chapter 11 was devoted to ordinary differ
ential equations, we will look only briefly into the large area of partial 
differential equations. These equations contain partial derivatives of an 
unknown function. 

We will derive one of the biologically relevant differential equations, 
the diffusion equation. We begin with the physical circumstances. 
Assume that we inject a substance into a tube filled with a solvent 
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H<x)) t=t, 

o X a 

Fig. 12.4. The molecules of a substance dissolved in a liquid are in random motion. This 
results in a slow "migration", called diffusion. The density C (x, t) of the dissolved 

substance tends to uniformity in space 

liquid (Fig. 12.4). The molecules of the substance are in random 
motion. They will spread in all directions. We assume that the solvent 
liquid is not in motion. 

At locations with high concentration, the molecules will tend to 
decrease in number and, conversely, at locations with low concentration 
they will tend to increase in number. This random migration process, 
called diffusion, will finally end with the molecules at equal density 
throughout the tube. 

In Fig. 12.4 we place an x axis parallel to the axis of the tube. For 
simplicity, we assume that the concentration of the substance varies 
only in the x direction. At each x the concentration depends also on the 
time instant t. Thus we may denote the concentration by 

c= C(x, t). (12.4.1) 

As a unit of measurement we take for instance g/cm3 • The function 
C(x, t) is plotted in Fig. 12.4 for three different time instants t 1 , t2, t3' 
Our aim is to determine the unknown function C(x, t) or, at least, to 
find an equation which C(x, t) must satisfy. 

For this purpose we assume that C(x, t) is differentiable with respect 
to x and to t. Strictly speaking, matter is discrete. However, the number 
of molecules is so large that the error in using a smooth function is 
negligible (cf. Fig. 9.3). 
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Let x = 0 coincide with the left end of the tube and x = a with the 
right end. We denote the (constant) area of the cross section by A. Let 
M = M(x, t) be the mass of the substance which is contained between 
the left end of the tube and the cross section at x at time instant t 
(Fig. 12.4). 

For a first result we consider M(x, t) as a function of x only and 
keep the time t constant. Let x be a fixed value and L1 x = h be an increase 
of x. The mass M(x + h, t) consists of the mass M(x, t) and the additional 
mass L1 M located between x and x + h (Fig. 12.5). Thus 

L1M = M(x+ h, t) - M(x, t) . 

( ... (( ( JA 
o x x+h a 
~----~------~.~ 

M(x.tl t. M 

Fig. 12.5. Explanation of AM 

The volume occupied by this mass is A . h. Its average density is therefore 

L1M 1 M(x+h,t)-M(x,t) ____ =_0 
A·h A h 

As h tends to zero, the left side tends to C(x, t) and the second factor on 
the right side to aM/ax according to formulas (12.2.3) and (12.2.4). 
Hence, 

aM 
~ = A . C(x, t) . (12.4.2) 

To obtain a second result, we consider M(x, t) as a function of t 
only and keep x constant. The mass M(x, t) increases in time if the net 
flow of molecules at x is directed to the left. This case occurs if C(x, t) 
increases with increasing x, that is, if aC/ax > 0 (see Fig. 12.4). We call 
aC/ax the gradient of the concentration. It is intuitively clear that 
M(x, t) increases faster as this gradient becomes larger. It is reasonable 
to expect that the rate of increase aM/at is proportional to aC/ax as 
well as to the area A of cross section. Indeed, this assumption is well 
supported by experimental facts. Hence, in virtue of the rule stated in 
formula (12.1.2), 

aM =D.A. ac 
at ax 

( 12.4.3) 
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where D denotes a positive constant known as the diffusion constant. 
A similar argument holds when oCjox < O. Then the net flow is to the 
right, and M(x, t) decreases as a function of time. The same relationship 
(12.4.3) results. 

Formula (12.4.3) contains two unknown functions, M(x, t) and C(x, t). 
As we are interested in C(x, t), we wiII eliminate M(x, t). For this purpose 
we differentiate (12.4.3) with respect to x and obtain 

In view of formula (12.2.12) we can interchange the order of differentia
tion on the left side. Then we replace oM/ox by A . C(x, t) according 
to formula (12.4.2). Finally, after removing the factor A we get 

(12.4.4) 

This is the famous diffusion equation in one dimension. It can be 
generalized for all three spacial dimensions x, y, z. 

We will not learn how to solve the second order partial differential 
equation (12.4.4) but will confine ourselves to verifying two particular 
solutions. 

Example 12.4.1. Find coefficients a and b such that 

C(x, t) = exp(ax + bt) 

satisfies the diffusion equation (12.4.4). Applying the chain rule (9.2.14) 
we get 

and 

oC = beax + b1 

at 

02C 
__ = a2eax+bl 

ox2 

Substituting these derivatives in (12.4.4) we obtain 

This equation is satisfied for all values of x and t if we choose the 
coefficient a arbitrarily and if we let 

b=Da2 • 
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Example 12.4.2. Verify that 

C(x, t) = t-t exp( - x2/4 Dt) (12.4.5) 

is a particular solution of the diffusion equation (12.4.4). C(x, t) is a 
product of two functions of t. Hence, we apply the rule (9.2.11): 

ac . 2 Jc 2 at = (t-,)' exp( - x /4Dt) + t- 2 [exp( - x /4Dt)J . 

Then by means of formulas (9.2.4) and (9.2.14) we get 

ac ( 1) _, ( - X2 ) _. ( XZ) ( - XZ ) at = - 2 t "exp 4Dt + t 2 + 4DtZ exp 4Dt 

Similarly we obtain 

ac ( -X) ( -XZ) 
ax = t-t 2Dt exp 4Dt ' 

Now, substitution of the derivatives in formula (12.4.4) reduces the 
verification to showing that 

By simple algebra we see that this equation holds for all values of t 
andx. 

As formula (12.4.5) indicates, C(x, t) is bell-shaped for every fixed t 
(cf. the formula for the normal distribution in Section 13.11). An 
approximate graph of C(x, t) is shown in Fig. 12.4. 

Even without an explicit solution, the Eq. (12.4.4) reveals some 
major properties of the solution. Consider Fig. 12.6a. There we assume 
that C(x, t) is a linear function of x between two points with abscissas 
Xl and Xz' This means that azc;axz=o. The differential equation (12.4.4) 
then implies ac;at = 0, that is, C(x, t) does not change as a function 
of t. Hence, we have a steady state flow of molecules for all x in [Xl' xz]. 

If, however, C(x, t) is convex downward as in Fig. 12.6b, we know 
from Section 9.6 that the second derivative 01 c;axz is positive. By 
virtue of Eq. (12.4.4) the rate of increase ac;at is also positive. Hence, 
C(x, t) will increase as a function of t for all X in [Xl' Xl]. The result is 
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Fig. 12.6. Three different types of density function C (x, t). In (a) the density is a linear 
function of x, in (b) the density is convex downward, and in (c) convex upward. The flow 

of molecules depends essentially on this shape 

quite plausible since Fig. 12.6b indicates a "trough" of concentration 
between Xl and X2' 

Quite the opposite is true in Fig. 12.6c where we have a "peak" of 
concentration. The function C(x, t) is convex upward. Hence, 82Cj8x2 
and 8Cj8t are both negative. The density C(x, t) will decrease as a 
function of time for all X in [Xl' X2]. 

Within the dimensions of a living cell, mass transport by diffusion 
is quite efficient. It acts in seconds or at most within minutes. In a larger 
body, molecules cannot move fast enough by diffusion. Distribution of 
nutrients would be much too slow. In man it would take a lifetime to 
get sugar which was fed into the stomach to diffuse into the feet and 
hands (Went, 1968). Therefore, a faster system of distribution quite 
different from diffusion is required. This is convection by the blood 
stream. 

For more information on the mathematical aspect of diffusion in 
the life sciences see Bailey (1964), Beier (1962), Rashevsky (1960, Vol. 1), 
Setlow and Pollard (1962), J. M. Smith (1968). 

The importance of the differential equation (12.4.4) goes far beyond 
diffusion. In ecology, the invasion of a large area by a new species may be 



340 Functions of Two or More Independent Variables 

mathematically treated by the same method as the random motion of 
molecules (see Pielou, 1969, Chap. 11). Similarly, in epidemics the spread 
of an infectious disease over a large area follows the same pattern. An 
exchange of kinetic energy among neighboring molecules known as 
heat conduction is treated mathematically in the same way as diffusion. 

More sophisticated applications of the diffusion equation are made 
in population genetics and evolution (see Ewens, 1969, Chap. 5; Feller, 
1951; Kimura, 1964, 1970; Moran, 1962, Chap. 9). 

Another biologically important partial differential equation is of 
the form 

(12.4.6) 

This equation is known as the cable equation since it was used to solve 
a problem related to the first transatlantic telegraph cable. Here, 
V = V(x, t) denotes the voltage at abscissa x of the cable and at time 
instant t. Today the cable equation is applied in the theory of nerve 
conduction (see Beier, 1962, and K. S. Cole, 1968). 

Whenever random fluctuations are being considered in the treatment 
of biological processes, probability theory enters the scene. The proper 
mathematical method is the use of stochastic processes. They occur in 
theoretical work on population growth, on competition between species, 
on the spread of infection, etc. Among the mathematical tools required 
for the study of stochastic processes is a great variety of partial 
differential equations. Here we have to skip details. The reader is 
referred to Bailey (1964) and to Chiang (1968). 

Recommended for further reading: Defares and Sneddon (1961), 
Morowitz (1970), C. A. B. Smith (1966). 

Problems for Solution 

12.1. Find the first order partial derivatives of the folIowing functions: 

a) f(x,y)=ax-by b) g(u, v) =u2-2uv+V2+C 
c) 4>(s,t) =es + t d) h(x,y,z)=exp(ax+by+cz) 
e) lJI(ex,p)=sin(3ex+p) f) Q(v,w) =w·lnv 
g) F(r, s) = (r - 2s) - 1 h) G(s, t) = at/(bs - ct) 

12.2. Find the first and second order partial derivatives of the following 
functions: 

a) f(x,y)=ax 2+bxy+cy2 b) h(u,v) = (uv)n 
c) Q(v,w)=w·lnv d) S(x,y,z)=X2+y2+ Z 2 
e) 4>(s, t) = seat f) lJI(ex, p) = A sin ex + B sin p . 
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12.3. The volume of an upright, circular cylinder of radius r and height h 
is V = nr2 h. Find the first and second order partial derivatives 
with respect to rand h. 

12.4. Find the minimum of the function 

Z=9X2-6xy+2y2-6y+ 11. 

12.5. Consider the function z = xy. At x = 0, y = ° the partial derivatives 
iJz/iJx and iJz/iJy vanish. Show that despite this fact the point 
(0,0, 0) is neither a maximum nor a minimum point of the function. 
Sketch a pictorial view of the surface. At x = 0, y = ° the surface 
has a so-called saddle point. 

12.6. In Section 12.3 the method of least squares was applied to fit a 
straight line. Let x = "'i:.xi/m and y = "'i:.yJm be the means of Xi 
and Yi' respectively. The point (x, Y) is known as center of gravity. 
Using formulas (12.3.11), show that the optimal straight line passes 
through the center of gravity. 



CHAPTER 13 

Probability 

13.1. Introduction 

Consider the process of sexual reproduction. Among the sperm of a 
male the cells differ in their genetic message, and the same is true for the 
reproductive cells in an ovary. As a consequence, the traits of descendents 
differ in many ways. As it depends on chance which of the reproductive 
cells combine to become a fertilized cell, the outcome cannot be 
predicted. Yet there is no chaos. If we count particular traits in a large 
number of descendents, we find some rules. For instance, we see that a 
trait known as "heterozygous" occurs in the descendents at a predictable 
ratio. The well-known rules by Mendell can best be formulated by 
using probability theory. 

The laws of inheritance were the first major application of proba
bility in the life sciences. Today we know many more applications: 
occurrence of mutations, risk of disease, chance of survival, distribution 
and interaction of species, etc. 

The most important application, however, is made in statistics. No 
observation and no experiment can be accurately planned and analyzed 
without some statistical method. Even if we keep the experimental 
conditions as constant as possible, repetition of an observation or an 
experiment hardly ever results in exactly the same outcome. There are 
always fluctuations. Therefore, all conclusions based on empirical data 
are necessarily inflicted with uncertainty. We try to express the degree 
of uncertainty in terms of probability. Thus, if an experimenter reports 
"significance at a five percent level", he admits the possibility of an 
erroneous statement, but at the same time he claims that the 
"probability" of an error is at most five percent. A basic knowledge of 
probability is required before statistical methods can be understood. 

The only prerequisites for the study of Sections 13.2-13.8 are Chapters 
1 and 2. Later sections, however, require some knowledge of functions 
and of calculus. 

1 Gregor Johann Mendel (1822-1884), Moravian botanist. 
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13.2. Events 

The result of a single observation or the outcome of a measurement 
is generally called an event. When a migrating bird is seen to select a 
direction, say northeast, or when we read the length of a cell as 1.2 !lm, 
we are in both cases observing an event. 

Some events can be decomposed into "simple events". If we carefully 
watch a bird vanishing at the horizon, we are able to distinguish 
between the azimuths 0°, 10°, 15°, etc. These angles may then be called 
simple events, whereas "northeast" is said to be a compound event. It 
comprises the simple event 35°, 40°, 45°, 50°, 55°. Similarly, if in a health 
study all persons with systolic blood pressure above 160 mm are called 
sick, this is a compound event as compared with the individual 
measurements of blood pressure which are called simple events. 

Two different simple events cannot occur at the same time. They 
exclude one another. Therefore, we call such events mutually exclusive. 
On the other hand, compound events can occur simultaneously. For 
instance, the events x> 5 and x < 8 are not exclusive if x can take on 
values such as 6 and 7. Similarly, in a study of animal behavior a dog 
may be observed as being awake and barking. The two events "awake" 
and "barking" are not mutually exclusive. 

Now we consider a particular experiment and list all possible simple 
events. We call the set of these events the outcome space 2 • 

Examples: 

a) In coin tossing we consider only two possible outcomes: head (H) 
and tail (T). They are exclusive events. Hence, the outcome space is the 
set {H, T}. 

b) If we toss two distinct coins at the same time, we observe ordered 
pairs (H, H), (H, T), (T, H), (T, T) for which we shall also write H H, 
HT, TH, TT. The four events are mutually exclusive. Thus the out
come space is 

{HH,HT, TH, TT}. 

c) In genetics, assume there are two alleles A and a to fill a certain 
gene locus. Then we know of only three possible outcomes: AA, Aa, aa. 
The pair Aa is not ordered, since it is not possible to distinguish 
between two different genotypes Aa and aA. In other words, it does not 
matter whether a or A came from father or mother. Hence, the outcome 

2 The terminology "sample space" is more frequently used. However it is hoped that 
"outcome space" causes less confusion. With the word "space" we associate usually the 
concept of Euclidean space in two or three dimensions. But in mathematics the word 
"space" is often used in the general sense of "universe set". 
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space is the set 
{A A, Aa, aa} . 

d) The height H of adult human males may range from 120 cm to 
250 cm. We are not sure, however, whether 120 cm is the smallest and 
250 cm the largest value. On the other hand, to define a set it should 
be clear whether an element belongs to a set or not. To overcome the 
difficulty, we use the word "possible event" in a liberal way and include 
events that are conceptually, but not practically possible. We allow 
for H all positive values. Hence, the outcome space for the height of 
adult males is defined by 

{HIH>O} . 

This space is an infinite set for two reasons. First, there is no upper 
bound for H. Second, we assume quite artificially that measurements 
could be performed with any degree of accuracy. This implies that 
every finite interval such as [150 cm, 200 cm] contains an infinite 
number of values. The example also serves to indicate that an outcome 
space can often be defined in different ways for the same type of 
observation or experiment. 

In terms of set theory, a simple event is a member of the outcome 
space. However, it is customary to identify a simple event also with a 
subset containing only one element. Thus in the outcome space 
{A, B, C, D} we may either talk of the event A or of the event {A} 3. 

Similarly, since a compound event comprises some simple events, we 
may identify the compound event with a subset of the outcome space. We 
may either say "the event A or B" or "the event {A, B}", This is further 
illustrated by the following examples: 

If {AA, Aa, aa} is the outcome space for the two-allele genetic 
model, the event "homozygous" consists of the simple events AA and aa. 
Thus the event is a compound event and may be identified with the 
subset {AA, aa}. Using the symbol for "contained in" introduced in 
Section 2.3 we may write: 

{AA, aa} C {AA, Aa, aa} . 

When a die is thrown, the number of dots on the upper face is a 
simple event. There are six possible outcomes. Thus the outcome space 
is {I, 2, 3,4,5, 6}. The event "even number" is the subset {2, 4, 6}. 

3 In Section 2.3 we emphasized that A and {A} are logically not the same thing. 
However, when we call both an event, this will hardly cause any confusion. 
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Another subset {3,4, 5, 6} means the event of obtaining either 3,4,5 
or 6, that is, a number which is at least 3. 

To sum up, simple and compound events are subsets of the outcome 
space. 

To get further insight we apply the algebra of sets introduced in 
Sections 2.5 through 2.7. As an illustrative example we use again a die 
and the compound events 

E 1 = {2, 4, 6} , E2 = {3, 4, 5, 6} . 

The intersection of the two sets is 

It contains the outcomes 4 and 6. These two outcomes are common 
members to both sets. When the event 4 occurs, then E1 and E2 happen 
simultaneously, The same is true when 6 occurs. Conversely, when E1 
and E2 happen simultaneously, the outcome must be either 4 or 6, 
that is, the event {4,6}. 

In general, the intersection of two events E1 and E2 means another 
event which occurs when E1 and E2 happen simultaneously. Briefly, 

(13.2.1 ) 

is the event "E1 and E2". 

Notice the special case when E1 and E2 have no common member. 
Here 

(13.2.2) 

where 0 denotes the empty set. The events E1 and E2 cannot occur 
simultaneously, and 0 may be interpreted as the impossible event. We 
call E1 and E2 mutually exclusive events. For example, in the die 
throwing problem, {2, 4, 6} and {1, 3} are mutually exclusive events. 

Consider now the union of E1 = {2, 4, 6} and E2 = {3, 4, 5, 6}. We get 

E1 uE2 = {2, 3,4,5, 6}. 

The union contains all simple events except the number 1. When one of 
the events 2 through 6 occurs, either E1 happens or E2 happens or 
both of them happen. Let us use the word "or" in the weak sense of 
"and/or". Then, in general, the union of E1 and E2 means that E1 or E2 
occurs. Briefly, 

(13.2.3) 

is the event "E1 or E2". 
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Readers who have become acquainted with Section 2.8 know already 
the correspondence of ("\ with "and" and of u with "or". 

Of some interest is the special case where the union of two events is 
equal to the outcome space. With the notation Q (upper case Greek 
omega) for the outcome space, the relationship is 

(13.2.4) 

This means that either E1 or E2 must occur at each trial of the 
experiment. Hence, Q may be interpreted as the certain event. For 
instance, E1 = {1, 3, 5} and E2 = {1, 2, 4, 6} are two sets satisfying 
(13.2.4) if Q = {l, 2, 3,4,5, 6} is the outcome space of a die. Two events 
that satisfy Eq. (13.2.4) are called exhaustive. They "exhaust" all 
possible outcomes. An even more special case is most important. Let Q 
be again the outcome space of a die. We choose the event E = {l, 5} 
and ask: Which event occurs whenever E does not occur? We call this 
event the complementary event and denote it by if. In our example we 
find it = {2, 3, 4, 6}. This concept corresponds to the complementary 
set introduced in Section 2.5. In general, a set E and its complementary 
set it satisfy the following conditions 

(13.2.5) 

that is, E and it are exhaustive and mutually exclusive. 

13.3. The Concept of Probability 

There are experiments that can be repeated a great many times 
under fairly constant conditions. Such experiments are coin tossing, 
most physical experiments, and many experiments in genetics. They 
have a common property which we will describe by using an 
illustrative example. 

Let us consider the occurrence of male and female births. If we 
disregard hermaphrodites, the outcome space is simply {d', ~}. Let n be 
the total number of descendents under consideration and k be the 
number of male descendents. We call k the absolute frequency or simply 
the frequency of the event "male". Due to chance fluctuations, the 
frequency can be any number 0, 1,2, ... , n that is, 

(13.3.1 ) 

Particularly, when n is small, say n = 3, the frequency k could easily 
take on the extreme values ° and 3. We only have to think of families 
with three children, all of them being girls or all of them boys. 
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To come closer to the concept of probability we introduce the 
relative frequency h by the formula 

h=k/n. (13.3.2) 

We may learn this formula by heart in the form 

observed frequency of the event 
relative frequency of an event = be f I· . 

num r 0 rep lcatlOns 

Whereas k ranges from zero to n, the relative frequency h ranges from ° to 1: 
(13.3.3) 

The relative frequency is often expressed as percentage. It then ranges 
from 0% to 100%. 

In our example, h means the relative frequency of male births. In a 
steadily growing survey the following numbers were obtained: 

n= 10 
k= 7 
h= 0.7 

100 

57 
0.57 

1,000 
512 

0.51 

10,000 
5,293 

0.529 

100,000 
52,587 

0.526 

The figures in the last row are suitably rounded off. As n tends to 
infinity, the relative frequency seems to approach a certain limit. We 
call this empirical property the stability of the relative frequency. This 
property, however, is not well defined. Notice that the way in which h 
approaches a limit is quite irregular. 

We may theorize and assume that there exists a fixed number, 
say p, which is approached by h in a long run of observations. The 
hypothetical number p is known as the probability of the event under 
consideration, in our case the probability of a male birth. We do not 
know the exact numerical value of p, but our observations indicate 
that p is close to 0.53 or 53 %. From other surveys it is well-known that 
the sex ratio is not exactly 1 : 1, but that male births are slightly more 
frequent. It is also known that the ratio changes slightly from one 
region to another. 

In statistics the relative frequency of an event is used to estimate 
the probability of this event. There are rules which demonstrate how 
reliable such an estimate is. The reader is referred to books on statistics. 

We add a few more examples. Living tissue is exposed to X-rays in 
order to produce mutation. With tissue of the same sort and a constant 
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dose of radiation, the experiment can be repeated many times under 
almost constant conditions. The relative frequency of observed mutations 
is called the mutation rate. This rate varies as the experiment continues, 
but it remains stable in that it approaches a certain value. We assume 
that there is some kind of limit which we then call the probability of a 
mutation. 

In some cases we are able to predict the value of a probability. In 
coin tossing, for instance, we see no reason why either head (H) or tail 
(T) should occur more frequently. Hence, we suppose that both events, 
head and tail, have probability 1/2. There is no mathematical proof 
possible, but experience indicates that our assumption is correct. It is 
customary to write down our statement in mathematical symbols, 
most frequently in the form 

1 
P(H) = 2' 

1 
P(T) = 2. 

Here P(·) stands for assigning a probability. 
There are numerous examples in genetics where probabilities can be 

predicted. If we mate individuals of genotype AA and Aa, the gene A 
of an AA individual meets either the gene A or the gene a of an Aa 
individual. The fertilized cells are of genotype AA and Aa, that is, the 
outcome space is {AA, Aa}. Since we have no reason to assume that 
one of the two events occurs more frequently than the other one, we 
predict the probability of either event to be 1/2. We may write 

1 
P(AA) = 2' 

1 
P(Aa) = 2' 

The assumption is supported by experimental facts. 

So far we have considered only observations and experiments that 
can be repeated or replicated a great many times under almost constant 
conditions. In the life sciences, however, many experiments cannot be 
performed as often as we wish. Our experimental animals or plants are 
aging, and this varies their response pattern. New breeds behave 
differently. The environment is subject to all kinds of physical, 
chemical, and biological variation. In short, we are frequently not able 
to keep conditions constant. It would be foolish to hope that the relative 
frequency remains stable in the long run. 

Despite this drawback, probability is widely applied to experiments 
which can be repeated only a few times under more or less constant 
conditions. We may compare the situation with using a die that is made 
of soft or loose material. Perhaps it can be thrown only twenty or fifty 
times before it decays. Nevertheless, the application of probability is 
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quite useful. We idealize the experiment by model-making. The model, 
in our case a probability model, is a simplification or may even be an 
oversimplification. Yet, as long as we get good results by applying the 
model, we consider it acceptable. 

To what extent probability is applicable in the life sciences can 
be decided neither by mathematical methods nor by experimental facts. 
It is today and will perhaps remain a matter of controversy. There are 
scientists who go far beyond the frequency interpretation of probability. 
They apply probability for the degree of belief. To an event which is 
unlikely, but not impossible, they assign a probability close to zero, say 
0.01, and to a nearly certain event a value close to 1, say 0.99. There are 
also rules for assigning probabilities. These scientists think that questions 
such as the following are meaningful: "What is the probability of life 
on Mars?" or "What is the probability that the cancer problem can be 
solved within the next decade?" 

13.4. The Axioms of Probability Theory 

In Section 13.2 we introduced the concept of an outcome space. It 
is the finite or infinite set of all possible outcomes or simple events. 
Let Q denote such an outcome space, and let Ei (i = 1,2, ... ) be some 
events belonging to Q. Each event can be interpreted as a subset of Q. 

Thus 
Ei C Q (i = 1,2, ... ). (13.4.1) 

Following Section 13.3 we associate a probability Pi with each event 
that belongs to Q. Hence we may write 

P(Ei) = Pi (i = 1,2, ... ). (13.4.2) 

Each probability is an idealization of a relative frequency. Therefore, 
with regard to formula (13.3.3) we have to postulate that 

O~Pi~l (i=1,2, ... ). (13.4.3) 

This is the content of our first axiom. 

Axiom 1. With each event belonging to an outcome space there is 
associated a number, called the probability of the event. This number is 
restricted to the interval from 0 to 14. 

Special cases are the impossible event which never occurs and the 
certain event which always occurs. The relative frequencies for the two 
cases are h = 0 and h = 1, respectively. We postulate that the corre
sponding probabilities are also 0 and 1. The impossible event is 

4 An axiom is a well defined basic rule which can be justified, but not proven. 
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characterized by the empty set 13 and the certain event by the outcome 
space Q. Therefore, we get the following axiom: 

Axiom 2. WIth the impossible event there is associated the probability 0 
and with the certain event the probability 1. In symbols 

P(0)=O, P(Q) = 1. (13.4.4) 

Let E1 and E2 be two events belonging to an outcome space Q and 
assume that they are mutually exclusive, that is, events which cannot 
happen simultaneously. In set theoretical notation the assumption is 
stated in formula (13.2.2). In n performances of the experiment we 
observe the frequency with which E1 and E2 occur. Let k1 be the 
frequency of E1 and k2 be the frequency of E2. The corresponding 
relative frequencies are 

(13.4.5) 

Now we ask how many times either E1 or E2 occurred. The total 
frequency is k1 + k2 since E1 and E2 cannot happen simultaneously. 
With "E1 or E2" we define a new event. As stated in (13.2.3) this event 
is E1 uE2. We conclude that the relative frequency of E1 uE2 is 
h = (k1 + k2)/n. This implies 

(13.4.6) 

Since probabilities are idealized relative frequencies, we postulate 
a formula corresponding to (13.4.6). This is expressed by the following 
axiom. 

Axiom 3. Let E1 and E2 be two mutually exclusive events belonging 
to an outcome space Q. Let P1=P(E1), P2=P(E2), and p=P(E1uE2). 
Then 

p= P1 + P2· 

Axiom 3 is also called the addition rule. 

Examples: 

(13.4.7) 

a) We call a die balanced if each of the six events {1}, {2}, ... , {6} 
has probability 1/6. The compound event {1,2} is the union of the two 
mutually exclusive events {1} and {2}. Hence 

1 1 1 
P({1,2}) = 6 + 6 = 3· 

b) The assumption that E1 and E2 are mutually exclusive is most 
important as shown by the following counter-example. When a die is 
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thrown, the two events E1 = {1, 2} and E2 = {2, 3} are not mutually 
exclusive since 2 is a common outcome. The new event E1 uE2 is 
{1, 2, 3}. For a balanced die we get P1 = P(E1) = 1/3, P2 = P(E2) = 1/3, 
and p=P(E1 uE2)= 1/2. But p=t= P1 + P2. 

c) In a problem of genetics we assume that there are only two 
different alleles A and a at a certain locus. We mate the genotype Aa 
and Aa according to the following rule: 

father mother 
Aa Aa 

/\ /\ 
A A 

/ \ 
sperm cells: 

fertilized cells: AA aa 

One of the genetic rules states that the four recombinations AA, 
Aa, aA, aa are equally probable. Therefore, we assign to each of them 
the probability 1/4. However, the two recombinations Aa and aA 
cannot be distinguished biologically. Thus we ask: What is the 
probability of the compound event "Aa or aA" for which we simply 
write Aa? Since the two outcomes are mutually exclusive, we get 

1 1 1 
P(Aa) = "4 + "4 = 2". 

The result of the cross Aa x Aa may then be summarized in the form 

1 
P(AA) = "4 = 0.25 , 

1 
P(Aa) = 2" = 0.50, (13.4.8) 

1 
P(aa) = "4 = 0.25 . 

Returning to the theory, let E and E be two complementary events. 
They satisfy the conditions (13.2.5). Applying Axiom 3 we get 

P(E u if) = P(E) + P(E) . 
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But the event E u E IS identical with Q and P(Q) = 1 according to 
Axiom 2. Hence, 

P(E)+P(E)= 1. 

Customarily P(E) is denoted by P, and P(E) by q. Thus 

p+q=l. (13.4.9) 

The property can easily be generalized to a number, say m, of 
mutually exclusive and exhaustive events E1 , E2 , ... , Em. The result 
is stated in the following proposition: 

Let E 1 , E2 , ••• , Em be m mutually exclusive and exhaustive events 
of an outcome space Q with probabilities PI' P2, ... , Pm' respectively. Then 

PI + P2 + ... + Pm = 1. (13.4.10) 

Sometimes the events E 1,E2 , ••. ,Em are said to form a partition 
of the outcome space. 

As an example we measure the height H of adult male persons. In 
Section 13.2 we introduced the sample space {HIH>O}. For most 
practical purposes we subdivide the sample space into so-called groups. 
Such a subdivision may be 

E1 = {HiH < 150cm}, 

E 2 = {H 1150 em ~ H < 160 em} , 

E3 = {HI160cm~H < 170 em} , 

E6 = {H 1190 em ~ H < 200 em} , 

E7 = {HIH~200cm}. 

The seven events or groups are mutually exclusive and exhaustive. Hence 

13.5. Conditional Probabilities 

We will introduce the concept of conditional probability by an 
illustrative example. Consider the distribution of genotypes AA, Aa, aa 
in a plant or an animal population. Assume that individuals are 
selected at random. This means that each individual has the same 
chance of being selected. The outcome space is {AA, Aa, aa}. Each 
of the three events has its own probability. For instance, in a population 
of 500 individuals, 180 are of genotype AA, 240 of genotype Aa, and 
80 of genotype aa. Then the probability of selecting at random an AA 
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individual is 180/500 = 0.36, an Aa individual 240/500 = 0.48, and an 
aa individual 80/500 = 0.16. Briefly 

P(AA) = 0.36, P(Aa) = 0.48, P(aa) = 0.16. (13.5.1) 

The three probabilities add up to 1 according to formula (13.4.10). 
Let us make a further assumption: The distribution (13.5.1) is true 

only for young individuals. From a certain age on, the gene a causes 
death. If A is dominant over a, the AA and Aa individuals remain 
healthy, whereas the aa individuals die. The question now arises: What 
are the probabilities of AA and Aa individuals after the removal of all 
aa individuals? We may still consider {AA, Aa, aa} as the outcome 
space, but the occurrence of aa individuals is now ruled out and the 
corresponding probability is zero. We can no longer say that the 
frequency oCAA individuals is 36% and the frequency of Aa individuals 
48 % since the sum is less than 100%. We are forced to make an 
adjustment. Consider the relative occurrence expressed by the ratio 

(0.36) : (0.48) . 

It can be reduced to 3: 4. We have to find two probabilities satisfying 
this ratio which add up to one. The adjustment is simply made by 
dividing 3 and 4 by their sum 7. Thus P(AA) = 3/7 and P(Aa) = 4/7. 
The same operation could be performed with the original decimal 
fractions. Thus the adjusted probabilities for the events AA and Aa 
turn out to be 

0.36 ~ 0.43, 
0.36 + 0.48 

0.48 ~ 0.57, 
0.36+0.48 

(13.5.2) 

respectively. The adjusted values are called conditional probabilities. 
Together with the original probabilities they are shown in Fig. 13.1. 

The word "conditional" requires an explanation. In our example 
the condition is that only AA and Aa individuals survive. This con
dition is characterized by the compound event 

E= {AA,Aa}. 

It is then convenient to write for the conditional probabilities P(AA I E) 
and P(Aa I E). The vertical bar is used in a similar sense as in set theory 
(see Section 2.4). We may read the bar "Under the condition that" or 
briefly "given that". With the new notation in mind, the adjustment 
which led to (13.5.2) can be written in the form 

P(AA) 
P(AA IE) = P(E) , 

P(Aa) 
P(Aa I E) = P(E) . 

For completeness we may add P(aaIE)=O. 

(13.5.3) 
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Conditional probabilities occur also in a slightly more general 
situation. To illustrate the method we change to another example. 
Consider a loaded die with six faces numbered 1,2, ... ,6. The outcome 
space is {1, 2,3,4,5, 6}, but the probabilities of the six outcomes are 
not equal to 1/6. We denote them by Pl,P2' ... ,P6' respectively. We 
introduce the following two compound events: 

A = {2, 3, 4, 5}, B = {4, 5, 6} . 

I I 
AA Aa 

I 
aa 

aa 

or I gin a I 

probabli It les 

cand It iona) 

probabilities 

(13.5.4) 

Fig. 13.1. The probabilities of three genotypes. When the aa individuals die, the 
probabilities have to be adjusted 

Event A means: Upper face shows 2 or 3 or 4 or 5. Event B means: 
Upper face shows 4 or 5 or 6. The two events are partly "overlapping", 
that is, the intersection is An B = {4, 5}. The probabilities of the 
events are 

P(A) = P2 + P3 + P4 + Ps , P(B) = P4 + Ps + P6 , 

P(AnB) = P4 + Ps· 
(13.5.5) 

Now we think of a gambler who is interested in a high score, say in the 
event B. However, when the die is thrown he is given only partial 
knowledge: He is told that event A has occurred. His question is: 
What is the probability of event B given that A has occurred? The 
problem is to find P(B I A). 

Since A has occurred, the adjusted or conditional probabilities of 
the special outcomes 1 and 6 are zero. Hence, in order to obtain the 
probabilities for the outcomes 2,3,4,5 we have to divide P2' P3' P4' Ps 
by their sum P2 + P3 + P4 + Ps = P(A). The individual probabilities are 

Their sum is (P2 + P3 + P4 + Ps)/P(A) = 1. 
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The gambler is only interested in the event {4, 5} =AnB. Therefore 

P(BIA) = P4 +Ps 
P(A) 

P(BIA) = P(AnB) . 
P(A) 

(13.5.6) 

This formula is not restricted to our example. It holds for arbitrary 
events A and B provided that P(A) =1= O. The formula is important in 
many applications of probability theory. We formulate the result also 
in words: 

Given an outcome space, let A and B be any two of its events. Then 
the probability of event B, given that event A has occurred, is the proba
bility of simultaneous occurrence of A and B, divided by the probability 
of A (provided that the denominator does not vanish). 

It is not easy to become familiar with conditional probabilities. 
Let us therefore add a few more examples: 

a) Consider the probability of death in our society. The following 
table contains some of the pertinent information. The outcome space 
consists of the mutually exclusive and exhaustive events "death in the 
first decade" (between birth and the tenth birthday), "death in the 
second decade", etc. The last event is "death after the 80th birthday". 
The probabilities are estimated values. Here we are not concerned with 
the problem of estimating the probabilities from observed data. Rather 
we take the probabilities for granted. 

What is the probability that a person who is now 20 years old will 
die before he· reaches his 30th birthday? To answer the question we 
cannot simply take the death rate for the third decade (1.21 %) from 
the table. Instead we have to find a conditional probability. We know 
that the person has already survived the first two decades. Therefore, 
we have to adjust the probabilities of our outcome space. The first two 
may be considered as zero. All others follow by dividing the original 
probabilities by their sum 1.21 + 1.84 + ... + 33.58 = 96.12. Thus the 
probability of death during the third decade given that the person 
survived the first two decades is 1.21/96.12 = 0.0126 or 1.26 %. This 
answers our question. 

We could obtain the same result by formula (13.5.6). Let A be the 
event "first two decades survived" and B the event "death during the 
third decade". Then AnB reduces to B. From Table 13.1 we read 
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Table 13.1. Probability of death at different ages for the United States 5 

Age Probability of 
(years) death(%) 

0-10 3.23 
10-20 0.65 
20-30 1.21 
30-40 1.84 
40-50 4.31 
50-60 9.69 
60-70 18.21 
70-80 27.28 
80 over 33.58 

Total 100.00 

P(B) = 1.21 %. To get P(A) we consider the complementary event A 
which means "death in the first or second decade". Hence, P(A) 
= 3.23 % + 0.65 % = 3.88 % and P(A) = 100% - P(A) = 96.12 %. Finally, 
formula (13.5.6) yields 

P(B I A) = P(B)/ P(A) = 1.21/96.12 = 0.0126 

or 1.26 % in agreement with our previous result. 

b) It is well known that color blindness is inheritable. Due to the 
fact that the responsible gene is sex-linked, color blindness occurs more 
frequently in males than in females. 

In a large human population the incidence of red-green color 
blindness was counted. The relative frequencies are listed in the 
following table. 

Disregarding statistical problems, we assume that the relative 
frequencies in Table 13.2 are so accurate that they, can be used as 
probabilities. The outcome space consists of the four simple events 

color-blind male, 
normal male, 
color-blind female, 
normal female. 

The corresponding probabilities satisfy the axioms of Section 13.4. 
Indeed, they are numbers between 0% and 100% and add up to 100%. 

5 Adapted from "United States Life Tables by Causes of Death: 1959-1961". Vol. 1, 
1967, No.6, p. 15. National Center for Health Statistics, Public Health Service, 
Washington, D. C. 
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Table 13.2. The incidence of red-green color blindness in a human population 

color-blind 
normal 

Total 

Male 

4.23% 
48.48% 

52.71 % 

Female 

0.65% 
46.64% 

47.29% 

Total 

4.88% 
95.12% 

100.00% 

We may also consider compound events. For instance, the event color
blind disregarding sex is a compound event. Its probability is 4.88 %. 
Similarly, the event "male" irrespective of any other trait is a com
pound event. Its probability is 52.71 %. 

Now we may ask: What is the incidence rate of color blindness for 
the subpopulation of males? This question leads to conditional proba
bilities. Let M be the event of being a male and C the event of being 
color-blind. Formula (13.5.6) states that 

Using the numerical values of Table 13.2, we obtain P(CnM) =4.23% 
and P(M)= 52.71 %. Hence P(ClM)=4.23/52.71=0.0803 or 8.03%. 
Thus in males color blindness occurs at a rate of 8.03 %. 

Similarly, if F denotes the event of being a female,. we get for the 
incidence rate of the subpopulation of females 

P(ClF) = P(CnF) = 0.65 = 0.0137 
P(F) 47.29 

or 1.37%. 

13.6. The Multiplication Rule 

Assume that A and B are two events that belong to the same out
come space. Then it follows from formula (13.5.6) that 

P(A nB) = P(A) . P(B I A) . (13.6.1) 

In words: The probability of the simultaneous occurrence of two events 
A and B is the product of the probability of event A and the conditional 
probability of event B given A. 

By symmetry, A and B may be interchanged. Therefore, we also have 

P(A nB) = P(B)· P(A I B). (13.6.2) 
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An example may illustrate how the formula is applied. Given that a 
man celebrates his 70th birthday. What is the probability that he will 
reach an age of 72? In a life table we find the following conditional 
probabilities of survival for men: 

age x Px 

70 0.9492 
71 0.9444 
72 0.9391 

Here P70 is the probability that a 70 year old man lives until his 71 st 
birthday, P71 is the probability that a 71 year old man lives until his 
72nd birthday, etc. Applying formula (13.6.1) we conclude that the 
probability of reaching the 71 st as well as the 72nd birthday is 

0.9492 x 0.9444 = 0.8964 

or 89.64%. 

A special case of formula (13.6.1) is most important. It may happen 
that the occurrence of an event A does not influence the outcome of an 
experiment concerning a second event B. This would mean that 

P(BIA) = P(B). (13.6.3) 

Whenever (13.6.3) holds, we call the event B independent of the event A. 
The relationship is symmetric as a comparison of formulas (13.6.1) and 
(13.6.2) reveals; that is, if B is independent of A, then A is independent 
of B. They are independent of each other. If (13.6.3) is not valid, the 
event B is said to depend on the event A. 

To get an example, let us return to color blindness as treated in the 
preceding section. We obtained 

P(CI M) = 8.03 %, P(C) = 4.88 %. 

Hence, P(CI M) =!= P(C), that is, color blindness is dependent on sex. 

To illustrate independence, we imagine a scientist who wants to 
know whether there is any dependence between color blindness and 
deafness in human males. Assume that he is given the following proba
bilities: 

color-blind 
not color-blind 

Total 

Deaf 

0.0004 
0.0046 

0.0050 

Not deaf 

0.0796 
0.9154 

0.9950 

Total 

0.0800 
0.9200 

1.0000 
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Let C be the compound event '\;olor-blind" and D be the compound 
event "deaf'. With E and with D we denote the complementary events 
"not color-blind"and "not deaf', respectively. Then from (13.5.6) we get 
the following conditional probabilities: 

P(D I C) = ~:= = 0.0050, P(DI C) = ~:~~~ = 0.9950. 

From the last row of the table we read 

P(D) = 0.0050 , P(D) = 0.9950 . 

Hence 
P(DI C)= P(D) , P(DI C) = P(D) , 

that is, deafness is independent of color blindness. 

In general, whenever (13.6.3) holds, it follows from (13.6.2) that 

P(A nB) = P(A)· P(B) , (13.6.4) 

and conversely. This is the multiplication rule for independent events. 
Independence is often defined in terms of the multiplication rule: 

Definition. Two events A and B of the same outcome space are said 
to be independent if the multiplication rule (13.6.4) holds. 

In Section 13.4 we introduced the addition rule (Axiom 3). There is 
some formal similarity between the addition and the multiplication 
rules. However, they should be carefully distinguished from each 
other. If 

P(A u B) = P(A) + P(B) 

is to be valid, the two events A and B must be mutually exclusive, that is, 
A nB = 0. Hence, P(A nB) = O. Furthermore, if P(A)=I= 0, P(B) =1= 0, we 
see that A and B cannot be independent since formula (13.6.4) would 
not be satisfied. The reader should carefully distinguish between the 
two properties "independent" and "mutually exclusive". These pro
perties occur in different contexts. 

The multiplication rule is frequently applied when the same ex
periment is performed more than once. For instance, we toss a balanced 
coin twice and observe heads and tails. As we know, the outcome 
space is {HH,HT, TH, TT}. The pairs HT and TH are ordered 
which means that we carefully distinguish between the outcomes of the 
first and the second trial. Now we introduce the compound event 
"head at the first trial" and denote it by HI' Since the coin is assumed 
to be balanced, we get 



360 Probability 

Just for clarity we notice that Hi = {H H, HT}. We consider a second 
compound event "tail at the second trial" and denote it by T2 . We 
perform the two trials in such a way that the outcome of the second 
trial is not affected by the first trial. Therefore, we assume that the two 
events Hi and T2 are independent and that 

1 
P(T2 ) = 2· 

Applying the multiplication rule we get 

Now the event Hi n T2 is identical with HT. Hence, 

P(HT) = ~ , (13.6.5) 

a result that we expect intuitively long before we get used to concepts 
such as compound event, intersection, and independence. In the same 
way one proves that P(H H) = P(T H) = P(T T) = 1/4. 

The experiment just described could be performed in a slightly 
different way. We could toss two distinct coins at the same time and 
read heads and tails. The outcome space would again be {HH, HT, 
TH, TT}. When tossing the two coins we have to make sure that they 
do not "stick" together or do not attract each other, say by magnetic 
forces. Otherwise, independence cannot be expected. The multiplication 
rule leads to the same results as before when we tossed the same coin 
twice. 

The definition of independence can be generalized for more than 
two events. For instance, three events A, B, C belonging to the same 
outcome space are said to be independent if 

P(AnBnC) = P(A)· P(B)· P(C). (13.6.6) 

For an immediate application we watch a gambler. Assume he is 
tossing a coin over and over again and that he observed the outcome 
"head" in each of ten consecutive trials. He is very much puzzled since 
such an event has probability 1/210 = 1/1024 only. Will the eleventh 
outcome be head or tail? Which outcome has greater chances? There 
are surprisingly many people who believe that after a long run of heads 
the opposite outcome must have a better chance. They expect some 
kind of "justice" in games of chance. They are likely to bet a large sum 
and to risk their money. Are these people right? Experience does not 
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support such a belief. If the coin is normal, that is, neither double-headed 
nor unbalanced, and if no secret mechanism interferes during the 
motion, the chances for head and tail remain fifty percent. Formula 
(13.6.6) is then in agreement with our experience and independence is 
established. 

Scientific applications of formula (13.6.6) will be studied in 
Section 13.8. 

13.7. Counting 

Many problems in probability require some methods of counting. 

How many five-letter words, meaningful and meaningless, can be 
written with the 26 characters of the alphabet? For the first letter of the 
word we have a choice among 26 different characters. For the second 
letter we have the same choice. Combining the choices for the first two 
letters we get 26 x 26 = 262 possibilities. For the third letter we have 
again a choice among 26 characters. Hence, the total number of three
letter words is 262 x 26 =263 . The same argument finally leads to 
265 different five-letter words. 

In general, assume that we are given n sorts of objects, and that an 
unlimited number of objects of each sort is available. In how many 
different ways can we fill k distinct spaces, each space with one object? 
This problem can be solved in much the same way as the preceding 
example. The result is 

nxnx···xn=nk • 
~ 

k times 
(13.7.1) 

Each letter of the Morse alphabet consists of two kinds of symbol, 
dots and dashes. How many different letters can be composed by four 
such symbols? In this example we have four spaces to fill and two sorts 
of objects with unlimited supply. It follows from (13.7.1) that we can 
compose 24 = 16 letters. 

There are different kinds of inherited anemia such as spherocytosis, 
thalassemia, sickle-cell anemia, ovalocytosis, and Fanconi's syndrome. 
It is believed that abnormal alleles at five different gene loci are 
responsible (Neel and Schull, 1958, p. 13). Denote the normal alleles 
at these five loci by A, B, C, D, E and the corresponding abnormal 
alleles by a, b, c, d, e. At each locus we can distinguish between three 
genotypes (at the first locus AA, Aa, aa, at the second locus BB, Bb, 
bb, etc.). The total number of all genetic arrangements is therefore 
35 = 243. To relate this example to the general theory, we remark that 
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the loci are the spaces and the three different gene combinations "both 
normal", "one normal-one abnormal", "both abnormal" are the objects. 

In the problems just discussed, each object is available in unlimited 
number. We speak of unlimited repetition. 

We draw now our attention to problems of counting arrangements 
without repetition. Consider five cars which are competing for only three 
parking spaces. In how many ways can the cars be parked? Let us 
number the three spaces by 1,2,3 in an arbitrary order. The first space 
can be taken by anyone of the five cars. For the second space we have 
only four possibilities since one car is already parked in the first space. 
We have to combine the 5 possibilities of occupying the first space with 
the 4 possibilities of occupying the second space. Thus we obtain 5 x 4 
possibilities for the first two spaces together. To park a car on the third 
space, we have only a choice among the three remaining cars. Com
bining the three possibilities with the 5 x 4 previous possibilities we get 

5 x 4 x 3 =60 

different ways of parking. Two cars remain without parking space. 

In general, assume that we are given k distinct spaces and n different 
objects without repetition. In order that each space can be filled with 
exactly one object we have to assume that 

(13.7.2) 

Now we number the k spaces in an arbitrary manner. The first space 
can be filled in n different ways. For the second space only n - 1 
objects are available. Hence, the first two spaces can be filled in 

n(n -1) 

ways. For the third space we have a choice among the n - 2 remaining 
objects. For each consecutive space the number of available objects 
decreases by 1. For the kth space, the choice is among 

n-k+1 (13.7.3) 

objects. The total number of possibilities to fill the k spaces with n 
objects is therefore n(n - 1) (n - 2) ... (n - k + 1). We call each arrange
ment a permutation of n o~iects taken k at a time. A convenient notation 
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for the total number of permutations is nPk. Our result is 

nPk = n(n - l)(n - 2) ... (n - k + 1). (13.7.4) 

As a further example we imagine a geographic map containing four 
countries. Each country is to be painted with a different color. There 
are seven colors available. Then the painting can be done in 
7P4 = 7 x 6 x 5 x 4 = 840 different ways. 

If the number n of objects is equal to the number of spaces, we 
obtain an important special case. Each arrangement is simply called a 
permutation of the n objects. From (13.7.4) it follows that there are 

nPn = n(n -1) (n - 2) ···3·2·1 = n! (13.7.5) 

permutations of n objects. The symbol n! is read "n factorial". We 
introduced it earlier in the book in quite a different context (see 
Section 10.10). Notice that 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, etc. 

As an example we consider the four letters e, n, 0, t. In how many 
ways can we arrange them in a line? The answer is 4! = 4 x 3 x 2 x 1. 
We list all 24 permutations: 

enot 
ento 
eont 
eotn 
eton 

etno 

neot 
neto 
noet 
note 
nteo 
ntoe 

oent 
oetn 
onet 
onte 
oten 
otne 

tenD 
teon 
tneo 
tnoe 
toen 

tone 

Notice that very few of these permutations form a word of our language. 

With the notation introduced for factorials we can rewrite formula 
(13.7.4) for the number of permutations on n objects taken k at a time. 
We multiply by (n - k)(n - k - 1) ···3·2·1 which is the same as (n - k)!. 
Then in order to compensate for the change, we divide by the same 
product. Thus 

n(n - 1) ... (n - k + l)(n - k) ···2·1 
nPk = n(n - 1) ... (n - k + 1) = -----(-:-n-_---::kc-) !,---------. 

The numerator is nothing else than n!. Hence, the number of per
mutations of n objects taken k at a time is 

(13.7.6) 
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This formula comprises the special case where k = n if we define 
(n-n)! or O! to be 

O! = 1. (13.7.7) 

A somewhat different problem of counting deals with selections. 
For an experiment, three animals are selected out of five. In how many 
ways can this be done? We may think of an analogy: When three 
parking spaces are available for five cars, we found 5 x 4 x 3 = 60 
parking arrangements. However, the analogy is not complete. In the 
parking problem the three parking spaces are distinct, whereas in our 
selection problem the order in which the three animals are arranged is 
irrelevant. Denote the three parked cars by a, b, c. Then we carefully 
distinguished between the six arrangements abc, acb, bac, bca, cab, cba. 
Whatever the selection of the three cars is, we count each selection six 
times. Conversely, if we are not interested in the order of the cars (or 
animals), we have to divide 60 by 6. Thus we find 10 selections of three 
cars (or animals) taken out of five. 

The same argument can be used to derive a general result: In how 
many ways can we select k out of n different objects? If the order in 
which the k objects appear is relevant, the result is stated in formula 
(13.7.4). If not, we have to eliminate the k! permutations of the k 
selected objects. We call each selection disregarding the order a 
combination and denote the total number of combinations by nCk. In 
formula (13.7.4) each combination is counted k! times. Hence, 

This implies 

n(n-1) ... (n-k+ 1) 
nCk= k! . (13.7.8) 

This lengthy formula is usually abbreviated by the symbol 

There is no standard way of reading this symbol. A suitable way would 
be "n above k". The symbol should be carefully distinguished from 
"n over k" which means the fraction n/k. 

Our example "three out of five animals" leads to 

SC3 = (5) = 5 x 4 x 3 = 10. 
- 3 1x2x3 
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If we denote the five animals arbitrarily by a, b, e, d, e, the ten com
binations are 

abe, abd, abe, aed, aee, 

ade, bed, bee, bde, ede . 

Notice that dee or ede do not occur in this list since they are only 
permutations of ede. 

Similarly, we obtain 

sC1 = G) = ~ = 5, sC2 = (~) = ~:~ = 10, 

sC4 = (45) = 5·4·3·2 = 5. 
1·2·3·4 

Notice that G) = 1 since we can select 5 objects only in one way. We 

may also observe that 

(~) = (!), (~) = (~). 
This property has a particular meaning. If we select one object out of 
five, the remaining four objects also form a selection. To each selection 
of one object there corresponds exactly one selection of four objects 
and conversely. Therefore, their number must be equal. The same is 
true for selections of two and three objects out of five. In general, it 
follows that 

(~)=(n:k) for k=1,2, ... ,n-1. (13.7.9) 

Notice that in (13.7.9) the symbol (:) has no counterpart. Formally 

it would be (~). However, there exists nothing like a combination of 

zero objects out of n. It is only for the sake of symmetry that we intro

duce (~). To satisfy (13.7.9) we define 

(~) = (:) = 1 (13.7.10) 

Here, n is any positive integer. But we go a step further and allow n 

to be zero. Thus we define (~) = 1. 
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The numbers (~) are often arranged in such a way that they form 

Pascal's triang Ie 6 : 

(~) 1 

(~) G) 1 1 

(~) (~) (~) 2 

(~) G) G) (~) 1 3 3 

(~) (;) (~) (;) (:) 1 4 6 4 

(~) G) G) G) (~) G) 5 10 10 5 1 

........................................... . ....................... 

There is an easy way to calculate the numbers in Pascal's triangle. 
We observe that each number is the sum of the two nearest numbers in 
the row immediately above. Thus 5 = 1 + 4, 10 = 4 + 6, etc. The next 
row, not printed here, will therefore contain the numbers 1 + 5 = 6, 
5 + 10 = 15, 10 + 10 = 20, etc. We leave the proof of this property to the 
reader (see Problem 13.25). The property may be illustrated by the 
so-called Roman fountain (Fig. 13.2). 

Formula (13.7.8) for (~) may be rewritten in terms of factorials. For 

this purpose we replace the numerator of the formula by the expression 
(13.7.6). Thus we get 

(n) n! 
nCk= k = k!(n-k)!' (13.7.11) 

For instance, with n = 5 and k = 2 we obtain 

(5) 5! 120 
sCz = 2 = 2! x 3! = 2 x 6 = 10 

in agreement with an earlier statement. 
Formula (13.7.9) can be quickly verified by applying (13.7.11). 

6 Blaise Pascal (1623-1662), French mathematician, physicist and philosopher. 
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Fig. 13.2. The Roman fountain. Into a basin water runs at rate 1 (meaning one unit of 
weight per unit of time). On two sides of the basin the water overflows symmetrically at a 
rate of! each and rtins into two similar basins below. The water from these two basins 
overflows also and runs into three symmetrically arranged basins below. The center 
basin receives water at a rate of * + * = i, whereas the outer basins receive water at a rate 
of only * each. The numerators are 1, 2, 1, that is, the second row in Pascal's triangle. 
The process is then repeated over and over again. In each row the water flows at rates 

proportional to the corresponding row in Pascal's triangle 

We add an example from genetics. Assume that there are six different 
alleles possible at the same gene locus. We denote them by A 1 ,A2 , .•• , 

A6 • How many gene combinations or genotypes are possible? We first 
count all combinations of two different alleles selected out of the six 

alleles, such as A 1 A 2, A 1 A 3' etc. There are 6 C2 = (~) = 15 of them. 

Second, we also count the combinations with repetition, that is, the six 
pairs A1A1,A 2 A2 ,etc. The total of all combinations is 15+6=21. 

An important application of the numbers (:) is made in algebra. 

We consider powers of a binomial with positive integers as exponents: 

(a + b)2 = a2 + 2ab + b2 , 

(a+b)3=a3+3a2b+3ab2+b3, 

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 , etc. 

The coefficients form the rows in Pascal's triangle. In general, we 
may write 

(13.7.12) 
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One way of proving this formula applies combinations. To explain the 
idea we confine ourselves to the special case n = 4. We consider the 
product 

When working out the multiplications, we get a sum of many terms. 
Each of the terms contains exactly four factors, such as a l b2 b3 b4 or 
a3 a4 b l bz . All combinations of the a's and b's appear. There are 

4C3 = (;) of those with three b's, 4C2 = (;) of those with two b's, etc. 

When we later equate a l = az = a 3 = a4 = a and b l = b2 = b3 = b4 = b, 

the term ab 3 appears (;) times, the term aZ bZ appears (~) times, etc. 

This explains the formula for (a + b)4. The same argument may be used 
for any other integral exponent n (n> 0). 

Formula (13.7.12) is called the binomial theorem. The coefficients 

(~) are known as binomial coefficients. When working out (a + bt in a 

sum of terms (~) an -k b\ we also say that we expand (a + b)n. 

13.8. Binomial Distribution 

In this section we will further develop probability theory by using 
methods of counting. 

As an introductory example we study the recombination of genes. 
Assume that a fish population pools its reproductive cells. Consider a 
special locus with alleles A and a. Each reproductive cell (sperm or 
egg cell) contains exactly one of the two alleles, either A or a. Let p be 
the probability that a sperm cell contains A and q = 1 - p be the 
probability of a. Assume further that the egg cells have the same 
distribution, that is, 

P(A) = p, P(a) = q, (p + q = 1) . (13.8.1) 

The outcome space is {A, a}. 
When sperm cells have fertilized egg cells, we have to consider the 

new outcome space {A A, Aa, aa}. Assume that the reproductive cells 
meet each other at random, that is, that the process is independent of 
the genetic content of each cell. Independence is formulated in mathe
matical terms by the multiplication rule (13.6.4). Hence, we obtain 

P(AA) = P(A) . P(A) = p2 , 

P(aa) = P(a) . P(a) = q2 . 
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The heterozygous genotype Aa is formed in two ways. The allele A 
is either from the sperm or from the egg cell. If the order did count, we 
would have P(Aa) = pq and P(aA) = qp. However, the two cases cannot 
be distinguished biologically. Hence, disregarding the order we have 
to add the probabilities: pq + qp = 2pq. To sum up, recombination of 
genes leads to 7 

P(AA) = p2 , P(Aa) = 2pq, P(aa) = q2 . (13.8.2) 

Since {AA, Aa, aa} is our outcome space, the three probabilities 
should add up to 1. Indeed, 

In a second example we consider the number of boys and girls in a 
family. We denote a male birth by M and a female birth by F. The 
probabilities for the occurrence of M and F are not exactly t. The sex 
ratio varies slightly from country to country. We assume that 

P(M) = P = 0.52 , P(F) = q = 0.48 . 

We omit the possibility of twin or multiple births. Then experience 
shows that the outcome of each birth is independent of the outcome of 
previous births in the same family. Therefore, we apply the multi
plication rule. For two children with the outcome space {M M, M F, 
F M, F F} we obtain 

P(M M) = p2 = (0.52)2 = 0.2704, 

P(M F) = pq = (0.52) x (0.48) = 0.2496 , 

P(F M) = qp = (0.48) x (0.52) = 0.2496, 

P(F F) = q2 = (O.4W = 0.2304 . 

The total probability is 1. If we disregard the birth order, we get 

P(MM) = p2, P(MF) = 2pq, P(FF) = q2. (13.8.3) 

Formally, the result is the same as in (13.8.2). 
The example can be easily extended to families with three children. 

As long as we observe the birth order, the outcome space is 

{MMM, MMF, MF M, FMM, MFF, FMF, FFM, FFF}. 

7 Some geneticists write the result in the following symbolic way: p2 AA + 2pqAa+ q2aa. 
There is no similar symbolism in other areas of mathematics. 
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The multiplication rule yields the corresponding probabilities: 

P(MMM) = ppp= p3, P(MFF)=pqq= pq2, 

P(M MF)= ppq= p2q, P(FM F)= qpq= pq2, 

P(M FM)= pqp = p2q, P(FFM) =qqp= pq2, 

P(F M M) =qpp = p2q, P(FFF)=qqq = q3. 

However, disregarding the birth order, the outcome space is reduced to 

{MMM, MMF, MFF, FFF} , 

and the corresponding probabilities turn out to be 

P(MMM)=p3, P(MFF)=3pq2, 

P(MMF)=3p2q, P(FFF)=q3. 
(13.8.4) 

The four probabilities are the terms in the expansion of (p + q)3. The 

coefficients are the binomial coefficients (~), G), G)' G)' 

The last remark gives us a hint for further generalization: Consider 
families with n children. Then we ask: What is the probability of 
selecting at random a family with k boys and n - k girls? If we respect 
the birth order, the probability is 

pkqn-k 

since the factor p = P(M) must appear k times and the factor q = P(F) 
exactly n - k times. However, when disregarding the order, we have 
the case of selecting "k boys out of n children", and this can be done in 
as many ways as we can select k objects out of n distinct objects. Since 
the order does not count, we are dealing with the number of 
combinations of n objects, k at a time. The number is 

Hence we have to take the term pkqn-k as many times as indicated by 
nCk' The result is 

P(k boys, n - k girls) = (~) pkqn-k . (13.8.5) 

This probability is a term in the expansion of (q + p)n. 
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As a special case we consider n = 4. It follows from (13.8.5) that 

P(M M M M) = (:) p4 qO = p4 = (0.52)4 = 0.0731 , 

P(M M M F) = (:) p3 ql = 4p3 q = 4(0.52)3 (0.48) = 0.2700, 

P(M M F F) = G) p2 q2 = 6p2 q2 = 6(0.52)2 (0.48)2 = 0.3738, 

P(M F F F) = (;) plq3 =4pq3 = 4(0.52) (0.48)3 = 0.2300, 

P(F F F F) = (~) pO q4 = q4 = (0.48)4 = 0.0531 . 

In our population, families with four boys occur at a rate of 7.31 % 
but families with two boys and two girls at the much higher rate of 
37.38 %. 

In general, let E be an event of an outcome space and E the com
plementary event. Thus we may write 

P(E)=p, P(E)=q (p+q= 1). (13.8.6) 

We perform the experiment n times in such a way that each consecutive 
outcome is independent of all previous outcomes. Then the probability 
that E occurs exactly k times is 

P(k times) = (~) pkqn-k (0 ~ k ~ n). (13.8.7) 

The set of probabilities (13.8.7) for all k = 0, 1,2, ... , n is called a 
binomial distribution. This distribution was investigated by Jacob 
Bernoulli 8. Experiments which result in a simple alternative such as 
"yes-no", "success-failure", "positive-negative reaction" are often called 
Bernoulli trials. 

The numerical calculation of the terms (13.8.7) is laborious. Work 
is greatly facilitated by tables (see quotation at the end of this chapter). 

Before studying further applications, we investigate the special case 

8 Jacob Bernoulli (1654-1705), Swiss mathematician. 
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As a model experiment we may choose coin tossing with outcomes 
head (H) and tail (T). Formula (13.8.7) reduces to 

P(k times) = (~) ;n . (13.8.8) 

For n given, P(k times) for k = 0, 1,2, ... , n is proportional to (~), that 

is, to a row in Pascal's triangle (Section 13.7). For coin tossing, the 
following probabilities are valid: 

P(HH)=i, P(HT)=i, P(TT)=i, 

P(HHH) = fl, P(HHT) =~, P(HTT) =~, P(TT1) = fl, 

P(HHHH) = /6' P(HHHT) = 146' P(HHTT) = 166' P(HTTT) = 1~' P(TTTT)= /6 

The histograms of Fig. 13.3 illustrate these special distributions. 

A chance mechanism especially suitable for demonstrating the 
particular binomial distributions with p = t q = 1- is the so-called 
binomiator. Details are explained in Fig. 13.4. 

k= 0 1 2 

n=3 

k= 0 1 2 3 

k= 0 1 2 3 4 

Fig. 13.3. Histograms of binomial distributions for p =!, q =! and n = 2, 3, 4 
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Fig. 13.4. A model experiment for demonstrating binomial distributions with p = t, q = 1-
Balls are rolling down a slope. On their way they hit obstacles arranged as shown by 
the black polygons. At each obstacle a ball is thrown either to the left or to the right with 
probability 1- In our drawing, the probabilities of reaching the compartments below are 
in this order: 1/64, 6/64, 15/64, 20/64, 15/64, 6/64, 1/64. Thus the numerators form the 
sixth row in Pascal's triangle. This model experiment was invented by Galton (cf. 

Fig. 13.14). It is related to the Roman fountain shown in Fig. 13.2 

Applications 

a) Risk of Fatal Effect. Assume that the probability that a person 
will die within a month after a certain cancer operation is 18 %. What 
are the probabilities that in three such operations one, two, or all three 
persons will survive? 

Survival means in this connection the opposite of death within a 
month after the operation. The outcome space is {D, S} where D 
stands for death and S for survival. The probabilities are 

P(D) = 0.18, P(S) = 0.82. 

If we have good reason to assume that the outcome of one operation 
is independent of the outcome of the other two operations, we can 
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apply formula (13.8.7). Let k be the number of surviving patients. Then 

P(k = 0) = (~) (0.18)3 = 0.006, 

P(k = 1) = (~) (0.82) (0.18)2 = 0.080, 

P(k = 2) = G) (0.82)2 (0.18) = 0.363, 

P(k = 3) = e) (0.82)3 = 0.551 . 

Thus the probability that only one person will survive is 8 %, that 
two survive 36 %, and that all three survive 55 %, approximately. 

b) Bioassay. When an animal is given a treatment, we may ask 
whether the reaction is positive or not, that is, whether a certain 
result can be observed or not. Such an outcome is qualitative rather 
than quantitative. When n like animals are given the same treatment, 
we may ask how many of the animals react positively. Each single 
performance of the experiment is called a Bernoulli trial. 

Let E be the event "positive reaction" and E the complementary 
event. Let 

P(E) = p , P(E) = q , p + q = L 

Under the assumption that the n trials are independent, the probability 
that exactly k animals react positively is 

P(k pos. reactions) = (~) pkqn-k. 

For instance, consider five mice from the same litter all suffering from a 
vitamin-A deficiency. They are fed a certain dose of carrots. The positive 
reaction means here recovery from the disease. Assume that the proba
bility of recovery is p = 0.73. Then we ask: What is the probability 
that exactly three of the five mice recover? The answer is 

G) (0.7W (0.27)2 = 0.284 

or 28.4%. 

c) Mutations. The probability of a mutation per gene and per r 
(roentgen, unit of intensity of radiation) in mice is approximately 
2.5 x 10- 7 (see Neel and Schull, 1958, p. 154). What is the probability 
that in 10,000 genes at least one mutation per gene occurs? 
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Let k be the number of mutations. The phrase "at least one" means 
k = 1 or 2 or 3, etc. It would be extremely laborious to calculate all 
10,000 probabilities by formula (13.8.7) and to sum them up. It is much 
simpler to proceed as follows: The event "at least one" is the comple
mentary event to "no mutation". Thus we calculate first 

P(k = 0) = (1 - 2.5 x 10-7)10.000 = 0.99999975 10,000. 

The calculation can be performed by logarithms. Few tables, however, 
will list log 0.99999975. To cope with this difficulty, we recall formula 
(10.10.3) concerning natural logarithms. It follows that 

In(1-2.5 x 1O-7)~ -2.5 X 10-7. 
Hence, 

InP(k = 0) = 10,000 x In(1- 2.5 x 10- 7 ) ~ -2.5 x 10- 3 • 

The result is still a small number compared with 1. Hence, to obtain 
the antilogarithm we may apply formula (10.10.2). Thus we get 

P(k=O)~ 1-2.5 x 10- 3 • 

We are interested in the complementary event which IS equivalent 
to k> O. Hence, 

P(k> 0) ~ 2.5 x 10- 3 = 0.0025. 

Our chance to observe a mutation in 10,000 genes which underwent 
radiation of dose 1r is only one quarter percent. 

d) Harmful Side Effects. Assume that a drug causes a serious side 
effect at a rate of three patients out of one hundred. A pharmacological 
laboratory wants to test the drug. What is the probability that the side 
effect occurs in a random sample of ten patients taking the drug? 

Before an answer can be given, the question has to be formulated 
more precisely. Let k be the number of persons who might suffer from 
the side effect. Then occurrence of the side effect means that k = 1 or 
2 or 3, etc. As in the preceding application, it is easier to treat the case 
k = 0 first. The probability that a patient does not suffer from the side 
effect is 1 - 0.03 = 0.97. Hence9 , 

P(k = 0) = (0.97)10, 

10gP(k = 0) = 10 x logO.97 = 10 x (0.98677-1) 
= 9.8677 - 10 = 0.8677 - 1 , 

P(k = 0) = antilog (0.8677 - 1) = 0.737 , 

P(k> 0) = 1 - P(k = 0) = 0.263. 

9 To work out this example we use common logarithms, whereas in Application (c) 
we used natural logarithms. 
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Therefore, in a sample of ten randomly selected patients the side effect 
occurs only with probability 26.3 %. When a new drug is being screened, 
a rare side effect may very well remain undetected. 

e) A Counterexample. The binomial distribution is not always 
applicable when the same experiment is repeated. The reason is that the 
outcome of a trial could depend on the outcomes of preceding trials. 
Consider for instance the weath(!r. For simplicity, let us distinguish 
between rainy and dry days. Assume that at a certain location the rate 
of rainy days is 1 : 12. If we are interested in sequences of rainy days, 
we may ask: What is the probability that it will rain on July 1, 2, and 3? 
One is tempted to apply the multiplication rule. This would lead to 

P(3 rainy days) = (1/12)3 ~ 0.0006, 

that is, a number which is very small. However, the result is wrong. The 
weather on one day depends strongly on the weather of the preceding 
days. The day after a rainy day is likely to be another rainy day. 
According to our experience the probability of three consecutive rainy 
days is considerably greater than the result given by the multiplication 
rule. 

*13.9. Random Variables 

Events in a random experiment are sometimes qualitative in nature. 
For instance, in genetic experiments with peas, the petals may be white, 
red, or pink. In science, however, quantification of properties is usually 
advantageous. In this section we will study several examples of successful 
quantification. We will also introduce such concepts as random 
variable, probability distribution, mean and standard deviation of 
random variables. 

To begin with, we consider the outcome space 

{white, pink, red} 

for the petals of experimental peas. According to genetics these colors 
are due to two alleles, say Wand R, at a certain gene locus. The geno
type W W produces white flowers, W R pink flowers, and RR red flowers. 
Thus we may map the outcome space into 

{WW, W R, RR}. (13.9.1) 

Now we can quantify the three outcomes in a simple and natural way: 
We count the number of R-alleles in each outcome, thus mapping the 
outcome space into 

{O, 1, 2} . (13.9.2) 
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Number zero is associated with Ww, number one with WR, and 
number two with RR. In Section 3.4 we called such an association a 
function. A frequently used notation is X. In our example 

X(WW)=O, X(WR) = 1, X(RR)=2. 

The domain of this function is the set (13.9.1), and the range is the 
set (13.9.2). 

As a second example we consider an outcome space consisting of 
only two simple events, say 

{success, failure} . (13.9.3) 

At a glance, there seems to be no natural way of quantification. We may 
map the outcome space into {+ 1, -1} or into {1, O}. But why not choose 
{5,!}? Obviously, we have to find a criterion for the proper selection of 
mapping. As so often in science, the best choice is the one that serves 
best. We will show that the mapping 

{1,0} (13.9.4) 

is a good choice in quantifying (13.9.3). Here the function X takes on 
either 1 or O. Number 1 stands for success, number 0 for failure. Let us 
perform an experiment with the outcome space (13.9.4) several times. 
With Xl' X 2 , ••• , Xn we denote the outcomes of the first, second, ... , nth 
trials, respectively. If, for instance, the sequence is success-failure-failure
success-success-failure, we get Xl = 1, X 2 = 0, X3 = 0, X 4 = 1, X5 = 1, 
X6 = O. Now we form the sum 

(13.9.5) 

Each term is a zero or a one. We have as many ones as successes. Hence, 
Sn is equal to the number of successes in n trials (in our example Sn = 3). 
This simple property is used to justify the mapping of (13.9.3) into 
(13.9.4). The quantity Sn may take any of n + 1 values 0, 1,2, ... , n. If we 
are only interested in the number of successes and not in the order in 
which the event "success" occurs, the outcome space for n trials is 

{O,l, ... ,n}. (13.9.6) 

Now we introduce probabilities for the outcome space (13.9.3). 
Instead of writing 

P(success) = p, P(failure) = q , 
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it is more convenient to use the notation 

P(X=l)=p, P(X=O)=q. (13.9.7) 

When repeating the experiment we may ask for the probability 
of k successes in n trials, or briefly, for the probability of the event Sn = k. 
Under the assumption of independent trials, the result was stated in 
formula (13.8.7). We may rewrite the result in the form 

P(Sn = k) = (~) pkqn-k. (13.9.8) 

Another example where the outcome space can be easily quantified 
is the life table of Section 13.5 (Table 13.1). The outcome space consists 
of "death in the first decade", "death in the second decade", etc. We may 
associate the number k with the event "death in the kth decade". Thus 
we map the outcome space into {1, 2, 3, ... }. Instead of the phrase 
"death occurred in the kth decade" we could simply write X = k. 

When we are dealing with height, weight, pulse rate, blood pressure, 
etc., the simple events of the outcome space are measurements, and 
thus already numbers. A mapping into other numbers is usually not 
required. It is customary to denote variable measurements and 
countings by capital letters such as X, Y, Z, U, V, etc. 

In general, when an outcome is mapped into a set of numbers, we 
introduce a variable quantity, say X, which is a function of the out
comes. Such a quantity is called a random variable. 

In Section 1.2 we studied the different levels of quantification. It is 
precisely the transition from the nominal level to the ordinal, interval, 
or ratio level which allows us to introduce a random variable. Thus, a 
random variable can take on the different scores assigned at an ordinal 
level. For instance, X = 0 could mean failure, X = 1 success of a trial. 
More frequently, however, random variables are used for quantities 
defined at an interval level such as temperatures in degrees Celsius, 
time, altitude, electric potential, or for quantities defined at a ratio 
scale such as length, area, volume, weight. 

We assume now that a random variable X can only take on a finite 
number of values, say Xl' X2' ... , Xm. Thus the outcome space is 

(13.9.9) 

We denote the probability associated with Xi by Pi (i = 1,2, ... , m). 
This means that 

P(X = Xl) = Pl' P(X = X2) = P2' ... , P(X = xm) = Pm. (13.9.10) 
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The total probability must be one, that is, L.Pi = 1. We call a set of 
probabilities associated with an outcome space a probability distribution. 

For many reasons it is desirable to define a suitable average or mean 
of the random variable X. We cannot simply take the arithmetic mean 
L.Xi/m since we would neglect the rate at which each Xi occurs in the 
random experiment. To get the proper idea, let us return to the frequency 
concept of probability. Each Pi is an idealization of a relative frequency. 
Assume that the event X = Xl has occurred nl times, the event X = X2 
has occurred n2 times, etc. in a total of n performances of the experiment. 
Then we obtain 

X= nlXl+n2X2+···+nmxm = f !i'Xi' 
n i=l n 

Here x is the weighted arithmetic mean of Xl' X2' ... , Xm. The "weights" 
are n1 , n2, ... , nm. Replacing the relative frequencies ni/n by probabilities 
Pi we get the following definition of the mean value of X: 

m 

mean of X = L PiXi' (13.9.11) 
i= 1 

If we had to guess or to estimate the outcome of a single performance of 
the experiment, the mean of X would be a good choice. Our guess 

Fig. 13.5. The expectation of X interpreted as a center of gravity 

could be too high or too low, but not too far away from the actual 
outcome. For this reason, we also call the mean the expected value or 
the expectation of X. The notation is E(X). Hence (13.9.11) turns into 

m 

E(X) = L PiXi' (13.9.12) 
i= 1 

In probability theory the words "average", "mean", and "expectation" 
are used in the same sense. 

Formula (13.9.12) has an interesting counterpart in mechanics: 
Consider each Xi as the abscissa of a point on a straight line and inter
pret Pi as a mass or a weight concentrated in the point Xi (see Fig. 13.5). 
Then the point with abscissa E(X) is identical with the center of gravity. 
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A few examples may illustrate the usefulness of the new concept. 
Assume for simplicity that the sex ratio is 1 : 1. Let the random variable 
X stand for the number of boys in families with four children. The 
outcome space is {O, 1,2,3, 4}. The corresponding probabilities are 
given by formula (13.8.8) for n = 4. Thus the probabilities are 

1 
P(X=O)= 16' 

4 
P(X=3)= 16' 

4 
P(X= 1) = 16' 

1 
P(X=4)= 16' 

6 
P(X=2)= 16' 

Now we ask for the average or the expected number of boys in such 
families. By symmetry, it is easy to guess that this average is two. We 
verify the result by applying formula (13.9.12): 

E(X) = (_1 .0) + (~'1) + (~'2) + (~.3) + (_1 .4) =2 16 16 16 16 16 . 

Similarly, the average or expected number of boys in families with 
five children is 2.5. 

As a further example we study the occurrence of a lethal allele a in a 
population with genotypes AA, Aa, aa. Let X be the number of a's in 
each genotype, that is X = 0 in AA, X = 1 in Aa, X = 2 in aa. For the 
probabilities we introduce the following notations: 

According to formula (13.9.12) the expected number of a's is 

If, for instance, PI = 0.7, P2 = 0.2, P3 = 0.1, we get E(X) = 0.4, that is, on 
the average of the three genotypes the lethal gene occurs 0.4 times. 

The expectation for the binomial distribution follows in the same 
way from formula (13.9.12): 

This expression is rather complicated. Surprisingly, it can be reduced to 

E(X)=np. (13.9.13) 
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Sillce the algebra involved is not simple, we shall omit the proof. 
A numerical example will show that the result is quite plausible. Let 
P = 1/10 be the probability of an event, and n = 80 the number of 
trials. Intuitively, we expect the event to occur eight times. Fortunately, 
formula (13.9.13) leads to the same result. 

With the mere knowledge of E(X) we have no idea how much the 
outcomes Xl' X 2 , ..• , xm in (13.9.9) differ from the expected value. Some 
probability distributions are concentrated around E(X), others not. 
Therefore, it is desirable to have a measure of dispersion. As in Section 1.9 
we consider the square of deviation 

(Xi - E(X))Z (i = 1,2, ... , m) (13.9.14) 

since we are not interested in the sign of Xi - E(X). To get an average 
deviation we cannot simply take the ordinary arithmetic mean of all 
m terms in (13.9.14). We have to observe the rate at which each Xi occurs. 
For the same reason as in formula (13.9.11) we form the weighted arithme
tic mean with "weights" Pi. The result is called the variance of X and 
is defined by 

m 

Var(X) = L Pi(Xi - E(X))Z . (13.9.15) 
i= I 

For most people the formula looks less frightening if we introduce 
the following standard notations: 

E(X) = Jl, Var(X) = (12 • (13.9.16) 

(Greek letters mu and sigma). With this notation, formula (13.9.15) 
turns into 

m 

(12 = L Pi(Xi - Jl)2 . (13.9.17) 
i= I 

As is frequently the case, the Xi are not pure numbers but expressed 
in a certain unit, such as cm, kg, sec. Then formula (13.9.12) reveals 
that E(X) is expressed in the same unit. However, (12 is measured in the 
square of such a unit. For instance, if the mean is 85 cm, the variance 
may be 16 cm2• This property of the variance is disadvantageous. 
Therefore, we take the square root of the variance and get 

(13.9.18) 
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This measure of dispersion is widely used and is known as the standard 
deviation of X from the mean. 

As an example we consider a random variable X with the outcome 
space {83 cm, 84 cm, 85 cm, 86 cm, 87 cm} and with probabilities 1/11, 
2/11, 5/11, 2/11, 1/11, respectively. With respect to 85 cm this particular 
distribution is symmetric. If we interpret the probabilities as masses, 
the center of gravity falls into the point with abscissa 85 cm. The reader 
may verify that Jl. = E(X) is indeed 85 cm. Temporarily omitting "cm" 
we get for the variance 

2 1 2 2 2 5 2 
(1 = 11(83-85) + 11(84-85) + 11(85-85) 

2 2 1 2 + 11 (86 - 85) + 11 (87 - 85) 

or 

The standard deviation is 

(1 = (12/11 cm2 )t = 1.044 cm. 

Without proof we mention that the variance of the binomial 
distribution (13.9.8) is 

(12 = npq. (13.9.19) 

For instance, assuming a sex ratio 1: 1, we get for the variance of the 
number of boys in families with five children 

2 1 1 
(1 = 5 . 2 . 2 = 1.25 . 

This implies (1 = 1.25t = 1.12. To sum up, the mean of the number of 
boys is 2.5 with a standard deviation of 1.12. 

*13.10. The Poisson Distribution 

In ecology the distribution pattern of plants or animals of the same 
species over a region (field, forest) has been studied many times. For 
this purpose the region is subdivided into a large number of so-called 
quadrats (squares or rectangles of equal area). Fig. 13.6 shows an 
example. In each single quadrat the number of individuals is counted. 
Among the 20 quadrats shown, there are some empty quadrats and some 
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quadrats which contain 1,2,3, or more individuals. A complete break
down of the distribution is given below: 

Number of 
individuals 
per quadrat 

o 
1 
2 
3 
4 
5 
6 

Total: 

Number of 
quadrats 

3 
6 
5 
4 
1 
o 
1 

20 

Total number 
of individuals 
in each sort of 
quadrat 

o 
6 

10 
12 
4 
o 
6 

38 

In some parts of the region we observe an aggregation of plants. 
Other parts show some kind of emptiness. However, as a whole we feel 
that the individuals are randomly dispersed. 

Can the pattern of random dispersion be described mathematically? 
This is indeed possible. For simplicity, we replace the plants or animals 
by balls. Now we drop a ball over the region in such aO way that each 
quadrat has the same probability p of being hit by the ball. In Fig. 13.6, 
p equals 1/20. Then we repeat the same experiment n times and assume 
that each trial is independent of all previous trials. Let X be the number 
of balls which hit a particular quadrat. The random variable X could 
take on any of the integers 0, 1,2, ... , n. We have to find the proba
bility that X takes on a specific value k. This probability was established 

• • • • • • • • 

• • .. 
• • • • • 

• .. 
• • 

• • • • • • • • 
• • • 

• • • • • 

Fig. 13.6. Distribution of individual plants of a species over a region 
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in Section 13.8. The result is 

P(X = k) = (~) pkqn-k (13.10.1) 

where q = 1 - p. In Fig. 13.6, we have p = 1/20 and n = 38 (total number 
of individuals). A brief table of values rounded-off to three decimals 
follows: 

k P(X =k) k P(X =k) 

0 0.142 4 0.081 
1 0.285 5 0.029 
2 0.277 6 0.008 
3 0.175 7 0.002 etc. 

Therefore, we expect 

20 x 0.142 = 2.84 empty quadrats, 
20 x 0.285 = 5.70 quadrats with one ball, 
20 x 0.277 = 5.54 quadrats with two balls, 
20 x 0.175 = 3.50 quadrats with three balls, 
20 x 0.081 = 1.62 quadrats with four balls, etc. 

The theoretical result is quite compatible with the countings from 
Fig. 13.6. 

Despite the good agreement between theory and experience, formula 
(13.10.1) is not the final answer to our problem. The total number n of 
balls is usually very large, and its exact value is irrelevant. On the other 
hand, the probability p that a particular quadrat out of a large number 
of quadrats is hit by a ball is very small. Again it is irrelevant to know 
the exact value of p. Finally, the calculation of the binomial terms in 
(13.10.1) is rather laborious. 

For all these reasons, it is appropriate to ask for the limiting 
distribution which we get as n tends to infinity and p to zero. To 
initiate the limiting process, we consider the mean value or the 
expectation of X. It was stated in formula (13.9.13). For convenience, 
we denote this mean here by m rather than by E(X) or J1. Thus, 

m=np. (13.10.2) 

In our example n = 38 and p = 1/20, hence m = 1.9. In most applications 
m ranges from 0 to about 10. Whereas n tends to infinity and p to zero, 
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we keep the mean m constant. Rearranging formula (13.10.1) and 
replacing p by min according to (13.10.2) we obtain 

(13.10.3) 
n(n - l)(n - 2) ... (n - k + 1) 1 k n 

= ·---·m .q 
k! nk¢ 

As n-HX), the factors k! and m k remain constant. The last factor is 

qn = (1 - pt = ( 1 - : r 
Replacing a by -m in formula (10.8.4) we get 

The remaining expression in (13.10.3) is 

n(n-1)(n-2) ... (n- k+ 1) 

nk(1- mln)k 

n(n-1) ... (n-k+ 1) 
(n - m)k 

(13.10.4) 

Both numerator and denominator of this fraction can be written as 
polynomials in n of degree k. The term of highest degree is nk in both 
cases. Applying the method in Section 8.1 we find that the fraction 
tends to 1 as n tends to infinity. Notice that k remains constant in the 
limiting process. 

Combining the results we get 

(k=O, 1,2, ... ). 

With these probabilities we define a new random variable X: 
mke- m 

P(X = k) = k! (13.10.5) 

Here the outcome space consists of all integers k = 0, 1,2,3, .... The out
come space is therefore infinite. 

Formula (13.10.5) establishes the famous Poisson distribution 10. 

To say that objects are randomly dispersed or randomly distributed over 
a region is to say that they follow a Poisson distribution. 

It is not laborious to calculate the terms in formula (13.10.5) since k 
hardly ever exceeds 10 or 20. For greater convenience tables of the 
Poisson distribution are available (see citation at the end of this chapter). 

10 Simeon Denis Poisson (1781-1840), French mathematician and physicist. 
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In our numerical example we have m = 1.9. For this value the 
probabilities (13.1 0.5) are 

k P(X =k) k P(X=k) 

0 0.150 4 0.081 
1 0.284 5 0.031 
2 0.270 6 0.010 
3 0.171 7 0.002 etc. 

These probabilities differ little from the corresponding values of the 
binomial distribution listed after formula (13.10.1). A graphical pre
sentation of our special Poisson distribution is given in Fig. 13.7. 

As we already know, the mean of the Poisson distribution (13.10.5) is 

E(X)=m. (13.10.6) 

It is easy to find the variance. Formula (13.9.19) states the variance for 
the binomial distribution. In this formula we replace p by min and then 
let n tend to infinity. Thus 

Hence, 

(J2 = Var(X) = m. (13.10.7) 

Notice that the mean and the variance of a Poisson distribution 
have the same numerical value. The standard deviation is (J = m~. In 
Fig. 13.7 the standard deviation is 1.9± = 1.38. 

6 7 8 

Fig. 13.7. Histogram of the Poisson distribution with mean 1.9 



The Poisson Distribution 387 

Applications 

a) Ecology. Plants and animals are seldom randomly dispersed 
over a region. For some reason they may be aggregated into clumps. 
Then counting the frequency within quadrats we get many empty 
quadrats and many quadrats with high frequencies. This increases the 
variance. The equality (13.10.7) is no longer valid. Instead we find 

(13.10.8) 

The contrary may also occur: Consider the case where there is 
approximately the same distance from one individual to its neighbor. 
The distribution is nearly uniform. Examples are the trees in an orchard 
or hairs on the skin. Per quadrat we count almost the same number of 
individuals. The variance is relatively small. Hence, 

(13.10.9) 

For more details see MacArthur and Connell (1966, p. 44ff.), Piel9u 
(1969, Part 2). For a mathematical theory of clumping we refer the 
reader also to Roach (1968). 

b) Bacteria and Blood Counts. On a small glass plate with a square 
grid a liquid containing single cells is spread homogeneously. Great 
care is taken that the liquid has a constant thickness. Under the micro
scope we count the number of squares with no cells, with one cell, 
with two cells, etc. The observed distribution should be close to a 
Poisson distribution. This is very often the case. Large deviations may 
occur due to random fluctuations, or more likely, due to a factor causing 
clusters of cells. 

There are also instruments for counting cells automatically. The 
liquid passes through a narrow glass tube. Each passing cell causes a 
change in transparency. An electronic eye is able to register the cells 
with high speed, but with restricted accuracy. When countings for equal 
amounts of liquid are compared, the distribution should again resemble 
a Poisson distribution. 

F or tests of the hypothesis of a Poisson distribution we refer the 
reader to books on statistics. 

c) Mutations. A large number of agar plates are treated with an 
antibiotic. Bacteria which are spread over the plates cannot multiply 
except for those rare mutants that are antibiotic-resistant. They form 
colonies. If the experimental conditions can be kept fairly constant for 
all agar plates, the counting of colonies should approximately result 
in a Poisson distribution. 

d) Radioactive Decay. In a radioactive substance, disintegration of 
nuclei occurs spontaneously, that is, disintegration is not caused by 
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factors outside of the nucleus. The number of pulses in a Geiger counter 
during time intervals of a fixed length are recorded. There are intervals 
with no pulse, with one pulse, with two pulses, etc. The hypothesis of a 
Poisson distribution is well supported by experimental facts. 

In this application the time intervals play the same role as the 
quadrats in ecology or the agar plates in bacteriology. The Poisson 
distribution is applicable to time intervals as well as to sections of space. 

e) Daily Life. When a rain storm starts, the first drops on a paved 
road are distributed according to a Poisson law. The same is true for 
the misprints in a book, the number of letters or of telephone calls that 
we receive on weekdays. In a hospital the number of births or deaths 
per day, at a street intersection the monthly number of traffic accidents, 
in industry the number of defective items produced per hour, these all 
follow more or less the Poisson law. 

*13.11. Continuous Distributions 

Let us consider an introductory example. The oc-globulin content x 
in the blood plasma of a large number of healthy, human adults is 
measured. Each measurement is expressed in grams per 100 milliliters. 
We are interested in the relative frequency of occurrence. For a rough 
survey we may subdivide the measurements into three groups of width 
0.18 g/100 ml with midpoints at 0.60, 0.78, 0.96 g/100 ml. The histogram 
(a) of Fig. 13.8 depicts the result. The area of each bar is numerically 
equal to the corresponding relative frequency. The total area of the 
histogram is 1 or 100%. 

For more accurate information we may use a larger number of 
groups. The histogram (b) of Fig. 13.8 shows groups of width 
0.06 g/lOO ml with midpoints at 0.60, 0.66, ... , 1.02 g/100 ml. Again the 
area of each bar is numerically equal to the corresponding relative 
frequency. 

The actual measurements can be made so precisely that an even 
finer distinction is possible as demonstrated by histogram (c) of Fig. 13.8. 

Due to the imperfection of our instruments, however, precision 
cannot be increased indefinitely. For the presentation of empirical data 
we will always be forced to use a finite number of groups. The distrib
ution of relative frequency is necessarily discrete. 

On the other hand, for a theoretical distribution we hesitate to use a 
rather arbitrary subdivision into groups. We feel that our quantity x 
varies continuously. In other words: We consider x as a continuous 
random variable and denote it by X. At the same time we replace relative 
frequencies by probabilities. We no longer have a histogram with single 
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72.4 % 

11 . 4 % 16 . 2% 

I I 
.6 .7 .8 .9 1.0 

.6 . 7 

.7 .8 1.0 

Fig. 13.8. The (X-globulin distribution in the blood plasma of human adults. To obtain 
higher precision the number of groups is increased. In the limit the distribution is 

continuous 

bars. Instead we draw a smooth curve whose ordinates indicate the 
density of probability at each point of the x axis (Fig. 13.8 d). (For the 
notion of density see end of Section 9.1.) Consider the curve as the 
graph of a certain function y = f(x). Then f(x) is called the probability 
density function. A distribution which has a density function is said 
to be continuous 11. 

II In strict mathematical terminology such a distribution is called absolutely 
continuous. 
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What is the relationship between probability density and proba
bility itself? The transition from a discrete to a continuous distribution 
gives us a hint. We fix an interval [a, b] on the x axis and ask for the 
relative frequency of all measurements that fall into this interval. As we 
see from Fig. 13.8c we have to add the relative frequency of all groups 
that fall into the interval, that is, 5.2 % + 3.6 % + 2.8 % = 11.6 %. In other 
words: We must find the total area of all bars of the histogram above 
[a, b]. Quite correspondingly we obtain the probability that the random 
variable X falls into the interval [a, b] by calculating the area between 
[a, b] and the curve (Fig. 13.8 d). Hence, 

b 

P(a~X~b)= J f(x)dx, (13.11.1) 
a 

that is, the probability of the compound event X E [a, b] is the integral 
of the density function over the interval [a, b]. 

Why did we not determine the probability of a simple event first? 
Let a be a fixed number. Then X = a would be a simple event. From 
(13.11.1) it follows that 

a 

P(X = a) = J f(x) dx = 0 (13.11.2) 
a 

since the area over a point of the x axis is zero. The result may look 
surprising. The event X = a is by no means impossible. Yet its proba
bility vanishes. However, there is no contradiction. Let a = 2/3 = 0.666 ... 
be a precise and not a rounded-off number. It is extremely unlikely that 
a quantity takes on this particular value. In addition, there are infinitely 
many other numbers in the neighborhood of a so that the probability 
of a simple event from a continuous distribution must vanish. 

In formula (13.11.1) we have expressed a probability in terms of the 
probability density function. Is the converse also possible, that is, can 
we derive the probability density function from the knowledge of 
probabilities? The answer is yes. As a preliminary step in this direction 
we introduce a new function. Assume for simplicity that the total 
probability 1 is contained in a finite interval, say from A to B on the 
x axis (Fig. 13.9). This means that 

B 

J f(x)dx= 1. (13.11.3) 
A 

We consider the probability that the random variable X falls into an 
interval [A, x] where the upper bound x is variable. According to 
(13.11.1) this probability is 

x 

P(X~x)= J f(x)dx. 
A 
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It is somewhat confusing that x appears as the variable of integration 
and, at the same time, as the variable upper limit of the integral. There
fore, we change the notation of the variable of integration and choose t 
instead of x (cf. formula (9.5.12)). The probability P(X ~ x) is a function 
of x and will be denoted by F(x). Our formula may then be rewritten 
in the form 

x 

F(x) = P(X ~ x) = J f(t) dt . (13.11.4) 
A 

~.=-.... 
A x B 

Fig. 13.9. The distribution function of a continuous probability distribution 

The new function F(x) is called the distribution function. It has the 
following properties: 

a) F(A) = 0 by virtue of (13.11.2), 
b) F(B) = 1 by virtue of (13.11.3), 
c) F(x) is monotone increasing from A to B. 

From formula (9.5.10) we know that integration and differentiation 
are inverse operations. Hence, formula (13.11.4) implies that 

F'(x) = f(x), (13.11.5) 

that is, the probability density function is the derivative of the distribution 
function. Thus the probability density function is the derivative of the 
probability associated with the interval [A, x]. 

The knowledge of the distribution function F(x) is quite helpful in 
all applications of probability theory and statistics. For instance, if 
[a, b] denotes an interval of the x axis which belongs to [A, B], then we 
get 

P(X ~a) =F(a), 

P(X ~ b) = F(b) , 

P(a < X ~b)=P(X~b) - P(X ~a), 

P(a < X ~ b) = F(b) - F(a)12 . 

The result is depicted in Fig. 13.10. 

(13.11.6) 

\2 Since for a continuous distribution P(X=a)=O and P(X=b)=O, we may also 
write P(a<X <b)=F(b)-F(a) or P(a~X ~b)=F(b)- F(a). 
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8 

Fig. 13.10. Calculation of P (a < X ~ b) 

Examples: 
a) The Uniform Distribution. In a study of animal behavior, birds 

were released one at a time under circumstances that made orientation 
very difficult. It was expected that the birds would choose random 
directions. What do we mean by "random" in this connection? 
Directions may be defined by the azimuth rx, that is, by the angle between 
north and the direction measured clockwise. The direction is said to 
be random if each azimuth from 0° to 360° has the same chance of 
being chosen, or more precisely, if each azimuth has the same proba
bility density. The probability density function f(rx) is therefore a con
stant over the interval [0°,360°]. Since the area between the interval 
[0°,360°] and the graph of f(rx) must be 1, the constant value of f(rx) 
is 1/360 (Fig. 13.11). According to (13.11.4) the distribution function is 

a 1 
F(rx) = ~ 360 dt = rx/360 (0 ~ rx ~ 360°) . 

The example can be generalized for any finite interval [A, B] of the 
x axis. A distribution with constant probability density is called a 
uniform distribution. 

b) A Special Normal Distribution. Many distributions are bell-shaped 
and fairly symmetric with respect to the mean. A frequently used 
theoretical model for this kind of distribution is defined by the density 
function 

(13.11.7) 

f( a ) = 1/ 360 

, 
F( a )~ 

a 3600 

Fig. 13.11. The uniform distribution defined over the interval [0°, 360°] 
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We have introduced the exponential function in Chapter 10. Notice 
that the exponent - x 2/2 is negative and that x is squared. The 
coefficient of the exponential function is (2n)-t = 1~ = 0.39894. The 
function (13.11.7) is defined for the whole real axis. 

We add a few statements which we cannot prove in this book: 
1) The total probability equals 1 as required, that is, 

00 00 

S f(t)dt=(2n)-t S e- r2 / 2 dt=1. 
-00 -00 

2) The mean or the expectation of the distribution equals O. 
3) The standard deviation equals 1. 

, 2 

.1 

o 

Fig. 13.12. The normal distribution with mean zero and standard deviation one 

This distribution is called the normal or Gaussian 13 distribution with 
mean zero and standard deviation one. A graph of the density function 
(13.11.7) is shown in Fig. 13.12. The density function reaches only one 
maximum. We say that the distribution has only one mode or that it is 
unimodal. 

Since the normal distribution ranges from - 00 to + 00, it does not 
appear to be a distribution suitable for applications in the natural 
sciences. No real quantity can reach an infinite value. However, we 
should judge the normal distribution from a different point of view. Due 
to the exponential function in (13.11.7) the density function f(x) tapers 
off very fast as Ixl increases. The probability of a value outside of the 
interval [ - 3, + 3] is 0.0027, and of a value outside of [ - 4, + 4] only 
0.00004. Such an event is practically impossible. 

13 The normal distribution was introduced long before C. F. Gauss (1777-1855) 
brought the distribution into general use in applied mathematics. Cf. last footnote in 
this section. 
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The normal distribution function is denoted by <P(x) and according 
to (13.11.4) defined by 

x 

<P(x)= J (2n)- t exp(-t 2/2)dt. ( 13.11.8) 
-00 

This integral cannot be expressed by a finite number of functions that 
are known to us. Fortunately, there are tables available containing 
numerical values of <P(x) and of <P'(x) (see references at the end of this 
chapter). 

Fig. 13.13. Graphs of the normal distribution with means JJ." JJ.2 and standard deviations 
0'" 0'2' respectively. Geometrically, the standard deviation is the horizontal distance 

from the mean to one of the points of inflection (ef. Problem 13.34) 

c) The General Normal Distribution. The graph in Fig. 13.12 may be 
"squeezed" or "stretched" to get a standard deviation that differs from 
one. It may also be shifted along the x axis to provide for a mean 
value J1 which differs from zero. The new density function is 

(13.11.9) 

Again we omit the proof since it would require tools which go beyond 
the scope of this book. The density function (13.11.9) is plotted in 
Fig. 13.13 for two different values of the mean and two values of the 
standard deviation. The two graphs have different heights since the 
area between the x axis and each graph must be one. 

Numerous quantities in the natural sciences seem to be normally 
distributed, and many statistical procedures are based on the assumption 
of underlying normal distribution. The question arises: Is the frequent 



Continuous Distributions 395 

occurrence of the normal distribution a purely empirical fact, or has it a 
theoretical basis? 

To answer this question let us first consider an example: the height 
of adult persons. It is well-known that the body height is essentially 
determined by genetic factors. There is good reason to assume that 
several genes located at different loci contribute to the body height. 
Some of them are sex-related. Each gene depends on chance. Before 
and after birth many other factors also contribute to the body height. 
Such factors are nutrition, environment, health status, work, and 
exercise. Some of the many genetic and nongenetic factors tend to 
increase, some to decrease the height. Most of the factors act in
dependently. Now we form a mathematical model for the height of adult 
persons. Denote the height by H and the contributions of various 
factors to H by Xl' X2 , X 3 , ..•. Then 

(13.11.10) 

The height H as well as the components Xi are random variables. We 
do not know the distributions of Xl' X2 , ... in detail. Some of the 
components may take on only positive or only negative values, others 
may be capable of both signs. We merely know from experience that all 
these components are reasonably limited in size. We may think that in 
the absence of any precise knowledge very little can be said about the 
distribution of H. Surprisingly, this is not the case. Mathematicians are 
able to prove that the distribution of H is approximately normal. 

In this connection the so-called central limit theorem states 14: 

Let Xl' X 2 , X 3 , ••• be an infinite sequence of random variables. 
Assume that 

a) Xl> X 2 , X 3 , .•• are mutually independent, 
b) each Xi takes on only values from a finite interval [ -A, A] where 

A denotes a constant, 
c) the sum of variances 

n 

L Var(Xi ) = ai + a~ + ... + a; 
i=l 

tends to infinity as n -+ 00. 

Then the distribution of the partial sum 

Sn=Xl +X2 +X3 + ... +Xn 

tends to the normal distribution as n-+ 00. 

(13.11.11) 

14 The central limit theorem has been proven under a variety of assumptions. We 
have chosen a form which seems to be especially useful for applications in the natural 
sciences. 



396 Probability 

Let us consider this basic theorem and its consequences in detail. 
The assumption (a) is not always satisfied in applications. In the 
example of body height, there might be some interaction between genetic 
factors or between environmental factors. With regard to assumption (b), 
there is no difficulty whatsoever since there is no restriction imposed 
on the size of A, and since all quantities in the natural sciences are 
necessarily finite. Assumption (c) implies that there are infinitely many 
components whose variances are not too small. This assumption is 
hardly ever violated in the natural sciences. A restriction is imposed 
by formula (13.11.11): The components Xi are assumed to be additive. 
This assumption need not be satisfied. We may for instance think of 
components which must be multiplied. 

0 
0 

• • • • • o · • • • • • 
• • • • • i> • • • • 

• • • • ~ 9 ~~ . • • • • 
• • • ~ • • • • 

• • • • ~ ~ ~ ~ • • • 
• • • IJ o. ~o. • • • • 

• • ~ • tI:> o . o~ • • • 0 9 ~o 9 • • • • • • • 
9 ~ 

0 9 • • • • • • • • 
0 

0 0 

Fig. 13.14. The Galton board. Through a funnel small balls (e.g. shot) enter a board 
which is inclined to the horizontal. On their way down, the balls strike nails which are 
placed on the board in many rows. Each ball is deviated either to the right or to the left 
whenever it collides with a nail or another ball. At the foot of the board are many equally 
spaced compartments which collect the balls. The compartments near the center receive 
the most balls. To the sides the frequency tapers otT. The distribution resembles closely 
a normal distribution. The reason is the joint etTect of a large number of independent 
random deviations Xi imposed on the balls. The distribution of a single random 

variable Xi is not known 
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Notice that the components may have discrete or continuous 
distributions. Some of the components may have symmetric, others 
skew distributions, some either unimodal or multimodal distributions. 
Whatever the distributions of the components may be, the result is 
always the same: With increasing n, the distribution of Sn approaches 
a normal distribution. The central limit theorem was first proved by 
Ljapunov 15. 

% 
20 

10 

Fig. 13.15. Binomial distribution with probability of success p = 0.3 and number of 
trials n = 20. The abscissa k denotes the number of successes. As n increases, the 

binomial distribution approaches a normal distribution (de Moivre) 

The frequent occurrence of distributions that resemble the normal 
distribution is attributed to the central limit theorem. A model 
experiment for this theorem is the Galton board 16 as shown in Fig. 13.14. 

Finally, let us apply the central limit theorem to formula (13.9.5) 
for the number of successes in n Bernoulli trials. The random variables 
Xl' Xz, ... , A:. take on the values 0 and 1 only and are mutually in
dependent. All assumptions of the central limit theorem are satisfied. 
Hence, the distribution of Sn, known as binomial distribution, tends to 
the normal distribution as n tends to infinity. This particular result was 
found by de Moivre back in 1733 17. Fig. 13.15 depicts a binomial 
distribution with probability of success p = 0.3 and n = 20 trials. We see 

15 Alexander Michailowicz Ljapunov (1857-1918), Russian mathematician. 
16 Sir Francis Galton (1822-1911), English explorer, meteorologist, anthropologist, 

geneticist, and statistician. 
11 Abraham de Moivre (1667-1754), English mathematician of French origin. 

He was among the first mathematicians who knew the normal distribution. 
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that the distribution is slightly skew, but with increasing number of 
trials the skewness will disappear. 

Recommended tables: 

a) Binomial Distribution. National Bureau of Standards (1950): 
seven decimal places, n ranging from 2 to 50, p in steps of 0.01. 
Individual and cumulative terms. 
Romig (1953): six decimal places, n ranging from 50 to 100, p in 
steps of 0.01. Individual and cumulative terms. 

b) Poisson Distribution. Beyer (1966): four decimal places, m ranging 
from 0 to 10. Individual and cumulative terms. 
Pearson and Hartley (1966): six decimal places, m ranging from 
o to 15 in steps of 0.1. 
General Electric Company (1962): eight decimal places, m ranging 
o to 205. Individual and cumulative terms. 

c) Normal Density and Distribution Functions. Beyer (1966): four 
decimal places. 
Diem (1962): five decimal places. 
Pearson and Hartley (1966): seven decimal places. 
National Bureau of Standards (1942): fifteen decimal places. 

Recommended for further reading: 

Feller (1968); Gelbaum and March (1969); Goldberg (1960); 
Gnedenko and Khinchin (1961); Hammond and Householder (1963); 
Hodges and Lehmann (1964); Lefort (1967); Mosimann (1968); Mostel
ler, Rourke, and Thomas (1961); c. A. B. Smith (1969, Vol. 2). 

Problems for Solution 

13.1. For the systolic blood pressure of a person we may distinguish 
between the following three cases, called simple events: 

A: blood pressure less than 120 mm, 
B: blood pressure between 120mm and 150mm, 
C: blood pressure above 150 mm. 

The outcome space is {A, B, C}. List all possible compound 
events. 

13.2. For the sex distribution in families with two children, what are 
the intersection and the union of the two events "first child a 
boy" and "second child a boy"? (Hint: Consider the outcome 
space {BB, BG, GB, GG}). 
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13.3. Let x denote the variable weight of glucose in 100ml of blood 
plasma and let Xo and Xl be two fixed values (xo < Xl). Define 
the following four events: 

Which of the events are mutually exclusive? 

13.4. In an experiment 14 out of 20 animals react positively. What 
are the relative frequencies of this event and of the com
plementaryevent? 

13.5. A roulette wheel has 37 positions numbered 0,1, ... ,36. Assume 
that the ball comes to rest at each position with equal 
probabilities. What is the probability 
a) of an even number, 
b) of a number greater than 30, 
c) of a number which is at most 10? 

13.6. At a certain gene locus two alleles C and D can occur. Assume 
that the possible genotypes have the following probabilities: 

P(CC)=0.46, P(CD)=0.31, P(DD)=0.23. 

What is the probability that a genotype contains 

(a) the allele C, (b) the allele D? 

13.7. Let A and B be two events belonging to the same outcome 
space. Show that 

P(A) + P(B) = P(A uB) + P(A nB) . 

13.8. Assume that the sex ratio is 1: 1. It is known to us that a 
certain family has two children and that one of the children is a 
girl. What is the probability that the other child is also a girl? 
(Hint: assign conditional probabilities to the outcome space 
{BB, BG, GB, GG}). 

13.9. In the preceding problem, assume that the family has three 
children and that one of them is a girl. What is the probability 
that the other two children are a) both boys, b) both girls? 

13.10. Using Table 13.1 in Section 13.5 find the probability that 
a) a ten year old child will die during his second decade, 
b) a fifty year old person will live for at least another decade. 
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13.11. In a bag there are, well mixed, three red balls and five white 
balls. What is the probability of drawing red balls in both a 
first and a second trial? (Notice that the first ball drawn is not 
replaced). 

13.12. Assume that the occurrence of deafness is independent of sex. 
Calculate the four missing probabilities in the following table: 

male 
female 

total 

Deaf 

0.005 

Not deaf 

0.995 

Total 

0.527 
0.473 

1.000 

13.13. At a locus of a certain pair of chromosomes the alleles A and 
a may occur. The genotypes AA, Aa, aa have the probabilities 

PAA=0.11, PAa = 0.37 , Paa=0.52. 

At a locus of another pair of chromosomes the alleles Band b 
may occur. The genotypes BB, Bb, bb have the probabilities 

PBB = 0.35 , PBb = 0.25, Pbb = 0.40. 

Find the probabilities of the gene combinations a) AA together 
with bb, b) Aa together with Bb. 

13.14. A beam of neutrons irradiates two layers of tissue. The proba
bility that a neutron is absorbed by the first layer is 8 % and the 
probability of absorption by the second layer (after passage 
through the first layer) is 15%. What is the probability that a 
neutron passes through both layers? 

13.15. Assume that two events A and B are independent. Show that 
A and B are also independent. (Hint: Prove that P(BI A) = P(B).) 

13.16. The ABO-blood groups are determined by three alleles a, b, 0 

at the same gene locus. Assume that the father is of genotype 
ao and the mother of genotype boo What is the probability that 
a child is of genotype a) ab, b) ao, c) bo, d) 00, e) aa? 
(Cf. Section 3.2.) 

13.17. In a human population, let p, q, r be the probabilities of the 
alleles a, b, 0, respectively (p + q + r = 1). Assume random mat
ing. What is the probability of each of the genotypes 00, ab, 
ao, aa, bo, bb? Calculate the results for the numerical example 
P = 29 %, q = 7 %, r = 64 %. 
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13.18. In the preceding problem there are only four phenotypes: 

1. blood group 0 (genotype 00), 

2. blood group AB (genotype ab), 
3. blood group A (genotypes aa and ao), 

4. blood group B (genotypes bb and bo). 

Let Pl' P2' P3' P4 be the probabilities of these four blood groups, 
respectively. Verify the formulas 

Pl + P3 = (r + p)2 = (1 - q)2 , Pl + P4 = (r + q)2 = (1 _ p)2 . 

13.19. Calculate 

a) 7!/6! 
d) 9!/10! 

b) 6 !/6 c) 8!/6! 

t) 0!/1! e) 7 !j(3!4!) 

13.2l. Five animals are assigned five different treatments. In how 
many ways can this be done? 

13.22. Inbred mice are used for an experiment. Out of a total of 
38 mice three mice are selected. How many such selections are 
possible? 

13.23. In a study of behavior four animals are assigned one of six tasks. 
In how many ways can this be done if the same task can occur 
a) repeatedly, b) only once? 

13.24. Consider an experimental colony consisting of ten worker 
bees and a queen. In how many ways can a group of four bees 
be chosen if a) the queen must belong to the group, b) the queen 
must not belong to the group? 

13.25. Generalize the preceding problem for a colony consisting of n 
worker bees and one queen. The group to be selected should 
contain k bees. With the result conclude that 

13.26. Using the binomial theorem (13.7.12) expand the following 
expressions: 

a) (1 + X)4 

c) (2 + p)5 

b) (1 - X)4 

d) (z +t)3 
(Hint: let a= 1 and b= -x) 
e) (a+l)6-(a-l)6. 
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13.27. Show that 

a) (~) + G) + (;) + ... + (:) = 2n , 

b) (~) - (~) + (;) - ... ± (:) = O. 

(Hint: expand (1 + It and (1 - In 

13.28. Assume that the sex ratio is 1 : 1. What is the probability that 
a family with five children has a) 2 boys, 3 girls, b) no girls, 
c) at least one boy, d) at most two boys? 

13.29. Two hundred families with three children are sampled at 
random. How many families do we expect with a) no girl, 
b) one girl, c) two girls, provided that the sex ratio is 1 : I? 

*13.30. A random variable X can take on the three values 1,5, and 10 
with probabilities 0.5, 0.3, 0.2, respectively. Find the mean value 
and the standard deviation of X. 

*13.31. A certain treatment is able to immunize 78% of rabbits against 
a disease. A new sample of 50 rabbits is tested. Let X denote 
the number of animals that will become immune. What are the 
expectation and the standard deviation of X? 

* 13.32. Ten experimental rats move "randomly" on a floor which is 
subdivided into six quadrats of equal size numbered 1,2, ... ,6. 
A picture is taken. a) What is the probability that exactly three 
rats are found in quadrat No.1? b) How many quadrats are 
expected to have 0, 1,2, etc. animals according to formula 
(13.1O.5)? 

*13.33. A hundred birds are given a chance, one at a time, to select 
between twenty like cages which are arranged in a circle. We 
assume that the birds have no directional preference. What is 
the probability that a specific cage is chosen 0, 1,2, ... times? 
(Hint: use the Poisson distribution.) 

*13.34. By means of the second derivative determine the points of 
inflection of the probability density function (13.11.9). 



CHAPTER 14 

Matrices and Vectors 

14.1. Notations 

In the last decade matrices have become indispensable in various 
applications of mathematics to biology, especially in statistics. We will 
deal with such applications in Section 14.3. 

An important special case of matrices is vectors. We will concentrate 
on vectors and their many applications to life sciences at the end of this 
chapter. 

Prerequisites for understanding this chapter are Chapters 1, 2, 3 
and 5. 

Matrices are rectangular arrays of numbers. Thus for simultaneous 
equations such as 

(14.1.1) 

we may form three matrices 

(14.1.2) 

The first matrix contains the known coefficients of x, y, z in their proper 
order. The second matrix contains the unknown quantities, and the last 
matrix the known quantities on the right side of the equations. 

In a similar way we may form matrices for other types of equations 
such as 

or 

dy 
Yt=cx+dy. 
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It does not matter whether matrices are written with parentheses, 
brackets, or braces. Thus by 

we mean the same thing. However, matrices should not be confused with 

symbols of a similar kind. For instance, (~) may be a binomial coefficient 

as defined by (13.7.8) or (13.7.11) rather than a matrix. The symbol 

with vertical bars does not stand for a matrix, but for the quantity 
ad - bc. This symbol is called a determinant. In this introductory book we 
will not advance to the theory of determinants although determinants 
playa decisive role in matrix theory. 

A useful notation is double subscripts. Suppose a research worker 
performs an experiment repeatedly under various conditions using 
different treatments. We denote the number of treatments by m and the 
number of measurements at each treatment by n. If nand m are not 
particularly small, the alphabet would not contain enough letters to 
denote the single measurements, nor would single subscripts such as in 
Xl' X2' ... be helpful. It is convenient to introduce a second subscript. 
Thus by 

X23 (read:x two, three) 

we mean the third measurement of the second treatment. The measure
ments form the matrix 

Treatment No. 

1 
2 

m 

Measurement No. 
2 3 ... n 

( ~.~ ~ ............ ~~~ ............. ~~.~.::: .~~.~) 
X m1 Xm2 Xm3 ... xmn 

Each X is called an element or a component of the matrix. The general 
element in the ith row and the jth columns is xij' The first subscript 
designates the row, the second the column in which the element is 
located. In our notation, i ranges from 1 to m, and j ranges from 1 to n. 

For brevity, matrices are denoted by single letters. This may cause 
some misunderstanding since letters frequently stand for single numbers 
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and not for arrays of numbers. Therefore, some distinction is desirable. 
In print, we use boldface letters as notations for matrices. For instance, 
we may write 

A=(~ 5 -1) 
7 2' 

For clarity, the number of rows and columns is often added to the 
notation. Thus, A is a "2 by 3" matrix and y a "3 by 1" matrix, symbolically 

A = A 2 x 3, Y = y3 xl. 

A matrix consisting of a single row or a single column is frequently 
called a vector for reasons that will be explained in Section 14.4. Thus 

is a row vector and 

(SI) 3 x 1 

s= S =:: 
a column vector. Notice that the elements of row vectors are often 
separated by commas. 

A matrix with as many rows as columns is said to be a square matrix. 
Examples are 

Q2XZ = ( 
10 

- 4 

The elements xu, XZ2' ... , Xnn (i = j) form the so-called main diagonal or 
simply the diagonal of xn x n. The other elements xij with i =1= j are either 
above or below the diagonal. They are the off -diagonal elements. Only 
square matrices have a diagonal. An n x n matrix is sometimes called a 
matrix of order n. 

14.2. Matrix Algebra 

The concept of a matrix would be trivial if it consisted merely in a 
notation for special arrays of numbers. The importance of matrices 
stems from the fact that very useful operations on matrices can be 
defined. 
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Two matrices are said to be equal if corresponding elements coincide. 
Equal matrices must have the same number of rows and columns. Thus 

implies that all = 1, a 12 =0, a2l = -2, a22 =0. Notice that 

To introduce the addition of matrices we consider an example: It is 
well-known that the ability to taste phenylthiocarbamide is inheritable. 
Tl-.e following sample was collected: 

Parental type Number of children 
taster non-taster 

taster x taster 88 13 
taster x non-taster 52 25 
non-taster x non-taster 0 19 

The data forms a 3 x 2 matrix which we denote by A. Later a larger 
sample was collected. With the same arrangement, the new matrix 
became 

(
122 18) 

B= 102 73. 
o 91 

It is quite natural to pool the data, that is, to add corresponding fre
quencies. This operation is known as addition of the two matrices. Thus 

(88 13) (122 18) (210 
A + B = 52 25 + 102 73 = 154 

o 19 . 0 91 0 

31) 98 . 
110 

In general, we can only add matrices that have the same number of 
rows and the same number of columns. Let 
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Then the sum of A and B is defined by 

A + B =(:.: ::.::: ... ::.::.::: ....... ::::. ~::). 
aml + bml am2 + bm2 ... amn + bmn 

(14.2.1) 

From formula (1.14.1) we conclude that matrix addition obeys the 
following laws: 

A + B = B + A (commutative law), 

A + (B + C) = (A + B) + C (associative law) . 

(14.2.2) 

(14.2.3) 

In particular, A + A leads to a matrix in which each element is doubled. 
It is natural to write 2A for this matrix. Similarly, let k be any number. 
Then we define 

(14.2.4) 

For k = - 1 we get (- l)A which will be denoted by - A. With this 
matrix, we may define matrix subtraction by 

B - A = B + ( - A) . (14.2.5) 

Less easy to learn is the multiplication of one matrix by another 
matrix. We consider first a special case, the multiplication ofa row vector 
by a column vector with equal number of components. Let 

A~(a"a" ... ,a.), B~m. 
Then the product of A and B is defined by 

AB=(albl +a2b2 + ... + anbn) = (tla;b} (14.2.6) 

The result is a matrix consisting of a single element, the number 
a l b 1 + ... + anbn. It is customary but strictly speaking not correct to 
interpret and to treat such a matrix as an ordinary number. As a con
sequence, the parentheses in (14.2.6) are usually omitted. For instance, 
assume that in a survey 88 families have no children, 217 families have 
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one child, and 370 families have two children. Then the total number of 
children follows by the matrix multiplication 

(88,217,370)· (D= 88 x 0 + 217 xl + 370 x 2 = 957. 

It is worth stating formula (14.2.6) in words: A row vector with 
components numbered 1, ... , n is multiplied by a column vector with 'com
ponents numbered 1, ... , n by multiplying equally numbered components 
and then adding the products. The result is a single number. Such a sum of 
products of corresponding components is often called an inner product 
of two vectors. A reader who is not familiar with this concept should 
work out a good number of self-made numerical examples before he 
proceeds with the text. 

Now we slightly generalize the rule by multiplying two matrices 
which we have already listed in formula (14.1.2): 

We calculate the inner products of each row of C with the column 
vector u and form a new matrix: 

Let us compare the result with formula (14.1.1). Using the notation 

d= (~J 
we get 

Cu=d. (14.2.7) 

This brief matrix equation is equivalent to the system (14.1.1) of simul
taneous equations. 

In general, let 
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Then we form the inner products of each row of A with each column of B. 
The rule of thumb 

I row by column I 
has to be carefully observed. The first inner product is 

As we have m rows of A to multiply by n columns of B, we get mn entries 
for the product matrix. The product of A and B is therefore an m x n 
matrix which we denote by e = em x n. Hence 

(14.2.8) 

The inner product of the ith row of A and the jth column of B stands 
at the intersection of the ith row and the jth column of C. Thus this 
element is 

In order that two matrices can be multiplied by each other we require 
that the number of columns of the first matrix correspond to the number 
of rows of the second matrix. Thus, in formula (14.2.8), A has r columns 
and B has r rows. When this requirement is not satisfied, we cannot form 
the inner products, and therefore no matrix product exists. 

A numerical example may be useful at this point: 

( 3 0 2) (~ 
-1 3 5 

1 
~ _!)=(26 
2 0 0 

The elements of the product matrix are 

3 x 8 + 0 x 1 + 2 x 1 = 26 , 

3xO+Ox7+2x2=4, 

4 15) 
31 -14 . 

3 x 5 + 0 x ( - 3) + 2 x 0 = 15 , 

(-1) x 8 + 3 x 1 + 5 xl = 0, 

(- 1) x 0 + 3 x 7 + 5 x 2 = 31, 

( - 1) x 5 + 3 x ( - 3) + 5 x 0 = - 14 . 
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In searching for laws of multiplication we easily detect that the 
commutative law cannot be valid. For instance, if 

A~(a"a"a,), B~(H 
we get as in (14.2.6) 

whereas 

Hence, 

(14.2.9) 

The associative law, however, is valid: 

A (B C) = (A B)C . (14.2.10) 

We omit the proof since it is rather cumbersome. We confine ourselves 
to working out an example. Let 

u=(;), u'=(x,y), A=(~ ~). (14.2.11) 

The matrix u' is a row vector containing the same components in the 
same order as the column vector u. The matrix A is square, that is, it has 
the same number of rows and columns. We now form the product 

u' A = (x, y)(~ ~) = (ax + cy, bx + dy) 

and multiply the result by u from the right: 

(u' A)u = (ax + cy, bx + dY)(X) = ax2 + cxy + bxy + dy2. (14.2.12) 
y, 

According to the associative law we could have obtained the same result 
by first forming A u and then multiplying from the left by u'. Indeed, 

AU=(~ ~)(;)=(~~:~~), 
u'(A u) = (x, y)(ax +dbY) = ax2 + bxy + cxy + dy2 

cx+ Y 



Matrix Algebra 411 

which coincides with (14.2.12). The example is also of interest from a 
different point of view. It shows that quadratic functions can be written 
as matrix products. For a similar example see Problem 14.5. 

Finally, we will search for a law connecting addition and multiplica
tion. For ordinary numbers we know the distributive law (see formula 
(1.14.3)). Fortunately, the same law is also valid for matrices: 

A(B+C)=AB+AC. (14.2.13) 

Again we omit the proof since it would be lengthy. An example is given 
in Problem 14.6. 

In (14.2.11) we defined two vectors u and u' with the same elements 
in the same order. The row vector u' is called the transpose of the column 
vector u. In matrix algebra it frequently occurs that we have to change 
columns into rows or rows into columns. Thus 

is defined to be the transpose1 of the matrix C used in (14.2.7). The 
forming of a transpose is an operation on matrices which does not occur 
in ordinary numbers. Notice that a second application of this operation 
generates the original matrix: 

(C)' = C. (14.2.14) 

It is easy to prove that if A and Bare m x n matrices, then 

(A + B)' =A' +B'. 

The transpose of a square matrix is again square. Thus 

~ ~). 
o -1 

The diagonal elements 3, 4, -1 do not change their position. 
A square matrix is called symmetric if it is equal to its transpose. Thus 

(7 0 5) 
M= 0 3-2 

5 -2 0 
is symmetric since M' = M. 

1 Some authors prefer the notation CT to C. Occasionally, other notations, such as 
'C, are also used. 
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A very special case of a symmetric matrix is the so-called unit matrix 
or identity matrix 

(
1000) o 1 0 ... 0 

I=r
X

"= ~ ... : ... ~.::: .. ; (14.2.15) 

whose diagonal elements are 1 and whose off-diagonal elements are O. 
The name stems from the fact that any matrix with an admissible number 
of rows or columns is reproduced when multiplied by I. For instance, 
using C from (14.2.7) we get 

and 

(
1 0 

IC' = 0 1 
o 0 

Notice further that if I is the identity matrix of order n and A is any 
square matrix of order n, then IA = Al = A. In other words, the identity 
matrix commutes with any other square matrix of the same order. 

14.3. Applications 

a) Population Dynamics. In Section 11.3 we have studied a deter
ministic birth and death process. In this model we did not account for 
the fact that the birth and death rates are dependent on the age of indi
viduals. 

Lewis (1942) and Leslie (1945) introduced a deterministic model 
which takes the age structure of the population into consideration. To 
simplify the mathematical treatment, we consider the birth and death 
process in steps of constant duration. Let LI t be a suitably chosen time 
interval. For a human population we may choose LI t = 5 years or, for a 
more precise analysis, LI t = 1 year. With the chosen value of LI t we con
sider the age structure of the population at times t = 0, LI t, 2L1 t, etc. We 
also introduce age groups x = 0, 1,2, ... : Group x = 0 contains the ages 
from 0 to LI t, group x = 1 the ages from LI t to 2L1 t, group x = 2 the ages 
from 2L1 t to 3 LI t, etc. The last possible age group is denoted by x = m. 
Notice that the group interval has the same length as the interval between 
consecutive time instants of the population. 
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In a bisexual population we need only consider the females. The age 
structure of the males is of minor importance. 

At times t = 0, t = ,1 t, t = 2,1 t, ... the size of the female population is 
represented by the vectors 

(
nOO) (no) (n02) n10 nll n12 

no = ~20' n1 = ~21' n2 = ~22 , ... 

nmO nm nm2 

(14.3.1) 

respectively. Here, nxk designates the number of females of age group 
x at time t = k . ,1 t. 

Let F 0, F 1, F 2, ... , F m be the average number of daughters born to a 
female of age group 0, 1, 2, ... , m, respectively. The females may not be 
reproductive at all ages. There may exist a prereproductive and a post
reproductive phase. Thus, some of the F x' say F 0' F 1 and F m' may be 
zero. The total number of daughters born during the first time interval 
from t = 0 to t = ,1 t is then 

(14.3.2) 

Now we assume that by F 0, F l' F 2, ... we have only counted those 
daughters that survive until the time interval has passed in which they 
were born. At the end of this interval they will all be considered as of age 
O. Hence, the number nOI of females of group 0 at time t =,1t is equal to 
the result in formula (14.3.2). 

By P x we denote the probability that a female of age group x survives 
and will enter the age group x + 1. Hence, for x = 0,1, ... , m - 1 we obtain 

(14.3.3) 

Notice that Pm=O. In the special case k=O we get PxnxO=nx+l,l' 
The transition of the population from t = 0 to t = ,1 t may be summa

rized by matrix multiplication as follows 

(f.: .... f:.· .. ~~~' .. y) (::: ~(:::), 
o 0·· . Pm -1 0 nmO nm 1 

or in matrix notation 

MnO=nl 
where M denotes the first factor in (14.3.4). 

(14.3.4) 

(14.3.5) 
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Assuming that Fx and Px remain constant as time advances, we may 
repeat the same procedure. Thus 

It follows that 

and by induction that 

(14.3.6) 

Given the initial population size and age structure and given the 
so-called projection matrix M, we can calculate size and age structure 
of the future population by (14.3.6). Given no only, we may ask: What 
properties must M have if the population is to be stable in size, that is, 
if no = n t = n2 = ... ? We leave it to the reader to answer this question. 

We may also be interested in a stable age distribution. By this notion 
we mean constant proportions between different age groups. This 
question leads to the equation 

(14.3.7) 

where A denotes a positive number which accounts for possible popula
tion growth. If we are given M, the solution of (14.3.7) for nk and A 
requires advanced tools of matrix theory such as the concept of character
istic equation of a matrix. However, this would go beyond the scope of 
our book. 

For more details and for recent advances related to this sort of 
population dynamics see Goodman (1969), Keyfitz (1968), Leslie (1945, 
1948, 1959), Lopez (1961), Pielou (1969), J. H. Pollard (1966), Searle 
(1966), Skellam (1967), Sykes (1969). 

b) Ecology. The following example is adapted from Thrall, Mortimer, 
Rebman, and Baum (1967, PL 5). 

In a particular ecological system we subdivide the species into the 
following three categories: 

1. Vegetation providing food for herbivores. The different species 
of plants are denoted by P t, P2' ... , Pr . 

2. Herbivorous animals feeding on the plants described in 1. The 
different species of herbivores are denoted by at, a2 , ... as. 

3. Carnivorous animals living on herbivores as described in 2. The 
different species of carnivores are denoted by c t , c2 , ... , Ct. 

We may ask: What is the amount of plant Pi that is eaten indirectly 
by carnivore cj during a particular season? To answer this question we 
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introduce the following matrix X: 

PI 
pz 

Pr 

(

Xli X12·" Xl ') 

X.~~ ••••. ~.~~ ......... ~.~~ =X 
X r1 Xr2 ··· Xrs 
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(14.3.8) 

Here X11 denotes the average amount (in g or kg) of plant Pl eaten by 
each individual of species a l during the season. Generally, Xik is the 
average amount of plant Pi eaten by each individual of species ak • 

We also define a matrix Y: 

CI Cz •.• c, 

(14.3.9) 

as 

Here Y11 denotes the number of animals of species a l devoured by all 
individuals of species C 1 together. Generally, hj is the number of animals 
of species ak devoured by carnivore cj during the season. 

Consider now the animals of species C l. By feeding on species a 1 they 
consume indirectly the amount x 11 Y 11 of plant Pl. By feeding on species 
a2 they consume X 12 Y2l of plant Pl' etc. The total amount of plant Pl 
consumed by carnivore C 1 is therefore 

X 11 Y11 + X12Y21 + X13Y31 + ... + X1sYsl • 

The result is an inner product, more precisely, the first row of X multiplied 
by the first column of Y. The result can be quickly generalized. The 
amount of plant Pi consumed indirectly by carnivore cj is the product of 
the ith row of X and the jth column of Y. We get all particular results 
from the matrix product 

XY. (14.3.10) 

This answers our question. 

c) Genetics. Consider a particular gene locus with possible alleles 
A and a. Assume that in a population the allele A is present with probabili-
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ty p and the allele a with probability q = 1 - p. Let RI and R2 be two 
relatives for whom we know for sure that they have one allele in common. 
The relatives could be parent (R 1) and child (R 2 ) or, in the reverse order, 
child (R 1) and parent (R 2). We are interested in the probability of a 
certain genotype for R2 given the genotype of R 1• The results are anti
cipated in the following matrix which we denote by T: 

Genotype Genotype of R2 
ofR. AA Aa aa 

AA 

(~p 
q 

!q) Aa ! =T (14.3.11) 
aa 

p 

If RI is of genotype AA, then R2 must have the allele A in common 
with R1 . Since the second allele is independent of the known allele, this 
second allele is either A with probability p or a with probability q. The 
relative R2 cannot be of genotype aa. These arguments prove the first 
row of T. 

If RI is of genotype Aa, then R2 must have either the allele A or the 
allele a in common with R1 , either one with probability t. Since the second 
allele is independent of the first allele, this second allele is either A with 
probability p or a with probability q. Hence R2 is of genotype AA with 
probability !p, of genotype Aa with probability !p+!q=!, or of 
genotype aa with probability !q. These arguments prove the second 
row of T. The proof of the third row is quite analogous. 

Now we go a step further and investigate the relationship between 
grandparents and grandchildren. Assume for instance that a grandparent 
is of genotype AA. Then we easily derive the probabilities for the different 
genotypes for the grandchildren by the same method: 

children 

grand
children 

Grandparent 
AA 

~I~ 
AA Aa aa 
p q 0 

/I~ /I~ /1'\ 
AA Aa aa AA Aa aa AA Aa, aa 
p . p p. q p . 0 q .!p q.!- q . !q 0·0 O· pO· q 
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Hence, for grandchildren 

P(AA) = p. p+ q. ip+o· 0, 
P(Aa) =p·q+q·i +O·p, 
P(aa) = p . 0 + q . iq + o· q . 
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These expressions can be interpreted as "first row of Tmultiplied by the 
first, second, third column of T, respectively". In general, we get the 
probabilities of the genotypes AA, Aa, aa for grandchildren simply by 

TT= T2. (14.3.12) 

The result can be written in the form 

pq+iq 
pq+i 
tp+pq 

(14.3.13) 

Proceeding to great-grandchildren we would have to elaborate the 
matrix multiplication by considering 

TT2= T3. (14.3.14) 

Li (1958, Chap. 3) shows that by introducing two other matrices the 
burden of matrix multiplication can be substantially reduced. In addition, 
with his so-called ITO-method it is easy to get corresponding results for 
relationships such as sib-sib, sib-half sib, uncle-nephew, cousin-cousin 
(cf. Problem 14.9). 

d) Statistics. Matrix algebra is indispensable in such areas as multi
variate statistical analysis, design of experiments, and the analysis of 
variance and covariance. 

To give an idea of such a statistical application we consider a re
gression model. Suppose that we are given a scatter diagram consisting 
of points (Xi' Yi), i = 1,2, ... , n where Xi and Yi are measurements. Suppose 
further that the dots are close to a certain curve and that we want to fit 
a quadratic parabola. The equation is 

(14.3.15) 

where the constants a, b, c are unknown. The coordinates Xi' Yi of the 
dots do not exactly satisfy an equation of type (14.3.15). Therefore, we 
write 

Yi=a+bxi+cx~+ei (i=1,2, ... ,n) (14.3.16) 

where ei is an error term. The system of Eqs. (14.3.16) may be written in 
matrix notation in the form 

y=Xb+e (14.3.17) 
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by introducing the matrices 

(
Yl) (1 Xl X~) a (el) 
Yz 1 Xz Xz ( ) ez 

y=: ' X= ............ ~. ' b= :' e=: .(14.3.18) 

Yn J Xn Xn en 

The Eq. (14.3.16) are linear in the unknown coefficients a, b, c. Hence we 
call (14.3.16) or (14.3.17) a linear model. 

To find suitable coefficients we apply the method of "least squares". 
We minimize the sum of squares of errors 

(14.3.19) 

In view of formula (14.3.17) this means that the unknown coefficients 
a, b, c are determined in such a way that 

e' e = (y - X b)' (y - X b) (14.3.20) 

takes the smallest possible value. The solution can be found by methods 
of matrix algebra. Or we may apply differential calculus (cf. example at 
the end of Section 12.3.) For a full treatment of this problem we refer 
the reader to books on statistics. 

14.4. Vectors in Space 
We have defined vectors as row and column matrices. Vectors with 

two or three elements can be interpreted geometrically. On the one hand, 
this interpretation provides for a better understanding of matrix opera
tions. On the other hand, geometrically interpreted vectors can be 
applied to various problems of life sciences. 

We first consider a rectangular xy-coordinate system in the plane. 
Let (x, y) be an arbitrary point in the plane. With the point (x, y) we 
associate a directed line segment, also called an arrow. Its tail is at the 
origin 0 of the coordinate system, and the tip coincides with the point 
(x, y). Let a be the column vector 

a = (;). (14.4.1 ) 

Then there is a one-to-one correspondence between the vector a and 
the arrow described above. It is customary to use the word "vector" for 
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both the matrix a and the arrowz (see Fig. 14.1). We call x and Y the 
coordinates or the components of the vector a. Let 

a = (Xl) 
I YI' 

be two vectors. 
y 

x o x 

Fig. 14.1. A vector a is represented by an arrow with coordinates x, y 

I 
I ---I 

I 
I Yl 

I I 

(14.4.2) 

Fig. 14.2. The sum of two vectors a l and az is a vector which can be constructed by means 
of a triangle. The components of al + az are XI + X2 and YI + Yz 

We now try to find a geometric meaning for the vector sum 

(Xl + xz) al+aZ= + . 
Yl Yz 

(14.4.3) 

In Fig. 14.2 the three vectors ai' az, and a l + az are depicted. It is also 
shown how a l + a 2 can be constructed. For this purpose we move the 
arrow a2 temporarily, parallel to itself, so that its tail coincides with the 

2 The original meaning of "vector" was a directed quantity such as a force, a velocity, 
or an acceleration. Undirected quantities are called scalars. For instance, mass, density, 
and temperature are scalars. Later, the word "vector" was also used in the sense of a 
directed line segment or an arrow. In recent decades, the meaning has shifted again, 
namely to row and column matrices. Quite similarly we may call (x, y) either a matrix, 
a vector, or a point. In matrix algebra column vectors are preferred to row vectors. 
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tip of a1' Now the two arrows form a broken line. The sum a 1 + a2 is 
represented by the arrow which joins the origin 0 with the tip of the 
shifted arrow a 2 • The three vectors are said to form a vector triangle. 
Due to the commutative law of matrix addition we could also move the 
arrow a 1 so that it forms a broken line with arrow a2' 

It is easy to generalize vector addition to three or more vectors. If 
we have to add a 1, a2, ... , an' we form a broken line beginning with aI' 
say, then proceeding with the shifted arrows a2' a 3 , ••• , an' The arrow 
which joins the origin 0 with the tip of an represents the vector 

Q, 

o 
Fig. 14.3. The construction of a vector sum by means of a parallelogram. Line P I P3 is 

parallel to line OP2 , and line P2 P3 is parallel to line OP I 

a 1 + a2 + ... + an' In applications the sum is frequently called the 
resultant vector and the single vectors a1, a2, ... , an its components. 

Sometimes it is preferable to construct the sum of two vectors by 
means of a parallelogram. Fig. 14.3 explains the procedure. However, 
this construction is not practical for more than two vectors. 

Now we consider a multiple of a vector a. The geometric meaning of 

a+a=2a, 

a + a + a = 3 a , etc. 

is easy to understand (Fig. 14.4). We may also multiply a vector by a 
fractional number, say by 2/3, or by a negative number, say by - 2. 
According to the definition given in formula (14.2.4) we obtain 

ka = kG) = (~;). (14.4.4) 

Both coordinates, x and y, have to be multiplied by k (Fig. 14.4). 
Subtraction is defined by 

a - b = a + (- b), (14.4.5) 

that is, subtraction of b is equivalent to adding the opposite vector - b. 
Fig. 14.5 shows the construction and the geometric meaning of a-b. 
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Notice that 

a - a = (;)- G)= (~). (14.4.6) 

The result is called the zero vector. Both tip and tail of this vector fall 
into the origin O. This particular vector has no direction. 

Fig. 14.4. Multiplication of a vector 4 by a number k. If we multiply a vector by a positive 
number, its direction remains unchanged. However, mUltiplication by a negative number 

yields a vector pointing in the opposite direction 

a 
a-b 

o 

I 
I 
I 
la-b 
I 
I 
I 
I 

Fig. 14.5. The three vectors 4, 6, and 4-6 form a vector triangle such that 6 + (4 - 6) = 4 

Notice that we did not need to make an assumption about the units 
in which x and yare measured. All the preceding results remain valid if, 
for instance, x is measured in grams and y in seconds. This will no longer 
be true when we introduce the absolute value of a vector. From now on 
we assume that both coordinates x and yare measured in the same unit. 

We define the absolute value of a vector a = (;) by 

lal = V x2 + y2 . (14.4.7) 

If a is the zero vector, its absolute value is zero; otherwise the absolute 
value is a positive number. In the applications lal is also called the 
magnitude of the vector a. 
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In the special case where x and yare measured in a unit of length, 
then lal is the distance from 0 to the point (x, y) by virtue of the Py
thagorean theorem (Fig. 14.1). In such a case, lal is also called the length 
of the vector a. 

The absolute value of a vector could be calculated by matrix multi
plication. Let a' = (x, y) be the transpose of a. Then we form the inner 
product 

Hence, 

(14.4.8) 

More generally, let 

a = (Xl) 
1 Yl' 

be any two vectors. Then we may ask whether the inner product 

has any geometric meaning. Notice that 

(14.4.9) 

Fig. 14.6. Proof of formula (14.4.10a) 

This is the commutative law for the inner product. As we already know 
the commutative law is in general not valid for matrix multiplication. 
To approach geometry we consider first a special case. We assume that 
the arrowsa l and a2 are perpendicular (Fig. 14.6). The vectors al, a2, and 
a l - a2 form a right triangle and it follows from the Pythagorean theorem 
that 

(14.4.10a) 
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Notice that (14.4.10a) holds if, and only if, a1 and a2 are perpendicular. 
Applying formulas (14.4.8) and (14.4.9) we also get 

la 1 - a212 = (a 1 - a2)' (a 1 - a2) = (a'l - a~) (a 1 - a2) 

= a~ al - a~ a2 - a~ a1 + a~a2 (14.4.10b) 

= la l 12 + la212 - 2a'l a2 . 

Notice that (14.4.10b) holds whether or not a1 and a2 are perpendicular. 
Comparison of (14.4.10a) and (14.4.lOb) leads to 

(14.4.11a) 

Q, 

o 
Fig. 14.7. Proof of formula (14.4.12) 

Using coordinates we may also write 

I xl x 2+Y1Y2=O·1 (14.4. 11 b) 

This equation holds if, and only if, the two nonzero vectors a 1 and a 2 are 
perpendicular or orthogonal. The condition (14.4.11a) or the equivalent 
condition (14.4.11b) is therefore called the orthogonality condition. 

The result can be extended to the case where a 1 and a2 form an 
arbitrary angle DC (Fig. 14.7). We have to replace the Pythagorean theorem 
by the law of cosines which states in our notation 

la 1 - a 212 = la l 12 + la212 - 21a 111a21 cos DC • 

Comparison with (14.4.10b) yields 

1 a'l a2 = la 111a21 cos DC ·1 

(14.4.12) 

(14.4.13) 

In words: The inner product of two vectors a1 and a2 is equal to the product 
of three factors: the absolute values of a 1 and a2 and the cosine of the angle 
between the two vectors. 
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If one of the vectors is the zero vector, the product is zero, and IX is 
undetermined. If the angle IX is acute, then cos IX > 0, and the product 
(14.4.13) is positive. If, however, the angle IX is obtuse, then cos IX < 0, and 
the product (14.4.13) is negative. We have already discussed the case 
IX = 90° which implies cos IX = 0. 

Formula (14.4.13) is often used to calculate the angle IX between two 
nonzero vectors. In view of a'1aZ =x1X Z + Y1YZ we obtain 

x 1X Z + Y1YZ 
COSIX= la 111azi ' la 1l=1=O, lazl=l=O. (14.4.14) 

z 

z 

Q 

y 

d 
y 

x x 
Fig. 14.8. A three-dimensional vector 4 with coordinates x, y, z 

So far we have considered vectors in the two-dimensional space. 
Fortunately, there is no difficulty in extending the results to the three
dimensional space. Let (x, y, z) be a point in a rectangular xyz-coordinate 
system. Let a be the column vector 

(14.4.15) 

Then there is a one-to-one correspondence between the vector a and the 
arrow whose tail is at the origin 0 and whose tip coincides with the 
point (x, y, z) (see Fig. 14.8). Therefore it is convenient to use the word 
"vector" also for an arrow. 

Addition of two vectors is explained in the same way as in formula 
(14.4.3) and in Fig. 14.2. Algebraically we add two vectors by adding 
corresponding coordinates. Geometrically, the vector sum, also called 
the resultant vector, is represented by the "third" side in the vector 
triangle. 
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Multiplication of a vector by an ordinary number is defined in the 
same way as in (14.4.4). Fig. 14.4 may serve without any change as 
illustration. Likewise Fig. 14.5 can immediately be used in the three
dimensional space. 

The absolute value or the magnitude ofthe vector (14.4.15) is defined by 

lal = V x 2 + y2 + Z2 (14.4.16) 

provided that x, y, z are measured in the same unit. If this unit is a length, 
then lal has a simple geometric meaning. In Fig. 14.8 we first calculate 
the length d of the hypotenuse of the right triangle with legs x, y: 

d2 =x2 + y2. 

Second, we apply the Pythagorean theorem to the right triangle with 
legs d and z and get 

for the square of the hypotenuse. In view of formula (14.4.16) the last 
expression is lal2 • Hence, lal is the length of vector a. 

Furthermore, formulas (14.4.8), (14.4.9), (14.4. lOa), (14.4. lOb), (14.4.11a) 
remain valid in the three-dimensional space since the same proofs can 
be applied as above. The orthogonality condition (14.4.llb) changes into 

(14.4.17) 

Moreover, formulas (14.4.12) and (14.4.13) remain unaltered. Only 
formula (14.4.14) has to be adjusted to become 

In fact, the extension of the results from the two- to the three-di
mensional space is so simple that mathematicians could not refrain 
from inventing the/our-dimensional space. The lack of geometric intuition 
was no barrier. The step from the three- to the four-dimensional space was 
so tempting that it had to be undertaken. We invite the reader to perform 
this step without receiving any further help. 

Not only was it possible to work with vectors in the four-dimensional 
space with ease, applications in the natural sciences became also quite 
successful. Further generalization of the geometry of vectors to n
dimensional spaces with n = 5, 6, ... was a matter of routine. Around 
1900, even infinitely dimensional spaces were invented. 

Today vector algebra in n-dimensional spaces is a fruitful tool in 
multivariate statistical analysis and in the analysis of variance and 
covariance. 
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14.5. Applications 

a) Inclined Planes. In Fig. 14.9 a human body is resting on an in
clined plane. What is the force trying to pull the body down along the 
plane, and what is the force pressing the body toward the plane? 

Let F 1 be the force which pulls the body downward along the plane 
and F 2 the force perpendicular to the plane which presses the body 
toward the plane. In mechanics we learn that these two forces are caused 
by gravitation and that their vector sum must be the total gravitational 
force denoted by F. Hence, 

(14.5.1 ) 

Fig. 14.9. A body lying on an inclined plane. Vector addition relates the forces F J and F2 
to the force F of gravitation 

The forces F 1 and F 2 are called the components of F. Let rx be the angle 
of inclination of the plane. Since F 2 is perpendicular to the plane, rx is 
also the angle between F 2 and F. From Fig. 14.9 we obtain the following 
formulas for the magnitudes of the components of F: 

1F11=IFlsinrx, 1F21=lFlcosrx. (14.5.2) 

F or instance, if rx = 30°, we obtain sin rx = 0.500, cos rx = 0.866. Thus IF 11 
is only 50 % and IF 21 only 86.6 % of the body weight. On the one hand, 
to prevent gliding of the body, a force of magnitude! IFI has to act in the 
direction opposite to F 1. On the other hand, the pressure against the 
plane is relieved by 13.4 % as compared with the body lying on a horizontal 
plane. 

In a similar way, the forces acting on a broken bone can be studied 
(Fig. 14.10). For a detailed account see Pauwels (1965, p. 10fT.). 
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b) Levers. As an example of a lever we take the forearm (Fig. 14.11). 
Its fulcrum is the elbow. When the angle between upper arm and forearm 
is not 90°, the force F generated by the forearm flexor has to be decom
posed into a component F 1 perpendicular to the forearm and a com
ponent F 2 parallel to the forearm. The force F 2 does not generate any 

F 

Fig. 14.10. Forces acting on a broken bone. The force F may be caused by gravitation or 
by a muscle. We call F1 a shearing force 

Fig. 14.11. The force F1 which lifts the forearm may be considerably smaller in magnitude 
than the force F generated by the forearm flexor 

rotation of the forearm. Only F 1 acts in the proper direction. If the angle 
between upper arm and forearm approaches 180°, the magnitude of 
F 1 is considerably smaller than that of F. Thus part of the muscle force 
is "lost". By vector algebra we may write 

(14.5.3) 

The theory of levers is applied to the skeleton in books such as Gray 
(1968), Ricci (1967), Williams and Lissner (1962). 
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c) Leg Traction. Fig. 14.12 shows how a leg may be stretched by a 
pulley line for therapeutic purposes. We denote by F 1 the vertical force 
of the weight. The string of the pulley line has everywhere the same 
tension. Hence, the forces F 2 and F 3 in Fig. 14.12a or b have the same 
magnitude as F 1, that is, 

(14.5.4) 

(a ) 

Fig. 14.12. Leg traction with weight. The magnitude of the resultant force depends on 
the angle between the forces F2 and F3 • The figure is redrawn from Fig. 3.5 in Williams 

and Lissner (1962, p. 23) 

The stretching force F is the resultant of F 2 and F 3. Hence, 

F=F2 +F3 · (14.5.5) 

When the angle between F 2 and F 3 tends to zero, then IFI increases and 
tends to IF 21 + IF 31 = 21F 11 as is easily seen from Fig. 14.12a. When, 
however, the angle between F2 and F3 tends to 180°, IFI decreases and 
tends to zero (Fig. 14.12b). Hence, 

o~ IFI ~2IF11· (14.5.6) 

d) Center of Gravity (or Mass). A body consists ofa very large number 
of particles which are all subject to gravitation. To find the center of 
gravity we begin with the simple case of two points Pi and P 2 of equal 
mass (Fig. 14.13). Then, by symmetry, the center of gravity is the midpoint 
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of PI and P2 • We denote it by C. To find the midpoint C by vector 
algebra, we denote the arrows with tail at the origin 0 and tips at PI 
and P2 by al and a2, respectively. Using the parallelogram of Fig. 14.3 
we determine the vector sum of al and a2. Since the diagonals of a 
parallelogram bisect each other, the vector c which points to C is 

(14.5.7) 

This is simply the arithmetic mean of the two vectors al and a2. Let 

al = (~D anda2 =(~~} Then c has coordinates (Xl + x2)/2 and (YI + Yl)/2. 

o 
Fig. 14.13. The midpoint of two points dermed by vectors 111 and 112 

If we are given n points of equal mass by vectors at> a2' ... , an, 
mechanics shows that the center of gravity is given by the vector 

al + a2 + ... + an 1 n 
c= =- L aj. 

n n j= I 
(14.5.8) 

The result is simply an extension offormula (14.5.7). The same formula is 
of basic importance in the statistical analysis of directions as applied for 
instance to homing and migrating birds. For details see Batschelet (1965). 

A further generalization occurs when different masses M j are located 
at the points given by vectors aj (i = 1,2, ... , n). In this case, the ordinary 
arithmetic mean turns into the weighted arithmetic mean 

Mlal +M2a2 + ... + Mnan c = ----:--'---~----,--"-""-
M I +M2+···+Mn • 

(14.5.9) 

Fig. 14.14 illustrates the case of three masses. The formula is valid in the 
two-and the three-dimensional space. It is also useful in spaces of higher 
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dimensions although it loses its physical meaning. An important applica
tion of (14.5.9) is made in multivariate statistical analysis. 

e) Kinetics. There are numerous biological applications of vectors 
in the study of animal locomotion. We will confine ourselves to discussing 
the jumping of grasshoppers (Fig. 14.15). 

M, 

o 
Fig. 14.14. The center of gravity C of three masses M " M 2, M 3 located at points given by 

vectors 11" 1:2 , " 3 , respectively 

Fig. 14.15. Jumping grasshopper 

We call the time interval from the initiation of muscle action until the 
feet leave the ground the take-off or the acceleration period. During this 
period the center of gravity moves from a point C to a certain point C'. 
The two points C and C' form a directed line segment or a vector which 
we denote by s. Let rx be the angle between s and the horizontal line. Then 
lsi sinrx is the vertical component of s. 

During the take-off period the force that accelerates the grasshopper's 
body does not remain constant in magnitude, but we may operate with 
an average force which we denote by F. This force F is called the thrust . 
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Now we want to calculate the maximum height h over the ground 
reached by the jumping grasshopper. On the one hand, the part of 
kinetic energy that is transformed into potential energy is 

vertical component of F times vertical component of s 

= IFI sinoc ·Isl sinoc = IFllsl sin2 oc. 

On the other hand, the potential energy reached at the highest point is 

m·g·h 

where m is the mass of the animal (in grams) and g the acceleration due 
to gravity (= 981 cm sec- 2). 

If we neglect the slight loss in energy due to air resistance, we equate 
the two energies. Then dividing by m . g we obtain 

h = IFllsl sin2 oc/m . g . (14.5.10) 

This formula may also be used for calculating IFI when the other quantities 
are known from measurements. 

The reader will find more mathematics concerning jumping animals 
in Alexander (1968), Gray (1968), Hoyle (1955), and Hughes (1965). 

f) Navigation. A velocity is a quantity with a direction and can 
therefore be represented by a vector. The velocity of an air or a water 
current is measured from a fixed point on the ground. We may also think 
of a velocity which a body maintains relative to the flowing medium 
(air or water). 

Thus when a bird flies at a speed of 10 m/sec relative to the air and 
exactly opposite to the direction of the wind, and when the wind has a 
velocity of 3 m/sec, then the resultant traveling speed of the bird is 
10 m/sec + (- 3 m/sec) = 7 m/sec. 

This is a special case of a more general situation. We consider a bird 
headed for a certain destination while flying against high wind under a 
certain angle, or the analogous situation for a fish (Fig. 14.16). 

Let v be the vector of velocity of the animal relative to the air or to 
the water, and let w denote the vector of velocity of the wind or the 
current relative to ground. Then the vector of traveling velocity u 
(relative to ground) is 

u=v+w. (14.5.11) 

The vector u points toward the destination of the animal. However, 
the animal's body is not oriented straight toward the destination, but 
in the direction in which vector v points. 

A numerical example may illustrate the use of formula (14.5.11). As 
in Fig. 14.16 we fix an x axis opposite to the direction ofthe wind and a y 
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axis perpendicular to the x axis. Then the x component of w is negative 
and the y component vanishes. Temporarily dropping the unit m/sec 
of velocity, let 

From (14.5.11) it follows that 

w 

x 

Fig. 14.16. Animals headed for a certain destination under the influence of high wind or 
of a strong current 

Hence, the speed of the bird relative to the air has magnitude 
Ivl = (82 + 32)t = 7J! = 8.54 m/sec, but the speed toward the destination 
amounts only to lui = (22 + 32)t = 13t = 3.61 m/sec. 

If we are interested in the angle IX between the vectors u and v, we 
apply formula (14.4.14). Again dropping m/sec temporarily we obtain 

X 1 X2 + YIY2 = 16 + 9 = 25, Ivl = 8.54, lui = 3.61. 

Hence, 

25 
cos !X = 8.54 x 3.61 = 0.812, IX = 35.8° . 

Recommended for further reading: Nahikian (1964), Seal (1964), Searle 
(1966), c. A. B. Smith (1969, vol. 2). 
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Problems for Solution 

14.1. Let A and B be two matrices which have the same number of 
rows and the same number of columns, and let A. and Ji be arbitrary 
numbers. Show that 

(A. + Ji)A = A.A + JiA , 

A.(A + B) = A.A + A.B, 

A.(JiA) = (A.Ji)A . . 
14.2. Write the following expressions as inner products of two vectors: 

a) a1 x 1 + a2X2 + a3x3 + a4 x4 , 

b) 1 + 2 p + 3 p2 + ... + n pn - 1 , 

c) a cosO( + b sinO(. 

14.3. Write the column matrix 

(3X+2Y+Z) 
5x+3y+z 

as a product of two matrices A = A 2 x 3 and v = v3 xl. 

14.4. Let 

M = (~ _ ~ ) , N = (~ ~) . 
Show that M N =1= N M. 

14.5. Work out the matrix product 

(x, y, l)(! _ ~ -!) (f) 
in two ways using the associative law (14.2.10). 

14.6. Let 

Work out A(B+C) in two ways according to the distributive 
law (14.2.13). 

14.7. Let 

( 4 -2) 
A = -5 3' 1(3 2) B=2 5 4' 

Show that A B = I and B A = I where I denotes the identity 
matrix as defined in (14.2.15). A is called the inverse matrix of B 
and B the inverse matrix of A. We write B = A -1, A = B- 1 • 
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14.8. Let 

1 ( 3 4) 
A=S -4 3· 

Show that A' A = 1 and A A' = I. According to the preceding 
problem, A' is the inverse matrix of A. A matrix A with the property 
A A' = A' A = 1 is called an orthogonal matrix. 

14.9. Let T be the matrix defined in (14.3.11) and let 

(
p2 2pq q2) 

0= p2 2pq q2 
p2 2pq q2 

(Letter 0 used after Li, 1958). Verify that 

a) T2 = t T + to, 

b) T3 =tT+iO. 

14.10. Plot the three vectors 

in a rectangular coordinate system. Find their sum a) algebraically, 
b) geometrically. 

14.11. Given the vectors 

a=(_i)' b=(~). 
Plot the sum and the difference of a and b. Also plot the vectors -a, -b,ta, -~b. 

14.12. Calculate the absolute values ofthe two vectors a and b as defined 
in the preceding problem. Also find the angle between the two 
vectors. Finally, determine the midpoint between the two points 
which are represented by a and b. 

14.13. Assume that three equal masses are concentrated in points given 

by the vedO:~ ~ (~), a, ~ (~), a, ~ m 
Find the center of gravity of the three masses. 

14.14. Given the three-dimensional vectors u, v, w by 

u'=(3, -1,0), v'=(-2,3,1), w'=(5,2,4). 

Are any two of the three given vectors orthogonal? 
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14.15. Given the three-dimensional vectors a and b by a' = (3, 2, - 1), 
b' = (4, 0,5). Calculate the angle between the two vectors. 

14.16. Assume that the vectors a and b point in opposite directions. 
Show that 

a' b = - lallbl . 

14.17. In Fig. 14.12 calculate IFI if IFII and the angle ~ between the 
vectors F 2 and F 3 are given. 

14.18. Assume that a grasshopper weighs 2 g and that it reaches a maxi
mum height of 30 cm above the horizontal ground when taking 
off at an angle of 60° to the ground. Assume further that the 
grasshopper's center of gravity moves 3 cm during the acceleration 
period. Using formula (14.5.10) find the magnitude of the thrust. 



CHAPTER 15 

Complex Numbers 

15.1. Introduction 

If x is any positive or negative number, the square of x is always 
positive. Therefore, no real number satisfies the quadratic equation 

(15.1.1 ) 

However, nobody likes a result that states "it is impossible". Mathe
maticians began eaV to search for a new sort of numbers. One could 
formally write x = - 1, but it is not possible to state whether v=t 
is greater or smaller than a given real number. For a long time people 
thought that it is a necessary attribute of numbers to have a "size" 
with a specific order. Consequently, v=t could not be called a number. 
On the other hand, algebraic operations with v=t could be performed 
easily. The situation finally led to a compromise: v=t was called an 
imaginary number. The first letter of "imaginary" was proposed as a 
notation: 

i=v=t. (15.1.2) 

Today the idea that numbers can necessarily be ordered according 
to their size is abandoned. There is nothing mysterious about imaginary 
numbers. They can be added, subtracted, multiplied, divided. Together 
with the real numbers they form the set of complex numbers. Each 
number is of the form 

a+bi 

where a and b are real numbers. 
Complex numbers are not only useful for mathematical investi

gations. They also serve immediate practical purposes in a variety of 
problems in physics and engineering 1. More and more often they enter 
the biological literature. For instance they can be found in biological 
books such as K. S. Cole (1968), Grodins (1963), Lotka (1956), Milhorn 
(1966), Rosen (1967), Sollberger (1965). 

I In engineering, the notation i is replaced by j in order to avoid confusion with the 
notation i or I for the electric current. 
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15.2. The Complex Plane 

To provide complex numbers with some kind of "reality", we map 
these numbers into points of a plane. 

First, we plot the real number line as a horizontal axis. From now 
on we call it the real axis and denote it by X (Fig. 15.1). This axis corre
sponds to the x axis in an ordinary x y-coordinate system. Second, we 
draw a vertical axis through the point representing the number 0 and 
choose the same unit of length as on the horizontal axis. We associate 

,-3 , , 

, , 

y 

-2+~L-------- 2i 
, 

i 3+i -------------, 
, 

-2 -1 o 3 

~ ______________ -2i 
-3-2i 

x 

Fig. 15.1. The complex plane, also called the Argand plane 

the imaginary number i with the point that corresponds to x = 0, y = 1 
in an ordinary xy-coordinate system. Therefore, the vertical axis is 
called the imaginary axis and denoted by Y. It also becomes clear why i 
is known as the imaginary unit. 

We may form positive and negative multiples of i and associate them 
with the points on the imaginary axis. A complex number such as 
3 + i is represented by a point having coordinates x = 3, y = 1 in an 
xy-coordinate system (Fig. 15.1). In general, given two real numbers x 
and y, the complex number 

z=x+iy (15.2.1 ) 

is associated with the point (x, y) in an xy-coordinate system. 
A complex number consists of a real part and an imaginary part. 

Thus in z = x + y we call x the real part and y the imaginary part. 
We write 

Re z = x , 1m z = y . (15.2.2) 

A real number turns out to be a special case of a complex number, 
namely z = x + i . O. Similarly, an imaginary number is another special 
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case, namely z = 0 + i y. To emphasize that the real part vanishes, we 
sometimes call z = iy a purely imaginary number. 

There is a one-to-one correspondence between the pairs (x, y) of 
real numbers and the complex numbers z = x + iy, symbolically 

(x,y) ....... z=x+iy. (15.2.3) 

When we interpret (x, y) as a vector (Section 14.4), say 

y 

x 

Fig. 15.2. Complex numbers may be interpreted as vectors 

then we also obtain a one-to-one correspondence: 

a=(~)"""'z=X+iY. (15.2.4) 

Fig. 15.2 illustrates the vector interpretation of complex numbers. 
The absolute value or modulus of z = x + iy is defined by 

(15.2.5) 

This is a positive number except for the particular case z = 0 where 
Izl = O. Formula (15.2.5) corresponds to (14.4.7) for vectors. Geometri-

cally, Izl is the length of the vector a = (~) or the distance of the point 

x + iy from the point z = o. If, for instance, z = -12 + 5i, then 
Izl = (144 + 25)t = 13. 

It is also convenient to introduce polar coordinates for complex 
numbers. In Section 5.5 we considered the polar coordinates r, rx of a 
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point P in the xy-plane. By r we mean the distance of P from the 
origin 0 and by oc the angle between the positive x axis and the line 0 P 
measured in the counter-clockwise direction. If P coincides with 0, 
then r = 0, and oc is not determined. Let x, y be the rectangular 
coordinates of P and assume that x and yare measured and plotted in 
the same unit. Then we obtain 

x = r cosoc, y = r sinoc. (15.2.6) 
In the same way we may introduce polar coordinates of a point in the 
complex plane (Fig. 15.3). The distance r is identical with the absolute 
value of z, that is, 

r=lzl· (15.2.7) 

y 

Z= x+iy 

y 

CL 

0 x X 

Fig. 15.3. The polar coordinates r, ()( of a complex number z=x+ iy 

The polar angle oc, also called argument or phase angle, ranges from 
o to 2n radians (or from 0° to 360°). For z = 0, the polar angle oc is not 
determined. For a real number z = x =1= 0, the polar angle oc is 0 if x > 0 
and n( = 180°) if x < O. For a purely imaginary number iy we get 
oc = nj2( = 90°) if y > 0 and oc = 3nj2( = 270°) if y < O. Sometimes it is 
convenient to use negative polar angles. Thus a polar angle of - nj2 
means that the point is located on the negative side of the imaginary 
axis. 

Using formulas (15.2.6) we may rewrite z = x + iy in the form 

z = r(cosoc + i sinoc). (15.2.8) 

As an example consider the complex number z = - 7 + 5i with 
components x = - 7 and y = 5. The corresponding point is located in 
the second quadrant. The absolute value is 

r = Izl = (49 + 25)! = V74 = 8.602 .... 

From formula (15.2.6) it follows that 
X 

cosoc = - = -0.8137 ... , 
r 

sinoc = L = 0.5812 ... 
r 

and from a table of trigonometric functions that 

oc= 144.4° . 
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15.3. Algebraic Operations 

If 
(lS.3.1) 

are two complex numbers, then we mean by the sum and the difference 
of Zl and Zz 

Zl + Z2 = (Xl + x 2) + i(Yt + Y2), 

Zt- Z2=(XI -XZ)+i(Yt-Yz), 

y 

! 

x 

Fig. 15.4. Graphical addition and subtraction of complex numbers 

(lS.3.2) 

(lS.3.3) 

respectively. These operations are quite analogous to vector addition 
and subtraction as considered in Section 14.4. For this reason, it is 
convenient to map complex numbers into vectors. Fig. lS.4 illustrates 
how addition and subtraction of complex numbers are performed 
graphically. 

The commutative law 

and the associative law 

Zl +(Z2 +Z3)=(ZI +Z2)+Z3 

for the operation of addition are obviously valid. 

(lS.3.4) 

(lS.3.5) 

To define multiplication we proceed in two steps. First, we treat the 
imaginary number i in the same way as if it were a real number. For 
instance, we multiply the complex numbers 3 + 2i and 4 - Si using the 
commutative, associative, and distributive laws: 

(3 + 2i)(4 - 5i) = 12 - lSi + 8i - lOi2 • 
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Second, we remember that i was introduced to satisfy equation (15.1.1). 
Hence we equate 

(15.3.6) 
In our example we obtain 

/ 

(3 + 2 i) (4 - 5 i) = 12 - 15 i + 8 i - 10( - 1) = 22 - 7 i . 

The result is a new complex number, the product of 3 + 2i and 4 - 5i. 

In general, if Zl = Xl + iYl and Z2 = X2 + iY2, we get 

Z l Z2=(X l +iYl)(X2 + iY2) 

= Xl X2 + iX lY2 + iX2Yl + e YlY2 

= (X l X2 - YlY2) + i(X lY2 + X2Yt)· 

It is easy but laborious to show that the commutative law 

the associative law 

and the distributive law 

are all valid. 

(15.3.7) 

(15.3.8) 

(15.3.9) 

(15.3.10) 

We postpone the geometric meaning of complex multiplication to 
Section 15.4. 

Before we can deal with division, we have to introduce the notion of 
complex conjugate numbers. Let Z = X + i y. Then we change the sign of 
the imaginary part. The new number is called the complex conjugate 
of Z and denoted by z. Thus, 

z=x-iy. (15.3.11 ) 

Notice that if we repeat the operation on Z, the result is z. Hence, the 
complex conjugate of z is z itself. Fig. 15.5 depicts two complex con
jugate numbers. 

The product of two complex conjugate numbers is always a real 
number. Indeed, 

z· z = (x + iy) (x - iy) = x2 - i2 y2 = x2 + l. 
In view of formula (15.2.5) it follows that 

z· z= IZI2. 

(15.3.12) 

(15.3.13) 

Now we find the reciprocal l/z of a nonzero complex number 
z = x + iy by multiplying numerator and denominator by z. Thus, 
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using formula (15.3.12), we obtain 

z z 
z z Z zz 

x- iy 

X 2 +/ 
F or instance, if z = 7 + 3 i, we get 

7 + 3i 

7 - 3i 7 - 3i 7 3 ---:----- = --- = - - - i 
(7+3i)(7-3i) 49+9 58 58' 

y 

z 

o x 

(15.3.14) 

Fig. 15.5. Two complex numbers z and z are complex conjugate if the corresponding 
points in the complex plane are symmetric about the real axis. They have the same 

absolute value but the opposite polar angle 

As a special case we notice that 

l/i=-i. (15.3.15) 

Division of two complex numbers ZI and Z2 can be reduced to a 
multiplication of z 1 by the reciprocal of Z2' Hence, 

ZI 1 
-=ZI·-· 
Z2 Z2 

The second factor is treated as in formula (15.3.14), and the multiplication 
follows the rules applied in formula (15.3.7). For example, 

1 + 2i _ (1 2') 1 1 - i _ (1 2') 1 - i _ 3 + i ---- + 1-- --- + 1-----. 
l+i l+i 1-i 2 2 

To sum up, the four operations of addition, subtraction, multi
plication and division with complex numbers are performed by applying 
the ordinary rules of algebra. Whenever the square i2 appears, it is 
replaced by - 1. 
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In Section 14.4 we studied the multiplication of two-dimensional 
vectors 

and defined the inner product by 

a~a2=(Xl'Yl)C:) =XIX2+YIY2· 

A comparison with formula (15.3.7) shows that the multiplication of 
two complex numbers is quite a different operation. 

Only when multiplying a vector C) or a complex number x + iy 

by a real number is the analogy of the two operations guaranteed. 
Indeed, if k denotes a real number, we get 

k ( Xy) __ (kkyX) , k(x + iy) = (kx) + i(ky). 

In other words, addition or subtraction of complex numbers, and the 
multiplication of a complex number by a real factor follow the same 
rules as the corresponding operations on two-dimensional vectors, but 
otherwise the analogy breaks down. 

15.4. Exponential and Logarithmic Functions of Complex 
Variables 

In Chapter 10 we introduced the natural logarithm of a posItIve 
number. Now we extend the definition to complex numbers. As in 
Section 15.2 we denote the absolute value of a complex number z by r 

and the polar angle by rx. We assume that rx is measured in radians 
(see Section 5.2). Then we define 

Inz = Inr + irx (15.4.1) 

provided that r =1= O. For instance, if z = i we know that r = 1 and 
rx = nj2. Hence, n 

In i = In 1 + i 2 = (1.5708 ... ) i . 

Similarly, if z = - 5, we have r = 5 and rx = n. Hence, 

In ( - 5) = In 5 + in = (1.609 ... ) + (3.141 ... ) i . 

If z is a positive number, then z = rand rx = O. From (15.4.1) we 
obtain Inz=lnr. Hence, the definition (15.4.1) is consistent with the 
original definition for the logarithm of positive numbers. 
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The definition of Inz as stated in formula (15.4.1) is only meaningful 
if it can be shown that the basic properties of the logarithmic function 
are preserved. For z 1 * 0, Z 2 * 0, Z * ° these properties are 

In l/z = -Inz, 

Inzs = s Inz. 

(15.4.2) 

(15.4.3) 

(15.4.4) 

The proofs of these properties require tools that go beyond the 
scope of this book. The proofs will therefore be omitted. 

We call the inverse function of Inz an exponential function as in 
the real case. Let 

w=lnz (z*O). 

Then the inverse function is written in the form 

z = eW = expw. (15.4.5) 

In the same way as in formula (10.5.3) we conclude that 

(15.4.6) 

Taking the inverse function in formula (15.4.1) we get 

(15.4.7) 

If Izl = r = 1, that is, if the point z is located on the circumference of the 
unit circle (Fig. 15.6), we obtain In r = ° and, in view of (15.4.7), 

z = eia (Izl = 1) . 

Comparison with (15.2.8) leads to the important formula 

which is due to Euler (cf. footnote in Section 8.2). 
Special cases are 

C( = 0, 

n 
C(= 2' 

C( = n, 

3n 
C(=-

2 ' 

." 
ely = i, 

. 3" 

elz = -i. 

(15.4.8) 

(15.4.9) 

(15.4.10) 
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Let z be any complex number with absolute value r and polar 
angle (1.. Then it follows from formulas (15.2.8) and (15.4.9) that 

(15.4.11) 

a formula which may also be derived from (15.4.7). With this result in 
mind we are now able to find a geometric interpretation of complex 
multiplication. Let 

y 

sinoc 

-1 x 

-i 

Fig. 15.6. The unit circle in the complex plane. Every number located on the circumference 
of the unit circle can be written in the form ei • 

be two complex numbers. Then 

(15.4.12) 

The absolute value of the product Zl Z2 is therefore 

(15.4.13) 

that is, the absolute value of the product of complex numbers is the 
product of the absolute values of these numbers. 

We can also read the polar angle of the product from formula 
(15.4.12). This angle is 

if contained in the interval from 0 to 211: (or from 0° to 360°). Otherwise, 
we simply reduce the sum by 211: (or 360°) as explained at the end of 
Section 5.3. 
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Example: 

Let 

The absolute values are 2 and 3 and the polar angles n/6 and n/3, 
respectively. Hence, 

The product has absolute value 6 and polar angle n/2 (or 90°). The 
example is depicted in Fig. 15.7. 

y 

x 

Fig. 15.7. When multiplying two complex numbers, the polar angle of the product is the 
sum of the polar angles of the two factors 

Of special importance is the multiplication of a complex number 
z = re ia by a complex number of absolute value 1, say by eiP : 

(15.4.14) 

If we interpret z as a vector, the result simply means that we have to 
rotate the vector z by the angle {3 in the counter-clockwise direction. 

Using Euler's formula (15.4.9), we obtain 

eia = cos IX + i sin IX , 

eiP = cos {3 + i sin {3 , 

ei(dP) = cos (IX + {3) + i sin (IX + {3). 

It follows from formula (15.4.14) that 

COS(IX + {3) + i sin (IX + {3) = (cos IX + i sin IX) (cos{3 + i sin{3) 

= cos IX cos {3 + i cos IX sin {3 + i sin IX cos {3 + i2 sin IX sin {3 

= (cos IX cos {3 - sin IX sin {3) + i(sinlX cos {3 + cos IX sin {3) . 
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Separating real and imaginary parts we obtain 

cos (IX + 13) = cos IX cos 13 - sin IX sin 13 , 

sin (IX + 13) = sin IX cos 13 + cos IX sin 13 . 

Thus we have verified formulas (5.7.2). 

Finally, Euler's formula may be used to express trigonometric 
functions in terms of exponential functions. Since sin ( -IX) = - sin IX 

o 

Fig. 15.8. Verification of formulas (15.4.16). The quantities ei' and e- i• are represented 
by unit vectors, that is, by vectors of length 1. Their sum and difference can be easily 

determined by vector addition and subtraction, respectively 

and COS(-IX)=COSIX, we obtain the two complex conjugate numbers 

eilT. = cos IX + i sin IX , 

e-ilT. = cos IX - i sin IX • 
(15.4.15) 

We may consider these two equations as simultaneous linear equations 
in the unknown quantities COSIX and sinlX. The solution is 

(15.4.16) 

The result may be verified geometrically using Fig. 15.8. Notice the 
striking similarity between formulas (15.4.16) and formulas (10.11.1), 
(10.11.2) for the hyperbolic cosine and sine. 
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15.5. Quadratic Equations 

Complex numbers occur frequently in connection with quadratic 
equations. The standard form of the quadratic equation is 

ax2 + bx + c = ° . (15.5.1 ) 

We assume that the coefficients are real numbers and that a =1= 0. 
In Section 4.6 we stated the solution as 

x= 
- b ± (b 2 - 4ac)t 

2a 

The nature of the roots depends very much on the discriminant 

D=b2 -4ac. 

(15.5.2) 

(15.5.3) 

If D > 0, Eq. (15.5.1) has two different real roots Xl and X2' If D = 0, 
the roots are still real, but they fall together into the single value 
Xl = X2 = - bl2a. It remains to study the case 

D<O. (15.5.4) 

Here D = -IDI and 

(b2 - 4ac)t = v=TDl = V( -1) IDI = iVfDj . 

Hence we obtain the two complex roots 

-b±iVfDj 
X= 2a . (15.5.5) 

The real part, that is, - bl2a is the same for both roots. The two roots 
differ, however, in the sign of the imaginary part. Therefore, the two 
roots are complex conjugate. 

Example: 

The discriminant of the equation 

4x2-12x+25=0 

is D = 122 - (4 x 4 x 25) = - 256. Hence, the roots are the two complex 
conjugate numbers 

12± VC2s6 
8 

12 ± 16i 
. 8 

3±4i 
2 
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15.6. Oscillations 

Most, perhaps even all, plants, animals, microorganisms, single 
organs or pieces of tissue participate in cyclical processes known as 
biological rhythms. Among the best known biological rhythms are brain 
waves, heart beats, breathing, daily variations in the activity of the 
kidneys and the liver, daily movements of leaves, the monthly cycle of 
menstruation, and yearly breeding patterns. For a survey of biological 
rhythms and for references see Sollberger (1965). 

Cyclical processes may be initiated by external signals and forces 
such as light, changes in temperature and humidity, chemical stimuli, 
and corpuscular radiation. Very often biological rhythms continue 
when the signals or the forces in consideration are removed. Thus leaves 
continue their up-and-down movement when kept in constant darkness. 
Or hamsters do not interrupt their daily rhythm of activity and rest 
when held under constant light. Hence, organisms must have an internal 
timing system which is known as biological clock. 

Little is known about the nature of biological clocks. One theory 
claims that such a clock would read and count incoming rhythmic 
signals from the physical environment and would apply the information 
to control the organism. In principle, the clock would run like an 
electric clock driven by the sixty cycles per second of an alternate 
current (cf. F. A. Brown, 1965). Another theory states that a biological 
clock is more complete. In principle it would resemble an ordinary 
clock which contains its own oscillating system. Such a clock could run 
without periodic signals from outside (see e.g. Pittendrigh and Bruce, 
1957). 

In this section we will concentrate on the mathematics of oscillating 
systems. There are various kinds of oscillating systems which we will 
call oscillators from now on. 

In mechanics we know the pendulum, the balance of a wrist watch, 
vibrating strings and membranes, the tuning fork and other oscillators. 
Electrical oscillators are radar and radio transmitters and receivers. 
Oscillations may require only little space such as in a variety of mole
cular and atomic oscillators. Less known are thermal oscillators; 
a familiar example is a geyser. We also know a good number of chemical 
systems that are able to generate oscillations (for references see Soll
berger, 1965, p. 59). 

As an instructive example we will study the oscillations of a body 
which is attached to a spring (Fig. 15.9). We allow the body to move 
only in the vertical direction. We consider the vertical line as an x axis 
with the positive side downward and the origin x = 0 at the equilibrium 
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point of the body where the weight of the body and the elastic force of 
the spring cancel each other. 

Let F = F(x) be the resulting force as a function of x. If the body is 
below the equilibrium point, say at Xl' the force F(x l ) = F 1 is negative 
since it accelerates the body in the negative X direction. Conversely, if 
the body is above the equilibrium point, say at Xz, the force F(xz) = F z 

(Ql ( b) (c) 

_________ ,1 
x x 

Fig. 15.9. A body hanging on a spiral spring as an example of a mechanical oscillator. The 
force F acting on the body is the resultant of the weight of the body and the elastic force 

of the spring 

is positive. Hence, x and F(x) have opposite signs. For moderate 
displacements x from the equilibrium it is an experimental fact 
(Hooke's law) that F(x) is a linear function of x. Thus we obtain 

F(x) = -kx (15.6.1) 

where k denotes a positive constant. 
The displacement x is a function of time. Hence, we may write 

x = x(t). Now we consider the velocity v = v(t) = dx/dt and the acceler
ation dv/dt = dZ x/dtZ of the body. Newton's second law of dynamics 
states that 

( 15.6.2) 

where M denotes the mass of the body. 
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From (15.6.2) and (15.6.1) it follows that 

(M>O, k>O). (15.6.3) 

We have tacitly assumed that there are no other forces present. In 
particular, we have excluded friction and assumed that the mass of the 
spring is negligible. 

Formula (15.6.3) is a second-order differential equation for the 
unknown function x = x(t). The equation is linear, and the coefficients 
are constants. Such a differential equation is solved by the method of 
trial functions which we already applied in Section 11.7. We try the 
exponential function 

(15.6.4) 

Substituting x in (15.6.3) by this function we get 

MA2 Ael.t + kAel.t = (MA2 + k) AeAt = o. 

The new equation holds if, and only if, either A = 0 or 

(15.6.5) 

We disregard the trivial case A = o. The quadratic equation (15.6.5) is 
called the characteristic equation. It has the two imaginary roots 

Let 
A= ±V -k/M= ±iVk/M. 

w=Vk/M. (15.6.6) 

Then A1 = iw and A2 = - iw are the two roots. Both eA' t = eirot and 
eA2t = e- irot are solutions of the differential equation (15.6.3). The general 
solution is 

(15.6.7) 

with arbitrary real or complex constants A1 and A2. In general, this is 
a complex function of time. For our mechanical problem, however, 
only a real function is useful. Hence, we break (15.6.7) into a real and an 
imaginary part and choose the constants A1 and A2 in such a way that 
the imaginary part vanishes. The real part will then be our function 
x = x(t). By means of formula (15.4.15) we can replace eirot and e- irot by 
linear aggregates of coswt and sinwt. Hence, the real part of (15.6.7) 
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is of the form 
x = a coswt + b sinwt (15.6.8) 

where a and b denote arbitrary real constants. It is convenient to rewrite 
this function in the form 

I x=ccosw(t-to) (c> 0), (15.6.9) 

a function which we introduced in Section 5.9. There we called w the 
angular frequency, c the amplitude and to the acrophase. The relationships 
between the constants a, b, c, wand to are given by 

a=ccoswto , b=csinwto · (15.6.10) 

A graph of x(t) is shown in Fig. 5.19c. The differential equation (15.6.3) 
leads to a sinusoidal oscillation. The inertia of the body keeps the 
system going, and in the absence of friction, the amplitude remains 
constant. For this reason the oscillating system is called an undamped 
harmonic oscillator. 

Now we will make our oscillating system more realistic by adding 
friction, for instance air resistance. For moderate velocities it is an 
experimental fact that the frictional force is proportional to the velocity 
v = dx/dt. Since friction is reducing velocity, the frictional force has a 
sign opposite to the velocity v. Hence, the frictional force is 
- fv = - f dx/dt where f is a positive constant. To get the total force 
F(x) acting upon the body, we have to add this amount to the right 
side of (15.6.1). Thus, 

F(x) = - kx - f dx/dt . (15.6.11) 

From (15.6.2) and (15.6.11) we derive the differential equation 

d2x dx 
M~+f-+kx=O 

dt2 dt 
(M> 0, f > 0, k> 0). (15.6.12) 

This equation is again of the second order and linear with constant 
coefficients. Using the trial function (15.6.4) we obtain 

MA2 AeAt + f AAeAt + kAeAt =0. 

This equation is satisfied if, and only if, either A = 0 (trivial case) or 

(15.6.13) 
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holds. The quadratic equation (15.6.13) is called the characteristic 
equation. The two roots Al and A2 are 

2~ (- f ± V P - 4Mk). (15.6.14) 

The nature of the solution depends on the discriminant 

D=P-4Mk. 

If D ~ 0, that is, if the frictional constant f is relatively large, the roots 
(15.6.14) are real. Since 

VP-4Mk<f, 

Al and A2 are both negative. Therefore, the solution of our differential 
equation is expressed in terms of e-I).d t and e- I).2I t • These functions 
of t are monotone decreasing which means that the body "creeps" 
toward its equilibrium. 

As we are interested in oscillations, we abandon the case D ~ 0 and 
require therefore that 

D=f2_4Mk<0. (15.6.15) 

Now we obtain two complex conjugate roots 

which we denote by - ex + iw and - ex - iw, respectively. The constant 
ex = f 12M is positive. Moreover we have 

w = -1-ViDi = _1_(4Mk_ P)t 
2M 2M . (15.6.16) 

With the new notation the general solution of our differential equation 
(15.6.12) is 

Al e(-IZ+iw)t + A 2 e(-IZ-iw)t = e- lZt(AI e iwt + A 2 e- iwt). 

As we have to restrict ourselves to a real solution, we may treat the 
expression in parentheses in the same way as formula (15.6.7). Hence 
the displacement x(t) is of the form 

x(t) = ce- lZt cos w(t - to) (ex> 0). (15.6.17) 

When comparing this solution with (15.6.9) we see that x(t) still 
oscillates with angular frequency w, but that the amplitude ce- lZt is 
monotone decreasing. Therefore the motion will taper off as t tends to 
infinity. Our mechanical system is then called a damped harmonic 
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oscillator. Applying formula (5.9.2) we obtain for the period I the 
constant value 

1= 2n/w . 

A graph of x(t) is shown in Fig. 15.10. 

There is an important connection between the differential equation 
(15.6.12) and the system of first-order differential equations which we 

x 

c 

Fig. 15.10. Graph of the displacement x(t) in the case of a damped harmonic oscillator. 
The amplitude is decreasing. The acrophase is denoted by to and the period by I 

considered in Section 11.7. To find this connection we replace dx/dt 
by v = v(t) and d2x/dt2 by dv/dt in Eq. (15.6.12). Thus we obtain 

dx 
Tt=v, 

dv k f -=--x--v. 
dt M M 

( 15.6.18) 

These two equations are of the form (11.7.1). We have only to identify y 
with v and to equate 

a=O, b=l, 

c = - k/ M , d = - II M . 
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Conversely, when eliminating v from (15.6.18) we get the second-order 
Eq. (15.6.12). Hence, (15.6.12) and (15.6.18) are equivalent statements. 
We leave it to the reader to prove that the characteristic Eq. (11.7.5) 
reduces to (15.6.13). 

Damped harmonic oscillators do not occur only in mechanics. To 
give the reader an idea of the wide applicability of this concept, we 
mention a typical electric oscillator (Fig. 15.11). An electric current 

R 

Fig. 15.11. An electric circuit oscillator. It consists ofa condenser (C farads) a coil (L henries), 
and a resistor (R ohms) in series. The electric current I = I (t) is alternating 

1= I(t) oscillates in an open circuit which contains a condenser of 
capacity C, a resistor of resistance R and a coil of self-inductance L. 
Using the laws of electricity the following differential equation can be 
derived: 

(15.6.19) 

This equation is formally the same as Eq. (15.6.12). Therefore, if a 
condition equivalent to (15.6.15) is satisfied, the solution is of the form 
(15.6.17). Comparing the electrical oscillator with the mechanical 
analogue, we see that the resistor plays the role of a frictional force, 
the coil the role of the inert mass, and the condenser the role of the 
elastic spring. 

A further generalization of the oscillator model is possible by 
allowing external forces to interfere. By external forces we mean forces 
which do not depend on the present state of the oscillator. Biologically 
speaking, an external force could originate outside of an organism, but 
it could also be caused by the organism itself and imposed on the 
oscillator. 
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Let E(t) denote the external force. Then the differential equation 
(15.6.12) turns into 

d 2 x dx 
M dt2 + f dt + kx=E(t) (15.6.20) 

The new differential equation is still linear in x but no longer homo
geneous. We call (15.6.12) homogeneous since with each solution x(t), 
a constant multiple Ax(t) is also a solution. The new Eq. (15.6.20) loses 
this property if E(tH= 0 for some values of t and is therefore called 
inhomogeneous. In biology we call the system free running if E(t) = 0 for 
all values of t and forced in the opposite case. 

Inhomogeneous differential equations are much more difficult to 
solve than their homogeneous counterparts. For this reason we will 
only consider a special case. We return to undamped oscillations by 
omitting friction. Using formula (15.6.6) and replacing kiM by OJ2 in 
(15.6.3), we get the homogeneous differential equation 

d2 x 2 + -0 df OJ x- . 

Moreover, we require the external force to be harmonic with amplitude 
A and angular frequency OJ 1 , say 

E(t)=A COSOJlt. 

Then we obtain the inhomogeneous differential equation 

d2 x 
dt 2 +OJ2 x=rcos0J1 t 

(15.6.21) 

(15.6.22) 

where r stands for AIM. We confine ourselves to stating the solution: 

(15.6.23a) 

if OJ 1 =l= OJ, and 

x(t) = c cosOJ(t - to) + ;~ sinOJt (15.6.23b) 

if OJ 1 = OJ. The constants c and to are arbitrary. 
The reader is invited to verify the solution by substituting x(t) 

into (15.6.22). 
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The two cases WI =1= wand WI = W have to be carefully distinguished: 

Case (a): WI =1= w. Formula (15.6.23a) consists of two cosine terms 
with different amplitudes and different angular frequencies. If WI 

deviates only slightly from w, then w2 - wi is a small quantity, and the 
amplitude r/(w2 - wi} is large. This amplitude could become so large 
that the first term with frequency W is negligible. In this case, x(t) 
represents approximately an undamped harmonic oscillation. Its 
angular frequency is WI' the frequency of the external force, and not the 
frequency W of the free running oscillator. We say therefore that the 
oscillator is synchronized or entrained by the external force. The process 
of synchronization or entrainment seems to be important in biological 
systems where periods in free running systems can be slightly changed 
by external harmonic forces. 

Case (b): WI = w. Here the frequency of the external force is exactly 
equal to the frequency of the free running oscillator. Formula (15.6.23b) 
contains two harmonic terms with the same angular frequency w. 
However, the second amplitude rt/2w tends to itifinity as t increases. The 
system is a harmonic oscillator with increasing amplitude. Hence, the 
system is unstable. This particular phenomenon is known as resonance. 

For further details see Defares and Sneddon (1961), Klotter (1960), 
Milhorn (1966), Rosen (1967). Biological applications are treated in 
Bailey (1957, p. 136ff.), K. S. Cole (1968, p. 9), J. M. Smith (1968), and 
Sollberger (1965). 

In Section 11.8 we treated a nonlinear model which also resulted in 
oscillations. This model, known as the Lotka-Volterra model, originated 
in ecology. It is likely that future research in biological rhythms will 
apply nonlinear models (cf. Goodwin, 1963, p. 34). 

Problems for Solution 

15.1. Find the absolute values and the polar angles of the following 
complex numbers: 

a) 3+4i b) 3-4i c) -1-i d) 5-5i 

15.2. Evaluate 

a) (3+7i)-(2-5i) 

c) 5i· 2i 
e) (±4i)2 

g) (4 - 5i) (5 - 6i) 
i) (4 - 5i)2 

b) !( -8 + 5i) 

d) (-3i)(9i) 

f) (8 + 3i)(7 + 5i) 
h) (2 + 3i)2 

k) (8 - 3i)(8 + 3i). 
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15.3. Evaluate 

1 1 
b)-

a+bi a) 2+5i 

1 
c) 3 _ i 

5 - 3i 
d) 2 + 4i . 

15.4. Rewrite the complex numbers of Problem 15.1 in the form reia . 

15.5. Rewrite the following numbers in the form a + bi: 

15.6. Solve the following quadratic equations: 

a) x 2+9=0 b) x 2+6x+25=0 

c) Jc2=6A-18 d) p(p+12)+61=0 

6 
e) 2u + - = 5 f) 2s - 50 = S2 . 

U 



Answers to Problems 

Chapter 1 

1.1. 11 =(0.902)10 , 12 =(0.814)10 , In=(0.902)nl0 ' 

b a+b 
1.2. a+-=29/6=4.83 ... , --=3/2=1.5, 

c c 
a a 
-+c= 34/5 =6.8, -b-=4/11 =0.36 .... 
b +c 

1.3. 2xy + 2xz + yz. The commutative law of addition is used once, 
of multiplication twice. The associative law of addition is used 
twice, and the distributive law twice. 

1.4. a) (17 + 13) x 19 = 30 x 19, b) 100 x 17, c) 33 x 1000 x 5. 
1.5. Either 90% by simply adding 20%, or 76% by treating the original 

proportion of misc1assified persons, that is, 30% as 100%. 
1.6. 71.2 % and 28.8 %. 
1.7. 1.2 %. 

5 k n 4 N 

1.8. a) L Xi' b) L Zi' c) L aj , d) L at, e) L (ai + bi)2 . 
i=l i=O j=3 k=l i=l 

1.13. a) 14, b) - 6, c) + 36, d) 1,000,000. 
1.14. a) xy/a, b) a2b, c) (a+2b)/(2-a), d) x-yo 
1.15. a) (x + y)/xy, b) (t - 2)/2t, c) (u -1)/u2 , d) (5y - 6x)/3x2 y2 . 
1.16. t = 0.30. Only two digits are meaningful. The zero should be 

written. 
1.17. a) x = 602.4/11 = 54.8, b) + 23.0, - 17.9, etc., c) - 0.4. This 

deviation from zero is due to rounding-off. d) 5660 (rounded off). 
1.19. }:.xf = 38,646.34 , nx2 = 32,989.61, l:(x i - X)2 = 5,656.73 . 
1.20. a), c), f) are false; b), d), e) are true. 
1.21. 3.0 % < s ~ 3.3 % , 3.3 % < s ~ 3.5 % , 3.5 % < s ~ 3.8 % . 

1.22. (a; b r ~ ab is equivalent to a2 + 2ab + b2 ~ 4ab . 

1.23. 15.1 x 1013 m or 1000 times the distance earth-sun. 
1.24. 0.31 cal. 
1.25. 94.0,29.7,9.40,2.97,0.940,0.297 (rounded off). 
1.26. 71/ 2,10 1/ 3, A 1/2, (a + b)1/2, (1- X)1/3, 3- 1/ 2 , p-l/3. 
1.27. 8.1,4.0, 18.4,20.8,0.7,0.2. 
1.28. 79 %, 11 %, 10%. 
1.29. a) 27.13, b) 27. 
1.30. Only three. 
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Chapter 2 

2.1. Two points of intersection, one point of tangency, empty set. 
2.2. For two planes: a line, a plane, empty set. 

For three planes: one point, one line, a plane, empty set. 
2.3. CCD or D=Cu{5}. 
2.4. a) {xix < 5}, b) {15/4}, c) {- 9}, d) {10 1/2 , _10112 }, 

e) {xix ~ 6}, f) {tit =l= O} . 
2.6. SeRe Pc U, Sc TcPc U, RnT=S. 
2.7. a) {- 6}, b) 0, c) {xl- 4 < x < 4}, d) {yly> 3 or y < - 3}, 

e) {xERd. 
2.8. 607. 
2.10. c) [(A v B) 1\ D] v [C 1\ E] , 

d) [(A v B) 1\ F 1\ (H v J)] v[{(C 1\ G) v (D 1\ G) v E} 1\ K] . 

Chapter 3 

3.1. A x B = {(O, 0), (0,2), (0,4), (1,0), (1,2), (1, 4)} , 
B x A = {(O, 0), (0,1), (2,0), (2, 1), (4,0), (4, 1)} . 

3.7. Only (b), (c), (d) define functions. 
3.8. The difference () is a function of Vo for a particular person if for 

each value of Vo only one measurement is made. The function is 
nonlinear. 

3.9. y=ax where a=2.8 percent/kr. Domain {xI0~x~6kr}, range 
{ylO ~ y ~ 16.8 %}. The angle of inclination is arbitrary. 

3.10. v = at where a = 9.81 m/sec2 . VI = 0.981 m/sec, v2 = 1.962 m/sec, 
etc. 

3.11. p=cd where c=0.104atm/m. Range {pIO~p~l04 atm}. 
3.15. F=rt+!, AF/At=r. 
3.16. 1=/o+aF. 
3.17. Yes. Ay/ Ax = 1.5. 
3.18. y = ax + b where a = 7.44 and b = 9 mm. 
3.19. 1 = ct + 10 where c = 1.294 x 10- 3 cm/degree and 10 = 76.43 cm. 
3.24. If x and y denote the amount of potatoes and soybeans, resp., 

both measured in units of 100 g, then 19x + 35y ~ 300, x~O, y ~O. 

Chapter 4 

4.2. V = 11;:: S3/2. Power function. Doubling of S increases Vby a 
6 v7t 

factor 23/2 = 2.828 .... 
4.3. Increase of surface 25 %, of volume and weight 40 %. 
4.4. 36.8%. 
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Chapter 5 

5.1. l' = 10 is also a period. 
5.2. n/6, n/4, n/3, 2n/3, 3n/4, 3n/2, 5n/2 . 
5.4. a) - 0.6088, b) - 0.3420, c) - 1.2799, d) + 0.3730, e) - 0.2588, 

f) - 2.2045. 
5.5. Xl = 8.0 m, Yl = 26.3 m, X2 = - 18.1 m, Y2 = 4.8 m, X3 = - 8.6 m, 

Y3 = 30.1 m. 
5.6. r l = 20.8 m, al = lOS 

r2 = 15.8 m, a2 = 100.2° 
r3= 17.5m, a3= -29.0°. 

5.7. a) {30°, 150°}, b) {PI300~P~150°}, 
c) {<pI- 23.9° < <P < 23.9°}, d) {61 °,241 O} . 

5.10. tan b = BD/ED, tan a = BD/CD, cos (Pl - 90°) = CD/ED. 
5.11. a) 25.0°, b) 143.1°, c) 149.0°, d) 54S. 
5.13. Period 24 h, amplitude 1.5, acrophase 5 h. 

Chapter 6 

6.1. a), b), d), e) are arithmetic; c), d), f), j) are geometric. 
6.2. No' 212. The 25 % level of N . 212 is reached in 20 hours. 
6.3. N 0/16. 125 hours. 
6.4. Around 2 x 107 larvae may eat 400 kg wool. 
6.5a. 4.5 x 109 ,5.5 X 109 ,6.7 X 109 • 

6.6. L1y=a(q-1)qx. 
6.7. a), c), d) are monotone. 
6.8. a) x=t-tY, b) x=(y_2)l/2, c) X= _(y_2)l/2, 

d) X=y- l /2, e) x=1/(y-1). 
6.9. 45.5%. 
6.10. 0.64 %. 
6.11. 8.3 and 13.9 weeks. 
6.12. 5.48 weeks. 
6.13. 125 g, 312 g, 781 g, etc. 
6.14. 20 g, 31.6 g, 50.2 g, 79.5 g, 126 g, 200 g. 
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6.15. a) x = log y/log 2, 
c) t = log 2r/log 5, 

) _ log y -log a 
e x- 310g q . 

6.16. 12//1 = 31.6. 
6.17. 21/12. 

b) x = log y -log a, 
d) x = log! Q/log w, 

6,18. a) 4.43, b) 7.09, c) 7.57. 
6.19. Between 4.3 x 10- 8 and 3.6 x 10- 8 moles/liter. 
6.20. 0 A 1 = aq, 0 A2 = aq2, etc. where q = l/coslX. 
6.21. 0 An+ dO An = sin fJ/sin (180° -IX - fJ)· 

Chapter 7 

7.4. a::::: 121 J,lg/10 ml , q::::: 0.955. 
7.8. a) exponential function, b) and c) power functions. 
7.11. !(h 1 s+h2 s+h3 s)=!hs. 

Chapter 8 

8.1. a) 1/4, b) 2/3, c) 1/5, d) -1, e) 2, f)-1. 
8.2. a) 1/2, b) 2, c) - 1 , d) 7/3. 
8.3. lim an = 1 . 
8.4. a), b), e) tend to zero, c) and d) tend to infinity. 
8.5. lim Fn = s/(2 - s). 

1-11- 6 

8.6. a) 728/486, b) 2 1 _ 11 -1' c) 43/64. 

1 - rll 1 - ( - r)11 1 1 - l/sn 

8.7. a) 1- r ' b) 1 + r c) s l-l/s ' 

1_1/5k + 1 

d) e 1 _ 1/5 . 

8.8. a) 1/(1 - r), b) 2c, c) s/(s -1). 
8.9. U=(1-W)-2. 
8.10. a) tends to + 00 , b) tends to - 00 . 

8.11. In both cases 1/x2 tends to + 00 . 

8.12. Fort--+O, i--+oo. For t--+oo , i--+b. 

Chapter 9 

9.1. a) ,1N/,1t=90, b) ,1N/,1t=540, c) ,1N/,1t=450. 
9.2. a) ,1M/,1t= -7/2, b) ,1M/,1t= -14/3, 

c) ,1M/,1t= -28/5. 
9.3. ,1s/,1t = 0.8284 ... , 0.9761 ... , 0.9975 ... , 0.9997 .... 
9.4. ,1y/,1x=3x2 +3xh+h2 , dy/dx=3x2 • 
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9.S. a) (-2)x- 3 , b)Sw4 , c)~r-1/3, d) (-3)t- 4 , 

e) j-Q-2/3, f) _tP-3/2. 
9.7. a) dv/dt = a - b/t2 , b) dU/dz = 2az + tbZ-1/2 - t CZ - 3/2 . 
9.8. 72h- 1 • 

9.9. dM/dt = q + 2rt . 
9.10. a) 0, b) -0.12, c) -0.06. 
9.12. a) 2(x+S), b) 4u(u2-3), c) -(t-2)-2, 

d) 2(1-v)-2, e) -i(4-3t)-1/2, f) p=4cos(41X-S). 
9.13. a) cos2x-sin2x, b) 6t2-6t+10, c) cosu-usinu, 

d) - w1/2 +1(1- W)W- 1/2 . 
9.14. a) - 3/(x - 3)2, b) 2/(1 - r)2 , c) - cos ()/sin2(), 

d) -1/sin2(). 
9.1S. dV/dr = 430 nr . 
9.16. a) y=2x3+C, 

d) y = i-x4 + C , 
g) y=j-sint+C, 

9.17. 19.5. 

b) y=4X2_7x+C, c) u=1-t2+bt+C, 
e) W=t2-8t+C, f) U=Uox+sinx+C, 

h) U=tsin2x+C, i) K=-l/u+C. 

t3 t2 
9.18. a) 1/2, b) lO, c) aT + bT + ct , d) 4, e) 2, 

f) 2, g) 2(J/2 -1), h) 0, i) (q3 - p3)/3, k) l/a(a + 1). 
9.19. a) y" = - 6x , b) u" = 4Oz3 - 18z , c) W" = 6t- 3 , 

d) -tS-3/2. 

9.21. (dh/dt)t = ° = 4.4 m/sec, hmax = 0.99 m, 
d2h/dt2 = - 9.8 m/sec2 . 

9.22. v=at, S=1-t2. 
9.23. a) convex downward, b) and c) convex upward, d) not convex, 

e) convex upward for x < 0 and convex downward for x> O. 
9.24. a) maximum at x = - 3 -1/2 , minimum at x = + 3 -1/2 , 

b) minimum at t = - 2, c) maximum at p = t. 
9.26. a) true, b) false. 
9.27. a) true, b) false. 
9.28. a) true, b) in general false. Continuity is a necessary, but not 

sufficient condition for differentiability. 
9.29. Necessary, but not sufficient. 
9.30. a) absolute minimum at x = 3/2, absolute maximum at x = S. 

b) absolute minimum at t = - 2, absolute maximum at t = 3. 
c) maximum at v = 1, minimum at v = 3. 
d) relative maximum at x = - 1, relative minimum at x = + l. 

9.31. [H+] = lO-7. 
9.32. x = a/2 . 
9.33. a) 9/2, b) 19/3, c) 2/n, d) 1/3. 
9.34. ~S ~ 8nr . ~r , ~ V = 4nr2 . ~r . 
9.3S. ~v~-c(F+a)-2·~F. 
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Chapter 10 

10.2. In 8.45 ~ 2.134, In 20 ~ 2.996, In 0.4 ~ - 0.916. 
10.3. exp 1.8 ~ 6.050, exp ( - 1.8) ~ 0.165 . 

10.4. a) 3e3x , b) - 2e l - 2", c) (- t) exp( - tt2), d) 5/(5 x + 4), 
e) 2V/(V2 - 2), f) -1/(s2 + s), g) e1/2 (1 + t/2), 
h) 1 + In 3u, i) l/[r(l - r)] . 

10.6. a) e"+C, b) te21 +C, c) -e-x+C, d) Inw+C, 
e) In(x+1)+C, f) tln(2t+5)+C. 

10.7. a) exp (xln2), b) exp(uln 10), c) exp(sln4.43), 
d) exp( - 3.08886t), e) exp( - 0.43124x). 

10.8. 33.115e2x . 

10.9. dT/dt = - ak exp( - kt). 

10.10. dy/dx=Be-kX>O. 

10.12. 3.36. 

10.13. Jy~(l/x)Jx, Jy~~Jx. 

10.15. a) 8.06d, b) 1.87h. 
10.16. IN/No~ -A.e-AI1Jt. 

10.17. dN/dt = - abk exp (- b· exp kt) exp kt. 

10.19 e ~ 65/24. 
10.20. 10158 . 

Chapter 11 

11.1. N = Nt eC(I-ld. 

11.2. dy/dt= -0.04y, half-life = 17.3d. 
11.3. A. > 0.5 if t is measured in years. 

11.4. dN/dt = (A. - Il)N + v, 

11.5. dN/dt = aNI + 11k, N---( k )k 
- c-at ' 

11.6. = (kt+Cr W 3 . 

11.7. dl/dx = - 111. 

11.9. a) y = l/(c - at), 
1 

b) y=a- kt+c' 

t< c/a. 

d) A = l/(c - tt2 ), e) Q = c exp(t3/3), 

c) u = c exp(x2/2), 

f) y2 = x 2 + c. 

C() R -kl 
11.10. t =k-ae , a>O. 



12.1. 

12.2. 

12.3. 

12.4. 
12.6. 

Answers to Problems 

Chapter 12 

a) of/ox=a, of/oy= -b, 
b) og/ou=2u-2v, og/ov= -2u+2v, 
c) oiP/os = oiP/ot = e' +t , 

oh 
d) ox =aexp(ax+by+cz), etc. 

e) oP/orx=3cos(3rx+P), oPjiJP=cos(3rx+P), 
f) oQ/ov = w/v, oQ/ow = In v, 
g) of/or = - (r - 2s)- 2, of/os = 2(r - 2s)- 2, 

h) iJG/iJs = - abt/(bs-ct)2, oG/iJt=abs/(bs-ct)2. 
a) fxx=2a, fxy=b, f,y=2c, 
b) huu=n(n-1)un- 2tJ", huv=n2(uv)n-l, 

hvv = n(n -l)unvn- 2, 

c) Qvv = - W/V2 , Qvw = l/v, Qww = 0, 
d) Sxx = Syy = Szz = 2, SXy = Sxz = Syz = 0, 
e) iPss = 0, iPst = aefJt , iPtt = a2 se"t , 
f) Pu.=-Asinrx, P,.p=O, Ppp=-Bsinp. 
OV oV 2 02V 02V 

--a;:-=2nrh, oh =nr, or2 =2nh, oroh =2nr, 

iJ2 V 
iJh2 = O. 

x=l, y=3, z=2. 
y=ax+b. 

Chapter 13 

13.4. 0.7 and 0.3. 
13.5. a) 19/37, b) 6/37, c) 11/37. 
13.6. a) 0.77, b) 0.54. 
13.8. 1/3. 
13.9. 3/7 and 1/7 . 
13.10. a) 0.0067, b) 0.891 . 
13.11. 3/28. 
13.12. male and deaf: 0.005 x 0.527 ~ 0.003 , etc. 
13.13. a) 0.044, b) 0.093. 
13.14. 78%. 
13.16. a) 1/4, b) 1/4, c) 1/4, d) 1/4, e) O. 
13.17. P(oo) = r2 = 0.41, P(ab) = 2pq = 0.041, etc. 
13.19. a) 7, b) 120, c) 56, d) 1/10, e) 35, f) 1. 
13.20. 10,20, 56, 9, 1, 330. 
13.21. 120. 
13.22. 8436. 

465 
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13.23. a) 1296, b) 360. 

13.24. a) C~), b) C~)· 
13.26. a) 1 + 4x + 6X2 + 4X3 + X4 , 

b) 1 - 4x + 6X2 - 4X3 + X4 , 
c) 32 + 80p + 80p2 + 4Op3 + lOp4 + p5 , 
d) Z3 +tZ2 + iz +~, 
e) 12a5 + 40a3 + 12a . 

13.28. a) lO/32 , b) 1/32, c) 31/32, d) 16/32. 
13.29. a) 25, b) 75, c) 75. 
13.30. 4, Vi2 . 
13.31. E(X) = 39, a = 2.93. 

13.32. a) C~) (1/6)3 (5/6)7, 

b) 1.89,3.15,2.62, 1.46,0.61,0.20,0.06,0.01,0.00, etc. 
13.33. 0.006,0.031,0.081,0.140,0.178, etc. 
13.34. Xl = J1. - a , X2 = J1. + a . 

Chapter 14 

14.4. MN = (_; _~), NM = (1~ -j). 
14.5. 3X2 +2y2 +2xy-2y+4. 

146 A(B C)=(a+3b 3a+4b) . . + c+3d 3c+4d· 
14.12. lal = V53, Ibl = V50, cos IX = 0.486, IX = 60.9°, 

(a+b)/2=(~.5). 
14.13. (ai + a2 + a 3)/3 = (17/3,3,3), . 
14.14. v and ware orthogonal. 
14.15. 73.0° . 

IX 
14.17. IFI =21F11cosT . 

14.18. 26160 gr cm/sec2 ~2.6 x 104dynes. 

Chapter 15 

15.1. a) 5, 53.1 0, b) 5, - 53.1 0, c) 0, 225°, d) 5 0, - 45°. 
15.2. a) 1 + 12i, b) - 12 + II i, c) -lO, 

d) +27, e) -16, f) 41+61i, 
g) - 10 - 49i, h) - 5 + 12i , i) - 9 - 40i , k) 73. 



15.3. 

15.4. 

15.5. 

15.6. 

Answers to Problems 467 

1 . a - bi 
a) 29(2 - 51), b) a2 + b2 ' 

1 
c) 10(3 + i), 

1 . 
d) -10(1 + 131). 

a) 5eO.927i, b) 5e-O.927i, c) V2 e3.927i, 

d) 5 V2e-O.785i. 

1 0'. i 
a) -2+-2-1, b) -5, c) -3. 
a) X= ±3i, b) X= -3±4i, c) A=3±3i, 
d) p= -6±5i, e) u=!(5± VTIi), f) s=1±7i. 
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