
Lecture Notes in Computer Science 1426
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Frédéric Geurts

Abstract
Compositional Analysis
of Iterated Relations

A Structural Approach
to Complex State Transition Systems

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Author

Frédéric Geurts
Service de Mathématiques de la Gestion
Université Libre de Bruxelles
CP 210 01, Boulevard du Triomphe
B-1050 Bruxelles, Belgium
E-mail: fgeurts@smg.ulb.ac.be

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Geurts, Frédéric:
Abstract compositional analysis of iterated relations : a structural approach
to complex state transition systems / Frédéric Geurts. - Berlin ; Heidelberg
; NewYork ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo
: Springer, 1998
(Lecture notes in computer science ; Vol. 1426)
ISBN 3-540-65506-9

CR Subject Classification (1998): F.1, F.3.1, C.3, D.2.4

ISSN 0302-9743
ISBN 3-540-65506-9 Springer-Verlag Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

c© Springer-Verlag Berlin Heidelberg 1998
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10637524 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper

Foreword by Michel Sintzoff

The present book apparently falls outside of the scope of the LNCS series:
the theory of dynamical systems is mainly used for systems defined by, say,
differential equations, and very little for programs. Yet, to consider programs
as dynamical systems sheds light at least on the relationship between discrete-
time systems and continuous-time ones; this is an important issue in the area
of hybrid systems, where control engineers and software designers learned to
work hand in hand.

As a matter of fact, program traces constitute time-to-state functions,
and programs which define sets of traces characterize reactive systems as
used in industry and services. Quite similarly, differential systems define sets
of time-to-state functions, and they serve in many disciplines, e.g. physics,
engineering, biology, and economics. Thus, we must relate programs as well
as differential equations to dynamical systems.

The concepts of invariance and attraction are central to the understand-
ing of dynamical systems. In the case of programs, we use the quite similar
notions of invariance, viz. safety, and reachability, viz. termination or liveness;
reachability amounts to finite-time attraction and weakest preconditions de-
termine largest basins of reachability. Accordingly, the basic programming
concepts of fairness, fault-tolerance and self-stabilization correspond, in the
case of dynamical systems, to recurrence (repeated return to desired states),
structural stability (return to desired dynamics after system perturbation),
and absorption (return to a desired invariant after state perturbation).

Linear dynamical systems are usually analyzed in terms of analytical ex-
pressions which provide explicit solutions for simple differential or difference
equations. In the case of nonlinear dynamical systems, exact solutions cannot
be obtained in general, and the qualitative analysis is then carried out on the
system specifications themselves, viz. on differential equations. For instance,
attraction is proven using an energy-like function: the successive dynamical
states are abstracted to decreasing non-negative reals. Also, the qualitative
analysis of concrete dynamics can be reduced to that of symbolic ones, in
which each state is a symbol abstracting a set of concrete states; this shows
discrete dynamics can serve as qualitative abstractions of continuous ones.

Similarly to nonlinear systems, programs in general cannot be understood
in terms of analytical solutions. Weakest preconditions often become too com-

VI Foreword by Michel Sintzoff

plex, and practical reasoning methods apply on the programs themselves. For
example, invariance is checked by structural induction, and termination is
verified using an energy-like function from the successive dynamical states
to decreasing non-negative integers. Moreover, the verification of a concrete
program, very much as in the case of a concrete nonlinear dynamical system,
is better carried out in terms of an abstract, simpler one. This paradigm of
abstraction underlies many useful techniques in mathematics as well as in
computing; let us recall automata simulation, data representation, abstract
interpretation, and time abstraction.

Interestingly enough, the mathematical theory of dynamical systems not
only supports abstraction-based methods, e.g. symbolic dynamics, but also
introduces basic compositional techniques such as sequential and iterative
composition. What could then computing science contribute to that theory?
The answer is clear: scaling up. Actually, the central results in the classical
theory of dynamical systems concern single-level individual systems. For us,
the main challenge is to design systems for many complementary goals and
at various abstraction levels. To this end, we intensively use the principles
of modular composition and stepwise refinement. The same approach could
give rise to possible original contributions of computing science in the area of
dynamical systems. Indeed, the present book shows how to construct complex
dynamics by a systematic composition of simple ones, and thus provides a
roadmap to compositional design techniques for scaled-up dynamical systems.

Programming theory has taken great advantage of logic and algebra. It
should similarly benefit from the theory of dynamical systems; this synergy
would entail a common scientific platform for system engineering at large,
including software engineering. Examples of such cross-fertilization already
exist. Discrete-event control systems and hybrid systems, combining contin-
uous and discrete time, are specified, analyzed, and synthesized using finite-
state automata. Synchronization of dynamics provides a means of secure com-
munication. Emergent computations can be implemented by cellular neural
networks. Distributed dynamics help to analyze agent-based systems.

The nice matching between dynamics and computational intuitions ex-
plains the success of automata-based requirements, dynamics-based archi-
tectures, state-based specifications, object-oriented systems, proof dynam-
ics, and design-process models. At each abstraction level, dynamics can be
specified at will using programs, automata, logic, algebra, or calculus. For
many-sided and multi-level systems such as the web or a house, the crucial
issues are the choice of the right level of dynamics, the interaction of internal
dynamics with partially defined external ones, and the scaling-up of state-,
control- and time-refinements.

The author must be thanked warmly for providing us with many stimu-
lating ideas on these attractive themes.

Preface

State-transition systems model machines, programs, and specifications [20,
23, 284, 329], but also the growth and decline of ant populations, financial
markets, diseases and crystals [22, 35, 178, 209, 279]. In the last decade,
the growing use of digital controllers in various environments has entailed
the convergence of control theory and real-time systems toward hybrid sys-
tems [16] by combining both discrete-event facets of reality with Nature’s
continuous-time aspects. The computing scientist and the mathematician
have re-discovered each other. Indeed, in the late sixties, the programming
language Simula, “father” of modern object-oriented languages, had already
been specifically designed to model dynamical systems [76].

Today, the importance of computer-based systems in banks, telecommu-
nication systems, TVs, planes and cars results in larger and increasingly
complex models. Two techniques had to be developed and are now fruitfully
used to keep analytic and synthetic processes feasible: composition and ab-
straction. A compositional approach builds systems by composing subsystems
that are smaller and more easily understood or built. Abstraction simplifies
unimportant matters and puts the emphasis on crucial parameters of systems.

In order to deal with the complexity of some state-transition systems and
to better understand complex or chaotic phenomena emerging out of the
behavior of some dynamical systems, the aim of this monograph is to present
first steps toward the integrated study of composition and abstraction in
dynamical systems defined by iterated relations.

The main insights and results of this work concern a structural form of
complexity obtained by composition of simple interacting systems presenting
opposed attracting behaviors. This complexity expresses itself in the evolu-
tion of composed systems, i.e., their dynamics, and in the relations between
their initial and final states, i.e., the computations they realize. The theoret-
ical results presented in the monograph are then validated by the analysis
of dynamical and computational properties of low-dimensional prototypes of
chaotic systems (e.g. Smale horseshoe map, Cantor relation, logistic map),
high-dimensional spatiotemporally complex systems (e.g. cellular automata),
and formal systems (e.g. paperfoldings, Turing machines).

Acknowledgements. This monograph is a revision of my PhD thesis which was
completed at the Université catholique de Louvain (Belgium) in March 96.

VIII Preface

The results presented here have been influenced by many people and I would
like to take this opportunity to thank them all.

In particular, I express my deepest gratefulness to my advisor, Michel
Sintzoff, with whom I had the rewarding privilege to collaborate. His gener-
ous support, his never-ending interest in my work, his incredibly long-term
scientific perspective, and his matchless sense of humour incited me to de-
velop and write things I would never have dreamt of. I owe Michel an abstract
compositional virus that flies in the Garden of Structural Similarities.

My gratitude further goes to Yves Kamp, André Arnold, and Michel Ver-
leysen, for their careful reading of draft versions of this text, and for their
kind and constructive way to turn simple statements into convincing ones.
I am also thankful to Nicola Santoro and Paola Flocchini for their constant
belief in my research on cellular automata, and for their multiple invitations
to Ottawa.

I wish to thank the staff of the Computer Science Department at UCL,
and especially its chairman, Elie Milgrom, for providing the nice environment
in which I could spend five exciting years.

I acknowledge the financial support I received from the Fonds National
de la Recherche Scientifique, the European Community, the Communauté
Française de Belgique, and the Académie Royale de Belgique.

My warmest thanks go to my friends Bruno Charlier, Luc Meurant, and
Luc Onana Alima, for their irreplaceable presence, and to my parents and
sister, Pol, Rose-Marie, and Muriel, for their eternal love, care, and attention.

At last but not least, words are not strong enough to tell my love to my
wife, Cécile, and to our beautiful smiling daughter, Romane. Without their
emotional support, all this would not have been possible.

I had a dream.
I was there, under the sun,

Waiting for nothing, for happiness.
Quelque chose attira mon attention.

Etait-ce cet oiseau qui volait vers moi ?
Il y avait tant de monde que j’avais peine à distinguer

D’où venait cette douce magie qui m’enrobait.
Puis des notes, une musique sublime, se dévoilèrent,

Et tu apparus, Vénus, d’un océan de joie,
Enivrant de ta douceur bleue le ciel et tous ses astres.

Frédéric Geurts
Louvain-la-Neuve, Belgium

January 1998

Table of Contents

Foreword by Michel Sintzoff . V

Preface . VII

1. Prologue: Aims, Themes, and Motivations 1
1.1 Complex Relational Dynamical Systems 2

1.1.1 The Context: A First Contact with Dynamical Systems 2
1.1.2 Mutual Exclusion . 4
1.1.3 Social Pressure . 7
1.1.4 On the Chaotic Demography of Rabbits 9

1.2 Tools and Motivations . 14
1.3 Overview of the Monograph . 16

Part I. Mathematical Framework: Iterated Relations and
Composition

2. Dynamics of Relations . 21
2.1 Functional Discrete-Time Dynamical Systems 22
2.2 Relational Dynamical Systems . 24

2.2.1 Point-Level Nondeterministic Dynamics 25
2.2.2 Set-Level Deterministic Dynamics 26
2.2.3 Comparison . 26

2.3 Preliminary Definitions and Properties . 28
2.3.1 Basic Definitions About Relations 28
2.3.2 Notions from Topology . 31
2.3.3 Monotonicity and General Junctivity Properties 33
2.3.4 Fixpoint Theorems . 37
2.3.5 Elementary Properties . 39
2.3.6 Metric Properties . 40

2.4 Transfinite Iterations . 44
2.4.1 Motivation . 44
2.4.2 Transfinite Fixpoint Theorem . 45
2.4.3 Transfinite Limits of Iterations . 47

X Table of Contents

2.5 Discussion . 48
2.5.1 Relations vs Functions . 48
2.5.2 Set-Level Dynamics and Predicate-Transformers 49
2.5.3 Point-Level Dynamics and Trace Semantics 50
2.5.4 Nondeterminism and Probabilistic Choices 50
2.5.5 Transfinite Iterations . 51
2.5.6 Time Structure . 51

3. Dynamics of Composed Relations . 53
3.1 Structural Composition . 53
3.2 Composition of Relations . 54

3.2.1 Unary Operators . 55
3.2.2 N-Ary Operators . 56
3.2.3 Composed Dynamical Systems . 59

3.3 Dynamics of Composed Relations . 62
3.3.1 One-Step Set-Level Evolution of Composed Relations . 62
3.3.2 Point-Level Dynamics of Composed Systems 67

3.4 Algebraic Properties of Composition Operators 71
3.4.1 Composition of Unary Operators 72
3.4.2 Composition of Unary and N-Ary Operators 72
3.4.3 Composition of N-Ary Operators 73
3.4.4 Fixpoint Theory for the Composition 75

3.5 Discussion . 77
3.5.1 Composition Operators . 77
3.5.2 Nondeterminism and Probabilities Revisited 78
3.5.3 Fixpoint Operator and Composition 79

Part II. Abstract Complexity: Abstraction, Invariance, Attraction

4. Abstract Observation of Dynamics . 83
4.1 Observation of Systems . 83
4.2 Trace-Based Dynamics . 85
4.3 Symbolic Observation . 86
4.4 Abstraction of Systems . 88
4.5 Qualitative Abstract Verification . 89
4.6 Observation as Abstraction . 91
4.7 Discussion . 91

4.7.1 Observation and Abstraction: Related Work 92
4.7.2 Symbolic Dynamics vs Astract Observation 92
4.7.3 Qualitative Abstract Verification 93

Table of Contents XI

5. Invariance, Attraction, Complexity . 95
5.1 Invariance . 96

5.1.1 Forward and Backward Invariance 96
5.1.2 Global Invariance . 100
5.1.3 Strong Invariance . 100

5.2 Structure of Invariants . 102
5.2.1 Trace-Parametrized Invariants . 103
5.2.2 Fullness and Atomicity . 104
5.2.3 Chaos . 106
5.2.4 Fullness Implies Trace Chaos . 108
5.2.5 Fullness and Atomicity Imply Knudsen Chaos 108
5.2.6 Devaney vs Trace vs Knudsen Chaos 109

5.3 Fullness and Atomicity Criteria . 110
5.3.1 Criteria . 110
5.3.2 Case Studies: Dyadic Map, Cantor Relation, Logistic

Map . 113
5.4 Attraction . 119

5.4.1 Intuition: From Reachability to Attraction 120
5.4.2 From Weak to Full Attraction . 121
5.4.3 A Taxonomy of Attraction . 123

5.5 Attraction Criteria . 125
5.6 Attraction by Invariants . 126
5.7 Discussion . 128

5.7.1 Invariance and Attraction: Related Notions 128
5.7.2 Energy-Like Functions . 129
5.7.3 Dynamical Complexity . 130

Part III. Abstract Compositional Analysis of Systems: Dynamics
and Computations

6. Compositional Analysis of Dynamical Properties 135
6.1 Aims and Informal Results . 135
6.2 Inversion . 138
6.3 Restrictions . 140

6.3.1 Domain Restriction . 140
6.3.2 Range Restriction . 141

6.4 Negation . 143
6.5 Sequential Composition . 144
6.6 Intersection . 146
6.7 Union . 147
6.8 Products . 154

6.8.1 Free Product . 154
6.8.2 Connected Product . 155

6.9 Combining Union with Free Product . 156

XII Table of Contents

6.10 Discussion . 156
6.10.1 Compositionality: Summary . 157
6.10.2 Limitations and Open Problems . 157
6.10.3 Related Work . 159
6.10.4 Emergence of Complexity by Structural Composition . 160

7. Case Studies: Compositional Analysis of Dynamics 163
7.1 A Collection of Complex Behaviors . 163
7.2 Smale Horseshoe Map . 164
7.3 Cantor Relation . 168
7.4 From Cantor Relation to Truncated Logistic Map 169
7.5 Paperfoldings . 172

7.5.1 Introduction . 172
7.5.2 Paperfolding Sequences . 173
7.5.3 Dynamical Complexity of Paperfoldings 177
7.5.4 Partial Conclusions . 180

7.6 Discussion: Compositional Dynamical Complexity 180

8. Experimental Compositional Analysis of Cellular Automata183
8.1 Aims and Motivations: Attraction-Based Classification and

Composition . 184
8.2 Preliminary Notions . 186

8.2.1 Cellular Automata. 186
8.2.2 Transfinite Attraction . 188
8.2.3 Shifted Hamming Distance . 188

8.3 Experimental Classification . 189
8.4 Formal Attraction-Based Classification . 191

8.4.1 Introduction . 192
8.4.2 Type-N Cellular Automata . 193
8.4.3 Type-F Cellular Automata . 193
8.4.4 Type-P Cellular Automata . 194
8.4.5 Type-S Cellular Automata . 194
8.4.6 Type-A Cellular Automata . 195
8.4.7 Discussion . 196

8.5 Structural Organizations of CA Classes 196
8.5.1 Motivation: Simulation vs Theoretical Results 196
8.5.2 Linear Periodicity Hierarchy . 198
8.5.3 Periodicity Clustering . 199
8.5.4 Organization w.r.t. Shifted Hamming Distance 199
8.5.5 Dynamical Complexity in CA . 201

8.6 Conjectures in CA Composition . 201
8.7 Complexity by Composition of Shifts . 203

8.7.1 Rules 2 and 16 . 203
8.7.2 Cantor Relation . 204

Table of Contents XIII

8.7.3 Comparison . 206
8.7.4 A More Precise Conjecture . 206

8.8 Qualitative Analysis and Complexity Measures 206
8.9 Compositional Analysis of Complex CA 208

8.9.1 Local Disjunction, Local Union, and Global Union 208
8.9.2 Comparison and Summary of Results 210

8.10 Discussion . 211
8.10.1 Summary and Partial Conclusion 211
8.10.2 Open Questions . 212
8.10.3 Classification: State-of-the-Art . 213
8.10.4 Aperiodicity in Cellular Automata 215
8.10.5 Related Work in Composition . 216

9. Compositional Analysis of Computational Properties 217
9.1 Automata as Dynamical Systems . 217
9.2 Comparing Dynamical Systems . 220

9.2.1 Extrinsic Method . 220
9.2.2 Intrinsic Method . 221
9.2.3 Our Comparison . 221

9.3 From Locality to Globality . 221
9.3.1 Turing Machines . 222
9.3.2 Cellular Automata. 223
9.3.3 Continuous Functions . 224
9.3.4 General Model . 224

9.4 Comparison Through Simulation . 227
9.4.1 Simulation. 227
9.4.2 Choice of Coding . 228
9.4.3 From TM to CA . 228
9.4.4 From CA to CF . 231
9.4.5 Weak Hierarchy . 232

9.5 Topological and Metric Properties . 232
9.5.1 Continuity . 233
9.5.2 Shift-Invariance . 233
9.5.3 Lipschitz Property . 234
9.5.4 Shift-Vanishing Effect . 235
9.5.5 Nondeterminism . 235
9.5.6 Summary. 237

9.6 Computability of Initial Conditions . 238
9.7 Hierarchy of Systems . 239
9.8 Discussion . 240

9.8.1 Composition and Computation . 240
9.8.2 Further Work . 240
9.8.3 Related Work . 241

XIV Table of Contents

10. Epilogue: Conclusions and Directions for Future Work 243
10.1 Contributions and Related Work . 244

10.1.1 Mathematical Framework . 245
10.1.2 Compositional Analysis . 246

10.2 Directions for Future Research . 247
10.2.1 A Patchwork of Open Technical Issues 248
10.2.2 Fractal Image Compression . 248
10.2.3 Distributed Dynamical Optimization 249
10.2.4 Distributed Systems and Self-Stabilization 250
10.2.5 Probabilistic Systems and Measures 250
10.2.6 Higher-Order Systems, Control, and Learning 251
10.2.7 Design of Attraction-Based Systems 252

10.3 The Garden of Structural Similarities . 253
10.4 Coda: Compositional Complexity Revisited 255

Bibliography . 257

Glossary of Symbols . 273

Index . 277

1. Prologue: Aims, Themes, and Motivations

L’ordre est le plaisir de la raison
mais le désordre est le délice de l’imagination.

Paul Claudel

La vie est pour chaque homme surgi du chaos
une goutte d’eau douce entre deux océans.

Cette tendresse au coeur, nous roulons vers la mer
et notre soif s’enflamme au sel d’éternité.

Henri Coppieters de Gibson

The paradigms of abstraction and composition are central in many ar-
eas of computer science and mathematics. For instance, important results
concern program refinement and construction, parallel and distributed sys-
tems, abstract data types, proof checking, VLSI circuits, and artificial neural
networks.

We strongly believe that the same tools can be fruitfully extended to
a more general setting including chaotic systems, mathematical models of
state-based transition systems, parallel programs and cooperative agents,
and thereby enable a better understanding of the wide variety of complex
phenomena they exhibit.

The goal and main contribution of this monograph is to present first de-
velopments in the abstract compositional analysis of dynamical and compu-
tational properties of discrete-time relational dynamical systems. We study
properties of composed systems by combining the individual analyses of their
components, together with abstraction techniques. This allows us to propose
a structural view of dynamical complexity, as well as a structural computa-
tional hierarchy of dynamical systems.

This introductory chapter is organized as follows: §1.1 illustrates the con-
text of our study by means of examples; §1.2 presents and motivates the
main tools used within this context; finally, §1.3 gives an overview of the
monograph.

F. Geurts: Abstract Compositional Analysis of Iterated Relations, LNCS 1426, pp. 1-18, 1998.
 Springer-Verlag Berlin Heidelberg 1998

2 1. Prologue: Aims, Themes, and Motivations

1.1 Complex Relational Dynamical Systems

This section presents dynamical systems based on iterated relations, first in
a semi-theoretic way, then by means of paradigmatic examples of computing
science and mathematitcs which illustrate the main properties and concepts
introduced and developed in the next chapters: first, a classical mutual ex-
clusion algorithm; then, a very simple model of social pressure; finally, the
well-known chaotic evolution of rabbit populations. These examples also show
the wide range of applications in which dynamical systems can be used as
models and explanatory tools of natural and artificial phenomena.

1.1.1 The Context: A First Contact with Dynamical Systems

Iterative Dynamical Systems. Dynamical systems are abstract mathematical
objects [76] describing the time evolution of concrete objects like the atmo-
spheric pressure [207], the biodiversity of an ecosystem [31], the temperature
of a nuclear reactor [16], the load level of a computer network, exchange rates
between US dollars and Belgian Francs or other standard indicators of finan-
cial markets [22, 82], etc. These concrete objects can be in several states,
generally obtained by means of physical measures. Any discrete-time evolu-
tion is a transition between states. Thus, if a concrete object is in a given
state, the next state following a transition will characterize the object after
a certain amount of time. When time is discrete, transitions are obtained by
application of a function defined on the state space of the object; they can
be expressed by difference equations or by programs. When continuous-time
evolutions are considered instead, transitions become infinitesimal in time
and are expressed by differential equations. In this monograph, we consider
the discrete-time level only.

Let us thus introduce some “soft” mathematics. Let C be the concrete
object, m be an “instrument” measuring the state of C at a given time: m
is a function from time to the space X that contains all possible states of
C. The dynamical system providing the discrete-time evolution of C is a
pair (X, f) where f is a function from and to X . Thus, if m(t) = x then
m(t + 1) = f(x), where time is normalized in such a way the increment
between two observations is always 1. A longer evolution can be obtained as
follows: let C be in state x0 at time 0, viz. m(0) = x0. The evolution from
x0 results from successive iterations as follows:

x0
︸︷︷︸

m(0)

f−→ f(x0)
︸ ︷︷ ︸

m(1)

f−→ f(f(x0))
︸ ︷︷ ︸

m(2)

f−→ f(f(f(x0)))
︸ ︷︷ ︸

m(3)

f−→ · · ·

The evolution from a set of states A0 is obtained by successive iterations

A0
f−→ f(A0)

f−→ f(f(A0))
f−→ f(f(f(A0)))

f−→ · · ·

1.1 Complex Relational Dynamical Systems 3

of the set-transformer, or point-to-set lifting, of f : ∀A ⊆ X ,

f(A) = ∪a∈Af(a).

The full dynamics of the system is a set that contains all possible evolu-
tions, from all possible starting points: one evolution per initial state.

Relations as Nondeterministic Dynamical Systems. In order to model con-
crete problems, for example in computing science, nondeterminism has to
be added to the notion of dynamical systems, and functions must be ex-
tended to relations. Indeed, nondeterminism plays a crucial role in models of
asynchronous parallelism, and in relational aspects of logic programming or
databases. There is also a theoretical reason for preferring relations to func-
tions, namely to provide a homogeneous mathematical framework for the
study of dynamical systems.

When a relation is considered to describe transitions between states of a
specific system, several transitions can occur from a given state and lead to
new states which, in turn, can lead to several next states, etc. For instance, f
being a relation defined on X , for a given state x, there can be several images
y such that (x, y) ∈ f . Each nondeterministic transition can be denoted by

x
f−→ y

but we can also regard the relation as a multi-valued function, and take all
possible images as next “state”

x
f−→ {y | (x, y) ∈ f}.

This immediately requires to introduce set-transformers on top of multi-
valued functions because we want to compute a complete second iteration
from x, that is, the image of a set.

Here, fixing one initial state x0 is no more equivalent to giving one pos-
sible evolution from x0, because of nondeterminism: different evolutions can
correspond to a single initial point. Still, however, the full dynamics can be
defined as the set of all possible evolutions from all possible starting states.

Complexity in Dynamical Systems. There are two ways to look at systems
and their evolution. One can look at the evolution itself, i.e. the dynamics of
the system, or one can concentrate on the relations between initial and final
or asymptotic states, i.e. the computations of the system.

The first aspect is classical in mathematics, physics, and program theory:
chaos, ergodicity, fractals, but also invariance, termination, fairness, and self-
stabilization, all these notions describe how systems visit their underlying
spaces as they evolve. The second aspect comes from computability theory,
where one looks at input-output relations of automata, machines, programs,
to define their computational power.

The remaining subsections illustrate these notions of evolution and com-
plexity by means of classical examples of computer science and mathematics.

4 1. Prologue: Aims, Themes, and Motivations

1.1.2 Mutual Exclusion

When two serious users of a computer network want to print the results of
looong hours of labour, they probably prefer them to be separated and not
mixed! To make sure that their wish becomes reality, the two underlying
user processes have to talk to the printer-management process sequentially,
and not together; the user processes must have a mutually exclusive access
to the printer resource. In [262], Peterson proposed a very simple algorithm
solving the mutual exclusion problem. Our aim here is not to prove that
the algorithm is correct, but rather to show an abstract way of analyzing its
behavior, and showing that it fulfills its requirements.
Peterson’s Algorithm. Let us first present a guarded-command-like [91] ver-
sion of Peterson’s algorithm for two processes whose purpose is to guarantee
a sequentialized execution of a “critical section” from which a given resource
must be accessed in a mutually exclusive way. The three components (ini-
tialization part plus two core processes) and their parallel composition are
defined in Fig. 1.1.

I = d0 := f; d1 := f; t := 0

P0/1 = do t→ (1) non critical section;
(2) d0/1 := t;
(3) t := 0/1;
(4) do (d1/0 = t ∧ t = 0/1)→ skip od;
(5) critical section;
(6) d0/1 := f

od

P = I ; (P0 ‖ P1)

Fig. 1.1. Peterson’s mutual exclusion algorithm

The parallel composition P0 ‖ P1 can be executed synchronously or not.
In the first case, the instructions or transitions of both processes are executed
at the same time. In the second case, a nondeterministic choice determines
which process executes its transition, and a fair scheduling [110] prevents any
one of them from being discarded forever.

Before analyzing the behavior of P , let us rewrite the main components
P0 and P1 as state-transition systems (see Fig. 1.2).
Asynchronous Execution. Let us start with the asynchronous version, which
seems more realistic as a global clock might not always be available to permit
a perfect synchronization. Table 1.1 shows all possible transitions. Each cell
of this table contains two lines, respectively denoting a transition of S1 (top)
or a transition of S0 (bottom). Some transitions are disabled, in which case
the corresponding half cells are left empty.

1.1 Complex Relational Dynamical Systems 5

S0/1 = { 1 � non critical section �→ 2,
2 � d0/1 := t �→ 3,
3 � t := 0/1 �→ 4,
4 � d1/0 = f? �→ 5,
4 � t = 1/0? �→ 5,
5 � critical section �→ 6,
6 � d0/1 := f �→ 1

}

Fig. 1.2. Peterson’s mutual exclusion transition system

The crucial point is (3, 3), from which the choices (3, 4) and (4, 3) entail
two different chains of transitions: either

(3, 3)→ (3, 4) t := 0 �→ (4, 4)→ (4, 5)→ (4, 6)→ (4, 1)→ (5, 2)

or

(3, 3)→ (4, 3) t := 1 �→ (4, 4)→ (5, 4)→ (6, 4)→ (1, 4)→ (2, 5).

By looking at the table, we notice that no cell contains the pair (5, 5).
Good! It means that the mutual exclusion of the critical section is verified.

Table 1.1. Asynchronous transitions of Peterson’s mutual exclusion algorithm

S1

S0

1 2 1 3 1 4 1 5 1 6 1 1
2 1 2 2 2 3 2 4 2 5 2 6
2 2 2 3 2 4 2 5 2 6 2 1
3 1 3 2 3 3 3 4 3 5 3 6
3 2 3 3 3 4 3 6 3 1
4 1 4 2 4 3 4 4 4 5 4 6
4 2 4 3 4 4 4 5 4 6 4 1
5 1 5 2 5 4
5 2 5 3 5 4 5 6 5 1
6 1 6 2 6 3 6 4 6 5 6 6
6 2 6 3 6 4 6 6 6 1
1 1 1 2 1 3 1 4 1 5 1 6

Some other states are also unreachable as the only path toward them has to
start from or contain (5, 5):

{(5, 5), (5, 6), (6, 5), (6, 6)}.

This set of configurations is called poetically Garden of Eden: transition paths
from the Garden are one way only, no path ever reaches or returns to the
Garden.

6 1. Prologue: Aims, Themes, and Motivations

Synchronous Execution. Let us quickly review the synchronous execution of
the algorithm. The new transition table is shown in Table 1.2.

Table 1.2. Synchronous transitions of Peterson’s mutual exclusion algorithm

S1

S0

2 2 2 3 2 4 2 5 2 6 2 1
3 2 3 3 3 4 3 5 3 6 3 1
4 2 4 3 3 4 4 4 4 6 4 1

4 3
5 2 5 3 4 4 4 5 4 6 4 1

5 4
6 2 6 3 6 4 6 4 6 6 6 1
1 2 1 3 1 4 1 4 1 6 1 1

In this model, the transition from (3, 3) has to be split into two transitions
if write-atomicity on variable t holds. Actually, one can rewrite the transition
as a nondeterministic coin tossing

(t := 0, t := 1)
≡ t := 0; t := 1 t := 1; t := 0
≡ t := coin tossing.

The execution path from (1, 1) is obviously much simpler than in the
asynchronous case (see Fig. 1.3).

The first part of this evolution, above the line, is called transient; because
of the nondeterministic choice from (3, 3), the transient has two possible
outcomes and is thus nondeterminstic. The second part, below the line, is
a loop or cycle of length six; there, every transition is deterministic: once in
the cycle, the evolution is determined forever; the present fully determines
the future. By definition, the cycle is an invariant set of states: once in this
set, all subsequent evolutions remain in the cycle. Moreover, after a finite
amount of transitions in the transient, the system enters and remains in the
thereby attracting cycle. All other states eventually lead to this evolution and
constitute the Garden of Eden.

Comments. The algorithm P whose abstract state-transition version has
been studied, is nothing but a dynamical system obtained by successive iter-
ations of an underlying relation between global states composed of substates
of each of the individual processes. Several important notions have already
been illustrated in this first example. Two types of composition have been
used to assemble the building blocks of P (sequential composition and paral-
lel composition). We have used nondeterministic transitions in order to model

1.1 Complex Relational Dynamical Systems 7

some concrete aspects of the system. Two dynamical properties have been
introduced: invariance and attraction.

We do not pretend that dynamical systems are the key to mutual ex-
clusion algorithms. However, their use might be appropriate to analyze and
understand the behavior of specific algorithms or to conceive ones verifying
given properties.

Transient (1, 1)

(2, 2)

(3, 3)

(3, 4) (4, 3)

(4, 4) (4, 4)

(4, 5) (5, 4)

(4, 6) (6, 4)

Cycle (4, 1) (1, 4)

(5, 2) (2, 5)

(6, 3) (3, 6)

Fig. 1.3. Dynamics of the synchronous version of Peterson’s algorithm

1.1.3 Social Pressure

Before election days and referenda, newspaper headlines often read “Polling
results – 60% of the people think yellow (let us not make it controversial)”.
What are the other 40% of this population going to think after this publica-
tion? When you know that almost everybody around you thinks yellow, are
you not tempted to go yellow? Your first answer is probably “No!”. Anyway,
this kind of social pressure is a common tool used by media, if any, all around
the world.

Although not directly related to media, crucial parts of control systems
of nuclear plants or of planes, space shuttles and other flying objects follow

8 1. Prologue: Aims, Themes, and Motivations

the same rules. They are very often duplicated, triplicated or even quadru-
plicated, run in parallel, and a supposedly reliable Comparator compares the
results and takes either the most frequent one or their average, depending on
the application. This example is a strong form of fault-tolerance: up to half
of the components can fail and still the global system can reach the right
target.

Majority Vote System. To illustrate this social pressure, let us consider a loop
of four very simple automata (see Fig. 1.4), running synchronously and trying

P0 P1

P3 P2

Fig. 1.4. Majority vote system: loop of four automata

to reach an agreement without any global comparison by taking a majority
function of the values they observe in their neighborhood. The processes and
their synchronous parallel composition are defined in Fig. 1.5.

Pi = do Xi�1 = Xi⊕1 = 0→ Xi := 0
Xi�1 �= 0 ∨Xi⊕1 �= 0→ Xi := 1

od

P = P0 ‖ P1 ‖ P2 ‖ P3.

Fig. 1.5. Majority vote system: algorithm

Each local algorithm Pi can also be described as in Table 1.3: the process
compares the values of its neighborhood with all entries of the table, and it
takes the corresponding value.

This last way of describing the behavior of automata is typical in the
field of cellular automata, systems composed of a number of homogeneous
automata computing their own values as simple functions of the values of
their close neighbors [330].

Dynamics. What does the evolution of this group of automata look like?
Since there are only sixteen different configurations, an exhaustive explo-
ration is possible. If we denote a global configuration of the automata as a
string of four binary digits, the evolution is represented in Fig. 1.6.

The dynamics is very simple. After one global step or iteration, the con-
figuration of the system belongs to {0000, 1111, 1010, 0101}; the system is

1.1 Complex Relational Dynamical Systems 9

Table 1.3. Majority vote system: tabular description of components

Old values New value
Pi�1 Pi Pi⊕1 Pi

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

thus attracted to this set of configurations. The transient is very short, as
only one iteration is necessary to reach the attractor. Moreover, this set is
strongly invariant: the system never leaves it, it either remains on 0000 or
1111 indefinitely, or it keeps oscillating between 1010 and 0101.

Comments and Bibliographic Notes. Again, this obvious example illustrates
several important notions we will develop later on: a composition mechanism
has been used to build a global automaton from four components and can
be generalized to any finite or infinite composition; attraction and invariance
have been used to describe the potential evolutions of the system.

Various versions of the social pressure dynamics have been studied in dif-
ferent contexts, from pure mathematics to immunology to distributed com-
puting: [122, 267, 266] respectively studied the period-two-property of sym-
metric weighted majorities on finite {0, 1}-colored graphs, finite {0, · · · , p}-
colored graphs, and symmetric weighted convex functions on finite graphs;
[7, 8, 124] examined the number of fixpoints of finite {0, 1}-colored rings; in
[232, 231], the author analyzed strong majorities on finite and infinite {0, 1}-
colored lines, and in [233], he further studied infinite connected {0, 1}-colored
graphs. Dynamic majorities were applied to the immune system [7], in image
processing [7, 121], and to fault-tolerant systolic arrays and VLSI circuits
[240, 241, 242]. For more details, see also the recent survey [261], and the
book [121].

1.1.4 On the Chaotic Demography of Rabbits

Imagine we want to describe the evolution of a population of rabbits, or the
dynamics of another growth process such as an ecosystem or an economic
market [22, 35, 175, 177, 209].

Linear Dynamics. If we model the population density at time t as a continu-
ous value xt of the interval [0, 1], and the discrete evolution steps as a linear
function with growth factor λ:

10 1. Prologue: Aims, Themes, and Motivations

0000 Fixed points

0011

0011

0011

0011 1111

0011

0011

0011

0011

0001 1010 2-cycle

0100

0010 0101

1000

Transients Cycles

Fig. 1.6. Majority vote system: dynamics

xt+1 = λxt

the overall evolution is simply

xt = λtx0

starting from a level x0 at time t = 0. Thus, the level asymptotically decreases
to 0 if 0 < λ < 1, it remains constant if λ = 1, and it explodes exponentially
if λ > 1. The only fixed level is 0.

This first model is of course too trivial as it assumes the existence of a
Paradise on Earth: no disease, enough food for every rabbit, no thermonuclear
war between rabbit races, etc.

Nonlinear Dynamics. To make the model more plausible, let us thus replace
the constant growth factor λ by a variable one, λ(1 − xt): the more rabbits,
the more problems, the less rabbits at the next generation. This saturation
factor taken into account, we get the so-called logistic map

xt+1 = fλ(xt) = λ(1− xt)xt.

Now, depending on the value of λ, lots of different behaviors can emerge. Are
there, for example, fixed populations? Yes, there are two possibly fixed levels:

x = fλ(x)⇔ x = 0 or x = pλ = 1−
1
λ
.

1.1 Complex Relational Dynamical Systems 11

Are there cycles? Yes, up to infinitely many cycles can coexist in the interval
[0, 1]. Are these fixpoints and cycles attracting? Not always, it varies along
the λ axis, as shown by the bifurcation diagrams depicted in Fig. 1.7.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3.4 3.5 3.6 3.7 3.8 3.9 4

Fig. 1.7. Bifurcation diagrams of the logistic map: a random point is chosen and
the system is iterated until attracted to a cycle, for different values of the parameter
λ; the right-hand graph details a part of the left-hand one

Table 1.4 summarizes the effects of fixpoints, and Fig(s). 1.8-1.11 illus-
trate different behaviors corresponding to different values of the reproduction
parameter λ. For each figure, the leftmost graph represents the function and
successive iterations starting from a random point, and the rightmost graph
represents the same evolution as a function of time.

Table 1.4. Local stability of the logistic map fixpoints 0 and pλ

λ f ′
λ(0) |f ′

λ(0)| Evolution

(0, 1) > 0 < 1 Monotonic attraction
(1,∞) > 0 > 1 Monotonic repulsion

λ f ′
λ(pλ) |f ′

λ(pλ)| Evolution

(0, 1) > 0 > 1 Monotonic repulsion
(1, 2) > 0 < 1 Monotonic attraction
(2, 3) < 0 < 1 Oscillating attraction
(3,∞) < 0 > 1 Oscillating repulsion

All figures show that [0, 1] is a global invariant. Figures 1.8-1.10 show that
smaller fixpoint invariants can attract the global invariant asymptotically,
whereas Figure 1.11 exhibits two important properties of complex dynami-
cal systems. The leftmost graph shows on the function itself the evolution
from a random point which does not seem to stabilize into a subinterval of
[0, 1] and keeps on visiting all of [0, 1] in a scattered way. This property of

12 1. Prologue: Aims, Themes, and Motivations

0

0.5

1

0 0.5 1 0 5 10 15

Fig. 1.8. Dynamics of f1.5: one repelling fixpoint (0), and one attracting fixpoint
(p1.5)

0

0.5

1

0 0.5 1

0.5

0 5 10 15

Fig. 1.9. Dynamics of f2.9: one repelling fixpoint (0), and one attracting fixpoint
(p2.9)

0

0.5

1

0 0.5 1

0.5

0 5 10 15

Fig. 1.10. Dynamics of f3.3: two repelling fixpoints and one attracting 2-cycle

1.1 Complex Relational Dynamical Systems 13

0

0.5

1

0 0.5 1
0

0.5

1

0 5 10 15 20 25 30 35

Fig. 1.11. Dynamics of f4: chaos, infinitely many cycles, topological transitivity,
sensitivity to initial conditions

irreducibility of the invariant is called topological transitivity. Its main symp-
tom is the existence of points whose orbits never stabilize to subparts of the
global invariant. The rightmost graph shows the same evolution plus another
one starting from a very close initial point: after a couple of iterations, the
two evolutions diverge. This illustrates a property called sensitivity to ini-
tial conditions: small initial perturbations can entail dramatically different
evolutions. The conjunction of these two important properties constitute the
essence of chaos.

Abstraction: Symbolic Dynamics. The complex behavior of f4 can be ana-
lyzed in a very simple way, thanks to a well-known abstraction technique:
symbolic dynamics. Roughly speaking, the abstraction consists in:

– dividing [0, 1] into two subintervals [0, 1
2] and (

1
2 , 1], respectively denoted

by I0 and I1;
– mapping evolutions of points to symbolic sequences:

A : [0, 1] �→ {0, 1}N
s.t. A(x) = s0s1s2 · · · where ∀i, si = a⇔ f i(x) ∈ Ia;

– establishing a correspondence (i.e., a homomorphism) between the dynam-
ics of f4 and the shift dynamical system σ (σ(s0s1s2 · · ·) = s1s2 · · ·):

∀x ∈ [0, 1], σ(A(x)) = A(f4(x)).

The analysis of σ in its uncountably infinite space of sequences {0, 1}N is
straightforward; its main properties are:

– the existence of 2n cycles of length n, for each n;
– the existence of a dense orbit, that is, an orbit which passes arbitrarily
close to any state of {0, 1}N;

– the density of its periodic orbits in {0, 1}N;
– the sensitivity to initial conditions, on the space {0, 1}N metrized by

da(x0x1x2 · · · , y0y1y2 · · ·) = 2− inf{i|xi �=yi}.

14 1. Prologue: Aims, Themes, and Motivations

This abstraction based on the homomorphism A preserves topological
properties, including the four ones listed above. Thus, we immediately get
four results on the dynamics of f4 without really analyzing f4 itself, which
shows the power of working out an appropriate abstraction between a given
seemingly complex system and a simpler one.

Comments and Bibliographic Notes. The different values of the parameter
λ give to fλ a broad range of behaviors, from very simple (monotonic at-
traction to small invariants) to very complex (chaotic evolution in the global
invariant).

The intent of this section was not to give a precise definition of chaos,
which we will do in Chap. 5, but rather to emphasize the various levels of
complexity that can be found in the structure of invariants and attractors.

The first form of logistic map was introduced in 1845 by the Belgian
sociologist and mathematician P.-F. Verhulst to model the growth of popula-
tions limited by finite resources [311]. A very detailed study of the map can
be found in [88]. The book [202] is entirely devoted to symbolic dynamics
(see also Chap. 4).

1.2 Tools and Motivations

In the context of relational dynamical systems, we focus on the analysis of
complex behaviors. Inspired by successful approaches in computing science
and mathematics, we develop a compositional analysis, and we use it together
with abstraction to study well-known families of systems.

Composition. Basically, the compositional analysis of a dynamical system
consists in determining some global property concerning dynamical or com-
putational aspects of the system by combination of individual properties of
its components, which are expected to be simpler.

The following diagram illustrates the idea; Si being the components of
a composed system S = �iSi, I denoting an individual property, and G a
global property, we want to find a way to combine the individual properties,
viz. �, to characterize the global property:

Si I(Si)

�iSi �iI(Si).

I

G

� �

To this end, composition operators must be defined, as well as interesting
local and global properties. Then, the difficult part is to find �, that is, how
composition propagates through properties. Moreover, it is not always possi-
ble to express the relationship between components and composed systems so

1.2 Tools and Motivations 15

easily: it is sometimes necessary to add some global information in addition
to the local properties.

The method we propose and the techniques we introduce in this mono-
graph are strongly influenced by program theory, where they prove most use-
ful. In computing science, programs are defined as relations, and predicate-
transformers express their semantics. Standard composition operators are
introduced to build nondeterministic sequential programs, and their execu-
tion effect must be determined [91, 150, 93]. Parallel programs require further
composition operators. There, the compositional analysis amounts to prove
theorems extending specific properties from basic systems to composed ones
[245, 61, 1, 67]. For instance, a program is represented by the set of its pos-
sible execution traces; composition is then also defined in terms of traces
[216, 89].

Our work follows the same guidelines. We define systems in a relational
setting, and we use set-transformers and execution traces to identify their
dynamics. Composition operators serve to build structured systems from ba-
sic ones. Then, the compositional analysis of systems is carried out in order
to study their dynamical complexity or to characterize their computational
power: properties of composed systems are obtained by combination of indi-
vidual properties of their components.

Abstraction. Although composition techniques may seem very powerful, a
direct compositional analysis often remains intractable: a fully precise obser-
vation is not always realistic; a coarse-graining is often preferred since details
can be omitted; etc.

The classical solution to this problem is abstraction, which consists in
simplifying some inherently difficult features of a system, so that its analysis
becomes possible. Under some assumptions, interesting qualitative properties
are preserved, and conclusions at the abstract level are transferred back to
the concrete level.

This technique is common and extensively used in both dynamical sys-
tems and program theory. For example, symbolic dynamics is based on the
coarse-grained observation of evolutions of systems [139, 202]. Abstract in-
terpretation [163], refinement [235], but also simulation and topological con-
jugacy [139, 326, 9], are all related to abstraction. In this monograph, we
use abstract observation to simplify the study of dynamical properties, and
simulation to compare the computational abilities of various classical models.

Case Studies: Complex Systems. To validate our approach, besides simple
illustrations, we concentrate on three families of dynamical systems.

– Low-dimensional chaotic systems: Smale horseshoe map, logistic map, Can-
tor middle-thirds relation [88, 326]. These examples are prototypes of
chaotic systems, and almost every textbook on chaos focuses on them.
Analyzing them by composition is an unquestionable objective. Moreover,
we must show this does help in understanding their behavior.

16 1. Prologue: Aims, Themes, and Motivations

– Formal systems: paperfoldings [10, 13, 14, 83, 219, 268] model a physical
realization of what happens in the previous family of systems: space is
folded, which leads to chaos. Solving problems in formal systems is an
interesting challenge, because they are fundamental tools of theoretical
computing science, particularly in formal deductive processes.

– Spatiotemporally chaotic systems: cellular automata [330]. This last family
is important for two reasons: first, such automata are typical models of
distributed systems, where local interactions between processes lead to
global effects; second, these systems show important complex phenomena
called “spatiotemporal chaos” in the field of dynamical systems. Studying
cellular automata can thus bring useful insights in computing science as
well as in dynamical systems theory.

1.3 Overview of the Monograph

In this section, each chapter of the monograph is presented in a separate para-
graph, and a brief description of its content is given. In Part One, Chap(s). 2–
3 define the mathematical framework: iterated relations and composition. In
Part Two, Chap(s). 4–5 define abstract complexity tools: abstraction, invari-
ance and attraction. In Part Three, Chap(s). 6–9 present the main theoretical
contributions as well as their applications to typical examples: the composi-
tional analysis of dynamical and computational properties of systems. More
precisely, Chap. 6 is devoted to dynamical complexity, Chap. 9 to computa-
tional power, and case studies in dynamical complexity are presented sepa-
rately in Chap(s). 7–8. Finally, Chap. 10 concludes the study and proposes
directions for future research. The global organization of the monograph is
represented in Fig. 1.12, where arrows indicate prerequisite readings to un-
derstand technical points in a detailed way. Chapters are referred to by their
numbers.

Chapter 2 gives a short introduction to basic notions in general topology
and in the theory of dynamical systems. Of course, this chapter can be com-
plemented by many excellent and more detailed textbooks [96, 66, 138, 88,
326, 9, 154].

Relational dynamical systems are defined, as well as their set-level de-
terministic, and point-level nondeterministic dynamics, respectively called
set-transformers and trajectories. Fixpoint theorems and their respective as-
sumptions are discussed, including a general scheme for transfinite iterations
used in the following.

Chapter 3 introduces composed dynamical systems: they are obtained by com-
position of relational systems using specific operators defined in the chapter.

Compositional results are presented about the dynamics of composed sys-
tems. One-step evolutions and sets of trajectories are systematically analyzed
for each operator. Algebraic properties of operators are examined, and their

1.3 Overview of the Monograph 17

2

4 3

5

6 9

7 8

Fig. 1.12. Organization of the monograph. Arrows express requirements, and num-
bers represent chapters. Chap(s). 6 and 9 are the central parts of this monograph:
dynamics and computations by abstraction and composition. Note Chap. 1 is the
present introduction.

generalization leads to the definition of some relations as solutions of func-
tional fixpoint equations.

Chapter 4 presents abstract observations of dynamics. First, the observation
of a dynamical system induces a trace-based dynamics, where traces corre-
spond to transition sequences. Then, the abstraction of observed trajectories
by traces amounts to define an abstract system. This can be very useful as
some qualitative dynamical properties, here invariance and reachability, are
preserved by abstraction. They can thus be proved at the abstract level and
still the conclusions remain valid at the concrete level under weak assump-
tions.

The coarse-grained aspect provided by traces, as well as these last con-
clusions, motivate their extensive use in the following.

Chapter 5 focuses on trace-based dynamical properties of systems, namely
invariance and attraction, and relates them to dynamical complexity.

Finite (small) trajectories are not very interesting since they are often
easily characterized; contrarily, complex behaviors arise from infinite trajec-
tories. Invariants are sets of states containing arbitrarily long trajectories.
Attraction is a complementary notion: it expresses relationships between ini-
tial and final states of (usually, infinite) trajectories.

Different types of invariants are defined and their structure is analyzed by
means of two abstract observation-based properties: fullness (all abstract tra-
jectories, i.e. traces, are realizable), and atomicity (the invariant of each trace
contains at most one state). Fullness validates the use of a specific observa-
tion grain, whereas atomicity dually restricts the coarse-graining. Sufficient
criteria are proposed to verify them, as their conjunction entails two features
of chaos: sensitivity to initial conditions, and the existence of a trajectory
between any pair of invariant states.

18 1. Prologue: Aims, Themes, and Motivations

A taxonomy of attraction is given and Lyapunov-like sufficient criteria
are then developed.

Chapter 6 analyzes dynamical properties of systems by composition. Each op-
erator is systematically treated regarding invariance, attraction, and invariant
structure. This chapter is thus central since it offers theoretical compositional
results of composed dynamical systems. In particular, union deserves a special
attention as it generates complex behaviors from elementary systems verify-
ing a few assumptions: compatible dynamics on each independent subspace
and symmetric attraction to different invariants generate fullness and atom-
icity. Actually, such complex behaviors can even emerge from very simple
systems by structural composition if these assumptions are satisfied.

Chapter 7 analyzes case studies in the compositional analysis of dynamical
properties of systems.

First, we rederive known results on the chaotic behavior of three systems
by compositional analysis: Smale horseshoe map, Cantor relation, logistic
map. The analysis of the last one is obtained from the Cantor relation analysis
by successive transformations preserving qualitative compositional results.

Second, we concentrate on a specific family of formal systems: paperfold-
ings. By compositional analysis, we show that these systems have a Cantor-set
invariant on which they behave chaotically.

All these examples are obtained by free product, union and sequential
compositions.

Chapter 8 is entirely devoted to cellular automata, defined as connected prod-
ucts. First, we propose an attraction-based classification of behaviors. This
leads to five classes that we structure in order to clearly isolate the class of
most complex behaviors. A conjecture, obtained by simulation means, stated
that complex cellular automata could be obtained by disjunction of shifting
behaviors [49]. By compositional analysis and using additional complexity
measures, we confirm the conjecture.

Chapter 9 examines computational properties of three classical systems by
compositional analysis: Turing machines, cellular automata and continuous
real functions are ordered in a strict hierarchy, which becomes an equivalence
if we consider some limitations on systems (finite memory, finite computa-
tion time, approximations). These systems are embedded in a general model,
based on the connected product, which is analyzed by composition regard-
ing two types of properties. Extrinsic properties (simulation) only entail a
weak hierarchy; intrinsic ones (continuity, shift-invariance, shift-vanishing,
Lipschitz condition; (un)computability of initial conditions) strengthen the
conclusion. This chapter extends previous results on cellular automata and
computational models working on infinite objects [143, 273, 323].

Chapter 10 draws the conclusions of the study, summarizes the content and
main contributions of the monograph, and proposes some research directions
for the future.

2. Dynamics of Relations

Discrete-time dynamical systems are generally continuous functions defined
on appropriate compact metric spaces. Their dynamics can be defined by
successive iterations from any set of initial states, or as the set of all possible
trajectories systems can follow.

Here, relations are considered instead of functions, for their ability of
modeling nondeterminism, and the homogeneous mathematical framework
they offer.

Indeed, nondeterminism is interesting to model many natural phenom-
ena, mathematical concepts (difference or differential inclusions), or con-
crete problems in computing science (sequential computations and Dijkstra’s
guarded-command programs, parallel asynchronous systems, logic programs,
and databases). Relations are closed under inversion, and allow backward
evolutions symmetrically to forward evolutions.

Usual characteristics of dynamical systems entail stability, if ever, in at
most ω steps. Working with relations weakens this property, and more than
ω steps can be needed to stabilize their dynamics. Therefore, we introduce
an iteration scheme based on transfinite ordinal numbers, which generalizes
classical iteration schemes.

This chapter is essentially a summary of classical notions and results from
relation algebra, program semantics, and dynamical systems theory: in §2.1,
we introduce the notion of dynamical system and the dynamics based on
infinite iterations of functions, and in §2.2, we give the relational version; in
§2.3, we briefly summarize useful definitions and properties needed thereafter;
in §2.4, we introduce transfinite iterations; finally, we close the chapter with
a discussion in §2.5.

Before introducing this chapter, some useful notational conventions are
first mentioned. They concern sequences of arbitrary spaces, or words of
formal languages.

Notation 2.1 (Sequences, words). Let X is be an arbitrary space (resp.
an alphabet). ThenX≤n is the set of sequences (resp. words) of length smaller
than n, Xn is the set of sequences of length n, X∗ is the set of finite se-
quences of X (including the empty sequence ε), Xω is the set of infinite
sequences, X∞ = Σ∗ ∪Σω, Xn>ω is the set of sequences longer than ω, and
XO = X∗ ∪ Xω ∪ Xn>ω. If s represents a sequence, |s| denotes its length.

F. Geurts: Abstract Compositional Analysis of Iterated Relations, LNCS 1426, pp. 21-52, 1998.
 Springer-Verlag Berlin Heidelberg 1998

22 2. Dynamics of Relations

Juxtaposition of symbols stands for concatenation; exponentiation stands for
multiple concatenation. For any sequence s of length at least n, s|n represents
its prefix of length n. For any bi-infinite s ∈ XZ, we denote the subsequence
s0s1s2 · · · by s+ and s0s−1s−2 · · · by s−.

2.1 Functional Discrete-Time Dynamical Systems

Classically, a discrete-time dynamical system is a (generally, continuous)
function f defined on a (generally, compact metric) space X (see e.g. [9]).
The dynamical system imposes a temporal ordering on the underlying space.
We interpret f(x) as the point which immediately follows x in time.

In this first section, the dynamics of functional systems and related no-
tions are just browsed; we give precise definitions in the more general setting
of relations in §2.2.

The evolution of the system is based on successive iterations, starting
from any initial state x0 of X :

x0
f−→ f(x0)

f−→ f(f(x0))
f−→ · · ·

The iteration scheme is recursively defined as follows: ∀x ∈ X,n ∈ N,

f0(x) = x

fn+1(x) = f(fn(x)).

This can be extended to sets of points easily, using a classical point-to-set
lifting, or set-transformer: ∀A ⊆ X ,

f : P(X)
→ P(X)
s.t. f(A) = ∪a∈Af(a)

where P(X) denotes the power set of X , i.e. the set of all its subsets.

Notation 2.2. For simplicity, we write f(x) instead of f({x}).

Remark 2.3. Let us emphasize the (trivial) homomorphism exhibited by
set-transformers. It expresses a point-to-set lifting, summarized by a commu-
tative diagram:

a f(a)

∪a ∪f(a).

f

f

∪ ∪

2.1 Functional Discrete-Time Dynamical Systems 23

Equivalently, the dynamics can also be expressed as the set of all possible
evolutions that the system can follow from any initial state:

θ(X, f) = {s ∈ XN | ∀n, sn+1 = f(sn)}

or from initial states in a specific subset A ⊆ X :

θ(A, f) = {s ∈ XN | (s0 ∈ A) ∧ (∀n ∈ N, sn+1 = f(sn))}.

Remark 2.4. – This definition is equivalent to the notion of continuous-
time flow or discrete-time cascade [326].

– Each element s ∈ θ(A, f) is an ω-infinite trajectory.
– To avoid the problem of finite sequences for which the image of some sn

could be undefined, we assume that f is always defined. For example, in
case f is undefined, we can add a special “undefined” symbol ♥ to X such
that f(♥) = ♥.

Based on this, we see that initial conditions completely determine the
dynamics of the system. Each state is univocally computed as the image of
a previous state. Of course, this is only valid toward the future: computing
backward histories is not always possible, because not all functions are in-
vertible. For example, an injective function can be inverted and considered
as a new function, but this is not a general case. In fact, the inverse of a
noninvertible function is simply a relation. Iterating the system to the past
gives rise to nondeterminism: several images can correspond to a single state.

Example 2.5. We consider the chaotic logistic map, f(x) = 4x(1−x), defined
on the unit interval [0, 1] (see Fig. 2.1).

0

0.5

1

0 0.5 1

Fig. 2.1. Graph of f(x) = 4x(1− x)

Among uncountably many others, four possible histories of the system, that
is, elements of θ([0, 1], f), are represented in Fig. 2.2.

The inverse of f is not functional since f is 2-to-1. For example, the preimages
of 8

9 by f are 1
3 and 2

3 . In other words, the image of 8
9 by the inverse of f is

equal to 1
3 or 2

3 .

The aim of the next section is to extend the previous definitions to rela-
tions, in order to integrate nondeterminism elegantly.

24 2. Dynamics of Relations

2.2 Relational Dynamical Systems

In the previous section, we have shown the limitations of functional dynamical
systems: they cannot be inverted, and nondeterministic choices cannot be
treated systematically. Here, we extend the informal definitions given above
to general relations, and we arrive at the notion of relational discrete-time
dynamical system.

0

0.5

1

0 5 10 15
0

0.5

1

0 5 10 15

0 −→ 0 −→ 0 −→ · · · 1
2
−→ 1 −→ 0 −→ · · ·

0

0.5

1

0 5 10 15
0

0.5

1

0 5 10 15

1
4
−→ 3

4
−→ 3

4
−→ · · · 1

5
−→ 16

25
−→ 576

625
−→ · · ·

Fig. 2.2. Four possible evolutions of the logistic map f(x) = 4x(1− x)

Let f be a relation defined on a space X , i.e. f ⊆ X ×X . Each state of
X can have zero, one or more images by f . Thus, nondeterminism is allowed,
and the inverse of a relation being a relation, backward evolutions are allowed,
too. More precisely, to fix the notation, the inverse of f is

f−1 = {(y, x) | (x, y) ∈ f}.

Usually, X and f are restricted to specific spaces and relations, in order
to keep many results from elementary topology [9].

Definition 2.6 (Relational discrete-time dynamical system). A rela-
tional discrete-time dynamical system (RDS) is a pair (X, f) where X is a
compact metric space and f is a closed relation on X .

2.2 Relational Dynamical Systems 25

Remark 2.7. – A closed relation on X is a closed subset of X×X (see also
§2.3.2).

– Unless stated otherwise, all dynamical systems of this monograph will be
based on that definition.

– A continuous function, regarded as a relation, is a closed relation. Closed
relations naturally extend continuous functions. This assumption is dis-
cussed in [9] and in §2.3.2.

The iterative evolution from a state can be described from two viewpoints,
emphasizing the intrinsic nondeterminism of relations at the point-level, or
by means of multi-valued functions and set-transformers at the set-level.

2.2.1 Point-Level Nondeterministic Dynamics

Let (X, f) be a RDS, and x ∈ X . If there exists a y such that (x, y) ∈ f , then

x
f−→ y

represents a possible iteration-step from x, and many other evolutions can
coexist; f is regarded as a nondeterministic function from X to X .

The subsequent steps of the dynamics can be defined using this view,
leading to the following definitions.

Definition 2.8 (Trajectory). An ω-infinite trajectory of a RDS (X, f) is
a sequence s ∈ XN such that, ∀n ∈ N, (sn , sn+1) ∈ f .

Definition 2.9 (Nondeterministic forward dynamics). The nondeter-
ministic forward dynamics of a RDS (X, f) from X is the set of all its tra-
jectories starting from X :

θ(X, f) = {s ∈ XN | ∀n ∈ N, (sn , sn+1) ∈ f}.

From A ⊆ X , it is:
θ(A, f) = A×XN ∩ θ(X, f).

Now, this definition can also be extended to backward evolutions: it suf-
fices to consider θ(A, f−1). Then, we define the complete (i.e. forward and
backward) dynamics as follows.

Definition 2.10 (Nondeterministic dynamics). The nondeterministic
dynamics of a RDS (X, f) from a set A ⊆ X of initial conditions is

Θ(A, f) = {s ∈ XZ | (s0 ∈ A) ∧ (s+ ∈ θ(A, f)) ∧ (s− ∈ θ(A, f−1))}.

Remark 2.11. Bi-infinite trajectories can be defined easily, using Def. 2.8.

26 2. Dynamics of Relations

2.2.2 Set-Level Deterministic Dynamics

Considering all possible images together leads to a deterministic view of the
relation

x
f−→ {y | (x, y) ∈ f}

and f is a deterministic multi-valued function, i.e. defined from X to P(X).
To compute subsequent steps of the evolution requires to apply f to any

subset of X , because the image of any state is yet a set of states. This leads to
the notion of set-transformer, which we have already used in the functional
case.

Definition 2.12 (Set-transformer). Let (X, f) be a RDS, then the set-
transformer based on f is a function

f : P(X)
→ P(X)
s.t. f(A) = ∪a∈Af(a).

Remark 2.13. In the following, we do not make any distinction between
“relations” and “set-transformers” because they are equivalent mathematical
entities.

Set-transformers permit to define successive iterations from any subset A
of X . The iteration scheme is recursively defined as follows: ∀A ⊆ X,n ∈ N,

f0(A) = A

fn+1(A) = f(fn(A))
f−n(A) = (f−1)n(A).

Definition 2.14 (Deterministic forward dynamics). The deterministic
forward dynamics of a RDS (X, f) from a set A ⊆ X of initial conditions is

ξ(A, f) = (Ai)i where Ai = f i(A), ∀i ∈ N.
Again, the complete dynamics can be defined the same way.

Definition 2.15 (Deterministic dynamics). The deterministic dynam-
ics of a RDS (X, f) from a set A ⊆ X of initial conditions is

Ξ(A, f) = (Ai)i where Ai = f i(A), ∀i ∈ Z.

2.2.3 Comparison

In some sense, the set-level deterministic viewpoint is coarser than the point-
level nondeterministic one because the former treats global evolutions to-
gether without relations between particular states, while the latter provides
all possible specific evolutions.

To define the complete dynamics of a system, two choices are possible:
either f , or the set of possible evolutions θ(X, f) must be given explicitly.
Giving the sequence of successive iterates of X , viz. ξ(X, f), is not enough,
because one looses the relation between particular states and their image(s).

2.2 Relational Dynamical Systems 27

Example 2.16. Let us consider the logistic map on [0, 1] again or, more
precisely, its inverse. We obtain the equations of its two branches by solving
f(x) = y. We get f−1(y) = 1

2 (1 ± (1 − y) 1
2); all points but 1 have two im-

ages by f−1 which is clearly relational (see Fig. 2.3). As we already know,

0

0.5

1

0 0.5 1

Fig. 2.3. Inverse logistic map

f−1(8
9) = { 1

3 ,
2
3}. The images of these points are f−1(1

3) = { 1
2 +(1

6)
1
2 , 1

2−(1
6)

1
2 }

and f−1(2
3) = { 1

2 + (1
12)

1
2 , 1

2 − (1
12)

1
2 }. And so on, and so forth.

Giving the dynamics in terms of possible evolutions goes as follows:

θ({8
9
}, f−1) = {8

9
−→ 1

3
−→ 1

2
+ (

1
6
)

1
2 −→ · · · ,

8
9
−→ 1

3
−→ 1

2
− (

1
6
)

1
2 −→ · · · ,

8
9
−→ 2

3
−→ 1

2
+ (

1
12

)
1
2 −→ · · · ,

8
9
−→ 2

3
−→ 1

2
− (

1
12

)
1
2 −→ · · · ,

· · ·}.

Determinizing the system by considering its global evolution from the initial
condition gives:

{8
9
} −→ {1

3
,
2
3
} −→ {1

2
+ (

1
6
)

1
2 ,

1
2
− (

1
6
)

1
2 ,

1
2

+ (
1
12

)
1
2 ,

1
2
− (

1
12

)
1
2 } −→ · · ·

It is clear that the set of possible evolutions gives as much information as the
relation itself, whereas the evolution of sets hides some important relationships
between states. For example, the last expression does not show that it is not
possible to go from 2

3 to 1
2 + (1

6)
1
2 .

Before concluding this section, let us show that to know the relation

f ⊆ X ×X

28 2. Dynamics of Relations

and to know its dynamics

θ(X, f) ∈ P(XN)

are equivalent, and that they both permit to define the sequence of successive
iterations from the whole space X

ξ(X, f) ∈ (P(X))N.

Proposition 2.17. Let (X, f) be a RDS, then

– the knowledge of f and θ(X, f) are equivalent;
– the knowledge of θ(X, f) permits to define ξ(X, f).

Proof. – Given f , θ(X, f) is obtained by Def. 2.9.
– Given θ(X, f), f is defined by

f = {(s0, s1) | ∃s ∈ θ(X, f)}.

– Given θ(X, f), ξ(X, f) is defined by

ξ(X, f) = (Xi)i where Xi = {si | ∃s ∈ θ(X, f)}, ∀i ∈ N.

2.3 Preliminary Definitions and Properties

This section recalls some standard definitions and properties of relation al-
gebra, topology, and calculus, in order to keep this monograph reasonably
self-contained. Our sources are [96] for topology, [276] for relations, [78] for
lattice theory and [91, 93] for predicate-transformer semantics of programs.

2.3.1 Basic Definitions About Relations

In general, a relation is a subset of a Cartesian product of spaces. According
to [277], a homogeneous relation on a space X is a subset of X × X , and a
heterogeneous relation between X and Y is a subset of X ×Y . Let us denote
the sets of homogeneous relations on X as

R(X) = P(X ×X)

and the set of heterogeneous relations between X and Y as

R(X,Y) = P(X × Y).

2.3 Preliminary Definitions and Properties 29

The domain and range of a relation f are defined as follows.

Definition 2.18 (Domain, range). The domain and range of a relation f
are

Dom(f) = {x | ∃y, (x, y) ∈ f}
Rg(f) = {y | ∃x, (x, y) ∈ f}.

A notion of recurrence is obtained as follows.

Definition 2.19 (Fixpoint, periodic point). Let f be a relation on X ,
x ∈ X and n ∈ N\{0}. Then, x is a fixpoint of f iff x ∈ f(x). It is (strictly)
n-periodic iff x ∈ fn(x) (and ∀m ∈ {1, · · · , n− 1}, x �∈ fm(x)).

The simplest relations one can think of are the following ones.

Definition 2.20 (Empty, universal, identity relations). The empty,
universal and identity relations are given by:

E = ∅
UX,Y = X × Y
IX = {(x, x) | x ∈ X}.

In the following, indices will be removed when clear from the context.
The following proposition expresses that no image other than the empty

set can come from an application of the empty relation. The same holds
when any relation is applied to the empty set. This is the reason it is called
“excluded miracle”.

Proposition 2.21 (Excluded miracle). Let f be a relation on X, and
A ⊆ X; then

E(A) = ∅
f(∅) = ∅.

Proof. The first part is trivial:

E(u) = {v | (u, v) ∈ E} = ∅.

The second is also direct:

f(∅) = ∪u∈∅f(u) = ∅.

We have also very similar properties concerning U and I, stated without
proof.

Proposition 2.22. For all nonempty A ⊆ X,

UX,Y (A) = Y

IX(A) = A.

30 2. Dynamics of Relations

As in a functional framework, relations can be characterized regarding
the number of images or preimages they have.

Definition 2.23 (Types of relations). A relation f ∈ R(X) is called to-
tal iff

∀u,#f(u) ≥ 1;

simple (i.e. functional) iff
∀u,#f(u) ≤ 1;

finite iff
∀u,#f(u) ∈ N;

surjective iff
∀v,#f−1(v) ≥ 1;

injective iff
∀v,#f−1(v) ≤ 1;

inverse finite iff
∀v,#f−1(v) ∈ N;

constant iff
#Rg(f) = 1;

inverse constant iff
#Dom(f) = 1.

Later on, we will need the concept of projection. Observe that it can also
be applied to sets that are not considered as relations.

Definition 2.24 (Projection). If E = ×i∈JXi is a Cartesian product, u ∈
E is an element of E, r ⊆ E is a subset of E, I ⊆ J is a subset of indices,
and R ∈ R(A, J) is a relation of indices (∀i ∈ A,R(i) = {j | (i, j) ∈ R} ⊆ J),
the projections of u and r on the indices I and R are given by

ΠI(u) = (ui)i∈I

ΠR(u) = (ΠR(i)(u))i∈A

ΠI(r) = ∪u∈rΠI(u)
ΠR(r) = ∪u∈rΠR(u).

Elements of R are seen as vectors of E, the projector deletes all com-
ponents indexed in J\I and only retains components indexed in I. This
definition of course applies to relations, too.

Example 2.25. If r is a ternary relation on X , i.e. r ⊆ X × X × X , its
projection on positions 1 and 3 is:

Π1,3(r) = {(u,w) | ∃v, (u, v, w) ∈ r}.

2.3 Preliminary Definitions and Properties 31

2.3.2 Notions from Topology

Definition 2.26 (Topology). A topology on a space X is a family T of
subsets of X , called open sets, such that

– T is closed under union and finite intersection;
– ∅ and X are in T .

Example 2.27. Two extreme examples of topological spaces are the indiscrete
topology on X , i.e. (X, {∅, X}), and the discrete topology, i.e. (X,P(X)).

Let us now enumerate a list of useful definitions and properties.

Limits.

– A neighborhood N of a state x ∈ X is an open set containing x; we denote
it by Nx.

– A sequence (yi)i of A converges to y iff every neighborhood U of y is such
that ∃k, ∀n ≥ k, yn ∈ U .

– A sequence (yi)i of A accumulates at y iff every neighborhood U of y is
such that ∀k, ∃n ≥ k, yn ∈ U .

– An isolated point a ∈ A is such that no sequence of distinct elements of A
converges to a.

Sets.

– A closed set is the complement of an open set in the same topology.
– A set A is closed iff the limit of every convergent sequence of A belongs to
A.

– Arbitrary intersections and finite unions of closed sets are closed.
– The closure of a set A is the union of A and the limit of all sequences of
A. We denote it by A.

– A set A is a dense set in B iff its closure is equal to B, i.e. A = B.
– Any Cartesian product of closed sets is closed.
– A perfect set is a closed set that contains no isolated point.
– A set A ⊆ X is a connected set if it is not the union of two nonempty

disjoint open sets.
– The component of a point x ∈ X is the union of all connected sets contain-

ing x.
– A totally disconnected set A ⊆ X is such that ∀x ∈ A, the component of x

is {x}.
– A Hausdorff space is such that each two distinct points have nonintersect-

ing neighborhoods. Any finite power of the Euclidean space is Hausdorff.
Discrete spaces are Hausdorff. Nontrivial indiscrete spaces are not Haus-
dorff.

32 2. Dynamics of Relations

Functions.

– A function defined on X is a continuous function iff the inverse image of
any open set is an open set.

– A homeomorphism is a bijective continuous function such that its inverse
is also continuous.

Compactness.

– A Hausdorff space is a compact space if each covering by open sets has a
finite subcovering.

– A set A is compact iff every sequence in A has a convergent subsequence
whose limit is in A, iff every sequence accumulates in A.

– A discrete space is compact iff it is finite.
– In any space, all finite subsets, and the empty set, are compact sets.
– A finite union of compact sets is a compact set.
– A subset of a compact space is compact iff it is closed.
– Any compact set of a metric space is closed and bounded.
– The continuous image of a compact set is compact.
– Any Cartesian product of compact spaces is compact (Tychonoff lemma).
– Any compact metric space is also complete, that is, any Cauchy sequence

converges.

A very important type of set we will use is based on three definitions
given above [96].

Definition 2.28 (Cantor set). A Cantor set is a closed, totally discon-
nected, perfect set.

Example 2.29 (Cantor middle-thirds set). We consider [0, 1]. Let us re-
move the open interval (1

3 ,
2
3). From the remaining intervals, we remove the

middle thirds (1
9 ,

2
9) and (7

9 ,
8
9), and repeat this process ad infinitum. The result

is the famous Cantor middle-thirds set (see Fig. 2.4).

...

Fig. 2.4. Iterative construction of Cantor’s middle-thirds set: recursive elimination
of middle thirds intervals

Finally, relations are assumed to be closed subsets of the Cartesian space
where they are defined. The following proposition is stated without proof.

2.3 Preliminary Definitions and Properties 33

Proposition 2.30. Let (X, f) be a RDS and A be a closed subset of X.
Then, f(A) and f−1 are closed.

This closure assumption extends functional continuity in the following
sense. We know from topology that a function is continuous if and only if
the inverse image of any open set is an open set. For relations the following
weaker property holds [9].

Proposition 2.31. Let f ∈ R(X,Y) be a closed relation, and U ⊆ Y be an
open set, then {x | f(x) ⊆ U} ⊆ X is an open set.

Proof. If f is a closed relation, and A is a closed subset of X , then f−1 is
closed and f(A) is closed, too. Thus, if B is closed, then f−1(B) is closed.
The last set can be rewritten as {x | f(x) ∩ B �= ∅}. Since U is open, it
complement Y \U is closed, and f−1(Y \U) is closed, too.

Thanks to Def. 2.6, we have several interesting properties, summarized in
the following proposition.

Proposition 2.32. Let (X, f) be a RDS. Then, Dom(f) and Rg(f) are com-
pact subsets of X.

Proof. The space X is compact, and f is closed. Thus, Dom(f) and Rg(f)
are closed, hence compact subsets of X .

The dynamics of a system is closed whenever the underlying relation is
closed, which is the case in all RDS.

Proposition 2.33. If (X, f) is a RDS, then θ(X, f) is closed in XN.

Proof. By Def. 2.6, f must be closed. Hence, if we have Nx × Ny ∩ f �= ∅
for all x, y ∈ X , and every open neighborhood Nx of x and Ny of y, then
(x, y) ∈ f .

Let s belong to the adherence of θ(X, f), and Ni, Ni+1 be two open
neighborhoods of si and si+1 respectively. For all j �= i, i+ 1, we choose an
open neighborhood Nj of sj . We have thus ×iNi∩θ(X, f) �= ∅, which implies
Ni ×Ni+1 ∩ f �= ∅. Thus, (si, si+1) is adherent to f , whence it belongs to f ,
from which we conclude that s ∈ θ(X, f).

This means that θ(X, f) is closed.

2.3.3 Monotonicity and General Junctivity Properties

Considering set-transformers, monotonicity can be seen in two ways.

Proposition 2.34 (Monotonicity). Let f and g be two relations on X,
and A ⊆ X, then

f ⊆ g ⇒ f(A) ⊆ g(A).

34 2. Dynamics of Relations

Proof.

x ∈ f(A)
≡ ∃u ∈ A, x ∈ f(u)
≡ ∃u ∈ A, x ∈ {v | (u, v) ∈ f}

* Hyp. f ⊆ g
⇒ ∃u ∈ A, x ∈ {v | (u, v) ∈ g}
≡ x ∈ g(A).

Proposition 2.35 (Monotonicity). Let f be a relation on X, and A,B ⊆
X, then

A ⊆ B ⇒ f(A) ⊆ f(B).

Proof.

x ∈ f(A)
≡ ∃u ∈ A, x ∈ f(u)

* Hyp. A ⊆ B
⇒ ∃u ∈ B, x ∈ f(u)
≡ x ∈ f(B).

The following trivial result involves monotonic relations.

Proposition 2.36. Let f be a relation, and (Xi)i be any sequence of subsets
of X. Then

f(∩iXi) ⊆ ∩if(Xi)
f(∪iXi) ⊇ ∪if(Xi).

Proof. We have
∀i,∩iXi ⊆ Xi,

and monotonicity of f (Prop. 2.35) gives

∀i, f(∩iXi) ⊆ f(Xi).

This entails f(∩iXi) ⊆ ∩if(Xi).
By monotonicity, ∀i,

Xi ⊆ ∪iXi ⇒ f(Xi) ⊆ f(∪iXi).

Hence, ∪if(Xi) ⊆ f(∪iXi).

Stronger properties are interesting, where inclusions are replaced by equal-
ities. Intersection is equivalent to conjunction, and union is equivalent to dis-
junction, whence the generic term “junctivity”. Such junctivity properties are
useful when using various fixpoint theorems. All of them are further discussed
in [284, 93].

2.3 Preliminary Definitions and Properties 35

Definition 2.37 (Junctivity types). Let f be a relation on X , and V ⊆
P(X). Then, f is conjunctive over V iff

f(∩A∈VA) = ∩A∈V f(A)

and disjunctive over V iff

f(∪A∈V A) = ∪A∈V f(A).

It is universally junctive if the property holds for every V , positively junctive
for any nonempty V , denumerably junctive for any nonempty countable V ,
finitely junctive for any nonempty finite V , and-continuous/or-continuous
for any nonempty linear V (its elements can be arranged in a monotonic
sequence), monotonic for any nonempty linear finite V .

These different forms of junctivity are related to each other by the fol-
lowing proposition [93].

Proposition 2.38. Universal conjunctivity ⇒ positive conjunctivity.
Positive conjunctivity ⇒ denumerable conjunctivity.
Denumerable conjunctivity ≡ finite conjunctivity ∧ and-continuity.
Finite conjunctivity ∨ and-continuity ⇒ monotonicity.
Finite conjunctivity ∧ or-continuity ⇒ and-continuity.

In case of our set-transformers, we get or-continuity for free.

Proposition 2.39 (Universal disjunctivity, or-continuity). Let (X, f)
be a RDS, then the corresponding set-transformer is or-continuous, and even
universally disjunctive.

Proof. Given Def. 2.12, we have f(∪iAi) = ∪if(Ai).

Contrarily, we get and-continuity if and only if the nondeterminism of
the relation is bounded, that is, each relation is finite. In [284], it is proved
that bounded nondeterminism is a necessary and sufficient condition for and-
continuity. The author works with predicate-transformers that match our def-
initions of set-transformers. Stated in our framework, this gives the following
proposition [284, Prop. 8].

Proposition 2.40 (And-continuity). The set-transformer based on a re-
lation f defined on a space X is and-continuous iff f is inverse finite, and
its inverse f−1 is and-continuous iff f is finite.

Proof. Let us prove that f−1 is and-continuous iff f is finite.

⇐Let (Xi)i be a decreasing sequence of sets, i.e. ∀i,Xi+1 ⊆ Xi. As f and,
thus, f−1, are monotonic, we have

36 2. Dynamics of Relations

∩iXi ⊆ Xi

⇒ f−1(∩iXi) ⊆ f−1(Xi)
⇒ f−1(∩iXi) ⊆ ∩if

−1(Xi).

To prove the reverse implication, the following equivalences hold:

x ∈ ∩if
−1(Xi)

≡ ∀i, x ∈ f−1(Xi)
≡ ∀i, ∃yi ∈ Xi, (yi, x) ∈ f−1

≡ ∀i, ∃yi ∈ ∩j≤iXj , (yi, x) ∈ f−1.

As f is finite, there is only a finite number of such yi. Since (Xi)i is de-
creasing, one of these yi belongs to all Xi. Thus,

∃yj ∈ ∩iXi, (yj, x) ∈ f−1

≡ x ∈ f−1(∩iXi).

⇒Let us now suppose that f is not finite. Let x be such that ∃(yi)i an
infinite sequence of distinct states of f−1(x). For each i, we define Pi =
{yi, yi+1, yi+2, · · ·}. By construction, (Pi)i is a decreasing sequence, whose
intersection is empty. Thus f−1(∩iPi) = f−1(∅) = ∅. On the other hand,
∀i, x ∈ f−1(Pi), and x ∈ ∩if

−1(Pi), which entails a contradiction.

Remark 2.41. This slightly differs from [92], where the or-continuity of the
predicate-transformer wp is also restricted to bounded nondeterminism. This
difference is due to the fact that, stated in our framework, R being a relation
on X and P ⊆ X , wp ·R · P is not equivalent to R−1(P) but

wp ·R · P = R−1(P) ∩ (X\R−1(X\P)).

The set-difference modifies the result because it is no more or-continuous,
since it is even not monotonic but anti-monotonic. Of course, and-continuity
suffers from the same drawback.

Due to the type of space and relation we use in our framework, namely
closed relations on compact metric spaces, and-continuity can be obtained
without bounded nondeterminism. The trade-off comes from the new defini-
tion we give below.

Definition 2.42 (And-continuity*). Let (X, f) be a RDS. The set-
transformer f is and-continuous* iff for any decreasing sequence of closed
subsets of X , (Xi)i such that ∀i,Xi+1 ⊆ Xi, we have

f(∩iXi) = ∩if(xi).

The only differences with and-continuity are the requirements of (X, f)
being a RDS and the Xi’s being closed sets. Based on this, we have the
following proposition (see also [9, p. 9]).

2.3 Preliminary Definitions and Properties 37

Proposition 2.43 (And-continuity*). Let (X, f) be a RDS, then f is
and-continuous*.

Proof. ⊇ By Prop. 2.36, we have ∩if(Xi) ⊇ f(∩iXi).
⊆ Let (Xi)i be a decreasing sequence of sets. Let y be in ∩iXi: ∀i, y ∈ f(Xi).

Thus, ∀i, ∃xi ∈ Xi ∩Dom(f), (xi, y) ∈ f .
Let us define

Yi = {x ∈ Xi ∩Dom(f) | (x, y) ∈ f} = Xi ∩Dom(f) ∩ f−1(y).

Each Yi is nonempty, i.e. contains at least one element xi, and contained
in Xi. Since Xi+1 ⊆ Xi for all i, we have also Yi+1 ⊆ Yi. Let us prove that
∩iYi �= ∅.
– The space X is compact, and Dom(f) is also compact since f is a closed

relation (Prop. 2.32). If we choose one xi ∈ Yi for each i, we construct a
sequence in Dom(f) which has an accumulation point x:

∀Nx, ∀k, ∃n ≥ k, xn ∈ Nx.

– This accumulation point x ∈ ∩iYi. If this is not the case, ∃l, x �∈ Yl.
Thus, ∀k > l, x �∈ Yk since Yk ⊆ Yl. Since Xl is closed, so is Yl because
f−1(y) is closed. Thus, ∃Nx, Nx ∩ Yl = ∅, and ∀k ≥ l, Nx ∩ Yk = ∅. This
contradicts the accumulation at x.

Thus, we have x ∈ Dom(f) and ∩iYi �= ∅ since x ∈ ∩iYi. Hence y ∈
f(∩iXi), and

∩if(Xi) ⊆ f(∩iXi).

In [284, 92], and-continuity was proved equivalent to bounded nondeter-
minism. In compact metric spaces, the stronger “and-continuity*” property
can be obtained without satisfying this assumption, and lattice fixpoint the-
orems remain valid.

2.3.4 Fixpoint Theorems

In the rest of this monograph, convergence will be required for several aspects
of the dynamics of systems (invariance, attraction). To justify this conver-
gence, fixpoint theorems are always used. We present here a very important
fixpoint theorem known as Knaster-Tarski’s theorem. Its interest is to re-
quire few assumptions, viz. essentially a lattice structure. Then, we give a
constructive version of the theorem. (We refer to [306, 197] for different his-
torical versions of this “folk” theorem.)

We work with set-transformers acting on sets of a space X , i.e. we work
with elements of P(X). This power set happens to be a complete lattice, which
has an order defined by the set inclusion ⊆; a bottom element, the empty set
∅; a top element, the space itself X ; for each set A ⊆ P(X) of sets, a greatest
lower bound given by the intersection ∩B∈AB, and a least upper bound given

38 2. Dynamics of Relations

by the union ∪B∈AB. We have a complete lattice P(X)(⊆, ∅, X,∩,∪). More
generally, we will denote such a lattice by L(≤,⊥,",#,$) with order relation
≤, bottom element ⊥, top element ", greatest lower bound # and least upper
bound $.

Theorem 2.44 (Lattice-theoretical fixpoint theorem). Let L be a
complete lattice, f be a monotonic function on L, and P be the set of fixpoints
of f , then P is not empty and it is also a complete lattice. In particular, the
least upper (resp. greatest lower) bound of P belongs to P and is equal to
the least upper (resp. greatest lower) bound of the set {A | A ≤ f(A)} (resp.
{A | f(A) ≤ A}).

Monotonicity is thus an important property (see §2.3.3). Adding the hy-
pothesis of or-continuity (resp. and-continuity; again, see §2.3.3), the least
(resp. greatest) fixpoints can be reached by successive iterations, starting
from the bottom (resp. top) element of the lattice.

Definition 2.45 (Decreasing sequence, increasing sequence). A se-
quence of a complete lattice L, (Xi)i∈N, is decreasing iff ∀i,Xi+1 ≤ Xi. Is is
increasing iff ∀i,Xi ≤ Xi+1.

Theorem 2.46 (Constructive lattice fixpoint theorem). If L is a
complete lattice, f is or-continuous on L, and P is the set of its fixpoints,
then the least fixpoint can be reached by successive increasing iterations from
the bottom element:

Sf = #P = $i<ωf
i(⊥).

If, f is and-continuous, the greatest fixpoint can be obtained as limit of suc-
cessive decreasing iterations from the top element:

G f = $P = #i<ωf
i(").

Remark 2.47. – The first sequence of iterations is increasing since f is
monotonic and ⊥ ≤ f(⊥). In the same way, the second sequence is de-
creasing since f(") ≤ ".

– The results of these theorems can be generalized to any complete partial
order. Of course, in this case, only one direction of iteration is possible,
upward or downward.

– The results also apply to K (X), i.e. the set of nonempty compact subsets
of X , instead of P(X). Moreover, whereas in a power set P(X) the bottom
element is the emptyset, it is not the case in K (X).

– The theorem still holds when and-continuity is replaced by and-continuity*,
L is equal to P(X) or to K (X), and X is a compact metric space. In case
of RDS, all these assumptions are verified (see Def. 2.42 and Prop. 2.43).

2.3 Preliminary Definitions and Properties 39

2.3.5 Elementary Properties

The following propositions will be used later.

Proposition 2.48. If a relation f is injective, we have ∀u �= v, ∀A,B ⊆ X,

f(u) ∩ f(v) = ∅
f(A ∩B) = f(A) ∩ f(B).

Proof. If the first line is false, this means that the intersection is not empty.
Thus, there exists y such that y ∈ f(u) and y ∈ f(v), which means {u, v} ⊆
{x | (x, y) ∈ f} and contradicts the hypothesis.

We have one inclusion by monotonicity: f(A ∩ B) ⊆ f(A) ∩ f(B)
(Prop. 2.36). The other ones goes as follows. Let y be in f(A) ∩ f(B).
This means y ∈ f(A) and ∃u ∈ A, (u, y) ∈ f . The same holds for B:
∃v ∈ B, (v, y) ∈ f . Since f is injective, u must be equal to v. Thus,
∃u ∈ A ∩B, (u, y) ∈ f and y ∈ f(A ∩B).

Inversion is not always strict. In fact, we have only a semi-inversion prop-
erty.

Proposition 2.49 (Semi-inversion). Let f be a relation on X, and A ⊆
X, then

A ⊆ f−1(f(A)).

Instead of proving this trivial property, let us show that the implication
can be strict.

Example 2.50. Consider for instance a relation ex ⊆ R × R containing two
vertical segments of the plane x−y: ex = {1}×[2, 5]∪{2}×[2, 5]. (see Fig. 2.5).
From 1, we have ex({1}) = [2, 5] and ex−1([2, 5]) = {1, 2}. From a strict subset

0

1

2

3

4

5

6

0 1 2 3

Fig. 2.5. Graph of ex = {1} × [2, 5] ∪ {2} × [2, 5]

of [2, 5], [3, 4], we have ex−1([3, 4]) = {1, 2} and ex({1, 2}) = [2, 5].

In Prop. 2.49, “⊆” can be replaced by “=” under a stronger assumption
on the relation, that has to be injective and total. We state it without proof.

40 2. Dynamics of Relations

Proposition 2.51. Let f be a total injective relation on X, g be a surjective
simple relation (i.e. function), and A ⊆ X. Then,

A = f−1(f(A)) and A = g(g−1(A)).

2.3.6 Metric Properties

Useful properties can be defined for some relations, according to the way they
expand or contract their domain. To this end, we have to precisely define the
distance for each space we work in, and the properties of these metrics.

First, let us recall two distances we will intensively use in the following.

Definition 2.52 (Euclidean distance). In the set of real number R, the
Euclidean distance between two points x and y is

de(x, y) = |x− y|.

Definition 2.53 (Astronomer’s metric). In any set of infinite sequences
XN, the distance between two elements x = (xi)i and y = (yi)i is

da(x, y) = 2− inf{i|xi 	=yi}.

Remark 2.54. This last distance is called “astronomer’s metric” because
the further differences happen from the origin, the smaller the weights are in
the contribution to the distance.

Definition 2.55 (Diameter). Let (X, d) be a metric space. Then, for any
subset A ⊆ X , its diameter is

diam(A) = sup
x,y∈A

d(x, y).

In general, we use a RDS, which involves a compact metric space (X, d),
where d is the metric defined on X . Relations are regarded as multi-valued
functions from X to P(X). This requires a metric on P(X). We consider the
standard Hausdorff metric.

Definition 2.56 (Hausdorff metric). Let (X, d) be a metric space. The
Hausdorff metric h on P(X) is given as follows: ∀A,B ∈ P(X),

h(A,B) = max{h′(A,B), h′(B,A)}

where

h′(A,B) = sup
x∈A

h′′(x,B)

h′′(x,B) = inf
y∈B

d(x, y).

The following result is proved in [159] and [28, Theorem 2.7.1, p. 37].

2.3 Preliminary Definitions and Properties 41

Proposition 2.57. If (X, d) is a complete (resp. compact) metric space, then
(K (X), h) is a complete (resp. compact) metric space, too.

This means that working with nonempty compact sets of X leads to the
same topological and metric properties as working with states of X . Since
closed relations preserve compactness, we can restrict ourselves to compact
subsets.

The following properties will be useful [28, 325].

Proposition 2.58. Let A,B,C be subsets of X, then

B ⊆ C ⇒ h′(A,C) ≤ h′(A,B).

Proof. We know that h′(A,C) = sup
x∈A

inf
y∈C

d(x, y). Since B ⊆ C, for each x,

we have inf
y∈C

d(x, y) ≤ inf
y∈B

d(x, y). By monotonicity of sup, we get the result.

Proposition 2.59. Let A,B,C be subsets of X, then

h′(A ∪B,C) = sup{h′(A,C), h′(B,C)}.

Proof. By definition of h′.

Proposition 2.60. Let Ai, Bi be subsets of X for all i ∈ I, then

h(∪i∈IAi,∪i∈IBi) ≤ sup
i∈I

h(Ai, Bi).

Proof. We have h(∪iAi,∪iBi) = max{h′(∪iAi,∪iBi), h′(∪iBi,∪iAi)}. Take
the first part: by Prop(s). 2.59 and 2.58 successively,

h′(∪iAi,∪iBi)
= sup

i

h′(Ai,∪iBi)

≤ sup
i

h′(Ai, Bi).

Symmetrically for the second part, h′(∪iBi,∪iAi) ≤ sup
i

h′(Bi, Ai).

Now, we define contracting, expanding, and neutral relations regarded as
multi-valued functions.

Definition 2.61 (Contracting, expanding, neutral relations). A rela-
tion f defined on a domain D of a metric space (X, d) is contracting iff

∃r < 1, ∀x, y ∈ D,h(f(x), f(y)) ≤ r · d(x, y);

42 2. Dynamics of Relations

it is expanding iff

∃r < 1, ∀x, y ∈ D, d(x, y) ≤ r · h(f(x), f(y));

it is neutral iff
∀x, y ∈ D, d(x, y) = h(f(x), f(y)).

These relations are variant ones. Neutral relations are limits of expanding
or contracting relations. Variant relations are opposed to constant relations
previously defined.

Definition 2.62 (Variant relation). A relation f is variant iff it is ex-
panding, contracting, or neutral.

The contractivity factor r of a variant relation (see Def. 2.61) generalizes
the notion of Lipshitz coefficient in case of contractions.

Definition 2.63 (Contractivity factor). For each variant relation f , the
contractivity factor γ(f) depends on the smallest positive real number r < 1
verifying the expressions of Def. 2.61:

γ(f) =

r iff f is contracting,
1
r iff f is expanding,
1 iff f is neutral.

The contractivity factor remains valid when set-transformers are consid-
ered instead of multi-valued functions. This is due to the following proposi-
tion.

Proposition 2.64. Let (X, f) a contracting RDS, then the corresponding
set-transformer has the same contractivity factor.

Proof. We prove the contracting case; the two other cases are left to the
reader. By hypothesis, we know that there exists r < 1 such that ∀x, y ∈ X ,

h(f(x), f(y)) ≤ r · d(x, y).

We want to prove that ∀A,B ⊆ X , we have also

h(f(A), f(B)) ≤ r · h(A,B).

By definition, h(f(A), f(B)) = max{h′(f(A), f(B)), h′(f(B), f(A))}. Let us
consider the first part, h′(f(A), f(B)): by Prop. 2.58, since f(b) ⊆ f(B) by
monotonicity (Prop. 2.35), we have ∀b ∈ B

h′(f(a), f(B)) ≤ h′(f(a), f(b)).

2.3 Preliminary Definitions and Properties 43

From this, we have successively

h′(f(a), f(B)) ≤ inf
b∈B

h′(f(a), f(b))

sup
a∈A

h′(f(a), f(B)) ≤ sup
a∈A

inf
b∈B

h′(f(a), f(b))

h′(f(A), f(B)) ≤ sup
a∈A

inf
b∈B

h(f(a), f(b))

≤ sup
a∈A

inf
b∈B

r · d(a, b)

≤ r · h′(A,B)
≤ r · h(A,B).

The second part can be treated symmetrically.

Based on these three properties, the “kind” of a relation can be coded
this way.

Definition 2.65 (Kind). The kind, if any, of a relation f is defined by

κ(f) =

− if f is contracting
0 if f is neutral
+ if f is expanding.

Remark 2.66. Many relations have no kind using this definition. Other
cases can be seen from different viewpoints. For instance, suppose a rela-
tion f is defined on X = Y × Z instead of a single space Y , and it can be
expressed as a product of independent relations defined on Y and Z respec-
tively. Then, the kind can be defined globally on X or as a vector of kinds
respectively defined on Y and Z. This second aspect will often be preferred,
each time such a decomposition will be possible. The purpose of Chap. 3 is
to introduce a family of composition operators on relations, allowing these
considerations.

Finally, let us recall an important result from elementary calculus. A
contracting function defined on a complete metric space has the interesting
property to converge to a unique fixpoint in ω iterations, starting from any
state of its domain. The following theorem is classical and sometimes called
Banach’s fixpoint theorem.

Theorem 2.67 (Contraction mapping theorem). Let (X, d) be a com-
plete metric space, and f be a contracting function defined on X, with con-
tractivity factor γ. Then f has a unique fixpoint p, and ∀x ∈ X, the sequence
(fk(x))k converges to p. Moreover, ∀x ∈ X,n, d(fn(x), p) ≤ c

1−cd(x, f(x)).

44 2. Dynamics of Relations

2.4 Transfinite Iterations

So far, we have restricted ourselves to unbounded finite iterations. Theo-
rems have been presented to compute fixpoints of relations by successive
approximations, provided some continuity assumptions (see §2.3.4). These
assumptions can be weakened if transfinite iterations are allowed, i.e. con-
taining more than any finite number of steps, and even more than ω steps.
Using a transfinite iteration scheme based on ordinal numbers, monotonicity
is sufficient to get convergence in the computation of fixpoints of functions
defined on complete lattices. Despite the fact that some initial states do not
entail monotonicity, a notion of limit can be defined ine the particular case
of RDS. In the same way, transfinite trajectories are defined, too.

2.4.1 Motivation

Let us start with a simple example showing the usefulness of transfinite it-
erations: the function defined below is not a RDS since it is not closed, and
convergence is obtained after more than ω iteration steps.

Example 2.68. Take a function defined as follows (see Fig. 2.6):

0

0.5

1

0 0.5 1

Fig. 2.6. Graph of f(x) (and y = x, dotted line)

f(x) =

{
1
12x+ 1

3 on [0, 4
11)

1
12x+ 7

11 on [4
11 , 1].

The part of f defined on [0, 4
11) seems to have a fixed point in 4

11 but there
it is not defined. Actually, at this point, the right branch is defined, for which
there is a true fixed point in 84

121 . Both branches of f are contracting, i.e. the
contractivity factor is strictly smaller than 1 (here, it is equal to 1

12).
Thus, starting from any point in [0, 4

11), ω iterations are needed to reach the
“virtual” attracting fixed point 4

11 .

For any initial point x0, the nth iteration is given by xn = 1
12n (x0− 4

11
)+ 4

11
.

This means that for xn to be greater than a point 4
11
− 1

m
very close to the

virtual fixed point, n has to be in O(logm). Precisely,

2.4 Transfinite Iterations 45

n ≥
�

1

log 12
(logm+ log(4− 11x0)− log 11)

�
.

If m tends to infinity, then n tends to infinity, too.

At the “virtual” fixpoint 4
11 , viz. after ω steps, a jump happens: the first branch

should give 4
11 but it is not defined, whereas the second branch gives 2

3 and the
iteration can keep going on this second branch. The fixed point is reached after
ω other steps (this can be proved using the same argument as above). Hence,
ω + ω iterations are necessary to reach the fixed point of f .

From this example, we see that it can be interesting to have more than ω
possible steps to reach a fixpoint.

Let us give another similar motivation. Using a finite deterministic au-
tomaton, it is clear that, from any state, a cycle is reached after a finite
number of transitions called transient. Moreover, this transient contains a
number of states which is at most equal to the number of states of the au-
tomaton. In order to let the system converge in any case, it is useful to define
an iteration scheme permitting more steps than the number of states of the
automaton. Repeating the argument with larger and larger automata that
contain more and more states, we tend to infinity. This motivates the use
of strictly infinite iteration schemes. Since we work with set-transformers,
power sets are needed and we require possibly higher degrees of infinity. This
motivates the use of transfinite iteration schemes.

2.4.2 Transfinite Fixpoint Theorem

The class of ordinal numbers (denoted O) is well ordered by the classical “less
than” relation <. The expression $i∈Ini is used to denote the upper bound
of the ordinals family {ni | i ∈ I}. A limit ordinal n is such that $k<nk = n.
A successor ordinal n is such that $k<nk = n − 1, where the predecessor of
n is denoted by n − 1 [96]. In the following, we denote limit ordinals by O l

and successor ordinals by Os .
Let us assume that L(≤,⊥,",#,$) is a complete lattice, with ordering

relation ≤, bottom ⊥, top ", least upper bound operator $, and greatest
lower bound #. With the same notations, ηL denotes the smallest ordinal
number strictly greater than the cardinality of L.

Now, we extend the notion of iteration to transfinite numbers. Limit el-
ements of sequences are easy to define when these sequences are decreasing
or increasing.

Definition 2.69 (Decreasing/increasing transfinite sequence). A
transfinite sequence (Xi)i∈O is decreasing iff ∀i ∈ Os , Xi ≤ Xi−1 and
∀i ∈ O l , Xi = #j<iXj . We denote it by ↓i Xi.

The same sequence is increasing iff ∀i ∈ Os , Xi−1 ≤ Xi and ∀i ∈ O l , Xi =
$j<iXj . We denote it by ↑i Xi.

The concept of stability is straightforward.

46 2. Dynamics of Relations

Definition 2.70 (Stationary sequence). The (decreasing or increasing)
sequence (Xi)i<ηLof elements of the complete lattice L is stationary iff ∃n <
ηL, (m ≥ n)⇒ (Xn = Xm). The limit of this sequence is Xn.

Based on this we can propose an evolution scheme: the basic case is
f0(A) = A; for all successor ordinals n �= 0 ∈ Os , fn(A) = f(fn−1(A));
and for all limit ordinals n ∈ O l ,

fn(A) = #m<nf
m(A)

if ↓m fm(A)
= $m<nf

m(A)
if ↑m fm(A);

finally, for all ordinals n �= 0 ∈ O , f−n(A) = (f−1)n(A).
Continuity (see §§2.3.3, 2.3.4) entails stationarity in at most ω steps. The

following proposition states the underlying equivalence [70].

Proposition 2.71. Let L be a complete lattice. If ηL > ω, the sequence
of successive iterates (Xi)i<ηL is stable in at most ω steps iff f is and-
continuous.

Proof.

∀n < ηL, (n ≥ ω)⇒ (Xω = Xn)
≡ Xω = Xω+1

≡ Xω = f(Xω)
≡ #i<ωXi = f(#i<ωXi)
≡ #i<ωXi+1 = f(#i<ωXi)
≡ #i<ωf(Xi) = f(#i<ωXi).

Relaxing the assumption of converging in at most ω steps amounts to
keeping monotonicity instead of continuity. The following theorem generalizes
Knaster-Tarski’s to a constructive fixpoint theorem for monotonic relations
on complete lattices [70, 71].

Theorem 2.72 (Transfinite lattice fixpoint theorem). Let L be a com-
plete lattice. A decreasing iteration (Xi)i<ηL starting from A ≥ f(A), and
defined by a monotonic relation f , is a stationary decreasing sequence and
its limit is G f , the greatest fixed-point of f , ≤ A.

Similarly, an increasing iteration (Xi)i<ηL starting from A ≤ f(A), and
defined by a monotonic relation f , is a stationary increasing sequence and its
limit is Sf , the least fixed-point of f , ≥ A.

Remark 2.73. Most of the time, decreasing iterations are used, starting
from the entire space X , which is the top element of the lattice. Increasing

2.4 Transfinite Iterations 47

iterations starting from the bottom element do not help if the bottom is
equal to the empty set, because of Prop(s). 2.21. Otherwise, an “undefined”
relation based on an “undefined” element could do (see also Rem. 2.4), as
well as working in another space, e.g. K (X) the nonempty compact subsets
of X .

2.4.3 Transfinite Limits of Iterations

The iteration scheme on which Theorem 2.72 is based, is too restrictive be-
cause it happens that successive iterations from a set A are neither increasing
nor decreasing. In this case, one would like to have notion of limit that re-
mains compatible with these particular cases.

In terms of RDS, it is easy to define such a notion since every sequence
in a compact set has accumulations points in this set. These accumulation
points can serve as limit elements.

Definition 2.74 (Limit set). Let A be a subset of X . The limit set of A
by successive iterations of a RDS (X, f) is:

fω(A) = ∩i<ω∪i≤j<ωf j(A).

Remark 2.75. – This notion is well defined: the result is always empty or
closed, thanks to monotonicity and closure.

– Moreover, it reduces to ∩if i(A) when f(A) ⊆ A and to ∪if i(A) when
A ⊆ f(A). Notice that these expressions are very similar to the limits of
decreasing and increasing sequences (see Def. 2.69).

We generalize the notion to any complete lattice, which leads to the last
iteration scheme.

Definition 2.76 (Transfinite iteration scheme). Let L be a complete
lattice, f a monotonic function on L, and A ∈ L. The transfinite iteration
scheme is defined by: the basic case,

f0(A) = A;

for all successor ordinals n �= 0 ∈ Os ,

fn(A) = f(fn−1(A)),

and for all limit ordinals n ∈ O l ,

fn(A) = #i<n $i≤j<n f
j(A).

finally, for all ordinals n �= 0 ∈ O ,

f−n(A) = (f−1)n(A).

48 2. Dynamics of Relations

Remark 2.77. The lattice on which the evolution happens is supposed to
be complete. Thus, any subset of the lattice has a greatest lower bound and
a least upper bound. Consequently, the expression #i<n $i≤j<n f

j(A) is well
defined. However, it is not necessarily compact when used in a compact space,
because the infinite union is not always closed, even if A is closed.

Let us come back on Ex. 2.68, to illustrate how transfinite iterations can
help.

Example 2.78 (Ex. 2.68 revisited). Let us pay attention to the definition
of f , which does not belong to our general class of RDS, for f is not closed:
Dom(f) = [0, 1] is closed but Rg(f) = [13 ,

4
11)∪ [23 ,

95
132] is not closed. We could

also define f as a relation by closing it: f(4
11) = { 4

11 ,
2
3}. In case of a particular

evolution starting from a state of the first interval [0, 4
11), ω + ω iterations are

necessary to reach { 4
11 ,

84
121}.

Using transfinite iterations, the strong assumptions of Def. 2.6 can be
weakened to all relations in almost all spaces. Set-transformers are always
monotonic, which is sufficient to guarantee the convergence of successive iter-
ations. The trade-off consists in waiting possibly more than any finite number
of time, and even more than ω steps.

Finally, we have to discuss how to extend the notion of nondeterministic
dynamics (Def. 2.9) to transfinite sequences. We use accumulation points
again.

Definition 2.79 (Transfinite nondeterministic forward dynamics).
The transfinite nondeterministic forward dynamics of a RDS (X, f) from a
set A ⊆ X of initial conditions is

θ(A, f) = {s ∈ XO | (s0 ∈ A)
∧(∀n �= 0 ∈ Os , (sn−1, sn) ∈ f)
∧(∀n ∈ O l , sn ∈ #i<n $i≤j<n {sj})}.

2.5 Discussion

In this section, we compare important aspects of our work with related no-
tions: the relational framework we develop, as compared to the classical
functional view; set-level dynamics and predicate-transformers; point-level
dynamics and trace semantics; explicit nondeterminism and probabilistic
choices; transfinite iterations; generalized time structures.

2.5.1 Relations vs Functions

Using relations is frequent in the theory of programs but not in the field of
dynamical systems, though some authors have proposed to introduce relations
as fundamental dynamical systems.

2.5 Discussion 49

In particular, in [9], the author builds different relations on top of func-
tions, in order to express several variants of recurrence, and suggests the
introduction of relations at the basic level in order to get a homogeneous
treatment of systems.

In [221], relations are not introduced explicitly; the authors allow the
superposition of several functions, leading to nondeterminism, through dif-
ference and differential inequations and inclusions.

In a more abstract way, noninvertible dynamical systems are related to
semi-groups, while invertibility confers them the full power of groups. In both
cases, many interesting results come directly from group theory, when such
relationships are established. For example, in [37], the author makes use of
group theory in Rubik’s cube (!) to illustrate chaos in finite (but large) spaces.

2.5.2 Set-Level Dynamics and Predicate-Transformers

Set-transformers are not new. They are used in general topology [9] and
fractal theory [328, 159, 140, 28, 325].

When sets are specified by predicates, set-transformers are expressed as
predicate-transformers. In program theory, these predicate functions are used
to express the semantics of programs (e.g. [91, 150, 245, 93, 246]) and tran-
sition systems in general (e.g. [284]).

The interesting relationships between relations, predicate-transformers,
multi-valued functions, and their algebraic construction have been investi-
gated in [39, 112].

We summarize below the equivalences between set-transformers and ex-
isting operators:

R ≡ R+ ≡ post[R]
R−1 ≡ R− ≡ pre[R]

[this monograph] [286] [284]

and
wp · R ·A [91]

≡ WR ·R · A [246]
≡ pre[R](A) ∧ ¬pre[R](¬A) [284]
≡ R−1(A) ∩X\R−1(X\A) [this monograph]

assuming that a unique sink can be reached by R when non-termination is
possible, according to [150, 130].

Some authors directly consider programs as relations. This allows them to
express program properties and specifications in a very structured and clear
algebraic way; see for instance [130, 150, 152, 246, 313]. In this case, the basic
objects on which structured systems are built are nothing but relations, as
in our approach.

After Dijkstra’s work, predicate-transformers have been extended to par-
allel programs [61, 194, 62], and to probabilistic programs [234, 237, 236].

50 2. Dynamics of Relations

In control theory , some dynamical systems have been recently analyzed
using predicate-transformers [187]. However, they do not use a compositional
analysis as the one we develop in the next chapters.

2.5.3 Point-Level Dynamics and Trace Semantics

We have introduced two equivalent notions to describe the evolutions of sys-
tems: a set-level dynamics based on successive iterations of set-transformers,
and a point-level dynamics based on sets of (possibly nondeterministic) tra-
jectories.

Defining systems through their trajectories is not new. In dynamical sys-
tems theory, the notion of generating system can be abandoned without loss
of generality [21, 327, 221, 288]. In program theory, traces define the seman-
tics of sequential or parallel programs [15, 216, 189, 309, 67, 89].

2.5.4 Nondeterminism and Probabilistic Choices

Relations intrinsically contain nondeterminism. A function associates at most
one state to every state of its domain. A relation can associate a whole set
of states to every state of its domain. The dynamics chosen to describe the
evolution thus plays an important role in this context: it can be deterministic,
and take all images as the result of the evolution; it can be probabilistic, and
select one of the images using a probability density; or, it can be nondetermin-
istic, and arbitrarily pick one of the possible images. When nondeterminism is
preferred, no quantitative assumption can be made on the performed choices.

If A is a subset of X , then !(A) represents a nondeterministic choice of
any element a ∈ A. Thus, for some a ∈ A, !(A) = a. Such an operation is
discussed in [32], and related to a nondeterministic choice operator introduced
by Hilbert [149].

This choice operator could be composed with set-transformers. Consider-
ing a relation f of R(X) and a set A ⊆ X , we can choose one element of the
result:

f !(A) = !(∪u∈Af(u)).

From a pragmatic point of view, this operator ! is sometimes very useful be-
cause it allows to consider one state per iteration instead of a set of states. For
instance, using Iterated Function Systems [28] under fairness-like conditions,
the following equality is verified asymptotically:

∪nf !n(A) = ∪nfn(A).

These choice-based iterations are also called “pseudo-periodic chaotic itera-
tions” in [274].

A probabilistic choice between several images of a state or a set of states
can also be introduced. Some authors have proposed theoretical possibilities

2.5 Discussion 51

extending the framework of iterated dynamical systems to nondeterminacy,
without loosing quantitative properties [28, 97, 160]. This leads to higher lev-
els of description (i.e. abstractions) than the set level: measures and random
measures.

Finally, nondeterminism and probabilities can be related, like in the se-
mantics of programs. Among others, the work of [162, 234, 237, 236] estab-
lishes interesting results that could be introduced in our framework.

2.5.5 Transfinite Iterations

We have presented several discrete-time evolution schemes of relations by
means of successive iterations. Finite, infinite and transfinite iterations are
possible; their convergence generally relies on fixpoint theorems.

To our knowledge, the use of transfinite iterations as general iteration
scheme in the context of dynamical systems is quite rare. The authors usually
consider continuous functions defined on compact metric spaces, where we
know that at most ω iterations are needed to compute fixpoints (see §2.4).

However, lattice fixpoint theorems provide convergence results using only
monotonic relations. Their constructive version requires continuity or mono-
tonicity and transfinite iterations.

Transfinite iterations have been introduced in the context of program
semantics to guarantee convergence of iterative computation of solutions of
fixpoint equations without adding the stronger assumption of continuity of
the operators involved [70, 71].

At this point, we conjecture that contractions on complete metric spaces
and continuous functions on complete partial orders are instances of a same
abstract pair function–space. Category theory should provide us the tools
to investigate this open question. First steps toward an unification of these
models have been studied in [324, 40, 186, 5, 297]. We hope to study this
interesting question later, to relate subsequent fixpoint theorems based on
these models, and express them as instances of an abstract fixpoint theorem.
As subgoal, we would like to propose a transfinite version of the contraction
mapping theorem, and analyze the conditions under which the result could
remain valid by weakening some assumptions and keeping the transfinite
iteration scheme. In short, the question is:

What is the equivalent of weakening relations from continuity to
monotonicity in the context of complete metric spaces?

2.5.6 Time Structure

Up to now, we have considered discrete-time dynamics based on successive
iterations. We could abstract the evolution scheme using an evolution oper-
ator, and map a relation into a set-transformer describing a specific kind of

52 2. Dynamics of Relations

dynamics, continuous or discrete in time. We could also generalize time to
any other ordered structure.

In particular, the point-level nondeterministic dynamics presented in this
chapter can also be generalized to other time structures. Each component
of the dynamics, i.e. a trajectory, is a sequence of states, and can be seen
as a function defined from time to space. We have presented the discrete-
time version of this dynamics, viz. time was always N, Z, or O , but other
time domains could be used. For instance, each trajectory of the dynamics
of a system can be defined on R, and describe continuous-time evolutions of
systems [221, 326].

Finally, mixing different types of evolutions in a same framework would be
interesting in order to model real-time systems where discrete-time machines
interact with continuous-time events from the environment. This is the goal
of hybrid systems theory, where systems based on different time structures
are composed together [320, 16, 287, 288].

3. Dynamics of Composed Relations

In Chap. 2, we defined relational dynamical systems and different ways to
express their discrete-time evolution. In this chapter, we introduce composed
dynamical systems. By means of composition operators, structured relations
are constructed from basic ones. The first step toward our objective is the
analysis of the set-level and point-level dynamics of systems by composition:
global (resp. individual) properties are simply the dynamics of composed
systems (resp. components).

The chapter is organized as follows: after a short introduction in §3.1, we
present composition operators on relational dynamical systems in §3.2; then,
in §3.3, we study some important dynamical aspects of composed relations: we
analyze how composition propagates from the structure of relational systems
to set-level and point-level dynamics; in §3.4, we detail algebraic properties of
composition operators, and give composition laws of compositions operators;
these multiple compositions naturally lead to fixpoint considerations; finally,
in §3.5, we close the chapter with a discussion.

3.1 Structural Composition

Decomposing a mathematical object is often crucial to understand it. Let us
consider a basic example, using whole numbers, for which several represen-
tations can be chosen, depending on the type of information one wants to
get:

17 = succ(succ(· · · succ(0) · · ·))
︸ ︷︷ ︸

17 times

= 7th prime number
= 1 × 10 + 7.

In program theory, sequential and parallel programs are considered as
structurally composed systems. From simple composition operators like se-
quential composition of guarded-commands in Dijkstra’s language [91] to
modular approaches in software engineering, composition is of fundamental
importance. Parallel composition, “rendez-vous” synchronization, product,

F. Geurts: Abstract Compositional Analysis of Iterated Relations, LNCS 1426, pp. 53-79, 1998.
 Springer-Verlag Berlin Heidelberg 1998

54 3. Dynamics of Composed Relations

sum, are good examples of structuring means of programs, transition sys-
tems, or algebraic processes [151, 216, 222, 3]. Compositional analyses of
these systems are elaborated, to overcome the impossibility of dealing with
huge monolithic systems.

Surprisingly, dynamical systems are often studied as complex mathemat-
ical objects, without trying to decompose them into simpler components.
Some exceptions exist, particularly in the field of hybrid systems [244]. Usu-
ally, composition designates successive applications of functions to given
states: f and g being two functions defined on X , x ∈ X , (f ◦g)(x) = f(g(x)).
Another structural way to combine systems is the simple Cartesian product
of function; for instance, (f × g)(x, y) = (f(x), g(y)). Finally, independent
variables can be mixed together, as in any matrix-vector multiplication.

We now present composition operators on relational dynamical systems,
inspired by classical operators from relation algebra, dynamical systems and
program theories: inversion (already encountered in Chap. 2), domain and
range restrictions, negation, difference, intersection, union (nondeterministic
choice whenever possible), free product (without interaction between com-
ponents, as in the Cartesian product) and connected product (with explicit
interaction).

Our objective is to extend “interesting” properties from simple systems,
viz. easy to analyze, to composed systems obtained by combination of these
individual ones. Interesting properties can vary from one-step evolution to
complete dynamics, invariance, attraction, to computational characteristics,
etc. However, this chapter focuses on set- and point-level dynamics. Other
properties will be examined later on (see Chap(s). 6–9).

3.2 Composition of Relations

We have presented relational dynamical systems in the previous chapter (see
Def. 2.6). Now, we introduce composition operators on relations, and repeat
the (iterative) dynamical construction in addition to the structural combi-
nation. We turn our attention to the recursive construction of new relations
from basic ones, using composition operators. These new relations can in turn
serve to produce other relations.

Almost all operators that we propose here can be found in the literature,
for many of them are classical set-theoretic operations and relational oper-
ations. However, for the sake of completeness, we precisely define them and
we illustrate their use by means of simple examples.

We start with basic cases of composition, involving single relations: unary
operators. After that, we define some operators taking at least two relations
as arguments.

3.2 Composition of Relations 55

3.2.1 Unary Operators

The first operators we use only involve one relation as argument. Among
them, we find inversion, domain restriction, range restriction, and negation.

Definition 3.1 (Inversion). The inverse of a relation f ∈ R(X,Y) is given
by

−1 : R(X,Y) �→ R(Y,X)
s.t. f−1 = {(v, u) | (u, v) ∈ f}.

Example 3.2. Let us define the following relation f1 =
{(1, a), (2, b), (3, a), (4, c)} in R({1, 2, 3, 4}, {a, b, c}). Its inverse is

f1
−1 = {(a, 1), (a, 3), (b, 2), (c, 4)}.

Domain restriction is an operator restricting the set of states to which the
relation can be applied.

Definition 3.3 (Domain restriction). The domain restriction of a rela-
tion f ∈ R(X,Y) to B ⊆ X is

(B →) : R(X,Y) �→ R(X,Y)
s.t. (B → f) = f ∩ (B × Y).

Example 3.4. We consider relation f1 of Ex. 3.2, and restrict its domain to
{1, 2}. This gives

({1, 2} → f1) = {(1, a), (2, b)}.

Range restriction is the dual operator of domain restriction: it restricts
the set of images a relation can range in.

Definition 3.5 (Range restriction). The range restriction of a relation
f ∈ R(X,Y) to B ⊆ Y is

(← B) : R(X,Y) �→ R(X,Y)
s.t. (f ← B) = f ∩ (X × B).

Example 3.6. Restricting the range of relation f1 of Ex. 3.2 to {a, b} gives

(f1 ← {a, b}) = {(1, a), (2, b), (3, a)}.

Notation 3.7. The conjunction of domain and range restrictions is denoted
by

(A → f ← B) = (A → (f ← B)) = ((A → f) ← B).

We introduce a last unary operator, negation, based on set difference.

56 3. Dynamics of Composed Relations

Definition 3.8 (Negation). The negation or complement of a relation f ∈
R(X,Y) is given by

∼ : R(X,Y) �→ R(X,Y)
s.t. ∼ f = (X × Y)\f.

Example 3.9. Let us compute the negation of relation f1 defined in Ex. 3.2.
This gives:

∼ f1 = {1, 2, 3, 4}× {a, b, c}\f1

= {(1, b), (1, c), (2, a), (2, c), (3, b), (3, c), (4, a), (4, b)}.

3.2.2 N-Ary Operators

Now, we come to (at least) binary operators. Sequential composition allows to
compose several relations as a classical functional composition (e.g. f(g(x))).
Intersection, union and difference immediately extend set-theoretic opera-
tions. This is simply due to the fact that relations are nothing but sets.
Finally, two kinds of product are introduced: a Cartesian product of rela-
tions (and their respective spaces) called “free” because no interaction exists
between components; a “connected” version of this product, where explicit
interaction is added between components.

The sequential composition of two binary relations is given below.

Definition 3.10 (Sequential composition). The sequential composition
of two relations f ∈ R(X,Y) and g ∈ R(Y, Z) is given by

; : R(X,Y) ×R(Y, Z) �→ R(X,Z)
s.t. f ; g = Π1,3((f × Z) ∩ (X × g)).

Example 3.11. Let us introduce another relation on
R({a, b, c, d}, {α, β, γ, δ, ε}), f2 = {(a, α), (b, γ), (c, δ), (d, ε), (a, β)}. Compos-
ing f1 of Ex. 3.2 with f2 sequentially gives

f1; f2 = {(1, α), (1, β), (2, γ), (3, α), (3, β), (4, δ)}.

The intersection of relations expresses the classical set intersection: we
consider common domains and take a result only if it belongs to the common
range of the relations involved.

Definition 3.12 (Intersection). The intersection of two relations f and g
of R(X,Y) is their set-intersection:

∩ : R(X,Y) ×R(X,Y) �→ R(X,Y)
s.t. f ∩ g = {(x, y) | ((x, y) ∈ f) ∧ ((x, y) ∈ g).

3.2 Composition of Relations 57

Example 3.13. Here, we introduce a new relation on
R({1, 2, 3, 4, 5}, {a, b, c, d}): f3 = {(1, a), (2, b), (3, d), (4, c), (5, a)}. Its
intersection with relation f1 of Ex. 3.2 is

f1 ∩ f3 = {(1, a), (2, b), (4, c)}.

Example 3.14. In Fig. 3.1, two very simple functions on [0, 1] are represented.
Their overlapping subspace is [14 , 3

4] × [14 , 7
8]. Their interesection is defined on

this subspace as the pairs (state, image) they share.

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Fig. 3.1. Intersection of two functions

The union of relations expresses the classical notion of set union. It em-
phasizes a possible nondeterministic choice between different systems.

Definition 3.15 (Union). The union of two relations f and g of R(X,Y)
is their set-union:

∪ : R(X,Y) ×R(X,Y) �→ R(X,Y)
s.t. f ∪ g = {(x, y) | ((x, y) ∈ f) ∨ ((x, y) ∈ g).

Example 3.16. Let us consider f1 of Ex. 3.2 and f3 of Ex. 3.13. Their union
is given by

f1 ∪ f3 = {(1, a), (2, b), (3, a), (3, d), (4, c), (5, a)}.

The difference of relations is again straightforward. This operator is not
commutative. It is equivalent to the classical notion of set-difference.

Definition 3.17 (Difference). The difference of two relations f and g of
R(X,Y) is their set-difference:

\ : R(X,Y) ×R(X,Y) �→ R(X,Y)
s.t. f\g = {(x, y) | ((x, y) ∈ f) ∧ ((x, y) �∈ g)}.

Example 3.18. We consider the same relations as in Ex. 3.16. Two differences
can be computed:

f1\f3 = {(3, a)} and f3\f1 = {(3, d), (5, a)}.

58 3. Dynamics of Composed Relations

The idea of the next operator is the synchronous parallelization of several
relations, without any other interaction between them.

Definition 3.19 (Free product). The free product of two relations f ∈
R(X) and g ∈ R(Y) is given by

× : R(X) ×R(Y) �→ R(X × Y)
s.t. f × g = {((u, v), (x, y)) | (u, x) ∈ f ∧ (v, y) ∈ g}.

Remark 3.20. Notice our definition does not consider “flat” products: the
result is a set of pairs of pairs in this particular case, i.e. {((u, v), (x, y))},
instead of a “flat” set of quadruples, i.e. {(u, x, v, y)} or {(u, v, x, y)}. This
means that the free product is neither associative nor commutative. It can
then be used to create hierarchical systems. Of course, as mentioned earlier,
the free product is not necessarily binary, its arity can be as large as we
want. For example, to create a flat three-dimensional system, we just need
the ternary product instead of a composition of two binary products:

f1 × f2 × f3

= {(u, x)} × {(v, y)} × {(w, z)}
= {((u, v, w), (x, y, z)}
�= {((u, (v, w)), (x, (y, z))}
= {(u, x)} × {((v, w), (y, z))}
= {(u, x)} × ({(v, y)} × {(w, z)})
= f1 × (f2 × f3)
�= (f1 × f2) × f3.

Sometimes, two operators are used to define these two compositions, namely
“structure construction” and “product”. To distinguish between these two
possible interpretations, we will explicitly use parentheses with the structure
constructor.

Example 3.21. We consider relation f1 of Ex. 3.2 and relation f3\f1 obtained
in Ex. 3.18. Their free product is

f1 × (f3\f1)
= {((1, 3), (a, d)), ((2, 3), (b, d)), ((3, 3), (a, d)), ((4, 3), (c, d)),

((1, 5), (a, a)), ((2, 5), (b, a)), ((3, 5), (a, a)), ((4, 5), (c, a))}.

Now, we keep the parallel execution of several relations present in the free
product but we add interactions between components. Many different kinds
of interactions can be proposed and this operator is in fact the most useful in
practice. We begin with a fairly general definition: each component relation
has in itself the possibility of several influencing factors, i.e. it can have more
than just one argument, and a general relation describing the neighborhood

3.2 Composition of Relations 59

of each component has to be provided. This leads to the definition below,
where three principal components appear: a global space, a family of local
neighborhoods, and a local relation defined for each one of them. We isolate
the arguments of each local relation using the projection ΠR, where R plays a
role of dependency relation between variables or subspaces, and we compute
these local relations individually using the free product ×i∈Jgi.

Definition 3.22 (Connected product). Let J be a set of indices, E =
×i∈JXi be the global space, i.e. the Cartesian product of individual state
spaces, R ∈ R(J) and gi ∈ R(×j∈R(i)Xj , Xi) be relations, then the connected
product is given by

⊗R : ×i∈JR(×j∈R(i)Xj, Xi) �→ R(×i∈JXi)
s.t. ⊗Rgi∈J = (ΠR); (×i∈Jgi).

Example 3.23. To illustrate the connected product in a simple manner, we
consider Hénon’s map [139]:

H(x, y) = (1 − µx2 + y, bx).

This can be rewritten as a connected product based on a connection relation
R = {(1, 1), (1, 2), (2, 1)}, where 1 (resp. 2) represents the first (resp. second)
variable x (resp. y). The pair (2, 2) is not present because the second term bx
does not depend on y. Two local functions are defined: g1(x, y) = 1 − µx2 + y
and g2(z) = bz. Hénon’s map is then equal to g1 ⊗R g2.

Let us finally illustrate this definition with another classical example:
we show that cellular automata can be rewritten as connected products. In
Chap. 8, we will come back on these automata, and study them using the
tools developed here after.

Example 3.24 (Cellular automaton). A one-dimensional bi-infinite binary
cellular automaton is defined as follows: J = Z is the lattice of cells, R =
{(i, i − 1), (i, i), (i, i + 1) | i ∈ J} describes the neighborhood of each cell, and
for all i ∈ J , Xi = {0, 1} is the local state space, and gi = g ∈ R(X3, X) is
the local transition function. Then, the automaton is completely characterized
by the connected product ⊗Rg.

3.2.3 Composed Dynamical Systems

Based on the composition operators introduced above, we can define a notion
of composed or structured dynamical system.

Definition 3.25 (Composed dynamical system). A composed dynam-
ical system is an arbitrary composition of relational dynamical systems
(Def. 2.6), using the operators: inversion (Def. 3.1), domain and range re-
strictions (Def(s). 3.3 and 3.5), negation (Def. 3.8), difference (Def. 3.17),
intersection (Def. 3.12), union (Def. 3.15), free product (Def. 3.19), and con-
nected product (Def. 3.22).

60 3. Dynamics of Composed Relations

Remark 3.26 (RDS-preserving compositions). The arbitrary compo-
sition of RDS is not always a RDS. Let us review each operator separately.

– Inversion: always correct, by Prop. 2.30.
– Domain and range restrictions: valid if the restricting set is closed, as any

intersection of closed sets is closed, and restrictions are based on intersec-
tion.

– Negation: generally not valid because the complement of a closed set is
open and, thus, it is not a RDS. On the other hand, it can be correct when
the topology is the power set of the underlying space for instance, since all
sets are both closed and open.

– Sequential composition: always valid as projection on compact spaces and
intersection preserve closed sets.

– Intersection: always valid, since arbitrary intersections of closed sets are
closed.

– Union: finite composition only, apart from special cases as the one we
mentioned for negation.

– Difference: same problem as the one we mentioned for negation.
– Free product: always valid, since any Cartesian product of closed sets is

closed.
– Connected product: always valid, since projection and free products pre-

serve closed sets.

In general, one is interested by decomposing a RDS into simpler com-
ponents, that is, relational systems which are easy to analyze. For instance,
variant relations (see Def. 2.62) are simple enough to be considered as basic
systems.

A few examples illustrate the decomposition of some classical relations.

Example 3.27. The logistic map f(x) = 4x(1 − x) defined on [0, 1] (see
Fig. 3.2) is the union of two simple injective relations f1 = ([0, 1

2] → f) and
f2 = ([12 , 1] → f): f = f1 ∪ f2.

0

0.5

1

0 0.5 1

Fig. 3.2. Graph of f(x) = 4x(1− x)

The function is contracting between 3
8 and 5

8 , and expanding otherwise. It is
thus also possible to rewrite it as a union of four injective simple variant relations.

3.2 Composition of Relations 61

The inverse of f , f−1, has the same properties: it can be decomposed into two
simple injective branches, respectively inverses of f1 and f2: f−1 = f1

−1∪f2
−1.

Example 3.28. Another type of function is the family g(x) = nx mod 1 de-
fined on [0, 1] with n ∈ N. Each one of them (see e.g. Fig. 3.3) is again a finite
union of simple injective variant relations. Inverses of these functions are also

0

0.5

1

0 0.5 1

Fig. 3.3. Graph of g(x) = 3x mod 1

finite unions of simple injective variant relations.

Example 3.29. An interesting function is h(x) = (sin(1
x) ← [0, 1]) (see

Fig. 3.4) because of its infinitely many branches. In fact, there is only a countable

0

0.5

1

0 0.5 1

Fig. 3.4. Graph of h(x) = (sin(1
x
)← [0, 1])

infinity of branches, and each one of them is a simple injective relation. Here,
we thus have a countable union of basic relations. The inverse follows the same
structure.

For it to be useful, the decomposition has to be composed of at most a
(possibly finite) countable number of basic relations. Here we have shown
examples of countable unions, but the same can be developed using other
operators, like restrictions, sequential composition, intersection, or products.

62 3. Dynamics of Composed Relations

3.3 Dynamics of Composed Relations

In Chap. 2, we have defined relational discrete-time dynamical systems and,
in §3.2, we have presented how we can build composed systems from simpler
ones.

The main objective of this monograph is the study of dynamical and
computational properties of composed dynamical systems by the adequate
combination of individual analyses of their components. To this end, since
dynamical and computational properties both rely on the dynamics of sys-
tems, we have to study how structural composition propagates through evo-
lution. This is the aim of this section: first, we determine one-step set-level
evolution of composed systems; then, we study the impact of composition on
the point-level dynamics.

3.3.1 One-Step Set-Level Evolution of Composed Relations

We now analyze properties of set-transformers for composed relations.

Proposition 3.30 (One-step iteration of composed relations). Let
f, g ∈ R(X), A ⊆ X and a ∈ X. Then, the following statements hold:

(B → f)(A) = f(A ∩ B), (3.1)
(f ← B)(A) = f(A) ∩ B, (3.2)

∼ f(a) = X\f(a), (3.3)
∼ f(A) = X\ ∩a∈A f(a), (3.4)

f\g(A) = f(A)\f ∩ g(A) (3.5)
⊇ f(A)\g(A),

f ∪ g(A) = f(A) ∪ g(A), (3.6)
f ∩ g(A) ⊆ f(A) ∩ g(A), (3.7)
f × g(A) ⊆ f(Π1(A)) × g(Π2(A)), (3.8)

f ; g(A) = g(f(A)), (3.9)
⊗Rgi(A) ⊆ ×igi(ΠR(i)(A)). (3.10)

Proof. – Proof of (3.1):

(B → f)(A) = {v | ∃u ∈ A, (u, v) ∈ (B → f)}
= {v | ∃u ∈ A, (u, v) ∈ f ∩ B × X}
= {v | ∃u ∈ A ∩ B, (u, v) ∈ f}
= f(A ∩ B).

3.3 Dynamics of Composed Relations 63

– Proof of (3.2):

(f ← B)(A) = {v | ∃u ∈ A, (u, v) ∈ (f ← B)}
= {v | ∃u ∈ A, (u, v) ∈ f ∩ X × B}
= {v | ∃u ∈ A, (u, v) ∈ f} ∩ B

= f(A) ∩ B.

– Proof of (3.3):

∼ f(a) = (X × X\f)(a)
= X\f(a).

– Proof of (3.4):

∼ f(A) = (X × X\f)(A)
= ∪a∈A(X × X\f)(a)
= ∪a∈A(X\f(a))
= X\ ∩a∈A f(A).

– Proof of (3.5):

f\g(A) = {v | ∃u ∈ A, (u, v) ∈ f ∧ (u, v) �∈ g}
= {v | ∃u ∈ A, (u, v) ∈ f}\{v | ∃u ∈ A, (u, v) ∈ f ∩ g}
= f(A)\f ∩ g(A)
⊇ f(A)\g(A).

– Proof of (3.6):

f ∪ g(A) = {v | ∃u ∈ A, (u, v) ∈ f ∪ g}
= {v | ∃u ∈ A, (u, v) ∈ f ∨ (u, v) ∈ g}
= {v | ∃u ∈ A, (u, v) ∈ f} ∪ {v | ∃u ∈ A, (u, v) ∈ g}
= f(A) ∪ g(A).

– Proof of (3.7):

x ∈ f ∩ g(A) ≡ ∃u ∈ A, (u, x) ∈ f ∧ (u, x) ∈ g

⇒ ∃u ∈ A, (u, x) ∈ f ∧ ∃u ∈ A, (u, x) ∈ g

≡ x ∈ f(A) ∧ x ∈ g(A)
≡ x ∈ f(A) ∩ g(A).

To show that the reverse implication is not always verified, a simple exam-
ple is sufficient. Consider two relations in the plane R2 . Let f be the closed
segment going from (0, 1) to (1, 3), and g be defined by the closed segment
(0, 2) − (1, 0). Their intersection is in (1

4 , 3
2). Let A be the whole interval

[0, 1]. We have f ∩ g(A) = { 3
2}, while f(A) ∩ g(A) = [1, 2].

64 3. Dynamics of Composed Relations

– Proof of (3.8):

x ∈ f × g(A) ≡ ∃u = (u1, u2) ∈ A, (u, x) ∈ f × g

≡ ∃(u1, u2) ∈ A, (u1, x1) ∈ f ∧ (u2, x2) ∈ g

⇒ ∃u1 ∈ Π1(A), (u1, x1) ∈ f

∧∃u2 ∈ Π2(A), (u2, x2) ∈ g

≡ x1 ∈ f(Π1(A)) ∧ x2 ∈ g(Π2(A))
≡ x ∈ f(Π1(A)) × g(Π2(A)).

To show that the converse is not always verified, let us give a simple
example. Take A = {(1, 2), (3, 4)}. The projections are Π1(A) = {1, 3}
and Π2(A) = {2, 4}. Let the relations be f = {(1, 4), (3, 7)} and g =
{(2, 1), (4, 3)}. Let us compute f × g(A) = {(4, 1), (7, 3)}, f(Π1(A)) =
{4, 7}, and g(Π2(A)) = {1, 3}. Then (4, 3) does not belong to the first set
while it belongs to the Cartesian product of the last two ones.

– Proof of (3.9):

f ; g(A) = {w | ∃u ∈ A, (u,w) ∈ f ; g}
= {w | ∃u, v, u ∈ A ∧ (u, v) ∈ f ∧ (v, w) ∈ g}
= {w | ∃v, ∃u ∈ A, (u, v) ∈ f ∧ (v, w) ∈ g}
= {w | ∃v ∈ f(A), (v, w) ∈ g}
= g(f(A)).

– Proof of (3.10):

⊗Rgi(A) = ∪u∈A ⊗R gi(u)
= ∪u∈A(ΠR;×igi)(u)
= ∪u∈A ×i gi((ΠR(i)(u))i)
= ∪u∈A ×i gi(ΠR(i)(u))
⊆ ×igi(ΠR(i)(A)).

Adding some assumptions, the following assertions are easy to prove.

Proposition 3.31. Let f, g ∈ R(X) and A ⊆ X. Then

f ∩ g(A) = f(A) ∩ g(A) (3.11)
if ∀y ∈ Rg(f) ∩ Rg(g), f−1(y) ∩ g−1(y) �= ∅,

f\g(A) = f(A)\g(A) (3.12)

if ∀y ∈ Rg(f) ∩ Rg(∼ g), f−1(y) ∩ (∼ g)−1(y) �= ∅,
f × g(A) = f(Π1(A)) × g(Π2(A)) (3.13)

if A = Π1(A) × Π2(A),
⊗Rgi(A) = ×igi(ΠR(i)(A)) (3.14)

if A = ×iΠR(i)(A).

3.3 Dynamics of Composed Relations 65

Proof. Let us just prove (3.11), the next one follows the same argument and
the last ones are trivial.

x ∈ f(A) ∩ g(A)
≡ x ∈ f(A) ∧ x ∈ g(A)
≡ ∃u ∈ A, (u, x) ∈ f ∧ ∃u′ ∈ A, (u′, x) ∈ g

* f−1({x}) ∩ g−1({x}) �= ∅
≡ ∃u ∈ A, (u, x) ∈ f ∧ (u, x) ∈ g

≡ x ∈ f ∩ g(A).

Remark 3.32. – Inversion is a basic operator. It cannot be replaced by
something simpler, as in relation algebra.

– Among all items of Prop(s). 3.30 and 3.31, some of them can be seen as
homomorphisms: Eq(s). (3.2), (3.6), (3.12), (3.11), (3.13), (3.14). Let us
express the first one in its canonical form:

f f(A)

(f ← B) (f ← B)(A) = f(A) ∩ B

A

A

(← B) ∩B

The second one gives:

f, g f(A), g(A)

f ∪ g f ∪ g(A) = f(A) ∪ g(A)

A

A

∪ ∪

Negation and difference are not easy to treat, as shown by Prop. 3.30.
This is due to the fact that, (X, f) being a RDS and A ⊆ X , ∼ f(A) is
generally not equal to X\f(A) but to X\∩a∈A f(a). We could define another
unary operator providing such an “external” negation.

Definition 3.33 (External negation). The external negation of a relation
f ∈ R(X,Y) is given by

¬ : R(X,Y) �→ R(X,Y)
s.t. ∀A ⊆ X,¬f(A) = X\f(A).

We did not introduce this operator on equal footing with the other
ones presented in §3.2 for two reasons: it is defined globally, using a set-
transformer; the resulting set-transformer is not monotonic anymore, since

66 3. Dynamics of Composed Relations

set-difference is not either. In fact, ¬f is anti-monotonic, but its square is
again monotonic. Of course, both negations are related by the following:
∀a ∈ X,A ⊆ X ,

∼ f(a) = ¬f(a)
∼ f(A) = X\ ∩a∈A f(a) ⊇ X\ ∪a∈A f(a) = ¬f(A).

In the following, we will try to go as far as possible using negation. However,
in Chap. 6, we will examine external negation again.

The next two propositions are extensions of (3.6) and (3.7). To distinguish
their names from Def. 2.37, we prefix their names with “meta-”.

Proposition 3.34 (Universal meta-disjunctivity). Let (X, fi) be RDS,
and A ⊆ X, then

(∪nfn)(A) = ∪nfn(A).

Remark 3.35. Without any restriction on the number and format of the
composed relations fi’s, the resulting relation may not be closed. For example,
let fi be such that it maps its domain [0, 1− 1

i] to a constant, say a. Every such
relation is closed, but their infinite union is semi-closed: Dom(∪ifi) = [0, 1).

Proposition 3.36 (Semi meta-and-continuity). Let (X, fi) be RDS and
A ⊆ X, then

(∩nfn)(A) ⊆ ∩nfn(A).

Remark 3.37. – This proposition simply extends Eq. (3.7). Since any in-
tersection of closed sets is a closed set, the intersection ∩nfn is always a
closed relation on X .

– When “⊆” is replaced by “=”, we get meta-and-continuity, which ap-
pears under some strong assumptions on relations. Our discussion of §2.3.3
concerning bounded non-determinism, image-finiteness and and-continuity
also applies at the meta-level.

In §§2.2.2, 2.4 (Def. 2.76), we have presented discrete iteration schemes.
It is easy to show that they can be equivalently rewritten as finite, infinite,
transfinite sequential compositions. We have f ∈ R(X) and

f0 = I,

fn+1 = fn; f
= f ; fn.

Proposition 3.38. Let f be a relation on X; and A ⊆ X. Then

∀n ≥ 0, fn(A) = f ; . . . ; f
︸ ︷︷ ︸

n times

(A).

Proof. Trivial by Def. 3.10, Prop. 3.30, and the general iteration scheme
presented in Def. 2.76.

3.3 Dynamics of Composed Relations 67

3.3.2 Point-Level Dynamics of Composed Systems

Here, we define the point-level dynamics of composed relations. In the fol-
lowing paragraphs, we review each case of composition individually, and we
concentrate on the basic nondeterministic forward dynamics, i.e. θ(·, ·).
Inversion. The unidirectional dynamics of the inverse of a relation f cannot
be obtained easily using the dynamics of f itself. However, the complete
bi-directional dynamics can be obtained by simple inversion of all sequences.

If s = · · · s−2s−1s0s1s2 · · · ∈ XZ, its mirror image is s =
· · · s2s1s0s−1s−2 · · · ∈ XZ. Then, the dynamics of f is:

Θ(A, f−1) = Θ(A, f).

Domain Restriction. Domain restriction is very easy to treat.

Proposition 3.39. Let (X, f) be a RDS, A,B ⊆ X, then

θ(A, (B → f)) = BN ∩ θ(A, f).

Proof.

θ(A, (B → f))
= {s ∈ XN | (s0 ∈ A) ∧ (∀n, (sn, sn+1) ∈ (B → f))}
= {s ∈ XN | (s0 ∈ A) ∧ (∀n, (sn ∈ B) ∧ (sn, sn+1) ∈ f)}
= BN ∩ θ(A, f).

Range restriction. Range restriction is trivial, too.

Proposition 3.40. Let (X, f) be a RDS, A,B ⊆ X, then

θ(A, (f ← B)) = A × BN ∩ θ(A, f).

Proof.

θ(A, (f ← B))
= {s ∈ XN | (s0 ∈ A) ∧ (∀n, (sn, sn+1) ∈ (f ← B))}
= {s ∈ XN | (s0 ∈ A) ∧ (∀n, (sn+1 ∈ B) ∧ (sn, sn+1) ∈ f)}
= A × BN ∩ θ(A, f).

Negation. To compute the dynamics of a negated system ∼ f , it is important
to remark that no sequence can contain a transition which belongs to f . This
is stronger than removing θ(X, f) from the set of all possible sequences XN.

Proposition 3.41. Let (X, f) be a RDS, A ⊆ X, then

θ(A,∼ f) = (A × XN)\ ∪∞n=0 (Xn × f × XN).

68 3. Dynamics of Composed Relations

Proof.

s ∈ θ(A,∼ f)
≡ (s ∈ XN) ∧ (s0 ∈ A) ∧ (∀n, (sn, sn+1) �∈ f)
≡ (s ∈ A × XN) ∧ (∀n, (sn, sn+1) �∈ f)
≡ (s ∈ A × XN) ∧ (∀n, s �∈ (Xn × f × XN))
≡ s ∈ (A × XN)\ ∪∞n=0 (Xn × f × XN).

Sequential Composition. This case of composition is not very easy to study
using information on individual components. Every sequence of θ(A, f ; g) has
the following form, with s0 ∈ A:

s0
f ;g−→ s1

f ;g−→ s2
f ;g−→ · · ·

A “microscopic” view of this sequence gives

s0
f−→ s′0

g−→ s1
f−→ s′1

g−→ s2
f−→ s′2

g−→ · · ·
where s′i are intermediate states. This sequence can be obtained as the set
of sequences whose head belongs to A, such that (s0, s

′
0), (s1, s

′
1), and every

(si, s
′
i) belongs to f , and such that every (s′i, si+1) ∈ g. Then, a projection

on unquoted indices is necessary to hide the details. Globally, this gives:

θ(A, f ; g) = Π{2i|i∈N}(A × XN ∩ fN ∩ X × gN).

Adding stronger assumptions on f , g or their composition could lead to
nicer properties. We postpone these interesting developments to Chap. 6,
where some stronger hypotheses will be used to compute the invariant of
sequentially composed systems.
Intersection. The case of intersection is surprisingly simple. We have the
following proposition.

Proposition 3.42. Let (X, f) and (X, g) be RDS, A ⊆ X, then

θ(A, f ∩ g) = θ(A, f) ∩ θ(A, g).

Proof.

θ(A, f ∩ g)
= {s ∈ XN | (s0 ∈ A) ∧ (∀n, (sn, sn+1) ∈ f ∧ (sn, sn+1) ∈ g)}
= {s ∈ A × XN | (∀n, (sn, sn+1) ∈ f) ∧ (∀n, (sn, sn+1) ∈ g)}
= θ(A, f) ∩ θ(A, g).

Remark 3.43. In trace-based parallelism semantics, the equivalent state-
ment holds. If S1 and S2 represent programs or processes, their synchronized
parallel composition S1 ‖ S2 is such that

[[S1 ‖ S2]] = [[S1]] ∩ [[S2]]

where [[S]] denotes the semantics of S, i.e. its set of possible traces or trajec-
tories [79].

3.3 Dynamics of Composed Relations 69

Union. This composition is much more complicated than intersection. To get
the complete dynamics of the union of two systems f and g, we have to take
into account all sequences obtained by arbitrary sequential compositions of
f and g. Let us start with a simple motivating example.

Example 3.44. Let us imagine that we have two systems f and g defined
on the same space X , with the same domain and range, and that we want
to compose them by a nondeterministic choice at each iteration step. In our
framework, this is possible using the union of relations. The resulting dynamics
is much richer than the union of the individual sets of evolutions. The global
dynamics contains all interleaved execution traces

For instance, X = {a, b}, f = {(a, a), (b, b)} and g = {(a, b), (b, a)}. The
corresponding dynamics are

θ(X, f) = {a −→ a −→ a −→ · · · ,
b −→ b −→ b −→ · · ·}

θ(X, g) = {a −→ b −→ a −→ · · · ,
b −→ a −→ b −→ · · ·}.

The union of individual dynamics is much simpler:

θ(X, f) ∪ θ(X, g) = {a −→ a −→ a −→ · · · ,
b −→ b −→ b −→ · · · ,
a −→ b −→ a −→ · · · ,
b −→ a −→ b −→ · · ·}.

The composite relation is f ∪ g = {(a, a), (a, b), (b, a), (b, b)}, which generates a
more “complex” dynamics:

θ(X, f ∪ g) = {a, b}ω.

Actually, we can approximate this set of sequences from below by adding
larger and larger periodic sequential compositions: first, we consider f (giving
rise to f ; f ; f ; · · ·) and g (leading to g; g; g; · · ·); second, we consider 2-periodic
repetitions of f ; f , f ; g, g; f and g; g; and so on, and so forth.

Thus, we have to generalize our previous presentation of sequential compo-
sition. Therefore, we introduce a modified point-level dynamics that realizes
a microscopic view of sequential composition:

θµ(A, (fj)k
j=1) = {s ∈ XN | (s0 ∈ A) ∧ (∀n, (sn, sn+1) ∈ f(n mod k)+1)}.

Let us denote sequential compositions as words, e.g. fgg instead of f ; g; g.
In principle, we have

θ(A, f ∪ g) = ∪w∈{f,g}Nθµ(A,w)

70 3. Dynamics of Composed Relations

but we can also compute the closure of the approximations since the set of
periodic infinite words P is dense in the set of infinite words {f, g}N, whence
P = {f, g}N [96, 328].

Proposition 3.45. Let (X, f) and (X, g) be RDS, and A ⊆ X, then

θ(A, f ∪ g) = ∪w∈{f,g}∗θµ(A,w).

Proof. We have to prove that ∀s ∈ θ(A, f ∪ g), ∀ε, ∃t ∈
∪w∈{f,g}∗θµ(A,w), da(s, t) < ε.

Let us fix ε and take the smallest k such that 2−k ≤ ε. Then, t such that
t|k = s|k is sufficient. It remains to show that this t belongs to the union: as
s ∈ θ(A, f ∪ g), there exists a word w ∈ {f, g}ω such that ∀i, (si, si+1) ∈ wi

and we have of course w|k ∈ {f, g}k and t ∈ θµ(A,w|k).

Difference. This composition follows the same lines as negation. The next
proposition states the result.

Proposition 3.46. Let (X, f) and (X, g) be RDS, A ⊆ X, then

θ(A, f\g) = θ(A, f)\ ∪∞n=0 (Xn × g × XN).

Proof.

θ(A, f\g)
= {s ∈ XN | (s0 ∈ A) ∧ (∀n, (sn, sn+1) ∈ f ∧ (sn, sn+1) �∈ g)}
= θ(A, f) ∩ θ(A,∼ g)
= θ(A, f) ∩ (A × XN\ ∪n (Xn × g × XN))
= θ(A, f)\ ∪n (Xn × g × XN).

Free Product. Now, we analyze the product of systems without interactions
between components. Before giving the next proposition, let us define a spe-
cific projection: let s be a sequence of (X × Y)N, then Π1(s) is obtained by
extraction of the first components:

Π1((s1
0, s

2
0)(s

1
1, s

2
1)(s

1
2, s

2
2) · · ·) = s1

0s
1
1s

1
2 · · ·

and Π2(s) applies symmetrically on second components.

Proposition 3.47. Let (X, f) and (Y, g) be RDS, A ⊆ X, B ⊆ Y , then

θ(A × B, f × g) = {s ∈ (X × Y)N | (Π1(s) ∈ θ(A, f)) ∧ (Π2(s) ∈ θ(B, g))}.

Proof. Trivial using Def. 2.9 and the projectors Πi.

Remark 3.48. We can rewrite this expression in a simple manner, if we relax
the ordering imposed by Cartesian products, i.e. XN × Y N =Π (X × Y)N:

θ(A × B, f × g) =Π θ(A, f) × θ(B, g).

3.4 Algebraic Properties of Composition Operators 71

Connected Product. Finally, the case of connected products is very difficult
to treat in general. Indeed, the sequence of pairs of states cannot be decom-
posed as we did it in the previous case (for free products), which eliminates
many potential simplifications. Thus, the complete dynamics of this last com-
position will not be analyzed further on.

Summary of Compositional Results.. Some operators permit a compositional
analysis of their point-level dynamics: inversion, restrictions, intersection, free
product. Strictly speaking, the other operators are not compositional. These
properties are summarized in Table 3.1, where (X, f) and (X, g) are RDS,
and A,B ⊆ X .

Table 3.1. Compositional analysis of point-level dynamics

Compositional results

Θ(A, f−1) = Θ(A, f)

θ(A, (B → f)) = BN∩ θ(A, f)
θ(A, (f ← B)) = A×BN∩ θ(A, f)
θ(A, f ∩ g) = θ(A, f) ∩ θ(A, g)
θ(A×B, f × g) =Π θ(A, f)× θ(B, g)

Non-compositional results

θ(A, f ∪ g) = ∪w∈{f,g}∗θµ(A,w)
θ(A, f\g) = θ(A, f)\ ∪∞

n=0 (X
n × g ×XN)

θ(A,∼ f) = (A×XN)\ ∪∞
n=0 (X

n × f ×XN)
θ(A, f ; g) = Π{2i|i∈N}(A×XN∩ fN∩X × gN)

3.4 Algebraic Properties of Composition Operators

In §3.2, we have defined composition operators to combine relations into
new ones. These operators can in turn be combined to each other, to form
more and more complex systems (see Def. 3.25). To facilitate the technical
developments based on these operators, it is interesting to study algebraic
properties of operators. This section aims at studying the composition of
composition operators.

The operators on relations presented above can have properties like asso-
ciativity, commutativity, distributivity on each others, etc. The proof of these
properties is straightforward, therefore we do not detail them and refer the
interested reader to [245] for example, to get an idea of some of them, or to
any textbook on set theory, e.g. [141].

72 3. Dynamics of Composed Relations

At first, let us examine some (n > 1)-ary operators. It is clear that:

– ; is associative;
– ∪ and ∩ are idempotent, associative and commutative.

The way we have defined × and ⊗ , these operators are neither associative,
nor commutative, because we work with tuples of tuples instead of working
with flat vectors.

We can compose all these operators together, which leads to some in-
teresting properties. We first compose unary operators, then mix unary and
(n > 1)-ary operators, and we finally show some compositions of (n > 1)-ary
operators.

To represent the composition of operators, we use the symbol ◦: if / and
/′ are two operators, / ◦ /′ represents the successive application of /′ and /.
For instance, let r be a relation, / and /′ be two unary operators,

/ ◦ /′(r) = /(/′(r)).

We also use the “curryfication” of binary operations in the following way:
∩ can be seen as a binary operator taking two arguments, A and B, which
gives A∩B, but it is also possible to fix one of these arguments, say A, which
gives a unary operator ∩A taking one argument, B, which again gives A∩B.

The composition ◦ has an identity, denoted by id. This means that it is
equivalent to the application of the identity relation.

Remark 3.49. – In the following tables, the relations to which these com-
positions of composition operators are supposed to be applied are defined
on a unique space X . Generalizing this to any other space is straightfor-
ward.

– Since the connected product is based on projections, a simplification of its
composition with other operators cannot be systematically obtained. This
is the case for the composition with unary operators, or with \ and ×.
Thus, we express the composition whenever it leads to a simpler form.

3.4.1 Composition of Unary Operators

The composition of unary operators is given in Table 3.2. Each cell (row /,
col. /′) of the tables gives a composition of two unary operators, /′ ◦ /, e.g.
−1◦ ∼=∼ ◦ −1.

3.4.2 Composition of Unary and N-Ary Operators

The composition of unary and (n > 1)-ary operators is given in Table 3.3.
The application of two unary operators / and /′ to two relations is denoted
by (/, /′); (/)2 stands for (/, /).

3.4 Algebraic Properties of Composition Operators 73

Table 3.2. Composition of unary operators

◦ −1 ∼
−1 I −1◦ ∼

(B →) (← B) ◦ −1 ∼ ◦ ∩ (B ×X)
(← B) (B →) ◦ −1 ∼ ◦ ∩ (X ×B)
∼ ∼ ◦ −1 I

◦ (A→) (← A)
−1 −1 ◦ (← A) −1 ◦ (A→)

(B →) ((A ∩B)→) (B →) ◦ (← A)
(← B) (← B) ◦ (A→) (← (A ∩ B))
∼ ∩(A×X)◦ ∼ ∩(X × A)◦ ∼

3.4.3 Composition of N-Ary Operators

Finally, we investigate the composition of (n > 1)-ary operators. Since it
requires more attention, we split the analysis in several cases.

Table 3.3. Composition of unary and (n > 1)-ary operators

◦ (B →) (← B)

; ; ◦((B →), id) ; ◦(id, (B →))
∩ ∩ ◦ ((B →))2 ∩ ◦ ((← B))2

∪ ∪ ◦ ((B →))2 ∪ ◦ ((← B))2

\ \ ◦ ((B →), id) \ ◦ ((← B), id)
× × ◦ ((B1 →), (B2 →)) × ◦ ((← B1), (← B2))

if ∃B1, B2 s.t.B = B1 ×B2

◦ −1 ∼
; ; ◦(−1)2 ∪ ◦ (×X ◦Π1◦ ∼,X × ◦Π1◦ ∼)
∩ ∩ ◦ (−1)2 ∪ ◦ (∼)2
∪ ∪ ◦ (−1)2 ∩ ◦ (∼)2
\ \ ◦ (−1)2 ∪ ◦ (∼, id)
× × ◦ (−1)2 ⊇ × ◦ (∼)2

Let us begin with commutative operators, ∪ and ∩ (see Table 3.4).

Remark 3.50. The last line of the previous table holds because ΠR is simple
(we use the second line of the following table).

In Table 3.5, composition with ;.
In Table 3.6, composition with \.
Finally, in Table 3.7, composition with ×.

74 3. Dynamics of Composed Relations

Table 3.4. Composition of (n > 1)-ary operators with commutative operators

◦ ∩h ∪h
f ∩ g f ∩ (g ∩ h) (f ∪ h) ∩ (g ∪ h)
f ∪ g (f ∩ h) ∪ (g ∩ h) f ∪ (g ∪ h)
f\g (f ∩ h)\g (f ∪ h) ∩ (∼ g ∪ h)
f × g (f ∩ h1)× (g ∩ h2) (f ∪ h1)× (g ∪ h2)

if ∃h1, h2 s.t. h = h1 × h2

f ⊗R g (f ∩ h1)⊗R (g ∩ h2) (f ∪ h1)⊗R (g ∪ h2)
if ∃h1, h2 s.t. h = h1 ⊗R h2

Table 3.5. Composition of (n > 1)-ary operators with ;

◦ ;h h;

f ; g f ; (g;h) (h; f); g
f ∩ g (f ;h) ∩ (g;h) (h; f) ∩ (h; g)

if h injective if h simple
f ∪ g (f ;h) ∪ (g;h) (h; f) ∪ (h; g)
f\g (f ; h) ∩ (∼ g;h) (h; f) ∩ (h;∼ g)

if h injective if h simple
f × g (f ;h1)× (g;h2) (h1; f) × (h2; g)

if ∃h1, h2 s.t. h = h1 × h2

f ⊗R g / (f ;h1)⊗R (g;h2)
if ∃h1, h2 s.t. h = h1 × h2

Table 3.6. Composition of (n > 1)-ary operators with ∼

◦ \h h\
f ∩ g (f\h) ∩ (g\h) (h\f) ∪ (h\g)
f ∪ g (f\h) ∪ (g\h) (h\f) ∩ (h\g)
f\g f\(g ∪ h) (h\f) ∪ (h ∩ g)
f × g (f\h1)× (g\h2) (h1\f)× (h2\g)

if ∃h1, h2 s.t. h = h1 × h2

Table 3.7. Composition of (n > 1)-ary operators with ×

◦ ×h h×
f ∩ g (f × h) ∩ (g × h) (h× f) ∩ (h× g)
f ∪ g (f × h) ∪ (g × h) (h× f) ∪ (h× g)
f\g (f × h)\(g × h) (h× f)\(h× g)

3.4 Algebraic Properties of Composition Operators 75

3.4.4 Fixpoint Theory for the Composition

So far, we have defined relational dynamical systems (Def. 2.6), and com-
posed dynamical systems (Def. 3.25) based on composition operators used to
organize the structure of systems explicitly.

Here we generalize this construction by introducing an important family
of structured systems: recursive relations defined as fixpoints of functional
equations. Let us illustrate these by an example.

Example 3.51. We consider a functional equation defined as follows: f1, and
f2 being RDS defined on X ,

Γ (f) = f1 ∪ (f2; f).

We would like to define r as the greatest fixpoint of Γ , i.e. GΓ . How to do that?

In Chap. 2, we have presented several lattice fixpoint theorems, including
a transfinite version requiring monotonic functions only (§§2.3.4, 2.4). These
theorems are general enough to support the meta-level we need here, because
relations are nothing but elements of the power set of a Cartesian space,
which is always a complete lattice.

The assumptions required on functions that are used to define fixpoint
equations are monotonicity and, restricting ourselves to ω iterations, and-
continuity and or-continuity.

Thus, we first have to define an ordering on relations. Second, we must
exhibit functionals that preserve this order (monotonicity) and that preserve
limits (continuity). We concentrate on monotonicity, for we have seen that
continuity can be replaced by transfinite iteration.

Many composition operators preserve the order, even applied to infinite
monotonic sequences of relations. We define a least upper bound of some
infinite sequences, and a notion of fixpoint (in this case, fixed relation) of
functional meta-equations. Using a notion of continuity, this fixpoint can
be computed by successive applications of the functional, starting from an
empty relation, an undefined relation (least fixpoint), or from a total relation
(greatest fixpoint).

Ordering Relations. It is possible to define several orders on relations. For
example, in [245], two partial orders on R(X) are considered: the inclusion
order,

(f ⊆ g) ⇔ (∀u, f(u) ⊆ g(u))

and the definition order,

(f # g) ⇔ (∀u, f(u) = ∅ ∨ f(u) = g(u)).

It is easy to verify that

(f # g) ⇒ (f ⊆ g).

76 3. Dynamics of Composed Relations

Order-Preserving Functionals. The functionals we need here are based on
composition operators we have presented in §3.2. Let us review some of them
w.r.t. monotonicity. Since we just rephrase standard properties on relations,
we list the results without proofs (see e.g. [245, §1.3.3] and [246]).

Proposition 3.52 (⊆-meta-monotonicity). If f , g, h are RDS defined
on X, such that f ⊆ g, and ∀A ⊆ X, then the following statements hold:

(A → f) ⊆ (A → g)
(f ← A) ⊆ (g ← A)

f ; h ⊆ g; h
h; f ⊆ h; g

f ∪ h ⊆ g ∪ h

f ∩ h ⊆ g ∩ h

f × h ⊆ g × h.

Proposition 3.53 (#-meta-monotonicity). If f , g, h are RDS defined
on X, such that f # g, and ∀A ⊆ X, then the following statements hold:

(A → f) # (A → g)
(f ← A) # (g ← A)

h; f # h; g
f ∪ h # g ∪ h

if Dom(h) ∩ (Dom(f) ∪ Dom(g)) = ∅
f ∩ h # g ∩ h

f × h # g × h.

Fixpoint Meta-Equations. Using fixpoint theorems of §2.3.4, we know that
the greatest fixpoint of a monotonic, and-continuous functional Γ can be
obtained as follows:

G Γ = ∩iΓ
i(U)

and its least fixpoint, in case of or-continuity, as

SΓ = ∪iΓ
i(B)

where B is a bottom relation like E or a more specific “undefined” relation.
Let us close the section with an illustration of the method.

Example 3.54 (Ex. 3.51 revisited). To compute the least fixpoint of Γ
defined by Γ (f) = f1 ∪ (f2; f), we use the successive approximations from the
empty relation E :

E −→ f1 ∪ f2; E = f1 −→ f1 ∪ f2; f1 −→ f1 ∪ f2; (f1 ∪ f2; f1) −→ · · ·

This sequence has a well-defined limit thanks to monotonicity of the involved
operators ∪ and ;.

3.5 Discussion 77

3.5 Discussion

In this chapter, we introduced composition operators for relational discrete-
time dynamical systems, and developed a compositional approach for their
analysis. The approach is inspired by compositional ideas present in computer
science and logic, more specifically in program theory and in parallelism se-
mantics. Surprisingly, only a few attempts to apply structural composition to
dynamical systems were proposed before [290, 244]. Here, the compositional
approach holds for operations such as inversion, restrictions, intersection, free
product but not for the other operators like union and connected product.

In §3.3.1, we analyzed set-transformers of composed relation (e.g. see
Prop. 3.30). Equivalent results on predicate-transformers and multi-valued
functions can be found in [245, 246].

In §3.3.2, the point-level dynamics of composed systems was studied (see
Table 3.1). Similar results can be found in trace-based semantics of sequential
and parallel programs and processes (e.g. [151, 79, 89]).

Here, we discuss related notions and results about composition opera-
tors, nondeterminism and probabilities, and fixpoint operators as composi-
tion means.

3.5.1 Composition Operators

The compositional idea is present in many works in computer science [94,
69, 329, 179, 299, 1, 67]. Our operators are inspired from different sources:
logic, relation and graph theory, program theory, models of parallelism, and
classical algebra [91, 245, 246, 53, 277].

In particular, domain and range restriction are sometimes called left and
right restriction [245], sequential composition is called composition or multi-
plication [277], union is called sum [290] and used as composition means in
[328, 159, 140, 325]. Free product is called Cartesian product, and the con-
nected product is close to the relational notion of natural join [277, 53]. Our
connected product is original in the sense we express the structure of cellu-
lar automata, neural networks, and other distributed systems in a uniform
abstract way. Moreover, it can be particularized to well-known operators like
synchronization products [19, 288].

Some models of concurrency, like transition systems for instance, include
composition operators [19, 151, 222]. They serve as descriptive or algebraic
elements for the study of complex systems built from simple ones.

The set of operators presented above is not minimum. Our goal is to have
simple notations and simple concepts, which is not always possible when too
few operators are defined. We try not to tend to the opposite extreme where
too many operators give unclear frameworks.

Thanks to the operators we have presented and the iteration schemes
we use, we are able to model synchronous (products) and asynchronous
(union and nondeterminism, see §3.5.2) parallelism. Iterations are clocked

78 3. Dynamics of Composed Relations

but “silent” transitions can be added (identity relation). Thus, asynchronous
evolution is also permitted. Different synchronization of processes can be
expressed using our connected product, and specific projections.

3.5.2 Nondeterminism and Probabilities Revisited

This section further discusses nondeterminism and probabilities (see §2.5.4).
Along the same line, it can be useful to introduce a choice, probabilistic or
nondeterministic, between several components of a union. Notice that in this
case, the choice is made globally, i.e. on the component, and not locally, i.e.
not on the image by a component. This allows us to propose several variants
of the union presented before (see Def. 3.15):

– a nondeterministic union, f ∪N g(x) is equal to

f(x) if x ∈ Dom(f)\Dom(g)
g(x) if x ∈ Dom(g)\Dom(f)

∅ if x �∈ Dom(f) ∪ Dom(g)
(!({f, g}))(x) if x ∈ Dom(f) ∩ Dom(g);

Evolutions based on this multi-valued function are between θ(X, f ∪g) and
ξ(X, f∪g) because they sometimes take a part of the full answer (last line),
but all nondeterministic evolutions of f ∪ g are present in θ(X, f ∪N g).

– a fair nondeterministic union, based on the same definition as the previous
one, but adding an assumption of fairness over all infinite histories of the
system, i.e. no component can be forgotten forever;
In this case, the complete dynamics is modified because all infinite sequen-
tial compositions terminating with an infinite composition of f or g must
be removed (provided that f and g are not equal):

θ(X, f ∪F g) = θ(X, f ∪ g)\ ∪n ((Xn × θ(X, f)) ∪ (Xn × θ(X, g))).

The dynamics of this fair nondeterministic union is called “pseudo-periodic
chaotic iteration” in [274].

– a probabilistic union, based on a vector p = (pi)i of probabilities, i.e.
∀i, pi ≥ 0 and

∑

i pi = 1, f ∪P :p g(x) is equal to

f(x) if x ∈ Dom(f)\Dom(g)
g(x) if x ∈ Dom(g)\Dom(f)

∅ if x �∈ Dom(f) ∪ Dom(g)
p1 : f(x) if x ∈ Dom(f) ∩ Dom(g)
p2 : g(x)

which means that when both branches are allowed, f is chosen with prob-
ability p1, and g with probability p2.

3.5 Discussion 79

Theoretically, these operators are not very different from the union but
their use can speed up iterations from a simulation point of view.

The “wholistic” interpretation of these variants of union in terms of set-
transformers are all equivalent to the original one: ∀A ⊆ X ,

(f ∪N g)(A) = (f ∪F g)(A) = (f ∪P :p g)(A) = (f ∪ g)(A)

but the dynamics can be modified, as we have seen it in case of fairness.
Of course, we wonder about the meaning of having a deterministic set-

transformer evolution whereas particular evolutions are based on probabilities
for example. In fact, instead of working with sets, where inclusion is binary
(a ∈ A or a �∈ A), a first generalization consists in adding weights to states
(e.g. w(a,A) = 0.145), thereby expressing a degree of inclusion. This leads to
measures. A second generalization consists in generating measures at random,
on top of probability densities.

These two generalizations are explored in fractal theory [160]. The first
one has also been introduced in program semantics, by extension of predicate-
transformers to probabilistic program executions [234]. It could be interesting
to introduce them at the level of our set-transformers.

3.5.3 Fixpoint Operator and Composition

We have introduced iteration as external operation on relations, which are
potentially composed objects. However, in §3.4.4, we have added a possibility
of defining relations as fixpoint solutions of functional equations, using S and
G , as proposed in [245] for relations expressing the semantics of programs.

For instance, infinite iteration can be seen as infinite sequential composi-
tion, which in turn can be seen as the greatest fixpoint solution of a specific
functional equation. Thus, f being a relation, infinite composition fω can be
seen as a composition operator. Then, we can mix it with the other operators
we have defined in this chapter. For instance, an expression like

(fω ∪ (g; hω))ω

can be meaningful, even if it takes a long time before reaching a final state.
An interesting extension of our framework would be the integration of fix-

points of functional equations as composition operators. In short, the ques-
tions are: How do set-transformers and point-level dynamics behave w.r.t.
fixpoint operators S and G ? How are they composed with other composition
operators?

4. Abstract Observation of Dynamics

In Chap(s). 2 and 3, we defined composed relational dynamical systems, and
we presented two equivalent ways to look at the evolution of systems: a point-
level nondeterministic dynamics, and a set-level deterministic dynamics. In
this chapter, we introduce the observation of dynamical systems, and their
abstraction.

The fully precise observation of evolutions of dynamical systems is not
always possible: infinite precision is beyond human capability, and a coarse-
grained observation of evolution states is often necessary or simply more
realistic.

Trajectories are effective sequences of states. In the observation of sys-
tems, we focus on transitions between states, which leads to the notion of
trace. Set-transformers and nondeterministic dynamics can be parametrized
by observed evolutions of systems.

Effective and observed evolutions of dynamical systems can be abstracted,
viz. simplified: states or groups of states are replaced by abstract states, and
the concrete dynamical system is replaced by an abstract one. Under some
conditions, some qualitative properties on the dynamics, e.g. like invariance
and reachability, can be proved at the abstract level and remain valid at the
concrete level.

This short chapter is organized as follows: we first introduce observation
traces in §4.1, and traced-based evolutions in §4.2; we particularize observa-
tions to symbolic traces in §4.3; abstraction is presented in §4.4, and we show
in §4.5 that qualitative dynamical properties can be preserved by abstraction;
in §4.6, we consider observation as an abstraction homomorphism; finally, we
close the chapter in §4.7 with a discussion.

4.1 Observation of Systems

The dynamics of a system can be defined by its set of possible trajectories
(see Def. 2.9). A trajectory is an ordered sequence of states visited during
a particular evolution of the system. A dual view of trajectories consists in
looking at transitions between states. The observation of such a transition
sequence is a trace.

F. Geurts: Abstract Compositional Analysis of Iterated Relations, LNCS 1426, pp. 83-94, 1998.
 Springer-Verlag Berlin Heidelberg 1998

84 4. Abstract Observation of Dynamics

Let us introduce observation functions: they establish a correspondence
between transitions states and labels. When a fully precise observation of
transitions is possible, the correspondence is bijective; in general, it is surjec-
tive.

Definition 4.1 (Observation function). An observation function of a
RDS (X, f) is a surjective function V : X × X �→ X , totally defined from
state transitions of f to a compact metric space X .

Remark 4.2. – The function must be total on f but not necessarily on all
of X ×X .

– The compact metric space X is called label space because its elements label
state transitions.

Any admissible state transition of f is associated with a label given by
the observation function.

Definition 4.3 (Observed transition). Given a RDS (X, f) and an ob-
servation function V : X × X �→ X , an observed transition of f is a label
e ∈ X such that ∃x1, x2 ∈ X,V(x1, x2) = e.

Definition 4.4 (Trace). Given a label space X , a trace is any word on X .

Not all traces are possible observations of a given dynamical system. An
observed traced is an admissible sequence of label transitions.

Definition 4.5 (Observed trace). Given a RDS (X, f) and an observa-
tion function V : X ×X �→ X , a trace of f is a sequence σ ∈ X∞ such that
∃s ∈ θ(X, f), ∀n,V(sn, sn+1) = σn.

Notation 4.6. For simplicity, we extend the observation function from state
transitions to trajectories. Thus, in the previous definition, V(s) = σ.

Remark 4.7. An “interesting” observation function is a trade-off: on one
hand, full precision is often difficult to get; on the other hand, the coarse-
graining must be sufficiently precise to be useful, which means that a large
amount of traces must be observable. This will be discussed later on in this
chapter, and in Chap. 5, where infinite traces will be related to specific in-
variant states through fullness and atomicity properties.

In general, we can define a set containing all observed traces.

Definition 4.8 (Trace language). Given a RDS (X, f) and an observation
function V : X ×X �→ X , the corresponding trace language Lt(X, f,X ,V) is
the set of all observed traces.

Remark 4.9. In the following, we will sometimes need bidirectional traces
and corresponding trace languages; these can be easily defined from Def. 2.8
and Rem. 2.11. However, for simplicty, we restrict the presentation of this
chapter to unidirectional traces.

4.2 Trace-Based Dynamics 85

4.2 Trace-Based Dynamics

Given an observation function of the RDS (X, f), both set-level and point-
level dynamics can be related to particular transitions and traces. In order
to do that, f must first be parametrized by transitions.

Definition 4.10 (Transition-parametrized set-transformer). Let
(X, f) be a RDS, and V : X × X �→ X an observation function. Any
transition e ∈ X induces a parametrized set-transformer

fe = {(x, y) ∈ f | V(x, y) = e}.

The following proposition is interesting in that it allows to decompose f
into transition-parametrized components.

Proposition 4.11. Let (X, f) be a RDS, and V : X×X �→ X an observation
function. Then,

f = ∪e∈X fe.

Proof. Since V is total on f and surjective onto X , we have

f = {(x, y) ∈ f | ∃e ∈ X ,V(x, y) = e}.

Now, set-transformers can be parametrized by traces.

Definition 4.12 (Trace-parametrized set-transformer). Let (X, f) be
a RDS, and V : X × X �→ X an observation function. Any trace σ ∈ X∞
induces a parametrized set-transformer fσ: ∀e ∈ X ,

fε = IX

feσ = fe; fσ
fσe = fσ; fe.

Notation 4.13 (Representation of histories). In case of an inverse re-
lation f−1, eσ represents a past history. Then, e is close to present and σ
describes the subsequent backward evolution.

Every nonempty trace σ on X , finite of infinite, will always be represented
from left to right. However, sometimes, it will be useful to consider inverse
histories, in which case we will use a right-juxtaposed comma to denote the
backward representation. Thus, the following notations will be useful: ∀σ, τ ∈
X∞,

σ = σ0σ1 · · ·
, σ = σ0σ1 · · ·
σ, = · · ·σ1σ0

σ, τ = · · ·σ1σ0, τ0τ1 · · ·

86 4. Abstract Observation of Dynamics

The comma indicates where the trace starts. If both σ and τ are infinite
traces, then (σ, τ) is a bi-infinite trace.

Finally, the point-level dynamics can also be parametrized by traces.

Definition 4.14 (Trace-parametrized point-level dynamics). Let
(X, f) be a RDS, and V : X × X �→ X an observation function. Then,
∀A ⊆ X , and ∀σ ∈ XN,

θσ(A, f) = {s ∈ XN | (s0 ∈ A) ∧ (∀n, (sn, sn+1) ∈ fσn)}.

Of course, the full dynamics can be decomposed in the same way as the
complete set-transformer.

Proposition 4.15. Let (X, f) be a RDS, and V : X×X �→ X an observation
function. Then, ∀A ⊆ X,

θ(A, f) = ∪σ∈XNθσ(A, f).

Proof.

s ∈ θ(A, f)
≡ (s0 ∈ A) ∧ ∀n, (sn, sn+1) ∈ f
≡ (s0 ∈ A) ∧ ∀n, ∃σn, (sn, sn+1) ∈ fσn

≡ (s0 ∈ A) ∧ ∃σ, ∀n, (sn, sn+1) ∈ fσn

≡ ∃σ, s ∈ θσ(A, f).

It is also clear that using the observation function, all sequences of a
trace-parametrized point-level dynamics are mapped on this trace.

Proposition 4.16. If (X, f) is a RDS observed through the V : X×X �→ X ,
and A ⊆ X, then

∀s ∈ θw(A, f),V(s) = w.

Proof. By construction of V and Def. 4.14.

4.3 Symbolic Observation

In §4.1, we started with the introduction of the notion of observation. In
the rest of this monograph, we will consider coarse-grained observations of
systems, where transitions of a system are denoted by symbols of a finite
alphabet.

We want to have a symbolic description of our relational dynamical system
in order to be able to follow its evolution as

4.3 Symbolic Observation 87

– it visits particular regions of the space, a region being a part of its domain,
of its range, or any combination domain-range;

– it chooses specific transitions between states.

The first view generalizes symbolic dynamics. The second one is more typical
in the study of transition systems and automata, in which transitions and
codomains are as important as domains.

If we cover the relation f ⊆ X ×X by a family of sets of X ×X , we can
associate symbols to these sets, and relate them to either subspaces or subsys-
tems. The first choice implies to keep track of the subspaces that are visited
along the evolution. The second choice implies to record the subsystems that
are activated during the same evolution.

The two perspectives are implemented using the same technical notion of
covering, applied to the space where the relation is defined.

Definition 4.17 (Covering). Let (X, f) be a RDS. A covering α of f is a
finite set of subsets Ai of X×X . To each set is associated a symbol out of an
alphabet Σ, which allows to write α = {Ai|i ∈ Σ}. The sets Ai must cover
f , viz. f ⊆ ∪iAi.

Remark 4.18. – For them to be useful, the alphabet and the covering
should contain at least two elements.

– In Def. 4.17, there is no assumption of disjointness between the sets of
a covering: they could overlap each other. Thus, for each (x, y) ∈ f , two
situations could exist: there is a unique symbol i ∈ Σ such that (x, y) ∈ Ai;
or, there is a unique set I ∈ P(Σ) such that ∀j ∈ I, (x, y) ∈ Aj . In the
second case, we associate a unique symbol to each element of P(Σ), which
permits us to treat symbols and sets of symbols in a same way. Since Σ
is finite, its power set is also finite. Working at the symbolic set-level is
equivalent to transforming the covering into a partition (covering where
sets are mutually disjoint). In the following, we will always assume that
the correspondence between state pairs and symbols is functional.

– Note that the subsets Ai used to define a covering are nothing but relations
defined on X .

In the following, we will use some extra notations for particular coverings,
using our standard notations.

Definition 4.19 (Inverse and restricted coverings). If α is a covering
associated with the alphabet Σ, the inverse covering, the domain-restricted
covering and the range-restricted covering are respectively given by

α−1 = {Ai
−1|Ai ∈ α},

(B → α) = {(B → Ai)|Ai ∈ α},
(α← B) = {(Ai ← B)|Ai ∈ α}.

These three coverings are also associated with Σ.

88 4. Abstract Observation of Dynamics

Finally, using the covering defined on a system, we can parametrize our
set-transformers explicitly with symbols, which corresponds to the part of
space visited, or to the activation of a specific transition. Let (X, f) be a RDS,
observed on covering α = {Aj |j ∈ Σ}. Symbol j ∈ Σ represents a possible
transition. The set-transformer f can be parametrized by this transition:

fj(A) = (f ∩Aj)(A)

where Aj is interpreted as a relation. If s ⊆ Σ is a set of possible transitions,
we have:

fs(A) = (f ∩ (∪j∈sAj))(A).

Trace-parametrized set-transformers and point-level dynamics are easily
adapted to this formalism, following §4.2.

4.4 Abstraction of Systems

The observation of systems presented in §4.1 can range from full precision to
total absence of information (e.g. constant observation function). Abstract,
viz. simplified, observations of the evolutions of a given dynamical system
can be preferred to their concrete or actual description, when

– useless details of the dynamics can be omitted;
– a fully precise computations is not possible, due to lack of appropriate

computational or analytical tools;
– a simplified view of the system and its evolution is needed.

Intuitively, a dynamical system (Y, g) abstracts another system (X, f)
when the trajectories of g represent simplified trajectories of f . Of course,
the related observations can also be abstracted.

Definition 4.20 (Abstraction function). An abstraction function be-
tween two spaces X and Y is a total surjective function Z : X �→ Y .

Definition 4.21 (Abstraction homomorphism). The abstraction func-
tion Z : X �→ Y is an abstraction homomorphism between the RDS (X, f)
and (Y, g) iff Z(θ(X, f)) = θ(Y, g). We denote this homomorphism by f b g.

Remark 4.22. – The condition Z(θ(X, f)) = θ(Y, g) entails that the fol-
lowing diagram commutes:

X X

Y Y.

f

g

Z Z

4.5 Qualitative Abstract Verification 89

– If (X, f) and (Y, g) are respectively observed through the observation func-
tions V : X ×X �→ X and W : Y × Y �→ Y, the following diagram must
also commute:

X ×X X

Y × Y Y.

V

W

Z Z

– Both actual and observation diagrams are summarized by the following
one:

X X

Y Y.

f

g

Z Z
V
Z

W

4.5 Qualitative Abstract Verification

An abstraction homomorphism Z between two systems f and g such that
f b g permits to verify some dynamical properties. The aim of this section is
to show that abstraction can help in verifying important families of properties
such as invariance and reachability, i.e. finite-time attraction. We just sketch
the main ideas informally; more details on invariance and attraction will be
given in Chap. 5.

We work with the set of trajectories of a RDS (X, f) starting from A,
θ(A, f). For example, here are two basic definitions.

Definition 4.23 (Invariance). Given a set P ∈ X and a set of state se-
quences S, an invariance property of f is a predicate

A : P(X)× P(XN) �→ B

s.t. A (P, S) ≡ ∀s ∈ S, ∀n, sn ∈ P

where B denotes the set of Boolean values {t, f}.

Definition 4.24 (Reachability). A reachability property of f is a predi-
cate

E : P(X)× P(XN) �→ B

s.t. E(P, S) ≡ ∀s ∈ S, ∃n, sn ∈ P
.

The only difference between these two properties, where A stands for
“always” and E for “eventually”, is the logical quantifier: universal in the
first case, existential in the second one [15, 190]. Based on this, the two
following equivalences hold [288].

90 4. Abstract Observation of Dynamics

Proposition 4.25 (Homomorphic verification). Let Z : X �→ Y be an
abstraction homomorphism between two RDS, (X, f) and (Y, g). If P ∈ P(X),
Q ∈ P(Y), and P = Z−1(Q), then

A (P, θ(X, f)) ≡ A (Q, θ(Y, g))
E(P, θ(X, f)) ≡ E(Q, θ(Y, g)).

Proof. We prove the invariance property.

⇒

Let us choose t ∈ θ(Y, g)
* Z(θ(X, f)) = θ(Y, g)

⇒ ∃s ∈ θ(X, f),Z(s) = t
* A (P, θ(X, f))

⇒ ∀n, sn ∈ P
⇒ ∀n,Z(sn) ∈ Z(P)

* P = Z−1(Q)⇒ Q = Z(P)
⇒ ∀n, tn ∈ Q.

⇐

Let us choose s ∈ θ(X, f)
* Z(θ(X, f)) = θ(Y, g)

⇒ ∃t ∈ θ(Y, g),Z(s) = t
* A (Q, θ(Y, g))

⇒ ∀n, tn ∈ Q
* monotonicity of Z−1

⇒ ∀n,Z−1(tn) ⊆ Z−1(Q)
* P = Z−1(Q) and tn = Z(sn)

⇒ ∀n,Z−1(Z(sn)) ⊆ P
* Prop. 2.49

⇒ ∀n, sn ∈ P.

Proving the reachability property follows the same development, replacing
“A ” by “E”, and “∀n” by “∃n”.

We have just shown that reachability, i.e. existence, and invariance, i.e.
universality, can be preserved by homomorphism under some rather weak
assumptions. Ideally, we would like to extend this proof scheme to basically
all properties on trajectories of systems without sacrifying too much of the
simplicity of our assumptions. Results in this directions have been published

4.6 Observation as Abstraction 91

in the context of simulation of transition systems [64, 206]. In particular,
stated in our framework, it has been shown that if R and its inverse are
abstraction homomorphisms between two RDS, and R preserves a set of
primitive formulas in both directions, then R preserves the Hennessy-Milner
logic based on this set in both directions [64].

4.6 Observation as Abstraction

The observation function defined in §4.1 induces an interesting abstraction
homomorphism. Let us thus transform a concrete dynamical system (X, f)
observed through V : X ×X �→ X into an abstract homomorphic dynamical
system (Y, g).

Given an observation function, from every state transition of f , we obtain
an observed transition. Thus, the point-level nondeterministic dynamics can
be transformed into an abstract dynamics.

By definition, θ(A, f) contains sequences of the form

s0 −→ s1 −→ s2 −→ s3 −→ · · ·

where each transition belongs to f , and can thus be translated using V . We
obtain a set of traces, that we regard as new state transition sequences.

If we introduce the three sets

Y = X
S = V(θ(A, f))
AV = {t0 ∈ Y | ∃t ∈ S}

we get the abstract dynamics of f :

θ(AV , g) = S.

By construction of g, V realizes an abstraction homomorphism between
f and g.

4.7 Discussion

In this section, we present an important technique related to symbolic ob-
servations of dynamical systems: symbolic dynamics, and discuss the conse-
quences and limitations of qualitative abstract verification.

92 4. Abstract Observation of Dynamics

4.7.1 Observation and Abstraction: Related Work

Two complementary notions have been presented in this chapter, namely
observation and abstraction. Both are classical in many fields, including dy-
namical systems and program theory.

Our definition of observation function is very general: it permits both pre-
cise and coarse-grained observations of systems, as well as labeling states and
transitions. Moreover, as we briefly mentioned in §4.6, it can be considered
as an abstraction homomorphism. The fact that we map state transitions
to labels generalizes the classical state labeling used in symbolic dynamics:
we can analyze relational nondeterministic systems or unions of systems in a
same unified setting (see also §4.7.2 for more details on symbolic dynamics).

Observation is presented in [19] for transition systems, and its particular-
ization to domains of systems is well known in symbolic dynamics [139]. It is
also similar to labeling in processes algebras [151, 222]. In [127], the obser-
vation spaces of hybrid systems are related to quantum automata, and the
authors suggest to study hybrid systems in the light of quantum mechanics,
as observation is a central issue in this theory.

Abstraction homomorphisms are commonly used in representation theory
and abstract interpretation [163], automata theory [117], hybrid systems [244,
288], symbolic dynamical systems [143, 180], and semi-conjugated dynamical
systems [9].

Finally, first elements of a general theory of simulation in the context
of dynamical systems have been published in [272, 220], and interesting re-
sults on the impact of simulation and precision on the observed dynamics of
continuous cellular automata have been described in [103, 106].

4.7.2 Symbolic Dynamics vs Astract Observation

Symbolic dynamics is a method for studying dynamical systems, based on a
strong abstraction homomorphism between concrete systems and a class of
abstract symbolic dynamical systems. Let us first recall how it works, and
then compare it with the notions introduced before.
Classical Symbolic Dynamics. Given a system (X, f), its domain is parti-
tioned into a finite number of regions {Di | i ∈ Σ}. Each step of the evo-
lution is associated with a symbol corresponding to the region visited at
this step. Thus, each trajectory s produces a corresponding symbolic trace
t: sn = fn(s0) ∈ Di ⇒ tn = i. The technique is used with functions, where
the history of a state s0, i.e. the trajectory s, uniquely depends on this state.
Of course, this is no longer true when dealing with relations, and the whole
trajectory is needed to compute the corresponding symbolic trace.

To get interesting results on the function by abstract analysis, a topological
conjugacy is required: a continuous bijection Z between states and symbolic
sequences such that its inverse is also continuous (homeomorphism); an ab-
straction homomorphism with the shift dynamical system ρ or a subshift:

4.7 Discussion 93

∀x,Z(f(x)) = ρ(Z(x)). The shift is (ρ, {0, 1}Z), where ∀x ∈ {0, 1}Z, ρ(x)i =
xi+1, and a subshift (ρ,B ⊂ {0, 1}Z) is a closed ρ-invariant subset B of {0, 1}Z
[248, 34]. Then, working with the shift on a space of symbolic sequences is far
simpler than working with the original system. As an example, the number
of n-periodic sequences of ρ is 2n, which is not always immediate regarding
the underlying f .

Observation and Abstraction. This example permits to clearly separate ob-
servation from abstraction. Each state is mapped to a symbol through a
coarse-grained observation function. States are then abstracted onto traces
of symbols.

This observation is a particular case of our observation function which
assigns labels to state transitions instead of single states. Symbolic dynamics
does not involve transitions between states and codomains but only domains
of functions. Non-functional systems are not easy to observe using classical
symbolic dynamics, whereas it is natural in our framework. The following
example illustrate this: we want to observe the nondeterministic evolution of
a union of two different systems defined on the same domain. The notion of
covering permits to model this.

Example 4.26. Let f and g be two functions defined on [0, 1] by f(x) = x
4

and g(x) = x
3 . The union f ∪ g can be traced using the following covering:

Σ = {0, 1},A0 = f , A1 = g, α = {A0, A1}. Notice that choosing α = {A′0, A′1}
with A′1 = Dom(f) × Rg(f) and A′2 = Dom(g) × Rg(g) would not be very
helpful since many transitions would then belong to both sets.

Relating traces to states is not always possible when dealing with rela-
tions. In this case, symbolic sequences must be associated with trajectories
that are not necessarily deterministic. Given a trajectory, the shift will verify
the second condition (i.e. the abstraction homomorphism); the first one (i.e.
the homeomorphism state-trace) does not hold anymore.

Related Notions. Other notions can be related to symbolic dynamics [88, 139,
202, 326]: Markov partitions, Bernoulli shifts (with probabilities assigned to
transitions) [250], traces in parallelism semantics [89, 216, 309], etc.

4.7.3 Qualitative Abstract Verification

In §4.5, we have shown that some dynamical properties can be studied at an
abstract level and their results are still valid at the concrete level.

What are the consequences? Studying the abstract system instead of the
actual one still provides some qualitative information on the observations we
can made of the system. However, the results do not always hold about the
system itself: the assumptions of Def. 4.21 and Prop. 4.25 are rather strong,
but weaker assumptions would not lead to the same conclusions. In the fol-
lowing, and particularly in Chap. 5, we will focus on invariance and attraction

94 4. Abstract Observation of Dynamics

properties of dynamical systems, based on observable symbolic evolutions. We
will have to keep in mind that the conclusions are not always transferable as
such to the actual underlying systems, although the abstraction homomor-
phism permits to establish interesting qualitative relationships between state
sequences (instead of states) and symbol sequences.

Is this a severe limitation? From the physical point of view, this limitation
seems quite natural because our observational capabilities are themselves
limited to our own perception of reality. Dealing with abstract systems is
thus closer to what we can actually achieve.

5. Invariance, Attraction, Complexity

On the basis of the mathematical framework (Chap(s). 2 and 3), we intro-
duced abstract observation means (Chap. 4) that preserve qualitative dy-
namical properties, e.g. invariance and reachability (see §4.5). This chapter
focuses on these two properties, and relates them to dynamical complexity
of systems.

Naively speaking, dynamical complexity can be approached by the follow-
ing questions: How do states evolve? How do they behave? Where do they
go? What do they do when they get there? Complexity is opposed to “poor”
behaviors like fixpoints or cycles, even though 2100-periodic cycles could be
rather complicated to study!

Finite trajectories are generally simple and easily characterized, compared
to infinite evolutions from which complexity seems to emerge. Invariants are
sets of states that have infinite internal histories. Their structure represents
trajectories between inner states; it organizes and, thus, strongly influences
the resulting dynamics. Attraction establishes relations between initial and
final or asymptotic states of infinite histories. Most of the time, attraction
and invariance are combined as the attractors are themselves invariant sets,
and one speaks about stabilization [109, 91, 326, 9, 123].

Devaney isolated three essential features of chaotic systems on their in-
variants: unpredictability (Sensitivity to Initial Conditions), which means
that small perturbations of initial conditions induce dramatically divergent
histories, space-indecomposability (Topological Transitivity), expressing how
the evolutions of some states spread over the whole space, and regularity
(Density of Periodic Points), guaranteeing the existence of a periodic point
arbitrarily close to any other state of the invariant [88]. In [181], Knudsen
proposed another definition of chaos based on the conjunction of the first two
properties only.

Systems are rarely observed with full precision, and a coarse-grained ob-
servation is often preferred, which can also influence their analysis: infinite
traces are related to invariant states, and trace languages reflect invariant
structures [248, 88, 285]. A useful observation level must be such that suffi-
ciently many traces are observable. On the other hand, if the precision is too
low, interesting patterns of the dynamics remain hidden; thus, the observa-
tion level must reduce the number of states related to particular traces.

F. Geurts: Abstract Compositional Analysis of Iterated Relations, LNCS 1426, pp. 95-131, 1998.
 Springer-Verlag Berlin Heidelberg 1998

96 5. Invariance, Attraction, Complexity

When these complementary conditions, namely fullness and atomicity, are
both satisfied, all ingredients of complexity are present in the dynamics: the
system is Knudsen chaotic on its invariant.

The chapter is organized as follows: in §§5.1, 5.2, 5.3, we respectively de-
fine invariants, analyze the impact of their structure on dynamical complexity,
and establish criteria for their structural properties; various attraction prop-
erties are defined in §5.4, and a taxonomy is proposed; in §5.5, we introduce
Lyapunov-like criteria to prove attraction properties; in §5.6, we combine in-
variance and attraction; finally, we close the chapter in §5.7 with a discussion.
Related notions are presented in this final discussion; hence, only a few useful
references are given in §§5.1–5.6.

5.1 Invariance

The usual definition of invariant is a set of points in which the system must
stay when iterated forward indefinitely [9, 305, 326]. In temporal logic and
program semantics, a less restrictive definition is also used: a set of points in
which the system can stay when iterated forward (or backward) indefinitely
[99, 93, 98, 210, 19].

In this section, both potential and necessary invariants are investigated.
We refine the qualitative invariance property introduced in §4.5 to propose
different definitions of necessary and potential invariants: forward and back-
ward, global (viz. two-way) and strong (viz. indefinitely two-way) invariants.
Extreme invariants are computed by successive iterations, as solutions of fix-
point equations [306, 70, 197, 93].

5.1.1 Forward and Backward Invariance

Let us start from the qualitative property presented in §4.5 (see Def. 4.23).
Let S be a set of sequences defined on X , and J be a subset of X . Then,
invariance of J is expressed as follows:

A (J, S) ≡ ∀s ∈ S, ∀n, sn ∈ J.

The property J is invariant on a set of histories S iff every state of every
particular history is in J .

The set S of histories can be θ(X, f) for any RDS (X, f), or any set of
histories starting from states of the invariant J itself. From this, we arrive at
two notions of invariance:

– J is a necessary invariant iff

∀x ∈ J, ∀s ∈ θ(x, f), A (J, s);

5.1 Invariance 97

– J is a potential invariant iff

∀x ∈ J, ∃s ∈ θ(x, f), A (J, s).

The following propositions give equivalent properties, that we will use as
definitions for these differents types of invariants (see also Fig. 5.1):

J

f

f(J)

f−1(J)

f

J

Fig. 5.1. Necessary invariant (left): from J , the images by f must (arrow) be in
f(J). Potential invariant (right): from f−1(J), the images by f can (dotted arrow)
be in J .

– necessary invariant: f(J) ⊆ J , for f(J) is the set of points reachable in one
step from J ;

– potential invariant: J ⊆ f−1(J), for f−1(J) is the set of points from which
it is possible to reach J in one step.

Proposition 5.1 (Necessary invariance). Let (X, f) be a RDS and J ⊆
X. Then,

f(J) ⊆ J ⇔ ∀x ∈ J, ∀s ∈ θ(x, f), A (J, s).
Proof. ⇒Let us consider x ∈ J and s ∈ θ(x, f). By induction on n, we prove
that ∀n, sn ∈ J .
Basic case: s0 = x ∈ J .
Inductive case: as s ∈ θ(x, f), by induction and f(J) ⊆ J , we have sn+1 ∈
f(sn) ⊆ f(J) ⊆ J .

⇐Let y be in f(J). There exists x ∈ J, y ∈ f(x). As ∀s ∈ θ(x, f), A (J, s), we
have y ∈ J .

Remark 5.2. Either all histories of f are infinite or finite histories can be
completed by the undefined state ♥. Thus, as y ∈ f(J), there is always a
state x ∈ J and a trajectory s ∈ θ(x, f) such that s0 = x and s1 = y. If
f(y) is undefined and leads to a finite trajectory, this history is followed by
an infinite sequence ♥ω.

Proposition 5.3 (Potential invariance). Let (X, f) be a RDS and J ⊆
X. Then,

J ⊆ f−1(J) ⇔ ∀x ∈ J, ∃s ∈ θ(x, f), A (J, s).

98 5. Invariance, Attraction, Complexity

Proof. ⇒Let us consider x ∈ J . We construct a sequence s ∈ θ(x, f), A (J, s)
by induction on n.
Basic case: s0 = x ∈ J .
Inductive case: by induction, we have sn ∈ J , and by J ⊆ f−1(J), sn ∈
f−1(J); thus, ∃sn+1 ∈ J, (sn, sn+1) ∈ f .

⇐Let x be in J . By hypothesis, ∃s ∈ θ(x, f), A (J, s). Thus, ∃s1 ∈ J, (x, s1) ∈
f and x ∈ f−1(J).

The following definition presents four cases mixing forward/backward evo-
lutions with potential/necessary invariance.

Definition 5.4 (Invariants). Let J be a subset ofX , and (X, f) be a RDS.
Then, J is

– a necessary forward invariant iff

f(J) ⊆ J ;

– a necessary backward invariant iff

f−1(J) ⊆ J ;

– a potential forward invariant iff

J ⊆ f−1(J);

– a potential backward invariant iff

J ⊆ f(J).

Remark 5.5. Some sets trivially verify these definitions: for instance, the
empty set verifies all of them, and the whole space X the first two ones.

If f is a monotonic set-transformer, which is always true for RDS (see
Prop. 2.35), it has been shown that the extreme solutions of these inequalities
can be obtained by successive iterations, as fixpoints of equivalent equations
[306, 70, 71, 93]. To find the least necessary invariant greater than A, we have
to compute an increasing sequence from A until it reaches a stationary point.
To find the greatest potential invariant smaller than B, a decreasing sequence
from B has to be computed until it reaches its stationary state. The set A
cannot be the bottom element of the lattice to produce a nontrivial invariant,
whereas B can be the top element, viz. X . The following proposition makes
use of transfinite iterations (see Def. 2.76); its proof is a simple application
of Theorems 2.44, 2.46, and 2.72.

Proposition 5.6 (Extreme invariants). Let (X, f) be a dynamical sys-
tem. The least necessary forward (backward) invariant greater than A, J+

f (A)

5.1 Invariance 99

(J−f (A)), and the greatest potential forward (backward) invariant smaller than
B, Jf

+(B) (Jf
−(B)), are obtained as follows:

LNFI : A ⊆ f(A) ⇒ J+
f (A) = Sf(A) = ∪if

i(A)
LNBI: A ⊆ f−1(A) ⇒ J−f (A) = Sf−1(A) = ∪if

−i(A)
GPFI : f−1(B) ⊆ B ⇒ Jf

+(B) = G f−1 (B) = ∩if
−i(B)

GPBI : f(B) ⊆ B ⇒ Jf
−(B) = G f(B) = ∩if

i(B).

Notation 5.7. – We use the upper-index (in J±) for the necessary cases,
and the lower-index (in J±) for the potential cases, because “necessary” is
stronger (or higher) than “potential”.

– In general, the complementary index (f) will be omitted when clear from
the context.

– The arguments A and B are left implicit if they stand for the whole space
X .

Forward and backward invariants can be mixed, as well as necessary or
potential ones. In the rest of this chapter, we will concentrate on poten-
tial invariants because they better encompass the relational nondeterminism.
Necessary variants can be adapted easily.

The next proposition refines the nature of invariants in the context of
RDS.

Proposition 5.8. Let (X, f) be a total nonempty RDS, then Jf
−(X) and

Jf
+(X) are nonempty compact sets.

Proof. Let us prove that J− is a nonempty compact set. The symmetric case
of J+ is based on the fact that f−1 is closed iff f is closed (Prop. 2.30).

– J− is compact: since X is compact and f is closed, the image of any closed
subset A ⊆ X is closed (Prop. 2.30), and ∀n, fn(X) is closed; as arbitrary
intersections of closed sets are closed, ∩nf

n(X) is closed in X , whence
compact.

– J− is nonempty:
– f is total (Dom(f) = X) and closed; thus, the image of any nonempty
compact set is nonempty, and ∀n, fn(X) = ∅;

– consequently, ∀n, ∃xn ∈ fn(X); since X is compact, (xn)n accumulates
in x ∈ X ;

– this point x is such that ∀n, x ∈ fn(X): otherwise, ∃k, x ∈ fk(X) and
∃Nx, Nx ∩ fk(X) = ∅ as fk(X) is closed; by monotonicity of f , ∀j ≥
k, f j(X) = ∅, which contradicts the accumulation in x. Hence, x ∈ J−
which is not empty.

100 5. Invariance, Attraction, Complexity

5.1.2 Global Invariance

The definitions introduced above are not symmetric in time. Here, we intro-
duce global, i.e. two-way, invariants, which allows to consider systems and
their inverses without any distinction.

Each state of a global invariant J has at least one infinite forward tra-
jectory in J , and at least one infinite backward trajectory in J . Once the
evolution direction is chosen, no change can happen.

Sometimes, to study specific systems, global invariants are used with-
out really justifying this. Actually, it becomes useful when expanding and
contracting behaviors are combined in the same time direction (e.g. see the
analysis of the Smale horseshoe map in [326, §4.1, pp. 420–437] and §7.2).

The next definition generalizes this view: it suffices to consider all states
that forward and backward invariants have in common.

Definition 5.9 (Global invariants). Let (X, f) be a RDS. The least nec-
essary global invariant greater than A, Jf (A), and the greatest potential
global invariant smaller than B, Jf (B) are obtained as follows:

LNGI: A ⊆ f(A) ∩ f−1(A) ⇒ Jf (A) = J−f (A) ∩ J+
f (A)

GPGI : f(B) ∪ f−1(B) ⊆ B ⇒ Jf (B) = Jf
−(B) ∩ J

f
+(B).

Remark 5.10. – These global invariants can be empty but they are always
compact sets in case of RDS.

– If the symmetry is not useful in some particular case, the backward invari-
ant can reduce to the whole space, which does not bring any modification
in the intersection of the global invariant.

5.1.3 Strong Invariance

Let us now introduce a stronger type of invariant and compare it with the
previous notion of global invariance.

Definition 5.11 (Strong invariants). Let (X, f) be a RDS. The least nec-
essary strong invariant greater than A, Jf(A), and the greatest potential
strong invariant smaller than B, Jf(B), are respectively the least solution,
greater than A, and the greatest solution, smaller than B, of of the fixpoint
equations

LNSI: f(K) ∪ f−1(K) ⊆ K
GPSI : K ⊆ f(K) ∩ f−1(K).

provided A ⊆ f(A) ∪ f−1(A) and f(B) ∩ f−1(B) ⊆ B.

Notation 5.12. In the rest of this section, J will denote the greatest poten-
tial strong invariant smaller than X , i.e. Jf(X).

5.1 Invariance 101

This notion is stronger than Def. 5.9 because it requires that it is always
possible to iterate forward and backward from any state of J. This entails
possibly “foolish” histories when the system combines forward and backward
steps, whereas J only contains states that are potentially invariant under
infinite forward or backward histories, without any change of time direction.

Proposition 5.13. For any RDS (X, f), the greatest potential strong invari-
ant is contained in the greatest potential global invariant:

J⊆ J.

Proof. By definition, the strong invariant is such that J ⊆ f(J) ∩ f−1(J).
Thus, J⊆ f(J) and J⊆ J− since J− is the greatest such set. Symmetrically,
J⊆ J+, whence the result.

The following two lemmas guarantee that the strong invariant as defined
by Def. 5.11 is a compact set: the underlying relation of its iterated set-
transformer is closed and monotonic.

Lemma 5.14. Let (X, f) be a RDS, then the set-transformer F defined as
follows:

∀A ∈ X,F (A) = f(A) ∩ f−1(A)

is a closed relation.

Proof. Let (xn, yn)n be a sequence in F , converging to (x, y). Let us prove
that this pair belongs to F .

For all n, we have (xn, yn) ∈ F and (xn, yn) ∈ f . Since f is closed,
(x, y) ∈ f . Symmetrically, (x, y) ∈ f−1. Hence, (x, y) ∈ F .

Lemma 5.15. Let (X, f) be a RDS, then the set-transformer F defined as
follows:

∀A ∈ X,F (A) = f(A) ∩ f−1(A)

is monotonic.

Proof. Let us assume A ⊆ B ⊆ X , and pick x ∈ F (A). Then,

x ∈ f−1(A) x ∈ f(A)
⇒ ∃y ∈ A, x ∈ f−1(y) ⇒ ∃z ∈ A, x ∈ f(z)
⇒ ∃y ∈ B, x ∈ f−1(y) ⇒ ∃z ∈ B, x ∈ f(z)
⇒ x ∈ f−1(B) ⇒ x ∈ f(B)

and x ∈ F (B).

Proposition 5.16. Let (X, f) be a RDS, then J is a compact set.

Proof. Follows from Lemmas 5.14 and 5.15, as in Prop. 5.8.

Remark 5.17. The emptiness of invariants is not at all excluded.

102 5. Invariance, Attraction, Complexity

Example 5.18. Let us consider f = ([0, 1
2] → 2x) ∪ ([12 , 1] → 2(1 − x)). If

ε < 1
10 , then F ([

1
2 −ε,

1
2 +ε]) = [1−2ε, 1]∩([14 −

ε
2 ,

1
4 +

ε
2]∪ [

3
4 −

ε
2 ,

3
4 +

ε
2]) = ∅.

Strong invariants can be equivalent to global invariants under some re-
strictions on the underlying dynamical systems.

Proposition 5.19. Let (X, f) be a RDS. If there exists a finite covering
α = {Ai} such that each transition-parametrized set-transformer fi is simple
and injective, then the strong invariant J is equivalent to the global invariant
J = J− ∩ J+.
Proof. Let us define F (A) = f−1(A) ∩ f(A). We have to prove that
∀n, Fn(X) = f−n(X) ∩ fn(X). By induction on n, this is easy.

– The case n = 0 is straightforward.
– Assuming that the result holds for all m ≤ n, we have to prove it for n+1.

Fn+1(X)
= F (Fn(X))
= f(Fn(X)) ∩ f−1(Fn(X))

* by ind. hyp.
= f(fn(X) ∩ f−n(X)) ∩ f−1(fn(X) ∩ f−n(X))

* finite union of simple injective relations
= ∪i,jfi(f−n(X)) ∩ fi(fn(X))

∩f−1
j (f−n(X)) ∩ f−1

j (fn(X))

*

fi(fn(X)) ∩ f−1
j (f−n(X))

⊆ fi(f−n(X)) ∩ f−1
j (fn(X))

= ∪i,jfi(fn(X)) ∩ f−1
j (f−n(X))

= ∪ifi(fn(X)) ∩ ∪jf
−1
j (f−n(X))

= fn+1(X) ∩ f−(n+1)(X)

Finally, Prop. 5.19 is easily adapted to the case of finite unions of injective
relations.

Corollary 5.20. Let (X, f) be a finite union of simple injective RDS. Then,
the strong invariant J of f is equivalent to J− ∩ J+.

Proof. Direct application of Prop. 5.19, with a covering α = {fi}.

5.2 Structure of Invariants

The (dynamical) structure of an invariant is a description of all possible
trajectories between its states. It determines the complexity of the dynamics
of the system.

5.2 Structure of Invariants 103

For instance, if an invariant contains a few isolated fixpoints, the dynamics
on this invariant will be much simpler than the one resulting from a cycle of
length 2100, or from an uncountable Cantor set (Def. 2.28).

In general, it is not possible or not easy to study these trajectories with
full precision. Thus, we propose to approximate these trajectories by observed
histories, and to study the relations between invariant states and traces. Two
complementary conditions establish the natural trade-off on the observation
precision: fullness and atomicity. Sufficiently many traces must be observable,
which limits the precision level, but the observation must be fine enough to
provide useful information on the dynamics.

Below, we propose a trace-parametrization of invariants; we introduce the
definitions of fullness and atomicity; we recall well-known definitions of chaos;
finally, we show how they are related to fullness and atomicity, which prove
thus fundamental for the characterization of complex dynamical phenomena.

Fullness and atomicity are classical in ergodic theory under the names of
“exactness” and “weak generation” [248, 34, 196]. However, we follow here
the technical presentation of [286, 290].

5.2.1 Trace-Parametrized Invariants

The observation we can make of a system strongly depends on the covering
we define for it, i.e. the grain we choose for the observation. We have shown
how set-transformers can be parametrized by symbols corresponding to ob-
servation coverings (see Def. 4.12). From this, the components of an invariant
can be parametrized by traces of symbols, too.

Definition 5.21 (Trace-parametrized invariant). The invariant Jσ,τ

parametrized by the traces σ representing the past, and τ representing the
future is defined by: ∀σ, τ ∈ Σω,

Jσ,τ = Jσ, ∩ J,τ

with partial invariants defined using one-way traces:

Jσ, = fσ,(X)
J,τ = f−1

τ, (X).

Remark 5.22. – Notice the use of different notations Jσ, and J,τ for past
and future traces (see also Not. 4.13).

– A trace-parametrized invariant Jσ,τ is a set of states having a possible
past trace σ and a possible future trace τ . If these traces are infinite, the
corresponding invariant contains states that remain in J as they evolve
according to the traces.

104 5. Invariance, Attraction, Complexity

– Equivalently, partial invariants can be defined by induction: ∀i, j ∈ Σ:

Jσi, = fi(Jσ,)
J,jτ = f−1

j (J,τ)

and
Jε, = J,ε = X.

Proposition 5.23. The greatest potential global invariant is equal to the
union of all possible bi-infinite trace-parametrized invariants:

J = ∪σ,τ∈ΣωJσ,τ .

Proof.

J = ∪σ,τ∈ΣωJσ,τ

⇐ J− ∩ J+ = (∪σ∈ΣωJσ,) ∩ (∪τ∈ΣωJ,τ)
* symmetrically for the second terms

⇐ J− = ∪σ∈ΣωJσ,

* J− = ∩nf
n(X) and monotonicity of f

⇐ ∀n, fn(X) = ∪σ∈ΣnJσ,

⇐ Induction on n :
(n = 0) f0(X) = X = ∪σ∈Σ0Jσ, = Jε,

(n > 0) fn+1(X) = f(fn(X)) = f(∪σ∈ΣnJσ,)
= ∪i∈Σfi(∪σ∈ΣnJσ,) = ∪σ∈Σn+1Jσ,

5.2.2 Fullness and Atomicity

In terms of trace-parametrized invariants, it is possible to characterize the
structure of the global invariant J of a system f . The idea is to relate invariant
states to observed infinite traces passing through these states.

The first property we introduce is a condition verifying the adequacy
of the observation function used to follow trajectories inside the invariant.
Sufficiently many traces must be observable. Here, we choose a totalistic
version: we impose that all traces are observable. Thus, the trace language
Lt = ΣZ, where Σ is the alphabet of the observation covering.

Definition 5.24 (Fullness). The invariant J of f is full iff each bi-infinite
trace is realizable:

∀σ, τ ∈ Σ∞,#Jσ,τ ≥ 1.

If f is associated with a single symbol, Σ = 1, there is a unique observable
trace: · · · 111, 111 · · · This is not very useful because all states of J are related
to this unique trace, which motivates the introduction of the second property,
guaranteeing a sufficiently precise observation. Again, our definition is strong:
it imposes that at most one state corresponds to each trace.

5.2 Structure of Invariants 105

Definition 5.25 (Atomicity). The invariant J of f is atomic iff each bi-
infinite trace determines at most one point in the state space:

∀σ, τ ∈ Σ∞,#Jσ,τ ≤ 1.

Remark 5.26. If an “undefined” state ♥ is added to the state space X ,
all traces are realizable. In this case, in order to keep the above definitions
consistent and meaningful, fullness has to be adapted:

∀σ, τ ∈ Σ∞, (#Jσ,τ ≥ 1) ∧ (Jσ,τ = {♥});

and atomicity must be modified, too:

∀σ, τ ∈ Σ∞, (∃x ∈ X, Jσ,τ = {x}) ∨ (Jσ,τ = {♥}).

Example 5.27 (A fixpoint invariant). Consider the following function
whose domain is restricted to [0, 1] and whose range is restricted to [0, 2],

f1(x) = ([0, 1] → 2x← [0, 2]).

Let us compute successive iterations leading to the potential invariant J+:

f−1([0, 2]) = [0, 1]

f−2([0, 2]) = f−1([0, 1]) = [0,
1
2
]

f−3([0, 2]) = f−1([0,
1
2
]) = [0,

1
4
]

...

f−i([0, 2]) = [0,
1

2i−1
]

J+ = ∩if
−i([0, 2]) = ∩i[0,

1
2i−1

] = {0}.

In the same way, we compute J−:

f([0, 1]) = [0, 2]
f2([0, 1]) = f([0, 2]) = [0, 2]

...

f i([0, 1]) = [0, 2]
J− = ∩if

i([0, 1]) = [0, 2].

The system considered here is basic. We associate a covering containing a unique
set, i.e. α = {f1}, and the alphabet is Σ = {1}. There is only one bi-infinite
trace, viz. · · · 111, 111 · · ·, and one state in the invariant J = {0}.

106 5. Invariance, Attraction, Complexity

Let us add another expanding transition f2, also defined on [0, 1]:

f2(x) = ([0, 1] → 3x← [0, 3])
f = f1 ∪ f2.

The covering is extended to α′ = {f1, f2}. Symbols 1 and 2 are respectively
associated with the activation of transitions f1 and f2. The alphabet is Σ′ =
{1, 2}. The invariant is still the singleton {0}, but the set of traces is uncountable
({1, 2}Z): there is one constant orbit but many different traces. The invariant is
trivially full: every bi-infinite trace determines the same unique fixpoint x = 0.

Because of the time-symmetry present in our definitions, the same properties
hold for the inverse system

f−1(x) = ([0, 2] → x

2
← [0, 1]) ∪ ([0, 3] → x

3
← [0, 1]).

This example shows that working at the level of trace can entail strange
conclusions: in this case, the trace behavior seems very rich, whereas there
is a unique attracting fixpoint. However, they correspond to the observed
reality.

5.2.3 Chaos

We propose to study the structure of invariants with fullness and atomicity.
Based on symbolic observations of evolutions, we will show that they entail
important topological properties related to a widespread notion of complexity,
namely chaos, under some conditions. Thus, fullness and atomicity permit to
characterize some complex behaviors. First, let us recall Devaney’s definition
of chaos [88].

Definition 5.28 (Devaney chaos). Let (X, f) be a simple RDS defined on
a metric space (X, d). If there is a necessary forward invariant set J such that
f(J) ⊆ J , f is Devaney chaotic on J iff

– it is sensitive to initial conditions,

∃δ > 0, ∀x ∈ J, ε > 0, ∃y, n, (d(x, y) < ε)
∧ (d(fn(x), fn(y)) > δ); (SIC)

– it is topologically transitive,

∀U open, V ⊆ J, ∃k ∈ N, fk (U) ∩ V = ∅; (TT)

– periodic points are dense,

∀x ∈ J, ε > 0, ∃y, (d(x, y) < ε)
∧ (∃p > 0, fp(y) = y). (DPP)

5.2 Structure of Invariants 107

Remark 5.29. – These three properties are important as such because they
constitute basic blocks that can be found in many global characterizations
of complexity [248, 34, 196, 285]. For instance, ergodic theory shows the
same kind of notions with mixing, etc.

– TT is characterized by the existence of a dense orbit, i.e.

∃x ∈ X, ∀y ∈ X, ∀ε > 0, ∃n, d(fn(x), y) < ε.

– SIC is redundant, as proved in [26], i.e.

TT ∧ DPP ⇒ SIC

and no other pair of properties implies the third one in general [24].
– TT implies both DPP and SIC when functions are defined on intervals
[310].

In [181], it is argued that DPP is not essential to obtain or characterize
complex behaviors, whence the author proposes the following weaker defini-
tion.

Definition 5.30 (Knudsen chaos). Let (X, f) be a simple RDS defined
on a metric space (X, d). If there is a necessary forward invariant set J such
that f(J) ⊆ J , f is Knudsen chaotic on J iff both SIC and TT hold.

Corollary 5.31. Devaney chaos implies Knudsen chaos.

Usually, the way to prove SIC, TT and DPP is by finding a topological
conjugacy with a symbolic dynamical system like the full shift or a subshift
(see §4.7.2), since it is easier to prove properties for symbolic dynamical
systems than for their original counterpart, and the conjugacy preserves all
topological properties from symbolic, viz. abstract, to concrete systems. For
instance, the following proposition is proved using symbolic dynamics [326].

Proposition 5.32. If there exists a topological conjugacy between a system
on its invariant and a full shift or a subshift, both abstract, viz. symbolic, and
concrete systems have

1. a dense countable infinity of periodic points, consisting of points of all
periods (⇒ DPP);

2. an uncountable infinity of nonperiodic points;
3. a dense orbit (⇒ TT, Rem. 5.29).

Remark 5.33. We prove these properties for a general class of subshifts in
Chap. 8 (see Theorem 8.14).

Corollary 5.34. Using the assumptions of Prop. 5.32, both systems are De-
vaney chaotic on their respective invariants.

108 5. Invariance, Attraction, Complexity

5.2.4 Fullness Implies Trace Chaos

Fullness entails chaos w.r.t. traces. The following proposition rephrases the
properties of Prop. 5.32 in terms of traces instead of points.

Proposition 5.35 (Trace chaos). If the invariant of a RDS is full, and
the covering is associated with an alphabet Σ containing at least two symbols,
then the set of bi-infinite traces (σ, τ) ∈ ΣZ contains

1. a dense countable infinity of periodic traces consisting of traces of all
periods;

2. an uncountable infinity of nonperiodic traces;
3. a dense trace (contains all arbitrarily large finite traces), ⇒ TT.

Proof. Once we know that all traces are realizable, by fullness of the in-
variant, these properties are trivially verified for the language of all traces
Lt = ΣZ.

These three properties are related to traces, viz. observed trajectories,
instead of points. They are thus weaker than the three similar properties
presented in Prop. 5.32.

Proposition 5.36 (Fairness). Fullness of the invariant implies fairness of
the system.

Proof. Fairness [110] means that no component of a structured systems can
be forgotten forever. Fullness says that all traces are realizable, including the
traces where no component is omitted forever. Thus, fair traces are contained
in the structure of any full invariant.

Remark 5.37. The converse is not true in general. For this, the definition
of fullness should be generalized, by using higher-order languages of feasible
traces [72, 88, 116, 170, 322, 326, 333, 334]: subshifts, context-free, context-
sensitive, or general languages; here, we simply take the regular language
containing all bi-infinite traces.

5.2.5 Fullness and Atomicity Imply Knudsen Chaos

When both fullness and atomicity properties are verified, they entail two
properties of chaotic systems: topological transitivity and sensitivity to initial
conditions.

Topological transitivity is obtained as follows.

Proposition 5.38 (Topological transitivity). If the covering α = {Ai |
i ∈ Σ} associated with a dynamical system (X, f) is such that each fi is
injective, then fullness implies that any part of the invariant J of f can be
reached from any other part in finitely many iterations:

∀σ1, σ2, τ1, τ2 ∈ Σ∗, fτ1σ2(Jσ1,τ1) ∩ Jσ2,τ2 = ∅
Fullness and atomicity entail topological transitivity.

5.2 Structure of Invariants 109

Proof. Fullness implies that ∀σ1, σ2, τ1, τ2 ∈ Σ∗, ∃σ, τ ∈ Σω, Jσσ1,τ1σ2τ2τ =
∅. Moreover, as ∀i, fi is injective, we have fτ1σ2(Jσσ1,τ1σ2τ2τ) = fτ1σ2(Jσσ1,)∩
fτ1σ2(J,τ1σ2τ2τ). Thus,

Jσσ1,τ1σ2τ2τ ⊆ Jσ1,τ1 ⊆ J
* monotonicity and injectivity

⇒ Jσσ1τ1σ2,τ2τ ⊆ fτ1σ2(Jσ1,τ1)
* Jσσ1τ1σ2,τ2τ ⊆ Jσ2,τ2

⇒ (fτ1σ2(Jσ1,τ1)) ∩ Jσ2,τ2 = ∅.

Atomicity adds that these parts of J can be as small as desired.

The relationship between sensitive dependence on initial conditions and
fullness and atomicity is given by the following proposition.

Proposition 5.39 (Sensitivity to initial conditions). Fullness and
atomicity entail sensitive dependence on initial conditions.

Proof. Take two distinct states x and y in the invariant J . Atomicity implies
a kind of contraction: there is at most one point in every bi-infinite invariant.
Fullness guarantees that these sub-invariants are never empty. Since x = y,
there exist σ, σ′, τ, τ ′ such that x = Jσ,τ and y = Jσ′,τ ′ . These bi-infinite
traces are different and the first place where they differ gives the n we need
to make the iterations diverge.

Remark 5.40. The symmetry of the systems we work with allows us to
consider a sensitive dependence on final conditions, too.

Corollary 5.41 (Knudsen chaos). If the covering α = {Ai | i ∈ Σ} asso-
ciated with a dynamical system (X, f) is such that each fi is injective, then
fullness and atomicity of the global invariant Jf imply Knudsen chaos.

5.2.6 Devaney vs Trace vs Knudsen Chaos

Let us summarize the essential features of the previous definitions and prop-
erties.

– The existence of a topological conjugacy with a symbolic shift entails TT
and DPP, whence SIC, by Prop(s). 5.29 and 5.32. Thus, by Def. 5.28, the
system is Devaney chaotic at the level of states. We call this state chaos.

– Fullness entails trace chaos: existence of a dense trace, and density of pe-
riodic traces (Prop. 5.35); these properties rephrase TT and DPP at the
level of traces.

– When atomicity is added, TT and SIC are verified (Prop(s). 5.38 and 5.39).
However, Devaney chaos is not present because DPP is not verified; there
is only density of periodic traces. Nonetheless, as stated in Cor. 5.41, the
system is Knudsen chaotic at the level of states, by Def. 5.30.

110 5. Invariance, Attraction, Complexity

Using the result of Prop. 5.23, we can go one step further. Abstracting
invariant states into traces requires a total surjective function (see Def. 4.20):
Z : J �→ ΣZ such that Z(x) = {(σ, τ) ∈ ΣZ | x ∈ Jσ,τ}.

On one hand, symbolic dynamics establishes more: a homeomorphic total
bijective function from invariant states to traces. On the other hand, fullness
induces a surjective relation, and atomicity entails an injective relation.

The functional and total characters of the abstraction function are present
in the topological conjugacy but not in the conjunction of both fullness and
atomicity. However, Prop. 5.23 states that ∪(σ,τ)∈ΣZJσ,τ = J , which entails
surjectivity from traces to invariant sets, or a total function from states to
traces. Consequently, it is possible to prove that the countable infinity of
periodic points holds at both abstract and concrete levels.

Proposition 5.42 (Countable infinity of periodic points). If the po-
tential invariant J of a simple injective RDS (X, f) is full and atomic, it
has a countable infinity of periodic points.

Proof. Fullness implies the existence of a countable infinity of periodic
traces. Each states determines exactly one trace in the future and in the
past, since the system is simple and injective, that is, deterministic in both
time directions. Adding atomicity entails that exactly one state corresponds
to each trace. Moreover, each periodic trace is associated with a periodic
state. Thus, the number of periodic states equals the number of periodic
traces.

The important difference between (Devaney) state chaos and trace chaos
is the following. Fullness and atomicity are not strong enough to preserve the
density of this countable infinity of periodic traces at the level of states. This
role is played by the homeomorphic (viz. continuity in both directions) aspect
of the function involved in the topological conjugacy. Abstraction alone is not
sufficient to preserve such topological properties.

5.3 Fullness and Atomicity Criteria

The aim of this section is to develop criteria allowing to prove fullness and
atomicity of particular systems, instead of having to use the definitions of
these properties. We first generalize criteria given in [286, 290], and we show
their application to three classical examples.

5.3.1 Criteria

The following proposition gives sufficient criteria for fullness. The main idea
consists in the approximation of trace-parametrized invariants from below.

5.3 Fullness and Atomicity Criteria 111

Proposition 5.43 (Fullness criteria). The fullness of the invariant J of
a system f can be proved by finding two sets of sets Φ and Ψ verifying the
following criteria:

1. ∀i ∈ Σ, (∃A ∈ Φ,A ⊆ Ji,) ∧ (∃B ∈ Ψ,B ⊆ J,i);
2. ∀i ∈ Σ, (∀A ∈ Φ, ∃A′ ∈ Φ,A′ ⊆ fi(A))

∧ (∀B ∈ Ψ, ∃B′ ∈ Ψ,B′ ⊆ f−1
i (B));

3. ∀A ∈ Φ,B ∈ Ψ,A ∩B = ∅.

The sets A,B in Φ, Ψ approximate the components Jσ, and J,τ from below;
if their intersection A ∩B is never empty, then no Jσ,τ = Jσ, ∩ J,τ is empty
either.

Lemma 5.44. If there exist two sets of sets Φ and Ψ such that criteria (1)
and (2) of Prop. 5.43 are verified, then

∀n ≥ 1, ∀σ, τ ∈ Σn, ∃A ∈ Φ,B ∈ Ψ, (A ⊆ Jσ,) ∧ (B ⊆ J,τ).

Proof. We prove this by induction on n:

– n = 1, this is given by (1);
– n > 1, suppose the property is valid up to n, let us prove it for n+ 1:

σ ∈ Σn

⇒ iσ ∈ Σn+1

∧∃A ∈ Φ,A ⊆ Jσ,

* monotonicity
⇒ fi(A) ⊆ fi(Jσ,)
⇒ fi(A) ⊆ Jσi,

* (2)
⇒ ∃A′ ∈ Φ,A′ ⊂ Jσi,

and the same applies to J,jτ , symmetrically.

From this, we prove Prop. 5.43.

Proof. Taking (3) together with the previous lemma entails the result.

Now, we examine the case of atomicity. Here, we approximate the com-
ponents of the invariant from above. As the number of states related to par-
ticular traces must be reduced to at most one when these traces indefinitely
grow, a Lyapunov-like decreasing function is used: its value has to decrease
at each improvement of the approximation of a trace-parametrized invariant,
and its minimal value implies the atomicity condition.

Notation 5.45. In the following, we use two obvious notations:

– Φ ∩ Ψ = {A ∩B | A ∈ Φ,B ∈ Ψ};

112 5. Invariance, Attraction, Complexity

– ∩Φ designates the smallest set of Φ such that the stated properties are
verified. Here, we want the result of the intersection to be in Φ. If it is not,
we take the smallest set of Φ containing this intersection.

Proposition 5.46 (Atomicity criteria). Atomicity can be detected by
finding two sets of sets Φ and Ψ , and a bounded function H from Φ ∩ Ψ
to an ordered set M with minimum 0, which verify the following:

1. ∀i ∈ Σ, (∃A ∈ Φ, Ji, ⊆ A) ∧ (∃B ∈ Ψ, J,i ⊆ B);
2. ∀i ∈ Σ, (∀A ∈ Φ, fi(A) ∈ Φ) ∧ (∀B ∈ Ψ, f−1

i (B) ∈ Ψ);
3. ∀A ∈ Φ,B ∈ Ψ,H(A ∩B) = 0 ⇒ #(A ∩B) ≤ 1;
4. ∃k, 0 < k < 1, ∀i, j ∈ Σ, ∀A ∈ Φ,B ∈ Ψ,

H(fi(A) ∩ f−1
j (B)) ≤ k · H(A ∩B).

Proof.

* (1)
⇒ ∀σ, τ ∈ Σ∞, ∀n, ∃A ∈ Φ,B ∈ Ψ, (Jσn, ⊆ A) ∧ (J,τn ⊆ B)

* (2), (4)
⇒ H(fσ|n,(A) ∩ f−1

,τ |n(B)) ≤ k
n−1H(A ∩B) ≤ kn−1C

* An = ∩Φ{A | A ∈ Φ, Jn, ⊆ A}
* Ã = ∩Φ{A | A ∈ Φ,A ⊇ ∪An}
* idem for B̃

⇒ lim
n→∞H(fσ|n,(Ã) ∩ f−1

,τ |n(B̃)) = 0

* (3)

⇒ #(fσ,(Ã) ∩ f−1
,τ (B̃)) ≤ 1

* ∀n, Jσ|n, ⊆ fσ|n−1,(A) ⊆ fσ|n−1,(Ã)
⇒ #Jσ,τ ≤ 1.

Remark 5.47 (Atomicity criteria). – Instead of the last condition, a dis-
crete version can also be used: ∀i, j ∈ Σ,A ∈ Φ,B ∈ Ψ ,

(H(fi(A) ∩ f−1
j (B)) = 0) ∨ (H(fi(A) ∩ f−1

j (B)) < H(A ∩B)).

– These conditions respectively correspond to Lyapunov stability functions
[120, 119, 221] and to Floyd termination functions [109, 91]; they use the
nonnegative reals and the naturals as set M .

– Using the notation Ã = ∩Φ{B | B ∈ Φ,B ⊇ A}, atomicity criteria become:
1. ∀i ∈ Σ, (J̃i, ∈ Φ) ∧ (J̃,i ∈ Ψ);
2. ∀i ∈ Σ, (∀A ∈ Φ, f̂i(A) ∈ Φ) ∧ (∀B ∈ Ψ, ^f−1

i (B) ∈ Ψ);
3. ∀A ∈ Φ,B ∈ Ψ,H(A ∩B) = 0 ⇒ #(A ∩B) ≤ 1;
4. ∃k, 0 < k < 1, ∀i, j ∈ Σ, ∀A ∈ Φ,B ∈ Ψ,

H(f̂i(A) ∩ ^f−1
j (B)) ≤ k · H(A ∩B).

5.3 Fullness and Atomicity Criteria 113

Actually, in this case, (2) is weaker than in Prop. 5.46 but (4) is stronger.

These sufficient criteria for fullness and atomicity can be generalized to
include more cases, which inevitably leads to more complicated expressions.
We refer the interested reader to [116] for a detailed study of some general-
izations of the concepts presented above.

5.3.2 Case Studies: Dyadic Map, Cantor Relation, Logistic Map

Here, we rederive well-known results on the dyadic map, the Cantor relation
and the logistic map, to illustrate the use of the criteria proposed for fullness
and atomicity.

Example 5.48 (Dyadic map). Let the dyadic map be defined as follows (see
Fig 5.2):

f = f1 ∪ f2
f1(x) = ([0,

1
2
] → 2x← [0, 1])

f2(x) = ([
1
2
, 1] → 2x− 1 ← [0, 1]).

Some easy computations lead to the global invariant:

0

0.5

1

0 0.5 1

Fig. 5.2. Dyadic map 2x mod 1

f−1([0, 1]) = [0,
1
2
] ∪ [

1
2
, 1] = [0, 1]

J+ = [0, 1]

and

f([0, 1]) = [0, 1] ∪ [0, 1] = [0, 1]
J− = [0, 1].

114 5. Invariance, Attraction, Complexity

Fullness. To apply Prop. 5.43, we choose the approximating sets

Φ = {[0, 1]}
Ψ = {[p, q] | 0 ≤ p ≤ q ≤ 1}.

Three conditions mustt be checked.

1. Immediate: for i = 1, 2,

Ji, = fi([0, 1]) = [0, 1] ∈ Φ

J,1 = f−1
1 ([0, 1]) = [0,

1
2
] ∈ Ψ

J,2 = f−1
2 ([0, 1]) = [

1
2
, 1] ∈ Ψ.

2. Immediate w.r.t. Φ. Regarding Ψ , we have

f−1
1 ([p, q]) = [

p

2
,
q

2
] ∈ Ψ

f−1
2 ([p, q]) = [

p+ 1
2
,
q + 1
2

] ∈ Ψ.

3. This condition holds since [0, 1] ∩ [p, q] = ∅, given 0 ≤ p ≤ q ≤ 1. Thus,
each component Jσ,τ contains at least one state, and J is full. Moreover,
since J = [0, 1], each point in [0,1] is contained in some Jσ,τ .

Note the exact expression of these components takes the following form, for
σ, τ ∈ Σn, and 0 ≤ m < 2n:

Jσ,τ = [
m

2n
,
m+ 1
2n

].

The use of the approximating sets [p, q] allows to prove fullness without having
to compute these exact expressions explicitly, which might reveal unfeasible in
practice.

Atomicity. We prove it using the sufficient criteria of Prop. 5.46, with Φ and Ψ
defined as above, and

H([p, q]) = q − p.

1. Verified as above for fullness.
2. Similar to the previous one.
3. Holds since q − p = 0 entails #{x | p ≤ x ≤ q} = 1.
4. Verified as follows, using k = 1

2 :

H(f1([0, 1]) ∩ f−1
1 ([p, q])) = H([

p

2
,
q

2
])

=
q

2
− p

2

=
1
2
· H([p, q]),

5.3 Fullness and Atomicity Criteria 115

and similarly for the other cases

H(fi([0, 1]) ∩ f−1
j ([p, q])).

Each fi(A)∩ f−1
j (B) decreases the size of A∩B at least by 1

2 . Each limit com-
ponent Jσ,τ (with σ, τ ∈ Σ∞) contains at most one state: J is atomic. Since J is
also full, each Jσ,τ contains exactly one state. Thus, by Prop(s). 5.38 and 5.39,
the dyadic map is topologically transitive and sensitive to initial conditions.

Example 5.49 (A Cantor-set invariant). Let us first consider f1(x) = x
3

on [0, 1]. Its positive invariant J+ is [0, 1], its negative invariant J− is {0}, and
its global invariant J is {0}. Since there is only one function, we only attach
one symbol to it, 1, and the invariant is trivially full and atomic, because there
is only one bi-infinite trace · · · 111, 111 · · · and one trace-parametrized invariant
which is equal to the single point {0}.

We now add f2(x) = 2
3 + x

3 to the system and take the union f1 ∪ f2 (see
Fig. 5.3). Then the positive invariant is again [0, 1] but the negative invariant

0

0.5

1

0 0.5 1

Fig. 5.3. Cantor relation

is the well-known Cantor middle-thirds Set (see Ex. 2.29). We can see this by
computing the first few iterates leading to J−, i.e. f i([0, 1]):

f([0, 1]) = [0,
1
3
] ∪ [

2
3
, 1]

f2([0, 1]) = f([0,
1
3
] ∪ [

2
3
, 1])

= [0,
1
9
] ∪ [

2
9
,
3
9
] ∪ [

6
9
,
7
9
] ∪ [

8
9
, 1]

...

This invariant is more difficult to characterize, because limit points of this process
are numerous, and it is not clear that each bi-infinite trace defines a unique state
of the Cantor-set invariant. Using the criteria proposed above, and the covering
α = {f1, f2} associated with Σ = {1, 2}, let us show that this invariant is
full and atomic. The analysis is very similar to the previous one (dyadic map,
Ex. 5.48).

116 5. Invariance, Attraction, Complexity

Fullness. To apply Prop. 5.43, we have to choose two sets of sets of [0, 1]
approximating iterations from below:

Φ = {[p, q] | 0 ≤ p ≤ q ≤ 1}
Ψ = {[0, 1]}.

Now, let us verify each condition.

1. Each Ji, is in Φ:

J1, = f1([0, 1]) = [0,
1
3
]

J2, = f2([0, 1]) = [
2
3
, 1]

and each J,j is obviously in Ψ :

J,j = f−1
j ([0, 1]) = [0, 1].

2. For any A = [p, q] ∈ Φ, each fi(A) ∈ Φ:

f1([p, q]) = [
p

3
,
q

3
]

f2([p, q]) = [
p+ 2
3
,
q + 2
3

]

and for any B ∈ Ψ (there is only one such B), each f−1
j (B) ∈ Ψ :

f−1
j (B) = f−1

j ([0, 1]) = [0, 1].

3. Finally, any intersection of a set A ∈ Φ with a set B ∈ Ψ is nonempty:

∀0 ≤ p ≤ q ≤ 1, [p, q] ∩ [0, 1] = [p, q] = ∅.

From this, we conclude the the global invariant of this system is full.

Atomicity. The approximating sets of fullness can also help here. We add a
decreasing function

H([p, q]) = q − p.
Let us now verify the four criteria of Prop. 5.46.

1. Equivalent to fullness condition (1).
2. Equivalent to fullness condition (2).
3. Let A = [p, q] be in Φ, and B = [0, 1] be in Ψ . If H(A ∩ B) = H([p, q]) =
q − p = 0, then A contains a single state p = q. Hence, #(A ∩B) = 1.

5.3 Fullness and Atomicity Criteria 117

4. Let us choose A = [p, q] ∈ Φ and B = [0, 1] ∈ Ψ . Then, ∀j ∈ Σ,

H(f1(A) ∩ f−1
j (B)) = H([

p

3
,
q

3
])

=
1
3
(q − p) = 1

3
· H(A ∩B)

H(f2(A) ∩ f−1
j (B)) = H([

2 + p
3
,
2 + q
3

])

=
1
3
(q − p) = 1

3
· H(A ∩B).

Hence, there exists a k < 1 (here equal to 1
3) such that, ∀i, j ∈ Σ,

H(fi(A) ∩ f−1
j (B)) ≤ k · H(A ∩B).

This proves atomicity of the global invariant of this example.

The Cantor-set relation is very similar to the inverse of the dyadic map.
Since our criteria for proving fullness and atomicity are all symmetric in
time, the analyses of both systems look pretty much the same. Let us close
the section with a last example: the logistic map f(x) = λx(1 − x). Apart
from some more “smoothness”, this map shows the same behavior again.
In fact, for some values of the parameter λ, it is possible to prove that the
system has a full and atomic invariant set using the same criteria again.

Example 5.50 (Logistic map). To fix the ideas, we concentrate on (see
Fig. 5.4)

f(x) = 5x(1− x).
This function is 2-to-1, and can be rewritten as a union of two injective branches:

0

0.5

1

0 0.5 1

Fig. 5.4. Logistic map f(x) = 5x(1− x) on [0, 1]

f1 = ([0,
1
2
] → 5x(1− x))

f2 = ([
1
2
, 1] → 5x(1− x))

f = f1 ∪ f2.

118 5. Invariance, Attraction, Complexity

To help our subsequent development, let us evaluate the two inverse branches of
f : the two roots of f(x) = y are

1
2
(1± (1 − 4

5
y)

1
2).

The approximating sets for fullness and atomicity are (as in Ex. 5.48):

Φ = {[0, 1]}
Ψ = {[p, q] | 0 ≤ p ≤ q ≤ 1}

and the decreasing function is:

H([p, q]) = q − p.

Fullness. To apply Prop. 5.43, we verify three criteria.

1. Each Ji, is obviously in Φ:

Ji, = fi([0, 1]) = [0, 1]

and each J,j is in Ψ :

J,1 = f−1
1 ([0, 1]) = [0,

1
2
(1 − (

1
5
)

1
2)]

J,2 = f−1
2 ([0, 1]) = [

1
2
(1 + (

1
5
)

1
2), 1].

2. For any A ∈ Φ (there is only one such A), each fi(A) ∈ Φ:

fi(A) = fi([0, 1]) = [0, 1]

and for any B = [p, q] ∈ Ψ , each f−1
j (B) ∈ Ψ :

f−1
1 ([p, q]) = [

1
2
(1− (

4
5
p)

1
2),

1
2
(1− (

4
5
q)

1
2)]

f−1
2 ([p, q]) = [

1
2
(1 + (

4
5
q)

1
2),

1
2
(1 + (

4
5
p)

1
2)].

3. Finally, any intersection of a set A ∈ Φ with a set B ∈ Ψ is nonempty:

∀0 ≤ p ≤ q ≤ 1, [0, 1] ∩ [p, q] = [p, q] = ∅.

From this, we conclude the the global invariant of this system is full.

5.4 Attraction 119

Atomicity. Let us now verify the four criteria of Prop. 5.46.

1. Equivalent to fullness condition (1).
2. Equivalent to fullness condition (2).
3. Let A = [0, 1] be in Φ, and B = [p, q] be in Ψ . If H(A ∩ B) = H([p, q]) =
q − p = 0, then A contains a single state p = q. Hence, #(A ∩B) = 1.

4. Let us choose A = [0, 1] ∈ Φ and B = [p, q] ∈ Ψ . Then, ∀i, j ∈ Σ,

H(fi(A) ∩ f−1
j (B)) =

1
2
((1 − 4

5
p)

1
2 − (1 − 4

5
q)

1
2)

=
1
2

(1− 4
5p)− (1− 4

5q)

(1 − 4
5p)

1
2 + (1− 4

5q)
1
2

=
2
5

q − p
(1 − 4

5p)
1
2 + (1− 4

5q)
1
2
.

Since

(1 − 4
5
p)

1
2 ≥ 5−

1
2

we have an upper bound
5−

1
2 (q − p).

Hence, there exists a k < 1 (here equal to 5−
1
2) such that, ∀i, j ∈ Σ,

H(fi(A) ∩ f−1
j (B)) ≤ k · H(A ∩B).

This proves atomicity of the global invariant of this example.

5.4 Attraction

The second important dynamical property investigated in this chapter is
attraction. Roughly speaking, a set P is attracted to a set Q by evolution of
f if it possible to go from P to Q in a certain number of (forward) iterations
of f [326, 9]. In control theory and program semantics, attraction is often
particularized to finite-time reachability or termination [187, 327, 91, 93]. As
for invariance, the weaker notion of potential reachability exists in temporal
logic, and permits to express properties of transition systems [98, 19].

In this section, we first give some intuitive aspects of attraction, starting
from the presentation of reachability in §4.5. Then, using observation traces
as in the characterization of invariant structures, we formalize attraction, and
we propose a general taxonomy of attraction properties.

Our presentation of these classical concepts is partially based on the tech-
nical presentation of [116, 290].

120 5. Invariance, Attraction, Complexity

5.4.1 Intuition: From Reachability to Attraction

In the first example, attraction happens when iterating a system with an
asymptotically attracting fixed point: the system

f1(x) = ([0, 1] → 1
3
(x+ 1) ← [

1
3
,
2
3
])

attracts [0, 1] to 1
2 (see Fig. 5.5).

0

0.5

1

0 0.5 1

Fig. 5.5. Attracting fixpoint function x+1
3

The second example

f2(x) = ([0,
2
3
] → x+

1
3
← [

1
3
, 1]) ∪ ([

1
2
, 1] → x← [

1
2
, 1])

shows the attraction to a set of states, the interval [12 , 1] (see Fig. 5.6). Here,

0

0.5

1

0 0.5 1

Fig. 5.6. Attraction to a set of states, [1
2
, 1]

the attracting set is reached after a finite amount of time.
Again, we examine the qualitative property presented in §4.5. Reachability

of a set Q reads (see Def. 4.24):

E(Q,S) ≡ ∀s ∈ S, ∃n, sn ∈ Q.

Thus, Q is reachable if every history eventually passes through Q, in finite
time.

5.4 Attraction 121

The set of histories can be θ(X, f), (X, f) being a RDS, or any set of his-
tories starting from states of a particular set P . Then, similarly to invariance,
we have two notions:

– Q is necessarily reachable from P iff

∀x ∈ P, ∀s ∈ θ(x, f), E(Q, s);

– Q is potentially reachable from P iff

∀x ∈ P, ∃s ∈ θ(x, f), E(Q, s).

These two versions both define a finite-time reachability. In order to get
different reachability cases, we could

– relax the finite-time assumption, e.g.

∀x ∈ P, ∀s ∈ θ(x, f), Eω (Q, s)

where Eω (Q, s) ≡ (sω ∈ Q);
– precise the rest of an history after meeting Q;
– relax the first quantifier to get a partial reachability, e.g.

∃x ∈ P, ∀s ∈ θ(x, f), E(Q, s).

Hereafter, we investigate the first possibility, namely infinite-time reachabil-
ity, which can be seen as a limit of the finite-time case. The second case will
be treated in §5.6, as a combination of attraction and invariance: indeed, if
Q is invariant, we have a precision on what comes after Q (in this case, Q
simply comes after Q).

5.4.2 From Weak to Full Attraction

Weak Attraction. Attraction is to termination what infinite iterations are to
finite ones. A system f beginning in a set P terminates in a set Q if, for each
initial state in P , f necessarily terminates after a finite number of iterations
and must then reach a state in Q. A set Q attracts a set P by a system f
if, after each realizable infinite iteration beginning in P , the resulting state
belongs to Q, i.e. fω(P) ⊆ Q.

Definition 5.51 (Weak attraction). System f weakly attracts P to Q iff

∀σ ∈ Σω, fσ(P) ⊆ Q.

Definition 5.52 (Attraction basin). The attraction basin of a set Q by a
system f is the largest set that is attracted by Q when iterating f .

122 5. Invariance, Attraction, Complexity

We can compare this concept of weak attraction with partial correctness
of programs: if the program terminates, then it is correct. Here, whenever
some infinite future σ exists, then P is attracted by Q when iterating f
according to σ. The problem with this definition is that nothing prevents
the case where there is no realizable infinite future, viz. fσ(P) is always ∅.
However, we present it first because it gives the essence of the phenomenon
of attraction. We now give three other possible definitions of attraction; each
of them adds a condition avoiding the future of P to be empty.

Simple Attraction. We speak of “simple attraction” when at least one state
of P has a potential infinite future.

Definition 5.53 (Simple attraction). System f simply attracts P to Q
iff

(∀σ ∈ Σω, fσ(P) ⊆ Q) ∧ (P ∩ J+ = ∅).

So we are sure that fσ(P) = ∅ for some σ, viz. fω(P) = ∅.
Strict Attraction. We speak of “strict attraction” when P is not empty and
every state of P has a potential infinite future.

Definition 5.54 (Strict attraction). System f strictly attracts P to Q iff

(∀σ ∈ Σω, fσ(P) ⊆ Q) ∧ (P ⊆ J+) ∧ (P = ∅).

Example 5.55. The system defined by (see Fig. 5.7)

f(x) = ([0, 1] → x

2
← [0,

1
2
]) ∪ ([0, 1] → x

3
← [0,

1
3
])

strictly attracts [0, 1] to the point (x = 0).

0

0.5

1

0 0.5 1

Fig. 5.7. Relation x
2
∪ x

3
on [0, 1]

Full Attraction. Finally, we speak of “full attraction” when, for each possible
trace, there exists at least one state of P with that trace as potential infinite
future.

5.4 Attraction 123

Definition 5.56 (Full attraction). System f fully attracts P to Q iff

∀σ ∈ Σω, (fσ(P) ⊆ Q) ∧ (fσ(P) = ∅).

We call it full attraction because the second part of the conjunction looks
like the definition of fullness of the negative invariant J−:

∀σ ∈ Σω, fσ(X) = ∅

viz.
∀σ ∈ Σω, Jσ, = ∅.

Summary and Comments. In summary, we have the following proposition,
the proof of which is left to the reader.

Proposition 5.57. Attraction properties are ordered as follows:

full attraction
strict attraction

}

⇒ simple attraction ⇒ weak attraction.

Remark 5.58. – It is clear that full attraction and strict attraction are
based on complementary conditions and are thus unrelated. It could be
different if we had defined full attraction as:

∀σ ∈ Σω, (fσ(P) ⊆ Q) ∧ (fσ(P) = ∅) ∧ (P ⊆ J+) ∧ (P = ∅).

which obviously implies strict attraction.
– If an undefined state ♥ is added, every P has an infinite future. In this case,
it is convenient to add an assumption guaranteeing that the future of P
contains more than just ♥. This amounts to slightly modifying Def(s). 5.51–
5.56.

– It is clear that termination on Q can be subsumed under attraction, by
adding a “silent” transition (Q → id ← Q) to the considered system. It
has the same function as the “idling” transition in elementary transition
systems, or the skip instruction in Dijkstra’s guarded command language,
viz. absence of effect [91, 210].

– Even in the case of a well-defined ω-time reachability, there is no mention
of what comes after Q: the system can stay in Q or it can iterate toward
another set Q′ that will be reached after another infinite-time for example.

5.4.3 A Taxonomy of Attraction

We have presented four variants of attraction, starting from the essential
phenomenon called “weak attraction”. In this section, our aim is to present
variants more exhaustively and to relate some of them to the previous ones.

Let P and Q be two subsets of X , and f a relation on X . Our concern,
“P attracted to Q”, is summarized by the following questions.

124 5. Invariance, Attraction, Complexity

– What length do we want the future of P to be?
– Does the future of points of P lead to Q? Necessarily or potentially?
– Do points of P have a long enough future?

More formally, these questions give the following, where x ∈ P and σ ∈
(P(Σ))α.

– Traces of transitions belong to (P(Σ))α with

α ∈ {≤ n, n, ∗, ω,∞,O}.

– Do we have a necessary or potentially attraction to Q, respectively (see
Def. 5.4):

fσ({x}) ⊆ Q
or

{x} ⊆ fσ(Q) ?

– Does P have a long enough future,

fσ({x}) = ∅ ?
Let us define

P1(x, σ) = fσ({x}) ⊆ Q,
P2(x, σ) = {x} ⊆ fσ(Q),
P3(x, σ) = fσ({x}) = ∅.

There are six possible ways of quantifying traces of (P(Σ))α and points of P :

Q = {∀x∀σ, ∀x∃σ, ∃x∀σ, ∃x∃σ, ∀σ∃x, ∃σ∀x}.

Basic attraction properties are thus, ∀a, b ∈ Q, ∀P4 ∈ {P1, P2}:

aP4,

aP4 ∧ bP3,

a(P4 ∧ P3),

and their conjunctions.
Of course, all these possibilities can be compared w.r.t. implication. For

instance, aP4 ∧ bP3 ⇒ aP4, and a(P4 ∧ P3) ⇒ aP4 ∧ aP3 ⇒ aP4. An order is
established between quantifyers of the same property:

∀σ∀x⇒

∃x∀σ
∃σ∀x
∀x∃σ
∀σ∃x

⇒ ∃σ∃x,

and between their conjunctions.
Let us now give the four cases presented in §5.4 in the light of our for-

malization, with α = ω.

5.5 Attraction Criteria 125

– Weak attraction: (∀σ∀x, fσ({x}) ⊆ Q).
– Simple attraction: weak ∧ (∃x∃σ, fσ({x}) = ∅).
– Strict attraction: weak ∧ (∀x∃σ, fσ({x}) = ∅).
– Full attraction: weak ∧ (∀σ∃x, fσ({x}) = ∅).

Notation 5.59. In the following, we denote simple attraction from P to Q
by a system f as follows:

P
f
;→ Q

which means ∅ = fω(P) ⊆ Q.

5.5 Attraction Criteria

In this section, we present sufficient conditions to prove that a set Q attracts
a set P by a system f , as we did for fullness and atomicity. The Lyapunov-like
criteria given here generalize the ones developed in [116, 290]. As in atomicity
criteria, we use a decreasing function related to the “distance” toward the
attracting set.

The following proposition focuses on strict attraction; other variants could
be proved using the same reasoning.

Proposition 5.60 (Attraction criteria). To prove strict attraction of a
RDS (X, f) observed on a covering α = {fi | i ∈ Σ}, it suffices to find a
family Ψ of nonempty sets and a function H from sets of X to R such that:

1. P ∈ Ψ ;
2. ∀i ∈ Σ,A ∈ Ψ, fi(A) ∈ Ψ ;
3. ∀A ∈ Ψ, (H(A) = 0) ⇒ (A ⊆ Q);
4. ∃k, 0 ≤ k < 1, ∀i ∈ Σ, ∀A ∈ Ψ,H(fi(A)) ≤ k · H(A);
5. P = ∅ and P ⊆ J+.

Proof. It is easy to prove by induction:

∀n ≥ 0, ∀σ ∈ Σn, fσ(P) ∈ Ψ.

The basic case is given by (1) and the induction is based on (2).
Using (4), we can then prove:

∀n ≥ 0, ∀σ ∈ Σn,H(fσ(P)) ≤ knH(P)

and thus
∀σ ∈ Σω,H(fσ(P)) = 0.

Finally, using (3) gives

∀σ ∈ Σω, fσ(P) ⊆ Q.

which, using (5), is equivalent to the definition of strict attraction.

126 5. Invariance, Attraction, Complexity

Remark 5.61. – It is possible to give more refined criteria to prove attrac-
tion [116]. They are all based on the two following central keys:
1. approximation of P and its successive iterations,
2. definition of a decreasing function H.

– This technique seems very powerful to prove attraction; its crucial point is
most of the time the discovery of an adequate decreasing function.
When the system is contracting for some metric, or P = X and mono-
tonicity entails a decreasing sequence of iterates, exhibiting a decreasing
function is not too difficult: the diameter of successive iterates fn(X) often
suffices.
In other cases, e.g. for arbitrary P and Q, proving attraction using these
criteria is not so easy. The decreasing function can be very tricky.

5.6 Attraction by Invariants

In this section, we examine how attraction and invariance can be combined, as
this case is very often treated in the literature: the attracting set is invariant.
Actually, this is a particular case of precising what happens after having
reached the attracting set.

We have seen that an invariant and its structure are fundamental for un-
derstanding the dynamics of a system. On the other hand, we have formalized
the notion of attraction, which, roughly speaking, ensures to go from a set
P to a set Q after a certain number of iterations. Here, we try to see how
the system attracts a part of the space to its invariant. Let us start with a
simple example.

Example 5.62 (Cantor relation, cont’d). Consider f1(x) = x
3 again. It is

easy to see that [0, 1]
f1
;→ {0}.

If we add the second function f2(x) = x
3 +

2
3 and consider their union f1∪f2,

we obtain the Cantor relation. Its invariant J is the middle-thirds Cantor-set in
[0, 1]; it is full and atomic. We see that [0, 1] is attracted to this invariant. Let
us prove J attracts the domain P = [0, 1] of f . In this system, we have J = J−
and P = J+.

Proposition 5.63. Let (X, f) be a RDS. Then,

J− ⊆ J+ ⇒ J+
f
;→ J.

Proof.

J− = ∪σ∈Σωfσ(X)
⇒ ∀σ ∈ Σω, fσ(X) ⊆ J−
⇒ X

f
;→ J−

5.6 Attraction by Invariants 127

⇒ J+
f
;→ J−
* hyp. ⇒ J = J− ∩ J+ = J−

⇒ J+
f
;→ J.

Example 5.64 (Cantor relation, Ex. 5.62 revisited). Moreover, we
also have strict attraction of P to J− = J because P ⊆ J+ (in this case, we
have P = J+) and the positive invariant is not empty.

The inverse of the Cantor map has the same Cantor set as invariant. Yet, this
invariant does not anymore attract the domain [0, 1]: the inverse Cantor map is
repulsing.

In fact, the invariant of the direct Cantor map equals its negative invariant,
whereas the invariant of the inverse Cantor map equals its positive invariant. We
have noticed that a negative invariant results from infinite traces, and a positive
invariant begins infinite traces (see §5.1).

Example 5.65. Let f be the following system (see Fig. 5.8):

f(x) = [0, 1
2]×[0,

1
2]→(2x) ×(y

4) ←[0, 1]×[0, 1
8]

∪ [12 , 1]×[0,
1
2]→(2x− 1)×(y

4 + 4
8)←[0, 1]×[48 ,

5
8]

∪ [0, 1
2]×[

1
2 , 1]→(2x) ×(y

4 + 2
8)←[0, 1]×[38 ,

4
8]

∪ [12 , 1]×[
1
2 , 1]→(2x− 1)×(y

4 + 6
8)←[0, 1]×[78 , 1].

1

0
0 1

f

1

0
0 1

Fig. 5.8. Effect of f on [0, 1]2

The positive invariant J+ is by definition stable under f−1, viz. preserved
in the future, and it includes the full square [0, 1]× [0, 1]. Thus it includes J−,
generated by f and preserved in the past; J− consists of horizontal segments
of length one. Since J− ⊆ J+, we have J = J−. The invariant J attracts the
square [0, 1]× [0, 1] since J− attracts it.

If we modify the above system so that f−1 is contracting along x by 4 instead
of 2, the positive invariant J+ may become a strict subset of the full square, viz.
a set of scattered vertical segments. Then, J− is not included in J+ anymore, and
we cannot prove, using the present approach, that J attracts the whole square.
We should then use the criteria developed in §5.5.

128 5. Invariance, Attraction, Complexity

Besides proving a full and atomic invariant is attracting, we may wish
to prove that a given attracting set generates rich dynamics, i.e. is strongly
dependent on initial conditions and topologically transitive. To verify this,
one could use variants of the criteria for detecting fullness and atomicity (see
§§5.2, 5.3). Again, the problem is to discover adequate families of approx-
imating sets and an adequate convergence function. This is left for future
work.

5.7 Discussion

In this last section, we first present notions related to invariance, attraction,
fullness, and atomicity; energy-like functions are then compared to decreas-
ing functions used in atomicity and attraction criteria; finally, we close the
chapter by giving an informal view of dynamical complexity using the tools
introduced up to now.

5.7.1 Invariance and Attraction: Related Notions

Necessary and potential invariance as well as attraction are classical in dy-
namical systems and program theory, as well as in temporal logic [9, 91, 98,
196, 326].
Invariance. Necessary (resp. potential) invariants are equivalent to Sifakis’
invariants (resp. non-terminating trajectories) [284]. Hutchinson’s invariants
are related to potential invariants [159, 140, 28, 325], though they are ob-
tained by successive iterations using the contraction mapping theorem, which
in this case gives the same limit as lattice fixpoint theorems. Maximum in-
variant sets as defined in [305] are also related to potential invariants.

Invariants of programs are properties that are verified by the variables of
these programs during their evolutions. Basically, invariants are associated
to iterations (cf. DO-loops in Dijkstra’s nondeterministic guarded command
language [91, 93]): they must be verified all along the computations of loops,
in order to preserve partial correctness.

The temporal logic notion of safety is related to invariance. Informally,
“nothing bad” happens to the system involved, that is, safety properties
concern states or transitions that are always verified, for all histories of the
system [192]. Safety is thus very close to Def. 4.23. The following notation is
used to say that a property P is invariant: 2P . See also [193, 210, 2, 67, 81]
for more on temporal logic, and fixed point calculus for temporal logic.

Necessary/potential invariance can be defined using two binary operators
A[· ∪ ·] and E[· ∪ ·] of Computation Tree Logic (CTL) [99, 98, 19]:

necessary invariance : J |= ¬E[1 ∪ ¬J]
potential invariance : J |= ¬A[1 ∪ ¬J].

In control theory, controllability is equivalent to finding an invariant of
the system, a subspace in which the system acts as predicted [18, 327, 129].

5.7 Discussion 129

Attraction. Total correctness of programs is obtained by conjugation with a
Lyapunov-like technique: a decreasing function has to be found, such that its
minimum is reached after a finite-time.

In Unity, attraction also plays an important role, under the construction
“P leadsto Q”, equivalent to a finite-time version of P ;→ Q [61].

The temporal logic notion of liveness is related to attraction. Informally
described in [192] and formally defined in [15], liveness means that “something
good” is supposed to happen to the system. The notation used, 3P , means
that eventually, property P must be verified, whatever the history of the
system is. This property can be a predicate defined on states or transitions.
Remark that liveness is very close to Def. 4.24, and 3 and 2 are duals:
¬3¬ = 2.

Necessary/potential finite-time attraction can be defined using the same
two binary operators A[· ∪ ·] and E[· ∪ ·] of CTL:

necessary reachability : P |= E[1 ∪Q]
potential reachability : P |= A[1 ∪Q].

In control theory, finite-time attraction is called reachability [18, 327, 129].
In the abstract framework of semigroups, it is known as absorption [191].
Fullness and Atomicity. Fullness and atomicity have been introduced in [286]:
they are respectively equivalent to exactness and weak generation [196]. In-
deed, a dynamical system (X, f) is said to be exact when limn→ω µ(fn(A)) =
1 for every A ⊆ X such that µ(A) > 0, where µ is a measure on X . A fi-
nite open cover α = {Ai} of X is a weak generator for f if for all sequence
(Aik

)k ∈ αZ, the intersection ∩kf
k(Aik

) contains no more than one point.
Other authors have proposed to study the structure of invariants us-

ing symbolic observations of evolutions of systems. We have already cited
symbolic dynamics (see §4.7.2), but more specifically, formal language
theory is sometimes used to describe the inner structure of invariants
[72, 139, 170, 171, 307, 308, 322, 334].
Fairness. Let us thus examine a last notion from temporal logic. Fairness
[110, 61, 19] is built on both invariance and attraction. Indeed, fairness prop-
erties can be obtained by composing several basic blocks of the form 23P ,
using logical connectors (negation, disjunction, conjunction). For example,
P stating a property on states of a system, and R precising a property on
some transitions of the system, the following lines express standard fairness
properties:

(weak) 32P ⇒ 23R

(strong) 23P ⇒ 23R.

5.7.2 Energy-Like Functions

We used energy-like functions to develop criteria for atomicity and attraction:
Lyapunov-like or Floyd-like functions are used, depending on the domain

130 5. Invariance, Attraction, Complexity

structure. We review some well-known examples where such functions play
an important role to prove convergence.
Classical Dynamical Systems. In the context of classical dynamical systems,
a fixed point is already an invariant. An attracting fixed point is of course an
attractor. Lyapunov functions are used to prove the convergence of points to
the fixed point [88, 326, 286, 9, 196, 221].
Neural Networks. Neural networks are used as associative memories. Each
stored pattern corresponds to a fixed point or a periodic orbit of the configu-
ration space, and the dynamics of the system has to converge to this attractor
as fast as possible, and from a large enough neighborhood. In this context,
energy-like functions are used to prove stabilization; they also permit to build
optimizing systems [60, 119, 120, 121, 142, 173, 212, 211].
Program Theory. Programs are also studied through invariance and attrac-
tion. A loop is often characterized by an invariant predicate. Convergence
here is finite, and a termination function is used in the same way as energy
functions or Lyapunov functions [91, 93, 109]. When non-halting programs
are needed, like in real-time control systems, invariance is used to denote
“normal” states. When a problem occurs, the system has to enter in a self-
stabilizing mode, viz. a transient dynamics leading back to the invariant,
which is thus attracting [61, 90, 91, 93, 123, 278, 327].

5.7.3 Dynamical Complexity

In nonlinear dynamical systems, papers and books on dynamical complex-
ity are numerous. For instance, see [22, 88, 154, 196, 217, 220, 230, 326]
and reference therein, and [25, 33, 177, 176, 270, 331] more specifically con-
cerning high-dimensional systems. However, the intrinsic difficulty of many
interesting complex dynamical phenomena seems to resist against any precise
definition of what dynamical complexity is. Despite this difficulty, one of the
main motivations of this monograph is the understanding of some complex
phenomena arising in discrete-time dynamical systems. Although we do not
answer to the principal question of defining complexity, we hope that our con-
tribution constitutes a step toward this objective that we share with many
others. Let us review some important directions to characterize complexity.

– Of course, there is “chaos” [9, 88, 154, 181, 326] and related mathematical
definitions based on structural and topological properties.
Chaos does not perfectly fit all of complex behaviors, especially when high-
dimensional systems are considered. In Chap. 8, we will come back on this
problem as a motivation to propose a new classification of cellular automata
behaviors.

– Ergodic theory and measure theory are useful to characterize some complex
behaviors [21, 196, 285]. They offer powerful mathematical tools to evaluate
the disorder introduced in the state space by the evolution of some systems.
Again, the results are not always transferable to all kinds of systems.

5.7 Discussion 131

– Measures from physics and statistical mechanics can be used to evaluate
the complexity of systems, generally by experiments or simulations. For
example, entropy, invariant measures, Lyapunov exponents, fractal dimen-
sion of attractors, which all indicate some complexity [217, 33, 196].

– Finally, lots of interesting results involving number theory have been pub-
lished on the complexity of symbolic sequences. These results can also
be related to symbolic dynamics and coding theory. Among others, see
[11, 12, 202, 268].

Our view is the following: complexity measures from physics provide a
suitable definition of complex behaviors but they often rely on experiments
and do not always result from analytical computations. The idea is to take
“the best of two worlds” (S. Getz): to go as far as possible using analytical
developments that remain compatible with intuition and observation, and to
switch to physical measures to complete the analysis.

We have shown that complex behaviors of a system are closely related to
the observed structure of its invariant. Fullness entails chaos at the level of
symbolic traces (Prop(s). 5.32 and 5.35). Atomicity restricts the amount of
states corresponding to these histories, which leads to topological transitivity
and sensitivity to initial and final conditions (Prop(s). 5.38 and 5.39). Fullness
and atomicity do not entail density of periodic points, but only density of
periodic traces. However, they are sufficient to imply Knudsen chaos.

Attraction can also give information on the complexity of systems. For
example, the size and the number of attractors is important. In §5.6, we
have related invariance and attraction in a unique phenomenon: attraction
by invariants, which reinforces this view. Indeed, in this case, the invariant
structure also characterizes the attractor using fullness and atomicity.

From this, a natural measure of complexity consists in analyzing the inter-
nal structure of attractors [171]. It is clear for example, that fixpoints offer
simpler behaviors than periodic cycles, which in turn appear less complex
than quasi-periodic orbits, and aperiodic ones. In [9], the author builds a
hierarchy of periodic behaviors of dynamical systems, from strict fixpoints to
chain-recurrent points, as fixed (sets of) points of different relations. In [25]
a similar hierarchy of recurrent behaviors is also presented, as complexity
hierarchy of dynamical systems. Fairness (and its many variants, see [110])
can also be introduced between quasi-periodicity and aperiodicity because it
entails a recurrence on states without precision on the amount of time needed
to come back to a given state.

Based on these ideas, we propose in Chap. 8 an attraction-based classifi-
cation of cellular automata behaviors that is used as complexity measure.

6. Compositional Analysis of Dynamical
Properties

In this chapter, we systematically analyze dynamical properties, namely in-
variance and attraction, of composed systems in terms of similar individual
properties of their components.

Dynamical systems were defined in Chap. 2, and we showed how to struc-
ture them with the help of composition operators introduced in Chap. 3.
Abstract observation (see Chap. 4) was used to define invariance and attrac-
tion of relational systems in general (Chap. 5).

We now carry out the analysis of composed dynamical properties us-
ing the principle of compositional analysis: we exhibit interesting phenomena
where complexity arises from composition of very simple components, partic-
ularly using union. This structural composition is of fundamental importance
to understand the complexity of some well-known systems, as illustrated in
Chap(s). 7 and 8.

The chapter is organized as follows. In §6.1, the objectives and results
of the chapter are introduced; §§6.2–6.4 focus on unary operators: inversion,
restrictions, negation; in §§6.5–6.8, we analyze sequential composition, in-
tersection, union quite thoroughly, free product and we discuss connected
product; in §6.9, we combine union and free product; finally, in §6.10, we
close the chapter with a discussion.

6.1 Aims and Informal Results

Compositional Analysis. The goal of compositional analysis is the following.
We want to analyze some qualitative dynamical property G of a dynami-
cal system S. If this system happens to be decomposable into subsystems
S1, · · · , Sn using an operator introduced in Chap. 3, say S = �iSi, its global
analysis, viz. G(S), could be reduced to an appropriate combination of in-
dividual analyses of its components, i.e. �iI(Si). This is summarized in a
standard diagram:

F. Geurts: Abstract Compositional Analysis of Iterated Relations, LNCS 1426, pp. 135-161, 1998.
 Springer-Verlag Berlin Heidelberg 1998

136 6. Compositional Analysis of Dynamical Properties

Si I(Si)

�iSi ·

I

G

� �

Of course, to each system-composition operator “�” corresponds a specific
property-composition operator “�”.

This kind of development looks nicely algebraic. We use it to introduce
the principle here, but we are not able to keep it as clear as this in the
subsequent developments: all properties are not necessarily expressed in an
algebraic way, at least not in such a simple form.

The goal expressed as above is probably too strong, only the I(Si)’s are
used to get the global property G(S). In our case, G and I can return the
invariant of system, information about its structure, like fullness or atomicity,
its attraction properties, and so on. We could soften this requirement and
admit information about the global system and all components in each I(Si),
as far as the amount of information is lower than proving or computing G(S)
globally!

In what follows, we analyze these properties combined with the compo-
sition operators defined in Chap. 3. Difference is omitted simply because we
study negation which does not bring interesting results. Connected product
is just mentioned: its generality cannot be treated analytically. However, in
Chap. 8, we will particularize connected product to cellular automata and,
using complexity measures from physics, we will analyze a class of complex
behaviors. In Chap. 9, the connected product will also be studied as a general
model of classical computational models, and computational properties will
be analyzed by composition.

Properties To Be Analyzed. As a basis for the next sections of this chapter,
let us explain the developments we will carry out. Recall the invariants and
the global attractor of a system are all computed by successive forward or
backward iterations of the set-transformer corresponding to the relational
dynamical system. Fullness and atomicity are directly attached to invariants.
To set notations for the rest of this monograph, we will work with RDS (X, f)
and (X, g). For the products, other systems will be mentioned.

At first, we will compute the “kind” of composed systems, restricting our
attention to simple variant relations. This notion expresses the expanding,
contracting or neutral type of variant relations; it is not very important as
such but it can be used in the assumptions of some theorems.

Then, we will compute two invariants for each case of composition oper-
ator: the greatest potential backward invariant,

Jf
− = ∩if

i(X),

6.1 Aims and Informal Results 137

and the least necessary forward invariant greater than A

J+
f (A) = ∪if

i(A),

with A ⊆ f(A).
The whole space X is the top of the lattice P(X), and the decreasing

iterations of a monotonic set-transformer lead to a non-trivial greatest fix-
point. The bottom of P(X) is the empty set ∅ and successive iterations from
it remain trivially equal to ∅, by excluded miracle. Thus, we have to chose
A �= ∅ that initiates an increasing sequence in order to get a non-trivial least
fixpoint of f .

The greatest potential forward invariant Jf
+ is obtained in a similar way

to Jf
−, i.e. f is replaced by f−1. This permits to get the greatest potential

global invariant Jf .
Fullness and atomicity can then be examined. Given a composed system

f , a covering α and its corresponding alphabet Σ, we want to determine the
properties of Jf , the global potential invariant. Thus, we have to find a way
to compute fi(A) for each i ∈ Σ and A ⊆ X , because theses expressions are
the basis of trace-parametrized invariants, fullness and atomicity.

Finally, attraction is investigated in the same way, whenever possible.
Actually, we focus on the global attractor of the system f , which is Jf

−, the

smallest Q such that X
f
;→ Q.

Informal Results. Among the unary operators, we examine inversion, restric-
tions and negation independently.

– Inversion does not introduce a real perturbation in the system if we consider
duality between past and future, which means we always observe past and
future together. Of course, attraction is treated differently because it is
asymmetric: the inverse of attraction is repulsion.

– Restrictions preserve the properties of a system almost entirely but we
still have to add some assumptions ensuring, for example, the invariant
of a restricted system is equal to the restricted invariant of the system.
In fact, depending on the restricted region of the domain or range of the
system, complexity can decrease or can remain unchanged.

– Negation, on the contrary, gives a completely different system. This leads
to a trivial potential invariant, whereas the necessary invariant has to be
computed as such, without any possible short-cut.

With some n-ary operators, complexity can result from a composition,
even when applied to originally simple systems.

– Sequential composition is not easy to study using only information on the
components. It seems there is no possible short-cut, similarly to negation.
Very often, the composed system has to be studied on its own. A decrease
of complexity is possible.

138 6. Compositional Analysis of Dynamical Properties

– Intersection very much resembles restrictions, at least conceptually, but it
can be much more irregular. The fundamental explanation resides in the
fact that it is not always possible to express f ∩ g as a double (i.e. domain
and range) restriction (g1 → f ← g2), which would come from g = g1× g2.
Using intersection, complexity can decrease.

– Union is very interesting because it allows to add several independent dy-
namics and, thus, to generate more complexity than each independent sys-
tem can. It encompasses many different kinds of behaviors, and deserves a
deep investigation of its invariant structure.

– The free product is interesting because it allows to compose different spaces
as well as different systems, which the previous operators cannot do. The
resulting behavior can be seemingly more complex than the original ones
but it remains easy to analyze: each component can be treated indepen-
dently.

– This is not the case of the connected product, adding explicit interactions
between components. This operator combines spaces, systems, and is of
course able to increase complexity. The problem is that the analysis is
generally quite difficult.

6.2 Inversion

This first case is very simple, and it allows us to propose a duality principle,
w.r.t. time: all properties related to forward set-transformers of systems can
be rephrased about backward versions of inverse systems, and vice versa.

Kind. Under some specific assumptions, if a system f is contracting (expand-
ing), its inverse is expanding (contracting); if f is neutral, its inverse has the
same kind.

Proposition 6.1. Let (X, f) be a simple contracting RDS with contractivity
factor γ(f) < 1, then

γ(f−1) =
1

γ(f)
κ(f−1) = −κ(f).

Proof. We have ∀A,B ⊆ X ,

h(f(A), f(B)) ≤ γ(f) · h(A,B).

It is thus valid for f−1(A) and f−1(B), provided A and B both belong to
Dom(f−1) = Rg(f):

h(f(f−1(A)), f(f−1(B))) ≤ γ(f) · h(f−1(A), f−1(B)).

As A ⊆ Rg(f), f(f−1(A)) = A.

6.2 Inversion 139

Invariance.

Proposition 6.2. The greatest potential backward invariant of f−1 is equal
to the greatest potential forward invariant of f :

Jf−1

− = Jf
+.

Proof. Obvious:

Jf−1

− = ∩i(f−1)i(X) = ∩if
−i(X) = Jf

+.

Combining Proposition 6.2 and its dual, we have the following corollary.

Corollary 6.3. The greatest potential global invariants of a RDS (X, f) and
its inverse (X, f−1) are equal:

Jf−1
= Jf .

In spite of its simplicity, this corollary is very interesting because it allows
us to consider systems or their inverses in the same way: the results are
independent from the direction of evolution. Of course, the same holds for
necessary invariants.

Corollary 6.4. The least necessary global invariants greater than A of a
RDS (X, f) and its inverse (X, f−1) are equal:

J+
f−1(A) = J−f (A).

Structure of Invariants. Past and future traces are exchanged, which does
not influence fullness and atomicity. The only technical addition is the intro-
duction of an inverse covering.

Proposition 6.5. Jf−1
is full (resp. atomic) on a covering α iff Jf is full

(resp. atomic) on the inverse covering α−1.

Proof. Given a covering α = {Ai} of f−1, its alphabet Σ, and one of the
possible transition i, let us compute the first parametrized forward iteration:

f−1
i (A)

= (f−1 ∩Ai)(A)

= (f ∩Ai
−1)
−1

(A)
= fi(A)

where the last i stands for an index in the inverse covering α−1 = {Ai
−1|Ai ∈

α}.

140 6. Compositional Analysis of Dynamical Properties

Attraction. Attraction of the inverse of a relation gives rise to a new defini-
tion, namely attraction to the past or repulsion:

∅ �= (f−1)ω(P) ⊆ Q.

Thus, the criteria proposed in §5.5 apply, provided we reverse the iteration
direction.

6.3 Restrictions

6.3.1 Domain Restriction

Kind. In general, domain restrictions do not change the “kind” of variant
systems:

κ(B → f) ∈ {κ(f), 0}.

Invariance.

Proposition 6.6. If (X, f) is an injective RDS, then the greatest potential
backward invariant of its domain restriction (B → f) is

J
(B→f)
− = ∩if

i(B).

If, moreover, f(B) ⊇ B, then

J
(B→f)
− = f(B).

Proof. By induction on n, we prove that ∀n ≥ 1, (B → f)n(X) =
∩n

i=1f
i(B).

– Basic case n = 1: by Def. 3.3 and Prop. 3.30,

(B → f)(X) = f(B ∩X) = f(B).

– Inductive case: by injectivity of f ,

(B → f)n+1(X) = (B → f)((B → f)n(X))
= (B → f)(∩n

i=1f
i(B))

= f(B ∩ ∩n
i=1f

i(B))
= ∩n+1

i=1 f
i(B).

Thus, J (B→f)
− = ∩n≥1f

n(B). If moreover, B ⊆ f(B), then J
(B→f)
− reduces

to f(B).

6.3 Restrictions 141

Proposition 6.7. If (X, f) is an injective RDS, then the least potential for-
ward invariant greater than A of its domain restriction (B → f) is

J+
(B→f)(A) = ∪n≥1(fn(A) ∩ ∩n

i=1f
i(B)).

Moreover,

J+
(B→f)(A) = f(B) ∩ J+

f (A) if B ⊆ f(B)
J+

f (A ∩B) if f(B) ⊆ B.

Proof. By induction on n, we prove that ∀n ≥ 1, (B → f)n(A) = fn(A) ∩
∩n

i=1f
i(B).

– Basic case n = 1: by Def. 3.3, Prop. 3.30, and injectivity of f ,

(B → f)(A) = f(B ∩A) = f(A) ∩ f(B).

– Inductive case: by injectivity of f ,

(B → f)n+1(A) = (B → f)((B → f)n(A))
= (B → f)(fn(A) ∩ ∩n

i=1f
i(B))

= fn+1(A) ∩ ∩n+1
i=1 f

i(B).

Thus, J+
(B→f)(A) = ∪n≥1(fn(A) ∩ ∩n

i=1f
i(B)). If B ⊆ f(B), this expression

becomes

∪n≥1(fn(A) ∩ f(B)) = f(B) ∩ ∪n≥1f
n(A) = f(B) ∩ J+

f (A).

If f(B) ⊆ B, we have by injectivity of f

∪n≥1(fn(A) ∩ fn(B)) = ∪n≥1f
n(A ∩B) = J+

f (A ∩B).

Structure of Invariants.

Proposition 6.8. J (B→f) is full (resp. atomic) on a covering α iff Jf is full
(resp. atomic) on the domain-restricted covering (B → α).

Proof. Using α and the domain-restricted covering (B → α) = {(B →
Ai)|Ai ∈ α}, we have:

(B → f)i(A)
= ((B → f) ∩Ai)(A)
= (f ∩ (B ×X) ∩Ai)(A)
= (f ∩ (B → Ai))(A).

6.3.2 Range Restriction

Kind. As in the previous case, range restrictions do not change anything to
the “kind” of variant systems:

κ(f ← B) ∈ {κ(f), 0}.

142 6. Compositional Analysis of Dynamical Properties

Invariance.

Proposition 6.9. If (X, f) is an injective RDS, then the greatest potential
backward invariant of its range restriction (f ← B) is

J
(f←B)
− = Jf

−(B) if f(B) ⊆ B ⊆ f(X)
Jf
− if f(B) ∪ f(X) ⊆ B

B if B ⊆ f(B).

Proof. By induction on n, we prove that ∀n ≥ 1, (f ← B)n(X) = fn(X) ∩
∩n−1

i=0 f
i(B).

– Basic case n = 1: by Def. 3.5 and Prop. 3.30,

(f ← B)(X) = f(X) ∩B.

– Inductive case: by injectivity of f ,

(f ← B)n+1(X) = (f ← B)((f ← B)n(X))
= (f ← B)(fn(X) ∩ ∩n−1

i=0 f
i(B))

= fn+1(X) ∩ ∩n
i=0f

i(B).

Then, (f ← B)n(X) can be simplified into

fn−1(B) if f(B) ⊆ B ⊆ f(X)
fn(X) if f(B) ∪ f(X) ⊆ B
B if B ⊆ f(B).

Proposition 6.10. If (X, f) is an injective RDS, then the least potential
forward invariant greater than A of its range restriction (f ← B) is

J+
(f←B)(A) = ∪n≥1(fn(A) ∩ ∩n−1

i=0 f
i(B)).

Moreover,

J+
(f←B)(A) = B ∩ J+

f (A) if B ⊆ f(B)
J+

f (f(A) ∩B) if f(B) ⊆ B.

Proof. By induction on n, we prove that ∀n ≥ 1, (f ← B)n(A) = fn(A) ∩
∩n−1

i=0 f
i(B).

– Basic case n = 1: by Def. 3.5 and Prop. 3.30,

(f ← B)(A) = f(A) ∩B.

– Inductive case: by injectivity of f ,

(f ← B)n+1(A) = (f ← B)((f ← B)n(A))
= (f ← B)(fn(A) ∩ ∩n−1

i=0 f
i(B))

= fn+1(A) ∩ ∩n
i=0f

i(B).

6.4 Negation 143

Thus, J+
(f←B)(A) = ∪n≥1(fn(A) ∩ ∩n−1

i=0 f
i(B)). If B ⊆ f(B), this expression

becomes

∪n≥1(fn(A) ∩B) = B ∩ ∪n≥1f
n(A) = B ∩ J+

f (A).

If f(B) ⊆ B, by injectivity of f ,

∪n≥1(fn(A) ∩ fn−1(B)) = ∪n≥1f
n−1(f(A) ∩B) = J+

f (f(A) ∩B).

Structure of Invariants.

Proposition 6.11. J (f←B) is full (resp. atomic) on a covering α iff Jf is
full (resp. atomic) on the range-restricted covering (α← B).

Proof. Using α and the range-restricted covering (α ← B) = {(Ai ←
B)|Ai ∈ α}, we have:

(f ← B)i(A)
= ((f ← B) ∩Ai)(A)
= (f ∩ (X ×B) ∩Ai)(A)
= (f ∩ (Ai ← B))(A).

6.4 Negation

The case of negation is problematic, which confirms the impression we have
from Prop(s). 3.30 and 3.41. In Chap. 3, we proposed another unary op-
erator called external negation (Def. 3.33). Let us examine it here as its
anti-monotonicity yields interesting results.

Kind. It does not really make sense to compute the kind of the negation of
a RDS since the result does not belong to this class anymore: if f is a closed
subset of X × X , its complement ∼ f is open unless specific topologies are
used. The same argument applies to external negation ¬f .
Invariance. Generally, there is no short-cut to compute the invariant of a
negated system. However, let us state a rather weak proposition about ex-
ternal negation.

Proposition 6.12. Let (X, f) be a RDS. The greatest potential backward
invariant of its external negation ¬f is

J¬f
− = X\f(X).

Proof. Each (¬f)i(X) with i ≥ 1 is equal to an expression of the form

X\f(X\ · · ·)

144 6. Compositional Analysis of Dynamical Properties

and we have:

X\ · · · ⊆ X

* f monot.
⇒ f(X\ · · ·) ⊆ f(X)

* \ anti-monot.
⇒ X\f(X\ · · ·) ⊇ X\f(X)
⇒ ∀i, (¬f)i(X) ⊇ ¬f(X)

⇒ J¬f
− = X\f(X).

Remark 6.13. It is interesting to observe the successive iterations of ¬f
from X . Below, each iteration is represented, and set inclusion appears from
left to right, ending up with X :

¬f(X) ⊆ (¬f)3(X) ⊆ · · · ⊆ (¬f)2n+1(X) ⊆ · · ·
· · · ⊆ (¬f)2n(X) ⊆ · · · ⊆ (¬f)2(X) ⊆ X.

The odd powers of ¬f are below the even powers. Thus, these successive iter-
ations converge to the least fixpoint of (¬f)2 from below, and to its greatest
fixpoint from above.

6.5 Sequential Composition

Kind. It is clear that the following proposition hold (we state it without
proof).

Proposition 6.14. Let (X, f) and (X, g) be two contracting (expanding) re-
lations, then their sequential composition is also contracting (expanding):

κ(f) = κ(g)⇒ κ(f ; g) = κ(f).

The contractivity factor of the composed systems is

γ(f ; g) = γ(f) · γ(g).

Invariance.

Proposition 6.15. Let (X, f) and (X, g) be RDS. If f and g commute, i.e.

∀A ⊆ X, g(f(A)) = f(g(A)) (Com)

then the greatest potential backward invariant of their sequential composition
f ; g is

Jf ;g
− = Jg

−(J
f
−) if g(Jf

−) ⊆ Jf
−

J+
g (Jf

−) if Jf
− ⊆ g(Jf

−),

and symmetrically for f and g swapped.

6.5 Sequential Composition 145

Proof. By induction on n, it is easy to prove that (Com) entails (f ; g)n(X) =
gn(fn(X)) = fn(gn(X)). Thus, we have

Jf ;g
− = ∩ig

i(f i(X)).

Since these iterations are decreasing, the invariant is computed by the limit
of gi(f i(X)), which is equal to the limit of gi(Jf

−).

Proposition 6.16. Let (X, f) and (X, g) be RDS. If (Com) holds, then the
least potential forward invariant greater than A of their sequential composi-
tion f ; g is

J+
f ;g(A) = J+

g (J+
f (A)) if (A ⊆ f(A)) ∧ (J+

f (A) ⊆ g(J+
f (A)))

Jg
−(J

+
f (A)) if (A ⊆ f(A)) ∧ (g(J+

f (A)) ⊆ J+
f (A))

J+
g (Jf

−(A)) if (f(A) ⊆ A) ∧ (Jf
−(A) ⊆ g(Jf

−(A)))
Jg
−(J

f
−(A)) if (f(A) ⊆ A) ∧ (g(Jf

−(A)) ⊆ Jf
−(A))

and symmetrically for f and g swapped.

Proof. Again, assuming that (Com) holds, we have:

J+
f ;g(A) = ∪i(f ; g)

i(A) = ∪ig
i(f i(A))

from which we extract four cases appearing in the proposition.

Attraction. Here, we want to characterize the attraction of f ; g if we know
something about the individual attractions: P1

f
;→ Q1 and P2

g
;→ Q2.

Proposition 6.17. Let (X, f) and (X, g) be RDS. If (Com) holds, P1
f
;→

Q1, P2
g
;→ Q2, and Q1 ⊆ P2, then attraction is transitive, that is,

P1
f ;g
;→ Q2.

Proof. If f and g commute, i.e. if (Com) holds,

(f ; g)ω(P1) = gω(fω(P1)) = gω(Q1).

Then, if Q1 ⊆ P2, the system clearly converges toward Q2, or a part of it.

If a weaker property is verified, another proposition can be stated, the
proof of which is left to the reader.

Proposition 6.18. Let (X, f) and (X, g) be RDS. If (Com) holds and Q1 ∩
Jg

+ ∩ P2 �= ∅, then
gω(Q1) ∩Q2 �= ∅.

146 6. Compositional Analysis of Dynamical Properties

6.6 Intersection

Kind. Concerning intersection, there is no general situation. All combinations
can exist, and in the case of our relational dynamical systems, the result is
often a single point, or a finite set of points, on which the contractivity factor
does not really make sense anymore.
Invariance.

Proposition 6.19. Let (X, f) and (X, g) be injective RDS, and

∀y ∈ Rg(f) ∩Rg(g), f−1(y) ∩ g−1(y) �= ∅. (Int)

If (Com) holds, then the greatest potential backward invariant of their inter-
section f ∩ g is

Jf∩g
− = Jf

−(J
g
−) if f(Jg

−) ⊆ Jg
−

Jg
− if Jg

− ⊆ f(Jg
−)

and symmetrically when exchanging f and g. If ∀A, f(A) ⊆ g(A) holds, then
Jf∩g
− = Jf

−.

Proof. Using a formal language notation to denote successive applications of
f and g, we prove by induction on n that ∀n, (f ∩ g)n(X) = ∩w∈{f,g}nw(X).

– Basic case n = 1: by (Int),

(f ∩ g)(X) = f(X) ∩ g(X).

– Inductive case: by (Int) and injectivity of f and g,

(f ∩ g)n+1(X) = (f ∩ g)(∩w∈{f,g}nw(X))
= f(∩w∈{f,g}nw(X)) ∩ g(∩w∈{f,g}nw(X))
= ∩w∈{f,g}nf(w(X)) ∩ ∩w∈{f,g}ng(w(X))
= ∩w∈{f,g}n+1w(X).

If (Com) holds, then ∩w∈{f,g}nw(X) = ∩n
k=0f

k(gn−k(X)). The particular
cases are obtained easily.

If ∀A, f(A) ⊆ g(A) holds, then ∀w ∈ {f, g}n, fn(X) ⊆ w(X). Thus,
Jf∩g
− = ∩fn(X) = Jf

−.

Proposition 6.20. Let (X, f) and (X, g) be RDS. If (Com) and (Int) hold,
and if f and g are injective, then the least potential forward invariant greater
than A of their intersection f ∩ g is

J+
f∩g(A) = Jf

−(J
g
−(A)) if (g(A) ⊆ A) ∧ (f(Jg

−(A)) ⊆ Jg
−(A))

J+
f (Jg

−(A)) if (g(A) ⊆ A) ∧ (Jg
−(A) ⊆ f(Jg

−(A)))
Jf
−(J

+
g (A)) if (A ⊆ g(A)) ∧ (f(J+

g (A)) ⊆ J+
g (A))

J+
f (J+

g (A)) if (A ⊆ g(A)) ∧ (J+
g (A) ⊆ f(J+

g (A)))

and symmetrically when exchanging f and g.

6.7 Union 147

Proof. By induction on n, it is easy to prove that ∀n, (f ∩ g)n(A) =
∩n

k=0f
k(gn−k(A)). Thus, J+

f∩g(A) = ∪n ∩n
k=0 fk(gn−k(A)). The four par-

ticular cases are summarized in the proposition.

Attraction.

Proposition 6.21. Let (X, f) and (X, g) be RDS. If P1
f
;→ Q1 and P2

g
;→

Q2, then
P1 ∩ P2

f∩g
;→ Q1 ∩Q2.

Proof. The argument is based on monotonicity:

fω(P1) ⊆ Q1

⇒ fω(P1 ∩ P2) ⊆ Q1

⇒ (f ∩ g)ω(P1 ∩ P2) ⊆ Q1

* symmetrically with Q2

⇒ (f ∩ g)ω(P1 ∩ P2) ⊆ Q1 ∩Q2.

6.7 Union

Union of systems is a very important composition because many different
types of combinations between systems and processes can be modeled this
way.

Kind. It is not straightforward to compute the kind of union of systems.
Nevertheless, some cases are very simple: the homogeneous ones

κ(f) = κ(g)⇒ κ(f ∪ g) = κ(f)

or the semi-neutral ones

κ(f) = 0⇒ κ(f ∪ g) = κ(g).

The other cases cannot be solved automatically. A specific study is required
to find the global kind.

Let us prove the first case, which is the most interesting [28].

Proposition 6.22. Let (X, f) and (X, g) be two contracting RDS with con-
tractivity factors γ(f) and γ(g). Their union is also contracting with a con-
tractivity factor γ(f ∪ g) = sup{γ(f), γ(g)}.

Proof. By Prop. 2.64, we know that ∀A,B ⊆ X ,

h(f(A), f(B)) ≤ γ(f) · h(A,B)
h(g(A), g(B)) ≤ γ(g) · h(A,B).

148 6. Compositional Analysis of Dynamical Properties

We have, by Def. 3.15, Prop. 2.60 and the hypothesis, successively:

h(f ∪ g(A), f ∪ g(B))
= h(f(A) ∪ g(A), f(B) ∪ g(B))
≤ sup{h(f(A), f(B)), h(g(A), g(B))}
≤ sup{γ(f), γ(g)} · h(A,B).

Invariance. The assumptions needed to compute union invariants are not as
strong as those required for intersection.

Proposition 6.23. Let (X, f) and (X, g) be RDS. If (Com) holds, then the
greatest potential backward invariant of their union f ∪ g is

Jf∪g
− = J+

f (Jg
−) if Jg

− ⊆ f(Jg
−)

Jg
− if f(Jg

−) ⊆ Jg
−

and symmetrically when exchanging f and g.

Proof. By induction on n, it can be proved that ∀n, (f ∪ g)n(X) =
∪w∈{f,g}nw(X). By (Com), this can be rewritten ∀n, (f ∪ g)n(X) =
∪n

k=0f
k(gn−k(X)). Thus, Jf∪g

− = ∩n∪n
k=0 f

k(gn−k(X)). The particular cases
are summarized in the proposition.

Proposition 6.24. Let (X, f) and (X, g) be RDS. If (Com) holds, then the
least potential forward invariant greater than A of their union f ∪ g is

J+
f∪g(A) = J+

f (J+
g (A)) if (A ⊆ g(A)) ∧ (J+

g (A) ⊆ f(J+
g (A)))

J+
g (A) if (A ⊆ g(A)) ∧ (f(J+

g (A)) ⊆ J+
g (A))

J+
f (Jg

−(A)) if (g(A) ⊆ A) ∧ (Jg
−(A) ⊆ f(Jg

−(A)))
Jg
−(A) if (g(A) ⊆ A) ∧ (f(Jg

−(A)) ⊆ Jg
−(A))

and symmetrically when exchanging f and g.

Proof. It is similar to that of Prop. 6.23, because of the few assumptions
required. So, we prove by induction

J+
f∪g(A) = ∪n ∪n

k=0 f
k(gn−k(A)),

and we get the four cases stated in the proposition.

Structure of Invariants. For the union of relations, many propositions can
be proved, depending upon different combinations of properties. The most
interesting results imply a drastic increase of complexity, by composition of
elementary systems having fixpoint invariants.

The next theorems are all based on a finite union of relations f = ∪ifi.
A unique symbol i is attached to each relation fi. The alphabet Σ contains
these symbols, and the covering is α = {fi|i ∈ Σ}.

6.7 Union 149

Theorem 6.25 (Union invariant-1). Let (X, fi) be contracting RDS such
that ∀i, f−1

i (X) = X. Then, the greatest potential global invariant J of
(X,∪ifi) is full and atomic. The function π : ΣZ �→ J defined by π(σ, τ) =
Jσ,τ for all bi-infinite traces (σ, τ) is continuous.

0

0.5

1

0 0.5 1

Fig. 6.1. Example of system verifying the assumptions of Theorem 6.25

Proof. Since each fi is contracting, ∀A ⊆ X , we have

diam(fi(A)) ≤ γ(fi) · diam(A).

Thus, for any finite word σ ∈ Σ∗,

diam(fσ,(A)) ≤ (sup
i

γ(fi))|σ| · diam(A).

This right expression converges to 0 as |σ| tends to infinity, because ∀i, γ(fi) <
1. Since X is compact and complete, Jσ, = fσ,(X) is not empty and it
contains a unique element. By hypothesis, ∀i, f−1

i (X) = X , which entails
J,τ = f,τ (X) = X, ∀τ ∈ Σω.

Each bi-infinite trace is associated to a unique element, which permits to
define a function

π : ΣZ �→ J
s.t. π(σ, τ) = Jσ,τ .

We have to prove that π is continuous: past traces only are taken into account,
because of the last assumption again,

∀ε, ∀σ, ∃δ, ∀σ′, da(σ, σ′) < δ ⇒ d(π(σ), π(σ′)) < ε.

If σ �= σ′, there exists n such that σ|n−1 = σ′|n−1 but σn �= σ′n. The distance
between these two traces is da(σ, σ′) = 2−n, and we rewrite the traces as
follows: σ = wu and σ′ = wv. The invariant Jσ, is such that

Jσ, = fσ, = fw,(fu,(X)) ⊆ fw,(X);

150 6. Compositional Analysis of Dynamical Properties

the same argument applies for Jσ′, ⊆ fw,(X). Hence, we have

d(Jσ,, Jσ′,) ≤ diam(fw,(X)) ≤ (sup
i

γ(fi))|w| · diam(X)

where |w| = n − 1. Thus, if we know ε, it suffices to compute n = 1 +
ln(ε)−ln(diam(X))

ln(sup
i

γ(fi))
and δ is simply 2−n to get continuity.

Theorem 6.26 (Union invariant-2). Under the assumptions of Theo-
rem 6.25, if in addition

∑

i γi(fi) < 1, then the greatest potential global
invariant J of (X,∪ifi) is totally disconnected.

0

0.5

1

0 0.5 1

Fig. 6.2. Example of system verifying the assumptions of Theorem 6.26

Proof. Let x and y be in J . We choose p such that

diam(J) · (
∑

i

γ(fi))p < d(x, y).

Since J = J−∩J+ is invariant, and J+ = X by the assumption ∀i, f−1
i (X) =

X , we have J ⊆ ∪w∈Σpfw(J) by induction on p.

– Basic case p = 1: by definition of J− and J = J−,

J ⊆ f(J) = ∪ifi(J).

– Inductive case: on case p, we apply the basic case; by monotonicity and
universal disjunctivity of all fi’s, this gives

J ⊆ ∪w∈Σpfw(J)
⊆ ∪w∈Σpfw(∪ifi(J))
= ∪w∈Σp ∪i fiw(J)
= ∪w∈Σp+1fw(J).

6.7 Union 151

We know that for any word in Σp,

diam(fw(J)) ≤ (
∏

i

γ(fwi)) · diam(J).

Let us consider all such components of the invariant:
∑

w∈Σp

diam(fw(J))

≤
∑

w∈Σp

(
∏

i

γ(fwi)) · diam(J)

= (
∑

i

γ(fi))p · diam(J)

< d(x, y).

States x and y are thus further apart from each other than the diameters
of all components of the invariant. Hence, they must be in distinct such
components, that can be as small as desired. Thus, the invariant set is totally
disconnected.

Theorem 6.27 (Union invariant-3). Under the assumptions of Theo-
rem 6.25, if the individual relations fi are injective, and if there exist i �= j
such that the invariants of fi and fj are two different fixpoints, then the
greatest potential global invariant J of (X,∪ifi) is perfect.

0

0.5

1

0 0.5 1

Fig. 6.3. Example of system verifying the assumptions of Theorem 6.27

Proof. Suppose J is not perfect: ∃σ, τ ∈ Σω such that π(σ, τ) is isolated in
J . Since π is continuous, there must be a δ such that π(σ′, τ) = π(σ, τ) for all
σ′ such that da(σ, σ′) < δ. Thus, for n sufficiently large, we set u = σ|niii · · ·
and v = σ|njjj · · ·, so that π(u, τ) = π(v, τ) = π(σ, τ). The first equality
implies

fu,(X) = fv,(X)
fσ|n,(Jfi) = fσ|n,(Jfj)

152 6. Compositional Analysis of Dynamical Properties

and, by injectivity of all fi,
Jfi = Jfj

which contradicts the assumption.

Theorem 6.28 (Union invariant-4). Under the assumptions of Theo-
rem 6.25, if there exists A ⊆ X such that f(A) ⊆ A, all fi are injective
on A, and ∀i �= j, fi(A)∩ fj(A) = ∅, then the greatest potential global invari-
ant J of (X,∪ifi) is totally disconnected and perfect, and the function π is
injective.

0

0.5

1

0 0.5 1

Fig. 6.4. Example of system verifying the assumptions of Theorem 6.28

Proof. Since f(A) ⊆ A, this last set contains the invariant J ⊆ A. The
disjointness assumption applies to J . Injectivity of the fi on A applies to
J , too. Thus, the function π : Σω × Σω �→ J is injective. Indeed, since the
forward images of X are mutually disjoint, this disjointness property remains
valid for successive iterations:

∀u �= v ∈ Σn, fu(X) ∩ fv(X) = ∅.

(This statement is easily proved by induction on n.) Hence, for u and
v two distinct infinite words, there exists n such that u|n �= v|n, and
fu|n,(X) ∩ fv|n,(X) = ∅. Since Ju, ⊆ fu|n,(X) and Jv, ⊆ fv|n,(X), these
trace-parametrized invariants must be different, which implies injectivity of
π.

The set of traces is totally disconnected and perfect, and its image by an
injective function has the same properties.

Corollary 6.29 (Union invariant-5). Under the assumptions of Theo-
rem 6.28, or combining the assumptions of Theorems 6.26 and 6.27, the
greatest potential global invariant J of (X,∪ifi) is a Cantor set.

Proof. The invariant is closed (Prop. 5.8), totally disconnected and perfect
(Theorem 6.28). It is thus a Cantor set (Def. 2.28).

6.7 Union 153

Remark 6.30. – The previous results (6.25 to 6.29) have been obtained
essentially by a conjunction of different results from fractal theory: [328,
Theorems A, D], [159, §§3.1(3), (9)], [140, Theorem 4.3], and [325, Prop.
3.3.4, Cor. 3.3.5]. In the last reference, the author rederives many results
using nonstandard analysis.

– Under the global contraction assumptions of Theorems 6.25-6.29, conver-
gence could also be reached by relaxing the dynamics to fair, i.e. pseudo-
periodic asynchronous, iterations (see pp. 50 and 78).

The following proposition gives under- and upper- approximations of the
invariant Cantor set produced by an iterated union.

Proposition 6.31. Under the assumptions of Theorem 6.28 with two com-
ponent relations f and g, the global invariant of f ∪ g lies in a subspace of
X determined by the individual invariants and their images: this subspace is
bounded by min(Jf , Jg, f(Jg), g(Jf)) and max(Jf , Jg, f(Jg), g(Jf)).

Proof. Relation f alone attracts everything to Jf from everywhere in X ,
even from Jg. applying f twice from Jg will be closer from Jf than applying
it once. Thus, to get the limits of the Cantor set, it suffices to consider the
individual invariants and their images by the other relation.

Attraction. Here, it is interesting to give some counterexamples to very sim-
ple statements, showing how complex union can be, thereby confirming our
previous results on this operator.

Let us imagine that P1
f
;→ Q1 and P2

g
;→ Q2. We would like to have a

proposition like Prop. 6.21, i.e.

P1 ∪ P2
f∪g
;→ Q1 ∪Q2.

Nothing can be said because we do not know how f behaves from P2, nor g
from P1.

Adding the assumption P1 = P2 does not change the result since we do
not know how f behaves from g(P1).

Finally, adding the assumption Q1 = Q2, we get the announced result
but it is not very useful!

Actually, as shown by Theorems 6.25 to 6.36, we need to add some as-
sumptions in order to get something interesting out of union, because the
behavior of this operator can lead to very rich structures. For instance, these
theorems can be restated to emphasize attraction by invariant. In this case,
we know that the attractor has a Cantor set structure, and we know its
maximal boundaries.

154 6. Compositional Analysis of Dynamical Properties

6.8 Products

6.8.1 Free Product

For the free product, the situation is much simpler than for the previous
composition operators, since there is no interaction between the components
composed together.

Kind. By definition, the kind of a free product of systems is obtained by jux-
taposition of the individual kinds in a multidimensional vector. For instance,
in the binary case:

κ(f × g) = (κ(f), κ(g)).

This allows to separate the reasoning on each component whenever possible.

Invariance. No assumptions are needed to compute the invariants of a free
product, due to the clear separation of components.

Proposition 6.32. The invariant of a product of systems is equal to the
product of the invariants of its components:

Jf×g
− = Jf

− × Jg
−

J+
f×g(A×B) = J+

f (A) × J+
g (B).

Proof. The two equalities are based on the following: ∀n, (f × g)n(A×B) =
fn(A)× gn(B). We prove it by induction on n.

– Basic case n = 0:
(f × g)0(A×B) = A×B.

– Inductive case:

(f × g)n+1(A×B) = (f × g)(fn(A)× gn(B))
= fn+1(A)× gn+1(B).

Structure of Invariants. The covering used to observe the dynamics of a sys-
tem defined on a Cartesian product of spaces has to be decomposable to
allow a decomposition of the proof of properties: if h is defined on X×Y , the
covering α defined on it has to be the product of two coverings, αX on X and
αY on Y , respectively associated to two alphabets ΣX and ΣY . Thus, to each
symbol i associated to a part Ai of α, a pair of symbols (j, k) ∈ ΣX × ΣY

must be associated such that j defines a part A′j of αX , k defines a part A′′k
of αY , and Ai = A′j × A′′k . Let us denote this bijective correspondence as
follows: i÷ (j, k). Hence, we have the following proposition.

Proposition 6.33. Jf×g is full (atomic) on α = αX × αY if Jf is full
(atomic) on αX and Jg is full (atomic) on αY .

6.8 Products 155

Proof. We compute one iteration step, which is sufficient to reach the an-
nounced result:

(f × g)i(A×B)
= ((f × g) ∩Ai)(A×B)
= ((f × g) ∩ (A′j ×A′′k))(A×B)
= ((f ∩A′j)× (g ∩A′′k))(A×B)
= (f ∩A′j)(A)× (g ∩A′′k)(B)
= fj(A)× gk(B).

Attraction. Again, the free product offers a very simple way to prove attrac-
tion: it suffices to prove the same property for each component independently.
The following proposition states this in a clear way, the proof of which is left
to the reader.

Proposition 6.34. If P1
f
;→ Q1 and P2

g
;→ Q2, then

P1 × P2
f×g
;→ Q1 ×Q2.

6.8.2 Connected Product

Regarding the properties related to the general connected product ⊗Rgi,
things are much more difficult than for the free product. The problem clearly
comes from the possible interaction between components, as described by R
and by the gi’s:

⊗Rgi(×iAi) �= ×igi(Ai).

In fact, no short-cut is possible in general, and a case by case study as to be
carried out. To illustrate this, let us consider a simple example.

Example 6.35. Take two relations f ∈ R(X,V) and g ∈ R(Y,W). Their
connected product f⊗R g can be represented by R(1) = {1} and R(2) = {1, 2}.

Here follow the first iteration steps leading to the greatest potential backward
invariant:

1 : (f ⊗R g)(V ×W)
= f(ΠR(1)(V ×W))× g(ΠR(2)(V ×W))
= f(V)× g(V ×W)

2 : (f ⊗R g)2(V ×W)
= f2(V)× g(f(V)× g(V ×W)).

Certain classes of connected products could be analyzed in a composi-
tional way, depending upon whether this sort of expression could be easily
simplified or not. This is left for future work.

156 6. Compositional Analysis of Dynamical Properties

6.9 Combining Union with Free Product

This section briefly updates the list of union invariant theorems presented in
§6.7, by considering unions of free products of systems.

Theorem 6.36 (Union invariant-6). Let (X, f) and (X, g) be two com-
patible RDS, viz. κ(f) = κ(g), with distinct full and atomic greatest potential
global invariants. Assume f = ×ifi, g = ×igi, and ∀i,
– (Xi, fi) and (Xi, gi) are injective RDS,
– either γ(fi) + γ(gi) < 1 and f−1(Xi) = g−1(Xi) = Xi,
or γ(f−1

i) + γ(g−1
i) < 1 and f(Xi) = g(Xi) = Xi.

Then f ∪ g has a full and atomic greatest potential global invariant with a
Cantor-set structure.

Proof. Since f and g can be decomposed into relations that pairwise verify
the assumptions of Theorems 6.25, 6.26, and 6.27, the result is obtained using
Prop(s). 6.32 and 6.33.

Let us rephrase this theorem informally. Complexity (fullness and atom-
icity) is preserved by union composition of compatible systems having dif-
ferent complex invariants. An interesting particular case of this theorem can
be stated when the individual components are degenerate complex systems,
i.e. the individual invariants are just fixpoints as in Cor. 6.29. In this case,
the result of union composition is also a complex system having a Cantor-set
structure.

Corollary 6.37 (Union invariant-7). Let (X, f) and (X, g) be two com-
patible RDS, that is, κ(f) = κ(g), with distinct greatest potential global in-
variants, such that f = ×ifi, g = ×igi, and ∀i,
– (Xi, fi) and (Xi, gi) are injective RDS,
– γ(fi) + γ(gi) < 1 and f−1(Xi) = g−1(Xi) = Xi

or γ(f−1
i) + γ(g−1

i) < 1 and f(Xi) = g(Xi) = Xi,
– Jfi and Jgi are fixpoints invariants,

then f ∪ g has a full and atomic greatest potential global invariant with a
Cantor-set structure.

6.10 Discussion

In this section, we first summarize the compositional results of this chap-
ter, and discuss the main assumptions needed to achieve them; second, the
limitations and open problems of the approach are emphasized; third, we
present some related work; finally, we recall informally how complexity can
emergence by composition.

6.10 Discussion 157

6.10.1 Compositionality: Summary

After the elaboration of a framework including relational dynamical systems,
composition operators leading to structured systems, and the presentation
of their dynamical properties, we investigated here the main question of this
monograph, that is, the compositional analysis of dynamical systems, or in
other words, the link between the structure of systems and their dynamical
properties.

This led to original results allowing to deduce systematically global dy-
namical properties (e.g. invariants, and their structure) from local ones. They
are summarized in Table 6.1: “ok” means that compositionality holds; “/”
means that we could not derive interesting results by compositional analysis
assuming reasonable hypotheses; otherwise, the main assumption(s) needed
to achieve compositionality are recalled.

Table 6.1. Compositional analysis of dynamical properties: summary

Operator Invariance Structure Attraction
−1 ok α−1 repulsion

(→) injectivity (→ α) /
(←) injectivity (α←) /
∼, \ / / /
¬ ok / /
; (Com) / (Com)
∩ (Int) ∧ (Com) / ok

∪ (Com) ok /
× ok αX × αY ok
⊗ / / /

In particular, we carried out the in-depth analysis of union. The diagram
of Fig. 6.5 summarizes the results and shows their interrelations: each arrow
stands for a logical implication, due to specific assumptions. As we shall see in
Chap. 7, union is indeed fundamental in the study of many classical examples,
like Smale’s horseshoe map, Cantor’s middle-thirds relation, and the logistic
map.

Finally, we have evidenced a generic way to get complexity out of simple
systems (see Cor. 6.37): it suffices to compose these systems in an adequate
way, under some conditions: provided the subsystems have compatible dy-
namics attracting the global state space to different structured invariants,
complexity emerges from their composition.

6.10.2 Limitations and Open Problems

Table 6.1 is useful to emphasize some current limitations and open problems
of the compositional analysis of dynamical properties we have developed.

158 6. Compositional Analysis of Dynamical Properties

UI − 1

UI − 2 UI − 3
| {z }

UI − 6 UI − 4

UI − 7 UI − 5

Fig. 6.5. Union-invariant theorems: summary

Negation and Difference. These operators are quite difficult to study in a
compositional way, the main reason being they do not preserve the funda-
mental characteristic of RDS (closed relations), apart from specific topologies
where sets are both open and closed. For the same reason, this limitation is
not too restrictive. Nevertheless, the special anti-monotonic case of external
negation should be analyzed in greater details.

Connected Product. This operator is also difficult to analyze in general, al-
though it is essential in the construction of many interesting families of dy-
namical systems: neural networks [116, 290], cellular automata (see Chap. 8),
etc.

The principal source of problems in compositional analysis of connected
products is the explicit interaction between components described by the
neighborhood relation. This relation can take many aspects and its structure
strongly influences the global behavior of the product.

To overcome this limitation, we study particular cases of connected prod-
ucts, which offer promising results.

– In Chap. 8, attraction properties and specific compositions of cellular au-
tomata are studied. There, a homogeneous neighborhood relation limits
the interaction to a small number of neighbors.

– In Chap. 9, computational properties of a general model based on the con-
nected product are analyzed by composition. This model can be instanci-
ated to Turing machines, cellular automata and continuous functions.

Structure of Invariants. In some cases, e.g. for sequential and intersection
compositions, the structure of invariants cannot be obtained by simple com-
position of the invariant structure of their components.

Weaker versions of fullness and atomicity should be proposed and inves-
tigated, provided they still lead to qualitatively equivalent properties.

For example, instead of requiring the relation between traces and states
to be universally satisfied, i.e. ∀(σ, τ) ∈ ΣZ,#Jσ,τ · · ·, we could ask for a
sufficient density of such traces, e.g. ∀(σ, τ) ∈ A,#Jσ,τ · · ·, with A being

6.10 Discussion 159

dense in ΣZ. The challenge would then consist in preserving this density
among composition.

Attraction. This property is often difficult to analyze, in a great majority
of useful composition operators. This type of limitation is also mentioned in
parallelism semantics, where the authors acknowledge the difficulty to achieve
liveness in a compositional way, as far as interesting composition operators
are concerned, i.e. where components can interact (union, synchronization,
connected product) [1, 67].

Thus, the main challenge for the future of compositional analysis of dy-
namical systems is probably a deeper study of attraction properties, including
reachability and potential attraction.

6.10.3 Related Work

Studying systems by decomposing them into simpler pieces and composing
the individual results so as to obtain the global analysis is not new. Some
ideas have already appeared in different disciplines, not always explicitly
mentioning composition as a method.

General Scheme. A general hierarchical decomposition of complex systems
is presented in [69].

Rewriting Systems. For some automata and term rewriting systems, termi-
nation, viz. finite-time attraction, is analyzed by composition in [94, 86, 247].

Theory of Programs. Transition systems analysis, parallel programs design
and construction can be helped using a compositional approach [329, 19, 179,
299, 1, 67]. A relational framework for studying the semantics of programs is
based on composition operators in [245, 246].

Dynamical Systems. Dynamical systems have not been studied by a compo-
sitional approach very often. Only a few references can give some first steps,
e.g. [265, 300]. Nevertheless, in the context of fractals, composition appears
implicitly in [328, 159, 140, 28, 325].

Cellular Automata. Cellular automata are sometimes regarded under alge-
braic means as composed systems, see [113, 317] for a detailed study of these
aspects. Moreover, compositional aspects closer to our ideas have been pro-
posed in [53, 316, 49].

Neural Networks. These systems can be seen as instances of connected
products. Only a few authors have tried to study complex neural nets
as composed from elementary systems. The principal references here are
[251, 252, 253, 254, 255, 318, 319, 321].

160 6. Compositional Analysis of Dynamical Properties

Algorithmic Information Theory. This theory defines the complexity of a
finite symbol sequence as the size of the smallest program able to generate
this sequence [43, 56, 84, 199].

In [85] the author studies the complexity of sequences under composition.
The results stated apparently contradict our results in that they generally ex-
press a decrease of complexity when sequence are composed together. This is
normal because a common pattern or part of two component sequences can be
generated using the same subprogram, which reduces the global complexity.

To reach the same results using our approach, it would be very interesting
to evaluate the complexity of observed sequences as the compositional or
structural complexity of generative systems, instead of looking at properties
of invariant and attractors.

Preliminary Steps of the Approach. In [286], the first steps toward the present
technical framework are given, including a discussion of potential develop-
ments including compositional properties. These ideas have then been devel-
oped in [116, 289, 101, 290].

6.10.4 Emergence of Complexity by Structural Composition

In this chapter, we examined several composition operators applied to dy-
namical properties such as invariance, structure of invariants, and attraction.

Let us summarize here (see Table 6.2) their behavior w.r.t. complexity,
that is, properties of invariants and attractors. In general, complexity can be
measured by the diversity of traces a system can show. Fullness and atomicity,
as well as the number and the structure of attractors, are important indices
of this kind of behavior.

Table 6.2. Complexity w.r.t. composition operators

Operators Complexity
−1, (→), (←), ; ,∩ = or ↘

∪,×,⊗ = or ↗
∼, \ ?

– Some operators cannot increase complexity: inversion, restrictions, sequen-
tial composition, and intersection.

– Some operators cannot decrease complexity: union, free product.
– Negation can lead to a totally different system; it can thus dramatically

increase complexity, but it can also decrease complexity.
– As to connected product, no general proof could be given but we suspect

that, assuming non-trivial components and neighborhood relations, the
operator falls in the second group: they cannot decrease complexity.

6.10 Discussion 161

Let us come back to the second group and concentrate on union and free
product. These operators are very simple: union corresponds to set-theoretic
union of images of some systems, free product is a Cartesian product of
relations, that is, without any interaction between components. However,
despite their simplicity, they can generate complex behaviors, and we will
see in the next chapter that they prove most useful in the analysis of some
classical examples of complex systems.

The general way to generate complexity using these operators is to com-
pose systems having compatible behaviors on the same subspaces (viz. axes),
but attracting (in the future or in the past) the global state space to different
(full and atomic) invariants.

In the following chapter (Chap. 7), we will show that some formal systems
also fulfill the conditions for emergence of complexity, without any modifica-
tion of the theory presented above.

Cellular automata will then be studied (see Chap. 8), as examples of
connected products, but to show that complexity can arise for the same
reasons as the ones stated above, we will have to add some physical measures
to our theorems. Nevertheless, using these additional complexity measures,
we will arrive at the same conclusions.

7. Case Studies: Compositional Analysis of
Dynamics

This chapter is devoted to four case studies in the compositional analysis
of dynamical properties. The first three studies are classical prototypes of
complex systems: Smale horseshoe map, Cantor relation, logistic map. The
last one is a well-known formal system generating paperfolding sequences.

The analysis of complex dynamical systems can be carried out by compo-
sition in a clear and effective way, whereas, classically, the analysis of these
systems can take several pages of cumbersome developments.

In the examples, the compositional analysis yields known results. We show
how to combine different types of composition described up to now, and their
properties. We also see that a top-down analysis of dynamical systems is
possible with an appropriate decomposition of the system into simpler ones.

The four systems are regarded as union and product compositions of
elementary systems. In each case, using the results of Chap. 6, the complex
dynamics can be explained by a rich structure of the respective invariants,
which are full and atomic.

The present chapter is organized as follows: we briefly introduce our ex-
amples in §7.1; we successively analyze the Smale horseshoe map, the Cantor
relation, and the logistic map in §§7.2–7.4; paperfoldings are then studied in
§7.5; finally, we close the chapter with a discussion in §7.6.

7.1 A Collection of Complex Behaviors

Let us briefly explain the reasons why the examples we have chosen deserve
attention. By the way, we also refer the interested reader to [138, 118, 279]
for the missing historical references that complete our presentation.

Smale Horseshoe Map. This two-dimensional system is important because it
constitutes a paradigmatic example of chaotic behavior. Indeed, sensitivity
to initial conditions results from successive stretching and folding of the state
space. This process yields mixing via filamentation, as a baker who kneads
a blob dough [293]. Many other chaotic systems like Lorentz equations [207]
or Hénon map [145], are also subject to mixing via such spatial deforma-
tions, which seem to be important factors of complexity (see also Ex(s). 3.23
and 5.65, which show the same behavior). We analyze this phenomenon by

F. Geurts: Abstract Compositional Analysis of Iterated Relations, LNCS 1426, pp. 163-181, 1998.
 Springer-Verlag Berlin Heidelberg 1998

164 7. Case Studies: Compositional Analysis of Dynamics

rewriting the system as a union of two products, and explain it by using the
union-invariant theorems detailed in Chap. 6.

Cantor Relation. This system is interesting because it generates the well-
known Cantor middle-thirds set as invariant. This set is a typical example of
fractal, and its properties have been subject to many studies for more than a
hundred years [96, 28]. Despite its nondeterminism, it can be treated easily in
our relational framework: it suffices to reverse the execution, and to consider
past invariance instead of future invariance. Of course, the global invariant
takes both directions into account, which permits to hide any consideration
of time direction. Union is again the appropriate composition operator to
study this system.

Logistic Map. This is a typical example of one-dimensional chaotic system:
every textbook on dynamical systems uses it as running example [28, 88, 154].
Again, we analyze it compositionally. However, our objective here slightly
differs from the first examples: we merely want to show that the compositional
analysis of the logistic map can be obtained as a by-product of the analysis
of the Cantor relation. We voluntarily remain at an informal level, but we
give intuitively clear transformation steps allowing to transfer the analysis
from one system to the other one.

Paperfoldings. Finally, we concentrate on the dynamics of formal systems.
A specific family serves as introductory example: paperfoldings. These seem-
ingly funny systems are important for three reasons.

The fractal curves they generate can be used in fractal image compression
processes, and correspond to natural morphogeographic patterns [279].

The folding process physically realizes an equivalent transformation to
Smale’s “stretch-and-squeeze” horseshoe map. It is thus not surprising to
find the same complexity in paperfolding sequences as in the behavior of
horseshoe-like maps.

Studying formal systems as dynamical systems is not frequent [73, 77,
268], even though formal systems are often used to characterize dynamical
properties of systems (e.g. see §5.7.1 and [205, 11]). This simple but promis-
ing example illustrates how apparently disjoint fields can enrich each other.
Many formal systems could be analyzed by composition of dynamical sys-
tems: formal grammars, L-systems, dynamic proofs, etc.

7.2 Smale Horseshoe Map

The first example we analyze is a simplified version of the classical “Smale
horseshoe map” [292, 293]. We suggest the interested reader to follow [326,
§4.1, pp. 420–437] in parallel to compare a classical analysis with our com-
positional analysis.

7.2 Smale Horseshoe Map 165

The System. Before presenting the system itself, let us fix some parameters.
Let 0 < λ < 1

2 and 0 < 1
µ < 1

2 . We choose λ = 1
3 and 1

µ = 1
3 .

The function f , defined on [0, 1]2, reads

f(x, y) =
{

(λx, µy) on H0 = Ax ×By

(−λx+ 1,−µy + µ) on H1 = Ax × Cy

with the following notational conventions:

Ax = [0, 1]
Ay = [0, 1]

By = [0,
1
µ
]

Cy = [1− 1
µ
, 1]

D = Ax ×Ay ;

moreover, two horizontal rectangles are defined in D:

H0 = Ax ×By

H1 = Ax × Cy .

The domain D = [0, 1]× [0, 1] is represented in Fig. 7.1.

y

H1

H0

D

Cy

By

x

Ay

Ax

Fig. 7.1. Domain decomposition

The graphical representation of f appears in Fig. 7.2. The shape of the
codomain explains why f is said to be horseshoe-like. A second iteration from
D is also represented in Fig. 7.3. Observe the ongoing filamentation.

An Adequate Decomposition. We remark that the state spaces are disjoint: x
and y act independently. How can we decompose f into simpler components?
An easy way to do it is the following:

f = f0 ∪ f1

166 7. Case Studies: Compositional Analysis of Dynamics

H0

H1

Fig. 7.2. Effect of f on [0, 1]2: y-stretch, x-squeeze, fold

f f f
. . .

Fig. 7.3. Successive iterations of f from [0, 1]2

with
f0 = R× S on H0

f1 = V ×W on H1

and (see also Fig. 7.4):

R(x) = λx on Ax

S(y) = µy on By

V (x) = −λx+ 1 on Ax

W (y) = −µy + µ on Cy.

Individual Analyses. Since λ < 1
2 , components R and V are contracting in

the future. Their contractivity factors are

γ(R) = γ(V) = λ.

In the same way, since µ > 2, S and W are expanding in the future, with
contractivity factors

γ(S) = γ(W) = µ.

7.2 Smale Horseshoe Map 167

R

0

0.5

1

0 0.5 1

S

0

0.5

1

0 0.5 1

V

0

0.5

1

0 0.5 1

W

0

0.5

1

0 0.5 1

Fig. 7.4. Graphs of R, S, V , and W

Thus, the individual kinds are

κ(R) = κ(V) = −

and
κ(S) = κ(W) = +.

The individual invariants are easily computed. They are simple fixpoints:

JR = 0
JS = 0

JV =
1

1 + λ

JW =
µ

1 + µ
.

Compositional Analysis. The two products R× S and V ×W are hyperbolic
systems, i.e. systems which are contracting in opposite temporal directions
(past or future) on different axes.

However, the two subsystems f0 and f1 have compatible dynamics,

κ(f0) = κ(f1) = (−,+).

Their invariants are distinct fixpoints:

Jf0 = (0, 0)

Jf1 = (
1

1 + λ
,

µ

1 + µ
),

by Prop(s). 6.32 and 6.33.

168 7. Case Studies: Compositional Analysis of Dynamics

To characterize the global invariant Jf of f , and its structure, we can thus
use Cor. 6.37 whose assumptions are verified. The conclusion is: the invariant
of the Smale horseshoe map f is full, atomic, and has a Cantor set structure.

Partial Conclusion. Let us summarize the analysis of this first example. We
have here a structurally simple system principally based on a combination of
linear pieces, union and free product, which shows a complex dynamics. Our
approach offers a short and clear analysis, though many complicated proofs
appear in the literature. Actually, it is “too simple” for the approach because
it is only functional, there is no real relation involved. Let us turn to the next
example, based on a relation.

7.3 Cantor Relation

The next example is a relation generating the Cantor middle-thirds set as
attracting invariant set. We have already presented this set (see Ex. 2.29)
and the way to obtain it (Ex(s). 5.49, 5.62, 5.64). In these examples, we have
proved that the relation generating this set has a full, atomic, invariant set,
using criteria defined in Chap. 5. Here, we will obtain the same result by
compositional analysis of the system.

The System. System f is built on two elementary functions defined on the
interval [0, 1], represented in Fig. 7.5 and formally defined as follows:

f0(x) =
x

3

f1(x) =
x

3
+

2
3
.

0

0.5

1

0 0.5 1

Fig. 7.5. Graph of f0 ∪ f1

The union of these two functions leads to the Cantor relation:

f = f0 ∪ f1.

7.4 From Cantor Relation to Truncated Logistic Map 169

Individual Analyses. The kinds of f0 and f1 are identical: they are both
contracting in the future, i.e.

κ(f0) = κ(f1) = −.

The contractivity factors are:

γ(f0) = γ(f1) =
1
3
.

Function f0 has a fixpoint invariant, Jf0 = 0, and function f1 has also a
fixpoint invariant, Jf1 = 1. These invariants are different.

Compositional Analysis. All assumptions of Theorem 6.28 and its corollary
(Cor. 6.29) are verified. Hence we get as invariant of the composed system, a
full and atomic invariant which is a Cantor set.

7.4 From Cantor Relation to Truncated Logistic Map

Here, we do not pretend to give a complete study of the logistic map since
it is treated in almost every textbook on dynamical systems (e.g. [88, 154]).
We analyze the invariant structure of this classical dynamical system as in
the two previous cases. However, this analysis slightly differs from the first
two ones.

We derive the result from the analysis of the Cantor relation, by giving
transformation steps that all preserve the assumptions of union-invariant the-
orems. Indeed, a very important property in the study of dynamical systems
is the stability of systems under small changes or perturbations; structural
stability and perturbation theory provide the theoretical foundations of trans-
formations like the ones applied below (see e.g. [88, §1.9] and [264]).

The System. The logistic map is defined on [0, 1] as follows:

g(x) = λx(1 − x).

When the parameter λ increases, the dynamics of this system varies from
very simple (fixpoint attraction, for λ close to 0) to very complex (chaos, for
λ ≥ 4).

Let us show how the qualitative compositional analysis of the chaotic
truncated logistic map (e.g. with λ = 5) can be obtained from the Cantor
relation.

Transformation Steps. Successive transformations can be applied to the first
system, that all preserve initial qualitative properties (see Fig. 7.6, (1)–(4)):

170 7. Case Studies: Compositional Analysis of Dynamics

1. starting from the Cantor relation

f = (
x

3
)

︸︷︷︸

f0

∪ (x + 2
3

)
︸ ︷︷ ︸

f1

,

2. we first reverse the upper branch

(
x

3
)

︸︷︷︸

f0

∪ (1 − x

3
)

︸ ︷︷ ︸

f2

;

3. then we invert the whole system

(3x)
︸︷︷︸

f−1
0

∪ (3 − 3x)
︸ ︷︷ ︸

f−1
2

;

(1)

0

0.5

1

0 0.5 1

(2)

0

0.5

1

0 0.5 1

(3)

0

0.5

1

0 0.5 1

(4)

0

0.5

1

0 0.5 1

(5)

0

0.5

1

0 0.5 1

(6)

0

0.5

1

0 0.5 1

Fig. 7.6. From left to right and top to bottom: (1) Cantor relation, (2) reversing
the upper branch, (3) inverting the system, (4) folding and smoothing, (5) zooming
(logistic map with λ = 5); (6) fully chaotic logistic map (with λ = 4).

7.4 From Cantor Relation to Truncated Logistic Map 171

4. finally, we fold-and-smooth this piecewise linear relation, and... we get
the truncated logistic map

g = g0 ∪ g1

g0(x) = ([0,
5− (5)

1
2

10
]→ 5x(1− x))

g1(x) = ([
5 + (5)

1
2

10
, 1]→ 5x(1− x)).

Remark 7.1. The last step is not obtained by magic! It suffices to replace
x by 5

3x(1 − x) in f−1
0 , and by 1 − 5

3x(1 − x) in f−1
2 . Of course, these two

transformations add a quadratic aspect to the dynamics.

Validation of the Transformations. Let us now briefly explain why these suc-
cessive steps preserve the qualitative analysis.

1. Initially, all assumptions of Theorem 6.28 are verified:
– ([0, 1], x

3) and ([0, 1], x+2
3) are contracting with γ = 1

3 ;
– (x

3)
−1([0, 1]) = (x+2

3)−1([0, 1]) = [0, 1]; (x
3 ∪

x+2
3)([0, 1]) ⊆ [0, 1];

– each component is injective on [0, 1];
– x

3 ([0, 1]) ∩
x+2

3 ([0, 1]) = ∅.
The individual invariants are Jf0 = 0 and Jf1 = 1. Thus, as we know
from §7.3, the original system has a full, atomic, Cantor-set invariant.

2. Changing x+2
3 into 1 − x

3 does not change anything qualitatively, since
the contractivity factor γ remains equal to 1

3 .
Of course, the localization of the resulting Cantor-set invariant varies,
due to the new fixpoint invariant of the upper branch: Jf2 = 3

4 (see
Prop. 6.31).

3. Inverting the system swaps past and future, but the global invariant is
left unchanged. The kind becomes expanding and the contractivity factor
becomes γ = 3.

4. The last step brings slight perturbations. The contractivity factors of
both components become γ = (5)

1
2 (see Ex. 5.50). The individual in-

variants respectively become 0 and 4
5 ; these invariants are repulsing fix-

points. Nothing else is changed, and the global analysis remains valid.
The last justification holds because the transformations needed to get
the quadratic branches from the linear ones are very regular.

Remark 7.2. If we decrease λ down to 4 to get the classical fully chaotic
map (see Fig. 7.6, (4)–(6)):

4x(1− x),

there is one modification that actually restricts the application of Theo-
rem 6.28.

The first map can be decomposed into two simple variant relations be-
cause, on the interval [0, 1], the absolute value of the derivative of the map is
always greater than 1; hence, both branches are expanding.

172 7. Case Studies: Compositional Analysis of Dynamics

When λ decreases, the central part between λ−1
2λ and λ+1

2λ has an absolute
derivative smaller than 1. Even if the central part can be cut into two pieces,
one for each branch, the theorem cannot be used anymore as such, because
there are two different kinds per component. Other methods can be used, like
symbolic dynamics, to investigate these limit cases [88].

7.5 Paperfoldings

In this section, we show how our approach can be used to study formal
systems. As an example, we concentrate on a formal system describing infinite
paperfoldings. Thus, the compositional analysis of dynamical systems does
not only apply to classical systems, it also encompasses formal systems and
generative or rewriting systems.

7.5.1 Introduction

A paperfolding sequence is the sequence of ridges and valleys obtained by
unfolding a sheet of paper which has been folded infinitely many times.

Paperfolding sequences and their complexity have been studied by several
authors, using formal power series, continued fractions, language theory and
morphisms, measure theory, group theory, etc. [10, 13, 14, 36, 80, 83, 219,
218].

The folding process behind the abstract mathematical terms used to de-
scribe these infinite symbolic sequences has been analyzed in another field:
hyperbolic dynamical systems [326, 34, 250]. For example, Smale’s “stretch-
and-squeeze” horseshoe map shows a typical chaotic behavior due to iterative
folding of its underlying state space (see §7.2).

Inspired by these results, we propose a way to characterize the complexity
of paper folding sequences as in the behavior of horseshoe-like maps and other
chaotic dynamical systems: we consider paper foldings as dynamical systems.
Up and down foldings correspond to very simple dynamical systems defined
on the space of infinite sequences of valleys and ridges. Mixing up and down
foldings is shown the be equivalent to composing the corresponding systems
in an adequate way. The composed system has an invariant which is the set
of all possible sequences. Using composition, we prove that this invariant is a
Cantor set, on which the system behaves in a chaotic way. Again, composition
is used as a tool to explore the complexity of systems. The approach allows
to treat complexity has a structural property of some systems, which avoids
long technical developments usually found in classical references.

This section is organized as follows: we first present the formal definition
of paperfoldings and paperfolding sequences; we then analyze foldings as dy-
namical systems, which are found to be chaotic on a Cantor set; finally, we
draw some partial conclusions.

7.5 Paperfoldings 173

7.5.2 Paperfolding Sequences

A folding action can be either up (U) or down (D) (see Fig. 7.7); an instruc-
tion is a sequence of actions; the set of instructions is denoted by J . The

U

D

V

Λ

Fig. 7.7. Two possible foldings, up (U) and down (D), and the resulting profiles
V and Λ

elementary result of a folding action is a profile; it can be either a valley (V)
or a ridge (Λ); a landscape is a sequence of profiles; the set of landscapes is
denoted by L.

Let {U,D} and {V,Λ} be alphabets, we use the following notations:
J n/∗/ω = {U,D}n/∗/ω and Ln/∗/ω = {V,Λ}n/∗/ω.

Not all landscapes are “legal” in the sense they should be obtainable
by successive folding actions. Let us give the recursive definition of “legal”
landscapes, that is, paperfolding sequences [14].

Definition 7.3 (Paperfolding sequence). The infinite word (wn)n≥1 ∈
Lω is a paperfolding sequence iff ∀n ≥ 0

w4n+1 = V (resp. Λ)

w4n+3 = Λ (resp. V)

and (w2n)n≥1 is a paperfolding sequence, too.

We now turn to the iterative construction of legal landscapes. From an
empty landscape ε, i.e. a clean paper, folding up or down leads to a folded
paper, nothing else. We must unfold this paper in the reverse order to get
a new landscape. Thus, the first point to make precise is what we call an
“action” does not really correspond to the folding alone, nor to the unfolding
alone, but to both folding then unfolding in the reverse order.

Now, we would like to characterize the semantics of the expressions of the
language J ∗(L∗). Let us first apply U or D to the finite landscape obtained
after a finite instruction.

174 7. Case Studies: Compositional Analysis of Dynamics

Intuitively (see Fig. 7.8), a folding action consists in inserting between
each profile another profile, since all existing ones lie at the borders of the
folded paper (B’s in the figure) and the folding takes place in the middle of

B

M

B

Fig. 7.8. A folded landscape after UD

the folded paper (M in the figure, under the arrow). Of course, the extreme
borders do not represent anything in the landscape. Formally, we have the
following definition.

Definition 7.4 (Paper folding construction – 1). Let w = w1w2 · · ·wn

be in L∗, i.e. ∀i, wi ∈ L; then

U(w) = V if w = ε
= V w1Λw2V · · ·V wnΛ if n is odd
= V w1Λw2V · · ·ΛwnV if n is even;

D(w) = Λ if w = ε
= Λw1V w2Λ · · ·ΛwnV if n is odd
= Λw1V w2Λ · · ·V wnΛ if n is even.

Secondly, we extend these definitions by composition to get J ∗(L∗), i.e.
finite instructions applied to finite landscapes.

Definition 7.5 (Paper folding construction – 2). For a ∈ {U,D},W ∈
J ∗, w ∈ L∗, we have:

ε(w) = w

aW (w) = W (a(w))
Wa(w) = a(W (w)).

Remark 7.6. Let us notice that there exists a couple of morphisms u and
d related to U and D in the following sense: after a sequence of foldings,
the paper is “virtually” folded but what we see is a clean paper (again, see
Fig. 7.8); when we unfold this paper in the reverse order, this generates a
sequence of landscapes converging to the unfolded landscape given by the
previously defined operators.

7.5 Paperfoldings 175

More formally, let us assume that we execute from a clean paper ε the
sequence of actions given by the word W . We call w the resulting land-
scape, i.e. w = W (ε). Since W = W1W2 · · ·Wn ∈ J ∗, we rewrite it as
w = Wn(· · ·W2(W1(ε)) · · ·). Let us denote the “clean folded paper” as ε′.
Unfolding the paper using the mirror image of W gives:

ε′
dWn−→ wn

\Wn−1−→ · · · dW1−→ w1

where bU = u, bD = d, and w1 = w. The morphisms u and d are defined by

w
u−→ wV w

w
d−→ wΛw

where w is defined, for all w ∈ L∗, w′ ∈ {V, Λ}, as follows: with bV = Λ and
bΛ = V ,

ε = ε

w′w = wcw′.

Intuitively, since u corresponds to one step of unfolding corresponding to
an application of U , it is easy to explain the action of u: when a landscape
w is up-unfolded, a V appears in the middle, the word w is still on the left,
and its reverse mirror image (w) appears on the right side of the landscape.
Successive unfoldings lead to the landscape obtained by a direct application
of U .

Finally, extending instructions and landscapes to infinity is straightfor-
ward, using the classical continuous limit of finite embedded sequences of
increasing length.

A partial order can be defined on words: ∀u ∈ Σ∗, v ∈ Σ∗ ∪ Σω, (u �
v)⇔ (∃w ∈ Σ∗ ∪Σω, uw = v). In this case, u is a prefix of v. Moreover, u is
a strict prefix of v, u ≺ v, if u �= v. All finite prefixes of a word constitute a
total order. It is also a complete lattice: (u�v = u)⇔ (u � v)⇔ (u�v = v).
Thus, every �-increasing chain (wi)i as a unique least upper bound �iwi.

Let us fix w ∈ Lω . For each n, w|2n−1 ≺ w|2n+1 and thus U(w|2n−1) ≺
U(w|2n+1). Hence, the sequence (U(w|2n+1))n is strictly �-increasing and
converges to a unique limit in Lω.

Definition 7.7 (Paper folding construction – 3). Let us fix w ∈ Lω;
then

U(w) = �nU(w|2n+1)
D(w) = �nD(w|2n+1)

where � expresses the least upper bound defined by the prefix ordering on
sequences.

Extending this to J ∗ is straightforward, since every elementary instruc-
tion is defined from Lω to Lω, and since the same reasoning as above can be
applied a finite number of times.

176 7. Case Studies: Compositional Analysis of Dynamics

Before characterizing J ω(Lω), it is important to remark that an infi-
nite landscape can only appear after an infinite instruction. Thus, writing
U(w), where w is an infinite landscape, is equivalent to U(W (ε)), where W
is an infinite instruction leading to the constructible landscape w from the
empty landscape, i.e. the clean paper. The last expression can be rewritten as
WU(ε) and it justifies to introduce a right-juxtaposition to infinite instruc-
tions. Moreover, thanks to the definitions of U and D given here above, we
intuitively see that if we want to find the first letters (that is, the leftmost
ones) of an infinite landscape w appearing after an infinite instruction W ,
it is more useful to know the rightmost part of W than its leftmost part.
Symbolically, this reads:

W = W1W2 · · · ⇒ WU(w) = U(· · ·W2(W1(w)) · · ·
︸ ︷︷ ︸

?

)

and

W = · · ·W2W1 ⇒ WU(w) = U(W1(W2(· · ·w · · ·
︸ ︷︷ ︸

?

)))

where “?” stands for “not precisely known”. The second case is better because
the unknown part is less important. For any landscape w ∈ Lω , n folding
actions shift w of 2n − 1 positions to the right. To know W (w) with a finite
precision of 2n − 1 profiles, it thus suffices to know the n last actions of W ,
independently of w. Actually, for W ∈ J ω and w ∈ Lω ∪ L∗, W (w) = W (ε)
since 2n − 1 tends to ω as n does.

Notation 7.8. From now on, when speaking about infinite instructions, we
shall consider infinite words on J ω whose rightmost end is known, and for
any W = · · ·W2W1 ∈ J ω, W |n = Wn · · ·W1, i.e. according to Not. 4.13,
W = W,.

We have J ω(Lω) = J ω(ε) and we can define the last expressions in the
following way.

Definition 7.9 (Paper folding construction – 4). Let W = · · ·W2W1

be in J ω, then
W (ε) = �n(W |n)(ε).

This expression is well defined since, for each n, (W |n)(ε) is a strict prefix
of (W |n+1)(ε).

Remark 7.10. (See also Rem. 7.6.) Actions u, d extended to infinite
words are equivalent to identity. Since we do not treat these functions
in the sequel, we just mention this as a remark.

7.5 Paperfoldings 177

7.5.3 Dynamical Complexity of Paperfoldings

Now, we consider paperfoldings as dynamical systems on symbol sequences,
and we characterize the invariants and dynamics of U ∪D, and their inverses,
using Theorem 6.36.

The functions U and D we use are defined in §7.5.2 (see Def(s) 7.4–7.9).
Their domain is the set of infinite landscapes Lω .

Metric Properties of Foldings. Let us fix a metric in Lω (it also holds on J ω).
We consider Def. 2.53 with a parameter c instead of 2−1:

da(x, y) = cinf{i|xi �=yi}.

Remark 7.11. Although c < 1 is sufficient to keep this distance bounded,
we will see in the sequel (see proof of Theorem 7.16) that we may need a
stronger condition to prove that foldings are chaotic. Hence, we will consider
a parameter c < 1

2 .

Using this metric, it is easy to show that U and D are continuous and
contracting: ∀f ∈ {U,D},

∀w,w′, da(f(w), f(w′)) ≤ c · da(w,w′).

Since we know that W (w) does not depend on w when W ∈ J ω, it can
be interesting to consider the well-defined application

χ : J ω �→ Lω

s.t. χ(W) = W (ε).

Proposition 7.12. The application χ is both continuous and injective.

Proof. To prove continuity, we have to show that ∀W, ε, ∃δ, ∀W ′,

da(W,W ′) ≤ δ ⇒ da(χ(W), χ(W ′)) ≤ ε.

If W and W ′ are identical up to position n, i.e. da(W,W ′) ≤ cn+1, χ(W) and
χ(W ′) are the same up to position 2n− 1, i.e. da(χ(W), χ(W ′)) ≤ c2

n

. Thus,
ε being fixed, it suffices to take δ = c1+log2 logc ε.

Injectivity is easy to prove. Let us suppose that W,W ′ ∈ J ω and they
differ from position k, i.e. ∀i < k,Wi = W ′i and Wk �= W ′k. In this case,
∀i < k, (W |i)(ε) = (W ′|i)(ε) but (W |k)(ε) �= (W ′|k)(ε) from position 2k−1.
Thus, we have W �= W ′ ⇒ χ(W) �= χ(W ′).

Foldings as Dynamical Systems. Let us summarize the properties of the fold-
ing functions U and D.

– Foldings are continuous contracting functions.
– Sequences of landscapes obtained by infinite folding instructions are
Cauchy sequences and converge to a limit.

178 7. Case Studies: Compositional Analysis of Dynamics

– Moreover, by the contraction mapping theorem, , the successive iterations
of these functions, starting from any word, converge to a unique limit
which is a fixpoint. If we consider uniform instructions like UUU · · · (resp.
DDD · · ·), then, by continuity of foldings, the limits are fixed-points of U
(resp. D). Remark that these fixed-points are reachable from any initial
landscape.

Cantor Structure of Paperfoldings. The main result of this section follows:
we prove that the union of up and down paperfoldings has a full, atomic,
invariant which has a Cantor-set structure. It is in itself not surprising but
the way we prove it is interesting because we use dynamical systems notions
in the context of paperfoldings, that is, formal systems. Before proving the
theorem, let us prove three lemmas.

Lemma 7.13. The functions defined in Def(s) 7.4–7.9 are injective.

Proof. The two functions U and D are clearly injective: ∀w,w′ ∈ Lω, if
∃k, wk �= w′k, (U(w))2k+1 �= (U(w′))2k+1. Their inverses are also injective
when restricted to V · Λ · V · Λ · · · and Λ · V · Λ · V · · · respectively.

Lemma 7.14. The dynamics of the systems defined in Def(s) 7.4–7.9 have
the same kind, i.e. κ(U) = κ(D) = −, and they are such that γ(U)+γ(D) < 1.

Proof. The dynamics of these functions are compatible: they are both con-
tracting in the future.

The last argument is more technical: γ(U) = γ(D), thus we have to show
that γ(U) ≤ γ < 1

2 (which is sufficient to guarantee that γ(U) + γ(D) < 1);

γ(U) ≤ γ

⇐ sup
x �=y

da(U(x), U(y))
da(x, y)

≤ γ

⇐ sup
x �=y

cinf{i|(U(x))i �=(U(y))i}

cinf{i|xi �=yi} ≤ γ

⇐ sup
x �=y

c1+inf{i|xi �=xi}

cinf{i|xi �=yi} ≤ γ

⇐ c ≤ γ <
1
2
.

Thus, we have to choose a specific c in order to guarantee this last condition.

Lemma 7.15. The individual invariants of the systems defined in
Def(s) 7.4–7.9 are different fixpoints.

Proof. The invariants of U and D are different: each application of U (resp.
D) inserts a V (resp. Λ) at the left end of the word; at infinity, the fixed
points cannot be the same. Moreover, they are fixpoints by contraction
(Lemma 7.14).

7.5 Paperfoldings 179

Theorem 7.16. The union of paperfolding systems defined in Def(s) 7.4–7.9
generates a full and atomic invariant having a Cantor-set structure.

Proof. To prove the theorem, we apply Theorems 6.25, 6.26, and 6.27. Thus,
we have to verify a few assumptions:

– the functions are injective on Lω, by Lemma 7.13;
– the dynamics are compatible and contracting, by Lemma 7.14;
– the individual invariants are different fixpoints, by Lemma 7.15.

In conclusion, we deduce that the invariant of the union of these two
systems U∪D is a full and atomic, totallys disconnected, and perfect, whence
it is a Cantor set. This union is interpreted as the set of all possible infinite
landscapes resulting from infinite instructions.

Remark 7.17. The same result holds for the union of the inverse systems,
(U ∪D)−1, since our definitions of invariance and related properties are sym-
metric in time.

Cantor Structure: The Classical Way. There is a classical way to retrieve the
previous result. Let us investigate it and compare it with the compositional
approach used in the proof of Theorem 7.16. First, we need the following
lemma.

Lemma 7.18. The invariant of the union of U and D, J , is equivalent to
χ(J ω).

Proof. The invariant is

JU∪D = ∩n∈Z(U ∪D)n(Lω).

Since U−1(Lω) = Lω and D−1(Lω) = Lω , we have (U ∪D)−1(Lω) = (U−1 ∪
D−1)(Lω) = U−1(Lω)∪D−1(Lω) = Lω. Thus, the invariant can be simplified:

JU∪D = ∩n∈N(U ∪D)n(Lω).

The union U ∪D is monotonic:

X ⊆ Y ⇒ (U ∪D)(X) ⊆ (U ∪D)(Y).

Moreover, (U ∪D)(Lω) ⊆ Lω . Hence, we rewrite the invariant as follows:

JU∪D = lim
n→∞ (U ∪D)n(Lω).

Finally, (U ∪D)n(Lω) = ∪w∈{U,D}nw(Lω), and

JU∪D = lim
n→∞∪w∈{U,D}nw(Lω)

= ∪w∈{U,D}ωw(Lω)
= χ(J ω).

Let us now give another proof of Theorem 7.16.

Proof. Since J ω is a Cantor set, and χ is an injective continuous function
from J ω to Lω , χ(J ω) is a Cantor set. Thus, J is a Cantor set, too.

180 7. Case Studies: Compositional Analysis of Dynamics

Comparison. The classical way involves a quite technical lemma and a proof
treating a global system. Our compositional approach states the problem
differently: once the system is decomposed into simple subsystems, some easy
assumptions have to be verified, and the global result follows automatically.
Of course, technically speaking, we have to compare Lemma 7.18 with union-
invariant theorems, but the “end-user” can consider their proofs as black
boxes. This is the general advantage of any compositional (i.e. modular)
approach.

Chaos in Paperfoldings. In addition to the result of Theorem 7.16, it is also
possible to show that the paperfolding dynamical system is chaotic on its
Cantor-set invariant.

Corollary 7.19. The dynamical system defined by Def(s) 7.4–7.9 and its
inverse are both chaotic on their invariant set.

Proof. By Theorem 7.16, the invariant of the system is full and atomic. By
Prop(s) 5.38 and 5.39, it is thus topologically transitive and sensitive to initial
consitions. Hence, by Def. 5.30, the system is Knudsen chaotic.

7.5.4 Partial Conclusions

Studying these paperfoldings as composed dynamical systems is instructive
because the approach allows to restate old results in a clear way, like the
presence of a Cantor invariant set on which the system is chaotic.

As illustration of union invariant theorems, we have seen that composing
two dynamically compatible systems with different fixpoints can lead to a
complex behavior sustained by a structurally rich (i.e. Cantor-set structure)
invariant set.

We have here a typical example of rich behavior, dynamically complex,
resulting from the evolution of a system with a simple structure, the union
composition of simple systems.

7.6 Discussion: Compositional Dynamical Complexity

In this chapter, we studied three well-known examples of complex systems
by compositional analysis (Smale horseshoe map, Cantor relation, logistic
map). This led to rederive classical results very clearly, namely the Cantor-
set structure of the invariants of these systems. It is up the the reader to
judge whether this rederivation is clearer or not than the classical approaches
[292, 293, 326, 88].

Then, we embedded paperfoldings in the context of dynamical systems
and we showed that these systems are chaotic on a Cantor invariant set, using
a straightforward decomposition of a global system into subsystems respec-
tively corresponding to up and down foldings (Theorem 7.16). Considering

7.6 Discussion: Compositional Dynamical Complexity 181

formal systems as dynamical systems seems thus a fruitful and promising
approach [268].

Thus, the same phenomenon has been observed in different kinds of sys-
tems like classical dynamical systems (e.g. Smale Horseshoe Map, Cantor re-
lation, logistic map), symbolic systems (e.g. paperfoldings): complexity arises
from the composition of compatible systems attracting the space to different
regions in the future or in the past. A kind of hyperbolic behavior sustains all
these rich dynamics in complex systems composed from simpler ones having
simple, attracting, symmetric dynamics.

8. Experimental Compositional Analysis of
Cellular Automata

Cellular automata (for short, CA) are massively parallel systems obtained
by composition of myriads of simple agents interacting locally, i.e. with their
closest neighbors. In spite of their simplicity, the dynamics of CA is po-
tentially very rich, and ranges from attracting stable configurations to spa-
tiotemporally chaotic features and pseudo-random generation abilities, from
very simple forms of destruction of information to more complex ones where
information propagates following non-trivial rules [4, 249, 107, 113, 115, 121,
132, 291, 317, 331]; Von Neumann introduced them in order to model bio-
logical self-reproducing behaviors [314]. Moreover, from the computational
viewpoint, they are universal, that is, as powerful as Turing machines and,
thus, classical Von Neumann architectures (see Chap. 9). This motivates our
choice to study these highly stuctured systems in more details; we concentrate
on two aspects.

First, we establish a formal classification of behaviors based on attraction,
inspired by the phenomenological classification schemes proposed in [330, 49].
This allows us to propose a view of dynamical complexity for these systems
(see also §5.7.3), and brings new insights in understanding complexity of
high-dimensional systems.

Second, we present compositional arguments to evidence a conjecture on
the emergence of complexity from the composition of elementary symmetric
compatible systems [49, 101]. This second part is based on the union-invariant
theorems elaborated in Chap. 6, that we complement with physical measures
of complexity; this serves to cope with the difficult analysis of the underlying
connected product.

The present chapter is organized as follows. In §8.1, we motivate the topics
treated in the chapter. Then, we develop an attraction-based classification: in
§8.2, we define preliminary notions, as well as the tools used to classify behav-
iors; in §8.3, we present a phenomenological attraction-based classification of
behaviors, which is then formalized in §8.4; three structural organizations of
classes are proposed in §8.5, in order to understand dynamical complexity in
cellular automata. We proceed to the compositional analysis of CA: in §8.6,
we give experimental conjectures on the disjunctive composition of cellular
automata; in §8.7, we compare a particular disjunction to the Cantor relation;
in §8.8, we define the successive steps of our analysis and we add complexity

F. Geurts: Abstract Compositional Analysis of Iterated Relations, LNCS 1426, pp. 183-216, 1998.
 Springer-Verlag Berlin Heidelberg 1998

184 8. Experimental Compositional Analysis of Cellular Automata

measures to our theoretical framework; in §8.9, we analyze the conjectures.
Finally, we close the chapter with a discussion in §8.10.

8.1 Aims and Motivations: Attraction-Based
Classification and Composition

On one hand, the structural and dynamical features of CA make them
very powerful: fast CA-based algorithms are developed to solve engi-
neering problems in cryptography and microelectronics for instance (e.g.,
[4, 55, 54, 59, 249, 128, 135, 239, 281, 291]), and CA-based models are used
in ecology, biology, physics, telecommunications, and image-processing (e.g.,
[113, 115, 132, 263]).

On the other hand, these powerful features make CA difficult to analyze:
they resist against most of the analytical tools available in program the-
ory and dynamical system theory. Actually, almost all long-term behavioral
properties of dynamical systems, and cellular automata in particular, are un-
predictable. This limit not only arises from their possibly chaotic dynamics,
which entails the classical sensitivity to initial conditions, but from a much
stronger limit: undecidability [74, 75, 224]. Sensitivity means that close initial
conditions eventually diverge. Undecidabilty implies that no algorithm exists
whatsoever to decide whether or not an arbitrary state is attracted to some
set, given the general description of some dynamical system.

Two pragmatic solutions exist to this problem: the first one consists in
restricting the study to particular cases and sufficiently simple systems that
may be used as building blocks; the second one is to make an extensive use
of computer simulations. Both solutions are necessary engineering tools in
the construction of systems that must be built in order to fulfill a priori
conditions or specifications.

In the following sections, our objective is the study of dynamical proper-
ties of CA-based systems. The main property we focus on is attraction, as
many behaviors of systems can be rephrased in these terms. However, due
to the severe theoretic limitations explained above, we carry out an exper-
imental analysis of systems in a compositional way, i.e. by combination of
properties of their components: we analyze attraction properties of basis CA,
and we combine these basis CA to obtain the dynamics of a whole family of
CA-based systems.

In particular, our aim is to make use of the very nature of the structure
of CA to understand their global behavior, since dynamical attraction-based
properties of CA apparently depend more strongly on their structure than
on the way initial conditions are chosen. Given two elementary CA (Boolean
one-dimensional bi-infinite lattices of cells, the evolution of each cell being
influenced by its direct neighbors) with known behaviors, what can be said
on the behavior of the CA obtained by composing them (e.g., using a logic
disjunction)?

8.1 Aims and Motivations: Attraction-Based Classification and Composition 185

Classification. In the theory of CA, classification of behaviors is a central
theme [132, 113]. The goal is to impose a structure in the space of CA rules,
grouping together CA related to equivalent properties. Up to now, different
tools have been introduced, leading to different classification schemes.

Two problems appear in many classification schemes. First, some classi-
fications happen to be informally defined (e.g. [330]). Second, classification
schemes are sometimes far from the intuition we get by observing the behavior
of CA classes (e.g. [41]).

We classify the attraction properties of cellular automata into periodic,
shifting, and aperiodic or complex behaviors. Then, we propose structural
organizations of the resulting classes, which allows us to clearly separate
shifting behaviors from complex ones.

The goal is not to propose an algorithm to decide which class a given
cellular automaton can belong to, because this is undecidable in general.
We rather examine a classification scheme that better corresponds to the
qualitative classification we can arrive at when observing the evolution of
cellular automata, in order to understand dynamical complexity of structured
high-dimensional systems showing spatiotemporally chaotic behaviors.

Composition. CA are adequately modeled by connected products, as men-
tioned in Ex. 3.24: any CA can be written as ⊗Rg, where g is a local rule
distributed over a regular lattice, and R describes interactions between neigh-
bors.

In [49], the authors made the conjecture that that the disjunction of some
local rules entails complex behaviors . The second aim of this chapter is to
analyze this conjecture by composition: we relate these experimental results
to the compositional analysis of unions of systems.

The previous chapters have shown that the general analysis of connected
products is rather difficult (in particular, see §§3.3, 6.8). Here, we focus on a
specific family of connected products and we introduce complexity measures
which complement our previous compositional results.

Composing CA can be realized in two ways: either globally, i.e. considering
global functions as black boxes, or locally, i.e. at the level of local transition
functions. More formally, let � and �′ be two composition operators. The com-
position of several CA ⊗Rgi can be defined outside the connected products
(this is the usual global manner), or inside the product:

�i(⊗Rgi) or ⊗R (�′igi).

From an engineering viewpoint, local functions are building blocks, and
they are supposed to be well understood, whereas global functions are to
be built, and composing global functions is beyond the scope of this paper.
Hence, our concern here is the study of local compositions composed within
the connected product: f and g being two local transition functions, � being
a local composition operator, we study the system ⊗(f � g). If G is a global
property, and I an individual property, the objective is to find � such that

186 8. Experimental Compositional Analysis of Cellular Automata

G(⊗R(�′igi)) = �iI(⊗Rgi).

However, this kind of local composition clearly adds a difficulty to the analysis
of systems, because the property composition operator � has to “jump” over
the connected product. This is equivalent to finding intermediate G′ and �′
such that

G(⊗R(�′igi)) = G′(�′i(⊗Rgi)) = �iI(⊗Rgi).

In the particular cases studied here, local rules are decomposed so that the
previous equalities hold regarding complexity measures: the global property
G and the individual property I both correspond to a complexity level in
the classification introduced. Again, we show how the composition of simple
systems generates complex behaviors.

8.2 Preliminary Notions

In this section, we briefly recall the definition of cellular automata. Then,
we introduce two tools used to classify attracting behaviors of CA and to
organize the structure of the resulting classes.

8.2.1 Cellular Automata

CA are totally discrete dynamical systems. They are discrete in space; in
fact, they are regular lattices of sites (or cells) whose values range in a finite
set. They are also discrete in time: their iterative dynamics is described in
terms of difference equations, as opposed to continuous-time systems based
on differential equations. Furthermore, CA are homogenenous systems: at
each time step, each cell applies the same rule to its neighborhood in order
to compute its new value.

We consider one-dimensional CA, i.e. linear bi-infinite lattices of cells.
Each cell takes its value in the local state space X = {0, 1, . . . , k − 1}. A
configuration is a bi-infinite sequence of XZ specifying a state for each cell,
i.e. x = (· · ·x−1, x0, x1 · · ·) (see Fig. 8.1). The neighborhood of a cell i ∈ Z is
(i− r, . . . , i− 1, i, i + 1, . . . , i + r) or, simply, (i− r : i + r).

· · · ↔ x−2 −2
↔ x−1 −1

↔ x0
0
↔ x1

1
↔ x2

2
↔ · · ·

Fig. 8.1. Cellular automaton: x is the global configuration, the numbered boxes
represent cells, and each xi is a corresponding local cell value.

All cells are updated synchronously. At each step, every cell looks at the
value of its neighbors (r to the left, r to the right) plus itself and computes
its next value as a function of this neighborhood. This function is a local

8.2 Preliminary Notions 187

transition function g : X2r+1 	→ X . There are clearly kk2r+1
different local

functions.
The global transition function defines the next state of each cell as the

local function applied to the states of its neighborhood:

f : XZ 	→ XZ

s.t. ∀i ∈ Z, fi(x) = g(xi−r:i+r).

In the following, we restrict our attention to elementary cellular automata,
i.e. with r = 1 and k = 2. With these parameters, there are 256 different
elementary cellular automata. Each transition function is a Boolean function
of three Boolean variables (the neighborhood) and is thus expressed as a
transition (or rule) table with eight entries. Traditionally [330], a unique
integer is associated to each transition function, and is used to label the
corresponding CA:

∑

a,b,c∈{0,1}
g(a, b, c) · 24a+2b+c.

Example 8.1. The following table corresponds to rule 47 = 1 + 2 + 4 + 8 +32.

xt
i−1x

t
ix

t
i+1 000 001 010 011 100 101 110 111

xt+1
i 1 1 1 1 0 1 0 0

A local state x is quiescent iff f(· · ·xxx · · ·) = · · ·xxx · · · or
g(x · · ·x

︸ ︷︷ ︸

2r+1 times

) = x.

Finally, using the operators on systems introduced in Chap. 3, we can
express CA in the following way (see also Ex. 3.24).

Definition 8.2 (Cellular automaton). A cellular automaton f is struc-
tured as follows:

f = ⊗Rg

where

– J = Z is the lattice of cells;
– R = {(i, i− 1), (i, i), (i, i + 1) | i ∈ J} describes the neighborhood of each

cell;
– ∀i ∈ J,Xi = {0, 1} is the local state space;
– ∀i ∈ J, gi = g : X3 	→ X is the local transition function.

Remark 8.3. Let us notice that we use a configuration space C the cardi-
nality of which is 2ℵ0 , at least equal to ℵ1. If we consider the power set of this
configuration space, i.e. the set of all subsets of C, the cardinality is 2ℵ1 , at
least equal to ℵ2. This cardinality is equal to the one of the power set of an
interval of R. We know that ℵ1,ℵ2,ℵ3, ... are greater than the first transfinite
ordinal number ω and we will see below why transfinite iterations are useful
in this framework.

188 8. Experimental Compositional Analysis of Cellular Automata

8.2.2 Transfinite Attraction

Working in a space E, we consider the set of its subsets, P(E). It is well known
that this set is a complete lattice. We denote it as follows: P(E)(⊆, ∅, E,∩,∪)

Using transfinite iterations (see Def. 2.76), it is possible to refine Def. 5.51.
This gives the following definition.

Definition 8.4 (Transfinite attraction). P is transfinitely attracted by
Q iff there exists an ordinal number n ∈ O such that, ∀m ≥ n, fm(P) ⊆ Q.

We can restrict ourselves to the smallest Q attracting P . In the following,
some notations will be useful.

Notation 8.5. Strict transfinite (resp. unbounded finite) attraction is de-

noted by P
f
;→η Q (resp. P

f
;→ω Q).

To find the whole attractor of configuration space C, we have to com-
pute an invariant of the system, fn(C), for a certain ordinal number n ∈ O .
This expression is computable by successive approximations, and leads to the
attractor, thanks to monotonicity of f .

Remark 8.6. The first transfinite ordinal number is large enough to com-
pute the global attractor, since every CA is continuous (see Chap. 9) and
continuity implies convergence in at most ω steps.

8.2.3 Shifted Hamming Distance

We introduce here a notion of distance that is very close to the well-known
Hamming distance. Let us first extend this notion, defined on finite strings
of symbols, to bi-infinite strings of symbols.

We work with a finite alphabet Σ = {0, 1, ..., k−1} ⊆ N. On this alphabet
we define a distance

ds(x, y) =
{

0 if x = y
1 if x �= y

For two strings of symbols a, b ∈ Σm, the Hamming distance between a
and b, H(a, b) is defined as the number of places (or indices) where a and b
differ:

H(a, b) =
m

∑

i=1

ds(ai, bi).

For two bi-infinite sequences a and b of symbols,

H(a, b) =
∑

i∈Z
ds(ai, bi).

8.3 Experimental Classification 189

Definition 8.7 (Shifted Hamming distance). The shifted Hamming
distance between two bi-infinite sequences x and y of C is defined by:

Hρ(x, y) = min
j∈Z

υ(H(x, ρj(y)))

where ρ is the classical shift: ∀i ∈ Z, ρ(x)i = xi+1, and υ(x) is defined as
follows:

υ(x) =
{

1−e−x

1+e−x if x ∈ R,
1 if x = +ω

Remark 8.8. The shift-invariant function defined here is not a metric on C,
and it generates a trivial topology on the quotient space C/≡ρ. Motivated by
the same need to investigate the meaning of sensitivity and its implications
in CA behaviors, a group of researchers recently introduced a shift-invariant
pseudo-metric on C inducing a non-trivial topology [51, 52]. Their metric is
based on weighted local Hamming distances, and is thus sustained by the
same underlying idea as the shifted Hamming distance. We conjecture that
its use in our context would lead to the same results. We leave this comparison
to the reader.

8.3 Experimental Classification

Now, we propose a classification of long-term behaviors of CA when they
start from random initial conditions. We observe the results of simulations to
determine six phenomenological classes grouped into three families: periodic
(types N , F , P), shifting (type S , divided into types SF and SP), and
aperiodic (type A) behaviors. Here is the classification in brief, essentially
based on [330, 49, 102]; typical evolutions are illustrated in Fig. 8.2.

Type N : CA evolving to null configurations. This class contains CA that
quickly evolve to homogeneous configurations, i.e. without information
(all ones or zeroes), after finite transients.

Type F : CA evolving to fixed points. This second class contains CA that
evolve to fixed points after finite transients. Of course, class N is a par-
ticular case of class F .

Type P : CA with periodic behaviors. This class contains CA that evolve to
periodic configurations, after finite transients. It contains the two previ-
ous ones.

Type S : CA with generalized subshift behaviors. This class contains CA
that, starting from an initial configuration in particular subspaces of the
configuration space, evolve to configurations where a generalized alter-
nating subshift behavior occurs. Here is a definition of this behavior,
generalizing [48].

190 8. Experimental Compositional Analysis of Cellular Automata

Definition 8.9 (Generalized alternating subshift). A CA is a gen-
eralized alternating subshift rule if the corresponding global function f
is such that there is a closed invariant subset Σ1 of C such that

∀x ∈ Σ1, f
n(x) = ρm(x)

where n ∈ N and m ∈ Z, and ρ : C 	→ C is the classical shift.

N (8) F (4)

P (1) SF (2)

SP (210) A (129)

Fig. 8.2. CA classification: typical CA evolutions of classes N , F , P , SF , SP
, and A . In this figure, the horizontal axis represents a portion of the CA state
space, the vertical axis represents the temporal evolution (top-down); black dots
are 0’s and white dots are 1’s.

Remark 8.10. – On the complement of the subspace Σ1 where the CA
acts like a shift, the behavior can be regular or totally irregular.

8.4 Formal Attraction-Based Classification 191

– As shown in Fig. 8.2, the family of shifting behaviors contains a broad
range of behaviors, from very simple ones like the dynamics of rule
2, to very complex ones like the dynamics of rules 210. This is the
reason why we distinguish the simplest ones, for which n = m = 1 in
the above definition (they are denoted by SF), from the other ones
(denoted by SP). Of course, S = SF ∪ SP . In the following, we will
distinguish these two families only when necessary.

Type A : CA with complex or aperiodic behaviors. A configuration is aperi-
odic if it is not eventually periodic (neither periodic nor one of its forward
iterations). Qualitatively, what we observe is a number of different pat-
terns growing, vanishing and moving toward the future. In general, a
broad range of behaviors can show up: from random noise, total disor-
der, and spatiotemporal chaos to some kind of regularity or intermittency
in which diverse forms can propagate. Aperiodicity entails that almost
the whole domain is visited through successive iterations.

Example 8.11. The initial pattern can evolve smoothly, like a ball flying
between two walls, one of the walls being fixed, the other one escaping
to infinity as the ball bounces on it (see Fig. 8.3, where the local space
X = {·, 1, 2, 3, 4, 5}).

Transition table Example of evolution

xt
i−1 xt

i xt
i+1 xt+1

i

· · 4 4
· · 5 4
· 3 · ·
· 3 2 ·
· 4 · ·
· 5 · ·
1 · 4 3
1 3 · ·
1 4 · 3
3 · · 3
3 · 2 3
3 2 · 5
5 · · 2
· b · b

.....1....3..2.....

.....1.....3.2.....

.....1......32.....

.....1.......5.....

.....1......4.2....

.....1.....4..2....

.....1....4...2....

.....1...4....2....

.....1..4.....2....

.....1.4......2....

.....13.......2....

.....1.3......2....

.....1..3.....2....

Fig. 8.3. Flying ball. In the transition table, (., b, .)→ b stands for the “else” case.

8.4 Formal Attraction-Based Classification

In §8.3, we presented a phenomenological classification of CA long-term be-
haviors. This observational point of view has to be kept in mind when devel-

192 8. Experimental Compositional Analysis of Cellular Automata

oping a theory of dynamical systems, in order to remain as close as possible
to the intuition we can get by observing the evolution of systems. Based on
this informal classification, we develop a formal classification of CA which
is based on attraction properties. This is the aim of this section: after a few
introductory comments, we systematically present each class of behavior as
stated in §8.3, and we give some remarks.

8.4.1 Introduction

Our motivation to classify behaviors w.r.t. attraction is the following. There
seems to exist three kinds of observable behaviors:

– regular (null, fixed-point, or periodic rules),
– irregular (our type A),
– intermediate behaviors (subshift rules).

The first kind is easily understood. Let us turn our attention to the two
other classes. We see at least three different ways to reduce their noticeable
disorder:

– using transfinite attraction;
Let us justify this intuitively. We consider a single deterministic automa-
ton with a finite number of possible states. We let the system progress, or
iterate, and we look at the orbits generated from different initial states. If
we only take an orbit passing through less states than the total number of
states in the space, then different behaviors are observable: fixed-point at-
traction, periodicity, seemingly random orbits. (What random really means
here is another question [57, 58] and that is why we add “seemingly”.) If
we consider more iterations than the number of possible states, then ran-
dom orbits disappear since the system is deterministic. Everything becomes
eventually fixed or periodic. We consider now larger and larger state spaces,
until we reach infinity. For example, we take a state space of positive inte-
gers N of cardinality ℵ0, the first transfinite cardinal, also equal to ω. The
same behaviors appear and we have to allow more than ω iterations to see
only periodic behaviors (with possibly huge periods).

– forgetting the origin of the lattice;
It is interesting to work in C/≡ρ, the quotient space containing equivalence
classes w.r.t. shift. Indeed, any shifting behavior becomes periodic or even
fixed in this space.

– increasing the dimension of the observation space.
For example, it is possible to work with the Cartesian product space ×
time [27, 259, 260], or to embed the space and the attractor of a system in
a higher-dimensional space, in order to “unfold” its internal interactions
(this is called “dimension embedding”) [250].

8.4 Formal Attraction-Based Classification 193

In the following, we only consider the first two approaches. The main part
of this section treats the first case. In §8.5, we present the second one using
the shifted Hamming distance introduced before.

Several choices are possible for the study of attraction phenomena in cel-
lular automata. Some authors work with finite configurations in zero back-
grounds (a finite number of cells are initialized at random, all others are set
to zero). We consider bi-infinite configurations in zero backgrounds. Since we
consider bi-infinite configurations, we have to consider transfinite iterations;
then we have to specify what happens at the “borders” of these lattices.
Another possible choice is a circular bi-infinite CA, having cells −∞ and ∞
equivalent. We take one configuration at a time (P = {x0}), randomly, and
we “observe” its successive iterations, over a certain amount of time (finite,
infinite, or transfinite): for a cellular automaton the global function of which
is given by f , we observe, ∀n ∈ O , fn (P). We also get information by studying
the same expression with P = C (the whole configuration space). Finally, it
is interesting to compare the results obtained with or without the constraint
of finite iterations.

8.4.2 Type-N Cellular Automata

This first class contains CA that quickly evolve to homogeneous configura-
tions, i.e. any configuration is finitely attracted to the same configuration,
homogeneously composed of quiescent cell states. The homogeneous state is
a function of the rule itself:

∃h ∈ C,
{

∀x0 ∈ C, ∃n ∈ N, fn (x0) = h
∧ f(h) = h

or, more globally,

C f
;→ω {h} .

This class is called N0 because another version is possible, with possibly
several quiescent configurations:

∃H ⊂ C, ∀x0 ∈ C, ∃h ∈ H,

{

∃n ∈ N, fn (x0) = h
∧ f(h) = h

or, more globally,

C f
;→ω H .

We call this subclass N1.

8.4.3 Type-F Cellular Automata

This class contains CA that evolve to fixed configurations after finite tran-
sients. The final fixed configuration is in general dependent on the initial one.
We have here a finite attraction, too:

194 8. Experimental Compositional Analysis of Cellular Automata

∀x0 ∈ C, ∃sx0 ∈ C,
{

∃n ∈ N, fn (x0) = sx0

∧ f(sx0) = sx0 .

More globally, we have:

C f
;→ω ∪x0∈C{sx0} .

8.4.4 Type-P Cellular Automata

This class contains CA that evolve to cycles of configurations after finite
transients. The limit cycle is dependent on the initial condition. We have a
finite attraction to a set of points rather than to a single fixed-point:

∀x0 ∈ C, ∃Cx0 ⊆ C, y ∈ Cx0 ,m ∈ N, n ∈ N,

fn(x0) = y
∧ ∀y′ ∈ Cx0 , f

m(y′) = y′

∧ ∀m′ < m, fm′
(y′) �= y′.

Using a more compact notation, we have:

C f
;→ω ∪x0∈CCx0 .

8.4.5 Type-S Cellular Automata
This class contains CA that behave like generalized alternating subshifts.
There exists a closed subspace of the configuration space, such that, when
observing a specific cellular automaton starting from a random initial config-
uration in that subspace, what we see is the initial configuration progressively
escaping (or shifting) to the right or to the left, like sliding along the linear
lattice of cells, together with a kind of periodic behavior. If we take an initial
finite configuration in a zero background, for example, we will see our config-
uration escaping the finite observation domain, unless this domain can grow
indefinitely.

Let us imagine we could iterate more than the total amount of cells com-
posing the lattice of the automaton, even if this lattice possesses a bi-infinite
number of cells. Then, starting from any initial configuration, we could ob-
serve an attraction to a homogeneous configuration, exactly as type-N cellu-
lar automata behave. From this point of view, the behavior of type-S cellular
automata becomes more regular and simpler than chaotic, if we use transfinite
iterations. Formally, Cf being the set of finite configurations in a bi-infinite
zero background, we have the following characterization:

∃h ∈ C,
{

∀x0 ∈ Cf , ∃n ∈ O\N , fn (x0) = h
∧ f(h) = h

8.4 Formal Attraction-Based Classification 195

or, more generally,

∃H ⊆ C, ∀x0 ∈ Cf , ∃m ∈ N, n ∈ O\N ,

∃y ∈ H, fn(x0) = y
∧ ∀y′ ∈ H, fm(y′) = y′

∧ ∀m′ < m, fm′
(y′) �= y′

where H is a cycle of homogeneous configurations. It is also possible to write:

Cf
f
;→η H .

Remark 8.12. – Here, we see a difference regarding the use of fi-
nite/transfinite iterations. Finite iterations lead to a typical shift behavior
which can be seen as chaotic (classical definition). Transfinite iterations
show a simple behavior of attraction to homogeneous configurations.

– We have treated the case of finite configurations in a bi-infinite zero back-
ground, that can be precisely defined. Treating the general case is left as
further work.

8.4.6 Type-A Cellular Automata

This last class contains CA that have an aperiodic behavior which is respon-
sible for the observable (spatiotemporal) chaos. The definition we propose
below is quite general. A part of our future work is to find a subclassifica-
tion with more appropriate and refined definitions. Back to attraction, we
have here a “convergence” to a huge cycle containing (almost) the whole
configuration space:

∀x0 ∈ C, ∃C′ ⊆ C,m ∈ O , n ∈ O\N ,

∃y ∈ C′, fn(x0) = y
∧ ∀y′ ∈ C′, fm(y′) = y′

∧ ∀m′ < m, fm′
(y′) �= y′.

This inclusion is always strict, Chaitin’s theorem saying that most strings,
or real numbers, are not computable (reachable by an algorithm) [45, 58]. It
is also possible to write:

C f
;→η C′ .

Remark 8.13. Here also, we have a difference between finite and transfi-
nite iterations. Finite iterations show irregular behaviors, spatiotemporally
chaotic patterns, aperiodic evolutions. The problem is that it is difficult to
give an explicit characterization of this kind of behavior. On the other hand,
transfinite iterations allow us to give a very simple definition, saying that the
system involved is periodic with a huge period very close to the cardinality
of the configuration space itself.

196 8. Experimental Compositional Analysis of Cellular Automata

8.4.7 Discussion

Type-N1 CA are not exactly the same as type-F CA because the latter
are dependent on the initial conditions whereas the former are not as much
dependent (there is only a small number of possible outcomes). Where the
precise border lies between these two classes has not been precisely defined
yet. Therefore, for the sake of simplicity, we include N1 in F and keep N
equal to N0.

We see here that transfinite attraction gives us a new way of defining the
behavior of differents classes of CA, from very simple classes to the most
complex ones: all classes can be seen as periodic, from small finite periods to
huge transfinite ones.

If we restrict our attention to basis CA (i.e. rules 0, 1, 2, 4, 8, 16, 32, 64,
and 128), our classification is of course decidable. Our goal is to extend the
notions and our classification to more complex CA, constructed from basis
CA with composition operators (see §§8.6–8.9).

8.5 Structural Organizations of CA Classes

The previous section (§8.4) was devoted to the formal definition of attraction-
based classes of cellular automata corresponding to phenomenological classes
presented in §8.3. We identified six categories of behaviors: null, fixed, pe-
riodic, (fixed and periodic) shifting, and aperiodic or complex behaviors,
grouped into three families (periodic, shifting, aperiodic).

In this section, we propose three different but complementary ways to
organize and structure these classes into groups to emphasize the regularity
or the disorder introduced by each class. The last organization explicitly
uses shifted Hamming distance to reduce the disorder of classes, as stated
in the introduction of §8.4. With start with a discussion motivating these
structural organizations by an interesting paradox, and close the section with
a definition of dynamical complexity in CA.

8.5.1 Motivation: Simulation vs Theoretical Results

Let us motivate the need for structural organizations of CA classes using an
interesting paradox, where observations and mathematics totally disagree on
the interpretation of some behaviors.

Intuitively, periodic behaviors (null, fixed and periodic) are regular, ape-
riodic behaviors show rather complex evolutions, and shifting behaviors are
usually not very complicated, but some initial conditions can lead them to
subspaces where nothing can be said.

The paradox we would like to illustrate here precisely concerns shifting
behaviors. In spite of the regular behavior depicted in Fig. 8.2, they are
Devaney chaotic (Def. 5.28)! The following theorem is inspired by [41], where

8.5 Structural Organizations of CA Classes 197

it was proved for three particular cases (n = m = 1; n = 2, m = 1; n = m =
2).

Theorem 8.14. If Σ1 is a closed invariant subset of C, and if a CA f is a
generalized alternating subshift on Σ1 with irreducible transition matrix, then
it is Devaney chaotic on Σ1.

Proof. We have to prove that (see Def. 5.28):

1. there exists a dense orbit for f (leading to topological transitivity),
It is easy to construct a dense sequence for the full shift. This sequence
can be expressed as a sequence of all sequences of length 1, all sequences of
length 2, etc. All these sequences can be ordered. We denote the resulting
sequence by · · · s5s3s1s0s2s4s6 · · ·.
From this, we deduce that ρm has a dense orbit, too. The resulting se-
quence is · · · sm

5 sm
3 sm

1 sm
0 sm

2 sm
4 · · ·.

Thus fn has a dense orbit. Hence f has a dense orbit (the same as for
fn).
All these sequences can be adapted to the case of a subshift
with irreducible transition matrix: the final resulting sequence is
· · · t3(s1s

′
1)m−1s1t1(s0s

′
0)m−1s0t0(s2s

′
2)m−1s2t2 · · ·, where ti is an admis-

sible sequence connecting si and si+2 for every even i, si and si−2 for
every odd i, t1 connects s1 and s0, and s′i connects si with itself.

2. the periodic points of f are dense.
Denoting the set of periodic points of f by Per(f), i.e. y ∈ Per(f) ⇔
∃q, f q(y) = y, we have to prove that ∀x ∈ Σ1, ∀ε > 0, ∃y ∈ Bε(x) ∩
Per(f).
We work with the metric d(x, y) =

∑∞
i=−∞

1
4|i| |xi − yi| defined on C.

Let us take a bi-infinite sequence x of C. We have to construct a y be-
longing to Bε(x) and to Per(f). It is sufficient that y matches x on a
central part (around index 0) of length 2l + 1 to guarantee y ∈ Bε(x).
If y is the bi-infinite repetition of x−l · · ·x−1x0x1 · · ·xl, it is (2l + 1)-
periodic but also m(2l + 1)-periodic. Thus, we have y = ρm(2l+1)(y) =
fn(2l+1)(y). Hence y is periodic for f .
To treat the subshift case, just add a sequence c1 · · · cK in y, where K is
less than the smallest exponent k such that the transition matrix of the
subshift is irreducible.

Remark 8.15. Similar results have been proved in [47, 213].

Is their long-term behavior very regular or chaotic (see Fig. 8.2 and the
formal definition of shifts in §8.4)? Why does this paradox exist?

The above proof of chaotic behavior is based on a specific metric assigning
weights to the cells of the cellular automaton, which strongly influences the
consideration made, whereas we do not have this weighting in mind when we
observe the successive configurations generated. More precisely, the metric

198 8. Experimental Compositional Analysis of Cellular Automata

space is based on the astronomer’s metric (faraway objects are negligible, see
Def. 2.53), which does not seem to be the adequate choice. Thus, we have to
find a technical approach closer to our own observation and interpretation.

We have proposed to use attraction as technical tool but, since we work
with bi-infinite lattices of cells, we considered transfinite iterations and at-
traction. We need a second tool, namely shifted Hamming distance, which is
also very close to the intuition, without the need of transfinite iterations.

Below, we present three structural organizations of CA classes that allow
us to partition them into categories on which mathematical as well as intuitive
criteria agree.

8.5.2 Linear Periodicity Hierarchy

Although we have the following inclusions:

N ⊂ F ⊂ P ,

it is difficult to compare the first classes with type S and type A .
However, if we try to see all classes w.r.t. transfinite iterations, we can see

a hierarchy of periodic systems. From type N to type A , the period grows
from one to an ordinal “close” to the cardinality of the configuration space,
and the resulting attractor grows from a homogeneous fixed configuration to
the whole configuration space. We quote “close” because, for example, we
allow to say that ℵ12 is closer to ℵ1 than to ℵ0.

In each class, we have an expression like fα(C) = βn or C f
;→α βn where

α ∈ {ω, ηP(C)}, ηP(C) is the least transfinite number greater than the number
of states of the lattice P(C), βn ∈ {point, set}, and βn contains n-periodic
points of f . Summarizing these data according to our classification yields
Table 8.1.

Table 8.1. Linear periodicity hierarchy: properties of the classes

α βn n

N ω point 1
F ω { point } 1
P ω { set } ∈ N
S η { point } 1
A η C ∈ O

Pairs (α, βn) are ordered as follows:

(α, β)! (α′, β′) iff
{

α! α′

or α �= α′ and β ! β′

where, by definition, ω ! η and point ! {point} ! {set} ! C. Hence, we
have the linear hierarchy presented in Table 8.2.

8.5 Structural Organizations of CA Classes 199

Table 8.2. Linear periodicity hierarchy

N F P S A

8.5.3 Periodicity Clustering

In this second organization, we introduce two criteria:

– individual (in)dependence to initial conditions
– global (trans)finite attractor.

They permit to build a classification table of our different types of behav-
iors (see Table 8.3).

Table 8.3. Periodicity clustering

Periodicity Dep. to I.C. Indep. to I.C.

Finite F , P N
Transfinite A S

Here, it is interesting to remove the distinction finite/transfinite, which is
natural if we accept transfinite iterations as an iteration scheme.

Actually, F is a part of P . We could divide P into a countable infinity
of disjoint subsets: P = ∪n∈NPn, where Pn is the set of n−periodic CA, n
being the maximal period. We have thus the equality F = P1. From one to
ηP(C), there is a whole family of periodic CA. Type-A CA are the limit of
periodic behaviors: A ≈ P#C , which gives them a typical aperiodicity.

We have also a class grouping N behaviors with S behaviors. From the
point of view of this organization, subshift behaviors are very simple.

A last remark about subshift behaviors is the following. We claim that
S behaviors are independent from initial conditions. In fact, it is true on a
subspace Σ1 of the whole configuration space. On its complement, no gen-
eral statement can be made: the behavior can be aperiodic or periodic, or
convergent to Σ1. Again, this is opposed to the idea that shifts are chaotic.

8.5.4 Organization w.r.t. Shifted Hamming Distance

Let us now come back to the third class of behaviors mentioned in §8.4
(intermediate). These rules are chaotic, as we proved it (see Theorem 8.14).
However, when we observe their long-term behavior, what we see is a perfect
regularity.

200 8. Experimental Compositional Analysis of Cellular Automata

With the help of the tool previously introduced, we can classify our differ-
ent behaviors in a very simple way. Indeed, thanks to the shifted Hamming
distance, we are able to show that subshifts behaviors are simple. The in-
tuition is the following. Let us consider a very simple shift behavior, say
the classical left shift. Although this shift can be proved chaotic under some
assumptions using an astronomer’s metric, the patterns observed when the
shift evolves make us think that the system is simple: there is just a shift to
the left at each step. If we take the sequence obtained after a few steps, it
very much resembles the initial one: we just have to shift it to the right to
make it equivalent to the former again. This is the idea behind the shifted
Hamming distance: a Hamming distance forgetting the shifting motions.

If the system is n-periodic or if it has a generalized subshift behavior
including a n-periodicity, they both appear very simple through the shifted
Hamming distance: for any x in the orbit of an initial condition, after the
transient,

Hρ(x, fn(x)) = 0.

The dual behavior is aperiodic. This gives us another characterization for
complexity: there is no x in the configuration space C for which the previous
condition applies and thus, for every x, and every n, we have:

Hρ(x, fn(x)) �= 0.

It might be interesting to study how far this distance is from zero. Some
systems have perhaps a bounded SHD whereas other ones could reach 1.
This could help in a deeper analysis of type-A CA.

We summarize this last organization in Table 8.4: under astronomer’s
metrics, subshifts can be considered as chaotic, whereas under the SHD,
subshifts are again very simple, just as periodic behaviors.

Table 8.4. Organization w.r.t. shifted Hamming distance

Null SHD Positive SHD

N ∪F ∪P ∪S A

This organization shows that the SHD can be an interesting tool to study
CA behaviors, especially to refine subclasses of type-A CA. Actually, it should
be very useful to investigate the quotient space C/≡ρ. What kind of behaviors
does this space allow? What is complexity in this case? This is left for future
work.

8.6 Conjectures in CA Composition 201

8.5.5 Dynamical Complexity in CA

The question of complexity is not easy to address, even for elementary CA; the
many existing classifications evidence this (see §8.10.3). Moreover, sometimes,
using classical tools, the resulting classification is not intuitive.

That was our main motivation to introduce a formal classification of CA
behaviors corresponding to phenomenological considerations. We needed new
tools, namely transfinite attraction and shifted Hamming distance; the former
allowing a classification in terms of transient length before convergence to
cycles, the latter showing that (periodic) subshifts are simple. Based on this,
the following complexity hierarchy can be defined.

Definition 8.16 (Complexity). On the set { N , F , P , S , A }, the
following ordering is established: N < F < P < S < A . The complexity
Υ (g) of a CA based on the local rule g is the place of its long-term behavior
in the defined ordering.

8.6 Conjectures in CA Composition

Each CA rule can be represented by a vector of eight binary components,
corresponding to all possible neighborhood configurations (see §8.2.1). Using
the componentwise logical disjunction, it is possible to generate all elemen-
tary rules from the basis {1, 2, 4, 8, 16, 32, 64, 128}. In [102, 101], the dynamics
of these particular CA rules was further studied separately and under com-
position. From the systematic compositions of basis rules, conjectures were
proposed that very much resembles the results presented in Chap(s). 6 and 7
union invariants. The aim of this section is to motivate a deeper study of
disjunction by comparison to union.

Basis Rules. The basis contains elements from each of the first four classes
defined in §8.4: using [49]’s notations, it gives

(1 ∈ p, 2 = s+, 4 ∈ f, 8 = n+, 16 = s−, 32 ∈ n, 64 = n−, 128 ∈ n)

and, using our standard notation,

(8, 32, 64, 128 ∈ N , 4 ∈ F , 1 ∈ P , 2, 16 ∈ S).

Remark 8.17. Rules denoted by n+, n− and s+, s− are symmetric: their
local transition functions are equal under left-to-right transformation, for
instance, gn+(a, b, c) = gn−(c, b, a); this property is important when observing
the composition of rules.

202 8. Experimental Compositional Analysis of Cellular Automata

Table 8.5. Local rule tables of CA 2, 16 and 18

Rule 000 001 010 011 100 101 110 111
2 0 1 0 0 0 0 0 0
16 0 0 0 0 1 0 0 0
18 0 1 0 0 1 0 0 0

Disjunction. This composition is easy to compute: Table 8.5 shows the dis-
junction of rules 2 and 16, the result being rule 18.

Local and global disjunctions are equivalent: let g1 and g2 be two local
rules, and x be a configuration of C, then

(⊗Rg1)(x) ∨ (⊗Rg2)(x) = (⊗R(g1 ∨ g2))(x).

Notice that this will allow us to merge G and G′ as well as � and �′ in the
abstract expressions of §8.1.

Complexity and Disjunction. Let us now present all binary disjunctions of
basis rules in terms of the classification given in §8.4. We intend to derive
information about the dynamics of CA considering the dynamics of the sin-
gle basis rules in the composition. The abstract expression presenting CA
composition in §8.1 becomes

Υ (⊗R(∨igi)) = Υ (∨i(⊗Rgi)) = �iΥ (⊗Rgi),

where � is obtained by exhaustive simulation of all possible binary disjunc-
tions (see Table 8.6, where symmetric cases are omitted for clarity), and Υ
refers to Def. 8.16.

Table 8.6. Local ∨-composition

8 32 64 128 4 1 2 16
n+ n n− n′ f p s+ s−

N N N N F P S S
8 N - N F N F S S S
32 N - - N N F P S S
64 N - - - N F S S S
128 N - - - - F A S S
4 F - - - - - P S S
1 P - - - - - - S S
2 S - - - - - - - A
16 S - - - - - - - -

8.7 Complexity by Composition of Shifts 203

Conjectures. Looking at Table 8.6, we see that when two symmetric rules are
composed together, complexity grows:

⊗R8
︸︷︷︸

n+∈N
∨ ⊗R64

︸ ︷︷ ︸

n−∈N
= ⊗R(8 ∨ 64)

︸ ︷︷ ︸

72∈F
⊗R2
︸︷︷︸

s+∈S
∨ ⊗R16

︸ ︷︷ ︸

s−∈S
= ⊗R(2 ∨ 16)

︸ ︷︷ ︸

18∈A

.

Apart from this, type F is obtained from type F , and periodicity entails
type-P , type-S , and type-A behaviors. Two important complexity laws
were conjectured in [49, 101].

Conjecture 8.18 (Law of complexity conservation). In the local dis-
junctive composition of two basis rules, the complexity never decreases:

∀x, y ∈ {N ,F ,P ,S}, Υ (x ∨ y) ≥ max(Υ (x), Υ (y)).

Conjecture 8.19 (Law of complexity increase). The complexity of the
local disjunctive composition of two basis rules increases (e.g., Υ (x ∨ y) >
max(Υ (x), Υ (y))) iff one of the following conditions holds:

– x = n+, y = n−; (symmetric null rules)
– x = s+, y = s−; (symmetric shifting rules)
– x ∈ N\{32}, y ∈ P. (periodicity)

We see that two particular cases appear to increase complexity: concurrent
symmetry and periodicity. In the rest of this section, we concentrate on the
first case, which seems to behave as prescribed by union-invariant theorems.

8.7 Complexity by Composition of Shifts

Among the experimental facts described in the previous section, let us pay
attention to Conj. 8.19, and to its second statement in particular: disjunction
of shifts leads to complexity.

Here, we proceed to a naive comparison of this conjecture to the compo-
sitional analysis of the Cantor relation or any other complex system obtained
by union of elementary systems attracting the space to different fixpoint in-
variants (see e.g. §7.3).

8.7.1 Rules 2 and 16

The rule tables of 2 and 16 are represented in Table 8.5, together with their
disjunction, viz. rule 18. Rule 2 gives 1 iff the local configuration is (0, 0, 1),
0 in the other cases; rule 16 gives a 1 in the symmetric configuration: 1

204 8. Experimental Compositional Analysis of Cellular Automata

iff the local configuration reads (1, 0, 0), 0 otherwise. We then compute the
disjunction of rules 2 and 16, which gives rule 18: 1 iff the local configuration
is (1, 0, 0) or (0, 0, 1), and 0 otherwise.

The behavior of rules 2 and 16 is very simple (type S): configurations are
shifted along the lattice, to the left or to the right. The behavior of rule 18 is
less simple, we classify it as a complex, type-A CA. Examples are represented
in Fig. 8.4.

θ(x,⊗R2) =S θ(x,⊗R16) =S

0 20 40 60 80 100
0

10

20

30

40

50

0 20 40 60 80 100
0

10

20

30

40

50

θ(x,⊗R(2 ∨ 16)) =A

0 20 40 60 80 100
0

10

20

30

40

50

Fig. 8.4. Evolution of CA rules 2 (left) and 16 (right) from a random initial con-
dition x show simple shifting behaviors, their disjunction 18 (bottom) shows a
complex type-A dynamics

8.7.2 Cantor Relation

Let us now briefly summarize the compositional analysis of the Cantor rela-
tion f (see also §7.3), in order to emphasize how close its dynamics is to the
disjunctive composition (see Fig. 8.5).

The relation is defined by union composition:

f1 =
x

3
(Int)

f2 =
x + 2

3
(Int)

f = f1 ∪F f2. (Int)

8.7 Complexity by Composition of Shifts 205

Proposition 8.20. Cantor relation f = f1 ∪F f2 has a complex dynamics
determined by a Cantor-set invariant.

Proof. The behavior of f1 on [0, 1] is very simple: every point is asymptoti-
cally attracted to the fixed point 0. Function f2 has also a unique attracting
fixed point on [0, 1], which is 1. These fixpoints are different. Moreover, f1

and f2 are both contracting, with a coefficient γ(f1) = γ(f2) = 1
3 , and they

verify f−1
1 ([0, 1]) = f−1

2 ([0, 1]) = [0, 1]. All assumptions of Theorem 6.28 are
verified, which concludes the proof.

The behavior of the union is much richer than its individual components:
it is has a Cantor-set invariant attracting the whole space.

f1(x) =
x
3

[0, 1]
f1
;→ Jf1 = 0 (fixpoint)

0

0.5

1

0 0.5 1
0

0.5

1

0 5 10 15

f2(x) =
x+2
3

[0, 1]
f2
;→ Jf2 = 1 (fixpoint)

0

0.5

1

0 0.5 1
0

0.5

1

0 5 10 15

f = f1 ∪F f2 [0, 1]
f
;→ Jf (Cantor set)

0

0.5

1

0 0.5 1
0

0.5

1

0 5 10 15

Fig. 8.5. Compositional analysis of the Cantor relation: f1 and f2 show simple
dynamics (attraction to their respective fixpoints); f shows a complex (direct and
reverse) dynamics, i.e. chaotic on the Cantor set invariant.

206 8. Experimental Compositional Analysis of Cellular Automata

8.7.3 Comparison

Rules 2 and 16 behave in a very simple way: every configuration is shifted to
the left or to the right. Everything seems to be attracted to the same point:
infinity. Regarding f1 and f2, every point of [0, 1] is continuously attracted
to 0 or 1.

Rule 18 is obtained by disjunction of rules 2 and 16. Globally, one can
consider that at some places of a configuration, the behavior of 2 is executed,
whereas at other places the behavior of 16 is executed. The same thing ap-
pears when executing the union of two systems. An important difference is
that the choice in the first case is directed by the opportunity to activate a
transition, while in the second case the choice is directed by an oracle (pure
randomness in the future, but recall the system is deterministic backward
and yet complex).

Finally, when rules 2 and 16 on one hand, or f1 and f2 on the other
hand, are composed together such that both components can be applied on
the configuration at the same time, complexity arises. In the first case, this
is only an experimental conjecture (Conj. 8.19) which is sort of evidenced
by simulation, whereas in the second case, there is a theorem to prove the
observation (Theorem 6.28 and Cor. 6.29).

8.7.4 A More Precise Conjecture

Considering the first experimental results and rephrasing the essence of union-
invariant theorems in the context of CA, Conj. 8.19 can be refined as follows.

Conjecture 8.21 (Complex dynamics by ∨-composition – 1). Rules
2 and 16 have compatible dynamics (contracting in the future), their disjunc-
tion is globally contracting in the future, and their invariants are different
fixpoints. Then ⊗R(2 ∨ 16) has a rich invariant and a complex dynamics.

Remark 8.22. This complex dynamics is not necessarily related to chaos as
defined in §5.2 because of the problem mentioned in §8.5 regarding type-S
CA.

8.8 Qualitative Analysis and Complexity Measures

Now we have more precisely stated that the disjunctive composition of shift-
ing CA leads to complexity (Conj. 8.21), the questions are:

– Does rule 18 really behave like the Cantor relation?
– How to prove that the resulting dynamics is complex?

8.8 Qualitative Analysis and Complexity Measures 207

Qualitative Analysis. The problem is that we do not have any theorem to
treat this case of local composition. In other words:

– Does rule 18 behave like a global union?
– In mathematical terms: Υ (⊗R18) = Υ ((⊗R2) ∪ (⊗R16))?

Probably not! In fact, rule 18 certainly entails more complexity than a global
union because it acts locally. We thus investigate the intermediate case be-
tween a global union and this local disjunction: a local union.

The reason why we decide to study this intermediate case amounts to the
fact that these three versions (local disjunction, local union, global union)
can be seen as particular cases of a more general composition type that very
much resembles probabilistic CA.

Generally, we can define a probabilistic CA as follows: at each step t,
each cell i applies a local rule g depending on t and i. This local rule is a
probabilistic choice between (at least) two possibilities: g1 with probability p
and g2 with probability 1−p. The model can be reduced to four specific cases,
according to when and where the probabilistic choice is made. This leads to
Table 8.7, where we mention an (approximately) equivalent nonprobabilistic
model.

Table 8.7. Different models of probabilistic CA

place of choice time of choice choice ≈ model
local each step gt

i local union
local once gi interleaved [101]
global each step gt global union
global once g classical CA

Complexity Measures. We have to characterize the complexity of different
systems. Generally, we base our intuitive understanding of complexity on the
notions of invariance and attraction. Here, we focus on the richness of the
attractor, but we introduce other tools from the experimental part of CA
studies:

– Boolean derivative and weight;
– generalized mean-field theory;
– entropy.

Boolean Derivative and Weight. In the following, we apply the notion of
Boolean derivative to CA [312]. Given a Boolean function f , its Boolean
derivative is defined by

∂f

∂xj
= f(· · · x̂j · · ·)⊕ f(· · ·xj · · ·)

ḟ = (
∂f

∂xj−1
,
∂f

∂xj
,

∂f

∂xj+1
)

where ⊕ is the exclusive disjunction, and ·̂ stands for a logical negation.

208 8. Experimental Compositional Analysis of Cellular Automata

Since every elementary rule can be expressed as an exclusive disjunction
of basic rules, the derivative is easy to compute: Ri being basic rules, ci being
binary coefficients,

f = ⊕iciRi ⇒ ḟ = ⊕iciṘi.

The weight of a function f is the average number of 1’s in the partial
derivatives of f . It is related to the sensitivity to initial conditions of the
global function. The bigger is the weight, the more sensitive the function is.

Generalized Mean-Field Theory. To evaluate the disorder induced by a rule,
several methods are conceivable. In [137, 136], the authors present the gen-
eralized mean-field theory.

– The 0th order corresponds to Langton’s λ parameter [195, 133]: it takes
the proportion of 1’s in the image of all triples of the rule.

– The 1st order stands for a mean-field approximation of the 0th order.
– The 2nd order is an extension of the first idea to larger neighborhoods: it

involves spatial correlations.
– As further orders converge to an invariant measure, they mimic the behav-

ior of cellular automata with more and more fidelity.

Entropy. A notion of entropy is also useful to characterize the complexity
or disorder induced by some rules (this kind of notion has been extensively
studied in [203, 50]). If (pi)i∈I is a probability distribution corresponding to
a set of possible events I, the entropy of this distribution is:

S = −
∑

i∈I

pi log(pi).

In this case, probabilities could be Markov approximations of CA rules as
given by the generalized mean-field theory.

8.9 Compositional Analysis of Complex CA

In this section, we systematically analyze the local disjunction, the local
union, and the global union using the complexity measures introduced in
§8.8. This allows us to reinforce Conj. 8.21.

8.9.1 Local Disjunction, Local Union, and Global Union

Because of the model itself, it is obvious that the complexity of the global
union is smaller than the complexity of the local union:

Υ ((⊗R2) ∪ (⊗R16)) < Υ (⊗R(2 ∪ 16)).

8.9 Compositional Analysis of Complex CA 209

What we would like to show goes in the same direction:

Υ (global union) < Υ (local union) < Υ (local disjunction).

To compare these different cases, we use the complexity measures introduced
above. For each rule, we have:

– a table with, in each column,
– a typical neighborhood configuration;
– the local image the rule will produce after one iteration;
– a label given to the neighborhood;
– the possible labels appearing when the label itself is embedded in a bigger

neighborhood of radius 2 (instead of radius 1), after one iteration;
– the probability to find the label after one iteration, starting from a neigh-

borhood of radius 2;
– the labels that are never reached in an evolution;
– the Boolean derivative of the rule, and its corresponding weight;
– the proportion of 1’s in the image of the rule (Langton’s λ parameter);
– the entropy of the rule, based on the probabilities given above.

In Tables 8.8 to 8.11, we detail the analysis of four different rules, namely
rules 2, 16, their local disjunction and their local union.

Table 8.8. Rule 2, ⊗R2

000 001 010 011 100 101 110 111
image 0 1 0 0 0 0 0 0
label a b c d e f g h
next a, b c a, e a, e a a a a
proba 20

32
4
32

4
32

0 4
32

0 0 0

Table 8.9. Rule 16, ⊗R16

000 001 010 011 100 101 110 111
image 0 0 0 0 1 0 0 0
label a b c d e f g h
next a, e a, e a, b a c a a, b a
proba 20

32
4
32

4
32

0 4
32

0 0 0

210 8. Experimental Compositional Analysis of Cellular Automata

Table 8.10. Rule 18, ⊗R(2 ∨ 16)

000 001 010 011 100 101 110 111
image 0 1 0 0 1 0 0 0
label a b c d e f g h
next a, b, e, f c, g a, b, e, f a, e c, d a a, b a
proba 14

32
4
32

4
32

2
32

4
32

2
32

2
32

0

Table 8.11. Local union, ⊗R(2 ∪ 16)

000 001 010 011 100 101 110 111
image 0 {0, 1} 0 0 {0, 1} 0 0 0
label a b c d e f g h
next a, b a, c a, b a, e a, b a a, b a

e, f e, g e, f c, d
proba 21.5

32
3
32

3
32

0.5
32

3
32

0.5
32

0.5
32

0

8.9.2 Comparison and Summary of Results

Basing our comparison on the tables presented above, we get the following
results (see Table 8.12):

Table 8.12. Summarized compositional analysis

Local rule 2 16 2 ∨ 16 2 ∪ 16

Unreached d, f, g, h d, f, g, h h h

Derivative Ṙ2 Ṙ16 Ṙ2 ⊕ Ṙ16 −
Ṙ(x1, x2, x3) (cx2x3,cx1x3, (cx2cx3, x1cx3, (cx2, x1cx3 ⊕cx1x3, −

cx1cx2) x1cx2) cx2)
Weight (2, 2, 2) (2, 2, 2) (4, 4, 4) −
Average 2 2 4 −
Prop. 1’s 1

8
1
8

1
4

1
8

Entropy 1.07354 1.07354 1.66132 1.12789

– proportion of residual 1’s

0 < P2 = P16 = P2∪F 16 < P2⊕16 < Porig =
1
2

;

– entropy

0 < S2 = S16 < S2∪F 16 < S2⊕16 < Sorig = 2.07944.

8.10 Discussion 211

Thus, the local composition 2 ∪ 16 induces more order than 2 ∨ 16, which
seems to be a stronger composition than the first one. Hence, we have the
second part of the inequality presented above, i.e.

Υ (local union) < Υ (local disjunction).

Proposition 8.23 (Complex dynamics by ∨-composition – 2). The
disjunction of rules 2 and 16 entails a complex behavior:

Υ (⊗R(2 ∨ 16)) > Υ (⊗R(2 ∪ 16)) > Υ ((⊗R2) ∪ (⊗R16)) = complex behavior.

Proof. Using Theorem 6.28, we establish the complex behavior of the global
union; evidently, the local union is more complex than its global counterpart;
with the help of our complexity measures, we state that the local disjunction
introduces more disorder than the local union; this permits to conclude that
this local disjunction has a globally complex behavior.

8.10 Discussion

In this section, we first summarize the chapter, and draw some partial con-
clusions. Then, we state unsolved problems and open questions. Finally, we
present related work in classification, aperiodicity, and composition.

8.10.1 Summary and Partial Conclusion

Classification. Two questions were answered. We showed that subshifts are
simple, using a rigorous framework including shifted Hamming distance. We
also defined and investigated the class of complex behaviors. This class has
to be refined but it constitutes a good starting point to lead us to complexity
in CA.

Our goal was to find a classification of elementary cellular automata in
which each class is defined by a mathematical expression, which was gen-
erally not the case in previous classifications (e.g. [330, 49] and §8.10.3). In
particular, we wanted to characterize the most “complex” classes, and we
wanted subshifts behaviors to be considered as simple because this better
matches qualitative behavioral classifications (although subshifts are proved
to be chaotic using classical means: our Theorem 8.14 generalizes results of
[41]).

We refined a given classification [330, 49] and we added tools to go deeper
[102]: transfinite attraction and shifted Hamming distance. With these tools
we proposed a formal characterization of each class and we saw that spa-
tiotemporally chaotic or aperiodic systems can be considered as “periodic”
systems with huge periods.

212 8. Experimental Compositional Analysis of Cellular Automata

Composition. We carried out a “compositional experimental analysis” com-
bining experimental complexity measures with theoretical compositional re-
sults. This led to interesting conjectures on the emergence of type-A complex
behaviors by composition of type-S simple behaviors: Conj(s). 8.21 and 8.23,
refining Conj. 8.19 of [49].

What is the interest of the previous developments? Establishing the com-
plexity of the local disjunction is not a breakthrough because it is already
clear visually, under simulation. But, we analyzed it by composition with
the help of common experimental tools in the field of cellular automata, viz.
complexity measures.

The result is: merging two very simple compatible behaviors attracting the
space to different parts of it entails the emergence of complexity since, as in
all previous cases (see also §5.7.3), the composition realizes an opportunistic
or oracle choice between different components.

An increase in complexity can come from the explosion of dimensions of
the state space, or from the mixing generated by the neighborhood relation
R and the local transition functions gi’s. In fact, the situation is not totally
black or white. Complexity can arise even without mixing, just by the union
or another operator. Simplicity can also arise from the connected product.
All depends on the way systems are composed, together with some important
properties: the attraction to different regions of the global state space. In this
case, complexity can be created from very simple systems composed together.

8.10.2 Open Questions

Classification. Of course, there are unsolved questions: our classification is
undecidable in general, unless used for very simple systems; we did not prove
the completeness of our classification: gaps could exist, i.e. behaviors not
included in any class.

Another important aspect to investigate is whether there is a link be-
tween our definition of aperiodic systems, and intuitions underlying classical
definitions of chaotic systems [88, 326]. Are they equivalent, contradictory,
or complementary?

Finally, we should study the quotient of the configuration space by the
shifted Hamming distance whose equivalence classes are shift-invariant con-
figurations because it could help us to investigate complex behaviors in a
simpler way, by decreasing their global complexity. We could also refine the
structural organization of CA classes of §8.5 using the pseudo-metric defined
in [51, 52].

Composition. In order to analyze the behavior of disjunction, we added com-
plexity measures to our theoretical compositional framework. These comple-
mentary notions permit to describe or discover complex behaviors.

We could make use of other complexity measures to refine our results
(e.g. higher orders of generalized mean-field theory, variants of entropy), and

8.10 Discussion 213

elaborate stronger techniques for the compositional analysis of connected
products in particular. Then, in addition to union (and disjunction), other
composition operators could be applied to CA and analyzed in the light of
complexity measures, too. Partial experiments have already been conducted
in [101, 105] on sequential and disjunctive composition, that confirm the
power of mixing theoretical compositional results with complexity measures.
However, the exact influence of the elementary periodic rule p in the compo-
sition is still unclear.

Finally, although we have considered homogenenous CA, a very interest-
ing open problem is to use the compositional approach to analyze hetero-
geneous, or hybrid, models (i.e., using possibly different local functions at
different cells of the automata) [54, 55]. Some research in this direction has
already started [101].

8.10.3 Classification: State-of-the-Art

Classification is one of the central themes in the theory of CA. This motivates
this rather long section stating important earlier classification schemes.

Several authors have proposed different classifications, starting with Wol-
fram in 1983. Although we call this section “state-of-the-art”, we mainly
present classification schemes close to Wolfram’s one. Other schemes are men-
tioned in the papers cited here.

Attraction-Based Classification. In [330], the first classification of CA ap-
pears, grouping together systems having the same long-term behavior: class
I, evolution to homogeneous state; class II, evolution to separated simple
states or periodic structures; class III, chaotic patterns; class IV , complex
localized structure, sometimes long-lived. The main problem of this classi-
fication is that it is only qualitatively defined. The fourth class is related
to universal computational devices. Wolfram considers only symmetric rules,
the local rule of which is such that g(a, b, c) = g(c, b, a). When asymmetry
appears, we get subshift behaviors for example.

In [174], the author relates the previous classification to two properties:
the number of attractors, related to storage capacities when the systems are
considered as associative-memory devices; the period size, related to infor-
mation dynamics. This gives a more precise description of each class (see
Table 8.13).

In [200], the authors give a classification looking like Wolfram’s one but
not completely comparable to it: class 1, null rules, leading to homogeneous
configurations (equivalent to Wolfram’s class I); class 2, evolution to fixed-
point configurations (class II, partly); class 3, evolution to periodic config-
urations (class II); class 4, locally chaotic rules (class II); class 5, globally
chaotic rules (class III); class 6, complex behaviors (class IV). They also
study inter, and intra-class probabilities and give a mean-field description of
their classification.

214 8. Experimental Compositional Analysis of Cellular Automata

Table 8.13. Kaneko’s attraction-based classification

Small number of attractors Large number of attractors
Short periods no information creation no information creation

small storage large storage
class I class II

Long periods creation of information creation of information
small storage large storage
class III class IV

In [49], a variation of Wolfram’s classification is presented, adding classes
behaving like subshifts, due to the consideration of asymmetric rules. Here,
the authors take bi-infinite configurations without any restriction: class n,
evolution to quiescent configurations (Wolfram’s class I); class f , evolution
to fixed-point configurations (class II, partly); class p, evolution to periodic
configurations (class II); class s, simple subshift behaviors (class II); class
s′, complex subshift behaviors (class II); class c, “chaotic” behavior (classes
III and IV). Classes s and s′ are considered separately from simple rules
because, when studied on bi-infinite configurations, they generate chaos (as
proved in §8.5, see Theorem 8.14), whereas they are seen as very simple rules
when evolving from finite configurations. This classification was our starting
point. We will come back to this below.

In [42], the authors propose a new classification of CA, based on the
observation of finite initial conditions in bi-infinite configurations. The tool
presented is a measure of pattern growth. The classification goes as follows:
class C1, patterns vanish; class C2, pattern length stays finite (fixed or pe-
riodic finite size); class C3, pattern length grows to infinity. We have the
following relation between classes: C1 ⊂ C2 = C3. An important advantage
of this classification over other ones is that it is decidable. For each rule, it is
possible to determine a priori whether it belongs to class C1, C2, or C3. Since
this classification is decidable, let us show some links with ours: N = C1, F
, P , S are in C2, and A ∩C3 �= ∅. This classification is decidable because
it is based on a subset of the whole configuration space, namely finite initial
conditions.

Finally, in [171], a comprehensive classification is given, based on three
kinds of properties, namely: formal languages (3 classes), equicontinuity (4
classes) and attraction (5 classes). To our knowledge, this is the finest classifi-
cation up to now. Sixty different classes of behaviors are analyzed. Examples
and counter-examples are exposed. Only three classes are not completely
characterized in the sense that it has not yet been proved whether they are
empty or not.

Decidability Results. There are many papers related to decidability results.
Since this aspect is somewhat outside our topic, we just mention two papers,
wherein the interested reader can find a good initial list of references.

8.10 Discussion 215

In [74] the authors give a hierarchy of CA starting with finite configu-
rations: class I, CA converging to fixed-points in finite time; class II, CA
converging to periodic configurations in finite time; class III, CA for which
it is decidable to know whether a configuration occurs in the orbit of an-
other; class IV : all CA. Each class contains the previous one(s). The authors
emphasize (un)decidability results

In [301], the author concentrates on circular CA and uses the same defi-
nitions as in [74].

Probabilistic Approach. Many authors make use of probabilities, Markov
chains, and statistical mechanics in the field of CA, which give very inter-
esting global results. Since this approach is orthogonal to ours, we do not
mention many references. We refer the interested reader to the following two
papers, in which many other references can be found.

In [137, 136], the authors make use of mean-field theory to characterize
and classify CA. In [134], the author studies the action of CA on n-step
Markov measure.

Summary. Let us summarize what the problems are in general and compare
our approach with earlier work. Two problems appear when classification is
studied: it is difficult to give a formal definition of each class of CA (in
particular, spatiotemporal chaos is not precisely defined in this context);
these definitions are often based on undecidable properties. Our classification
is strongly influenced by [49]. We put together classes s and s′ and give a
generalized version of subshift behaviors. We also generalize class c into a
class of aperiodic behaviors (see [161] below). We present tools allowing to
give a precise formal definition of each class. These tools can be related to
the characterization appearing in [174]. Our classification is not decidable for
all CA rules but only for basic ones. We have partially extended these results
to more complex rules, with the help of composition operators.

8.10.4 Aperiodicity in Cellular Automata

The notion of “chaos” is still not well defined in the context of discrete-time
discrete-space multi-dimensional dynamical systems such as, for example, cel-
lular automata. Several authors propose ways of defining complex behaviors
in CA. This is one of the goals of classification. We have already presented
several classification schemes. Other ones emphasize transition phenomena
in the space of CA rules, allowing new classifications, too. In these latter
ones, statistical measures are often used, together with information theory-
like measures (entropy, activity, sensitivity to rule change, etc.). This leads to
definitions of complex behaviors, based on certain parameter values. Among
others, we refer the interested reader to [63, 125, 201, 257, 332].

In [302], the author presents a classification of chaotic behaviors, based
on notions of randomness, complexity measures, computability of initial con-
ditions, and (non)determinism of rules.

216 8. Experimental Compositional Analysis of Cellular Automata

Finally, in [161], the author studied aperiodicity of some CA analytically.
We take this point of view in our classification scheme because it is easier to
define than complex or chaotic rules. However, we do not make use of linearity
and injectivity notions presented by Jen. This point of view is interesting
because aperiodicity includes complex and chaotic behaviors. Recently, we
have extended the analysis to continuous CA [103].

8.10.5 Related Work in Composition

In the literature on cellular automata and related models, lots of papers
study complexity. Among these ones, let us just refer to important approaches
developed in [125, 330, 63, 177]. Two books offer many contributions and
references [132, 113].

Closer to our compositional approach, we find algebraic attempts to char-
acterize the behavior of some CA in [53, 249, 315]. Composition operators
are proposed, together with global results obtained by composition of local
properties. A comprehensive, recently published book further develops these
aspects [317].

Finally, [49] is the starting point of the experimental part of this chapter,
giving the same results by simulation as the ones mentioned in the theoret-
ical framework of [290], basically contained in Chap(s). 2 to 7. A common
work further led to [102, 101]. More recently, a characterization of dynam-
ical and algebraic properties was proposed for a particular class of shifting
rules, namely moss reinforced shifts, based on the framework presented in
this chapter [104].

9. Compositional Analysis of Computational
Properties

We studied the rich diversity of behaviors of dynamical systems via their
invariants and attractors, and we examined how these properties, related to
dynamical complexity, are combined when systems are composed together
using appropriate composition operators. This was the aim of Chap(s). 5
and 6, illustrated by case studies in Chap(s). 7 and 8.

After this study of dynamical properties of systems, we examine a second
important aspect of dynamical systems, namely their computational abilities.
We embed classical computational models in a uniform structure of composed
dynamical systems and we compare their computational power with two rep-
resentative classes of systems: cellular automata and continuous functions.
The comparison we carry out is based on extrinsic (simulation) and intrinsic
(topological, metric and computational) properties. This allows us to pro-
pose a hierarchy of computational models that are completely characterized
by composition.

The chapter is organized as follows. We start in §9.1 with an introduction
motivating the comparison between computational models and dynamical
systems; in §9.2, we informally describe how systems can be compared; in
§9.3, we embed Turing machines, cellular automata and continuous functions
in a generic composed system based on the connected product; in §9.4–§9.6,
these families of systems are compared w.r.t. simulation, which leads to a
weak hierarchy, using topological and metric properties, allowing a precise
characterization of their computational power, and regarding their behavior
from (un)computable initial conditions; in §9.7, the results of this chapter
are summarized and a hierarchy of systems is proposed; finally, we close the
chapter in §9.8 with a discussion.

9.1 Automata as Dynamical Systems

In this section, we introduce and motivate the elaboration of a computa-
tion hierarchy of dynamical systems. Starting from qualitative properties of
systems such as invariance and attraction (see Chap. 5), we obtain language-
theoretic properties that allow us to compare classical computational models
like Turing machines with other models like cellular automata and continuous
functions.

F. Geurts: Abstract Compositional Analysis of Iterated Relations, LNCS 1426, pp. 217-242, 1998.
 Springer-Verlag Berlin Heidelberg 1998

218 9. Compositional Analysis of Computational Properties

If one looks at the dynamics itself as an input/output relation, one can
wonder

– what kind of attractor a system is able to reach;
– what set of initial states will lead to a given set of final or asymptotic
states.

Actually, these questions only rephrase attraction properties:

– given a set of initial conditions I, solve I ;→?;
– given a set of final conditions F , solve ?;→ F ;

but we do not focus anymore on the evolution leading to the attractors;
contrarily, things are considered globally.

The questions can still be rephrased differently, asking what kind of rela-
tion f , leading to a behavior like I

f
;→ U or V

f
;→ F , we could realize with

dynamical systems. This is getting closer to computability theory, where the
questions concern the type of functions one can build using a given compu-
tational model.

For example, let us remember that Chomsky’s hierarchy establishes a
strict ordering between the computational power of different models including
finite automata, pushdown automata, and Turing machines [155]. Of course,
the precise meaning of “computational power” has to be defined in order
to carry out these comparisons. In this case, one is interested in languages
recognized (accepted) or generated by different models. Let us examine some
simple examples.

Example 9.1 (Nondeterministic finite automaton). A nondeterminis-
tic finite automaton is defined by a set of states Q, an alphabet Σ, a transition
relation ζ ⊆ (Q×Σ∗ ×Q), an initial state q ∈ Q, and a set of accepting states
F ⊆ Q. The automaton starts in state q and is provided with an input sequence
s ∈ Σ∗. At each step, a transition (s, q)→ (s′, q′) occurs if there exists a word
w ∈ Σ∗ such that s = ws′ and (q, w, q′) ∈ ζ. It is possible to rewrite this
nondeterministic transition as a choice in the relational iteration of the system
fA working on Σ∗ ×Q:

fA = {((s, q), (s′, q′)) | ∃w ∈ Σ∗, s = ws′ ∧ (q, w, q′) ∈ ζ}.

The language defined as the set of inputs leading to an accepting state in a finite
amount of steps is said to be “recognized”, and is denoted by Lr:

Lr × {q}
fA
;→ Σ∗ × F.

This language is nothing but the backward attractor of Σ∗ × F . If we reverse
the execution of fA by taking its inverse f−1

A , Lr is the forward attractor.

Example 9.2 (Regular grammar). We consider now regular grammars
generating regular languages (other types of grammars can be treated in the

9.1 Automata as Dynamical Systems 219

same way). Such a formal system is defined by an alphabet V , a set of terminal
symbols Σ ⊆ V , an axiom S and a set of inference rules R ⊆ V + × V ∗. There
is a constraint on R: the only possible rules are either A → wB or A → w,
with A and B being nonterminal symbols, and w ∈ Σ∗. The initial symbol is S,
and all derivations start from it. A derivation u→ v occurs when there exists a
pair of words x, y ∈ V ∗ such that u = xu′y, v = xv′y, and (u′, v′) ∈ R. The
transformation to a dynamical system is as easy as in the previous example. We
get a system fG defined as follows:

fG = {(u, v) | ∃x, y ∈ V ∗, u = xu′y ∧ v = xv′y ∧ (u′, v′) ∈ R}.

Starting from the axiom S, the words of Σ∗ reached after any finite number of
derivations from the axiom form the “generated” language Lg:

{S} fG
;→ Lg.

This language is nothing but the forward attractor of {S}.

Example 9.3 (Trace language). In Chap. 4, we introduced the concept of
trace language Lt as the set of all possible traces a system (X, f) can generate
on a covering (α,Σ) (see Def. 4.8). This language can be seen as generated
language, too. Let us show this informally. We need a predicate guaranteeing that
a specific trace σ is possible or observable, possible(σ) (e.g. a fullness property,
see Def. 5.24), and the trace language can be defined as Lt = {σ ∈ Σω |
possible(σ)}. The system fT is then defined on Σ∞:

fT = {(u, v) | (v = uj) ∧ possible(v)}.

Using this last system, the trace language is obtained as an attractor, too:

{ε} fT
;→ Lt.

Thus, fundamental properties of automata can be expressed as attrac-
tion properties of dynamical systems. This motivates two research directions
[46, 45, 113, 317, 334]: first, a comparison of computational abilities of dy-
namical systems and classical computational models; second, a deeper study
of connections between dynamical systems and languages, grammars and au-
tomata. The first question is the aim of this chapter.

In computability theory, Church-Turing’s thesis, claiming that every algo-
rithm can be realized by a Turing machine, seems to have a folklore corollary
that nothing more powerful than a Turing machine exists [146]. This is not
true but clearly distinctive criteria must be specified.

To illustrate our point, we concentrate on two models, apart from Turing
machines: cellular automata and continuous functions. We precisely consider
these models because their action-effect pairs present interesting structural
particularities that constitute the main reason of their different behaviors
and computational abilities.

220 9. Compositional Analysis of Computational Properties

Informally, Turing machines (TM) only produce local modifications on
their tape, under the head, and the resulting effect is of course local; cellular
automata (CA) produce a local change in each cell, which translates into a
possible global effect; finally, continuous functions on the real numbers (CF)
seem to produce a global modification at each position of the decimal expan-
sion of numbers, which results in a possible global effect. These characteristics
are summarized in Table 9.1.

Table 9.1. Pairs action-effect of computational models

Model Action Effect

TM local local
CA local everywhere global
CF global global

We embed TM, CA and CF in a general model based on the connected
product, and the comparison leads to the following computation hierarchy:

TM<cCA<cCF .

Some authors have already pointed out that the complexity of systems
is related to undecidability issues. For example, there is no algorithm to
determine the attractors of all systems [165, 224, 282]. Undecidability thus
expresses the limits of systems.

Moreover, from a theoretical point of view, it is useful to propose a uni-
versal model in each class, viz. a model which is able to simulate the behavior
of any other model of the same class. Universality rather expresses the power
of systems.

Universality and undecidability are intrinsically related in theoretical
computer science; we will see that it is interesting to extend these notions to
dynamical systems in general.

9.2 Comparing Dynamical Systems

In what follows, we will compare Turing machines, cellular automata and con-
tinuous functions. To compare dynamical systems, two methods are possible:
extrinsic and intrinsic. The aim of this section is to make a clear distinction
between the two methods, and to present the properties used in the rest of
this chapter.

9.2.1 Extrinsic Method

This method is based on simulation. Informally speaking, a system A simu-
lates a system B if A’s computations mimic B’s ones. The number of steps

9.3 From Locality to Globality 221

required to realize the other one’s computations can be fixed in advance or
based on attraction to a “halting” state.

For example, A could need three computation steps to reach B’s result
after one step. It could also require a finite number of steps, depending on
the input data received by B. Convergence to B’s answer could be preferred,
in which case A’s computation could be infinite.

9.2.2 Intrinsic Method

This method is based on properties of the systems we want to compare: the
languages they generate, their structure, their topological entropy, etc.

For example, let us imagine we want to prove that a system A is strictly
more powerful than another system B. An intrinsic method amounts to ex-
hibit a language or a function that A is able to compute but not B. If B
satisfies a property that restricts its computations, and A is not restricted
the same way, A is stronger than B.

9.2.3 Our Comparison

In what follows, we use both methods to explore and compare different mod-
els. Let us just mention them here; they are formally defined in §§9.4–9.6.

– Extrinsic method: we prove that
– cellular automata simulate Turing machines;
– continuous functions simulate cellular automata.
This only entails a weak hierarchy

TM≤cCA≤cCF

because nothing is said about the converse simulations.
– Intrinsic method. We use the following criteria:

– continuity w.r.t. the astronomer’s metric;
– (generalized) shift-invariance;
– Lipschitz property;
– shift-vanishing effect;
– behavior w.r.t. (un)computable initial conditions.
These discriminating properties strengthen the first hierarchy:

TM<cCA<cCF .

9.3 From Locality to Globality

To compare different computational models, it is useful to formally define
them in a unified way. This is the aim of this section: we recall the defini-
tions of Turing machines, cellular automata and continuous functions, and we

222 9. Compositional Analysis of Computational Properties

present a general model based on the connected product unifying them. This
allows us to clarify Table 9.1 by extracting interesting characteristics that
will be used later in correspondence with topological and metric properties.

9.3.1 Turing Machines

As everybody acknowledges TM as a typical universal model of computa-
tion, it is interesting to compare it to other models that are suspected to be
stronger.

Definition 9.4 (Turing machine). A Turing machine M is defined by

(Q,Γ,Σ, ζ, s, B, F)

where Q is the set of internal states, Γ is the tape alphabet, Σ ⊆ Γ is the
input alphabet, s ∈ Q is the initial state, F ⊆ Q is the set of accepting states,
B ∈ Γ −Σ is a white symbol for the tape, and ζ : Q×Γ �→ Q×Γ ×{−1, 0, 1}
is the transition function.

A Turing machine is represented in Fig. 9.1, where the head contains a
state p ∈ Q, the tape content is u, and each cell i is set to ui.

p

∇
· · · u−2 u−1 u0 u1 u2 · · ·

Fig. 9.1. Turing machine: u represents the tape content, and p is the internal state
contained in the machine’s head

At each transition, the internal state and the current tape symbol are
considered: a new symbol is written on the tape, a new internal state is
reached and the current position of the head on the tape is moved to the left
(−1) or to the right (1), or it does not move (0).

A configuration c of M includes its internal state, and the whole tape
content:

c ∈ Q× Γ ∗.

This state space can be embedded in Q × ΓZ, in which the behavior of
the TM is given by the following rules: according to the value of the internal
state, and the value of the cells around zero (representing the head), modify
some cells around zero, modify the internal state, and make a (null, positive
or negative) shift.

A transition of the machine (head state, tape state under the head)
ζ→

(new head state, new tape state, shift),

9.3 From Locality to Globality 223

(p, a)
ζ→ (q, b, c)

can be rewritten as:

M

(

p
· · · g−3g−2g−1.ag1g2g3 · · ·

)

=
(

q
ρc(· · · g−3g−2g−1.bg1g2g3 · · ·)

)

.

Hence, M can be considered as a dynamical system acting on the configura-
tion space Q× ΓZ. This kind of construction can be easily adapted to finite
and pushdown automata.

This view of TM as dynamical system is called Turing machine with mov-
ing tape, i.e. TMT, in [172], because the whole tape is moved after the possible
change under the head. In the same paper, the author proposes a dual way
to consider TM, namely Turing machine with moving head, i.e. TMH. There,
Q × Γ ∗ is embedded in some XZ, but one and only one cell represents the
head; under the head, a slight modification can occur, and everywhere else,
nothing happens. The definition given above remains valid but the viewpoint
has to switch from the head to the tape: in TMH, the head moves over the
tape, whereas in TMT, the tape moves under the head.

Considering TMT could lead to infinite effect domains because the last
shift can entail a global modification, whereas the action domain of any TM is
local, because only a finite number of cells are taken into account to compute
the next global state and the effect domain is also local because only a finite
number of cells can be modified at the same time, i.e. in one time step.
This is the reason why we will only consider TMH in which only a few cells
are modified around the head, and all other cells remain unmodified and
immobile.

9.3.2 Cellular Automata

CA were defined and studied in Chap. 8 regarding attraction and composi-
tion. Let us briefly recall their definition based on the connected product (see
also Def. 8.2).

Definition 9.5 (Cellular automaton). A cellular automaton is a con-
nected product ⊗Rgi defined on a Cartesian product E = ×i∈IXi such that
the local spaces are Xi = X = {0, 1, · · · , k − 1}, the neighborhood relation
is R = {(i, {i − 1, i, i + 1}) | i ∈ I}, and the local transition function is
gi = g : X3 �→ X .

In the following, we consider elementary CA, with I = Z and k = 2. Their
behavior is completely characterized by this definition. A CA is represented
in Fig. 9.2. Each cell i is set to a local state ui. The global configuration is u.

The action domain of a CA is local for every cell. The effect domain is
global because every cell can be modified.

224 9. Compositional Analysis of Computational Properties

· · · ↔ u−2 −2
↔ u−1 −1

↔ u0
0
↔ u1

1
↔ u2

2
↔ · · ·

Fig. 9.2. Cellular automaton: u is the global state

9.3.3 Continuous Functions

For this class of systems, the behavior in terms of local/global action/effect
is less clear than in the previous cases. For instance, consider the logistic map
f(x) = 4x(1− x) and its effect, if any, on decimal digits of states in the unit
interval:

0.707106781 · · · f→ 0.828427124 · · ·
What are the relationships between the digits, apart from the fact tey con-
stitute two different real numbers 2−

1
2 and f(2−

1
2)? Is is possible to compute

each digit yi of the result f(x) as a function fi of x? If it is, how many digits
of x are needed to evaluate fi(x)?

As outlined by Table 9.1, the action is global and the effect is also global.
This means each digit yi of the decimal expansion of the image y = f(x) of
a global configuration x seems to be the image of all or many digits of x,
whereas CA reduce the action-neighborhood to a bounded finite radius.

To investigate this comparison w.r.t. computability, we suspect this char-
acteristic to be of fundamental importance.

Remark 9.6. In the rest of this chapter, we concentrate on functions that
are continuous on XZw.r.t. the astronomer’s metric, which is not equivalent
to continuity w.r.t. the Euclidean distance on R. We come back to this issue
in the next paragraph.

9.3.4 General Model

Now, let us present a general connected product acting on a bi-infinite prod-
uct of finite discrete spaces. This model will be specified using different in-
stances of some parameters, and the properties of the systems so obtained
will be analyzed.

We define local state spaces as finite discrete spaces, and repeat this a
bi-infinite number of times via a Cartesian product. This gives:

I = Z

∀i ∈ I,Xi = X = {0, 1, · · · , k − 1}
E = ×i∈IXi = XZ.

On this global state space E, we define the general model.

Definition 9.7 (General model). The general model is a RDS (E,⊗Rgi)
where

R = {(i,Mi) | i ∈ I,Mi ⊆ Z}

9.3 From Locality to Globality 225

is the neighborhood relation, and

gi : X#Mi �→ X

is a local transition function.

The neighborhood of component i is given by Mi. It contains the indices of
components that can have an effect on the value of component i. We denote
the cardinality of each Mi by mi = #Mi, and m = sup

i∈I

mi. Two important

parameters are the local distance of action:

∆i = max(|i−maxMi|, |i−minMi|)

and its supremum:
∆ = sup

i

∆i.

Remark 9.8. There are particular examples of such distributed systems
where the apparent action domain is infinite but its effective action domain
is finite or even empty. For instance, take a constant CA, viz. where the state
of each cell is left constant over time; its effective action domain cannot be
considered as infinite, because no cell is taken into account to compute the
next global step.

Among I, we can fix a subset I of effectively active components at a
particular time-step, which means that I can vary during the evolution. The
local action is given by gi. All others are identities, i.e.

∀j ∈ I\I, R(i) = {i}, gi = IX .

In order to evaluate the distance between states of E, we again use an
astronomer’s metric (see Def. 2.53): x and y being two global states of E,

da(x, y) = k− inf{i≥0|xi 	=yi∨x−i 	=y−i}.

This metric induces the product topology on E. The more local values two
states have in common, the closer they are to each other. It corresponds to our
intuitive notion of distance for real numbers for example, because we are used
to consider decimal representations of these numbers, in which proximity is
related to the number of common decimals. Although the topologies induced
by the Euclidean metric and this metric are not completely equivalent, we first
examine this metric as a good candidate to generate continuous functions.

Now, we summarize the parameters of the connected product ⊗Rgi de-
fined above:

– action domain: local neighborhoods Mi (mi, ∆i) and the greatest local
distance of effect m,∆; if all ∆i are finite, the greatest local distance of
effect ∆ can be finite (e.g. ∀i,∆i = 1) or infinite (e.g. ∀i,∆i = 2i); there
are four cases:

226 9. Compositional Analysis of Computational Properties

– ∀i,∆i ∈ N ∧∆ ∈ N (A1)
– ∀i,∆i ∈ N ∧∆ = ω (A2)
– ∃i,∆i = ω ⇒ ∆ = ω (A3)
– ∀i,∆i = ω ⇒ ∆ = ω; (A4)

– effect domain: I; we have two variants, based on the following definition:

I(f, x) = {i ∈ Z | (f(x))i �= xi}

– either I is always finite, (E1)
– or it can be infinite; (E2)

– local transition function: gi;
– homogeneous local functions, i.e. ∀i ∈ I, gi = g, (F1)
– heterogeneity. (F2)

Different sets of local parameters define different instances of the con-
nected product and, thus, different computational models. The aim of this
chapter is to compare the computational abilities of these models using ex-
trinsic and intrinsic global properties, resulting in a compositional analysis
of computational properties:

local parameters ←→ models ←→ global properties.

Not all combinations of these properties are valid or interesting. Table 9.2
indicates by / the categories which are not considered here, and by ∅ the
empty categories; we concentrate on classical models.

Table 9.2. Combinations of properties for some specific systems (TM = Turing ma-
chines, CA = cellular automata, CF = continuous real functions, GS = generalized
shifts, RN = random networks)

F E A1 A2 A3 A4
1 1 TM, GS / ∅ /
1 2 CA / ∅ /
2 1 TM, GS / / /
2 2 RN CF / /

In particular, it is clear that

– A3 − F1 is empty because it implies A4;
– in some sense, A1 is contained in A2, if we consider A2 as the class of
systems for which ∆ ∈ N ∪ {ω} instead of just ∆ = ω;

– TM(H) and generalized shifts (GS, see [226, 225]) fall in class A1− E1;
– CA are in class A1 − E2− F1;
– random networks (RN, see [113]) are in A1−E2− F2, and da-continuous
functions are in A2− E2− F2.

9.4 Comparison Through Simulation 227

Are these classes sufficient or necessary characterizations of these groups
of systems? Are A3−E1− F2, A4−E1− F2 and A4−E1−F1 equivalent
to oracle Turing machines, assuming that an infinite action domain could
be considered as an oracle? Do the last classes correspond to generalized
fully-connected neural networks?

9.4 Comparison Through Simulation

Extrinsic and intrinsic methods can be used to compare computational mod-
els. In this section, we emphasize the use of extrinsic methods and we show
that TM can be simulated by CA, which in turn can be simulated by CF.
This leads to a weak hierarchy because CA are at least as strong as TM,
and CF are at least as strong as CA. However, nothing tells us that CA
are strictly stronger than TM, for instance. Yet, simulation is interesting to
compare models because very often the limits of a model appear when it is
embedded in a stronger one.

9.4.1 Simulation

A system A simulates another system B when every step in the computation
(or evolution) of B can be performed by one or several steps of A. In general,
we will consider that this number of steps is independent from the input
considered. If A simulates B, then A is more powerful than B but this is
only a weak result denoted by B≤cA. If one is able to show whether the
converse holds or not, we have a stronger result. In the affirmative case, both
systems are said to be equivalent, denoted by A≡cB, whereas the negative
case induces a strict relation between them, denoted by B<cA.

Several results exist on simulation (see §9.8 for a general discussion). We
consider here a general definition of the concept.

Definition 9.9 (Simulation). Let (X, f) and (Y, g) be two dynamical sys-
tems. Then f simulates g iff there exists an encoding φ ∈ R(Y,X) and a
decoding ψ ∈ R(X,Y), such that ∃m > 0, ∀y ∈ Y, g(y) = ψ(fm(φ(y))).

Each step of g is simulated by a constant number m of steps of f . An
exponent m greater than 1 allows the simulation of g by f in more than one
step. The following diagram represents the homomorphic simulation:

y ·

· ·

g

fm

φ ψ

228 9. Compositional Analysis of Computational Properties

Remark 9.10. – Simulation is generally seen as a particular case of abstrac-
tion (see Chap. 4). However, this homomorphism slightly differs from the
previous ones encountered so far: the decoding has to be defined from X
to Y , in order to give g’s image through f . A weaker simulation would be
expressed as follows: ψ′(g(y)) = fm(φ(y)).

– Sometimes, another definition is given for simulation, swapping ∃ and ∀:
∀y ∈ Y, ∃m > 0, · · ·. Then a finite-time stabilization is used instead of a
step-by-step simulation: the computation of f stabilizes on a fixed point or
on a cycle after m iterations of f , depending on y. This is closer to intrinsic
methods because it emphasizes attraction properties of each system [114,
111, 113].

9.4.2 Choice of Coding

In general, the choice of coding entails a trade-off regarding the power of
encodings and decodings themselves:

– they should not be able to do too many things, because the computations
have to be carried out by the model itself and not by the codings;

– they have to be powerful enough to code enough states.

In general, we consider at most a Turing computable coding, because
we use simulation to compare TM with potentially stronger models. In this
case, computable codings do not offer too much, as they are restricted to the
suspected poorest model; they offer enough to code large state spaces; their
power is well known and described.

Examples of φ and ψ are respectively a one-to-many relation and a many-
to-one function. If φ is a bijective function, we can consider ψ = φ−1.

In the rest of this section, we use different kinds of codings to compare our
different models but in the next section (§9.5), which is devoted to intrinsic
comparison methods of systems, the notion of coding is not used anymore.
Indeed, we consider there systems that all work on the same state space of
infinite sequences of symbols, embedded into a product topology.

9.4.3 From TM to CA

The first problem to solve is the following. Given a Turing machine TM , we
want to find a cellular automaton CA, an encoding φ and a decoding ψ such
that CA simulates the Turing machine in one step: TM(u) = ψ(CAm(φ(u))),
with m = 1.

Our construction is not optimal but easy to understand. Equivalent results
can be found in [296, 204, 168].

9.4 Comparison Through Simulation 229

Encoding. We consider a Turing machine M defined as a dynamical system
on Q × ΓZ. We want to translate any state (p, c) ∈ Q × ΓZ into a state in
the configuration space of a one-dimensional cellular automaton. A special
symbol ∗ is added to Q, in order to keep track of the machine’s head: all cells
but the one representing the head will contain ∗. Any cell of the resulting
automaton contains a pair (symbol, state) from X = Γ × (Q ∪ {∗}). The
configuration space of the resulting cellular automaton is a subset of XZ.
More formally, the encoding is given by (see Fig. 9.3):

p

∇
· · · u−2 u−1 u0 u1 u2 · · ·

↓ φ

· · · ↔ u−2

∗
−2

↔ u−1

∗
−1

↔ u0

p
0

↔ u1

∗
1

↔ u2

∗
2

↔ · · ·

Fig. 9.3. From a TM configuration to a CA configuration

φ : Q× ΓZ �→ XZ

s.t. φ(p, c)i =
{

(ci, p) if i = 0
(ci, ∗) if i �= 0 .

Using this encoding, the resulting machine becomes a TM with moving head
[172], which is the only reasonable choice. Indeed, a TMT would require a
global information spread over the whole lattice.

CA Local Transition Function. One step of the Turing machine, e.g. a tran-
sition ζ(p, u0) = (q, a,−1), must give rise to an equivalent change in the CA
configuration; this is depicted in Fig. 9.4.

· · · ↔ u−2

∗
−2

↔ u−1

∗
−1

↔ u0

p
0

↔ u1

∗
1

↔ u2

∗
2

↔ · · ·

↓ CA step

· · · ↔ u−2

∗
−2

↔ u−1

q
−1

↔ a
∗

0

↔ u1

∗
1

↔ u2

∗
2

↔ · · ·

Fig. 9.4. A CA transition equivalent to a TM transition

230 9. Compositional Analysis of Computational Properties

Let us now construct the local rule of the automaton simulating the behav-
ior of the original Turing machine. The cell containing a state different from
∗ is considered as the head; only its two neighbors have to know its current
value to compute the next state of the machine. All triples ((x, ∗), (y, ∗), (z, ∗))
remain unmodified. Triples with one pair (y, p), where p �= ∗, are modified
according to the transition rule ζ : Q×Γ �→ Q×Γ ×{−1, 0, 1} of the Turing
machine. The pair (y, p) is replaced by its new value (y′, q), and the shift
occurs. The complete rule is represented in Table 9.3.

Table 9.3. CA local rule equivalent to the TM transition relation

triple\shift −1 0 1

z
∗ ,

x
∗ ,

y
p

z
∗ ,

x
q
,
y′

∗
z
∗ ,

x
∗ ,

y′

q
z
∗ ,

x
∗ ,

y′

∗
x
∗ ,

y
p
,
z
∗

x
q
,
y′

∗ ,
z
∗

x
∗ ,

y′

q
,
z
∗

x
∗ ,

y′

∗ ,
z
q

y
p
,
z
∗ ,

x
∗

y′

∗ ,
z
∗ ,

x
∗

y′

q
,
z
∗ ,

x
∗

y′

∗ ,
z
q
,
x
∗

x
∗ ,

y
∗ ,

z
∗

x
∗ ,

y
∗ ,

z
∗

By construction, the global dynamical system f : XZ �→ XZ resulting
from the local rule presented above, is stable on a strict subset D of XZ:

D = {c ∈ XZ | ∃ a unique i ∈ Z, ci = (s, p) and p �= ∗}.

Indeed, the state-part of any configuration in its dynamics contains exactly
one state different from ∗. All others are equal to ∗. The only cell containing
a state p �= ∗ is the head of the Turing machine.

Decoding. Based on the following functions, with c = (ci)i∈Z∈ D ⊆ XZ:

h : D �→ Z

s.t. h(c) = k with ∀i, ci = (si, pi) and (i = k)⇔ (pi �= ∗)

ΠQ : X �→ Q
s.t. ΠQ(ci) = pi with ci = (si, pi)

ΠΓ : X �→ Γ
s.t. ΠΓ (ci) = si with ci = (si, pi)

ΠΓZ : D �→ ΓZ

s.t. ΠΓZ(c) = s with ∀i, si = ΠΓ (ci)

9.4 Comparison Through Simulation 231

we can also define the decoding ψ (see Fig. 9.5):

ψ : D �→ Q× ΓZ

s.t. ψ(c) = (ΠQ(ch(c)), ρ−h(c)(ΠΓZ(c))).

· · · ↔ u′
−2

∗
k−2

↔ u′
−1

∗
k−1

↔ u′
0

p′
k

↔ u′
1

∗
k+1

↔ u′
2

∗
k+2

↔ · · ·

↓ ψ

p’

∇
· · · u′

−2 u′
−1 u′

0 u′
1 u′

2 · · ·

Fig. 9.5. From a CA configuration to a TM configuration

Notice that each cell of the automaton contains a pair (tape symbol,
head state). In the previous formula, h gives the head position, ΠQ gives an
internal state from a cell state, ΠΓ gives a tape symbol from a cell state, and
ΠΓZgives the whole tape, i.e. it removes the head symbols from a state of D.
Then, ψ gives a Turing machine state (internal head state, tape state) from
a global cellular state of D, shifting the head position to position 0.

Summary. Hence, any Turing machine M can be simulated by a cellular
automaton f , in one CA-step per TM-step:

∀y ∈ Q× ΓZ,M(y) = ψ(f(φ(y))).

9.4.4 From CA to CF

Now, given a cellular automaton CA, we want to find a continuous function
CF , an encoding φ and a decoding ψ such that the function simulates the
cellular automaton in one step: CA(u) = ψ(CF m(φ(u))), with m = 1.

The results of this section mainly come from [227]. We use it for the sake
of completeness. Another approach is described in [30]. Here we work with
cellular automata spaces and real numbers from the interval [0, 1], or more
precisely, from a subset of [0, 1], which is a Cantor set.

Every configuration of the cellular space XZ can be transformed into a
state of XN:

· · · c−2c−1.c0c1c2 · · · → .c0c−1c1c−2c2 · · ·
where X = {0, 1, · · · , k − 1}. This transformation φ1 is a homeomorphism
between XZ and XN. Hence, we consider infinite sequences in what follows.

232 9. Compositional Analysis of Computational Properties

Every sequence of XN can be transformed into a real number, through
the following encoding function:

φ2(c) =
ω

∑

i=0

ciα
i,

where c ∈ XN, each ci ∈ X , and α ≤ 1
k .

In fact, if α < 1
k , the resulting point belongs to a Cantor set D, whose

greatest gaps are of width 1 − αk. This is important because it allows us to
simulate any given cellular automaton f by a function F which is only defined
on the Cantor set. Of course, this relation F can be extended to the whole
interval but it has to be stable on the Cantor set, i.e. F (D) ⊆ D, because the
decoding is only defined on it.

If φ = φ1;φ2 and ψ = φ−1 are continuous functions, and keeping in mind
that f is also a continuous function (see §9.5), it is possible to show that the
function F defined on D as

F : D �→ D
s.t. F (x) = φ(f(ψ(x)))

is also continuous on D. Each gap between points of D can be filled by simple
interpolation, and we get a continuous function on [0, 1].

9.4.5 Weak Hierarchy

The first simulation proves that TM≤cCA. Actually, neither the converse nor
its negation were proved. Thus, we do not know whether TM≡cCA holds or
not.

In the same way, the second simulation proves that CA≤cCF , and we get
the following weak hierarchy:

TM≤cCA≤cCF .

9.5 Topological and Metric Properties

The comparison based on extrinsic properties leads to a weak hierarchy of
systems. This section is devoted to intrinsic comparison methods, and we
face the problem as to whether the previous classes can be related to metric
and topological properties? In particular, we are interested in four properties:
continuity, shift-invariance, Lipschitz property, and shift-vanishing effect. The
first two have been studied in [143, 273, 113] as necessary and sufficient
conditions for locality of functions (class A1− E2− F1).

9.5 Topological and Metric Properties 233

9.5.1 Continuity

We work in the compact metric space (E, da). Let us state the definition of
continuity we need.

Definition 9.11 (Continuity). A function f defined on a metric space
(E, da) is da-continuous iff

∀x, ε, ∃δ, ∀y, da(x, y) < δ ⇒ da(f(x), f(y)) < ε. (C)

Theorem 9.12. In the general model (E,⊗Rgi), the following equivalence
holds:

(C)⇔ ((A1) ∨ (A2)).

Proof. ⇐We have to show that assuming (A1) ∨ (A2) holds, the general
system f is da-continuous: fixing x and ε, we want to find a δ such that
∀y, da(x, y) < δ ⇒ da(f(x), f(y)) < ε.
For any ε, we take the first n such that k−n ≤ ε ≤ k−(n−1). If we prove
that da(f(x), f(y)) < k−n, the last inequality is a fortiori verified, which
means f(x) and f(y) are at least equal on {−n : n}.
Now, we have to determine the action domain of this finite segment. There-
fore, we define am = minn

i=−n minMi and aM = maxn
i=−n maxMi, and

a = max{|am|, |aM |}. The action domain is {am : aM}. We consider a
larger domain containing this one: {−a : a}. If x and y are at least equal
on {−a : a}, we have da(x, y) ≤ k−(a+1). Since we want a strict inequality,
we fix δ = k−a.
⇒If there exists an index i such that ∆i = ω, then the general system f is
not continuous.
Let us assume i > 0. For any 0 ≤ k < i, it is always possible to find a y
close to x guaranteeing f(x) and f(y) to be equal on {−k : k}. As i has to
be reached too, continuity is lost because this component depends on the
whole configuration. One can thus fix arbitrarily close states x and y such
that a very small distance between them influences a difference between
their images at position i.

9.5.2 Shift-Invariance

Let us recall the definition of a shift: for any bi-infinite sequence x of XZ,

∀i, (ρ(x))i = xi+1.

Definition 9.13 (Shift-invariance). A function f defined on XZ is shift-
invariant iff f and ρ commute: ∀x ∈ XZ,

f(ρ(x)) = ρ(f(x)).

234 9. Compositional Analysis of Computational Properties

Definition 9.14 (Generalized shift-invariance). A function f defined
on XZ is (m,n)-shift-invariant iff ∃n,m ∈ Z, ∀x ∈ XZ

f(ρm(x)) = ρn(f(x)). (SI)

Theorem 9.15. In the general model (E,⊗Rgi), the following equivalence
holds:

(SI)⇔

(F1)
∀i,mi = m′

∀i,Mi+n = Mi + m.

Proof. The proof is based on the following equivalences:

f(ρm(x)) = ρn(f(x))
≡ ∀i, (f(ρm(x)))i = ρn(f(x))i

* (F1) ∧ (∀i,mi = m′)
≡ ∀i, g(ΠMi(ρ

m(x))) = (f(x))i+n

≡ ∀i, g(ΠMi+m(x)) = g(ΠMi+n(x))
* ∀i,Mi+n = Mi + m

≡ true.

9.5.3 Lipschitz Property

The Lipschitz condition goes as follows.

Definition 9.16 (Lipschitz condition). A function f defined on a metric
space (E, d) is Lipschitzian iff ∃K, ∀x, y,

d(f(x), f(y)) ≤ K · d(x, y). (L)

Remark 9.17. – Contracting functions (see Def. 2.61) are Lipschitzian with
a coefficient K < 1.

– Condition (L) clearly implies continuity; for any ε > 0 it suffices to choose
δ = ε

K .

Theorem 9.18. In the general model (E,⊗Rgi) defined on the metric space
(E, da), the following equivalence holds:

(L)⇔ (A1).

Proof. ⇐If (A1) holds, we have ∆ ∈ N. Thus, if da(x, y) = k−n−∆, we have
also da(f(x), f(y)) ≤ k−n. This last term can be equal to K · da(x, y) if
K = k−∆, which is constant. Thus, f is Lipschitzian.

9.5 Topological and Metric Properties 235

⇒Equivalently, we want to show that

(∆ = ω)⇒ ¬(L).

If ∆ = ω, forall K, there exists an i such that ∆i = K. Thus, ∀K, ∃x, y
such that da(x, y) = k−i−K and da(f(x), f(y)) ≥ k−i (= if ∀|j| <
|i|, |maxMj | < |maxMi|, > if ∃|j| < |i| such that |maxMj| ≥ |maxMi|).
Hence, we get

da(f(x), f(y))
da(x, y)

≥ kK

that can be arbitrarily large and f is not Lipschitzian.

9.5.4 Shift-Vanishing Effect

This last property formally expresses the pure locality of a system, that is,
the finite number of local states that are modified in one computation step.

Definition 9.19 (Shift-vanishing effect). A function f defined on a met-
ric space (E, da) is shift-vanishing iff

∀x, lim
n→±∞ da(ρn(x), ρn(f(x))) = 0. (SV)

The following theorem characterizes the systems corresponding to this
property.

Theorem 9.20. In the general model (E,⊗Rgi), the following equivalence
holds:

(SV)⇔ (E1).

Proof. ⇐For all x, we have I(f, x) finite. Thus, the modified states are be-
tween min I(f, x) and maxI(f, x). By arbitrarily large shifts, the distance
between x and its image vanishes.
⇒We prove that the contrary is false. ¬(E1) means there exists x such that
I(f, x) is infinite. Assume it is infinite to the right, that is, for positive
indices: ∀i, ∃j > i such that (f(x))j �= xj . Thus, da(ρj(x), ρj(f(x))) = 1,
and there is no convergence of the shifted distance to 0, i.e. ¬(SV).

9.5.5 Nondeterminism

In [273, 113], hints are presented to extend Theorems 9.12, 9.15, 9.18, and 9.20
to general relations. In Def. 9.7, this amounts to change local transition func-
tions into relations:

236 9. Compositional Analysis of Computational Properties

Definition 9.21 (General relational model). The general relational
model is a RDS (E,⊗Rgi) where

R = {(i,Mi) | i ∈ I,Mi ⊆ Z}

is the neighborhood relation, and

gi ∈ R(X#Mi , X)

is a local transition relation.

The main problem is to transform our basic properties (continuity, shift-
invariance, Lipschitz condition, shift-vanishing effect) in such a way they
remain meaningful for general relations.

Before giving the extended properties, we need the notion of cluster point
and a lemma guaranteeing their existence for any sequence of global states
[273].

Definition 9.22 (Cluster point). A global state x is the cluster of an in-
finite sequence (xi)i of global states xi iff every finite set of local states which
agrees with x also agrees with xi for infinitely many i.

Lemma 9.23. Every infinite sequence of global states has a cluster point.

Now, we briefly present these extended properties, and leave the corre-
sponding extended proofs to the reader. The Hausdorff metric h used here is
based on da.

– r-Continuity: if the sequence of global states (xi)i has only one cluster
point xω, then x ∈ f(xω) iff there exists a sequence (yi)i whose cluster
point is x (always exists thanks to Lemma 9.23) such that ∀i, yi ∈ f(xi);

– r-Generalized shift-invariance:

y ∈ f(x) iff ρn(y) ∈ f(ρm(x));

– r-Lipschitz property: ∃K > 0 such that ∀x �= y,

h(f(x), f(y)) ≤ K · da(x, y);

– r-Shift-vanishing effect:

∀x, ∀v ∈ f(x), lim
n→±∞ da(ρn(x), ρn(v)) = 0.

The next condition has to be added to each theorem, in order to extend
them to relations; it is called independence condition: if there exists a global
state x, a sequence of indices (ik)k, and a sequence of local states (rk)k such
that ∀k, ∃yk such that yk ∈ f(x) and Π{ik}(y

k) = rk, then there exists a
global state y such that y ∈ f(x) and ∀k,Π{ik}(y) = rk.

9.5 Topological and Metric Properties 237

9.5.6 Summary

Let us summarize the properties studied in this section (see Table 9.4), and
relate them to the models introduced in §9.3 (see Table 9.5).

Using the informal statements of Table 9.1 and the definitions of Turing
machines (Def. 9.4) and cellular automata (Def. 9.5), we conclude that

– continuous functions naturally correspond to condition (C);
– cellular automata, by definition, satisfy conditions (C) as particular case
of our general model, (SI) and (L);

– Turing machines, by definition and keeping in mind that we concentrate
on the TMH version of the model, satisfy all properties of CA and (SV).
In particular, observe that (F1) and, thus, (SI) would not be verified as
such in the moving-tape version of TM.

Table 9.4. Summary of topological and metric properties

Property Characterization Theorem

(C) continuity (A1) ∨ (A2) 9.12
(SI) shift-invariance (F1) ∧ (∀i, (mi = m′) 9.15

∧(Mi+n =Mi +m))
(L) Lipschitz property (A1) 9.18
(SV) shift-vanishing (E1) 9.20

Table 9.5. Topological and metric characterization of computational models

model\property (C) (SI) (L) (SV)

TM × × × ×
CA × × ×
CF ×

Remark 9.24. Cellular automata are shift-invariant on XZwhereas Turing
machines verify this property on a strict subset D of XZ (see §9.4), the set
of “legal” configurations, with exactly one head.

The intrinsic comparison based on topological and metric properties ex-
tends results of [143, 273] to our model: basically, the authors proved the
equivalence between CA and da-continuous ρ-invariant functions on XZ. We
added new properties (generalized shift-invariance, Lipschitz condition, shift-
vanishing effect), in order to characterize the three models in one general
framework. In [323], a similar definition of continuous functions is given.

238 9. Compositional Analysis of Computational Properties

9.6 Computability of Initial Conditions

In this section, we go on comparing our systems using intrinsic properties. In
the previous section, we focused on topological and metric properties. Here,
we turn our attention to the behavior of the different models when they start
from computable or uncomputable initial conditions.

The set of possible configurations is XZ, that we decompose into two
subsets: the (Turing) computable states C and the uncomputable ones U.
We add “(Turing)” because we want to build a hierarchy of systems where
some systems are strictly more powerful than TM. A precise meaning of
computation is thus required, we take the classical view of computability
theory extended to uncountable domains.

Definition 9.25 (Computability). A configuration, i.e. a global state x
of XZ, is computable iff there exists a TM such that for each index n, the
corresponding local value xn can be obtained in finite time from this machine.

We want to show that some classes of systems are stable for computable
or uncomputable initial conditions.

Proposition 9.26. Any TM M is stable on C and U, i.e.

M(C) ⊆ C and M(U) ⊆ U.

Proof. It is clear that a local change in a sequence cannot modify its status.
Under the action of a TM, the sequence thus remains in the same class.

Proposition 9.27. Any CA M is stable on C , i.e.

M(C) ⊆ C .

Stability on U is not always true.

Proof. Since every local change a CA can produce in a state is computable
and only depends on finitely many local states, any global computation start-
ing from a computable state remains in the same class.

Conversely for uncomputable global states, the result of a global compu-
tation can belong to computable or uncomputable states. Take two examples:
the constant global function applies everything to the same computable global
state, i.e. M(C ∪ U) ⊆ C ; the inverter, mapping a local 0 to a 1, and every
local 1 to 0, is stable on U, i.e. M(U) ⊆ U.

Proposition 9.28. Any CF M is stable on C , i.e.

M(C) ⊆ C .

Stability on U is not always true.

Proof. The same arguments as in Prop. 9.27 can be applied to this class of
systems.

9.7 Hierarchy of Systems 239

9.7 Hierarchy of Systems

In §9.4, we compared our systems using extrinsic methods. In §§9.5, 9.6,
we used intrinsic comparison methods. In this section, we summarize our
analysis. The comparison appears in Table 9.6.

Table 9.6. Comparison of computational models

Properties TM CA CF

Local function homog. homog. heter.
Effect domain finite infinite infinite
Greatest loc. dist. effect ∈ N ∈ N ∈ N ∪ {ω}
Simulation TM CA
Continuity yes yes yes
Shift-invariance yes yes no
Lipschitz yes yes no
Shift-vanishing yes no no
Stable on C yes yes yes
Stable on U yes ? ?
Comp. time on U infinite finite finite

Lipschitzian systems are evidently continuous, and shift-invariant systems
are particular cases of generalized shift-invariant systems.

Thus TM are strictly contained in CA, which in turn are strictly contained
in continuous real functions, which entails the strict hierarchy:

TM<cCA<cCF .

Of course, the three classes TM, CA, and CF have the same computational
power if at least one of the following assumptions is considered:

– computations can take infinite time;
– initial conditions have to be finite sequences, i.e. they belong to finite states
of C ;

– computations can be approximated.

Otherwise, their exist clear distinctions between these models, as between
them and noncontinuous ones.

The main drawback of all this is that CA and continuous real functions
(CF), just as Turing machines, have many undecidable properties related to
their long-term behavior: attraction basins, limit languages, etc. Actually,
these properties are often equivalent to the halting problem of a correspond-
ing Turing machine, which is undecidable. This undecidable problems can
be seen as a much stronger complexity than classical chaos, based on sensi-
tive dependence on initial conditions (see §9.8.3). Nevertheless, the challenge
faced so far is to isolate classes of dynamical systems, and composition rules,
allowing us to prove some results for specific systems (see Chap. 6).

240 9. Compositional Analysis of Computational Properties

The main positive result is that, since any Turing machine can be simu-
lated by a cellular automaton, which in turn can be simulated by a continuous
function, and since Turing machines are computationally universal, both CA
and CF are universal, too. Of course, they are universal in the sense of se-
quential processes, but CA and CF are stronger, as we have shown in the
previous sections.

9.8 Discussion

This last section summarizes the main ideas of the chapter, discusses related
work, and states some open problems.

9.8.1 Composition and Computation

In this chapter, we focused on a comparison of three dynamical systems,
namely Turing machines, cellular automata, and continuous functions, re-
garding their computational abilities.

Again, a compositional analysis was used successfully: we presented a
general model based on the connected product, that we instanciated to TM,
CA and CF, thereby permitting a systematic comparison of their properties.

In some cases of intrinsic properties, the compositional analysis can be
expressed elegantly. Global properties G are continuity, Lipschitz conditions,
etc.; individual properties I are Ai, Ej, etc. For example, Theorems 9.12,
9.15, 9.18 and 9.20 can be rephrased as equivalences between global and
individual properties:

G(⊗Rgi)⇔ ∧iI(gi).

Although the resulting hierarchy of systems presented above is original,
a number of conclusions are not, but confirm known results.

The computational model implicitly assumes that infinite sequences can
be computed in finite time. This can be discussed and other assumptions
would lead to different conclusions. In §9.8.3, we refer to a theory where only
finite approximations of infinite sequence are computable in finite time.

9.8.2 Further Work

It is possible to build a universal Turing machine, i.e. able to simulate any
other Turing machine. Of course, there exist a cellular automaton and a
continuous real function corresponding to this universal Turing machine. But,
is it possible to build a universal cellular automata, able to simulate any
other CA, and a universal CF, able to simulate any other CF, in one or
more dimensions? The first question is answered positively in [74], for CA
of the same dimension (14 different local states are needed). The second

9.8 Discussion 241

answer is conjectured to be negative, unless only partial recursive functions
are considered [303].

Furthermore, it seems interesting to find new intrinsic properties permit-
ting a deeper characterization of computational models. New models could
also be investigated, like DNA-computers [256], quantum computers [87, 304],
or quantum cellular automata [126, 214].

9.8.3 Related Work

Comparison of Dynamical Systems. In this chapter, we mainly presented a
unified view of classes of systems, that are generally separated. However,
some authors have contributed to the approach. More precisely, extrinsic and
intrinsic methods have already been used to compare systems. Simulation has
been extensively used, with many different definitions leading to different
results [68, 182, 183, 164, 166, 167, 169, 168, 226, 227, 229, 282]. Intrinsic
properties usually concern language-theoretic issues, related to languages that
can be generated or recognized by systems [113, 228, 283]. Ergodic theory
and topology have also been used to characterize some systems [165, 168, 172,
143]. Finally, our §9.5 is mainly inspired by [273], where the author proposed
a similar characterization of cellular automata.

Computability in Spaces of Infinite Objects. Using our general model, we
assume that systems are able to compute the image of an infinite sequence in
one shot, i.e. in finite time. This is conceivable for Turing machines but less
obvious for other systems. In particular, in mathematics, one does not think
about global configurations and our general model when using continuous
functions on real numbers. Numbers are considered globally, without any
reference to a particular machine computing the function. Only a few authors
use infinite machines like CA and neural networks as computational model
[113]. On the other hand, type-2 computability theory, developed in [323],
extends classical (finite) computability theory to domains of infinite objects
by successive Turing-computable approximations. Actually, one of his results
states the equivalence between continuous functions and type-2 computable
ones. The result of our Prop. 9.28 is thus not surprising.

Simulation. We cited several results on simulation here above. It is interest-
ing to point that simulation is also very important in the theory of programs:
refinement, abstraction and simulation are different words for the same con-
cept of homomorphism between systems. For instance, see [19, 81, 76, 222]
for applications in specification and verification of concurrent processes, and
[272, 220] for general considerations on simulation of dynamical systems.
More generally, as simulation can be considered as a particular case of ab-
straction, we refer the interested reader to references cited in Chap. 4.

Relating Computability to Complexity. In [302], the author introduces four
classes of chaos depending on evolution and initial values generating the com-
plexity: (I) computable evolution of CA with uncomputable initial values, (II)

242 9. Compositional Analysis of Computational Properties

uncomputable evolution with computable initial values, (III) uncomputable
evolution with uncomputable initial values, and (IV) computable evolution
with computable initial values. To get a CA strictly more powerful than any
TM, one requires uncomputable initial values. Thus, chaos I lies in a space
where TM and CA are no longer equivalent, whereas chaos IV can appear in
the behavior of CA as well as in TM.

Finally, let us mention interesting results on dynamical complexity as un-
decidability results. In [224, 226, 225], the author explains that chaos is not
complex as compared to undecidability. Chaos is often reduced to sensitivity
to initial conditions, where any arbitrarily small perturbation of initial con-
ditions eventually entails a dramatic modification in the long-term behavior.
Undecidability is worse because even with infinite precision, a precise result
is unreachable. For example, a general Turing machine is so “sensitive to
initial conditions” that it is simply impossible to know in advance whether
the machine will halt or not when starting from a given initial condition on
its tape, to which part of its configuration space this configuration will be
attracted.

10. Epilogue: Conclusions and Directions for
Future Work

Entre l’ordre et le désordre
règne un moment délicieux...

Paul Valéry

L’aventure humaine s’étale
entre la lisière du temps et de l’espace

comme une longue écharpe
d’innombrables mailles codées

depuis la nuit des temps
aux futurs déjà préparés.

L’homme aussi décrit son histoire
dès l’aube de son éveil

sur les rubans de son cerveau
les souvenirs se tissent

en une invisible écharpe
protégeante et pesante.

Chaque jour nous écrivons ensemble
une page dans le livre de l’Aventure

et la page se fera maille
préparant la maille suivante

dans la grande écharpe...

Effe Friede Voet

In this monograph, we developed a compositional analysis of dynamical
and computational properties of iterated relations, i.e. discrete-time relational
dynamical systems, and we used it, together with abstraction, to analyze a
number of typical systems.

The approach is based on the ideas that composing individual analyses of
given systems can be easier than studying a global system composed of these
subsystems, and that the feasibility of these analyses depends on well-chosen
abstractions.

F. Geurts: Abstract Compositional Analysis of Iterated Relations, LNCS 1426, pp. 243-255, 1998.
 Springer-Verlag Berlin Heidelberg 1998

244 10. Epilogue: Conclusions and Directions for Future Work

We defined dynamical systems as closed relations on compact metric
spaces, whose dynamics was generated using a general transfinite iteration
scheme. Structured systems were obtained by means of composition opera-
tors, and the abstract observation of dynamics was set up in order to cope
with more realistic descriptions of evolutions.

Dynamical properties concern the complementary notions of invariance
and attraction. The structure of invariants strongly influences the dynamics
of systems: the richer they are, the more complex systems behave. Using
fullness and atomicity, we characterized behavioral complexity, and Floyd-
or Lyapunov-like sufficient criteria were proposed for attraction.

Classical dynamical systems were analyzed by composition and abstrac-
tion: Smale-horseshoe map, Cantor relation, logistic map. A family of formal
systems also benefited from the compositional and abstract analysis: paper-
foldings. This is the case of cellular automata, too: we classified their behav-
iors, the resulting classes were structured, and the most complex one was
fruitfully analyzed by composition.

A general structural source of complexity was identified, using these tech-
niques: complex behaviors arise from the composition of several dynamically
compatible systems attracting the space to different invariants.

Computational properties rather concern evolutions of systems as input-
output relations. Three systems were embedded in a general model: Tur-
ing machines, cellular automata, and continuous functions. Their extrinsic
(simulation) and intrinsic (topological, metric and computability arguments)
computation-based properties were analyzed by composition, which led to a
computation hierarchy.

This last chapter starts with a summary of the main contributions and
related references of this monograph (§10.1); then, we develop directions for
future research (§10.2); finally, we propose a last visit of the Garden of Struc-
tural Similarities (§10.3).

10.1 Contributions and Related Work

Motivated by successful compositional results in program theory, we ana-
lyzed dynamical and computational properties of dynamical systems in a
compositional way, in order to understand better how complexity arises in
such systems. We hope this monograph at least partially contributes to this
objective. We unified notions from dynamical systems, cellular automata,
program and computability theory. Moreover, by compositional analysis, we
studied important classes of complex dynamical systems.

In this section, we systematically review our main contributions, by com-
parison with existing ideas we based our developments on.

The first subsection mainly recalls the mathematical framework based on
existing results that we adapted to our needs. The second one contains our
principal contributions in compositional analysis, as well as their applications.

10.1 Contributions and Related Work 245

The references cited below are not exhaustive; many other ones can be
found in the previous chapters. However, they indicate the ideas, techniques
and results closest to our own work.

10.1.1 Mathematical Framework

Iteration of Relations. Relational dynamical systems are introduced in [9];
however, after the introductory chapters, the author restricts himself to func-
tions. Set-transformers are commonly used in fractal theory [328, 159, 140,
325]. The equivalent notion of predicate-transformers is classical in program
semantics [91, 93, 246, 39].

The advantage of working with relations instead of functions is twofold:
it encompasses nondeterminism, and entails a homogeneous mathematical
framework.

In conjunction with iterations, a notion of convergence was needed: we
used lattice-fixpoint theorems [306, 197]. Convergence in at most ω steps is
equivalent to continuity of set-transformers; relaxing this condition to mono-
tonicity can require transfinite iterations [70, 71]. Bounded-nondeterminism
was presented as a necessary and sufficient condition for continuity in [284].
We proved that any closed relation defined in a compact metric space verifies
a slightly stronger version of continuity without bounded-nondeterminism.

The evolution of systems is obtained by successive iterations of relations
or as the set of all possible trajectories. This second equivalent version is close
to the well-known notion of trace in the semantics of parallelism [216, 189,
309, 89].

Iteration of Composed Relations. Compositionality is widespread in com-
puting science and logic. Sequential programs [91, 150], parallel programs
[245, 1, 67], and processes [151, 222, 79], can be studied by composition on
the basis of the definitions of basic systems and composition means.

Our composition operators mainly come from [245]. Our connected prod-
uct is equivalent to the database operation “join” of [53], where it is used in
the context of cellular automata.

The elementary compositional results presented in Chap. 3 concern one-
step evolutions (equivalent statements can be found in [245]) and infinite
trajectories (treated in process algebras, e.g. [79]).

Abstract Observation of Dynamics. When trajectories are observed and ab-
stracted, the resulting notion of trace is very similar to traces in parallelism se-
mantics, and to coarse-grained observations in symbolic dynamics [139, 202].
It is also close to the labeling of transition systems [151, 222, 19]. Here, we
integrated these various views in a single common framework.

Dynamical Properties: Invariance and Attraction. Invariance and attraction
are classical notions of temporal logic [99, 98, 210] and both dynamical sys-
tems and program theory [9, 326, 91]. In ergodic theory, two notions charac-
terize the structure of invariants [248, 196]: exactness means that all abstract

246 10. Epilogue: Conclusions and Directions for Future Work

traces are possible, (weak) generation limits the number of invariant states
corresponding to given traces. These notions correspond to fullness and atom-
icity [286].

Basically, Chap. 5 refines and generalizes definitions, results and criteria
presented in [286, 116, 290].

10.1.2 Compositional Analysis

Basic compositional results are presented in Chap. 3, about one-step evolu-
tions and sets of infinite trajectories of composed systems. Here, we focus on
the compositional analysis of dynamical and computational properties relying
on the dynamics of composed systems.

As we said earlier, compositionality is a classical idea. However, in dynam-
ical systems theory, only a few compositional results exist, which motivated
our study inspired from related techniques in program theory and process
algebras. Moreover, although it is generally not hard to express systems and
properties in a compositional framework, proving results by compositional
analysis demands a much more technical work.

In Chap(s). 6 and 7, we presented a systematic and general analysis of sys-
tems based on free products, unions, and sequential composition; less results
have been obtained w.r.t. intersection, negation, and connected product.

On the other hand, in Chap(s). 8 and 9, a particular attention was devoted
to connected product, whose inherent difficulty deserved a specific treatment
in order to discover interesting results.

Compositional Dynamics. The dynamical properties of systems (invariance,
attraction, structure of invariants) were analyzed by composition in a sys-
tematic way, for each composition operator introduced before. This led to
the results of Chap. 6. Union deserved a special attention, in particular re-
garding the structure of its invariants: we adapted results of [328, 159, 140]
to our relational framework, in terms of fullness and atomicity of invariants.
Using this analysis, we gave a general way to generate complexity from ele-
mentary systems.

Case Studies in Compositional Dynamics. We systematically rederived
known results about the complex dynamics of classical dynamical systems
based on sequential composition (iteration), product, and union: Smale-
horseshoe map, Cantor relation and logistic map. Our compositional anal-
ysis of these systems is shorter and clearer than classical approaches offer
[88, 326].

In the case of paperfoldings, [80, 219, 83, 13, 14], the compositional analy-
sis led to the following result: this system has a Cantor-set invariant on which
the dynamics is chaotic.

10.2 Directions for Future Research 247

Cellular Automata: Classification and Composition. Cellular automata are
extensively studied in the literature. These systems are nice examples of
connected products.

We proposed a classification refined from [49, 102], that we formalized
and structured in order to characterize the most complex behaviors, and to
keep its definition as close as possible to the intuition. Indeed, previous clas-
sifications were generally informal [330] or counterintuitive (e.g. [41] classifies
shifting behaviors as complex).

Then, we studied a specific case of disjunctive composition. By composi-
tional analysis, and using additional complexity measures, we compared this
system to local and global unions. This led to the reinforcement of a con-
jecture proposed in [49, 101], on the complex behavior of cellular automata
obtained by disjunction of symmetric shifting behaviors.

Compositional Computability. Three models were studied: Turing machines
(TM), cellular automata (CA), and continuous functions (CF), as instances
of a general system based on the connected product. We established a strict
hierarchy between these systems, from TM to CF, using extrinsic and intrinsic
means of comparison.

Extrinsic comparison methods based on simulation are natural in the field
of computability, as well as in dynamical systems theory. In particular, our
TM-to-CA simulation confirms equivalent results [296, 204, 168]; the second
simulation (CA-to-CF) comes from [227].

Intrinsic comparison methods based on topological and metric properties
are studied in [143, 273, 323], where the authors define continuous func-
tions, cellular automata as continuous shift-invariant systems, and propose
extensions to encompass nondeterministic systems. We added the Lipschitz
condition and the shift-vanishing effect, and we generalized shift-invariance,
in order to characterize Turing machines, cellular automata and continuous
functions as instances of the same general model. Finally, we compared these
systems w.r.t. computability of initial conditions.

Again, the compositional analysis we proposed appears quite useful, since
intrinsic criteria are proved equivalent to individual properties of components
of the general connected product.

10.2 Directions for Future Research

This monograph focused on theoretical aspects in the field of dynamical sys-
tems: we developed a compositional analysis of their dynamical and com-
putational properties, using abstraction techniques. Moreover, our approach
revealed useful to understand better how complexity arises in a number of
typical dynamical systems.

Admittedly, our case-studies remain academic, and composition-in-the-
large is far from being solved. In this section, we propose research directions

248 10. Epilogue: Conclusions and Directions for Future Work

which should be seen as challenges and benchmarks for the future of compo-
sitional and abstract analysis of systems.

By this work, we hope both positive and negative results could emerge.
Indeed, it is mandatory to validate or invalidate ideas and techniques, and
to evaluate the effective usefulness of abstraction and composition regarding
real applications.

10.2.1 A Patchwork of Open Technical Issues

Let us first sum up important technical issues that have already been men-
tioned in the previous chapters:

– considering other times structures (continuous, hybrid, and more abstract
ones);

– deeper studying the connected product and adding other composition op-
erators, including functional fixpoint equations;

– introducing new abstractions of dynamical and computational properties
such as Perron-Frobenius operators, invariant measures, and local structure
theory;

– refining the attraction-based classification of cellular automata;
– strengthening the compositional analysis of computational properties of
systems.

10.2.2 Fractal Image Compression

The first steps in compositional analysis of dynamical systems were carried
out in fractal theory, where union was introduced to compose elementary
systems so as to obtain set-based functions called “iterated function systems”
[328, 159, 140, 28, 325].

Now, after a long contemplation period of beautiful fractal pictures
[208, 258], fractal theory has become a source of effective tools for image
compression [29, 100]. Instead of transmitting a chicken, the original egg is
sent. In other words, given a bitmap image, the closest possible fractal is
considered, and the compact, formal description of the dynamical system
generating this fractal as attractor is sent. Provided the original image is
sufficiently self-similar, the process entails a dramatic reduction in time or
space and, thus, in money.

In some cases, more resources are needed to compress a global image
than the sum of its components taken individually, and a better compression
rate can be obtained after decomposition of the original picture. The famous
“collage theorem” [28], based on the contraction-mapping theorem applied
to unions of systems, is the main compositional result in this direction.

Recent publications have shown how mathematical morphology can help
in structuring and analyzing images: mathematical composition operators are

10.2 Directions for Future Research 249

defined in order to build structured images from various objects and forms
[280, 144, 275].

Composition as developed in this monograph seems thus appropriate to
further develop this approach. Operators from mathematical morphology
could be expressed in terms of our composition operators, and irreducible
ones should be investigated w.r.t. dynamical properties. Hopefully, this could
improve or generalize a productive and now widespread technique in image
processing.

10.2.3 Distributed Dynamical Optimization

Major challenges in distributed systems are the systematic and formal veri-
fication and construction of algorithms, possibly taking probabilistic evolu-
tions into account. In particular, formalizing relationships between structural
information (topology, labeling) and complexity (time, space) represents a
promising research stream in the field [108].

Our perspective is the development of robust, efficient, distributed opti-
mization algorithms that could be able to reorient their search “on the fly”,
as initial conditions are modified (evaluation function, constraints, data).

When classical optimization algorithms are embedded in dynamical en-
vironments, their behavior can change dramatically, and most of the time,
no solution whatsoever results. Packet routing on networks, real-time plan-
ning or scheduling, multi-routing, garbage collection are typical applications
where dynamical environments and perturbations must be dealt with. Mobile
telecommunications provide an important example: in general, the system is
often modified before any routing algorithm can compute a globally optimal
solution.

We propose to model such a problem so that its initial conditions corre-
spond to parameters of a distributed dynamical system whose attractors are
the solutions, and the global optimization emerges from individual properties
of distributed agents of the system.

Several aspects must be investigated to reach the objective: composi-
tion as structuring means to build distributed systems, and emerging self-
stabilization to allow reorientation despite perturbations; probabilistic tran-
sitions as suitable modelization of environment events; higher-order dynamics
to describe how parameters evolve; and design of attraction-based systems.
We discuss these various aspects in the following sections.

Let us mention some works that already lead to robust adaptive dis-
tributed solutions. Their inspiration sources are collective techniques ex-
hibited by social insects, computational ecologies, and collective intelligence
[65, 95, 158, 188, 198, 270]. Moreover, classical on-line algorithms, artificial
intelligence techniques (neural networks, genetic algorithms, etc.), as well as
nonadaptive general resolution schemes (divide and conquer, global search,
local search, etc.) should be extended to dynamical systems in order to im-
prove the resulting framework [243, 298, 295, 294].

250 10. Epilogue: Conclusions and Directions for Future Work

10.2.4 Distributed Systems and Self-Stabilization

A distributed system is composed of communicating agents that cooperate
in order to solve a common problem. The global state of a distributed sys-
tem is obtained by simple juxtaposition of all individual states. Although
individual behaviors can be characterized by local properties, the global be-
havior does not result from their simple combination. Indeed, the behavior
of the whole system is obtained by dynamical composition of local effects,
which entails global properties that remain invisible locally and statically.
This phenomenon is called emergence.

All distributed systems undergo emerging properties. However, as the
evolution leads the system to a global objective, and an organized structure
emerges from a random initial condition, there is self-organization. Moreover,
when the order is preserved despite perturbations of the system, one speaks
of self-stabilization.

Self-stabilization is defined by two conjugate properties: convergence (at-
traction, liveness, termination) and closure (invariance, safety), which sus-
tain the analysis of many families of programs and dynamical systems
[90, 278, 123, 192, 15, 290, 287].

Important examples where the principal emerging property is self-
stabilization are: distributed algorithms for leader election, clock synchro-
nization or process wake-up [6, 238, 269], cellular automata [331], and neural
networks [121, 148].

The compositional analysis of systems we developed in this mono-
graph contains four basic aspects useful in the study of self-stabilizing
distributed systems: composition, abstraction, invariance, attraction. Such
a compositional analysis of distributed systems has already proved useful
[1, 61, 62, 67, 288].

The tools and results we have presented in this monograph concern dy-
namical systems in general, and could be adapted and further developed
to analyze distributed systems in particular, or systems combining classical
programs and dynamical systems.

10.2.5 Probabilistic Systems and Measures

Probabilities are introduced in programs to accelerate them or even some-
times to give a solution while no deterministic one could exist [131]. In dy-
namical systems (e.g. power plants), probabilities can help in modeling the
environment, when no deterministic law is known but some statistical facts
are available. In general, deterministic or nondeterministic transitions be-
tween states or sets of states are replaced by probabilistic transitions.

Again, the predicate-transformers calculus have been extended so as to
include probabilistic transitions [234]. Some authors have also integrated par-
allelism and probabilities in a common framework [147, 271, 17].

10.2 Directions for Future Research 251

Set-transformers have been extended to probabilities in fractal theory:
measures are considered instead of sets [159, 160, 28].

In the theory of dynamical systems, pointwise evolutions are not powerful
enough to follow the complexity of some systems. Measures offer a better de-
scription, or abstraction, means. In particular, Perron-Frobenius operators, as
well as their high-dimensional equivalent, i.e. the local structure theory [137],
define the evolution of probability measures, and invariance and attraction
are again used at that level [196],

A very important extension of our work should include these operators on
measures: we should analyze the effect of (composed) relational dynamical
systems on measure spaces.

Then, a second lifting, or abstraction again, could consist in working at
the level of probability distributions instead of measures generated by these
probabilities. What are the effects on invariance and attraction, on complex-
ity, on computations, when composition of dynamics is considered at the level
of probability distributions?

10.2.6 Higher-Order Systems, Control, and Learning

Any dynamical system is based on three components: a space where things
happen, a relation showing how things happen, and a time structure deter-
mining when things happen. To this triple, a fourth component is sometimes
added: parameters, which can be seen as an “active” part of the space where
things happen. Actually, we distinguish them from “passive” variables be-
cause their goal is different in that they rather control the dynamics instead
of just resulting from the evolution of systems. Moreover, their own evolution
is often determined by an upper controlling system, running over the first,
controlled one.

Changing the value of parameters in order to better fit a specified objec-
tive is called learning (from the point of view of the controlled system) or
teaching (from the point of view of the controlling system). This entails a
behavioral modification of the controlled system, called bifurcation.

But who controls the controllers? Who teaches the teachers? Control
parametrization can be extended to several embedded levels. At each level,
there is a controlled system, and its tutor or upper system changing its param-
eters is a higher-order controlling system. The evolution of the higher-order
system happens in a space of systems, and is called higher-order dynamics.

Thus, instead of considering systems acting on “classical” discrete or con-
tinuous state spaces, we could also define them on richer state spaces con-
taining dynamical systems. This reminds of the use of functions as first-class
citizens in functional programming, as well as objects, composed of states
and functions, in object-oriented programming.

We postulate this view could help in developing new learning techniques,
or at least in better understanding the dynamics of existing learning algo-

252 10. Epilogue: Conclusions and Directions for Future Work

rithms, in terms of invariance, attraction and computations. This raises the
following questions:

– How to get effective convergence, in finite and small amount of time?
– How to get structural stability, or robustness?

Neural networks [156, 157, 223, 121, 173, 142, 38] and genetic algorithms
[153, 298, 184, 185] are two artificial intelligence techniques essentially used
in optimization, classification, pattern recognition and approximation. They
often prove useful when not much information is available on data to be
treated. Both techniques can be seen as parametrized dynamical systems, and
learning consists in fine-tuning their parameters in order to solve a particular
problem. Learning algorithms are thus crucial in these fields.

Of course, this can be generalized to more than two levels. Nowadays, it
is not rare to have several systems embedded to solve a particular problem.
For instance, a genetic algorithm searches for the best family of neural nets
able to solve a given classification problem. In this case, the set of objects is
a set of neural nets, that is a set of parametrized dynamical systems.

Many cases of learning, including the supervised-unsupervised distinction,
can be modeled this way. Each teacher is a higher-order system that works
on systems and parameters. It receives as inputs the learning system, and
the information to teach, and it produces as output a set of parameters that
determine the behavior of the lower-order system. Attraction, invariance,
and other properties can be studied at higher-order levels using the tools
introduced in previous chapters.

10.2.7 Design of Attraction-Based Systems

Program development consists in building a correct program from a formal
specification of what it is intended to do. Theoretically, a specification corre-
sponds to the description of a language an automaton should recognize. The
development of a program then corresponds to building the automaton. Using
the terminolgy used in dynamical systems theory, the language corresponds
to the attractor of the automaton.

This classical view can be extended to dynamical systems: given the spec-
ification of a problem, design a system whose dynamics solves the problem.
Stated otherwise, given a set of states in a state space, elaborate a system
whose attractor precisely is this set of states:

specification program

viz. attracting set dynamical system.

design

design

In control and hybrid systems theory, recent advances combining tech-
niques from both dynamical systems and program theory have already proved
useful [187, 16, 288]. Similarly, cellular automata have been used as building

10.3 The Garden of Structural Similarities 253

blocks of structured systems, in order to derive original solutions of well-
known problems in distributed algorithms (synchronization of processes, it-
erative generation of fractals, etc.) [215, 113].

The advantages of extending software design to dynamical systems are
numerous [44]. Fault-tolerance, stability, and stabilization properties are fun-
damental in real-time systems for instance, and they are naturally expressed
as attraction and invariance conditions in the context of dynamical systems
[278, 123]. This does not mean that the design of such properties in the con-
text of dynamical systems is immediate. Actually, they often remain quite
hard to derive using current mathematical methods of program development.
Hence, the techniques and criteria developed for dynamical systems should
be exploited in this direction.

The challenge is to derive efficient dynamical systems from specified at-
traction and invariance properties. This would amount to define a design
method, a language in which properties are expressed, and a logic in which
a constructive reasoning can be conducted.

Compositionality is to dynamical systems what modularity is to software
design. Hence, we think and hope that the compositional analysis of systems
developed in this monograph, together with the abstraction principle also
applied intensively, could be used as a framework for the systematic design
of attraction-based systems.

10.3 The Garden of Structural Similarities

Symmetry,
as wide or as narrow as you may define its meaning,

is one idea by which man, through the ages,
has tried to comprehend and create

order, beauty, and perfection.

Hermann Weyl

Our journey in the abstract compositional analysis of iterated systems
is best summarized as the discovery of a Garden of Structural Similarities1,
as a unified quest of structural affinities, similarities and symmetries, that
is, homomorphisms. Indeed, through the sequence of chapters, we met many
different types of these mathematical structures that not only constitute the
cement of the framework and toolbox we developed, but also highlight the
path to a better understanding of dynamical and computational properties
of systems. Let us recall the three families of homomorphisms we used in the
monograph:

1 This beautiful expression is due to Michel Sintzoff.

254 10. Epilogue: Conclusions and Directions for Future Work

– composition homomorphisms for dynamics, invariants, attractors, and com-
putations of systems;

Si I(Si)

�iSi ·

I

G

� �

– abstraction homomorphisms for trace-parametrized invariant structures,
symbolic dynamics, and extrinsic simulation properties;

X X

Y Y

f

g

Z Z

– compositional complexity homomorphisms, for the dynamical complexity
emerging from the composition of symmetric behaviors attracting the space
to different invariant regions, as well as for composed computational mod-
els.

Si fixpoint

∪iSi complexity

dyn.

dyn.

∪ union-inv.

Clearly, abstraction and complexity should always be treated on equal
footing with composition to further develop the analysis of dynamical sys-
tems. We could systematically build relations between concrete and abstract
systems, and between composed systems and their components.

Does composition preserve abstraction? Is composition monotonic w.r.t.
abstraction? Given a concrete composition � and an appropriate abstraction
function Z, is there an abstract composition operator �′ such that ∀i, fi b gi

implies �ifi b �′igi?
If, moreover, the concrete global property results from the composition of

individual properties, viz. Gc(�ifi) = �iIc(fi), does a corresponding equiva-
lence hold at the abstract level, viz. Ga(�′igi) = �′iIa(gi)? In other words, and
this will be our last question, does this last diagram commute?

10.4 Coda: Compositional Complexity Revisited 255

gi ·

fi ·

· ·

�i fi ·

Ia

�′
�′

Ga

Z Z

Z Z

Ic

Gc

�
�

10.4 Coda: Compositional Complexity Revisited

The old Chinese tradition speaks of Yin and Yang as a duality attraction-
opposition generating everything: male and female, Evil and Good. Our ap-
proach is oriented to the analysis of systems based on their structural con-
struction and composition. In some sense, it reproduces what this Ancient
Chinese philosophy had imagined thousands of years ago: attraction and op-
position generate complexity, that is, order in disorder...

Bibliography

1. M. Abadi and L. Lamport. Composing specifications. ACM Trans. on Pro-
gramming Languages and Systems, 15:73–132, 1993.

2. S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors. Handbook of
Logic in Computer Science, volume 1 (Background: Mathematical Structures).
Oxford Science Publications, 1992.

3. S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors. Handbook of
Logic in Computer Science, volume 4 (Semantic Modelling). Oxford Science
Publications, 1995.

4. A. Adamatzky. Identification of Cellular Automata. Taylor & Francis Ltd,
1994.

5. J. Adamek and J. Reiterman. Banach’s fixed-point theorem as a base for
data-type equations. Applied Categorical Structures, 2:77–90, 1994.

6. Y. Afek and Y. Matias. Elections in anonymous networks. Information and
Computation, 113:312–330, 1994.

7. Z. Agur. Fixed points of majority rule cellular automata with application to
plasticity and precision of the immune system. Complex Systems, 2:351–357,
1988.

8. Z. Agur, A. S. Fraenkel, and S. T. Klein. The number of fixed points of the
majority rule. Discrete Mathematics, 70:295–302, 1988.

9. E. Akin. The General Topology of Dynamical Systems. American Mathematical
Society, 1993.

10. J.-P. Allouche. The number of factors in a paperfolding sequence. Bull. Austr.
Math. Soc., 46:23–32, 1992.

11. J.-P. Allouche. Complexity of infinite sequences and the Ising transducer. In
N. Boccara, E. Goles, S. Martinez, and P. Picco, editors, Cellular Automata
and Cooperative Systems, volume 396 of NATO ASI Ser. C: Math. Phys. Sci.,
pages 1–9. Kluwer Academic Publishers, 1993.

12. J.-P. Allouche. Sur la complexité des suites infinies. Bull. Belg. Math. Soc.,
1:133–143, 1994.

13. J.-P. Allouche and R. Bacher. Toeplitz sequences, paperfoldings, towers of
hanoi and progression free sequences of integers. Ens. Math., 38:315–327, 1992.

14. J.-P. Allouche and M. Bousquet-Mélou. Canonical positions for the factors in
paperfolding sequences. Theoretical Computer Science, 129:263–278, 1994.

15. B. Alpern and F. B. Schneider. Defining liveness. Information Processing
Letters, 21:181–185, 1985.

16. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid sys-
tems. Theoretical Computer Science, 138(1):3–34, 1995.

17. T. Amisaki, Y. Tsujino, and N. Tokura. Formal derivation of a probabilistic
self-stabilizing program: Leader election on a uniform tree. In Proc. of the 2nd

258 Bibliography

Workshop on Self-Stabilizing Systems, Las Vegas. Dept. Computer Science, U.
of Nevada, Las Vegas, 1995.

18. S. I. Andersson, Å.E. Andersson, and U. Ottoson, editors. Theory and Control
of Dynamical Systems, Applications to Systems in Biology, Proceedings of the
1991 Summer University of Southern Stockholm, Huddinge. World Scientific,
1991.

19. A. Arnold. Systèmes de Transitions Finis et Sémantique des Processus Com-
municants. Masson, 1992.

20. A. Arnold. Hypertransition systems. In K. W. Wagner P. Enjalbert,
E. W. Mayr, editor, Proc. of STACS 94, Caen, France, Feb. 1994, volume
775 of Lecture Notes in Computer Science, pages 327–338. Springer-Verlag,
1994.

21. V. I. Arnold and A. Avez. Ergodic Problems of Classical Mechanics. Addison-
Wesley, 1968.

22. W. B. Arthur. Complexity in economic and financial markets. Complexity,
1(1):20–25, 1995.

23. E. Asarin and O. Maler. On some relations between dynamical systems and
transition systems. In Proceedings of ICALP’94, volume 820 of Lecture Notes
in Computer Science. Springer-Verlag, 1994.

24. D. Assaf IV and S. Gadbois. Definition of chaos (letter). The American
Mathematical Monthly, 99(9):865, 1992.

25. G. Baier and M. Klein, editors. A Chaotic Hierarchy. World Scientific, 1991.
26. J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey. On Devaney’s defini-

tion of chaos. The American Mathematics Monthly, 99(4):332–334, 1992.
27. A. Barbé, F. von Haeseler, H.-O. Peitgen, and G. Skordev. Coarse-graining

invariant patterns of one-dimensional two-state linear cellular automata. Int.
J. Bifurcation and Chaos, 5(6), 1995.

28. M. F. Barnsley. Fractals Everywhere. Academic Press, 1988.
29. M. F. Barnsley and L. P. Hurd. Fractal Image Compression. AK Peters, Ltd.,

1992.
30. R. Bartlett. Discrete Computation in the Continuum. PhD thesis, Department

of Mathematical Sciences, Memphis State University, 1994.
31. V. Bauchau. Les automates cellulaires : une approche informatique de la com-

plexité du vivant. Athena, (73), 1991.
32. F. L. Bauer and H. Wössner. Algorithmic Language and Program Development.

Springer-Verlag, 1982.
33. C. Beck and F. Schlögl. Thermodynamics of Chaotic Systems. Cambridge

University Press, 1993.
34. T. Bedford, M. Keane, and C. Series, editors. Ergodic Theory, Symbolic Dy-

namics and Hyperbolic Spaces. Oxford Science Publications, 1991.
35. E. D. Beinhocker. Strategy at the edge of chaos. The Mc Kinsey Quarterly,

(1):24–39, 1997.
36. C. Bercoff. A family of tag systems for paperfolding sequences. In E. W. Mayr

and C. Puech, editors, Proc. of STACS 95, Munich, Germany, volume 900 of
Lecture Notes in Computer Science, pages 303–312. Springer-Verlag, 1995.

37. H. M. Bizek. Mathematics of the Rubik’s Cube Design. Dorrance Publishing
Co., 1997.

38. F. Blayot and M. Verleysen. Réseaux de neurones artificiels. Que Sais-Je ?
PUF, 1996.

39. M. M. Bonsangue and J. N. Kok. Relating multifunctions and predicate trans-
formers through closure operators. In M. Hagiya and J. C. Mitchell, editors,
Proceedings of TACS 94, Sendai, Japan, volume 789 of Lecture Notes in Com-
puter Science, pages 822–843. Springer-Verlag, 1994.

Bibliography 259

40. F. Borceux and D. Dejean. Cauchy completion in category theory. Cahiers de
Topologie et Géométrie Différentielle Catégoriques, XXVII(2):133–146, 1986.

41. G. Braga, G. Cattaneo, P. Flocchini, and G. Mauri. Complex chaotic behavior
of a class of subshift cellular automata. Complex Systems, 7:269–296, 1993.

42. G. Braga, G. Cattaneo, P. Flocchini, and C. Quaranta Vogliotti. Pattern
growth in elementary cellular automata. Theoretical Computer Science, 145:1–
26, 1995.

43. C. Calude. Information and Randomness. An Algorithmic Perspective.
Springer-Verlag, 1994.

44. J. L. Casti. Reality Rules: Picturing the World in Mathematics (2 vol.). John
Wiley & Sons, 1992.

45. J. L. Casti. Reality Rules: Picturing the World in Mathematics, The Frontier,
volume 2. John Wiley & Sons, 1992.

46. J. L. Casti. Reality Rules: Picturing the World in Mathematics, The Funda-
mentals, volume 1. John Wiley & Sons, 1992.

47. G. Cattaneo, M. Finelli, and L. Margara. Topological chaos for elementary
cellular automata. In Proceedings of the 3rd Italian Conference onn Algorithms
and Complexity, 1997.

48. G. Cattaneo, P. Flocchini, G. Mauri, and N. Santoro. Chaos and subshift rules
in neural networks and cellular automata. In Proc. International Symposium
on Nonlinear Theory and its Applications, Hawaii, volume 4, pages 1153–1156.
IEICE, 1993.

49. G. Cattaneo, P. Flocchini, G. Mauri, and N. Santoro. A new classification
of cellular automata and their algebraic properties. In Proc. International
Symposium on Nonlinear Theory and its Applications, Hawaii, volume 1, pages
223–226. IEICE, 1993.

50. G. Cattaneo, P. Flocchini, G. Mauri, and N. Santoro. Cellular automata in
fuzzy backgrounds. Physica D, 105(1-3):105–120, 1997.

51. G. Cattaneo, E. Formenti, G. Manzini, and L. Margara. On ergodic linear
cellular automata over Zm. In R. Reischuk and M. Morvan, editors, Proceeding
of the 14th Symposium on Theoretical Aspects of Computer Science, Lubeck,
March 97, volume 1200 of Lecture Notes in Computer Science, pages 427–438.
Springer-Verlag, 1997.

52. G. Cattaneo, E. Formenti, L. Margara, and J. Mazoyer. A shift-invariant metric
on SZinducing a non-trivial topology. 1997.

53. G. Cattaneo, R. Nani, and G. Braga. A tool for the analysis of cellular au-
tomata. In J. Mazoyer, editor, Workshop on Cellular Automata, 25-26 Novem-
ber 1991, Lyon, France, pages 7–12. ESPRIT BRA WG 3166, ASMICS, 1991.

54. K. Cattell and J. C. Muzio. Analysis of one-dimensional linear hybrid cellular
automata over GF(q). IEEE Transactions on Computers, 45:782–792, 1996.

55. K. Cattell and J. C. Muzio. Synthesis of one-dimensional linear hybrid cellular
automata. IEEE Transactions on Computer-Aided Design, 15:325–335, 1996.

56. G. J. Chaitin. Algorithmic Information Theory. Cambridge University Press,
1990.

57. G. J. Chaitin. Information, Randomness and Incompleteness: Papers on Al-
gorithmic Information Theory. World Scientific, 2nd edition, 1990.

58. G. J. Chaitin. Randomness and complexity in pure mathematics. Int. Jnl. of
Bifurcation and Chaos, 4(1), 1994.

59. S. Chakraborty, D. Roy Chowdhury, and P. Pal Chaudhuri. Theory and appli-
cations of nongroup CA for synthesis of easily testable finite state machines.
IEEE Transactions on Computers, 45(8):769–781, 1996.

260 Bibliography

60. K. M. Chandy. Mathematics of program construction applied to analog neural
networks. In J. van de Snepscheut, editor, Mathematics of Program Construc-
tion, volume 375 of Lecture Notes in Computer Science, pages 21–35. Springer-
Verlag, 1989.

61. K. M. Chandy and J. Misra. Parallel Program Design, A Foundation. Addison-
Wesley, 1989.

62. K. M. Chandy and B. A. Sanders. Predicate transformers for reasoning about
concurrent computation. Science of Computer Programming, 24:129–148, 1995.

63. H. Chaté and P. Manneville. Criticality in cellular automata. Physica D,
45:122–135, 1990.

64. C.-T. Chou. Simple proof techniques for property preservation via simulation.
Information Processing Letters, 60:129–134, 1996.

65. P. Clérin, S. Grnac, P. Kuntz, and D. Snyers. Une nouvelle heuristique stochas-
tique pour le routage dynamique, pour l’optimisation et la décision. In Trois.
Renc. Math. pour l’Optimisation et la Décision, Brest, 1995.

66. P. Collet and J.-P. Eckmann. Iterated Maps on the Interval as Dynamical
Systems. Birkhauser, 1980.

67. P. Collette. An explanatory presentation of composition rules for assumption-
commitment specifications. Information Processing Letters, 50:31–35, 1994.

68. M. Cosnard, M. Garzon, and P. Koiran. Computability properties of low-
dimensional dynamical systems. In P. Enjalbert, A. Finkel, and K. W. Wagner,
editors, Proc. of STACS 93, volume 665 of Lecture Notes in Computer Science,
pages 365–373. Springer-Verlag, 1993.

69. P. J. Courtois. On time and space decomposition of complex structures.
CACM, 28(6):590–603, 1985.

70. P. Cousot. Méthodes Itératives de Construction et d’Approximation de Points
Fixes d’Operateurs Monotones sur un Treillis, Analyse Sémantique des Pro-
grammes. PhD thesis, Université Scientifique et Médicale de Grenoble, 1978.

71. P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorem.
Pacific J. Math., 82(1):43–57, 1979.

72. J. P. Crutchfield. The calculi of emergence: Computation, dynamics, and in-
duction. Physica D, 75:11–54, 1994.

73. K. Culik II and S. Dube. L-systems and mutually recursive function systems.
Acta Informatica, 30(3):279–302, 1993.

74. K. Culik II, L. P. Hurd, and S. Yu. Computation theoretic aspects of cellular
automata. Physica D, 45:357–378, 1990.

75. K. Culik II, L. P. Hurd, and S. Yu. Formal languages and global cellular
automaton behavior. Physica D, 45:396–403, 1990.

76. O.-J. Dahl. Discrete event simulation languages. In F. Genuys, editor, Pro-
gramming Lannguages, pages 349–395. Academic Press, 1968.

77. J. Dassow and J. Kelemen. Cooperating/distributed grammar systems: a link
between formal languages and artificial intelligence. Bulletin of the EATCS,
(45):131–145, 1991.

78. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 1990.

79. J. Davies. Specification and Proof in Real-Time CSP. Cambridge University
Press, 1993.

80. C. Davis and D. E. Knuth. Number representations and dragon curves – I &
II. Journal of Recreational Mathematics, 3:61–81, 133–149, 1970.

81. J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors. A Decade
of Concurrency, Reflections and Perspectives, volume 803 of Lecture Notes in
Computer Science. Springer-Verlag, 1994.

Bibliography 261

82. P. De Grauwe, H. Dewachter, and M. Embrechts. Exchange Rate Theory –
Chaotic Models of Foreign Exchange Markets. Blackwell Publishers, 1993.

83. M. Dekking, M. Mendès France, and A. van der Poorten. Folds! Math. Intell.,
4:130–138; 173–181; 190–195, 1982.

84. J.-P. Delahaye. Information, Complexité et Hasard. Hermès, 1994.
85. J.-P. Delahaye. Complexité des objets composés. Technical report, U.S.T.

Lille, URA CNRS 369, 1995.
86. N. Dershowitz. Termination of rewriting. J. Symbolic Computation, 3:69–116,

1987.
87. D. Deutsch. Quantum theory, the Church-Turing principle and the universal

quantum computer. In Proc. Royal Soc. London, volume A400, pages 97–117,
1985.

88. R. L. Devaney. An Introduction to Chaotic Dynamical Systems. Addison-
Wesley, 2nd edition, 1989.

89. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
1995.

90. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
munications of the ACM, 17(11):643–644, 1974.

91. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
92. E. W. Dijkstra. Edw675: The equivalence of bounded nondeterminacy and

continuity. In Selected Writings on Computing: a Personal Perspective, pages
358–359. Springer-Verlag, 1982.

93. E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, 1990.

94. W. Dörfler. The cartesian composition of automata. Math. Systems Theory,
11:239–257, 1978.

95. M. Dorigo. The ant system: Optimization by a colony of cooperating agents.
IEEE Transactions on Systems, Man, and Cybernetics (B), 26(1):1–13, 1996.

96. J. Dugundji. Topology. Wm.C. Brown Publishers, 2nd edition, 1989.
97. A. Edalat. Dynamical systems, measures, and fractals via domain theory.

Information and Computation, 120:32–48, 1995.
98. E. A. Emerson. Temporal and modal logic. In J. Van Leeuwen, editor, Hand-

book of Theoretical Computer Science, volume B, pages 995–1072. Elsevier,
1990.

99. E. A. Emerson and E. M. Clarke. Using branching time temporal logic to syn-
thesize synchronization skeletons. Science of Computer Programming, 2:241–
266, 1982.

100. Y. Fisher, editor. Fractal Image Compression. Springer-Verlag, 1995.
101. P. Flocchini and F. Geurts. Searching for chaos in cellular automata: Compo-

sitional approach. In R. J. Stonier and X. H. Yu, editors, Complex Systems,
Mechanism of Adaptation, pages 329–336. IOS Press, 1994.

102. P. Flocchini and F. Geurts. Searching for chaos in cellular automata: New tools
for classification. In R. J. Stonier and X. H. Yu, editors, Complex Systems,
Mechanism of Adaptation, pages 321–328. IOS Press, 1994.

103. P. Flocchini, F. Geurts, A. Mingarelli, and N. Santoro. Convergence and
aperiodicity in continuous cellular automata. Technical Report RR 97-01,
Département d’Ingénierie Informatique, Université catholique de Louvain,
1997.

104. P. Flocchini, F. Geurts, and N. Santoro. Dynamics and algebraic properties of
moss reinforced shifts. In Proc. International Symposium on Nonlinear Theory
and its Applications, Las Vegas, volume 2, pages 1149–1152. IEICE, 1995.

262 Bibliography

105. P. Flocchini, F. Geurts, and N. Santoro. Compositional experimental analy-
sis of cellular automata: Attraction properties and logic disjunction. Techni-
cal Report TR-96-31, School of Computer Science, Carleton University, 1996.
http://www.scs.carleton.ca/scs/tech reports/1996/list.html; also: RR 96-10,
Département d’Informatique, Université catholique de Louvain.

106. P. Flocchini, F. Geurts, and N. Santoro. CA-like error propagation in fuzzy
CA. Parallel Computing, 23(11):1673–1682, 1997.

107. P. Flocchini and N. Santoro. The chaotic evolution of information in the
interaction between knowledge and uncertainty. In R. J. Stonier and X. H.
Yu, editors, Complex Systems, Mechanism of Adaptation, pages 337–343. IOS
Press, 1994.

108. P. Flocchini and N. Santoro. Topological constraints for sense of direction.
In L. M. Kirousis and E. Kranakis, editors, Proc. of the 2nd Colloquium on
Structural Information and Communication Complexity, pages 27–38. Carleton
University Press, 1996.

109. R. W. Floyd. Assigning meanings to programs. In Proc. Symp. Applied Math-
ematics, volume 19, pages 19–32. Amer. Math. Soc., 1967.

110. N. Francez. Fairness. Springer-Verlag, 1986.
111. S. Franklin and M. Garzon. On Stability and Solvability (Or, When Does a

Neural Network Solve a Problem?), volume 2, pages 71–83. Kluwer Academic
Publishers, 1992.

112. P. H. H. Gardiner, C. E. Martin, and O. de Moor. An algebraic construction
of predicate transformers. Science of Computer Programming, 22:21–44, 1994.

113. M. Garzon. Models of Massive Parallelism. Analysis of Cellular Automata
and Neural Networks. Springer-Verlag, 1995.

114. M. Garzon and S. Franklin. Neural computability II. In Proc. 3rd Int. Joint
Conf. on Neural Networks, 1989.

115. R. J. Gaylord and K. Nishidate. Modeling Nature: Cellular Automata Simu-
lations with Mathematica. Springer-Verlag, 1996.

116. F. Geurts and V. Lombart. Etude des systèmes de transitions discrets.
Diploma Thesis, Unité d’Informatique, Université catholique de Louvain, 1992.

117. A. Ginzburg. Algebraic Theory of Automata. Academic Press, 1968.
118. J. Gleick. Chaos. The Viking Press, 1987.
119. E. Goles. Lyapunov operators to study the convergence of extremal automata.

Theoretical Computer Science, 125:329–337, 1994.
120. E. Goles, F. Fogelman-Soulie, and D. Pellegrin. Decreasing energy fonction

as a tool for studying threshold networks. Discrete Applied Mathematics,
12(3):261–277, 1985.

121. E. Goles and S. Martinez. Neural and Automata Networks, Dynamical Behav-
ior and Applications. Kluwer Academic Publishers, 1990.

122. E. Goles and J. Olivos. Periodic behavior of generalized threshold functions.
Discrete Mathematics, 30:187–189, 1980.

123. M. G. Gouda. The triumph and tribulation of system stabilization. In J. M.
Hélary and M. Raynal, editors, Proc. of the 9th International Workshop on
Distributed Algorithms, volume 972 of Lecture Notes in Computer Science,
pages 1–18. Springer-Verlag, 1995.

124. A. Granville. On a paper by Agur, Fraenkel and Klein. Discrete Mathematics,
94:147–151, 1991.

125. P. Grassberger. Chaos and diffusion in deterministic cellular automata. Phys-
ica D, 10:52, 1984.

126. G. Grössing and A. Zeilinger. Quantum cellular automata (+ a corrigendum).
Complex Systems, 2(2/5):197–209/611–623, 1988.

Bibliography 263

127. R. L. Grossman and M. Sweedler. Hybrid systems and quantum automata:
Preliminary announcement. In P. Antsaklis, W. Kohn, A. Nerode, and S. Sas-
try, editors, Hybrid Systems II, volume 999 of Lecture Notes in Computer Sci-
ence, pages 191–201. Springer-Verlag, 1995.

128. P. Guan. Cellular automaton public-key cryptosystem. Complex Systems,
1:51–57, 1987.

129. J. Guckenheimer. A robust hybrid stabilization strategy for equilibria. IEEE
Trans. Autom. Control, 40(2):321–326, 1995.

130. P. Guerreiro. A relational model for non-deterministic programs and predicate
transformers. In B. Robinet, editor, Proceedings of the International Sympo-
sium on Programming, volume 83 of Lecture Notes in Computer Science, pages
136–146. Springer-Verlag, 1980.

131. R. Gupta, S. A. Smolka, and S. Bhaskar. On randomization in sequential and
distributed algorithms. ACM Computing Surveys, 26(1):7–86, 1994.

132. H. Gutowitz, editor. Cellular Automata, Theory and Experiment. MIT
Press/North-Holland, 1991.

133. H. Gutowitz and C. Langton. Mean field theory of the edge of chaos. In
F. Moran, A. Moreno, J. J. Merelo, and P. Chacon, editors, Advances in Ar-
tificial Life, 3rd European Conference on Artificial Life, Granada, volume 929
of LNAI, pages 52–64. Springer-Verlag, 1995.

134. H. A. Gutowitz. A hierachical classification of cellular automata. Physica D,
45:136–156, 1990.

135. H. A. Gutowitz. Cryptography with dynamical systems. In N. Boccara,
E. Goles, S. Martinez, and P. Picco, editors, Cellular Automata and Coop-
erative Systems, volume 396 of NATO ASI Ser. C: Math. Phys. Sci., pages
237–274. Kluwer Academic Publishers, 1993.

136. H. A. Gutowitz. Cellular automata and the sciences of complexity I & II.
Complexity, 1(5/6):16–22/29–25, 1995/1996.

137. H. A. Gutowitz, J. D. Victor, and B. W. Knight. Local structure theory for
cellular automata. Physica D, 28:18–48, 1987.

138. B. L. Hao, editor. Chaos (Reprinted Papers). World Scientific, 1984.
139. B. L. Hao. Elementary Symbolic Dynamics and Chaos in Dissipative Systems.

World Scientific, 1989.
140. M. Hata. On the structure of self-similar sets. Japan J. Appl. Math., 2:381–

414, 1985.
141. F. Hausdorff. Set Theory. Chelsea, 1962.
142. S. Haykin. Neural Networks. A Comprehensive Foundation. IEEE Computer

Society Press, 1994.
143. G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical

system. Mathematical Systems Theory, 3:320–375, 1969.
144. H. A. J. M. Heijmans and C. Ronse. The algebraic basis of mathematical

morphology – part I: Dilatations and erosions. Computer Vision, Graphics
and Image Processing, 50:245–295, 1990.

145. M. Hénon. A two-dimensional mapping with a strange attractor. Commun.
Math. Phys., 50:69–77, 1976.

146. R. Herken, editor. The Universal Turing Machine, A Half-Century Survey.
Oxford University Press, 1988.

147. T. Herman. Probabilistic self-stabilization. Information Processing Letters,
35:63–67, 1990.

148. A. V. M. Herz and C. M. Marcus. Distributed dynamics in neural networks.
Physical Review E, 47(3):2155–2161, 1993.

149. D. Hilbert and P. Bernays. Grundlagen der Mathematik, volume 2. Springer-
Verlag, 1939.

264 Bibliography

150. C. A. R. Hoare. Some properties of predicate transformers. Journal of the
ACM, 25(3):461–480, 1978.

151. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
152. C. A. R. Hoare and J. F. He. The weakest prespecification. Information

Processing Letters, 24:127–132, 1987.
153. J. Holland. Les algorithmes génétiques. Pour la Science, (179):44–51, 1992.
154. R. A. Holmgren. A First Course in Discrete Dynamical Systems. Universitext.

Springer-Verlag, 1994.
155. J. E. Hopcroft and J. D. Ullmann. Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, 1990.
156. J. J. Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proc. of the National Academy of Sciences, 79:2554–
2558, 1982.

157. J. J. Hopfield. Neurons with graded response have collective computational
properties like those of two-state neurons. Proc. of the National Academy of
Sciences, 81:3088–3092, 1984.

158. B. A. Huberman and T. Hogg. The emergence of computational ecologies. In
L. Nader and D. Stein, editors, 1992 Lectures in Complex Systems, volume V
of SFI Studies in the Sci. of Complexity. Addison-Wesley, 1993.

159. J. E. Hutchinson. Fractals and self similarity. Indiana University Mathematics
Journal, 30(5):713–747, 1981.

160. J. E. Hutchinson. Fractals: a mathematical framework. In R. J. Stonier and
X. H. Yu, editors, Complex Systems: Mechanism of Adaptation, pages 271–281.
IOS Press, 1994.

161. E. Jen. Aperiodicity in one-dimensional cellular automata. Physica D, 45:3–
18, 1990.

162. C. Jones. Probabilistic Nondeterminism. PhD thesis, ECS, LFCS, U. Edin-
burgh, 1990.

163. N. D. Jones and F. Nielson. Abstract interpretation: a semantics-based tool
for program analysis. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 4 Semantic Modelling,
chapter 5, pages 527–636. Oxford Science Publications, 1995.

164. P. Kůrka. Simulation in dynamical systems and Turing machines. Technical
report, Department of Mathematical Logic and Philosophy of Mathematics,
Charles U., Prague, 1992.

165. P. Kůrka. Universal computation in dynamical systems. Technical report,
Department of Mathematical Logic and Philosophy of Mathematics, Charles
U., Prague, 1992.

166. P. Kůrka. Dynamical systems and factors of finite automata. Technical report,
Department of Mathematical Logic and Philosophy of Mathematics, Charles
U., Prague, 1993.

167. P. Kůrka. One-dimensional dynamics and factors of finite automata. Acta
Univ. Carolinae Math. Phys., 34(2):83–95, 1993.

168. P. Kůrka. A comparison of finite and cellular automata. In I. Pŕıvara,
B. Rovan, and P. Ružička, editors, Mathematical Foundations of Computer
Science, volume 841 of Lecture Notes in Computer Science, pages 483–493.
Springer-Verlag, 1994.

169. P. Kůrka. Regular unimodal systems and factors of finite automata. Theoret-
ical Computer Science, 133:49–64, 1994.

170. P. Kůrka. Simplicity criteria for dynamical systems. In S. I. Andersson, editor,
Analysis of Dynamical and Cognitive Systems, volume 888 of Lecture Notes in
Computer Science, pages 189–225. Springer-Verlag, 1995.

Bibliography 265

171. P. Kůrka. Languages, equicontinuity and attractors in linear cellular au-
tomata. Ergodic Theory and Dynamical Systems, 16:1–17, 1996.

172. P. Kůrka. On topological dynamics of Turing machines. Theoretical Computer
Science, 174:203–216, 1997.

173. Y. Kamp and M. Hasler. Réseaux de neurones récursifs pour mémoires asso-
ciatives. Presses Polytechniques et Universitaires Romandes, 1990.

174. K. Kaneko. Attractors, basin structures and information processing in cel-
lular automata. In S. Wolfram, editor, Theory and Applications of Cellular
Automata, pages 367–399. World Scientific, 1986.

175. K. Kaneko. Homeochaos: Dynamic stability of a symbiotic network with pop-
ulation dynamics and evolving mutation rates. Physica D, 56:406–429, 1992.

176. K. Kaneko. Theory and Application of Coupled Map Lattices. John Wiley &
Sons, 1993.

177. K. Kaneko. Chaos as a source of complexity and diversity in evolution. Arti-
ficial Life, 1(1/2):163–177, 1993–94.

178. D. Kaplan and L. Glass. Understanding Nonlinear Dynamics. Springer-Verlag,
1995.

179. E. Kindler. Invariants, compositionality and substitution. Acta Informatica,
32(4):299–312, 1995.

180. B. G. Klein. Homomorphisms of symbolic dynamical systems. Math. Systems
Theory, 6:107–122, 1972.

181. C. Knudsen. Chaos without nonperiodicity. American Mathematical Monthly,
pages 563–565, June-July 1994.

182. P. Koiran. Puissance de Calcul des Réseaux de Neurones Artificiels. PhD
thesis, Laboratoire de l’Informatique du Parallélisme, E.N.S.Lyon, 1993.

183. P. Koiran and C. Moore. Closed-form analytic maps in one and two dimensions
can simulate Turing machines. Submitted to Theoretical Computer Science,
1996. Available from http://www.santafe.edu/∼moore.

184. J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.

185. J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press, 1994.

186. M. A. Krasnoselskii, A. V. Lusnikov, and A. V. Pokrovskii. Stable fixed points
of monotone operators. Russian Acad. Sci. Dokl. Math., 47(3):427–430, 1993.

187. R. Kumar, V. Garg, and S. I. Marcus. Predicates and predicate transformers
for supervisory control of discrete event dynamical systems. IEEE Trans.
Autom. Control, 38(2):232–247, 1993.

188. P. Kuntz and D. Snyers. Emergent colonization and graph partitioning. In
Proc. 3rd Int. Conf. on Simulation of Adaptive Behavior, pages 494–500. MIT
Press, 1994.

189. M. Z. Kwiatkowska. A metric for traces. Information Processing Letters,
35:129–135, 1990.

190. M. Z. Kwiatkowska. On topological characterization of behavioral properties.
In G. M. Reed, A. W. Roscoe, and R. F. Wachter, editors, Topology and Cat-
egory Theory in Computer Science, Oxford Science Publications, chapter 6,
pages 153–177. Clarendon Press, 1991.

191. O. Ladyzhenskaya. Attractors for Semigroups and Evolution Equations. Cam-
bridge University Press, 1991.

192. L. Lamport. “sometime” is sometimes “not never”. on the temporal logic of
programs. In Proc. 7th Annual ACM Symp. Princ. Prog. Lang., Las Vegas,
pages 174–185. ACM, 1980.

193. L. Lamport. A simple approach to specifying concurrent systems. CACM,
32(1):32–45, 1989.

266 Bibliography

194. L. Lamport. win and sin: Predicate transformers for concurrency. ACM
Trans. on Prog. Lang. and Syst., 12(3), 1990.

195. C. G. Langton. Computation at the edge of chaos: Phase transitions and
emergent computation. Physica D, 42:12–37, 1990.

196. A. Lasota and M. C. Mackey. Chaos, Fractals, and Noise, Stochastic Aspects
of Dynamics. Springer-Verlag, 2nd edition, 1994.

197. J. L. Lassez, V. L. Nguyen, and E. A. Sonenberg. Fixed point theorems and
semantics: a folk tale. Information Processing Letters, 14(3):112–116, 1982.

198. P. Layzell and P. Kuntz. A new stochastic approach to find clusters in ver-
tex set of large graphs with applications to partitioning in VLSI technology.
Technical report, Telecom Bretagne, 1995.

199. M. Li and P. Vitànyi. An Introduction to Kolmogorov Complexity and its
Applications. Springer-Verlag, 1993.

200. W. Li and N. H. Packard. The structure of the elementary cellular automata
rule space. Complex Systems, 4:281–297, 1990.

201. W. Li, N. H. Packard, and C. G. Langton. Transition phenomena in cellular
automata rule space. Physica D, 45:77–94, 1990.

202. D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding.
Cambridge University Press, 1995.

203. K. Lindgren. Entropy and correlations in discrete dynamical systems. In J. L.
Casti and A. Karlqvist, editors, Beyond Belief: Randomness, Predication and
Explanation in Science, chapter 5, pages 88–109. CRC Press, 1991.

204. K. Lindgren and M. G. Nordahl. Universal computation in simple one-
dimensional cellular automata. Complex Systems, 4:299–318, 1990.

205. B. Litow and P. Dumas. Additive cellular automata and algebraic series.
Theoretical Computer Science, 119:345–354, 1993.

206. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property pre-
serving abstractions for the verification of concurrent systems. Formal Methods
in System Design, 6:11–44, 1995.

207. E. N. Lorentz. Deterministic nonperiodic flow. Journal of the Atmospheric
Sciences, 20:130–141, 1963.

208. B. B. Mandelbrot. The Fractal Geometry of Nature. Freeman, 1982.
209. B. B. Mandelbrot. Fractal and Scaling in Finance: Discontinuity, Concentra-

tion, Risk. Springer-Verlag, 1997.
210. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems: Specification. Springer-Verlag, 1992.
211. C. M. Marcus, F. R. Waugh, and R. M. Westervelt. Associative memory in

an analog iterated-map neural network. Physical Review A, 41(6):3355–3364,
1990.

212. C. M. Marcus and R. W. Westervelt. Dynamics of iterated-maps neural net-
works. Physical Review A, 40(1):501–504, 1989.

213. L. Margara. Cellular automata and non periodic orbits. Complex Systems,
(to appear).

214. N. Margolus. Parallel quantum computation. In W. H. Zurek, editor, Com-
plexity, Entropy, and the Physics of Information, volume VIII of SFI Studies
in the Sci. of Complexity, pages 273–287. Addison-Wesley, 1990.

215. B. Martin. Construction Modulaire d’Automates Cellulaires. PhD thesis,
Laboratoire de l’Informatique du Parallélisme, E.N.S.Lyon; Université Claude
Bernard Lyon 1, 1993.

216. A. Mazurkiewicz. Trace theory. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Applications and Relationships to Other Models of Con-
currency, volume 255 of Lecture Notes in Computer Science, pages 279–324.
Springer-Verlag, 1986.

Bibliography 267

217. J. L. McCauley. Chaos, Dynamics and Fractals: An Algorithmic Approach to
Deterministic Chaos. Cambridge University Press, 1993.

218. M. Mendès France and J. O. Shallit. Wire bending. Journal of Combinatorial
Theory A, 50:1–23, 1989.

219. M. Mendès France and A. J. van der Poorten. Arithmetic and analytic prop-
erties of paper folding sequences. Bull. Austral. Math. Soc., 24:123–131, 1981.

220. D. A. Meyer. Towards the global: Complexity, topology and chaos
in modelling, simulation and computation. 1997. Available from
http://xxx.lanl.gov/abs/chao-dyn/9710005.

221. A. N. Michel and K. Wang. Qualitative Theory of Dynamical Systems. The
Role of Stability Preserving Mappings. Marcel Dekker Inc., 1995.

222. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
223. M. L. Minsky. Perceptrons: An Introduction to Computational Geometry. MIT

Press, 3rd edition, 1988.
224. C. Moore. Unpredictability and undecidability in dynamical systems. Physical

Review Letters, 64(20):2354–2357, 1990.
225. C. Moore. Generalized one-sided shifts and maps of the interval. Nonlinearity,

4:727–745, 1991.
226. C. Moore. Generalized shifts: Unpredictability and undecidability in dynam-

ical systems. Nonlinearity, 4:199–230, 1991.
227. C. Moore. Smooth maps of the interval and the real line capable of universal

computation. Technical Report 93-01-001, Santa Fe Institute, 1993. Available
from http://www.santafe.edu/∼moore.

228. C. Moore. Dynamical recognizers: Real-time language recognition by analog
computers. Submitted to Theoretical Computer Science, 1996. Available from
http://www.santafe.edu/∼moore.

229. C. Moore. Recursion theory on the reals and continuous-time computation.
Theoretical Computer Science, 162:23–44, 1996.

230. C. Moore and E. Aurell. Symbolic dynamics, transcendentality, and
complexity at the transition to chaos. Technical report, Dept. Physics,
Cornell, and Inst. Theor. Physics, Göteborg, 1990. Available from
http://www.santafe.edu/∼moore.

231. G. Moran. Parametrization for stationary patterns of the r-majority operators
on 0–1 sequences. Discrete Mathematics, 132:175–195, 1994.

232. G. Moran. The r-majority vote action on 0–1 sequences. Discrete Mathemat-
ics, 132:145–174, 1994.

233. G. Moran. On the period-two-property of the majority operator in infinite
graphs. Transactions of the American Mathematical Society, 347(5):1649–1667,
1995.

234. C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers.
TOPLAS, 18(3):325–353, 1996.

235. C. Morgan and T. Vickers, editors. On the Refinement Calculus. Springer-
Verlag, 2nd edition, 1994.

236. C. C. Morgan. Proof rules for probabilistic loops. In H. Jifeng, J. Cooke, and
P. Wallis, editors, Proceedings of the BCS-FACS 7th Refinement Workshop.
Springer-Verlag, 1996.

237. C. C. Morgan and A. McIver. Unifying wp and wlp. Information Processing
Letters, 20(3):159–164, 1996.

238. S. Mullender, editor. Distributed Systems. Addison-Wesley, 2nd edition, 1993.
239. S. Nandi, B. K. Kar, and P. Pal Chaudhuri. Theory and application of cellular

automata in cryptography. IEEE Transactions on Computers, 43(12):1346–
1357, 1994.

268 Bibliography

240. A. Nayak, L. Pagli, and N. Santoro. Efficient construction of catastrophic
patterns for vlsi reconfigurable arrays. INTEGRATION, the VLSI Journal,
15:133–150, 1993.

241. A. Nayak, L. Pagli, and N. Santoro. On testing for catastrophic faults in
reconfigurable arrays with arbitrary link redundancy. INTEGRATION, the
VLSI Journal, 20:327–342, 1996.

242. A. Nayak, N. Santoro, and R. Tan. Fault-tolerance of reconfigurable systolic
arrays. In Proc. of the 20th International Symposium on Fault-Tolerant Com-
puting, Newcastle, UK, pages 202–209. IEEE Computer Society, 1990.

243. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, 1988.

244. A. Nerode and W. Kohn. Models of hybrid systems: Automata, topologies,
controllability, observability. In R. L. Grossman, A. Nerode, A. P. Ravn, and
H. Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes in Computer
Science, pages 317–356. Springer-Verlag, 1993.

245. T. T. Nguyen. Multi-Valued Function Theory for Computer Programming.
PhD thesis, Département de Mathématique, Université catholique de Louvain,
1988.

246. T. T. Nguyen. A relational model of demonic nondeterministic programs.
International Journal of Foundations of Computer Science, 2(2):101–131, 1991.

247. E. Ohlebusch. On the modularity of termination of term rewriting systems.
Theoretical Computer Science, 136:333–360, 1994.

248. D. S. Ornstein. Ergodic Theory, Randomness, and Dynamical Systems. Num-
ber 5 in Yale Math. Monographs. Yale University Press, 1974.

249. P. Pal Chaudhuri, D. Roy Chowdhury, S. Nandi, and S. Chattopadhyay. The-
ory and Applications in Additive Cellular Automata. IEEE Press, 1997.

250. J. Palis and F. Takens. Hyperbolicity and Sensitive Chaotic Dynamics at
Homoclinic Bifurcations. Cambridge University Press, 1993.

251. F. Pasemann. Discrete dynamics of two neuron networks. Technical report,
Institut für Theoretische Physik, T.U. Clausthal, Germany, 1993.

252. F. Pasemann. Dynamics of a single model neuron. International Journal of
Bifurcation and Chaos, 2:271–278, 1993.

253. F. Pasemann. Characterization of periodic attractors in neural ring networks.
Neural Networks, 8(3):421–429, 1995.

254. F. Pasemann. A simple chaotic neuron. Physica D, 104(2):205–211, 1997.
255. F. Pasemann and E. Nelle. Dynamical effects of coupling two neurons. Tech-

nical report, Institut für Theoretische Physik, T.U. Clausthal, Germany, 1993.
256. G. Păun. Splicing: A challenge for formal language theorists. Bulletin of the

EATCS, (57):183–194, 1995.
257. J. Pedersen. Continuous transitions of cellular automata. Complex Systems,

4:653–665, 1990.
258. H.-O. Peitgen and P. H. Richter. The Beauty of Fractals. Springer-Verlag,

1986.
259. H.-O. Peitgen, G. Skordev, and F. von Haeseler. Global analysis of self-

similarity features of cellular automata: Selected examples. Physica D, 86:64–
80, 1995.

260. H.-O. Peitgen, G. Skordev, and F. von Haeseler. Multifractal decomposition
of rescaled evolution sets of equivariant cellular automata. Journal of Random
and Comput. Dynamics, 3:93–119, 1995.

261. D. Peleg. Local majority voting, small coalitions and controlling monopolies
in graphs: A review. In N. Santoro and P. Spirakis, editors, Structure, Informa-
tion and Communication Complexity, 3rd Colloquium SIROCCO’96, Certosa
di Pontignano, Italy, pages 152–169. Carleton University Press, 1997.

Bibliography 269

262. G. L. Peterson. Myths about teh mutual exclusion problem. Information
Processing Letters, 12(3):115–116, 1981.

263. M. Phipps. From local to global: the lesson of cellular automata. In D. DeAn-
gelis and L. Gross, editors, Individual-Based Approaches in Ecology: Concepts
and Models. Chapman and Hall, 1992.

264. S. Y. Pilyugin. The Space of Dynamical Systems with the C0-Topology, volume
1571 of Lecture Notes in Mathematics. Springer-Verlag, 1994.

265. B. Plateau and K. Atif. Stochastic automata network for modeling parallel
systems. IEEE Trans. Soft. Eng., 17(10):1093–1108, 1991.

266. S. Poljak. Transformations on graphs and convexity. Complex Systems,
1:1021–1033, 1987.

267. S. Poljak and M. S̊ura. On periodical behavior in societies with symmetric
influences. Combinatorica, 1:119–121, 1983.

268. M. Queffélec. Substitution Dynamical Systems – Spectral Analysis, volume
1294 of Lecture Notes in Mathematics. Springer-Verlag, 1987.

269. P. Ramanathan, K. G. Shin, and R. W. Butler. Fault-tolerant clock synchro-
nisation in distributed systems. IEEE Trans. Computer, pages 33–42, Oct.
1990.

270. D. A. Rand. Measuring and characterizing spatial patterns, dynamics and
chaos in spatially extended dynamical systems and ecologies. Phil. Trans. R.
Soc. Lond. A, 348:497–514, 1994.

271. J. R. Rao. Reasoning about probabilistic parallel programs. ACM Trans. on
Prog. Lang. and Syst., 16(3):798–842, 1994.

272. S. Rasmussen and C. L. Barrett. Elements of a theory of simulation. In
F. Moran, A. Moreno, J. J. Merelo, and P. Chacon, editors, Advances in Ar-
tificial Life, 3rd European Conference on Artificial Life, Granada, volume 929
of LNAI, pages 515–529. Springer-Verlag, 1995.

273. D. Richardson. Tessellations with local transformations. Journal of Computer
and System Sciences, 6:373–388, 1972.

274. F. Robert. Discrete Iterations, A Metric Study. Springer-Verlag, 1986.
275. C. Ronse and H. A. J. M. Heijmans. The algebraic basis of mathematical

morphology – part II: Openings and closings. Computer Vision, Graphics and
Image Processing, 54:74–97, 1991.

276. G. Schmidt and T. Ströhlein. Timetable constructio: An annotated bibliogra-
phy. The Computer Journal, 23(4):307–316, 1980.

277. G. Schmidt and T. Ströhlein. Relations and Graphs. Springer-Verlag, 1993.
278. M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45–67, 1993.
279. M. Schroeder. Fractals, Chaos, Power Laws. W. H. Freeman and Co., 1991.
280. J. Serra. Image Analysis and Mathematical Morphology. AcademicPress, 1982.
281. M. Serra, T. Slater, J. C. Muzio, and D. M. Miller. The analysis of one-

dimensional linear cellular automata and their aliasing properties. IEEE Trans-
actions on Computer-Aided Design, 9:767–778, 1990.

282. H. T. Siegelmann. Computation beyond the Turing limit. Science, 268:545–
548, 1995.

283. H. T. Siegelmann and E. D. Sontag. Analog computation via neural networks.
Theoretical Computer Science, 131:331–360, 1994.

284. J. Sifakis. A unified approach for studying the properties of transition systems.
Theoretical Computer Science, 18:227–258, 1982.

285. Y. G. Sinai. Topics in Ergodic Theory. Number 44 in Math. Ser. Princeton
University Press, 1994.

270 Bibliography

286. M. Sintzoff. Invariance and contraction by infinite iterations of relations. In
J.-P. Banâtre and D. Le Metayer, editors, Research Directions in High-Level
Parallel Programming Languages, volume 574 of Lecture Notes in Computer
Science, pages 349–373. Springer-Verlag, 1992.

287. M. Sintzoff. Invariance and termination in structured dynamical systems. In
Proc. 1995 Intl Symp. on Nonlinear Theory and its Applications, volume 1.
IEICE Tokyo, 1995.

288. M. Sintzoff. Abstract verification of structured dynamical systems. In Proc.
of Hybrid Systems III, Lecture Notes in Computer Science. Springer-Verlag,
1996.

289. M. Sintzoff and F. Geurts. Compositional analysis of dynamical systems us-
ing predicate transformers (summary). In Proc. International Symposium on
Nonlinear Theory and its Applications, Hawaii, volume 4, pages 1323–1326.
IEICE, 1993.

290. M. Sintzoff and F. Geurts. Analysis of dynamical systems using predicate
transformers: Attraction and composition. In S. I. Andersson, editor, Analysis
of Dynamical and Cognitive Systems, volume 888 of Lecture Notes in Computer
Science, pages 227–260. Springer-Verlag, 1995.

291. M. Sipper. Evolution of Parallel Cellular Machines – The Cellular Program-
ming Approach, volume 1194 of Lecture Notes in Computer Science. Spring-
Verlag, 1997.

292. S. Smale. Diffeomorphisms with many periodic points. In S. S. Cairns, editor,
Differential and Combinatorial Topology, pages 63–80. Princeton University
Press, 1965.

293. S. Smale. Differential dynamical systems. Bull. of the Amer. Math. Soc.,
73:747–817, 1967.

294. D. R. Smith. Constructing specification morphisms. Journal of Symbolic
Computation, 15(5–6):571–606, 1993.

295. D. R. Smith and M. R. Lowry. Algorithms theories and design tactics. Science
of Computer Programming, 14(2–3):305–321, 1990.

296. A. R. Smith III. Simple computation-universal cellular spaces. Journal of the
ACM, 18(3):339–353, 1971.

297. R. M. Smullyan. Diagonalization and Self-Reference. Number 27 in Oxford
Logic Guides. Oxford Science Publications, 1994.

298. B. Souc̆ek and IRIS Group. Dynamic, Genetic and Chaotic Programming.
John Wiley & Sons, 1992.

299. B. Steffen, C. Barry Jay, and M. Mendler. Compositional characterization
of observable program properties. Informatique Théorique et Applications,
26(5):403–424, 1992.

300. W. J. Stewart, K. Atif, and B. Plateau. The numerical solution of stochastic
automata network. European Journal of Operation Research, 86(3), 1995.

301. K. Sutner. Classifying circular cellular automata. Physica D, 45:386–395,
1990.

302. K. Svozil. Constructive chaos by cellular automata and possible sources of an
arrow of time. Physica D, 45:420–427, 1990.

303. K. Svozil. Randomness and Undecidability in Physics. World Scientific, 1993.
304. K. Svozil. Halting probability amplitude of quantum computers. Jnl. Univer-

sal Computer Science, 1(3):201–204, 1995.
305. H. Takahashi. The maximum invariant set of an automaton system. Informa-

tion and Control, 32:307–354, 1976.
306. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific

Journal of Mathematics, 5:285–309, 1955.

Bibliography 271

307. G. Troll. Formal language characterization of transitions to chaos of truncated
horseshoes. Technical Report 13, SFB 288, T.U. Berlin, 1992.

308. G. Troll. Formal languages in dynamical systems. Acta Univ. Carolinae,
Math. et Phys., 34(2):117–134, 1993.

309. A. van de Mortel-Fronczak. Models of Trace Theory Systems. PhD thesis,
T.U. Eindhoven, 1993.

310. M. Vellekoop and R. Berglund. On intervals, transitivity = chaos. American
Mathematical Monthly, pages 353–355, April 1994.

311. P.-F. Verhulst. Recherches mathématiques sur la loi d’accroissement de la pop-
ulation. Nouv. Mémoires de l’Académie Royale des Sciences et Belles Lettres
de Bruxelles, XVIII(8):1–38, 1845.

312. G. Y. Vichniac. Boolean derivatives on cellular automata. Physica D, 45:63–
74, 1990.

313. B. von Karger and C. A. R. Hoare. Sequential calculus. Information Processing
Letters, 53:123–130, 1995.

314. J. Von Neumann. Theory of Self-Reproducing Automata. University of Illinois
Press, Urbana, 1966.

315. B. Voorhees. Division algorithm for cellular automata rules. Complex Systems,
4:587–597, 1990.

316. B. Voorhees. Determination of fixed points and shift cycles for nearest neigh-
bor cellular automata. Jnl. Stat. Phys., 66(5/6):1397–1414, 1992.

317. B. Voorhees. Computational Analysis of One-Dimensional Cellular Automata.
World Scientific, 1996.

318. X. Wang. Period-doublings to chaos in a simple neural network: An analytical
proof. Complex Systems, 5:425–441, 1991.

319. X. Wang. Discrete-time dynamics of coupled quasi-periodic and chaotic neural
network oscillators. In Proc. of IJCNN 92, Baltimore, 1992.

320. X. Wang and E. K. Blum. Discrete-time versus continuous-time models of
neural networks. Journal of Computer and System Sciences, 45(1):1–19, 1992.

321. X. Wang, E. K. Blum, and P. K. Leung. Analysis and simulation of synchro-
nization in oscillatory neural networks. In Proc. of CNS 92, San Francisco,
1992.

322. Y. Wang and H. Xie. Grammatical complexity of unimodal maps with even-
tually periodic kneading sequences. Nonlinearity, 7:1419–1436, 1994.

323. K. Weihrauch. Computability, volume 9 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1987.

324. K. Weihrauch and U. Schreiber. Embedding metric spaces into CPO’s. The-
oretical Computer Science, 16:5–24, 1981.

325. K. R. Wicks. Fractals and Hyperspaces, volume 1492 of Lecture Notes in
Mathematics. Springer-Verlag, 1991.

326. S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos.
Springer-Verlag, 1990.

327. J. C. Willems. Paradigms and puzzles in the theory of dynamical systems.
IEEE Trans. Autom. Control, 36(3):259–294, 1991.

328. R. F. Williams. Composition of contractions. Bol. da Soc. Brasil. de Mat.,
2(2):55–59, 1971.

329. G. Winskel. A compositional proof system on a category of labelled transition
systems. Information and Computation, 87:2–57, 1990.

330. S. Wolfram. Theory and Applications of Cellular Automata. World Scientific,
1986.

331. S. Wolfram. Cellular Automata and Complexity. Addison-Wesley, 1994.
332. W. K. Wootters and C. G. Langton. Is there a sharp transition for determin-

istic cellular automata? Physica D, 45:95–104, 1990.

272 Bibliography

333. H. Xie. On formal languages in one-dimensional dynamical systems. Nonlin-
earity, 6:997–1007, 1993.

334. H. Xie. Grammatical Complexity of One-Dimensional Dynamical Systems.
World Scientific, 1997.

Glossary of Symbols

(X, f) . . . dynamical system, relation f
defined on X

♥ . undefined state
� . end of example
� . end of proof
* because (in proofs)
2 always (temporal logic)
3 eventually (idem)

x
f→ y state transition of f , from x to y

;→ . attraction
;→ω infinite attraction
;→η transfinite attraction
◦ composition of composition operators
÷ . product covering
| . such that
#. cardinality
! Hilbert’s nondeterministic choice
≡ρ . ρ-equivalence
=Π distributivity of Cartesian products

≤c computational power order
<c . strict relation
≡c equivalence relation

∅ . empty set
⊆ set inclusion, inclusion-order

 . definition-order
⊂≈ . dense inclusion

b abstraction homomorphism

Xn sequences of length n
X≤n sequences of length at most n
X∗ . finite sequences
Xω, XN. . infinite sequences (length ω)
XZ. bi-infinite sequences
X∞ finite or infinite sequences
Xn>ω strictly transfinite sequences
XO. transfinite sequences

↑ increasing sequence
↓ decreasing sequence

� partial order on words
≺ strict order on words

s+ positive sequence s0s1s2 · · ·
s− negative sequence s0s−1s−2 · · ·
, σ future trace σ0σ1σ2 · · ·
σ, past trace · · · σ2σ1σ0

≤ . lattice order
� greatest lower bound
� least upper bound
⊥ . bottom element
� . top element

ḟ derivative or gradient of f
∂f
∂x

. partial derivative
bx U–u, D–d, V –Λ, 0–1
eA approximation of set A
A . closure of A
s mirror image of sequence s
�x� . . integer upper approximation of x
[a, b] closed interval
(a, b) . open interval
|w| . word size
w|n length n prefix of a word

f−1 . inversion
(A→ f). domain restriction
(f ← B) range restriction
(f → A← B) domain and range

restriction
∼ f . negation
¬f external negation
f\g . difference
f ; g sequential composition
f ∩ g . intersection
f ∪ g . union

274 Glossary of Symbols

f ∪N g nondeterministic union
f ∪F g fair nondeterministic union
f ∪P :p g probabilistic union
f × g . free product
f ⊗R g connected product
� generic composition operator
� generic property composition

d reverse down folding, generic distance
de Euclidean distance
da astronomer’s metric
ds Boolean distance
e . label
f generic dynamical system
f . Boolean “false”
g generic dynamical system
h . Hausdorff metric
s generic trajectory
t . idem
t . Boolean “true”
u reverse up folding

Ai covering elements
D down folding action
E . . . configuration space of the general

computational model
G generic global property
H Hamming distance
Hρ shifted Hamming distance
I generic individual property
J . invariant
Jf
− greatest potential backward
invariant

Jf
+ greatest potential forward invariant

Jf . . greatest potential global invariant
J−

f . least necessary backward invariant

J+
f . . . least necessary forward invariant
Jf least necessary global invariant
K Lipschitz coefficient
Nx neighborhood of x
P . attracted set
Q . attracting set
R . . . neighborhood relation (connected

product)
T . topology
U up folding action
V . valley profile
W . word
X . state space
Y . state space

A . complex CA
B . bottom relation

C CA configuration space
C/≡ρ CA shift-quotient space
D . cantor set
E . empty relation
F . fixpoint CA
H energy-like decreasing function
I . identity relation
J set of folding instructions
L . set of landscapes
N . null CA
O algorithmic time complexity
P . periodic CA
R. set of relations
S . shifting CA
U universal relation
V concrete observation function
W abstract observation function
X concrete label state
Y abstract label state
Z abstraction function

A invariance property
B set of Boolean values
C . . . computable infinite configurations
E reachability property
F evolution operator
G f greatest fixpoint of f
I. effect domain
J strongest invariant
K(X) nonempty compact subsets of X
L . lattice
N . natural numbers
O . ordinal numbers
Os successor ordinal numbers
Ol limit ordinal numbers
P(X) power set of X
R . real numbers
Sf least fixpoint of f
U uncomputable infinite configurations
Z . integers

α . covering
γ contractivity factor
δ infinitesimal value
ε empty word, infinitesimal value
ζ TM transition function
ηL cardinality of lattice L
θ point-level forward dynamics
κ . kind
λ parameter (logistic map, Smale

horseshoe, Langton)
µ parameter (Smale horseshoe)
ξ set-level forward dynamics

Glossary of Symbols 275

π trace-state function
ρ . shift
σ . trace
τ . trace
υ threshold function of Hρ

φ encoding relation (simulation)
χ instruction-landscape function
ψ decoding relation (simulation)
ω first transfinite ordinal

Γ . functional
∆ . action domain
Θ point-level dynamics
Λ . ridge profile
Ξ set-level dynamics
Π . projection
Σ . alphabet
Υ dynamical complexity
Φ . . . set of approximating sets (fullness

and atomicity)
Ψ . (idem)

Index

�-meta-monotonicity, 76
⊆-meta-monotonicity, 76

Absorption, 129
Abstract verification, 89
Abstraction function, 88
Abstraction homomorphism, 88
Accepting state, 222
Accumulating sequence, 31
Action domain, 225
Active component, 225
Algorithmic information theory, 160
And-continuity, 35
And-continuity*, 36, 37
Astronomer’s metric, 40
Atomicity, 105
Atomicity criteria, 112
Attraction, 6, 9, 119
Attraction basin, 121
Attraction criteria, 125
Attraction-based system, 252

Backward invariant, 98
Banach’s fixpoint theorem, 43
Bernoulli shift, 93
Bi-infinite trace, 86
Bifurcation, 11, 251
Boolean derivative, 207
Boolean values, 89
Bottom element, 38
Bounded nondeterminism, 35, 36

CA, 187, 223
Cantor middle-thirds set, 32
Cantor relation, 115, 126, 127, 164, 168,
169, 203

Cantor set, 32, 152, 231
Cellular automaton, 8, 59, 159, 187, 223
CF, 224
Chaos, 9, 49, 106, 109, 180, 195, 197,
215, 239, 241

Chomsky’s hierarchy, 218
Church-Turing’s thesis, 219
Closed relation, 25
Closed set, 31
Closure, 31
Cluster point, 236
Compact space, 32
Complete lattice, 37, 175, 188
Complexity, 3, 130, 201
Component, 31
Composed dynamical system, 59
Computability, 238
Configuration, 186, 222
Connected product, 59, 62, 71, 155
Connected set, 31
Constant relation, 30
Constructive lattice fixpoint theorem,
38

Continuity, 233
Continuous function, 32
Contracting relation, 41
Contraction mapping theorem, 43, 51,
128, 178

Contractivity factor, 42
Control theory, 50, 119, 128, 129
Controllability, 128
Convergent sequence, 31
Countable infinity of periodic points,
110

Covering, 87
Cycle, 6

Decreasing function, 111, 125, 129
Decreasing sequence, 38
Decreasing transfinite sequence, 45
Definition order, 75
Dense set, 31
Density of periodic points, 106
Denumerable junctivity, 35
Deterministic dynamics, 26
Deterministic forward dynamics, 26

278 Index

Devaney chaos, 106
Diameter, 40
Difference, 57, 62, 70, 71
Discrete topology, 31
Dom, 29
Domain, 29
Domain restriction, 55, 62, 67, 71, 140
Domain-restricted covering, 87
Duality principle, 138
Dyadic map, 113
Dynamical complexity, 130

Effect domain, 226
Election, 7
Elementary cellular automaton, 187
Emergence, 250
Emergence of complexity, 160
Empty relation, 29
Energy-like function, 129
Entropy, 208
Euclidean distance, 40, 224
Evolution operator, 51
Exactness, 129
Excluded miracle, 29
Expanding relation, 41
External negation, 65, 143

Fair nondeterministic union, 78
Fair scheduling, 4
Fairness, 50, 78, 108, 129
Fault-tolerance, 8
Finite automaton, 218
Finite junctivity, 35
Finite relation, 30
Fixpoint, 29, 75
Fixpoint operator, 79
Floyd, 129
Folding action, 173
Forward invariant, 98
Fractal image compression, 248
Free product, 58, 62, 70, 71, 154
Full attraction, 123
Fullness, 104
Fullness criteria, 111
Functional equation, 75
Functional relation, 30

Garden of Eden, 5
Garden of Structural Similarities, 253
General model, 224
General relational model, 236
Generalized alternating subshift, 190
Generalized mean-field theory, 208
Generalized shift-invariance, 234

Global invariant, 100
Global transition function, 187
Greatest lower bound, 38
Greatest potential backward invariant,
98

Greatest potential forward invariant, 98
Greatest potential global invariant, 100
Greatest potential strong invariant, 100

Hamming distance, 188
Hausdorff metric, 40
Hausdorff space, 31
Heterogeneous relation, 28
Higher-order controlling system, 251
Higher-order dynamics, 251
Hilbert, 50
Homeomorphism, 32, 92
Homogeneous relation, 28
Homomorphic verification, 90
Homomorphism, 22, 65, 88, 89, 91, 135,
253

Hybrid system, 52, 54, 92
Hyperbolic system, 167

Identity relation, 29
Inclusion order, 75
Increasing sequence, 38
Increasing transfinite sequence, 45
Independence condition, 236
Indiscrete topology, 31
Injective relation, 30
Instruction, 173
Internal state, 222
Intersection, 56, 62, 68, 71, 146
Invariance, 89, 96
Invariant, 6, 9, 98
Inverse constant relation, 30
Inverse covering, 87
Inverse finite relation, 30
Inversion, 55, 62, 67, 71, 138
Isolated point, 31
Iterated dynamical system, 2
Iterated relation, 3

Junctivity, 35

Kind, 43
Knaster-Tarski’s theorem, 37
Knudsen chaos, 107

Label space, 84
Landscape, 173
Lattice, 38, 45, 51, 75, 98, 128, 137,
186, 198

Index 279

Lattice-theoretical fixpoint theorem, 38
Learning, 251
Least necessary backward invariant, 98
Least necessary forward invariant, 98
Least necessary global invariant, 100
Least necessary strong invariant, 100
Least upper bound, 38
Limit ordinal, 45
Limit set, 47
Lipschitz condition, 234
Liveness, 129
Local distance of action, 225
Local transition function, 226
Logistic map, 10, 23, 27, 60, 117, 164,
169, 224

Lyapunov, 111, 125, 129

Majority vote, 7
Markov partition, 93
Monotonicity, 33–35
Mutual exclusion, 4

Necessary invariance, 97
Necessary invariant, 96, 98
Necessary reachability, 121
Negation, 56, 62, 67, 71, 143
Neighborhood, 31, 186, 225
Neural network, 130, 159, 227
Neutral relation, 41
Nondeterminism, 24, 35, 50, 57, 78, 93,
99, 164, 235

Nondeterministic choice, 4
Nondeterministic dynamics, 25
Nondeterministic forward dynamics, 25
Nondeterministic union, 78

Observation function, 84
Observed trace, 84
Observed transition, 84
One-step iteration of composed
relations, 62

Open set, 31
Or-continuity, 35
Order relation, 38
Ordinal number, 45

Paperfolding, 172
Paperfolding sequence, 173
Parallelism semantics, 68
Perfect set, 31
Periodic point, 29
Peterson, 4
Population dynamics, 9
Positive junctivity, 35

Potential invariance, 97
Potential invariant, 97, 98
Potential reachability, 121
Power set, 22
Predicate-transformer, 35, 36, 49, 79
Probabilistic CA, 207
Probabilistic union, 78
Probability, 49, 50, 78, 215, 250
Profile, 173
Projection, 30
Pushdown automaton, 218

Quantum automaton, 92
Quiescent state, 187

r-Continuity, 236
r-Generalized shift-invariance, 236
r-Lipschitz property, 236
r-Shift-vanishing effect, 236
Range, 29
Range restriction, 55, 62, 67, 71, 141
Range-restricted covering, 87
RDS, 24
RDS-preserving composition, 60
Reachability, 89, 129
Relational discrete-time dynamical
system, 24

Representation of histories, 85
Repulsion, 140
Rewriting system, 159
Rg, 29
Ridge, 173
Rule table, 187

Safety, 128
Self-organization, 250
Self-stabilization, 250
Semantics of programs, 49, 51, 159
Semi meta-and-continuity, 66
Semi-inversion, 39
Sensitivity to initial conditions, 13, 106,
109, 163, 180, 208, 241

Sequence, 21
Sequential composition, 56, 62, 68, 71,
144

Set-transformer, 22, 26
Shift dynamical system, 92
Shift-invariance, 233
Shift-vanishing effect, 235
Shifted Hamming distance, 189, 199
Simple attraction, 122
Simple relation, 30
Simulation, 227, 241
Smale horseshoe map, 163, 164

280 Index

Social pressure, 7
Stationary sequence, 46
Strict attraction, 122
Strong invariant, 100
Subshift, 92
Successor ordinal, 45
Surjective relation, 30
Symbolic dynamics, 13, 87, 92, 107, 172

Tarski’s theorem, 37
Teaching, 251
TM, 222
Top element, 38
Topological conjugacy, 92
Topological transitivity, 13, 106, 108,
180

Topology, 31
Total relation, 30
Totally disconnected set, 31
Trace, 84
Trace chaos, 109
Trace language, 84
Trace Semantics, 50
Trace-parametrized invariant, 103
Trace-parametrized point-level
dynamics, 86

Trace-parametrized set-transformer, 85
Trajectory, 23, 25
Transfinite attraction, 188
Transfinite iteration scheme, 47
Transfinite lattice fixpoint theorem, 46
Transfinite nondeterministic forward
dynamics, 48

Transient, 6, 9
Transition function, 222
Transition table, 187
Transition-parametrized set-
transformer, 85

Turing computable coding, 228
Turing machine, 218, 219, 222, 228
Turing machine with moving head, 223
Turing machine with moving tape, 223
Tychonoff lemma, 32

Union, 57, 62, 69, 71, 147
Universal disjunctivity, 35
Universal junctivity, 35
Universal meta-disjunctivity, 66
Universal relation, 29

Valley, 173
Variant relation, 42
Verification, 89
Von Neumann, 183

Weak attraction, 121
Weak generator, 129
Weight, 208
White symbol, 222
Word, 21
Wp, 36, 49

	front-matter
	Lecture Notes in Computer Science
	AbstractCompositional Analysisof Iterated Relations
	Foreword by Michel Sintzoff
	Preface
	Table of Contents

	fulltext
	1. Prologue: Aims, Themes, and Motivations
	1.1 Complex Relational Dynamical Systems
	1.1.1 The Context: A First Contact with Dynamical Systems
	1.1.2 Mutual Exclusion
	1.1.3 Social Pressure
	1.1.4 On the Chaotic Demography of Rabbits

	1.2T ools and Motivations
	1.3 Overview of the Monograph

	fulltext_2
	2. Dynamics of Relations
	2.1 Functional Discrete-Time Dynamical Systems
	2.2 Relational Dynamical Systems
	2.2.1 Point-Level Nondeterministic Dynamics
	2.2.2 Set-Level Deterministic Dynamics
	2.2.3 Comparison

	2.3 Preliminary Definitions and Properties
	2.3.1 Basic Definitions About Relations
	2.3.2 Notions from Topology
	2.3.3 Monotonicity and General Junctivity Properties
	2.3.4 Fixpoint Theorems
	2.3.5Elemen tary Properties
	2.3.6 Metric Properties

	2.4 Transfinite Iterations
	2.4.1 Motivation
	2.4.2 Transfinite Fixpoint Theorem
	2.4.3 Transfinite Limits of Iterations

	2.5 Discussion
	2.5.1 Relations vs Functions
	2.5.2 Set-Level Dynamics and Predicate-Transformers
	2.5.3 Point-Level Dynamics and Trace Semantics
	2.5.4 Nondeterminism and Probabilistic Choices
	2.5.5 Transfinite Iterations
	2.5.6 Time Structure

	fulltext_3
	3. Dynamics of Composed Relations
	3.1 Structural Composition
	3.2 Composition of Relations
	3.2.1 Unary Operators
	3.2.2 N-Ary Operators
	3.2.3 Composed Dynamical Systems

	3.3 Dynamics of Composed Relations
	3.3.1 One-Step Set-Level Evolution of Composed Relations
	3.3.2 Point-Level Dynamics of Composed Systems

	3.4 Algebraic Properties of Composition Operators
	3.4.1 Composition of Unary Operators
	3.4.2 Composition of Unary and N-Ary Operators
	3.4.3 Composition of N-Ary Operators
	3.4.4 Fixpoint Theory for the Composition

	3.5 Discussion
	3.5.1 Composition Operators
	3.5.2 Nondeterminism and Probabilities Revisited
	3.5.3 Fixpoint Operator and Composition

	fulltext_4
	4. Abstract Observation of Dynamics
	4.1 Observation of Systems
	4.2 Trace-Based Dynamics
	4.3 Symbolic Observation
	4.4 Abstraction of Systems
	4.5 Qualitative Abstract Verification
	4.6 Observation as Abstraction
	4.7 Discussion
	4.7.1 Observation and Abstraction: Related Work
	4.7.2 Symbolic Dynamics vs Astract Observation
	4.7.3 Qualitative Abstract Verification

	fulltext_5
	5. Invariance, Attraction, Complexity
	5.1 Invariance
	5.1.1 Forward and Backward Invariance
	5.1.2 Global Invariance
	5.1.3 Strong Invariance

	5.2 Structure of Invariants
	5.2.1 Trace-Parametrized Invariants
	5.2.2 Fullness and Atomicity
	5.2.3 Chaos
	5.2.4 Fullness Implies Trace Chaos
	5.2.5 Fullness and Atomicity Imply Knudsen Chaos
	5.2.6 Devaney vs Trace vs Knudsen Chaos

	5.3 Fullness and Atomicity Criteria
	5.3.1 Criteria
	5.3.2 Case Studies: Dyadic Map, Cantor Relation, Logistic Map

	5.4 Attraction
	5.4.1 Intuition: From Reachability to Attraction
	5.4.2 From Weak to Full Attraction
	5.4.3 A Taxonomy of Attraction

	5.5 Attraction Criteria
	5.6 Attraction by Invariants
	5.7 Discussion
	5.7.1 Invariance and Attraction: Related Notions
	5.7.2 Energy-Like Functions
	5.7.3 DynamicalC omplexity

	fulltext_6
	6. Compositional Analysis of DynamicalProperties
	6.1 Aims and Informal Results
	6.2 Inversion
	6.3 Restrictions
	6.3.1 Domain Restriction
	6.3.2 Range Restriction

	6.4 Negation
	6.5Sequen tial Composition
	6.6 Intersection
	6.7 Union
	6.8 Products
	6.8.1 Free Product
	6.8.2 Connected Product

	6.9 Combining Union with Free Product
	6.10 Discussion
	6.10.1 Compositionality: Summary
	6.10.2 Limitations and Open Problems
	6.10.3 Related Work

	fulltext_7
	7. Case Studies: Compositional Analysis ofDynamics
	7.1 A Collection of Complex Behaviors
	7.2 Smale Horseshoe Map
	7.3Can tor Relation
	7.4 From Cantor Relation to Truncated Logistic Map
	7.5 Paperfoldings
	7.5.1 Introduction
	7.5.2 Paperfolding Sequences
	7.5.3 Dynamical Complexity of Paperfoldings
	7.5.4 Partial Conclusions

	7.6 Discussion: Compositional Dynamical Complexity

	fulltext_8
	8. Experimental Compositional Analysis ofCellular Automata
	8.1 Aims and Motivations: Attraction-BasedClassification and Composition
	8.2 Preliminary Notions
	8.2.1 Cellular Automata
	8.2.2 Transfinite Attraction
	8.2.3 Shifted Hamming Distance

	8.3 Experimental Classification
	8.4 Formal Attraction-Based Classification
	8.4.1 Introduction
	8.4.2 Type-N Cellular Automata
	8.4.3 Type-F Cellular Automata
	8.4.4 Type-P Cellular Automata
	8.4.5 Type-S Cellular Automata
	8.4.6 Type-A Cellular Automata
	8.4.7 Discussion

	8.5 Structural Organizations of CA Classes
	8.5.1 Motivation: Simulation vs Theoretical Results
	8.5.2 Linear Periodicity Hierarchy
	8.5.3 Periodicity Clustering
	8.5.4 Organization w.r.t. Shifted Hamming Distance
	8.5.5 Dynamical Complexity in CA

	8.6 Conjectures in CA Composition
	8.7 Complexity by Composition of Shifts
	8.7.1 Rules 2 and 16
	8.7.2 Cantor Relation
	8.7.3 Comparison
	8.7.4 A More Precise Conjecture

	8.8 Qualitative Analysis and Complexity Measures
	8.9 Compositional Analysis of Complex CA
	8.9.1 Local Disjunction, Local Union, and Global Union
	8.9.2 Comparison and Summary of Results

	8.10 Discussion
	8.10.1 Summary and Partial Conclusion
	8.10.2 Open Questions
	8.10.3 Classification: State-of-the-Art
	8.10.4 Aperiodicity in Cellular Automata
	8.10.5 Related Work in Composition

	fulltext_9
	9. Compositional Analysis of ComputationalProperties
	9.1 Automata as Dynamical Systems
	9.2 Comparing Dynamical Systems
	9.2.1 Extrinsic Method
	9.2.2 Intrinsic Method
	9.2.3 Our Comparison

	9.3 From Locality to Globality
	9.3.1 Turing Machines
	9.3.2 Cellular Automata
	9.3.3 Continuous Functions
	9.3.4 General Model

	9.4 Comparison Through Simulation
	9.4.1 Simulation
	9.4.2 Choice of Coding
	9.4.3 From TM to CA
	9.4.4 From CA to CF
	9.4.5 Weak Hierarchy

	9.5 Topological and Metric Properties
	9.5.1 Continuity
	9.5.2 Shift-Invariance
	9.5.3 Lipschitz Property
	9.5.4 Shift-Vanishing Effect
	9.5.5 Nondeterminism
	9.5.6 Summary

	9.6 Computability of Initial Conditions
	9.7 Hierarchy of Systems
	9.8 Discussion
	9.8.1 Composition and Computation
	9.8.2 Further Work
	9.8.3 Related Work

	fulltext_10
	10. Epilogue: Conclusions and Directions forFuture Work
	10.1 Contributions and Related Work
	10.1.1 Mathematical Framework
	10.1.2 Compositional Analysis

	10.2 Directions for Future Research
	10.2.1 A Patchwork of Open Technical Issues
	10.2.2 Fractal Image Compression
	10.2.3 Distributed Dynamical Optimization
	10.2.4 Distributed Systems and Self-Stabilization
	10.2.5 Probabilistic Systems and Measures
	10.2.6 Higher-Order Systems, Control, and Learning
	10.2.7 Design of Attraction-Based Systems

	10.3 The Garden of Structural Similarities
	10.4 Coda: Compositional Complexity Revisited

	back-matter
	Bibliography
	Glossary of Symbols
	Index

