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Preface

Language theory, as originated from Chomsky’s seminal work in the fifties

last century and in parallel to Turing-inspired automata theory, was first

applied to natural language syntax within the context of the first unsuc-

cessful attempts to achieve reliable machine translation prototypes. After

this, the theory proved to be very valuable in the study of programming

languages and the theory of computing.

In the last 15–20 years, language and automata theory has experienced

quick theoretical developments as a consequence of the emergence of new

interdisciplinary domains and also as the result of demands for application

to a number of disciplines.

Language methods (i.e. formal language methods) have been applied to

a variety of fields, which can be roughly classified as:

• Computability and complexity,

• Natural language processing,

• Artificial intelligence, cognitive science, and programming,

• Bio-inspired computing and natural computing,

• Bioinformatics.

The connections of this broad interdisciplinary domain with other ar-

eas include: computational linguistics, knowledge engineering, theoretical

computer science, software science, molecular biology, etc.

This volume gives just a few examples of the sort of research involved

in this framework, with the intention to reflect the spirit of the whole book

series.

Carlos Mart́ın-Vide
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Chapter 1

Descriptional Complexity — An

Introductory Survey

Markus Holzer and Martin Kutrib

Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392 Giessen, Germany,

E-mail: {holzer,kutrib}@informatik.uni-giessen.de

The purpose of the paper is to give an introductory survey of the main

aspects and results regarding the relative succinctness of different repre-

sentations of languages, such as finite automata, regular expressions, push-

down automata and variants thereof, context-free grammars, and descrip-

tional systems from a more abstract perspective. Basic properties of these

descriptional systems and their size measures are addressed. The trade-

offs between different representations are either bounded by some recursive

function, or reveal the phenomenon that the gain in economy of description

can be arbitrary. In the latter case there is no recursive function serving

as upper bound. We discuss developments relevant to the descriptional

complexity of formal systems. The results presented are not proved but

we merely draw attention to the big picture and some of the main ideas

involved.

1.1 Introduction

In the field of theoretical computer science the term descriptional complex-

ity has a well known meaning as it stands. Since the beginning of computer

science descriptional complexity aspects of systems (automata, grammars,

rewriting systems, etc.) have been a subject of intensive research [111]—

since more than a decade the Workshop on “Descriptional Complexity of

Formal Systems” (DCFS), formerly known as the Workshop on “Descrip-

1
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tional Complexity of Automata, Grammar, and Related Structures,” has

contributed substantially to the development of this field of research. The

broad field of descriptional complexity of formal systems includes, but is

not limited to, various measures of complexity of automata, grammars, lan-

guages and of related descriptional systems, succinctness of descriptional

systems, trade-offs between complexity and mode of operation, etc., to

mention a few.

The time has come to give an introductory survey of the main aspects

and results regarding the relative succinctness of different representations

of languages by finite automata, pushdown automata and variants thereof,

context-free grammars, and descriptional systems from a more abstract per-

spective. Our tour mostly focuses on results that were found at the advent

of descriptional complexity, for example, [52, 53, 59, 60, 98, 109, 112]. To

this end, we have to unify the treatment of different research directions from

the past. See also [38] for a recent survey of some of these results. Our

write up obviously lacks completeness and it reflects our personal view of

what constitute the most interesting relations of the aforementioned devices

from a descriptional complexity point of view. In truth there is much more

to the subject in question, than one can summarize here. For instance,

the following current active research directions were not addressed in this

summary: we skipped almost all results from the descriptional complex-

ity of the operation problem which was revitalized in [137] after the dawn

in the late 1970’s. Moreover we will discuss anything on the subject of

magic numbers a research field initiated in [73], and on the related inves-

tigations of determinization of nondeterministic finite automata accepting

subregular languages done in [14] and others, and finally we left out the

interesting field of research on the transition complexity of nondetermin-

istic finite automata which has received a lot of attention during the last

years [26, 46, 69, 70, 97].

In the next section, basic notions are given, and the basic properties

of descriptional systems and their complexity measures are discussed and

presented in a unified manner. A natural and important measure of de-

scriptional complexity is the size of a representation of a language, that

is, the length of its description. Section 1.3 is devoted to several aspects

and results with respect to complexity measures that are recursively re-

lated to the sizes. A comprehensive overview of results is given concerning

the question: how succinctly can a regular or a context-free language be

represented by a descriptor of one descriptional system compared with the

representation by an equivalent descriptor of the other descriptional sys-
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tem? Section 1.4 generalizes this point of view. Roughly speaking some,

say, structural resource is fixed and its descriptional power is studied by

measuring other resources. So, the complexity measures are not necessar-

ily recursively related to the sizes of the descriptors. Here we stick with

context-free grammars and subclasses as descriptional systems. Finally,

Section 1.5 deals with the phenomenon of non-recursive trade-offs, that is,

the trade-offs between representations of languages in different descriptional

systems are not bounded by any recursive function. With other words, the

gain in economy of description can be arbitrary. It turned out that most

of the proofs appearing in the literature are basically relying on one of two

fundamental schemes. These proof schemes are presented in a unified man-

ner. Some important results are collected in a compilation of non-recursive

trade-offs.

1.2 Descriptional Systems and Complexity Measures

We denote the set of nonnegative integers by N, and the powerset of a

set S by 2S . In connection with formal languages, strings are called words.

Let Σ∗ denote the set of all words over a finite alphabet Σ. The empty

word is denoted by λ, and we set Σ+ = Σ∗
− {λ}. For the reversal of a

word w we write wR and for its length we write |w|. A formal language L

is a subset of Σ∗. In order to avoid technical overloading in writing, two

languages L and L′ are considered to be equal, if they differ at most by

the empty word, that is, L − {λ} = L′
− {λ}. Throughout the article two

automata or grammars are said to be equivalent if and only if they accept

or generate the same language. We use ⊆ for inclusions and ⊂ for strict

inclusions.

We first establish some notation for descriptional complexity. In or-

der to be general, we formalize the intuitive notion of a representation or

description of a family of languages. A descriptional system is a collec-

tion of encodings of items where each item represents or describes a formal

language. In the following, we call the items descriptors, and identify the

encodings of some language representation with the representation itself.

A formal definition is:

Definition 1.1. A descriptional system S is a set of finite descriptors,

such that each descriptor D ∈ S describes a formal language L(D), and

the underlying alphabet alph(D) over which D represents a language can

be read off from D. The family of languages represented (or described)
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by S is L (S) = {L(D) | D ∈ S }. For every language L, the set

S(L) = {D ∈ S | L(D) = L } is the set of its descriptors in S.

Example 1.2. Pushdown automata (PDA) can be encoded over some fixed

alphabet such that their input alphabets can be extracted from the encod-

ings. The set of these encodings is a descriptional system S, and L (S) is

the family of context-free languages (CFL). �

Now we turn to measure the descriptors. Basically, we are interested

in defining a complexity measure as general as possible to cover a wide

range of approaches, and in defining it as precise as necessary to allow a

unified framework for proofs. So, we consider a complexity measure for

a descriptional system S to be a total, recursive mapping c : S → N. The

properties total and recursive are straightforward.

Example 1.3. The family of context-free grammars is a descriptional sys-

tem. Examples for complexity measures are the number productions ap-

pearing in a grammar, or the number of nonterminals, or the total number

of symbols, that is, the length of the encoding. �

Common notions as the relative succinctness of descriptional systems

and our intuitive understanding of descriptional complexity suggest to con-

sider the size of descriptors. From the viewpoint that a descriptional sys-

tem is a collection of encoding strings, the length of the strings is a natural

measure for the size. We denote it by length. In fact, we will use it to

obtain a rough classification of different complexity measures. We distin-

guish between measures that (with respect to the underlying alphabets) are

recursively related with length and measures that are not.

Definition 1.4. Let S be a descriptional system with complexity mea-

sure c. If there is a total, recursive function g : N × N → N such that

length(D) ≤ g(c(D), |alph(D)|), for all D ∈ S, then c is said to be an

s-measure.

Example 1.5. Let us consider a widely accepted measure of complexity

for finite automata, that is, their number of states, which is denoted by

state. The formal definition of a finite automaton is given in the next

section. Is state an s-measure? What makes a difference between the

number of states (say, for deterministic finite automata (DFA)) and the

lengths of encoding strings? The answer is obvious, encoding strings are

over some fixed alphabet whereas the input alphabet of DFAs is not fixed
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a priori. The number of transitions depends on the input alphabet while

the number of states does not. But states and transitions both determine

the lengths of encoding strings. Nevertheless, when finite automata are

addressed then, actually, a fixed given input alphabet is assumed tacitly.

Since we regarded this aspect in the definition of s-measures, the answer

to the first question is yes, the number of states of finite automata is an

s-measure. To this end, given a deterministic finite automaton A, we may

choose g(state(A), alph(A)) = k ·state(A) ·alph(A), where state(A) ·alph(A)

is the number of transition rules, and k is a mapping that gives the length

of a rule dependent on the actual encoding alphabet, the number of states

and the number of input symbols.

Similarly, we can argue for other types of finite automata as nondeter-

ministic or alternating ones either with one-way or two-way head motion,

etc. If the number of transition rules depends on the number of states and

the number of input symbols (and, of course, on the type of the automaton

in question), and the length of the rules is bounded dependent on the type

of the automaton, then state is an s-measure. �

Whenever we consider the relative succinctness of two descriptional sys-

tems S1 and S2, we assume the intersection L (S1)∩L (S2) to be non-empty.

Definition 1.6. Let S1 be a descriptional system with complexity mea-

sure c1, and S2 be a descriptional system with complexity measure c2. A

total function f : N → N, is said to be an upper bound for the increase

in complexity when changing from a descriptor in S1 to an equivalent

descriptor in S2, if for all D1 ∈ S1 with L(D1) ∈ L (S2) there exists a

D2 ∈ S2(L(D1)) such that c2(D2) ≤ f(c1(D1)).

If there is no recursive function serving as upper bound, the trade-off

is said to be non-recursive. That is, whenever the trade-off from one de-

scriptional system to another is non-recursive, one can choose an arbitrarily

large recursive function f but the gain in economy of description eventually

exceeds f when changing from the former system to the latter.

Definition 1.7. Let S1 be a descriptional system with complexity mea-

sure c1, and S2 be a descriptional system with complexity measure c2. A

total function f : N → N, is said to be a lower bound for the increase in

complexity when changing from a descriptor in S1 to an equivalent descrip-

tor in S2, if for infinitely many D1 ∈ S1 with L(D1) ∈ L (S2) there exists

a minimal D2 ∈ S2(L(D1)) such that c2(D2) ≥ f(c1(D1)).
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1.3 Measuring Sizes

This section is devoted to several aspects of measuring descriptors with

s-measures. A main field of investigation deals with the question: how

succinctly can a language be represented by a descriptor of one descriptional

system compared with the representation by an equivalent descriptor of

the other descriptional system? An upper bound for the trade-off gives

the maximal gain in economy of description, and conversely, the maximal

blow-up (in terms of descriptional complexity) for simulations between the

descriptional systems. A maximal lower bound for the trade-off terms the

costs which are necessary in the worst cases.

1.3.1 Descriptional Systems for Regular Languages

Regular languages are represented by a large number of descriptional sys-

tems. So, it is natural to investigate the succinctness of their representations

with respect to s-measures in order to optimize the space requirements. In

this connection, many results have been obtained. On the other hand, the

descriptional complexity of regular languages still offers challenging open

problems. In the remainder of this subsection we collect and discuss some

of these results and open problems.

1.3.1.1 Finite Automata

Here we measure the costs of representations by several types of finite au-

tomata in terms of the number of states, which is an s-measure by Exam-

ple 1.5. Probably the most famous result of this nature is the simulation

of nondeterministic finite automata by DFAs. Since several results come

up with tight bounds in the exact number of states, it is advantageous to

recall briefly the definitions of finite automata on which the results rely.

Definition 1.8. A nondeterministic finite automaton (NFA) is a quintuple

A = (Q,Σ, δ, q0, F ), where Q is the finite set of states, Σ is the finite set

of input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting

states, and δ : Q× Σ → 2Q is the transition function.

A finite automaton is deterministic (DFA) if and only if |δ(q, a)| = 1, for

all states q ∈ Q and letters a ∈ Σ. In this case we simply write δ(q, a) = p

instead of δ(q, a) = {p} assuming that the transition function is a mapping

δ : Q× Σ → Q.
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The language accepted by the finite automaton A = (Q,Σ, δ, q0, F ) is

defined as L(A) = {w ∈ Σ∗
| δ(q0, w) ∩ F 6= ∅ }, where the transition

function δ is naturally extended to δ : Q× Σ∗
→ 2Q.

So, any DFA is complete, that is, the transition function is total, whereas

it may be a partial function for NFAs in the sense that the transition

function of nondeterministic machines may map to the empty set. Note

that, therefore, a rejecting sink state is counted for DFAs, whereas it is not

counted for NFAs. For further details we refer to [67].

It is well known that for any NFA one can always construct an equivalent

DFA [119]. This so-called powerset construction, where each state of the

DFA is associated with a subset of NFA states, turned out to be optimal,

in general. That is, the bound on the number of states necessary for the

construction is tight in the sense that for an arbitrary n there is always

some n-state NFA which cannot be simulated by any DFA with strictly less

than 2n states [98, 109, 112]. So, NFAs can offer exponential savings in

the number of states compared with DFAs.

Theorem 1.9 (NFA to DFA conversion). Let n ≥ 1 be an integer

and A be an n-state NFA. Then 2n states are sufficient and necessary

in the worst case for a DFA to accept L(A).

For the particular cases of finite or unary regular languages the situation

is significantly different. The conversion for finite languages over a binary

alphabet was solved in [103] with a tight bound in the exact number of

states. The general case of finite languages over a k-letter alphabet was

shown in [124] with an asymptotically tight bound.

Theorem 1.10 (Finite NFA to DFA conversion). Let n ≥ 1 be an in-

teger and A be an n-state NFA accepting a finite language over a binary

alphabet. Then 2 · 2
n
2 − 1 if n is even, and 3 · 2

n−1
2 − 1 if n is odd, states

are sufficient and necessary in the worst case for a DFA to accept L(A).

If A accepts a finite language over a k-letter alphabet, for k ≥ 3, then

Θ(k
n

1+log2 k ) states are sufficient and necessary in the worst case.

Thus, for finite languages over a two-letter alphabet the costs are

only Θ(2
n
2 ). The situation is similar when we turn to the second im-

portant special case, the unary languages. The general problem of eval-

uating the costs of unary automata simulations was raised in [128], and

has led to emphasize some relevant differences with the general case.

For state complexity issues of unary finite automata Landau’s function
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F (n) = max{ lcm(x1, . . . , xk) | x1, . . . , xk ≥ 1 and x1+· · ·+xk = n }, which

gives the maximal order of the cyclic subgroups of the symmetric group on n

elements, plays a crucial role. Here, lcm denotes the least common multi-

ple. Since F depends on the irregular distribution of the prime numbers, we

cannot expect to express F (n) explicitly by n. In [89, 90] the asymptotic

growth rate limn→∞(lnF (n)/
√

n · lnn) = 1 was determined, which for our

purposes implies the (sufficient) rough estimate F (n) ∈ eΘ(
√
n·lnn). The

following asymptotic tight bound on the unary NFA by DFA simulation

was presented in [22, 23]. Its proof is based on a normalform (Chrobak

normalform) for unary NFAs introduced in [22]. Each n-state unary NFA

can be replaced by an equivalent O(n2)-state NFA consisting of an initial

deterministic tail and some disjoint deterministic loops, where the automa-

ton makes only a single nondeterministic decision after passing through the

initial tail, which chooses one of the loops.

Theorem 1.11 (Unary NFA to DFA conversion). Let n ≥ 1 be

an integer and A be an n-state NFA accepting a unary language.

Then eΘ(
√
n·lnn) states are sufficient and necessary in the worst case for

a DFA to accept L(A).

For languages that are unary and finite in [103] it has been shown that

nondeterminism does not help at all. Finite unary DFAs are up to one

additional state as large as equivalent minimal NFAs. Moreover, it is well

known that nondeterminism cannot help for all languages.

Example 1.12. Any NFA accepting the language

Ln = {w ∈ {a, b}∗ | |w| = i · n, for i ≥ 0 },

for an integer n ≥ 1, has at least n states, and Ln is accepted by an n-state

DFA as well. �

On the one hand, we have seen that for certain languages unlimited non-

determinism cannot help. On the other hand, for unary languages accepted

by NFAs in Chrobak normalform, that is, by NFAs that make at most one

nondeterministic step in every computation, one can achieve a trade-off

which is strictly less than 2n but still exponential. This immediately brings

us to the question in which cases nondeterminism can help to represent a

regular language succinctly. A model with very weak nondeterminism are

deterministic finite automata with multiple entry states (NDFA) [33, 134].

Here the sole guess appears at the beginning of the computation, that is,

by choosing one out of k initial states. So, the nondeterminism is not only
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limited in its amount but also in the situation at which it may appear.

Converting an NDFA with k initial states into a DFA by the powerset con-

struction shows immediately that any reachable state contains at most k

states of the NDFA. This gives an upper bound for the conversion. In [66]

it has been shown that this upper bound is tight.

Theorem 1.13 (NDFA to DFA conversion). Let n, k ≥ 1 be inte-

gers satisfying k ≤ n, and A be an n-state NDFA with k entry states.

Then
∑k

i=1

(

n
i

)

states are sufficient and necessary in the worst case for a

DFA to accept L(A).

So, for k = 1 we obtain DFAs while for k = n we are concerned with

the special case that needs 2n − 1 states. Interestingly, NFAs can be expo-

nentially concise over NDFAs. The following lower bound has been derived

in [79].

Theorem 1.14 (NFA to NDFA conversion). Let n ≥ 1 be an integer

and A be an n-state NFA. Then Ω(2n) states are necessary in the worst

case for a NDFA to accept L(A).

The concept of limited nondeterminism in finite automata is more gen-

erally studied in [82]. There, a bound on the number of nondeterministic

steps allowed during a computation as well as on the maximal number of

choices for every nondeterministic step is imposed. While the maximal

number of choices is three, the bound on the number of steps is given by

a function that depends on the number of states. This implies that in

any computation the NFAs can make a finite number of nondeterministic

steps only. But the situations at which nondeterminism appears are not

restricted a priori. The order of magnitude of the functions considered is

strictly less than the logarithm, that is, for a bounding function f we have

f ∈ o(log). The upper bound for the costs of the conversion into a DFA

follows from the powerset construction. Due to the restrictions any reach-

able state contains at most 3f(n) states of the NFA. The next theorem

summarizes this observation and the lower bound shown in [82].

Theorem 1.15 (Limited NFA to DFA conversion). Let n ≥ 1 be an

integer, A be an n-state NFA, and f : N → N be function of order o(log).

Then
∑3f(n)

i=0

(

n
i

)

states are sufficient and
∑2f(

√

n)

i=0

(

O(
√
n)

i

)

is a lower bound

for the worst case state complexity for a deterministic finite automaton to

accept L(A).
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Note that the upper bound
∑3f(n)

i=0

(

n
i

)

is of order o(2n), if f(n) ∈

o(log n). The precise bound for the conversion is an open problem.

Next, we turn to finite automata whose descriptional capacity is stronger

than NFAs due to their additional resources. We start with alternating

finite automata which have been developed in [21], and recall their definition

from that paper. To this end, we identify the logical values false and

true with 0 and 1 and write {0, 1}Q for the set of finite functions from Q

into {0, 1}, and {0, 1}{0,1}
Q

for the set of Boolean formulas (functions)

mapping {0, 1}Q into {0, 1}.

Definition 1.16. An alternating finite automaton (AFA) is a quintu-

ple A = (Q,Σ, δ, q0, F ), where Q, Σ, q0, and F are as for NFAs, and

δ : Q× Σ → {0, 1}{0,1}
Q

is the transition function. The transition function

maps pairs of states and input symbols to Boolean formulas.

Before we define the language accepted by the AFA A we have to explain

how a word is accepted. As the input is read (from left to right), the

automaton “builds” a propositional formula, starting with the formula q0,

and on reading an input a, replaces every q ∈ Q in the current formula

by δ(q, a). The input is accepted if and only if the constructed formula on

reading the whole input evaluates to 1 on substituting 1 for q, if q ∈ F , and 0

otherwise. This substitution defines a mapping from Q into {0, 1} which

is called the characteristic vector fA of A. Then the language accepted by

the AFA A is defined as L(A) = {w ∈ Σ∗
| w is accepted by A }.

Example 1.17. [136] Let A = ({q0, q1, q2}, {a, b}, δ, q0, {q2}) be an AFA

with transition function defined through

δ(q0, a) = q1 ∧ q2,

δ(q1, a) = q2,

δ(q2, a) = q1 ∧ q2,

δ(q0, b) = 0,

δ(q1, b) = q1 ∧ q2,

δ(q2, b) = q1 ∨ q2.

On input aba the propositional formula evolves as follows. Starting

with q0 after reading the first input symbol a the formula is q1 ∧ q2. After

reading b we obtain (q1∧ q2)∧ (q1∨ q2), and after reading the last symbol a

the formula (q2 ∧ (q1 ∧ q2)) ∧ (q2 ∨ (q1 ∧ q2)).

After substituting the characteristic vector, that is, 0 for q0, q1, and 1

for q2 we have (1 ∧ (0 ∧ 1)) ∧ (1 ∨ (0 ∧ 1)) which evaluates to 1. Therefore,

the input aba is accepted. �
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It is worth mentioning that sometimes in the literature an equivalent

definition of AFAs appears, where the state set is partitioned into existential

and universal states.

At the same period as alternating finite automata were developed in [15]

the so-called Boolean automata were introduced. Note, that several authors

use the notation “alternating finite automata” but rely on the definition of

Boolean automata. Though it turned out that both types are almost iden-

tical, there are differences with respect to the initial configurations. While

for AFAs the computation starts with the fixed propositional formula q0, a

Boolean automaton starts with an arbitrary propositional formula. Clearly,

this does not increase their computational capacities. However, it might

make the following difference from a descriptional complexity point of view.

Lemma 1.18 (Boolean automata to AFA conversion). Let n ≥ 1 be

an integer and A be an n-state Boolean automaton. Then n+ 1 states are

sufficient for an AFA to accept L(A).

In the first step of the simulation, the additional state of the AFA is used

to derive the successors of the initial propositional formula of the Boolean

automaton from the fixed initial propositional formula q0 of the AFA. The

additional state is unreachable afterwards. It is an open problem whether

or not the additional state is really necessary, that is, whether the bound

of n + 1 is tight. See [30] for more details on alternating finite automata

having an initial state that is unreachable after the first step.

Next we consider the descriptional capacity of AFAs compared with

NFAs and DFAs. The tight bound of 22
n

states for the conversion of n-state

AFAs into DFAs has already been shown in the fundamental papers [21]

for AFAs and [15, 92] for Boolean automata.

Theorem 1.19 (AFA/Boolean automata to DFA conversion). Let

n ≥ 1 be an integer and A be an n-state AFA or Boolean automaton.

Then 22
n

states are sufficient and necessary in the worst case for a DFA

to accept L(A).

The original proofs of the upper bound rely on the fact that an AFA

or a Boolean automaton can enter only finitely many internal situations,

which are given by Boolean functions depending on n Boolean variables

associated with the n states. The number of 22
n

such functions determines

the upper bound.
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The proofs provide little insight in the descriptional capacity of AFAs

compared with NFAs. In [30] constructions are presented that show how

to convert an AFA into an equivalent nondeterministic finite automaton

with multiple entry states (NNFA). Let A = (Q,Σ, δ, q0, F ) be an n-state

AFA with Q = {q0, q1, . . . , qn−1} and characteristic vector fA. Then we

consider the NNFA A′ = ({0, 1}Q,Σ, δ′, Q0, {fA}), where the set of initial

states is Q0 = { u ∈ {0, 1}Q | u(q0) = 1 }, and the transition function is

defined by δ′(u, a) = { u′
| δ(u′, a) = u }, for all u, u′

∈ {0, 1}Q and a ∈ Σ.

So, the NNFA simulates the AFA by guessing the sequence of functions

of the form {0, 1}Q that appear during the evaluation of the propositional

formula computed by the AFA in reverse order. Since there are 2n such

functions we obtain the upper bound stated in Theorem 1.20. Moreover,

since the powerset construction works also fine for the determinization of

NNFAs, the presented construction also reveals the upper bound for the

AFA to DFA conversion already stated in Theorem 1.19. The construc-

tion for Boolean automata is derived from above by considering the initial

Boolean formula f0 of the Boolean automaton and to change the set of ini-

tial states of the NNFA accordingly. To this end, it suffices to define Q0 to

be { u ∈ {0, 1}Q | f0(u(q0), u(q1), . . . , u(qn−1)) = 1 }. From the construc-

tion we derive the upper bound of the next theorem.

Theorem 1.20 (AFA to NNFA conversion). Let n ≥ 1 be an inte-

ger and A be an n-state AFA or Boolean automaton. Then 2n states

are sufficient and necessary in the worst case for an NNFA to accept

L(A).

The matching lower bound of Theorem 1.19 is shown in [21] for AFAs

by witness languages in a long proof. Before we come back to this point for

Boolean automata, we turn to an interesting aspect of AFAs and Boolean

automata. One can observe that the construction of the simulating NNFA

is backward deterministic [21]. So, the reversal of a language accepted by

an n-state AFA or Boolean automaton is accepted by a not necessarily

complete 2n-state DFA which in turn can be simulated by a (2n + 1)-state

complete DFA. This result has significantly be strengthened in [92], where

it is shown that the reversal of every n-state DFA language is accepted

by a Boolean automaton with dlog2 ne states. With other words, with re-

striction to reversals of regular languages a Boolean automaton can always

save exponentially many states compared to a DFA. The next theorem

summarizes these results.
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Theorem 1.21 (Reversed AFA to DFA conversion). Let n ≥ 1 be

an integer and A be an n-state AFA or Boolean automaton. Then 2n + 1

states are sufficient and necessary in the worst case for a DFA to accept

the reversal of L(A). If the minimal DFA accepting the reversal of L(A)

does not have a rejecting sink state, then 2n states are sufficient. Moreover,

the reversal of every language accepted by an n-state DFA is accepted by a

Boolean automaton with dlog2 ne states.

The theorem leaves open whether the reversal of every n-state DFA

language is also accepted by some AFA with dlog2 ne states. However, we

know that dlog2 ne+ 1 states are sufficient for this purpose.

Now we are prepared to argue for the matching lower bound of Theo-

rem 1.19 for Boolean automata in a simple way. It is well known that for

any m ≥ 1 there is an m-state DFA A such that any DFA accepting the

reversal of L(A) has 2m states [92]. Setting m = 2n we obtain a 2n-state

DFA language L(A) whose reversal is accepted by a Boolean automaton

with n states by Theorem 1.21. On the other hand, the reversal of L(A)

takes at least 22
n

states to be accepted deterministically.

Next we argue that the upper bound of Theorem 1.20 cannot be im-

proved in general. To this end, let A be an n-state AFA or Boolean automa-

ton such that any equivalent DFA has 22
n

states. Let m be the minimal

number of states for an equivalent NNFA. Since the NNFA can be simu-

lated by a DFA with at most 2m states, we conclude 2m ≥ 22
n

, that is, the

NNFA has at least m ≥ 2n states.

So far, we have only considered nondeterministic finite automata with

multiple entry states. It is known that any such NNFA can be simulated

by an NFA having one more state. The additional state is used as new

sole initial state which is appropriately connected to the successors of the

old initial states. On the other hand, in general this state is needed. For

example, consider the language { an | n ≥ 0 } ∪ { bn | n ≥ 0 } which is

accepted by a 2-state NNFA but takes at least three states to be accepted

by an NFA. Nevertheless, it is an open problem whether there are languages

accepted by n-state AFAs or Boolean automata such that any equivalent

NFA has at least 2n + 1 states. In [30] it is conjectured that this bound

presented in the following theorem is tight.

Lemma 1.22 (AFA to NFA conversion). Let n ≥ 1 be an integer

and A be an n-state AFA or Boolean automaton. Then 2n + 1 states are

sufficient and 2n is a lower bound for the worst case state complexity for

an NFA to accept L(A).
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We now direct our attention to the question whether alternation can

always help to represent a regular language succinctly. We have seen already

that nondeterminism cannot help for all languages. So, how about the

worst case of the language representation by alternating finite automata?

The situation seems to be more sophisticated. Theorem 1.21 says that for

reversals of n-state DFA languages we can always achieve an exponential

saving of states. Interestingly, this potential gets lost when we consider the

n-state DFA languages itself (instead of their reversals). The next theorem

and its corollary are from [93].

Theorem 1.23. For every integer n ≥ 1 there exists a minimal DFA A

with n states such that any AFA or Boolean automaton accepting L(A) has

at least n states.

The DFAs An = ({q0, q1, . . . , qn−1}, {a, b}, δ, q1, F ) witness the theorem

for all integers n ≥ 2, where F = { qi | 0 ≤ i ≤ n− 1 and i even } and the

transition function given by

δ(qi, a) = q(i+1) mod n and δ(qi, b) =

{

qi for 0 ≤ i ≤ n− 3

qn−1 for i ∈ {n− 2, n− 1}.

Each DFA An has the property that any DFA A′
n accepting the reversal

of L(A) has at least 2n states. Moreover, An and A′
n both are minimal,

complete and do not have a rejecting sink state [92]. Assume that L(A) is

accepted by some AFA or Boolean automaton with m < n states. Then

the reversal of L(A) would be accepted by some DFA having at most 2m

states by Theorem 1.21. This is a contradiction since 2m < 2n.

Corollary 1.24. Let n ≥ 1 be an integer and A be an n-state DFA such

that any DFA accepting the reversal of L(A) has at least 2n states and no

rejecting sink state. Then any AFA or Boolean automaton accepting L(A)

has at least n states.

We have already seen that unary NFAs can be much more concise than

DFAs, but yet not as much as for the general case. So, we next continue to

draw that part of the picture with respect to alternating finite automata.

In general, the simulation of AFAs by DFAs may cost a double exponential

number of states. The unary case is cheaper. Since every unary language

coincides trivially with its reversal, the upper bound of the following the-

orem is immediately derived from Theorem 1.21. The lower bound can be

seen by considering the single word language Ln = {a2
n−1

}. For all n ≥ 1,
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the language Ln is accepted by some minimal (2n + 1)-state DFA and an

n-state AFA. So, we derive the next theorem.

Theorem 1.25 (Unary AFA to DFA conversion). Let n ≥ 1 be an

integer and A be an n-state AFA accepting a unary language. Then 2n +1

states are sufficient and necessary in the worst case for a DFA to ac-

cept L(A). If the minimal DFA does not have a rejecting sink state, then 2n

states are sufficient.

Interestingly, to some extend for unary languages it does not matter in

general, whether we simulate an AFA deterministically or nondeterminis-

tically. The tight bounds differ at most by one state. The upper bound

of this claim follows since any DFA is also an NFA and NFAs are not nec-

essarily complete. The lower bound is again witnessed by the single word

languages Ln, which require 2n states for any NFA accepting it.

Corollary 1.26 (Unary AFA to NFA simulation). Let n ≥ 1 be an

integer and A be an n-state AFA accepting a unary language. Then 2n

states are sufficient and necessary in the worst case for an NFA to ac-

cept L(A).

Theorem 1.23 revealed that alternation cannot help to reduce the num-

ber of states of DFAs or NFAs in all cases. The same is true for nondeter-

ministic simulations of DFAs in general and in the unary case. The latter

can be seen by the unary languages {an}∗, for n ≥ 1. However, for unary

languages alternation does help. By Theorem 1.25 we know already that

any AFA simulating an n-state DFA accepting a unary language has not

less than dlog2 ne−1 states. Once more the unary single word languages Ln

are witnesses that this saving can be achieved. This gives rise to the next

theorem.

Theorem 1.27 (Unary DFA to AFA conversion). Let n ≥ 1 be

an integer and A be an n-state DFA accepting a unary language.

Then dlog2 ne−1 states are necessary for an AFA to accept L(A). Moreover,

there exists a minimal DFA A with n states accepting a unary language such

that any minimal AFA accepting L(A) has exactly dlog2 ne − 1 states.

Finally, we derive the always possible savings for unary NFA by

AFA simulations as follows. Given some n-state NFA accepting a unary

language, by Theorem 1.11 we obtain an equivalent DFA that has at
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most eΘ(
√
n·lnn) = 2Θ(

√
n·lnn) states. Now Theorem 1.21 in combina-

tion with Lemma 1.18 says essentially that there is an equivalent AFA

with Θ(
√

n · lnn) states. In order to see that these savings are optimal in

general, consider a unary n-state NFA such that any equivalent DFA must

have eΘ(
√
n·lnn) states. Since the bound of Theorem 1.11 is tight such au-

tomata exist. Clearly, any equivalent AFA has at least Θ(
√

n · lnn) states.

Otherwise there would be an equivalent DFA with less than eΘ(
√
n·lnn)

states by Theorem 1.25.

Theorem 1.28 (Unary NFA to AFA conversion). Let n ≥ 1 be

an integer and A be an n-state NFA accepting a unary language.

Then Θ(
√

n · lnn) states are sufficient and necessary in the worst case for

an AFA to accept L(A).

The justification of the second part of the theorem gives rise to the

following corollary.

Corollary 1.29. Let n ≥ 1 be an integer and A be a unary n-state NFA

such that any equivalent DFA has at least eΘ(
√
n·lnn) states. Then any AFA

accepting L(A) has at least Θ(
√

n · lnn) states.

The final resource we investigate here with respect to its descriptional

capacity is two-way head motion. We denote deterministic and nondeter-

ministic finite automata that may move their head to the right as well as

to the left by 2DFA and 2NFA. We first sketch the development of results

for general regular languages. Then we turn to unary languages again.

Concerning the simulation of 2DFA by DFA an Θ(nn) asymptotically

tight bound was shown in [127]. Moreover, the proof implied that any n-

state 2NFA can be simulated by an NFA with at most n2n
2

states. The

well-known proof of the equivalence of two-way and one-way finite automata

via crossing sequences reveals a bound of O(22n logn) states [67]. Recently

in [77] it was noted that a straightforward elaboration on [127] shows that

the cost can be brought down to even n(n+1)n. However, this bound still

wastes exponentially many states, as [10] shows that 8n + 2 states suffice

by an argument based on length-preserving homomorphisms. Recently, the

problem was finally solved in [77] by establishing the tight bound of the

following theorem.

Theorem 1.30 (2NFA/2DFA to NFA conversion). Let n ≥ 1 be an

integer and A be an n-state 2NFA or an n-state 2DFA. Then
(

2n
n+1

)

states
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are sufficient and necessary in the worst case for an NFA to accept L(A).

Furthermore, the following tight bounds in the exact number of states

for the 2DFA and 2NFA conversion to not necessarily complete DFAs have

been shown in [78].

Theorem 1.31 (2NFA/2DFA to DFA conversion). Let n ≥ 1 be an

integer and A be an n-state 2DFA. Then n(nn
− (n− 1)n) states are suffi-

cient and necessary in the worst case for a DFA to accept L(A). Moreover,

if A is an n-state 2NFA, then
∑n−1

i=0

∑n−1
j=0

(

n
i

)(

n
j

)

(2i − 1)j states are suffi-

cient and necessary in the worst case.

The bounds reveal that two-way head motion is a very powerful resource

with respect to descriptional complexity. Interestingly, when simulating

two-way devices by NFAs, it does not matter whether the two-way device

is nondeterministic or not. From this point of view, two-way head motion

can compensate for nondeterminism.

Nevertheless, challenging problems are still open. The question of the

costs for trading two-way head motion for nondeterminism, that is, the

costs for simulating (two-way) NFA by 2DFAs is unanswered for decades.

It was raised by Sakoda and Sipser in [122]. They conjectured that

the upper bound is exponential. The best lower bound currently known

is Ω(n2/ logn). It was proved in [4], where also an interesting connec-

tion with the open problem whether L equals NL is given. In particular,

if L = NL, then for some polynomial p, all integers m, and all n-state

2NFAs A, there exists a p(mk)-state 2DFA accepting a subset of L(A) in-

cluding all words whose lengths do not exceed m. However, not only are

the exact bounds of that problem unknown, but we cannot even confirm

the conjecture that they are exponential.

The picture was complemented by the sophisticated studies on unary

languages. The problem of Sakoda and Sipser has partially been solved for

the unary case in [22] as follows.

Theorem 1.32 (Unary NFA to 2DFA conversion). Let n ≥ 1 be an

integer and A be an n-state 2DFA accepting a unary language. Then Θ(n2)

states are sufficient and necessary in the worst case for a 2DFA to ac-

cept L(A).

The result has been shown with the surprisingly simple witness lan-

guages Ln = { ak | k = n · i+(n− 1) · j, for i, j ≥ 1 }, for all integers n ≥ 1.
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An upper bound for the remaining case has been shown in [31].

Theorem 1.33 (Unary 2NFA to 2DFA conversion). Let n ≥ 1 be

an integer and A be an n-state 2NFA accepting a unary language.

Then O(ndlog2(n+1)+3e) states are sufficient for a 2DFA to accept L(A).

In [22, 23] the same costs as for simulating unary NFAs by DFAs are

derived for removing two-way head motion from deterministic automata.

Theorem 1.34 (Unary 2DFA to NFA/DFA conversion). Let n ≥ 1

be an integer and A be an n-state 2DFA accepting a unary language.

Then eΘ(
√
n·lnn) states are sufficient and necessary in the worst case for

an NFA or a DFA to accept L(A).

It turned out that, again, the same costs appear for removing two-way

head motion from nondeterministic automata [108].

Theorem 1.35 (Unary 2NFA to NFA/DFA conversion). Let n ≥ 1

be an integer and A be an n-state 2NFA accepting a unary language.

Then eΘ(
√
n·lnn) states are sufficient and necessary in the worst case for

an NFA or a DFA to accept L(A).

The result was shown for the conversion to DFAs. This gives an upper

bound also for the conversion to NFAs. The lower bound for the second

case follows from the tight bounds of Theorem 1.34.

So, nondeterministic as well as two-way automata are hard to simulate

for DFAs even if they accept unary languages. Since the bounds are the

same, it seems that two-way motion is equally powerful as nondeterminism,

but both together cannot increase the descriptional capacity. This observa-

tion is confirmed by the bounds for simulations by NFAs, where similarly

as in the general case it does not matter whether the two-way device is

nondeterministic or not. Nevertheless, from this point of view, two-way

head motion can compensate for nondeterminism. Since unary 2DFAs can

simulate NFAs increasing the number of states only polynomially, which is

not possible the other way around, two-way motion turned out to be more

powerful than nondeterminism.

Finally, we present the results concerning the relations (needless to say,

with respect to descriptional complexity) between AFAs and 2NFAs as well

as 2DFAs. These problems have been suggested to be investigated in [22].

The results are all derived in [108]. Starting with the 2NFA simulation

by AFAs we conclude that any unary n-state 2NFA can be converted in a
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DFA having at most eΘ(
√
n·lnn) states by Theorem 1.35. Next, the DFA is

converted into an AFA with at most Θ(
√

n · lnn) states by Theorem 1.27.

For the lower bound, we argue as follows. Given a unary NFA that causes

the maximal blow-up when converted to a DFA, we obtain an AFA from

the DFA having at least Θ(
√

n · lnn) states by Theorem 1.27. Moreover, for

the 2NFA simulation by AFAs we can apply the same upper bound. Since

in [22, 23] it has been shown that the witness languages for the fact that

there is a unary NFA that causes the maximal blow-up when converted to

a DFA are also accepted by n-state 2DFAs, the lower bound also applies

for the 2DFA conversion.

Theorem 1.36 (Unary 2FA to AFA conversion). Let n ≥ 1 be an in-

teger and A be an n-state 2NFA or an n-state 2DFA accepting a unary lan-

guage. Then Θ(
√

n · lnn) states are sufficient and necessary in the worst

case for an AFA to accept L(A).

For the converse simulations a result from [11] is used. It says that any

2NFA accepting a single word language Ln = {a2
n−1

} must have Ω(2n)

states, while it is accepted by some n-state AFA. On the other hand, in

the order of magnitude we can derive the matching upper bound from the

unary AFA to DFA conversion.

Theorem 1.37 (Unary AFA to 2FA conversion). Let n ≥ 1 be an in-

teger and A be an n-state AFA accepting a unary language. Then Θ(2n)

states are sufficient and necessary in the worst case for a 2NFA or 2DFA

to accept L(A).

In conclusion of this part of the section some approaches not dis-

cussed are worth mentioning. In [88] the state complexity of weak restart-

ing automata is considered. The determinization of several finite au-

tomata for subregular language families is investigated in [14]. Sev-

eral papers dealt with descriptional complexity questions of unambiguous

descriptors [39, 71, 94, 120, 125, 130]. In order to attack and to solve the

problem of Sakoda and Sipser for subclasses, sweeping automata are inves-

tigated in [3, 95, 110, 128]. Moreover, K-visit 2NFAs are studied in [84],

and [9, 75] considered the problem for positional simulations.
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1.3.1.2 Regular Expressions

One of the most basic theorems in formal language theory is that every

regular expression can be effectively converted into an equivalent finite au-

tomaton, and vice versa [85]. Regular expressions are defined as follows.

Definition 1.38. Let Σ be an alphabet. Then ∅, λ, and every letter a ∈ Σ

are regular expressions. If r and s are regular expressions, then (r + s),

(r · s), and (r∗) are also regular expressions. The language L(r) defined

by a regular expression r is defined as follows: L(∅) = ∅, L(λ) = {λ},

L(a) = {a}, L(r+s) = L(r)∪L(s), L(r ·s) = L(r)·L(s), and L(r∗) = L(r)∗.

For convenience, parentheses in regular expressions are sometimes omit-

ted and the concatenation is simply written as juxtaposition. The priority

of operators is specified in the usual fashion: Concatenation is performed

before union, and star before both product and union.

In the literature one finds a lot of different complexity measures for

regular expressions. The measure size is defined to be the total number of

symbols (including ∅, λ, alphabetic symbols from Σ, all operation symbols,

and parentheses) of a completely bracketed regular expression (for example,

used in [1], where it is called length). Another measure related to the reverse

polish notation of a regular expression is rpn, which gives the number of

nodes in the syntax tree of the expressions (parentheses are not counted).

This measure is equal to the length of a (parenthesis-free) expression in

postfix notation [1]. The alphabetic width a-width is the total number of

alphabetic symbols from Σ (counted with multiplicity) [105, 28].

In order to clarify our definitions we give a small example [29].

Example 1.39. Let r = ((0 + ((1 · 0)∗)) · (1 + λ)) be a regular expression.

Then size(r) = 20, rpn(r) = 10, because the expression in postfix notation

reads 010 ·∗ +1λ+ ·, and a-width(r) = 4. �

Further not so well known measures are the ordinary length o-length [29],

the width width [28], the length (dual to width) length [28], and the sum

sum [50]. To our knowledge all these measures, except for the first one,

never have been studied again since their introduction. See Table 1.1 for the

inductive definition of the measures. We have also included the definition

of the non s-measure star height height, which comes into play at the end

of this subsection.

Next we restrict ourself to the first three mentioned measures size, rpn,

and a-width. As usual, the size of a regular language L, that is size(L), is
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Table 1.1 Inductive definitions of the measures size, rpn, a-width, o-length, width,

length, sum, and height for regular expressions. ◦ refers to the measure to be defined.

Measure ∅ λ a ∈ Σ (r · s) (r)∗ (r + s)

size 1 1 1 ◦(r) + ◦(s) + 3 ◦(r) + 3 ◦(r) + ◦(s) + 3

rpn 1 1 1 ◦(r) + ◦(s) + 1 ◦(r) + 1 ◦(r) + ◦(s) + 1

a-width 0 0 1 ◦(r) + ◦(s) ◦(r) ◦(r) + ◦(s)
o-length 1 1 1 ◦(r) + ◦(s) + 2 ◦(r) + 3 ◦(r) + ◦(s) + 3

width 0 0 1 max{◦(r), ◦(s)} ◦(r) ◦(r) + ◦(s)
length 0 0 1 ◦(r) + ◦(s) ◦(r) max{◦(r), ◦(s)}

sum 1 1 1 ◦(r) + ◦(s) ◦(r)

{

1, if L(r) ⊆ Σ and L(s) ⊆ Σ

◦(r) + ◦(s), otherwise

height 0 0 0 max{◦(r) + ◦(s)} ◦(r) + 1 max{◦(r), ◦(s)}

defined to be the minimum size among all regular expressions denoting L.

The notions rpn(L), a-width(L), and height(L) are analogously defined. One

can easily show that the measures rpn and a-width are linearly related to

size, thus these are all s-measures. Relations between these measures have,

for example, been studied in [28, 29, 45, 50, 56, 72].

Theorem 1.40 (Relation on basic regular expression measures).

Let L be a regular language. Then

(1) size(L) ≤ 3 · rpn(L) and size(L) ≤ 8 · a-width(L)− 3,

(2) a-width(L) ≤ 1
2 · (size(L) + 1) and a-width(L) ≤ 1

2 · (rpn(L) + 1),

(3) rpn(L) ≤ 1
2 · (size(L) + 1) and rpn(L) ≤ 4 · a-width(L)− 1.

Because there are so many results on these measures, we further have

to narrow our focus on some important aspects. We discuss some (recent)

results on the conversion from regular expressions to finite automata and

vice versa in more detail. Moreover, for our presentation we concentrate

on the measure a-width for regular expressions.

Converting regular expressions to finite automata is well understood.

The following theorem is due to [37] and [91, 92]. The upper bounds are

obtained by effective constructions. For the regular expression to NFA

conversion the so called Glushkov or position automaton is constructed [37],

which has the property that the initial state has no incoming transitions.

Theorem 1.41 (Regular expression to FA conversion). Let n ≥ 1

be an integer and r be a regular expression with a-width(r) = n. Then

n + 1 states are sufficient and necessary in the worst case for an NFA to

accept L(r). In case of a DFA 2n + 1 states are sufficient.
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The tightness of the bound for NFAs can be seen by the unary witness

languages Ln = {an}, for integers n ≥ 1, for which any NFA needs at least

n + 1 states. In general, techniques to prove lower bounds on the number

of states for NFAs are presented in [8, 36, 47, 68]. More on the conversion

from regular expressions to finite automata can be found in [121, 136].

The papers [20, 45, 56, 72] also may serve as good references for recent

developments.

What concerns the other conversion direction? Probably the most pop-

ular algorithm for converting a finite automaton into an equivalent regular

expression is the state elimination technique, which is a variant of the al-

gorithm of McNaughton and Yamada [105]. All known algorithms covering

the general case of infinite languages are based on the classical ones, which

are compared in the survey [121]. The drawback is that all of these (struc-

turally similar) algorithms return expressions of size 2O(n) in the worst

case [29, 48], assuming an alphabet size at most polynomial in the num-

ber of states. Recently a family of languages over a binary alphabet was

exhibited for which this exponential blow up is inevitable [48].

Theorem 1.42 (FA to regular expression conversion). Let n ≥ 1 be

an integer and A be an n-state finite automaton with input alphabet size

at most polynomial in n. Then alphabetic width 2Θ(n) is sufficient and

necessary in the worst case for a regular expression to describe L(A).

Note that the conversion problem for finite automata accepting unary

languages becomes linear for DFAs and polynomial for NFAs [29]; in the

latter case the proof is based on the Chrobak normalform for NFAs accept-

ing unary languages. When changing the representation of a finite language

from a DFA or NFA to an equivalent regular expression, a tight bound of

order nΘ(logn) was shown in [50]. Unary finite languages accepted by finite

automata can easily be converted to regular expressions of linear alphabetic

width.

Before we close this section we want to comment on lower bound tech-

niques for regular expressions. In the literature one can find at least three

techniques. The first one is due to Ehrenfeucht and Zeiger, which however

requires, in its original version, a largely growing alphabet. Recently, a

variation of this method was used in [32] to get similar but weaker lower

bounds. A technique based on communication complexity that applies only

for finite languages is proposed in [50]. The most general technique, up to

now, was developed in [48], where the s-measure a-width is related to the
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non s-measure star height height of regular languages—for a definition of

star height we refer to Table 1.1.

Theorem 1.43 (Star height versus alphabetic width). Let L be a

regular language. Then height(L) ≤ 3 · log(a-width(L) + 1) + 1.

As mentioned above, the measure height is not an s-measure. This is

easily seen because every finite language has star height 0, but can be of

arbitrary size. Thus, the difference in the above theorem can be arbitrarily

large. Nevertheless, language families are known, where this bound is tight

up to a constant factor: define the languages Ln inductively by L1 = λ

and Ln = (0Ln−11)
∗, for all integers n ≥ 1. Then a-width(Ln) is clearly at

most 2n, but it is known from [104] that height(L2n) = n, for all integers

n ≥ 1. Thus, the previous theorem can be used for proving lower bounds

on a-width(L) by determining the star height of the language L.

The star height of regular languages has been intensively studied in

the literature for more than 40 years, see [63, 83] for a recent treatment.

Determining the star height can be in some cases reduced to the easier

task of determining the cycle rank of a certain digraph, a digraph connec-

tivity measure defined in [27] in the 1960s. Observe, that measuring the

connectivity of digraphs is a very active research area [6, 7, 74].

1.3.2 Pushdown Automata and Context-Free Grammars

In the previous section the relative succinctness of descriptional systems

representing the regular languages has been discussed. A more general

treatment deals with descriptional systems having a non-empty intersec-

tion. For example, one can consider languages that are deterministic and

linear context free in order to study the relative succinctness of determin-

istic pushdown automata and linear context-free grammars. A more par-

ticular approach is to represent regular languages by pushdown automata

or context-free grammars.

1.3.2.1 Pushdown Automata

Measuring the size of a pushdown automaton (PDA) by its number of

states, as is done for finite automata, is clearly ineligible. It is well known

that every pushdown automaton can effectively be converted into an equiv-

alent one having just one sole state [67]. But, in general, one has to pay

with an increase in the number of stack symbols, and determinism is not
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preserved. For deterministic pushdown automata accepting by empty push-

down, the expressive power is known to increase strictly with the number of

states [57]. A language is accepted by a one-state deterministic pushdown

automaton if and only if it is a simple language, that is, it is generated by a

context-free grammar of a very restricted form. So, measuring the size of a

(deterministic) pushdown automaton by its number of stack symbols is also

too crude. In fact, it is also possible to reduce the number of stack symbols

if one pays with an increase in the number of states. The precise relations

between states and stack symbols have been shown in [40] and [42].

Theorem 1.44. For every (real-time) PDA with n states and t stack sym-

bols and for every integer m in the range 1 ≤ m < n, there is an equivalent

(real-time) PDA with m states and tdn/me
2 + 1 stack symbols.

The conversion preserves real-time behavior but not determinism. How-

ever, the construction is more or less the best possible, in the sense that an

expansion in the stack alphabet to size tdn/me
2 is sometimes unavoidable

even if real-time behavior need not to be preserved, and also in the sense

that no general state-reduction procedure can preserve determinism.

Theorem 1.45. For every pair of positive integers n and t, there is a

deterministic real-time PDA with n states and t stack symbols such that

(1) every equivalent PDA with m states has at least tdn/me
2 stack symbols,

and

(2) every equivalent PDA having fewer than n states is not deterministic.

These results immediately raise the question of the converse transforma-

tions, that is, for transformations that reduce the number of stack symbols.

The question has been answered in [42]. In particular, determinism can be

preserved, but if it is allowed to introduce nondeterminism, states can be

saved.

Theorem 1.46.

(1) For every (deterministic) PDA with n states and t stack symbols and

for every integer r in the range 2 ≤ r < t, there is an equivalent

(deterministic) PDA with r stack symbols and O(n · t/r) states.

(2) For every PDA with n states and t stack symbols and for every integer r

in the range 2 ≤ r < t, there is an equivalent PDA with r stack symbols

and O(n
√

t/r) states.
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Both transformations do not preserve real-time behavior. However,

again, these transformations are essentially the best possible ones. There

are no transformations preserving determinism which always increase the

number of states by less than O(n · t/r), there are no transformations which

always increase the number of states by less than O(n
√

t/r), and there are

no constructions which always preserve real-time behavior at all.

Theorem 1.47. For every pair of positive integers n and t,

(1) there is a deterministic PDA with n states and t stack symbols such

that every equivalent deterministic PDA with r stack symbols has at

least n · t/r states,

(2) there is a PDA with n states and t stack symbols such that every equiv-

alent PDA with r stack symbols has at least n
√

t/r states, and

(3) there is a deterministic real-time PDA with n states and t stack symbols

such that every equivalent real-time PDA has at least t stack symbols.

So, besides the input alphabet, the number of states as well as the

number of stack symbols have to be considered to measure the size of a

pushdown automaton. But even their product is insufficient. For example,

for all integers n ≥ 1 the language Ln = (an)∗ can be accepted by a PDA

with two states and two stack symbols that, in one move, is able to push n

symbols on the stack. So, in addition, we have to take into account the

lengths of the right-hand sides of the transition rules which can get long

when a PDA pushes lots of symbols during single transitions.

Given a pushdown automaton A = (Q,Σ,Γ, δ, q0, Z0, F ) with state

set Q, input alphabet Σ, stack alphabet Γ and transition δ mapping

Q × (Σ ∪ {λ}) × Γ to finite subsets of Q × Γ∗, we consider size to be the

measure of complexity defined by |Q| · |Σ| · |Γ| · h, where h is the length

of the longest word pushed in a single transition. In order to see that size

is an s-measure for pushdown automata we observe that there are at most

|Q|·(|Σ|+1)·|Γ| different left-hand sides and at most |Q|·|Γ|h different right-

hand sides of transition rules. So, there are at most size(A)h+2 transition

rules, and we may choose g(size(A), alph(A)) = k · size(A)h+2, where k is a

mapping that gives the length of a rule dependent on the actual encoding

alphabet, the number of states, input symbols, and stack symbols.

In order to avoid technical encumbrance sometimes PDAs are consid-

ered that are allowed to push at most two symbols during every tran-

sition. In [57] these PDAs are called moderate. It is well known that

every (deterministic) PDA can effectively be converted into a moderate
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one. But how about the changes in size? For the conversion every tran-

sition rule of the form δ(p, a, t) 3 (q, u1u2 · · ·um) with m > 2 is replaced

by the rules δ(p, a, t) 3 (p1, um−1um), δ(p1, λ, um−1) 3 (p2, um−2um−1),

δ(p2, λ, um−2) 3 (p3, um−3um−2), . . . , δ(pm−2, λ, u2) 3 (q, u1u2), where

p1, p2, . . . , pm−2 are new states not appearing in any other rule. Therefore,

roughly m+4 symbols are replaced by 6(m−1) symbols. This implies that

every PDA A can be converted into a moderate one having size Θ(size(A)).

Next we turn to some fundamental results in connection with the rep-

resentation of regular languages by pushdown automata. In [129] the

decidability of regularity for deterministic pushdown automata has been

shown by a deep proof. This effective procedure revealed the following up-

per bound for the trade-off in descriptional complexity when deterministic

pushdown automata accepting regular languages are converted into DFAs.

Given a deterministic pushdown automaton with n > 1 states and t > 1

stack symbols that accepts a regular language. Then the number of states

which is sufficient for an equivalent DFA is bounded by an expression of the

order tn
nn

. Later this triple exponential upper bound has been improved

by one level of exponentiation in [132].

Theorem 1.48. Let A be a deterministic pushdown automaton with n

states, t stack symbols, and h is the length of the longest word pushed in

a single transition. If L(A) is regular then 22
O(n2 log n+log t+log h)

states are

sufficient for a DFA to accept L(A).

In the levels of exponentiation this bound is tight, since the following

double exponential lower bound has been obtained in [109]. It is open

whether the precise lower bound or the precise upper bound can be im-

proved in order to obtain matching bounds.

Theorem 1.49. Let n ≥ 1 be an integer. Then there is a language Ln

accepted by a deterministic pushdown automaton of size O(n3), and each

equivalent DFA has at least 22
n

states.

The theorem is witnessed by languages Ln that are subsets of

{0, 1, a1, a2, . . . , an}
∗
{0, 1}n. The subsets are specified by an accepting de-

terministic pushdown automaton which operates as follows:

(1) Push the input onto the stack until symbol a1 appears. If a1 does not

occur, reject the input.

(2) Set i = 2.
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(3) If the next input is 0, pop the stack until the first occurrence of ai.

Else if the next input is 1, pop the stack until the second occurrence

of ai. Else if any other input appears or the occurrences of ai are not

found, reject the input.

(4) Increment i by one.

(5) If i ≤ n, repeat step (3).

(6) If the digit on top of the stack is 1 and there are no more input symbols,

accept the input. Otherwise reject the input.

The natural next step is to consider the trade-offs when nondeterminis-

tic or finite-turn pushdown automata accepting regular languages are con-

verted into DFAs. But in [109] it has been shown that for any given recur-

sive function f and arbitrarily large integers n, there exists a nondetermin-

istic pushdown automaton of size n representing a regular language, such

that any equivalent DFA has at least f(n) states. This implies that there

does not exist a recursive function serving as upper bound for the trade-off.

We deal with this phenomenon in Section 1.5 in more detail. However, the

situation is different when unary languages are considered. It is well known

that every unary context-free language is regular [35]. From the viewpoint

of descriptional complexity, unary nondeterministic pushdown automata

have been investigated in [116] where PDAs having a strong normalform

are considered. In particular, the normalform PDAs are such that (1) at

the start of the computation the stack contains only the bottom-of-stack

symbol which is never pushed or popped, (2) the input is accepted if and

only if the automaton reaches an accepting state, the stack contains only

the bottom-of stack symbol, and all the input has been scanned, (3) if the

PDA moves the input head, then no operations are performed on the stack,

and (4) every push adds exactly one symbol on the stack. The complexity

measure used in [116] is the product of the number of states and the num-

ber of stack symbols. While this measure is reasonable for the normalform

PDAs, it distorts the results with respect to PDAs that are measured, for

example, by size. However, similarly as for moderate PDAs it is not hard to

convert a given PDA into a normalform PDA, whereby the number of stack

symbols is increased by at most one, and the number of states is increased

linearly in size of the given automaton. This implies that every PDA A can

be converted into a normalform one having size Θ(size(A)).

Theorem 1.50. For every normalform PDA with n states and t stack sym-

bols accepting a unary language there is an equivalent NFA with 22n
2t+1+1

states, and an equivalent DFA with 2n
4t2+2n2t+1 states. Therefore, for every
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arbitrary PDA of size s accepting a unary language there is an equivalent

NFA with 2O(s2) states, and an equivalent DFA with 2O(s4) states.

Similar investigations for deterministic pushdown automata have been

done in [115]. It is proved that each unary deterministic pushdown au-

tomaton of size s can be converted into a DFA with a number of states

exponential in s. Moreover, this bound is tight in the order of magnitude.

Theorem 1.51. For every normalform deterministic pushdown automaton

with n states and t stack symbols accepting a unary language there is an

equivalent DFA with 2n·t states. Therefore, for every arbitrary determinis-

tic PDA of size s accepting a unary language there is an equivalent DFA

with 2O(s) states.

Theorem 1.35 says that any unary n-state 2NFA can be simulated by

a DFA with eΘ(
√
n·lnn) states. This suggests the possibility of a smaller

gap between the descriptional complexities of unary deterministic push-

down automata and 2NFAs. However, even in this case the gap can be

exponential.

Theorem 1.52. Let s ≥ 1 be an integer. Then there is a unary language Ls

accepted by a deterministic pushdown automaton of size 8s + 4, and each

equivalent DFA has at least 2s states. Moreover, each equivalent 2NFA has

also at least 2s states.

The theorem is witnessed by the languages Ls = {a2
s

}
∗ containing

multiples of 2s in unary notation. By a result in [107] it can be shown

that every 2NFA accepting Ls must have at least 2s states. The studies

in [115] are complemented by answering the question whether or not for

each unary regular language there exists an exponential gap between the

sizes of deterministic pushdown automata and finite automata negatively.

Theorem 1.53. Let n ≥ 1 be an integer. Then there is a language Ln

accepted by a DFA as well as by a 2NFA with 2n states, and each equivalent

deterministic pushdown automaton is at least of size O(2n/n2).

Finite-turn pushdown automata accepting (letter-)bounded languages

are studied in [102], where a language is said to be bounded if it is a

subset of a∗1a
∗
2 · · · a

∗
m, for some alphabet Σ = {a1, a2, . . . , am}. It is known

that arbitrary finite-turn pushdown automata accept exactly the ultralinear

languages. While it will turn out in Theorem 1.92 that the increase in

size when converting arbitrary PDAs accepting ultralinear languages to
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finite-turn PDA cannot be bounded by any recursive function, for bounded

languages an exponential trade-off is obtained.

Theorem 1.54. Let Σ = {a1, a2, . . . , am} be an alphabet. For every PDA

of size s accepting a subset of a∗1a
∗
2 · · · a

∗
m there is an equivalent (m−1)-turn

pushdown automaton of size 2O(s2).

In addition, in [102] a conversion algorithm is presented and the opti-

mality of the construction is shown by proving tight lower bounds. Further-

more, the question of reducing the number of turns of a given finite-turn

PDA is studied. Again, a conversion algorithm is provided which shows

that in this case the trade-off is at most polynomial.

Theorem 1.55. Let n ≥ 1 be an integer. Then there is a bounded language

Ln ⊆ a∗1a
∗
2 · · · a

∗
m which is accepted by an (m−1)-turn pushdown automaton

of size 2O(n), but cannot be accepted by any PDA making strictly less than

m − 1 turns, and for each integer k ≥ m − 1, every k-turn pushdown

automaton accepting Ln is at least of size 2O(n), for sufficiently large n.

Theorem 1.56. For every normalform k-turn pushdown automaton of

size s accepting a bounded language L ⊆ a∗1a
∗
2 · · · a

∗
m there is an equivalent

normalform (m − 1)-turn pushdown automaton of size O(m6s4blog2 kc+8).

Therefore, for every arbitrary k-turn pushdown automaton of size s accept-

ing a bounded language L ⊆ a∗1a
∗
2 · · · a

∗
m there is an equivalent (m− 1)-turn

pushdown automaton of size O(s6 log k).

1.3.2.2 Context-Free Grammars

Next we turn to compare the relative succinctness of pushdown automata

and context-free grammars (CFG). Both descriptional systems are known

to capture the context-free languages and, therefore, it is natural to ask

whether a given context-free language can be more concisely described by

an automaton or a grammar.

Definition 1.57. A context-free grammar (CFG) is a quadruple

G = (N, T, P, S), where N is a finite set of nonterminals, T is a finite set of

terminal symbols, S ∈ N is the axiom, and P is a finite set of productions

of the form A → α, where A ∈ N and α ∈ (N ∪ T )∗.
A context-free grammar G is in Chomsky normalform (CNF grammar)

if every production in P is of the form A → BC or A → a, for A,B,C ∈ N

and a ∈ T .
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The language generated by a CFG G = (N, T, P, S) is defined as

L(G) = {w ∈ T ∗
| S ⇒

∗ w },

where ⇒
∗ denotes the reflexive, transitive closure of the derivation rela-

tion ⇒.

Several measures for CFGs have been proposed in the literature. A

detailed treatment can be found in Section 1.4. Here we are particularly

interested in s-measures that allow a comparison with PDAs. To this end,

for a given context-free grammarG let size(G) be the product of the number

of productions and the length of the longest right-hand side of a produc-

tion in P . Clearly, size is an s-measure for context-free grammars. On the

other hand, the number of nonterminals, that is, |N | is not an s-measure

for CFGs in general. Assume contrarily it is. Then there is a recursive

function g such that length(G) ≤ g(|N |, T ), for every CFG G. But for

the grammar G = ({S}, {a}, {S → ag(1,{a})+1
}, S) the value length(G) ex-

ceeds g(|N |, T ). However, the number of nonterminals is an s-measure for

context-free grammars in Chomsky normalform. In this case there are at

most |N | different left-hand sides of productions, and at most |N |
2 + |T |

right-hand sides. So, there are at most |N |
3+ |N | · |T | productions contain-

ing at most three nonterminal and terminal symbols, and we may choose

g(|N |, T ) = k · (|N |
3 + |N | · |T |), where k is a mapping that gives the

precise length of a production depending on the actual encoding alphabet,

the number of nonterminals and terminal symbols. Note, that in this case

the underlying descriptional system is a strict subfamily of the context-free

grammars, the grammars in Chomsky normalform.

First, we present some results concerning the conversion of finite au-

tomata into CNF grammars. By standard construction every n-state DFA

or NFA can be converted into a regular right-linear grammar with n non-

terminals. This, in turn, can be converted into a CNF grammar with n+ i

nonterminals, where i is the number of input symbols. The following lower

bound has been obtained in [25].

Theorem 1.58. Let n ≥ 1 be an integer. Then there is a language Ln

accepted by a DFA with 2n+n+1 states and by an NFA with 2n+n states,

and every CNF grammar generating Ln has at least Ω(2n/n) nonterminals.

Upper and lower bound can significantly be improved in the unary case.

Moreover, for DFAs they are tight in the order of magnitude [25].

Theorem 1.59. Let n ≥ 1 be an integer and A be an n-state DFA accepting

a unary language. Then Θ(n1/3) nonterminals are sufficient and necessary
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in the worst case for a CNF grammar to generate L(A). In case of an NFA

Θ(n2/3) nonterminals are sufficient for a CNF grammar to generate L(A).

Next, the conversion of pushdown automata into context-free grammars

is considered. The so-called triple construction is the standard method for

converting a PDA which accepts by empty stack into a CFG [67]. Given a

PDA with n states and t stack symbols it constructs a CFG with n2t + 1

nonterminals if n > 1, and n2t nonterminals otherwise. The result has

been complemented in [116], where it is shown by a modified triple con-

struction that the resulting context-free grammar can be converted in a

CNF grammar without introducing new nonterminals when the PDA is in

normalform.

Theorem 1.60. For every normalform PDA with n states and t stack

symbols there is an equivalent CNF grammar with n2t + 1 nonterminals.

Therefore, for every arbitrary PDA of size s there is an equivalent CNF

grammar with O(s2) nonterminals.

In the worst case, this number of nonterminals is necessary even if the

PDA is real time, deterministic, and accepts by empty stack [41].

Theorem 1.61. Let n, t ≥ 1 be integers. Then there is a language Ln,t

accepted by a deterministic real-time pushdown automaton by empty stack

that has n states, t stack symbols, and size O(nt), and each equivalent CFG

has at least n2t+1 nonterminals if n > 1, and n2t nonterminals otherwise.

It follows that there are context-free languages which can be recognized

by pushdown automata of size O(nt), but which cannot be generated by

context-free grammars of size smaller than O(n2t). Moreover, the stan-

dard construction for converting a pushdown automaton to an equivalent

context-free grammar is optimal with respect to the number of nontermi-

nals.

The situation is better for unary languages [115].

Theorem 1.62. For every unary normalform deterministic pushdown au-

tomaton of size s there is an equivalent CNF grammar at most of size O(s).

Theorems 1.58, 1.59, and 1.59 dealt with the simulation of finite au-

tomata by CNF grammars. Since for unary context-free languages there

are always equivalent DFAs and NFAs, the converse simulations are also

worth studying. The following results are proven in [116].
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Theorem 1.63. For every unary CNF grammar with n nonterminals there

is an equivalent NFA with 22n−1 + 1 states.

This upper bound is close to optimal.

Theorem 1.64. Let n ≥ 1 be an integer. Then there is a unary CNF

with n nonterminals such that every equivalent NFA has at least 2n−1 + 1

states.

By Theorem 1.63, given a unary CNF with n nonterminals there is an

equivalent NFA with 2O(n) states. This automaton can be transformed into

a DFA applying the powerset construction or the determinization procedure

for unary automata presented in [22]. In both cases, the number of states

of the resulting DFA is bounded by a function which grows at least double

exponential in n. In [116] it is proved that this cost can drastically be

reduced.

Theorem 1.65. For every unary CNF grammar with n nonterminals there

is an equivalent DFA with 2n
2

states.

Note, in the particular case n = 1 the upper bound given in Theo-

rem 1.65 does not hold. It is not difficult to show that the only non-empty

languages generated by unary CNF grammars with one variable are {a}

and { ak | k ≥ 1 }. The minimal DFAs accepting these languages have

three and two states, respectively. However, the upper bound stated in

Theorem 1.65 is tight.

Theorem 1.66. For infinitely many integers n ≥ 1, there is a unary CNF

with n nonterminals such that every equivalent DFA has at least 2O(n2)

states.

The relations between the subfamily of finite-turn pushdown automata

accepting (letter-)bounded languages and CNF grammars are studied

in [102].

Theorem 1.67. For every CNF grammar with n nonterminals generat-

ing a bounded language L ⊆ a∗1a
∗
2 · · · a

∗
m there is an equivalent normalform

(m− 1)-turn PDA with 2O(n) states and O(1) stack symbols.

For the situation where the given grammar is not necessarily in Chomsky

normalform the following result has been shown.
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Theorem 1.68. For every context-free grammar of size s generating a

bounded language L ⊆ a∗1a
∗
2 · · ·a

∗
m there is an equivalent normalform

(m− 1)-turn PDA with 2O(s) states and O(1) stack symbols.

The lower bound is given by the next theorem.

Theorem 1.69. Let n ≥ 1 be an integer. Then there is a unary lan-

guage Ln generated by a CNF grammar with n+ 1 nonterminals such that

for each integer k ≥ 1, every normalform k-turn pushdown automaton ac-

cepting Ln is at least of size 2O(n), for sufficiently large n.

So far, essentially (deterministic) pushdown automata and context-free

grammars (in Chomsky normalform) have been discussed. A sub-class of

CFGs that characterize the deterministic context-free languages are LR(k)

grammars, where k ≥ 1, can be seen as the length of the lookahead of a cor-

responding LR(k) parser. Already the class of LR(1) grammars character-

izes the deterministic context-free languages. The use of a longer lookahead

k does not increase their generative capacity. But from a descriptional com-

plexity point of view the question whether a longer lookahead can reduce

the size of a grammar has been answered in [96] affirmatively. The practi-

cal relevance of these results is immediate. A sequence of languages Ln is

presented such that there is a progressive trade-off in the size of the LR(k)

grammars as the length of the lookahead varies.

Theorem 1.70. Let n ≥ 2 and k ≥ 0 be integers satisfying k ≤ n− 9 logn.

Then there is a language Ln such that every LR(k) grammar generating Ln

is at least of size 2Θ(n−k).

1.4 Measuring Resources

The investigation of several aspects of measuring descriptors with

s-measures is responding to an interest to optimize the space requirements.

Basically, some resources which are recursively related to the length of the

description are measured, and the relative succinctness of different types of

descriptors is studied. But what makes the difference between two types

of descriptors? Roughly speaking, it is their different equipment with re-

sources. For example, the difference between a DFA and an NFA is made by

the resource nondeterminism, or the difference between an NFA and a PDA

is caused by the resource stack. So, in more general terms, we fix some,

say, structural resources and study their descriptional power by measuring
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other resources. This immediately raises the question which resources are

structural and which can be measured. Here, the only restriction we im-

pose is to have descriptional systems with recursive complexity measures.

Given a descriptor its complexity must be computable. So, even though

they are naturally motivated the s-measures are special cases, only. This

section is devoted to descriptional systems measured by measures which are

not recursively related to their length.

A context-free grammar G = (N, T, P, S) is right-linear or regular if

every production in P is of the form A → uB or A → u, for A,B ∈ N

and u ∈ T ∗. The states of a finite automaton correspond roughly to the

number of nonterminals of a regular grammar and vice versa. This leads

to the idea of considering the number of nonterminals as a measure for

arbitrary context-free grammars. In the forthcoming we stick with context-

free grammars and subclasses as descriptional systems, while the below

given definitions easily generalize to arbitrary phrase structure grammars.

For a context-free grammar G = (N, T, P, S), we define the following three

measures [52]:

var(G) = |N |,

prod(G) = |P |,

and

symb(G) =
∑

(A→α)∈P

(|A|+ |α|+ 1).

In order to clarify the definitions we present an example [52].

Example 1.71. Let n ≥ 1 be an integer. Consider the context-free gram-

mar G = ({S,A}, {a}, P, S) with the three productions S → An, A → a,

and A → aa. Then L(G) = { ai | n ≤ i ≤ 2n } and var(G) ≤ 2, prod(G) ≤ 3,

and symb(G) ≤ n+ 9. In fact, there exist an equivalent context-free gram-

mar G′ with var(G′) = 1 because language L(G) is finite and can be easily

generated by a CFG with one nonterminal only. �

As already mentioned previously, the measure var is not an s-measure.

The same holds true for the measure prod, while symb is obviously recur-

sively related to the size of the CFG. Observe, that it heavily depends on

the underlying descriptional system, if a measure becomes an s-measure.

For instance, the number of variables is not even an s-measure for regular

grammars in general, but it becomes an s-measure if the descriptional sys-

tem is chosen to be that of regular grammars in normalform, that is, every
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production is of the form A → aB or A → a. Further measures based on

other criteria induced by grammatical levels, derivation trees, derivation

steps, etc., are introduced and studied in [51, 52, 54, 55].

Before we summarize some results on the measures var and prod we

find it worth mentioning, that basic algorithmic problems for most of the

measures on context-free grammars and languages are undecidable. For

instance, to determine the complexity of a given language, to construct a

minimal equivalent grammar, to decide minimality of a given grammar,

and so on. For further readings on this topic we refer to [52, 51, 54, 19].

Now we turn to the first result on the number of variables for context-free

grammars [51].

Theorem 1.72 (var for CFL). Let n ≥ 1 be an integer. Then there ex-

ists a regular language Ln over a binary alphabet, such that var(G) ≥ n for

every context-free grammar generating Ln.

Thus, the var-measure for context-free grammars induces a dense and

strict hierarchy of increasing levels of difficulties. This property of inducing

a dense hierarchy is known in the literature as the connectedness property

with respect to an alphabet [52]. If we consider the classification of context-

free grammars in terms of the number of productions, we find a similar

statement as above [52]. For every alphabet T and all integers n ≥ 1 there

is a finite language Ln over T , such that var(G) ≥ n for every context-free

grammar generating Ln. Thus, the prod-measure is also connected, even for

unary alphabets. The witness language to show the result on the number

of productions is the finite language { a2i | 0 ≤ i ≤ n − 1 }. On the other

hand, if the alphabet is unary, the situation for var changes drastically [51].

Theorem 1.73 (var for unary CFL). Let L be a unary context-free

grammar. Then two nonterminals are sufficient and necessary in the worst

case for an equivalent context-free grammar.

Concerning the smallest level of the number of nonterminals, in [53]

it is mentioned that the language generated by G = ({S}, T, P, S), where

P = {S → α | α ∈ F } for some finite F ⊆ ({S} ∪ T )∗, is equal to the

iterated S-substitution of F , that is, L(G) = F ↑S

. Here for a letter a

and two languages L1 and L2, the a-substitution of L2 in L1, denoted by

L1 ↑
a L2, is defined by

L1 ↑
a L2 = { u1v1u2 . . . ukvkuk+1 | u1au2a . . . auk+1 ∈ L1,

a does not occur in u1u2 . . . uk+1, and v1, v2 . . . , vk ∈ L2 },
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and the iterated a-substitution of language L, denoted by L↑a

, is defined by

L↑a

= {w ∈ L ∪ (L ↑
a L) ∪ (L ↑

a L ↑
a L) ∪ · · · | word w

has no occurrence of letter a },

where any further bracketing is omitted since a-substitution is obviously

associative. The definition of iterated substitution expressions gives a nice

and convenient way to specify context-free languages in terms of expres-

sions. For the characterization of context-free languages by means of ex-

pressions we refer also to [106] and [135]. Although these approaches are

very similar there are subtle differences; see the former reference for the re-

lation between McWhirter’s expressions and Gruska’s substitution model.

The relation between auxiliary symbols in substitution expressions and the

number of nonterminals in context-free grammars is discussed in [53] in

more detail (cf. [44]).

Next, let us restrict our attention to regular grammars. Here the the

smallest level with respect to the number of nonterminals is more handy

to describe. One can easily show that if a regular language L is generated

by regular grammar with one nonterminal, then there exist two regular

sets R1 and R2 such that L = R∗
1R2. This result can further be generalized

to higher levels.

We continue with some results on the comparison between context-free

and regular grammars. The natural question arises, whether the former

have advantages compared with the latter according to the measures con-

sidered so far? This question was answered in [52], where the following

result was shown.

Theorem 1.74 (var and prod for CFL versus REG). There is a reg-

ular language L such that any regular grammar generating L has strictly

more nonterminals than a minimal equivalent context-free grammar. The

statement remains valid for the number of productions.

Observe, that the strict increase in complexity already happens for non-

self-embedding context-free grammars. Here a context-free grammar is

self-embedding if there is a nonterminal X such that there is a derivation

X ⇒
∗ αXβ, for both non-empty α and β. It is well known that non-self-

embedding context-free grammars generate regular languages only. A closer

look on the previous theorem reveals even more. In fact, an easy example

given in [52] shows that the difference between the number of nonterminals

in equivalent context-free and regular grammars can be arbitrarily large.
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For all integers n ≥ 1, consider the language Ln = (a∗bab∗)n. Two nonter-

minals are sufficient for a context-free grammar while each regular grammar

needs at least 2n nonterminals in order to generate Ln. Analogously one

can show that four productions are sufficient for a context-free grammar

while each regular grammar needs at least 2n productions. Further exam-

ples showing that the measures can yield essential different classifications,

when the underlying grammar is varied, can be found in [52]. In this way

so called bounded complexity measure results are obtained.

Another field of research that is related to bounded complexity mea-

sures is the study of the descriptional complexity of various types of

grammars that can be used to describe context-free languages. For ex-

ample, context-free grammars and their normalform restrictions such as

λ-free normal form, Chomsky normalform, Greibach normalform, posi-

tion restricted grammars, etc. Transformations of context-free grammars

into normalforms may change their complexity with respect to the mea-

sures under consideration. In a series of papers these questions were

addressed [19, 44, 52, 80, 81, 117, 118]. Some of the most interesting re-

sults are presented next. We start with some results based on restricted

context-free grammars. A context-free grammar is restricted if it is λ-free

and does not contain any unit productions.

Theorem 1.75 (Bounded complexity for restricted CFGs). Let

G be a context-free grammar. Then there is an equivalent restricted context-

free grammar G′ such that

(1) var(G′) ≤ var(G),

(2) prod(G′) ≤ 1
2 · prod2(G),

(3) symb(G′) ≤ 1
2 · symb2(G).

The latter two bounds cannot be improved by more than a constant.

If each two equivalent minimal descriptors from different descriptional

systems have the same complexity with respect to a measure, this measure

is called dense. So, the measure var is dense for context-free and restricted

context-free grammars. In the next theorem we will see that this is not

true in general, because the var is not dense for (restricted) context-free

and context-free grammars in Greibach normalform.

A context-free grammarG = (N, T, P, S) is in Greibach normalform [43]

if every production in P is of the form A → aα, for A ∈ N , a ∈ T , and

α ∈ N∗.
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Theorem 1.76 (Bounded complexity for CFGs in normalforms).

Let G be a restricted context-free grammar. Then

(1) there is an equivalent context-free grammar G′ in Chomsky normalform

such that symb(G′) ≤ 7 · symb(G),

(2) there is an equivalent context-free grammar G′ in Greibach normal-

form such that var(G′) ≤ 2 · var(G) and this bound is the best

possible, prod(G′) ∈ O(prod3(G)) ∩ Ω(prod2(G)), and symb(G′) ∈

O(symb3(G)) ∩ Ω(symb2(G)).

In the remainder, we turn our attention to the relation between context-

free grammars and other grammars from the Chomsky hierarchy such as

monotone grammars, that is, grammars with productions whose right-hand

side is not shorter than the left-hand side, or arbitrary phrase structure

grammars with respect to the measures under consideration. The next

theorem shows that the gap between the number of nonterminals for a

context-free grammar and a monotone grammar representation can be ar-

bitrarily large. Consider the languages Ln =
⋃n−1

i=1 b(aib)+, for all integers

n ≥ 3. By standard arguments one can show that every context-free gram-

mar generating Ln needs at least n nonterminals. On the other hand, the

monotone grammar Gn = ({S,A}, {a, b}, Pn, S) with

Pn = {S → baib, S → Aaib, Aaib → Aaibaib, A → b | 1 ≤ i ≤ n− 1 }

generates the Ln with two nonterminals only. This result can be slightly

strengthened as follows:

Theorem 1.77. Let n ≥ 1 be an integer. Then there exists a regular

language Ln such that every context-free grammar generating Ln has at

least n nonterminals, and there is an equivalent monotone grammar with 2

nonterminals.

A similar situation appears if we consider the measure prod. Note that

the witness language for the next theorem is a finite language. Further read-

ings on the measure prod for finite languages can be found in [16, 18, 17].

Theorem 1.78. Let n ≥ 1 be an integer. Then there exists a finite

language Ln such that every context-free grammar generating Ln has at

least n productions, and there is an equivalent monotone grammar with

5 nonterminals.
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The argument for this statement is not too complicated [114]. We have

already mentioned that every context-free grammar G generating the (fi-

nite) language Ln = { a2i | 0 ≤ i ≤ n− 1 } has at least n productions. Now

we consider the modified language

L′
n = { bn−i−1a2ibi+1

| 0 ≤ i ≤ n− 1 }.

We have Ln = h(L′
n) for the erasing homomorphism h : {a, b}∗ → {a}∗

defined by h(a) = a and h(b) = λ. Moreover, every context-free grammar

generating h(L(G)) clearly needs at most as many productions as G has.

So, since n ≤ prod(G) every context-free grammar G′ generating L′
n has at

least n productions. In order to conclude that n productions are enough we

construct the grammar G = ({S}, {a, b}, P, S) with the set of productions

P = {S → bn−i−1a2ibi+1
| 0 ≤ i ≤ n− 1 }.

Grammar G′ generates L′
n and has n productions. Finally, it is easy to see

that the monotone grammarG′ = ({S, T,A}, {a, b}, P ′, S) with productions

P ′ = {S → T n−1ab, T → A, T → b, Aa → aaA,Ab → bb}

also generates L′
n. Since P contains only five elements the statement fol-

lows.

1.5 Non-Recursive Trade-Offs

In order to motivate the main topic of this section we first deduce a property

of any descriptional system S when it is measured by an s-measure c. Let

D ∈ S be a descriptor. Since c is an s-measure there is a recursive function g

such that length(D) ≤ g(c(D), alph(D)). But this implies that with respect

to alph(D) there are only finitely many descriptors in S having the same

size as D. Otherwise, applying g to infinitely many descriptors would yield

to the same result. But for any coding alphabet there are only finitely

many descriptors whose length does not exceed g(c(D), alph(D)). So, we

know that for any size, S contains only finitely many descriptors over the

same alphabet.

Assume now there are two descriptional systems S1 and S2, and two

s-measures c1 for S1 and c2 for S2. Given a descriptor from S1 a natural

question is for the maximal blow-up in complexity when this descriptor

is converted into an equivalent one from S2. Clearly, if a general upper

bound for the trade-off is known, the blow-up is given by that function.
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Our question is somehow simpler. We are not interested in a general up-

per bound but in an upper bound that may use the given alphabet as

an additional parameter, say h(n,Σ). We can precisely determine h as

follows. For all n and alphabets Σ, let Dn,Σ denote the finite subset of

all descriptors from S1 over alphabet Σ whose complexity is n. For each

D1 ∈ Dn,Σ set m(D1) = min{ c2(D2) | D2 ∈ S2(L(D1)) }. Then h(n,Σ)

is set to max{m(D1) | D1 ∈ Dn,Σ }. So, we have a function at hand that

answers our question. Unfortunately, it may happen that this function is

not effectively computable. What does this mean? This means that the

size blow-up caused by such a conversion cannot be bounded above by

any recursive function. With other words, one can choose an arbitrarily

large recursive function but the gain in economy of description eventually

exceeds it. This qualitatively new phenomenon, nowadays known as non-

recursive trade-off, was first observed by Meyer and Fischer [109] between

context-free grammars and finite automata.

In the sequel we often use the following second property of measures.

Definition 1.79. Let S be a descriptional system with s-measure c. If for

any alphabet Σ, the set of descriptors in S describing languages over Σ is

recursively enumerable in order of increasing size, then c is said to be an

sn-measure.

In fact, the non-recursive trade-offs are independent of particular sn-

measures. Any two sn-measures c1 and c2 for some descriptional system S

are related by a function

h(n,Σ) = max{ c2(D) | D ∈ S with c1(D) = n and alph(D) = Σ }.

By the properties of sn-measures, h is recursive. So, a non-recursive trade-

off exceeds any difference caused by applying two sn-measures.

1.5.1 Proving Non-Recursive Trade-Offs

Before we present examples of non-recursive trade-offs, we turn to the ques-

tion of how to prove them. Roughly speaking, most of the proofs appearing

in the literature are basically relying on one of two different schemes. One

fundamental technique is due to Hartmanis [59]. In [60] a generalization

is developed that relates semi-decidability to trade-offs. Next we present a

slightly generalized and unified form of this technique [87].

Theorem 1.80. Let S1 and S2 be two descriptional systems for recursive

languages such that any descriptor D in S1 and S2 can effectively be con-
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verted into a Turing machine that decides L(D), and let c1 be a measure

for S1 and c2 be an sn-measure for S2. If there exists a descriptional sys-

tem S3 and a property P that is not semi-decidable for descriptors from S3,

such that, given an arbitrary D3 ∈ S3, (i) there exists an effective procedure

to construct a descriptor D1 in S1, and (ii) D1 has an equivalent descrip-

tor in S2 if and only if D3 does not have property P , then the trade-off

between S1 and S2 is non-recursive.

Let us give evidence that the theorem is true. Assume contrarily that the

trade-off is bounded by some recursive function f . Let D1 be a descriptor

in S1. IfD1 has an equivalent descriptorD2 in S2, then c2(D2) ≤ f(c1(D1)).

Since f and c1 are recursive, the value f(c1(D1)) can be computed. Next, we

can recursively enumerate the finite number of descriptors in S2, whose un-

derlying alphabet is alph(D1) and whose size is at most f(c1(D1)). All these

descriptors can effectively be converted into Turing machines that decide for

any input whether it belongs to the described languages. The same holds

for the descriptor D1. By comparing the enumerated descriptors with D1

on successive inputs over the alphabet alph(D1), we can detect whether

none of the descriptors is equivalent to D1. As a result, a Turing machine

is constructed that halts if and only if D1 has no equivalent descriptor

in S2. So, the set R = {D1 ∈ S1 | D1 has no equivalent descriptor in S2 }

is recursively enumerable. Now the theorem follows due to the following

contradiction. Given a descriptor D3 ∈ S3 we construct the descriptor D1

in S1, and semi-decide whether it belongs to the set R. If the answer is in

the affirmative, there is no equivalent descriptor in S2 and, thus, D3 has

property P .

Example 1.81. Let S1 be the family of linear context-free grammars,

and S2 be the set of deterministic finite automata. Clearly, both descrip-

tional systems meet the preconditions of Theorem 1.80. Since the regularity

of linear context-free grammars is not semi-decidable [13], we set S3 to be S1

and property P is to be a descriptor describing a non-regular language. So,

any linear context-free grammar D1 has an equivalent DFA if and only if

language L(D1) is regular, that is, if it does not have property P . We con-

clude that the trade-off between linear context-free grammars and DFAs is

non-recursive. �

Since we may apply Theorem 1.80 for any pairs of descriptional systems

whose first component represents the linear context-free and whose second

component represents the regular languages the following theorem is derived

from Example 1.81.
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Theorem 1.82. The trade-offs between linear context-free grammars and

deterministic finite automata, between one-turn pushdown automata and

nondeterministic finite automata, etc., are non-recursive.

On the one hand, the method presented can serve as a powerful tool.

Several known proofs are simplified. Some more or less new non-recursive

trade-offs follow immediately by known undecidability results. On the other

hand, to apply Theorem 1.80 the crucial hard part is to find suitable descrip-

tional systems S3 having the required properties. The example presented

before considered linear context-free languages for which regularity is not

semi-decidable. Another valuable descriptional system is the set of Turing

machines for which only trivial problems are decidable and a lot of prob-

lems are not semi-decidable. When Theorem 1.80 is applied, one has to be

a little bit careful about the negation of property P . For example, finite-

ness is not semi-decidable for Turing machines. Not finite means infinite,

which is also not semi-decidable for Turing machines. On the other hand,

emptiness is not semi-decidable, but its negation is, that is, whether the

Turing machine accepts at least one input.

In order to utilize non-semi-decidable properties of Turing machines

in [58] complex Turing machine computations have been encoded in small

grammars. These encodings and variants thereof are of tangible advantage

for our purposes. Basically, we consider valid computations of Turing ma-

chines. Roughly speaking, these are histories of accepting Turing machine

computations. It suffices to consider deterministic Turing machines with

one single tape and one single read-write head. Without loss of generality

and for technical reasons, we assume that the Turing machines can halt

only after an odd number of moves, accept by halting, make at least three

moves, and cannot print blanks. A valid computation is a string built from

a sequence of configurations passed through during an accepting computa-

tion.

Let Q be the state set of some Turing machine M , where q0 is the initial

state, T ∩ Q = ∅ is the tape alphabet containing the blank symbol, and

Σ ⊂ T is the input alphabet. Then a configuration of M can be written as

a word of the form T ∗QT ∗ such that t1t2 · · · tiqti+1 · · · tn is used to express

that M is in state q, scanning tape symbol ti+1, and t1, t2 to tn is the

support of the tape inscription. For the purpose of the following, valid

computations are now defined in three different forms:

(1) VALCA(M) is the set of strings of the form

$w1$w
R
2 $w3$w

R
4 $ · · · $w2n−1$w

R
2n$.
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(2) VALCC(M) is the set of strings of the form

$w1$w2$ · · · $w2n$.

(3) VALCR(M) is the set of strings of the form

$w1$w3$ · · ·$w2n−1#w
R
2n$ · · · $w

R
4 $w

R
2 $.

In all three cases, $, # /∈ T ∪ Q, wi ∈ T ∗QT ∗ are configurations of M , w1

is an initial configuration of the form q0Σ
∗, w2n is an halting, that is,

accepting configuration, and wi+1 is the successor configuration of wi.

The set of invalid computations INVALCi(M), for i ∈ {A,C,R}, is the

complement of VALCi(M) with respect to the alphabet {#, $} ∪ T ∪Q.

Later we exploit a result on the following decomposition of VALCA(M):

VALCA1(M) is the set of strings of the form $w1$w
R
2 $ · · · $w2n−1$w

R
2n$,

where w1 is an initial and w2n is an accepting configuration, and w2i+1 is

the successor configuration of w2i, for 1 ≤ i ≤ n − 1. VALCA2(M) is the

set of strings of the form $w1$w
R
2 $ · · · $w2n−1$w

R
2n$, where w1 is an initial

and w2n is an accepting configuration, and w2i is the successor configuration

of w2i−1, for 1 ≤ i ≤ n.

The next lemma summarizes some of the important properties of valid

computations.

Lemma 1.83. Let M be a Turing machine and i ∈ {A,C,R}.

(1) If L(M) is finite, then VALCi(M) is finite.

(2) If L(M) is finite, then INVALCi(M) is regular.

(3) If L(M) is infinite, then VALCi(M) is not context free.

(4) If L(M) is infinite, then INVALCi(M) is not regular.

(5) VALCR(M) can be represented by the intersection of two determinis-

tic linear context-free languages, such that both deterministic pushdown

automata and both linear context-free grammars can effectively be con-

structed from M .

(6) VALCA(M) can be represented by the intersection of two deterministic

context-free languages, such that both deterministic pushdown automata

can effectively be constructed from M .

(7) VALCA1(M) and VALCA2(M) are deterministic context-free lan-

guages, such that their deterministic pushdown automata can effectively

be constructed from M .

(8) INVALCi(M) is a linear context-free language, such that its grammar

can effectively be constructed from M .
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Assertions (1), (2), (4), (6), and (7) are immediate observations. As-

sertion (3) is shown by pumping lemma [58]. The two deterministic lin-

ear context-free languages for (5) are constructed in [2]. For INVALCA,

assertion (8) has been shown in [58]. Similarly, it can be proved for

INVALCR. For INVALCC observe that the complement of the language

{w$w | w ∈ {a, b}∗ } is linear context free [34, 123].

Before we discuss some more applications and results in detail, we turn

to the generalized and unified form of the second technique that emerges

from known proofs.

Theorem 1.84. Let S1 and S2 be two descriptional systems, c1 be a mea-

sure for S1 and c2 be an sn-measure for S2. If there exists a recursive

function ϕ : N → N, such that given an arbitrary Turing machine M ,

(i) there exists an effective procedure to construct a descriptor D1 in S1,

(ii) if M halts on blank tape, then D1 has an equivalent descriptor in S2,

and for all equivalent descriptors D2 in S2 it holds ϕ(c2(D2)) ≥ t, where t

is the number of tape cells used by M , then the trade-off between S1 and S2

is non-recursive.

Again, let us give evidence that the theorem is true. Assume contrarily

that the trade-off is bounded by some recursive function f . Given some Tur-

ing machine M , we first construct a descriptor D1 in S1. Since c1 and f are

recursive, the value f(c1(D1)) can be computed. Next, we can recursively

enumerate the finite number of descriptors D2 in S2, whose underlying al-

phabet is alph(D1) and whose size is at most f(c1(D1)). Since c2 and ϕ are

recursive, their maximum value t′ = ϕ(c2(D2)) can be computed. If Turing

machine M halts on blank tape, then there is at least one descriptor D2

in the list such that ϕ(c2(D2)) ≥ t, where t is the number of tape cells

used by M . Since t′ ≥ ϕ(c2(D2)) ≥ t it suffices to simulate M on blank

tape until it exceeds the tape cell bound t′, or it runs into a loop without

exceeding the tape cell bound, or it halts, in order to decide whether M

halts on blank tape at all. From the contradiction follows that the trade-off

is non-recursive.

The preconditions of the previous theorem are different compared with

Theorem 1.80. In particular, it is not requested that the descriptors can

effectively be converted into Turing machines, and the descriptional systems

need not to be for recursive languages.

The next trade-off exploits the following crucial lemma on the size of

deterministic pushdown automata [133].
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Lemma 1.85. If for some deterministic pushdown automaton A with state

set Q and set of stack symbols T the string w is the shortest string such

that wa and wb are accepted, then there is a positive constant k such that

|Q| · |T | ≥ (log |w|)k.

Example 1.86. The trade-off between unambiguous context-free gram-

mars and deterministic pushdown automata is non-recursive.

Let M be an arbitrary Turing machine with state set Q, tape alpha-

bet T , and initial state q0. From M two deterministic pushdown au-

tomata A1 and A2 for the languages VALCA1(M) and VALCA2(M) can ef-

fectively be constructed. Since the deterministic context-free languages are

effectively closed under intersection with regular sets, the languages L1 =

$q0$(T
∗QT ∗$)∗ ∩ VALCA1(M) and L2 = $q0$(T

∗QT ∗$)∗ ∩ VALCA2(M)

are also effective deterministic context-free languages. Let a and b be new

symbols. Then we can construct an unambiguous context-free grammar D1

for the language L = L1a ∪ L2b.

Now assume that M halts on empty input. Then the intersection L1∩L2

contains exactly one string v, which is the valid computation ofM on empty

input. Moreover, there does not exist a string of length 2|v| which is a prefix

in both languages. So, by inspecting the first 2|v| input symbols a determin-

istic pushdown automaton can decide to which language the input may still

possibly belong. We conclude that there exists a deterministic pushdown

automaton D2 for L. By Lemma 1.85 we obtain that the product of the

number of states and the number of stack symbols of any equivalent deter-

ministic pushdown automaton is greater than (log |v|)k, for some positive k.

Therefore, the recursive function ϕ for the application of Theorem 1.84 can

easily be determined. �

1.5.2 A Compilation of Non-Recursive Trade-Offs

Before we turn to collect some important results in a compilation of

non-recursive trade-offs, we draw the attention to a general question in

connection with descriptional complexity. We have seen that there is a

non-recursive trade-off between linear context-free languages and finite au-

tomata. On the other hand, the trade-off between deterministic context-free

languages and finite automata is recursive [129]. So, what makes the differ-

ence between linear and deterministic context-free languages? Though the

answer might be the power of nondeterminism, a closer look at the prob-

lem might clarify descriptional complexity to be a finer apparatus compared
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with computational complexity. This observation is emphasized by show-

ing that, for example, between two separated Turing machine space classes

there is always a non-recursive trade-off (see also [60]).

Example 1.87. Denote the languages accepted by deterministic Tur-

ing machines obeying a space bound s(n) by DSPACE(s(n)). If

DSPACE(s1(n)) ⊃ DSPACE(s2(n)) for a constructible bound s1, then the

trade-off between s1-space bounded Turing machines and s2-space bounded

Turing machines is non-recursive. �

The example can be shown with the help of Theorem 1.80. It can

be modified to work for several other Turing machine classes which are

separated by bounding some resource. For example, P 6= NP if and only

if the trade-off between NP and P is non-recursive (see [60–62] for further

relations between descriptional and computational complexity).

Now we turn to results that deal mainly with descriptional systems at

the lower end of the Chomsky hierarchy. A cornerstone of descriptional

complexity is the result of Meyer and Fischer [109] who showed for the first

time a non-recursive trade-off. It appears between context-free grammars

and finite automata. Nowadays, we can derive that result immediately

from the non-recursive trade-off between linear context-free grammars and

finite automata, but originally, the proof follows the scheme presented in

Theorem 1.84.

Theorem 1.88. The trade-off between context-free grammars and finite

automata is non-recursive.

Since, for example, the sizes of context-free grammars and pushdown

automata are recursively related, there is a non-recursive trade-off between

pushdown automata and finite automata, too. Similarly, this remark holds

for several results below. Once a non-recursive trade-off has been shown, it

is interesting to consider language families in between. We know already by

Example 1.86 that there is a non-recursive trade-off between unambiguous

context-free grammars and deterministic pushdown automata. Considering

the remaining gap between general and unambiguous context-free gram-

mars we encounter the problem that unambiguity is not semi-decidable

for context-free grammars. Therefore, we cannot enumerate the unam-

biguous context-free grammars. This implies that there does not exist any

sn-measure for them and, thus, neither Theorem 1.80 nor Theorem 1.84 can

be applied directly. However, by a variant of the technique of Theorem 1.84

the gap has been closed in [126]. The proof uses Ogden’s lemma [113] in
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order to solve the crucial part to show that the sizes of unambiguous gram-

mars depend on the lengths of strings in certain witness languages.

Theorem 1.89. The trade-off between context-free grammars and unam-

biguous context-free grammars is non-recursive.

By measuring the amount of ambiguity and nondeterminism in push-

down automata in [12] and [64] infinite hierarchies in between the determin-

istic and nondeterministic context-free languages are obtained. The classes

of pushdown automata with ambiguity and branching bounded by k are

denoted by PDA(α ≤ k) and PDA(β ≤ k), where branching is a measure

of nondeterminism. If both resources are bounded at the same time, we

write PDA(α ≤ k, β ≤ k′). Intuitively, the corresponding language families

are close together. Nevertheless, there are non-recursive trade-offs between

the levels of the hierarchies.

Theorem 1.90. Let k ≥ 1 be an integer. Then the following trade-offs are

non-recursive:

(1) between PDA(α ≤ k + 1, β ≤ k + 1) and PDA(α ≤ k), and

(2) between PDA(α ≤ 1, β ≤ k + 1) and PDA(β ≤ k).

The proofs of both theorems are similar generalizations of the proof of

Theorem 1.89. They follow the scheme of Theorem 1.84.

In [59, 60] simple new proofs of some of the presented theorems have

been given. The technique of these proofs follows the scheme of Theo-

rem 1.80. Furthermore, Hartmanis [59] raised the question whether the

trade-off between two descriptional systems is caused by the fact that in

one system it can be proved what is accepted, but that no such proofs are

possible in the other system. For example, consider descriptional systems

for the deterministic context-free languages. It is easy to verify whether a

given pushdown automaton is deterministic, but there is no uniform way to

verify that a nondeterministic pushdown automaton accepts a determinis-

tic context-free language. Sticking with this example, one may ask whether

the trade-off is affected if so-called verified nondeterministic pushdown au-

tomata are considered which come with an attached proof that they accept

deterministic languages. The following theorem summarizes the results.

Theorem 1.91. The following trade-offs are non-recursive:

(1) between verified and deterministic pushdown automata,

(2) between pushdown automata and verified pushdown automata, and
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(3) between verified ambiguous and unambiguous context-free grammars.

So far, some of the presented results can be shown by using some variant

of the valid computations. In fact, whenever the expressive capacities of two

systems can be separated by valid computations, the proof of non-recursive

trade-offs is more or less immediate by an application of Theorem 1.80.

For example, consider the Boolean closure of context-free languages and

the context-free languages. The two systems are separated by VALCA.

The same is true for context-sensitive and context-free grammars and many

other pairs of systems. The situation changes if the weaker system also con-

tains a descriptor for the valid computations. Consider Example 1.87 which

induces a non-recursive trade-off between space bounded Turing machine

classes and deterministic context-sensitive grammars (DSPACE(n)).

Coming back to the observation that space might be a rough measure of

complexity, it is interesting and natural to investigate infinite hierarchies of

separated language classes where, intuitively, the classes are closer together.

For example, LL(k+1) grammars are known to describe strictly more lan-

guages than LL(k) grammars, that is, the length of the lookahead induces

an infinite hierarchy. Nevertheless, the trade-offs between the levels of the

hierarchy are recursive [5]. On the other hand, we have seen that there

are non-recursive trade-offs between the hierarchy levels of unambiguous

and nondeterministic pushdown automata. In [101] the trade-offs between

(k + 1)-turn and k-turn pushdown automata are investigated. The results

are summarized as follows:

Theorem 1.92. Let k ≥ 1 be an integer. Then the following trade-offs are

non-recursive:

(1) between nondeterministic 1-turn pushdown automata and finite au-

tomata,

(2) between nondeterministic (k+1)-turn pushdown automata and nonde-

terministic k-turn pushdown automata,

(3) between nondeterministic pushdown automata and nondeterministic

finite-turn pushdown automata, and

(4) between nondeterministic k-turn and deterministic k-turn pushdown

automata.

So, there are infinite hierarchies such that between each two levels there

are non-recursive trade-offs. Other results of such flavor have been obtained

in [87] where deterministic and nondeterministic one-way k-head finite au-

tomata (k-DFA, k-NFA) are considered.
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Theorem 1.93. Let k ≥ 2 be an integer. The trade-off between k-DFA

and nondeterministic pushdown automata is non-recursive.

Theorem 1.94. Let k ≥ 1 be an integer. Then the following trade-offs are

non-recursive:

(1) between (k + 1)-DFA and k-DFA,

(2) between (k + 1)-NFA and k-NFA, and

(3) between (k + 1)-DFA and k-NFA.

Theorem 1.95. Let k ≥ 2 be an integer. Then the following trade-offs are

non-recursive:

(1) between 2-NFA and k-DFA, and

(2) between k-DFA and nondeterministic pushdown automata.

In [76] the problem whether there are non-recursive trade-offs between

the levels of the hierarchies defined by two-way k-head finite automata

(cf. also [86]) has been answered in the affirmative.

Theorem 1.96. Let k ≥ 1 be an integer. The trade-off between

(non)deterministic (unary) two-way (k + 1)-head finite automata and

(non)deterministic (unary) two-way k-head finite automata is non-

recursive.

Now we briefly consider non-classical descriptional systems. In [65] de-

terministic restarting automata, an automaton model inspired from lin-

guistics are investigated. Variants of deterministic and monotone restart-

ing automata build a strict hierarchy whose top is characterized by the

Church-Rosser languages and whose bottom is characterized by the deter-

ministic context-free languages. It is shown that between PDAs and any

level of the hierarchy there are non-recursive trade-offs. Interestingly, the

converse is also true for the Church-Rosser languages. Moreover, there are

non-recursive trade-offs between the family of Church-Rosser languages and

any other level of the hierarchy.

Theorem 1.97. The following trade-offs are non-recursive:

(1) between nondeterministic (one-turn) pushdown automata and Church-

Rosser languages (deterministic R(R)WW-automata),

(2) between Church-Rosser languages and nondeterministic pushdown au-

tomata,
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(3) between Church-Rosser languages and deterministic pushdown au-

tomata,

(4) between deterministic RWW-automata (Church-Rosser languages) and

deterministic monotone RRWW-automata,

(5) between deterministic RWW- and deterministic RRW-automata,

(6) between deterministic RWW- and deterministic RW-automata,

(7) between deterministic RWW- and deterministic RR-automata, and

(8) between deterministic RWW- and deterministic R-automata.

Metalinear CD grammar systems [24] are context-free CD grammar sys-

tems where each component consists of metalinear productions. The max-

imal number of nonterminals in an initial production defines the width of

the CD grammar system. In [131] it is proved that there are non-recursive

trade-offs between CD grammar systems of width m + 1 and m. Fur-

thermore, non-recursive trade-offs appear between CD grammar systems of

width m and (2m− 1)-linear context-free grammars.

Further results are known for (one-way) cellular automata ((O)CA) and

iterative arrays (IA) [99, 100].

Theorem 1.98. The following trade-offs are non-recursive:

(1) between real-time OCA and finite automata,

(2) between real-time OCA and pushdown automata,

(3) between real-time CA and real-time OCA, and

(4) between linear-time OCA and real-time OCA.

(5) Between real-time IA and finite automata,

(6) between real-time IA and pushdown automata,

(7) between linear-time IA and real-time IA,

(8) between real-time IA and real-time OCA, and

(9) between real-time OCA and real-time IA.

The proofs all follow the scheme of Theorem 1.80. It is worth mentioning

that results (1) and (2) of Theorem 1.97 as well as results (8) and (9)

of Theorem 1.98 say that there are non-recursive trade-offs between one

system and another system and vice versa.

Finally, the phenomenon of non-recursive trade-offs between descrip-

tional systems is investigated in an abstract and more axiomatic fashion

in [49]. The aim is to categorize non-recursive trade-offs by bounds on

their growth rate, and to show how to deduce such bounds in general. Also

criteria are identified which, in the spirit of abstract language theory, allow
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to deduce non-recursive tradeoffs from effective closure properties of lan-

guage families on the one hand, and differences in the decidability status

of basic decision problems on the other. A qualitative classification of non-

recursive trade-offs is developed in order to obtain a better understanding

of this very fundamental behavior of descriptional systems.
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Partial words are sequences that may have some undefined positions de-

noted by �’s, where a � matches every letter of the alphabet. This chapter

is related to the problem of characterizing the two-element unavoidable sets

of partial words over an arbitrary alphabet, which reduces to the problem
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of characterizing the unavoidable sets of the form

Xm1,...,mk|n1,...,nl
= {a�m1a · · ·a�mka, b�n1b · · · b�nlb}

where a, b are distinct letters of the alphabet and m1, . . . ,mk, n1, . . . , nl are

nonnegative integers. We prove a conjecture regarding the case k = 1, l = 2,

which was identified by Blanchet-Sadri et al. that, if proven, suffices to

classify all sets Xm1,...,mk|n1,...,nl
such that k ≥ 2, l ≥ 2 as avoidable or

unavoidable, and which involves six systems of inequalities onm,n1 and n2.

We classify some of the previously unclassified sets by identifying common

two-sided infinite avoiding words and exhibiting exactly which sets these

words can avoid. In the process, we introduce a new technique to reduce a

set if the period of an avoiding word is known. Finally using Cayley graphs,

we are able to classify all remaining sets.

2.1 Introduction

A set of (full) words (ones without undefined positions) X over a finite

alphabet A is unavoidable if no two-sided infinite word over A avoids X ,

that is, X is unavoidable if every two-sided infinite word over A has a factor

in X . This concept was introduced in 1983 in an attempt to characterize

which context-free languages are also rational [10]. For instance, the set

{a, bbb} is unavoidable, for if a two-sided infinite word w does not have a

as a factor, then w consists only of b’s. When X is finite, the following

three statements are equivalent: (1) X is unavoidable; (2) there are only

finitely many words in A∗ with no member of X as a factor; and (3) no

periodic two-sided infinite word avoids X . For other properties of unavoid-

able sets, we refer the reader to [14]. There, the main result is that there

exists an explicit characterization of the unavoidable sets with a fixed car-

dinality. A vast literature exists on unavoidable sets, to mention a few

[6, 9, 7, 11, 13, 15–17].

Partial words are sequences over a finite alphabet that may contain some

undefined positions denoted by �’s, where the � symbol is compatible with

every symbol of the alphabet. Combinatorics on partial words was initiated

by Berstel and Boasson [1], and has been investigated since then (see for

example [3]). Unavoidable sets of partial words were introduced recently

in [4]. In this context, a set of partial words X over A is unavoidable if

every two-sided infinite full word over A has a factor compatible with an

element of X . Partial words allow us to represent large sets of full words

efficiently. This representation gives us new insights into the combinatorial
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structure of unavoidable sets of full words. Determining whether a finite

set of partial words is avoidable is known to be NP-hard [5] in contrast with

the known feasibility results for full words [8, 14, 15]. For other results on

the complexity of deciding avoidability of sets of partial words, we refer the

reader to [2].

In [4], the problem of characterizing unavoidable sets of partial words

of cardinality two was initiated. If X is an unavoidable set, then every

two-sided infinite unary word has a factor compatible with a member of

X . In particular, X cannot have fewer elements than the alphabet. Thus

if X has size two, then the alphabet is unary or binary. If the alphabet is

unary, then X is unavoidable, so we will not consider the unary alphabet

further. We hence assume that the alphabet is binary, say with distinct

letters a and b. So one element of X is compatible with a factor of aZ and

the other element is compatible with a factor of bZ, since this is the only

way to guarantee that both aZ and bZ will not avoidX . This shows that the

classification of all the two-element unavoidable sets of partial words over

an arbitrary alphabet reduces to the classification of all the two-element

unavoidable sets over the binary alphabet {a, b} of the form

Xm1,...,mk|n1,...,nl
= {a�m1a · · ·a�mka, b�n1b · · · b�nlb} (2.1)

where m1, . . . ,mk, n1, . . . , nl are nonnegative integers. Note that �’s from

the left and right ends of elements of unavoidable sets can be truncated.

The problem is for which integersm1, . . . ,mk, n1, . . . , nl isXm1,...,mk|n1,...,nl

unavoidable. Of course, the set {a, b�n1b · · · b�nlb} is always unavoidable,

for if w is a two-sided infinite word which does not have a as a factor, then

w = bZ. This handles the case where k = 0 (and symmetrically l = 0).

In [4], the authors gave a characterization of the special case of this

problem when k = 1 and l = 1. They proposed a conjecture characterizing

the case where k = 1 and l = 2, and proved one direction of the conjecture

(the case k = 2 and l = 1 is symmetric). They then gave partial results

towards the other direction, and in particular proved that the conjecture

is easy to verify in a large number of cases. Finally, they showed that

verifying this conjecture is sufficient for proving the avoidability of all sets

where k, l ≥ 2.

In this chapter, we complete the classification of all unavoidable sets

of partial words of size two over any alphabet. Following the discus-

sion above, we will do this by completing the classification of all the sets

Xm1,...,mk|n1,...,nl
. The contents of our chapter is as follows: In Section 2.2,

we review basics on partial words and unavoidable sets. In Section 2.3, we
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identify a strict minimal period of an avoiding word for Xm|n. There, we re-
duce the conjecture of [4] (see Conjecture 2.9) regarding the setsXm|n1,n2

to

Conjecture 2.10 which involves six systems of inequalities on m,n1 and n2.

In Section 2.4, we discuss a new technique for testing if a set is avoidable,

the so-called canonical forms. In Section 2.5, we prove that Conjecture 2.10

is true using canonical forms and Cayley graphs. In Section 2.6, we show

that all sets where k = 1 and l ≥ 4 are avoidable, and we also classify all

sets where k = 1 and l = 3. Finally in Section 2.7, we conclude with some

remarks.

2.2 Preliminaries

We first review concepts on partial words. Let A be a fixed nonempty finite

set called an alphabet whose elements we call letters. A word over A is a

finite sequence of elements of A. We let A∗ denote the set of words over

A which, under the concatenation operation of words, forms a free monoid

whose identity is the empty word, which we denote by ε.

A partial word u of length n (or |u|) over A can be defined as a function

u : [0..n− 1] → A�, where A� = A ∪ {�}. For 0 ≤ i < n, if u(i) ∈ A, then i

belongs to the domain of u, denoted D(u), and if u(i) = �, then i belongs

to the set of holes of u, denoted H(u). Whenever H(u) is empty, u is a full

word. We will refer to an occurrence of the symbol � as a hole. We let A∗
�

denote the set of all partial words over A.

A period of a partial word u is a positive integer p such that u(i) = u(j)

whenever i, j ∈ D(u) and i ≡ j (mod p) (note that to simplify notation,

we will often abbreviate the latter by i ≡ j mod p). In this case, we call u

p-periodic. The smallest period of u is called the minimal period of u and

is denoted by p(u).

The partial word u is contained in the partial word v, denoted u ⊂ v,

if |u| = |v| and u(i) = v(i) for all i ∈ D(u). A nonempty partial word u is

primitive if there exists no word v such that u ⊂ vn with n ≥ 2. Two partial

words u and v of equal length are compatible, denoted u ↑ v, if u(i) = v(i)

whenever i ∈ D(u)∩D(v). In other words, u and v are compatible if there

exists a partial word w such that u ⊂ w and v ⊂ w, in which case we denote

by u ∨ v the least upper bound of u and v (u ⊂ (u ∨ v) and v ⊂ (u ∨ v)

and D(u ∨ v) = D(u) ∪D(v)). For example, u = aba�� and v = a��b� are

compatible, and (u ∨ v) = abab�.

Let σ : A∗
� → A∗

�, where σ(ε) = ε and σ(au) = ua for all u ∈ A∗
�
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and a ∈ A�, be the cyclic shift function. The partial words u and v are

conjugates, denoted u ∼ v, if v = σi(u) for some i ≥ 0. The conjugacy class

of a partial word u, denoted [u], is the set of partial words {v | u ∼ v}.

Lemma 2.1 ([18], p. 76). Let u be a full word of length n, and let i ∈

[1..n− 1]. Then σi(u) = u if and only if u is not primitive and p(u) divides

i.

If u is a full word over a binary alphabet, then the complement of u,

denoted ū, is such that ū(i) 6= u(i) for all i.

Lemma 2.2. Let w be a primitive full word over a binary alphabet. Then

w̄ ∈ [w] if and only if w = uū for some u.

Proof. Suppose w = uū for some u. Observe that w̄ = ūu, and for

j = |u|, σj(w) = w̄. Therefore w̄ ∈ [w]. For the forward implication,

suppose w̄ ∈ [w]. Since w, w̄ ∈ [w] and every element in [w] has the same

alphabet letter distribution, there must be equal numbers of a’s and b’s in

w for the distinct letters a, b in the alphabet. Consequently |w| is even. We

know that w̄ = σj(w) for some j, 0 < j < |w|, and so w(i) 6= w(i+ j) for all

i ∈ [0..j − 1]. Note that σ2j(w) = σj(w̄) = w, and by Lemma 2.1, 2j = |w|

follows because w is primitive. As a result j = |w|
2 . Therefore w = uū for

some u. �

We now review concepts on unavoidable sets. A two-sided infinite word

over A is a function w : Z → A. A finite word u is a factor of w if u

is a finite subsequence of w, that is, if there exists some i ∈ Z such that

u = w(i) · · ·w(i + |u| − 1). For a positive integer p, w has period p, or

w is p-periodic, if w(i) = w(i + p) for all i ∈ Z. If w has period p for

some p, then we call w periodic. If v is a nonempty finite word, then we

denote by vZ the unique two-sided infinite word w with period |v| such that

v = w(0) · · ·w(|v| − 1).

Let x be a partial word over A, and let w be a two-sided infinite full

word over A. Then w avoids x if there does not exist a factor u of w such

that x ⊂ u. Moreover w avoids a set of partial words X ⊂ A∗
� if for every

x ∈ X , w avoids x. The set X is unavoidable if there does not exist a

two-sided infinite full word w over A such that w avoids X .

It was proved in [4] that if X is a set of partial words and Y is the

resulting set from any of the so-called operations of factoring, prefix-suffix,

hole truncation, and expansion, then X is avoidable if and only if Y is

avoidable. For example, the hole truncation on x�n preserves avoidability,
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that is, if x�n ∈ X for some positive integer n, then Y = (X\{x�n}) ∪ {x}

has the same avoidability as X .

2.3 Unavoidable Sets of Partial Words of Size Two

In this section, we investigate the avoidability of the sets Xm1,...,mk|n1,...,nl
.

First, we recall a characterization for the case where k = l = 1.

Theorem 2.3 ([4]). Write m + 1 = 2sr1, n + 1 = 2tr2 where r1, r2 are

odd. Then Xm|n is unavoidable if and only if s 6= t. Furthermore, if s = t,

then (a2
s

b2
s

)Z avoids Xm|n.

Since Theorem 2.3 classifies exactly which of the setsXm|n are avoidable

or unavoidable, we instead focus on what types of words avoid these sets.

In particular, we wish to give a lower bound on the length of a period

of an avoiding word. As we show in Theorem 2.4, the avoiding word in

Theorem 2.3 demonstrates the smallest period.

Theorem 2.4. Let v be a full word over {a, b}. If vZ avoids Xm|n, then
2s+1 divides |v| where m+1 = 2sr1 and n+1 = 2sr2 for odd integers r1, r2.

In addition, if v is primitive, then v = uū for some u.

Proof. Let v be a full word over {a, b} such that vZ avoids Xm|n. By

Theorem 2.3, m+ 1 = 2sr1 and n+ 1 = 2sr2 for odd integers r1, r2.

We first consider v primitive, in which case we show that v = uū for

some u. Indeed, set w = vZ. We claim that w(i) 6= w(i +m + 1) for all i.

Clearly if w(i) = a, then w(i+m+1) 6= a. If w(i) = b and w(i+m+1) = b,

then w(i + n+ 1) = a and w(i +m+ 1 + n+ 1) = a to avoid b�nb; letting

j = i+n+1 we get w(j) = w(j+m+1) = a, a contradiction. It follows by a

symmetric argument that w(i) 6= w(i+n+1) for all i. Observe that for some

i, w(i) · · ·w(i+ |v| − 1) = v, and hence v̄ = w(i+m+ 1) · · ·w(i+m+ |v|).

Therefore v̄ ∈ [v], and so v = uū for some u follows as a direct consequence

of Lemma 2.2.

Note one of the consequences of the fact that w(i) 6= w(i +m + 1) for

all i, is that the binary word w has period 2(m + 1) which provides the

existence of an integer t such that t|v| = 2(m+ 1) since v being primitive,

|v| is the smallest period of w. If t is even, then t = 2t′ for some t′, and so

t′|v| = m+1. Then w(i) = w(i+ |v|) = · · · = w(i+ t′|v|) = w(i+m+1), a

contradiction. So t is odd, and since t|v| = 2(m+ 1) = 2s+1r1, we get that

2s+1 divides |v|.
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The proof when v is not primitive then follows easily, since there exists a

primitive factor v′ such that v = (v′)p for some p > 1. Since vZ avoidsXm|n
by assumption, (v′)Z avoids Xm|n and hence 2s+1 divides |v′|. Therefore

2s+1 divides |v|. �

Note that as a result, a lower bound on the length of v is 2s+1. Since

Theorem 2.3 provides such a v, this lower bound is optimal.

Now, we reduce Conjecture 2.9 of [4], regarding a complete character-

ization of when Xm|n1,n2
is avoidable, to Conjecture 2.10 that involves

six systems of inequalities on m,n1 and n2. A fact from [4] that the set

Xm1...mk|n1...nl
is unavoidable if and only if the set

{a�p(m1+1)−1a · · ·a�p(mk+1)−1a, b�p(n1+1)−1b · · · b�p(nl+1)−1b}

is unavoidable, where p is a positive integer, will allow us to reduce the

number of sets being considered. We may hence assume without loss of

generality that gcd(m+1, n1+1, n2+1) = 1. For Xm|n1,n2
to be avoidable

it is sufficient that Xm|n1
, Xm|n2

or Xm|n1+n2+1 be avoidable.

Here are unavoidability results for k = 1 and l = 2.

Proposition 2.5 ([4]). Suppose either m = 2n1+n2+2 or m = n2−n1−1,

and n1+1 divides n2+1. Then Xm|n1,n2
is unavoidable if and only if Xm|n1

is unavoidable.

Theorem 2.6. Suppose either m = 2n1 + n2 + 2 or m = n2 − n1 − 1. Let

m + 1 = 2sr0 and n1 + 1 = 2t1r1 for nonnegative integers s, t1 and odd

r0, r1. Then Xm|n1,n2
is unavoidable if and only if t1 < s.

Proof. Set n2 + 1 = 2t2r2 for some nonnegative integer t2 and some

odd integer r2. If t1 < s, then Xm|n1,n2
is unavoidable by Theorem 4

of [4]. So suppose t1 ≥ s. Then we claim that Xm|n1,n2
is avoidable by

Theorem 2.3. Observe that if t1 = s, then by Theorem 2.3, Xm|n1
is

avoidable, so Xm|n1,n2
is avoidable. Similarly if t2 = s, then Xm|n1,n2

is

avoidable. Assume t1 > s. Note that this forces n1 + 1 to be even and

consequently n1 to be odd. Suppose m + 1 is odd and m = 2n1 + n2 + 2.

In this case n2 + 1 is odd. Therefore s = t2 = 0, so Xm|n1,n2
is avoidable.

Similarly, if m = n2 − n1 − 1, then n2 must be even since n1 is odd by

hypothesis. Thus s = t2 = 0, so Xm|n1,n2
is avoidable. Suppose m + 1 is

even, and consider m = n2 − n1 − 1. Then m + 1 = (n2 + 1) − (n1 + 1),

equivalently 2sr0 = 2t2r2 − 2t1r1 or 2s(r0 + 2t1−sr1) = 2t2r2. The latter

implies 2s = 2t2 and thus s = t2. Note that this follows because t1 > s,
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so r0 + 2t1−sr1 and r2 are odd. Therefore Xm|n1,n2
is avoidable. The case

when m+ 1 is even and m = 2n1 + n2 + 2 follows similarly. �

Corollary 2.7. If Xm|n1,n2
is unavoidable by Proposition 2.5, then

Xm|n1,n2
is unavoidable by Theorem 2.6. In other words, writing m+ 1 =

2sr0, n1 + 1 = 2tr1 where r0, r1 are odd, if m,n1, n2 fulfill the conditions

of Proposition 2.5 and Xm|n1
is avoidable, then t < s.

Proof. Suppose Xm|n1,n2
is unavoidable by Proposition 2.5. Then either

m = 2n1+n2+2 orm = n2−n1−1, which fit the conditions of Theorem 2.6.

In addition, Xm|n1
is unavoidable. Let m + 1 = 2sr0 and n1 + 1 = 2tr1,

where s, t are nonnegative integers and r0, r1 are odd. By Theorem 2.3,

s 6= t. Referring to the proof of Theorem 2.6, t < s. So Xm|n1,n2
is

unavoidable by Theorem 2.6. �

Theorem 2.8. Let m, n1, and n2 be nonnegative integers such that 2m =

n1 + n2. Then Xm|n1,n2
is unavoidable if and only if n1 6= n2 and d =

|m−n1| divides m+1. Moreover, if d - m+1, then Xm|n1,n2
is avoided by

a two-sided infinite word whose period is polynomial in the size of Xm|n1,n2

(with the extra condition that if n1 6= n2, then Xm|n1,n2
is more precisely

avoided by a two-sided infinite word whose period is at most d).

Proof. Let xa = a�ma and xb = b�n1b�n2b. Proposition 2 of [4], which

states that if n1 < n2, 2m = n1 + n2 and |m − n1| divides m + 1, then

Xm|n1,n2
is unavoidable, shows that the conditions on m,n1 and n2 are

sufficient. It remains to be shown that the conditions are necessary.

Assume n1 = n2. Then m = n1 = n2. Consequently by Theorem 2.3,

Xm|n1
is avoidable, so Xm|n1,n2

is avoidable. In fact, by Theorem 2.3,

(a2
s

b2
s

)Z avoids Xm|n1,n2
, where m+1 = 2sr for some odd integer r. Note

that the period 2s+1 is polynomial in the size of Xm|n1,n2
.

Assume n1 6= n2. We show that if d - m + 1, then Xm|n1,n2
is avoided

by the two-sided infinite word w, constructed by the following algorithm on

d, m and n1, with w’s period at most d. The algorithm initializes w with

�
Z.

For 0 ≤ i ≤ d− 1 do: If w(i) is not defined, then define

w(j) =

{

a, if j ≡ i mod d;

b, if j ≡ i± (m+ 1) mod d.
(2.2)

In order to prove the correctness of the algorithm, we need a means of

speaking about whether w avoids Xm|n1,n2
even if w is not fully defined.
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We introduce the concept of weakly avoidable set and say w weakly avoids

Xm|n1,n2
if there does not exist a factor u of w such that x ⊂ u for every

x ∈ Xm|n1,n2
. Note that this is simply an extension of the definition of

avoiding full words to avoiding partial words.

We prove the algorithm by induction, showing that the following in-

variant holds: w weakly avoids Xm|n1,n2
and w is consistent (that is, it is

not the case that w(j) = a and w(j) = b for the same integer j). For the

base case, observe that w = �
Z, so w weakly avoids Xm|n1,n2

trivially. Also

because w is completely undefined, there does not exist an integer j such

that w(j) = a and w(j) = b, so w is consistent. This concludes the base

case.

Now suppose that w is at some intermediate state of the algorithm and

that our invariant holds. We show that at the end of the loop, the invariant

still holds. Let i ∈ [0..d − 1] be the integer selected by the algorithm at

this step. Note a condition on i is that w(i) is not defined. We show that

Equation (2.2) does not alter the invariant. Suppose for sake of contradic-

tion that the invariant is altered. Then either w no longer avoids Xm|n1,n2
,

or w is inconsistent.

Suppose that w is not consistent. Then for some integer j, w(j) = a

and w(j) = b. By Equation (2.2), there exist integers i0, i1 ∈ [0..d− 1] such

that both j ≡ i0 mod d and j ≡ i1 ± (m+ 1) mod d. It follows then that

i0 ≡ i1 ± (m+ 1) mod d (2.3)

If i0 = i1, then d | (m + 1), which contradicts our original hypothesis.

Suppose i 6= i0 and i 6= i1. This inconsistency was present in w before

this step, contradicting our assumption that the invariant was valid. Thus

i0 6= i1 and either i = i0 or i = i1. If i = i0, then by Equation (2.3), w(i) = b

was defined previously by i1 according to Equation (2.2). Symmetrically,

if i = i1, then w(i) = b was defined previously by i0 via Equation (2.2).

Therefore this step could not have introduced an inconsistency. Note that

this was proved independent of the question of whether w weakly avoids

Xm|n1,n2
, and as such we will use this result in its proof.

Suppose w no longer weakly avoids Xm|n1,n2
. Suppose for contradiction

that w no longer weakly avoids xa. Then there must exist some factor of w

of the form u = w(j) · · ·w(j+m+1) for some integer j, such that u(0) = a

and u(m + 1) = a. Since Equation (2.2) defines the construction of w, it

follows that for some integers i0, i1 ∈ [0..d − 1] with w(i0) = w(i1) = a,

both j ≡ i0 mod d and j + m + 1 ≡ i1 mod d. It then follows that i0 ≡

i1− (m+1) mod d, which by Equation (2.2) means w(j) = a and w(j) = b.
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Thus an inconsistency was either introduced at this step or prior, which in

either case is a contradiction. Therefore our assumption that w no longer

weakly avoids xa was incorrect.

Suppose for contradiction that w no longer weakly avoids xb (the case

where w no longer weakly avoids xa is simpler). Then there must exist some

factor of w of the form u = w(j) · · ·w(j + 2m+ 2) for some integer j, such

that u(0) = b, u(n1 + 1) = b, and u(2(m + 1)) = b. Since Equation (2.2)

defines how w is constructed, it follows that for some integers i0, i1, i2 ∈

[0..d − 1] (not necessarily distinct) where w(ik) = a for k ∈ [0..2], an

equation defining j0, j1, j2 from each column holds true:

j ≡ j0 mod d j + m + 1 ≡ j1 mod d j + 2(m + 1) ≡ j2 mod d

j0 = i0 + (m + 1) j1 = i1 + (m + 1) j2 = i2 + (m + 1)

j0 = i0 − (m + 1) j1 = i1 − (m + 1) j2 = i2 − (m + 1)

Note that the second equation is j + m + 1 ≡ j1 mod d instead of j +

n1 + 1 ≡ j1 mod d. This is because m + 1 − (m − n1) = n1 + 1, and

d = |m−n1|, hence mod d the two equations are equivalent. It then follows

that j1 = i1 − (m+ 1), for otherwise j +m+ 1 ≡ i1 +m+ 1 mod d that is

j ≡ i1 mod d, and i0 ± (m + 1) ≡ i1 mod d, where the latter follows from

the first column in the table. Thus by Equation (2.2) w(i1) = b, but since

we assumed w(i1) = a, we have reached a state of inconsistency, which is

a contradiction. Hence j + m + 1 ≡ i1 − (m + 1) mod d, or equivalently,

j ≡ i1−2(m+1) mod d. Combining this with Column 3 from the table, we

get (i1−2(m+1))+2(m+1)≡ i2±(m+1) mod d and i1 ≡ i2±(m+1) mod d.

But by Equation (2.2), this implies w(i1) = b. Yet we previously assumed

w(i1) = a, hence we have reached a state of inconsistency, which is a

contradiction. Consequently Column 2 cannot be satisfied, so there cannot

exist a factor u of w such that u(0) = u(n1+1) = u(2(m+1)) = b, meaning

our assumption that w no longer weakly avoids xb was incorrect.

Therefore the invariant holds for the duration of the algorithm. Observe

that the algorithm will eventually halt, for at each step an i ∈ [0..d− 1] is

chosen such that w(i) is undefined and defines w(i). Thus upon termination,

w is defined for all i ∈ [0..d−1], and as a result of Equation (2.2), w is fully

defined. Furthermore by the invariant, w is consistent and weakly avoids

Xm|n1,n2
. Therefore we have constructed the word w = (w(0) · · ·w(d−1))Z

which avoidsXm|n1,n2
. We conclude thatXm|n1,n2

is avoided by a two-sided

infinite word whose period is polynomial in the size of Xm|n1,n2
, or more

precisely it is avoided by a two-sided infinite word whose period is at most

d = |m− n1|. �
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It is thought that the following conjecture gives a complete characteri-

zation of when Xm|n1,n2
is unavoidable.

Conjecture 2.9 ([4]). Let m,n1, n2 be nonnegative integers such that

n1 ≤ n2 and gcd(m+ 1, n1 + 1, n2 + 1) = 1. Then Xm|n1,n2
is unavoidable

if and only if one of the following conditions hold:

• The case where Xm|n1
is unavoidable, m = 2n1+n2+2 or m = n2−n1−1,

and n1 + 1 divides n2 + 1.

• The case where m = 2n1 + n2 + 2 or m = n2 − n1 − 1, and the highest

power of 2 dividing n1 + 1 is less than the highest power of 2 dividing

m+ 1.

• The case where n1 < n2, 2m = n1 + n2 and m− n1 divides m+ 1.

• The case where (m,n1, n2) = (6, 1, 3).

Using Theorems 2.6 and 2.8 as well as Corollary 2.7, Conjecture 2.9 can

be equivalently stated as follows: “Let m,n1, n2 be nonnegative integers

such that n1 ≤ n2 and gcd(m + 1, n1 + 1, n2 + 1) = 1. Then Xm|n1,n2
is

unavoidable if and only if (m,n1, n2) = (6, 1, 3) or Xm|n1,n2
is unavoidable

by Theorem 2.6 or Theorem 2.8.”

Conjecture 2.10. Let m,n1, n2 be nonnegative integers such that n1 ≤ n2,

gcd(m + 1, n1 + 1, n2 + 1) = 1, and (m,n1, n2) 6= (6, 1, 3). Then Xm|n1,n2

is avoidable if one of (2.4)–(2.9) is satisfied:

m < n2 − n1 − 1 and 2m < n1 + n2 (2.4)

m < n2 − n1 − 1 and 2m > n1 + n2 (2.5)

m > n2 − n1 − 1 and 2m < n1 + n2 (2.6)

m < 2n1 + n2 + 2 and m > n2 − n1 − 1 and 2m > n1 + n2 (2.7)

m > 2n1 + n2 + 2 and m < 2n2 + n1 + 2 (2.8)

m > 2n2 + n1 + 2 (2.9)

“Conjecture 2.9 is true” is equivalent to “Conjecture 2.10 is true.” In-

deed, by Theorems 2.6 and 2.8, the sets where 2m = n1+n2, m = n2−n1−1,

m = 2n1 + n2 + 2 and m = 2n2 + n1 + 2 are now classified. It is easy to

verify that the only sets which remain to be classified are those determined

by the six systems of inequalities (2.4)–(2.9), and by Conjecture 2.9 these

sets must be avoidable. In order to classify the remaining sets, we will in-

troduce in Section 2.4 the canonical forms which will be useful for solving

the conjecture.
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2.4 Canonical Forms

In an effort to prove Conjecture 2.10, we attempt to classify exactly which

sets have particular patterns of avoiding words. In order to motivate our

technique, we consider the following proposition which is useful for verifying

if a word is an avoiding word.

Proposition 2.11. Let X be a set of partial words, and let v be a primitive

full word. Let M = max{|x| | x ∈ X}, and let k = M+|v|−1
|v| . Then vZ avoids

X if and only if vk avoids X.

Proof. To see the correctness of this result, it is first easier to consider

how one might go about showing a two-sided infinite word w = vZ avoids

a word in X . One could begin by aligning x with w(0) · · ·w(|x| − 1), and

then with w(1) · · ·w(|x|) and continuing in this manner. If it were ever the

case that x aligned with a factor of w, say w(n) · · ·w(|x| − 1+ n), and x ⊂

w(n) · · ·w(|x|−1+n), then we can conclude w does not avoid x. But in order

to claim w does avoid x, we need to determine a point at which we can stop

these comparisons. In fact, we can stop as soon as we have checked x against

all factors from w(0) · · ·w(|x| − 1) up to w(|v| − 1) · · ·w(|x| − 1 + |v| − 1),

since w(|v|) · · ·w(|x|−1+ |v|) = w(0) · · ·w(|x|−1) because w is |v|-periodic.

Therefore we need only consider |x|+|v|−1 letters of w for any particular x.

If we consider x where |x| = M , the maximal length of all words in X , then

we need M + |v| − 1 letters of w. This is achieved by letting k = M+|v|−1
|v|

and considering vk. �

As a result of this proposition, for sets with words significantly longer

than the period of an avoiding word, a large number of repetitions must be

considered in order to verify that the word avoids the set. However, if we

could somehow reduce the words in the set such that they are not longer

than the period of the avoiding word, then we would need to consider at

most two repetitions of the avoiding word (rounded up for simplicity). In

fact, such a reduction exists, and so we begin by defining a new concept

which will allow us to restrict our attention to these particular types of sets.

The n-partition of a partial word u is the set

{u[0..n− 1], u[n..2n− 1], . . . , u[(k − 1)n..kn− 1], u[kn..|u| − 1]�m}

where u[i..j] denotes u(i) · · ·u(j), and where the nonnegative integers k and

m are chosen such that |u|−kn+m = n, where 0 ≤ m < n. Informally, we

are partitioning u into k partial words of length n, where the kth slice may
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need to be padded with holes to meet the length requirements. If u is n-

periodic, then we define the n-canonical form of u, denoted by cn(u), to be

∨x∈Px where P is the n-partition of u and where �’s from the left and right

ends of ∨x∈Px are truncated (note that |cn(u)| ≤ n). The n-canonical form

of a set of partial words X is cn(X) = {cn(x) | x ∈ X and x is n-periodic}.

As an example, let us compute c39(X6|11,32). The 39-partition of u =

b�11b�32b is the set

P = {u[0..38], u[39..45]�32} = {b�11b�26, �6b�32}

and c39(u) = b�5b�5b. Thus

c39(X6|11,32) = {c39(a�
6a), c39(b�

11b�32b)} = {a�6a, b�5b�5b}

Lemma 2.12. Let v be a full word and X be a set of partial words such

that all elements in X are |v|-periodic. Then the two-sided infinite word vZ

avoids X if and only if vZ avoids c|v|(X).

The following results are defined over n-canonical sets for some posi-

tive integer n. Recall from Proposition 2.11 that for an avoiding word vZ

where |v| = n, we need only check an n-canonical set against at most two

repetitions of v.

Before we continue, we give a high-level overview of the method which

we employ for our results. First, we define some integer n, and let

Xm|n1,n2
= {xa, xb} be the n-canonical form of some set. At the same

time, we define some full word v in terms of some pattern, such as v = apbq,

where |v| = n. We then give an exact characterization of the possible values

for p and q in relationship to m,n1, and n2. From the perspective of an im-

plementation, one would see if the theorem can be satisfied for n from 1, 2,

up to M = max{|xa|, |xb|}. For |v| > M , note that m,n1, n2 are constant;

that is, cn(Xm|n1,n2
) = Xm|n1,n2

. If m,n1, n2 satisfy the constraints, then

we need only find p and q which also satisfy the constraints.

Theorem 2.13. Let v = apbq where p > 0, q > 0, and let Xm1,...,mk|n1,...,nl

where k, l > 0 be |v|-canonical. Set xa = a�m1a · · · �mka and xb =

b�n1b · · · b�nlb. Then vZ avoids {xa, xb} if and only if the following con-

ditions hold: (i) |xa| > p, (ii) mi < q for all i ∈ [1..k], (iii) |xb| > q, and

(iv) ni < p for all i ∈ [1..l].

Proof. We begin with the reverse implication. Assume the conditions

hold and set w = vZ. Since xa is |v|-canonical, |xa| ≤ |v|. Then by

Condition (i), p < |xa|, so v (the finite word) avoids xa. Thus in order
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for w to not avoid xa, every b in v must be matched up with a hole in xa,

which would mean mi ≥ q for some i ∈ [1..k]. But this cannot happen by

Condition (ii), and hence w avoids xa. The proof for xb is symmetric, and

therefore w avoids {xa, xb}.

Now suppose at least one of the conditions does not hold. We consider

Conditions (i) and (ii) only due to symmetry. If (i) does not hold, then v

does not avoid xa, and hence vZ does not avoid xa. If (ii) does not hold,

then because |xa| ≤ |v|, for some i ∈ [1..k] where mi ≥ q, straddling the b’s

in v with this mi shows that v
Z does not avoid xa. This can be seen more

clearly in the table

a · · · a b · · · b a · · · a b · · · b

a�
m1

· · · �
mi−1 a � �

q−2
� a �

mi+1
· · · �

mk a

that depicts the situation where mi = q for some i ∈ [1..k]. Because

|xa| ≤ |v|, it is never the case that xa must straddle more than one set of

b’s. Therefore if at least one condition does not hold, then {xa, xb} is not

avoided by vZ. �

Corollary 2.14. If max{n1, n2} < m < n1 + n2 + 2, then the conditions

of Theorem 2.13 hold for c2m+1(Xm|n1,n2
).

Proof. Let v = ambm+1 and note that |v| = 2m + 1. Suppose

max{n1, n2} < m < n1 + n2 + 2. Then the word w = vZ avoids Xm|n1,n2

(see Proposition 5 of [4]). Here max{n1, n2} < m < n1 + n2 + 2 ≤ 2m+ 1.

Therefore by Lemma 2.12, w avoids c|v|(Xm|n1,n2
). Since v is of the form

required by Theorem 2.13, the conditions hold for c|v|(Xm|n1,n2
). �

Similarly to Theorem 2.13, we can prove the following.

Theorem 2.15. Let v = ap1bq1 · · · apM bqM where pj > 0, qj > 0 for all

j ∈ [1..M ]. Let Xm1,...,mk|n1,...,nl
where k, l > 0 be |v|-canonical. Set

xa = a�m1a · · · �mka and xb = b�n1b · · · b�nlb. Then vZ avoids {xa, xb} if

the following conditions hold: (i) |xa| > pj for all j ∈ [1..M ], (ii) mi < qj
for all i ∈ [1..k] and all j ∈ [1..M ], (iii) |xb| > qj for all j ∈ [1..M ], and

(iv) ni < pj for all i ∈ [1..l] and all j ∈ [1..M ].

Theorem 2.16. Let v = (ab)pbq where p > 0 and q > 0, and let Xm|n1,n2
be

|v|-canonical. Set xa = a�ma and xb = b�n1b�n2b. Then vZ avoids {xa, xb}

if and only if q is odd and m,n1, n2 each fall into one of the following cases:

(1) m is even and m < q, (2) m is odd and 2(p − 1) < m, and (3) n1, n2

are even, n1, n2 ≥ q − 1 and n1 + n2 + 3 ≤ |v| − (q − 2).
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Proof. Set w = vZ, and assume that vZ avoids {xa, xb}. We will show

that the requirement q is odd is necessary by xb, and so for now we assume

q to be odd. Consider xa. If m is even and q is odd, then |v| is odd. Observe

that xa successfully straddles the bq+1 in w if and only if m > q. Since |v|

is odd, the last a in xa lines up with an a after this last substring of b’s,

and hence w does not avoid xa. If m is odd, then xa is not avoided by w

when m ≤ 2(p − 1) due to the substring (ab)p in v. Observe that xa can

straddle bq+1 in w and match an a following that if and only if q is even

and m > q; but by assumption q is odd, so this is a non-issue.

Now we consider xb, and make no assumption regarding the parity of q.

We claim that it is necessary that n1, n2 ≥ q−1. Suppose for contradiction

that n2 < q− 1; then b�n2b can line up with bq+1 in v in two distinct ways,

and in at least one of these, the remaining b in xb will line up with another

b in v. The same argument holds for n1, so n1, n2 ≥ q − 1.

We now show that neither n1 nor n2 can be odd. Suppose for contra-

diction both n1, n2 are odd. Then xb is contained in the factor of w which

begins at the last b in v. Now suppose n1 is even and n2 is odd. Then xb

is contained in the factor of w which begins at the second to last b in v.

Finally suppose n1 is odd and n2 is even. As a result, xb is contained in

the factor of w where the last letter is the second b in bq+1.

Now suppose n1, n2 are even and q is even. Then xb is contained in the

factor of w where the middle b in xb lines up with the second b in bq+1.

This is because there are an odd number of b’s on either side of this b, hence

the even n1, n2 will allow the remaining b’s in xb to match b’s in the factor.

Observe that for n1, n2 even and q odd, in order for xb to not avoid w, two

b’s must match in bqa. We outline the last case when this can occur and xb

does not avoid w. Suppose n1+n2+3 > |v|− (q−2). Then xb is contained

in the factor of w beginning at the second to last b in v. The following table

illustrates each of the cases outlined where w does not avoid xb.

a b a b a b a b a b b b b b b b b

� � � � � b b � � � � b �

� b � � � b b

� � � b � b b �

b � � � � � b � � b

� � � � � b � � � � � � b b �

Here v = (ab)5b7, so |v| = 17. The first row of the table demonstrates

when n1 = 4 < q − 1 = 6. The next three rows demonstrate that neither
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n1 and n2 can be odd. In this example, n1, n2 are 1, 3; 4, 1; and 5, 2

respectively. The last row illustrates when n1 = n2 = 6, but n1 + n2 + 3 =

15 > |v| − (q − 2) = 12. Note that in this example, n1 = 6 ≥ q − 1 = 6.

Finally, we show that if n1, n2 are even, n1, n2 ≥ q−1 and n1+n2+3 ≤

|v| − (q − 2), then xb is avoided by w. Suppose that w does not avoid

xb. Since q is odd, the only way this can occur is if at least two b’s in xb

line up with some b’s in bq+1. However, this can only occur by the two

b’s lining up with the first and last b in bq+1 because n1, n2 ≥ (q − 1) and

n1 + n2 + 3 ≤ |v| − (q − 2). In this case, the third b necessarily lines up

with an a because n1, n2 are even, and therefore w avoids xb. Therefore if

v = (ab)pbq, then vZ avoids the |v|-canonical set Xm|n1,n2
if and only if q

is odd and m,n1, n2 meet the necessary conditions. �

2.5 The Answer to the Conjectures

In this section, we prove that Conjectures 2.9 and 2.10 are true.

Let us define Ym|n1,...,nl
= {a�ma, b�mb, b�n1b · · · b�nlb, a�n1a · · · a�nla}.

Then it is obvious that if Ym|n1,n2
is avoidable then Xm|n1,n2

is avoidable,

so it seems possible that studying Ym|n1,n2
will help solve the conjectures.

In order to do this, we will first prove a theorem (Theorem 2.40 below)

which will give us a tool to investigate Conjecture 2.10, and indeed we prove

this theorem in the following family of results and proofs.

Lemma 2.17. If the two-sided infinite word w avoids Ym|n1,...,nl
, then there

exists a word u such that |u| = m+ 1 and w = (uu)Z.

Proof. Define u(i) = w(i) for 0 ≤ i < m+ 1. Then note that if m+ 1 ≤

i < 2m + 2, then w(i) = w(i − (m+ 1)), since w avoids a�ma and b�mb.

Therefore, if we define u′ = uu, then w(i) = u′(i) for 0 ≤ i < 2m+2. Since

w is (2m+ 2)-periodic, it follows that w = (u′)Z = (uu)Z. �

Before continuing, we need to introduce a few tools that are helpful in

studying Ym|n1,n2
.

A quick note: By a mod b, we mean the least nonnegative integer c

such that c ≡ a (mod b). For example, 11 mod 7 is 4. We will often

abbreviate a mod (2m+ 2) by a mod 2m+ 2, or simply by a, when the

context is clear. Similarly, we will often abbreviate c ≡ a (mod (2m+ 2))

by c ≡ a mod 2m+ 2.

Definition 2.18. Let us denote Z2m+2 = Z/(2m + 2)Z. If a1, . . . , ak ∈

Z2m+2, let 〈a1, . . . , ak〉 be the subgroup of Z2m+2 generated by a1, . . . , ak.
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Then define the directed graph Gm|n1,...,nl
= (V,E), where V =

{0, . . . , 2m+ 1} and E is the set of edges (u, v), u 6= v, such that

u− v ≡ (

j
∑

i=1

ni) + j mod 2m+ 2 for some j, 0 < j ≤ l

Let Hm|n1,...,nl
= (VH , EH) denote the connected component of Gm|n1,...,nl

containing 0 as a vertex.

The following proposition follows from straightforward algebraic argu-

ments.

Proposition 2.19. The vertex set of Hm|n1,...,nl
is equal to 〈n1+1, . . . , n1+

n2 + · · ·+ nl + l〉.

Definition 2.20. Let K = (VK , EK) be any subgraph of Gm|n1,...,nl
such

that, if u is a vertex in K and (u, v) is an edge in Gm|n1,...,nl
, then v is a

vertex in K. Then if c : VK → {a, b} is a coloring of the vertices of K, we

say that c avoids Ym|n1,...,nl
if the following two conditions hold:

(1) If i and i+m+ 1 are vertices in K, then c(i) 6= c(i+m+ 1).

(2) For every vertex u of K, there is an edge (u, v) of K so that c(u) 6= c(v).

Furthermore, if z ∈ Z2m+2, define the graph z + K = ({z + v mod

2m+ 2 | v ∈ VK}, {(z + u mod 2m+ 2, z + v mod 2m+ 2) | (u, v) ∈ EK}).

Proposition 2.21. If K is a subgraph of Gm|n1,...,nl
, so is z + K. Fur-

thermore, if K is a subgraph of Hm|n1,...,nl
and z is a vertex of Hm|n1,...,nl

,

then z +K is a subgraph of Hm|n1,...,nl
.

Lemma 2.22. The set Ym|n1,...,nl
is avoidable if and only if there is a

coloring of Gm|n1,...,nl
that avoids Ym|n1,...,nl

.

Proof. Let Y = Ym|n1,...,nl
and G = Gm|n1,...,nl

. First, assume that

there is an infinite two-sided word, w, that avoids Y . Then we know

by Lemma 2.17 that there exists a word u so that |u| = m + 1, and

that w = (uu)Z. For i, 0 ≤ i < 2m + 2, define c(i) = w(i). Since

w(i +m + 1) = w(i) and w has a period of 2m+ 2, it follows that c(i) =

c(i+m+ 1 mod 2m+ 2) 6= c(i+m+1 mod 2m+ 2). Furthermore, assume

there is an i, 0 ≤ i < 2m + 2, so that c(i) = c(i + n1 + 1 mod 2m+ 2) =

· · · = c(i + n1 + · · · + nl + l mod 2m+ 2). Since w is (2m + 2)-periodic,

w(i) = w(i + n1 + 1) = · · · = w(i + n1 + · · · + nl + l). This implies that
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w does not avoid b�n1b · · · b�nlb or w does not avoid a�n1a · · · a�nla, a con-

tradiction. Therefore there is no such i, so c is a coloring of G that avoids

Y .

On the other hand, assume that c is a coloring of G that avoids Y .

For i, 0 ≤ i < 2m + 2, define v(i) = c(i), and define w = vZ. Note

that w is (2m + 2)-periodic. Assume w does not avoid a�ma or b�mb.

Then there exists an i so that w(i) = w(i +m + 1), which implies w(i) =

w(i + m + 1 mod 2m+ 2), so c(i) = c(i + m + 1 mod 2m+ 2). The last

equality contradicts the claim that c is a coloring that avoids Y . Similarly

if w does not avoid b�n1b · · · b�nlb or w does not avoid a�n1a · · ·a�nla, then

there exists i so that w(i) = w(i+ n1 + 1) = · · · = w(i+ n1 + · · ·+ nl + l),

which implies c(i) = c(i+n1 +1 mod 2m+ 2) = · · · = c(i+n1 + · · ·+nl +

l mod 2m+ 2). This is a contradiction, so w avoids Y . This proves the

claim. �

Proposition 2.23. Let i be a vertex of Hm|n1,...,nl
. Then i +m + 1 is a

vertex of Hm|n1,...,nl
if and only if m+ 1 is a vertex of Hm|n1,...,nl

.

Lemma 2.24. There is a coloring of Gm|n1,...,nl
that avoids Ym|n1,...,nl

if

and only if there is a coloring of Hm|n1,...,nl
that avoids Ym|n1,...,nl

.

Proof. Let H = Hm|n1,...,nl
, Y = Ym|n1,...,nl

and G = Gm|n1,...,nl
. Note

that if u is a vertex of H and (u, v) is an edge of G, then by definition v is

a vertex in H . Therefore it makes sense to talk about colorings that avoid

Y . First assume that c is a coloring of G that avoids Y . By restricting c

to the set of vertices in H , we get a coloring of H that avoids Y .

On the other hand, assume that c is a coloring ofH that avoids Y . Then

let H = H0, H1, . . . , Hr be the connected components of G. Furthermore,

let a0, a1, . . . , ar be vertices of G, so that ai is a vertex of Hi.

First, assume that m+1 is a vertex of H0. Then given a vertex j of Hi,

define c′(j) = c(j − ai mod 2m+ 2) (this is well defined, since −ai +Hi =

H0). Note that if c′(j) = c′(j + n1 + 1 mod 2m+ 2) = · · · = c′(j + n1 +

· · ·+ nl + l mod 2m+ 2), it follows that c(j − ai mod 2m+ 2) = c(j − ai +

n1 + 1 mod 2m+ 2) = · · · = c(j − ai + n1 + · · · + nl + l mod 2m+ 2),

contradicting the fact that c is a coloring of H that avoids Y . Similarly, if

c′(j) = c′(j +m + 1), then c(j − ai) = c(j − ai +m + 1), a contradiction.

Therefore c′ is a coloring of G that avoids Y .

Now, assume that m + 1 is not a vertex of H0. Define (Hi)
−1 to be

the component of G containing m + 1 + ai, then note that (Hi)
−1

6= Hi

and ((Hi)
−1)−1 = Hi, so r + 1 is even and we can rearrange H0, . . . , Hr as
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Hi0 , Hk0 , . . . , Hip , Hkp
(where p = r+1

2 − 1) so that (Hih)
−1 = Hkh

. Then

let us define c′ as follows. If j ∈ Hih for some h, let c′(j) = c(j − aih mod

2m+ 2), and if j ∈ Hkh
let c′(j) = c′(j − (m+ 1) mod 2m+ 2). Then if

v ∈ Hih there exists a vertex u in H0 so that c(v−aih mod 2m+ 2) 6= c(u),

and so c′(v) 6= c′(u+aih mod 2m+ 2) and (v, u+aih mod 2m+ 2) is an edge

of Hih . It follows from this that if v ∈ Hkh
, there exists a vertex u in Hih so

that c′(v−m−1 mod 2m+ 2) 6= c′(u), so c′(v) 6= c′(u+m+1 mod 2m+ 2),

where (v, u+m+1 mod 2m+ 2) is an edge of Hkh
. Furthermore, it follows

by construction that c′(j) 6= c′(j +m+ 1). Thus c′ is a coloring of G that

avoids Y , proving the claim. �

Note that Hm|n1,...,nl
is, from an algebraic point of view, the Cayley

graph of 〈n1 + 1, . . . , n1 + · · · + nl + l〉. Most of our arguments will take

advantage of this fact. Stating our arguments in terms of graphs as opposed

to groups provides simplification of some proofs, as well as a more intuitive

way of looking at the results. For more information on Cayley graphs, we

refer the reader to [12].

Proposition 2.25. If 2m ≡ n1+n2 mod 2m+ 2, then Ym|n1,n2
is avoidable

if and only if Xm|n1
is avoidable.

Proof. First we want to show that w avoids Xm|n1
if and only if it avoids

Ym|n1
. To see this, note that since Xm|n1

⊂ Ym|n1
, if w avoids Ym|n1

it

avoids Xm|n1
. Conversely, if w avoids Xm|n1

and does not avoid Ym|n1
,

then either it does not avoid b�mb or a�n1a. If w does not avoid b�mb,

we can assume w(0) = w(m + 1) = b. Since w avoids b�n1b, it follows

w(n1 + 1) = w(n1 + 1 +m + 1) = a. This, however, contradicts the claim

that w avoids a�ma. Similarly, we can argue that if w avoids Xm|n1
, then

w avoids a�n1a. Therefore, if w avoids Xm|n1
, it avoids Ym|n1

.

Next we want to show Gm|n1,n2
= Gm|n1

. First, note that Gm|n1,n2

has the same vertex set of Gm|n1
. Note that n1 + n2 + 2 ≡ 2m + 2 ≡

0 mod 2m+ 2. Furthermore, (u, v) is an edge of Gm|n1,n2
if and only if it

is one of Gm|n1
(since if u − v ≡ n1 + n2 + 2 mod 2m+ 2, it follows that

u ≡ v mod 2m+ 2, so (u, v) is not an edge, and (u, v) is an edge if and only

if u − v ≡ n1 + 1 mod 2m+ 2 and u 6= v). Therefore there is a coloring

of Gm|n1,n2
that avoids Ym|n1,n2

if and only if there is a coloring of Gm|n1

that avoids Ym|n1
. Therefore, by Lemma 2.22, Ym|n1,n2

is avoidable if and

only if Ym|n1
is avoidable. Therefore, since Ym|n1

is avoidable if and only if

Xm|n1
is, the claim follows. �

The proof of the following proposition is almost identical to the above.
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Proposition 2.26.

• If n1+1 ≡ 0 mod 2m+ 2, then Ym|n1,n2
is avoidable if and only if Xm|n2

is avoidable.

• If n2+1 ≡ 0 mod 2m+ 2, then Ym|n1,n2
is avoidable if and only if Xm|n1

is avoidable.

Due to Propositions 2.25 and 2.26, the avoidability of Ym|n1,n2
is char-

acterized when 2m ≡ n1 + n2 mod 2m+ 2 or 0 ≡ n1 + 1 mod 2m+ 2

or 0 ≡ n2 + 1 mod 2m+ 2, equivalently, when 〈n1 + n2 + 2〉 = {0} or

〈n1 + 1〉 = {0} or 〈n2 + 1〉 = {0} respectively. So we will now restrict

our attention to the case where 〈n1 + n2 + 2〉 6= {0}, 〈n1 + 1〉 6= {0}, and

〈n2 + 1〉 6= {0} hold simultaneously.

For simplification of notation, from this point on whenever we write H ,

it will be implied that H = Hm|n1,n2
.

Proposition 2.27. Let K be the subgraph of H induced by the vertex set

〈x〉, where x ∈ Z2m+2. Set r = |〈x〉|. If m+ 1 is a vertex in K, then r is

even and r
2x = m+ 1.

Proof. Let k be the smallest positive integer so that kx = m+1. Consider

j, 0 ≤ j < k, then note that (k+j)x ≡ m+1+jx mod 2m+ 2. Furthermore,

2kx ≡ 0 mod 2m+ 2. If 0 ≤ j1 < j2 < 2k, it follows that j1x 6= j2x.

Furthermore, every y ∈ 〈x〉 is of the form y = qx, where q is a nonnegative

integer. Note that (q mod 2k)x = qx. It follows that there exists q, 0 ≤

q < 2k, so that y = qx. Therefore every y ∈ 〈x〉 can be written uniquely in

the form y = qx where 0 ≤ q < 2k, so it follows that r = 2k, proving the

claim. �

Proposition 2.28. Let x, y be vertices of H such that 〈x, y〉 equals the

vertex set of H. Let H0 be the subgraph of H with vertex set 〈x〉. Then

H =
⋃α−1

i=0 Hi, where Hi = iy + H0, and the Hi’s are distinct, with y +

Hα−1 = H0. Furthermore, if m + 1 is a vertex in H and m + 1 is not a

vertex in H0, then α is even and m+ 1 is a vertex of Hα
2
.

Proof. This proof is similar to the above. Let H0 be as defined, Hi =

iy+H0, 0 ≤ i < α, where α is the smallest positive integer so that αy ∈ H0.

Then note that the vertex set of Hi is iy + 〈x〉, so y +Hα−1 = H0, which

represent all the cosets of 〈x〉 in 〈x, y〉 (since every element in H is of the

form q1x + q2y mod 2m+ 2), so H =
⋃α−1

i=0 Hi and the Hi’s are distinct

by an elementary abstract algebra argument. Then note that if m + 1 is
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a vertex of Hj , then if 0 ≤ i < j, Hi+j = m + 1 + Hi, and H2j = H0.

Furthermore, Hi+j 6= H0, otherwise that would imply Hj = m+ 1 +H0 =

m + 1 +m + 1 +Hi = Hi, i < j. So it follows by definition that 2j = α,

proving the claim. �

For the following lemma, note that Hm|n1
and Hm|n1+n2+1 are sub-

graphs of Hm|n1,n2
. Also, both the following lemmas get a little convoluted,

since they involve lots of inter-related subcases.

Lemma 2.29. Assume m + 1 is not a vertex of H, 〈n1 + n2 + 2〉 6= {0},

〈n1 + 1〉 6= {0} and 〈n2 + 1〉 6= {0}. Then if either 〈n1 + 1〉 6= 〈n1 + 1, n1 +

n2 +2〉 or 〈n1 +n2 +2〉 6= 〈n1 +1, n1 +n2 +2〉, then Ym|n1,n2
is avoidable.

Proof. Assume m+1 is not a vertex of H , 〈n1+n2+2〉 6= {0}, 〈n1+1〉 6=

{0} and 〈n2 + 1〉 6= {0}, and either 〈n1 + 1〉 6= 〈n1 + 1, n1 + n2 + 2〉 or

〈n1 + n2 + 2〉 6= 〈n1 + 1, n1 + n2 + 2〉. Note that if i is a vertex of H ,

i + m + 1 is not by Proposition 2.23. There are two cases to consider: if

〈n1 + 1〉 6= 〈n1 + 1, n1 + n2 + 2〉, then let x = n1 + 1 and y = n1 + n2 + 2,

otherwise let x = n1 + n2 + 2 and y = n1 + 1.

The idea of the proof is to break the claim down into lots of subcases,

but first we make a few comments that apply to the majority of these

subcases. Let k be the smallest positive integer so that ky ∈ 〈x〉, then note

that k > 1, since 〈x〉 6= 〈x, y〉 and therefore y /∈ 〈x〉. Let H0 = Hm|x−1,

H1 = y+H0, . . . , Hk−1 = y+Hk−2, then note that Hi has the same number

of vertices as H0, and moreover that |H0| > 1 (since the vertex set of H0 is

exactly 〈x〉, and x 6≡ 0 mod 2m+ 2, so both 0 and x are elements of H0).

Furthermore, if j is a vertex of H , then j is a vertex of Hi for some unique

i, since there is a bijection between cosets of 〈x〉 in 〈x, y〉 and the graphs

H0, . . . , Hk−1, which takes cosets to graphs whose vertex set is the coset.

We will denote ai = iy mod 2m+ 2 (note that ai is a vertex of Hi) and

ak = ky mod 2m+ 2.

As a final preparation, let us define a coloring c∗ on H0. If j ∈ H0, let tj
be the unique integer so that 0 ≤ tj < 2m+2 for which j ≡ tjx mod 2m+ 2.

Then define c∗(j) = a if j = 0, c∗(j) = a if tj is odd, and c∗(j) = b

otherwise.

First, if |H0| is even, then for each j ∈ Hi there is a unique sj , 0 ≤

sj < |Hi| = |H0|, so that j = ai + sjx. If sj is even, then define c(j) = a,

else define c(j) = b. Then c is a coloring of H that avoids Ym|n1,n2
(and

by Lemma 2.24 a coloring of Gm|n1,n2
that avoids Ym|n1,n2

exists, and so

Ym|n1,n2
is avoidable by Lemma 2.22). To see this, note that if j is a vertex
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of Hi and sj is as defined above, then if sj < |H0| − 1, we have j + x ∈ Hi

and c(j + x) = c(ai + (sj + 1)x) 6= c(ai + sjx) = c(j), and if sj = |H0| − 1,

we have c(j) = c(ai + sjx) = b 6= a = c(ai + (sj + 1)x) = c(j + x).

Second, if k is even, then let k′ be the smallest positive integer so that

k′x ∈ 〈y〉, and let us define H ′
0 = Hm|y−1, H ′

1 = H ′
0 + x, . . . , H ′

k′−1 =

H ′
k′−2 + x. Then note that |H ′

0| is even (since ly = 0 implies k divides l,

so l is even). Define a′i = ix mod 2m+ 2. Then for each j ∈ H ′
i there is a

unique sj , 0 ≤ sj < |H ′
i| = |H ′

0|, so that j = a′i + sjy. If sj is even, then

define c(j) = a, else define c(j) = b. By the same logic as in the first case,

c is a coloring of H that avoids Ym|n1,n2
.

Third, if k is odd, |H0| is odd, and c∗(ak mod 2m+ 2) = b, then let

j be a vertex of Hi. If i is even, then define c(j) = c∗(j − ai) and so

c(ai) = c∗(ai − ai) = c∗(0) = a. Otherwise define c(j) = c∗(j − ai), and

so c(ai) = c∗(ai − ai) = c∗(0) = b. Note that since ak ∈ H0, we have

c(ak) = c∗(ak − a0) = c∗(ak). To see that c is a coloring of H that avoids

Ym|n1,n2
, let j be a vertex in Hi. Note that if j 6= ai, then c(j) 6= c(j + x).

If i 6= k − 1 and j = ai, then c(j) 6= c(j) = c(ai) = c(ai+1) = c(j + y).

Finally, if i = k − 1 and j = ai then c(j) = a 6= b = c∗(ak) = c(ak) =

c(ak−1 + y) = c(j + y).

Fourth, if k is odd, |H0| is odd, ak 6≡ x mod 2m+ 2, and c∗(ak mod

2m+ 2) = a, then let j be a vertex of Hi. If i < k − 1, then if i is even

define c(j) = c∗(j−ai), else define c(j) = c∗(j − ai), while if i = k−1, define

c(j) = c∗(j−(ai−x)). To show that c is a coloring ofH that avoids Ym|n1,n2
,

let j be a vertex in Hi. If i < k− 1 and j 6= ai then c(j) 6= c(j+x), while if

i < k − 1 and j = ai then c(j) 6= c(j + y). If i = k − 1 and j 6= ai − x then

c(j) 6= c(j+x), while if i = k−1 and j = ai−x then c(j) = a 6= b = c(j+y).

To see the latter, note that since ak 6≡ x mod 2m+ 2, we have ak − x 6= 0.

Also since c∗(ak) = a and ak 6≡ x mod 2m+ 2, ak = k′x with k′ odd. So

we get c(j) = c∗(j − (ai − x)) = c∗(0) = a and c(j + y) = c(ai + y − x) =

c(ai+1 − x) = c(ak − x) = c∗(ak − x− a0) = c∗(ak − x) = c∗((k′ − 1)x) = b.

Fifth, if k is odd, |H0| is odd, ak ≡ x mod 2m+ 2, and c∗(ak mod

2m+ 2) = a, then note that k > 2, since k is odd and k 6= 1. Let j be

a vertex of Hi, i < k − 2 (note that k − 2 > 0), then if i is even define

c(j) = c∗(j − ai), else define c(j) = c∗(j − ai). If i = k − 2, then define

c(j) = c∗(j − (ai − x)). If i = k − 1, then define c(j) = c∗(j − (ai − 2x)).

We want to show that c is a coloring of H that avoids Ym|n1,n2
, so let j

be a vertex in Hi. If i < k − 2 and j 6= ai, then c(j) 6= c(j + x), while if

i < k − 2 and j = ai then c(j) 6= c(j + y). If i = k − 2 and j 6= ai − x
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then c(j) 6= c(j + x), while if i = k− 2 and j = ai − x then c(j) 6= c(j + y).

To see the latter, c(j) = c(ai − x) = c∗(ai − x− (ai − x)) = c∗(0) = b and

c(j+y) = c(ai+1−x) = c(ak−1−x) = c∗(ak−1−x−(ak−1−2x)) = c∗(x) = a

since ak−1 − x is a vertex of Hk−1. If i = k − 1 and j 6= ai − 2x then

c(j) 6= c(j + x), while if i = k − 1 and j = ai − 2x then c(j) 6= c(j + y). �

Lemma 2.30. Assume that m + 1 is a vertex of H, 〈n1 + n2 + 2〉 6= {0},

〈n1 + 1〉 6= {0}, 〈n2 + 1〉 6= {0}, 2n2 + n1 + 2 6≡ m mod 2m+ 2 and n2 −

n1 − 1 6≡ m mod 2m+ 2. If either 〈n1 + 1〉 6= 〈n1 + 1, n1 + n2 + 2〉 or

〈n1 + n2 + 2〉 6= 〈n1 + 1, n1 + n2 + 2〉, then Ym|n1,n2
is avoidable.

Proof. Let x = n1+1 and y = n1+n2+2 if 〈n1+1〉 6= 〈n1+1, n1+n2+2〉,

x = n1 + n2 + 2 and y = n1 + 1 otherwise. Once again, we will proceed by

breaking the claim down into lots of subcases, though first we mention a few

properties common to most of the subcases. Let k be the smallest positive

integer so that ky ∈ 〈x〉, then note that k > 1 because 〈x〉 6= 〈x, y〉. Let

H0 = Hm|x−1, H1 = y+H0, . . . , Hk−1 = y+Hk−2, then note thatHi has the

same number of vertices as H0, where |H0| > 1 (since x 6≡ 0 mod 2m+ 2).

Furthermore, if j is a vertex of H , then j is a vertex of Hi for some unique

i. Define ai = iy mod 2m+ 2, and note that ai is a vertex of Hi.

Consider the possibility that m + 1 is not a vertex in H0. Then there

are a few cases to consider. Note that by Proposition 2.28 k is even and

m + 1 is a vertex of H k
2
. Define the coloring c∗ of H0 so that c∗(0) = a,

c∗(x) = a, and c∗(j + x) = c∗(j) if j is a vertex of H0, j 6= 0 mod 2m+ 2.

First, if |H0| is even, then define a coloring c on H . If j is a vertex in

H0, then define kj to be the smallest nonegative integer so that j = kjx. If

kj is even, let c(j) = a, and let c(j) = b otherwise. If j ∈ Hi and 0 < i < k
2 ,

let c(j) = c(j − ai). If i ≥
k
2 let c(j) = c(j − (m+ 1)). Then c is a coloring

of H that avoids Ym|n1,n2
. To see this, let j be a vertex in Hi. Note that

c(j + x) 6= c(j) if j 6≡ ai + (|H0| − 1)x mod 2m+ 2 and, since |H0| is even,

c(j + x) = c(ai) 6= c(j) if j ≡ ai + (|H0| − 1)x mod 2m+ 2. Furthermore,

j+m+1 is a vertex ofH(i+ k
2 ) mod k, and c(j+m+1) 6= c(j) by construction.

Second, if |H0| is odd and k = 2, then define H ′
0 as the graph induced

by 〈y〉, and define H ′
i = x +H ′

i−1. Let k′ be the smallest positive integer

so that k′x ∈ 〈y〉. Then |H ′
0| is even (since ly = 0 implies k divides l, so

l is even), so either the first case above holds, or else m + 1 is a vertex of

H ′
0. In the latter case, note that, since 2|H0| = k|H0| = k′|H ′

0| = |H |, |H0|

is odd, and |H ′
0| is even, it follows that k′ is odd and

|H′

0|
2 is odd (since

k′|H ′
0| = 2k′ |H

′

0|
2 is only divisible by 2 once). Therefore either k′ > 1, in
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which case
|H′

0|
2 is odd and we can apply the first case below when m + 1

is a vertex of H0, or else k′ = 1, in which case we can use the coloring so

that given an integer q, c(2qy) = a, c((2q + 1)y) = b, which is a coloring of

H that avoids Ym|n1,n2
.

Third, if |H0| is odd, k > 2, and k
2 = β is odd, then define a coloring c

of H as follows. If c∗(βy −m− 1 mod 2m+ 2) = a, color so that if j is a

vertex of H0 then c(j) = c∗(j), otherwise define recursively c(j) = c(j − y)

(which we can do since if j is a vertex of Hi then j − y is a vertex of

Hi−1). We can check that c is a coloring of H that avoids Ym|n1,n2
. If

c∗(βy −m− 1 mod 2m+ 2) = b, then define c′(j) = c(j) if j is a vertex of

Hi with i /∈ {β − 1, k− 1}, and define c′(j) = c(j − x) if j is a vertex of Hi

with i ∈ {β − 1, k − 1}. Then c′ is a coloring of H that avoids Ym|n1,n2
.

Fourth, if |H0| is odd, k > 2, k
2 = β is even, and k 6= 4, then the

possibilities are that either:

• c∗(βy −m− 1 mod 2m+ 2) = a, in which case just define c as in the

third case.

• βy−m− 1 mod 2m+ 2 6= x, in which case define c′ as in the third case.

• βy − m − 1 mod 2m+ 2 = x, in which case define c′′ as c′′(j) = c′(j)
when j is a vertex of Hi, i /∈ {β− 1, β− 2, k− 1, k− 2}, c′′(j) = c′(j− x)

otherwise.

Fifth, if |H0| is odd and k = 4, then set k
2 = β. With the exception

of when x ≡ βy − m − 1 ≡ 2y − m − 1 mod 2m+ 2, the arguments from

the fourth case work in this case also. If x ≡ βy − m − 1 ≡ 2y − m −

1 mod 2m+ 2, then note that there are two subcases. If x = n1 + 1 and

y = n1+n2+2, note that x+m+1 ≡ 2y mod 2m+ 2. Rearranging we get

m ≡ 2n2 + n1 + 2 mod 2m+ 2. If, on the other hand, x = n1 + n2 + 2 and

y = n1+1, it follows thatm ≡ n1−n2−1 ≡ 2m+2+n1−n2−1 mod 2m+ 2.

Some simple algebra gives m ≡ n2 − n1 − 1 mod 2m+ 2.

Next, consider the possibility that m+1 is a vertex in H0. Then |H0| is

even by Proposition 2.27, so define α = |H0|
2 . Proposition 2.27 also implies

that αx = m+1. Define the coloring c∗ of H0 so that c∗(0) = a, c∗(x) = a,

c∗(tx) = c∗(tx− x) when 1 < t < α, and else c∗(tx) = c∗(tx− αx). Then

there are a few cases to consider.

First, if α is odd, then we will define a coloring c on H . If j is a vertex

of H0, let kj be the smallest positive integer so that j = kjx. If kj is even

let c(j) = a, otherwise let c(j) = b. And if j is a vertex of Hi, i 6= 0, define
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c(j) = c(j − ai). Note that c(j) 6= c(j + x) and c(j +m+ 1) 6= c(j), so c is

a coloring of H that avoids Ym|n1,n2
.

Second, if α is even and k is odd, then note that if j ∈ H0, j 6≡ 0 mod

2m+ 2, and j 6≡ αx mod 2m+ 2, then c∗(j) 6= c∗(j + x). Moreover, since

αx = m + 1, c∗(j) 6= c∗(j + m + 1) = c∗(j + αx) for j ∈ H0. There are

three possibilities:

• If c∗(ky) = b, then define c(j) = c∗(j) if j ∈ H0, and recursively define

c(j) = c(j − y).

• If ky 6= x, then define c′(j) = c(j) if j /∈ Hk−1, c
′(j) = c(j−x) otherwise.

• If ky = x, then define c′′(j) = c′(j) if j /∈ Hk−1, Hk−2, c
′′(j) = c′(j − x)

otherwise.

Third, if α is even, k is even, and k 6= 2, then we have three cases to

consider:

• If c∗(ky) = a, then define c(j) = c∗(j) if j ∈ H0, and recursively define

c(j) = c(j − y).

• If ky 6= (α + 1)x, then define c′(j) = c(j) if j /∈ Hk−1, c
′(j) = c(j − x)

otherwise.

• If ky = (α + 1)x, then define c′′(j) = c′(j) if j /∈ Hk−1, Hk−2, c
′′(j) =

c′(j − x) otherwise.

Fourth, if α is even and k = 2, then note that except when ky = (α+1)x

the same arguments work for this case as in the third case. So the only

case to consider is when 2y ≡ (α + 1)x ≡ m + 1 + x mod 2m+ 2, which

implies 2y − x − 1 ≡ m mod 2m+ 2. If x = n1 + 1 and y = n1 + n2 + 2,

then m ≡ 2n2 + n1 + 2 mod 2m+ 2. Otherwise x = n1 + n2 + 2 and

y = n1 + 1, m ≡ n1 − n2 − 1 ≡ 2m + 2 + n1 − n2 − 1 mod 2m+ 2 which

gives m ≡ n2 − n1 − 1 mod 2m+ 2. The claim then follows. �

Note that Lemma 2.29 and Lemma 2.30 account for a large number of

avoidable sets.

Corollary 2.31. If all of the following conditions hold

• 〈n1 + n2 + 2〉 6= {0},

• 〈n1 + 1〉 6= {0},

• 〈n2 + 1〉 6= {0},

• either 〈n1+1〉 6= 〈n1+1, n1+n2+2〉 or 〈n1+n2+2〉 6= 〈n1+1, n1+n2+2〉,

• 2n2 + n1 + 2 6≡ m mod 2m+ 2,

• n2 − n1 − 1 6≡ m mod 2m+ 2,

then Ym|n1,n2
is avoidable.
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Proof. The claim follows from Lemma 2.29 and Lemma 2.30. �

In order to prove Theorem 2.40, from now on we only need to consider

the case when 〈n1 +1〉 = 〈n1 +n2 +2〉 = 〈n2 +1〉 6= {0}. This implies that

the vertex set of H is equal to 〈n1+1〉, since 〈n1+1〉 = 〈n1+1, n1+n2+2〉.

We will henceforward assume that these conditions hold on n1 and n2.

Lemma 2.32. There exist no nonnegative integers m,n1, n2 so that 〈n1 +

1〉 = 〈n1 + n2 + 2〉 = 〈n2 + 1〉 6= {0} and m + 1 ∈ 〈n1 + 1〉 (or m+ 1 is a

vertex of H).

Proof. Assume such m,n1 and n2 exist. Then note that |〈n1+1〉| = r is

even by Proposition 2.27. Then there exists an integer k, 1 < k < r, so that

k(n1 + 1) ≡ n2 + 1 mod 2m+ 2. Furthermore, note that (k + 1)(n1 + 1) ≡

(n1 + n2 + 2) mod 2m+ 2. Obviously either k is even or k + 1 is even.

If k is even then, since n1 + 1 ∈ 〈n2 + 1〉, there exists a positive integer,

q, so that n1 + 1 ≡ q(n2 + 1) ≡ kq(n1 + 1) mod 2m+ 2. This implies

that qk ≡ 1 mod r, so 1 = αr + qk for some integer α. Since r and k are

both even, however, this implies that 1 is even, a contradiction. If, on the

other hand, k + 1 is even, the same argument applies, again leading to a

contradiction. Therefore the claim follows. �

All that is left to consider is the case when m+ 1 is not a vertex of H .

Lemma 2.33. If 〈n1 + 1〉 = 〈n2 + 1〉 = 〈n1 + n2 + 2〉 6= {0}, m+ 1 is not

a vertex of H and |H | is even, then Ym|n1,n2
is avoidable.

Proof. Color the vertices of H as follows: for any integer x < |H|
2 let

c((2x+ 1)(n1 + 1)) = a and c((2x)(n1 + 1)) = b. Then c is a coloring of H

that avoids Ym|n1,n2
, since c(i) 6= c(i+ n1 + 1). �

Lemma 2.34. If 〈n1 + 1〉 = 〈n2 + 1〉 = 〈n1 + n2 + 2〉 6= {0}, m + 1

is not a vertex of H, then let k be the smallest positive integer so that

k(n1+n2+2) ≡ n1+1 mod 2m+ 2. If k is even, then Ym|n1,n2
is avoidable.

Proof. Consider the following coloring. Let c(0) = a, and, for any i,

0 < i < |H |, if i is odd let c(i(n1 + n2 + 2)) = a, and otherwise set

c(i(n1 + n2 + 2)) = b. Since for any i 6= 0, c(i) 6= c(i + n1 + n2 + 2), and

since c(0) = a 6= b = c(0 + n1 + 1), it follows that c is a coloring of H that

avoids Ym|n1,n2
. Therefore the claim follows. �

Lemma 2.35. If 〈n1 + 1〉 = 〈n2 + 1〉 = 〈n1 + n2 + 2〉 6= {0}, m + 1

is not a vertex of H, then let k1 be the smallest positive integer so that
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k1(n1 + n2 + 2) ≡ n1 + 1 mod 2m+ 2, and let k2 be the smallest positive

integer so that k2(n1+n2+2) ≡ n2+1 mod 2m+ 2. Then either k1 < |H|
2 +1

or k2 < |H|
2 + 1.

Proof. We know that (n1 + 1) + (n2 + 1) = n1 + n2 + 2, so k1 + k2 ≡

1 mod |H |. Furthermore, since 1 < k1 < |H | and 1 < k2 < |H | are minimal,

1 < k1+k2 < 2|H | < 2|H |+1, so the only possibility is that k1+k2 = |H |+1.

The claim easily follows. �

Lemma 2.36. Let k1, k2 be as defined in Lemma 2.35. If

• 〈n1 + 1〉 = 〈n2 + 1〉 = 〈n1 + n2 + 2〉 6= {0},

• m+ 1 is not a vertex of H,

• k1 ≤ 3 or k2 ≤ 3,

• |H | > (k1)
2
− 1 or |H | > (k2)

2
− 1,

then there is a coloring of H that avoids Ym|n1,n2
.

Proof. Assume that k1 = min{k1, k2}, and so k1 ≤ 3 and r = |H | >

(k1)
2
− 1. We want to show that there exist nonnegative integers x and y

so that x+ y is even and r = x(k1 − 1) + yk1. To see this, by Lemma 2.34,

we can assume that k1 is odd. Note for any nonnegative integer q that

(k1 + 1 + 2q) is even, so (k1 + 1 + 2q)(k1 − 1) can be written in the above

form. If p is such that k1+1+2q ≥ p ≥ 0, then (k1+1+2q)−p+p = k1+1+2q

is even and (k1 + 1 + 2q)(k1 − 1) + p = (k1 + 1 + 2q − p)(k1 − 1) + pk1, so

(k1 + 1 + 2q)(k1 − 1) + p can also be written in the above form.

Furthermore, note that under our assumptions r falls into an interval of

the form [(k1 +1+ 2q)(k1 − 1)..(k1 +1+ 2q)k1], so there exist nonnegative

integers x and y so that x+y is even and r = x(k1−1)+yk1. In such case,

we colorH as follows. Since 〈n1+n2+2〉 equals the vertex set of H , if j is a

vertex ofH there exists a unique integer t, 0 ≤ t < |H | = r = x(k1−1)+yk1,

so that j = t(n1 + n2 + 2). If t < x(k1 − 1), let β be the largest integer so

that t ≥ β(k1− 1). Then if β is even define c(j) = a, otherwise let c(j) = b.

If t ≥ x(k1 − 1), let β be the largest integer so that t ≥ x(k1 − 1) + βk1. If

x+ β is even, let c(j) = a, otherwise let c(j) = b. Then c is a coloring of H

that avoids Ym|n1,n2
, since c(j) 6= c(j+n1+1) or c(j) 6= c(j+n1+n2+2),

so the lemma follows. �

Lemma 2.37. Let k1, k2 be as defined in Lemma 2.35. If m + 1 is not a

vertex of H, 〈n1 +1〉 = 〈n2 +1〉 = 〈n1 +n2 +2〉 6= {0}, k1 > 3 and k2 > 3,

then Ym|n1,n2
is avoidable.
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Proof. We can assume k1 and k2 are odd, since otherwise by Lemma 2.34

Ym|n1,n2
is avoidable. Similarly, we can assume that |H | is odd by

Lemma 2.33.

Furthermore, note by Proposition 2.23 that if j is a vertex ofH , j+m+1

is not.

By Lemma 2.35, either k1 < |H|
2 + 1 or k2 < |H|

2 + 1. Without loss

of generality, we can assume k1 < |H|
2 + 1. Then k1 − 1 < |H|

2 , so, if

β = b
|H|
k1−1c, it follows that β ≥ 2. We then break the problem into three

cases where j is a vertex of H .

First, if β is even, then let us define the coloring of {0, n1 + n2 +

2, . . . , (k1−2)(n1+n2+2)} so that c∗(0) = a, c∗(n1+n2+2) = a, and for 1 <

i < k1 − 1, define recursively c∗(i(n1 + n2 + 2)) = c∗((i − 1)(n1 + n2 + 2)).

Then let tj be the smallest nonegative integer so that tj(n1 + n2 + 2) = j,

and let tj = αj(k1 − 1) + rj so that 0 ≤ rj < k1 − 1. If αj is even, then

c(j) = c∗(rj(n1 + n2 + 2)), otherwise let c(j) = c∗(rj(n1 + n2 + 2)). This

coloring c of H avoids Ym|n1,n2
. To see this, note that if 0 ≡ k1−1 mod |H |,

then c(j) 6= c(j + n1 + 1), and otherwise c(j) 6= c(j + n1 + n2 + 2) so the

claim follows.

Second, if β is odd and 1 6= |H | mod k1 − 1, then let c∗, αj , rj , tj be as

defined above. Then let c be as defined above. We define c′ as follows: if

tj < |H |+1−k1, then c′(j) = c(j). Else, define recursively c′(|H |+1−k1) =

b, c′(j) = c′(tj(n1 + n2 + 2)) = c′((tj − 1)(n1 + n2 + 2)). Then c′ is a

coloring of H that avoids Ym|n1,n2
by a similar argument to that in the first

case, which is what we wanted.

Third, if β is odd and 1 = |H | mod k1 − 1, then let c∗, αj , rj , tj , c, c
′ be

as defined above. If tj ≤ k1 − 3 then define c′′(j) = c′(j), if k1 − 3 < tj <

(|H | − 2)(n1 + n2 + 2) define c′′(j) = c′((tj + 2)(n1 + n2 + 2)), and also

define c′′((|H | − 1)(n1 + n2 + 2)) = b, and c′′((|H | − 2)(n1 + n2 + 2)) = a.

Then c′′ is a coloring of H that avoids Ym|n1,n2
by a similar argument to

that in the first case, proving the claim. �

Lemma 2.38. If m + 1 is not a vertex of H, 〈n1 + 1〉 = 〈n2 + 1〉 =

〈n1 + n2 + 2〉 6= {0}, and H is not isomorphic to any of H6|n′

1,n
′

2
, where

n′
1 6= n′

2, n
′
1, n

′
2 ∈ {1, 3, 7}, then Ym|n1,n2

is avoidable.

Proof. Let k1, k2 be as defined in Lemma 2.35. As in the proof of

Lemma 2.37, k1, k2, and |H | are odd. If k1 > 3 and k2 > 3, then by

Lemma 2.37 Ym|n1,n2
is avoidable. Otherwise, if |H | > 32 − 1 = 8, it fol-

lows by Lemma 2.36 that Ym|n1,n2
is avoidable. Finally it is just a matter
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of checking all possible graphs with at most eight vertices in order to verify

the result. �

Lemma 2.39. If gcd(m + 1, n1 + 1, n2 + 1) = 1, 〈n1 + 1〉 = 〈n2 + 1〉 =

〈n1 + n2 + 2〉 6= {0}, H is isomorphic to H6|1,3, H6|1,7, or H6|3,7, then

m = 6 and

c2m+2(Ym|n1,n2
) ∈ {Y6|1,3, Y6|1,7, Y6|3,7, Y6|3,1, Y6|7,1, Y6|7,3}

Proof. Since gcd(m+1, n1+1, n2+1) = 1, note that K = 〈n1+1〉∪((m+

1)+ 〈n1 +1〉) is a subgroup of Z2m+2. Furthermore, m+1, n1+1, n2+1 ∈

K. From here it follows that 1 = gcd(m + 1, n1 + 1, n2 + 1) ∈ K, so

K = Z2m+2. Since H is isomorphic to one of H6|1,3, H6|1,7, or H6|3,7,
the number of elements in the vertex set of H is seven. Since 〈n1 + 1〉 =

〈n1 + 1, n1 + n2 + 2〉 is the vertex set of H , |〈n1 + 1〉| = 7. This implies

K has fourteen elements. Since K = Z2m+2, it follows that 2m + 2 =

14, so m = 6. Therefore c2m+2(Ym|n1,n2
) = Y6|n′

1,n
′

2
, where n′

1 and n′
2

are nonnegative integers. From this point it is easy to write a computer

program to check all 14-canonical sets of the form Y6|n′

1,n
′

2
, and realizing

the only ones with H6|n′

1,n
′

2
isomorphic to one of H6|1,3, H6|1,7, or H6|3,7

are {Y6|1,3, Y6|1,7, Y6|3,7, Y6|3,1, Y6|7,1, Y6|7,3}. The claim follows. �

Now it is time to put everything together.

Theorem 2.40. Let m,n1, n2 be nonegative integers such that n1 ≤ n2 and

gcd(m+ 1, n1 + 1, n2 + 1) = 1. In case m = 6, also assume that if n′
1 6= n′

2

and n′
1, n

′
2 ∈ {1, 3, 7}, then c2m+2(Ym|n1,n2

) 6= Ym|n′

1,n
′

2
. Then Ym|n1,n2

is

avoidable if all of (2.10)–(2.15) are satisfied:

n1 + n2 6≡ 2m mod 2m+ 2 (2.10)

n1 + 1 6≡ 0 mod 2m+ 2 (2.11)

n2 + 1 6≡ 0 mod 2m+ 2 (2.12)

2n1 + n2 + 2 6≡ m mod 2m+ 2 (2.13)

2n2 + n1 + 2 6≡ m mod 2m+ 2 (2.14)

n2 − n1 − 1 6≡ m mod 2m+ 2 (2.15)

Proof. Let m,n1 and n2 satisfy all the conditions. Note the m = 6

condition that “if n′
1 6= n′

2 and n′
1, n

′
2 ∈ {1, 3, 7}, then c2m+2(Ym|n1,n2

) 6=

Ym|n′

1,n
′

2
” implies that (m,n1, n2) 6∈ {(6, 1, 3), (6, 3, 7), (6, 1, 7)}. We need

to consider a few cases. If 〈n1 + 1〉 6= 〈n1 + 1, n1 + n2 + 2〉 or 〈n1 +

n2 + 2〉 6= 〈n1 + 1, n1 + n2 + 2〉, then Corollary 2.31 implies that Ym|n1,n2
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is avoidable. If 〈n1 + 1〉 = 〈n2 + 1〉 = 〈n1 + n2 + 2〉 and m + 1 is not

a vertex of H , then by Lemma 2.39 we have that H is not isomorphic

to any of H6|1,3, H6|1,7, H6|3,7, H6|3,1, H6|7,1 or H6|7,3, and by Lemma 2.38

we get that Ym|n1,n2
is avoidable. The only case left is when 〈n1 + 1〉 =

〈n1 + n2 + 2〉 = 〈n2 + 1〉 and m + 1 is a vertex in H , but this case never

occurs by Lemma 2.32, so the theorem follows. �

Indeed, Theorem 2.40 will help us prove Conjectures 2.9 and 2.10.

Therefore, in order to prove them we need only consider the cases:

• n2 − n1 − 1 ≡ m mod 2m+ 2,

• 2n1 + n2 + 2 ≡ m mod 2m+ 2 or 2n2 + n1 + 2 ≡ m mod 2m+ 2,

• n1 + n2 + 2 ≡ 0 mod 2m+ 2, n1 + 1 ≡ 0 mod 2m+ 2, or n2 + 1 ≡

0 mod 2m+ 2,

• m = 6,

which will be considered in Sections 2.5.1–2.5.4 that follow. Note we can

always assume that m > 2, since [4] proves Conjecture 2.9 when 0 ≤ m ≤

2. We state this claim on occasion without justification, so we put this

justification here.

Before continuing, we need to prove a technical lemma that will be very

useful in the next few subsections.

Lemma 2.41. Let p be a positive odd integer, m a nonnegative integer, and

x a positive integer. Assume u = (ab)
p−1
2 b, x−(m+1) = p, gcd(x,m+1) =

1. Then for every integer k, 0 ≤ k < p(m + 1), there exists a unique

pair of integers, ik and jk, so that 0 ≤ ik < p, 0 ≤ jk < m + 1, and

ik(m+ 1) + jkx ≡ k mod p(m+ 1). For every such k we define v of length

p(m+ 1) so that v(k) = u(ik + jk mod p). Then

• If v(k) = a, then v(k +m+ 1 mod p(m+ 1)) = b.

• If v(k) = b and z is an integer so that 1 < 2z + 1 < p, then either

v(k+x mod p(m+ 1)) = a or v(k−(2z+1)(m+1)+2xmod p(m+ 1)) =

a.

• If v(k) = b and z is an integer so that 0 < 2z < p, then either v(k +

x mod p(m+ 1)) = a or v(k + 2z(m+ 1) mod p(m+ 1)) = a.

Proof. Let u, p, x,m be as defined above. First note that gcd(p, x) = 1,

and so gcd(p(m + 1), x) = 1. Similarly, gcd(m + 1, p) = 1. The first

statement is trivially equivalent to the fact that any number k such that 0 ≤

k < p(m+ 1) is uniquely determined by the pair (k mod p, k mod m+ 1).
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Therefore we can define ik, jk and v as above. Then assume that 0 ≤

k < p(m+1). First consider the case that v(k) = a, then u(ik+jk mod p) =

a. Furthermore, note that this implies u(ik + 1 + jk mod p) = b, and so

v((ik + 1)(m+ 1) + jkx mod p(m+ 1)) = v(k +m+ 1 mod p(m+ 1)) = b.

Next consider the possibility that v(k) = b. We know that u(ik +

jk mod p) = b. If ik + jk 6≡ p − 2 mod p, then v(k + x mod p(m+ 1)) =

u(ik + jk +1 mod p) = a. If ik + jk ≡ p− 2 mod p then v(k− (2z+1)(m+

1)+2x mod p(m+ 1)) = u(ik+ jk− (2z+1)+2 mod p) = u(p−2z−1) = a

(since 0 ≤ p − 2z − 1 < p − 1, and p − 2z − 1 is even), and so the claim

follows.

Finally, we simply need to show that if ik + jk ≡ p − 2 mod p then

v(k + 2z(m + 1) mod p(m+ 1)) = a, but this simply implies u(p − 2 +

2z mod p) = a, which is easy to see. �

2.5.1 The m ≡ n2 − n1 − 1 mod 2m + 2 case

The following lemma takes care of the m ≡ n2 − n1 − 1 mod 2m+ 2 case.

Lemma 2.42. Let m,n1, n2 be nonnegative integers such that gcd(m +

1, n1+1, n2+1) = 1. If for some integer z > 0, m+z(2m+2) = n2−n1−1,

then Xm|n1,n2
is avoidable.

Proof. As mentioned earlier, we can assume that m > 2. It suffices to

prove the result for Xm|n2,n1
. Begin by noting that gcd(m+ 1, n1 + 1) = 1

and gcd(m+1, n2+1) = 1. To see this, assume this was not the case. Then

note that (2z+1)(m+1) = (n2+1)−(n1+1), so if s divides n2+1 and m+1

or n1 + 1 and m + 1, it also divides the remaining member, so it divides

gcd(m+1, n1+1, n2+1) = 1, and therefore s = 1. By definition, this means

that gcd(m+ 1, n1 + 1) = 1 and gcd(m+ 1, n2 + 1) = 1. It follows that at

most one of n1+1, n2+1 and m+1 is even (since if m+1 is even, n1+1 and

n2+1 are odd because gcd(m+1, n1+1) = 1 and gcd(m+1, n2+1) = 1; if

n1+1 is even then m+1 is odd, so n2+1 = (2z+1)(m+1)+n1+1 is odd,

and a similar argument holds if n2+1 is even). Furthermore, if m+1 is odd,

either n1+1 is odd, implying Xm|n1
and thus Xm|n1,n2

is avoidable, or else

n2 + 1 is odd, implying Xm|n2
and thus Xm|n1,n2

is avoidable. Therefore,

we can assume m+ 1 is even, and that n1 + 1 and n2 + 1 are odd.

Let p = n2 −m = n2 +1− (m+1). It follows from the above argument

that we can assume p is odd. Furthermore, note that p > 2z + 1, since

n2 − m = (2z + 1)(m + 1) + n1 − m = 2z(m + 1) + n1 + 1 > 2z + 1.

Then let us define the word u = (ab)
p−1
2 b. Note that |u| = p. Define v as in
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Lemma 2.41. Then we can let x = n2+1. We claim w = vZ avoidsXm|n2,n1
.

To see this, first assume that w(k) = v(k mod p(m+ 1)) = a, then by

Lemma 2.41 it follows that w(k+m+1) = v(k+m+1 mod p(m+ 1)) = b,

and so w avoids a�ma. Furthermore, if w(k) = v(k mod p(m+ 1)) = b

then either a = v(k + n2 + 1 mod p(m+ 1)) = w(k + n2 + 1) or a =

v(k− (2z+1)(m+1)+ 2xmod p(m+ 1)) = w(k− (2z+1)(m+1)+ 2x) =

w(k + n1 + n2 + 2). Therefore, assume that there exists an occurrence of

b�n2b�n1b. Then there exists an integer i so that w(i) = b, w(i+n2+1) = b,

and w(i+ n1 + n2 + 2) = b, but by the above argument that is impossible,

so w avoids b�n2b�n1b and thus avoids Xm|n2,n1
, proving the lemma. �

2.5.2 The m ≡ 2n1 + n2 + 2 mod 2m+ 2 and m ≡ 2n2 +

n1 + 2 mod 2m+ 2 cases

Here we discuss the m ≡ 2n1 + n2 + 2 mod 2m+ 2 case (the m ≡ 2n2 +

n1 + 2 mod 2m+ 2 case is symmetric).

Lemma 2.43. If m,n1, n2, z are nonnegative integers such that z > 0,

gcd(m+1, n1 +1, n2 +1) = 1, and z(2m+2)+m+1 = (2z+1)(m+1) =

2n1 + n2 + 3, then Xm|n1,n2
is avoidable.

Proof. We know this holds when m = 0, m = 1 or m = 2, so let us

assume m > 2.

Begin by noting that gcd(m+ 1, n1 + n2 + 2) = 1. If this were not the

case, then it would follow that gcd(m + 1, n1 + n2 + 2) = s > 1. This,

however, implies that s divides (2z + 1)(m + 1)− (n1 + n2 + 2) = n2 + 1,

and, moreover, s divides n1 + n2 + 2 − (n2 + 1) = n1 + 1, so s divides

gcd(m + 1, n1 + 1, n2 + 1) = 1, a contradiction. Similarly, we have that

gcd(n2 + 1,m+ 1) = 1. This implies that at most one of m+ 1 and n2 + 1

is even, but if m + 1 is odd, (2z + 1)(m+ 1)− 2(n2 + 1) = n1 + 1 is odd,

so Xm|n1
is avoidable. Therefore we can assume m+1 is even, n2 +1 odd,

which implies n1 + 1 is even, so n1 + n2 + 2 is odd.

Let p = n1 + n2 − m + 1 = (n1 + n2 + 2) − (m + 1). First note that

p is odd. Let us assume that either m > 5, or else m ≥ 3 and z ≥ 2 (this

excludes a finite number of cases that are easily checked). Then we have

that p > 2z + 1. To see this, first note that n2 + 1 < (z + 1
2 )(m + 1), so

p = (n1+n2+2)−(m+1) = 2n1+n2+3−m−1−n2−1 = (2z+1)(m+1)−m−

1−n2−1 = 2z(m+1)−(n2+1) > 2z(m+1)−(z+ 1
2 )(m+1) = (z− 1

2 )(m+1).

Then note when m > 5 that p > (z− 1
2 )(m+1) > (z− 1

2 )6 = 2z+4z− 3 ≥
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2z+z ≥ 2z+1. Similarly when m ≥ 3 and z ≥ 2 that p > (z− 1
2 )(m+1) ≥

(z− 1
2 )4 = 4z−2 = 2z+2z−2 ≥ 2z+4−2 = 2z+2 > 2z+1, so p > 2z+1.

Then let us define a word of lenth p, u = (ab)
p−1
2 b. Define v as in

Lemma 2.41. Then we can let x = n1 + n2 + 2. We claim that w =

vZ avoids Xm|n1,n2
. To see this, first assume that w(k) = a, then by

Lemma 2.41 it follows that w(k+m+1) = v(k+m+1 mod p(m+ 1)) = b,

and so w avoids a�ma. Furthermore, if w(k) = v(k mod p(m+ 1)) = b

then either a = v(k + n1 + n2 + 2 mod p(m+ 1)) = w(k + n1 + n2 + 2) or

a = v(k−(2z+1)(m+1)+2xmod p(m+ 1)) = w(k−(2z+1)(m+1)+2x) =

w(k − 2n2 − n1 − 3 + 2n2 + 2n1 + 4) = w(k + n1 + 1). Therefore, assume

that there exists an occurrence of b�n1b�n2b, then there exists an i so that

w(i) = b, w(i + n1 + 1) = b, and w(i + n1 + n2 + 2) = b, but by the above

argument that is impossible, so w avoids b�n1b�n2b and thus Xm|n1,n2
,

proving the lemma. �

2.5.3 The n1 + n2 + 2 ≡ 0 mod 2m + 2, n1 + 1 ≡ 0 mod

2m + 2, and n2 + 1 ≡ 0 mod 2m + 2 cases

First, we treat the n1 + n2 + 2 ≡ 0 mod 2m+ 2 case.

Lemma 2.44. Let m,n1, n2 be nonegative integers, n1 ≤ n2, gcd(m +

1, n1+1, n2+1) = 1, z an integer so that z > 1, and z(2m+2) = n1+n2+2.

Then Xm|n1,n2
is avoidable.

Proof. It suffices to prove the claim for Xm|n2,n1
. We can assume that

m > 2, since we already know it is true otherwise. Furthermore, we can

easily check the claim when m ∈ {3, 4} and z ∈ {2, 3, 4}, so we can assume

that m ∈ {3, 4} and z > 4 or m > 4 and z > 1. Then set p = n2−m. Then

p > 2z, since 2z(m+ 1) = n1 + n2 + 2 ≥ 2(n1 + 1), so z(m+ 1) ≥ n1 + 1

and z(m+1) ≤ n2+1. If m > 4 and z > 1, then p = n2−m = 2z(m+1)−

n1−m−2 ≥ z(m+1)− (m+1) = (z−1)(m+1) = 2z+z(m−1)−m−1 ≥

2z + 2(m − 1) −m − 2 = 2z +m − 4 > 2z. If m ∈ {3, 4} and z > 4 then

p = n2−m = 2z(m+1)−n1−m−2 ≥ z(m+1)−(m+1) = (z−1)(m+1) =

2z+z(m−1)−m−1 ≥ 2z+3(m−1)−m−1 = 2z+2m−4 > 2z. Furthermore,

note that gcd(m+ 1, n2 + 1) = 1 and that p is odd, by a similar argument

to those above.

We then define u = (ab)
p−1
2 b. Define v as in Lemma 2.41. Then we can

let x = n2 + 1. We claim that w = vZ avoids Xm|n2,n1
. To see this, first

assume that w(k) = a, then by Lemma 2.41 it follows that w(k+m+1) =
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v(k + m + 1 mod p(m+ 1)) = b, and so w avoids a�ma. Furthermore, if

w(k) = v(k mod p(m+ 1)) = b then either a = v(k + x mod p(m+ 1)) =

v(k + n2 + 1 mod p(m+ 1)) = w(k + n2 + 1) or a = v(k + 2z(m+ 1) mod

p(m+ 1)) = w(k + 2z(m + 1)) = w(k + n1 + n2 + 2). Therefore, assume

that there exists an occurrence of b�n2b�n1b, then there exists an i so that

w(i) = b, w(i + n2 + 1) = b, and w(i + n1 + n2 + 2) = b, but by the above

argument that is impossible, so w avoids b�n2b�n1b and thus Xm|n2,n1
,

proving the lemma. �

Now, we treat the n1 + 1 ≡ 0 mod 2m+ 2 case (the n2 + 1 ≡ 0 mod

2m+ 2 case is symmetric).

Lemma 2.45. Let m,n1, n2, z be nonnegative integers so that z > 0, n1 +

1 = 2z(m+1), gcd(m+1, n1 +1, n2 +1) = 1. Then Xm|n1,n2
is avoidable.

Proof. This is true when m = 0, so we can assume m > 0. Note that

gcd(m + 1, n1 + n2 + 2) = 1. To see this, note that gcd(m + 1, n2 + 1) =

gcd(m + 1, 2z(m + 1), n2 + 1) = gcd(m + 1, n1 + 1, n2 + 1) = 1, and so

gcd(m+1, n1+n2+2) = gcd(m+1, n2+1+2z(m+1)) = gcd(m+1, n2+1) =

1. Furthermore, note that we can assume p = n1+n2−m+1 = n1+n2+2−

(m+1) is odd. To see this, first consider the case m+1 is odd, then if p is

even, p+(m+1)−(n1+1) = p+(m+1)−2z(m+1) = n2+1 is odd, soXm|n2

is avoidable and thus Xm|n1,n2
is avoidable. If m+ 1 is even and p is even

then p+(m+1)−2z(m+1) = n2+1 is even, as is n1+1, which contradicts

the claim that gcd(m+1, n1+1, n2+1) = 1. Therefore, we can assume p is

odd. Furthermore, note that p > 2z, since p = n1 +1+ n2 +1− (m+1) =

n2 + 1 + 2z(m+ 1)− (m+ 1) = n2 + 1 + (2z − 1)(m+ 1) > 2z.

Let us define u = (ab)
p−1
2 b. Define v as in Lemma 2.41. Then we can let

x = n1+n2+2. We claim w = vZ avoidsXm|n1,n2
. To see this, first assume

that w(k) = a, then by Lemma 2.41 it follows that w(k +m + 1) = v(k +

m + 1 mod p(m+ 1)) = b, and so w avoids a�ma. Furthermore, if w(k) =

v(k mod p(m+ 1)) = b then either a = v(k+ n1 + n2 +2 mod p(m+ 1)) =

w(k+ n1 +n2 +2) or a = v(k+2z(m+1) mod p(m+ 1)) = w(k+2z(m+

1)) = w(k + n1 + 1). Therefore, assume that there exists an occurrence of

b�n1b�n2b, then there exists an i so that w(i) = b, w(i + n1 + 1) = b, and

w(i+n1 +n2 +2) = b, but by the above argument that is impossible, so w

avoids b�n1b�n2b and thus Xm|n1,n2
, proving the lemma. �
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2.5.4 The m = 6 case

We now discuss the m = 6 case.

Lemma 2.46. If n > 181, then there exist nonnegative integers x1, x2 such

that n = 14x1 + 15x2.

Proof. It is easy to check that this claim holds for n ∈ {182, . . . , 195} =

S. Then note that S has fourteen consecutive elements, so every integer

n > 181 can be written in the form n = 14q + r for some r ∈ S. Then,

however, if x1, x2 are the nonnegative integers so that r = 14x1 + 15x2, it

follows that n = 14(x1 + q) + 15x2, and so the claim follows. �

Referring to Lemma 2.46, the Frobenius problem gives 14 × 15− (14 +

15) = 181. More generally, given a, b with gcd(a, b) = 1, the largest integer

not representable as ax1 + bx2 with x1, x2 ≥ 0 is x1x2 − (x1 + x2).

Lemma 2.47. If n > 38, then there exist nonnegative integers x1, . . . , x6

such that n = 13x1 + 14x2 + · · ·+ 18x6.

Proof. It is easy to check that this claim holds for n ∈ {39, . . . , 51} =

S. Then note that S has thirteen consecutive elements, so every integer

n > 38 can be written in the form n = 13q + r for some r ∈ S. Then,

however, if x1, . . . , x6 is the sequence of nonnegative integers such that

r = 13x1+14x2+· · ·+18x6, it follows that n = 13(x1+q)+14x2+· · ·+18x6,

and so the claim follows. �

Lemma 2.48. Let n1, n2 be nonnegative integers such that n1 ≤ n2,

gcd(n1 + 1, n2 + 1, 7) = 1, and (6, n1, n2) 6= (6, 1, 3). If c14(X6|n1,n2
) =

X6|n′

1,n
′

2
where n′

1 6= n′
2 and n′

1, n
′
2 ∈ {1, 3, 7}, then X6|n1,n2

is avoidable.

Proof. We will proceed by reducing the claim to testing a finite number

of cases. Proposition 6 of [4] states that if m is even and 2m ≤ min{n1, n2},

then Xm|n1,n2
is avoidable, while Proposition 8 of [4] states that for s ∈ N,

s < m − 2, and for n > 2(m + 1)2 + m − 1, we have that Xm|m+s,n is

avoidable. First note we can assume that n1 < 12, since if 12 ≤ n1 ≤ n2 it

follows by Proposition 6 that X6|n1,n2
is avoidable. Similarly, we know that

if m = 6 ≤ n1 < 2m−2 = 10 and n2 > 2(m+1)2+m−1 = 2(7)2+5 = 103

then Xm|n1,n2
is avoidable by Proposition 8.

Next, assume that n1 < 6 = m and that n2 > 187. Then we

know that cn2−6(Xm|n1,n2
) = {a�6a, b�n1b�6b} (where cn(X) is as de-

fined in Section 2.4). To see this is the case, first consider the fact that
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n2 − 6 > 8, so cn2−6(a�
6a) = a�6a. Then note that cn2−6(b�

n1b�n2b) =

cn2−6(b�
n1b�n2−n1−8

�
n1+6+2b) = b�n1b�6b, since n2 − n1 − 8 > 6,

|b�n1b�6b| = n1 + 9 < 6 + 9 = 15 < n2 − 6 and |b�n1b�n2−n1−8
| = n2 − 6.

Then let x1, x2 be the nonnegative integers so that 14x1 + 15x2 = n2 − 6

(such x1 and x2 exist by Lemma 2.46). Therefore if v = (a7b7)x1(a7b8)x2

and w = vZ, then |v| = x114+x215 = n2− 6 and w avoids cn2−6(Xm|n1,n2
)

by Theorem 2.15. Furthermore, w avoids Xm|n1,n2
by Lemma 2.12.

Now, note that if n1 = 2m − 2 = 10, then since X6|10 is avoidable, so

is X6|10,n2
. Finally consider the case that n1 = 2m− 1 = 11. Assume that

n2 > 31. Then note that cn2+7(X6|11,n2
) = {a�6a, b�5b�5b}. To see this,

first note that since n2+7 > 8 it follows that cn2+7(a�
6a) = a�6a. Similarly,

cn2+7(b�
n1b�n2b) = cn2+7(b�

11b�n2b) = cn2+7(b�
11b�n2−6

�
6b) = b�5b�5b,

where the last equality holds since 13 < n2+7 and 11+2+n2−6 = n2+7.

Then since n2 + 7 > 38, by Lemma 2.47 there exist nonnegative integers

x1, . . . , x6 so that n2 + 7 = 13x1 + 14x2 + · · · + 18x6. Then set v =

(a6b7)x1(a6b8)x2
· · · (a6b12)x6 . It follows that |v| = n2+7. Furthermore w =

vZ avoids cn2+7(X6|11,n2
) by Theorem 2.15, and it follows by Lemma 2.12

that w avoids X6|11,n2
. Therefore, all we have to do at this point is verify

the claim when n1 < 12 and n2 < 188, which can be done using brute force

to find avoiding words (despite the fact that some of these values of n2 are

large, this calculation only takes a short time). �

We now have the tools to prove Conjectures 2.9 and 2.10.

Theorem 2.49. Conjectures 2.9 and 2.10 are true.

Proof. Let m,n1, n2 be nonnegative integers such that n1 ≤ n2, gcd(m+

1, n1 + 1, n2 + 1) = 1, and (m,n1, n2) 6= (6, 1, 3). If n1 + 1 ≡ 0 mod 2m+ 2

or n2 + 1 ≡ 0 mod 2m+ 2 then by Lemma 2.45 Xm|n1,n2
is avoidable. If

2m ≡ n1+n2 mod 2m+ 2 and 2m 6= n1+n2, then by Lemma 2.44,Xm|n1,n2

is avoidable. If m ≡ n2 − n1 − 1 mod 2m+ 2 and m 6= n2 − n1 − 1, then

by Lemma 2.42 Xm|n1,n2
is avoidable. If (m ≡ 2n1 + n2 + 2 mod 2m+ 2

and m 6= 2n1 + n2 + 2) or (m ≡ 2n2 + n1 + 2 mod 2m+ 2 and m 6=

2n2 + n1 + 2), then by Lemma 2.43 Xm|n1,n2
is avoidable. If m = 6 and

c14(X6|n1,n2
) = X6|n′

1,n
′

2
where n′

1 6= n′
2 and n′

1, n
′
2 ∈ {1, 3, 7}, then by

Lemma 2.48, Xm|n1,n2
is avoidable. Finally, in all other cases, it follows by

Theorem 2.40 that Ym|n1,n2
, and thus Xm|n1,n2

, is avoidable. Therefore,

the claim follows. �
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2.6 The Classification

In this section, we complete the characterization of all two-element unavoid-

able sets of partial words over any arbitrary alphabet.

Proposition 4 in [4] states that if Conjecture 2.9 is true (or equivalently

Conjecture 2.10 is true, which we showed true in Section 2.5), then all

Xm1,...,mk|n1,...,nl
where k = 1 and l ≥ 3 are avoidable. The proof is

based on at least one of the four sets Xm|n1,n2
, Xm|n2,n3

, Xm|n1+n2+1,n3
,

Xm|n1,n2+n3+1 being avoidable. The proof claims that it is not possible for

all four sets to meet even the length requirements of Conjecture 2.10, and

hence at least one must be avoidable. However, using a computer algebra

system, we have identified exactly twelve cases, when k = 1 and l = 3, where

the length requirements are satisfied for all four sets. In most of these cases,

further investigation has determined that while the length requirements of

Conjecture 2.10 are satisfied, the other constraints of Conjecture 2.10 fail,

and hence at least one of the four sets is avoidable. Theorem 2.51 will

identify the cases where all four sets are unavoidable for k = 1 and l = 3.

Theorem 2.50. Let m, n1, n2, n3 be nonnegative integers such that n3 >

m. Define d3 = n3 −m and d2 = d3 + n2 +1 and note that 0 < d3 < d2. If

the conditions (i) 2(m+2)− 1 = n1 +n2+n3+4, (ii) d2 | m+1, and (iii)

d2 = 2d3 hold, then Xm|n1,n2,n3
is unavoidable. Note that Condition (iii)

implies n3 −m = n2 + 1, so d2 = 2(n2 + 1).

Proof. Let xa = a�ma and xb = b�n1b�n2b�n3b, hence Xm|n1,n2,n3
=

{xa, xb}. We wish to attempt to construct a two-sided infinite word w such

that w avoids xa and xb and reach a contradiction, thus proving Xm|n1,n2,n3

is unavoidable. Note that by Conditions (ii) and (iii), d3 | d2 and d3 | m+1.

If for any index i, w(i) = a, then w(i+m+1) = b and w(i−m− 1) = b

to avoid xa. This situation is depicted in the table

w(i −m− 1) · · · w(i − d2) w(i − d3) w(i) · · · w(i +m+ 1)

b x x a b

where these b’s line up exactly with xb. By Condition (i), in order to avoid

xb, at least one of w(i−d3) = a or w(i−d2) = a. Here x’s are placeholders

denoting this. Note that adjacent letters in the table are distance d3 apart.

Observe that for i ≡ k mod d3, i − d3 ≡ k mod d3 and i − d2 ≡ k mod d3,

hence inductively for all integers j < i where j ≡ k mod d3, w(j) = a or

w(j − d3) = a.
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Suppose for any index i where w(i) = a and w(i+m+1) = w(i− (m+

1)) = b, we let w(i − d2) = a. Then inductively w(i − kd2) = a for all

integers k > 0. But d2 | m + 1 by Condition (ii), so w(i − (m + 1)) = a,

a contradiction. Therefore w(i) = a and w(i − d3) = a for some i, and as

a result w(i − (m + 1)) = b and w(i − (m + 1) − d3) = b. Consider i = 0,

so w(0) = a and w(−d3) = a, and consequently w(−(m + 1)) = b and

w(−(m + 1) − d3) = b. By our previous observation, for all j < 0 where

j ≡ 0 mod d3, w(j) = a or w(j − d3) = a. But d3 | −(m+ 1), and neither

w(−(m+ 1)) = a nor w(−(m+ 1)− d3) = a. Therefore we have reached a

contradiction, thereby proving Xm|n1,n2,n3
is unavoidable. �

Theorem 2.51. The set Xm|n1,n2,n3
is unavoidable by Theorem 2.50 if and

only if the sets Xm|n1,n2
, Xm|n2,n3

, Xm|n1+n2+1,n3
, and Xm|n1,n2+n3+1 are

unavoidable.

Proof. Let m, n1, n2, and n3 be nonnegative integers. We first show

that the restrictions on these variables in Theorem 2.50 are equivalent to

m = (2k+4)(n2+1)−1, n1 = (2k+2)(n2+1)−1 and n3 = (2k+5)(n2+1)−1,

for any integer k ≥ 0. Suppose m, n1 and n3 are as defined in the set of

equations above. Observe that n3 > m and

2m = (4k + 8)(n2 + 1)− 2 = n1 + n2 + n3 + 1

d3 = n3 −m = n2 + 1

d2 = d3 + n2 + 1 = 2(n2 + 1) = 2d3 | m+ 1 = 2(k + 2)(n2 + 1)

Thus the equations satisfy the restrictions of Theorem 2.50. Now suppose

m, n1, n2, and n3 meet the conditions of Theorem 2.50. Then 2(m+2)−1 =

n1+n2+n3+4, d3 = n3−m and d2 = d3+n2+1. Moreover d2 = d3+n2+1 =

2d3, so n3 −m = n2 +1. Lastly, d2 = 2(n3 −m) = 2(n2 +1) | m+1, hence

2k(n2 + 1) = m+ 1 for some integer k. Solving these equations for m:

2m = n1 + n2 + n3 + 1 (2.16)

m = n3 − n2 − 1 (2.17)

m = 2k(n2 + 1)− 1 (2.18)

We claim that k ≥ 2. Note that if k = 0, then m = −1 by Equation (2.18),

a contradiction. If k = 1, then m = 2n2 + 1 by Equation (2.18). But

3n2 = n1+n3−1 by Equation (2.17), and 3n2 = n3−2 by Equation (2.17).

Consequently, n1 = −1, which is a contradiction.
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Thus by Equations (2.17) and (2.18), n3 = 2k(n2 + 1) − 1 + n2 + 1 =

(2k + 1)(n2 + 1)− 1. As a result, by Equations (2.16) and (2.18),

n1 = 2(2k(n2 + 1)− 1)− (n2 + 1)− n3

= 4k(n2 + 1)− 2− (n2 + 1)− ((2k + 1)(n2 + 1)− 1)

= (4k − 1)(n2 + 1)− 1− (2k + 1)(n2 + 1)

= (2k − 2)(n2 + 1)− 1

Substituting k = k0 + 2 where k0 ≥ 0,

m = (2k0 + 4)(n2 + 1)− 1

n1 = (2k0 + 2)(n2 + 1)− 1

n3 = (2k0 + 5)(n2 + 1)− 1

Therefore the set of equations outlined in the hypothesis are equivalent to

the restrictions of Theorem 2.50.

We now show that if Xm|n1,n2,n3
is unavoidable by Theorem 2.50, then

Xm|n1,n2
, Xm|n2,n3

, Xm|n1+n2+1,n3
, and Xm|n1,n2+n3+1 are unavoidable.

We claim Xm|n2,n1
is unavoidable by Proposition 2.5, and hence Xm|n1,n2

is unavoidable by symmetry. Observe that

2n2 + n1 + 2 = 2n2 + (2k + 2)(n2 + 1)− 1 + 2 = (2k + 4)(n2 + 1)− 1 = m

Note that n2 + 1 | n1 + 1, and because m+ 1 = 2(k+ 2)(n2 + 1), by Theo-

rem 2.3Xm|n2
is unavoidable. This suffices to show that by Proposition 2.5,

Xm|n2,n1
is unavoidable.

We claim Xm|n2,n3
is unavoidable by Proposition 2.5. Observe that

n3 − n2 − 1 = (2k + 5)(n2 + 1)− (n2 + 1)− 1 = (2k + 4)(n2 + 1)− 1 = m

Since n2+1 | n3+1, and Xm|n2
is unavoidable by Theorem 2.3, this suffices

to show that by Proposition 2.5 Xm|n2,n3
is unavoidable.

Next we show that Xm|n1+n2+1,n3
is unavoidable by Theorem 2.8. Here

n1 + n2 + n3 + 1 = (2k + 2)(n2 + 1) + (2k + 5)(n2 + 1) + (n2 + 1)− 2

= 2((2k + 4)(n2 + 1)− 1) = 2m (2.19)

Let d = m − (n1 + n2 + 1) = n2 + 1, and note that d | m + 1, hence by

Theorem 2.8 Xm|n1+n2+1,n3
is unavoidable.

We claim Xm|n1,n2+n3+1 is unavoidable by Theorem 2.8. Note that

Equation (2.19) satisfies one condition, so the only thing to be shown is

that m−n1 | m+1. But m−n1 = 2(n2+1), and m+1 = 2(k+2)(n2+1),

so indeed Theorem 2.8 applies. Thus Xm|n1,n2+n3+1 is unavoidable.
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Therefore if Xm|n1,n2,n3
is unavoidable by Theorem 2.50, then the sets

Xm|n1,n2
, Xm|n2,n3

, Xm|n1+n2+1,n3
and Xm|n1,n2+n3+1 are unavoidable.

We show that if Xm|n1,n2
, Xm|n2,n3

, Xm|n1+n2+1,n3
and Xm|n1,n2+n3+1

are all unavoidable, then Xm|n1,n2,n3
is unavoidable by Theorem 2.50. We

have determined by a computer algebra system that there are exactly 4

cases where all four resulting sets are unavoidable. However, we only have

to consider 2 of the 4 cases, for the others are symmetric (swap n1, n3).

One case is when m = 4n2 + 3, n1 = 2n2 + 1, n3 = 5n2 + 4.

Let m = 4n2 + 3, n1 = 2n2 + 1, n3 = 5n2 + 4, and define d3 = n3 −m

and d2 = d3 + n2 + 1. Observe that

2(m+ 2)− 1 = 8n2 + 9 = n1 + n2 + n3 + 4

and also that d3 = n3−m = n2+1, d2 = d3+n2+1 = 2d3, and d2 = 2n2+2

divides m + 1 = 4n2 + 4. It then follows directly from Theorem 2.50 that

Xm|n1,n2,n3
is unavoidable.

The other case is when m ≥ 2, n1 = m− 2n2 − 2, and n3 = m+ n2 +1.

To see the latter case, let d3 = n3 −m and d2 = d3 + n2 + 1. Observe that

n1 + n2 + n3 + 1 = 2m (2.20)

Recall that we are considering when Xm|n1,n2
, Xm|n2,n3

, Xm|n1,n2+n3+1

and Xm|n1+n2+1,n3
are all unavoidable. It follows from Equation (2.20)

and Theorem 2.8 that Xm|n1,n2+n3+1 and Xm|n1+n2+1,n3
are unavoidable

if and only if

m− n1 = 2(n2 + 1) | m+ 1 (2.21)

m− (n1 + n2 + 1) = n2 + 1 | m+ 1 (2.22)

These equations, combined with Equation (2.20), satisfy the conditions of

Theorem 2.50. Thus if Equations (2.21) and (2.22) hold, then Xm|n1,n2,n3
is

unavoidable. Therefore Xm|n1,n2,n3
is unavoidable by Theorem 2.50 when

Xm|n1,n2
, Xm|n2,n3

, Xm|n1+n2+1,n3
and Xm|n1,n2+n3+1 are all unavoidable.

�

The following theorem completes, as well as summarizes, the classifica-

tion of all the sets Xm1,...,mk|n1,...,nl
.

Theorem 2.52. Let m1, . . . ,mk, n1, . . . , nl be nonnegative integers such

that gcd(m1+1, . . . ,mk+1, n1+1, . . . , nl+1) = 1. Assume that k ≤ l (the

case l ≤ k is symmetric). Then Xm1,...,mk|n1,...,nl
is avoidable if and only

if one of the following conditions hold:

(1) k = 1, l = 1: all such sets that are avoidable by Theorem 2.3.
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(2) k = 1, l = 2: all such sets that satisfy n1 ≤ n2, (m,n1, n2) 6= (6, 1, 3),

and one of (2.4)–(2.9) (the case n1 ≥ n2, (m,n1, n2) 6= (6, 3, 1) is

symmetric).

(3) k = 1, l = 3: all such sets that are avoidable by Theorem 2.50.

(4) k = 1, l ≥ 4: all such sets are avoidable.

(5) k ≥ 2, l ≥ 2: all such sets are avoidable.

Proof. For Statement 1, see Theorem 2.3, while for Statement 2, see

Theorem 2.49.

For Statement 3, let Xm|n1,n2,n3
be unavoidable. Then the sets

Xm|n1,n2
, Xm|n2,n3

, Xm|n1+n2+1,n3
and Xm|n1,n2+n3+1 are also unavoid-

able, and therefore by Theorem 2.51 Xm|n1,n2,n3
is unavoidable by Theo-

rem 2.50.

For Statement 4, it is enough to prove that Xm|n1,n2,n3,n4
is avoid-

able for all nonnegative integers m,n1, n2, n3, n4. Suppose for contradic-

tion that Xm|n1,n2,n3,n4
is unavoidable. Then the sets Xm|n1,n2,n3

and

Xm|n1+n2+1,n3,n4
are unavoidable. By Statement 3, these sets must be

unavoidable by Theorem 2.50, hence

2(m+ 2)− 1 = n1 + n2 + n3 + 4

2(m+ 2)− 1 = n1 + n2 + n3 + 4 + n4 + 1

Consequently n4 = −1, a contradiction, so Xm|n1,n2,n3,n4
must be avoid-

able.

Statement 5 was shown in [4]. �

We have thus completed the classification of all two-element sets over

any arbitrary alphabet.

2.7 Conclusion

A World Wide Web server interface has been established at

www.uncg.edu/cmp/research/unavoidablesets3

for automated use of a program that given as input a finite set of partial

words over a given alphabet will classify the set as avoidable or unavoidable,

and will output the shortest period of an infinite avoiding word in case the

set is avoidable.

A World Wide Web server interface has also been established at

www.uncg.edu/cmp/research/unavoidablesets4



September 2, 2010 9:23 World Scientific Book - 9in x 6in 00Chapter

100 F. Blanchet-Sadri, B. Blakeley, J. Gunter, S. Simmons and E. Weissenstein

for automated use of a program that provides a means of investigating

the properties of Ym|n1,n2
. Given values of m,n1, n2 as input, the program

determines whether Ym|n1,n2
is avoidable or not, and then outputs the graph

Hm|n1,n2
. Furthermore if Ym|n1,n2

is avoidable, then the program colors the

graph in such a way that it avoids Ym|n1,n2
, using the colors red and blue

to represent a and b (or vice versa).
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3.1 Introduction

The extension of boolean algorithms (over languages) to multiplicities (over

series) has always been a central point in theoretical research. First,

Schützenberger [16] has given an equivalence between rational and rec-

ognizable series extending the classical result of Kleene [12]. Recent con-

tributions have been done in this area, an overview of knowledge of these

domains is presented by Sakarovitch in [15]. Many research works have

focused on producing a small WFA . For example, Caron and Flouret have

extended the Glushkov construction to WFAs [4]. Champarnaud et al have

designed a quadratic algorithm [7] for computing the equation WFA of a

K-expression. This equation WFA has been introduced by Lombardy and

Sakarovitch as an extension of Antimirov’s algorithm [13] based on partial

derivatives.

Moreover, the Glushkov WFA of a K-expression with n occurrences of

symbol (we say that its alphabetic width is equal to n) has only n+1 states;

the equation K-automaton (that is a quotient of the Glushkov automaton)

has at most n+ 1 states.

103
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On the opposite, classical algorithms compute K-expressions the size of

which is exponential with respect to the number of states of the WFA . For

example, let us cite the block decomposition algorithm proven in [1].

In this paper, we also address the problem of computing short K-

expressions, and we focus on a specific kind of conversion based on Glushkov

automata. Actually the particularity of Glushkov automata is the follo-

wing: any regular expression of width n can be turned into its Glushkov

(n + 1)-state automaton; if a (n + 1)-state automaton is a Glushkov one,

then it can be turned into an expression of width n. The latter property

is based on the characterization of the family of Glushkov automata in

terms of graph properties presented in [6]. These properties are stability,

transversality and reducibility. Brüggemann-Klein defines regular expres-

sions in Star Normal Form (SNF) [2]. These expressions are characterized

by underlying Glushkov automata where each edge is generated exactly

one time. This definition is extended to multiplicities. The study of the

SNF case would not be necessary if all K-expressions were equivalent to

some in SNF with the same litteral length, as it is the case for the boolean

semiring B.

The aim of this paper is to extend the characterization of Glushkov

automata to the multiplicity case in order to compute a K-expression of

width n from a (n+ 1)-state WFA . This extension requires to restrict the

work to factorial semirings as well as Star Normal Form K-expressions.

We exhibit a procedure that, given a WFA M on K a factorial semiring,

outputs the following: eitherM is obtained by the Glushkov algorithm from

a proper K-expression E in Star Normal Form and the procedure computes

a K-expression F equivalent to E, or M is not obtained in that way and

the procedure says no.

The following section recalls fundamental notions concerning automata,

expressions and Glushkov conversion for both boolean and multiplicity

cases. An error in the paper by Caron and Ziadi [6] is pointed out and cor-

rected. The section 3 is devoted to the reduction rules for acyclic K-graphs.

Their efficiency is provided by the confluence of K-rules. The next section

gives orbit properties for Glushkov K-graphs. The section 5 presents the

algorithms computing a K-expression from a Glushkov K-graph and details

an example.
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3.2 Definitions

3.2.1 Classical Notions

Let Σ be a finite set of letters (alphabet), ε the empty word and ∅ the empty

set. Let (K, ⊕, ⊗) be a zero-divisor free semiring where 0 is the neutral

element of (K,⊕) and 1 the one of (K,⊗). The semiring K is said to be

zero-divisor free [10] if 0 6= 1 and if ∀x, y ∈ K, x⊗ y = 0⇒ x = 0 or y = 0.

A formal series [1] is a mapping S from Σ∗ into K usually denoted by

S =
∑

w∈Σ∗

S(w)w where S(w) ∈ K is the coefficient of w in S. The support

of S is the language Supp(S) = {w ∈ Σ∗
|S(w) 6= 0}.

In [13], Lombardy and Sakarovitch explain in details the computation

of K- expressions. We have followed their model of grammar. Our constant

symbols are ε the empty word and ∅. Binary rational operations are still

+ and ·, the unary ones are Kleene closure ∗, positive closure + and for

every k ∈ K, the multiplication to the left or to the right of an expression

×. For an easier reading, we will write kE (respectively Ek) for k × E

(respectively E× k). Notice that our definition of K-expressions, which set

is denoted EK, introduces the operator of positive closure. This operator

preserves rationality with the same conditions (see below) that the Kleene

closure’s one.

K-expressions are then given by the following grammar:

E → a ∈ Σ | ∅ | ε | (E+E) | (E·E) | (E∗) | (E+) | (kE), k ∈ K | (Ek), k ∈ K

Notice that parenthesis will be omitted when not necessary. The expres-

sions E+ and E∗ are called closure expressions. If a series S is represented

by a K-expression E, then we denote by c(S) (or c(E)) the coefficient of

the empty word of S. A K-expression E is valid [15] if for each closure

subexpression F ∗ and F+ of E,

+∞
∑

i=0

c(F ) ∈ K.

A K-expression E is proper if for each closure subexpression F ∗ and F+

of E, c(F ) = 0.

We denote by EK the set of proper K-expressions. Rational series can

then be defined as formal series expressed by proper K-expressions. For E

in EK, Supp(E) is the support of the rational series defined by E.

The length of a K-expression E, denoted by ||E||, is the number of

occurences of letters and of ε appearing in E. By opposition, the litteral

length, denoted by |E| is the number of occurences of letters in E. For
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example, the expression E = (a + 3)(b + 2) + (−1) as a length of 5 and a

litteral length of 2.

A weighted finite automaton (WFA) on a zero-divisor free semiring K

over an alphabet Σ [8] is a 5-tuple (Σ, Q, I, F, δ) where Q is a finite set of

states and the sets I, F and δ are mappings I : Q → K (input weights),

F : Q→ K (output weights), and δ : Q× Σ×Q→ K (transition weights).

The set of WFAs on K is denoted by MK. A WFA is homogeneous if all

vertices reaching a same state are labeled by the same letter.

A K-graph is a graph G = (X,U) labeled with coefficients in K where

X is the set of vertices and U : X ×X → K is the function that associates

each edge with its label in K. When there is no edge from p to q, we

have U(p, q) = 0. In case K = B, the boolean semiring, EB is the set of

regular expressions and, as the only element of K \ 0 is 1, we omit the use

of coefficient and of the external product (1a = a1 = a). For a rational

series S represented by E ∈ EB, Supp(E) is usually called the language

of E, denoted by L(E) and S = Supp(S) = L(E). A boolean automaton

(automaton in the sequel) M over an alphabet Σ is usually defined [8, 11]

as a 5-tuple (Σ, Q, I, F, δ) where Q is a finite set of states, I ⊆ Q the set of

initial states, F ⊆ Q the set of final states, and δ ⊆ Q × Σ × Q the set of

edges. We denote by L(M) the language recognized by the automaton M .

A graph G = (X,U) is a B-graph for which labels of edges are not written.

3.2.2 Extended Glushkov Construction

An algorithm given by Glushkov [9] for computing an automaton with n+1

states from a regular expression of litteral length n has been extended to

semirings K by the authors [4]. Informally, the principle is to associate

exactly one state in the computed automaton to each occurrence of letters

in the expression. Then, we link by a transition two states of the automaton

if the two occurences of the corresponding letters in the expression can be

read successively.

In order to recall the extended Glushkov construction, we have to first

define the ordered pairs and the supported operations. An ordered pair

(l, i) consists of a coefficient l ∈ K \ {0} and a position i ∈ N. We also

define the functions IH : H → K such that IH(i) is equal to 1 if i ∈ H

and 0 otherwise. We define P : 2K\{0}×N
→ 2N the function that extracts

positions from a set of ordered pairs as follows: for Y a set of ordered pairs,

P (Y ) = {ij, 1 ≤ j ≤ |Y | | ∃(lj , ij) ∈ Y }.

The function CoeffY : P (Y )→ K\{0} extracts the coefficient associated
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to a position i as follows: CoeffY (i) = l for (l, i) ∈ Y .

Let Y, Z ⊂ K \ {0} × N be two sets of ordered pairs. We define the

product of k ∈ K \ 0 and Y by k·Y = {(k ⊗ l, i) | (l, i) ∈ Y } and Y · k =

{(l ⊗ k, i) | (l, i) ∈ Y }, 0·Y = Y · 0 = ∅. We define the operation ]

by Y ] Z = {(l, i) | either (l, i) ∈ Y and i 6∈ P (Z) or (l, i) ∈ Z and i 6∈

P (Y ) or (ls, i) ∈ Y, (lt, i) ∈ Z for some ls, lt ∈ K with l = ls ⊕ lt 6= 0}.

As in the original Glushkov construction [9, 14], and in order to specify

their position in the expression, letters are subscripted following the order

of reading. The resulting expression is denoted E, defined over the alpha-

bet of indexed symbols Σ, each one appearing at most once in E. The set

of indices thus obtained is called positions and denoted by Pos(E). For

example, starting from E = (2a+b)∗· a· 3b, one obtains the indexed expres-

sion E = (2a1 + b2)
∗
· a3· 3b4, Σ = {a1, b2, a3, b4} and Pos(E) = {1, 2, 3, 4}.

Four functions are defined in order to compute a WFA which needs not be

deterministic. First(E) represents the set of initial positions of words of

Supp(E) associated with their input weight, Last(E) represents the set of

final positions of words of Supp(E) associated to their output weight and

Follow(E, i) is the set of positions of words of Supp(E) which immediately

follows position i in the expression E, associated to their transition weight.

In the boolean case, these sets are subsets of Pos(E). The Null(E) set

represents the coefficient of the empty word. The way to compute these

sets is completely formalized in table 3.1.

These functions allow us to define the WFAM = (Σ, Q, {sI}, F, δ) where

(1) Σ is the indexed alphabet,

(2) sI is the single initial state with no incoming edge with 1 as input

weight,

(3) Q = Pos(E) ∪ {sI}

(4) F : Q→ K such that F (i) =

{

Null(E) if i = sI
CoeffLast(E)(i) otherwise

(5) δ : Q×Σ×Q→ K such that δ(i, aj, h) = 0 for every h 6= j, whereas

δ(i, aj, j) =

{

CoeffFirst(E)(j) i = sI
CoeffFollow(E,i)(j) i 6= sI

The Glushkov WFA M = (Σ, Q, {sI}, F, δ) of E is computed from M

by replacing the indexed letters on edges by the corresponding letters in

the expression E. We will denote AK : EK →MK the application such that

AK(E) is the Glushkov WFA obtained from E by this algorithm proved

in [4].
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Table 3.1 Extended Glushkov functions.

E Null(E) First(E) Last(E) Follow(E,i)

∅ 0 ∅ ∅ ∅

ε 1 ∅ ∅ ∅

aj 0 {(1, j)} {(1, j)} ∅

kF k ⊗ Null(F ) k·First(F ) Last(F ) Follow(F, i)

Fk Null(F )⊗ k First(F ) Last(F )· k Follow(F, i)

F +G

Null(F )

⊕
Null(G)

First(F )

]
First(G)

Last(F )

]
Last(G)

IPos(F )(i)·Follow(F, i)

]
IPos(G)(i)·Follow(G, i)

F ·G
Null(F )

⊗
Null(G)

First(F )

]
Null(F )·First(G)

Last(F )·Null(G)

]
Last(G)

IPos(F )(i)·Follow(F, i)

]
IPos(G)(i)·Follow(G, i)

]
CoeffLast(F )(i)·First(G)

F+
0 First(F ) Last(F )

Follow(F, i)

]
CoeffLast(F )(i)·First(F )

F ∗
1 First(F ) Last(F )

Follow(F, i)

]
CoeffLast(F )(i)·First(F )

In order to compute a K-graph from an homogeneous WFA M , we

have to

• add a new vertex {Φ}. Then U , the set of edges, is obtained from

transitions of M by removing labels and adding directed edges from

every final state to {Φ}. We label edges to Φ with output weights of

final states.

• ⊗-multiplied by I(i), the label of the edge U(i, p) for each i ∈ Q such

that I(i) 6= 0, for p ∈ Q ∪ {Φ}.

In caseM is a GlushkovWFA of aK-expressionE, theK-graph obtained

from M is called Glushkov K-graph of E and is denoted by GK(E).

3.2.3 Normal Forms and Casting Operation

Star Normal Form and Epsilon Normal Form

For the boolean case, Brüggemann-Klein defines regular expressions in Star

Normal Form (SNF) [2] as expressions E for which, for each position i of

Pos(E), when computing the Follow(E, i) function, the unions of sets are

disjoint. This definition is given only for usual operators +, ·, ∗. We can
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extend this definition to the positive closure, + as follows:

Definition 3.1. A B-expression E is in SNF if, for each closure B-

subexpression H∗ or H+, the SNF conditions (1) Follow(H,Last(H)) ∩

First(H) = ∅ and (2) ε 6∈ L(H) hold.

Then, the properties of the star normal form (defined with the positive

closure) are preserved.

In the same paper, Brüggemann-Klein defines also the epsilon normal

form for the boolean case. We extend this epsilon normal form to the

positive closure operator.

Definition 3.2. The epsilon normal form for a B-expression E is defined

by induction in the following way:

• [E = ε or E = a] E is in epsilon normal form.

• [E = F + G] E is in epsilon normal form if F and G are in epsilon

normal form and if ε 6∈ L(F ) ∩ L(G).

• [E = FG] E is in epsilon normal form if F and G are in epsilon normal

form.

• [E = F+ or E = F ∗] E is in epsilon normal form if F is in epsilon

normal form and ε 6∈ L(F ).

Theorem 3.3 ([2]). For each regular expression E, there exists a regular

expression E• such that

(1) AB(E) = AB(E
•),

(2) E• is in SNF,

(3) E• can be computed from E in linear time.

Brüggemann-Klein has given every step for the computation of E•. This

computation remains. We just have to add for H+ the same rules as for

H∗. Main steps of the proof are similar.

We extend the star normal form to multiplicities in this way. Let E

be a K-expression. For every subexpression H∗ or H+ in E, for each x in

P (Last(H)),

P (Follow(H, x)) ∩ P (First(H)) = ∅

We do not have to consider the case of the empty word because H+ and

H∗ are proper K-expressions if c(H) = 0.
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As an example, let H = 2a+1 + (3b2)
+ and E = (H)∗. We can see that

the expression E = (2a+1 +(3b2)
+)∗ is not in SNF, because 2 ∈ P (Last(H))

and 2 ∈ P(Follow(H,2))∩P (First(H)).

The Casting Operation ∼

We have to define the casting ∼: MK → MB. This is similar to the way

in which Buchsbaum et al. [3] define the topology of a graph. A WFA

M = (Σ, Q, I, F, δ) is casted into an automaton ˜M = (Σ, Q, ˜I, ˜F , ˜δ) in the

following way: ˜I, ˜F ⊂ Q, ˜I = {q ∈ Q | I(q) 6= 0}, ˜F = {q ∈ Q | F (q) 6= 0}

and ˜δ = {(p, a, q) | p, q ∈ Q, a ∈ Σ and δ((p, a, q)) 6= 0}. The casting

operation can be extended to K-expressions ∼: EK → EB. The regular ex-

pression ˜E is obtained from E by replacing each k ∈ K \ 0 by 1. The ∼

operation on E is an embedding of K-expressions into regular ones. Nev-

ertheless, the Glushkov B-graph computed from a K-expression E may be

different whether the Glushkov construction is applied first or the casting

operation ∼. This is due to properties of K-expressions. For example, let

K = Q, E = 2a∗ + (−2)b∗ (E is not in epsilon normal form). We then have
˜E = a∗ + b∗. We can notice that ˜AK(E) 6= AB( ˜E) (E does not recognize ε

but ˜E does).

Lemma 3.4. Let E be a K-expression. If E is in SNF and in epsilon

normal form, then

˜AK(E) = AB( ˜E).

Proof. We have to show that the automaton obtained by the Glushkov

construction for an expression E in EK has the same edges as the Glushkov

automaton for ˜E. First, we have Pos(E) = Pos( ˜E), as ˜E is obtained from

E only by deleting coefficients. Let us show that First( ˜E) = P(First(E))

(states reached from the initial state) by induction on the length of E. If

E = ε, ˜E = ε, First( ˜E) = ∅ = First(E) = P(First(E)). If E = a ∈ Σ,

E = a1 then E = ˜E, First(E) = {(1, 1)}, P(First(E)) = {1} = First( ˜E).

Let F satisfy the hypothesis, and E = kF ,k ∈ K \ 0. In this case, ˜E = ˜F ,

P(First(E)) = P(k.First(F )) = P(First(F )) = First( ˜F ) = First( ˜E). If

E = Fk, k ∈ K, ˜E = ˜F , P(First(E)) = P(First(F )) = First( ˜F ) =

First( ˜E).

If E = F +H , and if F and H satisfy the induction hypothesis, and as

the coefficient of the empty word is 0 for one of the two subexpression F or

H (epsilon normal form), we have ˜E = ˜F + ˜H , First( ˜F + ˜H) = First( ˜F )∪
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First( ˜H) = P(First(F ))∪P(First(H)) which is equal to P(First(F +H))

by induction. We obtain the same result concerning F ·H , F+ and F ∗.
The equality Last( ˜E) = P(Last(E)) is obtained similarly.

The last function used to compute the Glushkov automaton is the Fol-

low function. Let E be a K-expression and i ∈ Pos(E). If E = ε, ˜E = ε,

Follow( ˜E, i) = ∅ = Follow(E, i) = P(Follow(E, i)). If E = a ∈ K,

E = ˜E, Follow( ˜E, i) = ∅. Let F satisfy Follow( ˜F , i) = P(Follow(F, i))

for all i ∈ Pos(F ). If E is kF or Fk, k ∈ K \ 0, P(Follow(E, i)) =

P(Follow(F, i)) = Follow( ˜F , i) by hypothesis. If F and H satisfy the in-

duction hypothesis, and if E = F + H , (and i ∈ Pos(F ) without loss

of generality), Follow(F + H, i) = Follow(F, i), then P(Follow(F, i)) =

Follow( ˜F , i). We obtain similar results for E = F.H as there is no inter-

section between positions of F and H . Concerning the star operation, let

E = F ∗, with Follow( ˜F , i) = P(Follow(F, i)) for all i ∈ Pos(F ). Then,

P(Follow(F ∗, i)) = P(Follow(F, i)∪CoeffLast(F )(i)·First(F )). But by def-

inition, as F is in SNF, we know that Follow(F, i) ∩ First(F ) = ∅, so

P(Follow(F ∗, i)) = Follow(˜F ∗, i). In fact, it means that if there exists a

couple (α, j) ∈ Follow(F, i), there cannot exist (β, j) ∈ First(F ). Other-

wise, the expression would not be in SNF, and it would be possible that

β = α, which would make j 6∈ Pos(F ∗) and imply a deletion of an edge. A

same reasonning can be done for the positive closure operator.

Hence, the casting operation∼ and the Glushkov construction commute

for the composition operation if we do not consider the empty word. �

3.2.4 Characterization of Glushkov Automata in the

Boolean Case

The aim of the paper by Caron and Ziadi [6] is to know how boolean

Glushkov graphs can be characterized. We recall here the definitions which

allow us to give the main theorem of their paper. These notions will be

necessary to extend this characterization to Glushkov K-graphs.

A hammock is a graph G = (X,U) without a loop if |X | = 1, otherwise

it has two distinct vertices i and t such that, for any vertex x of X , (1)

there exists a path from i to t going through x, (2) there is no non-trivial

path from t to x nor from x to i. Notice that every hammock with at least

two vertices has a unique root (the vertex i) and anti-root (the vertex t).

Let G = (X,U) be a hammock. We define O = (XO, UO) ⊆ G as an

orbit of G if and only if for all x and x′ in XO there exists a non-trivial

path from x to x′. The orbit O is maximal if, for each vertex x ∈ XO and
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for each vertex x′
∈ X \XO, there do not exist both a path from x to x′

and a path from x′ to x. Equivalently, O ⊆ G is a maximal orbit of G if

and only if it is a strongly connected component with at least one edge.

Informally, in a Glushkov graph obtained from a regular expression E,

the set of vertices of a maximal orbit corresponds exactly to the set of

positions of a closure subexpression of E.

The set of direct successors (respectively direct predecessors) of x ∈ X

is denoted by Q+(x) (respectively Q−(x)). Let nx = |Q−(x)| and mx =

|Q+(x)|. For an orbit O ⊂ G, O+(x) denotes Q+(x) ∩ (X \ O) and O−(x)
denotes the set Q−(x)∩(X \O). In other words, O+(x) is the set of vertices

which are directly reached from x and which are not in O. By extension,

O
+ =

⋃

x∈OO
+(x) and O− =

⋃

x∈OO
−(x). The sets In(O) = {x ∈ XO |

O
−(x) 6= ∅} and Out(O) = {x ∈ XO | O+(x) 6= ∅} denote the input and the

output of the orbit O. As G is a hammock, In(O) 6= ∅ and Out(O) 6= ∅. An

orbit O is stable if Out(O)× In(O) ⊂ U . An orbit O is transverse if, for all

x, y ∈ Out(O), O+(x) = O+(y) and, for all x, y ∈ In(O), O−(x) = O−(y).
An orbit O is strongly stable (respectively strongly transverse) if it is

stable (respectively transverse) and if after deleting the edges in Out(O)×

In(O) (1) there does not exist any suborbit O′
⊂ O or (2) every maximal

suborbit of O is strongly stable (respectively strongly transverse). The

hammock G is stronly stable (respectively strongly transverse) if (1) it has

no orbit or (2) every maximal orbit O ⊂ G is strongly stable (respectively

strongly transverse).

If G is strongly stable, then we call the graph without orbit of G, denoted

by SO(G), the acyclic directed graph obtained by recursively deleting, for

every maximal orbit O of G, the edges in Out(O) × In(O). The graph

SO(G) is then reducible if it can be reduced to one vertex by iterated

applications of the three following rules:

• Rule R1: If x and y are vertices such that Q−(y) = {x} and Q+(x) =

{y}, then delete y and define Q+(x) := Q+(y).

• Rule R2: If x and y are vertices such that Q−(x) = Q−(y) and

Q+(x) = Q+(y), then delete y and any edge connected to y.

• Rule R3: If x is a vertex such that for all y ∈ Q−(x), Q+(x) ⊂ Q+(y),

then delete edges in Q−(x) ×Q+(x).

Theorem 3.5 ([6]). G = (X,U) is a Glushkov graph if and only if the

three following conditions are satisfied:

• G is a hammock.
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• Each maximal orbit in G is strongly stable and strongly transverse.

• The graph without orbit SO(G) is reducible.

3.2.5 The Problem of Reduction Rules

An Erroneous Statement in the Paper by Caron and Ziadi

In [6], the definition of the R3 rules is wrong in some cases. Indeed, if we

consider the regular expression E = (x1 + ε)(x2 + ε)+ (x3 + ε)(x4 + ε), the

graph obtained from the Glushkov algorithm is as follows

1 2

3 4

sI Φ

Let us now try to reduce this graph with the reduction rules as they

are defined in [6]. We can see that the sequel of applicable rules is R3, R3

and R1. We can notice that there is a multiple choice for the application

of the first R3 rule, but after having chosen the vertex on which we will

apply this first rule, the sequel of rules leads to a single graph (exept with

the numerotation of vertices).

1 2

3 4

sI Φ

1 2

3 4

sI Φ

1

3 4

sI Φ

Fig. 3.1 Application of R3 on 1, R3 on 2 and R1 on 1 and 2.

We can see that the graph obtained is no more reducible. This problem

is a consequence of the multiple computation of the edge (0,Φ). In fact,

this problem is solved when each edge of the acyclic Glushkov graph is

computed only once. It is the case when E is in epsilon normal form.

A New R3 Rule for the Boolean Case

Let G = (X,U) be an acyclic graph. The rule R3 is as follows:
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• If x ∈ X is a vertex such that for all y ∈ Q−(x), Q+(x) ⊂ Q+(y),

then delete the edge (q−, q+) ∈ Q−(x) ×Q+(x) if there does not exist

a vertex z ∈ X \ {x} such that the following conditions are true:

– there is neither a path from x to z nor a path from z to x,

– q− ∈ Q−(z) and q+ ∈ Q+(z),

– |Q−(z)| × |Q+(z)| 6= 1.

The new rule R3 check whether conditions of the old R3 rules are verified

and moreover deletes an edge only if it does not correspond to the ε of more

than one subexpression. The validity of this rule is shown in Proposition

3.10.

3.3 Acyclic Glushkov WFA Properties

The definitions of section 3.2.4 related to graphs are extended to K-graphs

by considering that edges labeled 0 do not exist.

Let us consider M a WFA without orbit. Our aim here is to give condi-

tions on weights in order to check whether M is a Glushkov WFA. Relying

on the boolean characterization, we can deduce that M is homogeneous

and that the Glushkov graph of ˜M is reducible.

3.3.1 K-rules

K-rules can be seen as an extension of reduction rules. Each rule is divided

into two parts: a graphic condition on edges, and a numerical condition

(exept for the KR1-rule) on coefficients. The following definitions allow us

to give numerical constraints for the application of K-rules.

Let G = (X,U) be a K-graph and let x, y ∈ X . Let us now define the

set of beginnings of the set Q−(x) as B(Q−(x)) ⊆ Q−(x). A vertex x−

is in B(Q−(x)) if for all q− in Q−(x) there is not a non trivial path from

q− to x−. In the same way, we define the set of terminations of Q+(x) as

T (Q+(x)) ⊆ Q+(x). A vertex x+ is in T (Q+(x)) if for all q+ in Q+(x)

there is not a non trivial path from x+ to q+.

We say that x and y are backward equivalent if Q−(x) = Q−(y) and

there exist lx, ly ∈ K such that for every q− ∈ Q−(x), there exists αq− ∈ K

such that U(q−, x) = αq− ⊗ lx and U(q−, y) = αq− ⊗ ly. Similarly, we

say that x and y are forward equivalent if Q+(x) = Q+(y) and there exist

rx, ry ∈ K such that for every q+ ∈ Q+(x), there exists βq+ ∈ K such

that U(x, q+) = rx ⊗ βq+ and U(y, q+) = ry ⊗ βq+ . Moreover, if x and y
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are both backward and forward equivalent, then we say that x and y are

bidirectionally equivalent.

In the same way, we say that x is ε-equivalent if for all (q−, q+) ∈
Q−(x) × Q+(x) the edge (q−, q+) exists and if there exist k, l, r ∈ K such

that for every q− ∈ Q−(x) there exists αq− ∈ K and for every q+ ∈ Q+(x)

there exist βq+ ∈ K, such that U(q−, x) = αq− ⊗ l, U(x, q+) = r⊗ βq+ and

U(q−, q+) = αq− ⊗ k ⊗ βq+ .

Similarly, x is quasi-ε-equivalent if

• B(Q−(x)) 6= Q−(x) or T (Q+(x)) 6= Q+(x), and

• for all (q−, q+) ∈ Q−(x) × Q+(x) \ B(Q−(x)) × T (Q+(x)), the edge

(q−, q+) exists, and
• there exist k, l, r ∈ K such that for every q− ∈ Q−(x) there exist

αq− ∈ K and for every q+ ∈ Q+(x), there exist βq+ ∈ K such that

U(q−, x) = αq− ⊗ l, U(x, q+) = r ⊗ βq+ , and

• if q− 6∈ B(Q−(x)) or q+ 6∈ T (Q+(x))

– then U(q−, q+) = αq− ⊗ k ⊗ βq+

– else there exists γ ∈ K such that U(q−, q+) = γ ⊕ αq− ⊗ k ⊗

βq+ (Notice that if the edge from q− to q+ does not exist in the

automaton, then U(q−, q+) = 0 and it is possible to have γ ⊕

αq− ⊗ k ⊗ βq+ = 0).

In order to clarify our purpose, we have distinguished the case where

(q−, q+) are superpositions of edges (quasi-ε-equivalence of x) to the case

where they are not (ε-equivalence of x).

Rule KR1: If x and y are vertices such that Q−(y) = {x} and Q+(x) =

{y}, then delete y and define Q+(x)← Q+(y).

x yk

KR1

x

Fig. 3.2 KR1 reduction rule.

Rule KR2: If x and y are bidirectionally equivalent, with lx, ly, rx, ry ∈ K

the constants satisfying such a definition, then

• delete y and any edge connected to y
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• for every q− ∈ Q−(x) and q+ ∈ Q+(x) set U ′(q−, x) = αq− and

U ′(x, q+) = βq+ where αq− and βq+ are defined as in the bidirectional

equivalence.

x

y

KR2

Q
-
(x) Q

+
(x)

αq-⊗lxαq-⊗ly rx⊗ßq+ry⊗ßq+ Q
-
(x) Q

+
(x)

xαq- ßq+

Fig. 3.3 KR2 reduction rule.

Rule KR3: If x is ε-equivalent or x is quasi-ε-equivalent with l, r, k, γ ∈ K

the constants satisfying such a definition, then

• if x is ε-equivalent

– then delete every (q−, q+) ∈ Q−(x)×Q+(x),

– else delete every (q−, q+) ∈ Q−(x) × Q+(x) \ B(Q−(x)) ×
T (Q+(x)).

• for every q− ∈ Q−(x) and q+ ∈ Q+(x) set U ′(q−, x) = αq− and

U ′(x, q+) = βq+ where αq− and βq+ are defined as in the ε-equivalence

or quasi-ε-equivalence.

• If x is quasi-ε-equivalent then compute the new edges from B(Q−(x))×
T (Q+(x)) labeled γ.

x

KR3

Q
-
(x) Q

+
(x)

αq-⊗l r⊗ßq+
Q
-
(x) Q

+
(x)xαq- ßq+

αq- ⊗k⊗ßq+
Fig. 3.4 KR3 reduction when x is ε-equivalent.

3.3.2 Confluence for K-rules

In order to have an algorithm checking whether a K-graph is a Glushkov

K-graph , we have to know (1) if it is decidable to apply a K-rule on some

vertices and (2) if the application of K-rules ends. In order to ensure these
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x
KR3

Q
-
(x) Q

+
(x)

αq-⊗l r⊗ßq+ xαq-⊗k⊗ßq+
B(Q

-
(x)) T(Q

+
(x))

αq-⊗k⊗ßq+⊕ϒ Q
-
(x)

B(Q
-
(x))

αq-
Q
+
(x)

T(Q
+
(x))

ßq+
ϒ

Fig. 3.5 KR3 reduction when x is quasi-ε-equivalent.

characteristics, we will specify some sufficient properties on the semiring K.

Let us define K as a field or as a factorial semiring. A factorial semiring K

is a zero-divisor free semiring for which every non-zero, non-unit element x

of K can be written as a product of irreducible elements of K x = p1 · · · pn,

and this representation is unique apart from the order of the irreducible

elements. This notion is a slight adaptation of the factorial ring notion.

It is clear that, if K is a field, the application of K-rules is decidable.

Conditions of application of K-rules are sufficient to define an algorithm.

In the case of a factorial semiring, as the decomposition is unique, a gcd

is defined1 and it gives us a procedure allowing us to apply one rule (KR2

or KR3) on a K-graph if it is possible. It ensures the decidability of K-

rules application for factorial semirings. For both cases (field and factorial

semiring), we prove that K-rules are confluent. It ensures the ending of

the algorithm allowing us to know whether a K-graph is a Glushkov one.

Detailed algorithms can be found in [5].

For the KR2-rule, with notations of Figure 3.3, we check if there exists

a value αq− for each q− ∈ Q−(x) such that U(q−, x) and U(q−, y) can

respectively be rewritten as αq− ⊗ lx and αq− ⊗ ly with lx ← gcdr(x) and

ly ← gcdr(y) respectively the right gcd of values {U(q−, x) | q− ∈ Q−(x)}
and {U(q−, y) | q− ∈ Q−(y)}. Similar steps are applied to find a value βq+

for each q+ ∈ Q+(x) with rx ← gcdl(x) the left gcd of values {U(x, q+) |

q+ ∈ Q+(x)}.

For the KR3-rule, with notations of Figures 3.4 and 3.5, we check if there

exists a value αq− for each q− ∈ Q−(x) such that U(q−, x) can be rewritten

as αq−⊗l with l ← gcdr(x) the right gcd of values {U(q−, x) | q− ∈ Q−(x)}.
A value βq+ is searched for q+ ∈ Q+(x) with r ← gcdl(x) the left gcd of

values {U(x, q+) | q+ ∈ Q+(x)}. Then, we check if, for every edge from

states of Q−(x) to states of Q+(x) unique values k and γ can be extracted

1
In case K is not commutative, left gcd and right gcd are defined.
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such that U(q−, q+) =

{

αq− ⊗ k ⊗ βq+ if x is ε-equivalent

αq− ⊗ k ⊗ βq+ ⊕ γ if x is quasi-ε-equivalent

Definition 3.6 (Confluence). Let G be a K-graph and IG the acyclic

graph having only one vertex. Let R1 be a sequence of K-rules such that

G −→
R1

IG

K-rules are confluent if for all K-graph G2 such that there exists R2

a sequence of K-rules with G −→
R2

G2 then there exists R′
2 a sequence of

K-rules such that

G2 −→
R′

2

IG

For the following, K is a field or a factorial semiring.

Proposition 3.7. The K-rules are confluent.

Proof. In order to prove this result, we will show that if there exist

two applicable K-rules reducing a Glushkov K-graph, then the order of

application does not modify the resulting K-graph.

Let us denote by rx,y(G) the application of a KR1, KR2 or KR3 rule on

the vertices x and y with y = ∅ for a KR3 rule.

Let G = (X,U) be a Glushkov K-graph and let rx,y and rz,t be two

applicable K-rules on G such that {x, y} ∩ {z, t} = ∅ and no edge can be

deleted by both rules. Necessarily we have rx,y(rz,t(G)) = rz,t(rx,y(G)).

Suppose now that {x, y} ∩ {z, t} 6= ∅ or one edge is deleted by both

rules. We have to consider several cases depending on the rule rx,y.

• rx,y is a KR1 rule:

In this case rz,t can not delete the edge from x to y and rz,t is necessarily

a KR1-rule with {x, y} ∩ {z, t} 6= ∅. If y = z, as the coefficient does

not act on the reduction rule, rx,y(rz,t(G)) = rz,t(rx,y(G))

• rx,y is a KR2 rule:

Consider that rz,t is a KR2 rule with y = z. Using the notations of

the KR2 rule, there exist αq− , βq+ , lx, ly, rx, ry such that U(q−, x) =
αq− lx, U(q−, y) = αq− ly, U(x, q+) = rxβq+ and U(y, q+) = ryβq+

with q− ∈ Q−(x), q+ ∈ Q+(x), and lx = gcdr(x), ly = gcdr(y) (rx =

gcdl(x), ry = gcdl(y)). By hypothesis, a KR2 rule can also be applied

on the vertices y and t. There also exists α′
q− , β

′
q+ , l

′
x, l

′
t, r

′
x, r

′
t such

that αq− = α′
q− l

′
x, βq+ = r′xβ

′
q+ , U(q−, t) = α′

q− l
′
t, U(t, q+) = r′tβ

′
q+

(Q−(x) = Q−(t) and Q+(x) = Q+(t)). By construction of gcdr(x), the
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left gcd of all αq− is 1. Then, whatever the order of application of KR2

rules, the same decomposition of edges values is obtained. Symetrically

a same reasoning is applied for the right part.

Consider now that rz,t = rz,∅ is a KR3 rule. Neither edges from x or

y nor edges to x or y can be deleted by rz,∅. Then z = x or z = y.

Let z = y. If we successively apply rx,y and ry,∅ or ry,∅ and rx,y
on G, we obtain the same K-graph following the same method as the

previous case. If we choose z = x, we have also the same K-graph

(commutativity property of the sum operator).

• rx,y is a KR3 rule:

The only case to consider now is rz,t = rz,∅ a KR3 rule. Suppose that

rz,∅ deletes an edge also deleted by rx,∅ (with x 6= z). Let (q−, q+) be
this edge.

Using the notations of the KR3 rule, there exist αq− , βq+ , l, r such

that U(q−, x) = αq− l, U(x, q+) = rβq+ , U(q−, q+) = αq−kβq+⊕γ with

q− ∈ Q−(x), q+ ∈ Q+(x) and l = gcdr(x), r = gcdl(x). There also

exists α′
q− , β

′
q+ , l

′, r′ such that U(q−, z) = α′
q− l

′, U(z, q+) = r′β′
q+ ,

U(q−, q+) = α′
q−k

′β′
q+ ⊕ γ′ with l′ = gcdr(z), r′ = gcdl(z). By

construction, the computation of l and l′ (r and r′) are indepen-

dant. A same reasoning is applied for the right part. Then we can

choose γ′′ such that γ = α′
q−k

′β′
q+ ⊕ γ′′ and γ′ = αq−kβq+ ⊕ γ′′.

So U(q−, q+) = αq−kβq+ ⊕ α′
q−k

′β′
q+ ⊕ γ′′. It is easy to see that

rx,∅(rz,∅(G)) = rz,∅(rx,∅(G)).
�

3.3.3 K-reducibility

Definition 3.8. A K-graph G = (X,U) is said to be K-reducible if it has

no orbit and if it can be reduced to one vertex by iterated applications of

any of the three rules KR1, KR2, KR3 described below.

Proposition 3.10 shows the existence of a sequel of K-rules leading to

the complete reduction of Glushkov K-graphs. However, the existence of

an algorithm allowing us to obtain this sequel of K-rules depends on the

semiring K.

In order to show the K-reducibility property of a Glushkov K-graph G,

we check (Lemma 3.9) that every sequence R of K-rules leading to the K-

reduction of G contains necessarily two KR1 rules which will be denoted

by r◦ and r•.
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Lemma 3.9. Let G = (X,U) be a K-reducible Glushkov K-graph without

orbit with |X | ≥ 3, and let R = r1 · · · rn be the sequence of K-rules which

can be applied on G and reduce it. Necessarily, R can be written R′r◦r•
with r◦ and r• two KR1-rules merging respectively sI and Φ.

Proof. We show this lemma by induction on the number of vertices of

the graph. It is obvious that if |X | = 3 then, the only possible graphs are

the following ones:

sI Φ

x

λ λ′

sI Φ

x

λ λ′

λ′′

and then, for the first one R = r◦r• with k = λ in r◦ and k = λ′ in r•.
For the second one x is ε-equivalent and R = rr◦r• with r a KR3-rule such

that α = 1, β = 1, l = λ, r = λ′ and k = λ′′. Then, r◦ and r• are KR1

rules such that k = 1 for r◦ and r•. Suppose now that G has n vertices.

As it is K-reducible, there exists a sequence of K-rules which leads to one

of the two previous basic cases. �

For the reduction process, we associate each vertex of G to a subex-

pression. We define E(x) to be the expression of the vertex x. At the

beginning of the process, E(x) is a, the only letter labelling edges reaching

the vertex x (homogeneity of Glushkov automata). For the vertices sI and

Φ, we define E(sI) = E(Φ) = ε. When applying K-rules, we associate a

new expression to each new vertex. With notations of Figure 3.2, the KR1-

rule induces E(x) ← E(x)· k × E(y) with k = U(x, y). With notations of

Figure 3.3, the KR2-rule induces E(x) ← lxE(x)rx + lyE(y)ry. And with

notations of Figures 3.4 and 3.5, the KR3-rule induces E(x)← lF (x)r+ k.

Proposition 3.10. Let G = (X,U) be a K-graph without orbit. The graph

G is a Glushkov K-graph if and only if it is K-reducible.

Proof. (⇒ ) This proposition will be proved by recurrence on the length

of the expression. First for ||E|| = 1, we have only two proper K-expressions

which are E = λ and E = λaλ′, for λ, λ′
∈ K. When E = λ, the Glushkov

K-graph has only two vertices which are sI and Φ and the edge (sI ,Φ)

is labeled with λ. Then the KR1 rule can be applied. Suppose now that

E = λaλ′, then the Glushkov K-graph of E has three vertices and is K-

reducible. Indeed, the KR1-rule can be applied twice.
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Suppose now that for each proper K-expression E of length n, its

Glushkov K-graph is K-reducible. We then have to show that the Glushkov

K-graph of K-expressions F = E + λ, F = E + λaλ′, F = λaλ′
·E and

F = E·λaλ′ of length n + 1 are K-reducible. Let us denote by R (respec-

tivelyR′) the sequence of rules which can be applied onAK(E) (respectively

AK(F )). In case |X | ≥ 3, R = Rbr◦r• (respectively R′ = R′
br

′
◦r

′
•).

• case F = E + λ

We have Pos(F ) = Pos(E), First(F ) = First(E), Last(F ) = Last(E),

Null(F ) = Null(E) + λ and ∀i ∈ Pos(E), Follow(F, i) = Follow(E, i).

Every rule which can be applied on AK(E) and which does not modify

the edge (sI ,Φ) can also be applied on AK(F ).

If AK(E) has only two states, then R = r a KR1-rule, and then R′ = r′

a KR1- rule where r′ is such that k = Null(E) + λ. Elsewhere, the

(sI ,Φ) edge can only be reduced by a KR3 rule.

Suppose now that there is no KR3 rule modifying (sI ,Φ) which can be

applied on AK(E). Then there is a KR3 rule r′ which can be applied on

AK(F ) with k = λ and then AK(F ) can be reduced by R′ = Rbr
′r′◦r

′
•.

Let us now suppose that r1, r2, · · · rn is the subsequence of KR3-rules of

R which modify the (sI ,Φ) edge. Necessarily, rn acts on a state x which

is ε-equivalent. If Q−(x) 6= {sI} or Q+(x) 6= {Φ} then R′
b = Rbrn+1

where rn inR′
b is modified as follows: x is quasi-ε-equivalent with γ = λ

and the rule rn+1 is a KR3 rule on a state x which is ε-equivalent and

k = λ. Elsewhere, there is two cases to distinguish. If Null(E)⊕λ = 0

then the rn rule is no more applicable on AK(F ) (no edge between sI
and Φ) and the rn−1 rule in R′ now acts on an ε-equivalent vertex in

AK(F ). If Null(E) + λ 6= 0 then rn can be applied on AK(F ) with

k = k ⊕ λ.

• case F = E + λaλ′

If |Pos(E)| = n, we have, Pos(F ) = Pos(E) ∪ {n + 1}, First(F ) =

First(E) ] {(λ, n+ 1)}, Last(F ) = Last(E) ] {(λ′, n+ 1)}, Null(F ) =

Null(E) and ∀i ∈ Pos(E), Follow(F, i) = Follow(E, i) and

Follow(F, n+1) = ∅. In this case, R′ = Rbrr
′
◦r

′
• where r is a KR2 rule

with αsI = βΦ = 1 and ly = λ, ry = λ′ and so AK(F ) is K-reducible.

• case F = E·λaλ′

If |Pos(E)| = n, we have, Pos(F ) = Pos(E) ∪ {n + 1}, First(F ) =

First(E), Last(F ) = {(λ′, n + 1)}, Null(F ) = ∅ and ∀i ∈ Pos(E) \

P (Last(E)), Follow(F, i) = Follow(E, i) and ∀i ∈ P (Last(E)),

Follow(F, i) = Follow(E, i) ] {(λ, n + 1)}. Let r1, · · · rn be the sub-

sequel of K-rules modifying edges reaching Φ. Necessarily, n = 1 and
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r1 = r• (Lemma 3.9). Indeed, let us suppose that n > 1 and that

there exists j 6= i such that rj is a KR1, KR2, or KR3-rule. Neces-

sarily |Q−(Φ)| ≥ 1, which contradicts our hypothesis. Then we have

R
′ = Rrn+1 where r• the KR1-rule from a vertex x to Φ of the se-

quence R and labeled with ki is modified in R′ as follows: k = ki ⊗ λ.

We have also k = λ′ for the rule rn+1.

The case F = λaλ′
·E is proved similarily as the previous one considering

the rules modifying edges from sI (with r◦ instead of r•).

( ⇐ ) By induction on the number of states of the reducible K-graph

G = (X,U). If |X | = 2, X = {sI ,Φ} and the only K-expression E is λ with

λ ∈ K. Let G′ = (X ′, U ′) be the Glushkov K-graph obtained from E. By

construction λ = U(sI ,Φ) = E(sI) and λ = Null(E), necessarily G′ = G.

We consider the property true for ranks bellow n+ 1 and G a K-graph

partially reduced. Three cases can occur according to the graphic form of

the partially reduced graph. Either we will have to apply twice theKR1-rule

or once the KR3-rule and twice the KR1-rule if X = {sI , x,Φ}, or we will

have to apply once theKR2-rule and twice theKR1-rule ifX = {sI , x, y,Φ}.

For each case, we compute successively the new expressions of vertices, and

we check that the Glushkov construction applied on the final K-expression

is G. �

3.3.4 Several Examples of Use for K-rules

For the KR2 rule, the first example is for transducers in (K,⊕,⊗) =(Σ∗
∪

∅,∪, ·) where “·” denotes the concatenation operator. In this case, we can

express the KR2 rule conditions as follows. For all q− in Q−(x), αq− is the

common prefix of U(q−, x) and U(q−, y). Likewise, for all q+ in Q+(x),

βq+ is the common suffix of U(q+, x) and U(q+, y).

p2

p1

y

x

q2

q1
aa

ab

b

a

aba

aa

bba

ba
p2

p1

aE(x)a+ bE(y)b

q2

q1a

ε

ba

a

The second one is in (Z/7Z[i, j, k],⊕,⊗), where {i, j, k} are elements of

the quaternions and ⊕ is the sum and ⊗ the product. In this case, K is a

field. Every factorization leads to the result.
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p2

p1

y

x

q2

q1
2i
j

−k

2

3j

j

2k

2k
p2

p1

2iE(x)1 + jE(y)2i

q2

q11

−i

3j

j

We now give a complete example using the three rules on the (N ∪

{+∞},min,+) semiring. This example enlightens the reader on the prob-

lem of the quasi-ε equivalence. For this example, we will identify the vertex

with its label.

sI y

x

z

Φ

2

6

2

3

5
6

2

0

Fig. 3.6 A (min,+)-WFA.

sI y

x

z

Φ

0⊗ 2

0⊗ 6⊗ 0

2

0⊗ 6⊗ 1⊕ 3

5⊗ 0
5⊗ 1

2

0

Fig. 3.7 KR3 rule can be applied on x

with lx = 2, rx = 5 and k = 6.

sI y

2x5 + 6

z

Φ

0
0⊗ 1⊗ 0

2

3

0⊗ 0

2⊗ 0

0

Fig. 3.8 KR3 rule can be applied on y

with ly = 0, ry = 2 and k = 1.

sI 0y2 + 1

2x5 + 6

z

Φ

0

2

3

0

0

0

Fig. 3.9 KR1 rule can be applied on

(2x5 + 6) and on (0y2 + 1).

sI z Φ

(2x5 + 6)(0y2 + 1)

0

2

3

0

0

Fig. 3.10 KR2 rule can be applied on

(2x5 + 6)(0y2 + 1) and on z.

sI Φ

(2x5 + 6)(0y2 + 1) + 2z

0
3

0

Fig. 3.11 A KR3 rule can be applied

to end the process.
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This example leads to a possible K-expression such as

E = ((2x5 + 6)(0y2 + 1) + 2z) + 3

3.4 Glushkov K-graph with Orbits

We will now consider a graph which has at least one maximal orbit O.

We extend the notions of strong stability and strong transversality to the

K-graphs obtained from K-expressions in SNF. We have to give a charac-

terization on coefficients only. The stability and transversality notions are

rather linked. Indeed, if we consider the states of In(O) as those of O+

then both notions amount to the transversality. Moreover, the extension of

these notions to WFAs (K-stability - definition 3.12 - and K-transversality

- definition 3.14), implies the manipulation of output and input vectors of

O whose product is exactly the orbit matrix of O (Proposition 3.17).

Lemma 3.11. Let E be a K-expression and GK(E) its Glushkov K-graph.

Let O = (XO, UO) be a maximal orbit of GK(E). Then E contains a closure

subexpression F such that XO = Pos(F ).

This lemma is a direct consequence of Lemma 4.5 in [6] and of Lemma 3.4.

Definition 3.12 (K-stability). A maximal orbit O of a K-graph G =

(X,U) is K-stable if

•
˜

O is stable and

• the matrix MO ∈ K
|Out(O)|×|In(O)| such that MO(s, e) = U(s, e), for

each (s, e) of Out(O)× In(O), can be written as a product VW of two

vectors such that V ∈ K
|Out(O)|×1 and W ∈ K

1×|In(O)|.

The graph G is K-stable if each of its maximal orbits is K-stable.

If a maximal orbit O is K-stable, MO is a matrix of rank 1 called the

orbit matrix. Then, for a decomposition of MO in the product VW of two

vectors, V will be called the tail-orbit vector of O and W will be called the

head-orbit vector of O.

Lemma 3.13. A Glushkov K-graph obtained from a K-expression E in

SNF is K-stable.

Proof. Let G be the Glushkov K-graph of a K-expression E in SNF,

AK(E) = (Σ, Q, sI , F, δ) its Glushkov WFA and O = (XO, UO) be a max-

imal orbit of G. Following Lemma 3.4 and Theorem 3.5, G is strongly
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stable which implies that every orbit of G is stable. Let si ∈ Out(O),

1 ≤ i ≤ |Out(O)| and ej ∈ In(O), 1 ≤ j ≤ Out(O). Follow-

ing the extended Glushkov construction and as for all si ∈ Out(O),

si 6= sI , we have δ(si, a, ej) = CoeffFollow(E,si)(ej). As O corresponds

to a closure subexpression F ∗ or F+ (Lemma 3.11) and as (si, a, ej) is

an edge of XO × Σ × XO, we have δ(si, a, ej) = CoeffFollow(F∗,si)(ej) =

CoeffFollow(F,si)]CoeffLast(F )(si).First(F )(ej). As E is in SNF, so are

F ∗ and F+, and then δ(si, a, ej) = CoeffCoeffLast(F )(si)
.First(F )(ej) =

CoeffLast(F )(si).CoeffFirst(F )(ej). The lemma is proved choosing V ∈

K
|Out(O)|×1 such that V (i, 1) = CoeffLast(F )(si) and W ∈ K

1×|In(O)| with
W (1, j) = CoeffFirst(F )(ej). �

Definition 3.14 (K-transversality). A maximal orbit O of G = (X,U)

is K-transverse if

•
˜

O is transverse,

• the matrix Me ∈ K
|O−|×|In(O)| such that Me(p, e) = U(p, e) for each

(p, e) of O−
× In(O), can be written as a product ZT of two vectors

such that Z ∈ K
|O−|×1 and T ∈ K

1×|In(O)|,
• the matrix Ms ∈ K

|Out(O)|×|O+| such that Ms(s, q) = U(s, q) for each

(s, q) of Out(O)×O+, can be written as a product T ′Z ′ of two vectors

such that T ′
∈ K

|Out(O)|×1 and Z ′
∈ K

1×|O+|.

The graph G is K-transverse if each of its maximal orbits is K-transverse.

If a maximal orbit O is K-transverse, Me (respectively Ms) is a matrix

of rank 1 called the input matrix of O (respectively output matrix ofO). For

a decomposition of Me (respectively Ms) in the product ZT (respectively

T ′Z ′) of two vectors, T will be called the input vector (respectively T ′ will
be called the output vector) of O.

Lemma 3.15. The Glushkov K-graph G = (X,U) of a K-expression E in

SNF is K-transverse.

Proof. Let O be a maximal orbit of G. Following Lemma 3.4 and Theo-

rem 3.5, G is strongly transverse implies that O is transverse. By Lemma

3.11, there exists a maximal closure subexpression H such that H = F ∗

or H = F+. As E is in normal form, so is H . By the definition of the

function Follow, we have in this case: for all p ∈ Out(O), for all q ∈ O+,

U(p, q) = CoeffFollow(F,p)(q). We now have to distinguish three cases.
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(1) If |O+
| = 1, then the result holds immediatly. Indeed the output matrix

of O is a vector.

(2) If O+ = {q1, · · · , qn} and n > 1, ∀1 ≤ j ≤ n, qj 6= Φ, necessarily, we

have O+ =
⋃

l

P (First(Hl)) with Hl some subexpressions of E. Then

we have U(p, qj) = CoeffCoeffLast(F )(p).First(Hl)(qj) if qj ∈ P (First(Hl)).

Then as qj is a first position of only one subexpression, U(p, qj) =

kp⊗CoeffFirst(Hl)
(qj) where kp = CoeffLast(F )(p) which concludes this

case.

(3) Now if ∃1 ≤ j ≤ n | qj = Φ then U(p, qj) = CoeffLast(F )(p) ⊗ k where

k is the Null value of some subexpression following F not depending

on p.

A same reasoning can be used for the left part of the transversality. �

Definition 3.16 (K-balanced). The orbit O of a graph G is K-balanced

if O is K-stable and K-transverse and if there exists an input vector T of O

and an output vector T ′ of O such that the orbit matrix MO = T ′T . The

graph G is K-balanced if each of its maximal orbits is K-balanced.

Proposition 3.17. The Glushkov K-graph obtained from a K-expression

E in SNF is K-balanced.

Proof. Lemma 3.13 enlightens on the fact that V , the tail-orbit vector

of O, is such that V (i, 1) = CoeffLast(F )(i) for all i ∈ P (Last(F )), which

is, from Lemma 3.15, the output vector of O. The details of the proofs for

these lemmas show in the same way that there exists an head-orbit vector

and an input vector for O which are equal. �

We can now define the recursive version of WFA K-balanced property.

Definition 3.18. A K-graph is strongly K-balanced if (1) it has no orbit

or (2) it is K-balanced and if after deleting all edges Out(O) × In(O) of

each maximal orbit O, it is strongly K-balanced.

Proposition 3.19. The Glushkov K-graph obtained from a K-expression

E in SNF is strongly K-balanced.

Proof. Let G be the Glushkov K-graph of a K-expression E and O be a

maximal orbit of G. The GlushkovK-graphG is strongly stable and strongly

transverse. As E is in SNF , edges of Out(O)× In(O) that are deleted are

backward edges of a unique closure subexpression F ∗ or F+. Consequently,
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the recursive process of edges removal deduced from the definition of strong

K-stability produces only maximal orbits which are K-balanced. The orbit

O is therefore strongly K-balanced. �

Theorem 3.20. Let G = (X,U). G is a Glushkov K-graph of a K-

expression E in SNF if and only if

• G is strongly K-balanced.

• The graph without orbit of G is K-reducible.

Proof. Let G = (X,U) be a Glushkov K-graph. From Proposition 3.19,

G is strongly K-balanced. The graph without orbit of G is K-reducible

(Proposition 3.10) For the converse part of the theorem, if G has no orbit

and G is K-reducible, by Proposition 3.10 the result holds immediatly. Let

O be a maximal orbit of G. As it is strongly K-balanced, we can write

MO = VW the orbit matrix of O, there exists an output vector T ′ equal
to the tail-orbit vector V and an input vector T equal to the head-orbit

vector W . If the graph without orbit of O corresponds to a K-expression

F then O corresponds to the K-expression F+ where CoeffFirst(F+)(i) =

W (1, i), ∀i ∈ P (First(F+)), CoeffLast(F+)(j) = V (j, 1), ∀j ∈ P (Last(F+)).

We have also CoeffFollow(F+,j)(i) = CoeffFollow(F,j)]CoeffLast(F ).First(F )(i),

∀j ∈ P (Last(F )) and ∀i ∈ P (First(F )). Hence the Glushkov functions are

well defined.

We now have to show that the graph without orbit of O can be reduced

to a single vertex. By the successive applications of the K-rules, the vertices

of the graph without orbit of O can be reduced to a single state (giving a K-

rational expression for O). Indeed, as O is transverse, no K-rule concerning

one vertex of O and one vertex out of O can be applied. �

3.5 Algorithm for Orbit Reduction

In this section, we present a recursive algorithm that computes a K-

expression from a Glushkov K-graph . We then give an example which

illustrates this method.

Algorithms

The BackEdgesRemoval function (Algorithm 2) on O deletes edges from

Out(O) to In(O), returns true if vectors T, T ′, Z, Z ′ (as defined in definition

3.14) can be computed, false otherwise.
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Algorithm 1 Recursive orbit reduction.

OrbitReduction(G)

. Input: A K-graph G = (X,U)

. Output: A newly computed graph without orbit

1 Begin

2 for each maximal orbit O = (XO, UO) of G do

3 if BackEdgesRemoval(O, T, T ′, Z, Z ′) then

4 if OrbitReduction(O) then

5 if Expression(EO,O, T, T ′) then

6 ReplaceStates(G,O, EO , Z, Z ′)
7 else return False

8 else return False

9 else return False

10 return True

11 End

The Expression function returns true, computes the K-expression E

of G′ = (O ∪ {sI ,Φ}, U
′) where U ′

← U ∪ {(sI , T (1, j), ej) | ej ∈ In(O)} ∪

{(si, T
′(i, 1),Φ) | si ∈ Out(O)} and ouputs EO ← E+ if O is K-reducible.

It returns false otherwise.

TheReplaceStates function replacesO by one state x labeled EO and

connected to O− and O+ with the sets of coefficients of Z and Z ′. Formally

G = (X \XO∪{x}, U) with U ← U \{(u, k, v) | u, v ∈ O}∪{(pj , Z(j, 1), x) |

pj ∈ O
−
} ∪ {(x, Z ′(1, i), qi) | qi ∈ O+

}.

Illustrated Example

We illustrate Glushkov WFAs characteristics developed in this paper with

a reduction example in the (N ∪ {+∞},min,+) semiring. This example

deals with the reduction of an orbit and its connection to the outside.

We first reduce the orbit to one state and replace the orbit by this state

in the original graph. This new state is then linked to the predecessors

(respectively successors) of the orbit with vector Z (respectively Z ′) as

label of edges.

Let G be the K-subgraph of Figure 3.12 and let O be the only maximal

orbit of G such that XO = {a1, b2, c3, a4, b5, b6, c7}.
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Algorithm 2 Algorithm for back-edges removal of an orbit.

BackEdgesRemoval(O, T, T ′, Z, Z ′)

. Input: a K-graph O = (XO, UO), Me ∈ K
|O−|×|In(O)|

. Input: Ms ∈ K
|Out(O)|×|O+|,MO ∈ K

|Out(O)|×|In(O)|

. Output: T ∈ K
1×|In(O)|, T ′

∈ K
|Out(O)|×1,Z ∈ K

|O−|×1,Z ′
∈ K

1×|O+|

1 Begin

2 for each line l of Me do

3 gcdl(l)← left gcd of all values of the line l

. gcdl is the vector of gcdl(l) values

4 Find a vector gcdl such that Me = gcdl ⊗ gcdl
5 if gcdl does not exist then

6 return False

7 for each column c of Ms do

8 gcdr(c)← right gcd of all values of the column c

. gcdr is the vector of gcdr(c) values

9 Find a vector gcdr such that Ms = gcdr ⊗ gcdr
10 if gcdr does not exist then

11 return False

12 Find k such that MO = gcdr ⊗ k ⊗ gcdl
13 if k does not exist then

14 return False

15 A← right gcd of all values of the gcdl vector

16 B ← left gcd of all values of the gcdr vector

17 k1 ← left gcd(B, k)

18 Find k2 such that k = k1 ⊗ k2
19 if right gcd(k2, A) 6= k2 then

20 return False

21 T ← k2 ⊗ gcdl
22 T ′

← gcdr ⊗ k1
23 Find Z such that gcdl = Z ⊗ k2
24 Find Z ′ such that gcdr = k1 ⊗ Z ′

25 delete any edge from Out(O) to In(O)

26 return True

27 End

We have Ms =

(

1 2 3

3 4 5

)

, Me =

(

4 2 2

5 3 3

)

. We can check that O is
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p1

p2

q1

q2

q3

a1

b2

c3

b5a4

b6

c7
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2

2
5

3

3

0

3

2

0
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1
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2

0

0
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2
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Fig. 3.12 An example for orbit reduction.

K-transverse. Ms =

(

0

2

)

(

1 2 3
)

= T ′Z ′ and Me =

(

2

3

)

(

2 0 0
)

= ZT .

We then verify that the orbit O is stable. MO =

(

2 0 0

4 2 2

)

=

(

0

2

)

(

2 0 0
)

= VW . We easily check that the orbit is K-balanced. There

is an input vector T which is equal to W and an output vector T ′ which is

equal to V .

Then, we delete back edges and add sI and Φ vertices for the orbit O.

The sI vertex is connected to In(O). Labels of edges are values of the T

vector. Every vertex of Out(O) is connected to Φ. Labels of edges are

values of the T ′ vector. The following graph is then reduced to one state

by iterated applications of K-rules.

sI Φ

a

b

c

ba

c

b2

0 2

0

00

3

2

0

4

5

The expression F associated to this graph is replaced by F+ and states

of O− (respectively O+) are connected to the newly computed state choos-

ing Z as vector of coefficients (respectively Z ′).
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p1

p2

q1

q2

q3

(

(2a+ b3 + c2)· a· b· (4b+ 5c2)
)+

2

3

1

2

3

3.6 Conclusion

While trying to characterize Glushkov K-graph, we have pointed out an

error in the paper by Caron and Ziadi [6] that we have corrected. This

patching allowed us to extend characterization to K-graph restricting K to

factorial semirings or fields. For fields, conditions of applications of K-rules

are sufficient to have an algorithm.

For the case of strict semirings, this limitation allowed us to work with

gcd and then to give algorithms of computation of K-expressions from

Glushkov K-graphs .

This characterization is divided into two main parts. The first one is

the reduction of an acyclic Glushkov K-graph into one single vertex labeled

with the whole K-expression. We can be sure that this algorithm ends

without doing a depth first search according to confluence of K-rules. The

second one is lying on orbit properties. These criterions allow us to give an

algorithm computing a single vertex from each orbit.

In case the expression is not in SNF or the semiring is not zero-divisor

free, some edges are computed in several times (coefficients are ⊕-added)

which implies that some edges may be deleted. Then this characterization

does not hold. A question then arises: the factorial condition is a sufficient

condition to have an algorithm. Is it also a necessary condition ?
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16. Schützenberger, M. P. (1961). On the definition of a family of automata,

Inform. and Control 4, pp. 245–270.



September 2, 2010 10:0 World Scientific Book - 9in x 6in 00Chapter

Chapter 4

Natural Language Dictionaries

Implemented as Finite Automata

Jan Daciuk
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4.1 Dictionaries as Finite Automata

Dictionaries are widely present in various computer applications, and es-

pecially so in Natural Language Processing (NLP). This is similar to a

real life situation where a bookshelf or two of various dictionaries is the

essential prerequisite for any serious activity involving words. Dictionaries,

both in real and computer life, comprise a huge number of entries, be it

natural language words, technical terms, facts, numbers or codes. With

such a content, there exists an obvious need for the efficient storage and

organization principles. Those principles have been established for printed

dictionaries over the course of centuries as publishers have optimized the

dictionary organization – among the greatest achievements being keeping

the entries in a sorted order.

133
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The digital equivalent of a well organized bookshelf volume is an efficient

data structure for storing dictionaries. In most applications a huge number

of entries have to be stored and accessed. Efficient implementation would

be the one that needs the least amount of space and enables as fast access

to the information as possible.

The rest of this chapter is organized as follows. First, in the remaining

part of Section 4.1 several variants of finite-state devices relevant in the con-

text of implementing NLP dictionaries are described. This includes deter-

ministic and non-deterministic finite-state automata, minimal finite-state

automata, tries, recursive automata and transducers. Next, Section 4.2

gives some concrete examples of dictionaries used in various areas of NLP

(e.g., morphological analysis and synthesis, spelling correction, informa-

tion extraction, etc.), and whose implementation is based on finite-state

machines. Subsequently, Section 4.3 presents a range of state-of-the-art

algorithms for constructing dictionaries from: (a) set of strings, (b) set of

strings with cyclic structures, (c) regular expressions, and (d) other sources.

In particular, specific variants of these algorithms are introduced too. Sec-

tion 4.4 deals with models for representing finite-state devices and their

time and space complexity, and briefly introduces various techniques for

compressing finite-state machines. Some of the latter are particularly use-

ful for compressing NLP dictionaries. Finally, we end with some conclusions

and recommendations for further reading in Section 4.4.3.

4.1.1 Simple and Complex, Static and Dynamic

Electronic dictionaries can be divided in two general types: simple word

lists, and complex dictionaries where each entry is associated with some

additional information. Simple word lists can be used to store natural

language words, mostly in applications for spelling correction. The com-

plex dictionaries are closer to the common understanding of a term dictio-

nary that usually implies translating from a natural language to another

natural language, or explaining the dictionary entries in some way. Al-

though complex dictionaries may include abstract information like routing

tables, they are mostly used in natural language applications to store var-

ious types of linguistic (semantics, morphology, phonetics) or geographic

data (gazetteers, phone books). There exists a certain ambiguity in the

literature regarding this, but we will use the term lexicon for a simple word

list and the term dictionary for a proper dictionary – the one with some
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kind of data associated with a given input key.1 Depending on the appli-

cation, the data associated with an input entry can be an explanation, a

translation, or some of the various kinds of attributes. A dictionary data

structure with keys and attributes is sometimes called the associative array.

Formally, a digital dictionary is a data structure that, for a given set of

keys K, on a given input entry e, supports operations: membership, add,

delete and lookup. Membership operation returns “yes” if e is a member

of K and “no” if otherwise. Add operation does nothing if e is already in

K and enlarges K with e if it isn’t. Delete operation removes e from K if

e is a member of K, and does nothing if it isn’t. In a proper dictionary,

associated attributes are added or deleted simultaneously with the keys.

Lookup operation finds and returns the data associated with e, if e is in K,

and returns nothing if it isn’t. Lookup is sometimes referred to as mapping

since it maps, or translates, input entry to whatever is the associated data.

For instance, “a cat” would be mapped to “un chat” in English to French

dictionary, and a number like 127.0.0.1 would translate to “localhost” in a

DNS lookup dictionary. The associated data is sometimes called a value,

or an attribute. A key can be mapped to more than one attribute.

A lexicon is a structure that supports only membership, add and delete

operations since there is no data associated with the keys. Dictionaries

that support add and delete operations are called dynamic – they allow

for online updates on K. If a set of keys is fixed, then the dictionary data

structure can be static. Static dictionaries allow only for the membership

and lookup operations, and only membership is needed for static lexicons.

The advantage of static dictionaries is that they can be compressed

more efficiently than the dynamic ones. A lot of research effort has been

awarded to the field of a static dictionary compression and there is a con-

siderable difference in the size between the dynamic and static implemen-

tations. This is useful in situations where dictionaries are distributed as

read-only structures, or in applications involving more or less fixed sets of

keys. For example, a comprehensive list of words for a spelling checker is

usually a fixed set precompiled in advance, with the additional user-defined

words stored separately. If we want to add or delete a key in a static dic-

tionary, we need to recompile it from scratch. However, the state of the

art algorithms for producing compressed static dictionaries are very fast

and it is conceivable that in some applications even recompiling a static

dictionary would pass unnoticed by the user. The substantial difference

1
The ambiguity stems from the fact that collections called lexicons often contain addi-

tional descriptors.
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between dynamic and static data structures is that in dynamic ones the

procedures for adding a key to the existing structure are the same as those

in the initial construction of the dictionary.

4.1.1.1 Implementing a Dictionary

Possible implementations of a dictionary data structure include lists, arrays,

hash tables, balanced trees and finite state machines.

• Linked lists. The simplest way to implement a dictionary is to store

key-attribute pairs as a linked list of records. The list is searched

sequentially and, when an input key is matched, we can retrieve the

associated attribute for a lookup, return “yes” for a membership

query, or delete the record. To add a record, we can simply append

it to the end of the list. If we keep the list in a sorted order, then

we can use binary search to speed up the search for a matching

key, and if there is no match negative result is reported faster.

However, adding a new record is slower because we first must find

its proper place in the sorted list. The speed of access is the main

shortcoming of the list implementation.

• Arrays. A faster solution is to keep entries in an array. If the array

is sorted we can use the binary search. In some applications the

attribute part is much larger than the key part. In such cases,

and especially if the list of key-attribute pairs is too big for the

fast memory, we can split records into separate sets for keys and

attributes. Then, with each key we have to keep the address of

the location where its attribute is stored, and the attribute records

can be stored in a slower memory because they are accessed only

once per query. When the keys don’t vary too much in size, it is

convenient to keep them in an array of fixed size records. If the

sizes do vary, then we can keep the keys contiguously in an array

of variable size records and use a vector of pointers to access the

keys. The disadvantage of the array implementation is its size.

• Hash tables. Finding an entry in a sorted array of keys takes log-

arithmic time if we use binary search. The keys can be accessed

in constant time if we use a hash table. The downside again is

the size. Hash tables are a classic solution for verifying member-

ship in static lexicons where there is no need to keep the actual

key list. In dictionaries where we need to store the keys explicitly
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we again need an array for the keys, together with the space for a

hash table. Also, an efficient (preferably one-to-one) hash function

is comparatively expensive to construct and store.

• Balanced trees. A number of balanced tree structures (red-black

trees, B-trees, splay trees) can also be used to store keys. Lookup

and update operations on balanced trees require (n logn) time in

both worst and average cases, which is slower than arrays and hash

tables. Trees are often used in applications where associated data

occupies a lot of space and is stored on secondary memory. The

downside is the extra space needed for node pointers.

• Finite-state machines. Finite-state machines (FSM) include finite-

state automata (FSA) and finite-state transducers (FST). Over the

years, finite-state machines have emerged as the most efficient way

to implement a dictionary. This is mostly due to the advent of al-

gorithms for fast construction and efficient compression. The main

advantage of finite machines lies in their time and space efficiency

(and a good tradeoff between the two). The processing is linear

with the input string length and independent of the size of the

whole dictionary. This is better than with lists, arrays and trees,

and almost as good as the constant time of hash tables. On the

other hand, the implementations of FSMs allow for the use of var-

ious compression methods and the requirements for space can be

the least of all competitive methods. Another useful property of

FSMs is that they are closed under concatenation, union, intersec-

tion, difference and Kleene star operations which is beneficial in

some linguistic applications.

4.1.2 Variants of Finite-State Machines Relevant to

Dictionary Data Structure Implementation

Finite-state machines have been extensively studied and a number of dif-

ferent types have been analyzed and explored, each for its own merit. We

shall describe some variants that are pertinent to the subject of dictionar-

ies. The basic finite-state machine is the deterministic automaton, so we

shall start from there with some groundwork definitions that will be used

later in the text. Next, we shall describe a trie and the minimal automaton

- which are well known and useful variants of deterministic automata, and a

recursive automaton - a concept that enables compact representation. We

shall briefly mention non-deterministic automata, and finish the list with

transducers - a special type of automata with output.
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4.1.2.1 Deterministic Finite-State Automaton

We shall begin with the formal definition of deterministic finite-state au-

tomaton (DFA). A DFA is a quintuple A = (Q,Σ, δ, q0, F ), where Q is a

finite set of states, Σ is a finite set of symbols called the alphabet, q0 ∈ Q is

a start state (also called initial state), F ⊆ Q is a set of final or accepting

states, δ : Q × Σ ⇒ Q is a transition function. We write δ(q, σ) = ⊥ is

δ(q, σ) 6∈ Q. The extended transition function δ∗ : Q × Σ∗ ⇒ Q is defined

as follows:

δ∗(q, ε) = q (4.1)

δ∗(q, ax) =

{

δ∗(δ(q, a), x) if δ(q, a) 6= ⊥
⊥ if δ(q, a) = ⊥

(4.2)

A language L(A) of a finite automaton A is defined as:

L(A) = {w ∈ Σ∗ : δ∗(q0, w) ∈ F} (4.3)

It is said that an automaton A recognizes or generates L(A). A right

language
→
L (q) of a state q is defined as:

→
L (q) = {w ∈ Σ∗ : δ∗(q, w) ∈ F} (4.4)

Note that L(A) =
→
L (q0). If, for a symbol σ and a language L, σL

denotes the concatenation of σ and every word in L, then the right language

can also be defined recursively with:

→
L (q) =

⋃

σ∈Σ:δ(q,σ)∈Q
σ
→
L (δ(q, σ)) ∪

{

∅ if q 6∈ F

{ε} if q ∈ F
(4.5)

The left language of a state is defined as:

←
L (q) = {w ∈ Σ∗ : δ∗(q0, w) = q} (4.6)

For a state q, fanout(q) and fanin(q) are sets of outgoing and incoming

transitions, respectively. With Γ(q) we denote a set of labels of outgoing

transitions from q. A state q is reachable if
←
L (q) 6= ∅. If a state is not
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reachable, it is unreachable. A state is co-reachable if
→
L (q) 6= ∅. A state

that is not both reachable and co-reachable is useless.

The size of an automaton is defined as the number of states:

|A| = |Q| (4.7)

The number of states is a conventional measure for the automata size.

However, in practice, the actual memory consumption of an implementation

depends also on the number of transitions and the choice of a data structure.

Let us now explain the defined terms with the help of the example in

Figure 4.1. The structure in Figure 4.1 is a deterministic finite automaton.

Circles represent states, Q is collection of all of the states and |Q| is 19.

State q0 is the initial state, and states q3, q5, q10, q13, q17 and q18 are the

set of accepting states F . Accepting states are drawn with double circles.

States q3, q10 and q17 are called internal accepting states. Transitions are

represented with arrows connecting two states, and the associated symbols

are called transition labels. The collection of symbols is the alphabet, i.e.

Σ = {e, g, h, i, e, o, r, s, t, w}, and the size of the alphabet | Σ | =

10. The direction of transitions is indicated with arrows and the collection

of transitions represents function δ. It is possible to interpret DFA as a

directed graph, then states are nodes and transitions are directed arcs.

q0

q1 q2 q3 q4

q6 q7 q8 q9 q10 q5

q11 q12 q13

q14 q15 q16 q17 q18

l

o w e r

l i g h t

e

s

o w
s

i

g h t s

Fig. 4.1 Deterministic finite automaton recognizing words: low, lower, light, lighter,

sow, sows, sight, sights.

The language of this automaton are eight English words. Membership

operation on a DFA is simple. To see if a given input word belongs to a

language represented by an automaton such as the one in Figure 4.1, we
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simply have to start at qo an test if the symbols in the input word match a

concatenation of labels on a path to any of the accepting states.

The automaton in Figure 4.1 has two important properties, it is de-

terministic and acyclic. It is deterministic in the sense that there is at

most one transition from each state with the same label. In general, finite

state automata can have more than one transition with the same symbol

from the same state. If this is the case, the automaton is nondeterministic.

Nondeterministic automata will be defined later in the text.

If the automaton is acyclic this means that there is no succession of

transitions from any state that leads back to the same state. That is,

there are no cycles present. The finite state automata are equivalent to

regular languages that can in turn be represented by regular expressions.

Regular languages are closed under operations of concatenation, union and

Kleene star. In regular language (or expression) the star (∗) indicates an

arbitrary number of repetitions for a given symbol or a string of symbols.

In a finite automaton this is represented with a cycle, i.e. a transition

(or a sequence of transitions) returning to its originating state and with

the label (or a concatenation of labels) consisting of the repeated symbols.

Since the number of repetitions is arbitrary, the number of possible strings

in such language is infinite. In most cases a dictionary is a finite set of

strings and can, therefore, be represented only with an automaton that

has no cycles in it. Acyclic automata represent regular languages with-

out star operations. A finite list of strings is a regular language without

star operations.

Function δ is a partial function. That means there doesn’t need to exist

a transition from every state in Q for each symbol in Σ, so the automaton

in Figure 4.1 is incomplete. In general instance, if δ is a complete func-

tion, there should be a transition from each state for every symbol of the

alphabet, in this case ten transitions from each state. The transitions that

don’t belong to a path leading from q0 to a state in F end in a reject state.

For the sake of clarity the reject state and transitions leading to it are

usually omitted when drawing the automaton. Such automaton is called

incomplete.

The paths from q0 to a state in F form the language accepted by the

automaton. Deterministic finite automaton that accepts all strings in a

language L is said to recognize L and is often called a recognizer . There

exist more than one DFA that can recognize the same language. When

different DFAs recognize the same language, then we say that they are

equivalent.
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Deterministic acyclic finite automaton is the fundamental model for

representing dictionaries. However, there are various subtypes relevant to

dictionary implementation. We shall describe three important variants: a

trie, the minimal automaton and the recursive automaton.

4.1.2.2 Trie

When a DFA for a given set of strings is constructed as a tree where paths

from the root to leaves correspond to input words, and all the prefixes in

the set are shared so that branching in a tree occurs only at the beginning

of a new suffix, then we call this structure a trie. Identical prefixes of

different words are represented with the same node. A trie equivalent to

the automaton in Figure 4.1 is presented in Figure 4.2.

Historically, in the early works of de la Briandais, Friedkin and Knuth

[21,22,33], nodes of tries would contain the whole of a shared prefix. As the

use of the structure evolved, most of the contemporary implementations are

done with a single symbol per transition and consequently a trie becomes a

tree shaped DFA. This is an elegant and practical data structure that has

been widely used to store and search a set of strings. It is easy to construct

and update, lends itself to a simple analysis and allows various compression

methods. A trie is sometimes called a digital search tree.

Dictionary operations on a trie are very fast. Lookup routine branches

at each symbol of the input word and membership query takes only as many

comparisons as there are symbols in the word. The search procedure takes

one symbol of the input word at a time and, starting from the root node,

tries to find a transition from the current node labeled with the current

input symbol. If there is no matching transition at some point on the path

to an accepting state, the input string is rejected. When adding a new

string Si we have to find a prefix of Si that is already included in the trie.

Then there are three possible cases: first, the whole Si is already in the trie

and it ends in an accepting state - this means that trie already accepts Si

and we do nothing; second, Si is in trie but ends in non-accepting state -

then we change the ending state to an accepting one; and, third, if only a

prefix of Si is in the trie, then at the first mismatch we create a new branch

for the remaining part of Si. To delete a string we only have to change the

accepting state it ends in to a non-accepting one2. All of these operations

have time complexity linear with the size of the input string.

2
The trie can be pruned afterwards, i.e. if there are any useless states they can be

removed. This is the case when the deleted word ends in a leaf, then all the states from

the leaf upwards to the first branching in a trie are unused.
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The exact space and time complexities depend on whether the nodes

are implemented as arrays or as lists. If arrays, then the existence of the

appropriate transition is verified in a constant time and time complexity

of a search is proportional only to the length of the input word. If the

transitions are stored in a list then, in the worst case, there can be a

transition for every symbol in the alphabet, so, at the worst, the search

time is proportional to the length of the input word multiplied with | Σ |.

If the transitions are stored in an ordered list or a balanced tree, then the

multiplying factor is log | Σ |.

Construction time of a trie is linear with the size of the input set. When

adding a new word we have to match its prefix, symbol by symbol, to an

existing path in the structure. On the first mismatch, we have to create

new nodes for every remaining character in the word. This means that in

total we have to perform exactly the same number of operations as there

are symbols in the input word list.

The useful property of a trie is that there is a unique accepting state

for each string in the set. This is particularly convenient when storing

dictionaries. If keys are stored in a trie then the corresponding attributes

can be associated with the accepting states without ambiguities, each key

to a separate attribute.

The problem with tries is their size. While space complexity is linear

(within a constant of | Σ |) with the size of input data, the actual amount

of information stored for each node is significant and strongly increases the

total space consumption. If transitions in nodes are stored as arrays, then,

in the base implementation, there should be space reserved for every symbol

in the alphabet. This ads a factor of | Σ | to the total space consumption.

It is much more efficient to use lists to store only the existing transitions

in each node. Then, in the theoretical worst case, there could still be | Σ |

transitions in a node but in practice most of the nodes have much fewer

transitions. However, regardless of the implementation, when input sets of

strings are large a simple trie can grow to such proportions that its size

becomes a restrictive factor in applications.

Witnessing to the fact that, except for the size problem, a trie is a very

useful data structure is the great effort that has been directed over the last

20 to 30 years to the research of trie compression. Various methods have

been devised for different purposes with appropriate trade-offs between size

and search speed. One standard solution is to find the minimal automaton

equivalent to the trie.
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q0

q1

q2 q3 q4 q5

q6 q7 q8 q9 q10 q11

q12

q13 q14 q15

q16 q17 q18 q19 q20
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Fig. 4.2 A trie equivalent to DFA in Figure 4.1.

4.1.2.3 Minimal Deterministic Finite Automaton

Among all automata that recognize the same language there is one (up

to isomorphisms) that has the minimal number of states. It is called the

minimal automaton. We refer to the minimal DFA as MDFA.

∀A:L(A)=L(Amin)|Amin| ≤ |A| (4.8)

Two states q and p are equivalent, written q ≡ p, if they have equal

right languages.

(q ≡ p)⇔ (
→
L (q) =

→
L (p)) (4.9)

The equivalence relation divides all states of an automaton into equiva-

lence classes. In a minimal automaton, all classes have exactly one member:

∀q,p∈Qmin
(q ≡ p)⇔ (q = p) (4.10)

A minimal automaton has no useless states.

A minimal automaton equivalent to the trie in Figure 4.2 is presented

in Figure 4.3. States q3 and q9 in trie are equivalent and so are the states

q14 and q19. Their respective right languages are string er and letter s. The

pairs of equivalent states are merged to new states q6 and q14 in a minimal

automaton in Figure 4.3. Also, the final states without the outgoing transi-

tions q5, q11, q15 and q20 are merged to one state q8. Their right language is
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the empty set. The merging of equivalent states in automaton amounts to

the compression of suffixes - identical suffixes are represented with a single

instance. This greatly reduces the space consumption when there are many

suffix repetitions throughout a word list, as is often the case for natural

languages. In natural language applications an acyclic MDFA is sometimes

called directed acyclic word graph - DAWG. (This is another ambiguous

term since originally DAWG was a name for the minimal automaton that

recognizes the set of all substrings in a string [5], and only later became

associated with the representation of a set of strings [2].)

The best thing about MDFAs is a combination of low space requirements

and the speed of construction. The minimization of a DFA has been an

important subject for several decades and a classic example of progress in

computer science. First algorithms were brute force and quadratic, then

came a long time standard O(n log n) solution of Hopcroft [28] and finally

in 1990s several authors have independently devised different variants of

algorithms that under certain assumptions have linear time complexity [8,

17,50]. The boost of interest in efficient algorithms for the minimization of

DFAs was the result of their increased use in natural language processing

and linguistics that came with the growth of the available textual data

in digital form. The huge amount of data on the Internet and various

digital libraries underscored the problem of automata size. A trie is a

standard intermediate structure in automata minimization algorithms and,

with large input sets, a size of trie can quickly grow above the available

memory. This is solved with invention of incremental algorithms that don’t

start with trie as the input but take strings one at the time and output the

automaton that is always near minimal [17,63]. The advances in linear and

incremental construction have made MDFA the data structure of choice for

storing lexicons. The minimization algorithms are presented in detail in

Section 4.3.

One undesirable property of MDFA is that, unlike in trie, the final states

are ambiguous. More than one path can lead to a same accepting state.

Consequently, it is not possible to put the attributes in final states when

constructing a proper dictionary.

This can be solved in two ways, one is to store the whole key-attribute

pair as a single string in the automaton, and the second one is to use a

special form of hashing. Even if the accepting states are ambiguous, the

path to them is unique for each string. It is possible to associate information

to that path and in this way obtain perfect (and minimal) hashing function
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from the automaton and use it to access attributes. This will be elaborated

later in Subsection 4.2.1.

q0

q1

q3 q4 q5

q6 q7

q2

q8

q9

q11 q12

q10

q13

q14
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e
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g h

o w

t

s

Fig. 4.3 Minimal DFA equivalent to automata in Figures 4.1 and 4.2.

4.1.2.4 Recursive Automaton

As a step forward from merging the equivalent states in DFA, it is possible

to merge equivalent subautomata in MDFA. In this way we can construct

even more compact type of a finite automaton that we call the recursive

automaton (RA).

A recursive automaton is a sextuple A = (Q,Σ, δ, r, q0, F ), where Q

is a finite set of states, Σ is a finite alphabet of symbols , q0 ∈ Q is a

start state, F ⊆ Q is a set of accepting states, and δ : Q × Σ ⇒ Q and

r : Q⇒ Q are partial transition functions. The difference from DFA is the

new function r : Q ⇒ Q that defines recursive transitions in automaton.

Recursive transitions are calls to a subautomaton in A. They are recursive

in the sense that calls reference a part of the structure itself. After a call

is executed, and a subautomaton traversed, the lookup procedure has to

return to the position of the call.

To know where to return the recursive automaton must have some sort

of a stack. A stack would be a suspicious property to associate with finite

automata since it is normally a part of non-finite push down automata.

However, the stack in RA is not unlimited. It is bounded within the factor

of the size of the minimal automaton. The recursive calls can be nested

- a subautomaton that is a target of a call can include calls to other sub-

automata. It is easy to show that in the theoretical worst case, when the
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automaton is produced from one string with an alphabet of a single sym-

bol, the upper limit on the number of nested calls is log2 | A |. Therefore

RA has a finite amount of states and transitions and fits into the class of

automata with a finite number of states.

The equivalence of subautomata is formally defined in [23] but, infor-

mally, two subautomata SA1 and SA2 are equivalent if for every state in

SA1 there is a state in SA2 with exactly the same left and right languages.

Even more informally we can say that equivalent parts of the automaton

are exactly those that can be replaced with a call within the automaton.

We say this because the equivalence of some of the subparts may be an

outcome of the specific implementation. Obviously, the advantage of re-

cursive automata is a reduction of storage space and the actual amount

of space that is saved depends strongly on the way that states and transi-

tions are represented. We shall go into it somewhat more in the section on

compression 4.4.2.

A recursive automaton equivalent to MDFA in Figure 4.3 is presented

in Figure 4.4. The state RC is a recursive call that replaces states from q9
through q14 in MDFA. A recursive call contains an address of the target

state and the size of the subautomaton (the number of states to process at

the target position). In this case RC has values [1, 6]. The search procedure

is the same as in DFA, except that when it reaches a call node it has to

continue traversal of the automaton at the target position of a call and,

after reading the indicated number of nodes, return to the position of a

call.

Again, as in MDFA the final states are ambiguous, and we can not put

the attributes in them, but the path to reach them is unique for each word

and this can be used for hashing.

4.1.2.5 Nondeterministic FA and ε — NDFA

Besides deterministic, finite automata can also be nondeterministic. This

means that there can be more than one transition with the same label

from one state leading to different target states. The nondeterministic

automata are less efficient when implementing dictionaries because of the

need for backtracking. However, they can be more space efficient than

the deterministic variant, and they can be useful in automata construction

algorithms. We shall therefore define them here.

A nondeterministic finite-state automaton (NDFA) is a quintuple A =

(Q,Σ, δ, q0, F ), where again Q is a finite set of states, Σ a finite alphabet,
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Fig. 4.4 Recursive automaton equivalent to automata in Figures 4.1, 4.2 and 4.3.

q0 ∈ Q is the initial state, F ⊆ Q is a set of final states, but the transition

function is now δ : Q × Σ⇒ 2Q. 2Q denotes a set of subsets of Q. We use

this to indicate that the target of transition function δ can, on the same

input symbol, be not only one state but a set of states that are a subset of

Q.

If we allow the existence of the empty transition that is standardly de-

noted with ε then the transition function becomes δ : Q× (Σ∪ {ε})⇒ 2Q.

This means that the automaton can change a state without an input sym-

bol. Such an automaton is called ε - nondeterministic finite-state automa-

ton (ε - NDFA). It is worth noting that for every DFA there exist equivalent

NDFA (or ε - NDFA) and vice-versa.

4.1.2.6 Transducer

q0 q1 q2 q3
r:c u:o n:urir

Fig. 4.5 Sequential transducer. Translates run to courir.

q0 q1 q2 q3
r:c u:o n:ur ir

Fig. 4.6 Subsequential transducer. Translates run to courir.
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q0 q1 q2 q3
r:c u:o n:ur

ir

s

Fig. 4.7 p-subsequential transducer. Translates run to courir and cours.

Another class of useful finite-state machines are transducers. They

are finite machines that, besides input alphabet and language, have out-

put alphabet and output language so that they translate (or transduce)

input strings to output strings. The definition is as follows. A sequen-

tial transducer that translates input string to output string is a septuple

A = (Q, q0, F,Σ,∆, δ, σ). As before Q, q0 and F are set of states, initial

state and set of final states, respectively. Σ is the finite alphabet of input

strings and ∆ is the finite alphabet of output strings. δ : Q × Σ ⇒ Q

is the input state transition function and σ : Q × Σ ⇒ ∆∗ the output

function. We say that a transducer is sequential if it has deterministic

input, that is, there is at most one transition with the same input sym-

bol from each state. This is analogous to determinism in ordinary finite

automata. An example of a simple sequential transducer is presented in

Figure 4.5.

A subsequential transducer A = (Q, q0, F,Σ,∆, δ, σ, φ) has an additional

element, a final output function φ : F ⇒ ∆∗ that maps the set of final states

to words in output alphabet ∆∗. Subsequential transducer can have a single

extra output string at each final state (see Figure 4.6).

A transducer is p-subsequential if φ maps F to (∆∗)p. This means that

it can have up to p additional output strings at the final states. An exam-

ple of 2-subsequential transducer is shown in Figure 4.7. This transducer

translates English verb run to the infinitive and one of the imperative forms

of the equivalent verb in French.

Transducers represent mappings from input to output string and are,

as such, the natural model for proper dictionaries where the set of keys

can be the input language and attributes are the output. p-subsequential

transducers have the ability to associate more than one attribute to

a single input so they are especially well suited for natural language

applications.
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4.1.2.7 Implementing Dictionaries with FSMs

The choice of which type of machine to use for an implementation of a

dictionary depends on the dictionary in question, i.e. on the characteristics

of data. The principal concerns in data storage and retrieval are the speed of

search, speed of construction, and the amount of used space. All variants

of finite-state machines are very fast structures and the search speed is

sufficient regardless of which type is used. The remaining concerns are the

construction speed and the space. If dictionaries are static then the speed

of construction is also irrelevant because they are precompiled in advance.

Then the choice of data structure is governed only by the usage of space.

If we need to store a static lexicon then MDFA and RA are the best

choices. RA uses less space but for some type of data the difference is

not worth the additional effort. A recursive automaton built from a set of

English words will not be much smaller than the corresponding MDFA. On

the other hand, in the case of words belonging to an inflected language, such

as are many Romanic and Slavic languages, the reduction in the automaton

size becomes considerable. If the lexicon needs to be frequently updated,

and is not too big, a trie can be a viable choice. If the size is a problem

then one can use MDFA and an incremental minimization algorithm.

A proper dictionary with key and attribute pairs can be stored in two

general manners. One is to concatenate pairs of keys and corresponding

attributes in single strings in the form of key:attribute (with a separator

between to distinguish them) and then to treat the strings as simple lexicons

and use the appropriate data structures.

The second way is to store keys and attributes as separate entities. For

that purpose we can use a transducer with keys as the input and attributes

as the output language. If there is more than one attribute associated with

the same key we can use p-subsequential transducer. The other way is to

store key and attribute sets in separate automata. Then we have to preserve

the key ⇔ attribute mapping in form of links, or indices, that have to be

stored in some additional structures. This last approach leads to the most

space efficient representation of a static dictionary as will be described in

Section 4.4.2.

4.2 Automata as Mappings

Dictionaries (implemented as automata) can be seen as mappings between

words and some information. In the simplest case, a dictionary is a list
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of words W ∈ Σ∗. As such, it implements a mapping between words and

{false, true}, or a relation that is a subset of Σ∗ × {false, true}. When a

word is stored in a dictionary, it is mapped to true, otherwise it is mapped

to false. Section 4.2.1 describes mappings between words and numbers. In

Natural Language Processing, dictionaries are often used for morphological

analysis and synthesis. Such use is described in Section 4.2.2. Another NLP

application –spelling correction introduced in Section 4.2.3– implements a

mapping between words that are not in a dictionary and a set of subsets of

words contained in the dictionary. Finally, gazetteers are a special purpose

dictionaries described in Section 4.2.4.

4.2.1 Perfect Hashing

With a simple modification deterministic machines can perform a two-

way perfect hashing function that maps each word of input language to

a different integer, and vice-versa. Perfect hashing maps each key to a

different number. There are no conflicts and hence no need for conflict

resolution strategies as with ordinary hash functions. If there are M in-

put words, the integers will be in range from 1 to M so the function is

minimal. Furthermore, it is ordered, i.e. the order of input words is

reflected in associated numbers: if wordi is stored in the automaton be-

fore wordj , then mapping(wordi) < mapping(wordj). Therefore, a modi-

fied deterministic automaton can perform two-way ordered minimal perfect

hash function.

This modified automaton has been proposed in [49], where it is called

a hashing transducer, and in [39], where it is referred to as a numbered

automaton. To add hashing functionality to an automaton, an integer is

associated with each transition or with each state. If it is in a transition,

this number indicates how many different paths, that are leading to some

accepting state, can be extended following the current transition. If the

number is stored in states, it denotes how many words belong to the right

language of that state. An example of an automaton with numbers stored

in transitions is presented in Figure 4.8, and the same automaton, but with

numbers in states, is shown in Figure 4.9. The automaton is minimal and

its language are four words (abc, abcde, abdef, acdef ) stored in alphabetical

order. We shall describe how the automaton maps these four words to

numbers 1 to 4 (and numbers to words) on the example with numbers in

transitions. The same logic is easily applied to the case with numbers in

states.
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During construction of a numbered automaton we have to add a counter

to every transition and increment it every time a new word uses that tran-

sition. This produces the automaton in Figure 4.8. It is easy to see that,

for example, there are four words using transition t1 and two words using

t3. There is only one word (abcde) using transitions t4 and t5 since word

abc ends in q3.

Let us assume we want to find a number i that is a mapping for an

input wordi. We have to set up a counter C, initialize C to 1, and then

traverse the path in automaton that accepts wordi. While traversing, C is

incremented in two cases:

• On each branching increment C by the value of how many words

are stored in branches that are skipped;

• When passing through accepting state increment C by one.

This effectively counts how many words are stored in the automaton before

wordi, and, at the point when a word is accepted, C has the value of word’s

ordinal number in the input set. Let us see how this works on our example

in Figure 4.8. Word abc is the first word we encounter when traversing

the automaton. There are no skipped branches nor accepting states before

state q3 so the value of C is 1 when abc is accepted. To reach the state q5
that accepts the second word abcde we have to traverse the accepting state

q3 at which point C is incremented by one. There are no more branches nor

accepting states before q5 so at that point C has a value of 2. To traverse

the path that leads to the accepting state for the third word abdef we have

to follow transition t8 at branching in q2. There we have to increment C

by 2, which is the value stored in skipped transition t3. There are no more

branches nor accepting states on the way to q5, so the value of C is 3 when

the third word is accepted. Similarly, to reach the accepting state q5 with

acdef , the fourth word in the set, we have to skip transition t2 in state q1.

At that point we increment C by 3, the value stored in t2, and when fourth

word is accepted C has a value of 4.

The inverse operation is finding a word through its ordinal number. We

shall denote the value V of number stored in transition i with Vi. Then,

finding ith word in an automaton, with a given integer i, is conducted as

follows:

• Counter C is set to i.

• Automaton is traversed starting from the initial state, and transi-

tions in states are examined one by one. Value Vi in transition ti
is compared to C:
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– If Vi < C, ti is skipped and C is decremented by Vi;

– If Vi > C, ti is followed to the next state. If the next state is

accepting, C is decremented by 1;

– If Vi = C, ti is followed to the next state. If the next state is

accepting, C is decremented by 1. If at that point C = 0, the

concatenation of labels on the path we followed to reach the

current accepting state is ith word in the set.

To illustrate this procedure let us again turn to the example in Fig-

ure 4.8. Say we want to find the third word in the automaton. C is set to

3 and, from q0, we follow through transitions t1 and t2 since their values

V are larger or equal to C. At state q2, the first transition t3 has value

V = 2 which is less than C. We decrement C by 2 and skip t3. Now,

with C = 1 we examine the next transition t8 and find that V = C. We

follow the sequence of transitions t8, t9 and t10, that all have V = 1, to the

accepting state q5. At q5 the counter is decremented by 1 to the value of 0,

and, concatenating the labels on the path we took to reach q5, we obtain

abdef, the third word in the set. One more example: To find the second

word we set C = 2 and follow transitions t1, t2 and t3 to state q3 where C

is decremented by 1. Then, in transitions t4 and t5 values of V are again

equal to C, up to state Q5 where C is set to 0. Concatenating the labels

on transitions t1 through t5, we get the second word abcde.

A variant with V values in states instead of transitions can be utilized in

a similar manner. Note, however, a slightly different assignment of values in

two implementations. The technique of numbering automata to implement

minimal perfect hashing can be applied to any shape of deterministic FA,

including minimal, trie or recursive automaton. In Section 4.2.4 a more

concrete example of using numbered automata will be given (in particular,

see Figure 4.15).

q0 q1 q2 q3 q4 q5

q6 q7 q8

t1 : a | 4 t2 : b | 3 t3 : c | 2 t4 : d | 1 t5 : e | 1

t6 : c | 1
t7 : d | 1 t9 : e | 1

t10 : f | 1

t8 : d | 1

Fig. 4.8 Numbered automaton with numbers in transitions.
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q0 | 4 q1 | 4 q2 | 3 q3 | 1 q4 | 1 q5 | 0

q6 | 1 q7 | 1 q8 | 1

a b c d e

c

d e
f

d

Fig. 4.9 Numbered automaton with numbers in states.

When the mapping from words to numbers is dynamic, the numbered

automata described so far here cannot be used as the mapping changes

with every word added or deleted. Fortunately, there are a few solutions to

this problem. The first one is to use a vector that translates hash values to

static numbers.

A more elegant solution is to use pseudo-minimal automata [41]. If

input strings always contain an end-of-string symbol, such automata always

have a proper transition for each word belonging to the language of the

automaton. This transition is traversed only when recognizing a single

word. Construction of pseudo-minimal automata is very much similar to

the construction of minimal automata described in Section 4.3.1. States can

be merged when they are equivalent and cardinality of their right languages

is at most one. Details of the algorithms can be found in [15] and [16].

4.2.2 Morphological Analysis and Synthesis

Morphological analysis and synthesis can be performed with either trans-

ducers or finite-state automata. Figure 4.10 shows a transducer that is ca-

pable of performing a simplified form of morphological analysis of present

forms of the French word aimer. The analysis is done by following the input

labels, and gathering output labels. For example, the form aime has two

possible analyses: aimer+1s and aimer+3s (the canonical form is aimer,

and the inflected forms are the first or the third person singular).

Looking at the picture, several observations can be made:

(1) When the input string and the output string are of different lengths,

ε has to be used to indicate the absence of either an input or output

symbol.

(2) Backtracking is used to retrieve additional, alternative analyses.

(3) Morphological synthesis can be performed by following the output la-

bels and gathering the input labels.

(4) Backtracking may be needed also when only a single result exists. For
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q14 q15

q16 q17 q18

a:a

i:i

m:m e:e

ε:r

ε:+

ε:1

ε:3

ε:s

n:r

t:+

ε:3

ε:p

s:r

ε:+

ε:2

z:r

ε:+

ε:2

o:e

n:r ε:+

ε:1

Fig. 4.10 Transducer that performs (simplified) morphological analysis of present forms

of the French verb aimer.

example, when performing the synthesis of aimer+1p and following

appropriate outgoing transitions from left to right, we would have to

visit most states of the transducer. Transducers can be determinized

in Mohri’s sense, i.e. the output labels can be pushed farther away

from the start state [44]. For example a part of an inverted transducer

from Figure 4.10 may look as in Figure 4.11. When the input string

is aimer+1, we still do not know whether the output will be aime or

aimons, i.e. whether to output e or o. With aimer+2 or aimer+3, the

next output symbol must be e.

When all output labels are pushed after all input labels, a transducer is

no longer needed. A simple finite-state automaton is sufficient. Each string

collected from labels along any path in the automaton from the start state

to any of the final states consists of the input string, followed by a separator,

and followed by a string representing the output. However, when the mor-

phological analysis returns also canonical forms, a naive implementation

would lead to huge automata as they would contain long chains of states
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q3m:m q4 q5 q6

q7

q8

q9

e:ε r:ε +:ε

1:ε

2:e

3:e

Fig. 4.11 A part of a determinized transducer that performs (simplified) morphological

synthesis of present forms of the French verb aimer.

with a single incoming transition and a single outgoing transition for each

dictionary entry. That would happen because in each entry, only a prefix of

the inflected word, and a suffix of the canonical form along with associated

representation of morphological information (we would call it annotation

here, but it can also be called tags or categories) could be shared between

different entries.

Instead of representing the canonical forms in full, a much better method

is to code the difference between the inflected form and the canonical in an

entry. One way of doing that is to replace the canonical form with a letter

that codes how many characters from the end of the inflected form are to

be deleted, followed by the ending of the canonical form. More formally, let

i = sf be an inflected form, and c = sb – a canonical form, with s = i ∧ c

being the longest common prefix. We replace c with chr(ord(′A′) + |f |)b,
where chr(x) returns a character that has the code x, and ord(y) returns

the code of the character y. For example, aimer+3p –a result of morpho-

logical analysis of aimons– would be coded as Der+3p. Figure 4.12 shows

a complete automaton equivalent to that in Figure 4.10. Note that repre-

senting the canonical form outside the automaton, and using a numbered

automaton to provide an index in that external storage would require more

memory.

It is possible to produce a dictionary containing all words that may

appear in texts only for a limited domain. Unrestricted texts may contain

additional words, and it may be necessary to analyze them morphologically.

There are at least two ways to do that using finite-state machines. The first

one –guessing automata– is simpler to implement. It can be used when we

only have dictionary data, i.e. words with their annotations, and not a full

morphological description with concatenation and orthographic rules.
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Fig. 4.12 A DFA that can perform the same morphological analysis as the transducer

in Figure 4.10. Note that generation is not possible with the same automaton.

People can usually guess morphological categories and canonical forms

from endings of words. For example, if we were to classify present forms

of French regular verbs of the first group, then we could guess that travail-

lons is a present, plural, second person form of travailler. As this can be

guessed from the ending, a guessing automaton should associate endings

with categories. It should analyze words from the end, therefore the words

in the guessing automaton should be reversed. For example, the data from

our tiny morphological dictionary of French would contain the following

strings:

emia+Ar+1s

emia+Ar+3s

semia+Br+2s

snomia+Der+1p
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tnemia+Cr+3p

zemia+Br+2p

The automaton built from such strings is depicted in Figure 4.13.

When an unknown word is analyzed, it is reversed, and searched for

in the automaton. Since the word is not in the dictionary, the search

will end at a state with no outgoing transition labeled with an annota-

tion separator. Then, paths are followed that are labeled with symbols

that are not the annotation separator. Those paths lead to one or more

states that have outgoing transitions labeled with the annotation sepa-

rator. Those transitions start paths leading to some final states. By

concatenating labels on those paths we obtain results of morphological

analysis.

q0

q11
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q3 q4 q5 q6 q7 q8 q9
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q13 q14 q15 q16 q17 q18 q19
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2

n

o m i a + D e r + 1 p

t

n e m i a + C r +
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e

m i a + B r +

2

Fig. 4.13 An automaton built from strings containing reversed inflected forms and

annotations. The data comes from a morphological dictionary depicted as finite-state

machines in Figures 4.10 and 4.12.

Note that the results are known earlier. As it can be seen in Figure 4.13,

it is sufficient to recognize one of the endings e, es, ns, t and z. Longer

endings do not contribute any more information. States q2 . . . q4, q13 . . . q15,

q21 . . . q24, q32 . . . q36, and q42 . . . q45 are redundant. Removing them gives

a guessing automaton shown in Figure 4.14.
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Fig. 4.14 A guessing automaton obtained from the automaton in Figure 4.13 by pruning

redundant states and transitions.

4.2.3 Spelling Correction and Restoration of Diacritics

Correct spelling has always been difficult for many people. The problem was

made more acute with the advent of television and video: people read less

books and newspapers, so they are less exposed to correct spelling. There

are various causes of spelling errors. They include medical conditions, lack

of education, but also recently, a decline in reading. There are various types

of spelling errors:

• Orthographic errors – resulting from lack of knowledge of orthography,

• Typographical errors – caused by lack of precision in typing,

• Other errors – e.g. repetition of words, incorrect morphology, etc.

Fortunately, a widespread use of computers brings hope to those who

want to write correctly. Incorrect words may be detected because they are

not present in the dictionary, or they may be detected because they are not

correct in the place where they were written, i.e. their context is wrong. In

either case, search for the correct word is done using a dictionary. There-

fore, we focus our attention on isolated-word correction. For a thorough

investigation on types of spelling errors, and correction techniques, see [38].

Damerau [20] distinguishes four types of simple transformations that are

applied one or more times to produce an erroneous word from the correct

one:
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• Insertion of a letter,

• Deletion of a letter,

• Change of one letter into another,

• Transposition of letters.

The transformations are reversible. Their reversals can be applied to

an incorrect form to produce a correct one. If a word is transformed to a

string that is also present in a dictionary, i.e. to a word that was not meant

by the writer, the error can only be detected using the context of the word.

However, if the transformation leads to a string that cannot be found in the

dictionary (presumably to a non-word), then it is assumed that the writer

meant a similar word present in the dictionary. The similarity is measured

by an edit distance. In its general form, the edit distance between strings

X and Y is calculated as:

ed(X1...i+1, Y1...j+1) =



























































ed(X1...i,Y1...j ) if xi+1 = yj+1

min







TC + ed(X1...i−1, Y1...j−1),

DC + ed(X1...i+1, Y1...j),

IC + ed(X1...i, Y1...j+1)







if xi = yj+1

∧ xi+1 = yi

min







RC + ed(X1...i, Y1...j),

DC + ed(X1...i+1, Y1...j),

IC + ed(X1...i, Y1...j+1)






otherwise

(4.11)

If the last letters of X and Y are the same, then the value of the edit

distance is the same as without the last letters, as seen in the first line of

Equation (4.11). If the last two letters of Y are the last two letters of X

transposed, then three cases are possible:

(1) The basic operation was transposition with the cost TC. The edit

distance is the sum of TC and the edit distance of X and Y both

shortened by two characters.

(2) The basic operation was deletion with the cost DC. The edit distance

is the sum of DC and the edit distance of two strings Y shortened by

one character and X .

(3) The basic operation was insertion with the cost IC. The edit distance

is the sum of IC and the edit distance of two strings X shortened by

one character and Y .
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Values of TC, DC, and IC can be constant, or they can be functions of

the characters taking part in the operations, and also of the context, i.e.

the characters preceding or following those taking part in the operations,

and the positions of the characters. If the last two letters of X are not

transposed last letters of Y , nor the last letter of X is the last letter of Y ,

then we have a similar situation as the one above, with two out of three cases

(deletion and insertion) the same as described above, and with replacement

(change of one letter into another) with cost RC replacing transposition.

When TC, DC, IC, and RC are constants all equal one, Equation (4.11)

takes the form of Equation (4.12) as in [47] and [46]:

ed(X1...i+1, Y1...j+1) =











































ed(X1...i,Y1...j ) if xi+1 = yj+1

1 +min





ed(X1...i−1, Y1...j−1),
ed(X1...i+1, Y1...j),

ed(X1...i, Y1...j+1)





if xi = yj+1

∧ xi+1 = yi

1 +min





ed(X1...i, Y1...j),

ed(X1...i+1, Y1...j),

ed(X1...i, Y1...j+1)



 otherwise

(4.12)

Border conditions apply:

ed(X1...0, Y1...j) = j if 0 ≤ j ≤ |X |

ed(X1...i, Y1...0) = i if 0 ≤ i ≤ |Y |

ed(X1...−1, Y1...j) = ed(X1...i, Y1...−1) = max(|X |, |Y |)
(4.13)

Note that X1...0 = Y1...0 = ε. The first two lines of Equation (4.13)

express the fact that transforming an empty string ε into a sequence of

n symbols, or transforming a sequence of n symbols into an empty string

ε requires n insertions or deletions respectively. In the last line of Equa-

tion (4.13), -1 occurs as transposition requires checking the penultimate

symbol in a string. In the general case, the values in the border conditions

must be multiplied by insertion cost.

Using the edit distance, an incorrect form should be compared to all

words in the dictionary to find the best match, i.e. words that lie not

farther than a given threshold value t of the edit distance, usually one. A

list of plausible corrections of an incorrect string w is given as:

C = {wi ∈ L : ed(w,wi) ≤ t} (4.14)
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However, in most cases, it is not necessary to compare whole words.

For example, if we compare locomotive to engine, we don’t need to check

all letters of both words to know that their edit distance is greater than

one. A few initial letters are enough. Therefore, instead of checking the

edit distance of whole strings, we check their initial segments, and stop as

soon as the distance becomes too big. A cut-off edit distance between an

initial segment of string X of length m and initial segment of Y of length

n with the threshold edit distance t is defined as:

cuted(X1...m, Y1...n) = min
l≤i≤u

ed(X1...i, Y1...n) (4.15)

where l = min(1, n − t), and u = max(m,n + t). Note that as we use

dictionaries in form of finite-state machines, an initial segment of a word is

shared in the dictionary with other words. By abandoning a path leading

to a word with an edit distance above the threshold, we abandon checking

many words.

Implementing equations given in this chapter in a straightforward man-

ner would lead to repeated computation of the same values – a situation

often found in computer science. A popular solution to this problem is the

use of dynamic programming. Results of partial computations are saved in

table D and recalled later when needed. An edit distance ed(X1...j , Y1...i)

is saved as D[i, j].

Restoration of diacritics can be viewed as a special case of spelling

correction, where only one basic editing operation –replacement– is allowed.

In addition a letter can only be replaced with a letter based on the same

Latin letter, but with a diacritic.

4.2.4 Gazetteers and Information Extraction

A gazetteer is a dictionary of geographical names, where each of them is

usually associated with some related information. For instance, country

names might be associated with: known abbreviations (e.g. UK stands

for United Kingdom), social statistics, full name (e.g. Peoples Republic of

China is a full name of China), the makeup of a country, etc. In the NLP

field, lists of person names, organizations and other type of named entities

are also referred to as gazetteers. For instance, organization names in such

gazetteers are associated with their abbreviations, full names, organization

type, location of their headquarters, etc. Probably the best way to define

gazetteers is to see them as mappings from named entities to the properties
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of the real-world objects these named entities refer to. Gazetteers are widely

deployed in information retrieval and information extraction applications,

in particular, for matching names in texts and for enriching these texts with

semantic annotations.

There are several ways of implementing gazetteers by means of finite-

state automata. Before delving into the details, let us note that raw

gazetteer resources are usually represented by a text file, where each

line of such a file represents a single entry in the following format:

keyword (attribute:value)+, i.e., each name is associated with a list of

arbitrary attribute-value pairs. Let us consider as an example two gazetteer

entries for the word Bayern.

Bayern | type:region | full-name:Freistaat Bayern

| location:Germany | subtype:state

Bayern | type:org | full-name:FC Bayern

| location:Germany | subtype:football_club

The first entry refers two a state, whereas the second refers to a football

club. In gazetteers, attribute values may be string valued, numerical or

mixed. Frequently, string-valued attributes are not inflected or derived

forms of the keyword as demonstrated in the above example (e.g., the at-

tribute location).

Turning such data, as in the example above, into a single MDFA by

treating each single entry as a single path in an automaton [37] would not

yield a good compression. In the following two methods ways of using DFAs

for implementing gazetteers are briefly sketched.

4.2.4.1 Pure DFA Approach

The first technique is based on reorganising and transforming gazetteer

entries in such a way that suffix sharing is maximized. To be more precise,

each gazetter entry is split into a disjunction of subentries, where each such

subentry represents some partial information. In order to describe this

process, let us differentiate between open-class and closed-class attributes

depending on their range of values, e.g., full-name and location in the

above example are open-class attributes, whereas type and subtype are

closed-class attributes. For each open-class attribute-value pair present in

an entry, a single subentry is created, whereas closed-class attribute-value

pairs are merged into a single subentry and rearranged in order to fulfill the

first most specific, last most general criterion [10]. In our example, for the
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two entries for Bayern we get the following six subentries (three subentries

for each entry):

Bayern #1 NAME(subtype) VAL(state) NAME(type) VAL(region)

Bayern #1 NAME(full-name) Freistaat Bayern

Bayern #1 NAME(location) Germany

Bayern #2 NAME(subtype) VAL(football_club) NAME(type) VAL(org)

Bayern #2 NAME(full-name) FC Bayern

Bayern #2 NAME(location) Germany

Here, NAME and VAL map attribute names and values of the closed-class at-

tributes into single univocal characters representing them. The tags #1 and

#2 denote the interpretation ID of the keyword Bayern (state vs. football

club). Subsequently, we can observe that some attribute values could be de-

rived from the keyword by performning some edition operations. Therefore

we replace these values by application of formation patterns (analogously

as in the case of morphological dictionaries discussed earlier). For instance,

Freistaat Bayern can be derived from Bayern by the insertion of the word

Freistaat in front of the word Bayern. Applying formation patterns to the

entries in our example yields:

Bayern #1 NAME(subtype) VAL(state) NAME(type) VAL(region)

Bayern #1 NAME(full-name) Freistaat $(ID)

Bayern #1 NAME(location) Germany

Bayern #2 NAME(subtype) VAL(football_club) NAME(type) VAL(org)

Bayern #2 NAME(full-name) FC $(ID)

Bayern #2 NAME(location) Germany

In particular, $(ID) is a unique symbol representing a formation pattern,

which simply implements the identity function (keyword is copied). As

can be observed, such representation allows for better suffix sharing. The

formation patterns used for encoding attribute values in the context of

gazetteer entries resemble the ones for encoding morphological informa-

tion, but they partially rely on other information. For instance, frequently,

attribute values are just the capitalized form or the lowercase version of

the corresponding keywords. Next, patterns for forming acronyms or ab-

breviations from the full form are applied, e.g., ACM can be derived from

Association for Computing Machinery, by simply concatenating all capitals

in the full name. Nevertheless, some part of the attribute values can not

be replaced by patterns.
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Once tha gazetteer entries are ‘transformed’ into subentries in the fash-

ion described above the rest boils down to constructing an MDFA from

the set of such subentries, through applying the algorithms presented in

Section 4.3. The states having outgoing transitions labeled with the unique

symbols in the range of NAME are implicit final states. The right languages

of these states represent attribute-value pairs attached to the gazetteer en-

tries. A comprehensive description of the outlined technique is given in [48].

4.2.4.2 Indexing Automaton Approach

The second method for modelling gazetteers is an adaptation of the stan-

dard approach to implementing general dictionaries and thesauri presented

in [26,36]. The main idea is to encode the keywords and all attribute values

in a single numbered automaton (see Section 4.2.1), which we call an in-

dexing automaton. In order to distinguish between keywords and different

attribute values the indexing automaton has n+1 initial states, where n is

the number of attributes. The strings accepted by the automaton starting

from the first initial state (q0) correspond directly to the set of the key-

words, whereas the right language of the i-th initial state, namely qi (for

i ≥ 1), corresponds to the range of values appropriate for i-th attribute.

Furthermore, the subautomaton starting in each initial state implements

different perfect hashing function. Hence, the aforementioned automaton

constitutes a word-to-index and index-to-word engine for keywords and at-

tribute values. Once the index of a given keyword is known, the indices of

all associated attribute values in a row of an auxiliary table can be accessed.

Consequently, these indices can be used to extract the proper values from

the indexing automaton. In the case of multiple readings an intermedi-

ate array for mapping the keyword indices to the absolute position of the

block of rows containing all readings of a given keyword is indispensable.

The overall architecture is sketched in Figure 4.15 which is accompanied by

the pseudocode of the algorithm for accessing attribute values for a given

keyword.

It is not necessarily convenient to index all attribute values and store

the proper values in the numbered automaton, e.g., numerical data such

as longitude or latitude could be stored directly in the attribute-value ma-

trix since automata are not the best choice in such situation. Alterna-

tively, some attribute values could also be stored elsewhere (as depicted

in Figure 4.15). This procedure is reasonable if the range of the values is

bounded and integer representation is more compact than anything else



September 2, 2010 10:0 World Scientific Book - 9in x 6in 00Chapter

Natural Language Dictionaries Implemented as Finite Automata 165

(e.g. long alphanumeric identifiers). Fortunately, the vast majority (but

definitely not all) of attribute values in a gazetteer deployed in NLP hap-

pens to be natural language words or multi-word expressions. Therefore,

one can intuitively expect the major part of the entries and attribute val-

ues to share suffixes, which leads to a better compression of the indexing

automaton. The prevalent bottleneck of the presented approach is a po-

tentially high redundancy of the information stored in the attribute-value

matrix. However, this problem can be partially alleviated via automatic

detection of column dependency, which might expose sources of informa-

tion redundancy to gain better compression of the data [61]. Reccurring

patterns consisting of raw fragments of the attribute-value index matrix

could be indexed and represented only once.

Fig. 4.15 Compact storage model for a gazetteer look-up component based on numbered

automata. The pseudocode of the algorithm for accessing the value of i-th attribute for

j-th interpretation of the keyword word is given in Algorithm 1. First, word is mapped

to its numerical ID via a call to WordToIndex function which also takes as an argument

the start state from which index is computed (line 2). Next, the way in which values

of the i-th attribute are stored is computed (line 3). There are three possibilities to

do it: (a) directly in the ATTRIBUTE-VALUE matrix, (b) indirectly in the numbered

automaton, (c) externally in EXTERNAL-STORAGE array. Finally, the attribute value

is computed (lines 4-12).

4.3 Construction Methods

Deterministic finite automata representing dictionaries can be constructed

from various data with a variety of methods. The construction method

depends on the input data. In the simplest case, which is one of the most

common ones, a dictionary stores a collection of strings. The corresponding
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Algorithm 1 The pseudocode of the algorithm for accessing the value of

i-th attribute for the j-th interpretation of the keyword word.

1: function GetValue(word,j,i)

2: id = WordToIndex(word,qkey)

3: howIsV alueStored = HowIsValueStored(i)

4: val = ATTRIBUTE−V ALUE[ABSOLUTE−POSIT ION [id] +

j][i]

5: if howIsV alueStored = directly then

6: return val

7: else

8: if howIsV alueStored = usingNumberedAutomaton then

9: return IndexToWord(val,qi)

10: end if

11: end if

12: return EXTERNAL−STORAGE[val] . value is stored

externally

13: end function

automaton is acyclic. For such data, incremental algorithms described in

Section 4.3.1 offer great speed combined with small memory requirements.

If the dictionary must have some cyclic core (e.g. for productive compound-

ing), and a collection of strings, then it is possible to modify the algorithms

from Section 4.3.1 to add strings to the language of an already cyclic au-

tomaton. The modifications are given in Section 4.3.2. When we know how

to construct automata that recognize parts of the target language, we can

combine them using algorithms described in Section 4.3.3. Other methods

are mentioned in Section 4.3.4.

4.3.1 Construction from Strings

Traditional construction of dictionaries in form of finite automata from

strings involves constructing a trie (a tree where the edges are labeled

with single characters), and then performing minimization using one of well

known general minimization algorithms. Although such method is correct,

the size of the intermediate product –the trie– can be enormous. While

contemporary computers have increasingly bigger operational memories,

the input data can also grow. Also, it does not make much sense to use

huge amounts of memory when it is possible to use a much smaller amount

of it without any speed penalty.
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Incremental methods keep the size of the automaton close to the minimal

one during all stages of the construction process. Each time a string is added

to the language of the automaton, the automaton is either minimized, or

brought close to minimal. There are two main algorithmic approaches to

incremental construction of minimal, deterministic, acyclic, finite automata

from strings. The first one requires data to be lexicographically sorted. The

other does not have that limitation, but it is slower.

In both algorithms, an important issue is minimization. If for a state q,

an equivalent state r can be found, then q can be replaced by r, i.e. state q

is deleted, and all transitions that led to q are redirected to r. The question

is how to find an equivalent state. Let us recall the recursive definition of

the right language of a state (Equation (4.5) on page 138):

→
L (q) =

⋃

σ∈Σ:δ(q,σ)∈Q
σ
→
L (δ(q, σ)) ∪

{

∅ if q 6∈ F

{ε} if q ∈ F
(4.16)

Two states q and p are equivalent (written q ≡ p) when their right

languages are equal:

q ≡ p⇔







Γ(q) = Γ(p)∧

∀σ∈Γ(q)(
→
L (δ(q, σ)) =

→
L (δ(p, σ)))∧

(q ∈ F )⇔ (p ∈ F )






(4.17)

Automata in form of trees are acyclic. In acyclic automata, it is pos-

sible to visit states in such an order that all states reachable from a given

state have already been visited before the state is visited. One possible

order of this type is postorder . If the targets of all transitions going

out from state q have already been visited and replaced with equivalent

states when possible, then if two states in the already processed part

have the same right language, they must be the same state. Under those

conditions:

q ≡ p⇔ ((fanout(q) = fanout(p)) ∧ ((q ∈ F )⇔ (p ∈ F ))) (4.18)

We have two processes: one process that adds strings to the language

of an automaton so that it creates a trie, and another one that visits states

and replaces them with equivalent ones if they can be found in the part

of the automaton that has already been minimized. The processes need

to synchronized. There are two possibilities. The first one is to minimize



September 2, 2010 10:0 World Scientific Book - 9in x 6in 00Chapter

168 J. Daciuk, J. Piskorski and S. Ristov

n0

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

n15 n16

n17

n18

n19

n20 n21

n22

n23

n24

n25

n26

n27

n28

n29 n30

n31

n32 n33

n34

n35

n36n37

n38 n39

n40

n41

n42

n43

n44

n45

p

a

i

d

y

i

n

g

s

l

a

y

e

d

i

n

g

s

r

a

y

e

d

i

n

g

s

s a

i

d

i

n

g

y

st

a

y

e

d

i

n

g

s

Fig. 4.16 A trie recognizing inflected forms of words pay, play, pray, say and stay.

those states of the automaton that will not change their language when new

words are added – this leads to the algorithm for sorted data. The second

one is to minimize the automaton completely each time a new strings is

added – this leads to the algorithm for unsorted data.



September 2, 2010 10:0 World Scientific Book - 9in x 6in 00Chapter

Natural Language Dictionaries Implemented as Finite Automata 169

The first question to be asked is which states will not change their right

language when new strings are added to the language of the automaton.

In Figure 4.16, all inflected forms of words pay, play, pray, say, and stay

are recognized by an automaton in form of a trie. States and transitions

printed in normal intensity are those that depict an automaton recognizing

the forms: paid, pay, pays, paying, pray, prayed, praying, prayed, said,

say, saying. Forms says, stay, stayed, staying, and stays that come later

in lexicographical order are printed in gray. A look at the figure reveals

that states n0, n28, n29, and n32 will get additional outgoing transitions

as a result of adding the additional words. The states all lie on a path

of states (n0, n28, n29, n32, n33, n34, n35) that are visited while recognizing

the last string that has been added. Only those states can change their

right language as a result of adding any new words that lexicographically

follow the last word added to the automaton. Let w be the last word

added to the automaton, |w| its length, and v a new word that follows w

in lexicographical order (w < v). Then ∃0≤n≤|w|∀1≤i≤nwi = vi and either

n = |w| or wn+1 < vn+1.

Each time a string is added, local minimization follows. It affects only

those states that have not already been processed before. In Figure 4.16,

the last string added is w =saying. The string to be added immediately

after that is v =says. The states (n0, n28, n29, n32, n33, n34, n35) form a path

that is followed while recognizing w. States (n0, n28, n29, n32) are also in

the path for v as the longest common prefix of w and v written w∧v is say,

and δ∗(n0, say) = n32. It should be noted that w ∧ v = L(A) ∧ v. States

n33, n34 and n35 are in the path for w but not in the path for v, so they are

subject to local minimization. States n33, n34 and n35 recognize a suffix of

w. Note that until the longest common prefix is recognized, the suffix that

determines which states undergo local minimization is not yet known. Also

note that the suffix can be empty. The string added immediately before w

was u =say. As u ∧ w = u, there are no states to undergo minimization

after v has been added.

The skeleton of the algorithm is given as Algorithm 2. The variable u

represents a string that was added to the language of the automaton in the

previous cycle. In line 6, the longest common prefix is traversed. The code

in that line is used for its brevity. An actual implementation would rather

test for outgoing transitions with labels equal to subsequent symbols of the

string. The call to LocMin in line 13 is necessary as the path recognizing

the last string added to the automaton did not yet undergo minimization.

Function AddSuffix is trivial. It creates a chain of states and transi-
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Algorithm 2 Skeleton of the algorithm for sorted data.

1: function SortedConstruction

2: Create empty A = ({q0},Σ, ∅, q0, ∅)

3: u← ε; R← ∅

4: while input not empty do

5: w ← next string from input

6: v ← u ∧w; p← δ∗(q0, v) . Traverse the longest common prefix

7: if |u| > |v| then

8: δ(p, u|v|+1)← LocMin(A,R, δ(p, u|v|+1), u|v|+2...|u|)
9: end if

10: AddSuffix(A, p, w|v|+1...|w|)
11: u← w

12: end while

13: LocMin(A,R, q0, u)

14: return A

15: end function

Algorithm 3 Create a chain of states and transitions starting from state

q so that δ(q, w) ∈ F . Parameter A is the automaton.

1: function AddSuffix(A, q, w)

2: while w 6= ε do

3: p← new state

4: δ(q, w1)← p

5: q ← p; w ← w2...|w|
6: end while

7: F ← F ∪ {q}

8: end function

tions so that δ∗(q, w) ∈ F . Note that in the initial call to AddSuffix in

line 10 of Algorithm 2, the suffix is never empty.

Function LocMin takes four parameters. The first two are are the au-

tomaton A and a register R (more on the register later in this paragraph).

The third one is a starting state q of a chain of states to be minimized.

The fourth one is a string w so that subsequent symbols of w are labels of

outgoing transitions of q and subsequent states reachable by those transi-

tions. As we use equation (4.18) to compare states for equality, LocMin

must be called recursively to start equality testing from the last state of the

chain, i.e. the state δ(q, w). The equivalent state is searched for in the part
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Algorithm 4 Perform local minimization on a chain of states starting from

q and reachable with any prefix of w. Return q or an equivalent state. A

is the automaton, R is the register. A and R are modified by the function.

1: function LocMin(A, R, q, w)

2: if w 6= ε then

3: δ(q, w1)← LocMin(A,R, δ(q, w1), w2...|w|)
4: end if

5: if ∃r∈Rr ≡ q then

6: delete q

7: return r

8: else

9: R← R ∪ {q}

10: return q

11: end if

12: end function

of the automaton that has already been minimized. Comparing the states

one-by-one would be very ineffective. The equation (4.18) can be used not

only to directly compare right languages of two states. It can also be used

in implementing a hash function on right languages of states. A hash func-

tion is computed using outgoing transitions (labels and targets) as well as

finality of the state itself. A hash table storing states in the minimized

part of the automaton is called the register. It appears as parameter R in

the function LocMin. If an equivalent state r for state q can be found,

state q is deleted, and state r is returned. The returned value is used in

redirecting the transition to state r either in line 3 of LocMin or in line 8

of the main algorithm. Note that only one transition needs to be redirected

as there is only one transition leading to state q. More incoming transitions

can only appear as the result of minimization. As the state r is already in

the register, there is no need to put it there again. If a state equivalent to

state q cannot be found, then q is put into the register R, and q is returned,

which means no redirection.

The main loop in Algorithm 2 runs n times, where n is the number of

strings read from the input. Traversal of the longest common prefix takes

O(|wmax|), where wmax is the longest string. Function AddSuffix recur-

sively calls itself |w| times per input string, where |w| is the length of a

suffix, which itself is never longer than wmax. Function LocMin is called

recursively |w| times per input string, where w is the suffix determining
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the path to be minimized. As before |w| ≤ |wmax|. In each call, a state

is searched for in the register, and if not found, it is put there. The time

complexity of the operations on the register depends on its implementation.

As it is possible to implement a hash table so that a lookup and insertion

take constant time on average, we assume constant time. Under this as-

sumption, the complexity of the whole algorithm is O(n), with n meaning

the number of strings, as |wmax| is also constant.

In the algorithm for sorted data, the automaton is brought very close

to minimality after addition of each string. When a new string is read, and

when the longest common prefix is traversed in line 6 of Algorithm 2, the

automaton is minimal except for a chain of states recognizing the last part

of the string added to the automaton. That chain is processed in line 8 so

that after that call, the automaton is minimal. A call to AddSuffix in

line 10 creates another chain of states such that the states are not unique.

Let us go through an example to see how the algorithm works. Suppose

that our input consists of the words pay, paying, pays, play, playing, and

plays. We create an empty automaton, and initialize the register R, and

the previous word u. The main loop of Algorithm 2 reads pay from the

input. As the previous word is ε, the longest common prefix is also ε, and

we stay in the initial state q0 = n0. From the same reason, LocMin is not

called. AddSuffix creates a chain of states and transitions to recognize

pay. The situation is depicted in Figure 4.17.

n1 n2 n3 n4
p a y

Fig. 4.17 Sorted construction – string pay added with AddSuffix.

In the next cyclce of the main loop of Algorithm 2, paying is read. The

longest common prefix of paying and pay is pay, so p becomes n4, and as

pay is a prefix of paying, LocMin is again not called. AddSuffix adds

more states and transitions to the automaton, creating a new automaton

shown in Figure 4.18.

n1 n2 n3 n4

n5 n6 n7

p a y

i

n g

Fig. 4.18 Sorted construction – string paying added.
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The next word read is plays, plays ∧ playing = play, so p becomes n4,

and LocMin is called with the automaton A, the empty register R, the

state n5, and the suffix ng. The function calls itself recursively in line 3 of

Algorithm 4 with the first two parameters staying the same, and with tyhe

last two being first n6 and g, and then n7 and ε. As w = ε, the last call puts

n7 into R, and returns n7. As n6 and n5 have different right languages, they

are also put into the register and returned. Now SortedConstruction

calls AddSuffix with A, n4 and s. The latter function creates a final state

n8 and a transition from n4 to n8 labelled with s. The result can be seen

in Figure 4.19, R = {n5, n6, n7}.

n1 n2 n3 n4

n5 n6 n7

n8

p a y

i

n g

s

Fig. 4.19 Sorted construction – string pays added.

SortedConstruction reads play, the longest common prefix is v=p,

and the state p = n2. As the previous word u is longer than v, LocMin is

called with A, R = {n5, n6, n7}, n3, and ys. The function calls itself twice

with n4 and s, and then with n8 and ε as the last two parameters, finds the

state n7 ∈ R to be equivalent to n8, so n8 is deleted. The function returns

n7, so the transition from n4 with the label s is redirected to n7. There is no

state equivalent to n4 in the register, so n4 is added to R; the same applies

to n3, which is returned by the top-level invocation of LocMin. Then

AddSuffix, called with A, n2, and lay as parameters, creates a chain of

states and transitions that recognize that suffix, as depicted in Figure 4.20.

n1 n2 n3 n4

n5 n6 n7

n9 n10 n11

p a y

i

n g

s

l

a y

Fig. 4.20 Sorted construction – string play added.
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The next word to be added is playing. The longest common prefix v

is the same as the previous word u=play. It leads to the state p = n11.

LocMin is not called, and a call to AddSuffix creates a chain of states

and transitions that recognize the suffix ing as shown in Figure 4.21.

n1 n2 n3 n4

n5 n6 n7

n9 n10 n11

n12 n13 n14
p a y

i

n g

s

l

a y

i

n g

Fig. 4.21 Sorted construction – string playing added.

Finally, we add plays. The longest common prefix –play– leads to n11.

LocMin is called with A, with R = {n1, n2, n3, n4, n5, n6, n7}, with state

n12, an with ng. Recursive calls lead to n14 with w = ε. State n14 has an

equivalent state n7 ∈ R. State n14 is deleted, and its incoming transition

is redirected towards n7. Similarly, state n13 is deleted, and its incoming

transition redirected towards n6, and state n12 is deleted, and state n5

is returned instead by LocMin. The incoming transition of state n12 is

redirected towards n5 in line 8 of Algorithm 2. Afterwards, AddSuffix

creates state 15, and a transition from n11 to n15 labelled with s. The

situation is showed in Figure 4.22.

n1 n2 n3 n4

n5 n6 n7

n9 n10 n11 n15

p a y

i

n g

s

l

a y

i

s

Fig. 4.22 Sorted construction – string plays added.

As there are no more words to be read, the main loop of Algorithm 2

is terminated, and LocMin is called again in line 13. Its arguments are

the automaton A, the register R, which contains all state of the automaton

except those that lie on the path that recognizes the last word added, the

initial state n1, and the last word added plays. The function calls itself

recursively, until it reaches n15 with w = ε. As n15 is equivalent to n7, n15

is deleted, and its incoming transition redirected towards n7. Similarly, n11

is deleted, and its incoming transition is redirected towards n4, and n10 is
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deleted with its incoming transition redirected towards n3. State n9 has a

unique right language, so it has no equivalent state in R, and it is added to

the register. The same applies to n2 and n1. We get a minimal automaton

with all states in the register. The final, minimal automaton is shown in

Figure 4.23.

n1 n2 n3 n4

n5 n6 n7

n9

p a y

i

n g

s

l a

Fig. 4.23 Sorted construction – the minimal automaton.

n1

n2

n3

n4

n5

n1

n2

n3

n4

n5

n6

n0

n2

n3

n4′

n4 n5

n6

a

c

b

d

e a

c

b

d

e

f

a

c

b

d

e

f

e

Fig. 4.24 The automaton on the left recognizes the language abe, cde. When we naively

add the string abf by creating a state n6 and a transition from state n4 to state n6 with

label f, we inadvertly also add cdf as it can be seen in the middle. The automaton on

the right recognizes abe, abf, and cde.

The second approach to incremental construction is to minimize the

whole automaton completely each time a new string is added. Contrary

to the algorithm for sorted data, where each states first is created as part

of a trie, and then undergoes local minimization once, some states may

be processed many times during construction. One of the results of mini-

mization is redirection of transitions so that a single state can have more

than one incoming transition. Adding an outgoing transition to such state

(we call it a confluence state) may result in adding more than one string

to the language of the automaton. Figure 4.24 shows an example. The

reason why the automaton in the middle contains not only abf, but also

cdf, is that state n4 is reachable from the start state not only by following

transitions labeled with a and then b, but also with c and then d. State n4

represents two vertices of a trie. To add abf and only abf to the language

of the automaton, only one of the vertices should change its right language
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by creating an outgoing transition. Therefore, the vertex needs to be sep-

arated from other vertices before a suffix is added to the language of the

automaton. The separation is done by cloning the state. Cloning means

creating an exact copy of the state. The clone has the same finality and

the same suite of outgoing transitions. In Figure 4.24, the transition from

n2 to n4 has to be redirected to n4′ , which is a clone of n4.

Algorithm 5 Skeleton of the algorithm for unsorted data.

1: function UnsortedConstruction

2: Create empty A = ({q0},Σ, ∅, q0, ∅)

3: R← ∅

4: while input not empty do

5: w ← next string from input

6: UnsortedAdd(A,R,w)

7: end while

8: return A

9: end function

Algorithm 5 shows the skeleton of the algorithm for unsorted data. The

algorithm starts with an empty automaton and an empty register. Each call

to UnsortedAdd with a new string w leaves with the automaton being

minimal and recognizing w in addition to its previous language, and with

the register containing all states of the automaton.

Algorithm 6 Add a string to the language of the automaton using the

unsorted construction. A is the automaton, R is the register, w is the

string to be added. A and R are modified by the procedure.

1: procedure UnsortedAdd(A, R, w)

2: (P, i, j)← TraverseLCP(A,R, q0, w)

3: q ← Pi

4: AddSuffix(A, q, wi...|w|)
5: q ← LocMin(A,R, δ(q, wj), wj+1...|w|)
6: MinimizeBackwards(A,R, P, j)

7: end procedure

Algorithm 6 shows the function UnsortedAdd. First, function Tra-

verseLCP is called to traverse a path in the automaton recognizing the

longest initial part of w that is shared with some other string already in
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the automaton. The function returns the path and the number of items

in it, as well as an index of the first state in the path that was removed

from the register. It also creates clones of states when necessary, so that

each state in the path P has only one incoming transition. The register R

is a parameter of TraverseLCP because the function removes from the

register a state that will change its suite of outgoing transitions either as a

result of cloning, or as a result of a call to AddSuffix in line 4. We will

return to AddSuffix to explain the rest of the function after we describe

the function TraverseLCP.

Algorithm 7 Traverse the longest common prefix, cloning confluence states

on the way. A is the automaton, R is the register, p is the start state of the

traversal, w is the string that selects the path. Return a triple consisting of

a path of states visited during the traversal, of an index of the last item on

the path, and of an index of the state that was removed from the register.

1: function TraverseLCP(A, R, p, w)

2: q ← p; i← 1; Pi ← q

3: while (i ≤ |w|) ∧ (δ(q, wi) ∈ Q) ∧ (|fanin(δ(q, wi))| = 1) do

4: q ← δ(q, wi); i← i + 1

5: Pi ← q

6: end while

7: R← R \ {q} . q will change its right language

8: j ← i . j is the index of q

9: while (i ≤ |w|) ∧ (δ(q, wi) ∈ Q) do

10: r ← clone(δ(q, wi)); δ(q, wi)← r; i← i+ 1

11: q ← r; Pi ← q

12: end while

13: return (P, i, j)

14: end function

Function TraverseLCP shown as Algorithm 7 has four arguments:

A – the automaton, R – the register, p – the initial state of the automaton,

w – the string to be added. The automaton and the register can be modified

by the function. Subsequent symbols of the string are recognized as labels

of subsequent transitions on a path starting from state p. The path –a

sequence of states– is stored in variable P during the traversal. In the first

while loop in lines 3-6, the first part of the path is traversed. The loop ends

when either a subsequent symbol in w cannot be matched against a label of

an outgoing transition of a subsequent state in the path (i.e. the whole path
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has been traversed), or a target state of a transition is a confluence state. In

both cases, the state reached is removed from the register because its suite

of outgoing transitions will be modified. The index of that state is stored

in variable j. When it is the latter case, the loop in lines 9-12 is executed.

The loop is identical to the previous one, except that the states visited are

cloned, and transitions from the previous states in the path are redirected

towards the clones. Note that if a state is cloned, then its suite of outgoing

transitions is copied to the clone, all targets of outgoing transitions have at

least two incoming transitions (from the original and from the clone), and

the next state on the path to be traversed becomes a confluence state. All

clones are new states, and (contrary to originals) they are not present in

the register.

Let us return to function UnsortedAdd shown as Algorithm 6. Func-

tion AddSuffix –the same that is used in sorted construction algorithm–

creates a chain of states and transitions that recognize the part of string w

that was not found and followed in the automaton by the function Tra-

verseLCP. The chain is attached to state q that is the i-th state in the

path P . Symbols from the string part w1...i are labels on transitions in the

path P . In line 5 of UnsortedAdd, LocMin is called. Note that the

chain of states to be visited by LocMin starts at the index j, not i. If no

confluence states were encountered in TraverseLCP, then j = i. Other-

wise, some states in the path –Pi to Pj– were cloned. They are not in the

register and they should be minimized. After a call to LocMin, only the

state Pj is not in the register. Recall that due to the order used for visiting

the states, equivalence can be checked by comparing the finality and the

suite of outgoing transitions of two states. When a state is replaced with

an equivalent one, and the transition from the previous state in the path is

redirected towards the replacement state, the suite of outgoing transitions

of the previous state in the path changes, the state becomes an object of

possible replacement, and it should be removed from the register.

That is done in function MinimizeBackwards shown as Algorithm 8.

While a current state is equivalent to another state in the register, its is

replaced, the transition from the previous state is redirected towards the

replacement, and the previous state is removed from the register. The

process ends when no replacement is possible.

Let us go through an example. The automaton A in Figure 4.25 rec-

ognizes words paid, pay, paying, pays, play, played, playing, plays, pray,

prayed, praying, prays, said, say, saying, says, stay, staying, and stays. We

assume that the function UnsortedConstruction has created A and the
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Algorithm 8 As state Pi changed, check it for equivalence with states

in the already minimized part. If the state is replaced, propagate changes

backwards towards the initial state until no farther replacement takes place.

procedure MinimizeBackwards(A, R, P, i)

q ← Pi

while i > 1 ∧ ∃r∈Rr ≡ q do

i← i− 1

if i > 1 then R← R \ {Pi}

end if

δ(Pi, wi)← r

delete q

q ← r

end while

R← R ∪ {q}

end procedure

n0

n1 n2 n3 n4 n5

n7 n8 n6n9

n10 n11 n12 n13

p

l

r
a y e

d
i

n g
a i

y

s

a

t a y

i s

Fig. 4.25 A DFA recognizing words paid, pay, paying, pays, play, played, playing, plays,

pray, prayed, praying, prays, said, say, saying, says, stay, staying, and stays.

register R in previous runs of the main loop. String w=stayed is read from

the input, and the procedure UnsortedAdd is called with A, R (contain-

ing all states of A), and stayed as parameters. Procedure UnsortedAdd

calls TraverseLCP. The first while loop of that function traverses states

states n0, n10, n11, and n12 storing them in variable P . Since state n13

has two incoming transitions, the loop cannot be executed again on that

state. The state q being n12 is removed from the register, and its position

4 of the label y on the transition from n12 to n13 in the string w is stored

in variable j. The second loop clones state n13 as n′13, and puts it into P .

The resulting automaton is shown in Figure 4.26. Function TraverseLCP

returns ((n0, n10, n11, n12, n
′
13), 5, 4).
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n0

n1 n2 n3 n4 n5

n7 n8 n6n9

n10 n11 n12 n13

n′13
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d
i
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y
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a

t a

y

i s

i

s

Fig. 4.26 A DFA from Figure 4.25 with state n13 cloned as n′

13
.

Procedure UnsortedAdd calls AddSuffix with A, n′13, and ed as

parameters. The latter creates a non-final state n14, and a final state n15,

as well as two transitions: one from n′13 to n14 labelled with e, and a second

one from n14 to n15 labelled with d. The situation is depicted in Figure 4.27.

n0

n1 n2 n3 n4 n5

n7 n8 n6n9

n10 n11 n12 n13

n′13 n14 n15

p

l

r
a y e

d
i

n g
a i

y

s

a

t a

y

i s

i

s

e d

Fig. 4.27 A DFA from Figure 4.26 with suffix ed added.

The next step is the local minimization implemented in the procedure

LocMin, called with A, with R containing all states of A except for n′13,
n14, and n15, with the state n′13, and with a string d as parameters. The

function calls itself in line 3 of Algorithm 4 until state n15 (and an empty

suffix) is reached. State n15 is found equivalent to n6, so n15 is deleted, the

function returns n6, and the transition from n14 to n15 labeled with d is

redirected to state n6 in line 3 of the call one level up in the call hierarchy.

Similarly, n14 is replaced with n5, and n′13 (now with a transition labelled
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e going to n5, and a transition labelled i going to n7) is replaced with n4.

The function returns n4. The situation is shown in Figure 4.28.

n0

n1 n2 n3 n4 n5

n7 n8 n6n9

n10 n11 n12 n13

p

l
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n g
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y
s

a

t a

y
i s

Fig. 4.28 A DFA from Figure 4.27 after LocMin was called.

Procedure MinimizeBackwards takes over from LocMin to handle

those states that were present in the automaton when a new string was

added, but which change their right language, and which therefore can be

replaced with other states. The parameters of MinimizeBackwards are

the automaton A, the register R containing all states except for n12, the

path P = (n0, n10, n11, n12), and i = 4. State P4 = n12 is handled first. An

equivalent state n3 is found in the register, so the previous state in the path

P3 = n11 is removed from the register, a transition from n11 to n12 labelled

with a is redirected to n3, and state n12 is deleted. Similarly, P3 = n11

is replaced with n2, P2 = n10 is removed from the register, a transition is

redirected, and n11 is deleted. As there is no state equivalent to n10, the

loop is skipped, and n10 is put back into the register. A is now minimal,

as shown in Figure 4.29.

n0

n1 n2 n3 n4 n5
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Fig. 4.29 A DFA from Figure 4.27 after MinimizeBackwards was completed.
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4.3.2 Construction from Strings with Some Cyclic

Structures

Some dictionaries may have a cyclic core recognizing words of infinite

lengths while still recognizing finite strings. In such cases, the cyclic core

may be built first, and then the finite strings are added. Construction of the

cyclic core is covered later in this section. Here, we describe how to modify

the incremental algorithms to work on cyclic automata. Algorithm 9 lists

the skeleton of the modified sorted data algorithm.

Algorithm 9 Add lexicographically sorted finite strings to the language

of a cyclic automaton A. Return a new automaton that recognizes the

additional strings.

1: function AddSortedToCyclic(A)

2: R← Q; r ← clone(q0); w
′
← ε

3: while input not empty do

4: w ← next string from input

5: CyclicSortedAdd(A,R, r, w, w′)
6: end while

7: LocMin(A,R, r, w)

8: if r 6= q0 then

9: DeleteBranch(A,R, qo); q0 ← r

10: end if

11: return A

12: end function

In contrast to the acyclic version, in a cyclic automaton, confluence

states can always be found when recognizing the initial part of the string.

Confluence states can create a boundary between the unmodified, original

part of the automaton, and the part created to recognize newly added

strings. The new part is handled in a similar way to the original algorithm

for acyclic automata. In the old part, confluence states are cloned to ensure

that the conditions for the original algorithm, i.e. no confluence states

when adding new states to a trie. The boundary is created by cloning the

initial state in line 2. Since cloning involves copying the suite of outgoing

transitions, every target of those transitions becomes a confluence state.

Like in the original algorithm, local minimization is called in line 7 to

minimize states in the path recognizing the last added string. The path

contains no confluence states. Since we use the cloned start state as the
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root of our new trie, the original start state and some states reachable from

it may become unreachable if the last call to LocMin did not unify the

clone with the original start state. The unreachable states are removed

with a call to DeleteBranch.

Algorithm 10 Add a single string to the language of a cyclic, deterministic

automaton A. R is the register, r is the start state, w is the string to be

added, w′ is the previous string added. A and R are modified by the

procedure.

1: procedure CyclicSortedAdd(A,R, r, w, w′)
2: q ← r; i← 1

3: while i < |w| ∧ δ(q, wi) ∈ Q ∧ |fanin(δ(q, wi))| = 1 do

4: q ← q; i← i+ 1

5: end while

6: while i < |w| ∧ δ(q, wi) ∈ Q do

7: p← clone(δ(q, wi)); δ(q, wi)← p

8: q ← p; i← i+ 1

9: end while

10: if |w′| > i then

11: LocMin(A,R, q, w′i...|w′|)
12: end if

13: AddSuffix(A, q, wi...|w|)
14: end procedure

Procedure CyclicSortedAdd is depicted as Algorithm 10. The first

while loop traverses the part of the longest common prefix that has already

been cleared of confluence states. The second one clones confluence states.

That second loop is the only difference with respect to the corresponding

part of the original algorithm.

Procedure DeleteBranch is shown as Algorithm 11. It is called in

line 9 of Algorithm 9. Its purpose is to delete unreachable states starting

from state q. It is assumed that the state q is unreachable. Under this

assumption, all states that are not reachable from any state not reach-

able from q are also unreachable. If a transition going out from state q

reaches a state p with only one incoming transition, then p is reachable

only from q, and DeleteBranch is called to act on p to delete the state

and other states reachable only from p. After that, the transition is deleted.

If the target state p has more than one incoming transition, then only the
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Algorithm 11 Delete unreachable states. A is the automaton, R is the

register, q is the first unreachable state to be deleted. A and R are modified

by the algorithm.

1: procedure DeleteBranch(A, R, q)

2: for all σ ∈ Σ : δ(q, σ) ∈ Q do

3: if |fanin(δ(q, σ))| = 1 then DeleteBranch(A,R, δ(q, σ))

4: end if

5: delete transition δ(q, σ)

6: end for

7: R← R \ {q}

8: delete q

9: end procedure

transition from q is deleted. Note that if state p has more than one incom-

ing transition, but all of them coming from q, then the transitions will be

deleted one by one until there is only one left, and then DeleteBranch

is called on p. After all outgoing transitions of q are dealt with, the state

is removed from the register and deleted. Note that all the states that are

arguments to DeleteBranch are present in the register since they are all

“old” states.

The main loop in Algorithm 9 is executed n times, where n is the number

of strings to be added to the language of the automaton A. The call to

LocMin is executed in O(|wmax|) time, where wmax is the longest string

to be added, provided that operations on the register take constant time. A

call to DeleteBranch takes O(n|wmax|) time under the same assumption

as every state to be deleted is a clone of a state visited following a path

recognizing any of the n strings added. Function CyclicSortedAdd is

called n times. In each call, the two while loops traverse the longest common

prefix, and they are executed in O(|wmax|) time. Also calls to LocMin and

to AddSuffix run in O(|wmax|) time. Thus the whole algorithm runs in

O(n|wmax|) time provided that register operations are executed in constant

time.

The modifications to the algorithm for unsorted data shown as Algo-

rithm 5 on page 176 are minute. They are given as Algorithm 12.

We clone the start state if it has any incoming transitions. As this may

create unreachable states, a call to DeleteBranch deletes them. Since

we do not start from scratch, we do not need to create it, but we need to

initialize the register with all the states Q of the automaton.
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Algorithm 12 A skeleton of the algorithm for adding a set of finite strings

to a cyclic automaton. A is the automaton. Function AddUnsortedTo-

Cyclic returns a modified automaton.

1: function AddUnsortedToCyclic(A)

2: if |fanin(q0)| > 0 then

3: r ← q0; q0 ← clone(q0)

4: R← Q

5: end if

6: while input not empty do

7: w ← next string from input

8: UnsortedAdd(A,R,w)

9: end while

10: if r 6= q0 then

11: DeleteBranch(A,R, r)

12: end if

13: end function

4.3.3 Construction from Smaller Automata

Dictionaries can be very large. The incremental algorithms can construct

acyclic automata very efficiently, but some dictionaries can be cyclic, and

some may already come as automata. Even for dictionaries containing only

finite length strings, automata were constructed by building automata from

smaller parts before the advent of incremental algorithms.

Given two automata A1 = (Q1,Σ, δ1, q01, F1) and A2 =

(Q2,Σ, δ2, q02, F2), we can obtain a minimal DTA A such that L(A) =

L(A1) ∪ L(A2) in at least two ways:

(1) Build an NFA A′ = (Q1 ∪ Q2 ∪ {q0},Σ, δ, q0, F1 ∪ F2) with δ such

that ∀p,q∈Q1,σ∈Σδ1(q, σ) = p ⇒ δ(q, σ) = {p}, ∀q,p∈Q2,σ∈Σδ2(q, σ) =

p ⇒ δ(q, σ) = {p}, and δ(q0, ε) = {q01, q02}. Then determinize and

minimize A′.
(2) Build a DFA A′ = (Q1 ×Q2,Σ, δ, (q01, q02), F1 × F2), with δ such that

∀q1,p1∈Q1∀q2,p2∈Q2∀σ∈Σδ1(q, σ) = p1 ∧ δ(q2, σ) = p2 ⇒ δ((q1, q2), σ) =

(p1, p2). Minimize A′. Note that using the formula directly would lead

to many unreachable states. It is better to start from q0, and build

subsequent reachable states by calculating δ.
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4.3.4 Construction from Other Sources

Data for dictionaries may come from various sources, so the construction

methods must take that into account; they can also profit from the situa-

tion.

Automata can be constructed from regular expressions. A regular ex-

pression RE is:

• An empty set ∅ ∈ RE

• An empty sequence of symbols ε ∈ RE

• A symbols from the alphabet Σ 3 σ ∈ RE

• A concatenation rs ∈ RE of two regular expressions r, s ∈ RE

• An alternative r|s ∈ RE of two regular expressions r, s ∈ RE

• A transitive closure r∗ ∈ RE of a regular expression r ∈ RE

Two of the most known construction methods are Thompson construc-

tion [57] and Glushkov/Yamada-McNaughton construction [24], [42]. In

Thompson construction, each regular expression is associated with a non-

deterministic automaton that has one start state and one final state that is

different from the start state. The automata recognizing the basic building

blocks or regular expressions are built as follows:

• An automaton A = ({q0, q1},Σ, ∅, q0, {q1})recognizing an empty set:

q0 q1

• An automaton A = ({q0, q1},Σ, δ, q0, {q1}), with δ(q0, ε) = q1 recogniz-

ing an empty sequence of symbols ε:

q0 q1
ε

• An automaton A = ({q0, q1},Σ, δ, q0, {q1}), with δ(q0, σ) = q1 recog-

nizing a symbol σ ∈ Σ:

q0 q1
σ

Given regular expressions r and s, and automata Ar =

(Qr,Σ, δ1, q0r, {qfr}) and As = (Qs,Σ, δs, q0s, {qfs}) recognizing them, we

can construct automata recognizing more complex structures:

• Concatenation rs: A = (Qr ∪ Qs,Σ, δ, q0r, qfs), with all transitions

of δr and δs also present in δ: ∀q∈Qr
∀a∈Σ∪{ε}δr(q, a) ⊆ δ(q, a),
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∀q∈Qs
∀a∈Σ∪{ε}δs(q, a) ⊆ δ(q, a), and one additional transition q0s ∈

δ(qfs, ε)

q0r Ar qfr q0s As qfs
ε

• Alternative r|s: A = (Qr ∪ Qs ∪ {q0, qf},Σ, δ, q0, {qf}), with all

transitions of δr and δs also present in δ: ∀q∈Qr
∀a∈Σ∪{ε}δr(q, a) ⊆

δ(q, a), ∀q∈Qs
∀a∈Σ∪{ε}δs(q, a) ⊆ δ(q, a), and with additional transitions

δ(q0, ε) = {q0r, q0s}, qf ∈ δ(qfr, ε), qf ∈ δ(qfs, ε)

q0

q0r

q0s As

Ar qfr

qfs

qf

ε

ε

ε

ε

• Transitive closure r∗: A = (Qr ∪ {q0, qf},Σ, δ, q0, {qf}), with all tran-

sitions of δr also present in δ: ∀q∈Qr
∀a∈Σ∪{ε}δr(q, a) ⊆ δ(q, a), and

additional transitions δ(q0, ε) = {q0r, qf}, {q0r, qf} ∈ δ(qfr, ε)

q0 q0r Ar qfr qf
ε ε

ε

ε

4.4 Internal Structure and Compression

4.4.1 Representation of Automata

Since finite-state automata can be seen as a labeled directed graphs, one can

represent them by using standard data structures used to represent graphs,

i.e. adjacency matrices and adjacency lists, with some slight enhancements.

In principle, selecting an appropriate storage model for an automaton re-

quires consideration of three major operations which will be carried out on
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that automaton: (a) acessing δ(q, a), (b) iterating over transitions from a

given state q, and (c) modifications, e.g., insertion and deletion of tran-

sitions. In other words, it is essential to know whether the automaton is

static (it will be deployed in read-only mode) or dynamic (modification

operations will be carried out). Unfortunately, there is no data structure

that would be optimal in terms of time and space complexity for all kinds

of operations. Consequently, different data structures are deployed at dif-

ferent processing stages. The remainder of this section gives an overview

of a three most prevalent data structures used for representing automata.

For simplicity reasons, we focus on DFAs, but most of the data structures

can be extended to NFAs and FSTs straightforwardly.

4.4.1.1 Transition Matrix

The simplest way to represent a DFA A = (Σ, Q, δ, q0, F ) is to use a |Q|×|Σ|

matrix whose ij-th element contains the value of δ(qi, aj), where aj is the

j-th symbol in the alphabet Σ. If δ(qi, aj) = ⊥, then the corresponding

matrix element contains a null value. The presented data structure is

known as the adjacency matrix, which is called in the context of automata

a transition matrix. An extension to NFAs is straightforward, i.e., the

ij-th element of the transition matrix contains a list of all target states

of outgoing transitions from state qi labeled with aj . Figure 4.30 gives an

example of a simple DFA with the corresponding transition matrix depicted

in Table 4.1. For marking states as initial, accepting or rejecting, one can

deploy a simple boolean-valued vector.

q0 q1 q2 q3 q4 q5

q6 q7 q8

s t a r t

c

a r

d

a

Fig. 4.30 An DFA accepting the language {start, card, art}.

The major advantage of a transition matrix representation is that ac-

cessing δ(q, a) information and performing transition insertion/deletion
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Q/Σ a c d r s t

q0 q3 q6 q1
q1 q2
q2 q3
q3 q4
q4 q5
q5
q6 q7
q7 q8
q8 q5

costs O(1) time. The major disadvantage is the Θ(|Σ|) time complexity

of iterating over all transitions from a given state. A further drawback is

the fact that transition matrix requires Θ(|Q| · |Σ|) space. In the example in

Table 4.1 only a minor part of the transition matrix is filled with non-null

values, i.e. the average number of outgoing transitions from a given state

is relatively low. We call such automata sparse, whereas automata with a

high average number of outgoing transitions from a given state are called

dense. In most NLP applications, however, one deals with very sparse au-

tomata. Therefore, the matrix representation is used relatively rarely, most

typically for dense and small automata, especially when there is a need to

frequently modify transitions in constant time.

4.4.1.2 Transition Lists

An alternative way of representing an automaton is to use adjacency lists,

which are called in the world of finite-state devices transition lists. For

each state q in the automaton one defines a list of all pairs (a, p) such that

δ(q, a) = p. This data structure is suitable for both DFAs and NFAs. Fig-

ure 4.31 shows an example of transition-list representation of the automaton

in Figure 4.30.

The main advantage of using transition list model is its low space

complexity, proportional to the size of the automaton, which amounts to

Θ(|Q|+ |δ|). Furthermore, iterating over all transitions from a given state

q costs Θ(|fanout(q)|), which is an improvement compared to transition

matrix. Having the two nice aforementioned features is penalized by slower

access to δ(q, a). In the worst case the whole list for a given state has to

be traversed, which results in O(|Σ|) complexity in the case of DFAs and
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8

7

6

5

4

3

2

1

0

(d,5)

(r,8)

(a,7)

(t,5)

(r,4)

(a,3)

(t,2)

(a,3) (c,6) (s,1)

Fig. 4.31 Transition-list representation of the automaton in Figure 4.30.

O(|Q| · |Σ|) for NFAs. As mentioned earlier, in the context of NLP dic-

tionaries one deals with sparse automata, which means that the runtime

performance of the δ(q, a)-look-up operation does not constitute a criti-

cal factor. Nevertheless, in the case of denser automata, one could sort

the transition lists by input symbol and store them using balanced trees

or other more complex data structure for implementing dynamic sorted

sets [9]. Consequently, accessing δ(q, a) information and performing modi-

fication operations could be done in O(log|fanout(q)|) time. We will denote

this variant representation as sorted transition lists.

In comparison to transition matrix there is still one more advantage,

namely: introducing new transitions labeled with symbols not covered by

the current alphabet is straightforward, whereas in the case of a transition

matrix expensive reorganization of the matrix is indispensible.

4.4.1.3 Compressed Transition Matrix

Sparse transition matrices can be compressed in such a manner that the

space requirement is nearly linear in the number of transitions, without

sacrifying the constant time for accessing δ(q, a). The idea is to shift and

overlap the rows of the transition matrix so that no two non-zero entries

end up in the same position, and to store them in a one-dimensional array.

This can be done in a greedy manner by successively placing the consecutive
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rows of the transition matrix into the array DELTA in such a way that

collisions are avoided, i.e. a single element in the array DELTA may refer to

at most one element in some row of the transition matrix. Additionally, one

introduces an array ROW[1...|Q|] for storing for each state a pointer to the

beginning of the corresponding transition row stored in DELTA. Figure 4.32

gives an example of shifting and overlapping the rows of the transition

matrix presented in Table 4.1. The rows 0,1,2,3 and 5 can share the same

space in DELTA without performing any shifting operations, whereas other

rows have to be displaced in order to avoid clashes.

3 6 1

2

3

4

5

7

8

5

DELTA

3 6 3 4 1 2 5 7 8 5 - - -

OWNER

0 0 2 3 0 1 4 6 7 8 - - -

ROW

0
1
2
3
4
5
6
7
8

0,1,2,3,5

4

7

6,8

Fig. 4.32 Compression of transition table presented in Figure 4.1.

For accessing δ(q, a), the element in DELTA at position

ROW[q]+INDEX[a] has to be checked, where INDEX maps each alpha-

bet symbol to a unique integer. In order to guarantee that a non-empty

value in DELTA at a given index encodes the target state of some outgo-

ing transition from state q another one-dimensional array OWNER of the

same length as DELTA is used, which assigns each element in DELTA an
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associated state, i.e. OWNER[i]=q means that the information stored in

DELTA[i] refers to a transition for state q. If δ(q, a) = ⊥ and the corre-

sponding element in DELTA is not utilized, the latter is assigned a separate

value which denotes “undefined and unused” (dash in our example). The

pseudocode for accessing δ is given in Algorithm 13.

Algorithm 13 The pseudocode of the algorithm for accessing δ(q, a).

1: function GetDelta(q,a)

2: if OWNER[ROW [q] + INDEX [a]] = q then

3: return DELTA[ROW [q] + INDEX [a]]

4: end if

5: return NIL

6: end function

The task of finding an optimal set of matrix row displacements, i.e.,

one which results in minimal size of DELTA, is NP-complete. Neverthe-

less, there are many heuristics which yield nearly optimal compression

rates. The simplest way is the so called ’first-fit’ strategy. In the i-th

iteration one tries to shift the i-th row from left to right over the pre-

viously packed first i − 1 rows already stored in DELTA, until a zero-

collision overlap has been identified. Since the initial elements in DELTA

will already be covered by the first couple of transition rows, a more ef-

ficient way is to start computing a collision-free overlap from the first

non-occupied position in DELTA. Further improvements can be achieved

by sorting all transition rows with respect to the number of transitions

they encode, which imposes the order of packing the rows. The applica-

tion of the above techniques may result in a fair compression rate. But

for all that, compressed matrices are not suitable for representing dy-

namic automata since adding new transitions would lead to time-intensive

recomputations.

4.4.1.4 Comparison

Table 4.2 summarizes the main features of the presented storage models for

DFAs in terms of space and time complexity of relevant operations (FO(q)

denotes fanout(q)).

For NFAs all the values in the table are identical except the space com-

plexity of the transition matrix, which amounts to Θ(|Q| · |Σ|+ |δ|) since the

elements of the transition table are lists of total length |δ|. Analogously,
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Table 4.2 Comparison of different data structures for representing DFAs.

Data Structure space accessing δ(q, a) iteration modification

transition matrix Θ(|Q| · |Σ|) O(1) Θ(|Σ|) O(1)

transition lists Θ(|Q| + |δ|) O(FO(q)) Θ(FO(q)) O(FO(q))

sorted transition lists O(|Q| + |δ|) O(log(FO(q))) Θ(FO(q)) O(log(FO(q)))

compressed matrix Ω(|Q| + |δ|) O(|Q| · |Σ|) O(1) Θ(|Σ|) n.a.

the space complexity of a compressed transition matrix is O(|Q| · |Σ|+ |δ|)

(Ω(|Q|+ |δ|)).

4.4.2 Compression Techniques

There are several ways of further reducing the space complexity and

speeding-up crucial operations. We briefly sketch some ideas which are

of somewhat technical nature:

Mixed representation: Sometimes only a small part of the frequently-

visited states have a large number of outgoing transitions. If that is a

case, one could introduce transition arrays of length |Σ| for represent-

ing outgoing transitions from such states, whereas for all other states

conventional adjacency lists could be applied.

Macros: For a subset of symbols in the alphabet reoccurring in some con-

texts, e.g., symbols appearing as labels on transitions between the same

pair of source and target state, one could introduce macros or wildcars,

which in some scenarios might lead to tremendous space savings.

Path compression: All sequential paths, i.e. paths whose intermediate

states have single ingoing and single outgoing transition could be com-

pressed by replacing them by a single transition whose label is obtained

by jamming all labels of the transitions in the path [4, 48].

Using every bit: Some parts of the automaton do not have to be stored

explicitly, e.g., instead of storing states we can implement transitions in

such a way to include pointers to memory blocks containing transitions

of target states [12].

Sharing space: Some parts of the automaton can be shared, e.g., the set

of transitions from one state could be a subset of a transition set of

another state. Consequently, through some rearrangement of these two

sets of transitions. we could use the same memory block for encoding

shared transitions [12],

Hardcoding: For a certain range of automata a significant performance

improvement in terms of processing efficiency can be achieved by hard-

coding transition function [45].
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The detailed description of each of these methods is beyond the scope

of this book. Up to a degree, the decision what is the best space/speed

trade-off in compression is a subjective one, and the choice of methods is

usually based on the preferences of software designer.

We shall present here one method that is the best as far as the com-

pression goes. It is based on space optimized implementation of a recursive

automaton that is used straightforwardly for storing lexicons. Compressed

RA, with some additional tricks, is the foundation part for a compact rep-

resentation of a proper dictionary.

4.4.2.1 A Space Optimized Representation of RA

As of recently, a number of authors have observed the potential of subau-

tomata substitution for compression [18, 54, 58]. Each have implemented

different automata representations with different compression results. We

shall describe here the one implementation that leads to the best compres-

sion. The implementation uses lists of transitions, some of which are final.

Storing finality in transitions instead of states is equivalent to using Mealy

automaton instead of more common Moore’s. This is a non-standard rep-

resentation in the field of finite automata, but leads to a smaller number

of states and transitions [10]. States in an automaton are represented im-

plicitly with lists of transitions leading from the state. The transitions are

composed of four parts:

• Label;

• Pointer to the next transition in the same state (NT→);

• Flag indicating whether the transition is final;

• Flag indicating whether there is a continuation of some path in the

automaton past the current transition.

An example of a recursive automaton implemented in this way is pre-

sented in Figures 4.33 and 4.34. Figure 4.33 shows a set of sixteen tran-

sitions that are the actual stored data, and in Figure 4.34 is the layout

of underlying Mealy machine. This is a real world implementation of the

conceptual recursive automaton presented in Figure 4.4.

Out of sixteen transitions fourteen are regular transitions, and entries

10 and 15 are calls to a subautomaton. In regular transition a label is a

letter of a word. Transitions are stored in such order that the consecutive

transitions do not belong to the same state but to the same path. The

transitions from 1 through 3 form the word low and from 1 through 5 lower.
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Transition Label NT→ Final Next

1 l 10 (rel) •

2 o 4 (rel) •

3 w - • •

4 e - •

5 r - •

6 i - •

7 g - •

8 h - •

9 t - • •

10 (RC) ∞ 4 (abs)

11 s - •

12 o 3 (rel) •

13 w - • •

14 s - •

15 (RC) 4 6 (abs)

16 s - •

Fig. 4.33 Space efficient implementation of a recursive automaton.

The Final flag at transition 3 indicates that the word low is accepted, and

the Next flag denotes that there is a continuation of a path to the next

entry. Transition 5 is the last one on this particular path so its Next flag

is off.

t1 (l) t2 (o) t3 (w) t4 (e) t5 (r)

t6 (i) t7 (g) t8 (h) t9 (t)

t10 [∞, 4]

t11 (s) t12 (o) t13 (w) t14 (s)

t15[4, 6] t16 (s)

Fig. 4.34 Mealy machine implemented with transitions shown in Figure 4.33. Accepting

transitions are drawn with thick arrows. The machine is equivalent to the automaton in

Figure 4.4.
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Transitions belonging to the same state are linked with NT→ pointers.

States q0 and q1 in Figure 4.4 are composed of two transitions each. The

transitions 1 and 11 form the state q0 and transitions 2 and 6 the state q1.

Transitions belonging to a same state are connected with dashed lines in

Figure 4.34. The values of NT→ pointers are stored as a relative distance in

number of transitions. For example, the pointer in transition 2 has a value

4 and therefore points to transition 6. Relative addressing is convenient

because in this way more subautomata remain identical, but for this reason

all transitions have to be of the same size. This is also the case with entries

10 and 15 that are subautomaton calls. They are of the same size as regular

transitions, but with a different assignment of values. Entry 10 is a call to

subautomaton consisting of transitions 4 and 5, and entry 15 is a call to

subautomaton consisting of 4 transitions starting at position 6.

Besides target address, a call must contain the length of replaced part.

An infinity sign ∞ (as in entry 10) denotes that we don’t have to return

after executing the lookup procedure at the target. This means that the

target state and the state that is the source of a call have the same right

language, which amounts to merging of the equivalent states in MDFA.

Some reserved code is used for the infinity notion, and a combination when

both Final and Next flags are off indicates that the entry is a call and not

a regular transition.

The target locations are stored as absolute addresses. This way every

call to the same subautomaton has the same values at each position in the

structure and can be included in replaced subautomata. The whole idea of

the described coding is to have as much as possible uniformity throughout

the structure. One of the necessary prerequisites for this is that words are

added to the structure in some predefined order, usually alphabetical.

Calls can replace only those sequences of transitions that have exactly

the same value in all fields. That is why the transitions 12 and 13 can not

be substituted with 2 and 3. This underlines the difference between the

conceptual representation of RA from Figure 4.4 and the actual one. In real

life the equivalence of automaton parts depends on the way the automaton

is constructed. In our implementation all transitions and calls are of equal

size, so the space is saved when a call replaces at least two transitions.

That is why we would gain nothing by replacing, for example, transition

16 with a call to transition 14. The coding depicted in Figure 4.33 leads

to the most compact representation of automaton published so far [6] and,

with some additional standard compression tricks, gives the best results in

lexicon compression [53].
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The algorithm for construction of compressed automaton needs to find

all subautomata that are equal. That means any sequence of two or more

transitions that is repeated anywhere else in the initial automaton. If we

regard the automaton as a string of transitions then this becomes a well

known substring repetition problem. It can be solved in time linear with

the input string size by using suffix tree or array [27]. However, there is one

computationally hard problem linked to this method. Different ordering of

transitions may lead to more or less repeated transition sequences. We can

get different ordering of transitions with alternative ordering of input words.

For instance, the words in our example automaton are not in alphabetical

order. If they were, different sets of transitions would be replaced with

calls. In this case the total number of entries would still be sixteen (which

we invite interested reader to verify), but there are cases where the final size

would vary with the order of input words. Apparently, there doesn’t exist

an efficient algorithm for finding the optimal order of transitions [54]. For-

tunately, the difference in final sizes can never be greater than few percent

and storing the input words in alphabetical order is accepted as a standard

solution.

4.4.2.2 Dictionary Compression

An efficient method for compressing a proper dictionary would be to con-

struct strings out of keys and corresponding attributes and then store the

strings in described compressed structure. However, better compression

can be achieved if the input and output sets are separated and stored in

respective hashing automata. Hashing is necessary so that we can keep the

links between two sides. Hashing automata for keys and attributes asso-

ciate unique numbers with each entry. When attributes are separated from

keys they have to be alphabetically sorted in order to produce a compact

automaton. This destroys the connections between keys’ and attribute’s

numbers. Therefore, an additional index must be constructed. This index

can be an array where an entry for each key is the hashing number of its

associated attribute. Fortunately, it is usually possible to store such an

array in a compressed format. The dictionary implementation then has

three components: keys hashing automaton, attributes hashing automaton

and index that links them. It has been shown, for a case of a natural lan-

guage dictionary, and when index is compressed with a combination of delta

and statistical coding, that cumulative sum of the sizes of components is

significantly smaller than the size of a single automaton [53].
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Although the access speed is slower than in less complicated implemen-

tations, it is still very fast and the slow-down is not significant in absolute

terms. As a rule of thumb, on present-day personal computers the lookup

speed of described dictionary is over 100 000 entries per second.

4.4.2.3 Compact Representation of Dynamic Dictionaries

The compression is by far more successful with static then with dynamic

dictionaries. This does not mean that we can’t employ efficient methods

for applications with dynamic dictionaries, too. The minimal automaton

is a compressed structure in itself, so an efficient incremental and linear

algorithm for the construction of MDFA is a compact way to implement

dynamic dictionary. The earlier dictionary implementations used a number

of different methods for dynamic trie compression. Some of them may still

be of interest for their simplicity. However, if the space is critical, it is

usually a good strategy to combine precompiled and compact static core

dictionary and add what is needed online in some auxiliary structure. Then,

at a convenient time, or perhaps on an alternating machine, recompile the

new core.

4.4.3 Conclusions and Further Reading

We have demonstrated how to construct dictionaries of finite-state ma-

chines, and then how to use them. Our focus was mainly on acyclic au-

tomata, and we payed particular attention to compact representation of

dictionaries. In application of dictionaries, we presented methods for mor-

phological analysis and synthesis, spelling correction, and restoration of

diacritics. Naturally, the chapter is only an overview, and more can be

learned by reading other sources.

Deterministic finite-state automata, tries and DAWGs have been ex-

tensively studied and are well covered in a number of textbooks. See, for

example, [25, 55].

Morphological analysis and synthesis can be done both with finite-state

automata, and with transducers. For a description of such analysis or

synthesis see e.g. [3]. Description of a coding of canonical form of lexemes

when using FSAs can be found e.g. in [37] and [40]. Guessing automata

were proposed by Jan Daciuk in [11]. More advanced treatment of unknown

words can be obtained using concatenation and spelling rules like those

described in [3].
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An overview of spelling correction is given in [38]. A thorough descrip-

tion of isolated-word spelling correction with finite-state automata can be

found in [46]. A technique that uses two dictionaries (one is inverted) for

fast spelling correction is described in [43]. Other efficient implementations

can be found in [60] and [59].

The algorithm for sorted data was developed independently by Jan

Daciuk [19], Stoyan Mihov [17], and Ciura and Deorowicz [8]. The al-

gorithm for unsorted data was developed independently by Aoe, Morimoto

and Hase [1], Jan Daciuk, Bruce Watson and Richard Watson [19], and by

Dominique Revuz [51] as well as Kyriakos Sgarbas, Nikos Fakotakis, and

Georgios Kokkinakis [56]. A semi-incremental algorithm has been devel-

oped by Bruce Watson [62]. It requires data sorted on decreasing string

length; such sorting can be done in linear time. Incremental deletion of

strings is also possible, see e.g. [1].

The extension of the unsorted data algorithm to the case with an initial

cyclic automaton has been proposed by Rafael Carrasco and Mikel Forcada

[7]. The extension of the sorted data algorithm, as well as Watson’s semi-

incremental algorithm was proposed by Jan Daciuk [13], [14].

Automata for morphological analysis and synthesis can also be built di-

rectly from morphology systems using concatenation and spelling rules as

proposed by Lauri Karttunen [31]. Both concatenation rules and spelling

rules (phonological rules) can be handled by finite-state devices. For an

overview of finite-state morphology see [32]. Two-level phonological rules

are described in [34, 35], more rules (including sequential ones) are tack-

led in [30]. An excellent textbook covering all issues in natural language

processing, including finite-state dictionaries, is [29].

The first implementation of a recursive automaton was presented in

[52], the name, however, comes from [23]. Recursive automaton can be

constructed by finding the repeated subautomata in MDFA in linear time

[18, 58], but the best compression is achieved when the starting structure

is a space intensive trie and with a slower algorithm [6, 53]. It is an open

issue whether it is possible to build a space efficient recursive automaton

in a linear time and using incremental procedure to avoid building the

intermediate trie.
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Proceedings of the International IIS: IIP WM’04 Conference, Advances in
Soft Computing (Springer, Zakopane, Poland), pp. 201–207.

15. Daciuk, J., Maurel, D. and Savary, A. (2005). Dynamic perfect hashing with
pseudo-minimal automata, in M. A. K lopotek, S. Wierzchoń and K. Tro-
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5.1 Introduction

The interest in tree language theory has significantly increased recently as

result of the proliferation of XML in virtually any area of automatic data

processing and due to the fact that the XML specification [81] essentially

consists of a syntax for sequentially representing trees and a formalism for

defining tree languages.

Results from the tree theory that have been known long before the emer-

gence XML have helped devising the XML specification and XML related

applications. The results presented here, on the other hand, are in line

with research work that has been driven by the new needs of these applica-

tions. Correspondingly, our motivation is, as introduced next, drawn from

the XML world and we have an eye for the practical related aspects; the

results themselves are nevertheless generally applicable to tree-structured

data, rather than being specific to the semi-structured, XML world.

5.1.1 Motivation

One advantage of XML is that it facilitates exchanging information in a

standardized way, such that communicating entities are coupled as loosely

as possible in order to achieve better interoperability. XML has become

205
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almost indispensable as an exchange format between communicating appli-

cations.

The second major advantage of XML is that it makes possible the sepa-

ration of information content from information presentation. This is highly

desirable when different presentations of the same content are needed, for

instance XHTML for presence on the Internet, and Printable Document

Format (PDF) for documents to be printed. Maintaining a separate docu-

ment for each layout is inconvenient, due to the overhead required to keep

all copies consistent whenever the informational content changes. Instead,

one can maintain a single document containing the information represented

in an XML language and one transformation program from the XML lan-

guage to each desired layout. Thereby, keeping a layout up to date simply

requires the running of the corresponding transformation program on the

content whenever this changes.

Exploiting the advantages of using XML thus intrinsically requires the

ability to transform XML documents, either to convert them from and

to the exchange formats, or to produce a desired layout. A fundamental

task thereby is querying, i.e. locating sub-components with some specified

properties to be used for creating new content in XML transformations.

Additionally, querying is used on its own in order to extract information

from documents. The importance of query-languages becomes apparent if

one notes that XPath [83], the XML query language proposed by the W3C

Consortium, is integral part of many other important specifications, for

example XML Schema Language [82], XSLT [86] or XQuery [85].

5.1.2 Scope and Outline

In this chapter we present how tree languages can be used for specifying

powerful queries for tree-structured documents, and for this matter XML

data, and show how these queries are efficiently implementable using (tree)

automata. In particular, we address the following querying aspects:

Specifying k-ary queries Most of the existing XML-query languages

identify only individual locations in the XML input data. We introduce a

very expressive method that allows the specification of k-ary queries, that

is, queries retrieving k locations that are in a specified context. The method

is based on grammars, which are already applied in XML, but mainly only

as schema languages. We call these queries k-ary grammar queries.
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Efficient implementation of binary queries We identify binary

queries (obtained for k = 2) as an important special case, particularly in

view of their use in transformations. We introduce a tree-automata based

algorithm which allows the efficient evaluation of binary grammar queries.

Query evaluation on XML streams Some XML documents may be

very large, which makes it prohibitively expensive to keep them completely

in the main memory while processing them. Also, there are increasingly

many real-life applications in which the document to be processed is re-

ceived linearly via some communication channel – as an XML stream –,

rather than being completely available in advance. Special algorithms have

to be developed to cope with these constraints. We show how grammar

queries on XML streams can be answered by providing an algorithm which

is very efficient in terms of time and highly adaptive in terms of memory

consumption.

Practical application The viability of the algorithms and ideas pre-

sented in this part has been put to work in the XML querying tool Fxgrep

[54], which provides access to the powerful grammar querying formalism

via a more intuitive, and thus more user-friendly, specification language.

The chapter is organized as follows. In Section 5.2 we introduce ter-

minology, definitions, notations and a classic automata construction which

are used throughout the chapter. The forest grammars used for specifying

queries, the languages specified by them, and their recognition are presented

in Section 5.3. Section 5.4 presents how forest grammars can be used to

specify k-ary queries and how these queries, in particular the binary ones,

can be evaluated. Fxgrep is introduced in Section 5.5. Answering queries

on XML streams is presented in Section 5.6.

5.2 Preliminaries

Hierarchically structured information, such as XML documents, can be

conceptually represented as trees. XML processing is thus basically tree

processing. An even more basic task is string processing. Regular expres-

sions are an intuitive yet quite expressive way of specifying properties of

strings. Furthermore, they are at the basis of more elaborated patterns to

be located in trees that are presented in the following section. Therefore,

we start in Section 5.2.1 with a presentation of regular expressions and the
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classic Berry-Sethi automata construction checking the conformance to a

specified regular expression. In Section 5.2.2 we then introduce trees and a

couple of related definitions and notations which will be used throughout

the remainder of the chapter. In Section 5.2.3 we briefly present the basic

XML concepts, notations and terminology and relate them to the usual tree

terminology.

5.2.1 Regular Expressions

Let Σ be a finite set. We call Σ alphabet and its elements symbols. The

number of elements of Σ is denoted as |Σ|. The set Σ∗ of strings w over

the alphabet Σ is defined as follows:

w ∈ Σ∗ iff w = λ or w = aw1 with a ∈ Σ and w1 ∈ Σ∗

where λ is the empty string.

The set of regular expressions over the alphabet Σ denoted as RΣ is

defined as:

r ∈ RΣ iff r = ∅, or

r = λ, or

r = a and a ∈ Σ, or

r = r1? and r1 ∈ RΣ, or

r = r1
∗ and r1 ∈ RΣ, or

r = r1r2 and r1, r2 ∈ RΣ, or

r = r1 r2 and r1, r2 ∈ RΣ.

Parentheses may be omitted, in which case the composition of a reg-

ular expression is given by using the following operator precedence: ?, ∗,
concatenation and , from the strongest to the weakest. The number of

occurrences of symbols from Σ in a regular expression r is denoted as |r |
Σ
.

The language of a regular expression r ∈ RΣ is a set [[r ]] ⊆ Σ∗ defined
as follows:

[[∅]] = ∅

[[λ]] = {λ}

[[a]] = {a}, for all a ∈ Σ

[[r?]] = {λ} ∪ [[r ]]

[[r∗]] = {λ} ∪ {w1 . . . wn | n > 0, wi ∈ [[r ]] for all 1 ≤ i ≤ n}

[[r1r2]] = {w1w2 | w1 ∈ [[r1]], w2 ∈ [[r2]]}

[[r1 r2]] = [[r1]] ∪ [[r2]]

A language is called a regular string language if it is the language of a

regular expression.
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Finite Automata

The membership of a string to a regular string language can be tested

by a finite automaton. A finite automaton over an alphabet Σ is a tuple

A = (Q, q0, F, δ) consisting of a set of states Q, an initial state q0 ∈ Q, a

set of final states F ⊆ Q and a transition relation δ ⊆ Q × Σ × Q. The

language LA accepted by the automaton A is defined as follows:

λ ∈ LA iff q0 ∈ F

a1 . . . an ∈ LA iff there are q1, . . . , qn+1 ∈ Q such that q1 = q0 and

(qi, ai, qi+1) ∈ δ for all 1 ≤ i ≤ n.

If δ is a function, rather than a relation, A is called deterministic finite

automaton (DFA). Otherwise, A is called non-deterministic finite automa-

ton (NFA).

The Berry-Sethi Construction

One method to construct an NFA accepting the language of a regular ex-

pression is the algorithm proposed by Berry and Sethi [10]. Given a regular

expression r this constructs an NFA, Berry(r) = (Q, q0, F, δ), accepting

exactly the language [[r ]] as follows.

If r = λ then Berry(r) = ({q0}, q0, {q0},∅) where q0 is some arbitrarily

chosen state. If r = ∅ then Berry(r) = ({q0}, q0,∅,∅) where q0 is some

arbitrarily chosen state.

Otherwise, a set P of positions p is generated s.t. |P | = |r |
Σ
. Further,

a bijection f from the set of occurrences of symbols in r into P is defined.

A regular expression r̄ ∈ RP is constructed by replacing each occurrence o

with f(o). Then, for each subexpression r̄1 of r̄ the following information

is computed in the given order.

(1) Empty(r̄1), denoting whether λ ∈ [[r̄1]], given as follows:

Empty(p) = false

Empty(r1?) = true

Empty(r1
∗) = true

Empty(r1r2) = Empty(r1) and Empty(r2)

Empty(r1 r2) = Empty(r1) or Empty(r2)
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(2) F irst(r̄1), denoting the symbols with which strings from [[r̄1]] may start:

F irst(p) = {p}

F irst(r1?) = F irst(r1)

F irst(r1
∗) = F irst(r1)

F irst(r1 r2) = F irst(r1) ∪ F irst(r2)

F irst(r1r2) = F irst(r1) ∪

{

F irst(r2), if Empty(r1)

∅ , otherwise

(3) Follow(r̄1), denoting the symbols which can immediately follow after

a string w from [[r̄1]] within a string from [[r̄ ]] or $ (an auxiliary symbol)

if w might be a suffix of a string in [[r̄ ]]:

If r̄1 = r̄ then Follow(r̄1) = {$}

If r̄1 = r1? then Follow(r1) = Follow(r̄1)

If r̄1 = r1
∗ then Follow(r1) = Follow(r̄1) ∪ F irst(r1)

If r̄1 = r1 r2 then Follow(r1) = Follow(r2) = Follow(r̄1)

If r̄1 = r1r2 then

Follow(r2) = Follow(r̄1)

Follow(r1) = F irst(r2) ∪

{

Follow(r̄1), if Empty(r2)

∅ , otherwise

Given the definitions above, Empty() and F irst() can be computed in a

bottom-up while Follow() can be computed in a top-down manner. Using

Empty(), F irst() and Follow(), the NFA is defined as follows. The set of

states is Q = {q0}∪P with some arbitrarily chosen start state q0 /∈ P . The

set F of final states is obtained as:

F =

{

{p ∈ P | $ ∈ Follow(p)} ∪ q0, if Empty(r̄)

{p ∈ P | $ ∈ Follow(p)} , otherwise

Let sym be the inverse of function f , i.e. the mapping of each position p to

the symbol occurring at f−1(p). The transition relation is given by:

δ = {(q0, sym(p), p) | p ∈ F irst(r̄ )} ∪

{(p, sym(p1), p1) | p, p1 ∈ P, p1 ∈ Follow(p)}

Example 5.1. Consider the regular expression r = a∗(a b)b∗. We choose

as the set of positions P = {1, 2, 3, 4} and associate i with the i-th symbol

occurrence, hence sym = {(1, a), (2, a), (3, b), (4, b)} and r̄ = 1∗(2 3)4∗.
The syntax tree of r̄ is depicted in Figure 5.1. The internal nodes of the

tree denote the subexpressions of r̄. The Berry-Sethi construction proceeds

as follows.
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*

1

•

•

|

2 3

4

*

Fig. 5.1 Syntax tree of the regular expression 1
∗
(2 3)4

∗
.

(1) Empty(1) = Empty(2) = Empty(3) = Empty(4) = false

Empty(1∗) = Empty(4∗) = true

Empty(2 3) = false

Empty(1∗(2 3)) = false

Empty(1∗(2 3)4∗) = false

(2) F irst(i) = {i} for all 1 ≤ i ≤ 4

F irst(1∗) = {1}, F irst(4∗) = {4}
F irst(2 3) = {2, 3}

F irst(1∗(2 3)) = {1, 2, 3}

F irst(1∗(2 3)4∗) = {1, 2, 3}

(3) Follow(1∗(2 3)4∗) = {$}
Follow(1∗(2 3)) = {4, $}, Follow(4∗) = {$}
Follow(4) = {4, $}

Follow(1∗) = {2, 3}, Follow(2 3) = {4, $}

Follow(1) = {1, 2, 3}, Follow(2) = {4, $}, Follow(3) = {4, $}

b

a

a

a

1

b 3

b

b

2

b

a

0 4

Fig. 5.2 NFA obtained by the Berry-Sethi construction for a∗(a b)b∗.
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By choosing q0 = 0 it follows that Q = {0, 1, 2, 3, 4}, F = {2, 3, 4} and

δ = {(0, a, 1), (0, a, 2), (0, b, 3), (1, a, 1), (1, a, 2), (1, b, 3), (2, b, 4), (3, b, 4),

(4, b, 4)}. The obtained NFA is depicted in Figure 5.2, where the initial state

is marked by the • symbol and final states are depicted in gray.

An NFA obtained by the Berry-Sethi construction has the important

property that all transitions coming into the same state are labeled by the

same symbol. We denote the label of the incoming transitions into an NFA

state y by in(y).

5.2.2 Trees and Forests

Let Σ be a set that we call alphabet. The sets TΣ of trees t and FΣ of forests

f over Σ is defined as follows:

t ∈ TΣ iff t = a〈f〉 with a ∈ Σ and f ∈ FΣ

f ∈ FΣ iff f = ε or f = tf1 with t ∈ TΣ and f1 ∈ FΣ

where ε denotes the empty forest. Given t = a〈f〉, the symbol a denotes

the label and f the children of t. To denote the label of t we also write

lab(t) = a.

A tree a〈ε〉 is called a leaf and may be denoted by a〈〉 or simply by

a. Also, rather than tε or εt, we write t. The notation t can be thus

interpreted both as a tree or a forest consisting of exactly one tree. Both

interpretations are valid in most usage contexts. We will explicitly note

the intended interpretation when the distinction is relevant and if it is not

obvious from the context.

Let t = a〈t1 . . . tn〉. The trees ti are the children of t, while t is the

father of all ti trees for 1 ≤ i ≤ n. Two trees ti and tj with 1 ≤ i, j ≤ n

and i 6= j are called siblings. If i < j then ti is a left sibling of tj and tj is

a right sibling of ti.

Note that our trees are unranked, that is the sequence f of children of a

tree a〈f〉may have an arbitrary length. We could have used as well a ranked

representation like in the traditional tree theory, as each tree or forest can

be reversibly encoded into a unique ranked tree (see for example [53]).

Working with the encoded representations however complicates both the

operations on trees and forest and the intuitions behind them, hence we

preferred the straightforward unranked representation. Also note that the

trees defines above are ordered, i.e. the order of the children is relevant.
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Nodes, Paths and Locations

Any subtree t of a forest f is uniquely identified by a node. A node is a

string of natural numbers, denoting the path leading to t, formally defined

as follows. The set Π(f) ⊆ N
∗ contains all paths π in f and is defined as

follows:

Π(ε) = {λ}

Π(t1. . . tn) = {λ} ∪ {iπ | 1 ≤ i ≤ n, π ∈ Π(fi) for ti = ai〈fi〉}

where N∗ is the set of strings over the alphabet of positive natural numbers

and λ denotes the empty string.

The nodes of a forest f are elements of the set N(f) = Π(f) \ {λ}. For

π ∈ N(f), f [π] is called the subtree of f located at π and is defined as

follows:

(t1. . . tn)[iπ] =

{

ti , if π = λ

fi[π], if π 6= λ and ti = a〈fi〉

For a node π, we define lastf (π) as the number of children of π:

lastf (π) = max ({n | πn ∈ N(f)} ∪ {0})

with lastf (π) = 0 iff π identifies a leaf.

Note that a path always locates a tree in a forest, not in a tree. Given

a tree t, t[π] denotes the tree located by π in the forest which consists of

t only. One can see by definition that in this case π always begins with

the symbol 1. In particular, one can use the subtree t = f [π1] located by a

path π1 in a forest f to further locate a subtree of t. In this case we have

that f [π1][1π2] = f [π1π2].

1

11

111 112

12

121

13

131 132113 122 133

14

1111 1121 1211 1311 1321

b cb

a a a

c

a

b

Fig. 5.3 Locations in a tree.

The document order is defined as the lexicographic order of the nodes of

a forest f . Note that this is precisely the order in which the nodes are visited

during a left-to-right depth-first search (DFS) traversal of f . Sometimes

we need to precisely identify the locations reached during a DFS traversal
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of a forest. To this aim we define the set L(f) ⊆ N
∗ of locations in a forest

f as:

L(ε) = {1}

L(t1. . . tn) = {i | 1 ≤ i ≤ n+ 1} ∪

{il | 1 ≤ i ≤ n, l ∈ L(fi) for ti = ai〈fi〉}

Figure 5.3 depicts these locations in a sample tree. The location at which

the root of a subtree is reached (depicted to its left) equals the node at

which the subtree is located.

5.2.3 XML Basics

This section is only meant to briefly introduce the essential XML constructs

and to relate the XML terminology to the tree terminology. For a thorough

introduction to XML we refer to the books dedicated to this subject, such

as to [35].

Basically, an XML document is a serial representation of an ordered,

unranked, labeled tree. The XML representation of a tree a〈f〉 is an XML

element given as serialize(a〈f〉), where:

serialize(a〈f〉) ::= <a>serialize(f)</a>

serialize(t1 . . . tn) ::= serialize(t1) . . . serialize(tn)

serialize(ε) ::= λ

For example,

a〈b〈c〉d〉 can be denoted in XML as <a><b><c></c></b><d></d></a> or

using (irrelevant) white spaces for enhanced readability:

<a>

<b>

<c></c>

</b>

<d></d>

</a>

Consider a tree a〈f〉 and the corresponding XML element

<a>serialize(f) </a>. The XML terminology denominates the symbol a

tag or element name, <a> start tag, </a> end tag and serialize(f) element

content. An element with empty content <a></a> is called empty element

and might be as well denoted as <a/>. The element corresponding to the

root of the top-level tree is the root element.

Additionally, XML elements can be provided with named properties

via attributes. An attribute is a pair consisting of an attribute name and
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an attribute value given as arbitrary sequences of symbols. Attributes are

specified along with the start tag of the element, after the tag name, as

the attribute name followed by the “=” sign followed by the attribute value

enclosed in single or double quotes, as for example in:

<c i r c l e r ad ius = ’25 ’ x=”40” y= ’60 ’ co l o r =’green ’/>

Note that attributes do not add to the expressiveness of XML as they could

also be represented by using dedicated element names, as for example:

<c i r c l e >

<a t t r i bu t e s>

<name>radius</name><val>25</val>

<name>x</name><val>40</val>

<name>y</name><val>60</val>

<name>co l or </name><val>green</val>

</c i r c l e >

Besides other elements, text and processing instruction nodes may occur

anywhere within an element. A text node consists of a sequence of sym-

bols which occur within the enclosing element. A processing instruction is

intended to provide an instruction to some target processor of the XML rep-

resentation and has the form <?target attributes?>. The attributes are

as for elements and are to be interpreted by the target processor. Process-

ing instructions are also allowed to occur before and after the root element.

Therefore, an XML document is a forest rather than a tree as the root

element might be preceded and followed by processing instruction nodes.

For example an XSL-enabled browser uses the processing instruction at

the beginning of the following XML document:

<?xml−s t y l e s h e e t type=”text / x s l ” h r e f=”program2html . x s l ”?>

<Program>

<Output>Hel l o World!<newl ine/>Und Tschü s s !</Output>

</Program>

to retrieve the stylesheet program2html.xsl and apply it to the document

in order to obtain its Web presentation.

Similarly to attributes, processing instructions do not actually add to

expressiveness, as their information can be provided via elements with a

dedicated name.

An element like Output in XML Example 4 which encompasses both

element and text nodes is said to have mixed content, while an element

with only text nodes is said to have text content.
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XML Schema Languages

The XML specification includes a method for specifying structural con-

straints for XML documents. The set of documents adhering to a set of

given constraints is called an XML language. An XML language is defined

using a document type definition (DTD). An XML document can be de-

clared as belonging to an XML language by providing it with a document

type declaration. The document type declaration indicates the root element

and either directly provides the DTD, in which case the DTD is called in-

ternal , or it provides a reference to an external location where the DTD is

to be found as for example in:

<!DOCTYPE dblp SYSTEM ”dblp . dtd”>

saying that the DTD is given in the file named dblp.dtd.

An XML document that conforms to its declared DTD is called valid.

Checking validity of XML documents is achieved by XML validating

parsers. Checking the validity of XML is very important for applications

that rely on a specific format for their XML input, especially if the source

of the input is not controllable, as it is often the case in highly dynamic

settings.

A DTD consists of declarations restricting the content of the elements

occurring in XML documents conforming to the DTD. The content of an

element might be restricted depending on the element’s name. One can

either specify that an element should have only text content, or mixed

content, or give a content-model for it. A content model specified in a

DTD is a regular expression over element names which has to be fulfilled

by the string of element names of the enclosed elements. For example:

<!ELEMENT u l i s t ( item+)>

specifies that an element named ulist must consist of one or more item

elements. Furthermore one can specify which are the attributes that an

element might have and whether they are required, optional, or that they

have some fixed value.

Even though DTDs are the only means of specifying XML languages

anchored in the XML specification, they are just one way of doing so.

The languages used to specify XML languages are called XML schema lan-

guages, as they specify a schema to which the XML documents belonging

to the XML language must conform. The structural constraints expressible

with the proposed schema languages are in general more precise than those

allowed by DTDs, and are basically subsumed by the capabilities of forest
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grammars, which will be introduced in Section 5.3.1.1. A comparison of for-

est grammars and the most frequently used schema languages is presented

in the Section 5.3.1.3.

5.3 Regular Forest Languages

Specifying and checking conformance of XML documents to a schema, i.e.

their membership to an XML language, is a very important task for XML

processing. Since the introduction of DTDs as a basic schema language

in the XML specification [81], more powerful schema languages have been

defined, which allow a more precise specification of XML languages. Among

the better known are XML Schema Language [82], DSD [39] and RelaxNG

[65].

The main purpose of schema languages is to specify the structure of

the documents conforming to the defined XML language. The structural

properties of XML languages specifiable using the various proposed schema

languages are essentially captured by regular forest languages. That is,

XML languages are essentially regular forest languages. Correspondingly,

checking conformance to a schema basically means testing membership in

a regular forest language.

Since the structural conditions expressible with regular forest languages

are at the basis of the querying techniques presented in this chapter, we

briefly review how these can be specified, in Section 5.3.1, and recognized,

in Section 5.3.2.

5.3.1 Specifying Regular Forest Languages

Regular forest languages constitute a very expressive and theoretically ro-

bust formalism for specifying properties of forests. One way of specifying

regular forest languages is by using forest grammars. In fact, the proposed

XML schema languages essentially specify more or less restricted forms of

forest grammars. The relation between forest grammars and XML schema

languages is discussed in Section 5.3.1.3. The reason why forest grammars

are chosen among the other possibilities for specifying regular forest lan-

guages is that, in our opinion, they are more comprehensible than the other

formalisms.

5.3.1.1 Forest Grammars

A forest grammar is a tuple G = (Σ, X,R, r0), where Σ andX are alphabets

of terminal and non-terminal symbols, respectively, R ⊆ X × Σ×RX is a
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set of productions and r0 ∈ RX is the start expression1. As Σ and X are

visible from the set of productions R we omit them when there is no risk

of confusion and write G = (R, r0). We denote a production (x, a, r) ∈ R

as x→ a〈r〉. We write x→ a rather than x→ a〈λ〉.

Intuitively, and using the terminology from schema languages, a produc-

tion x→ a〈r〉 specifies that the children of an a element derived using the

production must conform to the content model r . Also, the start expres-

sion is a content model which must be fulfilled by the sequence consisting

of the root element and the possible preceding and following processing

instructions.

Example 5.2. Consider for example the following excerpt from a file

sample.dtd containing a DTD for books:

<!ELEMENT BOOK (TITLE , SUBTITLE? , CHAPTER+, APPENDIX?)>

<!ELEMENT CHAPTER (TITLE , (CHAPTER|PAR)+)>

<!ELEMENT APPENDIX (CHAPTER+)>

Further suppose that the root element is BOOK as declared in the following

document type declaration:

<!DOCTYPE BOOK SYSTEM ”sample . dtd”>

The same can be specified using a forest grammar with the following pro-

ductions:

xbook → BOOK〈xtitle x?
subtitle x+

chapter x?
appendix〉

xchapter → CHAPTER〈xtitle (xchapter |xpar)
+
〉

xappendix → APPENDIX〈x+
chapter〉

We obtain the equivalent forest grammar by choosing as start expression

xbook, corresponding to the root element in the DTD, and further assuming

the presence in the grammar of productions for the non-terminals xtitle,

xsubtitle and xpar , according to the DTD definitions of the elements TITLE,

SUBTITLE and PAR, respectively.

In the following we give the formal definition of conformance to a schema

specified by a forest grammar.

A set of productions R together with a distinguished non-terminal

x ∈ X or a regular expression r ∈ RX defines a tree derivation relation

1
Recall that RX is the set of regular expressions over X.
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DerivR,x ⊆ TΣ × TX or a forest derivation relation DerivR,r ⊆ FΣ × FX ,

respectively, as follows:

(a〈f〉, x〈f ′〉) ∈ DerivR,x iff x→ a〈r〉 ∈ R and (f, f ′) ∈ DerivR,r

(t1 . . . tn, t
′
1 . . . t

′
n) ∈ DerivR,r iff x1 . . . xn ∈ [[r ]] and (ti, t

′
i) ∈ DerivR,xi

for i = 1, . . . , n

(ε, ε) ∈ DerivR,r iff λ ∈ [[r ]]

If (f, f ′) ∈ DerivR,r, we say that f ′ is a derivation of f w.r.t. R and

r. In the following we omit R when it is clear from the context which set

of productions is meant. Given a grammar G = (R, r) we write (f, f ′) ∈
DerivG iff (f, f ′) ∈ DerivR,r and say that f ′ is a derivation of f w.r.t. the

grammar G.

If (f, f ′) ∈ DerivG for some f ′, then f conforms to the schema G.

Observe that a derivation f ′ is a relabeling of f and can be seen as a proof

of the validity of f according to the schema G. If lab(f ′[π]) = x we say

that f ′ labels f [π] with x.

Note also that forest grammars have been also called unranked tree or

hedge automata elsewhere [13]. From this viewpoint, non-terminals are

states, productions are transitions, and derivations are accepting runs of

the automaton.

Example 5.3. Let R be the set of following productions:

xa → a〈(xa|xb)
∗
〉

xb → b

Let f = a〈ab〉 and suppose we want to check whether there is a derivation

of f w.r.t. R and xa. We can proceed in a bottom-up manner. It is easy to

see that (a, xa) ∈ Derivxa
and (b, xb) ∈ Derivxb

. Since xaxb ∈ [[(xa|xb)
∗
]]

we have that (ab, xaxb) ∈ Deriv(xa|xb)
∗ . It follows that (a〈ab〉, xa〈xaxb〉) ∈

Derivxa
.

Example 5.4. Let R2 be the set of following productions:

(1) x> → a〈x∗>〉

(2) x> → b〈x∗>〉

(3) x> → c〈x∗>〉

(4) x1 → a〈x∗>(x1|xa)x
∗
>〉

(5) xa → a〈xbxc〉

(6) xb → b〈x∗>〉
(7) xc → c〈x∗>〉

Let t be the tree textually represented by the following XML document:
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b cb

a a a

c

a

b

Fig. 5.4 The tree representation of t from Example 5.4.

x> x>xb

xa x> x>

xc

x1

x> x> xcx>

x> x> xa

x>

x1

xb

Fig. 5.5 Possible derivations of t from Example 5.4.

<a>

<a><b/><c/></a>

<a><b/></a>

<a><b/><c/></a>

</a>

The tree t is graphically presented in Figure 5.4. Two possible derivations

of t w.r.t. R and the regular expression x1|xa are depicted in Figure 5.5.

The meaning [[R]] of a set of productions R assigns sets of trees to

non-terminals x ∈ X and sets of forests to regular expressions r ∈ RX as

follows:

t ∈ [[R]] x iff there is t′ ∈ TX with (t, t′) ∈ DerivR,x

f ∈ [[R]] r iff there is f ′ ∈ FX with (f, f ′) ∈ DerivR,r

If t ∈ [[R]] x or f ∈ [[R]] r we say that t can be derived from x or f can be

derived from r, respectively.

Example 5.5. Let R be the set of productions from Example 5.3. It is

easy to see that [[R]]xb is the set consisting only of the tree b. The set [[R]]xa

consists of all trees, the internal nodes of which are all labeled a, and the

leaves of which are labeled either a or b.
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The regular forest language specified by a forest grammar G = (R, r0)

is the set of forests LG = [[R]] r0.

Example 5.6. Consider the grammar G = (R2, x1|xa) over {a, b, c} with

the productions R2 as defined in Example 5.4.

LG is the set of documents in which there is a path from the root to a

node labeled a, whose children are a node labeled b and a node labeled c ,

and whose ancestors are all labeled a. The first three productions make x>
account for trees with arbitrary content. As specified by production (5), xa

stands for the a element with the b and the c children. Productions (6) and

(7) say that these children can have arbitrary content. Finally, production

(4) specifies that the a specified by (5) can be at arbitrary depth in the

input, and all its ancestors must be labeled a.

5.3.1.2 Practical Extensions

To use forest grammars as a specification language in a practical setting,

such as XML processing, a couple of useful extensions need to be made as

presented below.

Text Nodes The grammar formalism as introduced is not yet able to

handle XML documents in which elements have text content. Let U be

the set of Unicode characters [78], the symbols allowed in text and mixed-

content nodes of XML documents. Our definition of trees t and forests f

in Section 5.2.2 can be adapted in order to allow XML text nodes as well

as follows:

t ∈ TΣ iff t = a〈f〉 with a ∈ Σ and f ∈ FΣ or t = α∗

f ∈ FΣ iff f = ε or f = tf1 with t ∈ TΣ and f1 ∈ FΣ

where α∗ denotes an arbitrary sequence of characters α ∈ U .

External Predicates To handle text nodes one can extend the definition

of forest grammars to include a set of external predicates P . The purpose

of external predicates is to express properties which cannot be captured

via content models. In particular, an external predicate can test whether a

node is a text node.

An external predicate p ∈ P is a boolean function of type TΣ 7→ B

which takes a tree as argument and returns one of the two boolean values

in B, true or false. A forest grammar with external predicates is a tuple

G = (Σ, X, P,R, r0) with Σ, X and r0 as before and R ⊆ (X × Σ×RX) ∪

(X × P ). As before, we denote a production (x, a, r) ∈ (X × Σ × RX)
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or (x, p) ∈ (X × P ) as x → a〈r〉 or x → p, respectively. Intuitively,

a production x → p is applicable in a derivation of the tree t when the

predicate p is true for t.

Formally, the tree derivation relation DerivR,x ∈ TΣ×TX and the forest

derivation relation DerivR,r ∈ FΣ × FX defined by set of productions R

together with a distinguished non-terminal x ∈ X and a regular expression

r ∈ RX respectively, are correspondingly extended as follows:

(a〈f〉, x〈f ′〉) ∈ DerivR,x iff x→ a〈r〉 ∈ R and (f, f ′) ∈ DerivR,r

(t, x) ∈ DerivR,x iff x→ p and p(t) = true

(t1 . . . tn, t
′
1 . . . t

′
n) ∈ DerivR,r iff x1 . . . xn ∈ [[r ]] and (ti, t

′
i) ∈ DerivR,xi

for i = 1, . . . , n

(ε, ε) ∈ DerivR,r iff λ ∈ [[r ]]

The meaning [[R]] of R is similarly given by:

t ∈ [[R]] x iff there is t′ ∈ TX with (t, t′) ∈ DerivR,x

f ∈ [[R]] r iff there is f ′ ∈ FX with (f, f ′) ∈ DerivR,r

Finally, the language of G is as before LG = [[R]] r0.

Thereby, one can express that a node within a content model is a text

node by referring it via a new terminal xtext for which a production xtext →

p exists where p is a predicate testing whether its argument is a sequence

of Unicode characters, i.e.:

p(t) =

{

true , if t = α∗

false, otherwise

In general, predicates can be used to specify arbitrary properties of

subtrees which are not expressible with the original forest grammars for-

malism. For example, one can use them to express that some text nodes

have a required datatype, as needed in XML schema languages like XML

Schema [82] or RelaxNG [65].

Wild Card Symbols In a practical specification language one is often

interested in merely indicating the occurrence of some entity without fur-

ther specifying it. For this purpose special place-holder symbols, also called

wildcards , have to be provided. In the forest grammar formalism we use

the wildcard “∗” to denote an arbitrary label of the node and “.” to denote

an arbitrary node. Furthermore, we use “ ” as an abbreviation for “.∗”,
to denote an arbitrary sequence of nodes.
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Example 5.7. Let R be the following set of productions:

x1 → a〈 (x1|x2) 〉

x2 → ∗〈xb .〉

xb → b〈 〉

The grammar G = (R, x1|x2) specifies the language of documents in

which there is a path from the root to a node the ancestor nodes of which

are all labeled with a, and which has two children, the first a b node and

the second an arbitrary node.

5.3.1.3 Forest Grammars and XML Schema Languages

As previously mentioned, XML schema languages basically specify forest

grammars. There are however some differences in terms of expressiveness

that we address here. Understanding the different expressive powers of the

XML schema languages is one advantage of a language theoretic approach

thereto. A taxonomy of XML schema languages obtained in this way can be

consulted in [51]. Here we restrain only to addressing the main differences

between forest grammars and the common XML schema languages.

DTDs, as opposed to forest grammars, do not allow the specification

of context-dependent content models for elements – as presented in the

following example:

Example 5.8. Consider the modification of the productions from Exam-

ple 5.2 as follows:

xbook → BOOK〈xtitle x?
subtitle x+

chapter1
x?
appendix〉

xchapter1 → CHAPTER〈xtitle (xchapter2 |xpar)
+
〉

xchapter2 → CHAPTER〈xtitle x+
par〉

xappendix → APPENDIX〈x+
chapter1

〉

Note that we specify different content models for chapters on the top-level

and chapters occurring inside other chapters. Rather than allowing arbi-

trarily nested chapters as in Example 5.2, the new productions only allow

top-level chapters to contain sub-chapters. This is not possible to express

with a DTD, where all elements with the same name must be associated

with the same content model.

Another limitation of DTDs as compared to forest grammars is the re-

quirement of content models to be unambiguous , i.e. that the corresponding

finite string automata, as obtained by the Berry-Sethi construction, are de-

terministic. The restriction ensures that every word can be unambiguously

parsed using a lookahead of one symbol.
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Similarly to forest grammars and as opposed to DTDs, XML Schema

[82] and RelaxNG [65] allow both to specify context-dependent and non-

deterministic content models. In contrast to forest grammars, they also

allow the specification of the datatype of the text nodes more precisely, for

example whether it should represent an integer, a float or a date. This goes

beyond the basic capabilities of forest grammars. However, it is possible to

define this kind of requirements using forest grammars with external predi-

cates, by using a new non-terminal and a corresponding external predicate

for each basic type needed, which tests whether the text can be converted

into a value of the corresponding required type.

Another feature provided by schema languages (DTDs and XML

Schema, not RelaxNG) is specifying uniqueness and reference constraints.

Uniqueness constraints are used to ensure that there are no two elements

with the same property, e.g. with an identical value of an attribute with a

given name. Reference constraints are meant to ensure that a property of

an element identifies an existing property of another element, e.g. that the

value of an attribute of an element identifies another element which con-

tains the same value in another attribute. This kinds of constraints cannot

be expressed using forest grammars. While this is an important feature, it

does not actually belong to the structural constraints and can be handled

in applications after checking conformance to the schema.

Other features such as the ability of XML Schema to directly specify

a minimum or maximum number of times a certain element type should

occur do not add to the theoretical expressivenes but are very convenient

in practice.

5.3.2 Recognizing Regular Forest Languages

In this section we briefly review how the structural constraints specified via

forest grammars can be efficiently checked.

Neumann showed that the expressive power of forest grammars is equal

with that of regular tree grammars [53]. That is, for every forest grammar

G there is exactly one regular tree grammar G′ such that the ranked tree

language specified by G′ is exactly the image of the forest language specified

by G through an encoding function which maps every forest to a ranked

tree. One such encoding can be obtained by representing the arbitrarily

long sequences of sibling nodes in a similar way to how lists are represented

in functional programming languages, via a binary constructor cons and a

nullary constructor nil.
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Therefore, testing the membership of a forest in a regular forest language

(specified by a forest grammar G) is equivalent to testing the membership

of its ranked encoding in the corresponding regular (ranked) tree language

(specified by the regular tree grammar G′). It is well known that regular

tree languages are recognized by bottom-up tree automata [28]. Hence,

recognizing regular forest languages could be in principle solved using the

classic bottom-up tree automata. In fact, most of the research literature

handling XML processing use this to ignore the unrankedness of XML trees.

Nevertheless, this has a few drawbacks. Firstly, in a practical setting it

requires a supplementary overhead for the encoding step. Secondly, some

natural one-to-one correspondences between the XML data model and the

tree representation, as for example tree relationships, are not directly rec-

ognizable in the encoded tree. In contrast, constructions using the original

unranked representations are more straightforward and easy to realize in

practice. Therefore, we prefer to use a unranked variant of tree automata.

One straightforward approach to recognizing regular forest languages is to

use bottom-up forest automata [53,55] (or, equivalently, unranked tree au-

tomata [13]). However, their implementation may be very expensive [53,55].

As expressive as bottom-up automata but much more concise and effi-

cient to implement in practice are the pushdown forest automata [53, 55].

Any implementation of a bottom-up automaton has to choose a traversal

strategy for the input tree. The idea of a pushdown forest automaton (PA)

is based on the observation that, when reaching a node during the traver-

sal, the information gained from the already visited part of the tree can be

used at the transitions of the automaton at that node. This supplementary

information allows a significant reduction in the size of the states and in

the number of possible transitions to be considered by a deterministic PA

as compared to the equivalent deterministic bottom-up automaton. Intu-

itively, in the case of a depth-first, left-to-right traversal, the advantage is

that information gained by visiting the left siblings as well as the ancestors

and their left siblings can be taken into account before processing the cur-

rent node. The name of the automata (pushdown forest automata) is due

to the fact that information from the visited part of the tree is stored on

the stack (pushdown) which is implicitly used for the tree traversal.

Another advantage of PAs over bottom-up automata is that they can

visit the elements in an XML input exactly in the order in which these are

read from the input. Consequently, they do not need to materialize the

tree representation of the input in memory, as they can handle the XML

elements as they come, in an event-driven manner. This makes PAs suitable
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for applications in which the tree cannot be built in main memory, as for

example in the case of very large XML documents. We take up again this

topic in more detail in Section 5.6.

5.3.2.1 Pushdown Forest Automata

In addition to the tree states of classic tree automata, a PA also has forest

states. Intuitively, a forest state contains the information gained from the

already visited part of the tree (context information) at any point during

the tree traversal. Let us consider a depth-first, left-to-right traversal. The

following notations are essentially those introduced in [53].

...

...

tnt1 t2

a

Side Side Side Side

Side

Up
Down

qn

pn

q2

p2

q1 qn+1

q q′

p

p1

π

Fig. 5.6 The processing model of a pushdown forest automaton.

The behavior of a left-to-right pushdown forest automaton (LPA) is de-

picted in Figure 5.6, the notations of which are used in the following expla-

nation. When arriving at some node π labeled a, the context information

is available in the forest state q by which the automaton reaches the node.

The automaton has to traverse the content of π and compute a tree state

p, which describes π within the context q. In order to do so, the children

of π are recursively processed. The context information for the first child,

q1, is obtained (via a Down transition) by refining q by taking into account

that the father is labeled a. Subsequently the q2 context information for

the second child is obtained (via a Side transition) from q1 and the infor-

mation p1 gained from the traversal of t1. Proceeding in this manner, after

visiting all children of π, enough context-information is collected in qn+1 in

order to compute p (via an Up transition). After processing π, the context

information for the subsequent node is updated into q′.
Formally, an LPA A = (P,Q, I, F,Down , Up, Side) over an alphabet

Σ consists of a finite set of tree states P , a finite set of forest states Q, a
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set of initial states I ⊆ Q, a set of final states F ⊆ Q, a down-relation

Down ⊆ Q × Σ × Q, an up-relation Up ⊆ Q × Σ × P and a side-relation

Side ⊆ Q × P × Q. Based on Down, Up and Side, the behavior of A is

described by the relations δAF ⊆ Q×FΣ×Q and δAT ⊆ Q×TΣ×P as follows,

where the notations correspond to those in Figure 5.6:

(1) (q, a〈t1 . . . tn〉, p) ∈ δAT iff (q, a, q1) ∈ Down , (q1, t1 . . . tn, qn+1) ∈ δAF
and (qn+1, a, p) ∈ Up for some q1, qn+1 ∈ Q.

(2) (q1, t1f, qn+1) ∈ δAF iff (q1, t1, p1) ∈ δAT , (q1, p1, q2) ∈ Side and

(q2, f, qn+1) ∈ δAF for some p1 ∈ P, q2 ∈ Q

(3) (q1, ε, q1) ∈ δAF for all q1 ∈ Q

The language accepted by the automaton A is given by:

LA = {f ∈ FΣ | q1 ∈ I, q2 ∈ F and (q1, f, q2) ∈ δAF}

An LPA performs a depth-first, left-to-right traversal of the input.

Similarly, if we consider a depth-first, right-to-left traversal we ob-

tain a right-to-left pushdown forest automaton (RPA). An RPA A =

(P,Q, I, F,Down ,Up, Side) is similar to an LPA but, as it proceeds on

a forest from the right to the left, case (2) from above is replaced by:

(2’) (qn+1, t1f, q1) ∈ δAF iff (qn+1, f, q2) ∈ δAF , (q2, t1, p1) ∈ δAT and

(q2, p1, q1) ∈ Side for some q2 ∈ Q, p1 ∈ P .

If the Down , Up and Side transitions of a PA are functions rather than

relations and there is exactly one start state, the PA is called determinis-

tic. Otherwise, it is called non-deterministic. If a PA is deterministic we

write Down(q, a) = q1, Side(q1, p1) = q2 and Up(qn+1, a) = p rather than

(q, a, q1) ∈ Down, (q1, p1, q2) ∈ Side and (qn+1, a, p) ∈ Up, respectively.

5.3.2.2 From Forest Grammars to Pushdown Forest Automata

A compilation schema from a forest grammar G = (R, r0) into a determinis-

tic LPA (DLPA) accepting the same regular forest language that we briefly

review here has been given in [53]. The idea is that the DLPA keeps at any

time track of all possible content models of the elements whose content has

not yet been seen in its entirety. The forest is accepted at the end if the

sequence of top-level nodes conforms to r0.

Let r1, . . . , rl be the regular expressions occurring on the right-hand

sides in the productions R, where l is the number of productions. For 0 ≤

j ≤ l, let Aj = (Yj , y0,j , Fj , δj) be the non-deterministic finite automaton



September 14, 2010 14:6 World Scientific Book - 9in x 6in 00Chapter

228 A. Berlea

(NFA) accepting the regular string language defined by rj , as obtained by

the Berry-Sethi construction (presented in Section 5.2.1). Recall that Yj

is the set of NFA states, y0,j the start state, Fj the set of final states and

δj ∈ Yj × Σ× Yj is the transition relation.

By possibly renaming the NFA states we can always ensure that

Yi ∩ Yj = ∅ for i 6= j. Let Y = Y0 ∪ · · · ∪ Yl and δ = δ0 ∪ · · · ∪ δl. A DLPA

A→G accepting LG can be defined as A→G =(2X , 2Y , {q0}, F,Down,Up, Side),

where X is the set of non-terminals in G. A tree state synthesized for a

node is the set of non-terminals from which the node can be derived. A

forest state consists of the NFA states reached within the possible content

models of the current level and can be computed as follows.

We start with the content model r0, i.e.:

q0 = {y0,0}

We accept the top level sequence of nodes if it conforms to r0, i.e.:

F = {q | q ∩ F0 6= ∅}

The possible content models of a node are computed from the content

models in which the node may occur:

Down(q, a) = {y0,j | y ∈ q, (y, x, y1) ∈ δ, x→ a〈rj〉}

When finishing a sequence of siblings we consider only the fulfilled content

models in order to obtain the non-terminals from which the father node

may be derived:

Up(q, a) = {x | x→ a〈rj〉 and q ∩ Fj 6= ∅}

The possible content models are updated after finishing visiting the next

node in a sequence of siblings:

Side(q, p) = {y1 | y ∈ q, x ∈ p and (y, x, y1) ∈ δ}

The resulting A→G is obviously deterministic, since it has one initial state

and its transitions are functions rather than relations.

Example 5.9. The NFAs for the regular expressions occurring in grammar

G with the set of rules specified in Example 5.4 (on page 219) are depicted

in Figure 5.7. Consider as input the XML document depicted in Figure 5.4

(on page 220). The run of A→G on the tree representation of the input is

shown in Figure 5.8, where the sets containing x-s are tree states and the

sets containing y-s are forest states. The order in which the tree and forest

states are computed is denoted by the subscripts at their right. Observe

that the input tree, which is in the regular forest language specified by G,

is accepted by A→G as it stops in the state {y1}, which is a final state of the

LPA.
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Fig. 5.7 NFAs obtained by Berry-Sethi construction for regular expressions in Exam-

ple 5.6.
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Fig. 5.8 The run of A→
G

on an input tree.

5.3.3 Bibliographic Notes

Originally, Neumann and Seidl have used µ-formulas [56] and later con-

straint systems [55] to specify regular forest languages. Forest grammars,

as a more comprehensible mean of specifying regular forest languages, have

been introduced in [53], as an adaption of tree grammars from the ranked

to the unranked tree case. An overview on how results from the ranked

tree-theory carry over in general to the unranked case is presented by

Brüggemann-Klein et al. in [13].
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The correlation between the most popular available schema languages

and regular forest languages has been studied by Murata et al. [51]. For each

considered schema language a corresponding restriction of regular forest

languages is identified. An algorithm for checking the conformance to a

schema is presented for each such subclass.

Checking conformance to a schema which is a regular forest language

can be very efficiently performed by a pushdown forest automaton as pre-

sented in this chapter. Pushdown forest automata have been introduced

by Neumann and Seidl in [55]. They show that every non-deterministic

pushdown forest automaton can be made deterministic and that they are

much more concise when compared to bottom-up automata. They also

give a compilation schema from constraint systems to deterministic push-

down forest automata. The compilation of forest grammars to deterministic

pushdown forest automata was introduced in [53].

5.4 Grammar Queries

In this section we present how forest grammars can be used to specify

powerful XML queries. Forest grammars queries are suitable for the im-

plementation of XML pattern languages as it will be presented in Sec-

tion 5.5. Most of the attention in the study of XML query languages has

been drawn by unary queries , which locate individual nodes from the input

tree. In contrast, in Section 5.4.1, we present a formalism which can ex-

press k-ary queries , which are able to locate k nodes which simultaneously

satisfy a specific property, and discuss their expressiveness in Section 5.4.2.

In Section 5.4.3 we review an efficient construction based on pushdown

automata which can be used to find matches of unary grammar queries.

An efficient construction for locating binary queries is presented in Sec-

tion 5.4.4. Finally, implementing k-ary queries in general is addressed in

Section 5.4.5.

5.4.1 Specifying Queries

One possible way of identifying nodes of interest, as required by the task of

querying, is to label them with special symbols. In this respect, derivations

according to a forest grammar, which, as seen in the previous chapter, are

relabelings of input forests, can be used as a means of specifying queries.

The definitions of grammar queries, given in the remainder of this section

pursue this observation.
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5.4.1.1 Unary Queries

As previously suggested, given a grammarG, a non-terminal x of it specifies

a query by identifying all nodes π in the input f for which there is a

derivation f ′ w.r.t. G in which π is labeled with x. More generally, a

unary grammar query Q is a pair (G, T ) consisting of a forest grammar

G = (R, r0) and a set of target non-terminals T ⊆ X where X is the set of

non-terminals in R. The matches of Q in an input forest f are given by

the setMQ,f ⊆ N(f) as follows:

π ∈MQ,f iff ∃(f, f ′) ∈ DerivG, ∃x ∈ T and lab(f ′[π]) = x

We say that π is a match of Q in f w.r.t. the derivation f ′.

Example 5.10. Consider the grammar G from Example 5.6 (on page

221). The query Q1 = (G, {xb}) locates nodes b having only a ances-

tors and only one sibling c to the right. The leftmost b in the input

tree depicted in Figure 5.4 (on page 220) is a match, as one can see by

definition by looking at the first derivation in Figure 5.5 (on page 220).

Similarly, the rightmost b is a match as defined by the second derivation

w.r.t. G.

The query Q2 = (G, {xa}) locates the a nodes which have a child b

followed by a child c. These are the leftmost and the rightmost a nodes.

In general, as suggested in the example above, a single grammar can

be flexibly used to specify many similar yet different queries, one for each

non-terminal. This flexibility is in contrast with pattern languages, where

for each query a significantly different pattern has to be specified.

Note that we decided for an all-matches semantic of our queries, i.e.

all nodes π as in the definition are to be reported as matches. This is

reasonable, because a user query typically is aimed at finding all locations

with the specified properties, as for instance in XPath . Furthermore,

we do not want to place on the user the burden of specifying the query

via an unambiguous grammar, therefore the definition above refers to any

derivation.

5.4.1.2 K-ary Queries

The definition of queries given in the previous section can be straightfor-

wardly extended in order to identify k-tuples of nodes related via structural

constraints, as imposed by forest grammars.
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A k-ary grammar query is a pair Q = (G, T ) consisting of a forest

grammar G = (R, r0) and a k-ary relation T ⊆ Xk where X is the set

non-terminals in R. The matches of Q in an input forest f are given by

the k-ary relationMQ,f ⊆ N(f)k:

(π1, . . . , πk) ∈MQ,f iff ∃(f, f ′) ∈ DerivG, ∃(x1, . . . , xk) ∈ T and

lab(f ′[πi]) = xi for i = 1, . . . , k

We say that (π1, . . . , πk) is a match of Q in f w.r.t. the derivation f ′.
For k = 1 and k = 2 we obtain unary and binary queries, respectively.

Example 5.11. Consider the grammar G from Example 5.6 (on page 221).

The binary query Q2 = (G, {(xb, xc)} locates pairs of nodes b and c having

as father the same node a, and only a ancestors. The leftmost b and c in the

input depicted in Figure 5.4 (on page 220) form a match pair, as one can

see by definition by looking at the first derivation in Figure 5.5. Similarly,

the rightmost b and c form a match pair as defined by the second derivation

w.r.t. G.

5.4.2 Expressive Power of Grammar Queries

As noted in Section 5.3.2, forest grammars are as expressive as regular tree

grammars. The proof by Neumann [53] shows that for every forest grammar

G there is exactly one regular tree grammar G′ s.t. the language specified

by G′ is the image of the language specified by G through a bijective func-

tion enc mapping every unranked tree (or forest) to a unique ranked tree

representation.

In particular, enc can be chosen s.t. an arbitrarily long sequence of

sibling nodes is represented similarly to the way that lists are represented

in functional programming languages via two constructor nodes cons and

nil, with arity 2 and 0 respectively. This mapping ensures that every node

in a forest f corresponds to exactly one node in enc(f). Moreover, the

construction presented in [53] ensures that for every non-terminal x in G

there is exactly one non-terminal x′ in G′ such that a (forest) derivation of

some input forest f labeling a node with x exists iff a (tree) derivation of

the ranked encoding enc(f) exists labeling the corresponding node in the

encoding with x′.
According to the definition of k-ary grammar queries, this implies

that a tuple (π1, π2, . . . , πk) of nodes πi ∈ N(f) is a match of a query

(G, (x1, x2, . . . , xk)) iff the corresponding tuple of nodes (π′1, π
′
2, . . . , π

′
k) of
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nodes π′i ∈ N(enc(f)) is a match of a query (G′, (x′1, x
′
2, . . . , x

′
k)). There-

fore, the expressive power of forest grammar queries is equal to that of

regular tree grammar queries.

It is well known that the class of languages specified by regular tree

grammars (the regular ranked tree languages) is exactly the same as the

class of languages specified by formulas of monadic second order logic

(MSO) on trees without free variables [77]. Using this result, and cast-

ing the problem of finding matches of regular tree grammar queries into a

language recognition problem, one can show that the expressive power of

k-ary tree grammar queries is equal with that of MSO formulas with k free

variables. A proof can be consulted in [64]. We conclude that the expres-

sive power of our k-ary grammar queries is equal to that of MSO formulas

with k free variables.

Queries specified directly via MSO formulas are not practicable due

to their high evaluation complexity, yet they have been used as conve-

nient benchmarks for comparing XML query languages [61] due to their

large expressive power. Indeed MSO queries subsume many of the fun-

damental features of the query languages which have been proposed for

XML (as it will be presented in Section 5.4.7). Grammar queries have thus

the same expressive power as MSO queries, while being efficiently imple-

mentable, at least in the unary and binary case, as we show in the next

sections.

5.4.3 Recognizing Unary Queries

A construction for answering unary grammar queries using pushdown forest

automata has been presented in [53, 55]. In the present section we briefly

review this construction. Knowing this construction helps understanding

its generalization for binary and k-ary queries which is presented in Sec-

tion 5.4.4 and Section 5.4.5, respectively.

Specifying which are the subtrees of interest in a query typically consists

of two conceptual parts, as described in Figure 5.9. The contextual part

constrains the surrounding context of the subtrees of interest, whereas the

structural part describes the properties of the subtrees themselves.

Example 5.12. Supposing we have an XML document which represents

a conference article, where sections and subsections are encoded as XML

elements, we might be interested in subsections containing the word “au-

tomata” occurring in sections whose title contain the word “forest”. The
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STRUCTURE

target

CONTEXT

Fig. 5.9 The contextual and the structural part of a query.

two emphasized parts denote the structural and the contextual part of the

query, respectively.

Example 5.13. As seen in Example 5.10 (on page 231), the query Q1 =

(G, {xb}) locates the b nodes (structure) which have only a ancestors and

a right c sibling (context).

When specifying a query as a grammar G = (R, r0) together with a

distinguished non-terminal x one specifies at once the desired structure and

context of some subtree t in a forest f . The structure is described by the

productions which can be used in order to derive a tree t starting from x.

The remaining productions of the grammar, which constrain the locations

where x can occur in a derivation of f from r0, capture the context part of

the specification.

As argued in Section 5.3.2.1 a PA uses its forest states to remember in-

formation from the already visited part of the input. Therefore, by looking

into the forest state of the PA after visiting a subtree t it should be possible

to check a structural property of t as well as whether a contextual property

can be satisfied considering the part of the context seen so far.

Example 5.14. Let Q1 be the unary query from Example 5.10 (on page

231), identifying b nodes which have only a ancestors and only one c sibling

to the right. Consider the run of the corresponding LPA on the input as

depicted in Figure 5.8 (on page 229). One can see that by the time the

automata has seen any of the b nodes, each of them fulfills the structural

part (it is a b node) and the upper-left contextual part (all ancestors are a
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nodes). This is reflected in the forest states of the LPA when it leaves each

of the b nodes, depicted at the upper right of each of them, respectively. In

each of these forest states, the NFA state y4, which is reached after reading

an xb, denotes that a derivation of the input forest may exist in which the

respective node is labeled xb.

However, since the right part of the context has not yet been seen, the

LPA cannot decide at the time it leaves the b nodes whether they are indeed

matches.

In order to decide whether a node is a match, in general, the remaining

part of the context also has to be seen. The idea is to remember for each

node the information collected after seeing only a part of the context and

to let a second automaton proceed from the opposite direction (i.e. to per-

form a depth-first, right-to-left traversal if the first PA does a left-to-right

traversal) in order to account for the remaining context.

Before proceeding in Section 5.4.3.2 to the construction based on the

two PA runs for the evaluation of a grammar queries, we introduce in

Section 5.4.3.1 a couple of useful notations which allow us to speak about

the states of the PAs at a certain location.

5.4.3.1 Pushdown Forest Automata as Relabelings

A run of a deterministic PA on an input forest f can be seen as a relabeling

of each node in f with the triple of states involved in the transitions at that

node during the run2.

Consider a DLPA A as defined in Section 5.3.2.1 (on page 226). The

relabeling of f performed by A is a mapping
−→

λ : N(f) → Q × P × Q,
−→

λ (πi) = (−→q π(i−1),
−→p πi,

−→q πi), where, for the node πi, −→q π(i−1),
−→p πi and

−→q πi are the forest state in which the node is reached, the tree state synthe-

sized for the node and the forest state in which the node is left respectively,

by A, i.e.:

−→q λ0 = −→q 0 (the initial state)

−→q π0 = Down(−→q π, a)

−→p π = Up(−→q πn, a), if n = lastf (π)

−→q πi = Side(−→q π(i−1),
−→p πi)

where a = lab(f [π]).

2
For a visualization, observe Figure 5.6 on page 226 where for the node denoted π, the

above mentioned states correspond to q, p and q′.
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Similarly, a deterministic RPA (DRPA) B can be seen as a relabeling
←−

λ (πi) = (qπ(i−1), pπi, qπi), where qπi, pπi and qπ(i−1) are the forest state in
which the node is reached, the tree state synthesized for the node and the

forest state in which the node is left, respectively.

5.4.3.2 Locating Unary Matches

The state in which a DLPA leaves a node π synthesizes all the information

collected after seeing the upper left context and all the content of π. Given

this information, a second (DRPA) automaton, proceeding from right to

left, will have at every node the information necessary in order to decide

whether the node fulfills the structural and contextual requirements of a

query.

Consider a unary query (G, T ). Let A→G be the DLPA accepting the

language of grammar G, constructed as in Section 5.3.2.2 (on page 227).

We now present how to construct the second DRPA B←G for the given

grammar G. In the following we use notations as introduced in Sec-

tion 5.4.3.1. That is, given a node π, we denote by −→p π and −→q π the tree

state synthesized for π and the forest state in which π is left by A→G , re-

spectively. For B←G , we denote by qπ and pπ, the forest state in which

π is reached and the tree state synthesized for π by the DRPA, respec-

tively.

By remembering −→q π one can locally decide at each node during a second

traversal of the input by B←G whether the node is a match of a query. Also,

to avoid unnecessary re-computations by B←G , −→p π is remembered so as to

account for the structure information collected at π.

The automaton B←G runs thus on an annotation
−→

f of the input for-

est f by A→G ,
−→

f ∈ FΣ×P×Q with N(
−→

f ) = N(f) and lab(
−→

f [π]) =

(lab(f [π]),−→p π,
−→q π) for all π ∈ N(f).

The construction of B←G is similar to that of A→G but follows the

NFA transitions in reverse and considers corresponding NFA final states

at rightmost siblings, as the input to the NFAs is seen from the right

to the left. Additionally, B←G takes into account information collected

by A→G in order to avoid considering NFA transitions which were not

relevant for the conformance check performed by A→G . The automaton

B←G =(2X , 2Y , {F0},∅,Down←,Up←, Side←), where X , Y and F0 are as
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in the definition of A→G , is given by:

Down←(q, (a,−→p ,−→q )) = {y2 | y ∈ q ∩ −→q , (y1, x, y) ∈ δ,

x→ a〈rj〉 and y2 ∈ Fj}

Up←(q, (a,−→p ,−→q )) = −→p

Side←(q, p, (a,−→p ,−→q )) = {y | (y, x, y1) ∈ δ, y1 ∈ q ∩−→q , x ∈ p}

where we also provide the Side← transition with the label (a,−→p ,−→q ) of the

node over which it is executed.

Note that pπ = −→p π for all π. When it is clear from the context which

is the label (a,−→p ,−→q ) at a transition we will omit this argument.

The following proposition by Neumann [53] shows how for every node π,

the forest state qπ in which B←G arrives at π, containing information from

the right context can be combined with the information for the remaining

part of the input given in the annotation −→q π in order to find matches of

a unary query. A node is a match if both the forest states in which A→G
leaves the node and in which B←G arrives at the node contain an NFA state

reachable after seeing a target non-terminal from T .

Theorem 5.15. Let Q = (G, T ) be a unary query and f ∈ LG. With A→G
and B←G as above, π ∈ MQ,f iff y1 ∈ qπ ∩

−→q π and (y, x, y1) ∈ δ for some

y, y1 ∈ Y and x ∈ T .

Proof. This theorem is proven in [53] as Theorem 7.1. �

Directly from Theorem 5.15 follows the corollary:

Corollary 5.16. (f, f ′) ∈ DerivG and lab(f ′[π]) = x iff y ∈ qπ ∩
−→q π,

(y1, x, y) ∈ δ for some y, y1 ∈ Y .

This further implies that:

Corollary 5.17. If (f, f ′) ∈ DerivG and lab(f ′[π]) = x, then x ∈ pπ.

Proof. By Corollary 5.16 there are y ∈ qπ ∩
−→q π , (y1, x, y) ∈ δ. Since

y ∈ −→q π, it follows by the definition of Side in A→G that there is (y′, x1, y) ∈ δ

for some x1 ∈ pπ. By the Berry-Sethi construction, all incoming transitions

into an NFA state y are labeled with the same symbol. Therefore, x1 = x

and thus x ∈ pπ. �

Example 5.18. Consider the run of A→G depicted in Figure 5.8 (on page

229). The run of B←G on the tree annotated by A→G is presented in Fig-

ure 5.10. The order in which the tree and forest states are computed is
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Fig. 5.10 The run of the B←
G

on the input document annotated by the A→
G

in Exam-

ple 5.9.

denoted by the subscripts at their right. Note how the rightmost b node

is recognized as a match of the query Q1 = (G, {xb}) . As noted in Ex-

ample 5.14, the NFA state y4 (having an incoming transition labeled xb)

in the annotation done by A→G denotes the node as a potential match

after accounting for its upper left context and its content. The confor-

mance of the right context is also fulfilled as the forest state in which

B←G arrives at the node contains y4 as well. Similarly, the leftmost b

node is a match. On the contrary, the node b in the middle is not a

match, as its right context does not contain a c sibling as required by

the query.

Complexity

Let n be the size of the input forest f , i.e. the number of nodes in f .

The complexity of answering a binary query is given by the complexities

of running A→G and B←G and that of detecting the matches as stated by

Theorem 5.15.

The automaton A→G executes at each node one Down, one Side and one

Up transition. As one can see in the definitions of the transitions, the time

cost of each of these transitions does not depend on f . The run of A→G
requires thus time O(n). Similarly, the run of B←G needs time O(n).
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As detecting each match as by Theorem 5.15 is not dependent on n,

this leads to the overall O(n) complexity.

We have thus proven the following theorem.

Theorem 5.19. The complexity of answering unary gramar queries is lin-

ear in the size of the input document.

5.4.4 Recognizing Binary Queries

In this section we present a construction that allows the efficient evaluation

of binary queries. The construction is based on the technique introduced

in the previous section for the evaluation of unary queries. As opposed to

unary queries, where the decision whether a node is a match can be taken

when the node is visited by the second automaton, finding a match pair of

a binary query requires postponing the decision at least until both nodes

in the pair have been visited. We thus need a supplementary construction

which allows the remembering of information distributed upon the tree,

and the use of this information to detect matches.

We introduce the necessary construction in Section 5.4.4.1 and show how

it can be used to efficiently evaluate a slightly restricted class of binary

queries. In Section 5.4.4.2 we show how the approach works for general

binary queries.

5.4.4.1 Recognizing Simple Binary Queries

LetQ = (G,B) be a binary query. For convenience, we will first assume that

B = {(x1, x2)} for some x1, x2
∈ X , where X is the set of non-terminals

from G. We call such a query a simple binary query.

According to the definition, a pair (π1, π2) is a match for an input f iff

there is a derivation f ′ of f w.r.t. G and f ′[π1] = x1, f ′[π2] = x2.

Observe that this implies that π1 and π2 are matches of the unary queries

(G, x1) and (G, x2), respectively. Thereby, (π1, π2) is a binary match for Q

iff:

(p) π1 is a match of the unary query (G, x1) and

(s) π2 is a match of the unary query (G, x2) and

(r) π1 and π2 are unary matches w.r.t. the same derivation f ′.

We call the nodes fulfilling (p) and (s) primary and secondary matches,

or, for short, primaries and secondaries , respectively.
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We have already seen how unary matches can be located. Thus, testing

(p) and (s) can be done by an automata construction as in Section 5.4.3.

In order to implement binary queries, however, one must additionally be

able to test (r).

Construction

In the following we show that binary queries can be efficiently answered by

using a run of a DLPA A→G followed by a run of a DRPA B←G , in a way

which is similar to the case of unary queries. The A→G and B←G automata

are defined exactly as in Section 5.4.3.2. Primary and secondary matches

can be thus recognized in the same way as in Section 5.4.3.2 and we keep

the same notations as there.

In order to locate binary matches, we have to remember during the run

of B←G which of the already visited nodes are primary or secondary matches,

as potential components of binary matches. We accumulate these primaries

and secondaries in set attributes l1 and l2, respectively, with which we equip

each element of the tree and forest states of B←G .

For a tree state p at node π and x ∈ p, x.l1 contains primary matches

and x.l2 secondary matches which are found below π and are defined w.r.t.

derivations which label f [π] with x.

Similarly, for a forest state q at node π and y ∈ q, y.l1 contains primary

and y.l2 secondary matches collected from the already visited right-sibling

subtrees of f [π]. These are the matches defined w.r.t. derivations in which

the word of non-terminals on the current level is accepted by an NFA reach-

ing the current location in state y.

Similarly to attribute grammars, the values of the l1 and l2 attributes

are defined by a set of local rules, as follows:

• For the elements of a forest state in which B←G arrives at a node π which

has no right-siblings (i.e. π is the rightmost node among its siblings),

the sets of primaries and secondaries collected from the right sibling

subtrees are obviously empty. This is the case for the initial state F0 at

the root and for the states obtained by executing a Down← transition:

If y ∈ F0 or y ∈ Down←(q, (a,−→p ,−→q )), then y.l1 = ∅, y.l2 = ∅

• After finishing visiting the children of a node π, the sets of primaries

and secondaries found below π are propagated and possibly updated

with π if π is a primary or secondary match, respectively:
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If x ∈ Up←(q, (a,−→p ,−→q )), then

x.l1 =

{

{π} ∪
⋃

{y.l1 | y ∈ q, y = y0,j , x→ a〈rj〉}, if x = x1

⋃

{y.l1 | y ∈ q, y = y0,j, x→ a〈rj〉} , otherwise

x.l2 =

{

{π} ∪
⋃

{y.l2 | y ∈ q, y = y0,j , x→ a〈rj〉}, if x = x2

⋃

{y.l2 | y ∈ q, y = y0,j, x→ a〈rj〉} , otherwise

• At side transitions over a node π labeled with (a,−→p ,−→q ), the list of

primaries and secondaries found so far are obtained by combining the

matches below π with the matches from the already visited part to the

right:

If y ∈ Side←(q, p, (a,−→p ,−→q )), then

y.l1 =
⋃

{y1.l1 ∪ x.l1 | (y, x, y1) ∈ δ, y1 ∈ q ∩ −→q , x ∈ p}

y.l2 =
⋃

{y1.l2 ∪ x.l2 | (y, x, y1) ∈ δ, y1 ∈ q ∩ −→q , x ∈ p}

Note that the rules allow a bottom-up, right-to-left evaluation of the

attributes. Therefore, they can be evaluated directly along the run of B←G ,

which performs a depth-first, right-to-left traversal. Moreover, the infor-

mation used for the evaluation of attributes at a node π is the same as the

information needed to compute the transitions at π. In the practical im-

plementation (which will be addressed in Section 5.4.6), where transitions

are computed as they are needed during the run of B←G , the attributes can

be thus computed at minimal costs.

Example 5.20. Consider the binary query Q2 = (G, {(xb, xc)} from Ex-

ample 5.11 (on page 232), locating the b and the immediately following c

children of a node a whose ancestors are exclusively a nodes, on the tree

depicted in Figure 5.4 (on page 220). Figure 5.11 depicts how the l1 and l2
attributes are computed along the run of B←G on the input annotated by the

run of A→G (shown in Figure 5.8 on page 229). The order of computation

performed by the second automaton is the same as in the unary case (which

was depicted in Figure 5.10 on page 238). Note that nodes are identified

by ordinal numbers rather than by paths in order to increase readability.

The attributes l1, l2 for an element x are depicted as l1
l2
x. Attributes with

value ∅ are omitted.
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{y6, y7} {y6, y7}

{[9]y4, y6, y7}

{y6, y7} {y6, y7}

{
[5,8]

[6,9]
y0}

{y5, y6, y7} {
[8]

[9]
y3, y6, y7} {y5, y6, y7}

{
[5,8]

[6,9]
y8,

[5,8]

[6,9]
y9}

{y6, y7}

{y6, y7} {y6, y7}

{y1, y2}

{y10, y11, y12}
a

{x>}
{y9, y12}

c

{y5, y7,
y9}

b
{xb, x>}
{y4, y7,

y9}

a
{xa, x>}
{y9, y11,

y12}

b
{xb, x>}
{y4, y7,

y9}

c
{xc, x>}
{y5, y7,

y9}

{xc, x>}

{
[5]

[6]
xa, x>}

{xb, x>}

{x>} {
[8]

[9]
xa, x>}

{[8]xb, x>}

{
[5,8]

[6,9]
x1, x>}

{
[8]

[9]
y8,

[8]

[9]
y9, y10, y11, y12}

{[9]xc, x>}

1

2

5 6

3 4

7 8 9

{
[8]

[9]
y8,

[8]

[9]
y9, y10, y11, y12}

{[6]y4, y6, y7}

{[5]xb, x>} {[6]xc, x>}

a
{x1, x>}
{y1}

a
{xa, x>}
{y9, y11}

b
{xb, x>}
{y4, y7,

y9}

{
[5]

[6]
y3, y6, y7}

Fig. 5.11 Evaluation of the l1 and l2 attributes.
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π

πi πj

π1 = πiπ′
1

π2 = πjπ′
2

. . .. . . . . .
π

πi πj

π2

π1

(a) (b)

Fig. 5.12 Relative positions of matches: π is nearest common ancestor or λ.

Locating Binary Matches Figure 5.12 (a) and (b), and Figure 5.13 (c),

(d) and (e) show all possible relative positions of the primary (depicted in

white) and the secondary component (depicted in black) of one binary

match (π1, π2). In all five situations, due to the construction above, π1 and

π2 belong to the attributes of one of the tree state pπi or forest state qπi in

which the automaton reaches node πi (depicted by a square). This is where

the binary match (π1, π2) will be detected at the Side←(qπi, pπi) transition.

To see how, we need to observe that our construction ensures the fol-

lowing invariants:
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π1 = π2 = πi

(c)

�
�
�

�
�
�

π1 = πi

π2 = πiπ′
1

π2 = πi

π1 = πiπ′
1

(d) (e)

Fig. 5.13 Relative positions of matches: equal, or one is a proper ancestor of the other.

(i1) A node π1 belongs to the l1 or l2 attribute of an element x of a tree state

computed for a node πi iff π1 is below πi and there is a derivation of the

input forest which labels πi with x and π1 with x1 or x2, respectively.

(i2) A node π2 belongs to the l1 or l2 attribute of an element y of a forest

state in which B←G arrives at a node πi iff π2 is in some right sibling

subtree and there is a derivation of the input forest which labels πi

with x, the label of the NFA transitions coming into y, and π2 with x1

or x2, respectively.

This is formally expressed by the following theorem in which the in-

volved nodes are named as in Figure 5.12 (a) (or (b)):

Theorem 5.21. (Invariants ensured by the construction)

(i1) If y ∈ −→q πi ∩ qπi, x ∈ pπi, (y
′, x, y) ∈ δ for some y′, x then

π1 ∈ x.l1 (or π1 ∈ x.l2) iff

π1 = πiπ′1, ∃f1 s.t. (f, f1) ∈ DerivG, lab(f1[πi]) = x and

lab(f1[π1]) = x1 (or lab(f1[π1]) = x2, respectively).
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(i2) y ∈ −→q πi ∩ qπi, x ∈ pπi, (y
′, x, y) ∈ δ and π2 ∈ y.l2 (or π2 ∈ y.l1)

iff

π2 = πjπ′2, j > i, ∃f2 s.t. (f, f2) ∈ DerivG, lab(f2[πi]) = x and

lab(f2[π2]) = x2 (or lab(f2[π2]) = x1, respectively)

Proof. A formal proof is given in Section 5.8.1. The idea is presented

forthwith. �

Let x ∈ pπi, y ∈
−→q πi ∩ qπi, (y

′, x, y) ∈ δ. Let π1 ∈ x.l1 and π2 ∈ y.l2. It

is easy to see that (i1) directly implies (p) and (i2) implies (s). Less obvious

but still true is that (i1) and (i2) also imply (r). It follows that every pair

formed with π1 ∈ x.l1 and π2 ∈ y.l2 is a binary match.

To see why (i1) and (i2) imply (r), let us define a function which given

a forest f , a node π and a tree t constructs a forest f1 by replacing in f

the subtree located at π with t, formally f1 = f/π t where:

(t1 . . . ti . . . tn)/
i t = t1 . . . t . . . tn

(t1 . . . ti . . . tn)/
iπ t = t1 . . . a〈f/

π t〉 . . . tn, if ti = a〈f〉

If f1 = f/π t, we say that f1 is obtained by grafting t into f at π.

The following theorem observes that given two derivations of a forest

f which label a node π with the same symbol, a new derivation can be

obtained by doing a relabeling of f in which the nodes below π are labeled

as in one of the derivations and the rest of nodes as in the other.

Theorem 5.22. If (f, f1) ∈ DerivG, (f, f2) ∈ DerivG and lab(f1[π]) =

lab(f2[π]) then (f, f1/
π f2[π]) ∈ DerivG and

lab((f1/
π f2[π])[π1]) =

{

lab(f2[π1]), if π1 = ππ2 for some π2

lab(f1[π1]), otherwise

Proof. The proof is given in Section 5.8.2. �

Using the notations of Theorem 5.21, let f ′ = f2/
πi f1[πi]. It follows by

Theorem 5.22 that (f, f ′) ∈ DerivG, f ′[π1] = x1 and f ′[π2] = x2, thus (r)

also holds for (π1, π2). It follows that (π1, π2) is a binary match.

Example 5.23. Consider the side transition at node 8 in Figure 5.11 (page

242). The element [9]y4 in the forest state in which node 8 is reached denotes

that node 9 is a secondary match in the part of the tree already visited.

The element [8]xb in the tree state synthesized at node 8 denotes that 8 is

a primary match found in the subtree 8. The fact that 8 and 9 are defined

with respect to the same derivation can be seen from the fact that xb is the

label of the incoming transitions into y4. Thus (8, 9) is a binary match.

Similarly, (5, 6) is detected as a match at the side transition at node 5.
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Thereby, we obtain how binary matches can be detected (where

cases (a)-(e) correspond to the situations depicted in Figures 5.12 and

5.13):

(a) Every pair (π1, π2) with π1 ∈ x.l1, π2 ∈ y.l2 is a binary match, as

presented above.

(b) Similarly, one can show that every pair (π1, π2) with π1 ∈ y.l1, π2 ∈ x.l2
is a binary match.

(c) If x = x1 = x2 it is easy to see in invariant (i1) that by definition

(πi, πi) is a binary match.

(d) If x = x1 we also have by (i1) that every pair (πi, π2) with π2 ∈ x.l2 is

a binary match.

(e) Similarly, if x = x2 we have by (i1) that every pair (π1, πi) with π1 ∈

x.l1 is a binary match.

To see that all binary matches are detected as above, let, conversely,

(π1, π2) be a binary match. If π1 = πiπ′1 and π2 = πjπ′2, j > i then there is

f ′ with (f, f ′) ∈ DerivG, f ′[πiπ′1] = x1 and f ′[πjπ′2] = x2. Let f ′[πi] = x.

It follows by Corollary 5.16 (page 237) that there are y′ ∈ qπi ∩
−→q πi,

(y′1, x, y
′) ∈ δ. By Corollary 5.17 (page 237) we have that x ∈ pπi. By

(i1) it follows that π1 ∈ x.l1. By (i2) there are y ∈ −→q πi ∩ qπi, x ∈ pπi,

(y1, x, y) ∈ δ and π2 ∈ y.l2. It follows that there is πi, x ∈ pπi, y ∈
−→q πi∩qπi,

(y1, x, y) ∈ δ, π1 ∈ x.l1 and π2 ∈ y.l2.

Similarly, for π2 = πiπ′2, π1 = πjπ′1, j > i, or π1 = π2, or π2 = π1iπ
′
2,

or π1 = π2iπ
′
1 we obtain the converse of (b), (c), (d) or (e), respectively.

We have thus proven the following theorem:

Theorem 5.24. A pair (π1, π2) is a binary match iff there is π ∈ N(f),

x ∈ pπ, y ∈ qπ ∩
−→q π, (y

′, x, y) ∈ δ and either:

(a) π1 ∈ x.l1 , π2 ∈ y.l2 or

(b) π1 ∈ y.l1, π2 ∈ x.l2 or

(c) π1 = π2 = π, x = x1 = x2 or

(d) π1 = π, x = x1, π2 ∈ x.l2 or

(e) π2 = π, x = x2, π1 ∈ x.l1.

Complexity

Let n be the size of the input forest f , i.e. the number of nodes in f .

The complexity of answering a binary query is given by the complexities
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of running A→G and B←G , computing the l1 and l2 attributes and that of

locating binary matches.

The automaton A→G executes at each node one Down, one Side and one

Up transition. As one can see in the definitions of the transitions, the time

cost of each of these transitions does not depend on f . The run of A→G
requires thus time O(n). Similarly, the run of B←G needs time O(n).

The l1 and l2 attributes have to be computed for each component of

the states obtained after a Side← and Up← transition. For the complexity

assessment let us suppose that m is the larger of the numbers of primary

and secondary matches in f .

Consider now an Up← transition. The set x.l1 of primaries for each

component is computed as the union of the sets y.l1 of primaries. As the

number of sets y.l1 does not depend on f , and a set union can be computed

in time O(m), the time for computing x.l1 is in O(m). Similarly, x.l2 is

computed in time O(m). As the number of elements in the computed state

does not depend on f either, executing Up← can be done in time O(m). The

sets y.l1 and y.l2 computed at Side← transition for each component of the

state are similarly computed in time O(m). It follows that the attributes

can be computed in time O(n ·m).

As for the complexity of locating matches, let p be the number of bi-

nary matches in f . Note that each of the binary matches is located at

exactly one of the Side← transitions, namely at the Side← transitions

over the ancestor of one of the primary or secondary, which is a sibling

of an ancestor of the other. As remembering each binary match only re-

quires constant time, locating binary matches has the overall time cost in

O(p).

The total time cost of answering binary queries is thus in O(n ·m+ p).

Since p ≤ m2 and m ≤ n, the theoretical worst cost is in O(n2). We have

thus proven the following theorem.

Theorem 5.25. The theoretical worst case complexity of answering binary

gramar queries is quadratic in the size of the input document.

This theoretical worst case corresponds to the case in which every pair

of nodes from f is a binary match. In practice, however, the number of

primary, secondary and binary matches tend to be irrelevant as compared

to the input size. In this case, the time consumed is rather linear in the

input size and binary queries can be answered almost as efficiently as unary

queries.



September 14, 2010 14:6 World Scientific Book - 9in x 6in 00Chapter

Tree-Language Based Querying 247

5.4.4.2 Recognizing General Binary Queries

Let Q = (G, T ), where T ⊆ X2, be a binary query. The construction is

similar to that for simple binary queries but has to keep a set attribute for

each non-terminal occurring in T .

Formally, let X1 = {x | (x, x′) ∈ T or (x′, x) ∈ T } = {x1, . . . , xn}.

Rather than with two attributes as in the case of simple binary queries,

we equip each element of a state in which B←G visits the input with n

attributes l1, . . . , ln. The attributes li are computed as follows:

• If y ∈ F0 (the initial state of B←G ) or y ∈ Down←(q, (a,−→p ,−→q )) then

y.li = ∅

• If x ∈ Up←(q, (a,−→p ,−→q )) then

x.li =

{

{π} ∪
⋃

{y.li | y ∈ q, y = y0,j, x→ a〈rj〉}, if x = xi
⋃

{y.li | y ∈ q, y = y0,j , x→ a〈rj〉} , otherwise

• If y ∈ Side←(q, p, (a,−→p ,−→q )) then

y.li =
⋃

{y1.li ∪ x.li | (y, x, y1) ∈ δ, y1 ∈ q ∩ −→q , x ∈ p}

for i = 1, . . . , n.

As in the case of simple binary queries, matches are found at Side←

transitions of B←G . Let Side←(qπ, pπ) be such a transition and let x ∈ pπ,

y ∈ qπ ∩
−→q π, (y1, x, y) ∈ δ. In order to find binary matches, one has to look

for every (xi, xj) ∈ T into the li and lj attributes. Finding the match pairs

is achieved similarly to finding match pairs in the case of simple binary

matches.

Theorem 5.26. A pair (π1, π2) is a binary match iff there is π ∈ N(f),

(xi, xj) ∈ T , x ∈ pπ, y ∈ qπ ∩
−→q π, (y1, x, y) ∈ δ and either:

(a) π1 ∈ x.li , π2 ∈ y.lj or

(b) π1 ∈ x.lj , π2 ∈ y.li or

(c) π1 = π2 = π, x = xi = xj or

(d) π1 = π, x = xi, π2 ∈ x.lj or

(e) π1 = π, x = xj , π2 ∈ x.li.

Proof. By definition, (π1, π2) is a binary match iff there is (xi, xj) ∈ T

and (π1, π2) is a simple binary match for (G, (xi, xj)). The proof follows

immediately from Theorem 5.24 by observing that the attributes l1 and l2
from the construction for (G, (xi, xj)) equal li and lj , respectively. �
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In a similar manner as in the case of simple binary queries one obtains

that the complexity of answering binary queries is quadratic in the input

size in the worst case and rather linear in the average case.

5.4.5 Recognizing K-ary Queries

The construction introduced for the evaluation of binary queries can be in

principle extended to work for k-ary queries for arbitrary k’s. In order to

locate matches of a query (G, (x1, . . . , xk)) the construction has to keep a

separate set attribute for each non-empty subset A ⊂ {x1, . . . , xk}. The

set attribute for A then contains all tuples of nodes which form a partial

match corresponding to the elements in A. This is necessary because a

complete match can be obtained by considering any pair of complementary

partial matches. For example, for a query (G, (x1, x2, x3)) one needs to

consider putting together the partial matches corresponding to {x1} and

{x2, x3}, or {x2} and {x1, x3}, or {x3} and {x1, x2}, respectively. However,

the complexity of the construction grows exponentially with k which makes

it impracticable for large k’s.

In the XML practice however many queries are expressed via XPath

select patterns which conceptually are binary relations (namely, between

the context node for the evaluation of the pattern and the set of nodes

selected in that context). Therefore, binary queries can be satisfactorily

used to cover a wide range of actual XML applications.

Nevertheless, it is possible to implement k-ary queries very efficiently

if one adopts a disambiguating policy for grammars. Our queries so far

consider all possible derivations w.r.t. the given input grammar. Following

all these derivations in parallel is the source of the exponential blowup

in the evaluation complexity. A disambiguating policy is a set of rules

which allows the choice of exactly one derivation from among the different

derivations.

One disambiguating policy could be obtained for instance by requiring

one to (1) always consider left-longest sequences in fulfillments of content

models, i.e., in NFA runs, to prefer NFA transitions corresponding to sym-

bols which are as left as possible in the corresponding regular expressions;

and (2) always choose the first applicable production in the input grammar.

A similar policy was in essence originally adopted in XDuce [36,37], in the

context of its functional style pattern matching for XML documents (a

comparison of XDuce with our approach is provided in Section 5.4.7). Sim-

ilarly, one can adopt a right-longest policy, or non-deterministically choose
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one of the possible derivations, if one is for example interested in just one

match, as in the case of a one-match policy.

The implementation in the presence of such a disambiguating policy can

use the same first traversal of A→G to annotate the input tree. Only the sec-

ond automaton B←G has to proceed differently. The adopted policy allows

the maintenance of its states as singletons, rather than sets, by indicating

exactly one NFA transition (y1, x, y), and exactly one grammar production

x → a〈rj〉 to be considered at the Side← and Down← transitions, respec-

tively. The x’s considered at the NFA transitions are then the labels of

the sought-after derivation. The k match nodes can be thus directly read

from the annotation by the second automata, getting thus even linear time

complexity.

5.4.6 Implementation Issues

The constructions presented in the previous section for the evaluation of

unary and binary queries can be put to work in the XML practice as it will

be addressed in Section 5.5. Their efficient implementation is supported by

the consideration of a couple of practical aspects as follows (presented in

more detail in Neumann [53]).

Lazy Evaluation The pushdown automata are efficiently implemented

by computing their transitions only as they are needed. Transitions which

are not required for the traversal of the input are not computed. This

avoids the computation of possibly exponentially large transition tables.

The number of transitions that are actually computed is at most linear in

the size of the input document.

Caching Moreover, the automata do not need to compute transitions at

every node, as many transitions are repeatedly executed. The first time a

transition is needed, its computed value is cached, and the cached value is

simply looked up for its subsequent uses. In practice only few transitions

need to be computed even for large XML documents.

Pre-processing Further, information which is repeatedly used for the

computation of transitions, and which does not depend on the input docu-

ment can be computed by a preprocessor of the query and directly accessed

when needed. For example, a transition Down(q, a) is computed (only when

the automaton A→G arrives in forest state q at a node labeled a, and only if

the transition was not already computed) using the definition:
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Down(q, a) = {y0,j | y ∈ q, (y, x, y1) ∈ δ, x→ a〈rj〉 for some x, y1}

To do so it can use the following pre-processed information:

y0s for y y = {y0,j | (y, x, y1) ∈ δ, x→ a〈rj〉} for all y ∈ Y

y0s for a a = {y0,j | x→ a〈rj〉} for all a occurring in G

Therefore:

Down(q, a) =

{

y0s for a a ∩
⋃

y∈q
y0s for y y, if a occurs in G

∅ , otherwise

Similar information is computed by the preprocessor for supporting the

other transitions of the pushdown automata.

5.4.7 Bibliographic Notes

In this section we briefly survey existing query approaches for tree-

structured data and relate them with the previously introduced ones where

possible. In particular the research on XML processing has been extremely

prolific in the recent years. No claim can be made with regard to the

exhaustiveness of the presentation.

We consider the following comparison criteria:

Expressiveness As a benchmark for assessing the expressive power of

query languages for trees we use the monadic second order logic (MSO

logic), which has proven to be particularly convenient in the context of

tree-automata and logic-based approaches [62].

Extensibility to the k-ary case Most of the proposals only consider the

unary case. We indicate where a query approach can be straightfor-

wardly extended to express k-ary queries.

Evaluation complexity An important factor for practical implementa-

tions is how efficient are the proposed query languages. Despite the

relatively large number of proposals, there are not many for which

practical algorithms have been introduced, and even fewer practical

query languages are actually implemented.

Some of the approaches have been summarized in a survey done by

Neven and Schwentick [62], which mainly addresses only the unary queries.

A somewhat dated overview on practical XML query languages can be

found in [25]. We start with a very brief summary of our grammar queries.
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5.4.7.1 Forest Grammar Queries

The specification of unary queries using forest grammars has been intro-

duced in [53]. The definition of a match node of a query is given there

locally, recursively in terms of the queries matched by the father node and

the structural constraints fulfilled by the sibling nodes. In order to make our

unary query definition extensible to the k-ary case we gave it in the global

terms of derivations, which denote global computations over the input [8,9].

As presented in Section 5.4.2, the expressive power of our k-ary queries

equals MSO formulas with k free variables. Evaluating unary grammar

queries is done in time linear in the size of the input. Binary queries can be

always evaluated in quadratic time in the worst case, yet most queries are

answered in linear time as discussed in Section 5.4.4.1. Unary and binary

grammar queries are completely implemented in the practical XML query-

ing tool Fxgrep [54]. The complexity of evaluating k-ary queries generally

grows exponentially with k. Nevertheless, by adopting a disambiguating

policy to chose one among the different derivations allowed by a gram-

mar, it is possible to evaluate k-ary queries in linear time, as discussed in

Section 5.4.5.

5.4.7.2 XPath Evaluation and Expressiveness

XPath has established itself since its standardization by the W3C Consor-

tium as the most prominent XML query language. XPath will be introduced

and compared with our grammar queries in more detail in Section 5.5.5.

Gottlob et al. [29] find out by experimenting with practical XPath pro-

cessors that their evaluation time might grow exponentially with the size of

the considered XPath pattern. This inefficiency is ascribed to a naive im-

plementation which literally follows the XPath specification as a succession

of selection and filtering steps. As opposed to this evaluation strategy, the

authors propose a bottom-up evaluation, that is, an evaluation in which ex-

pressions are computed by first evaluating their sub-expressions and then

combining their results. They show that the theoretical evaluation time

might be bound by the class O(n3
· m2) where n is the size of the docu-

ment and m the size of the query. The practicability of the approach is

limited given its space complexity bounded by O(n4
·m3), which is due to

the tabulation of the results of evaluating each subexpression considered

during the evaluation. In principle, the reason for the space inefficiency is

the same as for bottom-up automata, namely their ignorance of the upper

context (opposedly to pushdown automata), which should nevertheless be
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available in a practical implementation. To alleviate this problem, Gottlob

et al. give a translation of their bottom-up algorithm into a top-down one.

It is shown that this has the same time-complexity and argued that it may

compute less intermediate results.

The authors identify a fragment of XPath, called Core XPath which can

be evaluated more efficiently. Core XPath is XPath without arithmetical

or data value operations, and so basically expressible by grammar queries

as presented in Section 5.5.5. Core XPath is not first-order complete [45].

It has been shown that Core XPath can be made first-order complete by

extending it with the ability to specify conditions that need to be satisfied

by every node on a path between two specific nodes [44]. The complexity of

the evaluation scheme for Core XPath proposed in [29] is O(n ·m). As op-

posed to Fxgrep where at most two traversals are needed both for unary and

binary queries, the number of traversals of the input document is bounded

by the number of steps in the pattern. Since addressing implementation

strategies for XPath, [29] only considers unary queries.

5.4.7.3 Query Automata

Query automata (QA) defined by Neven and Schwentick [59] are two-way

tree automata, i.e. automata which can perform both up and down tran-

sitions, together with a distinguished set of selecting states. A query au-

tomata is a unary query locating the nodes of some input which are visited

at least once in a selecting state. Simple QA on unranked trees are less ex-

pressive even than first order logic. Intuitively, the reason for this limitation

is due to their inability to pass information from one sibling to another. To

achieve the expressive power of MSO logic, QA have to be extended with

stay transitions, at which a two way string transducer reads the string of

states of the children of some node and outputs for each child a new state.

Queries of arity k are not considered. The complexity of query evaluation

is linear in the size of the input [62].

5.4.7.4 Selecting Tree Automata

Similarly to query automata, Frick et al. [27] use tree automata extended

with a set of selecting states (called selecting tree automata) to specify unary

queries. The semantics of queries is defined in terms of runs of the tree

automata, either in an existential or a universal setting. In the existential

setting, a node in some input is a match, if some accepting run on the

input visits the node in a selecting state. In the universal one, a node is



September 14, 2010 14:6 World Scientific Book - 9in x 6in 00Chapter

Tree-Language Based Querying 253

a match if every accepting run on the input visits the node in a selecting

state. It is shown that the existential and the universal queries are equally

expressive.

Runs of tree automata are in fact the same as derivations w.r.t. tree

grammars, with automata states corresponding to non-terminals in gram-

mars. The existential queries are thus basically unary forest grammar

queries restricted to the ranked case. The proof that the expressiveness

of selecting tree automata equals MSO logic unary queries comes therefore

as no surprise.

For the evaluation of queries an algorithm is proposed which performs

a bottom-up followed by a top-down traversal of the algorithm, the com-

plexity of which is O(m · n), where m is the size of the encoding of the

automaton and n the size of the input.

The selecting automata defined in [27] are only used to express unary

queries. As previously argued, the grammar queries formalism presented in

Section 5.4.1.2 and introduced in [8] and [9] is in fact a generalization of the

existential query formalism based on selecting automata, to k-ary queries

on unranked trees. Recently, Niehren et al. [64] consider both existential

and universal k-ary queries defined via selecting tree automata and show

that they are equally expressive also in the k-ary case. Furthermore, [64]

provide a proof that the k-ary queries defined by selecting tree automata

capture precisely the MSO expressible queries, and that this result carries

over to unranked trees. From this follows that grammar queries have the

same expressiveness as MSO queries, as already mentioned in Section 5.4.2.

Another implication is that forest grammar queries, defined using an exis-

tential semantics, also capture universal queries.

As a particularly efficiently implementable case, Niehren et al. identify

k-ary queries specified via unambiguous tree automata, i.e. tree automata

for which for every input tree there is at most one successful run. The

proposed construction identifies the unique run in a bottom-up followed

by a top-down traversal of the input and has a time-complexity linear in

the input size. Specifying queries by unambiguous tree automata is similar

to specifying a grammar query together with a disambiguating policy for

derivations as mentioned in Section 5.4.5.

5.4.7.5 Attribute Grammar Queries

Neven and Van den Bussche [58] used attribute grammars (AGs) to specify

queries on derivation trees of context-free grammars, hence they deal with
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queries on ranked trees. In particular they consider boolean-valued attribute

grammars with propositional logic formulas as semantic rules (BAG). A

BAG together with a designated boolean attribute defines a unary query

which retrieves all nodes at which the attribute has the value true. It is

shown that BAG unary queries have the same expressiveness as MSO logic.

In order to deal with unranked trees, Neven extends the BAG query

formalism [57]. He introduces extended attribute grammars which work on

extended context free grammars (ECFGs) rather than on CFGs. Since an

ECFG production has a regular expression r on the right hand side, the

number of children of a node defined via the production may be unbounded.

To be able to define an attribute for each child, the semantic rules identify

them via the unique position in r to which the child has to correspond.

A semantic rule for a given position defines attribute values for all chil-

dren corresponding to that position. The semantic rule is basically given

as a regular expression r1 containing a special place-marker symbol “#”.

The attribute value of a child is assigned true if the sequence of children

containing the place-marker “#” in front of the child under consideration

matches the regular expression r1. This allows the specification of the left

and right context of a node. Neven shows that the query formalism based

on extended BAGs is equally expressive as MSO logic.

BAGs can only express unary queries. No considerations are made re-

garding the complexity of query evaluation.

One possibility for expressing k-ary queries with AGs has been inves-

tigated by Neven and Van den Bussche [58] only for ranked trees. This is

achieved via relation-valued attribute grammars (RAG). A RAG defines a

query as some designated attribute at the root. The matches of the query

are given by the relation computed as the value of this attribute. They

show that RAGs are more expressive than MSO for queries of any arity.

Attribute grammars have been considered also in the context of XML

stream processing [40, 52, 72]. We briefly review these approaches in Sec-

tion 5.6.3.

5.4.7.6 Regular Hedge Expressions

In [50], Murata considers providing a specification language to allow for the

specification of context of a node more precisely than by simply expressing

conditions on the path from the root to the node. The query formalism

proposed is similar to the original proposal by Neumann and Seidl using µ-

formulas [56]. A query is specified as a pair consisting of two expressions for



September 14, 2010 14:6 World Scientific Book - 9in x 6in 00Chapter

Tree-Language Based Querying 255

specifying the structure and the context of a match node, respectively. Mu-

rata’s hedge regular expressions, used to express the structure of a match,

are able to express regular forest languages. To express the contextual con-

dition, the formalism for specifying structure is extended by using a special

symbol to denote the desired node (obtaining pointed formulas). Murata,

previously used pointed trees for specifying contextual conditions on ranked

trees in [49].

The formalism presented in [50] is targeted at unary queries. The evalu-

ation time of the queries is proven to be linear in the size of the input. The

expressive power of the selection queries using regular hedge expressions is

equal with MSO logic.

5.4.7.7 Tree-walking Automata

Tree-walking Automata (TWAs) are sequential automata working on trees.

In contrast to classic tree automata, in which the control state is distributed

at more than one node, a TWA always considers exactly one node of the

input. Depending on the label of the node and its location the automaton

changes its state and moves to a neighbor node3. A TWA specifies the

language of trees on which the automaton starts at the root and ends also

at the root in an accepting state. TWAs can be used to specify unary

queries in a similar way as the selecting tree automata, by defining a set

of selecting states. Recently it was proven that TWAs cannot define all

regular tree languages [12]. This implies that TWAs are less expressive

than unary MSO queries.

Brüggemann-Klein and Wood [14] proposed caterpillars as a technique

for specifying context in queries. A caterpillar is a sequence of symbols

from a caterpillar alphabet denoting movements and node-tests. The sym-

bols specify a movement to the parent, left- or right-sibling, left- or right-

most child of a node or testing that a node is root, leaf, the first or the

last among its siblings. A caterpillar sequence specifies a unary query as

the nodes starting from which the sequence of movements and tests can

be successfully performed. More generally the query can be specified via

caterpillar expressions which are regular expressions over a caterpillar al-

phabet. Evaluating the matches specified by a caterpillar expression can

be done in O(m · n), where m is the size of the input and n is the number

of transitions in the finite-state automaton corresponding to the caterpillar

3
Pushdown forest automata can be thus also seen as a kind of tree-walking automata

enhanced with a pushdown.
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expression. The formalism can express only unary queries.

Expressing binary queries on trees via TWAs was considered by van

Best in [79]. A tree-walking automaton can compute a binary relation on

tree nodes by starting at one node and finishing at the other. It is argued

that ordinary TWAs cannot compute all MSO definable binary queries. To

achieve the expressiveness of MSO binary queries tree-walking marble/peb-

ble automata are introduced. A tree-walking marble/pebble automaton is a

TWA enhanced with a number of marbles and one pebble. The automaton

can place and pick-up the marbles and the pebble while visiting the nodes

of the input, with the restriction that the last one placed must be the first

one to be picked-up. Furthermore, when placing a marble on a node, the

automaton is restricted to walk only below this node. It is shown that these

automata can be used to compute binary relations defined by MSO logic

formulas. The complexity of query evaluation is not assessed in [79].

To be able to deal with XML text nodes and attributes (generically

called data values) and to allow the use of equality tests on them in queries,

two extensions of TWAs are suggested by Neven et al. in [62, 63]. The

extensions are given for string automata but they carry over also to tree

automata. In the first approach the automata are extended with a finite

number of registers and can check whether the data value of a node equals

the content of some register when performing its transitions. The expressive

power of this register automata is comparable neither with FO logic nor

with MSO logic. That is, there are FO queries which are not expressible

by the automata, but also queries expressible by these automata which are

not captured by any MSO query. In the second approach, the automata are

equipped with a number of pebbles which they can use according to a stack

policy (last dropped first removed). The expressiveness of these pebble

automata is shown to lie between FO and MSO logic. The complexity of

query evaluation for both register and pebble automata is shown to be in

PTIME.

5.4.7.8 Pure Logic Formalisms

In logical formalism queries are expressed directly as logic formulas. A

query containing a free node variable expresses a unary query. Going from

unary to k-ary queries is in principle easily done by using formulas with k

free variables instead of formulas with one free variable. Queries on tree-

structured data can be expressed using MSO logic on trees. Many of the

query approaches mentioned so far have exactly the same expressiveness
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as MSO logic. Nevertheless expressing queries as MSO logic formulas is

not practicable due to the prohibitively high (non-elementary) evaluation

complexity.

Neven and Schwentick [60, 73] consider a restriction of MSO logic as a

query mechanism. The logic, called FOREG, is an extension of FO logic

which allows the formulation of constraints on children of nodes and on

nodes lying on a given path, called horizontal and vertical path formulas ,

respectively. Horizontal and vertical path formulas are regular expression

over formulas which are to be satisfied by the children of a node, or the

pairs of end nodes of the edges on a path, respectively. It is shown that the

expressiveness of FOREG lies precisely between FO and MSO logic.

Still, the evaluation complexity of FOREG queries is not practicable.

Neven and Schwentick present syntactic restrictions of FO, FOREG and

MSO logic which are still as expressible as the original logics but for which

unary queries can be more efficiently evaluated. The restriction, basically

allows the formulation of properties only on paths from the root to a node,

rather than on arbitrary paths. It is shown that unary queries expressed

in the restriction of FOREG (called guarded FOREG) and MSO (guarded

MSO) can be evaluated in time O(n·2m) and O(n·2m
2

), respectively, where

n is the size of the input and m the size of the formula.

Going from unary to k-ary queries in the guarded logic formalism is

not directly possible due to the restricted use of variables in the guarded

case. Nevertheless, Schwentick shows [73] that expressing queries of arbi-

trary arity is possible by suitable combinations of unary queries as above

and an additional kind of horizontal path formula (called intermediate path

formula) which is able to talk about the sequence of siblings between the

ancestors of two arbitrary nodes. While the expressiveness of the logic for-

malism is not modified by the addition of intermediate path formulas, it

is shown that an algorithm exists which checks in time O(n · 2m) whether

a tuple of nodes verifies a formula on some input. Answering queries us-

ing this algorithm implies generating all the k-tuples of nodes from the

input, incurring O(nk) time. This gives the evaluation of k-ary queries the

O(nk+1
· 2m) complexity. In particular, binary queries can be answered

thus in time O(n3
· 2m), which is less efficient when compared with the

complexity of our algorithm.
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5.4.7.9 Numerical Document Queries

Seidl et al. [75] introduce Presburger tree automata, which are able to check

numerical constraints on children of nodes expressible by Presburger for-

mulas. Whether the children of a node fulfill a Presburger constraint is

independent of their relative order. Correspondingly, the tree automata

checking Presburger constraints can be considered automata on unordered

trees. Unary queries are defined similarly to selecting automata by specify-

ing a distinguished set of states of a Presburger tree automaton. It is shown

that unary query evaluation has linear time complexity in the size of the

input. To capture the expressiveness of the Presburger tree automata, the

authors introduce an extension of MSO logic with Presburger predicates

on children of nodes (called PMSO). They show that, on unordered trees,

PMSO is equivalently expressive with Presburger tree automata.

Furthermore, they consider expressing both numerical and order con-

straints on children. For this they extend the Presburger tree automata

by allowing regular expressions of Presburger constraints in transitions. It

is shown that expressiveness of these automata is captured by PMSO on

ordered trees and that evaluating unary queries can be performed in poly-

nomial time. As a case of special interest, they further consider expressing

either numerical- or order-constraints on children, depending on the label

of the father node. It turns out that the corresponding tree automata have

the same expressiveness as the corresponding PMSO logic and that the

definable unary queries can be evaluated in linear time.

5.4.7.10 Tree Queries

To the best of our knowledge, none of the querying approaches mentioned

so far, with the exception of grammar queries (available in Fxgrep ), have

been implemented in practical XML querying languages.

A practically available system for XML querying is X2 proposed by

Meuss et al. [47]. The basic capabilities of the query language of X2 allow it

to specify and relate query nodes via child and descendant relations, labels

of nodes or tokens occurring in text nodes. Supplementary constraints make

it possible to specify immediate vicinity or relative order of siblings and also

to mark nodes as leftmost or rightmost children. Formally, the tree queries

expressible by X2 are conjunctive queries over trees. The nodes identifiable

via these queries are subsumed by Core XPath (as shown by Gottlob et. al

in [31]) and therefore also by Fxgrep. Nevertheless, in contrast to XPath,

X2 is able to express k-ary queries, since one answer to a X2 query is a
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variable assignment mapping each node in the query to a node in the input

(hence, k is the number of nodes in the query). Because the number of

answer mappings can be exponentially large, a novel data structure, the

complete answer aggregate (CAA) is introduced by Meuss and Schulz [46].

CAAs represent the answer space in a condensed form and allow its visual

exploration, while guaranteeing that all single answers can be reconstructed.

The computation of a CAA for a query is in O(n · log(n) · h ·m), where n

and h are the size and the maximal depth of the input, respectively, and m

is the size of the query.

A main concern of X2 is supporting the specification of queries and

navigation within the answer space via a graphical user interface. Among

other visual interfaces to XML query languages which have been proposed

are XML-GL [15], BBQ [48], Xing [23], or visXcerpt [5].

There are a few more practical XML tools built upon recent research

work. Most of them are strictly speaking not query languages but trans-

forming languages. Anyhow, most of the available tools use XPath as a

query language. Furthermore, a few more tools emerging from research on

XML stream processing are mentioned in Section 5.6.3.

5.5 Practical Application: A Pattern Language for XML

Querying

An important design purpose of tools which are to be used by people with

various backgrounds, as in the case of XML query languages, is that they

are as intuitive and easy to learn as possible. The small number of con-

structs needed to build complex regular expressions makes them a simple

yet powerful way of specifying patterns of symbols. Consequently, they have

been intensively used already for searching in flat (i.e. not hierarchically

structured) documents.

The classic regular expressions can be used also to search for string

patterns in hierarchically structured documents, yet they are not able to

exploit the supplementary structure information in order to provide more

precise patterns to be recognized. To account for this, the XML query

language Fxgrep [54]4 was designed to extend the convenience of using

regular expressions from strings to trees and implemented based on the

4
Fxgrep is an acronym for “the functional XML grep”, where “functional” denotes that

Fxgrep is written in a functional programming language (SML) and “grep” is an allusion

to the Unix string search tool grep [33].
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constructions introduced in the previous section. This section is intended

to be a primer on Fxgrep .

Fxgrep receives as input a query and an XML input document and re-

sponds with the locations in the XML input identified by the query. Queries

can be concisely specified via patterns , the construction of which is intro-

duced in the next subsections.

5.5.1 Paths

A quite familiar representative of hierarchically structured information is

a file system, in which directories and files are organized in a tree struc-

ture. In this context, a query is simply a file name denoting the path

to be followed to a file or directory of interest. It is thus sensible to use

paths as a syntactical basis for a query language for XML documents, as

XPath [83,84] does, the most prominent XML query language yet. Fxgrep

builds upon the same analogy and is correspondingly syntactically similar

to XPath.

B Completely analogously to a file name, the pattern /a/b/c returns

XML elements labeled c which are children of b elements contained in

the root element a.

As opposed to file names, patterns may identify more then one node in

the input tree. Also, paths do not need to be completely specified. The

deep-match construct “//” may be used to denote an arbitrary number of

steps in a path.

B The pattern /a/b//c returns XML elements labeled c which are de-

scendants of b elements contained in the root element a.

Besides by their name, the element names in a path may be specified as

regular expressions. The regular expression is to be fulfilled by the referred

element names and must be single or double quoted and enclosed between

the “<” and “>” symbols, as in the case of an XML element tag.

B The pattern //<’(sub)*section’> locates all section-s, subsection-

s and subsubsection-s elements in the input.

The last step in a path may not only be an element name, but could

also be a regular expression specifying a model for a text node.
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B The pattern //section/title/"automat(a|on)" locates the title-s

of section-s containing the words "automata" or "automaton".

5.5.1.1 Regular Path Expressions

Regular path expressions are known in the literature as regular expressions

to be satisfied by the string of node labels on the path from the root to the

node of interest. Fxgrep provides regular path expressions.

B The pattern (king/)+ person stands for king/king/.../king/person

and identifies person nodes that have only king ancestors.

As we will see in Section 5.5.2, nodes occurring in Fxgrep patterns can be

specified much more precisely as only by their label, by further qualifying

them with structural and contextual constraints. By using qualifiers in

regular path expressions one significantly exceeds the expressiveness of the

ordinary regular path expressions.

5.5.1.2 Boolean Connectives for Paths

Conjunctions To specify that the path to a match should simultaneously

fulfill several path models, these can be connected via the “&” symbol.

B The pattern ((//king//)&(//count/duke//)) person locates person el-

ements that have both an ancestor king and an ancestor duke whose fa-

ther node is an element count, as specified by the conjunction of the two

connected (incomplete) path patterns //king// and //count/duke//,

respectively.

Disjunctions One can choose between several alternative paths to the

match node by connecting them via the “||” operator.

B The pattern //((king//)||(count/duke//)) person locates person

elements that have either an an ancestor king or an ancestor duke

whose father node is an element count.

Negations To specify that the path to a match must not satisfy a path

pattern, this must be preceded by the “!” symbol.

B The pattern !(//king/king//)person locates person-s who do not

have two consecutive king ancestors.



September 14, 2010 14:6 World Scientific Book - 9in x 6in 00Chapter

262 A. Berlea

5.5.2 Qualifiers

Nodes in paths can be qualified with both structural and contextual con-

straints. The structural constraints talk about the content of a node, while

the contextual constraints are concerned with the surroundings of the node.

5.5.2.1 Structure Qualifiers

Similarly to XPath, nodes occurring in a pattern can be specified more

precisely than by their name by indicating a supplementary condition to

be fulfilled by a node provided within brackets following the node. Unlike

in XPath, an Fxgrep qualifier is a regular expression to be fulfilled by

the children of the subject node, as follows. Rather than a string regular

expression, a qualifier is a regular expression over patterns. The children of

a node fulfill a pattern regular expression if there is a contiguous sequence of

them and an equally long sequence of patterns fulfilling the pattern regular

expression, and every pattern in the sequence leads to at least one match

when evaluated on the corresponding child. The following examples should

clarify the idea.

B The pattern //section[(subsection)+ conclusion]/title locates

title-s of section elements. The qualifier of the section ele-

ment in the path requires that the sought sections have one or more

subsection-s (each of them fulfilling the simple pattern subsection)

followed by a conclusion element (fulfilling the simple pattern

conclusion).

B //section[(subsection/title/"part")+ conclusion]/title

locates title-s of section-s having one or more subsection-s, the

title of which contains the substring "part" (each of them fulfilling

the pattern subsection/title/"part" ), followed by a conclusion

element.

Note that any node in a pattern can be qualified, in particular also the

nodes occurring in qualifiers.

B The pattern //section[(subsection[(theorem proof)+]/title/

"part")+ conclusion]/title locates the titles of sections as in the

previous example, but supplementary requires that the subsections con-

tain a non-empty sequence of theorem-s followed by proof-s.
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Start and end markers The symbols “^” and “$” can be used to denote

the start and the end of a sequence to be matched by a regular expression,

both for string and pattern regular expressions.

B The pattern //section[^intro] locates sections whose first child is

an intro element. Compare with //section[intro] which locates

sections which have some intro child element.

B The pattern //section[^(theorem proof)+$] locates sections con-

sisting exclusively of theorem-s followed by proof-s. Compare with the

pattern //section[(theorem proof)+] which locates sections con-

taining a sequence of theorem-s followed by proof-s.

Attribute qualifiers A special form of qualifiers are attribute qualifiers

by which one can require that an element has an attribute with a specified

name and possibly a specified value. An attribute qualifier consists of the

symbol “@” followed by the specification of an attribute name and possibly

succeeded by the symbol “=” and the specification of the attribute value.

The name as well as the value of the attribute can be specified using regular

expressions.

B The pattern subsection[@title="Results"] identifies subsections

having an attribute title with value "Results".

Wildcards Often, one needs only to talk about the existence of a node

or a sequence of nodes, without further specifying the appearance of the

nodes. To denote an arbitrary node or an arbitrary sequence of nodes one

can use the symbols “.” and “_”, respectively.

B The pattern //././section locates sections having at least two ances-

tors.

B The pattern //.[theorem _ proof] locates elements which contain a

theorem, followed by an arbitrary sequence of nodes, followed by a

proof.

Boolean connectives for structure qualifiers Conjunctions: A

node can have more than one qualifier, each of them being supplied in

square brackets following the node. If a node has more than one qualifier

than it must fulfill all the conditions defined by them.

B The pattern
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//section[(title/"soups")][(subsection/title/"tomatoes")]

identifies sections having the word "soups" in the title and a subsection

whose title contains the word "tomatoes".

Negations Sometimes it is easier to specify what is disallowed, rather

than what model is allowed for a node. A qualifier preceded by the symbol

“!” specifies a condition which must not be fulfilled by the subject node.

B The pattern //section[!conclusion subsection] identifies sections

that do not have a conclusion before a subsection element.

5.5.2.2 Context Qualifiers

Besides constraints on children, it is possible to specify constraints on sib-

lings of a node, provided the node’s father is explicitly denoted in a path.

To do so, one specifies two pattern regular expressions l and r which are

to be satisfied by the node’s left and right siblings, respectively. Such a

constraint is called a context qualifier and is given between brackets fol-

lowing the node’s father in the form [l#r]. The symbol “#” denotes the

subject node, which is the subtree where the path continues. The idea

should become clear in the following examples.

B The pattern //section[definition # theorem]/example locates the

example-s directly under a section element if they are enclosed be-

tween a definition and a theorem. The symbol “#” denotes the child of

the section element where the path continues, in this case the example

element.

B The pattern //section[definition # theorem]//example locates

the example elements located arbitrarily deep in a section under an

element enclosed by a definition and a theorem. The symbol “#” de-

notes the child of the section element where the path continues, in this

case the child element of the section which has a descendant example.

B The pattern //section[#$]/subsection locates the subsection-s

which are the last element in their section.

5.5.3 Binary Patterns

Rather than locating individual nodes in the input, we are sometimes inter-

ested in identifying tuples of nodes which are in some specified relationship.
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A particularly useful case is locating pair of nodes from some specified bi-

nary relation.

For example, rather than locating person elements which have some

ancestor king we might be interested in having both the person and the

corresponding king ancestors reported. To specify a binary relation in

Fxgrep one must write a (unary) pattern as presented before, in which

both elements of the relation are explicitly denoted. The first element of

the relation has to be the target node in the pattern (the last node in the

top level path). Specifying the second element of the relation is as easy as

placing the special symbol, “%”, in front of the node denoting the second

element of the relation. This should be better understood by looking at the

following examples.

B The pattern to locate person elements which have some ancestor king

is //king//person. To have reported both the person and her king

ancestors we place “%” in front of the king node in the pattern The

binary pattern for the above query is thus //%king//person.

B The following unary pattern identifies all book titles whose author’s

names end in “escu”: //book[(author/"escu$")]/title. Suppose

we want to identify the titles as above, but together with the authors

of the books with these titles. The binary query which simultaneously

reports the authors having names ending in “escu” and the titles of

their books is //book[(%author/"escu$")]/title.

Strictly speaking, a match of a binary pattern is a pair. The first node

in the pair is called primary match. The second node in the pair is a node

related to the first node as specified by the “%” symbol and is called sec-

ondary match. In practice, however, rather than reporting each primary

and secondary match separately, if there are more secondary matches re-

lated to a same primary match, they are reported at once together with

the primary match.

Consider for example the XML input file library.xml:
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<l i b r a r y>

<book>

<author>Mihai Eminescu</author>

<author>Ion Ionescu </author>

<t i t l e >Făt Frumos din t e i </ t i t l e >

</book>

<book>

<author>Oscar Wilde</author>

<t i t l e >A woman of no importance</ t i t l e >

<pr i ce >10</pr i ce>

</book>

</ l i b r a r y>

Evaluating the pattern //book[(%author/"escu$")]/title on

library.xml produces:

<match>

<primary>

<po s i t i on >[ l i b r a r y . xml : 5 . 5 ]</ po s i t i on>

<node><t i t l e >Făt Frumos din t e i </ t i t l e ></node>

</primary>

<secondary>

<po s i t i on >[ l i b r a r y . xml : 3 . 5 ]</ po s i t i on>

<node><author>Mihai Eminescu</author></node>

</secondary>

<secondary>

<po s i t i on >[ l i b r a r y . xml : 4 . 5 ]</ po s i t i on>

<node><author>Ion Ionescu </author></node>

</secondary>

</match>

It is possible to locate a primary match together with more than one

set of related nodes. Each set of related nodes is specified by a “%” symbol

preceding the corresponding node in the pattern. The sets of secondary

matches are in this case reported together with a number denoting to which

set of related nodes a match node belongs, as the ordinal number of the

corresponding occurrence of the “%” symbol in the pattern, given as the

value of an ord attribute.

For example evaluating the pattern:

//book[(%price)?][(%author)]/title["importance"]

on library.xml delivers the title of books containing the word

"importance" together with the optional price, followed by the author of

the book:



September 14, 2010 14:6 World Scientific Book - 9in x 6in 00Chapter

Tree-Language Based Querying 267

<match>

<primary>

<po s i t i on >[ l i b r a r y . xml : 9 . 5 ]</ po s i t i on>

<node><t i t l e >A woman of no importance</ t i t l e ></node>

</primary>

<secondary ord=”1”>

<po s i t i on >[ l i b r a r y . xml :10.5 ] </ po s i t i on>

<node><pr i ce >10</pr i ce></node>

</secondary>

<secondary ord=”2”>

<po s i t i on >[ l i b r a r y . xml : 8 . 5 ]</ po s i t i on>

<node><author>Oscar Wilde</author></node>

</secondary>

</match>

5.5.4 From Patterns to Grammar Queries

As previously presented, Fxgrep allows the specification of queries also by

using a more intuitive pattern language, rather than via grammar queries.

Internally, patterns are automatically translated to grammar queries. In the

following we show via a few examples how patterns can be automatically

translated to grammar queries. A more formal and detailed translation

schema for most of the Fxgrep pattern language can be found in [53].

Basically, given a pattern, the corresponding grammar has a non-

terminal for each symbol in the pattern denoting some XML node. For

example, the pattern /a/b/c is translated to the query (G, {xc}) where

G = (R, xa), and R is the set productions:

xa → <a> xb </a>

xb → <b> xc </b>

xc → <c> </c>

The a element denoted by xa has a child denoted by xb which is preceded

and followed by an arbitrary number of siblings. Given the same grammar

G, the query (G, xb) is equivalent to the pattern /a/b[c] and (G, {xa}) to

a[b[c]].

As presented in Chapter 5.5, binary queries can be specified via binary

Fxgrep patterns, by using a symbol “%” which may be placed anywhere in

front of a node inside a pattern to indicate the secondary match position.

Binary patterns are similarly automatically translated into binary grammar

queries. The grammar productions are obtained as in the case of unary
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patterns. The primary target non-terminal is obtained as the non-terminal

corresponding to the target node of the unary pattern. The secondary

target non-terminal is the non-terminal corresponding to the node preceded

by the “%” symbol. For example, the pattern a/%b/c is translated to the

grammar query (G, (xc, xb)) with G as above.

Structural constraints for a node are directly reflected in the rule

corresponding to the node. For example /a/b[c+ d*] is queried by

((R, xa), {xb}) with the productions:

xa → <a> xb </a>

xb → <b> x+
c x
∗
d </b>

xc → <c> </c>

xd → <d> </d>

More than one structural constraint for a node is reflected in the gram-

mar by productions with conjunctions of content models. Intuitively, a rule

containing a conjunction specifies that each content model in the conjunc-

tion has to be fulfilled by a node derived via that production and can be

used to simultaneously specify more structural constraints. Note that, in

a pattern, a structural constraint is given either explicitly in square brack-

ets following the concerned node, or implicitly as the continuation of the

path in which the node occurs. For example /a[b]/c[d][e] is matched by

((R, xa), {xc}) with the productions:

xa → <a> xb ∧ xc </a>

xb → <b> </b>

xc → <c> xd ∧ xe </c>

xd → <d> </d>

xe → <e> </e>

When a pattern contains a regular vertical path, the translation is

guided by the finite automaton recognizing the regular path. To every state

of the automaton for the vertical context we associate a new non-terminal,

whereas the transitions correspond to the productions of the grammar ac-

counting for context. An additional non-terminal is associated to final

states in order to account for the structure. Consider, e.g., the pattern

(a/)+b for which the automaton is depicted in Figure 5.14. The corre-

sponding grammar query is ((R, x1), {x3}) with the productions:
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x1 → <a> x2 | x3 </a>

x2 → <a> x2 | x3 </a>

x3 → <b> </b>

r = a=+ a= a=
x1 x2; x3

Fig. 5.14 Finite automaton for a vertical regular path.

5.5.5 Comparison with XPath

XPath has established itself since its standardization by the W3C Consor-

tium as the most prominent XML query language. It is used both stan-

dalone or as part of other important languages like the XML Schema Lan-

guage [82], XSLT [86, 87] or XQuery [85]. As mentioned, Fxgrep shares

with XPath the idea of using paths as a framework for expressing queries.

In spite of these syntactic similarities, the two query languages are quite

different as we present next.

5.5.5.1 XPath’s Paths

Like Fxgrep, XPath is conceptually based on an analogy of locating sub-

documents in a document with locating files in a directory tree. Nodes

can be thus addressed by specifying the path from the root to them. The

pattern /book/sec/title, as in the case of Fxgrep, locates the title ele-

ments, the father of which is a sec element whose father is the root element

labeled book.

Fxgrep and XPath have quite different semantic models. XPath is

defined in terms of an operational model. An XPath pattern specifies

a number of successive selection steps. Each such step selects in turn

nodes which find themselves in a specified tree relationship (called axis

in XPath terminology) with a node selected by the previous step (the con-

text node). Initially, the set of selected nodes contains only the root of the

input.

The axes can be divided into forward and reverse axes , depend-

ing on whether they select nodes which are after or before the con-
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text node in document order. The forward axes are self, child,

descendant, descendant-or-self, following and following-sibling.

The reverse axes are parent, ancestor, ancestor-or-self, preceding

and preceding-sibling.

The slash symbols in a pattern are thus to be seen as delimiters be-

tween the selection steps. Besides specifying a tree relationship, each se-

lection step further specifies a so-called node test , i.e., the type of node to

be selected (e.g., text node, processing instruction node, element with a

specified name). This can be seen as a predicate required to filter the

set of selected nodes. Thus, in general, a selection step has the form

treeRelationshipName::nodeTest. For example /book/sec/title is an

abbreviation for /child::book/child::sec/child::title.

Example 5.27. Consider the XPath pattern:

/child::book/descendant::sec/parent::node()/child::text()

According to the processing model of XPath this pattern is evaluated on a

given input as follows. In the first step, child::book selects all the children

of the root (i.e. the top-level processing instructions and the root element)

and retains from them the element nodes named book (i.e. the root element

if it has type book). Then, descendant::sec selects all the descendants

of the book root element and retains the element descendants named sec.

Next, the fathers of these sec elements are selected and retained whatever

node type they have. Finally, the children of these father nodes are selected

and those being text nodes are identified by the pattern. In the alternative,

abbreviated syntax provided by XPath, the name of the child axis can be

omitted, “//” stands for descendant and “..” for parent. Hereby, the

pattern presented can be also expressed as: /book//sec/../text().

The presence of both forward and reverse axes allows the location steps

to arbitrarily navigate in the input. Arbitrary navigation in the input in

particular might prevent efficient stream-based implementations as it re-

quires the input tree to be built up in memory. In [67] a set of equivalences

are defined which can be used to transform absolute XPath patterns (i.e.

whose initial context node for the evaluation is the root node) into equiv-

alent patterns without reverse axes. In general however, XPath patterns

are interpreted relative to other nodes selected from the input. In partic-

ular, this is the case for XPath select patterns that are used in XSLT and

XQuery.
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5.5.5.2 XPath’s Qualifiers

Besides by node tests, the set of nodes selected in an XPath step can be

further filtered by specifying a set of predicates . The predicates are given

between square brackets following the node test. A predicate can be an

arbitrary XPath expression. The predicate is evaluated for each of the

nodes in the set and only those nodes for which it returns true are retained.

In particular, predicates can be as follows.

Arithmetic expressions An XPath qualifier can be an arbitrary arith-

metic expression. The qualifier is fulfilled if the node to be filtered is on

the position specified by the expression in the input document, when con-

sidered in document order on the set of nodes selected by the current step.

One simple use case is counting or indexing of matches.

B The XPath pattern //book[42] locates the 42nd book node in the

input, in document order.

Patterns An XPath pattern occurring in a predicate denotes for each

node in the set of nodes to be filtered, the set of nodes obtained by evalu-

ating the pattern in that node’s context. Such a predicate expresses a form

of existential quantification as presented below.

• Static data value comparisons: If an XPath pattern occurs in a

predicate in a comparison with some simple value, then the predicate

is true if the denoted set of nodes contains at least one node with that

value. We call this kind of comparisons static data value comparisons

as one term of the comparison is known statically, before the input is

read.

B The XPath pattern book[author="Kafka"] identifies book nodes

having an author child, the text value of which is "Kafka".

• Dynamic data value comparisons: If the predicate consists of a

comparison of two XPath patterns, then the predicate is evaluated to

true if there exists a node in the set denoted by the first pattern and

a node in the set denoted by the second pattern such that the result

of performing the comparison on the string-values of the two nodes is

true. We call this kind of comparisons dynamic data value comparisons

as both terms in the comparison are only known when the XML input

document is read.
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B The XPath pattern //book[author=title] locates the book-s

whose proud author-s have chosen as title their own names.

• Stand alone patterns: If the predicate consists only of an XPath

pattern, the pattern is evaluated in the context of each node in the set

of nodes to be filtered. A node from the set of nodes to be filtered is

retained if the set of nodes obtained by evaluating the XPath pattern

given as predicate in its context is not empty.

B The XPath pattern //sec[subsec] identifies sec elements

that have one or more subsec children. The pattern

//sec[subsec/theorem] selects the sec elements having a

subsec child which has a theorem child.

5.5.5.3 Differences in Expressiveness

XPath is not directly comparable with Fxgrep, that is, there are queries

expressible by Fxgrep but not expressible by XPath, and also queries ex-

pressible by XPath but not expressible by Fxgrep.

Fxgrep cannot express the non-regular features of XPath, mainly: (1)

indexing and counting of matches as possible in XPath via arithmetic ex-

pressions as qualifiers, and (2) dynamic data value comparisons.

On the other side, XPath is not able to express most of the regular

features of Fxgrep. In XPath, structure qualifiers for a node may only

contain one pattern, being thus only able to refer to one child of the node,

as opposed to Fxgrep where a structure qualifier may impose a regular

condition on a sequence of children.

Regular structural and contextual conditions are in general not express-

ible in XPath even though some simple regular conditions can be expressed

by using, for example, counting of matches.

B The Fxgrep pattern //sec[^subsec*$], locating sec elements whose

children are all subsec elements, could be expressed in XPath as

//sec[count(subsec)=count(*)], where the qualifier requires that

the number of subsec children equals the number of all children.

Expressing simple contextual conditions on nodes is possible by using

the explicit navigation allowed in XPath and the fact that a step in a

path might navigate in arbitrary directions in the input document (e.g. by

navigating to the node’s left or right siblings and imposing some constraints

on them). The explicit navigation however makes the specification more

difficult and error-prone.
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B Locating theorem elements which are preceded by a lemma and fol-

lowed by a corollary element, achieved in Fxgrep by using the pattern

//.[lemma#corollary]/theorem, can be performed in XPath by the

pattern

//theorem[name(preceding-sibling::*[1])="lemma"]

[name(following-sibling::*[1])="corollary"]

Regular contextual conditions are also in general not expressible even

though some simple regular conditions can be expressed in a rather cum-

bersome manner by using counting of matches.

B The Fxgrep pattern //b[^c*#d*$]/a, locating a elements, the father

of which is a b element, and the left and right siblings of which are

all c and d elements, respectively, can be expressed in XPath as:
//b/a[count(preceding-sibling::*)=count(preceding-sibling::c)]

[count(following-sibling::*)=count(following-sibling::d)]

The examples evidence one fundamental conceptual difference between

the two pattern languages. Fxgrep patterns specify properties of the nodes

to be identified in a declarative way. In contrast, XPath patterns adhere

to a rather operational style of specification, which basically consists of a

succession of navigation steps.

Furthermore, no regular path expressions can be expressed in XPath.

The only kind of deep-matching allowed by XPath is “//” (arbitrary de-

scendant). Also, XPath can only locate individual nodes in the input as

opposed to the binary patterns of Fxgrep.

5.5.6 Bibliographic Notes

The research interest in developing query languages for hierarchically struc-

tured data has been very vivid since the introduction of XML. Technically

speaking, many approaches to querying have been proposed, using different

formalisms, for example logic-, automata- or grammar-based, as presented

in Section 5.4.7. Nevertheless, most of these formalisms are too complex to

be directly usable by non-specialist users. Instead, given the spreading of

XML in different application domains, an XML query language has to be

concise and easy to learn by providing a small number of constructs, while

being able to fulfill the various domain-specific requirements. We refer to

such a language as a pattern-language as opposed to more sophisticated, yet
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for the non-specialist less understandable languages. Typically, the XML

query tools would provide a pattern language and automatically translate

the patterns into the internally used querying setting, as Fxgrep does.

Most of the proposals made are targeted at the XPath pattern language,

which became the de facto industry standard XML query language. Many

of them are generally able to implement different subsets of XPath. Most of

them are subsumed by an XPath fragment called Core XPath [30], mainly

featuring location paths and predicates using location paths but not arith-

metics and data value comparisons. Some of the research works extend

XPath with simple regular path expressions [1, 20, 21, 26, 32].

Even though formalisms for expressing queries similarly powerful with

the grammar formalism underlying Fxgrep exist (see Section 5.4.7), to the

best of our knowledge, no other pattern language has been provided which

allows one to express in a concise and declarative way the regular and

contextual constraints as in the pattern language of Fxgrep.

The pattern language of Fxgrep was originally designed by Neumann

and Seidl [53] and contained simple paths with deep matching, structure

qualifiers with boolean conectives and context qualifiers as presented above.

We extended the Fxgrep pattern language in order to test the practical suit-

ability of the concepts presented in this work by regular path expressions,

regular expressions for element and attribute names, boolean connectives

for paths as well as the possibility of expressing binary queries.

The task of searching tree-structured documents was present long before

the arrival of XML in application-domains such as linguistics. Linguistic

queries are typically performed on collections of natural language texts

manually annotated with syntactical information, called corpora. The cor-

pora are conceptually labeled trees, similar to XML documents, and can

also be encoded in some XML format. The linguistic queries typically

identify syntactical constructs by specifying tree relationships, similarly to

XPath, or for this matter Fxgrep.

One of the most popular query-tools for linguistic corpora are tgrep [69],

published as early as 1992, long before the appearance of XPath, and its

successor tgrep2 [70]. tgrep patterns are build together from dominance

and precedence relationships among nodes, being thus similar to XPath,

but using a different syntax. Finding matches of patterns requires a pre-

processing phase in which the corpus to be searched is annotated with index

information. Like other proposed linguistic query languages, tgrep is tied

to the specific data format of the searched document and cannot be used

for general tree-structured documents.



September 14, 2010 14:6 World Scientific Book - 9in x 6in 00Chapter

Tree-Language Based Querying 275

A natural choice is to represent linguistic data in XML and use general-

purpose XML query languages like XPath or Fxgrep to search for linguistic

patterns. XPath lacks however some features needed for linguistic queries,

where not only vertical but also precise horizontal relationships among

nodes need to be specified. For example, linguitic queries often need to

refer to immediately following nodes [11], i.e. nodes on the path from the

following sibling to its leftmost descendant. One solution to this problem

is extending XPath with more axes for horizontal navigation derived from

a basic immediately following axis, as in LPath [11]. The immediately-

following relationship can be easily expressed in the underlying grammar

formalism of Fxgrep. Given its ability to specify accurate horizontal and

vertical constraints , Fxgrep is suitable for application domains like linguis-

tics where such precise contextual specifications are needed.

Since web pages are in fact document trees, querying hierarchically

structured documents is a natural enhancement of plain keyword based

search on the Web. On the one hand this allows the identification of inter-

esting portions of documents rather than whole documents. On the other

hand even when whole documents are to be identified, the specification of

the documents of interest can be done more precise by requiring each key-

word in a query to occur in a specific (structural) context. Most of the

proposed query languages [80] are subsumed by the grammar queries and

Fxgrep for this matter. Rather than one document at a time as considered

by us here, the web search use case requires to simultaneously consider

multiple documents. An important issue thereby is to rank the documents

w.r.t. the query at hand. A survey of some of the proposed structured

query languages for web search can be found in [80].

5.6 Online Querying

XML processing can be classified into two main categories, which corre-

spond to the two main approaches to XML parsing, DOM [22] and SAX [71].

In the first approach, used by most existing XML processors, the tree which

is textually represented by the XML input is effectively constructed in mem-

ory and subsequently used by the XML application.

In the second approach, the XML input is transformed into a stream of

events which are transmitted to a listening application. An event contains a

small piece of information linearly read from the input, e.g. a start-tag or an

end-tag. The order of the events in the stream corresponds to the document
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order of the input, i.e. to the sequential order in which the information is

read from the input. It is up to the listening application to decide how it

processes the stream of events. In particular, it can construct the XML

tree in memory and subsequently process it, as in the first approach, being

thus at least as expressive.

The advantage of the event-based approach is that it allows one to buffer

only the relevant parts of the input, thereby saving time and memory. The

increased flexibility allows the handling of very large documents, the size of

which would be prohibitive if the XML input tree was to be entirely built in

memory. Also, the event-based processing naturally captures real-life appli-

cations in which the document is received linearly via some communication

channel, rather than being completely available in advance.

The research interest in querying XML streams has been very vivid

recently and there is a very rich literature on this topic. The related work

is reviewed in Section 5.6.3. The proposed query languages are generally

able to implement different subsets of XPath. Most of them are subsumed

by Core XPath .

In this section we present a solution for efficient event-based evaluation

of queries which go beyond the capabilities of many languages for which

this problem was previously addressed. Most of these languages can be

expressed using first-order logic (FO) possibly extended with regular ex-

pressions on vertical paths, but are less expressive than monadic second

order logic (MSO). In contrast, our solution evaluates grammar queries,

which are equivalent to MSO queries as mentioned in Section 5.4.2.

Grammar queries can be implemented using pushdown forest automata

as presented in Section 5.4.3. The original construction as introduced by

Neumann and Seidl [55] generally requires the construction of the whole

input tree in memory and the execution of two traversals of it. A one-pass

query evaluation, suitable for an event-based implementation, is addressed

only for a restricted class of queries. These are the so called right-ignoring

queries for which all the information needed to decide whether a node is a

match has been seen by the time the end-tag of the node is encountered.

The term right-ignoring is coined by the fact that all the nodes to the right

of the match node in the tree representation are irrelevant for the match.

Rather than a-priori (i.e. statically) handling only a restricted subset

of queries, we show in this section how arbitrary grammar queries can be

evaluated on XML streams using pushdown forest automata.

Example 5.28. Consider an XML document, the tree representation of
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1

11

111 112

12

121

13

131 132113 122 133

14

1111 1121 1211 1311 1321

b cb

a a a

c

a

b

Fig. 5.15 Input tree.

which is depicted in Figure 5.15. Each location in the tree corresponds

to an event in the corresponding stream of events. The stream of events

together with the corresponding locations are denoted below. Nodes too

can be identified by the location corresponding to their start-tag.
1

<a>

11 111 1111 112 1121 113

<a> <b> </b> <c> </c> </a>

12 121 1211 122

<a> <b> </b> </a>

13 131 1311 132 1321 133

<a> <b> </b> <c> </c> </a>

14

</a>

It should be clear that the amount of memory necessary to answer an

arbitrary query inherently depends on the query and on the input document

at hand. Consider for example the (XPath or Fxgrep ) pattern //a/b

locating b nodes which have as father an a node. The node 111 is a match

in our input. This can be detected as early as at the location 111, as the

events following 111 cannot change the fact of 111 being a match.

The pattern //a[c]/b locates b nodes which have a node a as father

and a c sibling. The node 111 is again a match but this becomes clear only

after seeing that the a parent has also a child c at location 112. One has

thus to remember 111 as a potential match between the events 111 and

112. As the events to the right of 112 cannot change the fact of 111 being

a match, 111 can be reported and discarded at 112.

Finally, as an extreme case consider the (MSO expressible) XPath pat-

tern /*[not(d)]//* locating all descendant nodes of the root element if

this has no child node d. Any node in the input is a potential match until
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seeing the last child of the root element. In our example all nodes have to

be remembered as potential matches up to the last event 14. Note thus,

that any algorithm evaluating a query needs in the worst case an amount

of space linear in the input size. However, most of the practical queries

require a quite small amount of memory as compared to the size of the

input.

This section addresses the following issues.

• We introduce a way of defining the earliest detection location of a match

for some given query and input tree.

• We prove that matches of grammar queries are recognizable at

their earliest detection location and hereby demonstrate the following

theorem:

Theorem 5.29. Matches of MSO definable queries are recognizable at

their earliest detection location.

• Based on the construction used for proving Theorem 5.29 we give an ef-

ficient algorithm for grammar query evaluation, which reports matches

at their earliest detection point. As a consequence potential matches are

remembered only as long as necessary, meaning that our construction

implicitly adapts its memory consumption to the strict requirements of

the query on the input at hand.

This section is organized as follows. In section Section 5.6.1 we briefly

present how a pushdown automaton can be used to answer right-ignoring

queries on streams. The generalized query evaluation for XML streams is

given in Section 5.6.2 where the algorithm is presented and its correctness,

optimality, complexity and performance are addressed. Related work is

discussed in Section 5.6.3.

In the following let Q = (G, T ) be an arbitrary query on input f1 with

G = (Σ, X,R, r0). Further, let A→G be the LPA accepting LG constructed

as in Section 5.3.2.2.

5.6.1 Right-ignoring Queries

In this section we briefly present the ideas [53, 55] which allow the evalu-

ation of a right-ignoring query Q = (G, T ) using the A→G LPA (defined in

Section 5.3.2.2 on page 227). Let us investigate what are the requirements

for Q to be right-ignoring. Consider a match node π of Q as depicted in
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left-
context

right-context

content

f1

π

Fig. 5.16 The context and the content of a match.

Figure 5.16. Since the query is right-ignoring, all the nodes from the right-

context are irrelevant for the decision as to whether π is a match. That

is, π is a match however the right-siblings of π and of every ancestor of π

might look like.

Let us consider that π is the k-th out of m siblings, with m ≥ k. Since

π is a match, according to the definition, there is a derivation labeling the

sequence of siblings containing π with x1 . . . xk . . . xm and xk ∈ T . There

is thus a content model rj s.t. x1 . . . xk . . . xm ∈ [[rj ]]. The fact that the

right siblings of π might be any trees implies that xi must be able to derive

any tree, i.e. [[R]] xi = TX for all i = k + 1, . . . ,m. Also, as the number of

right-siblings might be arbitrary, all of the above must hold for all m ∈ N

with m ≥ k.

To ensure the above there must exist an NFA state yk ∈ Yj reached

after seeing the left siblings of π with yk ∈ Fj and s.t. for all p ∈ N, there

are yk+1, . . . , yp ∈ Fj with (yi, x>, yi+1) ∈ δj for i = k + 1, . . . , p, where

x> ∈ X and [[R]] x> = TΣ. We call such a yk a right-ignoring NFA state.

The non-terminal x> is to be seen as a wild-card non-terminal which can

derive any tree and which is made available in any forest grammar. The

necessity of the above follows from the fact that no other non-terminal x in

the grammar can be s.t. [[R]]x = TΣ, as in general the alphabet Σ is neither

finite nor known in advance5.

Given an NFA state y, we use the predicate rightIgn(y) to test whether

y is a right ignoring state. Testing whether rightIgn(y) holds, can be done

statically by checking in the NFA whether there are cycles visiting y and

5
We do not consider optimizations possible when the schema of the XML data is avail-

able.
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consisting only of x> edges, needing thus time linear in the size of the NFA.

Similar considerations have to be made due to the right-ignorance for

all the nodes lying on the path from the root to π. Therefore we need

to consider all the non-terminals with which a derivation defining a match

may label the nodes lying on the path from the match to the root. These

are the so-called match-relevant non-terminals, defined by:

x is match-relevant iffx ∈ T or x→ a〈rj〉, (y1, x1, y) ∈ δj
and x1 is match-relevant

We call a query Q right-ignoring iff all y ∈ Y with (y1, x, y) ∈ δ and x

match-relevant are right-ignoring. As presented above, testing whether a

query is right ignoring can be done completely statically.

The right-ignorance of Q ensures thus that if the left-context of a match

is fulfilled, then the right-context is also always satisfied. Hence, to check

whether a node is a match, it suffices to look into the forest state in which

A→G leaves a node, which synthesizes the information gained after visit-

ing the left-context and the content of the node, depicted in dark grey in

Figure 5.16:

Proposition 5.30. Let qπ be the forest state in which A→G leaves a node

π. If Q is right-ignoring then π ∈ MQ,f iff y ∈ qπ, (y1, x, y) ∈ δ for some

y, y1 ∈ Y and x ∈ T .

Proof. The theorem is proven as Theorem 7.4 in [53]. �

To answer queries on XML streams without building the document tree

in memory, it remains to show how a left-to-right pushdown automaton can

be implemented in an event-based manner.

Event-driven Runs of Pushdown Forest Automata

Consider an LPA A→G =(2X , 2Y , {q0}, F,Down ,Up, Side) as defined in Sec-

tion 5.3.2.1 and its processing model as depicted in Figure 5.6 (on page

226). The order in which A→G visits the nodes of the input is the order of a

depth-first, left-to-right search, which corresponds exactly to the document-

order.

Compare Figures 5.6 and 5.17. At every node π, A→G executes one Down

transition at the moment when it proceeds to the content of π and one Up

followed by one Side transitions at the moment when it finishes visiting

the content of π. These moments correspond to the start and end tags,

respectively, of the node π. The algorithm implementing the event-driven

run of A→G is depicted in Figure 5.18.
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<a2> </a2>

Down Up
t2

Side Side
<an> </an>

Down Up
tn

<a1> </a1>

Down Up
t1

</a><a>

Down Up

Fig. 5.17 Event-driven run of a pushdown forest automaton.

We handle the following events:

(1) startDoc, which is triggered before starting reading the stream;

(2) endDoc, which is triggered after finishing reading the stream;

(3) enterNode, which is triggered when a start-tag is read;

(4) leaveNode, which is triggered when an end-tag is read.

The stack declared in line 1 is needed in order to remember the forest

states used for the traversal of the content of the elements opened and not

yet closed. The variable q declared in line 2 stores the current forest state

during the traversal of the document.

At the beginning, startDocHandler is called and it sets the current

state to the initial state of the automaton (line 5). A start tag triggers a

call of enterNodeHandler which remembers the current state on the stack

(line 9) and updates the current state as result of executing the Down

transition (line 10). An end-tag triggers the corresponding Up transition

(line 14), followed by the Side transition which uses as forest state the last

remembered state on the stack, i.e. the forest state before entering the

element now ending (line 15).

The number of elements on the stack always equals the depth of the

XML element currently handled. Hence the maximal height of the stack

is the maximal depth of the handled XML document, which is in general

rather small, even for very large documents.

Depending on the purpose of the pushdown automaton, other actions

can be performed in the events handler. For the purpose of validation, it

must be checked at the end of the document whether the current state is a

final state (line 18).
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1 Stack s ;
2 Fores tS tat e q ;
3

4 startDocHandler ( ){
5 q := q0 ;
6 }

7

8 enterNodeHandler ( Label a ){
9 s . push (q ) ;

10 q := Down(q, a) ;
11 }

12

13 leaveNodeHandler( Label a ){
14 TreeState p = Up(q, a) ;
15 q := Side(s.pop(), a) ;
16 }

17

18 endDocHandler ( ){
19 i f q ∈ F then output (” Input accepted . ” )
20 e l s e output (” Input r e j e c t e d . ” ) ;
21 }

Fig. 5.18 Skeleton for the event-driven run of a pushdown forest automaton.

For the purpose of answering right-ignoring queries it must be checked

whether the forest state obtained after the side transition has the property

stated in Proposition 5.30. Using the above presented implementation, A→G
is thus able to answer right-ignoring queries on XML streams.

5.6.2 Arbitrary Queries

The previous section only shows how right-ignoring queries can be answered

on XML streams. In this section we lift this limitation by showing how

arbitrary queries can be answered on XML streams.

In the case of non right-ignoring queries, the decision as to whether

a node is a match cannot be taken locally, i.e. at the time the node is

left, because there is still match-relevant information in the part of the

input not yet visited. The decision can only be taken after seeing all of the

match-relevant information.

The general situation is depicted schematically in f1 in Figure 5.19 (i).

The node π is a potential match considering its left context and its content
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Fig. 5.19 Right completion of a forest.

(depicted in dark grey) which can be checked by the time the end-tag of the

node is seen. The decision as to whether this is indeed a match node must

be postponed until seeing the relevant part of the right context (depicted in

light grey), which was empty in the particular case of right-ignoring queries.

The location which must be reached in order to recognize π as a match is

denoted as l. We call such a location l, earliest detection location of the

match π, formally defined below.

Earliest Detection Locations

A forest f2 is a right-completion of a forest f1 at location l ∈ L(f1) iff f1
and f2 consists of the same events until l. (The tree representation of f1
and f2 are depicted in Figure 5.19). Formally:

f2 ∈ RightComplf1,l iff precf1(l) = precf2(l) and lab(f2[π
′]) = lab(f1[π

′])
for all π′ ∈ precf1(l).

with precf (l) denoting the preceding nodes of a location l ∈ L(f) in a

forest f , defined as precf (l) = {π | π ∈ N(f), π < l}, where ”<” denotes

lexicographical comparison.

A location l is an early detection location of a match node π for a query

Q in input f1 iff π ∈MQ,f2 for all right-completions f2 of f1 at l.

A location l is the earliest detection location of a match node π iff l is

the smallest early detection location of π in lexicographic order.

Example 5.31. Reconsider Example 5.28 and the accompanying input

depicted in Figure 5.15 (on page 277). Given the query //a/b, the earliest

detection location of node 111 is 111. As for the query //a[c]/b the earliest

detection location of node 111 is 112. Finally, for the query /*[not(d)]//*,
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there is no early detection location for any of the match nodes. This matches

cannot be detected until the last location in the input has been reached.

5.6.2.1 Idea

We proceed now to the description of the computation performed by our

algorithm for evaluating grammar queries on XML streams. This can be

seen as a run of a pushdown automaton changing its state on every XML

event.

For the purpose of evaluation we use the stack to remember the following

information for a location l at some nesting level :

(1) q, denoting the progress within the content models to be considered on

the level containing l. This is exactly the forest state in which A→G (the

DLPA accepting LG) reaches l;

(2) ri, needed for the early detection of matches as presented below;

(3) m, storing potential matches which might be confirmed on the current

level, as well as the potential matches accumulated while traversing the

current level up to l.

For 1, we remember the states of the finite automata corresponding to

the content models which are reached considering the content seen so far

on the current level. They are obtained as by performing the transitions of

A→G .

For 2, we need to know which of the content models considered on

the current level occur in right-ignoring contexts. A content model for an

element e occurs in a right ignoring context iff there is no content model of

an enclosing element whose fulfillment depends on the right context of e.

We call such content models right-ignoring content models.

For 3, we associate potential matches with NFA states from q. A po-

tential match is associated with a state y at location l iff the match may be

defined w.r.t. derivations in which the word of non-terminals on the current

level is accepted by the NFA run reaching l in state y. The information

m can be thus represented as a partial mapping from NFA states y to the

corresponding potential matches m(y).

Consider our query Q = (G, T ) with a forest grammar G = (R, r0). Let

r1, . . . , rp be the regular expressions occurring on the right-hand sides in

the productions R, where p is the number of productions. For 0 ≤ j ≤ p,

let Aj = (Yj , y0,j, Fj , δj) be the non-deterministic finite automaton (NFA)

accepting the regular string language defined by rj as obtained by the
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Berry-Sethi construction. By possibly renaming the NFA states we can

always ensure that Yi ∩ Yj = ∅ for i 6= j. Let Y = Y0 ∪ · · · ∪ Yp and

δ = δ0 ∪ · · · ∪ δp.

Initial State Initially, we start with the NFA start state y0,0 of the start

content model r0. The content model r0 is right-ignoring as there are no

enclosing elements. Also, there are no potential matches detected yet, thus

the information initially remembered on the stack consists of:

q0 = {y0,0}, ri0 = {r0}, m0 = ∅

Start-Tag Transitions On a start-tag event <a> at location l, new infor-

mation (q1, ri1,m1) is pushed on the stack, depending on the information

in the current top of the stack (q, ri,m) as follows.

The possible content models of the current element are computed from

the content models in which the element may occur (as in the case of a

Down transition in A→G ). Before seeing any of the children of the current

element we are in the initial NFA state of these content models:

q1 = {y0,j | y ∈ q, (y, x, y1) ∈ δ, x→ a〈rj〉}

A content model rj considered for the current element l is right-ignoring

if (1) the surrounding content model rk is right ignoring and (2) rk is fulfilled

independently of how the right siblings of l might look like. Condition (1)

can be looked up in ri. To ensure (2) there must be an right-ignoring NFA

state y1 reachable after seeing the left siblings of l. Thus:

ri1 = {rj |y ∈ q, (y, x, y1) ∈ δk, x→ a〈rj〉, rk ∈ ri, rightIgn(y1)}

As for the potential matches which might be confirmed while visiting
the content of l, these are the matches propagated so far for which the
content of the current level is fulfilled whatever follows after l. We add l
to these potential matches if it can be derived from a target non-terminal
considering its left-context, and its right-context is irrelevant (that is, l’s
confirmation as a match depends thus only on its content).

m1(y0,j) =
⋃
{m(y) | y ∈ q, (y, x, y1) ∈ δk, x → a〈rj〉, rk ∈ ri, rightIgn(y1)}

∪

{l | y ∈ q, (y, x, y1) ∈ δk, x → a〈rj〉, rk ∈ ri, rightIgn(y1), x ∈ T}

(5.1)
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End-Tag Transitions An end-tag event </a> at location πi(n+1) signals

that the processing of the sequence of children πi1, . . . , πin is completed

and the computation has to return to the nesting level and advance over

the father node πi. The top two elements on the stack at this moment:

(q, ri,m) and (q1, ri1,m1) store the state of the computation after seeing the

children and the left siblings of πi, respectively. (q, ri,m) and (q1, ri1,m1)

are consumed from the stack and used to compute the new top of the stack

(q2, ri2,m2), reflecting the state after finishing seeing πi, as follows.

A content model rj is fulfilled by the children of πi iff there is some

y2 ∈ q ∩Fj , i.e. a NFA final state for rj is reached after traversing them. It

follows that πi can be derived from symbols x for which there is a production

x→ a〈rj〉. The advance in the content models on the level of πi, after seeing

πi is obtained by considering NFA transitions with symbols x from which

πi may be derived. This is completely similar to an Up transition followed

by a Side transition in A→G and is summarized by:

q2 = {y1 | y2 ∈ q ∩ Fj , x→ a〈rj〉, y ∈ q1, (y, x, y1) ∈ δ}

As the set of right ignoring content models only depends on the sur-

rounding content models, it remains unchanged for a whole nesting level,

that is :

ri2 = ri1

As for the potential matches, we have to aggregate the potential matches

from the left-context of πi with those from its content. More precisely,

potential matches defined by an NFA run on the children level are joined

with potential matches from the left context associated with NFA states

which are reached in nesting NFA runs after seeing the father node. The

father node, πi is added as a potential match if it can be derived from a

target non-terminal:

m2(y1) = {m(y2) ∪m1(y) | y2 ∈ q ∩ Fj , x→ a〈rj〉, y ∈ q1, (y, x, y1) ∈ δ} ∪

{πi | y2 ∈ q ∩ Fj , x→ a〈rj〉, y ∈ q1, (y, x, y1) ∈ δ, x ∈ T }
(5.2)

5.6.2.2 Recognizing Matches

The construction above allows the location of matches as stated by the

following theorem:

Theorem 5.32. A location l is an early detection location for a match node

π iff π ∈ m(y), rj ∈ ri and rightIgn(y) for some y ∈ q ∩ Yj with (q,m, ri)

being the top of the stack at event l.
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Proof. The complete proof is given in Section 5.8.3. The idea of the

proof is described next.

?

? ?. . .

?. . . l

f ′
2

. . .

. . .

x>

x>x>

x>l

f2

x

π π

Fig. 5.20 Right completion at l and corresponding derivation.

Let l be an early detection location for π. Let f2 be a right-completion

obtained from f1 by adding on every level from the root to l an arbitrary

number of right siblings ?〈〉 (as depicted in Figure 5.20), where ? is a symbol

not occurring in any of the rules in the grammar. By the definition of early

detection locations there is a derivation f ′2 of f2 in which π is labeled x for

some x ∈ T . Also, since ? does not occur in any rule, f ′2 must label all the

? nodes with x>. The y with the properties as required by this theorem is

the NFA state in which the location l is reached within the NFA accepting

run corresponding to f ′2.
Conversely, let (q,m, ri) be the top of the stack at event l and let π ∈

m(y), rj ∈ ri and rightIgn(y) for some y ∈ q ∩ Yj . From π ∈ m(y) it

follows that there is a relabeling of the nodes visited so far in which π

is labeled with some x ∈ T and which might be completed to a whole

derivation according to the grammar G using x> symbols for the not yet

visited nodes. The existence of the completion on the current level follows

from rightIgn(y), while the existence of the completions on the enclosing

levels is ensured by the condition rj ∈ ri. �

As locations are visited in lexicographic order, testing the condition in

Theorem 5.32 ensures that every match π is detected when reaching its

earliest detection location. This proves Theorem 5.29.

The algorithm implementing the event-driven evaluation of the queries

as above is given in Figure 5.21 (on page 289). We assume that

enterNodeHandler and leaveNodeHandler receive as an argument, besides

the label of the currently read node, also the currently reached location. For

the case in which the current location is not provided by the event-based

parser, note that it can be easily propagated along the event handlers in
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the internal parse-state. The algorithm basically follows the computation

rules given above while sharing the commonalities in the rules for q, ri and

m. As an abbreviation we use the operator ⊕ to add a new entry or update

an existing set entry in a mapping m via set union.

Matches are detected when their earliest detection location is reached,

i.e. at the event-handler executed at the immediately preceding location.

This might be the case either at start or at end tags. At start tags (line 12)

we report potential matches for which we know that (a) the right siblings at

the current level are irrelevant (condition rightIgn(y1) tested in line 9); (b)

the right siblings of the ancestors are irrelevant (condition rk ∈ ri tested in

line 9) and (c) the content is irrelevant (condition rightIgn(y0,j) in line 11).

At end tags (line 32) we report potential matches for which the content

was fulfilled (condition y2 ∈ Fj in line 30) and the upper-right context is

irrelevant (condition rj ∈ ri ).

Note that there is no need to propagate a confirmed match π beyond

its earliest detection location l where it is reported. (see tests in lines 11

and 32).

Also, potential matches are discarded implicitly precisely as soon as

enough information is seen in order to reject them. Potential matches m(y)

at a location l are no longer propagated when y is not involved in the

NFA transitions. This happens at end tag events if there is no transition

(y, x, y1) in any of the possible content models. Also at end tag events,

potential matches in m(y) are discarded if y is not a final state in any of

the considered content-models on the finished level. Thereby matches are

remembered only as long as the strictly necessary portion of the input has

been seen in order to confirm them.

Finally, at the end of the input potential matches not yet confirmed and

conforming to the top-level content model (condition y ∈ q ∩F0 in line 48)

are reported as matches in line 49.

5.6.2.3 Complexity

Let |D| be the size of the input data, i.e. the number of nodes in it. The

size of a query Q can be estimated as the number of NFA states |Y | plus

the number of non-terminals |X |. Let potmax be the maximum number of

potential match nodes at any given time during the traversal.

For every node in the input enterNodeHandler and leaveNodeHandler

is called once. In enterNodeHandler at πi, the loop starting at line 7 is

executed for every y ∈ q, for every outgoing NFA transition (y, x, y1) and
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1 Stack s ;
2

3 enterNodeHandler ( Location l , Label a ){
4 (q ,ri ,m) := s . top ( ) ;
5 q1 := ri1 := m1 := ∅ ;
6

7 f o r a l l y ∈ q with (y, x, y1) ∈ δk and x→ a〈rj〉
8 q1 := q1 ∪ {y0,j}
9 i f rightIgn(y1) and rk ∈ ri then

10 ri1 := ri1 ∪ {rj} ;
11 i f rightIgn(y0,j) then
12 reportMatches (m(y) ) ;
13 i f x ∈ T then reportMatches ({l} ) end i f
14 e l s e
15 m1 := m1 ⊕ {y0,j 7→ m(y)} ;
16 i f x ∈ T then m1 := m1 ⊕ {y0,j 7→ {l}} end i f
17 end i f
18 end i f
19 end for
20

21 s . push ( (q1 ,ri1 ,m1 ) ) ;
22 }
23

24 leaveNodeHandler( Location ln , Label a ){
25 (q ,ri ,m) := s . pop ( ) ;
26 (q1 ,ri1 ,m1 ) := s . pop ( ) ;
27 q2 := m2 := ∅ ;
28 ri2 := ri1 ;
29

30 f o r a l l y ∈ q1 ,y2 ∈ q ,y2 ∈ Fj ,x→ a〈rj〉 and (y, x, y1) ∈ δk
31 q2 := q2 ⊕ {y1} ;
32 i f rj ∈ ri then reportMatches (m(y2))
33 e l s e
34 m2 := m2 ⊕ {y1 7→ m(y2)} ;
35 m2 := m2 ⊕ {y1 7→ m(y)} ;
36 i f x ∈ T then m2 := m2 ⊕ {y1 7→ {l}} end i f
37 end i f
38 end for
39

40 s . push ( (q2 ,ri2 ,m2 ) ) ;
41 }
42

43 startDocHandler ( ){ s . push ( ( q0 ,{r0} ,∅ ) ) ; }
44

45 endDocHandler ( ){
46 (q ,ri ,m) := s . pop ( ) ;
47

48 f o r a l l y ∈ q ∩ F0

49 reportMatches (m(y) ) ;
50 end for
51

52 }

Fig. 5.21 Algorithm for event-driven query answering.

for all content models rj for x. The size of q is in O(|qmax|), where qmax

is the forest state q with the maximum number of elements. Let cmmax

be the maximum number of content models considered on a level and let
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outmax be the maximum number of outgoing NFA transitions from an NFA

state. The loop is executed thus up to |qmax| · outmax · cmmax times.

The set union in line 8 can be computed in time O(|qmax|). The set

union in line 10 needs time O(cmmax). Reporting the confirmed matches

additionally requires time O(potmax). Finally the set unions in lines 15 and

16 necessitate again O(potmax) time. A call to enterNodeHandler amounts

thus to O(|qmax| · outmax · cmmax · (|qmax|+ cmmax + potmax)) time.

In leaveNodeHandler, the loop starting at line 30 is executed in the

worst case, for every y ∈ q1 and every y2 ∈ q, i.e. up to |qmax|
2 times.

The set union in line 31 is computed in time O(|qmax|). Reporting the

confirmed matches possibly adds O(potmax) time. The set unions in lines

34, 35 and 36 need O(potmax) time. A call to leaveNodeHandler amounts

thus to O(|qmax|
2
· (|qmax|+ potmax)) time.

As leaveNodeHandler and enterNodeHandler are called each once for

every node, the overall time complexity of event driven evaluation of queries

is thus in O(|D| · (|qmax| · outmax · cmmax · (|qmax| + cmmax + potmax) +

|qmax|
2
· (|qmax|+ potmax))). The values of |qmax|, outmax and cmmax are

bounded by values which do not depend on |D|. Experimental evidence

show them to be small, and correspondingly the algorithm scales well with

the size of the query as presented in the next section.

The worst complexity in the size of the document is obtained for

potmax = |D|, in the case where all the nodes are potential matches until

the end of the document. In general, however, the number of potential

matches is much less than the total number of nodes (potmax � |D|) and

can be assimilated with a constant. In this case we obtain a time linear in

the size of the document, as suggested by experimental results [6].

As for the space complexity, let d be the depth of the input document.

During the scan of the document we store at each location the (q, ri,m)

tuples for all ancestor locations up to the root, which correspond to the

opened and not yet closed elements at the current location. For every level,

q has up to |qmax| elements, m stores up to |qmax| · potmax locations and

ri up to cmmax content models. As all these elements can be stored in

constant space and the height of the stack is at most d, we obtain the worst

case space complexity O(d · (|qmax|+ |qmax| ·potmax+cmmax)). Most of the

practical queries need only a small amount of memory, as the information

relevant to whether a node is a match is typically located in the relative

proximity of the node (that is potmax is small).
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5.6.3 Bibliographical Notes

A basic task in XML processing is XML validation. The problem of vali-

dating XML streams is addressed by Segoufin and Vianu in [74] and Chitic

and Rosu in [18]. As mentioned in Section 5.3.1.3, XML schema languages

are basically regular forest languages, hence conformance to such a schema

can be checked by a pushdown forest automaton. As presented in this chap-

ter this can be performed efficiently on XML streams in the event-based

manner.

Many research works deal with querying of XML streams. Most of them

consider subsets of XPath. Some of them deal with XQuery, which in fact is

more than a querying language as it allows the transformation of the input.

In the following we are mainly interested in the querying capabilities of the

considered languages.

Conventional attribute grammars (AG) and compositions thereof are

proposed by Nakano and Nishimura in [52] as a means of specifying tree

transformations. An algorithm is presented which allows an event-driven

evaluation of attribute values. Specifying transformations, or in particu-

lar queries, using AG is however quite elaborate even for simple context-

dependent queries and AG are restricted to use attributes of non-terminal

symbols at most once in a rule. Also as no stack is used input trees have

to be restricted to a maximum nesting depth.

More suited for XML are attribute grammars based on forest gram-

mars as considered in XML Stream Attribute Grammars (XSAGs) [40] and

TransformX [72]6. A restricted form of attribute forest grammars is con-

sidered which allows the evaluation of attributes on XML streams. The

attribute grammars have to be L-attributed, i.e. to allow their evaluation

in a single pass in document-order. Another necessary restriction is that

the regular expressions in productions are unambiguous, as in the case of

DTDs. This ensures that every parsed element corresponds to exactly one

symbol in the content model of the corresponding production, which al-

lows the unambiguous specification and evaluation of attributes. While

XSAGs are targeted at ensuring scalability and have the expressiveness of

deterministic pushdown transducers, the TransformX AGs allow the spec-

ification of the attribution functions in a Turing-complete programming

language (Java). In both cases, for the evaluation of the attribute gram-

mars pushdown transducers are used. The pushdown transducers used in

TransformX [72] validate the input according to the grammar in a simi-

6
In these works forest grammars are called.
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lar manner to the pushdown forest automata. Additionally, a sequence of

attribution functions is generated as specified by the attribute grammar.

A second transducer uses this sequence and performs the specified compu-

tation. For the identification of the non-terminals from which nodes are

derived in the (unique) parse tree, as needed for the evaluation of the AGs

in [40, 72], pushdown forest automata can be used. The unambiguousness

restriction of the attribute forest grammars allows one to proceed as in the

case of right-ignoring queries presented in Section 5.6.1. That is, the non-

terminal corresponding to the current node can be directly determined from

the (single) NFA state in the current forest state, as it does not depend on

the events after the current one.

A number of approaches handle the problem of querying XML streams

in the context of selective dissemination of information (SDI), also known

as XML message brokering [1,2,16,17,20,21,32,34]. In this scenario a large

number of users subscribe to a dissemination system by specifying a query

which acts like a filter for the documents of interest. Given an input docu-

ment, the system simultaneously evaluates all user queries and distributes

it to the users whose queries lead to at least one match. Strictly speaking,

the queries are not answered. The documents which contain matches are

dispatched but the location of the matches is not reported. XFilter [1] han-

dle simple XPath patterns, i.e. without nested XPath patterns as filters.

These can be expressed with regular expressions, hence they are imple-

mented using finite string automata. YFilter [20] improves on XFilter by

eliminating redundant processing by sharing common paths in expressions.

In [21], the querying capabilities are extended to handle filters comparing

attributes or text data of elements with constants and nested path expres-

sions are allowed to occur basically only for the last location step. Green et

al. [32] consider regular path expressions without filters. It is shown that a

lazy construction of the DFA resulting from multiple XPath expressions can

avoid the exponential blow-up in the number of states for a large number of

queries. XPush [34] also handles nested path expressions and addresses the

problem of sharing both path navigation and predicate evaluation among

multiple patterns. XTrie [16] considers a query language which allows the

specification of nested path expressions and, besides, an order in which they

are to be satisfied. Even though Fxgrep is not targeted at SDI, note that

it basically exceeds the essential capabilities of all previously mentioned

query languages.

There are a number of approaches in which queries on XML streams

are answered by constructing a network of transducers [24, 42, 66, 68]. A
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query is there compiled into a number of interconnected transducers, each

of them taking as input one or more streams and producing one or more

output streams by possibly using a local buffer. The XML input is delivered

to one start transducer and the matches are collected from one output

transducer. The query language of XSM [42] handles only XPath patterns,

without filters and deep matching (//), but allows instead value-based joins.

XSQ [68] deals with XPath patterns in which at most one filter can be

specified for a node and filters cannot occur inside another filter. The

filters only allow the comparison of the text content of a child element

or an attribute with a constant. SPEX [66] basically covers Core XPath.

Each transducer in the network processes the input stream and transmits

it augmented with computed information to its successors. The number of

transducers is linear in the query size. The complexity of answering queries

depends on whether filters are allowed and is polynomial in both the size of

the query and of the input. XStreamQuery [24] is an XQuery engine based

on a pipeline of SAX-like event handlers augmented with the possibility of

returning feedback to the producer. The strengths of this construction are

its simplicity and the ability to ignore irrelevant events as soon as possible.

However, the approach only handles the child and descendant axes.

FluXQuery [41] extends a subset of XQuery with constructs which guide

an event-based processing of the queries using the DTD of the input. FluX-

Query is used within the StreamGlobe project which is concerned with

query evaluation on data streams in distributed, heterogeneous environ-

ments [76]. STX [4] is basically a restriction of the XSLT transformation

language to what can be handled locally by considering only the visited

part of the tree and selecting nodes from the remaining part of the tree.

Sequential XPath [19] presents a quite restricted subset of XPath, handling

only right-ignoring XPath patterns, which can be implemented without the

need of any buffering. TurboXPath [38] introduces an algorithm for answer-

ing XPath queries containing both arithmetic and structural predicates and

which is neither directly based on finite automata nor on transducer net-

works. The dynamic data structure WA (work array), used to match the

document nodes has certain similarities with our construction. Entries are

added in the WA upon each start-tag event for each sub-pattern to which

the children must conform, which roughly correspond to a Down transition

of the LPA. Matches of the sub-patterns are detected upon end-tag events

by AND-ing the fulfillment of the sub-patterns by the children, similarly to

an Up transition. Side transitions are not needed as the pattern language

does not impose any order on the children nodes. In this perspective the
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context information is optimally used, as in our case, by a combination of

top-down and bottom-up transitions. Work by Bar-Yossef et al. [3], indi-

cates that the space requirement for the TurboXPath approach is near the

theoretical optimum for XPath queries.

5.7 Summary and Outlook

In this chapter, we have presented querying techniques for unranked trees

based on (extensions of) tree grammars and tree automata and showed how

these can be used to support declarative and efficient querying of hierar-

chically structured and semistructured data. In particular, we have showed

how they can be put to work for solving practical problems as follows.

Expressive specification of k-ary queries We have introduced a sim-

ple yet powerful method based on forest grammars allowing the formulation

of queries which identify tuples of k related nodes in the input document

tree.

Efficient evaluation of queries We have shown here how unary and

binary queries can be efficiently evaluated by providing an algorithm based

on pushdown forest automata. We have mentioned how the algorithm for

answering binary queries can be generalized for the evaluation of queries

of arbitrary arity. The complexity of query evaluation grows exponentially

with k. Nevertheless, we have suggested restrictions for k-ary grammar

queries under which their evaluation is efficiently implementable. We have

discussed the practical aspects of implementing the queries for XML pro-

cessing.

Event-driven evaluation of grammar queries on XML streams

We have presented an efficient algorithm which allows the evaluation of

unary grammar queries in an event-based manner. This processing method

is suitable for very large documents which cannot be built completely in

memory. The algorithm is also useful in settings in which documents are

received linearly on some communication channel and would ideally be pro-

cessed while being received, rather than waiting until the whole document

is locally available.

XML querying is an important task and is the foundation for more

elaborate processing tasks, such as XML transformations. Some of the
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ideas presented here are not only useful for querying but directly support

transformations. Binary queries turn out to be especially beneficial for rule-

based transformations [6, 9]. Stream-based querying is a first step towards

supporting stream-based transformations [7]. Other applications of tree

languages to XML processing are in the area of integrating XML support

directly into programming languages, e.g. for type checking [43].

5.8 Proofs of Theorems

5.8.1 Proof of Theorem 5.21

We start by showing that the nodes collected in the attributes of a tree

state at π are from the subtree located at π.

Lemma 5.33. If x ∈ pπ, π1 ∈ x.l1 then π1 = ππ′.

Proof. The proof is by induction on the height of f [π].

If f [π] = a〈ε〉 then pπ = Up←(Down←(qπ, a), a). By the definition of

Down←, Up← and attributes it follows that π1 = π.

Otherwise, by the definition of attributes we have that π1 = π or there

is y ∈ qπ0, y = y0,j , x → a〈rj〉 and π1 ∈ y.l1. From π1 ∈ y.l1 it follows

by straightforward induction on n = lastf (π) that there is x1 ∈ pπi and

π1 ∈ x1.l1. By the induction hypothesis it follows that π1 = πiπ′. �

5.8.1.1 Proof of (i1)

Let π′ = πi and n = lastf (π
′).

Left-to-right: From π1 ∈ x.l1 it follows by Lemma 5.33 that π1 = π′π′1.
In the following we do the proof by induction on the length of π′1.

If π′1 = λ then π1 = π′ and by the definition of attributes it follows that

x = x1. Our conclusion follows now by Theorem 5.15.

If π′1 = lπ′′1 then l ≤ n. By Theorem 5.15 there is fa s.t. (f, fa) ∈

Derivr0 and lab(fa[π
′]) = x. From π1 ∈ x.l1 and π′ 6= π1 it follows by the

definition of attributes that there is x → a〈rh〉, y0,h ∈ qπ′0 and π1 ∈ y0.l1.

By the definition of attributes it follows by straightforward induction on n

that there is m, 0 < m ≤ n and x1, . . . , xm, y1, . . . , ym s.t. (yk−1, xk, yk) ∈

δ, yk ∈ qπ′k ∩
−→q π′k, xk ∈ pπ′k for k = 1, . . . ,m and π1 ∈ xm.l1. By

Lemma 5.33 m = l. By the induction hypothesis it follows that there is fc
s.t. (f, fc) ∈ Derivr0 , lab(fc[π

′l]) = xl and lab(fc[π1]) = x1.
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From yl ∈ qπ′l ∩
−→q π′l it follows from the definition of Side← by

straightforward induction on n that there are xl, . . . , xn, yl, . . . , yn s.t.

(yk−1, xk, yk) ∈ δ, yk ∈ qπ′k ∩
−→q π′k, xk ∈ pπ′k for k = m + 1, . . . , n.

Also by the definitions of Down← and Up← y0 = y0,h and yn ∈ Fp. As

NFA transitions are done only inside one NFA we have that p = h and it

follows that x1, . . . , xn ∈ [[rh]].

By Theorem 5.15 there is fk s.t. (f, fk) ∈ Derivr0 , lab(fk[π
′k]) =

xk for all k, and by Lemma 5.34, (f [π′k], fk[π′k]) ∈ Derivxk
. Thus

(f [π′1] . . . f [π′n], f1[π′1] . . . fn[π′n]) ∈ Derivrh and with x1 . . . xn ∈ [[rh]],

(f [π′], x〈f1[π′1] . . . fn[π′n]〉 ∈ Derivx. Let t = x〈f1[π
′1] . . . fn[π′n]〉 and

let fb = fa/
π ′t. By Lemma 5.35, (f, fb) ∈ Derivr0 , lab(fb[π

′]) = x,

lab(fb[π
′l]) = xl.

Let fd = fb/
π′l fc[π

′l]. By Theorem 5.22 we now have that (f, fd) ∈

Derivr0 , lab(fd[π
′]) = x and lab(fd[π1]) = x1.

Right-to-left: The proof is by induction on the length of π′1.
If π′1 = λ it follows that x = x1 and by the definition of attributes

π1 ∈ x.l1.

If π′1 = lπ′′1 then l ≤ n and let xk = lab(f1[π
′k]) for k = 1, . . . , n.

By Corollary 5.17, xk ∈ pπ′k. By Lemma 5.34 (f [π′], f1[π′]) ∈ Derivx
and by the definition of Derivx we have that there is x → lab(f [π′])〈rh〉
and x1 . . . xn ∈ [[rh]]. Thus there are y0, . . . , yn s.t. (yk−1, xk, yk) ∈ δh
for k = 1, . . . , n, y0 = y0,h and yn ∈ Fh. Also, by hypothesis there are

y ∈ qπ′ ∩
−→q π′ and y′ s.t. (y′, x, y) ∈ δ. Using this, one can show by using

the definition of Down, Side, and Down←, Side← that for k = 0, . . . , n,

yk ∈
−→q π′k and yk ∈ qπ′k, respectively.

By the induction hypothesis π1 ∈ xl.l1. By straightforward induction

on l, using the definition of Side← and of the attributes, it follows that

π1 ∈ y0.l1. Now by the definition of Up← and of the attributes it follows

that π1 ∈ x.l1.

5.8.1.2 Proof of (i2)

Let n = lastf (π).

Left-to-right: Let yi = y.

From π2 ∈ y.l2 it follows from the definition of Side← and of attributes

by straightforward induction on n that there are j, i < j ≤ n, yi+1, . . . , yj ,

xi+1, . . . , xj , s.t. (yk−1, xk, yk) ∈ δp for k = i+1, . . . , j with yk ∈ qπk∩
−→q πk

for all k and π2 ∈ xj .l2. By (i1) it follows that π2 = πjπ′2 and there is fa
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s.t. (f, fa) ∈ Derivr0 , lab(fa[πj]) = xj and lab(fa[π2]) = x2.

From yi ∈ qπi ∩
−→q πi it follows from the definitions of Side and Side←

that there are y0, . . . , yi−1, x1, . . . , xi s.t. yk ∈ qπk∩
−→q πk for k = 0, . . . , i−1,

(yk−1, xk, yk) ∈ δh for k = 1, . . . , i and y0 = y0,h for some h. By the Berry-

Sethi construction, since (y′, x, yi) ∈ δ and (yi−1, xi, yi) ∈ δ, it follows

that x = xi. Similarly, from yj ∈ qπj ∩
−→q πj it follows that there are

yj , . . . , yn s.t. yk ∈ qπk ∩
−→q πk for k = j, . . . , n, (yk−1, xk, yk) ∈ δg for

k = j + 1, . . . n and yn ∈ Fg for some g. Because transitions in δ can be

made only inside the same NFA we have that p = g = h. We further get

that x1 . . . xn ∈ [[rh]].

By Theorem 5.15 it follows that there is fk s.t. (f, fk) ∈ Derivr0 ,

lab(fk[πk]) = xk and by Lemma 5.34 (f [πk], fk[πk]) ∈ Derivxk
for

k = 1, . . . , n. Let the forest fb = f1[π1] . . . fn[πn]. It follows

that (f [π1] . . . f [πn], fb) ∈ Derivrh . Let fc = fb/
j fa[πj]. By

Lemma 5.34 (f [πj], fa[πj]) ∈ Derivxj
and by Lemma 5.36 we have that

(f [π1] . . . f [πn], fc) ∈ Derivrh , lab(fc[i]) = lab(fb[i]) = xi = x and

lab(fc[jπ
′
2]) = lab(fa[π2]) = x2.

Now, if π = λ then h = 0 and f = f [π1] . . . f [πn]. As above (f, fc) ∈

Derivr0 with the required properties.

If π 6= λ then by the definition of Down← there are y′′ ∈ qπ ∩
−→q π,

(y′′′, x′, y′′) ∈ δ, x′ → a〈rh〉. By Theorem 5.15 there is fd s.t. (f, fd) ∈

Derivr0 and lab(fd[π]) = x′. Let t = x′〈fc〉. We have that (f [π], t) ∈

Derivx′ . Let fe = fd/
π t. By Lemma 5.35 we have that (f, fe) ∈ Derivr0

with the required properties.

Right-to-left: Let xk = lab(f2[πk]) for k = 1, . . . , n. By (i1) π2 ∈ xj .l2.

We first show that x1 . . . xn ∈ [[rh]] for some h. If π = λ then by

the definition of Derivr0 it follows that x1 . . . xn ∈ [[r0]]. If π 6= λ let

lab(f2[π]) = x′. It follows by Theorem 5.15 that there is (y′′′, x′, y′′) ∈ δ and

y′′ ∈ qπ ∩
−→q π. By Lemma 5.34 (f [π], f2[π]) ∈ Derivx′ . By the definitions

of Derivx′ there is x′ → a〈rh〉 and x1 . . . xn ∈ [[rh]].

There are thus y0, . . . , yn s.t. y0 = y0,h, yn ∈ Fh and (yk−1, xk, yk) ∈ δh
for all k. From the definitions of transitions it follows that yk ∈ qπk ∩

−→q πk.

By Corollary 5.17, xk ∈ pπk. From π2 ∈ xj .l2 it follows by the definitions

of attributes by straightforward induction on j that π2 ∈ yi.l2. With y = yi
we get the desired result.
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5.8.2 Proof of Theorem 5.22

We start by showing that if a derivation f ′ of a forest f labels a node π

with x, then the trees f [π] and f ′[π] are in the derivation relation Derivx.

Lemma 5.34. If (f, f ′) ∈ Derivr and lab(f ′[π]) = x then (f [π], f ′[π]) ∈
Derivx.

Proof. The proof is by induction on the length of π.

Let π = i and lastf (λ) = n. Thus f = f [1] . . . f [n] and f ′ =

f ′[1] . . . f ′[n]. From the definition of Derivr it follows that there is some

x1 . . . xn ∈ [[r]] with (f [k], f ′[k]) ∈ Derivxk
for k = 1, . . . , n. In particular

(f [i], f ′[i]) ∈ Derivxi
.

Now let π = π1i, lastf (π1) = n and let lab(f [π1]) = a,

lab(f ′[π1]) = x′. By the induction hypothesis, (f [π1], f
′[π1]) ∈ Derivx′ .

By the definition of Derivx′ there is some x′ → a〈r1〉 ∈ R with

(f [π11] . . . f [π1n], f
′[π11] . . . f

′[π1n]) ∈ Derivr1 . By the definition of

Derivr1 there is some x1 . . . xn ∈ [[r1]] with (f [π1k], f
′[π1k]) ∈ Derivxk

for k = 1, . . . , n. In particular (f [π1i], f
′[π1i]) ∈ Derivxi

.

In either case, from (f [π], f ′[π]) ∈ Derivxi
it follows by the definition

of Derivxi
that xi = lab(f ′[π]) = x. �

In the following we show that if a derivation f ′ of a forest f labels a

node π with x, and there is a derivation t′ of the tree f [π] from the same

x, then we obtain another derivation of f ′ by grafting t′ into f ′ at π.

Lemma 5.35. Assume (f, f ′) ∈ Derivr, lab(f ′[π]) = x and (f [π], t′) ∈
Derivx. Then (f, f ′/π t′) ∈ Derivr.

Proof. The proof is by induction on the length of π.

If π = i then let f = t1 . . . tn and let (t1 . . . ti . . . tn, t
′
1 . . . t

′
i . . . t

′
n) ∈

Derivr. By the definition of Derivr there is some x1 . . . xn ∈ [[r]]

with (tk, t
′
k) ∈ Derivxk

for k = 1, . . . , n. Since t′i = f ′[i] = x〈 〉

it follows that xi = x. From (f [i], f ′[i]) ∈ Derivxi
we have that

(t1 . . . ti . . . tn, t
′
1 . . . t

′ . . . t′n) ∈ Derivr which is (f, f ′/i t′) ∈ Derivr.
If π = ijπ1 we have that (f [1] . . . f [i] . . . f [n], f ′[1] . . . f ′[i] . . . f ′[n]) ∈

Derivr. By the definition of Derivr there is some x1 . . . xn ∈ [[r]] with

(f [k], f ′[k]) ∈ Derivxk
for k = 1, . . . , n. From (f [i], f ′[i]) ∈ Derivxi

it

follows that f [i] = a〈f1〉, f ′[i] = xi〈f
′
1〉 and there is xi → a〈r1〉 ∈ R

and (f1, f
′
1) ∈ Derivr1 . As f1[jπ1] = f [ijπ1] and f ′1[jπ1] = f ′[ijπ1]

we have that (f1[jπ1], t
′) ∈ Derivx and f ′1[jπ1] = x〈 〉. It follows by

the induction hypothesis that (f1, f
′
1/

jπ1 t′) ∈ Derivr1 . By the definition
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of Derivxi
, (a〈f1〉, xi〈f

′
1/

jπ1 t′〉) ∈ Derivxi
which is (f [i], xi〈f

′
1/

jπ1 t′〉) ∈
Derivxi

. Therefore, (f [1] . . . f [i] . . . f [n], f ′[1] . . . xi〈f
′
1/

jπ1 t′〉 . . . f ′[n]) ∈
Derivr which is (f, f ′/ijπ1 t′) ∈ Derivr . �

Now we show that the forest obtained by grafting t into f at π has the

nodes below π labeled as in t and all other nodes as in f .

Lemma 5.36.

lab((f/π t)[π1]) =

{

lab(t[1π2]), if π1 = ππ2

lab(f [π1]) , otherwise

Proof. First, observe the definition of the subtree located in a grafted

forest:

(f/iπ1 t)[jπ2] =















f [jπ2] , if i 6= j

t[1π2] , if i = j, π1 = λ

a〈f1/
π1 t〉 , if i = j, π1 6= λ, π2 = λ, f [i] = a〈f1〉

(f1/
π1 t)[π2], if i = j, π1 6= λ, π2 6= λ, f [i] = a〈f1〉

The proof is by induction on the length of π.

If π = i then if π1 = iπ2, (f/
i t)[π1] = t[1π2] thus lab((f/i t)[π1]) =

lab(t[1π2]). If π1 = jπ2, j 6= i then (f/i t)[π1] = f [π1] thus lab((f/
i t)[π1]) =

lab(f [π1]).

We consider now the case where π = iπ′, π′ 6= λ.

If π1 = iπ2 then (f/π t)[π1] = (f1/
π′

t)[π2], where f[i]=a〈f1〉. If

π1 = ππ3, i.e. if iπ2 = iπ′π3, π2 = π′π3 then by the induction hypoth-

esis lab((f1/
π′

t)[π2]) = lab(t[1π3]). Thus lab(f/iπ
′

t)[iπ2]) = lab(t[1π3])

and therefore we obtain that lab(f/π t[ππ3]) = lab(t[1π3]) as required.

Otherwise, also by the induction hypothesis lab((f1/
π′

t)[π2]) =

lab(f1[π2]). Since f1[π2] = f [iπ2] = f [π1] it follows that lab((f/
π t)[π1]) =

lab(f [π1]).

If π1 = jπ2 and j 6= i then (f/π t)[π1] = f [π1] thus lab((f/π t)[π1]) =

lab(f [π1]). �

Using the lemmas above we prove now Theorem 5.22.

Let lab(f1[π]) = lab(f2[π]) = x. By Lemma 5.34 we have that

(f [π], f2[π]) ∈ Derivx. From Lemma 5.35 it follows that (f, f1/
π f2[π]) ∈

Derivr. By Lemma 5.36:

lab((f1/
π f2[π])[π1]) =

{

lab(f2[π][1π2]), if π1 = ππ2

lab(f [π1]) , otherwise

With f2[π][1π2] = f2[ππ2] we obtain now the result of our theorem.
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5.8.3 Proof of Theorem 5.32

In the following we use the notation from Chapter 5.6 where Theorem 5.32

was stated.

Alternative Definition of Matches

In order to proof Theorem 5.32 a more refined definition of matches is

needed in which the NFA states reached while checking the content mod-

els of elements are given explicitely. Let R be a set of forest grammar

productions, r0 be a regular expression over non-terminals and f an in-

put forest. A (non-deterministic, accepting) run fR over f for R and r0,

denoted fR ∈ Runsr0,f is defined as follows:

y0〈f
′
1〉 . . . yn−1〈f ′n〉 yn〈〉 ∈ Runsr0,a1〈f1〉 ... an〈fn〉 iff

y0 = y0,0, yn ∈ F0, and

(yi−1, xi, yi) ∈ δ0, xi → ai〈ri〉, f
′
i ∈ Runsri,fi for all i = 1, . . . , n

y ∈ Runsr0,ε iff y = y0,0, y ∈ F0

An example run is given immediately below.

It is straightforward to see that a derivation f ′ with (f, f ′) ∈ Derivr0
(defined on page 219) exists iff a run fR ∈ Runsr0,f exists.

Example 5.37. Let G = (R, r0) with R being the set of rules from Exam-

ple 5.4 reproduced for convenience below:

(1) x> → a〈x∗>〉
(2) x> → b〈x∗>〉
(3) x> → c〈x∗>〉

(4) x1 → a〈x∗>(x1|xa)x
∗
>〉

(5) xa → a〈xbxc〉

(6) xb → b〈x∗>〉
(7) xc → c〈x∗>〉

The NFAs for the regular expressions occurring in grammar G with the set

are reproduced in Figure 5.22.

Consider the input tree depicted t reproduced for convenience in Fig-

ure 5.23 and one derivation of t′ w.r.t. r0 depicted in Figure 5.24. A run

corresponding to t′ is depicted in Figure 5.25 via dotted lines.

The derivation corresponding to a run can be obtained by taking the

incoming transitions of the NFA states of the nodes which are not the first

in their siblings sequence as one can see in Figure 5.25. Formally, the

following expresses the relation between derivations and runs :

(f, f ′) ∈ Derivr
iff ∃fR ∈ Runsr,f with L(f ′) = N(fR)

and lab(f ′[πp]) = in(lab(fR[π(p+ 1)])) for all πp ∈ N(f ′).
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r3 = x>
∗(x1|xa)x>

∗

r1 = xbxc r2 = x>
∗r0 = x1|xa

x>

x1

y9

xa y11

x>

x>

y12

y10

xa

x1

y8

x>

x>

xby3 y4 y5
xT

x>

y6 y7y0

y1

y2

xa

x1

xc

Fig. 5.22 NFAs obtained by Berry-Sethi construction for regular expressions in Exam-

ple 5.37.

b cb

a a a

c

a

b

Fig. 5.23 Input tree t.

x> x>xb

xa x> x>

xc

x1

x>

Fig. 5.24 Derivation t′ of t w.r.t r0.

Let f be an input forest and Q = ((R, r0), T ) a grammar query. Matches

of Q, which were originally defined in terms of derivations, can be equiva-

lently defined in terms of runs as it follows:

πp ∈MQ,f iff ∃fR ∈ Runsr0,f s.t. in(lab(fR[π(p+ 1)])) ∈ T.
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x> x>xb

x> x>

xc

x1

x>

xa

y3 y4 y5 y6

y11

y7 y6 y7 y7

y12

y1

y6 y6y6 y6 y6

y8 y12

y0

Fig. 5.25 Run corresponding to t′.

Notations

Before proceeding with the proof we further introduce a couple of useful

notations. The set of matches defined by runs with label y at location l is

defined as:

πp ∈Ml,y
Q,f iff ∃fR ∈ Runsr0,f s.t. in(lab(fR[π(p+ 1)])) ∈ T

and lab(fR[l]) = y

The set of l-right-ignoring matches defined by a run with label y at l is

defined as:

π ∈ ri-M
l,y
Q,f iff π ∈Ml,y

Q,f2
∀f2 ∈ RightComplf,l

A node π′ is a πi-upper-right ignoring match defined by a run with label

y at πi iff for any right-completion f2 at the parent of πi there is a run

defining π′ as a match of Q in f2 which labels πi with y, formally:

π′ ∈ uri-M
πi,y
Q,f iff π′ ∈Mπi,y

Q,f2
∀f2 ∈ RightComplf,π

Given a location πi and an NFA state y, a sequence of states is a suffix

run from y at πi iff the last state in the sequence is a final state and the

sequence of siblings to the right of πi allows to visit the sequence of states,

formally:

yi, . . . , yn ∈ Sufπi,y
iff (yk−1, xk, yk) ∈ δj , f1[πk] ∈ [[R]] xk with xk = in(yk), ∀k ∈ i, . . . , n and

yi−1 = y, yn ∈ Fj where n = lastf1(π)

To denote the information on top of the stack at the some moment πi

we write πi.q, πi.m and πi.ri in analogy to attributes of attribute gram-

mars. Similarly to attribute grammars, these are computed by local rules

as presented in Section 5.6.2.1.
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Proof

Theorem 5.32 is a straightforward corollary of the following theorem:

Theorem 5.38. The construction presented in Section 5.6.2.1 keeps the

following invariant:

π′p ∈ πi.m(y), y ∈ πi.q ∩ Yj , ∃c ∈ Sufπi,y and rj ∈ πi.ri

iff π′p < πi and π′p ∈ uri-M
πi,y
Q,f

(5.3)

Proof. We proof the two directions of Theorem 5.38 separately.

Left-to-right

We show that (5.3) holds at all locations in the input by induction using

the lexicographic order on locations.

Base case Initially, at location 1, 1.m(y) = ∅, ∀y ∈ 1.q, thus π′p ∈
1.m(y) is false, and the left-to-right direction trivially holds.

Induction step Supposing that (5.3) holds at all locations up to some

location l we show that it also holds at the immediately next location.

Start-tag transition We first show that if (5.3) holds at πi ∈ N(f),

so does it at πi1.

Let π′p ∈ πi1.m(y0), y0 ∈ Yj and suppose ∃c ∈ Sufπi1,y0 and

rj ∈ πi1.ri. Since π′p ∈ πi1.m(y0), it follows by our construction (con-

form to (5.1) on page 285) that ∃y ∈ πi.q with (y, x, y′) ∈ δk, x → a〈rj〉,

rightIgn(y′), rk ∈ πi.ri and either (i) π′p ∈ πi.m(y) or (ii) π′p = πi and

x ∈ T .

In case (i) it follows from (5.3) at πi that π′p < πi and π′p ∈ uri-M
πi,y
Q,f .

Thus, obviously π′p < πi < πi1 and it remains to show that π′p ∈
uri-M

πi1,y0

Q,f . This follows directly from π′p ∈ uri-M
πi,y
Q,f , c ∈ Sufπi1,y0

and rightIgn(y′) by grafting the run over the children of πi corresponding

to c into the run corresponding to uri-M
πi,y
Q,f .

In case (ii), π′p = πi < πi1. The proof will use in this case the following

lemma (also used later on):

Lemma 5.39. If there is a suffix run within a right ignoring content model,

then, independently of what follows in the input after the enclosing element,

there is a run over the input forest containing that suffix. Formally, if

y ∈ πi.q ∩ Yk, rk ∈ πi.ri and ∃c ∈ Sufπi,y then ∀f2 ∈ RightComplf,π
∃fR ∈ Runsr0,f2 with c = lab(fR[πi]), . . . , lab(fR[π lastfR(π)]).
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Proof. The proof is by straightforward induction on the locations in the

input forest. The assertion trivially holds at location 1. For the induction

step, let πi ∈ N(f). We show that if the assertion holds at the location

πi, it also holds at (i) πi1 and (ii) at π(i + 1). In case (i) ∃y ∈ πi.q with

(y, x, y′) ∈ δk, x → a〈rj〉, rightIgn(y
′), rk ∈ πi.ri. The required run is

obtained by grafting the run over the children of πi corresponding to c into

the run y, y′, . . . corresponding to the induction hypothesis. In case (ii) the

existence of the suffix run at π(i + 1) implies the existence of a run at πi

and our conclusion follows by the induction hypothesis. �

We continue now with the proof of Theorem 5.38.

Since c ∈ Sufπi1,y0 it follows (straightforwardly by definition) that

f [πi] ∈ [[R]] x. Given that (y, x, y′) ∈ δk and rightIgn(y′) it follows that

there is thus a suffix run c ∈ Sufπi,y with c = y, y′, . . . .
With rk ∈ πi.ri it follows by Lemma 5.39 that ∀f2 ∈ RightComplf,π

∃fR ∈ Runsr0,f2 with lab(fR[πi]) = y′. Since rightIgn(y′) it follows that

∃fR ∈ Runsr0,f2 for any f2 ∈ RightComplf,πi and lab(fR[πi]) = y′. With

c ∈ Sufπi1,y0 it follows that ∃f ′R ∈ Runsr0,f2 (obtained by grafting the run

over the children of πi corresponding to c into fR) with lab(f ′R[πi]) = y′

and lab(f ′R[πi1]) = y0. Thus π
′p ∈ uri-M

πi1,y0

Q,f .

End-tag transition We next show that if (5.3) holds at l ∀l < π(i+1),

so does it at π(i+ 1).

Let π′p ∈ π(i + 1).m(y′′), y′′ ∈ Yk and suppose ∃c ∈ Sufπ(i+1),y′′ and

rk ∈ π(i+ 1).ri. Since π′p ∈ π(i+ 1).m(y′′), it follows by our construction

(conform to (5.2) on page 286) that ∃y ∈ πi.q, y′ ∈ πi(n+ 1).q with y′ ∈ Fj ,

x → a〈rj〉, (y, x, y′′) ∈ δk and either (i) π′p ∈ πi.m(y), or (ii) π′p ∈
πi(n+ 1).m(y′), or (iii) π′p = πi and x ∈ T .

In case (i) our conclusion follows directly from (5.3) at πi.

We continue with the cases (ii) and (iii). Given c and rk ∈ π(i + 1).ri

it follows by Lemma 5.39 that ∀f2 ∈ RightComplf,π ∃fR ∈ Runsr0,f2 s.t.

lab(fR[π(i+1)]) = y′′. Further we use the following lemma (also employed

later on):

Lemma 5.40. If y ∈ πn.q ∩ Fj then ∃fR ∈ Runsrj ,f [π1]...f [πn] with

lab(fR[π(n+ 1)]) = y.

Proof. The proof is straightforward by induction on the depth of

f [π]. �

In case (ii), π′p was found either before or while visiting the content of

πi, that is either π′p ≤ πi or πi < π′p < π(i + 1), respectively. In the first
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case our conclusion follows directly from (5.3) at πi. In the second case

π′p < π(i + 1) we further need the following lemma:

Lemma 5.41. If y ∈ πn.q ∩ Fj, π
′p ∈ πn.m(y) and π1 ≤ π′p ≤ πn then

∃fR ∈ Runsrj ,f [π1]...f [πn] with lab(fR[π(n + 1)]) = y and in(lab(fR[π
′(p+

1)])) ∈ T where n = lastf (π).

Proof. The proof is by induction on the depth of f [π]. By Lemma 5.40

∃f ′R ∈ Runsrj,f [π1]...f [πn] with lab(f ′R[π(n+ 1)]) = y.

For depth 1 it directly follows that π′p = πi for some 1 ≤ i ≤ n and

in(lab(f ′R[π
′(p + 1)])) ∈ T . Therefore fR = f ′R is the sought after run. If

the depth is more than 1, then either (A) π′p = πi for some 1 ≤ i ≤ n and

in(lab(fR[π
′(p+1)])) ∈ T as above or (B) ∃y′ ∈ πin′.q∩Fk, π

′p ∈ πin′.m(y)

and πi1 ≤ π′p ≤ πin′ for some 1 ≤ i ≤ n and n′ = lastf (πi). In case (B) fR
in our conclusion can be constructed by grafting the run over the children

of πi existent by the induction hypothesis into f ′R. �

Our conclusion results now for the case (ii) πi < π′p < π(i + 1) by

grafting the run corresponding to the children which defines the match (as

implied by Lemma 5.41) into fR.

In case (iii) π′p = πi < π(i + 1) and it remains to show that π′p ∈

uri-M
π(i+1),y′′

Q,f . We have by Lemma 5.40 that ∃f ′R ∈ Runsrj,f [πi1]...f [πin]
and in(lab(f ′R[π

′(p+ 1)])) ∈ T . From fR and f ′R it results (by grafting f ′R
into fR at π) that ∃f ′′R ∈ Runsr0,f2 s.t. in(lab(f ′′R[π

′(p + 1)])) ∈ T and

lab(f ′′R[π(i + 1)]) = y′′, thus π′p ∈ uri-M
π(i+1),y′′

Q,f .

Right-to-left

? ?. . .

?. . .?

f2

π

π′p

Fig. 5.26 Right completion of f at π.

Let π′p < πi and π′p ∈ uri-M
πi,y
Q,f . Let f2 be a right-completion of f

at π obtained by adding on every level from the root to π inclusively an
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arbitrary number of right siblings ?〈〉, as depicted in Figure 5.26, where ?

is a symbol not occurring in any of the rules in the grammar. Since π′p ∈
uri-M

πi,y
Q,f it follows that ∃fR ∈ RunsG,f2 s.t. in(lab(fR[π

′(p + 1)])) ∈ T

and lab(fR[πi]) = y.

Also, since ? does not occur in any rule fR must label all the ances-

tors of the πi node with right-ignoring states, i.e. rightIgn(lab(fR[π1(k +

1)]))∀π1k ∈ ancestorsf (πi), where ancestorsf : N(f) 7→ N(f) is defined as

follows:

ancestorsf (i) = ∅

ancestorsf (πi) = {π} ∪ ancestorsf (π)

It follows that ∃f ′R ∈ RunsG,f s.t. in(lab(f ′R[π
′(p + 1)])) ∈ T and

lab(f ′R[πi]) = y. Suppose that y ∈ Yj . Since y is part of a run (f ′R), it
obviously holds that ∃c ∈ Sufπi,y.

Also, since rightIgn(lab(fR[π1(k + 1)]))∀π1k ∈ ancestorsf (πi), we ob-

tain by using the NFA transitions in f ′R at the corresponding steps in our

construction that all content models of the elements enclosing πi are right

ignoring, thus rj ∈ πi.ri.

Given that π′p < πi it follows that there is an ancestor of π′p which

is either (i) a sibling of an ancestor a of πi or (ii) an ancestor a of πi. In

any case it follows by using the NFA transitions in f ′R at the corresponding

steps in our construction that π′p is propagated down at location a until

πi, thus π′p ∈ πi.m(y).

We have proven thus that π′p ∈ πi.m(y), y ∈ πi.q ∩ Yj , ∃c ∈ Sufπi,y
and rj ∈ πi.ri.

This completes the proof of Theorem 5.38. �

Theorem 5.32 follows now directly from Theorem 5.38.
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In this chapter, we discuss fundamental mathematical abstractions which

can be used to capture and analyse operational semantics of concurrent

systems. We focus our attention on the issues involved in the description of

runs or behaviours of such systems. Assuming the discrete nature of system

executions, in the most basic case, they can be represented as sequences of

symbols, each symbol corresponding to the execution of a basic atomic ac-

tion. By taking into account only the essential causal relationships between

the executed actions one can then group together different runs which only

differ by the ordering of causally unrelated actions. In the resulting model of

Mazurkiewicz traces, each abstract execution (trace) is an equivalence class

of the quotient monoid of sequential executions which can be represented by

a (causal) partial order on the actions involved in these executions. Start-

ing from this initial setting, the chapter then considers behaviours which
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are (step) sequences of sets of simultaneously executed actions, and takes

into account other relationships between pairs of executed actions, such as

weak causality. The resulting abstract behaviours can again be expressed

in terms of suitable quotient monoids of step sequences or, equivalently,

relational structures generalising causal partial orders. We then show how

concrete system models coming from the Petri net domain can be treated

using the above abstract notions of concurrent behaviour.

6.1 Introduction

Concurrent and distributed computing systems play an ever increasing role

in the fast growing field of application of computer based technologies. At

the same time, the complexity of such systems grows rapidly, making it very

hard to guarantee the correctness of their ongoing operations, robustness,

or resilience to security threats. A key issue is therefore to understand the

behavioural characteristics of concurrent systems and, in particular, to pro-

vide appropriate mathematical abstractions for capturing their operational

properties.

In the area of sequential computing, a successful formal capture of sys-

tem behaviour can be obtained by specifying functional or relational depen-

dencies between the generated inputs and outputs. Then it is also impor-

tant, that for a system to be correct, it has to terminate for any given set

of legal inputs. In the area of non-sequential computing, however, dynamic

behaviours are not always adequately captured by functional input-output

descriptions. Moreover, a concurrent system (such as a network router)

may be considered as correct only if its operation never terminates. As a

result, one may be interested in the modelling of ongoing evolutions of such

systems at the interface with the environment, e.g., when communicating

or reacting to external stimuli.

To model (ongoing) behaviour of systems one can simply use sequences

of executed actions. For example, one can view a finite state machine as

a generator of words (a language) over an alphabet of actions or events,

yielding a powerful tool with numerous highly successful applications in

almost every branch of Computer Science. Having said that, finite state

machines (and other similar formalisms) are intrinsically sequential which

means that they are far from being an ideal semantical framework for deal-

ing with concurrent systems and their complex behaviours. For example,

a sequential representation of system behaviour cannot be used to describe
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the result of action refinement for which the information about concur-

rency or independence may be of crucial importance. Problems like this

one, were already well known in the 1970s when concurrent systems first

became a focus of intensive scientific enquiry. What became clear was

that sequential descriptions of system behaviours should be suitably aug-

mented. A notable example is Milner’s observational equivalence [35] which

makes it possible to capture the exact moments in system executions when

choices between alternative behaviours were decided, allowing one to anal-

yse deadlock properties of concurrent designs. Another such example —

and one which stands behind the theory presented in this chapter — are

Mazurkiewicz traces [32] which provide as additional information, direct

and explicit capture of causal dependencies between events.

The fundamental idea behind traces is that a single concurrent evolu-

tion can be observed by different sequential observers in different ways, and

only the combination of all such partial observations provides a true repre-

sentation of the underlying phenomenon. Still, different observations of the

same run are not completely arbitrary, and share certain ‘core’ information

which can be interpreted as the causality relationship between executed ac-

tions. Trace theory allows one to precisely identify all sequentialisations of

a given concurrent behaviour. Formally, a trace is an equivalence class com-

prising all sequential observations of the same underlying concurrent run

and to each trace a unique (causal) partial order of the executed actions

can be associated. Moreover, given the alphabet of actions and the con-

currency relationship between them, traces form a partially commutative

quotient monoid with trace concatenation playing the role of the monoidal

operation.

The original motivation of Mazurkiewicz was to use traces in order to

analyse Petri nets [38, 40, 41], a widely used model of concurrent computa-

tion. Petri nets are an operational system model related to state machines

and similar (sequential) behaviour generating devices. However, Petri nets

are able to represent states in a distributed way, and model actions (state

changes) in a purely local way involving only those parts of a distributed

state which are directly affected. This allows one, in particular, to view

their evolutions as partially ordered sets of executed actions. Since such

partial orders can be interpreted as faithful recordings of causal relations

between executed actions, there is a natural bridge between trace theory

and the Petri net execution model.

Mazurkiewicz traces fit particularly well with the concurrent behaviours

exhibited by the fundamental class of Elementary Net systems (EN-
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systems). There are however some aspects of concurrency that cannot

adequately be modelled by partial orders alone (c.f. [14, 16]) and hence

also not in terms of traces. Examples are the ‘earlier than or simultaneous’

(that is, ‘not later than’) and the ‘earlier or later than (unordered), but not

simultaneous’ relationships [16], for which neither traces nor partial orders

are expressive enough.

Consider, for example, a priority system with three actions: a,
b and c (with the priority of c higher than that of action b).
Initially, a and b can be executed simultaneously, while c is
blocked. However, upon its completion, action a makes action
c enabled (i.e., c is causally dependent on a). As a result, there
are two possible system executions involving all three actions,
and bac (note that {a, b} is a step in which actions a and b

are executed simultaneously). If we were to look for a partial
order underlying {a, b}c, we would fail as the sequence abc is
not a valid system behaviour. To address this problem, we will
consider structures richer than causal partial orders and, in
this particular case, we will say that there is a ‘weak causality’
between b and a meaning that b earlier than or simultaneously
with a, but not later than a.

Another kind of relationship between actions can be observed
when one considers two operations, d and f , updating a shared
variable, and otherwise being completely independent. Then we
have two potential executions, df and fd, meaning that they are
not ordered, but a simultaneous execution {d, f} is disallowed.
In this case, we will consider them to be ‘interleaved’ and both
df and fd will be corresponding to a single abstract concurrent
history.

To overcome the limitations of traces, one may turn to generalisations.

As such, the concepts of comtrace (combined trace) — based on causal-

ity and weak causality relationships — introduced in [17], and g-comtrace

(generalised comtrace) — based on the weak causality and interleaving re-

lationships — proposed in [21, 22], provide a suitable treatment for the

above examples.

Comtraces and g-comtraces extend the original idea of traces in two

directions. First, the evolutions of a concurrent system are represented

by step sequences which are strings of finite sets representing simultane-

ously executed actions. Thus the underlying monoid is now generated by

steps rather than individual actions. Second, the equivalence relation be-

tween step sequence observations is induced by systems of equations on

step sequences rather than ordinary sequences. To express ‘not later than’,
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comtraces have, in addition to simultaneity, a serialisability relation which

in general is not symmetric. It is applied to steps and can thus be used to

define equations generating a quotient monoid. For general comtraces, the

‘unordered, but not simultaneous’ is expressed through a separate inter-

leaving relation. The resulting quotient monoids are more expressive than

the standard trace monoid yet, at the same time, they still enjoy algebraic

properties similar to those exhibited in the standard case.

In this chapter, we bring together for the first time a whole range of

issues and concepts involved in the modelling of complex concurrent be-

haviours through suitably defined causality structures and the correspond-

ing treatment in the algebraic framework of quotient monoids. In general,

the concern of (generalised) trace theory is how to add information to obser-

vations in order to convey the essence of causality between executed actions

(i.e., the necessary ordering in the sense that cause must precede effect). We

will discuss here Mazurkiewicz traces, comtraces, and generalised comtraces

as language models of sophisticated concurrent behaviours as well as their

relational counterparts (order structures), their corresponding (extended)

Elementary Net models, and their mutual relationships.

Similarly to the relation between traces and partial orders, comtraces

correspond to stratified order structures or (so-structures) [8, 15, 17, 18],

and g-comtraces to generalised stratified order structures (gso-structures),

introduced and studied in [11, 14]. (Note that both so-structures and

gso-structures extend the standard causal partial orders if the underlying

concurrent system does not exhibit features like priorities in the above

example.) Stratified order structures have been successfully applied to

model, e.g., inhibitor and priority systems and asynchronous races (see,

e.g., [17, 24, 28]).

A main feature of our presentation which is is based, in particular,

on [14] and [29], is the close correspondence of the more expressive quotient

monoids to well motivated extensions of EN-systems, namely EN-systems

with inhibitor arcs and EN-systems with mutex arcs which we will intro-

duce in this chapter. In each case, one can lift the key properties established

for Mazurkiewicz traces and EN-systems, providing a basis for new anal-

ysis techniques and verification tools, as well as extending and enhancing

our understanding of concurrency-related phenomena like independence,

unorderedness, and simultaneity. Crucial is that for these three elemen-

tary net models, the additional information to be represented in traces,

comtraces, and generalised comtraces respectively, is indeed based on static

(i.e., structural, graph theoretic) binary relationships between events (tran-
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sitions), and does not depend on the current state of the net.

This chapter is organised in the following way. After a preliminary sec-

tion on sets and languages, we introduce monoids and equational monoids

which are later used to capture the essence of equivalent system executions.

We then describe different kinds of (relational) order structures based on

causality relationships between executed actions. The following section fo-

cuses on Mazurkiewicz traces and shows their relationship with causal par-

tial orders. We then present a thorough discussion of comtraces, their alge-

braic properties, and show their correspondence to so-structures. A similar

treatment is then applied to generalised comtraces and gso-structures. We

finally consider Elementary Net systems which are generally regarded as

the most fundamental class of Petri nets, and were indeed the model which

inspired the introduction of traces. We investigate both sequential and non-

sequential ways of executing them. The trace-based behaviour is obtained

by taking sequential executions and combining them with the structural in-

formation about the dependencies between executed actions obtained from

the graph structure of a net. That this approach is sound follows from the

fact that the partial orders defined by traces coincide with the partial order

semantics of nets represented by the non-sequential observations captured

by operationally derived processes. This treatment is then repeated for two

significant, and practically relevant, extensions of Elementary Net systems.

The first extension consists in adding inhibitor arcs to the net, and the

other in adding mutex arcs. In each case we demonstrate the necessary

generalisations of the concept of action independence, leading to comtraces

and generalised traces, respectively.

6.2 Preliminaries

In this section, we recall some well-known mathematical concepts and re-

sults that will be used throughout.

A relational tuple is a tuple rel
df
= (X1, . . . , Xm, Q1, . . . , Qn) where the

Xi’s are finite disjoint sets forming the domain, and the Qi’s are relations

involving elements of the domain and perhaps some other elements (e.g.,

labels). In all cases considered later on, a relational tuple can be viewed

as a graph of some sort and we will use the standard graphical conventions

to represent its nodes (i.e., the elements of its domain), the various rela-

tionships between these nodes, and some particular characteristics of these

nodes (e.g., labelling). We will often refer to the various components of a
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relational tuple using a subscript, e.g., Xrel or Qrel for a relational tuple

rel
df
= (X,Q, `).

A particular issue linking together different relational tuples is the idea

that what really matters is the structures they represent rather than the

identities of the elements of their domains. A technical device which can

be used to capture such a view is the following: two relational tuples, rel

and rel ′, are isomorphic if there is a bijection ψ from the domain of rel to

the domain of rel ′ such that if we replace throughout rel each element x in

its domain by ψ(x) then the result is rel ′ (this is not strictly formal, but

it should convey sufficient meaning to make the presentation clear). It is

then standard to consider isomorphic relational tuples as indistinguishable.

Sets and Relations. N denotes the set of natural numbers including

zero. The powerset of a set X is denoted by P(X), and the cardinality of

a finite set X by |X |. Sets X1, . . . Xn form a partition of a set X if they

are non-empty disjoint subsets of X such that X = X1 ∪ . . . ∪Xn.

A labelling ` for a set X is a function from X to a set of labels `(X),

and a labelled set is a pair (X, `) where X is a set and ` is a labelling

for X . The labelling is extended to finite sequences of elements of X by

`(x1 . . . xn)
df
= `(x1) . . . `(xn), and to finite sequences of subsets of X by

`(X1 . . .Xn)
df
= `(X1) . . . `(Xn).

Assumption 6.1. We assume throughout that all sets in this chapter are

labelled sets, with the default labelling simply being the identity function.

If the actual labelling is irrelevant for a particular definition or result, it

may be omitted. Moreover, whenever it is stated that two domains are the

same, we implicitly assume that their labellings are identical.

The composition R ◦ Q of two relations R ⊆ X × Y and Q ⊆ Y × Z

comprises all pairs (x, z) in X × Z for which there is y in Y such that

(x, y) ∈ R and (y, z) ∈ Q.

Definition 6.2 (Relations). Let R be a binary relation on a set X.

• R−1 df
= {(y, x) | (x, y) ∈ R}. (reverse)

• R0 = idX
df
= {(x, x) | x ∈ X}. (identity relation)

• Rn df
= Rn−1

◦R. (n-th power, n ≥ 1).

• R+ df
= R1

∪R2
∪ . . . . (transitive closure)

• R∗ df
= R0

∪R+. (reflexive transitive closure)

• Rsym df
= R ∪R−1. (symmetric closure)
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• R is symmetric, reflexive, irreflexive, transitive if, respectively,

R = R−1 , idX ⊆ R , idX ∩R = ∅ , R ◦R ⊆ R.

• R is acyclic if R+ is irreflexive.

The restriction of a function f : X → Y to a subset Z of X is denoted

by f |Z , and the restriction of a relation R ⊆ X × Y to a subset Z of

X × Y by R|Z . The domain of R is given by domR
df
= {x | (x, y) ∈ R} and

its codomain by codomR
df
= {y | (x, y) ∈ R}. We will often use the infix

notation xR y to denote that (x, y) ∈ R.

A binary relation is an equivalence relation if it is reflexive, symmetric,

and transitive. If R is an equivalence relation on X , then X/R denotes

the set of all equivalence classes of R, and [[x]]R the equivalence class of

R containing x ∈ X . (We may omit the subscript, if the relation is clear

from the context.) Given an equivalence relation R on X and a function f

defined for n-tuples of elements of X , it is often useful to lift f to n-tuples

of equivalence classes of R by setting f([[x1]], . . . , [[xn]])
df
= f(x1, . . . , xn).

Clearly, f is well-defined on X/R only if the value returned does not depend

on the choice of the elements representing the equivalence classes of R.

Partial Orders. A relation is a partial order if it is irreflexive and tran-

sitive.

Definition 6.3 (Partially ordered sets). A (strictly) partially ordered

set (or poset) po
df
= (X,≺) is a relational tuple consisting of a finite set X

and a partial order ≺ on X. Two distinct elements x, y of X are unordered,

x a y, if neither x ≺ y nor y ≺ x. Moreover, x ≺
a
y if x ≺ y or x a y, and

x ' y if x a y or x = y.

po is total (or linear) if all distinct elements of X are ordered, and strat-

ified (or weak) if ' is an equivalence relation.

Figure 6.1 shows three example posets. Note that all total posets are also

stratified.

A total poset tpo is a linearisation of a poset po with the same domain

if ≺po is included in ≺tpo . Similarly, a stratified poset spo is a stratification

of a poset po with the same domain if ≺po is included in ≺spo . We write

lin(po) for the set of all linearisations of po and strat(po) for the set of all

stratifications of po.

The intersection of a non-empty set of posets PO with the same domain

X is given by
⋂

PO

df
= (X,≺), where ≺ defined as

⋂

{≺po| po ∈ PO} is the
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tpo0: total

ax1

bx2

ax3

cx4

spo0: stratified

ax1

b x2 ax3

cx4

po0: neither total nor stratified

ax1

b x2 ax3

c x4

Fig. 6.1 Hasse diagrams of three posets showing also the labels (a, b and c) of their

elements.

relation comprising all pairs (x, y) of elements of X such that x ≺po y for

each poset po belonging to PO.

Theorem 6.4. lin(po) 6= ∅ and po =
⋂

lin(po), for every poset po.

The above result — Szpilrajn’s Theorem [45] — states that every poset

is uniquely determined by the intersection of all of its linearisations.1 The

same also holds for the set of its stratifications.

Proposition 6.5. strat(po) 6= ∅ and po =
⋂

strat(po), for every poset

po.

Proof. The first part and the (⊇) inclusion follow from Thm. 6.4 and

the observation that total posets are also stratified. The reverse inclusion

follows from ≺po ⊆ ≺spo , for each spo ∈ strat(po). �

The following result shows that each poset can be reconstructed from a

single total extension if the incomparability relation is known.

Proposition 6.6. ≺tpo\ apo = (≺tpo \ apo)
+ =≺po, for every poset po

and a linearisation tpo of po.

Proof. For all distinct a, b ∈ dompo ,

(a, b) ∈ ≺tpo\ apo ⇐⇒ a ≺tpo b ∧ (a ≺po b ∨ b ≺po a) ⇐⇒ a ≺po b .

Hence ≺tpo \ apo =≺po. Moreover, since each partial order relation is

transitive, we obtain that ≺tpo\ apo = (≺tpo\ apo)
+. �

Sequences and Step Sequences. Alphabets, sequences and step se-

quences are some of the main notions used for representing the behaviour

of an evolving computing system:
1
In the general case, when domains can be infinite, the proof requires the use of the

Kuratowski-Zorn Lemma [7, 45].
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• an alphabet E is a finite non-empty set of symbols (interpreted as

events);

• a sequence (over E) is a finite string a1 . . . an of symbols (from E);

• a step (over E) is a non-empty subset of E; and

• a step sequence (over E) is a finite string A1 . . . An of steps (over

E).

The empty (step) sequence, corresponding to the case n = 0, is denoted by

λ.

As singleton sets can be identified with their only elements, sequences

of symbols can be seen as special step sequences. We will take advantage

of this by introducing some of the notions only for step sequences, and

leaving their obvious specialisation for sequences implicit. Moreover, we

will usually (but not always) drop the set brackets of singleton sets.

Definition 6.7 (Step sequences). Let u = A1 . . . An and v = B1 . . . Bm

be two step sequences.

• uv
df
= A1 . . . AnB1 . . . Bm is the concatenation of u and v.

• len(u)
df
= n is the length of u.

• wgt(u)
df
= |A1|+ · · ·+ |An| is the weight of u.

• alph(u) comprises all symbols occurring within u.

• #a(u) is the number of occurrences of a symbol a within u.

• occ(u) is the set of symbol occurrences of u comprising all indexed

symbols ai with a ∈ alph(u) and 1 ≤ i ≤ #a(u).

• posu(a
i)

df
= min{j | #a(A1 . . . Aj) = i} is the position of ai within

u.

• `(ai)
df
= a is the default label of the symbol occurrence ai.

Consider u = {a, b}b{a, b, c}{c, d} and v = {b, d}{b, c, d}. Then
we have the following:

alph(u) = {a, b, c, d} alph(v) = {b, c, d}
len(u) = 4 len(v) = 2
wgt(u) = 8 wgt(v) = 5
#a(u) = 2 #b(u) = 2
pos

u
(a2) = 3 pos

v
(d1) = 1

`(a2) = a `(d1) = d .

Moreover, we have occ(u) = {a1
, a

2
, b

1
, b

2
, b

3
, c

1
, c

2
, d

1
} as well

as occ(v) = {b1, b2, c1, d1, d2}.
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Monoids. We will now outline a general approach aimed at introducing

structure to the otherwise plain sets of sequences and step sequences by

essentially grouping them into clusters of equivalent evolutions. The whole

approach is underpinned by the notion of a monoid.

Definition 6.8 (Monoids). A monoid is a triple M
df
= (X, ◦,1) where

X is a (possibly infinite) set, ◦ is a binary operation on X, and 1 is an

element of X, such that (a ◦ b) ◦ c = a ◦ (b ◦ c) and a ◦ 1 = 1 ◦ a = a, for all

a, b, c ∈ X.

The monoid (X, ◦,1) for which there is a finite set E such that 1 ∈ X\E

and X\{1} is the set of all elements that can be constructed from E using

◦, is called the monoid generated by E and ◦.

We will be interested in two kinds of monoids, viz. monoids of sequences,

and monoids of step sequences, over a given alphabet E.

If ◦ is the sequence concatenation operation, then (E∗, ◦, λ) is the free

monoid of sequences over E. In this case one can assume that the elements

of E have no internal structure. As a result, the only readily available

relationship between two elements of E is (in)equality, and the only oper-

ation we can apply to the sequences in E∗ is concatenation. The situation

becomes much more interesting if we are to consider step sequences.

Let S be a step alphabet given as a non-empty set of steps over an alpha-

bet E. The monoid (S∗, ◦, λ) of step sequences, where ◦ is step sequence

concatenation, is the free monoid of step sequences over S. Since the el-

ements of S are sets, one can — in addition to concatenation — use the

standard set theoretic relationships and operators to manipulate them.

Definition 6.9 (Congruences and quotient monoids). A congruence

in a monoid M = (X, ◦,1) is an equivalence relation ∼ on X such that

a ∼ b and c ∼ d implies a ◦ c ∼ b ◦ d, for all a, b, c, d ∈ X. In such a case,

the triple M∼
df
= (X/∼, ◦̂, [[1]]) with [[a]]◦̂[[b]]

df
= [[a ◦ b]], for all a, b ∈ X, is

the quotient monoid ofM w.r.t. congruence ∼.

Note that ◦̂ is a well-defined operation, and thatM∼ is indeed a monoid.

The mapping φ : X → X/∼ given by φ(a)
df
= [[a]] is the natural homo-

morphism generated by the congruence ∼ (for more details see, e.g., [1]).

The operation symbols ◦ and ◦̂ are often omitted if this does not lead to

confusion.

Equational Monoids. Quotient monoids defined by congruence rela-

tions provide a convenient way of introducing algebraic structure to sets of
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behaviours of evolving systems. In the approach presented in this chapter,

a key role is played by quotient monoids defined by congruences induced

by systems of equations on sequences and step sequences.

LetM = (X, ◦,1) be a monoid and let EQ
df
=

{

x1 = y1 . . . xn = yn
}

,

where xi, yi ∈ X for 1 ≤ i ≤ n, be a finite set of equations over M. The

congruence defined by EQ is the least congruence≡ inM such that xi ≡ yi,

for every i ≤ n. This congruence is also referred to as the EQ -congruence

and denoted by ≡EQ , or simply ≡ if no confusion can arise.

The quotient monoidM≡
df
= (X/≡, ◦̂, [[1]]) is the equational monoid gener-

ated by EQ (for more details see, e.g., [21, 37]).

The next result demonstrates that EQ -congruence can be defined more

directly using a binary relation ≈EQ on X (or simply ≈), comprising all

pairs (x, y) ∈ X ×X for which there are u,w ∈ X and 1 ≤ i ≤ n such that

the following hold: x = u ◦ xi ◦ w and y = u ◦ yi ◦ w.

Proposition 6.10. ≡EQ is the reflexive, symmetric, and transitive closure

of ≈.

Proof. Clearly, R
df
= (≈sym)∗ is an equivalence relation. We now observe

that if we have t ≈sym v then, for every w ∈ X , t ◦ w ≈sym v ◦ w and

w ◦ t ≈sym w ◦ v. Hence t R v implies t ◦ w R v ◦ w and w ◦ t R w ◦ v,

for every w ∈ X . As a result, t R v and t′ R v′ together imply that

t ◦ t′ R v ◦ t′ R v ◦ v′, and so R is a congruence inM.

Let ∼ be a congruence inM such that xi ∼ yi, for every i ≤ n. Clearly,

x ≈sym y implies x ∼ y. Hence, x R y implies x ∼ y. Thus, R also satisfies

the minimality requirement and, as a result, is equal to ≡EQ . �

We will now present three kinds of equational monoids which will be

used in the rest of this chapter.

Partially Commutative Monoids. For a monoid M = (X, ◦,1) gen-

erated by E and ◦. and equation set EQ
df
=

{

a1 ◦ b1 = b1 ◦ a1 . . . an ◦ bn =

bn ◦ an
}

, where a1, . . . , an, b1, . . . , bn ∈ E, the equational monoid M≡ is

partially commutative [2]. In particular, when M is the free monoid of

sequences over alphabet E and ◦ is concatenation, the elements of M≡
are called Mazurkiewicz traces [32] or simply traces and the equations

ai ◦ bi = bi ◦ ai are interpreted as signifying that events ai and bi are

independent or concurrent.

Consider E0

df
= {a, b, c} and EQ

0

df
=

{
bc = cb

}
.

Then, for example, we have abcbca ≡ accbba as abcbca ≈
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acbbca ≈ acbcba ≈ accbba. Take the following three mem-

bers of E
∗

0/≡: y
df
= [[abc]] = {abc, acb}, x

df
= [[abcbca]] =

{abcbca, abccba, acbbca, acbcba, abbcca, accbba} and z
df
= [[bca]] =

{bca, cba}. Then x = y◦̂z as abcbca = abc ◦ bca.

Absorbing Monoids. Let (S∗, ◦, λ) be a free monoid of step sequences

with S being subset closed,2 and let ≡ be the EQ-congruence generated by

a set of equations EQ
df
=

{

C1 = A1 ◦B1 . . . Cn = An ◦Bn

}

, where each Ci

belongs to S and Ai, Bi form a partition of Ci. Then the quotient monoid

(S∗/≡, ◦̂, [[λ]]) is an absorbing monoid of step sequences [21].

Consider E1

df
= {a, b, c} and S1

df
=

{
{a, b, c}, {a, b}, {b, c}, {a, c},

a, b, c
}
, as well as the following set of two equations:

EQ
1

df
=

{
{a, b, c} = {a, b}c {a, b, c} = a{b, c}

}
.

Then we have {a, b}ca{b, c} ≡ a{b, c}{a, b}c since

{a, b}ca{b, c} ≈ {a, b, c}a{b, c} ≈ {a, b, c}{a, b, c}

≈ a{b, c}{a, b, c} ≈ a{b, c}{a, b}c .

Take the following two members of S∗

/≡:

x
df
= [[{a, b, c}]] =

{
{a, b, c}, {a, b}c, a{b, c}

}

y
df
= [[{a, b}ca{b, c}]] =






{a, b, c}{a, b, c} {a, b, c}{a, b}c

{a, b, c}a{b, c} {a, b}c{a, b, c}

{a, b}c{a, b}c {a, b}ca{b, c}

a{b, c}{a, b, c} a{b, c}{a, b}c

a{b, c}a{b, c}






Then y = x◦̂x since we have {a, b}ca{b, c} ≡ {a, b, c} ◦ {a, b, c}.

Partially Commutative Absorbing Monoids. Consider again a step

sequence monoid (S∗, ◦, λ) with S being subset closed. Let ≡ be the EQ-

congruence generated by the following set of equations:

EQ
df
=

{

C1 = A1 ◦B1 . . . Cn = An ◦Bn

D1 ◦ F1 = F1 ◦D1 . . . Dm ◦ Fm = Fm ◦Dm

}

where the equations in the upper row are as in the previous case and,
for each j ≤ m, Dj and Fj are disjoint steps in S such that Dj ∪ Fj /∈ S.
Then the quotient monoid (S∗/≡, ◦̂, [[λ]]) is a partially commutative absorbing
monoid of step sequences.

2
That is, all non-empty subsets of a step A ∈ S belong to S.
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Consider E2

df
= {a, b, c} and S2

df
=

{
{a, b}, {b, c}, a, b, c

}
, as

well as the set of equations EQ
df
=

{
{b, c} = bc {a, b} =

ab ac = ca
}
. Then bacb ≡ {b, c}{a, b} since

bacb ≈ bcab ≈ {b, c}{a, b}.

6.3 Partial Orders and Order Structures

In this section, we associate the monoids of the previous section to relational

structures with the aim of arriving at a formal representation of the causal

ordering underlying their elements. First we investigate sequences and step

sequences themselves.

Clearly, sequences convey a linear (total) ordering of their elements.

Conversely, the elements of a total poset tpo = (X,≺) can be listed as a

(unique) sequence x1 . . . xn such that xi ≺ xj iff i < j. The sequence

generated by tpo is then defined as seq(tpo)
df
= `(x1 . . . xn) where ` is the

labelling associated with X . Total orders are isomorphic iff the sequences

they generate are the same. As observed above, every sequence u corre-

sponds to a total poset tpo such that seq(tpo) = u. Since all such total

posets are isomorphic it does not really matter which one is chosen and so

it is convenient to single out one, based on the symbol occurrences of the

sequence u. This total poset is called the canonical total poset of u and

is defined as cantpo(u)
df
= (occ(u),≺) where α ≺ β if posu(α) < posu(β).

Distinct sequences have distinct canonical total posets, and the sequence

generated by the canonical total poset of a sequence is that sequence itself.

For step sequences, the situation is more complicated. Such sequences

are not linear with respect to their symbol occurrences and so identifying

a canonical partial order reflecting its structure requires some preparation.

We begin by associating symbol occurrences to the steps in a step sequence.

For a step sequence u = A1 . . . Ak, its enumerated step sequence is given

by û
df
= ̂A1 . . . ̂Ak where, for each i ≤ k, ̂Ai

df
=

{

a#a(A1...Ai)
| a ∈ Ai

}

.

Clearly, `(û) = u which means that it is always possible to reconstruct

the original step sequence from its enumerated version. Next, we define

two relations ≺u and 'u on the symbol occurrences of u such that, for all

α, β ∈ occ(u):

α ≺u β
df
⇐⇒ posu(α) < posu(β)

α 'u β
df
⇐⇒ posu(α) = posu(β) .

Since 'u captures the ‘unordered w.r.t. ≺u or equal’ relationship, it follows
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cantpo(abbac)

a

a1
b

b1
b

b2
a

a2
c

c1

canspo(a{a, b}c)

a

a1

a

a2

b

b1
c

c1

Fig. 6.2 Hasse diagram of the canonical posets of a sequence and step sequence. Both

identities of nodes (symbol occurrences) and their labels are shown.

that canspo(u)
df
= (occ(u),≺u) is a stratified poset, called the canonical

stratified poset of u.

Proposition 6.11. For every step sequence u, 'u is an equivalence rela-

tion.

The total poset tpo
0
of Figure 6.1 is represented by the se-

quence abac. Figure 6.2 shows the canonical total poset of

the sequence abbac. For the step sequence u
df
= a{a, b}c,

the symbol occurrences are occ(u) = {a1
, a

2
, b

1
, c

1
}, and its

enumerated step sequence is û = a
1
{a

2
, b

1
}c

1. Figure 6.2
shows the canonical total poset of u. Moreover, we have
≺u=

{
(a1

, a
2), (a1

, b
1), (a1

, c
1), (a2

, c
1), (b1, c1)

}
as well as 'u=

idocc(u) ∪

{
(a2

, b
1), (b1, a2)

}
.

Conversely, a stratified poset spo is represented by the step sequence

stepseq(spo)
df
= B1 . . . Bk where B1, . . . , Bk are the equivalence classes of

'spo and ≺spo =
⋃

i<j≤k Bi × Bj . The soundness of this notion follows

immediately from the next result.

Proposition 6.12. If spo is a stratified poset and A,B are two distinct

equivalence classes of 'spo, then either A × B or B × A is included in

≺spo.

Proof. We have A × B ⊆ ≺spo ∪ ≺
−1
spo since A and B are two distinct

equivalence classes of 'spo . Suppose that a, b ∈ A and c, d ∈ B are such

that a ≺ c and d ≺ b. Then, a ≺ d implies a ≺ b contradicting a a b, and

d ≺ a implies d ≺ c contradicting d a c. Hence A×B either is included in

≺spo or in ≺−1
spo . �

The above result implies that the set of equivalence classes of the re-

lation 'spo is totally ordered in a rather natural way. Propositions 6.11

and 6.12 are fundamental for the understanding of equivalence between

stratified posets and step sequences. Since sequences are special cases of
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step sequences and total posets are special cases of stratified posets, the

above results can be applied also to sequences and total posets. Then, for

each sequence u, canspo(u) = cantpo(u). Moreover, for every total poset

tpo, we have seq(tpo) = `(stepseq(tpo)).

Canonical Extensions of Posets. It turns out that each poset has a

unique stratified extension that can be interpreted as the ‘greedy’, i.e.,

maximally concurrent, execution consistent with the causality relation rep-

resented by this poset.

Proposition 6.13. For every poset po, there is a unique stratification spo

with stepseq(spo) = B1 . . . Bk such that, for all i ≥ 2 and b ∈ Bi, there is

a ∈ Bi−1 satisfying a ≺po b.

Proof. Let S(po) be the set of all stratifications of po for which the

property from the formulation of this proposition holds. We will show that

|S(po)| = 1, by induction on the size of Xpo . In the base case, Xpo = ∅,

we have S(po) = {po} and so the property holds.

In the induction step, let B be the set of all minimal elements of po

(i.e., a ∈ B if there is no b such that b ≺po a), and let po′ be po restricted

to Xpo\B. Then:

B1 . . . Bk ∈ stepseq(S(po)) =⇒ B1 = B ∧ B2 . . . Bk ∈ stepseq(S(po′))
B1 . . . Bk ∈ stepseq(S(po′)) =⇒ BB1 . . . Bk ∈ stepseq(S(po)) .

Both implications follow from the definitions of S(po) and of the minimal

elements of a poset. Then the first implication can be used to show that

|S(po)| ≤ 1, and the second that |S(po)| > 0. Note that the induction

hypothesis can be applied to S(po′) since B 6= ∅ as Xpo is finite and non-

empty. �

The poset from Prop. 6.13 will be denoted by canstratposet(po) and

referred to as the canonical stratified extension of po. It will play a key

role in establishing a connection between equational monoids and their

relational counterparts.

Defining a unique total extension of a poset is more difficult. We use

a somewhat complicated mechanism to achieve the desired result which

resorts to an additional total order in cases when the canonical stratified

extension cannot order two elements.

Formally, given a poset po and a total poset tpo with the same domain

as po, the canonical total extension of po w.r.t. tpo is the linearisation tpo′
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of po, denoted by cantotalposet tpo(po), such that for all a, b ∈ Xpo ,

a ≺tpo′ b ⇐⇒ a ≺canstratposet(po) b ∨ (a acanstratposet(po) b ∧ a ≺tpo b) .

In other words, elements belonging to the same equivalence class of aspo

are ordered according to tpo, and otherwise the ordering is inherited from

spo.

For the poset po
0
of Figure 6.1, canstratposet (po

0
) = spo

0
.

Moreover, if we take tpo with x2 ≺tpo x3, then we have the fol-
lowing: cantotalposet tpo(po0

) = cantotalposet tpo(spo0
) = tpo

0
.

Relational Invariants of Sets of Posets. We will now consider rela-

tional representations of sets of posets. Throughout this subsection we use

∆ to denote a set of posets with the same domain X and belonging to a

class of posets O. In particular, we will consider the class TO of the total

posets and the class SO of the stratified posets.3

Definition 6.14 (Relational invariants). A relational invariant over ∆

is any relation

inv∆
df
=

{

(x, y) ∈ X ×X | x 6= y ∧ ∀z ∈ ∆ : inv
}

where inv is a well-formed propositional formula built from the standard

logic connectives and three basic formulas: x ≺z y, y ≺z x and x az y.

Each relational invariant describes a fundamental relationship between

two elements of X which is common to all the posets included in ∆. For

example, (x ≺z y)∆ comprises all pairs (a, b) of elements of X such that

a precedes b in every poset z belonging to ∆. We will be particularly

interested in four relational invariants:


∆
df
= (x ≺z y ∨ y ≺z x)∆ <∆

df
= (x ≺z y ∨ x az y)∆

≺∆
df
= (x ≺z y)∆ ./∆

df
= (x az y)∆ .

In general, knowing explicitly all invariant relationships is not necessary,

for example, (y ≺z x)∆ is the reverse of (x ≺z y)∆. We call a subset of

relational invariants an invariant representation of ∆ if this subset uniquely

identifies all the remaining relational invariants.

Proposition 6.15. Each relational invariant is equal to one of the follow-

ing:

∅ 
∆ <∆ <
−1
∆ ≺∆ ≺

−1
∆ ./∆ X ×X\idX

Moreover, 
∆ and <∆ form an invariant representation of ∆.

3
A discussion of other classes of posets can be found in [14].
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Proof. The first part follows directly from the definitions, and the second

from an observation that ≺∆ and ./∆ are respectively equal to 
∆ ∩ <∆

and <∆ ∩ <
−1
∆ . �

Hence, in order to get a complete information about the relational in-

variants, one can always take 
∆ and <∆, or simply ≺∆ if O = TO as in

this case 
∆ and <∆ are respectively equal to ≺∆ ∪ ≺
−1
∆ and ≺∆.

The invariant closure ∆icl
O

of ∆ in O comprises all posets po ∈ O

with domain X such that inv∆ = inv∆∪{po}, for every formula inv as

in Defn. 6.14. We also say that ∆ is closed in O if ∆ = ∆icl
O

(note that

∆ ⊆ ∆icl
O

always holds). Intuitively, a poset po belongs to ∆icl
O

if it obeys

all relationships captured by the relational invariants of ∆.

Proposition 6.16. A poset po ∈ O with domain X belongs to ∆icl
O

iff

x
∆ y =⇒ x ≺po y ∨ y ≺po x

x <∆ y =⇒ x ≺po y ∨ x apo y

for all x, y ∈ X. A total poset tpo with domain X belongs to ∆icl
TO

iff

x ≺∆ y =⇒ x ≺tpo y

for all x, y ∈ X.

Proof. Follows from the second part of Prop. 6.15, and the observation

that ≺∆ is an invariant representation of ∆ if O = TO. �

Clearly, (X,≺∆) is a poset. Hence, if ∆ is a set of total posets which is

closed in TO, then ∆icl
TO

= lin(X,≺∆) and so ∆ is completely represented

by (X,≺∆). In this context, Thm. 6.4 (Szpilrajn’s Theorem) implies that,

for every poset po, the set lin(po) is closed in the class of total posets.

In concurrency theory, when system runs are modelled by sequences,

a closed set of total posets is interpreted as a grouping of all equivalent

concurrent runs (executions) of some concurrent history (or behaviour).

Then, e.g., ∆ = {abc, cba} does not correspond to a concurrent history.

Indeed, since the intersection of the orders induced by abc and cba is empty,

we have ≺∆= ∅. As a consequence, there is no causal relationship between

a, b, and c. This means that, e.g., bca is also a possible run, contradicting

bca /∈ ∆. However, ∆icl
TO

=
{

abc, bac, acb, bca, cab, aba
}

can be considered

as a concurrent history.

If ∆ is to be interpreted as a concurrent history then, depending on

the assumed model of concurrency, some additional constraints may have
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to be added. For example, the following ‘diagonal rule’ — or ‘diamond

property’ — by which simultaneity is the same as the possibility to occur

in any order:
∀x, y ∈ X : (∃po ∈ ∆ : x apo y)

⇐⇒

(∃po ∈ ∆ : x ≺po y) ∧ (∃po ∈ ∆ : y ≺po x) .

(π8)

Constraints like π8 — called paradigms in [14, 16] — are essentially sup-

positions or statements about the intended treatment of simultaneity.

Proposition 6.17. If ∆ belongs to SO and satisfies π8, then a stratified

poset spo with domain X belongs to ∆icl
SO

iff

x ≺∆ y =⇒ x ≺spo y

for all x, y ∈ X. Moreover, ∆icl
SO

= strat(X,≺∆).

Proof. The first part follows since in this case 
∆ and <∆ are respec-

tively equal to ≺sym
∆ and ≺∆. The second part follows from the first part

and O = SO. �

Hence a set of stratified posets ∆, closed in SO and satisfying π8, is

completely represented by the poset (X,≺∆). However this is not, in gen-

eral, true if ∆ does not satisfy π8. In this context, Prop. 6.5 implies that,

for every poset po, the set strat(X,≺po) is closed in SO.

To express the relations ‘not later than’ and ‘unordered, but not neces-

sarily simultaneous’, one has to weaken paradigm π8. The ‘not later than’

relation can be modelled by dropping the requirement that simultaneity

should imply unorderedness leading to the following paradigm:
∀x, y ∈ X : (∃po ∈ ∆ : x ≺po y) ∧ (∃po ∈ ∆ : y ≺po x)

=⇒

(∃po ∈ ∆ : x apo y) .

(π3)

Proposition 6.18. If ∆ satisfies π3 then ≺∆ and <∆ form an invariant

representation of ∆.

Proof. Follows from the fact that π3 implies that 
∆ is equal to ≺sym
∆ .

�

The symmetric counterpart of π3:
∀x, y ∈ X : (∃po ∈ ∆ : x apo y)

=⇒

(∃po ∈ ∆ : x ≺po y) ∧ (∃po ∈ ∆ : y ≺po x)

(π6)

does not simplify theory too much. If ∆ satisfies π6 but not π3, we need

both 
∆ and <∆ to form in the general case an invariant representation

of ∆ [14].
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Stratified Order Structures. In this subsection we add a second or-

dering relation to partial orders that can be used to capture the concept of

the ‘not later than’ relationship between events of a concurrent history.

Definition 6.19 (Stratified order structure). A stratified order struc-

ture (or so-structure) is a relational structure S
df
= (X,≺,<) where ≺

( causality) and < (weak causality) are binary relations on X such that,

for all a, b, c ∈ X:

S1: a 6< a S3: a < b < c ∧ a 6= c =⇒ a < c

S2: a ≺ b =⇒ a < b S4: a < b ≺ c ∨ a ≺ b < c =⇒ a ≺ c .

The axioms (S1)–(S4) imply that ≺ is a partial order relation, and that

a ≺ b implies b 6< a. The relation≺ represents the ‘earlier than’ relationship

on the domain of S, and the relation < the ‘not later than’ relationship.

The four axioms model the mutual relationship between ‘earlier than’ and

‘not later than’ relations, when system runs are modelled by step sequences

(stratified posets).

So-structures were independently introduced in [8] and [15] (where the

axioms were slightly different from the above, though equivalent). Their

comprehensive theory has been presented in [18], and they have been suc-

cessfully used, e.g., to model inhibitor and priority systems, asynchronous

races and synthesis problems (see, e.g., [28, 24]).

The adjective ‘stratified’ is motivated by the following result [16].

Proposition 6.20. Let ∆ be a non-empty set of stratified posets with the

same domain X. Then S∆
df
= (X,≺∆,<∆) is an so-structure. Moreover,

for every stratified poset spo, Sspo
df
= (Xspo ,≺spo ,<spo) with <spo

df
=≺spo

∪ aspo, is an so-structure.

Conversely, so-structures can be extended to stratified posets.

Definition 6.21 (Stratified poset extension). Let S = (X,≺,<) be

an so-structure. A stratified poset spo is a stratified poset extension of

S if it has the same domain and, for all a, b ∈ X:

a ≺ b =⇒ a ≺spo b and a < b =⇒ a <spo b .

We denote this by spo ∈ ext(S).

According to Szpilrajn’s Theorem, posets can be reconstructed by in-

tersecting their linearisations. A similar result holds for so-structures and

their stratified poset extensions [18].
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Theorem 6.22. If S is an so-structure then ext(S) 6= ∅ and

S =
(

XS ,
⋂

spo∈ext(S)

≺spo ,
⋂

spo∈ext(S)

<spo

)

.

The set of stratified poset extensions of an so-structure always satisfies

paradigm π3 (see [16]). This is a useful characteristic which simplifies proofs

but, at the same time, somewhat restricts potential applications.

Theorem 6.23. If a and b are two elements of an so-structure S then:

∃spo ∈ ext(S) : a ≺spo b

∃spo ∈ ext(S) : b ≺spo a

}

=⇒ ∃spo ∈ ext(S) : a aspo b .

Whenever ∆ is closed in SO, the class of stratified posets, and ∆ satisfies

π3, then ∆ = ext(X∆,≺∆,<∆).

Corollary 6.24. If ∆ belongs to SO and ∆ satisfies π3, then

∆icl
SO

= ext(X∆,≺∆,<∆) .

Hence a set of stratified posets ∆, closed in SO, and satisfying π3 is

completely represented by the so-structure S∆
df
= (X∆,≺∆,<∆). Moreover,

by Thm. 6.22, we have that for every stratified poset structure S, the set

ext(S) is closed in the class of stratified posets. However, this no longer

holds if ∆ fails to satisfy π3.

Generalised Stratified Order Structures. Stratified order structures

can adequately model concurrent histories when π3 is satisfied. However,

when system runs are defined as stratified posets and π3 is not satisfied, one

needs more general so-structures, as introduced in [11] and then analysed

in [14].

Definition 6.25 (Gso-structure). A gso-structure is a relational tuple

G
df
= (X,
,<) such that the relation 
 is symmetric and irreflexive, < is

irreflexive, and SG
df
= (X,
 ∩ <,<) is an so-structure ( induced by G).

The commutativity relationship 
 represents the ‘earlier than or later

than, but never simultaneous’ relationship, while < again represents the

‘not later than’ relationship.

Definition 6.26 (Stratified poset extensions). Let G = (X,
,<) be

a gso-structure. A stratified poset spo is a stratified poset extension of G
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if it has the same domain and, for all a, b ∈ XG:

a
 b =⇒ a ≺sym
spo b and a < b =⇒ a <spo b .

We denote this by spo ∈ ext(G).

We then have the following [16].

Proposition 6.27. For every non-empty set ∆ of stratified posets with the

same domain X, G∆
df
= (X,
∆,<∆) is a gso-structure. Moreover, for

every stratified poset spo, Gspo
df
= (X,≺sym

spo ,<spo) is a gso-structure.

Each gso-structure can be uniquely reconstructed from its stratified

poset extensions [11, 14].

Theorem 6.28. If G is a gso-structure then ext(G) 6= ∅ and

G =
(

XG,
⋂

spo∈ext(G)

≺
sym
spo ,

⋂

spo∈ext(G)

<spo

)

.

It turns out that gso-structures do not have an equivalent of Thm. 6.23

which tends to make proofs more difficult, but they can model the most

general concurrent behaviours in the case that observations are modelled

by stratified posets (step sequences) [14].

In a concurrency framework, the results of this subsection could be in-

terpreted as follows. If ∆ is closed in SO, the class of stratified posets, then

we have that ∆ = ext(X∆,
∆,<∆) and so ∆ is completely represented by

the generalised stratified order structure G∆
df
= (X,
∆,<∆). Moreover, by

Thm. 6.28, we have that, for every generalised stratified order structure G,

the set ext(G) is closed in the class of stratified posets. In this case no con-

straint on the structure of ∆ is assumed (paradigm π1 in the terminology

of [16]).

6.4 Mazurkiewicz Traces

Sequences represent a purely sequential view of executed actions. As such,

no further information is provided about the intrinsic dependencies among

their actions and the resulting necessary ordering of their occurrences. The

introduction of traces starts from the definition of a concurrency alphabet,

which simply states which pairs of symbols represent independent actions

(i.e., not interfering with each other) and should be treated as concurrent.

Monoids of Mazurkiewicz traces (or traces) are equational, partially

commutative, monoids of sequences. The theory of trace monoids has been
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developed and applied within diverse areas, such as combinatorics [2] and,

in particular, concurrency theory [4, 32]. Applications of traces in concur-

rency theory are motivated mainly by the fact that traces are the sequence

counterpart of posets, and thus have the ability to model causality seman-

tics.

Let E be an alphabet,M
df
= (E∗, ◦, λ) be the free monoid of sequences

generated by E, and ind be an irreflexive and symmetric binary relation on

E, called independence relation. Then the pair Γ
df
= (E, ind) will be called a

trace alphabet. For such a trace alphabet Γ, we define the set of equations:

EQ ind

df
=

{

ab = ba | (a, b) ∈ ind
}

and we refer to ≡ind , the congruence defined by EQ ind , as a trace con-

gruence. The partially commutative monoid M≡ind
is also called a trace

monoid. A simple trace monoid was already given for E0 and EQ0.

We will now discuss the concept of a canonical form for the traces

from M≡ind
. First, a sequence x = a1 . . . ak ∈ E∗ is fully commutative

if (ai, aj) ∈ ind for all i 6= j. Similar to the use of a total poset to identify

a canonical total extension of a poset, we assume also that we have a total

poset lexpo on E extended to a total (lexicographical) ordering of E∗.
A sequence x ∈ E∗ is in (Foata) canonical form (w.r.t. ind and lexpo),

if x = λ or x = x1 . . . xn, with each xi ∈ E
∗
\{λ}, is such that:

• each xi is fully commutative and minimal w.r.t. lexpo among all

sequences u ∈ E∗ satisfying occ(xi) = occ(u); and

• for all i < n and a ∈ E occurring in xi+1, there is b ∈ E occurring

in xi such that (a, b) /∈ ind .

If x is in canonical form, then x is the (Foata) canonical representation of

[[x]]. The following result [2, 20] justifies the terminology.

Theorem 6.29. Every trace contains exactly one sequence in canonical

form.

Relationship with Partial Orders. We will now show how a trace

[[x]] can be represented by a poset. First, since occ(x) = occ(y), for every

y ∈ [[x]], we can define occ([[x]])
df
= occ(x). Furthermore, we let

cantpo([[x]])
df
=

{

cantpo(y) | y ∈ [[x]]
}

consist of all canonical total posets associated with the elements of the

trace. Now, let ρy be the relation on the symbol occurrences of y ∈ [[x]]

such that

(ai, bj) ∈ ρy ⇐⇒ ai ≺cantpo(y) b
j
∧ (a, b) /∈ ind .
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Such a relation is always acyclic, and so seqpo(y)
df
= (occ(y), ρ+y ) is a poset

derived from the ordering of dependent symbol occurrences in y. Then we

define:

trpo([[x]])
df
=

⋂

{seqpo(y) | y ∈ [[x]]}

and call it the poset generated by the trace [[x]].

For the trace [[abcbca]] over E0 and EQ
0
, the Hasse diagram

of the generated poset trpo([[abcbca]]) with all the labels shown
looks as in Figure 6.3.

a1
a

c1
c

c2
c

b1
b

b2
b

a2
a

Fig. 6.3 Poset generated by a trace.

The proofs of the next three theorems are simplified versions of similar

results presented later on for comtraces. Therefore, we will here only provide

pointers to these results and their proofs.

The first theorem states that all elements in a trace have the same order-

ing of dependent symbol occurrences. Consequently, the poset generated

by a trace is simply the poset of any single representative of the trace.

Moreover, the linearisations of any such poset give exactly all elements of

the trace.

Theorem 6.30. Let [[x]] be a trace and y ∈ [[x]].

(1) ρx = ρy.

(2) trpo([[x]]) = seqpo(y).

(3) lin(trpo([[x]])) = cantpo([[x]]).

Proof. Part (1) follows from Lem. 6.49 and its proof, part (2) follows

from Thm. 6.53(3) and its proof, and part (3) follows from Thm. 6.53(2)

and its proof. �

Conversely, when unorderedness is viewed as independence, the words

generated by the linearisations of a poset form a trace.

Theorem 6.31. For each poset po with the identity function labelling its

domain, the set of sequences tpo
df
= {seq(tpo) | tpo ∈ lin(po)} is a trace over

the trace alphabet Γ = (Xpo ,'po).
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Proof. From Thm. 6.57 and its proof. �

Finally, it can be shown that the (Foata) canonical representation of a

trace corresponds to the canonical total extension of the poset generated by

that trace. For a total poset lexpo with domain E, we extend lexpo to the

set of symbol occurrences occ(x) of a word x ∈ E∗ as follows: ai ≺lexpo b
j

if a ≺lexpo b; and a
i
≺lexpo a

j if i < j.

Theorem 6.32. For every trace t and its canonical representation x,

cantpo(x) = cantotalposet lexpo(trpo(t)).

Proof. From Prop. 6.51 and its proof. �

Together with Thm. 6.30 this implies that given a total order on its

alphabet, the (Foata) canonical representation of a trace can be read off

directly from any single representative.

It is worth noting at this point, that by the above results, investigating

a single element of a trace is often sufficient. This then leads to more

efficient techniques for analysis and manipulation of traces. Calculating,

e.g., the poset trpo([[x]]) generated by trace [[x]] directly from the definition

may in the worst case involve exponentially many elements of [[x]], whereas

the complexity of calculating ≺y, for y ∈ [[x]], is dominated by just the

complexity O(len(y)3) of calculating the transitive closure of ρy.

6.5 Comtraces

Traces and partial orders represent independence through an absence of

ordering (including possible simultaneity) between individual events. Con-

sequently, these models are not expressive enough to capture the possibility

of one event occurring ‘not later than’ another one, meaning that the first

event may occur ‘earlier than or simultaneous with’ the second event. To

overcome this limitation, comtraces are defined in terms of step sequences

with each step representing simultaneity of the events in that step. In ad-

dition, a serialisability relation (in general not symmetric) describes if and

how simultaneous pairs of events may be sequentialised, i.e., occur one after

the other. Thus the underlying monoid is generated by steps and the simul-

taneity and serialisability relations are applied to steps to define equations

generating the quotient monoid of comtraces.

Throughout this section, let E be an alphabet and ser ⊆ sim ⊂ E × E

be two relations respectively called serialisability and simultaneity such
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that the relation sim is irreflexive and symmetric. Then Θ
df
= (E, sim , ser)

is a comtrace alphabet. Intuitively, if (a, b) ∈ sim then, whenever a and b

both occur, they occur simultaneously, whereas (a, b) ∈ ser means that in

addition a may occur before b (with both executions being equivalent). The

set of all (potential) steps over Θ is then defined as the following subset-

closed step alphabet:

S
df
=

{

A | ∅ 6= A ⊆ E ∧ ∀a 6= b ∈ A : (a, b) ∈ sim
}

.

The comtrace congruence over Θ is the EQ -congruence ≡ defined by the

equations

EQ
df
=

{

A = BC | A = B ∪ C ∈ S ∧ B × C ⊆ ser
}

.

Since ser is irreflexive, for each equation A = BC in EQ , we have B ∩C =

∅.

Definition 6.33 (Comtraces). (S∗/≡, ◦̂, [[λ]]) is the (equational) monoid

of comtraces over Θ.

Note that (S∗/≡, ◦̂, [[λ]]) is an absorbing monoid. By Prop. 6.10, the com-

trace congruence relation can be re-defined in a non-equational form, as

follows.

Corollary 6.34. Let ≈ be the relation comprising all pairs (u, v) of step se-

quences in S
∗ such that u = wAz and v = wBCz, where w, z are sequences

in S
∗ and A, B, C are steps in S satisfying B ∪ C = A and B × C ⊆ ser .

Then ≡ is equal to (≈sym)∗.

Let E
df
= {a, b, c} where a, b and c are actions respectively representing

three assignments: x← x+y, x← y+2 and y ← y+1. If simultaneous
reading is allowed, then b and c can be performed simultaneously, and the
simultaneous execution of b and c gives the same outcome as executing

b followed by c. We can therefore set sim
df
= {(b, c), (c, b)} and ser

df
={

(b, c)
}
and then we obtain that S = {a, b, c, {b, c}} and EQ = { {b, c} =

bc }. As a result we have that, for example, [[a{b, c}]] = {a{b, c}, abc} is
a comtrace which does not include acb.

Even though traces are quotient monoids of sequences and comtraces are

quotient monoids of step sequences with steps being used in the definition

of the quotient congruence, traces can still be regarded as a special case

of comtraces. In principle, each trace commutativity equation, ab = ba,

corresponds to two comtrace equations, {a, b} = ab and {a, b} = ba which

can be captured in the following way.
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Let Γ = (E, ind) be a trace alphabet and, for each sequence x =

a1 . . . an ∈ E∗, let x〈〉
df
= {a1} . . . {an} be the corresponding sequence of

singleton sets. We observe that when serialisability coincides with simul-

taneity, every comtrace can be represented by a singleton sequence and,

moreover in that case trace congruence and comtrace congruence restricted

to singleton sequences are the same.

Lemma 6.35. Let ser = sim.

(1) For each t ∈ S
∗/≡ there is x ∈ E∗ such that t = [[x〈〉]]≡.

(2) If ser = ind then x ≡ind y iff x〈〉 ≡ y〈〉, for all x, y ∈ E∗.

Proof. (1) Let t = [[A1 . . . Am]] where, for all i ≤ m, Ai = {a
i
1, . . . , a

i
ni
}.

Then t = [[A1]] . . . [[Am]] and, moreover, by ser = sim, we have for i ≤ m:

[[Ai]] = [[{ai1}]] . . . [[{a
i
ni
}]].

(2) It suffices to show that x ≈ind y iff x〈〉 ≈sym y〈〉, where ≈ is as in

Cor. 6.34. To see this, we observe that we have the following, for some

w, z ∈ E∗ and a, b ∈ E:

x ≈ind y ⇐⇒ x = wabz ∧ y = wbaz ∧ (a, b) ∈ ind

⇐⇒ x〈〉 = w〈〉
{a}{b}bz〈〉 ∧ y〈〉 = w〈〉

{b}{a}z〈〉

∧ {a} × {b} ⊆ ser ∧ {b} × {a} ⊆ ser

⇐⇒ x〈〉 ≈ w〈〉
{a, b}z〈〉 ∧ w〈〉

{a, b}z〈〉 ≈−1 y〈〉 .

In the above, the first equivalence follows from the definition of ≈ind , the

second from ser = ind and the symmetry of ind , and the third from the

definition of ≈. �

Let t be a trace over Γ and v be a comtrace over Θ. From Lem. 6.35

it follows that the singleton sequences in a comtrace correspond exactly to

one trace if sim = ser = ind . Hence traces can be seen as the sequential

core of comtraces. We say that t and v are equivalent if sim = ser = ind

and there is x ∈ E∗ such that t = [[x]]≡ind
and v = [[x〈〉]]≡. We denote this

by t
T!C

≡ v.

Proposition 6.36. Let sim = ser = ind, t, r be traces, and v,w be com-

traces.

t
T!C

≡ v ∧ t
T!C

≡ w =⇒ v = w

t
T!C

≡ v ∧ r
T!C

≡ v =⇒ t = r .
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Also from the partial order point of view, traces can be regarded as a

special case of comtraces. As we will show later on, in Thm. 6.53, equivalent

traces and comtraces generate identical posets.

Consider a comtrace alphabet Θ = (E, sim, ser) such that we have the
following: E =
{a, b, c, d, e}, sim =

{
(a, b), (b, a), (a, c), (c, a), (a, d), (d, a)

}
and ser ={

(a, b), (b, a), (a, c)
}
. Then S =

{
{a, b}, {a, c}, {a, d}, a, b, c, d, e

}
. More-

over, z = x◦̂y for the comtraces x =
{
{a, b}ca, abca, baca, b{a, c}a

}
,

y =
{
e{a, d}{a, c}, e{a, d}ac

}
and

z =






{a, b}cae{a, d}{a, c} abcae{a, d}{a, c} bacae{a, d}{a, c}

b{a, c}ae{a, d}{a, c} {a, b}cae{a, d}ac abcae{a, d}ac

bacae{a, d}ac b{a, c}ae{a, d}ac





.

Algebraic Properties. Algebraic properties of trace congruence opera-

tions such as left/right cancellation and projection are well understood [33].

They are intuitive and powerful tools with many applications [4]. The basic

obstacle for lifting these properties to comtraces is the necessary switching

from sequences to step sequences. Furthermore unlike the independence

relation for traces, the serialisability relation ser is in general not commu-

tative. So comtrace congruence does not have a mirror rule which states

that if two sequences are congruent, then their reverses or mirror images

are also congruent. Hence in trace theory, right cancellation alone is suf-

ficient to extract congruent subsequences from congruent sequences, since

left cancellation follows from right-cancellation in the mirror images. For

comtraces however we need a separate notion of left-cancellation.

Let a ∈ E. The operators ÷Ra and ÷La of, respectively, right can-

cellation and left cancellation in step sequences, are defined by λ ÷R a =

λ÷L a
df
= λ and

wA÷Ra
df
=







(w ÷R a)A if a 6∈ A

w if A = {a}

w(A\{a}) otherwise

Aw÷La
df
=







A(w ÷L a) if a 6∈ A

w if A = {a}

(A\{a})w otherwise

where A ∈ S and w ∈ S
∗. Since (w ÷R a) ÷R b = (w ÷R b) ÷R a, we can

extend ÷R so that it is parameterised by step sequences. More precisely,

we define:

w ÷R {a1, . . . , an}
df
=

(

. . .
(

(w ÷R a1)÷R a2
)

. . .
)

÷R an

w ÷R A1 . . . Ak
df
=

(

. . .
(

(w ÷R A1)÷R A2

)

. . .
)

÷R Ak

w ÷R λ
df
= w
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for all steps {a1, . . . , an}, A1, . . . , Ak ∈ S and step sequences w ∈ S
∗. We

also extended ÷L in a similar way.

Moreover, for every subset D of E, the projection function πD : S∗ → S
∗

is such that πD(λ)
df
= λ and, for all A ∈ S and w ∈ S

∗:

πD(wA)
df
=

{

πD(w) if A ∩D = ∅

πD(w)(A ∩D) otherwise .

The result below shows that the algebraic properties of comtraces are

similar to the algebraic properties of traces [33].

Proposition 6.37. Let u, v, w, s, t ∈ S
∗, a ∈ E, and D ⊆ E.

(1) u ≡ v =⇒ wgt(u) = wgt(v). (step sequence weight equality)

(2) u ≡ v =⇒ #a(u) = #a(v). (event preservation)

(3) u ≡ v =⇒ u÷R w ≡ v ÷R w. (right cancellation)

(4) u ≡ v =⇒ u÷L w ≡ v ÷L w. (left cancellation)

(5) u ≡ v ⇐⇒ sut ≡ svt. (step subsequence cancellation)

(6) u ≡ v =⇒ πD(u) ≡ πD(v). (projection rule)

Proof. For all parts except (5), it suffices to show that u ≈ v implies

the right hand side of the relevant formula. Recall that u ≈ v means that

u = xAz and v = xBCz, for some x, z ∈ S
∗ and A,B,C ∈ S satisfying

A = B ∪ C, B ∩ C = ∅ and B × C ⊆ ser . Since this immediately implies

that weight and events are preserved by ≈, we only discuss parts (3)–(6).

(3) Let a ∈ E. We prove u÷R a ≡ v ÷R a whenever u ≈ v as above.

We distinguish four cases.

Case 1: a ∈ alph(z). Then u ÷R a = xAy ≈ xBCy = v ÷R a, where

y = z ÷R a.

Case 2: a ∈ C\alph(z). Then u÷Ra = x(A\{a})z ≈ xB(C\{a})z = v÷Ra.

Case 3: a ∈ B\alph(Cz). Then u ÷R a = x(A\{a})z ≈ x(B\{a})Cz =

v ÷R a.

Case 4: a /∈ alph(Az). Then u ÷R a = yAz ≈ yBCz = v ÷R a, where

y = x÷R a.

(4) The proof is similar to that of part (3).

(5) The (=⇒) implication follows from the fact that ≡ is a congruence. To

show the (=⇒) implication, we observe that, by sut ≡ svt and parts (3)

and (4):

u = (sut÷R t)÷L s ≡ (svt÷R t)÷L s = v .
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(6) We observe that

πD(u) = πD(x)πD(A)πD(z) ≈ πD(x)πD(B)πD(C)πD(z) = πD(v) .

which follows from πD(A) = πD(B) ∪ πD(C) and πD(B) × πD(C) ⊆ ser .

�

An immediate consequence of the event preservation is event occurrence

preservation which means that u ≡ v implies occ(u) = occ(v). Note fur-

thermore that comtrace congruence preserves the length of sequences, but

not of step sequences.

A Canonical Form for Comtraces. The canonical form of a comtrace

that will be discussed in this subsection, has a clear interpretation. Similar

to the canonical stratified extension of posets (Prop. 6.13), it essentially

describes a greedy, maximally concurrent, execution of the events occurring

in the comtrace conforming to the simultaneity and serialisability relations.

Actually, it is a straightforward application of the approach used in [20] for

an alternative vector representation of traces in [19, 43]. Greedy execution

turned out to be a useful technique also for the transformation of vector

control languages into rational relations in [26].

Definition 6.38 (Greedy maximally concurrent form). A step se-

quence u = A1 . . . Ak ∈ S
∗ is in greedy maximally concurrent form (or

GMC-form) if, for each i ≤ n, whenever Av ≡ Ai . . . Ak for some A ∈ S

and v ∈ S
∗, then |A| ≤ |Ai|.

Proposition 6.39. Each comtrace comprises a step sequence in GMC-

form.

Proof. Let t be a comtrace and v ∈ t. We derive a sequence of steps

u = A1 . . . Ak, as follows:

initialise i← 0 and v0 ← v

while vi 6= λ do

i← i+ 1

find Ai such that |A| ≤ |Ai|, for each Aw ≡ vi−1

vi ← vi−1 ÷L Ai

endwhile

The algorithm always terminates as wgt(vi+1) < wgt(vi), for all i. Moreover,

u is in GMC-form and u ∈ t. �
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The algorithm in the above proof is indeed greedy in the sense that it

adds as many symbols as early as possible to each step. Moreover, the

GMC-form is equivalent to the unique Foata-type canonical form of com-

traces proposed in [17]. To prove this claim, we introduce a relation between

steps generalising the independence between events exploited in the Foata

canonical form by observing that (a, c) ∈ ser means that the sequence ac

can be replaced by the set {a, c}.

Definition 6.40 (Forward dependency). A relation FD of forward de-

pendency on steps comprises all pairs (A,B) ∈ S × S for which there is a

step C ⊆ B such that A× C ⊆ ser and C × (B\C) ⊆ ser.

Note that in the above definition C is a step and hence is non-empty, and

C = B is allowed. The next result explains the term ‘forward dependency’.

If (A,B) 6∈ FD then there are no elements in B that can be moved forward

from B in AB to A without losing the equivalence with AB.

Lemma 6.41. A pair of steps (A,B) belongs to FD iff A∪B ≡ AB or, for

some step C ⊂ B, (A ∪ C)(B\C) ≡ AB.

Proof. (=⇒) Let C ⊆ B be as in Defn. 6.40. If C = B then A∪B ≈ AB,

and if C 6= B then (A ∪ C)(B\C) ≈ AC(B\C) ≈ AB.

(⇐=) If A∪B ≡ AB then A∪B ∈ S and, by Prop. 6.37(2), A∩B = ∅. Let

a ∈ A and b ∈ B. By Prop. 6.37(6), {a, b} = π{a,b}(A ∪B) ≡ π{a,b}(AB) =

{a}{b} which means that (a, b) ∈ ser . Hence A×B ⊆ ser , and so (A,B) ∈

FD.

Suppose now that C ⊂ B and (A ∪ C)(B\C) ≡ AB. Then A ∪ C ∈ S

and, by Prop. 6.37(2), A ∩C = ∅. Let a ∈ A and c ∈ C. By Prop. 6.37(6),

we have that: {a, c} = π{a,c}((A∪C)(B\C)) ≡ π{a,c}(AB) = {a}{c} which

means (a, c) ∈ ser . Hence A×C ⊆ ser . Let b ∈ B\C and c ∈ C. Again, by

Prop. 6.37(6), we have {c}{b} = π{b,c}(A ∪C)(B\C) ≡ π{b,c}(AB) = {b, c}

which means that (c, b) ∈ ser , and so C×(B\C) ⊆ ser . Hence (A,B) ∈ FD.

�

The canonical step sequence representing a comtrace introduced in [17]

can now be defined.

Definition 6.42 (Comtrace canonical step sequence). A step se-

quence u = A1 . . . Ak is canonical if (Ai, Ai+1) /∈ FD, for all i < k.
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The canonical step sequences for comtraces refine and generalise the

Foata canonical form and can be seen as greedy according to the next

result.

Lemma 6.43. A1 =
⋃
{

C | Cv ∈ [[u]]
}

for a comtrace canonical step

sequence u = A1 . . . Ak.

Proof. Let A =
⋃
{

C | Cv ∈ [[u]]
}

. Since u ∈ [[u]], A1 ⊆ A. We need to

prove that A ⊆ A1. Clearly, A = A1 if k = 1, so assume k > 1. Suppose

that a ∈ A\A1, a ∈ Aj , 1 < j ≤ k and a /∈ Ai for i < j. Since a ∈ A, there

is v = Bx ∈ [[u]] such that a ∈ B. Note that Aj−1Aj is also canonical and

u′ = Aj−1Aj = (u÷R (Aj+1 . . . Ak))÷L (A1 . . . Aj−2) .

Let v′
df
= (v ÷R (Aj+1 . . . Ak)) ÷L (A1 . . . Aj−2). We have v′ = B′x′ where

a ∈ B′. By Prop. 6.37(3,4) u′ ≡ v′. Since u′ = Aj−1Aj is canonical, we can

consider two cases.

Case 1: (c, a) /∈ ser , for some c ∈ Aj−1. Then we have:

π{a,c}(u
′) = ca (if c /∈ Aj) or π{a,c}(u

′) = c{a, c} (if c ∈ Aj) .

In the former case, π{a,c}(v
′) equals either {a, c} (if c ∈ B′) or ac (if c /∈ B′),

and so in both cases π{a,c}(u
′) 6≡ π{a,c}(v

′), contradicting Prop. 6.37(6). In

the latter case, π{a,c}(v
′) equals either {a, c}c (if c ∈ B′) or acc (if c /∈ B′),

and so in both cases π{a,c}(u
′) 6≡ π{a,c}(v

′), contradicting Prop. 6.37(6).

Case 2: (a, b) /∈ ser , for some b ∈ Aj . Then we take d ∈ Aj−1 and have the

following:

π{a,b,d}(u
′) = d{a, b} (if d /∈ Aj) or π{a,b,d}(u

′) = d{a, b, d} (if d ∈ Aj) .

In the former case, π{a,b,d}(v
′) is one of the following step sequences:

{a, b, d} {a, b}d {a, d}b abd adb

and so in each case π{a,b,d}(u
′) 6≡ π{a,b,d}(v

′), contradicting Prop. 6.37(6).

In the latter case, π{a,b,d}(v
′) is one of the following step sequences:

{a, b, d}d {a, b}dd {a, d}{b, d} {a, d}bd {a, d}db abdd adbd addb

and so in each case π{a,b,d}(u
′) 6≡ π{a,b,d}(v

′), contradicting Prop. 6.37(6).

�

Now we can show that the above canonical form and GMC-form are

equivalent.

Theorem 6.44. A step sequence u is in GMC-form iff it is canonical.
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Proof. (⇐=) Suppose that u = A1 . . . Ak is canonical. By Lem. 6.43, we

have that for each B1y1 ≡ A1 . . . Ak, |B1| ≤ |A1|. Since each Ai . . . Ak is

canonical, we have by Lem. 6.43, that for each B2y2 ≡ A2 . . . Ak, |B2| ≤

|A2|. Proceeding in this way k times we obtain that u = A1 . . . Ak is in

GMC-form.

(=⇒) Suppose that u = A1 . . . Ak is not canonical, and j is the smallest

number such that (Aj , Aj+1) ∈ FD. Hence A1 . . . Aj−1 is canonical, and, by

the (⇐=) implication of this theorem, in GMC-form. By Lem. 6.41, either

there is a non empty C ⊂ Aj+1 such that (Aj ∪C)(Aj+1\C) ≡ AjAj+1, or

Aj∪Aj+1 ≡ AjAj+1. In the former case, we have |Aj∪C| > |Aj | as C 6= ∅,

and, in the latter case, Aj . . . Ak is not in GMC-form as |Aj ∪Aj+1| > |Aj |,

which means that u is not in GMC-form either. �

Just as each trace can be represented by a unique sequence in canonical

form, each comtrace has a single canonical step sequence.

Theorem 6.45. For each step sequence v there is a unique canonical step

sequence u such that v ≡ u.

Proof. The existence of u follows from Prop. 6.39 and Thm. 6.44. We

only need to show its uniqueness. Suppose that u = A1 . . . Ak and v =

B1 . . . Bm are both canonical step sequences and u ≡ v. By induction on

k = |u|, we will show that u = v. By Lem. 6.43, we have that B1 = A1. If

k = 1 we are done. Otherwise, let

u′ = A2 . . . Ak and w′ = B2 . . . Bm

and u′, w′ be both canonical step sequences of [[u′]]. Since |u′| < |u|, by the

induction hypothesis, we obtain Ai = Bi for i = 2, . . . , k and k = m. �

Finally, we establish that no equivalent step sequence is shorter than

the canonical one (confirming its greediness).

Proposition 6.46. If u is a canonical step sequence and u ≡ v, then

len(u) ≤ len(v).

Proof. The proof proceeds by induction on len(v). In the base case,

len(v) = 1, the result follows from the definition of FD by which u = v must

hold. In the induction step, we assume that the result holds for all v such

that len(v) ≤ r − 1 where r ≥ 2. Let us consider v = B1B2 . . . Br, and let

u = A1A2 . . . Ak be a canonical step sequence such that v ≡ u. Moreover,

v1
df
= v ÷L A1 = C1 . . . Cs. By Prop. 6.37(4) v1 ≡ u ÷L A1 = A2 . . . Ak,



September 14, 2010 14:16 World Scientific Book - 9in x 6in 00Chapter

346 R. Janicki, J. Kleijn and M. Koutny

and A2 . . . Ak is clearly canonical. Hence, by the induction hypothesis,

k− 1 = len(A2 . . . Ak) ≤ s. By Lem. 6.43, we obtain B1 ⊆ A1 which means

that v1 = v÷LA1 = B2 . . . Br÷L (A1\B1) = C1 . . . Cs which in turn means

that s ≤ r − 1. Hence k − 1 ≤ s ≤ r − 1, and so k ≤ r. �

Relationship with Stratified Order Structures. We now aim to show

that the relationship between comtraces and so-structures is basically the

same as that between traces and posets; more precisely, that each comtrace

is represented by a unique so-structure, and each so-structure defines a

single comtrace.

We start with the definition of the closure construction crucial for the

application of so-structures to the modelling of concurrent systems [17, 28].

Definition 6.47 (Diamond closure of relational structures). Given

a relational structure S
df
= (X,Q,R), the ♦-closure of S is:

S♦ df
=

(

X,≺QR,<QR

)

where ≺QR
df
= (Q ∪R)∗ ◦Q ◦ (Q ∪R)∗ and <QR

df
= (Q ∪R)∗\idX .

Diamond closure can be seen as a generalisation of the transitive clo-

sure of an acyclic relation to obtain a partial order. The idea is that ‘rea-

sonable’ relations Q and R with common domain X , form a basis for a

relational structure (X,Q,R)♦ satisfying the axioms (S1)–(S4) in the def-

inition of an so-structure. As an example, note that whenever Q = R

and Q is irreflexive and acyclic, then diamond closure describes a poset:

(X,Q,R)♦ = (X,Q+, Q+). The following result shows that the properties

of ♦-closure are rather similar to those of transitive closure.

Theorem 6.48. Let S = (X,Q,R) be a relational structure.

(1) If R is irreflexive, then Q ⊆ ≺QR and R ⊆ <QR.

(2)
(

S♦
)♦

= S♦.

(3) S♦ is an so-structure iff ≺QR is irreflexive.

(4) If S is an so-structure, then S = S♦.

Proof. (1) Q ⊆ ≺QR, and if R is irreflexive, then R ⊆ R\idX ⊆ <QR.

(2) We first show that (≺QR ∪ <QR)
∗ = (Q∪R)∗ . The (⊆) inclusion follows

from the definitions of ≺QR and <QR by which ≺QR ∪ <QR⊆ (Q ∪ R)∗

while the converse follows from (Q∪R)∗ = (<QR)
∗
⊆ (≺QR ∪ <QR)

∗ . We
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can now show
(

S♦
)♦

= S♦. Note that

≺≺QR,<QR
= (≺QR ∪ <QR)

∗
◦ ≺QR ◦(≺QR ∪ <QR)

∗

= (Q ∪R)∗◦ ≺QR ◦(Q ∪R)
∗ = ≺QR .

Similarly, <≺QR,<QR
= (≺QR ∪ <QR)

∗
\idX = (Q ∪R)∗\idX =<QR.

(3) The (=⇒) implication follows from the axioms (S1) and (S2) for so-

structures. To show the (⇐=) implication, we proceed as follows. (S1)

clearly holds and (S2) follows from ≺QR being irreflexive. Then (S3) and

(S4) follow from

(<QR ◦ <QR)\idX ⊆ <QR, <QR ◦ ≺QR ⊆ ≺QR and ≺QR ◦ <QR ⊆ ≺QR.

(4) We observe that ≺QR= (Q∪R)∗ ◦Q ◦ (Q∪R)∗ =S2 R
∗
◦Q ◦R∗ =S4 Q

and <QR= (Q ∪R)∗\idX =S2 R
∗
\idX =S3 R\idX = R. �

By Thm. 6.48(2), ♦ is indeed a closure operator. Furthermore, S♦ is an

so-structure iff ≺QR= (≺QR)
+ is acyclic, and hence a partial order (Q spec-

ifies causality — or ‘earlier than’ — relationship between certain events).

Note that <QR is irreflexive, but not necessarily acyclic (R describes weak

causality — or ‘earlier than or simultaneous’ — relationship between certain

events).

Using the ♦-closure operator, we prove how, for a given comtrace al-

phabet, every comtrace is completely determined by any single one of its

step sequences.

Let u be a step sequence in S
∗. We define two binary relations Qu and

Ru on occ(u), as follows:

(α, β) ∈ Qu df
⇐⇒ α ≺u β ∧ (l(α), l(β)) /∈ ser

(α, β) ∈ Ru df
⇐⇒ α ≺

a
u β ∧ (l(β), l(α)) /∈ ser

where (occ(u),≺u) is the canonical stratified poset canspo(u) of u. In other

words, Qu provides the information on the necessary strict ordering (w.r.t.

Θ) of pairs of symbol occurrences in u, while Ru tells us for certain pairs

of occurrences which one should be not later than the other one. As the

next lemma shows, these two relations are respected by all step sequences

belonging to the same comtrace. (Recall that u ≡ v implies that occ(u) =

occ(v)).

Lemma 6.49. If u ≡ v then Qu = Qv and Ru = Rv, for all u, v ∈ S
∗.

Proof. It suffices to show that u ≈ v implies Qu = Qv and Ru = Rv.

So we let u = wAz and v = wBCz where w, z ∈ S
∗ and A,B,C ∈ S
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@

a1 b1

a2 d1

c1

Fig. 6.4 Relations defining a comtrace alphabet and an so-structure.

satisfy B ∪ C = A and B × C ⊆ ser . Consequently, the only difference

between u and v is the ordering of symbol occurrences in A (unordered) in

comparison with their ordering in BC (one before the other) which belong

to ser . Hence Qu = Qv and Ru = Rv. �

Since u ≡ v implies occ(u) = occ(v), we can define the set of occur-

rences of the comtrace [[u]] as occ([[u]])
df
= occ(u). Together with the above,

this allows us to associate with each comtrace a (well-defined) so-structure

determined by any one of its step sequences and Θ.

Definition 6.50 (So-structure defined by step sequence and com-

trace alphabet). Let u be a step sequence in S
∗. Then S〈u〉 df

=
(

occ([[u]]), Qu, Ru
)♦

is the so-structure defined by u and Θ.

Note that, by Thm. 6.48(3), S〈u〉 is indeed an so-structure since ≺QuRu=

(Qu
∪Ru)∗ ◦Qu

◦ (Qu
∪Ru)∗ is irreflexive. Furthermore, this so-structure

is different from the stratified order structure Su = (occ(u),≺u,<u) with

<u=≺
a

u, as defined in Prop. 6.20. There is however, also from Prop. 6.20,

the so-structure S[[u]] defined by (the stratified posets representing the step

sequences in) comtrace [[u]]:

S[[u]]
df
=

(

occ([[u]]),
⋂

x∈[[u]]

≺x,
⋂

x∈[[u]]

≺

a

x

)

This so-structure will be shown to be identical to S〈u〉 and, moreover, the

stratified extensions of these two so-structures turn out to correspond ex-

actly to the step sequences in [[u]].

Figure 6.4 shows a comtrace alphabet Θ = ({a, b, c, d}, sim, ser)
and the two relations of so-structure defined by the step se-
quence u = {a, b}c{a, d} and Θ. Note that we have [[u]] ={
{a, b}c{a, d}, abc{a, d}, a{b, c}{a, d}, bac{a, d}

}
as well as that ≺ is

equal to Q
u
∪ {(b1, a2)} and < is equal to R

u.
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By Prop. 6.13 and Lem. 6.49, we have for each comtrace [[u]] a well-

defined poset (occ(u),≺QuRu) representing the causality in the comtrace.

We will show first that the stratified poset extension of (occ(u),≺QuRu)

corresponds to the unique canonical step sequence in [[u]]. Hence, the

canonical representative of a comtrace can be read off directly from any

of its representatives.

Proposition 6.51. (occ(u),≺u) = canstratposet(occ(u),≺QuRu), for every

canonical step sequence u.

Proof. Let u = A1 . . . An and let û
df
= ̂A1 . . . ̂Ak be its enumerated step

sequence. By Prop. 6.13, it suffices to show that for every i ≥ 2 and every

β ∈ ̂Ai, there is α ∈ ̂Ai−1 such that α ≺QuRu β. Suppose that this does

not hold. Then

B = {β ∈ ̂Ai | ∀α ∈ ̂Ai−1 : ¬α ≺QuRu β} 6= ∅

for some i ≥ 2. Since ≺QuRu= (Qu
∪Ru)∗ ◦Qu

◦ (Qu
∪Ru)∗ it follows from

the definitions of Qu and Ru, that ̂Ai−1 × l(B) ⊆ ser .

Suppose there are α ∈ B and β ∈ ̂Ai\B such that (l(α), l(β)) /∈ ser .

Then β <QuRu α, and, by the definition of B, γ ≺QuRu β for some γ ∈
̂Ai−1. Thus we have Ai−1 × l(B) ⊆ ser and l(B) × (Ai\l(B)) ⊆ ser

contradicting u being canonical. �

Secondly, we have as an important auxiliary result that step sequences

representing a stratified poset extension of an so-structure defined by a step

sequence (and comtrace alphabet), actually define the same so-structure.

Lemma 6.52. S〈v〉 = S〈u〉, for all u, v satisfying (occ(v),≺v) ∈ ext(S〈u〉).

Proof. It follows from (occ(v),≺v) ∈ ext(S〈u〉), that we have occ(v) =

occ(u) and ≺QuRu⊆≺v. Hence

αQuβ =⇒ (α ≺QuRu β ∧ (l(α), l(β)) /∈ ser)

=⇒ (α ≺v β ∧ (l(α), l(β)) /∈ ser) ⇐⇒ αQvβ

and so Qv
⊆ Qu. Similarly, Ru

⊆ Rv follows from:

αRuβ =⇒ (α <QuRu β ∧ (l(β), l(α)) /∈ ser)

=⇒ (α ≺
a

v β ∧ (l(β), l(α)) /∈ ser) ⇐⇒ αRvβ .

To prove the converse inclusions, first suppose that αQvβ and ¬(αQuβ).

Since αQvβ implies (l(α), l(β)) /∈ ser , we have that ¬(αQuβ) means

¬(α ≺u β). Hence β ≺
a
u α and, consequently, βRuα. But αQvβ and βRuα
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imply α ≺v β and β <QuRu α, contradicting (occ(v),≺v) ∈ ext(S〈u〉).
Next, suppose that αRvβ and ¬(αRuβ). Since αRvβ implies (l(β), l(α)) /∈

ser , we have that ¬(αRuβ) means ¬(α ≺
a

u β). Hence β ≺u α and, con-

sequently, βQuα. But αRvβ and βQuα imply α ≺
a

v β and β ≺QuRu α,

contradicting (occ(v),≺v) ∈ ext(S〈u〉) again.
Hence S〈u〉 = S〈v〉. �

Now we are ready to prove that each comtrace defines a single so-

structure.

Theorem 6.53. Let u, v ∈ S
∗.

(1) u ≡ v ⇐⇒ S〈u〉 = S〈v〉,
(2) ext

(

S〈u〉) =
{

(occ(x),≺x) | x ∈ [[u]]
}

,

(3) S〈u〉 = S[[u]].

Proof. (1) From Lem. 6.49 we immediately have that u ≡ v implies

S〈u〉 = S〈v〉. Assume S〈u〉 = S〈v〉. By Thm. 6.45, there are canonical step

sequences u′, v′ such that u ≡ u′ and v ≡ v′. By Lem. 6.49, S〈u′〉 = S〈u〉

and S〈v′〉 = S〈v〉, and so S〈u′〉 = S〈v′〉. With Prop. 6.51 this yields≺u′=≺v′ .

Thus u′ = v′, so u ≡ v.

(2) By definition, Qu
⊆≺u and Ru

⊆≺
a

u which implies ≺QuRu⊆≺u and

<QuRu⊆≺
a

u, i.e., (occ(u),≺u) ∈ ext(S〈u〉), and so
{

(occ(x),≺x) | x ∈ [[u]]
}

is included in ext
(

S〈u〉).
Let v be a step sequence such that (occ(v),≺v) ∈ ext(S〈u〉). By Lem. 6.52,

S〈u〉 = S〈v〉. This and the assertion (1) above yields u ≡ v, and so ext
(

S〈u〉)

is included in
{

(occ(x),≺x) | x ∈ [[u]]
}

.

(3) By the definition of S[[u]],
{

(occ(x),≺x) | x ∈ [[u]]
}

⊆ ext
(

S[[u]]

)

. By

Lem. 6.49 ≺QuRu⊆≺x and <QuRu⊆≺
a

x, for all x ∈ [[u]], which implies

S〈u〉
⊆ S[[u]]. Hence ext(S[[u]]) ⊆ ext(S〈u〉). From part (2) we now have

that
{

(occ(x),≺x) | x ∈ [[u]]
}

⊆ ext
(

S[[u]]

)

⊆ ext
(

S〈u〉) =
{

(occ(x),≺x) |

x ∈ [[u]]
}

which means that ext(S[[u]]) = ext(S〈u〉). Together with Thm. 6.22

this yields S〈u〉 = S[[u]]. �

By Thm. 6.53, the so-structures S〈u〉 and S[[u]] are identical and their

set of stratified extensions is exactly the comtrace [[u]] with step sequences

interpreted as stratified posets. From an algorithmic point of view, the def-

inition of S〈u〉 is the more interesting one, since building the relations ≺u

and <u and getting their ♦-closure, which in turn can be reduced to com-

puting transitive closures, can be done efficiently. In contrast, a direct use
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of the definition of S[[u]] requires precomputing of potentially exponentially

many elements of the comtrace [[u]].

Theorem 6.53 characterises the so-structures derived from a comtrace.

We will now discuss how to derive a comtrace from an so-structure.

Definition 6.54 (Simultaneity and serialisability in so-structures).

The simultaneity and serialisability relations induced by the so-structure

S = (X,≺,<) are respectively given below, for all distinct a, b ∈ X :

(a, b) ∈ simS
df
⇐⇒ a a(X,≺) b

(a, b) ∈ serS
df
⇐⇒ a a(X,≺) b ∧ ¬(b < a) .

That the terminology in the definition is justified, follows from the next

result.

Proposition 6.55. For all distinct a, b ∈ X:

(a, b) ∈ simS ⇐⇒ ∃spo ∈ ext(S) : a aspo b

(a, b) ∈ serS ⇐⇒ ∃spo, spo′
∈ ext(S) : a aspo b ∧ a ≺spo′ b

(a, b) /∈ serS ⇐⇒ a ≺ b ∨ b < a .

Proof. The first part is a consequence of Theorems 6.22 and 6.23 as we

have:

(a, b) ∈ simS ⇐⇒ ¬(a ≺ b) ∧ ¬(b ≺ a)

⇐⇒ ¬(∀spo ∈ ext(S) : a ≺spo b) ∧ ¬(∀spo ∈ ext(S) : b ≺spo a)

⇐⇒

(

(∃spo ∈ ext(S) : a ≺spo b) ∧ (∃spo ∈ ext(S) : b ≺spo a)
)

∨ (∃spo ∈ ext(S) : a aspo b)

⇐⇒ ∃spo ∈ ext(S) : a aspo b .

The second part follows from the first part and Thm. 6.22. The third part

follows from Defn. 6.54. �

Consequently, when the stratified posets in ext(S) are interpreted as

observations of concurrent histories (see Section 6.3, and [14, 16]), then

(a, b) ∈ simS means that there is an observation in ext(S) where a and b are

executed simultaneously and (a, b) ∈ serS means there are two equivalent

observations (i.e., both belonging to ext(S)) where according to one a and

b are executed simultaneously, while the other states that b follows a.

Since each spo ∈ ext(S) can be interpreted as a step sequence, we can

define a relational structure from spo similarly to the definition of S〈u〉
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from a step sequence u (and Θ), but this time in a much simpler way. More

precisely, for each spo ∈ ext(S), we define

S〈spo〉 df
=

(

X ,≺spo\serS ,aspo\ser
−1
S

)

.

This S〈spo〉 is an so-structure with the relations ≺spo \serS and aspo

\ser−1
S playing roles similar to Qu and Ru except that ♦-closure is not

needed. More precisely,

Proposition 6.56. For every spo ∈ ext(S),

≺spo\serS = ≺ = ≺ \serS

aspo\ser
−1
S = < = < \ser−1

S

and so S〈spo〉 = (X,≺,<).

Proof. We show the first equality using Prop. 6.55(3) and Thm. 6.22:

a ≺spo b ∧ (a, b) /∈ serS ⇐⇒ a ≺spo b ∧ (a ≺ b ∨ b < a)

⇐⇒ (a ≺spo b ∧ a ≺ b) ∨ (a ≺spo b ∧ b < a)

⇐⇒ a ≺ b ∨ false .

For the second equality, we have ≺ \serS = (≺spo \ser)\serS =≺spo

\serS =≺. The third equality again follows from Prop. 6.55(3) and

Thm. 6.22:

a aspo b ∧ (b, a) /∈ serS ⇐⇒ a aspo b ∧ (b ≺ a ∨ a < b)

⇐⇒ (a aspo b ∧ b ≺ a) ∨ (a aspo b ∧ a < b)

⇐⇒ false ∨ a < b .

The last equality follows immediately. �

Consequently, for all so-structures S we have that S = S〈spo〉 for every

spo ∈ ext(S). Proposition 6.56 can be interpreted as a generalisation of

Prop. 6.6 by which a poset can be reconstructed from any one of its total

extensions provided its incomparability relation is known.

We conclude by proving that for all so-structures S, the set ext(S),

when interpreted as a set of step sequences, is a comtrace. Moreover, the

so-structure defined by this comtrace is S itself. First, for every so-structure

S = (X,≺,<):

ΘS
df
= (X, simS , serS) and C(S)

df
= {stepseq(spo) | spo ∈ ext(S)} .

Clearly, ΘS is a comtrace alphabet which is assumed below. We will prove

now that the set C(S) comprising the step sequences representing the strat-

ified poset extensions of S, forms a comtrace.

Theorem 6.57. Let S = (X,≺,<) be an so-structure, spo ∈ ext(S) and

u = stepseq(spo). Then S[[u]] = S〈u〉 = S〈spo〉 = S and C(S) = [[u]].
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Fig. 6.5 Relations defining an so-structure and its comtrace alphabet.

Proof. First we need to check that u is a step sequence over ΘS . Assume

that u = A1 . . . An with each Ai a non-empty subset of X . Then, a aspo b

whenever a, b ∈ Ai and a 6= b. Thus we have (a, b) ∈ simS by Prop. 6.55,

which implies that Ai is indeed a step over ΘS .

Hence we can construct S〈u〉 as in Defn. 6.50 and we have:

S[[u]] = S〈u〉 by Thm. 6.53(3)

=
(

X,≺spo \serS ,≺
a

spo \ser
−1
S

)♦
by Def. 6.50

= (X,≺,<)♦ by Prop. 6.56

= (X,≺,<) = S by Thm. 6.48(4)

= S〈spo〉 by Prop. 6.56

From the above and Thm. 6.53(1,2), it now follows that ext(S) =

ext(S〈u〉) = {(X,≺x) | x ∈ [[u]]}. But this implies that, by the defini-

tion of C(S), [[u]] = {stepseq(X,≺x) | x ≡ u} = {stepseq(X,≺x) | (X,≺x

) ∈ ext(S)} = C(S). �

By Thm. 6.57 we can call C(S) the comtrace generated by S. The fact

that S[[u]] = S means that the so-structure defined by the comtrace C(S) is

exactly S, so comtraces and so-structures can be interpreted as equivalent

or tantamount (cf. [14]) concurrent models.

Figure 6.5 shows an so-structure (through its ≺ and <) with its in-
duced simultaneity
and serialisability relations sim and ser . It generates the comtrace:
[[{a, b}c{d, e}]] =

{
{a, b}c{d, e}, abc{d, e}, a{b, c}{d, e}, bac{d, e}

}
.

To conclude this section, we would like to add the following observation.

Given the correspondence between step sequences and stratified posets,

comtraces as equivalence classes of step sequences, can be viewed as sets

of ‘equivalent’ stratified posets. From the theory presented in Section 6.3

one would expect this set to satisfy paradigm π3 which expresses that un-

orderedness implies simultaneity (but not necessarily vice versa). As we

have shown, the stratified poset extensions of the so-structure generated by
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a comtrace represent all step sequences forming the original comtrace and

by Thm. 6.23 (see [16]) these do indeed together satisfy π3.

6.6 Generalised Comtraces

There are realistic concurrent behaviours that cannot be modelled by com-

traces.

Let E = {a, b, c} where a, b and c are three atomic operations respec-
tively representing assignments:

x← x+ 1 x← x+ 2 y ← y + 1

It is reasonable to consider a, b, and c as ‘independent’ as any order of
execution of two or more of them yields exactly the same result [14, 16].
Moreover, if simultaneous reading is allowed, then the steps {a, c} and
{b, c} are allowed to occur. However, simultaneous execution of a, b, and
c is not since simultaneous writing on the same variable is not permit-
ted!
The set of all equivalent executions (or runs) involving a single occur-
rence of each operation,

x =
{
abc, acb, bac, bca, cab, cba, {a, c}b, {b, c}a, b{a, c}, a{b, c}

}
,

is a valid concurrent history or behaviour [14, 16]. However x is not a
comtrace. The problem is that we have ab ≡ ba but {a, b} is not a valid
step.

We therefore consider an extension of comtraces to model the idea of ‘un-

ordered, but not simultaneous’ relationship as discussed in the above ex-

ample. This leads to the concept of generalised comtraces (or g-comtraces),

again in the framework of equational monoids of step sequences.

We start with the notion of a g-comtrace alphabet

Ψ
df
= (E, sim , ser , inl) ,

where E is an alphabet and ser , sim and inl are three relations on E,

respectively called serialisability, simultaneity and interleaving, such that

sim and inl are irreflexive and symmetric, ser ⊆ sim , and sim ∩ inl = ∅.

The interpretation of the relations sim and ser is as before, and (a, b) ∈ inl

means that a and b cannot occur simultaneously, but if they occur one after

the other, the resulting orders are equivalent. As for comtraces, we define
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S — the set of all (potential) steps over Ψ — as the set of all cliques of the

relation sim.

Definition 6.58 (Generalised comtrace monoid). The g-comtrace

congruence ≡ser,inl over Ψ is the EQ -congruence generated by the set of

equations EQ = EQser ∪ EQ inl where:

EQser

df
= {A = BC | A = B ∪ C ∈ S ∧ B × C ⊆ ser}

EQ inl

df
= {BA = AB | A ∈ S ∧ B ∈ S ∧ A×B ⊆ inl} .

Then (S∗/≡ser,inl
, ◦̂, [[λ]]) is the monoid of g-comtraces over Ψ.

Note that since ser and inl are irreflexive relations, (A = BC) ∈ EQser

implies B∩C = ∅, and (AB = BA) ∈ EQ inl implies A∩B = ∅. Moreover,

since inl ∩ sim = ∅, we have that (AB = BA) ∈ EQ inl implies A ∪B /∈ S.

By Prop. 6.10, the g-comtrace congruence relations can also be defined

explicitly in a non-equational form.

Proposition 6.59. Let ≈ser,inl be the relation comprising all pairs (t, u)

of step sequences in S
∗ such that one of the following holds, for some steps

sequences w, z ∈ S
∗ and steps A,B,C ∈ S:

• t = wAz and u = wBCz where B ∪ C = A and B × C ⊆ ser.

• t = wABz and u = wBAz where A×B ⊆ inl .

Then ≡ser,inl is equal to (≈sym
ser,inl )

∗.

We will omit the subscript ser , inl from ≡ser,inl and ≈ser,inl , whenever this

does not lead to ambiguity.

That generalised comtraces are indeed an extension of comtraces can

be seen from the fact that whenever the relation inl is empty, Defn. 6.58

coincides with Defn. 6.33 of comtrace monoids. Hence comtraces can be

regarded as a special case of generalised comtraces.

The set of step sequences x from the example above is a g-comtrace
with E =

{
a, b, c

}
, ser = sim =

{
(a, c), (c, a), (b, c), (c, b)

}
, inl ={

(a, b), (b, a)
}
and S =

{
{a, c}, {b, c}, a, b, c

}
. As a result, we have that

x = [[{a, c}b]].

It is worth noting that there is an important difference between the

equation ab = ba for traces, and the equation ab = ba for g-comtrace

monoids. For traces, the equation ab = ba, when translated into step

sequences, corresponds to two equations {a, b} = ab and {a, b} = ba, which

implies ab ≡ {a, b} ≡ ba. For g-comtrace monoids, the equation ab = ba
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implies that {a, b} is not a step, i.e., neither the equation {a, b} = ab nor

the equation {a, b} = ba belongs to the set of equations. In other words,

for traces the equation ab = ba means ‘independence’, in the sense that

executing a and b in any order is the same (equivalent) and thus will yield

the same result. For g-comtrace monoids, the equation ab = ba means that

executing a and b in any order is the same (and yields the same result),

but executing a and b in any order is not equivalent to executing them

simultaneously.

As the next proposition states, g-comtraces have virtually the same

algebraic properties as comtraces.

Proposition 6.60. Let u, v, w, s, t ∈ S
∗, a ∈ E, and D ⊆ E.

(1) u ≡ v =⇒ wgt(u) = wgt(v). (step sequence weight equality)

(2) u ≡ v =⇒ #a(u) = #a(v). (event preservation)

(3) u ≡ v =⇒ u÷R w ≡ v ÷R w. (right cancellation)

(4) u ≡ v =⇒ u÷L w ≡ v ÷L a. (left cancellation)

(5) u ≡ v ⇐⇒ sut ≡ svt. (step subsequence cancellation)

(6) u ≡ v =⇒ πD(u) ≡ πD(v). (projection rule)

Proof. For all parts except (5), it suffices to show that u ≈ v implies

the right hand side of the formula. Notice that when u ≈ v, the results for

the case u = xAy ≈ xBCy = v follows from Prop. 6.37. So one only needs

to consider explicitly u = xABy and v = xBAy, where A × B ⊆ inl and

A ∩B = ∅. The proofs are similar to those for Prop. 6.37. �

Unlike traces and comtraces, g-comtraces do not have a canonical form

with a natural interpretation. The Greedy Maximally Concurrent approach

(see Defn. 6.38) works for g-comtraces as well, but does not lead to a unique

GMC-form and often does not even resemble what could intuitively be

interpreted as ‘maximally concurrent’ behaviour. For more discussion of

this issue, the reader is referred to [22].

Relationship with Generalised Stratified Order Structures. The

relationship between g-comtraces and gso-structures is in principle the same

as the relationship between comtraces and so-structures discussed in the

previous section. Each g-comtrace uniquely determines a gso-structure and

each gso-structure can be represented by a g-comtrace. However the proofs

and even the formulations of those results are much more complex than

in the case of the relationship between comtraces and so-structures. The

difficulties stem mainly from the following observations:
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• The definition of gso-structures is implicit, it involves using the induced

so-structures (see Defn. 6.25), which makes practically all definitions

much more complex (especially the counterpart of ♦-closure), and the

use of Thm. 6.28 more difficult than the use of Thm. 6.22.

• An internal property like the one expressed by Thm. 6.23, which says

that ext(S) conforms to paradigm π3 of [16], does not hold for gso-

structures.

• There is no ‘natural’ canonical form for g-comtraces with a well under-

stood interpretation.

• The relation inl introduces irregularities and substantially increases the

number of cases that need to be considered in many proofs.

Therefore in this subsection we will show only the simplest proofs, only

the most important results and the definitions that are really needed.

In particular, we will not discuss the counterpart of ♦-closure for gso-

structures, even though such a concept does exist. For details and proofs,

the reader is referred to [22].

Let Ψ = (E, sim , ser , inl) be a g-comtrace alphabet and let u ∈ S
∗ be

a step sequence. Note that if u ≡ x for a step sequence x, then occ(u) =

occ(x). Thus, for every g-comtrace [[u]], we can define occ([[u]])
df
= occ(u).

Definition 6.61 (Gso-structure defined by a g-comtrace). Let u be

a step sequence in S
∗. Then the gso-structure induced by the g-comtrace

[[u]] is given by G[[u]]
df
=

(

occ([[u]]),
⋂

x∈[[u]]

≺
sym
x ,

⋂

x∈[[u]]

≺
a
x

)

.

By the following theorem, G[[u]] is a well defined gso-structure. More-

over, as a counterpart of Thm. 6.53, it states that the set of stratified poset

extensions of G[[u]] represents exactly the elements of the g-comtrace [[u]].

Theorem 6.62. Let u, v ∈ S
∗.

(1) G[[u]] is a gso-structure.

(2) u ≡ v ⇐⇒ G[[u]] = G[[v]].

(3) ext
(

G[[u]]

)

=
{

(occ(x),≺x) | x ∈ [[u]]
}

.

Figure 6.6 shows a g-comtrace alphabet Ψ = ({a, b, c, d}, sim, ser , inl)
and the relations of the gso-structure G[[{a,b}c{a,d}]] = (X,
,<) defined
by the g-comtrace:

[[{a, b}c{a, d}]] =

{
{a, b}c{a, d} abc{a, d} a{b, c}{a, d}

bac{a, d} bca{a, d} {b, c}a{a, d}

}

.
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sim

a b

c d

ser

a b

c d

inl

a b

c d




a1 b1

c1

d1a2

@

a1 b1

c1

d1a2

≺G=
 ∩ @

a1 b1

c1

d1a2

Fig. 6.6 Relations defining a g-comtrace alphabet, relations of a gso-structure G

and ≺G.

We will now show that every gso-structure can be represented by a g-

comtrace. We start with the definition of the causality relations derivable

from gso-structures.

Definition 6.63 (Causality relations in gso-structures). The si-

multaneity, serialisability and interleaving relations induced by the gso-

structure G = (X,
,<) are defined below, for all distinct a, b ∈ X :

(a, b) ∈ simG
df
⇐⇒ ¬(a 
 b)

(a, b) ∈ serG
df
⇐⇒ ¬(a 
 b) ∧ ¬(b < a)

(a, b) ∈ inlG
df
⇐⇒ a
 b ∧ ¬(a < b ∨ b < a) .

The above is a generalisation of Defn. 6.54 as shown in the following

proposition. Following Defn. 6.25, we use ≺G to denote 
 ∩ <.

Proposition 6.64. For all a, b ∈ X, we have:

(a, b) ∈ simSG
⇐⇒ a a(X,≺G) b

(a, b) ∈ serSG
⇐⇒ a a(X,≺G) b ∧ ¬(b < a)

The terminology used in Defn. 6.63 is justified by the following result

which shows the connection between the three relations there and the strat-

ified extensions of the original gso-structure.

Proposition 6.65. For all a, b ∈ X, we have:
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(a, b) ∈ simG ⇐⇒ ∃spo ∈ ext(G) : a aspo b

(a, b) ∈ serG ⇐⇒ (a, b) ∈ simG ∧ (∃spo ∈ ext(G) : a ≺spo b)

(a, b) ∈ inlG ⇐⇒ (a, b) /∈ simG ∧ (∃spo ∈ ext(G) : a ≺spo b)∧

(∃spo ∈ ext(G) : b ≺spo a)

(∃spo ∈ ext(G) : a ≺spo b) ∧ (a, b) 6∈ serG

⇐⇒ (∀spo ∈ ext(G) : a ≺sym
spo b) ⇐⇒ a
 b .

Proof. The first three parts follow from Thm. 6.28, and the last one from

the first two parts and Thm. 6.28. �

We will now define a relational structure G〈spo〉 based on a single strat-

ified poset spo similar to the definition of the so-structure S〈spo〉. Let

G = (X,
,<) be a gso-structure and spo ∈ ext(G). We define:

G{spo} df
=

(

X, (≺spo\serG)
sym
∪ inlG,aspo\(ser

−1
G ∪ inlG)

)

.

As the following proposition shows, G〈spo〉 and G = (X,
,<) are identical

gso-structures, which is similar to the relationship between so-structures

S〈spo〉 and S. It is interesting to observe that we do not need commutative

closure to build G from a stratified poset spo ∈ ext(G).

Proposition 6.66. For every spo ∈ ext(G), G〈spo〉 = (X,
,<).

Proof. First we show that (≺spo\serG)
sym
∪ inlG is equal to 
. Indeed,

for all a, b ∈ X , we have:

(a, b) ∈ (≺spo\serG)
sym
∪ inlG

⇐⇒ (a ≺spo b ∧ (a, b) 6∈ serG)∨

(b ≺spo a ∧ (b, a) 6∈ serG) ∨ (a, b) ∈ inlG

⇐⇒ a
 b ∨ (a, b) ∈ inlG by Prop. 6.65(4)

⇐⇒ a
 b ∨ (a
 b ∧ ¬(b < a ∨ a < b))
)

by Def. 6.63(3)

⇐⇒ a
 b .

Next we show that aspo\(ser
−1
G ∪ inlG) is equal to <. Note that inlG ∩

serG = ∅, and then, for all a, b ∈ X , we have:

(a, b) ∈aspo\(ser
−1
G ∪ inlG)

⇐⇒ a aspo b ∧
(

a
 b ∨ a < b
)

∧

(

¬(a
 b) ∨ a < b ∨ b < a
)

by Def. 6.63

⇐⇒ a aspo b ∧
(

a < b ∨ (a
 b ∧ b < a)
)

⇐⇒ (a aspo b ∧ a < b) ∨ (a aspo b ∧ b ≺G a)

⇐⇒ a < b ∨ false by Thm. 6.28

Hence G〈spo〉 = (X,
,<). �
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Fig. 6.7 A gso-structure G = (X,
,<), where X = {a, b, c, d, e} and the relations ≺G,

simG, serG and inlG.

Before stating the theorem that fully characterises g-comtraces defined

by gso-structures, we define, for every gso-structure G = (X,
,<),

ΨG
df
= (X, simG, serG, inlG) and gC(G)

df
= {stepseq(spo) | spo ∈ ext(G)} .

Note that serG ⊆ simG, the relations sim and inl are symmetric,

simG∩inlG = ∅, and all three relations are irreflexive, so ΨG is a g-comtrace

alphabet. Hence we can define the relations ≈ser,inl and ≡ser,inl with re-

spect to the g-comtrace alphabet ΨG. We will call gC(G) the g-comtrace

generated by the gso-structure G which is justified by the following result.

Theorem 6.67. For all gso-structures G and stratified posets spo ∈ ext(G),

G[[stepseq(spo)]] = G〈spo〉 = G and gC(G) = [[stepseq(spo)]] .

Together with Thm. 6.62, Thm. 6.67 ensures that g-comtraces and so-

structure are in fact equivalent models. It is illustrated in Figure 6.7, where

the gso-structure G defines g-comtrace

[[{a, b}c{d, e}]] =

{

{a, b}c{d, e} abc{d, e} a{b, c}{d, e}

bac{d, e} bca{d, e} {b, c}a{d, e}

}

.

6.7 Elementary Net Systems

In the last two sections, we will explain how the theory presented can be

applied in the case of a concrete system model.

It is generally acknowledged that concepts related to fundamental no-

tions of concurrency theory, such as causality and independence, can be
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Fig. 6.8 A net with marking (EN-system) modelling a producer/consumer system.

well explained using the framework provided by Petri nets [39] (see also

http://www.informatik.uni-hamburg.de/TGI/PetriNets/). A particu-

larly convenient class of nets in this respect are Elementary Net systems [42]

which are the most basic class of Petri nets.

Definition 6.68 (Nets). A net N is a triple (P, T, F ) where P and T

are disjoint finite sets of nodes, called respectively places and transitions,

and F ⊆ (T × P ) ∪ (P × T ) is the flow relation. A marking of the net

is a set of places. The inputs and outputs of a node x are the sets •x and

x• of all y such that (y, x) ∈ F and (x, y) ∈ F , respectively; moreover, •x•

are both the inputs and outputs of x. It is assumed that •a 6= ∅ 6= a•, for
every transition a.

The dot-notation extends to sets of nodes in the usual way, e.g., •X
df
=

⋃

{
•x | x ∈ X}. In diagrams, places (local states) are represented by circles,

transitions (actions) by rectangles, the flow relation by directed arcs, and

a marking (global state) by tokens (small black dots) drawn inside places.

Figure 6.8 shows a net modelling a concurrent system consisting of a
producer, a buffer of capacity one, and a consumer, as well as an (ini-
tial) marking M = {p1, p4, p5}. The producer can execute two actions:
m (making an item), and a (adding a new item to the buffer). The
consumer can execute three actions: g (getting an item from the buffer),
u (using the acquired item), and f (finishing the work). Positioned in-
between the producer and consumer, the buffer can cyclically execute
the a and g actions. Intuitively, the three components progress inde-
pendently but any action shared by two components must be executed
if both of them do so.

Having introduced the net structure of Elementary Net systems, we de-

fine their dynamic behaviour which can be expressed in terms of sequences

of steps of transitions.

Definition 6.69 (Steps). A step of a net N is a set U of its transitions
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such that •a• ∩ •b• = ∅, for all distinct a, b ∈ U . It is enabled at a marking

M if •U ⊆ M and U•
∩M = ∅. In such a case, the execution of U leads

to marking M ′ df
= (M\•U) ∪ U•. We denote this by M [U〉M ′.

A step sequence from a marking M to a marking M ′ is a possi-

bly empty sequence σ = U1 . . . Un of non-empty steps Ui such that

M [U1〉M1, . . . ,Mn−1[Un〉M
′, for some markings M1, . . . ,Mn−1. We de-

note this by M [σ〉M ′, and call M ′ reachable from M . When all steps Ui

are singletons, σ is called a firing sequence.

For the net shown in Figure 6.8, we have M [m〉M ′ and M [{m, f}〉M ′′,
where M = {p2, p3, p6} and M

′ = {p1, p3, p6} and M
′′ = {p1, p3, p7}.

Moreover, M [a{m, g}{a, f}m〉M ′ and M [amgafm〉M ′ where M =
{p1, p4, p5} and M

′ = {p1, p3, p7}.

Definition 6.70 (EN-systems). An elementary net system (or EN-

system) is a tuple EN
df
= (P, T, F,Minit ) such that the first three com-

ponents form its underlying net, and Minit ⊆ P is its initial marking.

Moreover, steps(EN ) and fseq(EN ) comprise respectively all the step and

firing sequences from the initial marking Minit .

The EN-system in Figure 6.8 is contact-free. which means that, for

all markings M reachable from Minit and transitions a, •a ⊆ M implies

a• ∩ M = ∅. It is important to note that contact-freeness can always

be enforced without influencing the behaviour, (step sequences and firing

sequences) by complementing (all or some) places p using fresh places p̃

satisfying •p = p̃•, p• = •p̃, and declaring that p̃ ∈Minit iff p /∈Minit . We

will henceforth make a simplifying assumption that:

Assumption 6.71. All EN-systems as well as their extensions are contact-

free.

Figure 6.8 depicts an EN-system EN 0 such that: steps(EN 0) ={
λ, a, ag, am, a{g,m}, . . .

}
and fseq(EN 0) =

{
λ, a, ag, am, . . .

}
. More-

over, it has two pairs of complementary places: p1 with p2, and p3 with
p4, i.e., p1 = p̃2 and p3 = p̃4.

Semantical Framework. If one aims at a systematic presentation of

causality semantics for different classes PN of Petri nets, it pays off to use

a common scheme as introduced in [28] and further elaborated on in [25] It

is reproduced here as Figure 6.9, where N is a net in PN (for example, an

EN-system EN ) and:
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• EX are executions of nets in PN (for example, step or firing sequences);

• LAN are labelled acyclic nets, such as occurrence nets soon to be intro-

duced, each labelled net in LAN representing a single non-sequential

history;

• LEX are labelled executions of nets in LAN ; and

• LCS are labelled causal structures capturing an abstract causality se-

mantics of nets in PN (for EN-systems, these are simply posets).

N ∈ PN LAN

EX LEX

LCS

α

ω πN

φ

λ

ε
ı

κ

Fig. 6.9 Semantical framework for a Petri net N in PN [28]. The bold arcs indicate

mappings to powersets and the dashed arc indicates a partial function.

The maps in Figure 6.9 relate the different semantical views given by

EX , LAN and LCS. Their intended roles are as follows:

• ω returns sets of executions, defining operational semantics of N ;

• α returns sets of labelled acyclic nets, defining axiomatic process se-

mantics of N ;

• λ returns sets of labelled executions of the processes of N , after applying

φ to each such labelled execution one should obtain an execution of N ;

• πN returns, for each execution of N , a non-empty set of labelled acyclic

nets, defining operational process semantics of N ;

• κ associates a labelled causal structure with each process of N ; and

• ε and ı allow one to go back and forth between labelled causal structures

and the sets of their labelled executions (for EN-systems, ε yields all

the linearisations or stratifications of a given poset, while ı yields the

intersection of a set of total or stratified posets with the same domain).

The overall goal is to demonstrate that the different semantical views

agree in the sense that processes (LAN ) and causal structures (LCS) de-

scribe relations between actions consistent with the chosen operational se-

mantics (EX ), as captured by a series of results called aims. As there exist

simple requirements (called properties) guaranteeing such an agreement,

one can concentrate on defining the semantical domains and maps appear-

ing in Figure 6.9 and proving ‘properties’, from which the ‘aims’ are bound

to follow.
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Some properties are rather simple, e.g., each net should allow at least

one execution.

Property I (Soundness of mappings). The maps ω, α, λ, φ,

πN |ω(N), κ, ε and ı|λ(LAN ) are total. Moreover, ω, α, λ, πN |ω(N) and ε

always return non-empty sets.

The next property relates individual executions with individual pro-

cesses.

Property II (Consistency). For all ξ ∈ EX and LN ∈ LAN :

ξ ∈ ω(N )

LN ∈ πN (ξ)

}

iff

{

LN ∈ α(N )

ξ ∈ φ(λ(LN ))

The above properties ensure that the axiomatic (defined through α) and

operational (defined through πN ◦ω) process semantics of nets in PN are in

full agreement. Moreover, the operational semantics of N (defined through

ω) coincides with the operational semantics of the processes of N (defined

through φ ◦ λ ◦ α).

Aim A. α = πN ◦ ω.

Proof. To show the (⊆) inclusion, suppose that LN ∈ α(N ). Then, by

Property I for λ and φ, there exists ξ ∈ φ(λ(LN )). Hence, by Property II,

ξ ∈ ω(N ) and LN ∈ πN (ξ). Thus LN ∈ πN (ω(N )).

To show the (⊇) inclusion, suppose that LN ∈ πN (ω(N )). Then there exists

ξ ∈ ω(N ) such that LN ∈ πN (ξ). Hence, by Property II, LN ∈ α(N ). �

Aim B. ω = φ ◦ λ ◦ α.

Proof. To show the (⊆) inclusion, suppose that ξ ∈ ω(N ). Then, by

Property I for πN , there exists LN ∈ πN (ξ). Hence, by Property II, LN ∈

α(N ) and ξ ∈ φ(λ(LN )). Thus ξ ∈ φ(λ(α(N ))).

To show the (⊇) inclusion, suppose that ξ ∈ φ(λ(α(N ))). Then there exists

LN ∈ α(N ) such that ξ ∈ φ(λ(LN )). Hence, by Property II, ξ ∈ ω(N ). �

Corollary 6.72. ω = φ ◦ λ ◦ πN ◦ ω.

The other kind of agreement concerns the abstract causality semantics

of processes captured within the triangle-like part of the diagram in Fig-

ure 6.9. First, we require that the executions returned by ε should always

contain enough information to uniquely reconstruct the original labelled

causal structure.

Property III (Representation). ı ◦ ε = idLCS .
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When LCS are posets and LEX are total (or stratified) posets, Prop-

erty III is simply Szpilrajn’s Theorem. Second, we require that the opera-

tional semantics for the structures in LCS fits with the operational seman-

tics chosen for LAN .

Property IV (Fitting). λ = ε ◦ κ.

With these properties, the causality in a process of N (defined

through κ) coincides with the causality structure implied by its operational

semantics (through ı ◦ λ).

Aim C. κ = ı ◦ λ.

Proof. By properties III and IV, κ = idLCS ◦ κ = ı ◦ ε ◦ κ = ı ◦ λ. �

We can also relate the operational semantics of the net N and the set of

labelled causal structures associated with it, in effect joining together the

two parts of the diagram in Figure 6.9.

Corollary 6.73. ω = φ ◦ ε ◦ κ ◦ α.

Proof. By Aim B and Property IV, ω = φ ◦ λ ◦ α = φ ◦ ε ◦ κ ◦ α. �

In practice, to take advantage of the semantical framework all we need

to do is to establish the soundness of the various mappings (Property I), and

then verify the consistency, representation and fitting properties (Proper-

ties II, III and IV). Having done so, fundamental semantical characteristics

(Aims A, B and C) follow.

Semantical Framework for EN-systems. We have already indicated

how some notions relating to EN-systems instantiate the general concepts

of the semantical framework. We will now introduce the missing parts,

starting with the definition of a class of labelled acyclic nets which can be

used to capture the causality semantics of EN-systems.

Definition 6.74 (Occurrence nets (LAN )). An occurrence net is a re-

lational tuple ON
df
= (P ′, T ′, F ′, `) such that (P ′, T ′, F ′) is an underlying

net, ` is a labelling for P ′
∪ T ′, F ′ is an acyclic flow relation, and |•p| ≤ 1

and |p•| ≤ 1, for every place p. The default initial MON
init and final MON

fin

markings respectively consist of all places without inputs and outputs.

The dot-notations, markings, execution rule, etc, for ON are as those de-

fined for the underlying net. The places of ON are often called conditions

and transitions events.

Figure 6.10 shows an occurrence net labelled by places and transitions
of the EN-system EN 0 shown in Figure 6.8, with the default initial and
final markings {b1, b2, b3} and {b11, b12, b13}, respectively.
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p1b1

p4b2

p5b3

p3 b4

p2

b5

p4 b6

p6

b7

p1

b8

p5

b9

p3b10

p2 b11

p4 b12

p6 b13

a

e1

m

e2

a

e3

g

e4

u

e5

g

e6

Fig. 6.10 An occurrence net ON 0 (labels are shown inside the nodes).

The behaviour of an occurrence net is captured by the set λstep(ON )

of labelled step sequences, comprising all pairs (σ, `|T ′ ) such that σ is a

step sequence from the default initial marking of ON to the default final

marking. For each such labelled step sequence, φ(σ, `|T ′ )
df
= `(σ). Moreover,

λfseq(ON ) are the labelled firing sequences of ON , i.e., all the labelled step

sequences (σ, `|T ′) such that σ is a sequence of singleton steps. Note that,

due to the acyclicity of the flow relation and the lack of multiple inputs (or

outputs) of places, means that each transition in T ′ appears exactly once

in any labelled step sequence of ON .
In an occurrence net ON , the acyclic relation (F ′

◦ F ′)|T ′×T ′ repre-
sents direct causal relationships between net transitions. As a result, the

relational structure po(ON )
df
= (T ′, ((F ′

◦F ′)|T ′×T ′)+, `|T ′) is a poset repre-
senting all, direct and indirect, causal dependencies between the transitions
in T ′.

For the occurrence net of Figure 6.10, we have a{m, g}{a, u}g ∈

φ(λstep(ON 0)) as well as amgaug ∈ φ(λstep(ON 0)). Moreover, we have
that e4 causes e5 directly, but there is only an indirect causal link from
e4 to e6. Also, there is no causal link between e2 and e5 which means
that they are concurrent or independent. This and other relationships
can be read out from the diagram of the relation (F ′

◦ F
′)|T ′

×T ′ shown
below.

a

e1
m

e2
a

e3

g
e4

u
e5

g
e6

To define processes of an EN-system, we need to provide an axiomatic

characterisation of occurrence nets consistent with the structure of a given

EN-system.
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p1
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p12
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p21
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p22

p4

p14
p3

p13
p4

p24
p3

p23
p4

p34

p5

p15
p6

p16
p5

p25
p6

p26

a

a1 m

m1

a

a2

g

g1

u

u1
g

g2

Fig. 6.11 Process generated for EN 0 and its step sequence σ
df
= a{m, g}{a, u}g.

Definition 6.75 (Processes of EN-systems (α)). A process of EN is

an occurrence net ON with the labelling ` which:

• labels places of ON with places of EN .

• labels transitions of ON with transitions of EN .

• is injective on MON
init and `(MON

init ) =Minit .

• is injective on •a and a• and, moreover, `(•a) = •`(a) and `(a•) = `(a)•,
for every transition a of ON .

We denote this by ON ∈ proc(EN ).

The only missing component of the semantical framework for EN-

systems is the mapping returning processes for individual step sequences.

Definition 6.76 (Processes construction (πEN )). The occurrence net

procEN (σ) generated by a step sequence σ = U1 . . . Un of EN is the last

element in the sequence ON 0, . . . ,ON n where each ON k is an occurrence

net (Pk, Tk, Fk, `k) constructed thus.

Step 0: P0
df
= {p1 | p ∈Minit} and T0 = F0

df
= ∅.

Step k: Given ON k−1 we extend the sets of nodes and arcs as follows:

Pk
df
= Pk−1 ∪ {p

1+4p
| p ∈ U•

k}

Tk
df
= Tk−1 ∪ {a

1+4a
| a ∈ Uk}

Fk
df
= Rk−1 ∪ {(p

4p, a1+4a) | a ∈ Uk ∧ p ∈
•a}

∪ {(a1+4a, p1+4p) | a ∈ Uk ∧ p ∈ a
•
} .

In the above, the label of each node xi is set to be x, and 4x denotes the

number of the nodes of ON k−1 labelled by x.

The occurrence net ON 0 of Figure 6.10 is a process of the EN-system of
Figure 6.8.
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Process construction from the last definitions is illustrated in Figure 6.11
for the EN-system EN 0 of Figure 6.8 and one of its step sequences. The
resulting occurrence net is isomorphic to ON 0 of Figure 6.10 which, as
we already noted, is a process of EN 0.

We will now show the semantical properties formulated above can be es-

tablished for EN-systems and their firing sequences. Referring to Figure 6.9,

we have the following, where: EN is an EN-system, ON an occurrence net,

(σ, `) a labelled firing sequence, po a poset, and PO a set of total posets

with the same domain:

PN are EN-systems Defn. 6.70

EX are firing sequences

LAN are occurrence nets Defn. 6.74

LEX are labelled firing sequences

LCS are labelled posets

ω(EN ) is fseq(EN )

α(EN ) is proc(EN ) Definition 6.75

λ(ON ) is λfseq(ON )

πEN (σ) is procEN (σ) Defn. 6.76

φ(σ, `) is `(σ)

κ(ON ) is po(ON )

ε(po) is lin(po)

ı(PO) is
⋂

PO.

We first show, after omitting some obvious facts, that Property I holds.

Theorem 6.77. Let EN be an EN-system and σ its firing sequence, ON

be an occurrence net, po be a poset, and PO be a set of total posets with

the same domain.

(1) fseq(EN ), proc(EN ), λfseq(ON ) and lin(po) are non-empty sets.

(2) po(ON ) and
⋂

PO are posets.

(3) procEN (σ) is an occurrence net.

Proof. (1) Clearly, fseq(EN ) 6= ∅ as the empty string is a firing sequence

of EN . To show that proc(EN ) 6= ∅ one can take the occurrence net

consisting of the initial marking of EN with the identity labelling and no

transitions. That lin(po) 6= ∅ follows from Thm. 6.4.

To show λfseq(ON ) 6= ∅ we proceed by induction on the number of

transitions in ON . In the base case, there are no transitions at all, and

the empty labelled firing sequence belongs to λfseq (ON ). In the inductive
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case, one takes a transition a with all the inputs belonging to MON
init (such

a transition does exists as ON is finite and acyclic). Transition a can be

executed leading to a new marking M . We then delete a and all its inputs

obtaining an occurrence net ON ′ with the default initial marking M to

which the induction hypothesis can be applied. The desired labelled firing

sequence of ON can then be obtained by pre-pending any labelled firing

sequence of ON ′ with a.

(2) That po(ON ) is a poset follows from the acyclicity of ON , and that
⋂

PO is a poset follows from Thm. 6.4.

(3) The acyclicity of the constructed net follows directly from the con-

struction of Defn. 6.76 (intuitively, all arrows point ‘forward’). The same

construction also guarantees that each place has at most one input, and at

most one output. �

We next show that Property II holds.

Theorem 6.78. Let EN be an EN-system, and σ be its firing sequence.

Moreover, let ON be a process of EN , and σ′
∈ φ(λfseq (ON )).

(1) procEN (σ) is a process of EN .

(2) σ′
∈ fseq(EN ) and ON = procEN (σ′).

Proof. (1) Follows directly from the construction in Defn. 6.76.

(2) Let σ′ = φ((a1 . . . an, `)). Then there are markings M1, . . . ,Mn−1 such

thatMON
init [a1〉M1 . . .Mn−1[an〉M

ON
fin . One can then see that, by Defn. 6.75,

`(MON
init ) is the initial marking of EN and

`(MON
init )[`(a1)〉`(M1) . . . `(Mn−1)[`(an)〉`(M

ON
fin )

in EN . Hence σ′ = `(a1) . . . `(an) ∈ fseq(EN ). We still need to show that

ON is isomorphic to procEN (σ′). This can be shown by taking a mapping ψ

mapping each transition zi in procEN (σ′) to the i-th transition in a1 . . . an
labelled with z, and then extending it bijectively to the inputs of zi and

ψ(zi), and the output places of zi and ψ(zi). One can show that ψ is an

isomorphism for ON and procEN (σ′). �

Since Property III is nothing but Szpilrajn’s theorem in this case, we do

not have to do anything, and so what follows next is a proof of Property IV.

Theorem 6.79. If ON is an occurrence net then λfseq(ON ) =

lin(po(ON )).
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Proof. Referring to Defn. 6.74, if a and b are transitions satisfying (a, b) ∈

F ′
◦F ′ then, by the fact each place has at most one input and at most one

output, a must appear before b in any labelled firing sequence of ON .

Hence the (⊆) inclusion holds. To show the reverse one, let σ be a firing

sequence defined by a total poset in lin(po(ON )). Then one can apply

similar induction as in the second part of the proof of Thm. 6.77, after

observing that the first transition in any total poset in lin(po(ON )) is such

that all its inputs belong to MON
init , and so it can be executed. �

As a result, we can claim the semantical aims for EN-systems and firing

sequences.

Theorem 6.80. Let EN be an EN-system, and ON be an occurrence net.

proc(EN ) = procEN (fseq(EN ))

fseq(EN ) = φ(λfseq (proc(EN )))

po(ON ) =
⋂

λfseq(ON ) .

Similarly, we may claim the semantical aims for EN-systems and step

sequences. The necessary proofs are omitted as they are special cases of

those for ENI-systems which will be provided in the next section.

Theorem 6.81. Let EN be an EN-system, and ON be an occurrence net.

proc(EN ) = procEN (steps(EN ))

steps(EN ) = φ(λstep(proc(EN )))

po(ON ) =
⋂

λstep(ON ) .

EN-systems and Traces. In the last part of this section, we describe

a very close relationship between the behaviours of an EN-system EN =

(P, T, F,Minit ) and the theory of traces. We start by defining the trace

alphabet of EN , ΓEN
df
= (T, indEN ), where indEN comprises all pairs of

transitions with disjoint neighbourhoods. The set of possible steps of EN

is given by:

SEN
df
=

{

U ⊆ T | ∀a 6= b ∈ U : (a, b) ∈ indEN

}

.

Note that the independence relation indEN is a structurally defined notion.

The trace alphabet of the EN-system in Figure 6.8 comprises pairs like
(m,u) and (f, a), but it does not contain the pair (a, g) nor (u, f).
Moreover, SEN0 = {{m}, {a}, {g}, {u}, {f}, {m, g}, {m,u}, {m, f},
{a, u}, {a, f}}.
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We first consider Mazurkiewicz traces which correspond to the execu-

tions of firing sequences of EN . Then the induced equivalence on firing se-

quences is given by equations of the form ( ef = fe ), for all (e, f) ∈ indEN .

One can easily check that each Mazurkiewicz trace gives rise to only one

process of EN , since interchanging adjacent occurrences of independent

transitions has no effect on the construction of a process in Defn. 6.76, i.e.,

if σ ≡ σ′ then procEN (σ) is exactly the same4 as procEN (σ′) . Hence

procEN ([[σ]])
df
= procEN (σ) is a well defined occurrence net (process) associ-

ated to a trace. And, conversely, if we take all firing sequences of a process

from its default initial to default final marking and apply the labelling, then

what we get is exactly its defining trace. All this leads to a conclusion that

there exists a one-to-one correspondence between the Mazurkiewicz traces

and processes of an EN-system. In general, we have that the following are

satisfied:

Theorem 6.82. Let EN be an EN-system and σ be its firing sequence.

fseq(EN ) =
⊎

θ∈fseq(EN ) [[θ]]

canposet([[σ]]) = κ(procEN (σ))

[[σ]] = λfseq(procEN (σ)) .

Proof. The first part follows from the fact that if (a, b) ∈ indEN and

M [ab〉M ′, then M [ba〉M ′. The second part follows from the way in which

the construction in Defn. 6.76 works. The third part follows from the second

part and Thm. 6.79. �

To conclude, the Mazurkiewicz trace semantics and the process seman-

tics of EN-systems lead to the same poset semantics by providing for each

EN-system identical (isomorphic) posets modelling the causalities in its con-

current executions. This provides a strong argument in favour of the view

that both approaches capture the essence of causality in the behaviours of

EN-systems.

Similar conclusions can be reached if one considers step sequences of an

ENI-system. This time, however, the equivalence on executed behaviours is

generated by equations of the form AB ≡ A∪B for all disjoint A,B ∈ SEN

satisfying (A×B)∩ indEN = ∅. The remaining details are similar, leading

up to

Theorem 6.83. Let EN be an EN-system and σ be its step sequence.

4
I.e., in the sense of an actual equality of the two nets rather than isomorphism.
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steps(EN ) =
⊎

θ∈steps(EN ) [[θ]]

canposet([[σ]]) = po(procEN (σ))

[[σ]] = λstep(procEN (σ)) .

Proof. This is a special case of Thm. 6.92 which holds for ENI-systems

and their step sequences. �

6.8 EN-systems with Inhibitor and Mutex Arcs

This section extends the treatment of concurrency in system models to nets

with inhibitor arcs. Let us take the EN-system of Figure 6.8 and add to it

an inhibitor arc linking the place p3 and transition f . This yields the net

system ENI 0 shown in Figure 6.12. (Inhibitor arcs are drawn with small

open circles as arrowheads.) Adding such an arc means that f cannot be

enabled when the buffer is non-empty (a token in place p3 signifies that the

buffer contains an item).

ENI 0

p7

p1

p2

p3

p4

p5

p6

fm a g u

Fig. 6.12 An ENI-systems modelling a second version of the producer/consumer system.

Definition 6.84 (ENI-systems (PN )). An elementary net system

with inhibitor arcs (or ENI-system) is a relational tuple ENI
df
=

(P, T, F,Minit , Inh) such that the first four components form an underlying

EN-system and Inh ⊆ P × T is a set of inhibitor arcs.

Generally speaking, notions and notations relating to an ENI-system

are inherited from its underlying EN-system. The only new notation is ◦a
denoting the set of all the places p where the presence of a token inhibits

the enabling of a transition a, i.e., (p, a) ∈ Inh. The dynamic aspects of an

ENI-system are also derived from the underlying EN-system after stating

that a step of transitions U of an ENI-system is enabled at a marking M if

it is enabled at M in the underlying EN-system and, in addition, no place

in ◦U belongs to M , where ◦U consists of all places connected by inhibitor
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arcs to transitions in U . The change of state effected by an executed step

is exactly the same as in the underlying EN-system.

For the ENI-system of Figure 6.12, we have that M [{a, f}〉M ′ and
M [fa}〉M ′, where M = {p1, p4, p6} and M

′ = {p2, p3, p7}. However,
M [af}〉M ′ does not hold as after executing transition a, a token is de-
posited in place p3 which acts as an inhibitor place of transition f .

To develop a causality semantics for ENI-systems we again take advan-

tage of a suitably instantiated semantical framework, following what we

have already done for EN-systems.

The labelled causal structures employed by the semantical framework

instantiated for ENI-systems are the stratified order structures, while ex-

ecutions remain to be step sequences. To define processes we extend oc-

currence nets to handle nets with inhibitor arcs. (In [25] an alternative

process definition for inhibitor nets is developed.) To this end we introduce

so-called activator arcs. Each such arc plays a role dual to that of an in-

hibitor arc. An activator arc between a place and transition test for the

presence of a token in the place, but this token is not affected (removed)

by the occurrence of that transition.

Definition 6.85 (Activator occurrence nets (LAN )). An activator

occurrence net (or ao-net) is a relational tuple

AON
df
= (P ′, T ′, F ′, `,Act)

such that the first four components form an underlying occurrence net and

Act ⊆ P ′
× T ′ is a set of activator arcs (drawn with small black circles as

arrowheads). Moreover, it is assumed that the relational structure

ρ
df
= (T ′,≺loc,<loc, `|T ′)

where ≺loc and <loc are relations respectively given by

(F ′
◦ F ′)|T ′×T ′ ∪ (F ′

◦Act) and Act−1
◦ F ′

is ♦-acyclic. We then define sos(AON ) to be the ♦-closure of ρ.

An ao-net represents a concurrent execution or run of a system and

so it has to avoid circularity. Intuitively, ≺loc stands for precedence (the

first transition has to produce a token for consumption or testing by the

second transition) and <loc for weak precedence (the first transition cannot

happen after the second one, since the latter consumes a token for which

the former tests). Clearly, sos(AON ) is an so-structure.
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Step sequences of an ao-net are defined as for its underlying occurrence

net, except that a step U is enabled at a markingM if, in addition, �U ⊆M

where �U consists of all places connected by activator arcs with transitions

in U .

Figure 6.13 shows an ao-net AON 0 labelled by places and transitions of
the ENI-system EN 0 shown in Figure 6.12, with the default initial mark-
ing {b1, b2, b3} and default final marking {b11, b12, b13}. Note also that
transition e5 weakly precedes transition e4, i.e., e5 <loc e4. Moreover,
we have that {m, g}{a, f} and a{m, g}fa belong to φ(λstep(AON 0)),
however, a{m, g}af does not.

p1b1

p4b2

p5b3

p3b4

p2

b5

p4

b6

p1

b7

p6

b8

p2 b9

p3 b10

p5 b11

a

e1

m

e3

a

e4

g

e2

f

e5

Fig. 6.13 An activator occurrence net AON 0.

Processes of ENI-systems are similar to those of EN-systems with the

inhibitor arcs of the system represented by activator arcs which rather than

testing for the absence of tokens are used to test for the presence of tokens

in complement places. Hence, we assume that each place p of ENI adjacent

to an inhibitor arc has a complement place p̃ in the underlying EN-system.

Definition 6.86 (Processes of ENI-systems (α)). A process of ENI is

an ao-net AON = (P ′, T ′, F ′, `,Act) such that the underlying occurrence

net of the latter is a process of the underlying EN-system of the former

and, in addition, ` is injective on �e and `(�e) = ◦̃`(e) for every transition

e in T ′. We denote this by AON ∈ proc(ENI ).

The generation of processes for a given step sequence is also based on

the one given earlier for EN-systems, showing once again that the addition

of inhibitor arcs leads to conservative extensions of notions and results

presented earlier on.
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Definition 6.87 (Processes construction (πENI )). The activator oc-

currence net procENI (σ) generated by a step sequence σ = U1 . . . Un of

ENI is the last element in the sequence AON 0, . . . ,AONn where each

AON k
df
= (Pk, Tk, Fk, `k, Ak) is an ao-net with the components constructed

as in Defn. 6.76, and the following additions:

Step 0: A0 = ∅.

Step k: Ak = Ak−1 ∪ {(p̃
4p̃, a1+4a) | a ∈ U ∧ p ∈ ◦a}.

p1

p11

p4

p14

p5

p15

p3

p13

p2

p12

p4

p24

p1

p21

p6

p16

p2

p22

p3

p23

p5

p25

a

a1 m

m1

a

a2

g

g1

f

f1

Fig. 6.14 Process generated for ENI 0 and its step sequence σ
df
= a{g,m}{a, f}.

We will now show the semantical properties formulated above can be

established for ENI-systems and their firing sequences. Referring to the

notation used in Figure 6.9, we have the following, where ENI is an ENI-

system, AON an ao-net, (σ, `) a labelled step sequence, sos an so-structure,

and SPO a set of stratified posets with the same domain:

PN are ENI-system s Defn. 6.84

EX are step sequences

LAN are ao-nets Defn. 6.85

LEX are labelled step sequences

LCS are labelled so-structures

ω(ENI ) is steps(ENI )

α(ENI ) is proc(ENI ) Defn. 6.86

λ(AON ) is λstep(AON )

πENI (σ) is procENI (σ) Defn. 6.87

φ(σ, `) is `(σ)

κ(AON ) is sos(AON )

ε(sos) is spo(sos)

ı(SPO) is
⋂

SPO.

We first show that Property I holds (as before, we omit some obvious facts).



September 14, 2010 14:16 World Scientific Book - 9in x 6in 00Chapter

376 R. Janicki, J. Kleijn and M. Koutny

Theorem 6.88. Let ENI be an ENI-system and σ its step sequence, AON

be an ao-net, sos be an so-structure, and SPO be a set stratified posets with

the same domain.

(1) steps(ENI ), proc(ENI ), λstep(AON ) and spo(sos) are non-empty sets.

(2) sos(AON ) and
⋂

SPO are so-structures.

(3) procENI (σ) is an ao-net.

Proof. (1) steps(ENI ) 6= ∅ as the empty string is a valid step sequence

of ENI . To show proc(ENI ) 6= ∅ one can take the ao-net consisting of the

initial marking of ENI with the identity labelling and no transitions. That

spo(sos) 6= ∅ follows from Thm. 6.22.

Showing that λstep(AON ) 6= ∅ proceeds by induction on the number of

transitions in AON . In the base case, there are no transitions at all, and

the empty labelled step sequence belongs to λstep(AON ). In the inductive

case, one takes the set U of all transitions in AON such that •U ⊆MAON
init

and, for every p ∈ •U , if (p, t) ∈ Act then t ∈ U . One can see that U 6= ∅

since the relational structure ρ in Defn. 6.85 is ♦-acyclic and AON is finite.

Such a step U can be executed leading to a new marking M . We then

delete U and all the inputs of its transitions obtaining an ao-net AON ′

with the default initial marking M to which the induction hypothesis can

be applied. The desired labelled step sequence of AON can be obtained by

pre-pending any labelled step sequence of AON ′ with U .

(2) That sos(AON ) is an so-structure follows from the ♦-acyclicity of the

relational structure ρ in Defn. 6.85, and that
⋂

SPO is an so-structure

follows from Thm. 6.22.

(3) The ♦-acyclicity of the relational structure ρ follows directly from the

construction of Defn. 6.87. �

We next show that Property II holds.

Theorem 6.89. Let ENI be an ENI-system, and σ be its step sequence.

Moreover, let AON be a process of ENI , and σ′
∈ φ(λstep(AON )).

(1) procENI (σ) is a process of ENI .

(2) σ′
∈ steps(ENI ) and AON = procENI (σ

′).

Proof. (1) Follows directly from the construction in Defn. 6.87.

(2) Let σ′ = φ((U1 . . . Un, `)). Then there are markings M0,M1, . . . ,Mn−1

of AON such that MAON
init [U1〉M1 . . .Mn−1[Un〉M

AON
fin . One can then see
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that, by Defn. 6.75, `(MAON
init ) is the initial marking of ENI and

`(MAON
init )[`(U1)〉`(M1) . . . `(Mn−1)[`(Un)〉`(M

AON
fin )

in ENI . Hence σ′ = `(U1) . . . `(Un) ∈ steps(ENI ). We still need to show

that AON is isomorphic to procENI (σ
′). This can be shown by taking a

mapping ψ mapping each transition zi in procENI (σ
′) to the i-th transition

in U1 . . . Un labelled with z, and then extending it bijectively to the inputs

of zi and ψ(zi), and the output places of zi and ψ(zi). One can show that

ψ is an isomorphism for AON and procENI (σ
′). �

We finally observe that Property III is nothing but Szpilrajn’s theo-

rem for stratified order structures and stratified posets in this case (i.e.,

Thm. 6.22), and Property IV is proved below.

Theorem 6.90. If AON is an ao-net then λstep(AON ) = spo(sos(AON )).

Proof. Referring to Defn. 6.85, if a ≺loc b or a <loc b then, by the fact

each place has at most one input and at most one output, a must appear

before b and a must appear before or in the same step as b, respectively,

in any labelled step sequence of AON . Hence the (⊆) inclusion holds. To

show the reverse one, let σ be a step sequence defined by a stratified poset

in spo(sos(AON )). Then one can apply similar induction as in the second

part of the proof of Thm. 6.88, after observing that the first step U in any

stratified poset in spo(sos(AON )) is such that •U ⊆MAON
init and, for every

p ∈ •U , if (p, t) ∈ Act then t ∈ U . Consequently, it can be executed. �

We can therefore claim the semantical aims for EN-systems and their

firing sequences.

Theorem 6.91. Let ENI be an ENI-system, and AON be an ao-net.

proc(ENI ) = procENI (steps(ENI ))

steps(ENI ) = φ(λstep(proc(ENI )))

sos(AON ) =
⋂

λstep(AON ) .

ENI-systems and Comtraces. The notions of independence and

causality developed for EN-systems can be lifted to the level of ENI-systems.

The comtrace alphabet of an ENI-system ENI is given by

ΘENI
df
= (T, simENI , serENI )

where the simultaneity and serialisability relations are given respectively

by:
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• (e, f) ∈ simENI if •e• ∩ •f• = ◦f ∩ •e = ◦e ∩ •f = ∅.

• (e, f) ∈ serENI if (e, f) ∈ simENI and e• ∩ ◦f = ∅.

The set of possible steps of ENI is given by:

SENI
df
=

{

U ⊆ T | ∀a 6= b ∈ U : (a, b) ∈ simENI

}

.

Again, it is worth noting that both causality relations are structurally de-

fined.

We can now reach conclusions similar to those obtained for EN-systems

and Mazurkiewicz traces. This time, however, the equivalence is generated

by equations of the form ( AB = A ∪ B ), for all A,B ∈ SENI satisfying

A×B ⊆ serENI .

Since splitting and combining steps of transitions according to the si-

multaneity and serialisability relations defined by the net have no effect on

the process construction, we obtain that AON σ = AON τ iff σ and τ are

equivalent step sequences. Hence with each comtrace one process (up to

isomorphism) is associated. Conversely the step language of a process of

ENI is identical to its defining comtrace.

The remaining details are basically the same as in the case of EN-

systems and Mazurkiewicz traces, leading up to the following set of results.

Theorem 6.92. Let ENI be an ENI-system and σ be its step sequence.

steps(ENI ) =
⊎

θ∈steps(ENI ) [[θ]]

cansos([[σ]]) = sos(procENI (σ))

[[σ]] = λstep(procENI (σ)) .

Comtraces and processes give the same views on the causalities in the

behaviours of ENI-systems, again providing a justification for the funda-

mental soundness of the concurrency semantics they both capture. Also,

the step sequences of an ENI-system can be partitioned into comtraces. Ac-

cordingly, we may state that the causal behaviour of ENI-systems can be

captured by the so-structures corresponding to the comtraces partitioning

their sets of step sequences.

Mutually Exclusive Transitions. In the last part of this chapter we

introduce a new class of Petri nets based on EN-systems which allow the

designer not only to use inhibitor arcs, but also mutex arcs which effec-

tively prohibit transitions from occurring simultaneously (i.e., in the same

step). This is illustrated in Figure 6.15 which portrays a variant of the

producer/consumer scheme. In this case, the producer is allowed to retire
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ENIM 0

p0 p7

p1

p2

p3

p4

p5

p6

fm a g ur

Fig. 6.15 An ENIM-system modelling a third version of the producer/consumer system.

(transition r), but never at the same time as the consumer finishes the job

(transition f). Other than that, there are no restrictions on the execu-

tions of transitions r and f . The formal device we employ to model such

a scenario is a mutex arc between transitions r and f (depicted as an edge

without any arrowheads).

Definition 6.93 (ENIM-systems (PN )). An elementary net system

with inhibitor and mutex arcs (or ENIM-system) is a relational tuple

ENIM
df
= (P, T, F,Minit , Inh,Mtx ) such that the first five components form

an underlying ENI-system and Mtx ⊆ T × T is a symmetric relation speci-

fying mutex arcs.

Note that mutex arcs are relating transitions in a direct way, rather than

via adjacent places. This should not be regarded as an unusual feature as,

for example, Petri nets with priorities also impose certain relationships

between transitions in a similarly direct way.

Wherever it is possible we retain the definitions introduced for the un-

derlying ENI-system. The only new notation is ♦a denoting the set of all

the transitions b which are excluded from being executed simultaneously

with transition a, i.e., (a, b) ∈ Mtx .

One of the consequences of introducing mutex arcs is that the class of

potential valid steps needs to be restricted in order to reflect the new kind

of constraint. We therefore define:

SENIM
df
=

{

U ⊆ T | ∀a 6= b ∈ U : •a• ∩ •b• = ∅ ∧ a /∈ ♦b
}

.

The remaining definitions pertaining to the dynamic aspects of an ENIM-

system are exactly the same as for the underlying ENI-system (but, clearly,

under a modified notion of allowed steps of transitions).

For the ENIM-system of Figure 6.15, we have that M [rf〉M ′ and
C[fr〉M ′, where M = {p2, p4, p6} and M

′ = {p0, p3, p7}. However,
M [{r, f}}〉M ′ does not hold as r and f cannot be executed in the same
step.
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We now can move on to the execution semantics of ENIM-systems in

the context of the semantical framework, basically following the already es-

tablished pattern with one crucial modification, namely, the labelled causal

structures employed by the semantical are the generalised stratified order

structures. First, we extend the notion of ao-nets to include mutex arcs.

Definition 6.94 (Activator mutex occurrence nets (LAN )). An

activator mutex occurrence net (or amo-net) is a relational tuple

AMON
df
= (P ′, T ′, F ′, `,Act ,Mtx)

such that the first five components form an underlying activator occurrence

net, and Mtx ⊆ T ′
× T ′ is a symmetric relation specifying mutex arcs such

that Mtx ∩ <
∗
loc ∩ (<

∗
loc)

−1 = ∅, where the relation <loc is as in Defn. 6.85.

The gso-structure associated with AMON is gsos(AON )
df
= (E,Mtx ,<),

where < is defined in the same way as for the underlying ao-net.

p1b1

p4b2

p5b3

p3 b4

p2

b5

p4 b6

p6

b7

p0 b8

p7 b9

a

e1

r

e2

g

e4

f

e5

Fig. 6.16 An activator mutex occurrence net AMON0.

As in the previous two cases, an amo-net represents a run of a system.

The definitions of initial and final marking, as well step sequence execution

are exactly the same as for the underlying ao-net under the proviso that

steps do not contain transitions joined by mutex arcs.

Figure 6.16 depicts an amo-net labelled with places and transitions of the
ENIM-system of Figure 6.15. For the amo-net AMON 0 of Figure 6.16,
we have that both agrf and agfr belong to φ(λstep(AMON 0)), however,
ag{f, r} does not.

Similarly, the definition of processes of ENIM-systems closely follows

that developed for ENI-systems.
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Definition 6.95 (Processes of ENIM-systems (α)). A process of

ENIM is an amo-net AMON = (P ′, T ′, F ′, `,Act ,Mtx) such that the un-

derlying ao-net of the latter is a process of the underlying ENI-system of

the former and, in addition, (e, f) ∈ Mtx iff e ∈ ♦`(f), for all transitions

e, f in T ′. We denote this by AMON ∈ proc(ENIM ).

Finally, the construction of process is a conservative extensions of that

introduced for ENI-systems.

Definition 6.96 (Processes construction (πENIM )). The amo-net

procENIM (σ) generated by a step sequence σ of ENIM is the last el-

ement in the sequence AMON 0, . . . ,AMON n where each AMON k
df
=

(Pk, Tk, Fk, `k, Ak,Mk) is an amo-net such that

Mk
df
= {(e, f) ∈ Tk × Tk | (`k(e), `k(f)) ∈ Mtx}

and all the remaining components are constructed as in Defn. 6.87.

The aom-net shown in Figure 6.16 is a process of the ENIM-system of
Figure 6.15.

Figure 6.17 shows the result of the above construction for the ENIM-
system of Figure 6.15 and one of its step sequences. Note that this
amo-net is isomorphic to that shown in Figure 6.16.

p1

p11

p4

p14

p5

p15

p3

p13

p2

p12

p4

p14

p6

p16

p0

p10

p7

p17

a

a1 r

r1

g

g1

f

f1

Fig. 6.17 Process generated for ENIM 0 and its step sequence σ
df
= a{g, r}f .

It can be shown that all the properties required of a semantical frame-

work are also satisfied for ENIM-systems and their step sequences. More-

over, the treatment of g-comtraces follows the same pattern as in the case

of EN-systems and traces, and ENI-systems and comtraces. We leave the

formalisation and proofs of these results as an exercise for the reader,
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6.9 Concluding Remarks

This chapter covers only part of the much wider field of applying lan-

guage theory to the study of concurrent behaviours, and so there are several

strands of related research which have not even been mentioned. For ex-

ample, it is possible to develop traces for infinite system behaviours [9, 10],

which also allows one to treat aspects such as fairness [30]. Many of those

results could also be extended for comtraces and generalised comtraces.

Moreover, we have not considered the modelling of conflicts between en-

abled actions while traces and processes represent single runs in which all

the conflicts have already been resolved. Adding conflict amounts to the in-

troduction of branching in processes and considering the prefix ordering of

all traces which form the system behaviours. (Branching processes of Petri

nets [5] are the basis for an efficient verification technique [34, 6, 27].) If,

in addition, one only considers relations between events (transition occur-

rences) the result is the more abstract model of event structures [13, 47, 36]

which have been used to study fundamental concepts of concurrency in a

model-independent way. Finally, we only briefly touched upon the algebraic

properties of trace concepts such as can be found in, e.g., [4, 3]. Major

theoretical problems as recognisability or acceptability have solutions for

traces [4] but do not have any for comtraces nor generalised comtraces. Fi-

nally, more general net classes such as PT-nets do not admit a purely struc-

tural notion of independence between net transitions, and so one needs to

resort to notions such as state-related local traces [12] to obtain treatment

similar to that of Mazurkiewicz traces. Extending local traces to PT-nets

with inhibitor and mutex arcs is therefore a challenging task.

The observational semantics used in this chapter is assumed to be de-

fined either in terms of sequences (i.e., total orders) or step-sequences (i.e.,

stratified orders). It was argued in [46] (and later confirmed in more formal

terms in [16]) that any execution that can be observed by a single observer

must be an interval order, which means that the most precise observational

semantics is in fact in terms of interval orders. When the observational se-

mantics is defined in terms of interval orders, the stratified order structures

must be replaced by more complex interval order structures (introduced in-

dependently in [15] and [31]). Unfortunately not much is known so far about

algebraic properties of interval order structures (cf. [23]) and no concepts

corresponding to traces or comtraces have yet been proposed. Modelling

concurrent histories with relational structures leads to a universal model

covering ‘earlier than’, ‘not later than’ and ‘no simultaneity’, together with
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various assumptions about the structure of system runs (c.f. [14]). In case

one is interested in modelling only ‘not later than’ for system runs modelled

by step sequences, one can use the approach proposed by [44, 48] based on

preorders.
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22. Janicki, R. and Lê, D. T. M. (2010). Modelling concurrency with comtraces
and generalized comtraces, Information and Computation (to appear) .

23. Janicki, R., Lê, D. T. M. and Zubkova, N. (2009). Closure operators for
order structures, in FCT, Lecture Notes in Computer Science, Vol. 5699
(Springer), pp. 217–229.

24. Juhás, G., Lorenz, R. and Mauser, S. (2006). Synchronous + concurrent
+ sequential = earlier than + not later than, in ACSD (IEEE Computer
Society), pp. 261–272.

25. Juhás, G., Lorenz, R. and Mauser, S. (2008). Complete process semantics of
Petri nets, Fundamenta Informaticae 87, pp. 331–365.

26. Keesmaat, N. and Kleijn, H. (1997). Net-based control versus rational con-
trol: the relation between itnc vector languages and rational relations, Acta
Informatica 34, pp. 23–57.

27. Khomenko, V., Koutny, M. and Vogler, W. (2003). Canonical prefixes of
Petri net unfoldings, Acta Informatica 40, pp. 95–118.

28. Kleijn, H. C. M. and Koutny, M. (2004). Process semantics of general in-
hibitor nets, Information and Computation 190, pp. 18–69.

29. Kleijn, J. and Koutny, M. (2008). Formal languages and concurrent be-
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37. Ochmański, E. (1995). Recognizable trace languages, in [4], pp. 167–204.
38. Petri, C. A. (1962). Fundamentals of a theory of asynchronous information

flow, in IFIP Congress (North Holland), pp. 386–390.
39. Petri, C. A. (1973). Concepts of net theory, in MFCS (Slovak Academy of

Sciences), pp. 137–146.
40. Reisig, W. and Rozenberg, G. (eds.) (1998a). Lectures on Petri Nets I: Basic

Models, Lecture Notes in Computer Science, Vol. 1491 (Springer).
41. Reisig, W. and Rozenberg, G. (eds.) (1998b). Lectures on Petri Nets II:

Applications, Lecture Notes in Computer Science, Vol. 1492 (Springer).
42. Rozenberg, G. and Engelfriet, J. (1998). Elementary net systems, in [40],

pp. 12–121.
43. Shields, M. W. (1979). Adequate path expressions, in International Sympo-

sium on Semantics of Concurrent Computation, Lecture Notes in Computer
Science, Vol. 70 (Springer), pp. 249–265.

44. Shields, M. W. (1989). Behavioural presentations, in REX Workshop, Lecture
Notes in Computer Science, Vol. 354 (Springer), pp. 673–689.

45. Szpilrajn, E. (1930). Sur l’extension de l’ordre partiel, Fundamenta Mathe-
maticae 16, pp. 386–389.

46. Wiener, N. (1914). A contribution to the theory of relative position, Proc.
Camb. Philos. Soc 17, pp. 441–449.

47. Winskel, G. (1988). An introduction to event structures, in Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency,
Lecture Notes in Computer Science, Vol. 354 (Springer), pp. 364–397.

48. Winskel, G. (1989). Event structure semantics for CCS and related lan-
guages, Technical Report DAIMI-159, University of Aarhus.



September 14, 2010 14:16 World Scientific Book - 9in x 6in 00Chapter

386 R. Janicki, J. Kleijn and M. Koutny

This page is intentionally left blank



September 14, 2010 14:34 World Scientific Book - 9in x 6in 00Chapter

Chapter 7

Correction Queries in Active Learning

Cristina Tı̂rnăucă
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In this work we investigate the learning model in which a learner gets

information of the hidden concept by using different types of correction

queries (CQs). Specifically, three types of queries are taken into account,

the so-called prefix, length bounded and edit distance CQs. In order to

state the power of these models, we have considered two learning scenarios.

In the first one, computational complexity issues are neglected and the

matter is to decide, for a given class of concepts, whether learning in a

finite number of steps is possible. We show power relationships among

CQ models themselves, between these models and well-established query

models, and with learning models in a different paradigm, namely the Gold-

style learning in the limit model.

The last part of this chapter is focused on the second learning scenario

where computational complexity issues are important. We provide new

polynomial time learning algorithms using prefix correction queries for the

class of pattern languages and the class of k-reversible languages. In addi-

tion, we show power relationships among the new models themselves and

the membership query model.

7.1 Introduction

In the field of grammatical inference many of the existing learning mod-

els have as inspiration the process of human language acquisition. The

387
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introduction of the field itself is motivated by the hope to gain a better un-

derstanding of what learning really is, as Gold points out in his pioneering

paper [11].

Another example is Valiant’s PAC learning model [34], in which the

learner has to output, with high probability, a language that is close enough

to the target one (see [16] for further details). This formalism captures

our intuition that, although many of us might never master to perfection a

language, we should be able to get a good enough approximation eventually.

Last but not least, Angluin’s query learning model [4] reflects another

feature, namely children’s ability to ask questions within the process of

acquiring their native language. None of the traditional types of queries

reflects though one important aspect of this process: although children do

not receive explicit negative information (words that are not in the language

or ungrammatical sentences), they are corrected when they make mistakes.

And this is why a new type of queries, called CORRECTION QUERIES

(CQs), was introduced (see [9]).

The first formal definition of CQs appears in [7]. The algorithm given

there, a straightforward modification of Angluin’s L∗ [4], allows the learner

to identify any minimal complete DFA from CQs and equivalence queries

in polynomial time. In order to distinguish these queries from all the other

types subsequently introduced, we will refer to them as prefix correction

queries (PCQs) throughout this work. A learner, in response to a PCQ,

gets the smallest (in the lex-length order) extension of the queried datum

such that their concatenation belongs to the target language.

Note that in the case of DFAs, returning the answer to a PCQ can be

easily done in polynomial time. However, when the target concept ranges

over arbitrary recursive languages, the answer to a PCQ might be very

long or not even computable (given a recursive language L and a string

w, one cannot decide, in general, if w is a prefix of a string in L). A

possible solution to avoid very long (or infinite) searches is to restrict the

search space to only short enough suffixes. Therefore, we introduce the

notion of length bounded correction query (LBCQ). Given a fixed number

l, answering an l-bounded correction query consists in returning all strings

having the length smaller than or equal to l that, concatenated with the

queried datum, form a string in the target language [31, 32].

The third main type of CQs is based on the edit distance, and has been

independently introduced by E. Kinber in [17] and by L. Becerra Bonache,

C. de la Higuera, J.C. Janodet and F. Tantini in [8]. According to [8], the

edit distance correction of a given string is, by definition, one string in the
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target language at minimum distance from the queried datum. If many

such strings exist, the teacher randomly returns one of them. A slightly

modified type of edit distance correction query (EDCQ) is introduced by

Kinber in [17]. The author there imposes a supplementary condition: the

teacher has to return only strings that have not previously appeared during

the run of the algorithm. Clearly, this restriction makes sense only with

respect to an algorithm, so we will consider this type of EDCQ only in the

section dedicated to polynomial time learning algorithms.

In this work we present a series of results obtained concerning correction

queries. After a preliminary section, we describe two well-known learning

settings: Angluin’s query learning model and Gold’s learning in the limit

model, among with relationships that exists between them. Next, for each

of the three types of CQs mentioned above, we give necessary and sufficient

conditions for a class of languages to be learnable with the given type of CQ.

Moreover, we show that LBCQs and EDCQs have exactly the same learning

power as MQs, whereas PCQs are strictly more powerful. Furthermore,

a comparison with Gold-style learning models is provided, showing, for

example, that learning with PCQs is a strictly weaker model than learning

in the limit from text. The last section is dedicated to polynomial time

learners. We give algorithms for learning pattern languages and k-reversible

languages with PCQs, and we compare all three types of CQs with the

traditional MQs.

7.2 Preliminaries

We follow standard definitions and notations in formal language theory.

The reader is referred to [13, 14, 26] for further information about this

domain.

Let Σ be a finite set of symbols called the alphabet and let Σ∗ be the

set of strings over Σ. A language L over Σ is a subset of Σ∗. The elements

of L are called strings or words. Let u, v, w be strings in Σ∗ and |w| be

the length of w. λ is a special word called the empty string and has length

0. We denote by uv or u · v the concatenation of the strings u and v. If

w = uv for some u, v in Σ∗, then u is a prefix of w and v is a suffix of w.

A set L is called prefix-closed (suffix-closed) if for any w in L, all prefixes

(suffixes) of w are also in L.

By Pref (L) we denote the set {u ∈ Σ∗
| ∃v ∈ Σ∗ such that uv ∈ L} and

by TailL(u) the set {v | uv ∈ L}. Then, by Σ≤k and Σk we denote the sets
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{u ∈ Σ∗
| |u| ≤ k} and {u ∈ Σ∗

| |u| = k}, respectively.

Assume that Σ is a totally ordered set and let ≺l be the lexicographical

order on Σ∗. Then, the lex-length order ≺ on Σ∗ is defined by: u ≺ v if

either |u| < |v|, or else |u| = |v| and u ≺l v. In other words, strings are

compared first according to length and then lexicographically.

The edit distance between the strings w and w′, denoted d(w,w′) in the

sequel, is the minimum number of edit operations needed to transform w

into w′. The edit operations are either (1) deletion: w = uav and w′ = uv,

or (2) insertion: w = uv and w′ = uav, or (3) substitution: w = uav and

w′ = ubv, where u, v ∈ Σ∗, a, b ∈ Σ and a 6= b. The edit distance between

two strings w and w′ can be computed in O(|w| · |w′
|) time by dynamic

programming [35].

Given a language L, one can define the following equivalence relation

(i.e., a relation which is reflexive, symmetric and transitive) on strings:

u ≡L v if and only if (∀w ∈ Σ∗, u · w ∈ L ⇔ v · w ∈ L). This equivalence

relation divides the set of all strings into one or more equivalence classes.

For any language L over Σ and any w in Σ∗ we denote by [w]L the equiv-

alence class of w with respect to the language L, or simply [w] when L is

understood from the context. The number of equivalence classes induced

by ≡L is called the index of L.

A deterministic finite automaton (DFA) is a 5-tuple A = (Q,Σ, δ, q0, F )

where Q is the (finite) set of states, Σ is a finite alphabet, q0 ∈ Q is the

initial state, F ⊆ Q is the set of final states and δ is a partial function that

maps Q × Σ to Q which can be extended to strings by doing δ(q, λ) = q

and δ(q, wa) = δ(δ(q, w), a) whenever the right-hand side is defined. The

number of states in Q gives the size of A. A string w is accepted by A if

δ(q0, w) ∈ F . The set of strings accepted by A is denoted by L(A) and is

called a regular language.

We say that a DFA A = (Q,Σ, δ, q0, F ) is complete if for all q in Q and a

in Σ, δ(q, a) is defined (i.e., δ is a total function). For any regular language

L, there exists a minimum state complete DFA hereinafter denoted AL such

that L(AL) = L. The Myhill-Nerode Theorem [28, 29] states that the size

of AL equals the index of L. An immediate consequence of this theorem is

that a language L is regular if and only if L has finite index.

Let us now introduce some particular classes of languages which will be

later used in this work.

• Following [8], one can define the languageBr(w) of all strings whose

edit distance is at most r from w where w ∈ Σ∗ and r ∈ R. This
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language will subsequently be called the ball of center w and radius

r. Formally, Br(w) = {v ∈ Σ∗
| d(v, w) ≤ r}. We denote by B the

class of all balls of strings over a fixed alphabet Σ.

• Given a nonnegative integer k, a language L is said to be k-

reversible if whenever u1vw, u2vw are in L and |v| = k, TailL(u1v)

= TailL(u2v). We denote by k -Rev the class of all k-reversible

languages.

• We assume a finite alphabet Σ such that |Σ| ≥ 2, and a countable,

infinite set of variables X = {x, y, z, x1, y1, z1, . . . , }. A pattern π

is any nonempty string over Σ ∪ X . The pattern language L(π)

consists of all the strings obtained by uniformly replacing the vari-

ables in π with arbitrary strings in Σ+. Let us denote by P the

set of all pattern languages over a fixed alphabet Σ. The pattern

π is in normal form if the variables occurring in π are precisely

x1, . . . , xk, and for every i with 1 ≤ i < k, the leftmost occurrence

of xi in π is left to the leftmost occurrence of xi+1.

7.3 Learning Models

Let C be a class of nonempty recursive languages over Σ∗. Then C is

an indexable class (or indexed family) if there is an effective enumeration

(Li)i≥1 of all and only the languages in C such that membership is uniformly

decidable, i.e., there exists a computable function that, for any w ∈ Σ∗ and

i ≥ 1, returns 1 if w ∈ Li, and 0 otherwise. Such an enumeration will

subsequently be called an indexing of C. In the sequel we might say that

C = (Li)i≥1 is an indexable class and understand that C is an indexable

class and (Li)i≥1 is an indexing of C.

7.3.1 Query Learning

In the query learning model a learner has access to an oracle that truthfully

answers queries of a specified kind. A query learner is an algorithmic device

that, depending on the reply of the previous queries, either computes a new

query, or returns a hypothesis and halts.

More formally, let C be an indexable class and let L be an arbitrary

language in C. The query learner Alg learns L using some type of queries if

it eventually halts and its only hypothesis, say i, correctly describes L (i.e.,

Li = L). So, Alg returns its unique and correct guess i after only finitely
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many queries. Moreover, Alg learns the class C using some type of queries

if it learns every language of that class using queries of the specified type.

The most investigated types of queries are:

• Membership queries (MQs). The input is a string w, and the answer

is Yes or No, depending on whether or not w belongs to the target

language L.

• Equivalence queries (EQs). The input is an index j of some lan-

guage Lj ∈ C. If Lj = L, the answer is Yes. Otherwise together

with the answer No, a counterexample from (Lj\L) ∪ (L\Lj) is

supplied.

The collections of all indexable classes C for which there is a query

learner Alg such that Alg learns C using membership (or equivalence)

queries are denoted by MemQ (EquQ , respectively).

7.3.2 Gold-style Learning

In order to present the Gold-style learning models we need some further

notions, briefly explained below (for details, see [11, 2, 40]).

Let L be a nonempty language. A text for L is an infinite sequence

σ = w1, w2, w3, . . . such that {wi | i ≥ 1} = L. An informant for L is an

infinite sequence σ = (w1, b1), (w2, b2), (w3, b3), . . . with bi ∈ {0, 1} for all

i ≥ 1 such that {wi | i ≥ 1 and bi = 1} = L and {wi | i ≥ 1 and bi = 0} =

Σ∗
\L.

Let C = (Li)i≥1 be an indexable class. An inductive inference machine

(IIM) is an algorithmic device that reads longer and longer initial segments

σ of a text (informant), and outputs numbers as its hypotheses. An IIM

returning some i is construed to hypothesize the language Li. Given a text

(an informant) σ for a language L ∈ C, Alg learns L from σ if the sequence

of hypotheses output by Alg , when fed σ, stabilizes on a number i (i.e.,

past some point Alg always outputs the hypothesis i) with Li = L. We

say that Alg learns C from text (informant) if it identifies each L ∈ C from

every corresponding text (informant).

A slightly modified version of the learning in the limit model is the model

of conservative learning (see [41, 39] for more details). A conservative IIM

is only allowed to change its mind in case its actual guess contradicts the

data seen so far.

As above, LimTxt (LimInf ) denotes the collection of all indexable

classes C for which there is an IIM Alg such that Alg identifies C from
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text (informant). One can similarly define ConsvTxt and ConsvInf , for

which the inference machines should be conservative IIMs.

Although an IIM is allowed to change its mind finitely many times be-

fore returning its final and correct hypothesis, in general it is not decidable

whether or not it has already output its final hypothesis. Hence, the learner

must go on processing information forever because there is always the pos-

sibility that some future information will force him to change his guess. As

opposed to that, in the finite identification model, the learner is required

to know when his answer is correct, that is, he has to stop the presentation

of information at some finite time when he thinks it has received enough,

and state the identity of the unknown object (see [11]). The corresponding

models FinTxt and FinInf are defined as above.

7.3.3 A Hierarchy of Learning Models

There has been quite a lot of work done for comparing the aforementioned

learning methods and finding characterizations for the classes of languages

inferable within specific settings (see [18, 2, 41, 27, 22]). The resulting

hierarchy is presented bellow.

FinTxt ⊂ FinInf = MemQ ⊂ ConsvTxt ⊂ LimTxt ⊂ LimInf = EquQ

7.4 Learning with Correction Queries

The way children learn their mother language is an amazing process. They

receive examples of sentences in that language, and after some transitory

period - in which they still make mistakes and are corrected by adults - they

are able to express themselves fluently and errorless. It is clear that a child

left alone with all kinds of teaching material would learn to speak slower

(if ever) than one integrated in a community. The key difference between

the above mentioned cases consists in the possibility for the second child to

interact with others, and to be corrected when he or she makes mistakes.

Among the existing learning models, the one that best describes the

interaction that takes place within the process of child acquiring his native

language is the query learning model [4]. First introduced, and in the same

time the most used types of queries, are MQs and EQs.

There are quite a few reasons though for which people working in gram-

matical inference, and especially in active learning, have been trying to find
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effective algorithms able to identify regular languages without the use of

EQs. First of all, EQs are computationally costly, and many times unavail-

able, as it is the case of context free languages (unless we assume one has

a magic black box that answers any kind of questions). Secondly, they are

quite unnatural for a real life setting: no child would ever ask if his or her

current hypothesis represents the correct grammar of the language (not to

mention that children do not have conscious access to a representation for

their native language). Finally, it might happen that the teacher does not

even have a grammar of the target language - take, for example, the case

of native speakers that have never studied grammar.

On the other hand, membership queries are not informative enough,

not being able to capture the feedback received by the child when he or she

makes mistakes. Inspired by the way adults guide the process of children’s

language acquisition by correcting them when necessary, a modified version

of MQs, called correction query, has been proposed [9]. More precisely, the

difference consists in the fact that for strings not belonging to the target

language, the teacher must provide the learner with a correction. Whereas

in the case of natural languages the correction for an ungrammatical sen-

tence would be one in which the adult is replacing the error with a correct

(sequence of) word(s), in formal language theory different objects may re-

quire different types of corrections. Therefore, several types of CQs have

been proposed so far, and the goal of this work is to present the main results

concerning them.

7.4.1 Learning with Prefix Correction Queries

We begin our study with the type of corrections that were chronologically

the first ones introduced, namely the prefix correction queries (PCQs).

If L is a formal language over the alphabet Σ and w is any string in

Σ∗, the prefix correcting string of w with respect to L, denoted simply by

CL(w), is the smallest string in the lex-length order of the set TailL(w),

if this set is not empty, and the symbol Θ 6∈ Σ otherwise. Hence, CL is a

function from Σ∗ to Σ∗
∪ {Θ}.

We denote by PCorQ the collection of all indexable classes C for which

there is a query learner Alg such that Alg learns C using prefix correction

queries. A special attention has to be paid to those classes of languages for

which a teacher can be effectively implemented. That is, those indexable

classes C = (Li)i≥1 that have the following property A: there exists a

recursive function φ : N×Σ∗
→ Σ∗

∪ {Θ} such that φ(i, w) = v if and only
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if CLi
(w) = v for any w ∈ Σ∗ and Li ∈ C. In other words, an indexable

class C = (Li)i≥1 has property A if and only if for all indexes i, Pref (Li) is

recursive (computing the correction of a string w with respect to a language

L can be easily done once we know whether w is in Pref (L)). Note that

for an arbitrary recursive language L, the prefix Pref (L) is not necessary

recursive.

So, let us denote by PCorQA the collection of those classes of languages

in PCorQ for which condition A is satisfied. Clearly, for the language

classes in PCorQA all answers to the PCQs can be effectively computed.

So in this case we could speak about a teacher instead of an oracle.

7.4.1.1 Necessary and Sufficient Conditions

In this section we provide the reader with some necessary and sufficient con-

ditions for a class of languages to be learnable with PCQs alone. Although

these conditions are similar to the ones given in [27, 20] for the model of

learning with MQs, there exists some differences. In [27], Mukouchi gives a

characterization for finite learning from informant (and hence for learning

with MQs) in terms of what he calls pairs of definite finite tell-tales, prob-

ably inspired by Angluin’s finite tell-tales [2]. Basically, he shows that a

language class is inferable with MQs if for each language in the class there

exists a pair of finite sets - one with positive examples and the other one

with negative examples - which makes it unique, and such a pair of sets

can be effectively computed.

We will see on an example that this property is no longer enough to

characterize the model of learning with PCQs (see [33]: Lemma 4, page 45

for a formal proof). If K1, K2, K3, . . . is the collection of all finite nonempty

sets of positive integers, and Σ = {a}, we define Li = {an | n ∈ Ki} for

all i ≥ 1, and C = (Li)i≥1. One may imagine a simple algorithm that

learns any language L in C with PCQs. Indeed, it is enough to ask PCQs

for the strings w0, w1, w2, . . . , wn until the oracle returns the answer Θ

(i.e., CL(wn) = Θ), where w0 = λ and wi+1 = wi · CL(wi) · a for all

i ∈ {0, . . . , n − 1}. On the other hand, for all possible pairs of finite sets

〈T, F 〉 such that T ⊆ L and F ⊆ Σ∗
\L, there is always a bigger language

L′ in C which includes T and does not contain any element of F . Hence,

although the class C does not admit pairs of definite finite-tell tales, it is

still learnable with PCQs.

From this simple example we deduct that in order to learn a class in

PCorQ one also needs information about those strings that have the special
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symbol Θ as correction. Therefore, we introduce the notion of triples of

definite finite tell-tales.

We say that a language L is consistent with a triple of sets 〈T, F, U〉 if

T ⊆ L, F ⊆ Σ∗
\L and U ⊆ Σ∗

\Pref (L). The triple 〈T, F, U〉 is a triple of

definite finite tell-tales of the language L in C = (Li)i≥1 if :

(1) T , F and U are finite,

(2) L is consistent with 〈T, F, U〉, and

(3) for all j ≥ 1, if Lj is consistent with 〈T, F, U〉, then Lj = L.

Going back to our example, it can be checked that 〈Ti, Fi, Ui〉 is a triple

of definite finite tell-tales for Li, where Ti = Li, l = max{n | n ∈ Ki},

Fi = {an | n ∈ {1, . . . , l}\Ki} and Ui = {al+1
} (see [33]: Lemma 3, page

44).

Next, we present necessary and sufficient conditions for a class of lan-

guages to be learnable with PCQs based on triples of definite finite tell-tales.

In what follows we use the notion of convergence in the following way: we

say that a series of triples of sets 〈Tj, Fj , Uj〉j≥1 converges, in the limit, to

some triple 〈T∗, F∗, U∗〉 if there exists an N ≥ 1 such that for all n ≥ N ,

〈Tn, Fn, Un〉 = 〈T∗, F∗, U∗〉.

Proposition 7.1 (Necessary condition). If the class C = (Li)i≥1 is in

PCorQ, then there exists an effective procedure which enumerates, for any

input i ≥ 1, an infinite series of triples 〈Tj , Fj , Uj〉j≥1 that converges in the

limit to a triple of definite finite tell-tales of Li.

Proof. Let C = (Li)i≥1 be an indexable class in PCorQ , and Alg a query

learning algorithm that learns C using PCQs. Since the class C does not

necessarily have property A, the answers to PCQs might not always be

computable. We use this observation to design an effective procedure as

described above. Whenever the oracle is queried with the string w, our

teacher will return the value CL≤n(w) where n is a fixed natural number

and L≤n = {w ∈ L | |w| ≤ n}. Of course, CL≤n(w) and CL(w) might be

different, so Alg is not sure to converge anymore (and even if it does, it

might converge to a language that is different from the target one). That

is why we only run it for at most a finite number of steps, avoiding possible

loops.

The following procedure outputs an infinite series of triples that con-

verges in the limit to a triple of definite finite tell-tales of L.

We show that the sequence of triples produced by Algorithm 1 converges
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Algorithm 1 A series convergent to a triple of definite finite tell-tales

1: Input: the target language L

2: n := 0

3: while TRUE do

4: n := n+ 1

5: run Alg on L at most n steps, and collect the sequence of queries and

6: answers from the teacher w.r.t. the language L≤n in QAn

7: Tn := {wv | (w, v) ∈ QAn and v 6= Θ}

8: Fn := {wv′ | (w, v) ∈ QAn, v 6= Θ and v′ ≺ v}

9: Un := {w | (w,Θ) ∈ QAn}

10: output 〈Tn, Fn, Un〉

11: end while

to a triple of definite finite tell-tales of L.

Let QA∗ be the sequence of queries and answers processed by Alg when

learning L (recall that Alg is a query learning algorithm that learns C

using PCQs) and let m be the cardinality of QA∗. Take T∗ = {wv |

(w, v) ∈ QA∗, v 6= Θ}, F∗ = {wv′ | (w, v) ∈ QA∗, v 6= Θ and v′ ≺ v} and

U∗ = {w | (w,Θ) ∈ QA∗}. Clearly, T∗, F∗ and U∗ are all finite. Moreover,

T∗ ⊆ L, F∗ ⊆ Σ∗
\L and U∗ ⊆ Σ∗

\Pref (L). Let us now take i such that Li

is consistent with 〈T∗, F∗, U∗〉. It can be shown that for all (w, v) ∈ QA∗,
CLi

(w) = v = CL(w). Since the algorithm Alg is assumed to identify a

unique language from the class C, we obtain Li = L. Hence, 〈T∗, F∗, U∗〉 is
a triple of definite finite tell-tales of L.

If we take l = max{|wv| | (w, v) ∈ QA∗}, where the length of Θ is

defined as 0, we have that for all n ≥ l and all pairs (w, v) in QA∗, CL(w) =

v = CL≤n(w). So, if N = max{l,m} then for all n ≥ N , 〈Tn, Fn, Un〉 =

〈T∗, F∗, U∗〉. �

The following corollary is then obvious.

Corollary 7.2. If the class C = (Li)i≥1 is in PCorQ, then a triple of

definite finite tell-tales of Li does exist for any index i.

So, we know that for all language classes C in PCorQ , every language in

C has a triple of definite finite tell-tales. Proposition 7.3 shows that having

a way of computing such a triple is a sufficient condition for an indexable

class of languages to be in PCorQ (the reader is referred to [33] for the

proof).
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Proposition 7.3 (Sufficient condition). Let C = (Li)i≥1 be an index-

able class. If a triple of definite finite tell-tales of Li is uniformly computable

for any i, then C is in PCorQ.

It is an open question whether there exists a characterization in terms

of finite sets for the whole class PCorQ . In the sequel we present such a

characterization for those classes in PCorQ that have property A.

Theorem 7.4. Let C = (Li)1≥1 be an indexable class with property A.

Then C belongs to PCorQ if and only if a triple of definite finite tell-tales

of Li is uniformly computable for any index i.

A question that naturally arises is whether PCorQ and PCorQA are

equal. The following class shows us that this is not the case.

Consider a TM M over an input alphabet Σ, an alphabet Γ and

an encoding of computations CodM : Σ∗
→ Γ∗ such that the lan-

guage Valc(M) = {w\CodM (w) | w ∈ Σ∗ and CodM (w) is an accept-

ing computation} over the alphabet Ω = Σ ∪ Γ ∪ {\} is recursive (see

[30]). Clearly, we can choose M with L(M) not recursive and construct

the class C
1 = (L1

i )i≥1 as follows: L1
1 = Valc(M) and L1

i = {ai\ } for

all i > 1, where a is any symbol in Σ. It is an easy exercise to de-

sign a PCQ algorithm that learns C
1 = (L1

i )i≥1 (asking one PCQ for the

string λ suffices). However, C1 = (L1
i )i≥1 does not have property A (since

Pref (Valc(M)) ∩ Σ∗\ = L(M) we deduct that Pref (L1
1) is not recursive),

so C
1 = (L1

i )i≥1 ∈ PCorQ\PCorQA.

7.4.1.2 Learning with PCQs versus Learning with MQs

Let us recall that the notion of CQ itself appeared as an extension of the

well-known and widely studied MQ. The inspiration for introducing them

comes from a real-life setting (which is the case for MQs also): when chil-

dren make mistakes, the adults do not reply by a simple Yes or No (the

agreement is actually implicit), but they also provide them with a cor-

rected word (or phrase). Clearly, CQs can be thought of as some more

informative MQs. So, it is only natural to compare the two learning set-

tings (learning with CQs versus learning with MQs), and to analyze their

expressive power. The characterization presented in Section 7.4.1.1 leads

to the following results:

• The sets MemQ and PCorQA are incomparable,

• The set MemQ is strictly included in PCorQ



September 14, 2010 14:34 World Scientific Book - 9in x 6in 00Chapter

Correction Queries in Active Learning 399

For the first claim, it is enough to check that C
1 = (L1

i )i≥1 is in

MemQ\PCorQA and C
2 = (L2

i )i≥1 in PCorQA
\MemQ , where L2

i = {an |

n ∈ Ki} for all i ≥ 1 and K1, K2, K3, . . . is the collection of all finite

nonempty sets of positive integers.

The second claim can be proved using the characterization of the set

MemQ in terms of definite finite tell-tales and Proposition 2, which gives a

sufficient condition for an indexable class to be learnable with PCQs. The

inclusion is strict because C
2 = (L2

i )i≥1 is in PCorQ\MemQ .

We have seen that PCQs are strictly more powerful than MQs, which

means that they cannot be simulated by a finite number of MQs.

7.4.1.3 Learning with PCQs versus Gold-style Learning Models

Learning from queries is a one-shot learning model (i.e., the learner’s first

hypothesis is also the correct one) in which the learner receives rather global

information (in the sense that, at any point, the oracle can be interrogated

about any of the strings in the alphabet) about the object to be learned,

being able to affect the sample of information, as opposed to Gold-style

learning models where the information received is local (the learner cannot

influence the sample) and the learner is allowed to change its current hy-

pothesis when new information is received. Although this two approaches

seem rather unrelated at first glance, there are several results that indicate

the contrary [18, 21–24]. For example, it has been shown that learning

with MQs is equivalent with finite learning from informant, or that an in-

dexable class is learnable using extra superset queries if and only if there

is a conservative IIM that identifies this class from text [22].

In the sequel we present where is the model of learning with PCQs placed

in the existing hierarchy of both query and Gold-style learning models:

• The set PCorQA is strictly included in ConsvTxt ,

• The set PCorQ is strictly included in LimTxt ,

• The set LimTxt\(PCorQ ∪ConsvTxt) is not empty,

• The sets PCorQ and ConsvTxt are incomparable.

For the first claim, in order to prove the inclusion one has to use the

characterizations of the two models in terms of finite sets, that is, Theo-

rem 7.4 that characterizes the class PCorQA, and the following theorem,

due to T. Zeugmann, S. Lange and S. Kapur, that characterizes the class

ConsvTxt .
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Theorem 7.5 ([41]). The class C = (Li)i≥1 is in ConsvTxt if and only

if there exists an uniformly computable family (T j
i )i,j≥1 of finite sets such

that

(1) for all L ∈ C, there exists i with Li = L and T j
i 6= ∅ for almost all

j ≥ 1;

(2) for all i, j ≥ 1, T j
i 6= ∅ implies T j

i ⊆ Li and T j
i = T j+1

i ;

(3) for all i, j, k ≥ 1, ∅ 6= T j
i ⊆ Lk implies Lk 6⊂ Li

If C = (Li)i≥1 is in PCorQA then, by Theorem 7.4, a triple of definite

finite tell-tales 〈T ∗
i , F

∗
i , U

∗
i 〉 of Li is uniformly computable for any index i.

Moreover, we can assume without loss of generality that for all i ≥ 1, T ∗
i is

not empty. For all i, j ≥ 1, we define T j
i to be the set T ∗

i . Clearly, (T
j
i )i,j≥1

is a uniformly computable family of finite sets. Let us show that it also

satisfies the three conditions of Theorem 7.5.

(1) for all L ∈ C, there exists i with Li = L and T j
i 6= ∅ for almost all

j ≥ 1;

True - they are all nonempty.

(2) for all i, j ≥ 1, T j
i 6= ∅ implies T j

i ⊆ Li and T j
i = T j+1

i ;

True.

(3) for all i, j, k ≥ 1, ∅ 6= T j
i ⊆ Lk implies Lk 6⊂ Li.

This last condition translates to: for all i, k ≥ 1, T ∗
i ⊆ Lk implies

Lk 6⊂ Li. So, let us assume that there exist i, k ≥ 1 such that

T ∗
i ⊆ Lk and Lk ⊂ Li. It follows that Pref (Lk) ⊆ Pref (Li), and hence

Σ∗
\Pref (Lk) ⊇ Σ∗

\Pref (Li). Keeping in mind that U∗
i ⊆ Σ∗

\Pref (Li)

we obtain that U∗
i ⊆ Σ∗

\Pref (Lk). Moreover, F ∗
i ⊆ Σ∗

\Li and

Σ∗
\Lk ⊇ Σ∗

\Li imply F ∗
i ⊆ Σ∗

\Lk. Since Lk is consistent with the

triple 〈Ti, Fi, Ui〉, we have Li = Lk which contradicts our assumption.

An example of a class that separates the two models is C
3 = (L3

i )i≥1,

where L3
i = {an | n ∈ Ri}, Σ = {a}, Ri = ∪p∈Pi

I(p), P1, P2, P3, . . . is the

collection of all finite nonempty sets of prime positive integers indexed, for

example, in order of increasing
∏

p∈Pi
p and I(p) is the set of all positive

integral multiples of p.

The proof of the second inclusion is more intricate (see [33]: Theorem

7, page 48). The separating class is again C
3 = (L3

i )i≥1.

Finally, for the third and forth claim the constructions of the separating

classes are rather complicated, so we will not go into further details here.

The reader is referred to [33], pages 48-50 for complete proofs.
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7.4.2 Learning with Length Bounded Correction Queries

The particular choice made for the prefix correcting string is closely related

to the intrinsic structure of DFAs and their properties. One may argue

though that the smallest correcting string might be arbitrarily long. For

example, if we take n to be any natural number, then there exists a string w

in Σ∗ and a (regular) language L such that the correction of w with respect

to L is longer than n (take w = λ and L = {an+1
} where a is an arbitrary

symbol in Σ). So, let us see what happens when, instead of returning the

smallest string in TailL(w), we return all tails shorter than a given fixed

natural number. Clearly, if there is no possible short correction, the oracle

will return the empty set.

Let us fix an integer l. Given a language L and a string w, we define

the l-bounded correction of w with respect to L (denoted Cl
L(w)) as the

set of all strings v of length at most l such that w · v is in L. Formally,

Cl
L is a function from Σ∗ to P(Σ∗) such that for any w in Σ∗, Cl

L(w) =

{v ∈ TailL(w) | |v| ≤ l}. Note that λ ∈ Cl
L(w) if and only if w ∈ L.

So, let us consider the model in which the learner must identify the

target language after asking a finite number of l-bounded correction queries

(lBCQs). Since any 0BCQ can be simulated by an MQ and the other way

around, it is clear that for l = 0, learning with lBCQs is equivalent to

learning with MQs. It can also be shown that the same property holds for

an arbitrary l. So let us denote by lBCorQ the collection of all indexable

classes C for which there exists a query learner Alg such that Alg learns C

using lBCQs. The following result holds.

Proposition 7.6. For any l ≥ 0, lBCorQ = MemQ.

This proposition is basically saying that having an oracle that can re-

turn at once the answers for more than one MQ (one lBCQ contains the

answer for 1 + |Σ| + . . . + |Σ|l MQs) does not increase the learnability

power of the model (that is, the learning with MQs model). The result

was somehow expected if we recall that time complexity issues are ne-

glected in our analysis. Moreover, this allows us to talk about the model of

learning with length bounded correction queries (LBCQs) in general, with-

out specifying a given length bound. Therefore, we denote by LBCorQ

the collection of all language classes C for which there exists an l ≥ 0

and a query learner Alg such that Alg learns C using a finite number of

lBCQs.
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7.4.3 Learning with Edit Distance Correction Queries

Following [8], we define the edit distance correction of a string w with

respect to the nonempty language L by:

EdcL(w) =

{

Yes, if w ∈ L, and

one string of {w′
∈ L | d(w,w′) is minimum}, if w 6∈ L.

Similarly, we denote by MqL(w) the oracle’s answer when it is queried with

the string w for the target language L. That is, MqL(w) = Yes if w ∈ L,

and No otherwise.

Note that EdcL(w) = Yes if and only if w is in L. Clearly, any oracle

answering edit distance correction queries (EDCQs) would also give us the

answer for the corresponding MQ. If we denote by EditCorQ the collection

of all indexable classes C for which there exists a query learner Alg such

that Alg learns C using edit distance correction queries, it is clear that

EditCorQ includes MemQ . It can be shown that the following equality

holds.

Theorem 7.7. EditCorQ = MemQ.

Proof. Let us first note that having an MQ oracle allows us to compute

the value of EdcL(w) for any language L 6= ∅ ⊆ Σ∗ and any w in Σ∗ using

a finite number of MQs. For that, we observe that for a given w ∈ Σ∗

and r ∈ N there are only a finite number of strings v ∈ Σ∗ such that

d(w, v) = r, and there exists an algorithm who can generate all these strings

(remember that we are not concerned with the complexity of the resulting

algorithm - the only requirement is to return the answer after finite steps).

So all we have to do is to ask MQs for all strings u at a certain distance i

(i = 0, 1, 2, . . .) from w until we receive an answer Yes from the oracle.

Now, if we take C to be a language class in EditCorQ , then there exists

an algorithm Alg that learns C using EDCQs. We can modify Alg to use

the MQ oracle to get the answers for the EDCQs as described above. We

obtained an algorithm that learns C using MQs only, so EditCorQ ⊆ MemQ

which concludes our proof. �

7.4.4 Remarks and Further Research

Section 7.4 was dedicated to the learnability power of several types of CQs

used alone when complexity issues are neglected. A complete picture dis-

playing the relations between all discussed versions of query learning and

Gold-style learning is obtained (Figure 7.1).
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Fig. 7.1 The hierarchy of Gold-style and query learning models.

Our results can be summarized as follows:

• learning with LBCQs and learning with EDCQs are as powerful as

learning with MQs;

• learning with PCQs is strictly more powerful than learning with MQs,

and strictly less powerful than learning in the limit from text;

• the sets PCorQ and ConsvTxt are incomparable, but any class which

is in PCorQ and not in ConsvTxt has the following property: at least

one of the languages in the class has the prefix not recursive.

There are several directions that deserve further investigation. For ex-

ample, one may study language learning with CQs in other standard set-

tings like bounded learning [37] or incremental learning (see [19] and the

references therein), or completely new ones: learning from positive exam-

ples and CQs, or learning with CQs and (a bounded number of) EQs.

7.5 Polynomial Time Learning with Correction Queries

In the previous section we have investigated the power of the query learning

model when an oracle answering correction queries is available. Several

types of CQs have been considered, and for each of them a characterization

in terms of finite sets has been given. Moreover, we compared the newly

introduced models with other well-known query learning and Gold-style

learning models.
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Although from a theoretical point of view it is important to know what

language classes are inferable in finite time steps, what matters in practice is

the efficiency of the algorithms. And indeed, if we need a machine capable of

learning a given language class, it does not help us too much if we know that

we will get the answer in 153 years. That is why this section is dedicated to

polynomial time query learners that have access to CQ oracles. We show

that there are several nontrivial language classes which are polynomial time

learnable with CQs, and we investigate the relations existing between the

different types of CQs introduced so far when complexity issues are taken

into consideration. Moreover, we distinguish situations when although two

query types are equally powerful in the general case, the equality is not

preserved under efficiency constraints.

The reader may notice that in this section we switch from learning

languages to learning grammars. Why? First of all, because in practice

what we usually want to learn is a grammar, and not a sequence of words,

whereas from a theoretical point of view it is less important if a given

language class is learnable with respect to a specific (and hence restrictive)

hypotheses space. Secondly, if we talk about efficient algorithms, then

one needs to define first what polynomial time learning is, and hence a

reasonable measure for the size of a language is required. Note that for

infinite languages, having a polynomial algorithm in the number of elements

of the language does not make much sense. Moreover, any grammar is a

compact way of describing the language generated by it. That is why from

now on, by the size of a language we understand the size of the smallest

grammar (from a given hypotheses space) generating it.

So, while in the previous section the hypotheses space was the language

class itself, in this section the hypotheses space is by default a class preserv-

ing one, that is, H = (Gi)i≥1 is such that for any i ≥ 1, L(Gi) is a language

in the class to be learned (see [40] for more details). We will omit specifying

which is the hypothesis space whenever it is clear from the context.

We introduce first some terminology and notations. Let C = (Li)i≥1

be an indexable class. We say that C is polynomially time learnable with

MQs if there exists a polynomial p(·) and an algorithm Alg that learns any

language L in C in time O(p(size(L))) by asking a finite number of MQs.

We denote the collection of all indexable classes C which are polynomi-

ally time learnable with MQs by PolMemQ . PolPCorQ , Pol lBCorQ and

PolEditCorQ are defined similarly for the classes of languages polynomially

time learnable with PCQs, lBCQs and EDCQs, respectively.
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7.5.1 Polynomial Time Learning with PCQs

Let us start our study with the type of CQ that was chronologically the

first one introduced, and that gives, in the same time, the biggest power

to the learner amongst all of them. Intuitively, one should be looking for

language classes for which this sort of corrections offers some information

about the intrinsic structure of the language. We investigate two well-know

language classes: the class of pattern languages and the class of k-reversible

languages.

7.5.1.1 The Class of Pattern Languages

Initially introduced by Angluin [1] to show that there are nontrivial classes

of languages learnable from text in the limit, the class of pattern languages

has been intensively studied in the context of language learning ever since.

Polynomial time algorithms have been given for learning pattern languages

using one or more examples and queries [25], or just superset queries [5],

or for learning k-variables pattern languages from examples [15], etc.

Let us denote by P the class of all pattern languages over Σ.

Theorem 7.8. The class P is in PolPCorQ.

Proof. We exhibit an algorithm that learns any pattern language in poly-

nomial time using a finite number of PCQs.

Suppose that the target language is a pattern language L(π), where π

is in normal form. Our algorithm is based on the following simple observa-

tions.

If w is the smallest string (in lex-length order) in L(π) and n = |w|,

then for all i in {1, . . . , n}, we have:

• if π[i] = a for some a in Σ, then for all b ∈ Σ\{a}, CL(w[1 . . . i− 1]b) is

either Θ, or longer than w[i + 1 . . . n].

• if π[i] is a variable x such that i is the position of the leftmost occurrence

of x in π, then |CL(w[1 . . . i−1]a)| = |w[i+1 . . . n]| for any symbol a ∈ Σ;

moreover, we can detect the other occurrences of the variable x in π

by just checking the positions where the strings CL(w[1 . . . i− 1]a) and

w[i+ 1 . . . n] do not coincide, where a is any symbol in Σ\{w[i]};

From the above mentioned observations, it is clear that the algorithm

described above terminates in finite steps and outputs the pattern π after

asking a finite number of PCQs (recall that, by convention, the length of

the symbol Θ is 0).
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Algorithm 2 An algorithm for learning the class P with PCQs.

1: w := CL(λ), n := |w|, var := 0

2: for i := 1 to n do

3: π[i] := null

4: end for

5: for i := 1 to n do

6: if (π[i] = null) then

7: choose a ∈ Σ\{w[i]} arbitrarily

8: v := CL(w[1 . . . i− 1]a),m := |v|

9: if (v = Θ or m > n− i) then

10: π[i] := w[i]

11: else

12: var := var + 1, π[i] := xvar

13: for all j ∈ {1, . . . ,m} for which v[j] 6= w[i + j] do

14: π[i + j] := xvar

15: end for

16: end if

17: end if

18: end for

19: output π

Moreover, for each symbol in the pattern, the algorithm makes at most

n+ 1 comparisons, where n is the length of the pattern. This implies that

the total running time of the algorithm is bounded by n(n + 1), that is

O(n2). It is easy to see that the query complexity is linear in the length of

the pattern since the algorithm does not ask more than n+ 1 PCQs. �

7.5.1.2 The Class of k-Reversible Languages

Angluin introduces the class of k-reversible languages in [3], and shows

that it is inferable from positive data in the limit. Later on, she proves

that there is no polynomial algorithm that exactly identifies DFAs for 0-

reversible languages using only equivalence queries [6].

We study the learnability of the class k -Rev in the context of learning

with PCQs, and provide the reader with a polynomial time algorithm that

identifies any k-reversible language after asking a finite number of PCQs. In

order to do so, we exhibit one important property of k-reversible languages.

For any string u in Σ∗, we define the function rowk(u) : Σ
≤k

→ Σ∗
∪ {Θ}

by rowk(u)(v) = CL(uv).
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Proposition 7.9. Let L be a k-reversible language. Then, for all u1, u2 ∈

Σ∗, u1 ≡L u2 if and only if rowk(u1) = rowk(u2).

Proof. We have to show that given a k-reversible language L, two strings

u1 and u2 are equivalent with respect to the language L if and only if

CL(u1v) = CL(u2v) for all v in Σ≤k.

Note that the “only if” direction trivially holds for all regular languages.

So, let us assume that there exists strings u1, u2 in Σ∗ such that u1 6≡L u2

and CL(u1v) = CL(u2v) for all v in Σ≤k. Hence, there must exist w ∈ Σ∗

such that either

• u1w ∈ L and u2w 6∈ L, or

• u1w 6∈ L and u2w ∈ L.

Let us assume the former case (the other one is similar).

(1) If |w| ≤ k, then w ∈ Σ≤k, and hence CL(u1w) = CL(u2w). But

u1w ∈ L implies CL(u1w) = λ, and so CL(u2w) = λ which contradicts

u2w 6∈ L.

(2) If |w| > k, then there must exist v, w′
∈ Σ∗ such that w = vw′ and

|v| = k. By assumption, u1vw
′
∈ L and u2vw

′
6∈ L, so u1v 6≡L u2v.

On the other hand, since v ∈ Σ≤k we have CL(u1v) = CL(u2v) = v′.
Because u1v ·w

′
∈ L, TailL(u1v) 6= ∅ and hence CL(u1v) ∈ Σ∗. Since L

is k-reversible, u1vv
′
∈ L, u2vv

′
∈ L and |v| = k, we get TailL(u1v) =

TailL(u2v) which contradicts u1v 6≡L u2v.

We showed that if CL(u1v) = CL(u2v) for all v in Σ≤k, then u1 ≡L u2

which concludes our proof. �

This proposition is saying that each equivalence class in Σ∗/≡L
is

uniquely identified by the values of function rowk on Σ≤k. So, if AL =

(Q,Σ, δ, q0, F ) is the minimal complete DFA for the k-reversible language

L, then the values of function rowk(u) on Σ≤k uniquely identify the state

δ(q0, u).

The algorithm follows the lines of L∗. We have an observation table

denoted by (S,Σ≤k, C) in which lines are indexed by the elements of a

prefix-closed set S, columns are indexed by the elements of Σ≤k, and the

element of the table situated at the intersection of line u with column v is

CL(uv).

We say that the observation table (S,Σ≤k, C) is k-closed if for all u ∈ S

and a ∈ Σ, there exists u′
∈ S such that rowk(u

′) = rowk(ua). Moreover,
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(S,Σ≤k, C) is k-consistent if for all u1, u2 ∈ S, rowk(u1) 6= rowk(u2). It

is clear that if the table (S,Σ≤k, C) is k-consistent and S has exactly n

elements, where n is the index of L, then the strings in S are in bijection

with the elements of Σ∗/≡L
.

We start with S = {λ}, and then increase the size of S by adding

elements with distinct row values. An important difference between our

algorithm and L∗ is that in our case the number of columns of the table

is never modified during the run of the algorithm (in L∗, there is only one

column in the beginning, and then more columns are gradually added when

needed).

For any k-closed and k-consistent table (S,Σ≤k, C), we construct the au-

tomaton A(S,Σ≤k, C) = (Q,Σ, δ, q0, F ) as follows: Q = {rowk(u) | u ∈ S},

q0 = rowk(λ), F = {rowk(u) | u ∈ S and CL(u) = λ}, and δ(rowk(u), a) =

rowk(ua) for all u ∈ S and a ∈ Σ.

To see that this is a well-defined automaton, note that since S is a

nonempty prefix-closed set, it must contain λ, so q0 is defined. Because S

is k-consistent, there are no two elements u1, u2 in S such that rowk(u1) =

rowk(u2). Thus, F is well defined. Since the observation table (S,Σ≤k, C)

is k-closed, for each u ∈ S and a ∈ Σ, there exists u′ in S such that

rowk(ua) = rowk(u
′), and because it is k-consistent, this u′ is unique. So

δ is well defined.

Theorem 7.10. The class k-Rev is in PolPCorQ.

Proof. The following algorithm learns any k-reversible language L with

PCQs and has a total running time bounded by a polynomial in the size of

the target language. �

Algorithm 3 does not work in general for arbitrary regular languages,

as one can see from Example 7.11.

Fig. 7.2 The minimal DFA for the language Lk = {abka, abkb, bk+1a}.
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Algorithm 3 An algorithm for learning the class k -Rev with PCQs.

1: S := {λ}

2: closed := TRUE

3: update the table by asking PCQs for strings in Σ≤k+1

4: repeat

5: if ∃u ∈ S and a ∈ Σ such that rowk(ua) 6∈ rowk(S) then

6: add ua to S

7: update the table by asking PCQs for strings in {uabv | b ∈ Σ, v ∈

Σ≤k
}

8: closed := FALSE

9: end if

10: until closed

11: output A(S,Σ≤k, C) and halt.

Example 7.11. Let us fix k ≥ 0, and consider the finite (and hence regular)

language Lk = {abka, abkb, bk+1a} (ALk
is given in Figure 7.2).

It is easy to check that if we run Algorithm 3 on the language Lk we

get an automaton in which the strings a and b represent the same state.

7.5.1.3 Polynomial Time Learning with PCQs versus MQs

Let us make a step further toward understanding the differences and simi-

larities between MQs and PCQs, by taking into consideration the efficiency

of the learning algorithms. We have seen in Section 7.4.1.2 that learning

with MQs is a strictly weaker model then learning with PCQs when time

complexity issues are neglected. One may think that from this it can be

automatically inferred that polynomial time learnability with MQs implies

polynomial time learnability with PCQs. We show by an example that one

should not rush into drawing such conclusions.

Indeed, let us first recall that learning with EQs is strictly more powerful

than learning with PCQs when ignoring time complexity: PCorQ is strictly

included in LimTxt and LimTxt is strictly included in EquQ (see Section

7.3.3). On the other hand, the class of 0-reversible languages is polynomially

learnable with PCQs (one may use Algorithm 3), but not identifiable in

polynomial time with EQs [6].

The following result trivially holds.

Lemma 7.12. PolMemQ ⊆ PolPCorQ.
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We show that the inclusion is strict using pattern languages as the

separating case.

Theorem 7.13. The class P is in PolPCorQ\PolMemQ.

Proof. We know that the class P is in PolPCorQ (see Section 7.5.1.1).

Assume now that P is in PolMemQ , and consider the class S = (Lw)w∈Σ∗ ,

Lw = {w} of singletons over the fixed alphabet Σ. Because every lan-

guage Lw in S can be written as a pattern language (Lw = L(w), where

w is a pattern without any variables), our assumption would imply that S

is also in PolMemQ . It is clear though that any algorithm that learns

S using MQs might need to ask |Σ| + |Σ|2 + . . . + |Σ||w| MQs in the

worst case to learn a given language Lw (the learner’s best strategy in

this case is to try all strings in Σ∗ in lexicographical order), which leads to

a contradiction. �

Note that although P is not polynomially time learnable with MQs, it

is in MemQ (see [27], page 266). However, there are classes of languages

in PolPCorQ which cannot be learned at all (polynomially or not) using

MQs, as we will see in the sequel.

Theorem 7.14. The class k-Rev is in PolPCorQ\MemQ.

Proof. First, let us recall that the class k -Rev is in PolPCorQ (see The-

orem 7.10). To show that k -Rev is not in MemQ , we use Mukouchi’s char-

acterization of the class MemQ in terms of pairs of definite finite tell-tales

[27]: an indexable class C = (Li)i≥1 belongs to MemQ if and only if a pair

of definite finite tell-tales of Li is uniformly computable for any index i.

The finite sets 〈T, F 〉 form a a pair of definite finite tell-tales for a language

L in C if T ⊆ L, F ⊆ Σ∗
\L and for all L′ in C, ifT ⊆ L′ and F ⊆ Σ∗

\L′

imply L = L′.
So, let us assume that k -Rev is in MemQ . Consider the alphabet Σ

such that {a, b} ⊆ Σ, and the language L = {a}. Clearly, L is in k -Rev for

all k ≥ 0 and hence a pair of definite finite tell-tales 〈T, F 〉 is computable

for L. This means that T ⊆ L and F is a finite set included in Σ∗
\{a}.

Let us take m to be max{|w| | w ∈ F} if F 6= ∅ and 0 otherwise, and

consider the language L′ = {a, bamb}. It is clear that L′ is in k -Rev for

all k ≥ 0, T ⊆ L′ and F ⊆ Σ∗
\L′. Moreover, L′

6= L which leads to a

contradiction. �

On the other hand, very simple classes of languages cannot be learned

in polynomial time using PCQs. For example, if we take S̄ to be S̄ =
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(L̄w)w∈Σ∗ , where L̄w = Σ∗
\{w}, then any algorithm would require at least

1+ |Σ|+ |Σ|2+ . . .+ |Σ||w| PCQs in order to learn L̄w (learning L̄w is equiv-

alent to “guessing” the unique w in Σ∗ that has as correction a nonempty

string; note that in this case no adversary strategy can be used by the

teacher, since he is required to provide the correct answer). Figure 7.3

displays the relations between the two models.

Fig. 7.3 PCQ learning versus MQ learning.

7.5.2 Polynomial Time Learning with LBCQs

Let l be a fixed nonnegative integer, and let us denote by Pol lBCorQ the

collection of all indexable classes C for which there exists a polynomial p(·)

and an algorithmAlg that learns any language L in C in time O(p(size(L)))

by asking a finite number of lBCQs. Clearly, we only consider those lan-

guage classes C for which the size of its languages is independent of l (more

details are presented further on in this section).

Lemma 7.15. Pol0BCorQ = PolMemQ.

The result is straightforward from the definition of C0
L(w).

Lemma 7.16. Pol(l-1)BCorQ = Pol lBCorQ for any l ≥ 1.

Proof. Since one can easily extract the answer to an (l − 1)BCQ

from the corresponding lBCQ, it is clear that Pol(l-1)BCorQ is in-

cluded in Pol lBCorQ . Let us now show that Pol lBCorQ is included in

Pol(l-1)BCorQ . Assume C is an indexed family of languages in Pol lBCorQ

and let Alg be a polynomial time algorithm that learns C with lBCQs. Note

that for any language L over Σ, any w ∈ Σ∗ and any l ≥ 1,
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Cl
L(w) = {u ∈ Σ≤l

| wu ∈ L}

= {u ∈ Σ≤l−1
| wu ∈ L} ∪ {au | a ∈ Σ, u ∈ Σl−1 and wau ∈ L}

= Cl−1
L (w) ∪ {au | a ∈ Σ, u ∈ Cl−1

L (wa)}

= Cl−1
L (w) ∪

⋃

a∈Σ aCl−1
L (wa).

So, one can modify Alg such that instead of asking an lBCQ for the

string w, to ask a finite number of (l−1)BCQs (|Σ|+1 queries to be precise)

for the strings wa with a in {λ}∪Σ. Clearly, the modified algorithm is still

polynomial. Hence, Pol(l-1)BCorQ equals Pol lBCorQ . �

The following theorem is a direct consequence of Lemmas 7.15 and 7.16.

Theorem 7.17. Pol lBCorQ = PolMemQ for any l ≥ 0.

Therefore, we can introduce the notation PolLBCorQ for the collection

of all language classes that are efficiently learnable with LBCQs. Moreover,

by combining the theorem above with Lemma 7.12 and Theorem 7.13, one

gets the following corollary.

Corollary 7.18. Pol lBCorQ ( PolPCorQ.

In the beginning of this section we pointed out that we should think

of l as a constant. By failing to do so, we may end up with contradictory

results, as one can see in Example 7.19.

Example 7.19. Let Sl = (Lw)w∈Σl , Lw = {w}, be the class of all singleton

languages of size l+ 2, where the hypotheses space contains only canonical

DFAs accepting singleton languages. We can imagine a very simple lBCQ

algorithm to learn this class. The learner would simply ask one lBCQ, for

the string λ, and then output the string received as an answer. Since in

this case the set of possible corrections contains just one string of length

size(L)− 2 where L is the target language, it means that such an algorithm

would work in linear time in the size of the language. On the other hand,

with an MQ oracle, any learner would have to ask at least |Σ|l − 1 MQs,

hence an exponential number of queries in the size of the target language.

Thus, one might think that this language class invalidates the result of The-

orem 7.17. The trick here is that l is no longer a constant for the class Sl,

and that if we do think of l as a constant, then |Σ|l − 1 is a constant as

well.

So, what we have learned in this section is that having the possibility to

get answers for more than one MQ at once does not add any more learning

power, even if we impose time restrictions.
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7.5.3 Polynomial Time Learning with EDCQs

We continue the analysis done in Section 7.4.3 on the power of learning with

edit distance based correction queries, this time by taking into account time

complexity issues. We have seen that what happens in the general model

does not necessary carry on to the polynomially bounded model. Let us

recall the results we have so far:

PCorQ ⊂ EquQ PolPCorQ 6⊂ PolEquQ

MemQ ( PCorQ PolMemQ ( PolPCorQ

MemQ = LBCorQ PolMemQ = PolLBCorQ

MemQ = EditCorQ PolMemQ
?= PolEditCorQ

So in the case of LBCQs versus MQs, as well as in the case of PCQs

versus MQs, the relation existing in the general case is preserved in the

polynomial learning model, while for the EQs versus PCQs it does not

happen. On the other hand, we already know that MemQ = EditCorQ ,

and the question is whether or not PolMemQ = PolEditCorQ , where by

PolEditCorQ we denote, as usual, the collection of all indexable classes C

for which there exists a polynomial p(·) and an algorithm Alg that learns

any language L in C in time O(p(size(L))) by asking a finite number of

EDCQs.

In this section we answer this question in the negative way, and we

describe some of the algorithms which use alternative CQs based on edit

distance existing in the literature.

Lemma 7.20. PolMemQ ( PolEditCorQ.

Proof. One may show that PolMemQ is included in PolEditCorQ using

an argument similar with the one presented in the proof of Lemma 7.12,

the only difference being that in the case of EDCQs, the new algorithm

Alg ′ has to check whether or not EdcL(w) equals Yes, for all the strings

w submitted to the oracle by the learner of the original algorithm Alg (L

is the target language).

Moreover, if S is the class of singleton languages over the alphabet Σ,

then S can be used as a separating language class:

• S 6∈ PolMemQ (see the proof of Theorem 7.13),

• one may imagine a very simple edit distance query algorithm for this

class. Indeed, it is enough to ask an EDCQ for an arbitrarily chosen



September 14, 2010 14:34 World Scientific Book - 9in x 6in 00Chapter

414 C. Tı̂rnăucă

string w. The algorithm just outputs w, if the oracle’s answer is Yes,

and w′ if the answer returned by the oracle is the string w′. Since

the algorithm described above is polynomial in the size of the target

language, we conclude that S ∈ PolEditCorQ .
�

So, we have seen that singleton languages can be learned in polynomial

time using EDCQs. Another example of a language class in PolEditCorQ

is the class of balls of strings, named like this because of their resemblance

to a disk when we imagine their geometrical interpretation. We recall that

given a string w and a real number r, the ball of center w and radius r

is Br(w) = {v ∈ Σ∗
| d(v, w) ≤ r}. In [8], an algorithm for learning the

class of all balls of strings using EDCQ is given. Moreover, the authors of

the above mentioned paper show that the number of EDCQs used by this

algorithm can be bounded by O(|Σ|+ |w|+ r). Furthermore, for what they

called q-good balls (the balls Br(w) for which there exists a polynomial

q(·) such that the radius r is no longer than q(|w|)), the algorithm runs in

polynomial time in the size of (the representation of) the language.

7.5.4 Remarks and Further Research

In Section 7.4.4 we exhibited a complete picture of the relations existing

between several models of learning with CQs and other learning models

(both Gold-style and query learning). We have seen that when we neglect

time complexity issues we can characterize the newly introduced query

models in terms of finite sets, and that learning with LBCQs and EDCQs

is basically the same as learning with MQs, whereas PCQs are the only

ones adding some power to the model.

When we restrict to polynomial time algorithms, things are changing.

And although having an LBCQs oracle does still not improve on the learn-

ability power with respect to the MQ learning model, an EDCQ oracle or

a PCQ oracle does. It is not clear what relation is between learning with

EDCQs and learning with PCQs when we restrict to efficient algorithms.

We conjecture that the two classes are incomparable (see Figure 7.4).

Let us first notice that the class of singleton languages be-

longs to PolPCorQ ∩ PolEditCorQ . Moreover, we argue that

PolPCorQ\PolEditCorQ 6= ∅. Indeed, the class k -Rev is in PolPCorQ

and not in MemQ (by Theorem 7.14), and since EditCorQ = MemQ (by

Theorem 7.7), we obtain that k-reversible languages are not learnable with

EDCQs either. Hence, k -Rev ∈ PolPCorQ\PolEditCorQ .
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Fig. 7.4 Different types of correction queries.

If for the class of k-reversible languages it was easy to decide whether

or not it is in PolEditCorQ , we cannot say the same thing for the class of

pattern languages. Kinber [17] describes an efficient algorithm that learns

P with the modified type of EDCQs with the strong requirement that the

oracle must not return as a correction any of the strings which appeared

before. We strongly believe that this requirement is actually mandatory,

i.e., there is no algorithm that can learn the class P with standard EDCQs.

Far from being a proof, Example 7.21 shows, nevertheless, on what our

intuition is based on.

Example 7.21. Let π = 1xyyy111 and w0 = 11000111 a string of mini-

mum length in L(π). Then, although it is easy to determine the position

of single variables in the pattern (asking whether or not w = 10000111 is

in the language suffices), it is quite hard to find a way to distinguish be-

tween constants and multiple variables (i.e., variables which appear more

than once in the pattern) if we are faced with an unfriendly oracle. Suppose

the learner asks, for example, if 11100111 is in the target language and the

oracle returns as a correction the string w0. In this case, there is no way

the learner can deduce whether the 3rd symbol of the pattern is 0, or a vari-

able which appears more then once in π. On the other hand, changing pairs

(or triples, quadruples, etc.) of symbols at once increases dramatically the

number of queries needed.
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To complete the picture, we would like to be able to say if there are

language classes in PolEditCorQ\PolPCorQ . A possible candidate is the

class of q-good balls of strings, which is known to be learnable with EDCQs

in polynomial time.

Another future work direction is to find characterizations for the lan-

guage classes polynomial time learnable with (each type of) CQs. One can

investigate, for example, the teaching dimension of a concept class [12] (that

is, the minimum number of corrections a teacher must reveal to uniquely

identify any concept in the class), or the computational power of polyno-

mial time query learning systems for different correction query types as

in [36, 38]. Slightly relaxed learning criteria may lead to new learnability

results. For example, in the bounded learning framework introduced by

Watanabe [37], the learning condition does not insist in exactly identifying

a target language L, but only requires that a learner should return, for any

given length bound m, a language L′ such that L and L′ coincide up to

length m (i.e., L ∩ Σ≤m = L′
∩ Σ≤m).
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33. T̂ırnăucă, C. (2009). Language Learning with Correction Queries, Ph.D.

thesis, Rovira i Virgili University, Tarragona.
34. Valiant, L. G. (1984). A theory of the learnable, Communications of the

ACM 27, 11, pp. 1134–1142, doi:http://doi.acm.org/10.1145/1968.1972.
35. Wagner, R. A. and Fischer, M. J. (1974). The string-to-string correction

problem, Journal of ACM 21, 1, pp. 168–173, doi:http://doi.acm.org/10.
1145/321796.321811.

36. Watanabe, O. (1990). A formal study of learning via queries, in M. Paterson
(ed.), Proc. 17th International Colloquium on Automata, Languages and
Programming (ICALP ’90), Lecture Notes in Computer Science, Vol. 443
(Springer-Verlag, Berlin, Heidelberg), pp. 139–152.

37. Watanabe, O. (1994). A framework for polynomial time query learnability,
Mathematical Systems Theory 27, pp. 211–229.
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In this chapter, application of grammatical inference to facilitate devel-

opment of domain-specific languages (DSLs) is presented. Grammatical

inference techniques have been applied to infer DSL grammar from DSL

programs. Such a scenario would be feasible when domain experts can pro-

vide complete DSL programs or excerpts of such programs. The results of

grammatical inference, namely the inferred grammar, can be directly used

to generate the DSL parser or be further examined by a software language

engineer with the aim to further enhance the design of the language. To
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achieve this goal we developed a memetic algorithm which enables incre-

mental grammar inference. It is a population based evolutionary algorithm

enhanced with local search and a generalization phase. Some examples of

DSLs from which grammars have been successfully inferred from positive

samples are presented.

8.1 Introduction

Computer languages play a central role in computer science, including spec-

ifying computations which need to be performed, specifying the intended

behavior of a system, and modeling the architecture of an application. Tony

Hoare has said that computer languages are a programmer’s most basic

tools [23]. Indeed, thousands of computer languages have been developed

in the very short period of the computing era. Unfortunately, many of

them were designed ad-hoc and without proper language engineering prin-

ciples. This is particularly true for Domain-Specific Languages (DSLs) [6]

[61] [35], which are currently flourishing [20] [21] [41] [50] [51]. In con-

trast with general-purpose languages (GPLs), where one can address large

classes of problems (e.g., scientific computing, business processing, symbolic

processing, etc.), a DSL facilitates the solution of problems in a particu-

lar domain (e.g., aerospace, automotive, graphics, etc.). GPLs have been

usually designed with great care and comply to language design principles

[23] [52] [64] [67], especially after enough experience in language design has

been accumulated. Unfortunately, this is not the case for DSLs. Design

and implementation of GPLs may last several months, while development

of DSLs should be more cost effective. However, there is a serious threat

that such cost-effectiveness will negatively impact language design and/or

implementation.

In [35] the following DSL development phases have been identified: de-

cision, analysis, design, implementation, and deployment. For the sake of

completeness we should also add a maintenance phase. Mernik, Heering and

Sloane [35] also provide recurrent patterns in all phases except deployment

and maintenance:

• Decision patterns identify common situations suitable for designing

a new DSL,

• Analysis patterns identify common approaches to domain analysis,

• Design patterns identify common approaches of how to design a

DSL, and
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• Implementation patterns identify common approaches of how to

implement a DSL.

The focus of this chapter is on the earlier DSL development phases.

Overall, the beginning phases of DSL development are less well understood

and lack proper tool support. Let us mention a few problems:

• How should results from domain analysis drive the language design

process?

• Should a DSL be designed by a domain expert, GPL designer or

software language engineer?

• How much domain analysis and language design is actually needed?

• Can we skip some initial DSL development phases? What are the

consequences?

• Can we build tools which support us in earlier phases of DSL de-

velopment?

There are no straightforward answers to these questions and actual de-

cisions depend on many factors, such as DSL users, project budget, time to

market, DSL life span, etc. For example, if the DSL user community will

be small and the project budget is very tight then it might be quite feasible

that some initial phases are skipped or performed in a less extensive man-

ner. It might be the case that the only user of the language is the language

designer himself, who is trying to eliminate some repetitious and tedious

tasks by developing the new DSL. Is it worth performing complete domain

analysis and language design in such case? While we strongly believe that

good domain analysis and language design will pay off for even a medium-

sized DSL community and DSL life span we do think that in the former case

some other approaches might also be feasible. In this chapter we explore

the applicability of grammatical inference [15] to infer DSL grammar from

DSL programs. Such a scenario would be feasible when domain experts can

provide complete DSL programs or excerpts of such programs. Strembeck

and Zdun called it also “Mockup Language Driven DSL Development” [55].

This is also the case when domain notation is already established and the

notation decision pattern [35] can be used. The results of grammatical in-

ference, namely the inferred grammar, can be directly used to generate the

DSL parser or be further examined by a software language engineer with

the aim to further enhance the design of the language.

The structure of this chapter is as follows. Section 2 explores the re-

lationship between domain analysis and DSL design. In Section 3, DSL

design issues for DSLs are reviewed. GenInc, our previous grammatical
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inference approach for designing DSLs, and MAGIc, a newly developed

memetic grammatical inference algorithm are presented in Section 4. Sec-

tion 5 provides a case study in the domain of computer graphics whereby

an existing DSL was designed by domain experts who were able to provide

enough examples for MAGIc to infer a grammar for the DSL. Related work

is described in Section 6 and we conclude in Section 7.

8.2 Analysis Phase of DSL Development

A DSL is a programming language dedicated to a particular domain and it

provides appropriate built-in abstractions and notations [61] [35]. Hence,

domain analysis should be performed with the aim to [13]:

• Select and define the domain, and

• Build the domain model (an explicit representation of the common

and the variable properties of the system in a domain, the semantics

of the properties and domain concepts, the dependencies between

the properties).

Some typical domain analysis activities are analysis of similarity, anal-

ysis of variations, and analysis of combinations [11]. Despite that many

domain analysis methods exist, such as:

• Feature-Oriented Domain Analysis (FODA) [29]

• Draco [39]

• Domain Analysis and Reuse Environment (DARE) [18]

• Family-Oriented Abstraction, Specification, and Translation

(FAST) [65]

• Ontology-based Domain Engineering (ODE) [17]

they are rarely used in DSL development and domain analysis is usually

done informally and in an incomplete manner. There is an urgent need in

DSL research to identify reasons why this is so and possible solutions for

improvement. The first observation might be that information gathered

during domain analysis cannot be automatically used in the language de-

sign process. Another reason might be that complete domain analysis is

too complex and outside of software engineers’ capabilities. Regarding the

first observation, information usually gathered during the domain analysis

includes: terminology, concepts, and common and variable properties of

concepts and their interdependencies. Although this is extremely useful



September 2, 2010 11:8 World Scientific Book - 9in x 6in 00Chapter

Applications of GI in Software Engineering: DSL Development 425

information, further steps are not at all obvious. Only general advice can

be given, such as [35]:

• The list of variations indicate precisely what information is required

to specify an instance of a system; this information must be directly

specified in or be derivable from DSL programs,

• Commonalities should be built into DSL execution environment

through a set of common operations and primitives (e.g., types)

of the language.

From domain analysis of a particular domain several possible DSLs can

be developed, but all share important information found in domain analysis.

As an example, Figure 8.1 [60] and Figure 8.2 [14] show two different DSLs

for feature diagram description designed by different software engineers.

Car: all(carBody, Transmission, Engine, HorsePower, pullsTrailer?)

Transmission: one-of(automatic, manual)

Engine: more-of(electric, gasoline)

HorsePower: one-of(lowPower, mediumPower, highPower)

Fig. 8.1 First variant of feature description language.

car (carBody,

transmission (automatic | manual),

engine (electric + gasoline),

horsePower (lowPower | mediumPower | highPower),

trailer [ pullsTrailer])

Fig. 8.2 Second variant of feature description language.

The reader can observe that variation points have been expressed dif-

ferently. In the case of deeply nested features, DSL programs in the second

case will become less human readable, while in the first case this problem

is nicely solved by binding [64]. Moreover, additional features can be built

into the language in a manner that some properties can be more easily

analyzed, checked and verified. For example, composite features in Figure

8.1 are written using capital letters. Such design decisions enable easier

discovery of composite and atomic features. Additionally, the language can

be extended with new symbols and keywords to enable easier parsing by

both the programmer and the computer. Of course, this is a very simple
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example with the aim to show that after analysis of the same domain quite

different DSLs can be designed. Let us conclude this section with the im-

portant open problem in DSL research: Can we build tools which help us

in this extremely creative, time consuming, and risky process?

8.3 Design Phase of DSL Development

Designing a language (Figure 8.3 - adapted from [59]) involves defining the

constructs in the language and giving the semantics [22] to the language,

whether formal or informal. The semantics of the language describe the

meaning of each construct in the language but also some fixed behavior that

it is not specified by the program. Designing a language is highly creative,

but not an easy task. As stated before, information gathered in the domain

analysis should be used along with additional constraints (e.g., language

level is high or low, capability to perform various analysis, readability, etc).

Of particular importance for DSLs are the level of abstraction the language

has and the degree to which it may be analyzed.

From previous experiences with programming language design [10] [23]

[58] [67] [68] and from criteria for programming language evaluation [24],

researchers developed criteria for good language design, such as readability,

writeability, reliability, and cost. However, criteria for language design are

often in contradiction (e.g., reliability vs. cost of execution, readability vs.

writeability). Hence, language designers should find good trade-offs among

these factors. To help language designers in this process several rules of

thumb have been proposed, such as:

• Don’t include untried ideas - consolidation, not innovation.

• Simplicity is really the key - avoid complexity. Too many solutions

make the language hard to understand.

• Avoid requiring something to be stated more than once.

• Automate mechanical, tedious, or error-prone activities by provid-

ing higher level features.

• Regular rules, without exceptions, are easier to learn, use, describe,

and implement.

Despite the immense experience in designing GPLs during the last fifty

years [7] [10] [23] [58] [64] [67] we have noticed that often DSLs are badly

designed. Is DSL design radically different from GPL design? Many

believe that DSL design is not very much different from GPL design, while
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others [54] [66] point to some important differences and the vast array of

different choices [35]. Let us first explain the latter. Approaches to DSL de-

sign can be characterized along two orthogonal (independent) dimensions:

• The formal nature of the design description, and

• The relationship between the DSL and existing languages.

The first dimension is about informal versus formal language design.

In an informal design the specification is usually in some form of natu-

ral language probably including a set of illustrative DSL programs, while a

formal design would consist of a specification written using one of the avail-

able formal definition methods (e.g., regular expressions and grammars for

syntax specifications, and attribute grammars, denotational semantics, op-
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erational semantics, and abstract state machines for semantic specification).

The second dimension is about language exploitation versus language in-

vention [35]. The easiest way to design a DSL is to base it on an already

existing language (language exploitation), where

• Existing language is partially used (piggyback pattern),

• Existing language is restricted (language specialization pattern),

and

• Existing language is extended (language extension pattern).

One possible benefit is familiarity for users and the other is easier DSL

implementation. If there is no relationship between the DSL and an exist-

ing language, then a new language has to be invented. In such a case, the

DSL should be designed according to the previously mentioned principles.

But, the DSL designer has to keep in mind both the special character of

DSLs as well as the fact that users need not be programmers. The latter

fact is extremely important and might cause the admirable principles of

orthogonality and simplicity to not necessarily be well-applied to DSL de-

sign. For example, instead of generalizing the language, the DSL has to be

customized. GPLs have been always designed by highly professional pro-

grammers. The GPL design process was driven by their personal aesthetics

and theoretical judgments resulting in a programming language they would

like to use. The DSL for end-users should not be designed by such intu-

ition since GPL designers are not end-users themselves. On the contrary,

DSL design in this case should be driven by empirical studies, involvement

of end-users, or by psychology of programming research [8]. Wile [66] re-

ports on some interesting lessons learned while applying DSLs to end-users

without computer science background. He observed several obstacles which

come from technological, organizational and social perspectives. Some most

interesting lessons are [66]:

• Adopt whatever formal notations the domain experts already have,

rather than invent new ones.

• You are almost never designing a programming language.

• Understand the organizational roles of the people who will be using

your language.

• Be sure that the intended technology transfer process from your

product into their organization’s infrastructure is consistent with

their business model.

• Find an advocate for your technology in their organization.
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• Do not expect the domain experts to know what the computer can

(should) do for them.

• Do not expect your users to overlook or forgive your design mis-

takes.

While we believe that these lessons are valid for some particular domains,

Wile’s study [66] includes only three different DSLs. More experimental

DSL research is needed to claim more general conclusions. Moreover, the

principles valid for DSL design should be identified. One of the first at-

tempts in this direction is presented in [32], which identified the following

principles and requirements for DSLs:

• Conformity - how the DSL corresponds to domain concepts.

• Orthogonality - principle already known from GPL design.

• Supportability - how the DSL is supported by other indispensable

language based tools (e.g., editors, debuggers, test engines).

• Integrability - how the DSL is integrated into other software engi-

neering processes.

• Longevity - the DSL should be used long enough that the develop-

ment of the DSL and accompanying tools pays off.

• Simplicity - principle already known from GPL design.

• Quality - how the DSL supports building quality and reliable soft-

ware systems.

Again, let us conclude this section with the important open problem in

DSL research: Can we build tools which help us in DSL design?

8.4 Grammatical Inference and Language Design

There are many open problems remaining, as shown in the previous two

sections, in the design of DSLs, especially the lack of tool support for de-

signing such languages. For very complex domains, domain experts are

indispensable. Unfortunately domain experts are usually not language de-

signers. Hence, we would like to explore the applicability of grammatical

inference in providing tool support to achieve the task of designing DSLs

for domain experts not proficient in language design. Domain experts can

provide examples of DSL programs which can serve as input to the inference

process. In the rest of this section we describe the grammatical inference

algorithm MAGIc which endeavors towards automatic DSL design. MAGIc
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borrows some ideas from our previous work on GenInc [27]. Hence, GenInc

is briefly described first in the next subsection.

8.4.1 GenInc

The authors have previously worked on GenInc [27], an unsupervised incre-

mental context-free grammar (CFG) learning algorithm for facilitating DSL

development for domain experts not well versed in programming language

design. GenInc is based on the identification in the limit model of induc-

tive inference [19] where (iteratively) an example of the target language

is presented to the learner and after each sample the learner provides a

representation of the language (as opposed to the active learning model [3]

which assumes the existence of an oracle to which membership and gram-

mar equivalence queries can be posed). GenInc learns from ordered pos-

itive samples and operates under the PACS learning paradigm (Probably

Approximately Correct learning under Simple distributions) [63]. GenInc

follows the incremental learning model as defined in [34]; it analyzes one

training sample at a time, does not reprocess any previous samples when

inferring a new hypothesis (CFG), and maintains only one candidate CFG

in memory. GenInc makes use of positive samples only because often in

practice negative samples are not available. These samples are characteris-

tic samples (i.e., they exercise every rule of a grammar) and this property

allows grammars to be inferred from positive samples only. To facilitate

the grammar inference process, GenInc relies on an ordered positive sam-

ple presentation instead of an arbitrary presentation of samples. Smaller

(in terms of number of tokens and number of language features) samples

are presented before more complex ones; this allows an incremental learn-

ing algorithm to encode the sources of simple variances in the samples,

before attempting to capture the long-range grammar rule dependencies.

However, a different ordering of samples might result in a wrong grammar.

Another limitation of GenInc is that difference among samples must be

small; only one new feature per sample is allowed. More details on GenInc

and various examples of successful DSL grammar inference are presented

in [27].

8.4.2 MAGIc

Amemetic algorithm [36] is a population-based evolutionary algorithm with

local search. MAGIc, Memetic Algorithm for Grammatical Inference (Al-

gorithm 1) infers CFGs from positive samples, which are divided into a
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learning set and a test set. The learning set is used only in local search,

while grammar fitness is calculated on samples from the learning and test

sets. Using samples from the test set in the grammar inference process

is the main difference between our approach and many machine learning

approaches, where the test set is used for testing the result accuracy. Al-

though the initial population has been created mostly randomly in evolu-

tionary algorithms such an approach has been proven insufficient for gram-

mar inference [12]. Indeed, a more sophisticated approach is needed and an

initial population of grammars is generated using the Sequitur algorithm

[40], which generates a grammar that only parses a particular sample from

learning set. Hence, Sequitur does not generalize productions. Moreover,

the initialization procedure can be enhanced with seeds of partially cor-

rect grammars or grammar dialects, which are useful for learning grammar

versions [16].

After the initial population is built, the evolutionary process of grammar

learning is launched. It consists of the following main steps: local search,

mutation, generalization, and selection. After each step, except selection,

grammars are evaluated on all samples from the learning and test sets. The

number of positive samples that are parsed is the grammar fitness [5], which

is used in the selection process.

8.4.2.1 Local Search

Evolutionary algorithms usually perform better if they are augmented with

local search. First, we explain what kind of local search is implemented

in MAGIc. In a current population the grammar Gj is picked randomly

and its associated sample Si from the learning set. Note that in the initial

population for every positive sample from the learning set a grammar exists

which parses this sample. Next, the positive sample Sm from the learning

set is picked randomly which are not parsed by the grammarGj . The idea is

to compare both positive samples Si and Sm and based on the differences

between them change the grammar Gj . Since changes in the grammar

Gj can be done in many places several new grammars are injected into the

population. Hence MAGIc is a kind of variable population size evolutionary

algorithm. In doing this MAGIc exploits the LR(1) parsing history. When

the parser fails to parse the sample, information about the parser stack and

the LR(1) item set [2] are examined with the aim to change the grammarGj

in a way that both samples Si and Sm are parsed by transformed grammar

Gj . In addition to LR(1) configuration it is also important to know the
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Algorithm 1 Memetic algorithm
1: Method Memetic algorithm (learning set (LS), test set (TS), pm, pop size, num gen,
{initial grammars})

2: begin

3: {Initialization}
4: initialize population P

5: if grammar versioning then

6: add initial grammars to P

7: else

8: for all positive samples Si in LS do

9: grammar Gi = SEQUITUR(Si)
10: add Gi to P

11: end for

12: end if

13: current G ← 0
14: while current G < num gen do

15: {Improve&Evaluate}
16: for j = 1 ... pop size do

17: pick Gj from P

18: pick Si from LS where Si ∈ L(Gj)
19: pick Sm from LS where Sm 6∈ L(Gj)
20: Gpop size+1 ← LocalSearch(Gj, diff(Si,Sm), LR(1) config)
21: ...
22: Gpop size+∆j ← LocalSearch(Gj, diff(Si,Sm), LR(1) config)
23: end for

24: for s = 1 ... ∆j do

25: evaluate(Gpop size+s, LS, TS)
26: if fitness > 0 then

27: add Gpop size+s to P

28: end if

29: end for

30: {Mutation}
31: for j = 1 ... pop size+∆ do

32: for k = 1 ... size(Gj) do

33: if rnd < pm then

34: case 1: G
∗

j = iteration+(Gj)

35: case 2: G
∗

j = iteration∗(Gj)

36: case 3: G
∗

j = option(Gj)

37: evaluate(G∗j , LS, TS)

38: if fitness > 0 then

39: add G
∗

j to P

40: end if

41: end if

42: end for

43: end for

44: {Generalization}
45: for j = 1 ... pop size+∆ do

46: Gpop size+∆+j = generalize(Gj)
47: evaluate(Gpop size+∆+j, LS, TS)
48: if fitness > 0 then

49: add Gpop size+∆+j to P

50: end if

51: end for

52: {Selection}
53: deterministically select best pop size grammars
54: current G++
55: end while

56: end
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type of the difference among both samples Si and Sm. Since we are using

the Linux diff command [25] the differences can be:

• REPLACE (what to replace in the first sample to get the second

one)

• DELETE (what to delete in the first sample to get the second one)

or

• ADD (what to add in the first sample to get the second one).

Since comparison has to be done at the token level, not at the character

level, we inserted the lexical analysis phase [2] before the diff command.

Using data from the LR(1) configuration we can successfully change the

grammar according to the following differences among two samples. Note

that only the first two cases are explained, the last one is achieved in a

similar, but more complicated, manner.

Case REPLACE:

When diff returns a replacement difference, the true positive sample is

s1s2...ska1...ansk+1...sj and s1s2...skb1...bmsk+1...sj is the false

negative sample. In order to successfully parse the false negative sample,

a production with the b1...bm part of the false negative has to be added

into the grammar. This new production represents an alternative for part

of the grammar, where the first symbol is a1 and the last symbol is an.

The problem here is to find the beginning and the end where to insert

the alternative production. To solve this problem, we modified the LR(1)

parser. When the true positive sample is parsed, we memorize for each

token the dots in configuration items before and after this token. This way

we can get all the configurations items where the dots are before a1 and

all configurations items where the dots are after an. The new grammar

can be made when the dot before a1 and the dot after an are in the same

production.

A case where the grammar can be changed is shown in production Nx

::= α1 < β > α2, where β represents part of grammar containing tokens

a1...an. Note that α1 and α2 can be also ε. For easier understanding we

introduce a symbol < that represents the dot before a1 and symbol > that

represents the dot after an. Both dots are in the same production, therefore

β can be replaced with a new nonterminal and the following change to the

grammar is made.

Nx ::= α1 N1 α2

N1 ::= β
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N1 ::= b1...bm

Case DELETE:

Strings s1s2...ska1...ansk+1...sj and s1s2...sksk+1...sj represent

true positive and false negative samples, respectively. In this case part

of the true positive sample a1...an has to be found in the grammar and

made optional. To find the part a1...an the configurations dots before

a1 and after an are used. This information is obtained from the output

of parsing the true positive sample. The grammar can be changed if both

configuration dots are in the same production. In case of production Nx

::= α1 < β > α2 the following change to the grammar is made.

Nx ::= α1 N1 α2

N1 ::= β

N1 ::= ε

8.4.2.2 Mutation

After local search grammars undergo transformation through mutation.

Mutation exploits the knowledge of grammars, where grammar symbols

often appear optionally or iteratively (option operator, iteration+ operator,

and iteration* operator). Randomly chosen grammar symbols are mutated

where the type of mutation is also random. The results of these operators

on the production Nx ::= α1 Ny α2, where grammar symbol Ny is selected

for mutation, are:

Option operator:

Nx ::= α1 Nz α2

Nz ::= Ny

Nz ::= ε

Iteration+ operator:

Nx ::= α1 Nz α2

Nz ::= Ny Nz

Nz ::= Ny

Iteration* operator:

Nx ::= α1 Nz α2

Nz ::= Ny Nz

Nz ::= ε
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8.4.2.3 Generalization

The generalization step is an important step of MAGIc algorithm. In this

part the generated grammars are checked if they can be generalized. The

generalization procedure is composed of three steps. In the first step the

algorithm checks if the RHS of particular production occurs in RHS of other

productions. In this case the part of RHS that is the same as the RHS of

the searched production is replaced with a nonterminal that represents the

LHS of the searched production. For example, let the generated grammar

have the following productions

Nx ::= α β

Ny ::= β

Ny ::= γ

The RHS of the second production β also occurs in the first production.

Therefore it can be replaced with LHS of the second production. As the

result of the first step the grammar is changed to:

Nx ::= α Ny

Ny ::= β

Ny ::= γ

Note, that generalization occurs in a manner that now both sentential

form α β and α γ are parsed with the changed grammar.

In the second step grammars are examined and searched for repeating

nonterminals. If two equal nonterminals occur consequently then there is

a possibility to generalize the grammar in a manner that such nontermi-

nal iterate. For example, let the generated grammar have the following

productions:

Nx ::= α1 Nz Nz α2

Nz ::= β

Nz ::= γ

Nz ::= ε

In the first production there are two consequent nonterminals Nz. In

this case one of them is removed and placed on tail of all the productions

where Nz represents LHS (except the ε production):

Nx ::= α1 Nz α2

Nz ::= β Nz
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Nz ::= γ Nz

Nz ::= ε

In the third step of generalization unit productions of form Nx ::= Ny

are removed.

8.4.2.4 Selection

Deterministic selection is used where all grammars are ranked and only

the best pop size grammars are selected into the next population. It is

planned in our future work to implement other selection schemes [5] and do

thorough analysis of the impact of the selection scheme on MAGIc. How-

ever, the current deterministic selection performs well. Note that during

the evolutionary cycle, the population of grammars is not fixed and can

grow, but at the end of evolutionary cycle only pop size grammars survive.

The algorithm runs for num gen generations, where num gen is an input

parameter of the algorithm. From our previous experience on evolution-

ary algorithms (EAs, e.g., [9]) we are aware of the fact that results of EAs

heavily depend on a good parameter control mechanism (e.g., adaptive or

self-adaptive parameter control). The impact of different control parameter

mechanisms to MAGIc is also planned in the near future.

8.4.2.5 Example

To illustrate the approach let us look into the example for the simple

domain specific language DESK [43], which is a simple desk calculation

language. Its statements are of the form: PRINT <expression> WHERE

<definitions>, where <expression> is an arithmetic expression over

numbers and defined constants, and <definitions> is a sequence of con-

stant definitions of the form <constant name> = <number>. By preparing

input samples, the language designer needs to follow an important idea in

grammatical inference, that positive samples have to include all language

constructs and possibly also their legal combinations. We have prepared

12 different samples (Figure 8.4) on which MAGIc was tested using the

control parameter tuning approach. The influence of control parameters

(pm, pop size, num gen) on successfulness of inferred grammars with re-

spect to success rate (SR) and to average number of evaluations to solution

(AES) was examined. Additionally, we measured also the structure of in-

ferred grammars using several parameters (i.e., ANN - average number of

nonterminals, ANP - average number of productions, ARHS - average size
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of production’s right hand size) and tracked the average number of gram-

mars found (ANG), the minimal number of samples (MNS) used whenever

a successful grammar was inferred, and the average number of samples

(ANS). The best results (Table 8.1) were achieved using pm = 0.01. When

pm = 0.02 or pm = 0.05, the inferred grammars did not successfully parse

all positive samples in some runs, although this occurred mostly in 1 (or 2)

runs out of 30 runs achieving SR=0.97 (or SR=0.93). On the other hand,

small population size (pop size = 20 and pop size = 30 ) did not always

lead to SR = 1.0, while bigger population size (pop size = 50) required

many more evaluations. Hence, after this experiment we decided to use

pop size = 40 and pm = 0.01 for DESK grammar learning.

1. print a

2. print 5

3. print b+2

4. print a+b+c

5. print c where d=54

6. print 2 where i=4

7. print 5+o where o=10

8. print 15+30 where s=4

9. print d where d=14;v=15

10. print 13 where d=17;e=42

11. print 75+4 where f=3;g=6

12. print a+b+c where a=1;b=9;c=11

Fig. 8.4 Samples of DESK language on which MAGIc was tested.

Our algorithm outputs as a result an array of inferred grammars that

parse all samples from the learning and test sets. One of the grammar that

MAGIc inferred based on the 12 generated samples is shown in Figure 8.5.

This grammar was inferred using samples 7, 10, 12 and 1 . If we compare

it with the original grammar of DESK language, which is shown in Figure

8.6, the inferred grammar has fewer productions and is equivalent to the

original grammar .

From the results obtained we found that not all samples were needed

to infer the successful grammar. Hence, we performed another small ex-

periment. We have separated samples from Figure 8.4 into two parts. In

the learning set samples 1, 7, 10 and 12 were chosen. Those samples were

found, by running the MAGIc on 12 samples, to be the most important ones
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Table 8.1 Parameter Tuning for DESK language (pm - probability of mutation,

PS - population size, NG - number of generations, SR - success rate, AES - av-

erage number of evaluations, MNS - minimum samples needed to infer grammar,

ANS - average number of samples needed to infer grammar, ANN - average num-

ber of different nonterminals, ANP - average number of productions, ARHS - aver-

age size of RHS, ANG - average number of found new grammars per generation).

pm PS NG SR AES MNS ANS ANN ANP ARHS ANG

0.01 20 30 1.00 2287.10 4 7.42 7.49 14.19 3.30 11.30

0.01 20 50 1.00 2641.63 4 7.58 7.33 13.85 3.32 11.17

0.01 20 70 1.00 2885.33 4 8.20 8.05 15.25 3.31 12.23

0.01 30 30 1.00 3430.53 3 7.89 7.33 14.22 3.39 17.47

0.01 30 50 1.00 3741.50 4 7.92 7.75 14.89 3.38 16.93

0.01 30 70 1.00 4370.23 4 7.85 7.48 14.22 3.31 16.07

0.01 40 30 1.00 4206.27 3 7.56 7.45 14.07 3.32 19.90
0.01 40 50 1.00 4925.00 3 7.82 7.35 13.91 3.34 20.77
0.01 40 70 1.00 5501.10 4 7.32 7.22 13.67 3.34 23.23

0.01 50 30 1.00 5100.33 3 7.64 7.44 14.32 3.38 27.67

0.01 50 50 1.00 5895.97 3 7.80 7.51 14.26 3.31 27.00

0.01 50 70 1.00 6670.33 4 7.42 7.54 14.29 3.32 24.57

0.02 20 30 0.97 2808.52 4 7.74 7.68 14.72 3.39 10.86

0.02 20 50 1.00 3278.70 3 7.56 7.56 14.41 3.26 11.30

0.02 20 70 1.00 4099.23 4 7.33 7.32 13.71 3.30 9.57

0.02 30 30 0.93 4137.64 3 7.83 7.71 14.64 3.40 14.71

0.02 30 50 0.97 5012.52 4 7.22 7.44 14.02 3.26 15.14

0.02 30 70 1.00 5832.73 3 7.42 7.44 14.09 3.38 15.27

0.02 40 30 1.00 5041.03 3 7.47 7.42 14.11 3.32 21.73

0.02 40 50 1.00 6212.63 4 7.33 7.53 14.38 3.32 20.60

0.02 40 70 1.00 7710.50 4 7.55 7.40 14.00 3.31 19.77

0.02 50 30 1.00 6115.97 4 7.69 7.58 14.65 3.37 27.17

0.02 50 50 1.00 7629.00 3 7.40 7.64 14.43 3.24 24.73

0.02 50 70 1.00 8883.63 3 7.39 7.40 14.02 3.31 24.53

0.05 20 30 0.97 4247.38 3 7.41 8.03 15.14 3.18 10.97

0.05 20 50 1.00 5622.57 3 7.11 7.58 14.41 3.27 8.80

0.05 20 70 1.00 8505.93 4 7.78 8.13 15.39 3.22 10.37

0.05 30 30 1.00 5925.93 3 7.11 7.57 14.22 3.25 14.67

0.05 30 50 0.97 8655.86 3 7.03 7.94 14.77 3.15 14.48

0.05 30 70 1.00 10930.07 3 6.98 7.68 14.55 3.23 14.47

0.05 40 30 1.00 8634.67 3 6.78 7.70 14.33 3.18 17.73

0.05 40 50 1.00 11495.43 3 7.17 8.06 15.10 3.18 18.90

0.05 40 70 1.00 15367.87 3 7.07 7.69 14.46 3.21 19.30

0.05 50 30 1.00 9431.63 4 7.23 7.99 15.12 3.20 26.90

0.05 50 50 1.00 14697.77 3 7.18 8.16 15.39 3.22 22.33

0.05 50 70 1.00 18976.70 4 7.11 7.82 14.77 3.21 22.87

by inferring complete grammars. The test set contained the remaining 8

samples. The algorithm was run for 30 times and the results were as fol-

lows: SR=0.83, AES=14554, MNS=4, ANS=4, ANN=5.61, ANP=10.21,
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1. N1 ::= print N3 N5

2. N2 ::= + N3

3. N2 ::= ε

4. N3 ::= number N2

5. N3 ::= id N2

6. N4 ::= ; id = number N4

7. N4 ::= ε

8. N5 ::= where id = number N4

9. N5 ::= ε

Fig. 8.5 Inferred grammar with MAGIc for DESK language.

1. DESK ::= print E C

2. E ::= E + F

3. E ::= F

4. F ::= id

5. F ::= number

6. C ::= where Ds

7. C ::= ε

8. Ds ::= D

9. Ds ::= Ds ; D

10.D ::= id = number

Fig. 8.6 Original grammar of DESK language [43].

and ANG=9.84. The success rate was lower than running the algorithm on

all 12 samples in the learning set. The reason is obvious since grammars

which parse all samples from the learning set, but not all from the test set,

cannot improve anymore by local search. But still, in more than 80% of the

cases it was enough to have only 4 samples to infer the successful grammar

(Figure 8.5).

MAGIc can also be used to infer grammars for language dialects. In

this case, the initial grammar is not generated from input sample but it is

read from a file. The samples given in the learning set contain the missing

concepts that the user wants to add to the current language. We have tested

MAGIc on DESK language dialects. Two different tests were done with two

different initial grammars (Figures 8.7 and 8.8). In the first grammar we

have removed the <definitions> part and in the second grammar the
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<expression> part. In both cases we have used the samples from Figure

8.4. The results are shown in Figures 8.9 and 8.10. In both cases MAGIc

successfully inferred new grammars that parse all the input samples.

1. N1 ::= print N2

2. N2 ::= N2 + N3

3. N2 ::= N3

4. N3 ::= id

5. N3 ::= number

Fig. 8.7 Initial DESK grammar without <definitions> part.

1. N1 ::= print id N2

2. N2 ::= where N3

3. N2 ::= ε

4. N3 ::= N4

5. N3 ::= N3 ; N4

6. N4 ::= id = number

Fig. 8.8 Initial DESK grammar without <expression> part.

1. N1 ::= print N2 N4

2. N2 ::= N2 + N3

3. N2 ::= N3

4. N3 ::= id

5. N3 ::= number

6. N4 ::= where N3 = N3 N5

7. N4 ::= ε

8. N5 ::= ; N3 = N3 N5

9. N5 ::= ε

Fig. 8.9 Grammar with inferred definitions part.

We have tested MAGIc also on other languages like FDL, WHILE, and

on the example presented in Section 5. MAGIc is able to infer CFGs, which

are non-ambiguous and of type LR(1).

To make MAGIc successful in inferring a grammar from positive sam-
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1. N1 ::= print N5 N6 N2

2. N2 ::= where N3

3. N2 ::= ε

4. N3 ::= N4

5. N3 ::= N3 ; N4

6. N4 ::= N5 = N5

7. N5 ::= id

8. N5 ::= number

9. N6 ::= + N5 N6

10. N6 ::= ε

Fig. 8.10 Grammar with inferred expression part.

ples a domain expert should try to cover all possible language constructs

and their valid combinations in the provided positive samples. But, can

the number of positive samples that MAGIc needs as input to infer the

correct grammar be calculated? First, we should be aware that grammar,

albeit using only a finite set of productions, can describe a language with

an infinite number of different statements. However, a key observation here

is that we need to figure out which productions can generate these state-

ments. Therefore, we do not need all possible statements, which are often

infinite, but only those which are generated through all possible combi-

nations of the production rules in the grammar. If the grammar includes

recursive rules, then these rules need to be exercised only once because

multiple runs through the rules will not append any new construct. Tak-

ing this into account we can calculate exactly how many different samples

need to be generated to exhibit all possible combination of productions.

The calculation is similar to the variability calculation of feature diagrams

[13], with additional rules to handle recursion. The number of all possible

different statements is calculated by the following rules, where A stands for

non-terminals, a is a terminal symbol, β denotes a sequence of nonterminal

and terminal symbols, and Var stands for Variability:

Var (A ::= A β) = Var(β) + 1 if A ::= ε also exists

Var (A ::= β A) = Var(β) + 1 if A ::= ε also exists

Var (A ::= A β) = Var(β) if A ::= ε does not exist

Var (A ::= β A) = Var(β) if A ::= ε does not exist

Var (A ::= β1...βn) = Var(β1) *...* Var(βn)

Var (A ::= β1 |...| βn) = Var(β1) +...+ Var(βn)
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Var (A ::= a) = 1

Var (A ::= ε) = 1

Let us compute variability for the DESK grammar (Figure 8.6):

Var(DESK) = Var(print) * Var(E) * Var(C)

= 1 * 4 * 3 = 12

Var(E) = Var(E + F) + Var(F) = Var(+ F) + Var(F)

= Var(+) * Var(F) + Var(F)

= 1 * 2 + 2 = 4

Var(F) = Var(id) + Var(num)

= 1 + 1 = 2

Var(C) = Var(where) * Var(Ds) + Var(ε)

= 1 * 2 + 1 = 3

Var(Ds) = Var(D) + Var(Ds ; D) = Var(D) + Var(; D)

= Var(D) + Var(;) * Var(D)

= 1 + 1 * 1 = 2

Var(D) = Var(id) * Var(=) * Var(num)

= 1 * 1 * 1 = 1

According to the above rules, variability of the DESK grammar is 12,

which means that with 12 positive samples we can exercise all possible com-

bination of grammar productions. Hence, if we know the original grammar

we can estimate the number of positive samples needed for grammatical

inference. We have run MAGIc on 12 positive samples using different con-

trol parameters and tracked the minimal number of samples (MNS) used

whenever a successful grammar was inferred and the average number of

samples (ANS). From Table 8.1 we can see that in some cases only from

3 positive samples (e.g., from samples No. 5, 10, 8 ) the correct grammar

was inferred, while the average number across all 30 runs was 7.45 samples,

which is considerably less than Var(DESK). Grammar variability can be-

come a good measure of how good and fast different grammatical inference

algorithms are since the number of true positive samples have a big impact

on algorithm performance. From Algorithm 1 we can conclude that the

complexity of the algorithm is polynomial ≈ O(N3). The average process-

ing time for 12 DESK language samples with pm = 0.01, pop size = 40

and num gen = 30 was about 30 seconds. For experimental runs, we have

used an Intel Core 2 Duo P8600 processor with 2.4 GHz. On the other

hand, MAGIc can infer the grammar G with a number of samples less than

Var(G) since MAGIc consists also of mutation and generalization steps (see
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Algorithm 1). Note also that, for example from sample 11, which contains

12 terminal symbols, we can construct 8.76478739164×1011 possible binary

derivation trees [12]. This is just one example of how big the search space

can be even for small sentences.

In the realistic scenario the variability of yet to discovered grammar is

not known. However, we can still do approximation and calculate variability

of the inferred grammar. If it is much bigger than the current number

of positive samples then current samples might not be sufficient and the

domain expert should provide additional positive samples.

8.4.2.6 Limitations

In the current state MAGIc has also some limitations which are planned to

be removed in the future. The first limitation is bounded to the diff output.

In some cases the diff command does not return the difference needed to

infer some language features, like recursion. For example in FDL language,

if the true positive and false negative samples are:

c:keyword(atomicFeature,atomicFeature)

c:keyword(keyword(atomicFeature,atomicFeature),atomicFeature)

the diff command returns:

4a5,6

> keyword

> (

8a11,13

> ,

> atomicFeature

> )

which means add tokens “keyword (” (on position 5-6) and “,

atomicFeature )” (on position 11-13) from false negative sample into true

positive sample after the fourth and eight tokens, respectively. The change

to the grammar that parses the true positive sample:

G: N1 ::= c : keyword ( atomicFeature , atomicFeature )

is:

G1: N1 ::= c : keyword ( N2 atomicFeature , atomicFeature ) N3

N2 ::= keyword (

N2 ::= ε
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N3 ::= , atomicFeature )

N3 ::= ε

From grammar G1 it is difficult or almost impossible to see the recursive

structure and change the grammar in a way to parse the recursive structures

found in FDL language.

The required difference between the above samples, to express the re-

cursive feature of the language, would be:

5c5,10

< atomicFeature

- - -

> keyword

> (

> atomicFeature

> ,

> atomicFeature

> )

Replace the fifth token atomicFeature in true positive sample with tokens

keyword(atomicFeature,atomicFeature) (on positions 5 - 10) from the

false negative sample. The change to the grammar G in this case would be:

G2: N1 ::= c : keyword ( N2 , atomicFeature )

N2 ::= atomicFeature

N2 ::= keyword ( atomicFeature , atomicFeature )

After the generalization step described in subsection 8.4.2.3, the grammar

G2 would be generalized to the next form:

G2
′

: N1 ::= c : N2

N2 ::= atomicFeature

N2 ::= keyword ( N2 , N2 )

Grammar G2
′

is correct and easier to read than grammar G1. A more

detailed look at grammar G1 also shows that it can parse also the negative

samples, for example:

c:keyword(atomicFeature,atomicFeature),atomicFeature) or

c:keyword(keyword(atomicFeature,atomicFeature)

Aware of this MAGIc limitation we are working on our own “diff” algo-

rithm, that is more suitable for our use. Another limitation of the MAGIc
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algorithm is lack of negative samples and therefore some of the inferred

grammars can be overgeneralized. To avoid overgeneralization, negative

samples will also be used in the future. A less serious current limitation of

MAGIc is that final result can produce more grammars which all parse the

positive samples. In the case that a large set of grammars results, a lan-

guage designer will face a tedious problem to finally select the most suitable

one. To eliminate this problem we are investigating the use of the MDL

principle [47] which prefers smaller grammars over bigger ones.

8.5 Case Study

The capability of using grammatical inference techniques in DSL design,

in particular the MAGIc algorithm, have been tested on a real example

from the computer graphics domain. In [56], Strnad and Guid developed

a method for modeling trees with hypertextures, a method for describing

3-D shapes and textures [45]. The method is based on a volumetric repre-

sentation of trees generated by three dimensional variation of an Iterated

Function System (IFS), which is a technique for fractal generation. Using

this method a tree is a fractal object described by nonlinear and nondeter-

ministic IFS where a combination of linear transformations (scalings, trans-

lations and rotations) and nonlinear shears are used. Scaling, translations,

and rotations are used to describe fractal subparts (size, position, and ori-

entation), while nonlinear shears are used to bend them in two coordinate

directions. Nondeterminism of transformations is achieved by randomly

chosen values of transformation parameters (e.g., angle of rotation). Ran-

dom parameters allow the same set of transformations to produce visually

different hypertrees with similar basic structure. A hypertree consists of

branches which are like smaller trees. This similarity goes several levels

deep and depends on the tree family. Branches need not be exact copies of

the whole tree, but they may only closely resemble it. Branching structure

is generated by condensation transformation. Moreover, the ideal structure

of hypertrees can be distorted with noise perturbation. The whole descrip-

tion of a hypertree consists of resolution, number of iterations, fractal depth,

number of branch levels, the description of the generator (POINTINIT or

LINEINIT), the coloring scheme (DEPTHCOLOR) and transformations.

In Figure 8.11 an excerpt from a DSL program is given, while in Figure

8.12 two generated hypertrees are displayed.

Strnad and Guid [56] have no experience with language engineering and
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RESOLUTION 300 400 300

ITERATIONS 3000000

POINTINIT 0 0 0

TREEDEPTH 5

BRANCHDEPTH 1

HYPERVOLUME -0.6 0.6 -1 0.6 -0.6 0.6

DEPTHCOLOR 0-1 0.7+/-0.0 0.7+/-0.0 0.5+/-0.0

DEPTHCOLOR 2-5 0.25+/-0.25 0.75+/-0.25 0.25+/-0.25

TRANSFORM 1 0

TRANSLATE (0,0,0) (1,1,1) (0,0,0)

SHEAR (0,0,0) (0.5,0.5,0.5) (2,2,2)

SHEAR XZ SCALE (0.3,0.3,0.3) (0.4,0.4,0.4) (0.3,0.3,0.3)

ROTATE (-80,-80,-80) (0,0,0) (0,0,0)

ROTATE (0,0,0) (45,45,45) (0,0,0)

TRANSLATE (0,0,0) (-0.72,-0.72,-0.72) (0,0,0)

TRANSFORM 1 0

TRANSLATE (0,0,0) (1,1,1) (0,0,0)

SCALE (0.6,0.6,0.6) (0.6,0.6,0.6) (0.6,0.6,0.6)

ROTATE (0,0,0) (50,50,50) (0,0,0)

TRANSLATE (0,0,0) (-0.4,-0.4,-0.4) (0,0,0)

TRANSFORM 1 0

TRANSLATE (0,0,0) (1,1,1) (0,0,0)

SCALE (0.8,0.8,0.8) (0.8,0.8,0.8) (0.8,0.8,0.8)

ROTATE (0,0,0) (150,150,150) (0,0,0)

TRANSLATE (0,0,0) (-0.8,-0.8,-0.8) (0,0,0)

CONDENSATION 1 CONE -1.0 0.5 0.02 0.0 CONE Y

Fig. 8.11 Excerpt of domain specific program for hypertree generation.

they implemented the language from scratch [57]. The parsing algorithm

was hard coded and not based on the grammar. Because of the lack of the

knowledge in language engineering the underlying grammar was not even

identified. If it were, the parsing code could be automatically generated by

parser generators. On the other hand, the maintenance of parsing code is

now extremely difficult in the event that this language will evolve in the

future.

The purpose of this section is to show that current advances in gram-

matical inference are now able to infer grammars for simple DSLs, such as
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Fig. 8.12 Two samples of generated trees.

presented in Strnad and Guid [56]. We have run the MAGIc algorithm on

a sample of programs provided by Strnad and Guid [56]. A simple step in

the inferring of the final grammar is presented in Figures 8.13 - 8.17, where

current samples Si and Sm, the Sequitur initial grammar for samples Si, the

current grammar Gj and the newly inferred grammar are presented. Note

that the difference between sample Si and Sm is in the construct pointinit

which is replaced with construct lineinit, and in possible iteration of con-

struct depthcolor. Hence, one of the GenInc limitations is now eliminated

in MAGIc. After 30 runs (note that MAGIc is a stochastic algorithm) the

following measures on MAGIc were collected: SR = 1.0 and AES = 8071,

while the inferred grammars have the following characteristics: ANN =

10.6, ANP = 21.2, and ARHS=6.4.

RESOLUTION 100 150 200

ITERATIONS 10000

POINTINIT 1 0 3

TREEDEPTH 4

BRANCHDEPTH 2

HYPERVOLUME 4 3 3 4 4 5

DEPTHCOLOR 0-1 0.6+/-0.3 0.2+/-0.1 0.5+/-0.2

CONDENSATION 1 CONE 2 2 1 1 CONE Y

Fig. 8.13 Sample Si.
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448 M. Mernik, D. Hrnčič, B. R. Bryant and F. Javed

N1 ::= resolution N2

iterations num

pointinit N2

treedepth num

branchdepth num

hypervolume N2 N2

depthcolor range bpp bpp bpp

condensation num cone

N2 num coney

N2 ::= num num num

Fig. 8.14 Sequitur initial grammar for sample Si.

N1 ::= resolution N2

iterations num

pointinit N2

treedepth num

branchdepth num

hypervolume N2 N2 N3

condensation num cone

N2 num coney

N2 ::= num num num

N3 ::= depthcolor range

bpp bpp bpp

N3 ::= ε

Fig. 8.15 Grammar Gj .

The final inferred grammar found in generation 15 is shown in Figure

8.18.

8.6 Related Work

Early grammar inference research primarily focused on regular grammars

and resulted in successful algorithms and learning systems such as L* [4],

regular positive negative inference [42], finite automata learning from sim-

ple examples [44] and automata learning with merge constraints [33] which
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RESOLUTION 100 200 100

ITERATIONS 30000

LINEINIT 0.3 0.3 0.3 0.5 0.5 0.5 0.5

TREEDEPTH 6

BRANCHDEPTH 1

HYPERVOLUME 5 5 5 6 6 6

DEPTHCOLOR 0-2 0.4+/-0.1 0.6+/-0.2 0.4+/-0.1

DEPTHCOLOR 0-5 0.2+/-0.1 0.4+/-0.1 0.5+/-0.1

CONDENSATION 1 CONE 1 1 1 1 CONE Y

Fig. 8.16 Sample Sm.

N1 ::= resolution N2

iterations num N4 N2

treedepth num

branchdepth num

hypervolume N2 N2 N3

condensation num cone

N2 num coney

N2 ::= num num num

N3 ::= depthcolor range bpp

bpp bpp N3

N3 ::= ε

N4 ::= pointinit

N4 ::= lineinit num num num num

Fig. 8.17 Inferred grammar Gj+∆1.

made advances in theory of learning and were applied to practical problems.

While preliminary (mainly theoretical) results concerning CFG learning

were negative, recent interest in potential applications of CFG learning in

diverse domains has resulted in renewed efforts at CFG learning. Many

grammatical inference efforts are focused on natural language learning.

EMILE [1] falls under the PACS learning paradigm and uses clustering

characteristic expressions and contexts to infer natural language grammar

from a corpus. The Alignment-based learning (ABL) [62] algorithm uses

the principle of substitutability of constituents to compare all the sentences

in a corpus in order to learn a grammar. Each sample is then compared
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N1 ::= resolution N2

iterations num N3 N2

treedepth num

branchdepth num

hypervolume N2 N2

condensation num cone N2 num coney

N2 ::= num num num N4

N3 ::= pointinit

N3 ::= lineinit num num num num

N4 ::= depthcolor range bpp bpp bpp N4

N4 ::= ε

N4 ::= name progname N4

N4 ::= scale lpar num comma num comma num rpar

lpar num comma num comma num rpar

lpar num comma num comma num rpar N4

N4 ::= rotate lpar num comma num comma num rpar

lpar num comma num comma num rpar

lpar num comma num comma num rpar N4

N4 ::= translate lpar num comma num comma num rpar

lpar num comma num comma num rpar

lpar num comma num comma num rpar N4

N4 ::= transform num num N4

N4 ::= shear lpar num comma num comma num rpar

lpar num comma num comma num rpar

lpar num comma num comma num rpar shearxz N4

N4 ::= perturb lpar num comma num comma

num comma num rpar

lpar num comma num comma num comma num rpar

lpar num comma num comma num comma num rpar

lpar num comma num comma num comma num rpar N4

Fig. 8.18 Inferred grammar.

to every other sample during a single learning phase and the differences

are noted. ADIOS [53] uses a statistical method to extract hierarchical

structure and learns a complete syntax from a language corpus as well as

generates grammatically novel sentences in an unsupervised manner. Klein

and Manning [31] describe an approach to infer natural language using
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unsupervised learning together with a constituent-context model. They in-

fer a hierarchical syntactic structure in the form of a distributional model

of constituents for the underlying natural language from a few thousand

training sentences. The main difference between these research efforts and

MAGIc is their focus on learning natural language; consequently most of

these algorithms assume existence of certain syntactic categories or word

classes (part-of-speech tags like nouns and verbs).

Recently there has been a growing set of grammatical inference research

endeavors focused on programming languages and software engineering ap-

plications. Synapse, an incremental inductive CYK algorithm which learns

simple CFGs from positive and negative examples, is discussed in [38]. Im-

provements to the Synapse system in the form of a process called bridging

(to generate rules to bridge an incomplete parse tree) and serial and global

search methodologies to find the minimum set of rules are described in

[37]. The latest improvement to Synapse [26] utilizes source code and cor-

responding object codes described using an inductive logic programming

notation to allow inference of unambiguous grammars and basic seman-

tics. Compared to Synapse and its various extensions MAGIc only uses

positive examples as input, a more extreme scenario of learning. Synapse

also expects an ordered presentation of both positive and negative sam-

ples for efficient learning while MAGIc is not sensitive to order effects in

input. A technique for inferring grammar rules for programming language

dialects is discussed in [16]. While MAGIc focuses on inferring complete

grammars of DSLs, this technique uses a set of samples of the dialect and

the grammar of the standard language to infer rules specific to the dialect

but missing in the standard language. Preliminary work in using evolution-

ary algorithms enhanced with local search is presented in [48] and tested

on Tomita’s simple regular languages. A system which utilizes a CYK-like

tabular representation method along with partially structured samples (to

indicate the shape of the derivation tree) and a genetic search technique

for partitioning the set of nonterminals is discussed in [49]. This system

assumes the existence of partially structured samples as well as both pos-

itive and negative samples. In [28] local search is used for better learning

rule probabilities of stochastic CFG. A Genetic Algorithm (GA) with a

priori distribution over the space of all possible grammars with a bias to-

wards simpler grammars is described in [30]. This technique assumes the

existence of a covering grammar which is a stochastic CFG (i.e, a CFG

where each rule has an associated probability in the range [0,1]). The

GA optimizes the stochastic CFGs’ parameters based on language samples.
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eg-GRIDS [46] uses several operators suited to construction of CFGs (such

as optional omission of a nonterminal, and attempt to detect patterns like

aibi). MAGIc uses similar operators, and in addition uses “local search”

that examines differences in parsing of samples, one successful and one

unsuccessful.

8.7 Conclusion

This chapter has discussed the design phase of DSL development, which

should take as an input results from domain analysis, DSLs design prin-

ciples and other constraints such as development costs, DSL users, DSL

life span, etc. In particular, we are interested in tools which can assist

us in this difficult task. Domain analysis and the language design phase

can be reduced to some degree or eliminated altogether if the new DSL

is based on an already existing language. To further limit general DSL

design we focused on the case when notation, at least in part, can be

already provided by the domain expert. Hence, our approach assumes

that some DSL programs (or excerpts) already exist. These are then in-

put to our grammatical inference tool - MAGIc, which is able to infer

the underlying context-free grammar. In this chapter we have shown that

grammatical inference may be used to assist a domain expert and soft-

ware language engineer in developing DSLs. However, the inferred gram-

mars should be further analyzed, refactored, and improved by software

language engineers. Hence, the proposed approach and tool can be of great

help to software language engineers or domain experts to more easily dis-

cover the main language constructs and their relationships. Moreover, soft-

ware language engineers can then spend more time on soft language design

principles which are very hard to automate. The approach has been val-

idated using a real DSL designed for expressing hypertrees in computer

graphics.
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LACL, Département Informatique, Université Paris Est,
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9.1 Introduction

The operations of insertion and deletion have a long history and they were

first considered with a linguistic motivation [25, 10, 32]. Another inspira-

tion for these operations comes from the fact that the insertion operation

459
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and its iterated variants are generalized versions of Kleene’s operations of

concatenation and closure [19], while the deletion operation generalizes the

quotient operation. A study of properties of the corresponding operations

may be found in [11, 12, 15]. However, insertion and deletion also have

a nice biological motivation and correspond to a mismatched annealing of

DNA sequences. Such operations are also present in the evolution processes

in the form of point mutations as well as in RNA editing, see the discus-

sions in [4, 5, 37] and [35]. This biological motivation of insertion-deletion

operations led to their study in the framework of molecular computing, see,

for example, [7, 16, 35, 38].

In general form, an insertion operation means adding a substring to a

given string in a specified (left and right) context, while a deletion operation

means removing a substring of a given string from a specified (left and

right) context. A finite set of insertion-deletion rules, together with a set

of axioms provide a language generating device: starting from the set of

initial strings and iterating insertion-deletion operations as defined by the

given rules one gets a language.

Insertion-deletion systems are quite powerful, leading to characteriza-

tions of recursively enumerable languages. However, there are classes of

insertion-deletion systems that are decidable. In these cases it is possible

to consider a graph-controlled variant of insertion-deletion systems, known

under the name of insertion-deletion P systems, which permits to increase

the computational power of corresponding systems.

This chapter is organized as follows. Section 9.2 introduces the defini-

tions used in this chapter. Sections 9.3 and 9.4 present some basic results

from the area of insertion-deletion systems, as well as common proof meth-

ods. Section 9.5 deals with context-free insertion-deletion systems and it

contains, in particular, two important results of the area: Theorems 9.7

and 9.15. Section 9.6 investigates one-sided insertion-deletion systems,

i.e. systems whose rules have a left (or right) context only. Section 9.7

concentrates on pure insertion systems, i.e. which do not use the dele-

tion operation. Sections 9.8 and 9.9 present results on graph-controlled

insertion-deletion systems. The final section contains some bibliographical

remarks.
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9.2 Definitions

We do not present here definitions concerning standard concepts of the

theory of formal languages and we refer to [36] for more details.

We denote by |w| the length of a word w. For a letter a and a word w

we denote by |w|a the number of letters a in w. We extend this notation to

|w|V , where V is an alphabet, which gives the number of letters from V in

w. If A is a set of words, then we put |A| = max
w∈A

|w|. The cardinality of a

set A will be denoted by card(A). By alph(w) we denote the set of letters

occurring in w.

For a word w ∈ V ∗ we denote by Perm(w) all words w′ with the same

number of letters as w: Perm(w) = {w′ : |w′
|a = |w|a for all a ∈ V }, and

we denote by t⊥ the binary shuffle operation. We recall that x t⊥ y =

{x1y1 · · ·xnyn | x = x1 · · ·xn, y = y1 · · · yn, xi, yi ∈ V ∗, 1 ≤ i ≤ n}. The

empty string is denoted by λ.

In the sequel we will use some normal forms of type-0 grammars.

A grammar G = (N, T, S, P ) is said to be in Pentonnen normal form if

it has rules of form AB → AC, A→ x, where A,B,C ∈ N , A, B, C being

different, x ∈ (N ∪ T )∗ and |x| ≤ 2. We can also assume that x is either λ

or equal to uv, where u, v ∈ N ∪ T and A 6= u, u 6= v, A 6= v.

A grammar G = (N, T, S, P ) is said to be in special Pentonnen normal

form if it has rules of form AB → AC, BA → CA, A → AB, A → BA,

A→ δ, where A,B,C ∈ N are different and δ ∈ N ∪ T ∪ {λ}.

A grammar G = (N, T, S, P ) is said to be in Kuroda normal form if it

has rules of form AB → CD, A→ BC, A→ δ, where A,B,C,D ∈ N and

δ ∈ T ∪ {λ}.

The Dyck language Dn over Tn = {a1, ā1, . . . , an, ān}, n ≥ 1 is the

context-free language generated by the grammar

G = ({S}, Tn, S, {S → λ, S → SS} ∪ {S → aiSāi | 1 ≤ i ≤ n}).

Intuitively, the pairs (ai, āi), 1 ≤ i ≤ n, can be viewed as parentheses, left

and right, of different kinds. Then Dn consists of all strings of correctly

nested parentheses. Sometimes it is convenient to define the Dyck language

D over some alphabet V . In this case n = card(V ).

The family of matrix languages, i.e., the family of languages generated

by matrix grammars without appearance checking is denoted by MAT .

The family of recursively enumerable languages is denoted by RE. The

Parikh image of a language family F is a family of sets of vectors denoted

by PsF (we assume a fixed ordering on the alphabet T = {a1, . . . , an}):
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Ps(L) = {(|w|a1 , . . . , |w|an
) | w ∈ L},

P sF = {Ps(L) | L ∈ F}.

A register machine (introduced in [29], see also [9]) is a construct

M = (d,Q, q0, h, P ) ,

where

• d is the number of registers,

• Q is a finite set of bijective labels of instructions of P ,

• q0 ∈ Q is the initial label,

• h ∈ Q is the halting label, and

• P is the set of instructions of the following forms:

(1) p : (ADD(k), q, s), with p, q, s ∈ Q, 1 ≤ k ≤ d (“increment”-

instruction). Add 1 to register k and go to one of the instructions

with labels q, s.

(2) p : (SUB(k), q, s), with p, q, s ∈ Q, 1 ≤ k ≤ d (“decrement”-

instruction). Subtract 1 from the positive value of register k and go to

the instruction with label q, otherwise (if it is zero) go to the instruction

with label s.

(3) h : HALT (the halt instruction). Stop the computation of the machine.

For generating languages over T , we use the model of a register machine

with output tape (introduced in [29], see also [1]), which also uses a tape

operation:

(4) p : (WRITE(A), q), with p, q ∈ Q, A ∈ T .

The configuration of a register machine is given by the (d + 1)-tuple

(q, n1, . . . , nd), where q ∈ Q and ni ≥ 0, 1 ≤ i ≤ d, describing the current

label of the machine as well as the contents of all registers. A transition of

the register machine consists in updating/checking the value of a register ac-

cording to an instruction of one of types above and by changing the current

label to another one. We say that the machine stops if it reaches the label

h. A (non-deterministic) register machine M is said to generate a vector

(n1, . . . , nm) of natural numbers if, starting from configuration (q0, 0, . . . , 0)

the machine stops in configuration (h, n1, . . . , nm, 0, . . . , 0). The set of all

vectors generated in this way by M is denoted by Ps(M). It is known
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(e.g., see [29], [41]) that register machines generate PsRE. If the WRITE

instruction is used, then RE can be generated.

In the case when a register machine cannot check whether a register is

empty we say that it is partially blind ; the second type of instructions is

then written as p : (SUB(k), q) and the transition is undefined if register k

is zero.

Partially blind register machines have an implicit test for zero at the

end of a (successful) computation: counters m+ 1, · · · , d should be empty.

It is known [9] that partially blind register machines generate exactly

PsMAT (Parikh sets of languages of matrix grammars without appear-

ance checking).

9.2.1 Insertion-Deletion Systems

An insertion-deletion system is a construct ID = (V, T,A, I,D), where V

is an alphabet, T ⊆ V , A is a finite language over V , and I,D are finite sets

of triples of the form (u, α, v), α 6= λ, where u and v are strings over V . The

elements of T are terminal symbols (in contrast, those of V − T are called

nonterminals), those of A are axioms, the triples in I are insertion rules,

and those fromD are deletion rules. An insertion rule (u, α, v) ∈ I indicates

that the string α can be inserted between u and v, while a deletion rule

(u, α, v) ∈ D indicates that α can be removed from the context (u, v). As

stated otherwise, (u, α, v) ∈ I corresponds to the rewriting rule uv → uαv,

and (u, α, v) ∈ D corresponds to the rewriting rule uαv → uv. We denote

by =⇒ins the relation defined by an insertion rule (formally, x =⇒ins y

iff x = x1uvx2, y = x1uαvx2, for some (u, α, v) ∈ I and x1, x2 ∈ V ∗) and

by =⇒del the relation defined by a deletion rule (formally, x =⇒del y iff

x = x1uαvx2, y = x1uvx2, for some (u, α, v) ∈ D and x1, x2 ∈ V ∗). We

refer by =⇒ to any of the relations =⇒ins,=⇒del, and denote by =⇒∗

the reflexive and transitive closure of =⇒ (as usual, =⇒+ is its transitive

closure).

The language generated by ID is defined by

L(ID) = {w ∈ T ∗
| x =⇒∗ w, x ∈ A}.

The complexity of an insertion-deletion system ID = (V, T,A, I,D) is

described by the vector (n,m,m′; p, q, q′) called size, where

n = max{|α| | (u, α, v) ∈ I}, p = max{|α| | (u, α, v) ∈ D},

m = max{|u| | (u, α, v) ∈ I}, q = max{|u| | (u, α, v) ∈ D},

m′ = max{|v| | (u, α, v) ∈ I}, q′ = max{|v| | (u, α, v) ∈ D}.
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We also denote by INSm,m′

n DELq,q′

p corresponding families of insertion-

deletion systems. Moreover, we define the total size of the system as the

sum of all numbers above: ψ = n+m+m′ + p+ q + q′.
If some of the parameters n,m,m′, p, q, q′ is not specified, then we write

instead the symbol ∗. In particular, INS0,0
∗ DEL0,0

∗ denotes the family of

languages generated by context-free insertion-deletion systems. If one of

numbers from the couples m, m′ and/or q, q′ is equal to zero (while the

other is not), then we say that corresponding families have a one-sided

context.

We remark that early investigations like [11, 12, 15] considered only

context-free variants of insertion and deletion operations, separately. This

comes from the fact that a context-free insertion (resp. deletion) may

be considered like an insertion (resp. deletion) of one word into an-

other and this can be used to define the corresponding operation on two

languages.

We also remark that, historically, another complexity measure called

weight was used for insertion-deletion systems. It corresponds to 4-tuples

(n, m̄; p, q̄), where m̄ = max{m,m′
} and q̄ = max{q, q′}.

9.2.2 Graph-Controlled Insertion-Deletion Systems

Like context-free grammars, insertion-deletion systems may be extended

by adding some additional controls. We discuss here the adaptation of the

idea of programmed and graph-controlled grammars for insertion-deletion

systems.

A graph-controlled insertion-deletion system is the construct

Π = (V, T,A, i0, if , R1, . . . , Rn), where

• V is a finite alphabet,

• T ⊆ V is the terminal alphabet,

• A ⊆ V ∗ is the set of axioms,

• 1 ≤ i0 ≤ n is the initial component,

• 1 ≤ if ≤ n is the final component,

• Ri, for each 1 ≤ i ≤ n, called component, is a set of insertion and dele-

tion rules with target indicators of the following form: (u, x, v; tar)a,

where (u, x, v) is an insertion rule, and (u, x, v; tar)e, where (u, x, v) is

an deletion rule, and tar is from the set {1, . . . , n}.
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If there is no confusion, we will use the term component i instead of

component Ri. A configuration of Π is represented by a couple (i, w),

where i is the number of the current component (initially i0) and w is the

current string. We also say that w is situated in component i. A transition

(i, w) V (j, w′) is performed as follows. First, a rule r from component Ri

is non-deterministically chosen and applied; the new set from which the rule

to be applied will be chosen is Rj . More formally, (i, w) V (j, w′) if there
is r : (u, α, v; j)t ∈ Ri such that either w =⇒ins w

′ (if t = a) or w =⇒del w
′

(if t = e) by the rule (u, α, v). The result of the computation consists of

all terminal strings situated in component if reachable from the axiom and

the initial component: L(Π) = {w ∈ T ∗
| (i0, w

′) V∗ (if , w), w
′
∈ A}.

It is also possible to consider another definition of graph-controlled

insertion-deletion systems, which is equivalent to the one above. We can

define such systems as the tuple (V, T,A, i0, if , R), where V , T , A, i0 and if
are defined as above, while R contains rules of form i : (u, α, v;E)t, where

i ∈ Lab(R), Lab(R) being a set of labels associated (in a one-to-one man-

ner) to the rules in R, E ⊆ Lab(R) is a set of labels of rules from R and u,

α, v are defined as for insertion or deletion rules and t ∈ {a, e}. During the

derivation step, an insertion or deletion is performed, depending whether t

is equal to a or to e, and the next rule to be applied is non-deterministically

chosen from the set E. Formally, a configuration of Π will be represented

by a couple (i, w), where i is the label of the rule to be applied and w is the

current string. A transition (i, w) V (j, w′) is performed if there is a rule

i : (u, α, v;E)t in R such that either w =⇒ins w
′ (if t = a) or w =⇒del w

′

(if t = e) by a rule (u, α, v) and j ∈ E. The result of the computation con-

sists of all terminal strings reachable from the axiom and the initial label:

L(Π) = {w ∈ T ∗
| (i0, w

′) V∗ (if , w), w
′
∈ A}.

Is is not difficult to see that the first definition of graph-controlled

insertion-deletion systems can be easily reduced to the second one. In

order to do this, it is enough for every r : (u, α, v; j)t in Ri to add a rule

i : (u, α, v;Rj)t to R. The converse inclusion is also true and can be ob-

tained by the subset construction.

We define the communication graph of a graph-controlled insertion-

deletion system the graph with nodes 1, . . . , n having an edge between node

i and j if there exists a rule (u, α, v; j) ∈ Ri. We are particularly interested

in systems whose communication graph has a tree structure.
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We remark that the presentation of graph-controlled insertion-deletion

given above coincides with the definition of insertion-deletion P sys-

tems [33]. Traditionally, in the literature, the term of insertion-deletion

P systems is used for graph-controlled insertion-deletion systems, however,

in what follows, we will use the latter term, because of a much simpler

definition.

We follow [33] and denote by ELSPk(ins
m,m′

n , delq,q
′

p ) the family of

languages L(Π) generated by graph-controlled insertion-deletion systems

with k ≥ 1 components and insertion and deletion rules of size at most

(n,m,m′; p, q, q′) and whose communication graph has a tree structure.

We omit the letter E if T = V and replace k by ∗ if k is not fixed.

We also consider graph-controlled insertion-deletion systems where dele-

tion rules have a priority over insertion rules, i.e., no insertion rule

can be applied if a deletion rule is applicable; the corresponding class is

denoted as (E)LSPk(ins
m,m′

n < delq,q
′

p ). The letter “t” is inserted be-

fore P to denote classes whose communication graph is arbitrary, e.g.,

ELStPk(ins
m,m′

n , delq,q
′

p ).

Sometimes we are only interested in the multiplicities of each sym-

bol in the output words, i.e., in the Parikh image of the languages

described above. In this case we say that a family of sets of vec-

tors is generated and we replace L by Ps in the notation above, e.g.,

PsStPk(ins
m,m′

p , delq,q
′

p ).

9.3 Basic Simulation Principles

In this section we show some important properties of insertion-deletion sys-

tems, present some normal forms and indicate basic methods for equivalence

proofs used in the rest of the sequel.

We start with the following lemma giving a normal form for insertion-

deletion systems.

Lemma 9.1. For any insertion-deletion system ID = (V, T,A, I,D) of

size (n,m,m′; p, q, q′) it is possible to construct an insertion-deletion system

ID2 = (V ∪{X,Y }, T, A2, I2, D2∪D
′
2) of the same size such that L(ID2) =

L(ID). Moreover, all rules from I2 have the form (u, α, v), where |α| = n,

|u| = m, |v| = m′, all rules from D2 have the form (u′, α, v′), where |α| = p,

|u′| = q, |v′| = q′ and D′
2 = {(ε,X, ε), (ε, Y, ε)}.
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Proof. Consider

A2 ={X
i
wY

t
Y

j
| w ∈ A, i = max(m, q), j = max(m′

, q
′), t = max(p− |w|, 0)},

I2 ={(z1, xY
k
, z2) | (a, x, b) ∈ I, z1 ∈ {a t⊥ X

∗

}, z2 ∈ {b t⊥ Y
∗

}

and |xY
k
| = n, k ≥ 0, |z1| = m, |z2| = m

′

}∪

∪ {(z1, Y
n
, z2) | z1, z2 ∈ (V ∪ {X, Y })∗, |z1| = m, |z2| = m

′

}

D2 ={(z1, d, z2) | (a, x, b) ∈ D, z1 ∈ {a t⊥ X
∗

}, z2 ∈ {b t⊥ Y
∗

}, d ∈ {x t⊥ Y
∗

}

and |d| = p, |z1| = q, |z2| = q
′

}.

In fact, any rule having a left (resp. right) context of a smaller size

is replaced by a group of rules, where the left (resp. right) context is a

string over V ∪ {X} (resp. V ∪ {Y }) of the required size. The same holds

for the inserted or deleted symbol. Any axiom w ∈ A is surrounded by

X and Y (X iwY tY j) in A2. It is clear that if w ∈ L(ID) then the word

X iw′Y j , w′
∈ {w t⊥ Y ∗

} will be obtained in ID2 using the corresponding

rules and starting from the corresponding axiom. Now symbols X and Y

can be erased by rules from D′
2 which implies that w ∈ L(ID2). It is clear

that if rules from D′
2 are used before this step, then at most the same w

may be obtained. Hence L(ID) = L(ID2). �

Next we prove the following lemma which shows that the deletion of

terminal symbols may be excluded.

Lemma 9.2. For any insertion-deletion system ID = (V, T,A, I,D)

there is a system ID′ = (V ∪ V ′, T, A ∪ A′, I ∪ I ′, D′) such that L(ID′) =
L(ID). Moreover, b does not contain letters from T for any rule (a, b, c) ∈

D′.

Proof. Indeed, we can transform system ID to an equivalent system ID′

as follows.

Let V ′ = {Nt | t ∈ T }. Consider the coding function f : V → V ∪ V ′

defined by f(x) = Nx if x ∈ T and f(x) = x otherwise. Consider also the

following extension to words (where id is the identity function):

F (a1 . . . an) = {g1(a1) . . . gn(an) | gi ∈ {f, id}, 1 ≤ i ≤ n}

Now for any rule (a, b, c) in D (resp. in I) we introduce rules (a′, b′, c′)
in D′ (resp. I ′), where a′ ∈ F (a), b′ ∈ F (b) and c′ ∈ F (c). For any

axiom w ∈ V ∗ we add F (w) to the axioms. Finally, we remove all rules

(a, b, c) ∈ D′ having |b|T 6= 0.
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This construction ensures that the nonterminal symbol Nt acts like an

alias for the symbol t ∈ T , i.e. for any derivation producing w1tw2 there is

another derivation producing w1Ntw2. Hence there is no difference between

erasing t or Nt. This proves the statement of the lemma. �

Insertion-deletion systems represent a powerful model of computation.

If the size of the system is not bounded, then an arbitrary grammar can be

simulated.

Theorem 9.3. For any type-0 grammar G = (N, T, S, P ) there is an

insertion-deletion system ID = (V, T,A, I,D) such that L(G) = L(ID).

Proof. Let V = N∪{#i : 1≤ i≤|P |}∪{$}. Let k1 = max{|u|, u→ v ∈ P}

and k2 = max{|v|, u → v ∈ P}. Consider k = max(k1, k2). The set A is

defined as A = {$kS$k}.

For any rule i : u → v ∈ P we add insertion rules (xu,#iv, y), x, y ∈

(N∪{$})∗, |xu| = k, |y| = k, to I and a deletion rule (x, u#i, v), x ∈ N∪{$}

to D. Finally, a rule (λ, $, λ) is added to D.

It is not difficult to see that such system simulates G. Indeed, for

any derivation w1uw2 =⇒ w1vw2 in G there is a two-step derivation

$kw1uw2$
k =⇒ $kw1u#ivw2$

k =⇒ $kw1vw2$
k in ID that simulates the

corresponding production of G. If w ∈ L(G) then the string $kw$k will be

obtained in ID. Additional symbols $ can be deleted at this moment. So

w ∈ L(ID).

For the converse inclusion it is enough to observe that if an insertion

rule (xu,#iv, y) is used, then no more insertions inside the corresponding

site xu can be done. Hence the only way to eliminate the symbol #i is to

perform the corresponding deletion. Hence the computation in ID can be

rearranged in such a way that an insertion is followed by the corresponding

deletion. This corresponds to a derivation step in G, which completes the

proof. �

As one can see from the previous theorem, the basic idea of grammar

simulation by insertion-deletion systems is a construction of a set of related

insertion and deletion rules that shall be used in some specified sequence,

thus performing a grammar rule simulation. Usually, insertion rules intro-

duce new nonterminal symbols in the string which can be deleted only by

the corresponding deletion rules (like the symbols #i in theorem above).

If the correct sequence is not performed, then some nonterminal symbols

that cannot be deleted will remain in the string. In the subsequent sections
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different variants of this method are shown, thereby decreasing the size of

the insertion and deletion rules.

A simulation of type-0 grammars by insertion-deletion systems is the

main method to prove the computational completeness of insertion-dele-

tion systems. However, when several such results are established, it is

much easier to prove the computational completeness by simulating other

insertion-deletion systems. For example:

Theorem 9.4. [35] INS1,1
1 DEL0,0

2 = RE.

Proof. [Sketch] The proof may be done by simulating insertion-deletion

systems of size (1, 1, 1; 1, 1, 1) which are known to be computationally com-

plete, see [38, 39] and also Theorem 9.5. In this case it is enough to show

how a deletion rule (a, b, c), a, b, c ∈ V can be simulated using insertion

and deletion rules of size (1, 1, 1; 2, 0, 0). Let a 6= b 6= c. Then a dele-

tion rule (a, b, c) with label i may be simulated by a sequence of the fol-

lowing rules: {(a, }i, b), (b, ]i, c), (a, [i, }i), ([i, {i, }i), ([i, Ki, {i, )} ⊆ I and

(λ, {i}i, λ), (λ,Kib, λ), (λ, [i]i, λ) ⊆ D. The simulation is performed as fol-

lows:

w1abcw2 =⇒ w1a}ibcw2 =⇒ w1a[i}ibcw2 =⇒ w1a[i}ib]icw2 =⇒

=⇒ w1a[i{i}ib]icw2 =⇒ w1a[iKi{i}ib]icw2 =⇒

=⇒ w1a[iKib]icw2 =⇒ w1a[i]icw2 =⇒ w1acw2.

The idea behind the simulation is the following. Symbols [i and ]i delimit

the deletion site. Symbol Ki performs the deletion of b, while symbols }i

and {i ensure that Ki is inserted only once after [i (hence only one b can be

deleted). If all the above steps are not performed, then some of additional

symbols will remain in the string, hence it will never become terminal. This

is a common method of simulation: the working (insertion or deletion) site is

delimited by special symbols in order to avoid interactions between several

such sites and inside the site the sequence of insertions and deletions permits

to simulate exactly one application of the corresponding rule. All additional

symbols are related in such a way that the whole sequence of insertions and

deletions shall be performed in order to eliminate all of them.

We remark that it would be wrong to simulate a deletion rule (a, b, c) by

only rules {(a, [i, b), (b, ]i, c), ([i, Ki, b)} ⊆ I and (λ,Kib, λ), (λ, [i]i, λ) ⊆ D,

because it is possible to erase several symbols b, which leads to a wrong
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computation:

w1abbcw2 =⇒ w1a[ibbcw2 =⇒ w1a[ibb]icw2 =⇒ w1a[iKibb]icw2 =⇒

=⇒ w1a[ib]icw2 =⇒ w1a[iKib]icw2 =⇒ w1a[i]icw2 =⇒ w1acw2.
�

9.4 Insertion-Deletion Systems with Rules of Small Size

This section presents some important insertion-deletion systems able to

generate any RE language. The systems from this section will be used as

a starting point for computational completeness proofs like the proof of

Theorem 9.4.

We start with the following theorem.

Theorem 9.5. INS1,1
1 DEL1,1

1 = RE.

Proof. We give only a sketch for this proof. Full details might be found

in [38, 39].

Consider a type-0 grammarG = (N, T, S, P ) in Pentonnen normal form.

We construct a system ID = (V, T,A, I,D) simulating G as follows.

The alphabet V is defined as V = N ∪ T ∪ {X,Y } ∪ {[r], (r) | r ∈ P}

and A = {XSY }.

For every rule AB → AC of P we add the following insertion rules to I

(below we consider that γ ∈ N ∪ T ∪ {X,Y }):

(A, [r], B) (B, (r), γ) ([r], C, (r))

and the following deletion rules to D:

([r], B, (r)) (A, [r], C) (C, (r), γ)

For every rule A→ uv of P we add the following insertion rules to I:

(γ, [r], A) (A, (r), γ) ([r], u, (r)) (u, v, (r))

and the following deletion rules to D:

([r], A, (r)) (γ, [r], u) (v, (r), γ)

For every rule A → λ of P we add the deletion rule (γ1, A, γ) to D,

where γ1, γ ∈ N ∪ T ∪ {X,Y }. Finally, we add to D rules (λ,X, λ) and

(λ, Y, λ).
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The simulation is performed as follows. Consider that a string w1ABw2,

w1, w2 ∈ (N ∪T ∪{X,Y })+ is present in ID. Then the following evolution

can happen in ID (we suppose that the label of rule AB → AC of P is r):

w1ABw2 =⇒ w1A[r]Bw2 =⇒ w1A[r]B(r)w2 =⇒ w1A[r](r)w2 =⇒

=⇒ w1A[r]C(r)w2 =⇒ w1AC(r)w2 =⇒ w1ACw2.

Some of the operations above are not enforced, like the last two dele-

tions. However, if they are not performed, the symbols A and C cannot

participate in simulation of any other grammar rules, because such a sim-

ulation requires that such a symbol is surrounded by symbols from N ∪ T .

The simulation of rules of type A→ uv is done in a similar way. �

Theorem 9.6. INS0,0
2 DEL1,1

1 = RE.

Proof. We consider here only a sketch of the proof. The full proof can

be found in [21].

The proof of the theorem is based on a simulation of insertion-deletion

systems of size (2, 0, 0; 3, 0, 0). It is known that these systems generate

any recursively enumerable language, see Theorem 9.10 taken from [26].

Consider ID = (V, T,A, I,D) to be such a system. Now we construct a

system ID2 = (V2, T, A, I2, D2) of size (2, 0, 0; 1, 1, 1) that will generate

same language as ID.

It is clear that in order to show the inclusion L(ID) ⊆ L(ID2) it is

sufficient to show how a deletion rule (λ, abc, λ) ∈ D, with a, b, c ∈ V ,

may be simulated by using rules of system ID2, i.e., insertion rules of

type (λ, xy, λ) and deletion rules of type (a′, y′, b′), with a′, b′ ∈ V2 ∪ {λ},

x, y, y′ ∈ V2.

For every deletion rule (λ, abc, λ) of ID we may suppose that a 6= b 6= c.

Consider V2 = V ∪ {Li, L
′
i, Ri, R

′
i, Ki, K

′
i | 1 ≤ i ≤ card(D)}.

Let us label all rules from D by integer numbers. Consider now a rule

i : (λ, abc, λ) ∈ D, where 1 ≤ i ≤ card(D) is the label of the rule. Then the

following insertion rules are introduced to I2:

1 : (λ, LiL
′
i, λ) 2 : (λ,R′

iRi, λ) 3 : (λ,KiK
′
i, λ)

and the following deletion rules are introduced to D2 (l,m ∈ V ):

4 : (Li, L
′
i, a) 5 : (Li, a, b) 6 : (c, R′

i, Ri)

7 : (b, c, Ri) 8 : (Li, b, Ri) 9 : (Ki, K
′
i, Li)

10 : (Ki, Li, Ri) 11 : (Ki, Ri,m) 12 : (l,Ki,m)
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The rule i : (λ, abc, λ) ∈ D is simulated as follows. We first perform two

insertions:

w1abcw2 =⇒1 w1LiL
′
iabcw2 =⇒2 w1LiL

′
iabcR

′
iRiw2.

and then some deletions:

w1LiL
′
iabcR

′
iRiw2 =⇒4 w1LiabcR

′
iRiw2 =⇒6 w1LiabcRiw2 =⇒5

=⇒5 w1LibcRiw2 =⇒7 w1LibRiw2 =⇒8 w1LiRiw2.

Now we delete symbols LiRi using same technique as above with the help

of KiK
′
i:

w1LiRiw2 =⇒3 w1KiK
′
iLiRiw2 =⇒9 w1KiLiRiw2 =⇒10

=⇒10 w1KiRiw2 =⇒11 w1Kiw2 =⇒12 w1w2.

Hence, L(ID) ⊆ L(ID2). In order to prove the converse inclusion, we

observe that if the whole sequence of insertion and deletion rules above

is not performed, then some nonterminal symbols are left and cannot be

deleted anymore. Moreover, the above sequence permits the elimination of

three symbols abc in a string. Indeed, the symbol Li deletes a if and only

if it was inserted at the left of a at some point. Similarly, Ri deletes c if it

was inserted at the right of c at some point. Now, Ri and Li are eliminated

if and only if they meet, which means that they delete b (and of course a

and c). In order to delete Li, KiK
′
i must be inserted before it. Symbol Ki

deletes symbols K ′
i, Li and Ri, and is eliminated only after that. �

9.5 Context-Free Insertion-Deletion Systems

In this section we present one of the most important results in the area

of insertion-deletion systems: the computational completeness of systems

with context-free rules. We remark that initially insertion and deletion

operations on words were considered only in a context-free manner. Hence

this result answers a very old question from this area.

We give here the full proof taken from [26].

Theorem 9.7. INS0,0
∗ DEL0,0

∗ = RE.

Proof. Let G = (N, T, S, P ) be a type-0 Chomsky grammar, where N, T

are disjoint alphabets, S ∈ N , and P is a finite subset of rules of the form

u → v with u, v ∈ (N ∪ T )∗ and u contains at least one letter from N .
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We assume that all rules from P are labeled in a one-to-one manner with

elements of a set M , disjoint from N ∪ T .

We construct the following context-free insertion-deletion system γ =

(N ∪ T ∪M,T, {S}, I,D), where

I = {(λ, vR, λ) | R : u→ v ∈ P, R ∈M, u, v ∈ (N ∪ T )∗},

D = {(λ,Ru, λ) | R : u→ v ∈ P, R ∈M, u, v ∈ (N ∪ T )∗}.

Two rules (λ, vR, λ) ∈ I, (λ,Ru, λ) ∈ D as above are said to be M -related.

We prove the equality L(G) = L(γ).

The inclusion L(G) ⊆ L(γ) is obvious: each derivation step x1ux2 =⇒

x1vx2, performed in G by means of a rule R : u→ v, can be simulated in γ

by an insertion operation step x1ux2 =⇒ins x1vRux2 which uses the rule

(λ, vR, λ) ∈ I, followed by the deletion operation x1vRux2 =⇒del x1vx2
which uses the rule (λ,Ru, λ) ∈ D.

Consider now the inclusion L(γ) ⊆ L(G). The idea of the proof is to

transform any terminal derivation in γ into one in which any two consec-

utive derivation steps (an odd one and the even one following it) simulate

one production in G. Because the labels of rules from P precisely identify a

pair of M -related insertion-deletion rules, and the elements of M are non-

terminal symbols for γ, every terminal derivation with respect to γ must

involve the same number of insertion steps and deletion steps; moreover,

these steps are performed by using pairs of M -related rules from I and D.

Consider an arbitrary terminal derivation in γ,

δ : S =⇒ w1 =⇒ w2 =⇒ · · · =⇒ w2k = w ∈ T ∗,

where k ≥ 1 is the number of the pairs ofM -related insertion-deletion rules

used in this derivation. Let wi =⇒ins wi+1 =⇒ wi+2 be a subderivation of

δ such that the step wi =⇒ins wi+1 is performed by a rule (λ, vR, λ) ∈ I

and the step wi+1 =⇒ wi+2 is performed by using a rule other than the

M -related rule (λ,Ru, λ) ∈ D. We say that the pair of rules used in the

two mentioned steps do not match.

Assume now that the derivation δ contains m > 0 non-matching pairs

of rules. Let us identify a pair of M -related rules (λ, vR, λ) ∈ I and

(λ,Ru, λ) ∈ D which are used for the same occurrence of R in δ but not in

consecutive steps (that is, this pair introduces a non-matching sequence of

rules in δ):

δ : S =⇒∗ z1z2 =⇒ins z1vRz2 =⇒+ y1Ruy2 =⇒del y1y2 =⇒∗ w,
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for some z1, z2, y1, y2 ∈ (N ∪ T ∪M)∗. Therefore, we have:

S =⇒∗ z1z2, (9.1)

z1z2 =⇒ins z1vRz2, (9.2)

z1v =⇒∗ y1, (9.3)

z2 =⇒∗ uy2, (9.4)

y1y2 =⇒∗ w. (9.5)

Clearly, in at least one of the relations 9.3, 9.4 we have =⇒+ in place of

=⇒∗, since the sequence of rules is non-matching.

We rearrange the previous derivations as follows. From 9.1 and 9.4 we

have

S =⇒∗ z1z2 =⇒∗ z1uy2.

We can now apply the insertion rule as in 9.2 and we have

z1uy2 =⇒ins z1vRuy2,

and then the deletion rule (λ,Ru, λ) ∈ D:

z1vRuy2 =⇒del z1vy2.

From 9.3 and 9.5 we can now obtain

z1vy2 =⇒∗ y1y2 =⇒∗ w.

Consequently, we have obtained a derivation

δ′ : S =⇒∗ z1z2 =⇒∗ z1uy2 =⇒ins z1vRuy2 =⇒del z1vy2 =⇒∗ y1y2 =⇒∗ w,

which produces the same terminal string w and has at most m − 1 non-

matching pairs of rules.

Continuing in this way, for every terminal derivation in γ we can con-

struct an equivalent derivation, using the same rules in a different order,

and having only matching pairs of consecutive rules. Clearly, two con-

secutive steps of a derivation in γ which use M -related rules (λ, vR, λ) ∈

I, (λ,Ru, λ) ∈ D, correspond to a derivation step in G which uses the rule

R : u→ v. This implies the inclusion L(γ) ⊆ L(G). �

The system constructed in the previous proof has only one axiom, hence

this complexity parameter has an optimal value.

The context control of a type-0 grammar does not really disappear in

the corresponding insertion-deletion system (as constructed in Theorem

9.7 above). It rather changes its form, becoming a rigid synchronization of
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insertions and deletions. In other terms, if a word u represents the context

of a word v in a “context-sensitive production” R : u → v, then in the

corresponding insertion-deletion system the word v will also be conditioned

by the later occurrence of u in a successful derivation (hence u is yet again

the context of v). This condition is enforced by the newly introduced symbol

R which acts as a “remote context binder”. The fact that the context

u “seems” to appear after the context-controlled v is of no importance,

reflecting the reversal of generative process of the grammar.

We illustrate the construction from the proof with a simple example:

consider a context-sensitive grammar G = ({S,X, Y }, {a, b, c}, S, P ) with

the set of productions

P = {R1 : S → aSX, R2 : S → aY, R3 : Y X → bY c,

R4 : cX → Xc, R5 : Y → bc}.

It is easy to see that it generates the non-context-free language L(G) =

{aibici | i ≥ 1}.

The obtained system is

γ = (V, {a, b, c}, {S}, I,D), where

V = {S,X, Y, a, b, c, R1, R2, R3, R4, R5},

I = {(λ, aSXR1, λ), (λ, aY R2, λ), (λ, bY cR3, λ),

(λ,XcR4, λ), (λ, bcR5)},

D = {(λ,R1S, λ), (λ,R2S, λ), (λ,R3Y X, λ),

(λ,R4cX, λ), (λ,R5Y, λ)}.

Consider a derivation for the word a3b3c3 in grammar G:

S =⇒ aSX =⇒ aaSXX =⇒ aaaY XX =⇒ aaabY cX =⇒

=⇒ aaabY Xc =⇒ aaabbY cc =⇒ aaabbbccc.

One of the corresponding derivations in γ is the following:

S =⇒ins aSXR1S =⇒ins aaSXR1SXR1S =⇒ins

=⇒ins aaaY R2SXR1SXR1S =⇒del aaaY R2SXXR1S =⇒del

=⇒del aaaY XXR1S =⇒ins aaabY cR3Y XXR1S =⇒del

=⇒del aaabY cXR1S =⇒ins aaabY XcR4cXR1S =⇒ins

=⇒ins aaabbY cR3Y XcR4cXR1S =⇒del aaabbY cR3Y XcR1S =⇒del

=⇒del aaabbY ccR1S =⇒ins aaabbbcR5Y ccR1S =⇒del

=⇒del aaabbbcR5Y cc =⇒del aaabbbccc.
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In the proof of Theorem 9.7, the length of inserted or deleted strings is

not bounded, but a bound can be easily found by controlling the length of

strings appearing in the rules of the underlying type-0 grammar:

Theorem 9.8. INS0,0
3 DEL0,0

3 = RE.

Proof. Let G = (N, T, S, P ) be type-0 Chomsky grammar in Kuroda

normal form. Then, the rules of the context-free insertion-deletion system

constructed in the proof of Theorem 9.7 are of the form (λ, α, λ) with

|α| ≤ 3, hence RE ⊆ INS0
3DEL

0
3. �

The total size of the system provided by the proof of Theorem 9.7 is 6.

We can improve this result by one, decreasing by one either the length of the

inserted strings or the length of the deleted strings. We give below sketches

of proofs for both cases. These proofs are made by a direct simulation of

systems of size (3, 0, 0; 3, 0, 0). A different approach is given in [26], where

a grammar in Kuroda normal form is simulated.

Theorem 9.9. INS0,0
3 DEL0,0

2 = RE.

Proof. [Sketch] A deletion rule i : (λ, abc, λ) can be simulated by an

insertion rule (λ,CiBiAi, λ) and three deletion rules (λ,Aia, λ), (λ,Bib, λ)

and (λ,Cic, λ). The simulation works as follows.

w1abcw2 =⇒ w1CiBiAiabcw2 =⇒ w1CiBibcw2 =⇒ w1Cicw2 =⇒ w1w2.

The proof of the validity of this simulation may be obtained in a similar

way to Theorem 9.7. We leave the details as a task for the reader and only

note that the rules above have the weight as requested in the statement of

the theorem. �

A counterpart of this result is also true: there is a trade-off between the

lengths of inserted and deleted strings.

Theorem 9.10. INS0,0
2 DEL0,0

3 = RE.

Proof. [Sketch] An insertion rule i : (λ, abc, λ) can be simulated by

three insertion rules (λ, aAi, λ), (λ, bBi, λ), (λ, cCi, λ) and a deletion rule

(λ,CiBiAi, λ). The simulation works as follows.

w1w2 =⇒ w1aAiw2 =⇒ w1abBiAiw2 =⇒ w1abcCiBiAiw2 =⇒ w1abcw2.

As above, we leave the details of the proof as a task for the reader. �
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9.5.1 Non-completeness Results

We show below that the obtained complexity parameters for context-free

insertion-deletion systems are optimal. If one of the parameters is further

decreased, then the language generated by such systems is included in the

family of context-free languages.

The following lemma shows that the nonterminal alphabet is not rele-

vant if one starts from an empty word.

Lemma 9.11. Let ID = (V, T,A, I,D) be a context-free insertion-deletion

system of size (2, 0, 0; 2, 0, 0). Suppose also that A = {λ}. Then there is a

system ID2 = (T, T, {λ}, I2, D2) of size (2, 0, 0; 2, 0, 0) such that L(ID) =

L(ID2).

Proof. Consider a derivation of w ∈ T ∗. Let us mark the corresponding

insertion pairs by an overline and the corresponding deletion pairs by an

underline. For example, suppose that we insert aA, after that bC in posi-

tion 1, DE in position 2, aA in position 6 and bc in position 8. After that

suppose that we delete EC, DA and Ab. Then the corresponding marking

will be as follows (the resulting word is w = abac):

a
_^ ]\

___________________________

b
GF ED

^^^^^^^^^^^^^^^^

D
'& %$^^^^^

E C"# !
^^^^^

ABC@A
^^^^^^^^^^^^^^^^

a
'& %$^̂^̂^

A b"# !
^̂ ^̂ ^

'& %$^^^^

c

We may interpret symbols as labeled graph nodes and lines as edges. In

this case we obtain a graph. It is easy to observe that this graph consists of

a set of disjoint linear paths and/or cycles. Indeed, for each node, at most

two edges corresponding to an insertion and a deletion may be drawn. Let

us also label edges corresponding to insertions by i and edges corresponding

to deletions by d. If we take the example above, we obtain:

a
i

A
d

D
i

E
d

C
i

b

a
i

A
d

b
i

c

We may suppose that the first and the last edge of a path are marked

with i. If this is not the case, we add an additional node labeled by λ and we

connect this node with the last node by a path labeled by i. In particular,

a path containing only one letter a (corresponding to an insertion of a)

will be written as λ
i
a . Hence, each path consists of sequences of one

insertion followed by one deletion.
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We observe that if we consider a derivation of w ∈ T ∗ then there may

only be paths of the following 4 types:

(1) Paths that start with a letter a ∈ T and that end with a letter b ∈ T .

(2) Paths that have at one end a terminal letter a and at the other end λ.

(3) Paths that have λ at both ends.

(4) Cycles.

We remark that in Case 1 the path leads to the word ab ( i.e., contributes

to the production of the subword ab of w), in the second case the path

produces the letter a and in the last two cases the path generates the

empty word.

More exactly, let p be a path. We denote by yield(p) the word produced

by p:

yield(p) =

{

ab, if p = a
i
− · · ·

i
− b, a, b ∈ T ∪ {λ}.

λ, if p is a cycle.
Let xy 6= λ, x, y ∈ V ∪ {λ} be a word. We denote by yield(xy) the set

of all words that may be produced by a path containing xy:

yield(xy) = {yield(p), where x
i
− y ∈ p}.

We remark that |yield(xy)| ≤ |xy|.

Without loss of generality, we may suppose that there are no paths

of type 3 and 4, because by eliminating the corresponding insertions and

deletions we obtain the same word.

Suppose that we have a path marked by over- and underlines as above.

We shall understand by an interior of the path the set of all positions that

are underlined. In the example above, all positions between D and the first

A form the interior of the path. It is clear that no other path (of type 1

and 2) may be situated in the interior of some path, because in this case

the corresponding deletion cannot be performed. Consequently, all paths

are independent of each other, and we may group rules corresponding to

each path and compute paths one after another. Moreover, each path con-

tributes to at most two terminal symbols of the resulting word. Therefore,

the computation consists of insertion of terminal symbols corresponding to

paths ends as well as of deletion of terminal symbols.

Now, in order to prove the lemma, it is enough to show that me may

precompute all possible paths. This may be done by using the following

observation. We may assume that each path p has the following property:

if A
i
− B belongs to p, then p does not contain an insertion that has
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A in the left-hand side (A
i
− X) or B in the right-hand side (Y

i
− B).

This assertion is obvious, because if p contains such a pair, for example

p = · · ·

d
− A

i
− X

d
− · · ·

d
− A

i
− B · · · , then we may eliminate the subpath

between two A’s by obtaining an equivalent path (that leads to the same

ends) p′ = · · ·

d
− A

i
− B · · · . Hence, the length of each path is bounded by

2 · card(V ), and we may precompute all possible paths.

Finally, let I ′ be the subset of I that contains only terminal insertion

rules, i.e., any rule of I ′ is of form (λ, ab, λ) or (λ, a, λ), where a, b ∈ T .

Analogously, let D′ be the subset of terminal deletion rules of D. Let us

also precompute all possible paths that end with a terminal letter or λ (of

type 1 and 2). Let us denote by I1 the set of rules inserting the words

produced by these paths. More exactly, we define I1 = {(λ, yield(xy), λ) |

(λ, xy, λ) ∈ I}. It is clear that the system ID2 = (T, T, {λ}, I2, D2), where

I2 = I ′ ∪ I1 and D2 = D′ generates the same language as ID . It is also

clear that the converse inclusion holds. Hence, our assertion is proved. �

In a similar manner it can be proved that the nonterminal alphabet is

not relevant even in the general case. See [40] for details.

Lemma 9.12. Let ID = (V, T,A, I,D) be a context-free insertion-

deletion system of size (2, 0, 0; 2, 0, 0). Then there is a system ID2 =

(T, T,A2, I2, D2) of size (2, 0, 0; 2, 0, 0) such that L(ID) = L(ID2).

The following lemma (see [40]) shows that we can eliminate the deletion

operation. This can be also done by first eliminating terminal deletions

according to Lemma 9.2, and after that applying the construction from the

previous two lemmas.

Lemma 9.13. Let ID = (T, T,A, I,D) be a context-free insertion-deletion

system of size (2, 0, 0; 2, 0, 0). Then there is a system ID2 = (T, T,A2, I2, ∅)

of size (2, 0, 0; 0, 0, 0) such that L(ID) = L(ID2).

Next theorem shows that insertion-deletion systems of

size (2, 0, 0; 0, 0, 0) can be described by a context-free grammar. This is

a particular case of a more general result for systems of size (∗, 1, 1; 0, 0, 0)

given in [35].

Lemma 9.14. Let ID = (T, T,A, I, ∅) be a context-free insertion-deletion

system of size (2, 0, 0; 0, 0, 0). Then there is a context-free grammar G =

(N, T, Z, P ) such that L(ID) = L(G).
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Proof. We construct G as follows. Consider N = {Z, S} and let T be

the terminal alphabet of ID . Define P = PA ∪ PI ∪ {S → λ}, where

PA = {Z → Sa1Sa2S . . . SanS | a1a2 . . . an ∈ A},

PI = {S → SaSbS | (λ, ab, λ) ∈ I} ∪ {S → SaS | (λ, a, λ) ∈ I}.

It is clear that L(G) = L(ID). Indeed, symbol S marks all possible insertion

positions and permits the simulation of insertion rules as well. �

Consequently, we obtain:

Theorem 9.15. INS0,0
2 DEL0,0

2 = INS0,0
2 DEL0,0

0 ⊂ CF .

Proof. The strictness of the inclusion follows from the fact that the

language L = {a∗b∗} cannot be generated by a context-free insertion-

deletion system of size (2, 0, 0; 2, 0, 0). Indeed, consider an arbitrary system

ID = (T, T,A, I, ∅). It is easy to observe that for each word w that belong

to L(ID) words {x∗wx∗ | (λ, x, λ) ∈ I} belong to L(ID). Therefore, if

we suppose that L(ID) is not finite, then I 6= ∅, and then for any word

w ∈ L(ID), there are words {x∗wx∗ | (λ, x, λ) ∈ I} in L(ID). It is easy to

see that L does not have such a property. �

Theorem 9.16. INS0,0
2 DEL0,0

2 is incomparable with REG.

Proof. From the previous theorem we obtain that

REG \ INS0,0
2 DEL0,0

2 6= ∅. It is also clear that the Dyck language Dn

may be generated by a context-free insertion system having insertion rules

(λ, aiāi, λ), 1 ≤ i ≤ n. Hence, the assertion is proved. �

From Lemma 9.14 and Theorem 9.15 is is clear that languages gener-

ated by insertion-deletion systems of size (2, 0, 0; 2, 0, 0) have a particular

structure (below, we denote by
∏

the concatenation operation).

Theorem 9.17. A language L belongs to INS0,0
2 DEL0,0

2 if and only if it

can be represented in the form

L = h



T ′∗
t⊥

⋃

w=a1...an∈A

|w|
∏

i=1

DaiD



 ,

where A ⊆ T ∗ is a finite set of words, T is an alphabet, D is the Dyck

language over an alphabet T ′′
⊆ T , h is a coding and T ′

⊆ T .

In a similar way next two results can be obtained. See [40] for more

details.

Theorem 9.18. INS0,0
m DEL0,0

1 = INS0,0
m DEL0,0

0 ⊂ CF for any m > 0.
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Theorem 9.19. INS0,0
1 DEL0,0

p ⊂ REG for any p > 0.

9.6 One-Sided Contextual Insertion-Deletion Systems

In this section we present results about insertion-deletion systems with one-

sided context, i.e., of size (n,m,m′; p, q, q′) where either m+m′ > 0 and

m ·m′ = 0 or q+ q′ > 0 and q · q′ = 0, i.e., one of numbers in some couple

is equal to zero.

The proofs are based on simulation of insertion-deletion systems from

Sections 9.4 and 9.5 which are known to generate all RE languages. The

proof technique is very similar to the one from Theorem 9.4.

We give the sketch of proof for the following theorem.

Theorem 9.20. INS1,2
1 DEL1,0

1 = RE.

Proof. [Sketch] The proof is based on the simulation of insertion-deletion

systems of size (1, 1, 1; 1, 1, 1). By Lemma 9.1 it is sufficient to show how

a deletion rule (a, x, b), with a, b, x ∈ V , may be simulated by using rules

of the target system, i.e., insertion rules of type (a′, x′, b′c′) and deletion

rules of type (a′′, y, λ).
According to Lemma 9.1, we may assume that ab 6= λ. Moreover, we

may assume that the system has no insertion rules of the form (a, b, b), a, b ∈

V. If this is the case then we replace every such rule by two insertion rules

(a,X, b), (a, b,X), and one deletion rule (b,X, b), where X is a new nonter-

minal.

A deletion rule i : (a, x, b), where i is the label of the rule, is simulated by

two insertion rules (x,Xi, b), (a,Di, xXi) and three deletion rules (Di, x, λ),

(Di, Xi, λ), (a,Di, λ).

Symbols Di and Xi act like left and right parentheses that surround

x before deleting it. The simulation is performed as follows. First, two

insertions are performed:

w1axbw2 =⇒ins w1axXibw2 =⇒ins w1aDixXibw2,

and then x is deleted:
w1aDixXibw2 =⇒del w1aDiXibw2.

At this moment symbols Xi and Di are deleted:

w1aDiXibw2 =⇒del w1aDiw2 =⇒del w1abw2.

Hence, every derivation in an insertion-deletion system of size (1, 1, 1; 1, 1, 1)

can be carried out in a system of size (1, 1, 2; 1, 1, 0). On the other hand,
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we observe that once being inserted, the nonterminals Xi, Di can be erased

only by the rules shown above. Moreover, if they are not deleted, then

no symbol can be inserted at the right of a or at the left of b. The rule

(Di, x, λ) can delete at most one x as the pair Dix is followed by Xib and

b 6= x. Thus, there is a one-to-one correspondence between the original and

the new systems, which implies that the theorem statement holds. �

The following theorem shows the trade-off between the left context of

the insertion and the size of the inserted string.

Theorem 9.21. INS0,2
2 DEL1,0

1 = RE.

Proof. [Sketch] We prove the theorem by simulating systems from the

previous theorem. An insertion rule i : (a, x, bc) can be simulated by an

insertion rule (λ, Yix, bc) and a deletion rule (a, Yi, λ).

We remark that since the left context is empty, a rule (λ, xy, bc) may

be applied any number of times, hence the language w1(xy)
+bcw2 (we can

also write it as w1(xy)
∗xybcw2 or w1xy(xy)

∗bcw2) may be obtained from

w1bcw2. This behavior shall be taken into account.

The rule i : (a, x, bc) is simulated as follows. We first perform an inser-

tion:

w1abcw2 =⇒+
ins w1aYix(Yix)

∗bcw2.
After that we delete Yi:

w1aYix(Yix)
∗bcw2 =⇒del w1ax(Yix)

∗bcw2.

If only one insertion is performed during the insertion step, then we

obtain the string w1axbcw2. Hence, L(ID) ⊆ L(ID2).

For the converse inclusion see [28]. �

The next result decreases the size of the insertion context at the price

of increasing the size of the deletion strings.

Theorem 9.22. [28] INS0,1
2 DEL0,0

2 = RE.

Proof. The proof of the theorem is based on a simulation of insertion-

deletion systems of size (1, 1, 1; 2, 0, 0). Consider ID = (V, T,A, I,D) to be

such a system. We now construct system ID2 = (V2, T, A, I2, D2) of size

(2, 0, 1; 2, 0, 0) that will generate same language as ID.

Like in the previous theorems, we show that any rule (a, x, b) ∈ I with

a, x, b ∈ V may be simulated by rules of system ID2, i.e., insertion rules

of type (λ, a′b′, c′) and deletion rules of type (λ, a′b′, λ), with a′, b′, c′ ∈

V2 ∪ {λ}, 0 < |a′b′| ≤ 2.
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Consider V2 = V ∪ {X1
i , X

2
i , X

3
i , Y

2
i , Y

3
i , K

1
i , K

2
i | 1 ≤ i ≤ card(I)}.

Let us label all rules from I by integer numbers. Consider now a rule

i : (a, x, b) ∈ I, where 1 ≤ i ≤ card(I) is the label of the rule. We introduce

the following insertion rules in I2:

(λ,X1
i , b), (9.6)

(λ,X2
i Y

2
i , λ), (9.7)

(λ,X3
i Y

3
i , λ), (9.8)

(λ, aK1
i , λ), (9.9)

(λ, xK2
i , K

1
i ), (9.10)

and the following deletion rules in D2:

(λ, Y 2
i a, λ), (9.11)

(λ,X2
iX

3
i , λ), (9.12)

(λ,K1
i Y

3
i , λ), (9.13)

(λ,K2
iX

1
i , λ). (9.14)

We say that these rules are i-related.

Like in the previous theorem, since the left context is empty, an insertion

rule (λ, xy, b) may be applied any number of times, hence the language

w1(xy)
+bw2 (we can also write it as w1(xy)

∗xybw2 or w1xy(xy)
∗bw2) may

be obtained from w1bw2.

The simulation of the rule i : (a, x, b) ∈ I is done in several stages. First

the site ab is decorated as follows: X2
i Y

2
i aX

3
i Y

3
i X

1
i b (Y 2

i is before a, X3
i

and Y 3
i mark the interior and X1

i marks the position before b). After that

ax is inserted inside X3
i Y

3
i and finally, the initial a is deleted. More exactly,

we first perform insertions of X1
i and X2

i Y
2
i (in any order):

w1abw2 =⇒+
ins w1a(X

1
i )

+bw2 =⇒+
ins w1(X

2
i Y

2
i )

+a(X1
i )

+bw2.

After that we insert X3
i Y

3
i and aK1

i :

w1(X
2
i Y

2
i )

+a(X1
i )

+bw2 =⇒+
ins

w1(X
2
i Y

2
i )

+a((X3
i Y

3
i )

+X1
i )

+bw2 =⇒+
ins

w1(X
2
i Y

2
i )

+a((X3
i (aK

1
i )

+Y 3
i )

+X1
i )

+bw2.

At last we insert xK2
i :

w1(X
2
i Y

2
i )

+a((X3
i (aK

1
i )

+Y 3
i )

+X1
i )

+bw2 =⇒+
ins

w1(X
2
i Y

2
i )

+a((X3
i (a(xK

2
i )

+K1
i )

+Y 3
i )

+X1
i )

+bw2.
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We can delete Y 2
i a at this stage of computation or earlier (it does not

matter):

w1(X
2
i Y

2
i )

+a((X3
i (a(xK

2
i )

+K1
i )

+Y 3
i )

+X1
i )

+bw2 =⇒del

w1(X
2
i Y

2
i )

∗X2
i ((X

3
i (a(xK

2
i )

+K1
i )

+Y 3
i )

+X1
i )

+bw2.

After that deletion rules (λ,X2
i X

3
i , λ), (λ,K

1
i Y

3
i , λ) and (λ,K2

iX
1
i , λ)

may be applied.

w1(X
2
i Y

2
i )

∗X2
i ((X

3
i (a(xK

2
i )

+K1
i )

+Y 3
i )

+X1
i )

+bw2 =⇒del

w1(X
2
i Y

2
i )

∗(X3
i (a(xK

2
i )

+K1
i )

+Y 3
i )

∗(a(xK2
i )

+K1
i )

∗ax(X1
i )

∗bw2.

If only one insertion is performed during each insertion step, then we

obtain the string w1axbw2. Hence, L(ID) ⊆ L(ID2).

Now we prove that no other words may be obtained using rules above.

Indeed, by construction, any insertion rule inserts at least one symbol from

V2 \V . So, in order to eliminate it, a corresponding deletion rule is needed.

Moreover, inserted symbols may be divided in two categories that group

symbols with respect to the deletion. The first category contains X2
i , Y

2
i ,

X3
i , Y

3
i and K1

i . It is clear that if any of these symbols is inserted into

the string, then all other symbols must be also inserted, otherwise it is not

possible to eliminate them. The second group contains symbols X1
i and

K2
i . Now let us present some invariants which appear if we want to obtain

a terminal string. Suppose that there is (a, x, b) ∈ I and w1abw2 is a word

obtained in some step of a derivation in ID. We can deduce the following.

• One of the rules (9.9), (9.7) or (9.8) must be applied, otherwise the

simulation cannot start.

• In order to eliminate the introduced symbols, rules (9.13), (9.11) or

(9.12) must be applied.

• Rule (9.11) may be applied only if X2
i Y

2
i is followed by symbol a:

(. . . X2
i Y

2
i a . . .)

• Rule (9.12) may be applied only if symbol X3
i was preceded by the

string X2
i Y

2
i a: (. . . X

2
i Y

2
i aX

3
i . . . Y

3
i . . . ).

• Rule (9.13) may be applied only if symbol Y 3
i is preceded by K1

i :

(. . . X2
i Y

2
i aX

3
i . . . aK

1
i Y

3
i . . . ).

Hence, once one of above rules is applied, all other insertion and dele-

tion rules above must be also applied, otherwise some non-terminal symbols

are not eliminated. We also remark that if at this moment the three dele-

tion rules (9.11), (9.12) and (9.13) are performed, then string w1abw2 is
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obtained, i.e., no change was made with respect to the initial string (one

a was deleted together with Y 2
i , but at the same time inserted together

with K1
i ). To conclude, any of insertions (9.9), (9.7) or (9.8) introduces

at least one non-terminal symbol, and in order to eliminate it a specific

sequence of above rules shall be used. Moreover, this sequence does not

make any changes to the string. In a more general case, it was proved in

Lemma (9.11) (see also [40]) that any sequence of context-free insertions

and deletions of length at most 2 contributes to at most two symbols of the

final terminal word. In our case, the sequence inserts only one terminal a

but it also needs to delete an a in order to eliminate all non-terminals.

We are interested in the particular moment when the insertion of aK1
i

is performed. Now, rule (9.10) inserts the string xK2
i between a and K1

i .

After that, the above sequence of insertion and deletion rules is performed

and a string w1axK
2
i bw2 is obtained. At this moment, symbol x is inserted

and we also know that its left neighbor is a. Symbol K2
i may be eliminated

if and only if it is adjacent to X1 which is always inserted before symbol b.

Hence, after eliminating all additional symbols we either obtain the same

word (xK2
i was not inserted), or insert x between a and b which simulates

the corresponding rule of ID. This concludes the proof. �

Now we present counterparts of the three theorems above.

Theorem 9.23. INS1,0
1 DEL1,2

1 = RE.

Proof. The proof of the theorem is based on a simulation of insertion-

deletion systems of size (1, 1, 1; 1, 1, 1).

Using Lemma 9.1 it is sufficient to show how an insertion rule (a, x, b) ∈

I, with a, b, x ∈ V , may be simulated by using insertion rules of type

(a′, x′, λ) and deletion rules of type (a′, y′, b′c′), with a′, b′, c′ ∈ V2 ∪ {λ},

x′, y′ ∈ V2.

For every rule (a, x, b) ∈ I we may suppose that x 6= b. Indeed, if this is

not the case, then this rule can be replaced by two insertion rules (a,B, b),

(a, b, B) and one deletion rule (b, B, b).

Consider a rule i : (a, x, b), where i is the label of the rule. We simulate

this rule by following insertion rules:

(a,Ai, λ), (Ai, x, λ), (Ai, Bi, λ),

and the following deletion rules:

(x,Bi, b), (a,Ai, xBi).
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Like in the previous proofs, Ai and Bi act like parentheses that surround

the insertion site of x. The rule i : (a, x, b) is simulated as follows. We first

perform insertions of Ai and x:

w1abw2 =⇒ w1a(Ai)
+
bw2 =⇒ w1a(AiB

+

i
)+bw2 =⇒ w1a(Ai(x+Bi)

+)+bw2,

and then the deletions (they are applicable to the string w1aAixBibw2)

w1aAixBibw2 =⇒ w1axBibw2 =⇒ w1axbw2.

Now in order to prove the converse inclusion, we observe that after

performing insertion of nonterminal symbols Ai and Bi, the only way to

remove these symbols is to erase them with the introduced deletion rule.

This means that x is inserted between Ai and Bi, Bi is inserted immediately

to the left of b, Ai first inserts one Bi and after that one symbol x. To

conclude the proof we remark that if more than one Ai, Bi or x is inserted,

then it is impossible to eliminate the corresponding symbol. �

Theorem 9.24. INS1,0
1 DEL0,2

2 = RE.

Proof. [Sketch] The proof of the theorem is based on a simulation of

insertion-deletion systems of size (1, 1, 0; 1, 1, 2) from Theorem 9.23 above.

A deletion rule i : (a, x, bc) is simulated by an insertion rule (a,Ai, λ) and

a deletion rule (λ,Aix, bc). We also suppose that we don’t have x = b = c.

The simulation is performed as follows. We first perform insertions of Ai:

w1axbcw2 =⇒+ w1a(Ai)
+xbcw2,

and after that one deletion (it is applicable to the string w1aAixbcw2)

w1aAixbcw2 =⇒ w1abcw2.

The converse inclusion follows from the fact that once inserted, symbol Ai

must be deleted by the corresponding rule, therefore the correct simulation

is performed. �

The following theorem is the counterpart of Theorem 9.22.

Theorem 9.25. INS0,0
2 DEL0,1

2 = RE.
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Proof. [Sketch] The proof of the theorem is based on a simulation of

insertion-deletion systems of size (2, 0, 0; 3, 0, 0).

A deletion rule i : (λ, abc, λ), where i) is the label of the rule, is simulated

by the following group of insertion rules:

1 : (λ,A
(1)
i B

(1)
i , λ), 2 : (λ,A

(2)
i B

(2)
i , λ), 3 : (λ,A

(3)
i B

(3)
i , λ),

4 : (λ,A
(4)
i B

(4)
i , λ), 5 : (λ,A

(5)
i B

(5)
i , λ),

and the following group of deletion rules:

6 : (λ, aA
(1)
i , B

(1)
i ), 7 : (λ, bA

(2)
i , B

(2)
i ), 8 : (λ, cA

(3)
i , B

(3)
i ),

9 : (λ,B
(1)
i B

(2)
i , A

(5)
i ), 10 : (λ,B

(5)
i B

(3)
i , A

(4)
i ), 11 : (λ,A

(5)
i A

(4)
i , B

(4)
i ),

12 : (λ,B
(4)
i , λ).

The simulation is performed as follows. Symbols A(j)i and B(j)i act like

parentheses and we use them to surround letters b and c in a particular

order. This permits to further perform a sequence of deletions that will

eliminate all three letters. In more details, we first perform insertions of

A
(j)
i B

(j)
i , j ∈ {1, 2, 3, 4, 5} using rules (1) – (5):

w1abcw2 =⇒+ w1aA
(1)
i B

(1)
i bA

(2)
i B

(2)
i A

(5)
i B

(5)
i cA

(3)
i B

(3)
i A

(4)
i B

(4)
i w2.

After that deletion rules (6) – (8) are applied:

w1aA
(1)
i B

(1)
i bA

(2)
i B

(2)
i A

(5)
i B

(5)
i cA

(3)
i B

(3)
i A

(4)
i B

(4)
i w2 =⇒+

w1B
(1)
i B

(2)
i A

(5)
i B

(5)
i B

(3)
i A

(4)
i B

(4)
i w2

Now the remaining introduced symbols are removed:

w1B
(1)
i B

(2)
i A

(5)
i B

(5)
i B

(3)
i A

(4)
i B

(4)
i w2 =⇒9,10

w1A
(5)
i A

(4)
i B

(4)
i w2 =⇒11 w1B

(4)
i w2 =⇒12 w1w2

Thus, we obtain the string w1w2, so we model rule i : (λ, abc, λ) ∈ D

correctly. The converse inclusion is shown in [21]. �

The symmetric variant of these results is a corollary to the above theo-

rems.

Corollary 9.26. INS
2,1

1
DEL

0,1

1
= INS

2,0

2
DEL

0,1

1
= INS

1,0

2
DEL

0,0

2
= RE.

INS
0,1

1
DEL

2,1

1
= INS

0,1

1
DEL

2,0

2
= INS

0,0

2
DEL

1,0

2
= RE.

Another interesting result is shown in [22].

Theorem 9.27. INS2,0
1 DEL0,2

1 = INS0,2
1 DEL2,0

1 = RE.
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Proof. [Sketch] The proof of the theorem is based on a simulation of

insertion-deletion systems of size (1, 1, 0; 1, 1, 2).

Using Lemma 9.1 we can assume that with the exception of two deletion

rules of the form (λ,X, λ) and (λ, Y, λ) all deletion rules have always two

symbol in the right context, and one symbol in the left context.

For every deletion rule (a, x, bc) we may suppose that a 6= x. If this is

not the case, then this rule may be replaced by two deletion rules (B, a, bc),

(a,B, bc) and one insertion rule (a,B, λ), where B is a new nonterminal.

Consider a rule i : (a, x, bc), where i is the label of the rule. This rule is

simulated by an insertion rule (ax,Bi, λ) and two deletion rules (λ, x,Bib)

and (λ,Bi, bc) as follows. We first perform insertions of Bi:

w1axbcw2 =⇒+ w1ax(Bi)
+bcw2.

After that we delete of x and Bi (applicable to w1axBibcw2)

w1axBibw2 =⇒ w1aBibcw2 =⇒ w1abcw2.

In a way similar to the previous proofs, it is possible to show that the

inserted nonterminal symbols can be deleted only if a correct simulation of

the deletion rule (a, x, bc) is performed. �

9.6.1 Non-completeness Results

In what follows we show that there are classes of one-sided insertion-deletion

systems that are not computationally complete. Most of the results in this

subsection are from [24] and [21]. We start with the following result.

Theorem 9.28. [21] REG \ INS1,0
1 DEL1,1

1 6= ∅.

Proof. Consider the regular language L = {(ba)+}. We claim that there

is no insertion-deletion system ID of size (1,1,0;1,1,1) such that L(ID) = L.

We shall prove the above statement by contradiction. Suppose there is

such system ID = (V, {a, b}, A, I,D) and L(ID) = L. From Lemma 9.2 we

can suppose that ID does not delete terminal symbols.

Consider a terminal derivation in ID: w =⇒+ wf , where w ∈ A and

wf ∈ (ba)+. Now consider an arbitrary ba block of wf (wf = αbaβ, α, β ∈

(ba)∗) and take its letter a. Since there are no terminal deletion rules in

ID, this letter is either inserted by an insertion rule, or it was a part of an

axiom. We may omit the latter case by taking a derivation that produces

a string that is long enough. We may also omit the case when this letter a

was inserted by a rule (λ, a, λ) ∈ I, because in this case a may be inserted at
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any place in the final string, in particular a string αbaaβ might be obtained.

Now suppose that this letter was inserted using a rule (z, a, λ) ∈ I, z ∈ V :

w =⇒∗ w1zw2 =⇒ w1zaw2 =⇒∗ αbaβ = wf . (9.15)

This means that

w1z =⇒
∗ αb

w2 =⇒∗ β
(9.16)

We remark that symbol a might be inserted twice:

w =⇒∗ w1zw2 =⇒ w1zaw2 =⇒ w1zaaw2. (9.17)

From (9.17) and (9.16) we obtain

w =⇒∗ w1zaaw2 =⇒∗ αbaaβ

which is a contradiction. �

A counterpart of this result is also true.

Theorem 9.29. [28] CF \ INS1,1
1 DEL1,0

1 6= ∅.

In this case the language L = {anbn | n ≥ 0} cannot be generated. In a

way similar to Theorem 9.28 it is possible to show that the language (ba)+

cannot be generated by systems of size (1, 1, 0; 2, 0, 0) and (2, 0, 0; 1, 1, 0).

Theorem 9.30. [23] REG \ INS1,0
1 DEL0,0

2 6= ∅.

Theorem 9.31. [23] REG \ INS0,0
2 DEL1,0

1 6= ∅.

Now we shall concentrate on systems of size (1, 1, 0; 1, 1, 0). We show

that the language generated by such insertion-deletion systems is a partic-

ular subclass of the family of context-free languages.

We start our investigations by systems that do not contain deletion

rules. In the book [35] it is already shown that the family INS1,1
n DEL0,0

0 ,

n ≥ 1, is a subset of the family of context-free languages. Below we show

that even a smaller subclass, INS1,0
1 DEL0,0

0 , having one-sided insertion

rules contains non-regular context-free languages.

Theorem 9.32. INS1,0
1 DEL0,0

0 ∩ (CF \REG) 6= ∅.
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Proof. In order to fulfill the assertion of the theorem it suffices to show

that a non-regular context-free language can be generated by an insertion-

deletion system of size INS1,0
1 DEL0,0

0 .

Consider a system ID = (T, T, {a}, I, ∅), where T = {a, b, c, d} and I is

defined as follows: I = {(a, b, λ), (b, c, λ), (c, d, λ), (d, a, λ)}.

Let L be the language generated by ID (L = L(ID)). It is clear that

L can defined by the following formulas:

L = L1 L1 = aL∗
2 L2 = bL∗

3 L3 = cL∗
4 L4 = dL∗

1

By substituting Li, for 2 ≤ i ≤ 4 into the description of Li−1 we obtain:

L1 = a(b(c(dL∗
1)

∗)∗)∗

Let R = {(abcd)∗(dcb)∗}. Consider the language L′′ = L∩R. Consider

the word w = abcddbc from R. This word is generated in L as follows (we

underline the inserted symbol):

a =⇒ ab =⇒ abb =⇒ abcb =⇒ abccb =⇒ abcdcb =⇒ abcddcb

We observe that the generation of the second part of w, the subword

dcb, is related to the generation of its first part abcd, because every letter

is inserted two times: first for the second part and after that for the first

part. It is also clear that this is the only way to generate the subword dcb.

Moreover, it can be easily seen that such a generation leads to a one-to-

one correspondence between abcd and dcb. Now, taking w it is possible to

insert a after the first letter d and to continue in a similar manner as before

and so on, which gives wn = (abcd)n(dcb)n, n ≥ 1. It is also possible to

obtain more copies of abcd by performing insertions of four corresponding

letters after d, c, b or a in the first part of wn. Hence, we finally obtain

L′′ = {(abcd)i(dcb)j , j ≤ i}, which is a non-regular context-free language

(by the inverse morphism {abcd→ x, dcb → y} it becomes the well known

language {xiyj , 1 ≤ j ≤ i}). Since the intersection of two regular languages

would be regular, we obtain that L is a non-regular context-free language,

which concludes the proof. �

The lemma below shows that in the case of the family INS1,0
1 DEL0,0

0

the corresponding context-free grammar has a very special form.

Lemma 9.33. For any L ∈ INS1,0
1 DEL0,0

0 it is possible to construct a

context-free grammar G = ({S} ∪ {Sa | a ∈ T } ∪ T, T, S, P ), generating L

and having rules of the following form:

S → w w ∈ ({aSa | a ∈ T })∗

Sa → SabSbSa | λ a, b ∈ T
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Proof. Let L = L(ID), where ID = (T, T,A, I, ∅) has size (1, 1, 0; 0, 0, 0).

We construct the grammar G = (V, T, S, P ) as follows:

Take the alphabet V = T ∪ {Sx | x ∈ T }. The set of productions is

defined as follows.

For any (a, b, λ) ∈ I we add the following productions to P :

Sa → SabSbSa | λ (9.18)

For any a1 · · · an ∈ A we add the following productions to P :

S → a1Sa1 · · · anSan
(9.19)

It is easy to observe that L(G) = L(ID). Indeed, after each letter a

the grammar G inserts the symbol Sa which may insert (in any order and

in any combination) all possible symbols coming after the letter a. Symbol

Sa corresponds to a placeholder, indicating that at that place a letter can

be inserted by a. �

We remark that it is possible to extend the previous lemma to systems

inserting a regular language instead of a symbol.

Now we will describe the family INS1,0
1 DEL1,0

1 . The starting point

is the construction given in Lemma 9.33, however it is important to show

that all possible deletions may be precomputed. We start with the following

definitions.

Definition 9.34. For any set of insertion rules I and for a letter a we

define Ia = {x | (a, x, λ) ∈ I}, i.e. the set of all letters that can be inserted

next to a.

Definition 9.35. We say that a word w is generated by letter a if there

exists a derivation a =⇒∗ aw.

Definition 9.36. For an insertion-deletion system ID = (V, T,A, I,D)

we denote by LID(a) the language generated by the system IDa =

(V, T, {a}, I,D).

We remark that any word in an insertion-deletion system of size

(1, 1, 0; 0, 0, 0) will have a particular structure: for any word w = w′aw′′

of L(ID) the set of words {w′a(LID(b))∗w′′
}, b ∈ Ia will be also part of

L(ID). Hence, a letter a will be followed by a repetition of blocks LID(b),

b ∈ Ia.
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The next lemma shows that in order to compute the effect of deletion

rules for a system of size (1, 1, 0; 1, 1, 0) it is enough to take only blocks con-

taining non-repeating letters, thus giving a limit on the width of a deriva-

tion tree that should be examined in order to compute the effect of deletion

rules.

Lemma 9.37. Consider an insertion-deletion system ID = (V, T,A, I,D)

of size (1, 1, 0; 1, 1, 0). Take a letter a ∈ V and a letter b ∈ Ia. Consider a

derivation of a word w in ID:

w′ =⇒∗ z′az′′ =⇒∗ z′ a u1b u2b · · · unb un+1 z
′′ =⇒∗

=⇒∗ z′ a u1by1 u2by2 · · · unbyn un+1 z
′′ =⇒∗ w,

where w′
∈ A, z′, z′′, w, yj , uj ∈ V ∗, |uj |b = 0, 1 ≤ j ≤ n + 1, and uj is

generated by a and yj is generated by b.

If during the derivation the symbol b from the block uibyi, i ≥ 2 is

deleted by some symbol d ∈ V belonging to the word u1by1 · · ·ui, then we

may suppose that this d belongs to ui (ui = u′idu
′′
i ), i.e., b can be deleted

only by a symbol from the same block.

Proof. We will show that for any derivation that does not fulfill the

above property it is possible to construct an equivalent derivation which

will satisfy the conditions above.

Let d not be a part of ui. Then there are several possible cases for the

position of d:

(1) d belongs to byi−1,

(2) d belongs to ui−1,

(3) d belongs to ukbyk, k < i− 1,

Consider the first case. Let byi−1 = xdx′. This implies that b =⇒∗ xd,
dx′ =⇒∗ d and duib =⇒∗ d. Then we can rearrange the derivation as

follows (below we denote by v the word ui+1byi+1 · · · unbyn un+1 and we

underline the inserted part):

z′ a z′′ =⇒∗ z′ a v z′′ =⇒ z′ a b v z′′ =⇒∗

z′ a b yi v z
′′ =⇒∗ z′ a bxd yi v z

′′ =⇒∗

z′ a ui−1bxd yi v z
′′ =⇒∗ z′ u1by1 · · ·ui−2byi−2ui−1bxd yi v z

′′.

The derivation above shows that it is possible to generate directly bxdyi
without generating x′uib.



September 2, 2010 11:33 World Scientific Book - 9in x 6in 00Chapter

Small Size Insertion and Deletion Systems 493

Now consider the second case. Let ui−1 = xdx′. Then a =⇒∗ xd,

dx′byi−1 =⇒∗ d and dui =⇒
∗ d. Then we can rearrange the derivation as

follows (below we denote by v the word ui+1byi+1 · · · unbyn un+1 and we

underline the inserted part):

z′ a z′′ =⇒∗ z′ a v z′′ =⇒ z′ a b v z′′ =⇒∗ z′ a byi v z
′′ =⇒∗

z′ a xd byi v z
′′ =⇒ z′ a xd yi v z

′′ =⇒∗ z′ a u1by1 · · ·ui−2byi−2 xd yi v z
′′.

The above derivation satisfies the condition of the lemma, because d

belongs to the same block as b.

The third case can be reduced to the second one by observing that in this

case we do not need to generate the subsequence uk+1byk+1 · · ·ui−1byi−1

from a, because it is erased anyway. �

Remark 9.38. We remark that the in the case of the first block u1by1,

symbol b may be deleted by a symbol d from u1; in this case we can extend

Lemma 9.37 to i = 1. However, d can be also from z′a and this case is

investigated in Lemma 9.41.

Definition 9.39. For a word w ∈ L(ID) (u =⇒∗ w, u ∈ A) we construct

the derivation tree of w iteratively as follows:

• Initially the tree has a root labeled by λ with children a1, · · · , an, where

u = a1 · · ·an. If n = 1, we can consider that the tree is rooted by a1.

• For a transition w′aw′′ =⇒ins w′abw′′ we consider the node corre-

sponding to the letter a above and add as a left child a node labeled

by symbol b.

• For a transition w′abw′′ =⇒del w
′aw′′ we consider the node correspond-

ing to the letter b above and strike it out. In the future, this node is not

considered anymore – it is treated like it is replaced it by its children

(the corresponding links from the parent of b to all children should be

added).

Having a derivation tree T for w, one can read w by concatenating la-

bels of vertices from the preordering of T by a depth-first search. Hence,

the root corresponds to the first letter of w and the rightmost label of the

tree corresponds to the last letter of w. It is clear that there is a one-to-one

correspondence between a derivation tree for an insertion-deletion system

from the family INS1,0
1 DEL0,0

0 and the derivation tree for the correspond-

ing context-free grammar constructed as in Lemma 9.33.
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Example 9.40. Let ID = ({a, b, c}, {a, b, c}, {a}, I,D) with I =

{(a, b, λ), (a, a, λ), (b, c, λ), (a, c, λ)} and D = {(c, b, λ)}. We can derive

w = aaccca as follows:

a =⇒ aa =⇒ aba =⇒ aaba =⇒ aacba =⇒ aacbca =⇒ aacbcca =⇒ aaccca

This corresponds to the following sequence of trees leading to the deriva-

tion tree of w.

The next lemma gives a bound on the depth of the derivation tree that

has to be examined in order to compute the effect of deletion rules.

Lemma 9.41. Consider an insertion-deletion system ID = (V, T,A, I,D)

of size (1, 1, 0; 1, 1, 0). Consider a word w ∈ L(ID) and the corresponding

derivation tree T . Now consider that during the construction of T a deletion

rule (c, x, λ) will be applied. Denote the tree at this moment by T ′. Denote

by b the first common ancestor of deleting c and deleted x in T ′ and by π

the path between b and the deleting c (including ends).

If π contains multiple occurrences of c, then the derivation of w may be

rearranged such that the deletion of x is performed by the first occurrence

of c in π.

Proof. We remark that the above situation implies that x is a child of b

and π is the rightmost path in the part of the tree rooted by b and ending

before x, see Figure 9.1 (a). Now if π contains several occurrences of c,

then we can rearrange the derivation of w as follows:

(1) Use same rules until the beginning of derivation of the first element

from π.

(2) Derive π until the first c and the whole first subtree, see Figure 9.1(b).

(3) Delete x by this c, see Figure 9.1(c).

(4) Continue the derivation of π from the first c.

The obtained result is given on Figure 9.1(d), which is exactly what

should have been obtained by the application of the deletion rule (c, x, λ)

on the initial tree. �

Now we are ready to prove the main theorem of this section.

Theorem 9.42. INS1,0
1 DEL1,0

1 ⊂ CF .
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(a) (b) (c) (d)

Fig. 9.1 The situation from Lemma 9.41: (a) the derivation tree before the application

of the deletion rule (c, x, λ), (b) and (c) intermediate steps, (d) after the application.

Proof. Consider an insertion-deletion system ID = (V, T,A, I,D) of size

(1, 1, 0; 1, 1, 0). By Lemmas 9.37 and 9.41 it is possible to restrict the appli-

cation of deletion rules to all possible derivation subtrees that do not have

repetition of letters in width (for any node, all its children are different)

and height (any path from the root does not contain repetitions of letters).

Since the number of such subtrees is finite, one can precompute all possible

applications of deletion rules in them.

Consider a system ID1 = (V, T,A, I, ∅) and construct for it a context-

free grammar G1 = (N, T, S, P ) as in Lemma 9.33. Let Ga = (N, T, Sa, P ∪

{Sa
→ aSa}). Now consider any restricted (in width and height) subtree

τ rooted by a ∈ V ∪ {λ}. Let w be the word corresponding to τ . Consider

the derivation tree τ ′ of Ga corresponding to τ and eliminate the nodes

labeled by λ and edges leading to these nodes. Denote the obtained tree

by τ ′′. Let w′′ be the sentence corresponding to τ ′′. It is clear that w′′ is
a marked variant of w, the marks Sx, x ∈ V , correspond to places where

I(x)∗ can be inserted.

Now it is possible to compute the effect of deletion rules on w′′ as follows.

Dτ
0 = {z | w′′ = az}

Dτ
i+1 =

{

uxStv
∣

∣

∣
uxzyStv ∈ Dτ

i , (x, y, λ) ∈ D, t ∈ V, z ∈ {Sa | a ∈ V }
∗
}

Dτ =
⋃

i≥0

Dτ
i

The above process is finite and Dτ contains strings corresponding all

possible deletions that can be performed in τ . We define the set P2 as

follows:

P2 = {Sa → w | a ∈ V, w ∈ Dτ , τ has the root a}.
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Now consider the grammar G = (N, T, S, P ∪ P2). From Lemma 9.37

and 9.41 and the construction above it is clear that G simulates ID, as

productions from P permit to simulate insertion rules from I and those

from P2 permit to simulate deletion rules from D. The strictness of the

inclusion follows from Theorem 9.28 (see also [21]), where it is shown that

the language (ba)+ cannot be generated by such systems. �

Example 9.43. Let ID = (T, T, {a}, I,D) with T = {a, b, c, d, d′, e, e′, f},
I = {(a, b, λ), (a, d, λ), (a, f, λ), (b, c, λ), (d, e, λ), (d, d′, λ), (e, e′, λ)} and

D = {(c, d, λ), (c, e, λ)}. Consider the tree τ corresponding to the word

abcdee′d′f and the derivation tree τ ′′ of G1 corresponding to τ (see Fig-

ure 9.2).

(a) (b)

Fig. 9.2 The trees for the derivation of abcdee′d′f from Example 9.43. The derivation

in ID (a) and in G1 (b).

Then we compute w′′ and the application of rules from D to w′′:

Dτ
0 = {z | w′′ = az} = {SabSbcScSbSadSdeSee

′Se′SeSdd
′Sd′SdSafSfSa}

Dτ
1 = {SabSbcSdeSee

′Se′SeSdd
′Sd′SdSafSfSa}

Dτ
2 = {SabSbcSee

′Se′SeSdd
′Sd′SdSafSfSa}

Dτ = Dτ
2 ∪Dτ

1 ∪Dτ
0

Hence the following rules shall be added to the grammar G:

Sa → SabSbcSdeSee
′Se′SeSdd

′Sd′SdSafSfSa

Sa → SabSbcSee
′Se′SeSdd

′Sd′SdSafSfSa
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9.7 Pure Insertion Systems

In this section we consider systems which only use the operation of inser-

tion, i.e., the set of deletions is empty. In this section, we use the notation

INSm,m′

n ( i.e. we omit the DEL part) in order to denote families of lan-

guages generated by insertion-only systems. It is known that the classes of

languages obtained by systems using only insertions (we call them insertion

languages) are incomparable with many known language classes. As an ex-

ample, consider a linear language {anban | n ≥ 1}. This language cannot

be generated by any insertion system (see Theorem 6.6 in [35]).

In order to overcome this obstacle, one can use some codings to “inter-

pret” the generated strings. In the literature several types of codings were

considered. It is possible to consider the following languages as a result for

an insertion system I:

(1) h(L(I) ∩ R), where h is a morphism and R is a special language (as

considered in [31, 34]), or

(2) ϕ(h−1(L(I))), where h is a morphism and ϕ is a weak coding (consid-

ered in [27, 35, 17]).

We mention that both types of codings are rather simple and can be simu-

lated by a finite state transducer, provided that R is regular. In some cases

we consider R to be the Dyck language. Thus, a formula of the same struc-

ture as the one in the Chomsky-Schützenberger theorem for context-free

languages is obtained. Using this method, we present several characteriza-

tions of language classes from the Chomsky hierarchy in terms of insertion

systems.

First, we recall several results on the computational power and decid-

ability of small size insertion systems.

Theorem 9.44. [35] The following statements hold.

(1) FIN ⊂ INS0,0
∗ ⊂ INS1,1

∗ · · · ⊂ INS∗,∗
∗ ⊂ CS;

(2) INSk,l
∗ ⊂ INSk′,l′

∗ , where 0 ≤ k ≤ k′, 0 ≤ l ≤ l′ and either k < k′ or
l < l′;

(3) INS2,2
2 contains non-semilinear languages.

(4) All families INSn,m
∗ , n,m ≥ 0, are anti-AFLs.

(5) REG is incomparable with INSn,m
∗ for all n,m ≥ 0.

(6) CF,LIN are incomparable with INSn,m
∗ for all n,m ≥ 2;

(7) LIN − INS∗,∗
∗ 6= ∅;

(8) Each regular language is the coding of a language in INS1,1
∗ .
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It is possible to obtain the following representation of a regular language

by using insertion systems and star languages. We recall that the family

STAR = {A∗
| A ∈ FIN} of star languages is a subfamily of regular

languages.

Theorem 9.45. [34] Any regular language L can be represented in the form

L = h(L′
∩ R), where h is a weak coding, L′

∈ INS0,0
2 , and R is a star

language.

Let W represent the family of weak codings. We mention that the inclu-

sion REG ⊂ W (INS0,0
2 ∩ STAR) is proper, because the Dyck language is

in INS0,0
2 .

Next, we consider several characterizations of context-free languages by

means of insertion systems. The following theorem is from [35].

Theorem 9.46. INS1,1
∗ ⊆ CF.

Proof. [Sketch] For an insertion system Π = (T, T,A, I, ∅) consider a

context-free grammar G = (D,T, S, P ) with nonterminal alphabet D =

{Da,b | a, b ∈ T ∪ {λ}} and the set of productions P = P1 ∪ P2 ∪ P3, where

P1 = {S → δ(λ,w, λ) | w ∈ A},

P2 = {Da,b → a | Da,b ∈ N, a, b ∈ T },

P3 = {Da1,a2 → δ(a1, w, a2) | (a1, w, a2) ∈ I,

for l = 1, 2 al = al, if al 6= λ and al ∈ V ∪ {λ}, if al = λ},

where for every a1, a2 ∈ T ∪ {λ}, w ∈ V ∗ we denote by δ(a1, w, a2) the

following

δ(a1, w, a2) =

{

Da1,a2 , if w = λ

Da1,b1Db1,b2 . . . Dbk−1,bkDbk,a2 , if w = b1 . . . bk.

The rule (a1, b1 . . . bk, a2) ∈ I, a1, a2 ∈ T, b1 . . . bk ∈ T k can be sim-

ulated by the grammar iff the corresponding sentential form contains

Da1,a2 . It is clear that nonterminals in D preserve one symbol left and

right contexts. Hence, there is the following derivation wDa1,a2w
′ =⇒

wDa1,b1Db1,b2 . . . Dbk−1,bkDbk,a2w
′. Clearly, the resulted string still pre-

serves one symbol context. The simulation of rules that have no con-

texts is performed by the productions from P3 with arbitrary contexts:

al ∈ V ∪ {λ}, l = 1, 2.

The simulation starts by the production

S → Dλ,b1Db1,b2 . . . Dbk−1,bkDbk,λ ∈ P1,
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corresponding to the choice of an axiom from A. A terminal string is

obtained by applying terminal rules P2 at the end of derivation. Since

there is a one-to-one correspondence between derivations in G and Π we

obtain L(Π) = L(G). Hence, INS1,1
∗ ⊆ CF. �

Now we give a characterization of context-free languages by the means

of insertion systems that use one symbol contexts.

Theorem 9.47. [20] A language L is context-free if and only if it can be

represented in the form L = ϕ(h−1(L′)) where L′
∈ INS1,1

3 , ϕ is a weak

coding and h is a morphism.

Proof. [Sketch] Taking into account Theorem 9.46 and the closure prop-

erty of context-free languages with respect to inverse morphisms and weak

codings, it is enough to show that for any context-free language L there

is an insertion system Π having at most one-symbol contexts, such that

L = ϕ(h−1(L(Π))), where h is a morphism, and ϕ is a weak coding.

Let G = (N, T, S, P ) be a context-free grammar in Chomsky normal

form such that L = L(G). Consider the following insertion system Π =

(V, V, I, ∅, {S}), where V = T ∪N ∪{#}, I = {(A,#γ, α) | α ∈ T ∪V,A→

γ ∈ P, γ ∈ T ∪ V 2
}; the morphism h and the weak coding are defined as

follows

h(a) =

{

a#, if a ∈ V \(T ∪ {#}),

a if a ∈ T,
ϕ(a) =

{

a, if a ∈ T,

λ if a ∈ V \T.

We claim that L(Π) = L(G). Indeed, each rule (A,#γ, α) ∈ R can be

applied to the sentential form wAαw′ iff A is unmarked (is not rewritten).

Hence, a production A → γ ∈ P can be simulated by the corresponding

rule in Π.

When every nonterminal is marked and no rules can be applied, the

inverse morphism h−1 is applied to the output word. Indeed, if the sys-

tem produces a word having some unmarked nonterminal then h−1 is not

defined. At this point h−1 removes all marking symbols, and ϕ removes

all nonterminal symbols. Hence, by applying the counterpart rules we get

equivalent derivations and, hence, L(Π) = L(G). �

We present now several characterizations of recursively enumerable lan-

guages by the means of insertion systems. We recall a recent characteriza-

tion of the family INS3,3
3 .

Theorem 9.48. [17, 30] Each language L ∈ RE can be written as L =

ϕ(h−1(L′)), where ϕ is a weak coding, h is a morphism, and L′
∈ INS3,3

3 .
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Proof. [Sketch] The idea of the proof is to apply “mark and migrate”

technique in order to simulate a type-0 grammar. According to this tech-

nique, symbols that have been rewritten are marked. In the following a

special symbol # called marking symbol will be used. We say that a letter

a is marked in a sentential form waw′ if it is followed by #, i.e., |w′
| > 0,

and # is the prefix of w′. For example, in order to simulate a context-free

production A→ BC, the string #BC is inserted immediately at the right

of A, assuming that A was not marked before. As soon as the derivation of

the simulated sentential form is completed, every nonterminal A is marked,

and the inverse morphism is applied to the pairs A#.

In order to simulate context-sensitive productions of the form AB →

CD, the migration of symbols is applied. This means that if a pair AB

that should be used by the production is separated by one or more marked

symbols, then copies of symbol A are inserted to the right, using the marked

symbols as contexts. In this way, the symbol A can migrate to the right and

become adjacent to B. When only the terminal symbols are unmarked in

the resulted sentential form, the inverse morphism h−1 and the weak coding

may be applied in order to eliminate marking symbols and nonterminals.

More specifically, let G = (N, T, S, P ) be a grammar in Pentonnen normal

form. Consider an insertion system Π = (V, V, I1 ∪ I2, ∅, {$S$$$}), where

V = T ∪N ∪ F ∪ F ∪ {#,#, $}, F = {FA, | A ∈ N}. The sets of rules are

I1 ={ri.1.1 : (AB,#C,α) | i : AB → AC ∈ P, α ∈ V \{#,#}} ∪

{ri.1.2 : (A,#BC,α) | i : A → BC ∈ P, α ∈ V \{#,#}} ∪

{ri.1.3 : (A,#δ, α) | i : A → δ ∈ P, α ∈ V \{#,#}};

I2 ={rA.2.1 : (AY#, FA, α) | α ∈ (N ∪ {$})V 2
∪#V#, Y ∈ N ∪ F,A ∈ N}∪

{rA.2.2 : (α′

A,##, Y#FA) | α
′

∈ V
2
\ {A#}, Y ∈ (N ∪ F ), A ∈ N}∪

{rA.2.3 : (#Y#,#, FA) | Y ∈ N ∪ F,A ∈ N}∪

{rA.2.4 : (#FA,#A,α) | α ∈ V \ {#}, A ∈ N}∪

{

rA.2.5 : (A#, A,α)

∣
∣
∣
∣
∣

A ∈ N,

α ∈ (N\{A})(V \{#})V ∪ (N ∪ F )#(N ∪ {#})

}

∪

{rA.2.6 : (A,#,#AY ) | A ∈ N,Y ∈ {V \{#}}}.

The weak coding ϕ and the morphism h are defined as follows:
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h(α) =

{

α#, if α ∈ N ∪ F,

α, if α ∈ T ∪ {#, $};
ϕ(α) =

{

α, if α ∈ T,

λ, if α ∈ V \ T.

The set of rules I1 simulates the rewriting rules, whereas the set I2
simulates the migration of a symbol A ∈ N to the right through the marked

symbols. The migration works as following:

wα′AY#αw′ =⇒ wα′AY#FAαw
′ =⇒ wα′A##Y#FAαw

′ =⇒

wα′A##Y##FAαw
′ =⇒ wα′A##Y##FA#Aαw

′.

At the end of this sequence of steps, every symbol between α′ and α′

is marked, except A. One can verify that the only possible sequence of

rules that may be applied is rA.2.1 − rA.2.4. It is easy to see that rules

rA.2.5, rA.2.6 correspond to the migration of symbol A to the right of #.

At the end of the derivation, a terminal string is obtained by applying h−1

and ϕ. Since there is one-to-one correspondence between derivations in G

and Π, we obtain ϕ(h−1(L(Π)) = L(G). Hence, W (V (INS3,3
3 )) = RE,

where W and V are the family of weak codings and the family of inverse

morphisms, respectively. �

Let us note that in the theorem above, one can perform the migration of

all terminal symbols at the end of the derivation (by a construction similar

to the ones for the nonterminals) to the right hand side of the sentential

form. So, all marked nonterminals appear as a prefix of the computed

sentential form. Taking into account this remark and that the migration of

symbols can be performed in both directions (by the mirrored rules), the

following characterization of RE languages holds.

Corollary 9.49. [17] Every language L ∈ RE can be represented in either

of the forms L = L′
\ R, L = L′/R′, where L′

∈ INS3,3
3 , R,R′ are reg-

ular languages, and \R, /R′ denote the left and right quotient with R,R′

respectively.

In a similar way it is possible to obtain a characterization of RE by

replacing the inverse morphism h−1 by the intersection with a regular lan-

guage. It is shown in [31] that in order to obtain this characterization it is

enough to use strictly k−testable languages (denoted by LOC(k)), which

is a strictly subset of the family of regular languages, for k ≥ 2. We recall

that a language L is a strictly k−testable language over T if there are finite

sets Pref, Suf, Int ⊆ T k, and for every w, w ∈ L if and only if

• the prefix of w of length k belongs to Pref ,
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• the suffix of w of length k belongs to Suf , and

• every proper subsequence of w of length k belongs to Int.

It is clear that an intersection with LOC(2) permits the filtration of

sentential forms that have following properties:

• every nonterminal is followed by a marking symbol, and

• every terminal is followed by a nonterminal symbol.

Thus, the following theorem holds.

Theorem 9.50. [31] Every language L ∈ RE can be represented in the

form h(L′
∩R), where h is a projection, L′

∈ INS3,3
3 , and R ∈ LOC(2).

The next theorem considers insertion systems with context-free rules.

Since the mark and migrate technique cannot be used in this case, the

filtering of sentential forms that have the “proper structure” is performed

by an intersection with the Dyck language. Formally, the theorem is stated

as follows:

Theorem 9.51. [34] Every language L ∈ RE can be represented in the

form L = h(L′
∩ D), where L′

∈ INS0,0
3 , h is a projection, and D is the

Dyck language.

Proof. [Sketch] The proof of the theorem is based on a simulation of type-

0 grammar (N, T, S, P ) in Kuroda normal form by an insertion system. To

simulate every context-sensitive production r : AB → CD, a corresponding

pair of rules is added to the insertion system: (λ, BAr, λ), and (λ,CDr, λ).

Respectively, to simulate a context-free production r : A → CD, the fol-

lowing rules are added to the system: (λ,Ar, λ), and (λ,CDr, λ). In order

to simulate the terminal productions r : A → a, the following rules are

added: (λ,Ar, λ), (λ, aar, λ). Finally, the projection h is defined in a such

way that it removes every nonterminal symbol at the end of derivation.

The argument for the proof of the statement is the following: since

the sentential form at the end of derivation must be a word from D the

insertions of each pair of rules corresponding to a production r must be

done adjacently to the symbol(s) rewritten by production r. For example,

consider a sentential form wAw′ and a rule r : A→ CD ∈ P. The insertion

system simulates the production as follows:

wAw′ =⇒ wAArw′ =⇒ wCDrAArw′,
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where w,w′
∈ V ∗. In the case of a context-sensitive production r : AB →

CD ∈ P we may have the following derivation:

wAw′′Bw′ =⇒ wAw′′BBArw′ =⇒ wCDrAw′′BBArw′,

where w,w′, w′′
∈ V ∗, w′

∈ D. Hence, if the insertions are done at the

proper positions, then the resulted string w coincides with the string from

the grammar (supposing that h eliminates all nonterminals). The rigorous

proof can be found in [34]. �

Let us note that if only context-free productions are considered in the

proof of Theorem 9.51, then the rules corresponding to each context-free

production r : A → BC appear adjacently to the left and right of A :

wAw′ =⇒∗ wCDrAArw′. It is similar for terminal productions r : A → a

where it can be obtained wAw′ =⇒ waarAArw′. Hence, in order to obtain

a context-free language, it is enough to consider the intersection with a

language that only controls the appearance of parentheses that are placed

nearby. This idea is used in the next theorem. The “only if” part of the

theorem follows directly from Theorem 9.46 and from the closure of context-

free languages with respect to weak codings and intersection with regular

languages.

Theorem 9.52. [34, 31] A language L is context-free if and only if it can

be represented in the form h(L′
∩R), where L′

∈ INS0,0
3 , h is a weak coding,

and R is either from STAR or from LOC(4).

9.8 Graph-Controlled Insertion-Deletion Systems

It was shown in previous sections that there are classes of insertion-deletion

systems that cannot generate RE. Analogously to context-free grammars, a

natural extension of insertion-deletion systems using the graph-controlled

approach can be done. Such model introduces states (or labels of the pro-

gram) associated to every insertion or deletion rule. The transition is per-

formed by applying the corresponding rule and choosing the new state (thus

the rule to be applied) among a specific set of rules. Another definition of

this model can be made in the style of [33] or [6], see Subsection 9.2.2. This

definition supposes that there are disjoint groups of insertion and deletion

rules (corresponding to membranes from [33] or components from [6]). The

transition is performed by first choosing and applying one of applicable rules

from the current group and switching to the next group indicated in the rule
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description. Both definitions are equivalent. This is why we shall consider

that in the subsequent text we use the second definition. We also remark

that the last definition coincides with the definition of insertion-deletion P

systems [33]. Moreover, all results on graph-controlled insertion-deletion

systems were obtained under the name of insertion-deletion P systems.

We start with the following result.

Theorem 9.53. PsStP∗(ins
0,0
1 , del0,01 ) = PsMAT .

Proof. It is not difficult to see that dropping the requirement of the

uniqueness of the instructions with the same label, the power of partially

blind register machines does not change, see, e.g., [9]. We use this fact for

the proof.

The inclusion PsStP∗(ins
0,0
1 , del0,01 ) ⊆ PsMAT follows from the sim-

ulation of minimal context-free graph-controlled insertion-deletion systems

by partially blind register machines, which are known to characterize

PsMAT , see, e.g., [9]. Indeed, any rule (λ, a, λ; q)a ∈ Rp is simulated by

instructions p : (ADD(a), q). Similarly, a rule (λ, a, λ; q)e ∈ Rp is simulated

by instructions p : (SUB(a), q).

The output component i0 is associated to the final state, while the

halting is represented by the absence of the corresponding symbols (final

zero-test) as follows. We assume that Ri0 has no insertion rules (∅ can

be generated by a trivial partially blind register machine), and the out-

put registers correspond to those symbols that cannot be deleted by rules

from Ri0 .

The converse inclusion follows from the simulation of partially blind

register machines by graph-controlled insertion-deletion systems. Indeed,

with every instruction p of the register machine we associate a component.

Instruction p : (ADD(Ak), q) is simulated by rule (λ,Ak, λ; q)a ∈ Rp, and

instruction p : (SUB(Ak), q) by (λ,Ak, λ; q)e ∈ Rp. Final zero-tests: rules

(λ,Ak, λ; #)e ∈ Rh, k ≥ m, should be inapplicable (R# = ∅). �

If the communication graph is a tree, one-way inclusion follows as a partic-

ular case. Non-extended systems are also a particular case.

Corollary 9.54. PsSP∗(ins
0,0
1 , del0,01 ) ⊆ PsMAT .

However, in terms of the generated languages such systems are not very

powerful. Like in the case of context-free insertion-deletion systems there

is no control on the position of insertion. Hence, the language L = {a∗b∗}
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cannot be generated, even if the size of inserted strings is arbitrary. Hence

we obtain:

Theorem 9.55. REG\LStP∗(ins0,0n , del0,01 ) 6= ∅, for any n > 0.

However, there are non-context-free languages that can be generated by

such systems (even without deletion).

Theorem 9.56. LStP∗(ins
0,0
1 , del0,00 ) \ CF 6= ∅.

Proof. It is easy to see that the language {w ∈ {a, b, c}∗ : |w|a = |w|b =

|w|c} is generated by such a system with 3 nodes, inserting consecutively

a, b and c. �

For the tree case the language {w ∈ {a, b}∗ : |w|a = |w|b} can be generated

in a similar manner.

We show a more general inclusion:

Theorem 9.57. ELStP∗(ins0,0n , del0,01 ) ⊂MAT , for any n > 0.

Proof. [Sketch] Due to Lemma 9.2 we can suppose that there are no

rules deleting the terminal symbols. Consider a graph-controlled insertion-

deletion system Π = (O, T,A, p0, h, R1, . . . , Rn). Such a system can be

simulated by a matrix grammar G = (O ∪H,T, S, P ) described below.

For an insertion instruction (λ, a1 · · · an, λ; q)a in component p, let

P contain the matrix {p → q,D → Da1D · · ·DanD}. For any dele-

tion instruction (λ,A, λ; q)e in component p, let P contain the matrix

{p → q, A → λ}. We also add to P three additional matrices: {h → λ},

{D → λ} and {S → p0Da1D · · ·DamD | w = a1 · · · am, w ∈ A}.

The above construction correctly simulates the system Π. Indeed, sym-

bols D represent placeholders for all possible insertions. The first rule in

the matrix simulates the navigation between components. �

Theorem 9.58. [22] ELSP5(ins
1,0
1 , del1,01 ) = RE.

Proof. Let G = (N, T, S, P ) be a type-0 grammar in Kuroda nor-

mal form. We show that there is a system Π ∈ ELSP5(ins
1,0
1 , del1,01 )

such that L(Π) = L(G). Suppose that rules in P are ordered and

n = card(P ). Consider a graph-controlled insertion-deletion system Π =

(V, T, {SX}, i0, if , R1, · · · , R5), where V = N ∪ T ∪ {P i
1, P

i
2 | 1 ≤ i ≤

5} ∪ {X}, the initial and the final components are i0 = if = 1, and the

communication graph has the (tree) structure presented on Figure 9.3.
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Fig. 9.3 Communication graph for Theorem 9.58.

For any context-sensitive production i : AB → CD ∈ P consider the

rules:

Ri
1 ={ri.1.1 : (λ, P i

1 , λ; 2)a};

Ri
2 ={ri.2.1 : (P i

1 , A, λ; 3)e, ri.2.2 : (λ, P i
2 , λ; 1)e};

Ri
3 ={ri.3.1 : (P i

1 , B, λ; 4)e, ri.3.2 : (P i
2, C, λ; 2)a};

Ri
4 ={ri.4.1 : (P i

1 , P
i
2, λ; 5)a, ri.4.2 : (P i

2, D, λ; 3)a};

Ri
5 ={ri.5.1 : (λ, P i

1 , λ; 4)e}.

For any context-free production i : A→ BC ∈ P consider the rules

Ri
1 ={ri.1.1 : (λ, P i

1 , λ; 2)a};

Ri
2 ={ri.2.1 : (P i

1 , A, λ; 3)e, ri.2.2 : (λ, P i
2 , λ; 1)e};

Ri
3 ={ri.3.1 : (P i

1 , X, λ; 4)a, ri.3.2 : (P i
2 , B, λ; 2)a};

Ri
4 ={ri.4.1 : (P i

1 , P
i
2, λ; 5)a, ri.4.2 : (P i

2 , C, λ; 3)a};

Ri
5 ={ri.5.1 : (λ, P i

1 , λ; 4)e}.

For any terminal production i : A→ α ∈ P, α ∈ T consider the rules

Ri
1 ={ri.1.1 : (λ, P i

1 , λ; 2)a};

Ri
2 ={ri.2.1 : (P i

1, A, λ; 3)e, ri.2.2 : (λ, P i
2 , λ; 1)e};

Ri
3 ={ri.3.1 : (P i

1, P
i
2 , λ; 4)a, ri.3.2 : (P i

2 , α, λ; 2)a};

Ri
4 ={ri.4.1 : (λ, P i

1 , λ; 3)e};

Ri
5 =∅.

For every λ−production i : A→ λ ∈ P consider the sets of rules

Ri
1 = {i.1.1 : (λ,A, λ; 1)e, };R

i
2 = Ri

3 = Ri
4 = Ri

5 = ∅.

Now associate with the first component the set of rules R1 =
⋃n

i=1R
i
1 ∪

{0 : (λ,X, λ; 1)e} and with the k−th component k = 2, . . . , 5 the set of rules

Rk =
⋃n

i=1R
i
k. We claim that Π generates the same language as G.

We prove that every step of the derivation in G can be simulated in Π.

Consider as example the production i : AB → CD ∈ R. The simulation

of this production is done as follows. Consider a string w1ABw2 in the

component 1. Then, there is a following derivation

(1, w1ABw2) Vri.1.1 (2, w1P
i
1ABw2) Vri.2.1 (3, w1P

i
1Bw2) Vri.3.1

Vri.3.1 (4, w1P
i
1w2) Vri.4.1 (5, w1P

i
1P

i
2w2) Vri.5.1 (4, w1P

i
2w2) Vri.4.2

Vri.4.2 (3, w1P
i
2Dw2) Vri.3.2 (2, w1P

i
2CDw2) Vri.2.2 (1, w1CDw2).
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The simulation of context-free, terminal and λ-productions can be done in

a similar way.

It is easy to see that after insertion of P i
1 by the rule ri.1.1, all rules

corresponding to i-th production have to be applied until the rule ri.2.2,

otherwise the derivation will be blocked. We also note that every senten-

tial form has at most one copy of symbols P i
1 and P i

2 , i = 1, . . . , n and

none of them is present if the component 1 is active. We mention that

one extra symbol X /∈ N ∪ T appears when context-free productions are

simulated. This is due to the fact that the total number of inserted and

deleted symbols must be even. This symbol is finally deleted by deletion

rule 0 : (λ,X, λ, 1)d ∈ R1.

According to the definition of graph-controlled insertion-deletion sys-

tems the result of a computation consists of all strings over T which

are obtained when the component 1 is active. Hence, there is a one-to-

one correspondence between derivations in G and Π. Therefore L(G) =

L(Π). �

A similar result can be obtained for the family ELSP5(ins
1,0
1 del0,11 ).

Theorem 9.59. ELSP5(ins
1,0
1 del0,11 ) = RE

Proof. [Sketch] We modify the construction from the previous theorem.

Given a type-0 grammar G, consider the system Π as defined in Theo-

rem 9.58. We perform the following changes to Π:

• for productions AB → CD, replace (P i
1 , A, λ; 3)e in R2 by (λ,B, P i

1 ; 3)e
and (P i

1 , B, λ; 4)e in R3 by (λ,A, P i
1 ; 4)e,

• for other productions, replace (P i
1, A, λ; 3)e in R2 by (λ,A, P i

1 ; 3)e.

By applying the same argument as in the previous theorem we get the

equivalence L(Π) = L(G). �

The symmetrical cases of the last two theorems also hold:

Corollary 9.60. ELSP5(ins
0,1
1 , del0,11 ) = ELSP5(ins

0,1
1 , del1,01 ) = RE.

Theorem 9.61. [23] ELSP4(ins
1,0
1 , del0,02 ) = RE.

Proof. [Sketch] For a grammar G = (N, T, S, P ) in Pentonnen normal

form, consider a system Π = (V, T, {SX}, i0, if , R1, . . . , R4).

We define the nonterminal alphabet as V = N ∪ T ∪ {P i
1, P

i
2, P

i
3 | 1 ≤

i ≤ n}, where n is the number of productions in the grammar.
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For every context sensitive production i : AB → AC ∈ P consider:

Ri
1 ={(A,P i

1, λ; 2)a};

Ri
2 ={(P i

1, P
i
2 , λ; 3)a, (λ, P i

1P
i
3 , λ; 1)e};

Ri
3 ={(λ, P i

2B, λ; 4)e, (P i
3 , C, λ; 2)a};

Ri
4 ={(P i

1, P
i
3 , λ; 3)a};

For every context-free production i : A→ BC ∈ P consider:

Ri
1 ={(A,P i

1 , λ; 2)a};

Ri
2 ={(P i

1, C, λ; 3)a, (λ, P i
2 , λ; 1)e};

Ri
3 ={(P i

1, P
i
2 , λ; 4)a, (P i

2 , B, λ; 2)a};

Ri
4 ={(λ,AP i

1 , λ; 5)e;

For every terminal production i : A→ α ∈ P consider:

Ri
1 ={(A,P i

1 , λ; 2)a};

Ri
2 ={(P i

1 , α, λ; 3)a, (λ, P i
2P

i
3, λ; 1)e};

Ri
3 ={(P i

1 , P
i
2, λ; 4)a, (P i

2 , P
i
3, λ; 2)a};

Ri
4 ={(λ,AP i

1 , λ; 3)e};

For every λ−production i : A→ λ ∈ P consider

Ri
1 = {(λ,A, λ; 1)e}; Ri

2 = Ri
3 = Ri

4 = ∅.

We associate with k−th component the set of rules Rk =
⋃n

i=1R
i
k. We

mention that in this case the simulation of i-th production is controlled by

P i
1, P

i
2 , P

i
3. Once a rule from R1 is applied, inserting P i

1 for some 1 ≤ i ≤ n,

the only possible continuation of the derivation is to perform the sequence

of rules corresponding to i-th production. We apply the same argument as

in Theorem 9.58 in order to state the equivalence L(G) = L(Π). �

Since RE is closed with respect to the mirror operation, by taking the

mirror rules of Π we obtain:

Corollary 9.62. ELSP4(ins
0,1
1 , del0,02 ) = RE.

By a similar straightforward simulation one can obtain the characteri-

zation of RE by exchanging the size of insertion and deletion rules.

Theorem 9.63. [23] ELSP5(ins
0,0
2 , del1,01 ) = ELSP5(ins

0,0
2 , del0,11 ) =

RE.

Theorem 9.64. REG \ ELStP∗(ins
0,0
2 , del0,02 ) 6= ∅.



September 2, 2010 11:33 World Scientific Book - 9in x 6in 00Chapter

Small Size Insertion and Deletion Systems 509

Proof. [Sketch] We show that Lab = {a∗b} /∈ ELStPk(ins
0,0
2 , del0,02 ),

for any k ≥ 1. Assume the converse, and let Π be a graph-controlled

insertion-deletion system having context-free rules that may insert or delete

at most two symbols and that L(Π) = Lab. By reasons similar to those in

Lemma 9.11 and Lemma 9.13, it follows that for every finite derivation

in Π one can construct a partition of rules P1 ∪ · · · ∪ Pr, r ≥ 1 such that

the overall effect of rules from each Pi, i = 1, · · · , r is the context-free

insertion of at most two terminals. By taking a word of sufficient length, it

is clear that some applications of rules from Pi which insert a or aa should

be performed. Since the insertion is context-free, such an application can

happen at the end of the word leading to a word having a preceded by b,

causing a contradiction. �

In the remaining part of the section we consider graph-controlled inser-

tion systems without deletion rules.

First, we consider the Parikh image of graph-controlled context-free

insertion systems. Let SLk, k ≥ 1 denote the set of all semi-linear sets

of dimension k, and SL =
⋃

k SLk. There is an obvious relation between

StP∗(ins0,0n ), n ≥ 1 and SL:

Theorem 9.65. PsStP∗(ins0,0n ) = SL.

For the next theorems we consider the encodings of the generated lan-

guages in a similar way as in Section 9.8. In this way we establish equiv-

alences between the classes of languages generated by graph-controlled in-

sertion systems and the classes from the Chomsky hierarchy.

Theorem 9.66. [20] Every language L ∈ RE can be represented in the

form L = ϕ(h−1(L′)), where ϕ is a weak coding, h is a morphism, and L′
∈

LSP3(ins
2,2
2 ).

Proof. [Sketch] In order to prove the theorem we use “mark and migrate”

technique explained in Section 9.7 for insertion systems. A simulation of

type-0 grammars in the special Pentonnen normal form is performed. Let

G = (N, T, S, P ) be such a grammar. Consider graph-controlled insertion-

deletion system Π = (V, T, {S$}, i0, if , R1, R2, R3), where V = T ∪N ∪F ∪

F ∪ {#,#, $}, F = {FA, | A ∈ N}, F = {FA, | A ∈ N}, and the initial and

the final components are labeled by 1.

We assume that the communication graph of Π has the tree structure

depicted in Figure 9.4.
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Fig. 9.4 Communication graph for Theorem 9.66.

The rules R1, R2, R3 corresponding to the 1-st, the 2-nd, and the 3-rd

component are defined as follows:

R1 ={ri.1.1 : (AB,#C,α; 1) | i : AB → AC ∈ P, α ∈ V \{#,#}} ∪

{ri.1.2 : (A,#C,Bα; 1) | i : AB → CB ∈ P, α ∈ V \{#,#}} ∪

{ri.1.3 : (A,C, α; 1) | i : A→ AC ∈ P, α ∈ V \{#,#}} ∪

{ri.1.4 : (λ,C,Aα; 1) | i : A→ CA ∈ P, α ∈ V \{#,#}} ∪

{ri.1.5 : (A,#δ, α; 1) | i : A→ δ ∈ P, α ∈ V \{#,#}}∪

{rA.1.6 : (A,#FA, α; 2) | A ∈ N,FA ∈ F, α ∈ V \{#,#}};

R2 =

{

rA.2.1 : (FA,#A,α
′; 1),

rA.2.2 : (FA,#A,α
′; 1)

∣

∣

∣

∣

A ∈ N,FA ∈ F,FA ∈ F ,

α′
∈ (N + T ) · (N + T + $) + $

}

∪

{rA.2.3 : (FAX,#FA,#; 3) | X ∈ F ∪N,FB ∈ F , α ∈ V \{#,#}}∪

{rA.2.4 : (FAFB,#FA,#; 3), rA.2.5 : (FA#, FA, α; 3),

rA.2.6 : (FA#, FA, α; 3), rA.2.7 : (FA#, FA,#; 3),

rA.2.8 : (FA#, FA,#; 3), rA.2.9 : (FA#, FA,#; 3),

rA.2.10 : (FA#, FA,#; 3)};

R3 ={rA.3.1 : (FA,#, α; 2) | α ∈ V, α 6= #}∪

{rA.3.2 : (FA,#, α
′; 2) | α′

∈ V, α′
6= #}.

Consider also the morphism h : V \{#} → V and the weak coding ϕ : V →

T ∪ {λ} defined by:

h(a) =

{

a, if a ∈ T,

a# if a ∈ V \(T ∪ {#})
ϕ(a) =

{

a, if a ∈ T,

λ if a ∈ V \T.

One may see that productions in P are in a one-to-one correspondence

with the first five groups of insertion rules from R1. Furthermore, the in-

sertions performed by rules ri.1.1 − ri.1.5, 1 ≤ i ≤ |P |, have the following

properties:

• the rules can be only applied to the symbols that are not marked;

• the insertion marks the letter that is rewritten by the production.
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Hence, for every derivation step in G a derivation step in Π can be consid-

ered (assuming that letters for context-sensitive productions are not sepa-

rated by marking symbols).

Consider a pair of letters AB matching a production AB → AC or

AB → CB ∈ P . Suppose that this pair is separated by letters that have

been marked. In this case, the rules from R2 and R3 are used in order to

transfer a copy of letter A ∈ N to the right-hand side of marked symbols.

Indeed, every rule from ri.2.3 − ri.2.10 sees the next symbol to the right,

and if it is marked, the rule inserts a copy of the symbol that have to be

transferred to the right. For example consider the transfer of A in the string

AX#C$ (here, we underline the inserted substrings)

(1, AX#C$) Vr.1.1 (2, A#FAX#C$) Vr.2.3 (3, A#FAX#FA#C$) Vr.3.1

(2, A#FA#X#FA#C$) Vr.2.6 (3, A#FA#X#FA#FAC$) Vr.3.2

(2, A#FA#X#FA ##FAC$) Vr.2.1 (1, A#FA#X#FA ##FA#AC$).

The repetition of the 2-nd and the 3-rd active components makes a cycle

until either the rule ri.2.1 or the rule ri.2.2 is applied. In this case, a copy

of the symbol is inserted immediately at the left of either an unmarked

nonterminal or a terminal symbol, or the rightmost mark.

We consider only those words obtained in Π where every nonterminal

symbol have been marked, because otherwise the inverse morphism h−1 is

not defined. This implies that every cycle happening in the 2-nd and the

3-rd components must be terminated. Finally, by applying the weak coding

ϕ we eliminate every nonterminal and marking symbols.

Therefore, for every derivation in G one obtains a counterpart derivation

in Π. This gives L(G) = ϕ(h−1(L(Π))). �

Let us consider graph-controlled insertion systems with left and right

contexts of at most one symbol. This family characterizes the languages

generated by context-free matrix grammars.

Theorem 9.67. [20] A language L is in MAT if and only if it can be

written in the form L = ϕ(h−1(L′)), where L′
∈ LSP∗(ins

1,1
2 ), ϕ is a weak

coding and h is a morphism.

Proof. [Sketch] In order to prove the “only if” part of the claim, let us

consider a language L ∈MAT. Let G = (N, T, S,M) be a matrix grammar

in the binary normal form such that L = L(G). Hence, we can assume that

matrices in M are labeled by integers 1, · · · , n and each matrix in M has

the form i : (A → BC,A′
→ B′C′), where A,A′

∈ N and B,C,B′, C′
∈
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N ∪ T ∪ {λ}. Consider the following graph-controlled insertion system Π

with nonterminal alphabet V = N ∪ T ∪ {#} ∪ {Ci, C
′
i | i = 1 · · ·n}, the

initial and the final component labeled by “1”, initial string S, and the

communication graph with the structure represented in Figure 9.5.

/.-,()*+
1

/.-,()*+
2

/.-,()*+
3

qqqqqq

WWWWWWWWWWWWWW

/.-,()*+
4

/.-,()*+
5

· · ·
/.-,()*+
n+ 3

Fig. 9.5 Communication graph for Theorem 9.67.

Let i : (A→ BC,A′
→ B′C′) be a matrix in M . Then consider the sets

of rules of the size (2, 1, 1) that correspond to the i-th production:

Ri
1 ={ri.1.1 : (A,#Ci, α; 2) | α ∈ V \{#}};

Ri
2 ={ri.2.1 : (Ci, BC, α; 3), ri.2.2 : (C′

i,#, α; 1) | α ∈ V \{#}};

Ri
3 ={ri.3.1 : (Ci,#, α; i + 3), ri.3.2 : (C′

i, B
′C′, α; 2) | α ∈ V \{#}};

Ri+3 ={ri+3.4 : (A′,#C′
i, α; 3) | α ∈ V \{#}}.

We associate with the k-th component k = 1, 2, 3 the set of rules Rk =
⋃n

i=1 R
i
k, and with the k-th component k = 4 · · ·n+ 3 the set Rk.

Let h and ϕ be a morphism and a weak coding correspondingly defined

as follows:

h(a) =

{

a, if a ∈ T,

a# if a ∈ V \(T ∪ {#})
ϕ(a) =

{

a, if a ∈ T,

λ if a ∈ V \T.

We claim that L(G) = ϕ(h−1(L(Π))). Indeed, Π simulates productions

ofM in a direct way. Every sentential form contains at most one unmarked

symbol from {Ci, C
′
i | i = 1 · · ·n}. Whenever the rule i.1.1 is applied, the

only possible derivation is to complete all the rules corresponding to the i-

th production. Consider sentential form w1AwA
′w2, where w1, w2, w ∈ V ∗

and A,A′ are not marked.

(1, w1AwA
′w2) Vri.1.1 (2, w1A#CiwA

′w2) Vri.2.1

(3, w1A#CiBCwA
′w2) Vri.3.1 (4, w′

1A
′w2) Vrn+i.4 (3, w′

1A
′#C′

iw2) V

Vri.3.2 (2, w
′
1A

′#C′
iB

′C′w2) Vri.4.2 (1, w′
1A

′#C′
i#B

′C′w2),

where w′
1 = w1A#Ci#BCw. Hence, the derivation marks nonterminals

A,A′ and inserts BC, B′C′ to the right of A# and A′#, respectively. At
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the end, by applying the inverse morphism and the weak coding we remove

every marked nonterminal. Hence, we have L(G) ⊆ ϕ(h−1(L(Π))).

The inverse inclusion is obvious, because every rule in Π has its coun-

terpart in G. Moreover, the case when the derivation in Π is blocked corre-

sponds to the case in which the simulation of a matrix cannot be completed.

Hence, the “only if” part of the theorem holds.

We mention that the family of languagesMAT is closed with respect to

inverse morphisms and weak codings. Hence, in order to prove the “if” part

of the theorem it is enough to show that for any graph-controlled insertion

system Π there is a matrix grammar G such that L(Π) = L(G). We extend

the construction of the context-free grammar used in Theorem 9.46 for the

case of matrix grammars.

Let Π = (V, V,A, i0, if , R1, · · · , Rn) be an arbitrary graph-controlled

insertion system. Consider the matrix grammar G = (N, V, S,M) with

nonterminal alphabet N = {Qi | i = 1, · · · , n} ∪ {Da,b | a, b ∈ V ∪{λ}} and

the set of matrices M =M1 ∪M2 ∪M3 with

M1 ={(S → Qi0δ(λ,w, λ)) | w ∈ A};

M2 ={(Da,b → a) | Da,b ∈ D, a, b ∈ T } ∪ {(Qif → λ)};

M3 ={(Qi → Qj , Da1,a2
→ δ(a1, w, a2)) | (a1, w, a2; j) ∈ Ri,

for l = 1, 2 al =

{

al, if al ∈ V,

t, ∀t ∈ V ∪ {λ}, if al = λ
};

where for every a1, a2 ∈ V ∪ {λ}, w ∈ V ∗ we denote by δ(a1, w, a2) the

following

δ(a1, λ, a2) = Da1,a2 , δ(a1, b1 · · · bk, a2) = Da1,b1Db1,b2 · · ·Dbk−1,bkDbk,a2 .

The simulation of Π by the matrix grammar is based on the encod-

ing of pairs of adjacent letters by nonterminals from D. So, the encoded

pair can be used as a context for an insertion rule. In addition, the la-

bel of the active component is represented by a nonterminal in Q. A rule

(a1, b1 · · · bk, a2, j) ∈ Ri, a1, a2 ∈ V ∪ {λ}, b1 · · · bk ∈ V k can be simulated

by the grammar iff the sentential form contains both Qi and Da1,a2 . As a

result, the label representing the active component is rewritten to Qj and

Da1,a2 is rewritten to the string Da1,b1Db1,b2 · · ·Dbk−1,bkDbk,a2 . It is clear

that the string preserves one symbol (left) context. In order to simulate

rules that have no contexts we introduce productions with an arbitrary

context: al ∈ V ∪ {λ}, l = 1, 2.

The simulation of Π by the grammar starts with a nondeterministic

choice of an axiom from A. Then, during the derivation each rule from
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R1, · · · , Rn with the context (a1, a2) can be applied iff the productions

having Da1,a2 in the left hand side can be applied. Finally, the string over

V can be produced by the grammar as soon as Qif is deleted from the

sentential form. The deletion of Qif specifies that Π activates the final

component. As there is a one-to-one correspondence between derivations

in G and Π, we obtain L(Π) = L(G). Hence, LSP∗(ins
1,1
∗ ) ⊆MAT. �

9.9 Graph-Controlled Insertion-Deletion Systems with

Priorities

In this section we present the results on context-free one-symbol graph-

controlled insertion-deletion systems with priorities. Once a priority of

deletion over insertion is introduced, PsRE can be characterized, but in

terms of language generation such systems cannot generate too much, be-

cause there is no control on the position of an inserted symbol. If one-sided

contextual insertion or deletion rules are used, then this can be controlled

and all recursively enumerable languages can be generated. The same re-

sult holds if a context-free deletion of two symbols is allowed. Most of the

results in this section are from [2] and [3].

Minimal context-free graph-controlled insertion-deletion systems with

priorities do generate PsRE. In case of general communication graph this is

particularly easy to see: jumping to an instruction corresponds to switching

to the associated component, and the entire construction is a composition

of graphs shown in Figure 9.6. The decrement instruction works correctly

because of priority of deletion over insertion.

/.-,()*+
p
(λ,Ak,λ;q)a

//

(λ,Ak,λ;r)a

��

/.-,()*+
q

/.-,()*+
r

/.-,()*+
p
(λ,Ak,λ;q)e

//

(λ,N,λ;p′)a

��

/.-,()*+
q

/.-,()*+
p′
(λ,N,λ;r)e

///.-,()*+
r

Fig. 9.6 Simulating p : (ADD(k), q, r)(left) and p : (SUB(k), q, r) (right).

For the tree-like communication graph, the proof is more sophisticated.

Theorem 9.68. PsSP∗(ins
0,0
1 < del0,01 ) = PsRE.

Proof. [Sketch] The proof is done by showing that for any register ma-

chine M = (d,Q, q0, h, P ) there is a graph-controlled insertion-deletion
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system Π ∈ PsSP∗(ins
0,0
1 < del0,01 ) with Ps(M) ⊆ Ps(Π). Then the exis-

tence of register machines generating PsRE implies PsRE ⊆ Ps(Π). The

converse inclusion follows from the Church-Turing thesis.

Let Q+ (Q−) be the sets of labels of increment (conditional decrement,

respectively) instructions of a register machine, and let Q = Q+∪Q−∪{h}

represent all instructions. Consider a graph-controlled insertion-deletion

system with the alphabet O = Q∪{Ai | 1 ≤ i ≤ d}∪{Y } and the following

structure (illustrated in Figure 9.7).

/.-,()*+
1

/.-,()*+
0

/.-,()*+
2

KK
KK

KK
K

for every p ∈ Q+
/.-,()*+

3
iiiiiiiiiiiii

UUUUUUUUUUUUU /.-,()*+
4

for every p ∈ Q−

/.-,()*+
p+1

/.-,()*+
p−1

VVVVVVVVVVVVV

/.-,()*+
p+2

/.-,()*+
p−2

/.-,()*+
p02

/.-,()*+
p+3

/.-,()*+
p−3

/.-,()*+
p03
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�

�
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Fig. 9.7 Communication graph for Theorem 9.68. The structures in the dashed rect-

angles are repeated for every instruction of the register machine.

The system has initial string q0, initial component 3, final component

0, and the following rules.

R1 = {1 : (λ, Y, λ; 0)e},

R2 = {2.1 : (λ, Y, λ; 1)a} ∪ {2.2 : (λ, Y, λ; 4)e},

R3 = {3.1 : (λ, p, λ; p+1 )e | p ∈ Q+} ∪ {3.2 : (λ, p, λ; p−1 )e | p ∈ Q−}

∪ {3.3 : (λ, Y, λ; 3)e} ∪ {3.4 : (λ, h, λ; 2)e},

For any rule p : (ADD(k), q, s), Rp+
3
= ∅ and

Rp+
1
= { a.1.1 :(λ,Ak, λ; p

+
2 )a, a.1.2 :(λ, Y, λ; 3)a},

Rp+
2
= { a.2.1 :(λ, q, λ; p+1 )a, a.2.1′ :(λ, s, λ; p+1 )a,

a.2.2 :(λ, q, λ; p+3 )e, a.2.2′ :(λ, s, λ; p+3 )e},
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For any rule p : (SUB(k), q, s), Rp−

3
= Rp0

3
= ∅ and

Rp−

1
= { e.1.1 :(λ,Ak, λ; p

−
2 )e, e.1.2 :(λ, Y, λ; p−2 )a, e.1.3 :(λ, Y, λ; 3)e},

Rp−

2
= { e.2.1 :(λ, q, λ; p−1 )a, e.2.2 :(λ, q, λ; p−3 )e,

e.2.3 :(λ, s, λ; p−3 )e, e.2.4 :(λ, Y, λ; p−2 )a},

Rp0
2
= { e.3.1 :(λ, s, λ; p−1 )a, e.3.2 :(λ, q, λ; p03)e, e.3.3 :(λ, s, λ; p03)e}.

When component 3 is active, configurations (p, x1, . . . , xn) of M are en-

coded by strings

Perm(pAx1
1 . . . Axn

n Y t), t ≥ 0.

We say that such strings are in the simulating form. Clearly, in the initial

configuration the string is already in the simulating form.

To prove that system Π correctly simulates M, we prove the following

claims:

(1) For any transition (p, x1 . . . xn) =⇒ (q, x′1, . . . , x
′
n) in M there exists

a computation in Π from the string Perm(pAx1
1 . . . Axn

n Y t) and active

component 3 to the string Perm(qA
x′

1
1 . . . A

x′

n
n Y t′), t′ ≥ 0 and active

component 3 such that during this computation component 3 is not ac-

tive at all intermediate steps and, moreover, this computation is unique.

(2) In any successful computation in Π (yielding a non-empty result), only

strings of the above form exist when component 3 is active.

(3) The result (x1, . . . , xn) in Π is obtained if and only if a string of form

Perm(hAx1
1 . . . Axn

n ) appears when component 3 is active.

Now we prove each claim above. Consider a string Perm(pAx1
1 . . . Axn

n Y t),

t ≥ 0 and active component 3 of Π. Assume that p is associated to the

instruction p : (ADD(k), q, s) ∈ P . The only applicable rule in Π is from

the group 3.1 (in the future we simply say rule 3.1) yielding the string

Perm(Ax1
1 . . . Axn

n Y t) and active component p+1 . After that, rule a.1.1 is

applied yielding string Perm(Ax1
1 . . . Axk+1

k . . . Axn
n Y t) and active compo-

nent p+2 . Following that, one of rules a.2.1 or a.2.1′ is applied; then ap-

plying rule a.1.2 leads to one of strings Perm(zAx1

1 . . . Axk+1
k . . . Axn

n Y t+1),

z ∈ {q, s}, in the simulating form.

Now suppose p is associated to the instruction p : (SUB(k), q, s) ∈

P . Then, the only applicable rule in component 3 is 3.2, which yields

the string Perm(Ax1
1 . . . Axn

n Y t) and active component p−1 . Now if

xk > 0, then, due to the priority, rule e.1.1 will be applied, followed

by application of rules e.2.4, e.2.1 and e.1.3, which yields the string
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Perm(qAx1
1 . . . Axk−1

k . . . Axn
n Y t′) that is in the simulating form. If xk = 0,

then rule e.1.2 will be applied (provided that all symbols Y were previously

deleted by rule 3.3), followed by rules e.3.1 and e.1.3, which leads to the

string Perm(sAx1
1 . . . Axn

n ) that is in the simulating form.

To show that component 3 is not active during the intermediate steps,

we prove the following property:

Property 9.69. For any component p+1 or p−1 , if it is activated by com-

ponent 3, it leads to activation of the “child” component (p+2 , p
−
2 or p02),

while if it is activated from the “child” component, it leads to activation of

component 3.

Component p+1 or p−1 can only be active if in the previous step symbol

p was deleted by one of rules 3.1 or 3.2. If one of rules a.1.2 or e.1.3 is

applied, then component 3 will be active and the string will be in the form

Perm(Ax1
1 . . . Axn

n Y t), which cannot evolve anymore because all rules in

component 3 imply the presence of some symbol from the set Q. Hence,

a “child” component is activated. In the next step, the control will return

from the “child” component by one of rules a.2.1, a.2.1′, e.2.1 or e.3.1

inserting a symbol from Q. If the string activates a “child” component

again, then it will be sent to a trap component (p+3 , p
−
3 or p03) by rules

deleting symbols from Q. Hence the only possibility is to go to component 3

(a string that employed component p−2 will additionally use rule e.2.4).

For the second claim, it suffices to observe that the property above

ensures that when component 3 is active, only one symbol from Q can be

present in the string.

The third claim holds since a string may activate component 2 if and

only if the final label h of M appears while component 3 is active. Then,

the string is checked for the absence of symbols Y by rule 2.2 (note that

symbols Y can be erased by 3.3 of component 3) and sent to component 0

by rules 2.1 and 1.

By induction on the number of computational steps we obtain that Π

simulates any computation in M. Claims 1 and 2 imply that it is not

possible to generate other strings, and Claim 3 implies that the same result

is obtained. �

We now show that small graph-controlled insertion-deletion systems

with priority generate all recursively enumerable languages, at the price of

either one-symbol context in either type of operation, or deletion of weight

two.
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Although Theorem 9.68 shows that the systems from the previous sec-

tion are quite powerful, they cannot generate RE without control on the

place where a symbol is inserted (REG\LStP∗(ins0,0n < del0,01 ) 6= ∅ for any

n > 0, see Theorem 9.55). Once we allow a context in insertion or deletion

rules, they can.

Theorem 9.70. LSP∗(ins
0,1
1 < del0,01 ) = RE.

Proof. [Sketch] It suffices to simulate register machines with WRITE

instructions. We implement this instruction as an ADD instruction, except

there is a special marker deleted at the end, and the “written” symbol has

to be inserted to the left of the marker, as follows:

• Replace any write instruction p : (WRITE(A), q, s), A ∈ T of the ma-

chine by instructions p : (ADD(A), q, s), considering output symbols A

like new dummy registers. Construct the system Π as in Theorem 9.68.

• Change the initial string to q0M ;

• Replace rules a.1.1 ((λ,A, λ; p+2 )a ∈ Rp+
1
) by (λ,A,M ; p+2 )a for A ∈ T ;

• Add a new component s, make it final, and let R0 = {(λ,M, λ; s)e},

It is easy to see that the above construction permits to correctly simulate

the register machine with write instructions. �

Taking M in the left context yields the mirror language. Since RE is closed

with respect to the mirror operation, the following corollary holds:

Corollary 9.71. LSP∗(ins
1,0
1 < del0,01 ) = RE.

A similar is proved if contextual deleting operation is allowed instead.

Theorem 9.72. LSP∗(ins
0,0
1 < del1,01 ) = RE.

Proof. [Sketch] As in Theorem 9.70, we use the construction from Theo-

rem 9.68. However, additional components are needed to simulate the write

instructions.

We modify the construction of Theorem 9.68 as follows. Let Qs be the

set of labels of WRITE instructions of a register machine. We add the

following components (the modification of the communication graph shown

in Figure 9.8):
As in Theorem 9.68, the initial string is q0 and the starting component is

3. The system contains sets of rules R1, R2, Rp+
1
, Rp+

2
, Rp+

3
, Rp−

1
, Rp−

2
, Rp−

3
,

Rp0
2
, Rp0

3
defined as in Theorem 9.68. There are also following additional
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from

Theorem 9.68

Fig. 9.8 Communication graph for Theorem 9.72.

rules for instructions p : (WRITE(A), q) (the ruleset R′
3 shall be added to

R3).

R1′ = { 1′ :(λ,M, λ; 0)e},

R
′

3 = { 3.5 :(λ, p, λ; ps1)e | p ∈ Qs},

Rp
s
1
= { w.1.1 :(λ,M, λ; ps2)a, w.1.2 :(λ,M, λ; 3)e},

Rp
s
2
= { w.2.1 :(λ,M ′

, λ; ps3)a, w.2.2 :(λ,M ′

, λ; ps1)e}

∪ { w.2.3 :(M,x, λ; ps5)e | x ∈ O},

Rp
s
3
= { w.3.1 :(λ,A, λ; ps4)a, w.3.2 :(λ, Y, λ; ps2)a}

∪ { w.3.3 :(x,M, λ; ps6)e | x ∈ O \ {M
′

, q}},

Rp
s
4
= { w.4.1 :(λ, q, λ; ps3)a, w.4.2 :(M ′

,M, λ; ps7)e},

Rp
s
5
= ∅, Rp

s
6
= ∅, Rp

s
7
= ∅.

The WRITE instructions are simulated as follows. Suppose the configu-

ration of register machine is pAx1
1 . . . Axd

d and the word a1 . . . an is written

on the output tape. The corresponding simulating string in Π will be of

form p t⊥ w, where w = Perm(Ax1
1 . . . Axd

d Y t) t⊥ a1 . . . an, t ≥ 0. After the

deletion of the state symbol p, a marker M is inserted in the string by rule

w.1.1. If M is not inserted at the right end of the string, in the next step

rule w.2.3 is applicable and the string activates the trap component ps5. In

the next step symbolM ′ is inserted in the string. If it is not inserted before

M , then the string is sent to region ps6 by rule w.3.3. Hence, at this moment

the contents of region ps3 is wM ′M . If rule w.3.2 is used, then the string

Y t⊥ w activates component 3 and no rule is applicable anymore. Other-

wise, symbol A is inserted by rule w.3.1. If it is not between M ′ and M ,

then rule w.4.2 is applicable and the string activates component ps7. After

that, q is inserted between A and M , otherwise the trapping rule w.3.3 is
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applicable. At this moment, the configuration of the system consists of the

string wtM
′AqM and active component is ps3. Now if the rule w.3.1 is used,

then the string activates the trap component by rule w.4.1. Otherwise, rule

w.3.2 should be used, followed by the application of rules w.2.2 and w.1.2,

leading to string Y t⊥ wAq and active component 3. Hence, symbol A is

appended at the end of the string. At the end of the computation, all sym-

bols Y are deleted when the string gets component 1′ where the symbol M

is further deleted and the string is sent to the final component. Hence, all

symbols from O − T are deleted and a word generated by M is obtained.

The converse inclusion LSP∗(ins
0,0
1 < del1,01 ) ⊆ RE can be obtained

from the Church-Turing thesis. �

Since RE is closed with respect to the mirror operation, it holds that

Corollary 9.73. LSP∗(ins
0,0
1 < del0,11 ) = RE.

Notice that the contextual deletion was used only to check for erroneous

evolutions. It can be replaced by a context-free deletion of two symbols.

Theorem 9.74. LSP∗(ins
0,0
1 < del0,02 ) = RE.

Proof. We modify the proof of Theorem 9.72 as follows.

• Replace rules w.2.3 ((M,x, λ; ps5)e ∈ Rps
2
) by rules (λ,Mx, λ; ps5)e,

• Replace rules w.3.3 ((x,M, λ; ps6)e ∈ Rps
3
) by rules (λ, xM, λ; ps6)e,

• Replace rules w.4.2 ((M ′,M, λ; ps7)e ∈ Rps
4
) by rules (λ,M ′M,λ; ps7)e.

The role of the new rules is the same as the role of the rules that were

replaced. More exactly, the system checks whether two certain symbols are

consecutive and if so, the string is blocked in a non-output region. �

We mention that the counterpart of Theorem 9.74 obtained by interchang-

ing parameters of the insertion and deletion rules is not true, see Theo-

rem 9.55.

9.10 Bibliographical Remarks

Insertion systems, without using the deletion operation, were first consid-

ered in [10], however the idea of the context adjoining was exploited long

before by [25]. Context-free insertion systems as a generalization of concate-

nation were first considered in [11, 12]. A formal language study of both

context-free insertion and deletion operations was done in [15], however
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the operations were considered separately. The articles [8, 13] investigate

the power of the insertion and deletion operations. Both operations were

first considered together in [18] and related formal language investigations

can be found in several places; we mention only [27] and [32]. The biolog-

ical motivation of insertion-deletion operations lead to their study in the

framework of molecular computing, see, for example, [7], [16], [35], [38].

The universality of context-free insertion-deletion systems of size

(2, 0, 0; 3, 0, 0) and (3, 0, 0; 2, 0, 0) was shown in [26], while the optimality of

this result was shown in [40]. The latter article suggested considering the

sizes of each context as a complexity measure and not the maximum as it

was done before. One-sided insertion-deletion systems were first considered

in [28] and the graph-controlled variant was considered in [22]. Graph-

controlled insertion-deletion systems with priorities were introduced in [2].

Other variants of the insertion operation and different control mecha-

nisms can be found in [15, 14, 5].
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10.1 Introduction

The origin of the networks of evolutionary processors is twofold. A basic

architecture for parallel and distributed symbolic processing, related to the

Connection Machine [32] as well as the Logic Flow paradigm [23], consists

of several processors, each of them being placed in a node of a virtual com-

plete graph, which are able to handle data associated with the respective
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node. Each node processor acts on the local data in accordance with some

predefined rules, and then local data becomes a mobile agent which can

navigate in the network following a given protocol. Only that data which is

able to pass a filtering process can be communicated. This filtering process

may require to satisfy some conditions imposed by the sending processor,

by the receiving processor or by both of them. All the nodes send simulta-

neously their data and the receiving nodes handle also simultaneously all

the arriving messages, according to some strategies, see [26, 32].

On the other hand, in [18] one considers a computing model inspired

by the evolution of cell populations, which might model some properties of

evolving cell communities at the syntactical level. Cells are represented by

words which describe their DNA sequences. Informally, at any moment of

time, the evolutionary system is described by a collection of words, where

each word represents one cell. Cells belong to species and their community

evolves according to mutations and division which are defined by operations

on words. Only those cells are accepted as surviving (correct) ones which

are represented by a word in a given set of words, called the genotype space

of the species. This feature parallels with the natural process of evolution.

A network of language processors (see [19]) consists of several language

identifying devices (language processors) associated with nodes of a virtual

graph that rewrite words (representing the current state of the nodes) ac-

cording to some prescribed rewriting mode and communicate the obtained

words along the network using input and output filters defined by the mem-

bership condition to regular languages.

Similar ideas may be met in other bio-inspired models as tissue-like

membrane systems [56] or models from Distributed Computing area like

parallel communicating grammar systems [57].

In [13] the concept (considered from a formal language theory point of

view in [19]) was modified in the following way inspired from cell biology.

Each processor placed in a node is a very simple processor, an evolutionary

processor. By an evolutionary processor we mean a processor which is

able to perform very simple operations, namely point mutations in a DNA

sequence (insertion, deletion or substitution of a pair of nucleotides). More

generally, each node may be viewed as a cell having genetic information

encoded in DNA sequences which may evolve by local evolutionary events,

that is point mutations. Each node is specialized just for one of these

evolutionary operations. Furthermore, the data in each node is organized

in the form of multisets of words (each word appears in an arbitrarily large

number of copies), and all copies are processed in parallel such that all the
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possible events that can take place do actually take place. Consequently,

hybrid networks of evolutionary processors might be viewed as bio-inspired

computing models. We want to stress from the very beginning that we

are not concerned here with a possible biological implementation, though a

matter of great importance. We are aware of the fact that modeling genetic

evolutionary steps in this simple form is a demanding task requiring more

than the systems surveyed in this paper.

A series of papers was devoted to different variants of this model viewed

as language generating devices, see [1–5, 11, 14, 17, 22]. The work [48] is

an early survey in this area.

The goal of this work is to survey the results reported so far regard-

ing three variants of accepting networks of cell-like processors: networks of

evolutionary processors, networks of splicing processors (both these proces-

sors act on words), and networks of evolutionary picture processors. The

results surveyed here concern computational power, computational and de-

scriptional complexity aspects, existence of universal networks, efficiency

of these models viewed as problem solvers, and the relationships between

them. It is questionable whether this approach gives something back to

the evolutionary genetics studies, but we believe that it gives a little to the

complexity theory. Characterizing NP, P, and PSPACE is not sufficient

but the work surveyed here makes a step in this direction. It is worth

mentioning that the general idea of the model is to show that very simple

processors (based on pretty simple replacements) working synchronously in

parallel and exchanging data to each other under a simple control mech-

anism (filters based on the symbol presence and absence) are able to effi-

ciently simulate Turing machines and characterize complexity classes.

10.2 Basic Definitions

10.2.1 Preliminaries

We start by summarizing the notions used throughout the paper. An al-

phabet is a finite and nonempty set of symbols. The cardinality of a finite

set A is written card(A). Any sequence of symbols from an alphabet V is

called word over V . The set of all words over V is denoted by V ∗ and the

empty word is denoted by ε. The length of a word x is denoted by |x| while

alph(x) denotes the minimal alphabet W such that x ∈W ∗.
We consider here the following definition of 2-tag systems that appears

in [59]. It is slightly different but equivalent to those from [15, 58]. A 2-tag
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system T = (V, φ) consists of a finite alphabet of symbols V , containing

a special halting symbol H and a finite set of rules φ : V \ {H} → V +

such that |φ(x)| ≥ 2 or φ(x) = H . Furthermore, φ(x) = H for just one

x ∈ V \ {H}. A halting word for the system T is a word that contains

the halting symbol H or whose length is less than 2; the transformation

tT (called the tag operation) is defined on the set of non-halting words as

follows: if x is the leftmost symbol of a non-halting word w, then tT (w)

is the result of deleting the leftmost 2 symbols of w and then appending

the word φ(x) at the right end of the obtained word. A computation by a

2-tag system as above is a finite sequence of words produced by iterating

the transformation tT , starting with an initially given non-halting word w

and halting when a halting word is produced. Note that a computation is

not considered to exist unless a halting word is produced in finitely-many

iterations. We recall that such restricted 2-tag systems are universal [59].

A nondeterministic Turing machine is a construct M = (Q, V, U, δ, q0,

B, F ), where Q is a finite set of states, V is the input alphabet, U is the

tape alphabet, V ⊂ U , q0 is the initial state, B ∈ U \ V is the “blank”

symbol, F ⊆ Q is the set of final states, and δ is the transition mapping,

δ : (Q\F )×U → 2Q×(U\{B})×{R,L}. In this paper, we assume without loss

of generality that any Turing machine we consider has a semi-infinite tape

(bounded to the left) and makes no stationary moves; the computation of

such a machine is described in [31, 51, 62]. An input word is accepted if

and only if after a finite number of moves the Turing machine enters a final

state. The language accepted by the Turing machine is a set of all accepted

words. We say a Turing machine decides a language L if it accepts L and

moreover halts on every input. The reader is referred to [27, 31, 51] for the

classical time and space complexity classes defined for Turing machines.

In the course of its evolution, the genome of an organism mutates by

different processes. At the level of individual genes the evolution proceeds

by local operations (point mutations) which substitute, insert and delete

nucleotides of the DNA sequence. In what follows, we define some rewriting

operations that will be referred as evolutionary operations since they may

be viewed as linguistic formulations of local gene mutations. We say that

a rule a → b, with a, b ∈ V ∪ {ε} is a substitution rule if both a and b are

not ε; it is a deletion rule if a 6= ε and b = ε; it is an insertion rule if a = ε

and b 6= ε. The set of all substitution, deletion, and insertion rules over an

alphabet V are denoted by SubV , DelV , and InsV , respectively.

Given a rule σ as above and a word w ∈ V ∗, we define the following

actions of σ on w:
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• If σ ≡ a→ b ∈ SubV , then

σ∗(w) =

{

{ubv : ∃u, v ∈ V ∗ (w = uav)},

{w}, otherwise.

Note that a rule as above is applied to all occurrences of the letter a in

different copies of the word w. An implicit assumption is that arbitrarily

many copies of w are available.

• If σ ≡ a→ ε ∈ DelV , then

σ∗(w) =

{

{uv : ∃u, v ∈ V ∗ (w = uav)},

{w}, otherwise

σr(w) =

{

{u : w = ua},

{w}, otherwise
σl(w) =

{

{v : w = av},

{w}, otherwise
• If σ ≡ ε→ a ∈ InsV , then

σ∗(w) = {uav : ∃u, v ∈ V ∗ (w = uv)},

σr(w) = {wa}, σl(w) = {aw}.

Note that α ∈ {∗, l, r} expresses the way of applying a deletion or insertion

rule to a word, namely at any position (α = ∗), in the left (α = l), or in the

right (α = r) end of the word, respectively. The note for the substitution

operation mentioned above remains valid for insertion and deletion at any

position. For every rule σ, action α ∈ {∗, l, r}, and L ⊆ V ∗, we define the

α-action of σ on L by σα(L) =
⋃

w∈L σα(w). Given a finite set of rules M ,

we define the α-action of M on the word w and the language L by:

Mα(w) =
⋃

σ∈M
σα(w) and Mα(L) =

⋃

w∈L
Mα(w),

respectively.

For two disjoint and nonempty subsets P and F of an alphabet V and

a word z over V , we define the following two predicates

rcs(z;P, F ) ≡ P ⊆ alph(z) ∧ F ∩ alph(z) = ∅

rcw(z;P, F ) ≡ alph(z) ∩ P 6= ∅ ∧ F ∩ alph(z) = ∅.

The construction of these predicates is based on context conditions de-

fined by the two sets P (permitting contexts/symbols) and F (forbidding

contexts/symbols). Informally, both conditions requires that no forbidding

symbol is present in w; furthermore the first condition requires all permit-

ting symbols to appear in w, while the second one requires at least one

permitting symbol to appear in w. It is plain that the first condition is

stronger than the second one.
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For every language L ⊆ V ∗ and β ∈ {s, w}, we define:

rcβ(L, P, F ) = {z ∈ L | rcβ(z;P, F )}.

An evolutionary processor over V is a 5-tuple (M,PI, FI, PO, FO),

where:

– Either (M ⊆ SubV ) or (M ⊆ DelV ) or (M ⊆ InsV ) holds. The set

M represents the set of evolutionary rules of the processor. As one can see,

a processor is “specialized” in one evolutionary operation, only.

– PI, FI ⊆ V are the input permitting/forbidding contexts of the pro-

cessor, while PO,FO ⊆ V are the output permitting/forbidding contexts

of the processor (with PI ∩ FI = ∅ and PO ∩ FO = ∅).

We denote the set of evolutionary processors over V by EPV . Clearly,

the evolutionary processor described here is a mathematical concept sim-

ilar to that of an evolutionary algorithm, both being inspired from the

Darwinian evolution. As we mentioned above, the rewriting operations we

have considered might be interpreted as mutations and the filtering process

described above might be viewed as a selection process. Recombination is

missing but it was asserted that evolutionary and functional relationships

between genes can be captured by taking only local mutations into consid-

eration [63]. However, another type of processor based on recombination

only, called splicing processor has been considered as well in a series of

works which will be surveyed in the next sections.

10.2.2 Accepting Networks of Evolutionary Processors

An accepting network of evolutionary processors (ANEP for short) is an

8-tuple Γ = (V, U,G,N, α, β, xI , xO), where:

• V and U are the input and network alphabet, respectively, V ⊆ U .

• G = (XG, EG) is an undirected graph without loops with the set

of vertices XG and the set of edges EG. G is called the underlying

graph of the network.

• N : XG −→ EPU is a mapping which associates with each node x ∈

XG the evolutionary processor N(x) = (Mx, P Ix, F Ix, POx, FOx).

• α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of

node x on the words existing in that node.

• β : XG −→ {s, w} defines the type of the input/output filters of a

node. More precisely, for every node, x ∈ XG, the following filters

are defined:
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input filter: ρx(·) = rcβ(x)(·;PIx, F Ix),

output filter: τx(·) = rcβ(x)(·;POx, FOx).

That is, ρx(w) (resp. τx) indicates whether or not the word w

can pass the input (resp. output) filter of x. Moreover, ρx(L)

(resp. τx(L)) is the set of words of L that can pass the input (resp.

output) filter of x.

• xI , xO ∈ XG are the input and the output node of Γ, respectively.

We say that card(XG) is the size of Γ. If α and β are constant functions,

then the network is said to be homogeneous. In the theory of networks

some types of underlying graphs are common like rings, stars, grids, etc.

In most of the cases considered here, we focus on complete networks i.e.,

networks having a complete underlying graph; last section is an exception,

as we discuss an incomplete ANEP that simulates a given ANEPFC (see

the meaning of the abbreviation ANEPFC in the next subsection).

A configuration of an ANEP Γ as above is a mapping C : XG −→ 2V
∗

which associates a set of words with every node of the graph. A configura-

tion may be understood as the sets of words which are present in any node

at a given moment. Given a word w ∈ V ∗, the initial configuration of Γ on

w is defined by C
(w)
0 (xI) = {w} and C

(w)
0 (x) = ∅ for all x ∈ XG \ {xI}.

When changing by an evolutionary step, each component C(x) of the

configuration C is changed in accordance with the set of evolutionary rules

Mx associated with the node x and the way of applying these rules α(x).

Formally, we say that the configuration C′ is obtained in one evolutionary

step from the configuration C, written as C =⇒ C′, iff

C′(x) = Mα(x)
x (C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG

sends one copy of each word it has, which is able to pass the output filter

of x, to all the node processors connected to x and receives all the words

sent by any node processor connected with x providing that they can pass

its input filter. Formally, we say that the configuration C′ is obtained in

one communication step from configuration C, written as C ` C′, iff

C′(x) = (C(x) \ τx(C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y)))

for all x ∈ XG. Note that words which leave a node are eliminated from

that node. If they cannot pass the input filter of any node, they are lost.

Let Γ be an ANEP, the computation of Γ on the input word w ∈ V ∗ is
a sequence of configurations C

(w)
0 , C

(w)
1 , C

(w)
2 , . . . , where C

(w)
0 is the initial
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configuration of Γ, C
(w)
2i =⇒ C

(w)
2i+1 and C

(w)
2i+1 ` C

(w)
2i+2, for all i ≥ 0.

Note that the configurations are changed by the alternative application of

evolutionary and communication steps. By the previous definitions, each

configuration C
(w)
i is uniquely determined by the configuration C

(w)
i−1. A

computation halts (and it is said to be halting) if one of the following two

conditions holds:

(i) There exists a configuration in which the set of words existing in

the output node xO is non-empty. In this case, the computation is said to

be an accepting computation.

(ii) There exist two identical configurations obtained either in con-

secutive evolutionary steps or in consecutive communication steps.

The language accepted by the ANEP Γ is La(Γ) = {w ∈ V ∗ | the
computation of Γ on w is an accepting one}. We denote by L(ANEP ) the

class of languages accepted by ANEPs.

We say that an ANEP Γ decides the language L ⊆ V ∗, and write L(Γ) =

L iff La(Γ) = L and the computation of Γ on every x ∈ V ∗ halts.

10.2.3 Accepting Networks of Evolutionary Processors with

Filtered Connections

A model closely related to that of ANEPs, introduced in [25] and further

studied in [24, 35], is that of accepting networks of evolutionary proces-

sors with filtered connections (ANEPFCs for short). An ANEPFC may be

viewed as an ANEP where the filters are shifted from the nodes on the

edges. Therefore, instead of having a filter at both ends of an edge on each

direction, there is only one filter disregarding the direction.

An ANEPFC is a 9-tuple

Γ = (V, U,G,R,N , α, β, xI , xO),

where:

• V , U , G = (XG, EG), have the same meaning as for ANEP,

• R : XG −→ 2SubU
∪ 2DelU

∪ 2InsU is a mapping which associates

with each node the set of evolutionary rules that can be applied in

that node. Note that each node is associated only with one type of

evolutionary rules, namely for every x ∈ XG either R(x) ⊂ SubU
or R(x) ⊂ DelU or R(x) ⊂ InsU holds.

• α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node

x on the words existing in that node.
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• N : EG −→ 2U × 2U is a mapping which associates with each edge

e ∈ EG the permitting and forbidding filters of that edge; formally,

N (e) = (Pe, Fe), with Pe ∩ Fe = ∅.

• β : EG −→ {s, w} defines the filter type of an edge.

• xI , xO ∈ XG are the input and the output node of Γ, respectively.

Note that every ANEPFC can be immediately transformed into an

equivalent ANEPFC with a complete underlying graph by adding the edges

that are missing and associate with them filters that do not allow any word

to pass. Note that such a simplification is not always possible for ANEPs.

A configuration of an ANEPFC is defined in the same way as a config-

uration of an ANEP is defined above. An evolutionary step is also defined

in the same way as above.

Differently, when changing by a communication step, in an ANEPFC,

each node-processor x ∈ XG sends one copy of each word it contains to

every node-processor y connected to x, provided they can pass the filter of

the edge between x and y. It keeps no copy of these words but receives all

the words sent by any node processor z connected with x providing that

they can pass the filter of the edge between x and z. In this case, no word

is lost.

The language accepted and decided by an ANEPFC is defined as in

the case of ANEPs. We denote by L(ANEPFC) the class of languages

accepted by ANEPFCs.

10.2.4 Timed Accepting Networks of Evolutionary

Processors

The ANEP computing model was modified in [37] to obtain timed accepting

networks of evolutionary processors (TANEP for short). Such a TANEP is

a triple T = (Γ, f, b), where Γ = (V, U,G,N, α, β, xI , xO) is an ANEP,

f : V ∗ → IN is a Turing computable function, called clock, and b ∈ {0, 1}

is a bit called the accepting-mode bit.

In this setting, the computation of a TANEP T = (Γ, f, b) on the

input word w is the finite sequence of configurations of the ANEP Γ:

C
(w)
0 , C

(w)
1 , . . . , C

(w)
f(w). The language accepted by T is defined as:

• if b = 1 then: L(T ) = {w ∈ V ∗ | C(w)
f(w)(xO) 6= ∅}

• if b = 0 then: L(T ) = {w ∈ V ∗ | C(w)
f(w)(xO) = ∅}
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Intuitively we may think that a TANEP T = (Γ, f, b) is a triple that

consists in an ANEP, a Turing Machine and a bit. For an input word w

we first compute f(w) on the tape of the Turing Machine (by this we mean

that on the tape there exist f(w) elements of 1, while the rest are blanks).

Then Γ starts it computation, at each evolutionary or communication step

of the network we delete an 1 from the tape of the Turing Machine. We

stop when no 1 is found on the tape. Finally, according to the value of the

accepting-mode bit and to the emptiness of C
(w)
f(w)(xO), we decide whether

w is accepted or not.

10.2.5 Computational Complexity Classes

We define some computational complexity measures on the ANEP/

ANEPFC computing model. To this aim we consider an ANEP/ANEPFC

Γ with the input alphabet V that halts on every input. The time complex-

ity of the halting computation C
(x)
0 , C

(x)
1 , C

(x)
2 , . . . C

(x)
m of Γ on x ∈ V ∗

is denoted by T imeΓ(x) and equals m. The time complexity of Γ is the

function from IN to IN ,

T imeΓ(n) = max{T imeΓ(x) | x ∈ V ∗, |x| = n}.

In other words, T imeΓ(n) delivers the maximal number of computational

steps done by Γ on input words of length n.

For a function f : IN −→ IN and X ∈ {ANEPk, ANEPFCk | k ≥ 1},

where ANEPk/ANEPFCk denotes the class of all ANEPs/ANEPFCs of

size k, we define:

TimeX (f(n)) = {L | there exists an network Γ which is of type X and

decides L, and n0 such that ∀n ≥ n0(T imeΓ(n) ≤ f(n))}.

Moreover, we write PTimeX =
⋃

k≥0
TimeX (n

k).

The space complexity of the halting computation C
(x)
0 , C

(x)
1 , C

(x)
2 ,

. . . C
(x)
m of Γ on x ∈ V ∗ is denoted by SpaceΓ(x) and is defined by the

relation::

SpaceΓ(x) = max
i∈{1,...,m}

(max
z∈XG

card(C
(x)
i (z))).

The space complexity of Γ is the function from IN to IN ,

SpaceΓ(n) = max{SpaceΓ(x) | x ∈ V ∗, |x| = n}.

Thus SpaceΓ(n) returns the maximal number of distinct words existing in

a node of Γ during a computation on an input word of length n.
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For a function f : IN −→ IN and X ∈ {ANEPk, ANEPFCk | k ≥ 1}we

define

SpaceX (f(n)) = {L | there exists an network Γ which is of type X and

decides L, and n0 such that ∀n ≥ n0(SpaceΓ(n) ≤ f(n))}.

Moreover, we write PSpaceX =
⋃

k≥0
SpaceX (n

k).

The length complexity of the halting computation C
(x)
0 , C

(x)
1 , C

(x)
2 ,

. . . C
(x)
m of Γ on x ∈ L is denoted by LengthΓ(x) and is defined by the

relation:

LengthΓ(x) = max
w∈C(x)

i
(z),i∈{1,...,m},z∈XG

|w|.

The length complexity of Γ is the function from IN to IN ,

LengthΓ(n) = max{LengthΓ(x) | x ∈ V ∗, |x| = n}.

Unlike the Space measure, LengthΓ(n) computes the length of the longest

word existing in a node of Γ during a computation on an input word of

length n.

For a function f : IN −→ IN and X ∈ {ANEPk, ANEPFCk | k ≥ 1}

we define LengthX (f(n)) ={L | there exists an network Γ which is of type

X and decides L, and n0 such that ∀n ≥ n0(LengthΓ(n)≤f(n))}.

Moreover, we write PLengthX =
⋃

k≥0
LengthX (n

k).

In the case of a TANEP T = (Γ, f, b) the time complexity definitions

are the following: for the word x ∈ V ∗ we define the time complexity

of the computation on x as the number of steps that the TANEP makes

having the word x as input, T imeT (x) = f(x). Consequently, we define

the time complexity of T as a partial function from IN to IN , that verifies:

T imeT (n) = max{f(x) | x ∈ L(T ), |x| = n}. For a function g : IN −→ IN

we define:

TimeTANEP (g(n)) = {L | L = L(T )for a TANEP T = (Γ, f, 1) with

T imeT (n) ≤ g(n) for some n ≥ n0}.

Moreover, we write PTimeTANEP =
⋃

k≥0
TimeTANEP (n

k).

Note that the above definitions were given for TANEPs with the

accepting-mode bit set to 1. Similar definitions are given for the case when

the accepting-mode bit set to 0. For a function f : IN −→ IN we define, as

in the former case:
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CoTimeTANEP (g(n)) = {L | L = L(T )for a TANEP T = (Γ, f, 0) with

T imeT (n) ≤ g(n) for some n ≥ n0}.

We define CoPTimeTANEP =
⋃

k≥0
CoTimeTANEP (n

k).

10.3 Computational Power

10.3.1 Computational Power of ANEPs/ANEPFCs

The main results obtained so far state that nondeterministic Turing ma-

chines can be simulated by ANEPs and ANEPFCs. In other words, this

shows that these computational models are complete. Our characterizations

may be viewed a bit unfair if one considers that a computation of a non-

deterministic Turing machine could be defined as a sequence of sets of IDs.

In this setting, the machine may be viewed as computing deterministically.

However, this is not a natural definition comparing to our approach: it

is considered to be biologically feasible to have sufficiently many identical

copies of a molecule. By techniques of genetic engineering, in a polynomial

number of lab operations one can get an exponential number of identical

molecules.

Theorem 10.1. [38, 44] For every nondeterministic single-tape Turing

machine M , accepting/deciding a language L, there exists an ANEP Γ,

accepting/deciding the same language L. Moreover, if M works within f(n)

time, then T imeΓ(n) ∈ O(f(n)), and if M works within f(n) space, then

LengthΓ(n) ∈ O(max{n, f(n)}).

Theorem 10.2. [24] For every nondeterministic single-tape Turing ma-

chine M , accepting/deciding a language L, there exists an ANEPFC Γ,

accepting/deciding the same language L. Moreover, if M works within f(n)

time, then T imeΓ(n) ∈ O(f(n)), and if M works within f(n) space, then

LengthΓ(n) ∈ O(max{n, f(n)}).

It is worth mentioning that the proofs of both the above theorems are

based on a common strategy: we simulate in parallel all the possible com-

putations of the given nondeterministic Turing Machine. Moreover, in the

both constructions the networks we design depend on the Turing Machine:

that is, their size, their rules, their filters, are all defined according to the

structure of the Turing Machine. In the following we will see how one can
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construct networks that accept a given language but do not depend in such

a great measure on a device accepting that language. The main reason for

which we mention these initial results is to show several techniques by which

one can obtain completeness results for different computation models.

The reversal of both theorems hold as well:

Theorem 10.3. [25, 38] For any ANEP/ANEPFC Γ accepting the lan-

guage L, there exists a single-tape Turing machine M accepting L. More-

over, M can be constructed such that it accepts in O((T imeΓ(n))
2) compu-

tational time and in O(LengthΓ(n)) space.

Therefore we have:

Theorem 10.4.

1. L(ANEP ) equals the class of recursively enumerable languages.

2. L(ANEPFC) equals the class of recursively enumerable languages.

3. NP = PTimeANEP = PTimeANEPFC.

4. PSPACE = PLengthANEP = PLengthANEPFC .

10.3.2 The Role of Evolutionary Operations in ANEPs

We denote by ANNIEP, ANNDEP, ANNSEP, ANIEP, ANDEP, and

ANSEP the class of ANEPs without inserting nodes, without deletion

nodes, without substitution nodes, with insertion nodes only, with dele-

tion nodes only, with substitution nodes only, respectively. The corre-

sponding classes of languages are denoted by L(ANNIEP ), L(ANNdEP ),

L(ANNsEP ), L(ANIEP ), L(ANDEP ), and L(ANSEP ). In this section

we ignore the empty word when we define a language and the empty set

when we define a class of languages. In what follows we recall a few results

regarding the computational power of some of these networks.

The results regarding the computational power of ANSEPs are summa-

rized in the next theorem.

Theorem 10.5. [21]

1. Every language R that is commutative and semi-linear lies in

L(ANSEP ).

2. The class L(ANSEP ) contains non-context-free languages even over the

one-letter alphabet.

3. Every language in L(ANSEP ) is polynomially recognizable.
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The results regarding the computational power of ANDEPs are summa-

rized in the next theorem.

Theorem 10.6. [21]

1. The class L(ANDEP ) contains non-context-free languages.

2. A language over the unary alphabet is in L(ANDEP ) if and only if it

is one of these languages: {a}, {aa}, {a}{a}∗, or {aa}{a}∗.

The results regarding the computational power of ANIEPs are summa-

rized in the next theorem.

Theorem 10.7. [21] A language L over the alphabet V is in L(ANIEP )

if and only if there are the subsets V1, V2, . . . , Vn of V , for some n ≥ 1, not

necessarily pairwise disjoint, such that

L =

n
⋃

i=1

{x ∈ V +
i | |x|a ≥ 1, for all a ∈ Vi}.

The results regarding the computational power of ANNIEPs are sum-

marized in the next theorem.

Theorem 10.8. ([20])

1. Every language in L(ANNIEP ) is context-sensitive.

2. The class L(ANNIEP ) contains all linear context-free languages and

non-semi-linear languages.

10.3.3 Complexity Classes and Size Complexity

The last two statements in Theorem 10.4 were improved from the size com-

plexity point of view: NP equals the class of languages accepted in poly-

nomial time by ANEPs with 29 nodes and the class of languages accepted

in polynomial time by ANEPFCs with 26 nodes (see [45, 24]). the ideas

employed were quite simple. Instead of constructing a network that accepts

the given language and works with the alphabet of that languages, we con-

struct two networks: one that encodes the language in a special way over

a binary alphabet, and one that accepts the encoded language. Combining

these two modules one gets a constant size network for any recursively enu-

merable language. And this is because the encoding can be done by a very

simple network (that simply rewrites the letters according to the mapping

defined by a block code), and, since the size of the networks designed in the

proof of Theorem 10.1 depended only on the size of the input alphabet, the

encoded language can be accepted by a network of constant size. However,
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the rules and filters of the network still depend in great measure on the

language that we want to accept.

We begin with the case of ANEPFCs.

Theorem 10.9. [24] For any recursively enumerable (recursive) language

L, accepted (decided) by a Turing machine M = (Q, V,W, q0, B, F, δ), there

exists an ANEPFC Γ, of size 26, accepting (deciding) L. Moreover,

1. if L ∈ NTIME(f(n)) then T imeΓ(n) ∈ O(f(|W |n)).

2. if L ∈ NSPACE(f(n)) then LengthΓ(n) ∈ O(f(|W |n)).

A similar result can be obtained for ANEPs.

Theorem 10.10. [45] For any recursively enumerable (recursive) language

L, accepted (decided) by a Turing machine M = (Q, V,W, q0, B, F, δ), there

exists an ANEP Γ, of size 29, accepting (deciding) L. Moreover,

1. if L ∈ NTIME(f(n)) then T imeΓ(n) ∈ O(f(|W |n)).

2. if L ∈ NSPACE(f(n)) then LengthΓ(n) ∈ O(f(|W |n)).

A consequence of Theorems 10.9 and 10.10 is the following characteri-

zation of NP and PSPACE:

Theorem 10.11. [24, 25, 38]

1. NP = PTimeANEP29 = PTimeANEPFC26 .

2. PSPACE = PLengthANEP29
= PLengthANEPFC26

.

The sizes presented in this theorem have been decreased in [36] and

[35]. The results were obtained also via simulations of Turing machines,

but based on different ideas. In the previous cases we had a network ar-

chitecture which resembled more to a computer program based on different

procedures, every node playing a well defined role (there were nodes used to

check some conditions, nodes that simulated a move of the Turing Machine,

etc.). In this case, while using the same basic idea of simulating in parallel

all the computations of a Turing machine, the techniques used are quite dif-

ferent: the process is more intricate and it is based on a rotate-and-simulate

technique.

Theorem 10.12. [35, 36]

1. NP = PTimeANEP10 = PTimeANEPFC16 .

2. PSPACE = PLengthANEP10
= PLengthANEPFC16

.

The next statements are immediate.
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Theorem 10.13. [35, 36]

1. Every recursively enumerable language can be accepted by an ANEP of

size 10.

2. Every recursively enumerable language can be accepted by an ANEPFC

of size 16.

It is worth mentioning that the size in the first statement of this theo-

rem is not optimal; in [2] one proves that ANEPs with 7 nodes can accept

all recursively enumerable languages. However, this results cannot be ex-

tended to obtain networks that accept recursively enumerable languages as

efficiently as the nondeterministic Turing machine do, as the proof in [2]

is based on the simulation of a phrase-structure grammar. However, this

result raises an interesting question: is there a trade-off between the size

complexity of a network and the NEP-time complexity of a language? It

remains also as an open problem to check if such a result can be obtained

also for ANEPFCs.

Theorem 10.14. [2]

Every recursively enumerable language can be accepted by an ANEP of size

7.

One can also obtain a characterization of P, also based on the result of

Theorem 10.1:

Theorem 10.15. [38] A language L ∈ P if and only if L is decided by

an ANEP/ ANEPFC Γ such that there exist two polynomials P,Q with

SpaceΓ(n) ≤ P (n) and T imeΓ(n) ≤ Q(n).

It is worth mentioning that the last theorem does not say that the inclu-

sion PSpaceX ∩PTimeX ⊆ P holds, for some X ∈ {ANEP,ANEPFC}.

The following facts are not hard to follow: we proved in Theorem 10.11

that every NP language, hence the NP-complete language 3-CNF-SAT, is

in PTimeX ; but, it is easy to see that 3-CNF-SAT can be decided also

by a deterministic Turing Machine, working in exponential time and poly-

nomial space. By Proposition 10.1, such a machine can be simulated by

an ANEP/ANEPFC that uses polynomial space (but exponential time as

well). This shows that 3-CNF-SAT is in PTimeX ∩ PSpaceX , but it is

not in P, unless P = NP.

Timed ANEPs (TANEPs) provide a framework in which both NP and

CoNP can be characterized uniformly.
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Theorem 10.16. [37]

1. PTimeTANEP = NP.

2. CoPTimeTANEP = CoNP.

Theorem 10.16 provides a common framework for accepting both lan-

guages from NP and from CoNP. For example, suppose that we want to

accept a language L.

• If L ∈ NP, then by the proof of Theorems 10.1, we can construct

a polynomial TANEP T = (Γ, f, 1) that accepts L.

• If L ∈ CoNP, it follows that CoL ∈ NP, and by the proofs

of Theorems 10.1, we can construct a polynomial TANEP T =

(Γ, f, 1) that accepts CoL. We obtain that (Γ, f, 0) accepts L.

Thus, Theorem 10.16 proves that the languages (the decision problems)

that are efficiently recognized (respectively, solved) by the TANEPs, with

both 0 and 1 as possible values for the accepting-mode bit, are those from

NP ∪CoNP.

10.4 Universal ANEPs and ANEPFCs

In this section we recall a series of results regarding universal ANEPs and

ANEPFCs. That is, ANEPs (or ANEPFCs) that can simulate the com-

putation performed by any other ANEP (or ANEPFC, respectively) on a

arbitrary word, assuming that the simulated network and its input word are

given in an encoded form to the universal ANEP (respectively ANEPFC).

In [41], one describes a way of encoding an arbitrary ANEP/ANEPFC

using the fixed alphabet:

A = {$,#, r, l, ∗, (s), (w), 0, 1, 2, •,→}.

Note that a similar encoding can be accomplished using the binary alphabet

A = {0, 1} only. However, in order to make the exposure more readable, this

binary encoding is not used, though the results we are going to discuss in

the sequel can be easily carried over the encodings over the binary alphabet.

The idea is to construct an ANEP ΓU , such that if the input word of

ΓU is < Γ >< w >, for some ANEP Γ and word w the followings hold:

• ΓU halts on the input < Γ >< w > if and only if Γ halts on

the input w.

• < Γ >< w > is accepted by ΓU if and only if w is accepted by

Γ.
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The first step of this construction is to define a Turing machine that

behaves as described in the next theorem proved in [44].

Theorem 10.17. [41, 44] There exists a deterministic Turing machine TU ,

with the input alphabet A, satisfying the following conditions on any input

< Γ >< w >, where Γ is an arbitrary ANEP and w is a word over the

input alphabet of Γ:

• TU halts on the input < Γ >< w > if and only if Γ halts on the

input w.

• < Γ >< w > is accepted by TU if and only if w is accepted by Γ.

It is worth mentioning that the Turing machine TU can be constructed

such that its working alphabet is A plus a blank symbol.

From Theorem 10.1 it follows that one can construct an ANEP ΓU that

implements the same behavior as TU . In this way we get a universal ANEP.

We have shown:

Theorem 10.18. [41, 44] There exists an ANEP ΓU , with the input al-

phabet A, satisfying the following conditions on any input < Γ >< w >,

where Γ is an arbitrary ANEP and w is a word over the input alphabet of

Γ:

• ΓU halts on the input < Γ >< w > if and only if Γ halts on the

input w.

• < Γ >< w > is accepted by ΓU if and only if w is accepted by Γ.

Moreover, size(ΓU) = 5card(A) + 13

Recall that A can be reduced to a binary alphabet, hence the size of ΓU

can be reduced to 23.

Using a similar technique as the above, one can encode ANEPFCs over

a fixed alphabet A. In this setting one can prove the following result similar

to Theorem 10.17.

Theorem 10.19. [24] There exists a deterministic Turing machine TU ,

with the input alphabet A, satisfying the following conditions on any input

< Γ >< w >, where Γ is an arbitrary ANEPFC and w is a word over the

input alphabet of Γ:

• TU halts on the input < Γ >< w > if and only if Γ halts on the input w.

• < Γ >< w > is accepted by TU if and only if w is accepted by Γ.
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As in the case of ANEPs, by Theorem 10.1, we derive the existence of

a universal ANEPFC.

Theorem 10.20. [24] There exists a ANEPFC ΓU , of size 2|A|+14, with

the input alphabet A, satisfying the following conditions on any input <

Γ >< w >, where Γ is an arbitrary ANEPFC and w is a word over the

input alphabet of Γ:

• ΓU halts on the input < Γ >< w > if and only if Γ halts on the input w.

• < Γ >< w > is accepted by ΓU if and only if w is accepted by Γ.

Since A can be reduced to the binary alphabet, we obtain the existence

of a universal ANEPFC of size 18.

The existence of an universal ANEP/ANEPFC can be used to prove

the following result:

Theorem 10.21. 1. For every recursively enumerable (recursive) language

L one can effectively construct an ANEP Γ, with size(Γ) = 6|A| + 19, ac-

cepting (deciding) L.

2. For every recursively enumerable (recursive) language L one can ef-

fectively construct an ANEPFC Γ, with size(Γ) = 3|A| + 21, accepting

(deciding) L.

In the above, A is the alphabet over which we encode NEPs, respectively

NEPFCs, described above.

The ANEP/ANEPFC constructed in this Theorem is not necessarily effi-

cient from the time complexity, length complexity or from the size complex-

ity point of view. Indeed, the computation of the network on w requires

to run, as a subroutine, the universal corresponding network on an input

encoding a network that accepts the given language and w. This may cause

an exponential growth in the time, respectively length, needed to accept

L. However, only a small number of the nodes of the ANEP/ANEPFC

constructed in Theorem 10.21, for a particular recursively enumerable lan-

guage L, effectively depend on that language. The rest of the nodes remain

unchanged for all the possible languages L since they are basically a copy of

the universal ANEP/ANEPFC. In a way, this fixes one of the drawbacks of

the completeness results shown in the previous Section. Now we have shown

that one can accept recursively enumerable languages in a rather uniform

way: encode the language, run the universal network on the encoded words.

The results regarding the size of a universal ANEP/ANEPFC presented

in the previous section can be improved significantly by simulating another
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universal computational model, the 2-tag systems. In this way we have

obtained the following results (see [35, 36]).

Theorem 10.22. [36] For every 2-tag system T = (V, φ) there exists a

complete ANEP Γ of size 6 such that L(Γ) = {w | T halts on w}.

A similar result holds for ANEPFCs.

Theorem 10.23. [35] For every 2-tag system T = (V, φ) there exists a

complete ANEPFC Γ of size 10 such that L(Γ) = {w | T halts on w}.

Since 2-tag systems are universal [15, 59], the following theorem is im-

mediate:

Theorem 1. [35, 36]

1. There exists a universal ANEP with 6 nodes.

2. There exists a universal ANEPFC with 10 nodes.

We remark that these results only show that for any recursively enumer-

able language one can construct a small ANEP/ANEPFC that accepts a

special encoding of that language. Since 2-tag systems efficiently simulate

deterministic Turing machines ([65]), the previous result also shows that

ANEPs with 6 nodes and ANEPFCs with 10 nodes also simulate efficiently

deterministic Turing machines.

10.5 A Direct Simulation

It is clear that filters associated with each node of an ANEP allow a strong

control of the computation. However, by moving the filters from the nodes

to the edges, the possibility of controlling the computation seems to be

diminished. For instance, there is no possibility to lose data during the

communication steps. In spite of this fact, we have seen that ANEPFCs

are still computationally complete. This means that moving the filters from

the nodes to the edges does not decrease the computational power of the

model. Although the two variants are equivalent from the computational

power point of view, a direct proof would have been worthwhile. In [7] it

was shown that the two models can efficiently simulates each other, namely

each computational step in one model is simulated in a constant number

of computational steps in the other. This is particularly useful when one

wants to translate the solution of a problem from one model into the other.
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Note that a translation via a Turing machine, by the construction shown

in the previous sections, squares the time complexity of the new solution.

The simulations presented in [7] may lead to underlying graphs of the

simulating networks that differ very much from the underlying graphs of

the simulated networks. Simulations preserving the type of the underlying

graph of the simulated network represent a matter of interest which is not

solved yet. Furthermore, the simulation of an ANEPFC that halts on ev-

ery input leads to an ANEP that halts on every input as well. However,

the other simulation does not preserves this property of the simulated net-

work. It is known from the simulation of Turing machines by ANEPs and

ANEPFCs presented in the previous sections that the languages decided

by ANEPs can be also decided by ANEPFCs. It remains an open problem

to modify the simulation of ANEPs by ANEPFCs such that the halting

property is preserved.

10.6 Accepting Networks of Splicing Processors

In the case of accepting networks of splicing processors (ANSP for short),

the point mutations associated with each node are replaced by the missing

operation (recombination), which is present here in the form of splicing.

This computing model is similar to some extent to the test tube distributed

systems based on splicing introduced in [16] and further explored in [55].

However, there are several differences: first, the model proposed in [16] is

a language generating mechanism while ours is an accepting one; second,

we use a single splicing step, while every splicing step in [16] is actually

an infinite process consisting of iterated splicing steps; third, each splicing

step in our model is reflexive; fourth, the filters of our model are based

on random context conditions while those considered in [16] are based on

membership conditions; fifth, at every splicing step a set of auxiliary words,

always the same and proper to every node, is available for splicing. Along

the same lines, we want to stress the differences between this model and

the time-varying distributed H systems, a generative model introduced in

[54] and further studied in [46, 53, 52]. The computing strategy of such

a system is that the passing of words from a set of rules to another one

is specified by a cycle. Thus only those words that are obtained at one

splicing step by using a set of rules are passed in a circular way to the next

set of rules. This means that words which cannot be spliced at some step

disappear from the computation while words produced at different splicing
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steps cannot be spliced together. Now, the differences between time-varying

distributed H systems and ANSPs are evident: each node of an ANSP has a

set of auxiliary words, words obtained at different splicing steps in different

nodes can be spliced together, the communication of words is not done in

a circular way, since identical copies of the same word are sent out to all

the nodes, the control of communication is accomplished by filters.

A splicing rule over a finite alphabet V is a word of the form

u1#u2$v1#v2 such that u1, u2, v1, and v2 are in V ∗ and such that $

and # are two symbols not in V .

For a splicing rule r = u1#u2$v1#v2 and for x, y, w, z ∈ V ∗, we say that

r produces (w, z) from (x, y) (denoted by (x, y) `r (w, z)) if there exist some

x1, x2, y1, y2 ∈ V ∗ such that x = x1u1u2x2, y = y1v1v2y2, z = x1u1v2y2,

and w = y1v1u2x2.

For a language L over V and a set of splicing rules R we define

σR(L) = {z, w ∈ V ∗ | (∃u, v ∈ L, r ∈ R)[(u, v) `r (z, w)]}.

Similarly, for two languages L1 and L2, over V , and a set of splicing rules

R we define

σR(L1, L2) = {z, w ∈ V ∗ | (∃u ∈ L1, v ∈ L2, r ∈ R)[(u, v) `r (z, w)]}.

A splicing processor over V is a 6-tuple (S,A, PI, FI, PO, FO), where

S a finite set of splicing rules over V , A a finite set of auxiliary words over

V , and all the other parameters have the same meaning as in the defini-

tion of evolutionary processors. Now an ANSP can be defined similarly

to an ANEP except that the processors associated with nodes are splicing

processors.

A configuration of an ANSP Γ is a mapping C : XG → 2U
∗

which

associates a set of words to every node of the graph. By convention, the

auxiliary words do not appear in any configuration.

There are two ways to change a configuration, by a splicing step or by

a communication step. When changing by a splicing step, each component

C(x) of the configuration C is changed according to the set of splicing rules

Sx, whereby the words in the set Ax are available for splicing. Formally,

configuration C′ is obtained in one splicing step from the configuration C,

written as C ⇒ C′, iff for all x ∈ XG

C′(x) = σSx
(C(x) ∪ Ax).

Since each word present in a node, as well as each auxiliary word, appears

in an arbitrarily large number of identical copies, all possible splicings are
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assumed to be done in one splicing step. If the splicing step is defined as

C =⇒ C′, iff

C′(x) = σSx
(C(x), Ax) for all x ∈ XG,

then all processors of Γ are called restricted and Γ itself is said to be re-

stricted.

A communication step and the language accepted/decided by an ANSP

are defined in the same way to those for ANEP. The definitions of the

complexity classes defined on ANEPs can be straightforwardly carried over

ANSPs. On the other hand, accepting networks of splicing processors with

filtered connections (ANSPFC) are defined similarly to ANEPFCs.

10.6.1 Computational Power and Complexity Results for

ANSPs/ANSPFCs

The main result in [43] is:

Theorem 10.24. [43] For any recursively enumerable language L, accepted

by the Turing machine M = (Q, V, U, δ, q0, B, F ), there exists a ANSP (re-

stricted or not) Γ such that L(Γ) = L and size(Γ) = 2card(U) + 2.

This is a key result in proving one of the main result in [42].

Theorem 10.25. [42] For every recursively enumerable language L there

exists an ANSP (restricted or not) Γ such that L(Γ) = L and size(Γ) =

2card(A) + 3.

We want to stress that only the rules in the node input node depend

on the language L, and the encoding that we use for its symbols. The

parameters of the other nodes do not depend in any way on the language

L, on the encoding of the ANSP, or on the symbols of in the input alphabet

of Γ. Finally, the size of the ANSP Γ proposed in the proof of this theorem

can be decreased to 7.

As a consequence, we have

Theorem 10.26.

1. NP ⊆ PTimeANSP7 ∩PTime
ANSP

(r)
7

.

2. PSPACE ⊆ PLengthANSP7
∩PTime

ANSP
(r)
7

.

A similar result is also valid for ANSPFCs (see [12]):
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Theorem 10.27.

1. NP ⊆ PTimeANSPFC4 ∩PTime
ANSPFC

(r)
4

.

2. PSPACE ⊆ PLengthANSPFC4
∩PTime

ANSPFC
(r)
4

.

The converse of this theorem is valid for restricted variants, namely

Theorem 10.28. [12]

1. NP = PTime
ANSPFC

(r)
4

.

2. PSPACE = PLength
ANSPFC

(r)
4

.

The size presented in Theorem 10.25 can be optimized as shown in [34]:

Theorem 10.29. For any language L, accepted (decided) by a determin-

istic Turing Machine M , there exists an ANSP Γ, of size 2, accepting (de-

ciding) L. Consequently, all recursively enumerable (recursive) languages

are accepted (decided) by ANSPs of size 2.

Since, by its definition, ANSPs need at least two nodes to accept any

non-trivial language, these results go a long way in settling this issue, leav-

ing, however, one open problem: the efficient simulation of nondeterministic

Turing machines by ANSPs with two nodes.

Also the size reported in Theorem 10.24 has been reduced to an ”almost”

optimal value:

Theorem 10.30. [34] All languages in NP can be decided by ANSPs of

size 3 working in polynomial time.

We finish this section by pointing out that the last part of [34] deals

universal ANSPs. One shows how to construct a small universal ANSP and

make several considerations on the computational efficiency of universal

ANSPs.

10.7 Problem Solving with ANEPs/ANEPFCs

The results presented in the previous sections together with the fact that

ANEPs, ANEPFCs and ANSPs are deterministic and computationally com-

plete devices inspired from cell biology and amenable to be used as a prob-

lem solver.

Although the results in the previous sections state that every problem in

NP can be solved in polynomial time using different variants of accepting

networks, the results are obtained by simulating a nondeterministic Turing
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machine; thus we still have to obtain a classic solution to a problem, and

then translate it in terms of ANEPs/ANEPFCs/ANSPs. To overtake this

drawback, a series of papers discussed how ANEPs, ANEPFCs and ANSPs

can be viewed as problem solvers.

Recall that a possible correspondence between decision problems

and languages can be done via an encoding function which trans-

forms an instance of a given decision problem into a word, see,

e.g., [27]. We say that a decision problem P is solved in time

O(f(n)) by ANEPs/ANEPFCs/ANSPs if there exists a family G of

ANEPs/ANEPFCs/ANSPs such that the following conditions are satisfied:

(1) The encoding function of any instance p of P having size n can be

computed by a deterministic Turing machine in time O(f(n)).

(2) For each instance p of size n of the problem one can effectively construct,

in time O(f(n)), an ANEP/ANEPFC/ANSP Γ(p) ∈ G which decides,

again in time O(f(n)), the word encoding the given instance. This

means that the word is decided if and only if the solution to the given

instance of the problem is “YES”. This effective construction is called

an O(f(n)) time solution to the considered problem.

If an ANEP/ANEPFC/ANSP Γ ∈ G constructed above decides the

language of words encoding all instances of the same size n, then the con-

struction of Γ is called a uniform solution. Intuitively, a solution is uniform

if for problem size n, we can construct a unique ANEP/ANEPFC/ANSP

solving all instances of size n taking the (reasonable) encoding of instance

as “input”.

In [39] uniform linear time solutions using ANEPs to the 3-CNF-SAT

and Hamiltonian Path problems are proposed; in [44] a uniform linear solu-

tion to the Vertex-Cover problem is proposed. In [25] one proposes another

uniform linear time solution to the Vertex-Cover problem, solved this time

by ANEPFCs. Uniform linear time solutions to the SAT and Hamiltonian

Path problems with ANSPs and ANSPFCs are discussed in [40]

10.8 Accepting Networks of Picture Processors

10.8.1 Pictures and Picture Languages

Picture languages defined by different mechanisms have been studied ex-

tensively in the literature. A new model of recognizable picture languages,
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extending to two dimensions the characterization of the one-dimensional

recognizable languages in terms of alphabetic morphisms of local languages,

has been introduced in [28]. Similarly to the word case, there were proposed

characterizations of recognizable picture series, see, e.g., [10, 50]. An early

survey on automata recognizing rectangular pictures languages is [33], a

bit more recent one considering different mechanisms defining picture lan-

guages, not necessarily rectangular, is [61] and an even more recent and

concise one is [29]. Rather unexpected connections between different types

of picture languages and logics were reported in [30, 49].

We recall here, following [9], the main results obtained for accepting

networks whose nodes process pictures.

The definitions and notations concerning two-dimensional languages are

taken from [29]. The set of natural numbers from 1 to n is denoted by [n].

The cardinality of a finite set A is denoted by card(A). Let V be an

alphabet, V ∗ the set of one-dimensional words over V and ε the empty

word. A picture (or two-dimensional word) over the alphabet V is a two-

dimensional array of elements from V . We denote the set of all pictures over

the alphabet V by V ∗∗ , while the empty picture will be still denoted by ε. A

two-dimensional language over V is a subset of V ∗∗ . The minimal alphabet

containing all symbols appearing in a picture π is denoted by alph(π). Let

π be a picture in V ∗∗ ; we denote the number of rows and the number of

columns of π by π and |π|, respectively. The pair (π, |π|) is called the size

of the picture π. The size of the empty picture ε is obviously (0, 0). The set

of all pictures over V of size (m,n), where m,n ≥ 1, is denoted by V n
m. The

symbol placed at the intersection of the ith row with the jth column of the

picture π, is denoted by π(i, j). The row picture of size (1, n) containing

occurrences of the symbol a only is denoted by an1 . Similarly the column

picture of size (m, 1) containing occurrences of the symbol a only is denoted

by a1m.

We recall informally the row and column concatenation operations be-

tween pictures. For a formal definition the reader is referred to [33] or

[29]. The row concatenation of two pictures π of size (m,n) and ρ of size

(m′, n′) is denoted by πrρ and is defined only if n = n′. The picture πrρ

is obtained by adding the picture ρ after the last row of π. Analogously

one defines the column concatenation denoted by c©. We now define four

new operations, in some sense the inverse operations of the row and col-

umn concatenation. Let π and ρ be two pictures of size (m,n) and (m′, n′),
respectively. We define
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- The column right-quotient of π with ρ: π/→ρ = θ iff π = θ c©ρ.

- The column left-quotient of π with ρ: π/←ρ = θ iff π = ρ c©θ.

- The row down-quotient of π with ρ to the right: π/↓ρ = θ iff π = θrρ.

- The column up-quotient of π with ρ: π/↑ρ = θ iff π = ρrθ.

10.8.2 Picture Processors

Let V be an alphabet; a rule of the form a → b(X), with a, b ∈ V ∪ {ε}

and X ∈ {−, |} is called an evolutionary rule. For any rule a → b(X), X

indicates which component of a picture (row if X = − or column if X = |)

the rule is applied to. We say that a rule a → b(X) is a substitution rule

if both a and b are not ε, is a deletion rule if a 6= ε, b = ε, and is an

insertion rule if a = ε, b 6= ε. In this paper we shall ignore insertion rules

because we want to process every given picture in a space bounded by the

size of that picture. We denote by RSubV = {a → b(−) | a, b ∈ V } and

RDelV = {a → ε(−) | a ∈ V }. The sets CSubV and CDelV are defined

analogously.

Given a rule σ as above and a picture π ∈ V n
m, we define the following

actions of σ on π:

• If σ ≡ a→ b(|) ∈ CSubV , then

σ←(π)=























{π′ ∈ V n
m : ∃i ∈ [m](π(i, 1) = a & π′(i, 1) = b), π′(k, 1) = π(k, 1),

k ∈ [m] \ {i}, π′(j, l) = π(j, l), (j, l) ∈ [m]× ([n] \ {1})}

{π}, if the first column of π does not contain any occurrence

of the letter a.

σ→(π)=























{π′ ∈ V n
m : ∃i ∈ [m](π(i, n) = a & π′(i, n) = b), π′(k, n) = π(k, n),

k ∈ [m] \ {i}, π′(j, l) = π(j, l), (j, l) ∈ [m]× [n− 1]}

{π}, if the last column of π does not contain any occurrence

of the letter a.

σ∗(π)=















{π′ ∈ V n
m : ∃(i, j) ∈ [n]× [m] such that π(i, j) = a and

π′(i, j) = b, π′(k, l) = π(k, l), ∀(k, l) ∈ ([n]× [m]) \ {(i, j)}}

{π}, if no column of π contains any occurrence of the letter a.

Note that a rule as above is applied to all occurrences of the letter a

either in the first or in the last or in any column of π, respectively, in

different copies of the picture π. Analogously, we define:
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• If σ ≡ a→ b(−) ∈ RSubV , then

σ↑(π)=























{π′ ∈ V n
m : ∃i ∈ [n](π(1, i) = a & π′(1, i) = b), π′(1, k) = π(1, k),

∀k ∈ [n] \ {i}, π′(j, l) = π(j, l), ∀(j, l) ∈ ([m] \ {1})× [n]}

{π}, if the first row of π does not contain any occurrence

of the letter a.

σ↓(π)=























{π′ ∈ V n
m : ∃i ∈ [n](π(m, i) = a & π′(m, i) = b), π′(m, k) = π(m, k),

∀k ∈ [n] \ {i}, π′(j, l) = π(j, l), ∀(j, l) ∈ [m− 1]× [n]}

{π}, if the last row of π does not contain any occurrence

of the letter a.

σ∗(π) = ρ∗(π), where ρ ≡ a→ b(|) ∈ CSubV .

• If σ ≡ a→ ε(|) ∈ CDelV , then

σ←(π)=























π/←ρ, where ρ is the leftmost column of π, if the leftmost

column of π does contain at least one occurrence of the letter a

π, if the leftmost column of π does not contain any occurrence

of the letter a.

σ→(π)=























π/→ρ, where ρ is the rightmost column of π, if the rightmost

column of π does contain at least one occurrence of the letter a

π, if the rightmost column of π does not contain any occurrence

of the letter a.

σ∗(π)=















{π1 c©π2 | π = π1 c©ρ c©π2, for some π1, π2 ∈ V ∗∗ and ρ is a

column of π1 that contains an occurrence of the letter a}

{π}, if π does not contain any occurrence of the letter a.

In an analogous way we define:
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• If σ ≡ a→ ε(−) ∈ RDelV , then

σ↑(π) =























π/↑ρ, where ρ is the first row of π, if the first row

of π does contain at least one occurrence of the letter a

π, if the first row of π does not contain any occurrence

of the letter a.

σ↓(π) =























π/↓ρ, where ρ is the last row of π, if the last row

of π does contain at least one occurrence of the letter a

π, if the last row of π does not contain any occurrence

of the letter a.

σ∗(π) =















{π1rπ2 | π = π1rρrπ2, for some π1, π2 ∈ V ∗∗ and ρ is a

row of π1 that contains an occurrence of the letter a}

{π}, if π does not contain any occurrence of the letter a.

For every rule σ, action α ∈ {∗,←,→, ↑, ↓}, and L ⊆ V ∗∗ , we define the

α-action of σ on L by σα(L) =
⋃

π∈L
σα(π). Given a finite set of rules M ,

we define the α-action of M on the picture π and the language L by:

Mα(π) =
⋃

σ∈M
σα(π) and Mα(L) =

⋃

π∈L
Mα(π),

respectively. In what follows, we shall refer to the rewriting operations

defined above as evolutionary picture operations since they may be viewed

as the 2-dimensional linguistic formulations of local gene mutations.

For two disjoint subsets P and F of an alphabet V and a picture π over

V , we define the following two predicates which will define later two types

of filters:

rcs(π;P, F ) ≡ P ⊆ alph(π) ∧ F ∩ alph(π) = ∅

rcw(π;P, F ) ≡ alph(π) ∩ P 6= ∅ ∧ F ∩ alph(π) = ∅.

Note that these conditions are similar to those defined in Section 10.2.2,

for words. For every picture language L ⊆ V ∗∗ and β ∈ {s, w}, we define:

rcβ(L, P, F ) = {π ∈ L | rcβ(π;P, F ) = true}.

An evolutionary picture processor over V is a 5-tuple (M,PI, FI, PO, FO),

where:
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– Either (M ⊆ CSubV ) or (M ⊆ RSubV ) or (M ⊆ CDelV ) or (M ⊆

RDelV ). The setM represents the set of evolutionary rules of the processor.

As one can see, a processor is “specialized” into one type of evolutionary

operation, only.

– PI, FI ⊆ V are the input sets of permitting/forbidding symbols

(contexts) of the processor, while PO,FO ⊆ V are the output sets of

permitting/forbidding symbols of the processor (with PI ∩ FI = ∅ and

PO ∩ FO = ∅).

We denote the set of evolutionary picture processors over V by EPPV .

10.8.3 Accepting Networks of Evolutionary Picture Proces-

sors

An accepting network of evolutionary picture processors (ANEPP for short)

is a 8-tuple Γ = (V, U,G,N, α, β, xI , Out), where:

• V and U are the input and network alphabet, respectively, V ⊆ U .

• G = (XG, EG) is an undirected graph without loops with the set of

vertices XG and the set of edges EG. G is called the underlying graph

of the network.

• N : XG −→ EPPV is a mapping which associates with each node

x ∈ XG the evolutionary processor N(x) = (Mx, P Ix, F Ix, POx, FOx).

• α : XG −→ {∗,←,→, ↑, ↓}; α(x) gives the action mode of the rules of

node x on the pictures existing in that node.

• β : XG −→ {s, w} defines the type of the input/output filters of a node.

More precisely, for every node, x ∈ XG, the following filters are defined:

input filter: ρx(·) = rcβ(x)(·;PIx, F Ix),

output filter: τx(·) = rcβ(x)(·;POx, FOx).

That is, ρx(π) (resp. τx(π)) indicates whether or not the picture π can

pass the input (resp. output) filter of x. More generally, ρx(L) (resp.

τx(L)) is the set of pictures of L that can pass the input (resp. output)

filter of x.

• xI ∈ XG is the input node and Out ⊂ XG is the set of output nodes of

Γ.

We say that card(XG) is the size of Γ. A configuration of an ANEPP

Γ as above is a mapping C : XG −→ 2
U∗

∗

f which associates a finite set of

pictures with every node of the graph. A configuration may be understood
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as the sets of pictures which are present in any node at a given moment.

Given a picture π ∈ V ∗∗ , the initial configuration of Γ on π is defined by

C
(π)
0 (xI) = {π} and C

(π)
0 (x) = ∅ for all x ∈ XG \ {xI}.

A configuration can change via either an evolutionary step or a commu-

nication step. When changing via an evolutionary step, each component

C(x) of the configuration C is changed in accordance with the set of evolu-

tionary rules Mx associated with the node x and the way of applying these

rules α(x). Formally, we say that the configuration C′ is obtained in one

evolutionary step from the configuration C, written as C =⇒ C′, iff

C′(x) = Mα(x)
x (C(x)) for all x ∈ XG.

When changing via a communication step, each node processor x ∈ XG

sends one copy of each picture it has, which is able to pass the output filter

of x, to all the node processors connected to x and receives all the pictures

sent by any node processor connected with x provided that they can pass

its input filter.

Formally, we say that the configuration C′ is obtained in one commu-

nication step from configuration C, written as C ` C′, iff

C′(x) = (C(x) \ τx(C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y))∩ρx(C(y))) for all x ∈ XG.

Note that pictures that cannot pass the output filter of a node remain

in that node and can be further modified in the subsequent evolutionary

steps, while pictures that can pass the output filter of a node are expelled.

Further, all the expelled pictures that cannot pass the input filter of any

node are lost.

Let Γ be an ANEPP, the computation of Γ on an input picture π ∈

V ∗∗ is a sequence of configurations C
(π)
0 , C

(π)
1 , C

(π)
2 , . . . , where C

(π)
0 is the

initial configuration of Γ on π, C
(π)
2i =⇒ C

(π)
2i+1 and C

(π)
2i+1 ` C

(π)
2i+2, ∀i ≥ 0.

Note that configurations are changed by alternative steps. By the previous

definitions, each configuration C
(π)
i is uniquely determined by C

(π)
i−1. A

computation halts, and is said to be weak (strong) halting, if one of the

following two conditions holds:

(i) There exists a configuration in which the set of pictures existing in

at least one output node (all output nodes) is non-empty. In this case, the

computation is said to be a weak (strong) accepting computation.

(ii) There exist two identical configurations obtained either in consecu-

tive evolutionary steps or in consecutive communication steps.

For the rest of this paper we consider only ANEPPs that halt on every

input. The picture language weakly (strongly) accepted by Γ is
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Lwa(sa)(Γ) = {π ∈ V ∗∗ | the computation of Γ on π is a weak (strong)

accepting one}.

10.8.4 Computational Power

We first establish a useful relationship between the two classes

Lwa(ANEPP ) and Lsa(ANEPP ). As it was expected, we have

Theorem 10.31. Lwa(ANEPP ) ⊆ Lsa(ANEPP ).

We now compare the classes Lwa(ANEPP ) and Lsa(ANEPP ) of pic-

ture languages weakly and strongly accepted by ANEPPs, respectively, with

L(LOC) and L(REC) denoting the classes of local and recognizable picture

languages, respectively [28].

Theorem 10.32. Lwa(ANEPP ) \ L(REC) 6= ∅.

We do not know whether the inclusion L(REC) ⊂ Lwa(ANEPP ) holds,

however a large part of L(REC) is included in Lwa(ANEPP ) as the next

result states. We recall that the complement of any local language is rec-

ognizable [28].

Theorem 10.33. The complement of every local language can be weakly

accepted by an ANEPP.

It is worth mentioning that similar results have been obtained for ac-

cepting networks of picture processors with filtered connections considered

in [8] but the relationship between the two variants is still unknown.

10.8.5 Solving Picture Matching with ANEPPs

A natural problem is to find a pattern (a given picture) in a given picture.

This problem is widely known as the two-dimensional pattern matching

problem. It is largely motivated by different aspects in low-level image

processing [60]. The more general problem of picture matching (the pic-

ture is not obligatory a two-dimensional array) is widely known in Pattern

Recognition field and is connected with Image Analysis and Artificial Vision

[47, 64].

In [9] an ANEPP that weakly accepts the singleton language formed

by a given picture of size (2, 2) is constructed. Based on this ANEPP one
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proves that the two-dimensional pattern matching problem can be solved

by ANEPPs with weak acceptance (or the problem is weakly decided by

ANEPP) provided that the pattern is of size (2, 2). Can this result be

extended to patterns of arbitrary size? In [9] one shows that it can be

extended to patterns of size (i, n) and (n, i) for any 1 ≤ i ≤ 3 and n ≥

1. However, the general problem of pattern matching in a given picture

remains open.

Theorem 10.34. Given a finite set F of patterns of size (i, n) and (n, i)

for all 1 ≤ i ≤ 3 and n ≥ 1, the pattern matching problem with patterns

from F can be weakly decided by ANEPPs.

Various algorithms exist for the exact two-dimensional matching prob-

lem. The fastest algorithms for finding a rectangular picture pattern in

a given picture of size (n,m) run in O(n × m) time, see, e.g., [6, 66]. It

is rather easy to note that an ANEPP which weakly decides whether a

pattern of size (i, p), 1 ≤ i ≤ 3, appears in a given picture of size (n,m)

does this in O(n + m) computational (evolutionary and communication)

steps. On the other hand, the space complexity of the algorithm pro-

posed in [66] is O(n × m), while the number of pictures moving through

the network is pretty large. We recall that some biological phenomena

are sources of inspiration for our model. In this context, it is considered

to be biologically feasible to have sufficiently many identical copies of a

molecule.

As we have seen, the general problem of weakly deciding whether a

given pattern appears in a picture remained open. A brief discussion seems

in order. The main idea in the proof of Theorem 10.34 can be informally

described as follows. For each picture in F , we have a subnetwork ac-

cepting exactly that picture. Given an input picture, another part of the

total network extracts arbitrarily a subpicture which is given to all sub-

networks accepting pictures from F . If at least one of them recognizes

it, the input picture is accepted. We were not able to extend this strat-

egy to patterns of arbitrary size as we could not design a network able to

weakly accept exactly a picture of a size different than those mentioned

in the statement of Theorem 10.34. On the other hand, for every picture

we can define a network strongly accepting exactly that picture. Unfor-

tunately, this construction cannot be harmonized with the aforementioned

strategy. Consequently, one may naturally ask: Could the problem be

strongly decided?
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We study the phenomenon of periodicity on quantum automata from three

points of view. First, we provide an efficient algorithm for testing the peri-

odicity of stochastic events induced by measure-once one-way unary quan-

tum automata (1qfa’s). Second, we design an algorithm for the synthesis of

succinct unary 1qfa’s inducing periodic events. To evaluate the size of the

resulting 1qfa’s, we relate the number of states of a minimal 1qfa inducing

a linear approximation of a periodic event p to the harmonic structure of p.

Next, we study the complexity of our synthesis algorithm. Third, we apply

our synthesis algorithm for building succinct 1qfa’s that accept unary peri-

odic languages. We also prove a lower bound on the size of 1qfa’s accepting

unary periodic languages.

11.1 Introduction

Quantum computing is a research area halfway between computer science

and physics [21]. In the early 80’s, Feynman suggested that the compu-

tational power of quantum mechanical processes might be beyond that of

traditional computation models [17]. Almost at the same time, Benioff al-

ready determined that such processes are at least as powerful as Turing

machines [4]. Discussing the notion of “quantum computational device”,

Deutsch introduced the model of quantum Turing machine as a physically

563
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realizable model for a quantum computer [16]. From the point of view

of structural complexity, Bernstein and Vazirani defined the class BQP of

problems solvable in polynomial time on quantum Turing machines with

an arbitrary small error probability, and they settled the comparison with

the corresponding probabilistic class BPP [5].

The most famous result witnessing quantum power is Shor’s algorithm

for integer factorization, running in polynomial time on a quantum com-

puter [36]. This is to be compared with the currently known best clas-

sical factoring algorithms, featuring exponential running time (see, e.g.,

[24]). Another relevant progress is made by Grover, who gives a quan-

tum algorithm for searching an item in an unsorted database of n items

in time O(
√

n), against classical database searching where O(n) time is

required [20].

The power of quantum paradigm crucially relies on the typical features

of quantum systems: superposition, interference, and observation. The

state of a quantum machine can be seen as a linear combination of clas-

sical states (superposition). A unitary transformation makes the machine

evolve from superposition to superposition. Superposition can transfer the

complexity of the problem from a large number of sequential steps to a

large number of coherently superposed quantum states. Entanglement is

used to create complicated correlations allowing interference between the

“parallel computations” performed by the quantum machine. Furthermore,

the machine can be observed: this process makes the current superposition

collapse to a particular state.

Efforts have been made to construct quantum devices, and their real-

ization seems to be a very difficult task (see, e.g., [21, 32, 34]). We can

hardly expect to see a fully quantum computer in the near future, while

it is reasonable to think of classical computers incorporating small quan-

tum components [3] such as, e.g., quantum finite automata (qfa’s, for short).

Qfa’s are computational devices particularly interesting since they represent

a theoretical model for a quantum computer with finite memory. Several

variants of qfa’s have been introduced, some of which with physical motiva-

tions: measure-once [6, 14, 31], measure-many [2, 23], measure-only [11],

enhanced [33], reversible [19], with control language [9]. Basically, these

models differ in the measurement policy. Here, we will focus on the sim-

plest model which is represented by measure-once one-way qfa’s (1qfa’s, for

short). Very roughly speaking, a measure-once 1qfa can be regarded as

a classical finite state automaton, on which the quantum paradigm is im-

posed. Yet, the probability of accepting strings is evaluated by “observing
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just once”, at the end of input processing. Investigations on measure-once

1qfa’s typically follows two directions, aiming to settle comparisons with

classical automata models. On the one hand, their computational power

(the class of accepted languages) has been investigated and established.

Quite surprisingly, the class of languages accepted by measure-once 1qfa’s

with isolated cut point is a proper subclass (group languages [35]) of regular

languages [6, 14]. On the other hand, several results witness that some-

times measure-once 1qfa’s turn out to have a higher descriptional power,

resulting in very small size devices.

One of the main attractive tasks where such a descriptional superiority

shows up is the ability of realizing periodic behaviors. The simplest and

meaningful form of periodicity can be appreciated by focusing on unary

devices, i.e., working on single-letter input alphabets. To be more precise,

let A be a measure-once 1qfa with unary input alphabet {σ}. The stochastic

event induced by A is the function pA : N → [0, 1] such that pA(n) is

the probability that A accepts the string σn. Such an event is said to

be n-periodic whenever pA is a function of period n. Some generalizations

enlarging the notion of periodicity to general alphabets have been proposed

and studied in the literature [10, 29]. Here, we will be dealing with unary

events only. The possibility of efficiently reproducing periodic events has

a lot of relevant applications especially in language theory, where it often

leads to the construction of small accepting automata.

In this paper, we are going to provide a survey on results coming from

three natural lines of investigation on periodicity by measure-once 1qfa’s:

testing, synthesis, applications.

First, we focus on the problem of testing whether a given measure-once

1qfa induces an event of a given periodicity. We prove that this problem

is decidable by using generating functions arguments. Moreover, we have

that our deciding algorithm is polynomial in time whenever running on

automata with complex amplitudes of rational components. The problem

of testing periodicity on a more general model of quantum automata is

studied in [13].

Second, we study the problem, tackled in [7], of synthesizing small

measure-once 1qfa’s inducing given periodic events. Given an n-periodic

event p, we provide a polynomial time algorithm which builds a measure-

once 1qfa A with O(
√

n) states inducing the event ap + b for reals a > 0,

b ≥ 0 satisfying a+b ≤ 1. Actually, we show that the size of a measure-once

1qfa inducing ap+ b can be related to the harmonic structure of p by the

notion of difference cover [15]. A difference cover for a setX ⊆ Zn is any set
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∆ ⊆ Zn such that any element of X can be obtained as a difference modulo

n of two elements in ∆. We prove that the number s of states of a minimal

measure-once 1qfa inducing ap+b satisfies the bound q ≤ s ≤ 4q+1, where q

is the cardinality of a minimum difference cover for the support set {j ∈

Zn | the jth coefficient of the discrete Fourier transform of p is not null}.

So, in order to reduce automata size, it turns out to be relevant the prob-

lem of computing minimum difference covers. We show that this problem

is NP-hard [28].

Third, we give some applications of these results to unary periodic lan-

guage acceptance by measure-once 1qfa’s. A unary language is n-periodic

whenever its characteristic function is n-periodic. Periodic languages are a

very well studied benchmark for testing the descriptional power of different

kinds of automata [30]. We prove that any n-periodic language can be ac-

cepted with isolated cut point by a measure-once 1qfa with O(
√

n) states

[27]. This result emphasizes a quadratic gap in the descriptional power

between the quantum and classical (also, probabilistic) paradigm. Yet, we

prove a lower limit to quantum automata succinctness. In fact, we show the

existence of n-periodic languages that cannot be accepted by measure-once

1qfa’s inducing periodic events with less than
√

n/(3 logn) states [8].

11.2 Preliminaries

We assume that the reader is familiar with basic notions on formal language

and complexity theory (see, e.g., [18, 22]). Below, we present preliminaries

on linear algebra, and the model of quantum automaton we shall be dealing

with.

11.2.1 Linear Algebra

We quickly recall some notions of linear algebra. For more details, we

refer the reader to, e.g., [26, 25]. The field of complex numbers is denoted

by C. Given a complex number z ∈ C, its conjugate is denoted by z∗,
and its modulus is |z| =

√

zz∗. We let C
n×m denote the set of n × m

matrices with entries in C. Given a matrix M ∈ C
n×m, for 1 ≤ i ≤ n and

1 ≤ j ≤ m, we let Mij denote its (i, j)th entry. The transpose of M is the

matrix MT
∈ C

m×n satisfying MT
ij = Mji, while we let M∗ the matrix

M∗
ij = (Mij)

∗. The adjoint of M is the matrix M † = (MT )∗.
For matrices A,B ∈ C

n×m, their sum is the n×m matrix (A+B)ij =

Aij+Bij . For matrices C ∈ C
n×m and D ∈ C

m×r, their product is the n×r
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matrix (CD)ij =
∑m

k=1 CikDkj . For matrices A ∈ C
n×m and B ∈ C

p×q,

their direct sum and Kronecker (or direct) product are the (m+p)× (n+q)

and mp× nq matrices defined, respectively, as

A⊕B =

(

A 0

0 B

)

, A⊗B =









A11B · · · A1mB

...
. . .

...

An1B · · · AnmB









,

where 0 denotes zero-matrices of suitable dimensions. When operations are

allowed by matrices dimensions, we have that (A⊗B) ·(C⊗D) = AC⊗BD

and (A⊕B) · (C ⊕D) = AC ⊕BD.

An Hilbert space of dimension n is the linear space C1×n equipped with

sum and product by elements in C, in which, for vectors π, ξ ∈ C
1×n, the

inner product 〈π, ξ 〉 = πξ† is defined. The i-th component of π is denoted

by πi. The (l2) norm of π is given by ‖π ‖=
√

〈π, π 〉. If 〈π, ξ 〉 = 0 (and

‖ π ‖ = 1 = ‖ ξ ‖ ), we say that π is orthogonal (orthonormal) to ξ. Two

subspaces X,Y ⊆ C
1×n are orthogonal if any vector in X is orthogonal

to any vector in Y . In this case, the linear space generated by X ∪ Y is

denoted by X ⊕ Y .

A matrix M ∈ C
n×n can be view as the morphism π 7→ πM of the

Hilbert space C
1×n into itself. If MM † = M †M then M is said to be nor-

mal. Two important subclasses of normal matrices are the unitary and the

Hermitian matrices. M is said to be unitary whenever MM † = I = M †M .

The eigenvalues of unitary matrices are complex numbers of modulus 1,

i.e., they are in the form eiθ , for some real θ. This fact characterizes the

class of unitary matrices if we restrict to normal matrices. Alternative char-

acterizations of normal and unitary matrices are contained, respectively, in

Proposition 11.1. [25] (Thm. 4.10.3) A matrix M ∈ C
n×n is normal if

and only if there exists a unitary matrix X ∈ C
n×n such that M = XDX†,

where D = diag(ν1, . . . , νn) is the diagonal matrix of the eigenvalues of M .

Proposition 11.2. [25] (Thms. 4.7.24, 4.7.14) A matrix M ∈ C
n×n is

unitary if and only if:

(i) its rows are mutually orthonormal vectors;

(ii) ‖πM ‖= ‖π‖ , for each vector π ∈ C
1×n.

The matrix M is said to be Hermitian whenever M = M †. Given an

Hermitian matrix O ∈ C
n×n, let c1, . . . , cs be its eigenvalues and E1, . . . , Es



September 2, 2010 11:43 World Scientific Book - 9in x 6in 00Chapter

568 C. Mereghetti and B. Palano

the corresponding eigenspaces. It is well known that each eigenvalue ck is

real, that Ei is orthogonal to Ej , for 1 ≤ i 6= j ≤ s, and that E1⊕· · ·⊕Es =

C
1×n. In this case, we say that {E1, . . . , Es} is a decomposition of C1×n. In

fact, every vector π ∈ C
1×n can be uniquely decomposed as π = π1+· · ·+πs,

for unique πj ∈ Ej . An Hermitian matrix is positive semidefinite if and

only if all its eigenvalues are non negative. Alternative characterizations

are contained in

Proposition 11.3. [26] (Thms. 4.12, 4.8) An Hermitian matrix M ∈ C
n×n

is positive semidefinite if and only if:

(i) πMπ†
≥ 0, for each vector π ∈ C

1×n;

(ii) M = Y Y †, for some matrix Y ∈ C
n×n.

11.2.2 Quantum Finite Automata

In this paper, we are interested only in measure-once quantum finite au-

tomata [2, 14, 31]. Hereafter, the attribute measure-once will always be

understood. The “hardware” of a one-way quantum finite automaton is

that of a classical finite automaton. Thus, we have an input tape which is

scanned by an input head moving one position right at each move1, plus a

finite state control. Formally:

Definition 11.4. A one-way quantum finite automaton (1qfa, for short) is

a quintuple A = (Q,Σ, π(0), δ, F ), where

• Q = {s1, s2, . . . , sq} is the finite set of states,

• Σ is the finite input alphabet,

• π(0) ∈ C
1×q, with ‖π(0)‖2= 1, is the vector of the initial amplitudes of

the states,

• F ⊆ Q is the set of accepting states,

• δ : Q × Σ × Q → C is the transition function mapping into the set

of complex numbers having square modulus not exceeding 1; δ(si, σ, sj)

is the amplitude of reaching the state sj from the state si, upon read-

ing σ. The transition function must satisfy the following condition of

well-formedness: for any σ ∈ Σ and 1 ≤ i, j ≤ q,

q
∑

k=1

δ(si, σ, sk) δ
∗(sj , σ, sk) =

{

1 if i = j

0 otherwise.

1
This kind of automata are sometimes referred to as real time automata [31], stressing

the fact that they can never present stationary moves.
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It is useful to express the transition function on σ ∈ Σ as the transition

matrix U(σ) ∈ C
q×q with U(σ)ij = δ(si, σ, sj). Since δ satisfies the condi-

tion of well-formedness above displayed, the rows of each U(σ) are easily

seen to be mutually orthonormal vectors and hence, by Proposition 11.2(i),

U(σ)’s are unitary matrices. The 1qfa A can thus be represented as a triple

A = (π(0), {U(σ)}σ∈Σ, ηF ), where ηF ∈ {0, 1}1×n is the characteristic vec-

tor of the accepting states.

Let us briefly discuss how A works. At any given time t, the state of A

is a superposition of the states in Q, and is represented by a vector π(t)

of norm 1 in the Hilbert space l2(Q) (the space of mappings from Q to C

with l2 norm). In particular, π(t)i is the amplitude of the state si. The

computation on input x = x1 · · ·xn ∈ Σ∗ starts in the superposition π(0).

After k steps, i.e., after reading the first k input symbols, the state of A is

the superposition

π(k) = π(0)U(x1) · · ·U(xk).

Since ‖ π(0) ‖= 1 and U(xi)’s are unitary matrices, Proposition 11.2(ii)

ensures that ‖ π(k) ‖= 1. After entering the final superposition

π(n) = π(0)
∏n

i=1 U(xi), we observe A by the standard observable O =

{l2(F ), l2(Q \ F )}, which is basically the decomposition of l2(Q) into the

two orthogonal subspaces spanned by the accepting and nonaccepting

states, respectively. The probability that A accepts x is given by the square

norm of the projection of π(n) onto l2(F ). Formally:

pacc(x) =
∑

{j | (ηF )j=1}
|(π(0)

n
∏

i=1

U(xi))j |
2.

A stochastic event is a function p : Σ∗
→ [0, 1]. The stochastic event induced

by the 1qfa A is the function pA : Σ∗
→ [0, 1] defined, for any x ∈ Σ∗, as

pA(x) = pacc(x). The language accepted by A with cut point λ is the set

LA,λ = {x ∈ Σ∗
| pA(x) > λ}.

A language L is said to be accepted by A with isolated cut point λ, if there

exists ε > 0 such that, for any x ∈ L (x 6∈ L), we have pA(x) ≥ λ + ε

(≤ λ− ε).

A 1qfa A is unary whenever |Σ| = 1. In this case, we let Σ = {σ}, and

we can write A = (π(0), U, ηF ) since we have a unique transition matrix U .

With a slight abuse of notation, we will be writing k for the input string σk.

The probability of accepting k now writes as

pacc(k) =
∑

{j | (ηF )j=1}
|(π(0)Uk)j |

2. (11.1)
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The stochastic event induced by the unary 1qfa A is the function pA :

N → [0, 1], with pA(k) = pacc(k). A stochastic event p : N → [0, 1] is

said to be n-periodic if it is an n-periodic function. In this case, p can be

clearly represented by the vector (p(0), . . . , p(n − 1)). A unary language

is a set L ⊆ σ∗. L is n-periodic if there exists a set S ⊆ Zn such that

L = {k ∈ N | (kmodn) ∈ S}.

11.3 Testing Periodicity on Unary 1qfa’s

Let us start by tackling the investigation on the periodicity phenomenon

on 1qfa’s from the point of view of testing. More formally, we consider the

following decision problem:

d-periodicity

Input: A unary 1qfa A and an integer d > 0.

Output: Is pA a d-periodic event?

We give an algorithm to decide this problem. Yet, if the 1qfa’s in input have

rational entries, i.e., complex numbers with rational components, the time

complexity of our algorithm is polynomial. Notice that 1qfa’s with rational

entries do not necessarily induce periodic events. For instance, consider the

unary 1qfa

A =

(

(1, 0),

(

cosπθ sinπθ

− sinπθ cosπθ

)

=

(

3
5

4
5

−
4
5

3
5

)

, (1, 0)

)

,

inducing the event pA(n) = (cosπnθ)2, which is periodic if and only if θ

is rational. It is known that, for rational θ, the only rational values of

cos(πθ) are 0,± 1
2 ,±1. So, the event induced by A is not periodic. There-

fore, restricting d-periodicity to 1qfa’s with rational entries is well worth

investigating.

To approach d-periodicity, we find it useful to provide a particular

representation of 1qfa’s. Given a unary 1qfa A = (π, U, η) with q states, we

define its linear representation as follows. First, for 1 ≤ i ≤ q, we define

the q-dimensional boolean vector η̄i = ηiei, with ei ∈ {0, 1}
1×q

having 1

at the i-th component, and 0 elsewhere. Thus, η =
∑q

i=1 η̄i. The linear

representation of A is the tuple (π̃, Ũ , η̃), where

• π̃ = π ⊗ π∗,
• Ũ = U ⊗ U∗,
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• η̃ =
∑q

i=1 η̄i ⊗ η̄i.

We have that pA(n) = π̃Ũnη̃, for every n ∈ N. In fact:

π̃Ũnη̃ = (π ⊗ π∗)(U ⊗ U∗)n
q
∑

i=1

η̄i ⊗ η̄i =

q
∑

i=1

(πUnη̄i)⊗ (π∗U∗nη̄i)

=
∑

{j | ηj=1}
(πUn)j(πU

n)∗j =
∑

{j | ηj=1}
|(πUn)j |

2 = pA(n).

We also need the notion of generating function. Given a function f : N → C,

its generating function is defined as
∑+∞

k=0 f(k)z
k, for all z ∈ C such that

|z| < 1.

We are now ready to present an algorithm for solving d-periodicity.

Let the input be a 1qfa A = (π, U, η) in linear representation, where π

and U have rational entries. Notice that U is a unitary matrix since it is

of the form M ⊗ M∗ for some unitary matrix M . Recall that the event

pA(n) = πUnη is d-periodic if and only if πUnη = πUn+dη holds for every

n ∈ N. This condition can be expressed by using the generating function

of pA and, since (Uz)n → 0 for z ∈ C such that |z| < 1, we get
+∞
∑

k=0

(πUkη)zk =

+∞
∑

k=0

(πUk+dη)zk

m

π

+∞
∑

k=0

(Uz)kη = πUd
+∞
∑

k=0

(Uz)kη

m

π(I − Uz)−1η = πUd(I − Uz)−1η. (11.2)

For any square matrix M , its adjugate matrix adj(M) is defined as

adj(M)ij = (−1)i+j det(M[ij]), where M[ij] is the matrix obtained from

M by erasing its i-th row and j-th column. By recalling that M−1 =

adj(M)T/det(M), Equation (11.2) becomes

π (adj(I − Uz))
T
η = πUd (adj(I − Uz))

T
η.

Notice that both terms of the above equation are rational polynomials of

degree less than q, with q × q being the dimension of U . So, the original

problem is reduced to comparing two polynomials with integer coefficients.

All the operations involved in this algorithm require polynomial time (see,

e.g., [1]). Therefore

Theorem 11.5. For unary 1qfa’s with rational entries, d-periodicity is

decidable in polynomial time.
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Open problem. It would be interesting to study the decidability, and

possibly the complexity, of the variant of d-periodicity, where only a

1qfa A is the input. So, we ask whether pA is periodic of some period.

11.4 Synthesis of 1qfa’s Inducing Periodic Events

We now come to the synthesis of succinct 1qfa’s exhibiting given periodic

events, and we propose an algorithm for solving this task. First, we briefly

recall the main steps of this algorithm. Then, we give an upper and a

lower bound on the number of states of minimal 1qfa’s inducing periodic

events, both bounds being related to the harmonic structure of the events.

Formally, the problem we are to investigate writes as:

Synthesis from events (Syn)

Input: An n-periodic event (p(0), . . . , p(n− 1)).

Output: A 1qfa A inducing the event ap+b, for some reals a > 0, b ≥ 0,

with a+ b ≤ 1.

Thus, we are going to construct 1qfa’s inducing not exactly p. However, in

Section 11.5 we will show that, from a language recognition point of view,

the events p and ap+ b are fully equivalent.

Before presenting our synthesis algorithm, we need to recall some for-

mal tools. It is well know that, being periodic, p can be expressed as a

linear combination of trigonometric functions by using the discrete Fourier

transform and its inverse. More precisely, we have that

p(k) =

n−1
∑

j=0

P (j)

n
e−i 2π

n
kj , (11.3)

with P (j) =
∑n−1

k=0 p(k) e
i 2π

n
kj . We let P = (P (0), . . . , P (n−1)) the discrete

Fourier transform of p. By defining Supp(P ) = {j ∈ Zn | P (j) 6= 0} the

support set of P , Equation (11.3) writes as p(k) =
∑

j∈Supp(P )
P (j)
n e−i 2π

n
kj .

The reader is referred to, e.g., [1] (Chp. 7) for more details on the discrete

Fourier transform and its relevance from a computational point of view.

Here, we just recall that computing the discrete Fourier transform of n-

dimensional vectors requires O(n log n) time.

On the other hand, concerning events induced by 1qfa’s, we can show
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Lemma 11.6. Let p be the event induced by a unary 1qfa A=(π, U, η) with

q states. Then, for any k ∈ N,

p(k) =
∑

1≤s,t≤q

eik(θs−θt)Bst, (11.4)

where eiθj ’s are the eigenvalues of U , and B is an Hermitian positive

semidefinite matrix.

Proof. By Equation (11.1) in Section 11.2.2, the event induced by A

writes as p(k) =
∑

{j | ηj=1} |(πU
k)j |

2, for any k ∈ N. Since U ∈

C
q×q is a unitary matrix, by Proposition 11.1 we can write U =

X diag(eiθ1 , . . . , eiθq )X†, where X is a unitary matrix and eiθj ’s are the

eigenvalues of U . So, Uk = X diag(eikθ1 , . . . , eikθq )X† and hence

p(k) =
∑

{j | ηj=1}
|(πX diag(eikθ1 , . . . , eikθq )X†)j |

2. (11.5)

By letting ξ = πX and substituting in (11.5), we get

p(k) =
∑

{j | ηj=1}
((ξ1e

ikθ1 , . . . , ξqe
ikθq )X†)j ((ξ1e

ikθ1 , . . . , ξqe
ikθq )X†)∗j

=
∑

{j | ηj=1}

(

q
∑

s=1

ξse
ikθsX†

sj

)(

q
∑

t=1

ξ∗t e
−ikθt(X†

tj)
∗
)

=
∑

1≤s,t≤q

eik(θs−θt)
∑

{j | ηj=1}
ξsX

†
sj(ξtX

†
tj)

∗.

Now, define the matrix B as

Bst =
∑

{j | ηj=1}
ξsX

†
sj(ξtX

†
tj)

∗,

for 1 ≤ s, t ≤ q. It is easy to verify that B = B†, and hence B is Hermitian.

To prove that B is positive semidefinite, by Proposition 11.3(i), it is enough

to show that xBx†
≥ 0, for any x ∈ C

1×q:

xBx† =
∑

1≤s,t≤q

xs





∑

{j | ηj=1}
ξsX

†
sj(ξtX

†
tj)

∗



 x∗
t

=
∑

{j | ηj=1}

(

q
∑

s=1

xsξsX
†
sj

)(

q
∑

t=1

xtξtX
†
tj

)∗

=
∑

{j | ηj=1}

∣

∣

∣

∣

∣

q
∑

s=1

xsξsX
†
sj

∣

∣

∣

∣

∣

2

≥ 0.

�
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In what follows, we use the notion of difference cover [15]. A set ∆ ⊆ Zn

is a difference cover in Zn (DCn, for short) for a set X ⊆ Zn if, for each

x ∈ X , there exist two elements a, b ∈ ∆ such that x = (a− b)modn.

We are now ready to propose an algorithm for solving Syn. The algo-

rithm consists of two parts: In the first part, θ’s and B are computed so

that Equation (11.4) exactly reproduces Equation (11.3). In the second

part, such a choice is turned into a well formed 1qfa inducing ap+ b. Here

is the first part:

◦ Input (p(0), . . . , p(n− 1))

step 1: Compute P = (P (0), . . . , P (n−1)), the discrete Fourier transform

of p, and let Supp(P ) = {j ∈ Zn | P (j) 6= 0}.

step 2: Find a minimum DCn ∆ = {d1, . . . , dq} for Supp(P ).

step 3: For each 1 ≤ t ≤ q, let θt = −
2π
n dt.

step 4: For each j ∈Supp(P ), let

N(j) = |{(ds, dt) | ds, dt ∈ ∆ and j = (ds − dt)modn}|,

and, for 1 ≤ s, t ≤ q, compute

Bst =

{

1
n

P (j)
N(j) if j ∈ Supp(P ) and j = (ds − dt)modn

0 otherwise.

It is easy to check that B ∈ C
q×q is an Hermitian matrix: to see

that Bst = Bts
∗, it is enough to notice that P (j) = P ∗(−jmodn) and

N(j) = N(−jmodn), for each j ∈ Zn. By plugging θ’s obtained at step 3

and B obtained at step 4 into Equation (11.4), we get exactly p(k) as in

Equation (11.3).

We are not going to display the (quite technical) second part of the

algorithm which produces the desired 1qfa A inducing the event ap+ b for

some real constants a > 0, b ≥ 0, with a+b ≤ 1. The reader can find all the

details of this part in [27] where, in particular, the explicit evaluation of the

coefficients a and b is performed. We just recall that the number of states of

A turns out to be 2q or 4q+1, depending on whether the Hermitian matrix

B obtained in the first part is positive semidefinite or not, respectively.

Instead, to emphasize the succinctness of returned 1qfa’s, we are now

going to show that this algorithm yields a minimal 1qfa — within a constant

factor — inducing ap+ b. To see this, we first need the following

Lemma 11.7. Given a n-periodic event p, let ap+ b be induced by a unary

q-state 1qfa, for some reals a > 0, b ≥ 0, a + b ≤ 1. Then, there exists a

DCn for Supp(P ) whose cardinality does not exceed q.
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Proof. Since ap + b is induced by a 1qfa, it must expand as in Equa-

tion (11.4). Yet, being an n-periodic function, it can also be expressed by

discrete Fourier transform as in Equation (11.3). By equating these two

forms, we get the following equivalence for every k ≥ 0:

∑

1≤s,t≤q

eik(θs−θt)ρste
iαst =

n−1
∑

j=0

ρje
iβj e−i 2π

n
kj + b,

where we choose to let ρste
iαst = Bst, ρje

iβj = aP (j)/n, with reals

ρst, ρj , αst, βj . Hence, for each j ∈ Supp(P ), there must exist 1 ≤ u, v ≤ q

such that

eik(θu−θv)eiαuv = e−i 2kπ
n

jeiβj .

Since this equality holds for every k ≥ 0, it must be that θv − θu = 2π
n j.

Therefore, we can set a DCn for Supp(P ) as ∆ = {bnθt/(2π)cmodn |

1 ≤ t ≤ q}. �

We are now ready to give a lower bound on the number of states for

1qfa’s inducing ap+ b.

Theorem 11.8. Let p be a n-periodic event. Every 1qfa inducing the event

ap+ b, for some reals a > 0, b ≥ 0, a+ b ≤ 1, cannot have less states than

the cardinality of a minimum DCn for Supp(P ).

Proof. Suppose, by contradiction, that ap+b is induced by a 1qfa with a

number of states less than the cardinality κ of a minimum DCn for Supp(P ).

This, by Lemma 11.7, would imply the existence of a DCn for Supp(P ) of

cardinality less than or equal to κ, which is clearly impossible. �

In the next section, we discuss the above synthesis algorithm from a

time complexity point of view. We are going to show that, as it is, the

algorithm is inefficient. However, we provide a “relaxed version” running

in polynomial time, still guaranteeing a quadratic gain on the size of the

resulting 1qfa’s with respect to equivalent classical devices.

Open problem. As stated by Theorem 11.8, the cardinality of a mini-

mum DCn for the support set of a n-periodic event p represents a lower

bound to the number of states of any 1qfa inducing p. It would be interest-

ing to characterize those (or at least single out families of) periodic events

for which such a theoretical lower bound can actually be achieved.



September 2, 2010 11:43 World Scientific Book - 9in x 6in 00Chapter

576 C. Mereghetti and B. Palano

11.4.1 The Time Complexity of our Synthesis Algorithm

It is not hard to see that all the steps of our synthesis algorithm can be

efficiently performed except step 2, where the computation of a minimum

difference cover is required. Efficiently solving this task would lead to a

feasible synthesis algorithm for succinct 1qfa’s inducing periodic events.

Unfortunately, we are going to show that computing a minimum differ-

ence covers is NP-hard. Formally, we consider the following optimization

problem:

Minimum Difference Cover (MinDCn)

Input: n ∈ Z
+, X ⊆ Zn\{0}

Output: ∆ = A ∪ {0}, with A ⊂ Zn, such that ∆ is a DCn for X

Measure: Cardinality of the DCn, i.e., |∆|

By a simple counting argument, we get that the cardinality of a minimum

DCn ∆ satisfies (1+
√

4|X | − 3)/2 ≤ |∆| ≤ |X |+1.Those subsets of Zn hav-

ing a minimum DCn with cardinality matching the upper bound are called

n-extrema. We begin by studying the hardness of testing non-extremity for

subsets of Zn.

To this aim, we consider the corresponding relaxed problem for subsets

of Z+, with differences performed without mod operation (i.e., difference

covers are in Z
+). In this case, we call extremum a set Y ⊂ Z

+ having

a minimum difference covers in Z
+ of cardinality |Y | + 1. The following

characterizations of n-extrema and extrema can be proved:

Theorem 11.9. [28] (Thms. 4.1, 4.2)

(i) Let X = {x1, x2, . . . , xm} ⊂ Zn, and let a1, a2, . . . , am variables on

{−1, 0, 1}. Then X is a n-extremum if and only if
(

m
∑

k=1

akxk

)

modn = 0 ⇔ ak = 0, for every 1 ≤ k ≤ m.

(ii) Let Y = {y1, y2, . . . , ym} ⊂ Z
+, and let a1, a2, . . . , am be variables

on {−1, 0, 1}. Then Y is an extremum if and only if

m
∑

k=1

akyk = 0 ⇔ ak = 0, for every 1 ≤ k ≤ m.

Example 11.10. Consider the set Eρ = {1, ρ1, . . . , ρα}, for any given in-

teger ρ ≥ 2. We can prove that Eρ is an extremum, and a n-extremum
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for any n > ρα+1−1
ρ−1 . First, it is easy to see that

∑α
k=0 akρ

k = 0

if and only if every ak ∈ {−1, 0, 1} is 0. Otherwise, we could write
∑

{i | ai=1} ρ
i =

∑

{i | ai=−1} ρ
i. Since any number has a unique representa-

tion in base ρ, we would get a contradiction. So, by Theorem 11.9(ii), Eρ

is an extremum. To see that Eρ is a n-extremum for n = ρα+1−1
ρ−1 + 1, we

apply Theorem 11.9(i), noticing that
∑α

k=0 ρ
k = n− 1.

Thus, according to Theorem 11.9(ii), deciding whether Y is not an ex-

tremum is equivalent to decide whether there exists a nonzero assignment

on {−1, 0, 1} to ak’s, satisfying the equation
∑m

k=1 akyk = 0. We call this

latter decision problem Ass(−1, 0, 1). To study its hardness, we find it use-

ful to introduce a more general problem Sys(−1, 0, 1), where the input is a

system of equations

S =

{

n
∑

k=1

w
(t)
k xk = 0

}

0≤t≤n̂

in the n variables xk taking values in {−1, 0, 1}, with coefficients w
(t)
k ∈ N,

and n̂ = nO(1). This problem asks whether there exists an assignment in

{−1, 0, 1} of xk’s satisfying S and such that not all xk’s are set to 0.

We let ≤p denote the polynomial time many-one reduction between

decision problems (see, e.g., [18]). We show that

Lemma 11.11. Sys(−1, 0, 1) ≤p Ass(−1, 0, 1).

Proof. We reduce the system of equations S =
{

∑n
k=1 w

(t)
k xk = 0

}

0≤t≤n̂

to a single equation E(x1, . . . , xn) = 0, such that any assignment on

{−1, 0, 1} to xk’s is a solution of E if and only if it is a solution of S. To this

purpose, we set W = 1 +maxt
∑n

k=1 w
(t)
k , and define E(x1, . . . , xn) = 0 as

n
∑

k=1

w
(0)
k xk +W

n
∑

k=1

w
(1)
k xk +W 2

n
∑

k=1

w
(2)
k xk + · · ·+W n̂

n
∑

k=1

w
(n̂)
k xk = 0.

(11.6)

Clearly, any assignment satisfying S satisfies E as well. Vice versa, suppose

we have an assignment of xk’s satisfying Equation (11.6). For the sake of

readability, letHi =
∑n

k=1 w
(i)
k xk, so that we can rewrite Equation (11.6) as

H0 = −W

(

n̂
∑

i=1

HiW
i−1

)

.
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Hence, W dividesH0, but since −W < Hi < W for each 0 ≤ i ≤ n̂, we must

conclude that H0 = 0. By iterating this reasoning, we get that the assign-

ment satisfying Equation (11.6) satisfies eachHi as well. We end by quickly

noticing that computing E from S is easily seen to be done in polynomial

time. �

Now, we need to recall the well known NP-complete problem Partition

(see, e.g., [18] (Ch. 3)). Here, we formulate such a problem in a slightly

modified but perfectly equivalent version which is more suited to our pur-

poses:

Partition

Input: Finite set Y = {y1, y2, . . . , ym} ⊂ Z
+.

Output: Is there an assignment on {−1, 1} to bk’s s.t.
∑m

k=1 bkyk = 0?

In other words, we ask whether Y can be split into two subsets of equal sum.

Lemma 11.12. Partition ≤p Sys(−1, 0, 1).

Proof. Let Y = {y1, . . . , ym} ⊂ Z
+ be an input instance of Partition. We

construct the following system of m+ 1 equations in the 2m+ 1 variables

{b1, b2, . . . , bm, c1, c2, . . . , cm, a} ranging on {−1, 0, 1}:

SY =



























∑m
k=1 bkyk = 0

b1 + 2c1 + a = 0

b2 + 2c2 + a = 0
...

bm + 2cm + a = 0.

Now, notice that any solution for SY either has all the variables set to 0

(i.e., is the trivial one) or is on {−1, 1} only. In fact, take a solution ζ

where bi = 0, for a given 1 ≤ i ≤ m. Since all the variables range only on

{−1, 0, 1}, the corresponding equation bi+2ci+a = 0 has a unique solution

for a = 0 and ci = 0. In turn, a = 0 yields the equations bk+2ck = 0, for 1 ≤

k ≤ m, giving that ζ must set all the variables to 0. This reasoning shows

that any possible nontrivial solution for SY yields a solution in {−1, 1}

for the equation
∑m

k=1 bkyk = 0, and hence represents a partition of Y .

Vice versa, it is clear that any possible partition of Y can be immediately

transformed into a solution for the corresponding system SY . It is enough

to add a ∈ {−1, 1}, and ck = (−a − bk)/2 for every 1 ≤ k ≤ m. The

construction of SY from Y is easily seen to be performed in polynomial

time, and this completes the proof. �
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We are now ready to prove the NP-completeness of testing non-

extremity.

Theorem 11.13. Deciding whether a set Y = {y1, y2, . . . , ym} ⊂ Z
+ is not

an extremum is NP-complete.

Proof. As above recalled, such a decision problem is equivalent to

Ass(−1, 0, 1) for the equation
∑m

k=1 akyk = 0. A polynomial time non-

deterministic algorithm for solving this latter problem simply guesses a

nonzero assignment on {−1, 0, 1} to ak’s, and then checks in polyno-

mial time whether the assignment satisfies the equation. This shows that

Ass(−1, 0, 1) belongs to NP. From Lemma 11.11 and Lemma 11.12, we get

that Partition ≤p Sys(−1, 0, 1) ≤p Ass(−1, 0, 1). The result follows from the

NP-completeness of Partition. �

This latter result enables us to obtain the NP-completeness even for

testing non-extremity in Zn.

Theorem 11.14. Deciding whether a subset of Zn is not a n-extremum is

NP-complete.

Proof. By the characterization of n-extrema in Theorem 11.9(i), one may

easily design a nondeterministic polynomial time algorithm for testing non-

extremity in Zn, thus setting this problem in NP. To show its completeness,

by Theorem 11.13, it is enough to exhibit a reduction from testing non-

extremity in Z
+. Our reduction works as follows: given the instance Y =

{y1, . . . , ym} ⊂ Z
+, return the instance Y = {y1, . . . , ym} ⊂ Zn, with

n = 1+
∑m

i=1 yi. We must show that Y is not an extremum if and only if Y

is not a n-extremum. For every assignment on {−1, 0, 1} to ak’s, we have

−n <
∑m

k=1 akyk < n. Hence (
∑m

k=1 akyk)modn=0 ⇔

∑m
k=1 akyk=0. By

Theorem 11.9 the result follows. �

As a final step, we are able to establish the complexity of MinDCn.

Theorem 11.15. MinDCn is NP-hard.

Proof. Theorem 11.14 states that testing non-extremity in Zn is NP-

complete. Thus, the claimed result can be shown by exhibiting a polyno-

mial time Turing-reduction (see, e.g., [18]) from this decision problem to

MinDCn. It is easy to exhibit a Turing machine that decides in polynomial

time whether a given X ⊂ Zn is not a n-extremum by having an oracle for

MinDCn. First, we use such an oracle to compute a minimum DCn for X ,

then we check whether its cardinality is less than |X |+ 1. �
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11.4.2 Efficient Synthesis

The result in Theorem 11.15 shows that, although providing a minimal, up

to a constant factor, 1qfa for periodic events, our synthesis algorithm is

in general unfeasible due to the intrinsic difficulty of step 2, i.e., comput-

ing a minimum DCn. However, there exist two interesting variants of the

algorithm, leading to feasible time complexities:

(1) In [7], nontrivial families of sets for which the computation of minimum

DCn’s can be performed in polynomial time are pointed out. Hence, for

those periodic events having such sets as supports, the resulting 1qfa’s

are the smallest possible (up to a constant factor), and constructed in

polynomial time.

(2) We can relax step 2 by asking a general (not necessarily a minimum)

difference cover for the support set of input periodic events. The fol-

lowing result ensures that such a task can be efficiently performed:

Theorem 11.16. [15](Thm. 2.4) For any n ≥ 0, there exists a DCn

for Zn of cardinality at most
√

1.5n+6, that can be built in polynomial

time.

As a consequence, we obtain in polynomial time a O(
√

n) state 1qfa in-

ducing any given n-periodic event. Thus, we get time efficiency paying

by a possible size increase. However, as we will notice in the next sec-

tion, the resulting 1qfa’s are more succinct than corresponding classical

devices.

Open problem. It would be interesting to study the complexity of con-

structing minimal 1qfa’s inducing given periodic events. Our results in

Section 11.4.1 suggest the NP-hardness of this task.

11.5 Application to Periodic Languages

In this concluding section, we quickly address an application of the above

synthesis results to the recognition of periodic languages, i.e., unary lan-

guages in the form L = {k ∈ N | (kmodn) ∈ S}, for a fixed S ⊆ Zn.

It is well known that for accepting n-periodic languages by one-way

deterministic or nondeterministic automata, n states are necessary and

sufficient. Moreover, in some cases, when n is a prime power, even us-

ing one-way probabilistic automata (or also two-way nondeterminism) does
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not help in saving states [30]. Our results in the previous section enable us

to show that also in this latter “hard” cases the quantum paradigm leads

to a quadratic size improvement:

Theorem 11.17. Any n-periodic language can be accepted with isolated

cut point by a 1qfa with O(
√

n) states.

Proof. With each n-periodic languageL = {k ∈ N | (kmodn) ∈ S}, with

S ⊆ Zn, we can associate the n-periodic event p defined, for every k ≥ 0, as

p(k) =

{

1 if (kmodn) ∈ S

0 otherwise.

So, p is simply the characteristic function of L. By the results in Sec-

tion 11.4.2, we can construct in polynomial time a 1qfa A with O(
√

n)

states, inducing ap+ b, for some reals a > 0, b ≥ 0, a+ b ≤ 1. It is easy to

see that A accepts L with cut point (a+ 2b)/2 isolated by a/2. �

Thus, the previous theorem settles a general quantum quadratic supe-

riority from a size point of view (both for accepting periodic languages and

inducing periodic events). Actually, for certain families of periodic lan-

guages and using different techniques, an exponential size decrease can also

be reached [2, 10].

Nevertheless, some lower limits to the descriptional power of 1qfa’s can

be stated. In fact, in what follows we are going to show the existence

of periodic languages that cannot be accepted by 1qfa’s with less than
√

n/(3 logn) states (even dropping the condition of isolation around the

cut point).

Theorem 11.18. There exist n-periodic languages that cannot be accepted

by any 1qfa inducing a n-periodic event with less than
√

n/(3 logn) states.

Proof. Let us give an upper bound to the number of different n-

periodic languages accepted by q-state 1qfa’s inducing n-periodic events.

Let p be an n-periodic event induced by a 1qfa with q states. By

Lemma 11.6 and Lemma 11.7, there exist a matrix C ∈ C
q×q and a set

∆ = {a1, a2, . . . , aq} ⊆ Zn such that

p(k) =
∑

1≤s,t≤q

ei
2π
n

(as−at)kCst.

Without loss of generality, paying by one extra-state [30], we can assume

that our 1qfa’s accept with cut point 1/2. We can choose ∆ in
(

n
q

)

different

ways, each one yielding n hyperplanes of the form
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∑

1≤s,t≤q

Dst cos

(

2π

n
k(as − at)

)

+ Est sin

(

2π

n
k(as − at)

)

=
1

2
,

for 0 ≤ k < n and reals Dst, Est. These n hyperplanes lay in a 2q2

dimensional space S and can divide S in at most n2q2 different regions [12].

The event induced by coefficients Dst and Est in the same region define

the same language. This implies that the number of n-periodic languages

accepted by q-state 1qfa’s is bounded above by
(

n
q

)

n2q2 < n3q2 .

By noticing that the number of distinct n-periodic languages is 2n, we

must require that n3q2
≥ 2n, in order to accept every n-periodic language

by using q-state 1qfa’s. Such an inequality is easily seen to yield q ≥
√

n/(3 logn). �
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The study of various network related processes has recently become a key

issue in many science disciplines including biology, chemistry, and physics,

but also in sociology and other areas dealing with intensive communica-

tion. Different models are sought to describe such processes, among which

automata appear to be successful candidates.

Percolation processes, in particular, are of distinguished interest, and

the results reported in this paper deal with a special process of this nature.

A state of the network is represented by a matching of the underlying graph,

while state transitions are induced by certain alternating walks in the net-

work. This model was introduced in 1990 by Dassow and Jürgensen under

the name soliton automaton, with the aim to capture the phenomenon of

molecular switching.

Soliton graphs and automata have since been studied in the context of

matching theory by the authors in a series of works. The present paper is

mainly a review of the most important results originating from this study,

and it also outlines some future perspectives and generalizations of this

interesting model.

585
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12.1 Introduction

Molecular computing ([1, 61, 65]) is an emerging field in computer science,

generating a large number of interesting models trying to capture the main

features of this phenomenon both at the level of theory and applications.

The idea of molecular memories goes back to Feynman’s pioneer paper

(cf. [29]), in which he proposes building small machines and then using

those machines to build yet smaller machines and so on, down to the molec-

ular level. During the past decades several promising concepts have been

worked out for unconventional computing. Among these, nonlinear media

that exhibit self-localized mobile patterns in their evolution are potential

candidates to serve as universal dynamical computers. The computational

model called soliton cellular automaton (cf. [59, 60, 62]) uses soliton inter-

actions in the design of collision-based logic gates. The word soliton (or

solitary wave) refers to certain types of waves traveling a relatively large

distance with little energy loss. For a survey of unconventional architectures

in the framework of molecular computing, see [1].

Other alternatives of molecular computers are based on the design of

conventional digital circuits at the molecular level [22]. The idea of this

approach is as follows. If the switching elements were built from molecular

scale ingredients, then it would be possible to make circuits thousands of

times smaller. These circuits would use appropriate molecules as electronic

switches and would be interconnected by some sort of ultra-fine conduct-

ing wires. One interesting choice of these conductors was proposed by

Carter [21], making use of single strands of the electrically conductive plas-

tic polyacetylene, along which soliton waves can travel. For this reason,

molecular scale electronic devices constructed from molecular switches and

polyacetylene chains are called soliton circuits.

Practical research concerning soliton circuits (see e.g. [36–39]) has

evoked the need to develop an applied mathematical arsenal in order to

obtain a thorough understanding of the behavior of these circuits. The

first mathematical model of soliton circuits, called soliton automata, was

introduced in [24], but it was not until the publishing of [7] that matching

theory [55] was recognized as the fundamental theoretical background for

the study of this model. The underlying object of a soliton automaton rep-

resents the topological structure of a molecule or a chain of molecules. It is

an undirected graph, called a soliton graph, which comes with a matching

that covers all vertices with degree at least two. These, so called internal

vertices model groups of carbon and hydrogen atoms, whereas vertices with
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degree one – called external – represent a suitable chemical interface with

the outside world. The matching captures the pattern of single and dou-

ble bonds within the molecule, which is considered the current state of the

corresponding automaton. The state is changed by making an alternating

walk from one external vertex to another.

Network analysis [2] is a classical topic of mathematics and computer

science, but the in-depth study of network structures and network dynamics

has become a central issue only recently [3, 56, 57]. The aim of this study

is to describe the common features of network models inspired by various

applications (sociological, communication, biological etc. networks).

One of the most important problems in network research is the descrip-

tion of different processes taking place in networks, among which percola-

tion [58] is an interesting special case. During a percolation process, certain

vertices and/or edges in the graph representing the network are marked in

every state, and the changing of the state results in a new marking situa-

tion. Our soliton automaton model can be viewed as a percolation process

by which there is a fixed bound (i.e., 1) for the number of marked edges

incident with any given vertex.

In order to analyze network processes, one needs an appropriate discrete

event system model [23]. Automata are among the most popular tools for

this purpose. It is therefore a natural approach to work out automaton-

based models for percolation processes and provide a logical description for

these automata. Most network models in the literature are closed systems,

in the sense that state changes are controlled from within the system. In

several applications, however, it is important to distinguish certain interface

points, through which information can flow in and out of the system. As

main examples, sociological, communication, and biological networks are

frequently regarded as open systems in the above sense. Capturing the

characteristics of such open systems then becomes a significant issue.

This paper intends to be the starting point of an ambitious research

studying open discrete event percolation systems using automata theoretic

tools. We have chosen a simple process in which each non-interface vertex

of the network is incident with a unique marked edge in every state. In

chemistry, groups of atoms covalently bonded with alternating single and

double bonds in a molecule of an organic compound are known as con-

jugated systems. For this reason we adopt the name “open conjugated

system” to identify the type of percolation systems we are concerned with.

Matching theory has been used before for the study of chemical con-

jugated systems matchings (cf. [55]). Graphs representing the topological
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structure of molecules possessing an alternating pattern of single and dou-

ble bonds are also known as Hückel graphs. The difference in our approach

is the assumption that the graph is open, so that the external (interface)

vertices need not be covered by the matchings of interest.

12.2 Basic Concepts

In this section we review the most important definitions related to soliton

automata. Since our model builds on a combination of matching theory and

automata theory, these two main components will be discussed separately

in two subsections.

12.2.1 Perfect Internal Matchings in Graphs

Throughout the paper, our notation and terminology with respect to graphs

and matchings will be compatible with that of [55].

By a graph we mean a finite undirected graph in the most general sense

with multiple edges and loops edges allowed. For a graph G, V (G) and

E(G) will denote the set of vertices and the set of edges of G, respectively.

The concepts walk, cycle, and path will be meant in the usual way, with

their length being the number of edges in them. In notation, a walk is an

alternating sequence of vertices and edges (v0, e1, v1, . . . , vn), where each

edge is incident with the vertex immediately preceding and following it. If

n = 0, then the walk is called empty . Also as usual, a trail is a walk in

which all edges are distinct.

If V (G) can be partitioned into two disjoint non-empty sets A and B

such that all edges of G connect a vertex from A to a vertex from B, then

we call G bipartite and refer to A,B as the bipartition of G.

A vertex v ∈ V (G) is called external if its degree d(v) is one or zero, and

internal if d(v) ≥ 2. It is understood that a loop edge around v contributes

with both of its endpoints to the count d(v). The sets of external and

internal vertices of G will be denoted by ExtG and IntG, respectively.

External edges are those of E(G) that are incident with at least one external

vertex, and internal edges are those connecting two internal vertices. Graph

G is called open if it has at least one external vertex, otherwise G is called

closed. See Figure 12.1 for an open graph with external vertices u and v,

and external edges e and f .

Let us fix a graph G for the rest of this subsection. A matching M of
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G is a subset of E(G) such that no vertex of G occurs more than once as

an endpoint of some edge in M . Again, it is understood by this definition

that loops are not allowed to participate in M . The endpoints of the edges

contained in M are said to be covered by M . A perfect internal matching

is a matching that covers all of the internal vertices, and a perfect matching

is just a perfect internal matching of a closed graph. For open graphs the

concept perfect matching is not defined.

An edge e ∈ E(G) is allowed (mandatory) if e is contained in some

(respectively, all) perfect internal matching(s) of G. Forbidden edges are

those that are not allowed. We shall also use the term constant edge to

identify an edge that is either forbidden or mandatory. As an example,

consider the graphG in Figure 12.1. The set {e, h1, h2} determines a perfect

internal matching of G and, with the only exception of the forbidden edge

g, each edge is allowed in G.

By the usual definition, a subgraph G′ of G is just a collection of vertices

and edges of G. For a set X ⊆ V (G), the (full) subgraph induced by X is

the one having X as vertices and E(G)∩ (X ×X) as edges. Since external

vertices play a distinguished role in our model, we do not want to allow that

new external vertices (i.e. ones that are not present in G) emerge in G′.
Therefore, whenever the degree of vertex v ∈ IntG becomes ≤ 1 in G′, we
shall augment G′ by a protective loop edge around v. This augmentation

will be understood automatically in all subgraphs of G. If G has a perfect

internal matching, then subgraph G′ is nice if G′ also has a perfect internal

matching in such a way that every perfect internal matching of G′ can be

extended to one of G. Finally, for a subgraph G′ and matching M of G,

M(G′) will denote the restriction of M to G′.

Fig. 12.1 Example graph having a perfect internal matching.

Let M be a perfect internal matching of G. An edge e ∈ E(G) is
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said to be M -positive (M -negative) if e ∈ M (respectively, e 6∈ M). An

M -alternating path (cycle) in G is a non-empty path (respectively, even-

length cycle) stepping on M -positive and M -negative edges in an alter-

nating fashion. An M -alternating loop is an odd-length cycle having the

same alternating pattern of edges, except that exactly one vertex has two

negative edges incident with it. Let us agree that, if the matchingM is un-

derstood or irrelevant in a particular context, then it will not be explicitly

indicated in these terms.

An external alternating path is one that has an external endpoint.

If both endpoints of the path are external, then it is called a cross-

ing. An alternating unit is either a crossing or an alternating cycle.

In Figure 12.1, γ = (u, e, w, f, v) is an alternating crossing and β =

(z1, l1, z4, h2, z3, l2, z2, h1, z1) is an alternating cycle with respect to the per-

fect internal matching M = {f, l1, l2}. An alternating path is positive if

it is such at its internal endpoints, meaning that the edges incident with

those endpoints are positive.

An internal vertex v of G is called accessible from external vertex w

with respect to M (or simply v is M -accessible from w), if there exists a

positive external M -alternating path connecting w and v. Furthermore, an

alternating cycle is said to be M -accessible from w if at least one of its

vertices is accessible from w in M . Generally it is not true that if a vertex

is accessible from an external vertex w with respect to a given perfect

internal matching, then it is accessible from w with respect to all perfect

internal matchings. Nevertheless, as it was proved in [12], accessibility

without specifying a concrete external vertex is matching invariant, that

is, it holds for one particular perfect internal matching iff it holds for all

perfect internal matchings. It is therefore meaningful to say that vertex v

is accessible in G without specifying the perfect internal matching M and

the external vertex w.

12.2.2 Finite Automata

A non-deterministic finite automaton is a triple A = (S,X, δ), where S is a

non-empty finite set, the set of states, X is an alphabet, the input alphabet,

and δ : S×X → 2S is the transition function. An automaton A = (S,X, δ)

is deterministic if for each s ∈ S and x ∈ X , |δ(s, x)| ≤ 1. The function δ

is extended to a mapping of S ×X∗ into 2S by the definition δ(s, ε) = {s}

– where ε denotes the empty word – and

δ(s, wx) = ∪(δ(t, x) | t ∈ δ(s, w)) for s ∈ S, w ∈ X∗, and x ∈ X .
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The automaton A
′ = (S′, X, δ′) is a subautomaton of A if S′

⊆ S and δ′ is
the restriction of δ to S′.

For any automaton A = (S,X, δ) and w ∈ X∗, define the relation

δw ⊆ S × S by (s, s′) ∈ δw iff s′ ∈ δ(s, w). The relation δw is said to be

induced by w. Then the set T (A) = {δw|w ∈ X∗
}, together with the usual

operation of composition between relations is a monoid T (A), called the

transition monoid of A.

Recall from [32] that a deterministic automaton A = (S,X, δ) is a per-

mutation automaton if δ(s, x) 6= δ(s′, x) for any s, s′ ∈ S with s 6= s′ and
for any x ∈ X . The automaton A is commutative if δ(s, xy) = δ(s, yx) for

all s ∈ S and x, y ∈ X . We shall also need the concept of full and semi-full

automata. By a full automaton we mean an automaton A = (S,X, δ) such

that X = {x} is a singleton and δ(s, x) = S for each s ∈ S. A semi-full

automaton is the same as a full one, except that it has at least two states,

and δ(s, x) = S \ {s} for each s ∈ S. A trivial automaton is a full one

having a single state.

Let Ai = (Si, Xi, δi), i = 1, 2, be finite automata. A homomorphism

of A1 into A2 is a pair ψ = (ψS , ψX) of mappings ψS : S1 → S2 and

ψX : X1 → X2 which satisfies the equation

{ψS(s
′) | s′ ∈ δ1(s, x)} = δ2(ψS(s), ψX(x))

for every s ∈ S1 and every x ∈ X1. If there is a homomorphism ψ =

(ψS , ψX) such that both ψS and ψX are onto, then A2 is the homomorphic

image of A1. The homomorphism ψ is an automaton isomorphism between

A1 and A2 if ψS and ψX are bijections. In this case we also say that A1

and A2 are isomorphic. An isomorphism ψ = (ψS , ψX) is called strong if

X1 = X2, and ψX is the identity.

Now we turn to the definition of general products of automata [32]. For

a nonnegative integer k ∈ N , let [k] denote the set {1, . . . , k}. Consider

the automata A = (S,X, δ), At = (St, Xt, δt), t ∈ [k], k ∈ N , and let

φ = (φ1, . . . , φk) be a sequence of mappings such that φt : S1 × . . . ×

Sk × X → Xt for each t ∈ [k]. Automaton A is the general product of

A1, . . . ,Ak with respect to feedback function φ if the following conditions are

satisfied:

(a) S = S1 × . . .× Sk;

(b) δ((s1, . . . , sk), x) =

δ1(s1, φ1(s1, . . . , sk, x))× . . .× δk(sk, φk(s1, . . . , sk, x))

for every x ∈ X , sj ∈ Sj, j ∈ [k].
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The product is called an αi-product (i ∈ N) if each φt, t ∈ [k] is indepen-

dent of its jth argument whenever j ≥ t + i. Figure 12.2a) and b) show,

respectively, the general scheme of α1- and α0-products of automata A1,

A2, and A3. A quasi-direct product is a general product, where φt only

depends on X for each t ∈ [k].

x2

Fig. 12.2 General scheme of the αi-product with i ≤ 1.

The general ε-product of automata At, t ∈ [k] is defined analogously,

with the exception that for every t ∈ [k], φt(s1, . . . , sk, x) is a non-empty

subset of {y, ε}, where y ∈ Xt. The feedback function will then allow the

automaton At to move either on input y, or on ε separately, or on both at

the same time (nondeterministically) in state st, depending on the general

input symbol x. (The standard definition δt(st, ε) = {st} applies for moving

on ε.) We say that φt is strict if it is a function S1×. . .×Sk×X → Xt∪{ε},

and φ is strict if φt is such for every t ∈ [k]. A disjoint ε-product is a

strict quasi-direct ε-product such that X is a superset of the disjoin union

X1 + . . . + Xk of the inputs Xt, and for every x ∈ X , φt(s1, . . . , sk, x) is

different from ε iff x ∈ Xt – in which case x is mapped into itself by φt.

Let β be a type of automata products and K,F be classes of au-

tomata. We say that K is homomorphically complete for F with re-

spect to β-products if for every automaton A of F there exist automata

Aj ∈ K, j = 1, . . . , n such that A is a homomorphic image of a subau-

tomaton of a β-product of Aj , j = 1, . . . , n. In particular, the class K of

automata (deterministic automata)is said to be homomorphically complete

with respect to β-products if F above is the class of all automata (re-

spectively, all deterministic automata). Finally, isomorphic completeness is
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defined analogously, replacing the word “homomorphic” by “isomorphic”

in the definition above.

12.3 Soliton Graphs and Automata

In this section, following [24], we introduce soliton automata as a mathe-

matical model for electronic switching at the molecular level. The under-

lying object of a soliton automaton is a graph representing the topological

structure of a molecule. Within this structure there are chains of alter-

nating single and double bonds, along which a form of energy, called the

soliton, travels in small packets. According to this simple model, vertices

correspond to atoms or certain groups of atoms, whereas edges represent

chemical bonds or chains of bonds, with no multiplicity assigned to them

at this level of “syntax”. It is assumed that the molecule consists of carbon

and hydrogen atoms only, and that among the neighbors of each carbon

atom there exists a unique one to which the atom is connected by a double

bond. This assumption is captured by imposing the structure of a per-

fect internal matching on the underlying graph as “semantics”. Naturally

enough, the edges contained in the given matching correspond to double

bonds. External vertices and edges do not correspond to any particular

atoms or chemical bonds, they just represent an interface at which soliton

waves are induced and received.

Along these lines, a soliton graph is defined as an open graph having a

perfect internal matching. Since the collection of perfect internal matchings

will constitute the set of states of the corresponding soliton automaton, it

is justified to call them states of the graph as well.

In more details, a soliton graph G models the intended molecular struc-

ture as follows. Each internal vertex v represents a C atom or a C-H

couple, depending on whether d(v) is 3 or 2, respectively. A positive (nega-

tive) edge (v, w) in a given state represents a double (single) bond between

two carbon atoms, or, alternatively, a (CH)-chain with alternating double

and single bonds that connects the C atoms at v and w, and which begins

and ends with a double (repectively, single) bond. As the actual length

of such chains does not affect the mathematical behavior of the model, we

just take them as ordinary bonds (edges). (In some circumstances, how-

ever, it may be useful to distinguish between chains of different lengths.)

Finally, external vertices represent the connection to surrounding molecule

structures. Figure 12.3 shows an example soliton graph and its possible

chemical interpretation.
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Fig. 12.3 A soliton graph with one of its interpretations.

Due to the chemical laws involved, the degree of each internal vertex

in the above model is at most 3. This restriction was incorporated in the

original definition of soliton automata by [24]. From the graph theory point

of view, however, there is no need to impose this restriction in order for the

model to be meaningful. Moreover, it can be proved (cf. [47]) that soliton

automata defined on general graphs are equivalent to those comforming to

the strict chemical rules.

For the study of the logical aspects of soliton switching we need to give

a graph theoretic formalization of the state transitions induced by soliton

waves. Ignoring the physico-chemical details, the effect of propagating a

soliton along a chain of alternating single and double bonds is to exchange

all these bonds. This phenomenon is captured directly by the concept of a

soliton walk. Intuitively, a soliton walk is a backtrack-free walk which starts

and ends at an external vertex, and alternates on positive and negative

edges with respect to the current state. The sign of every edge changes

immediately after traversing it, which makes the process interactive and

recursive.

Before presenting a precise mathematical definition, we describe the

process of switching along a soliton walk through the example in Figure

12.4. This process is also referred to as making the soliton walk. Let the

current state of the automaton be the matching M = {e1, e5}. Making

the walk α = (v1, e1, v4, e4, v5, e5, v6, e6, v4, e4, e2, v2), imitating a possible

soliton wave, results in the sequence of matchings shown. In each step, the

current position of the soliton is indicated by an arrow. Notice that, even

though making one step with the soliton does not necessarily result in a

perfect internal matching, by the time the walk is finished, a new state M ′

of G will have been reached.

The walk starts at vertex v1, and after traversing edge e1, the double

bond of e1 is changed to a single one. During the walk, if the soliton is
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M

M’

Fig. 12.4 A soliton walk.

about to continue its way on a negative edge (single bond), like in the

second step at vertex v4, then it might have several directions to choose

from (e.g. both e4 and e6 could be chosen). On the other hand, if there

are two positive edges incident with its current position, like in the third

step at vertex v5, then the walk must continue on the one that has not just

been passed. In other words, the soliton is not allowed to backtrack.

The formal concept of soliton walks reflects the above heuristics. The

collection of external alternating walks in G with respect to some state

M , and the concept of switching on such walks are defined recursively in

parallel as follows.

(i) The walk α = (v0, v0) is a soliton walk for each isolated external

vertex v0, and switching on α (i.e. making α) in state M results in

the matching S(M,α) =M .

(ii) The walk α = v0ev1, where e = (v0, v1) with v0 being external,

is an external M -alternating walk, and S(M,α) = M∆{e}. (The

operation ∆ is symmetric difference of sets.) Notice that S(M,α)

need not be a matching.

(iii) If α = v0e1 . . . envn is an external M -alternating walk ending at

an internal vertex vn, and en+1 = (vn, vn+1) is such that en+1 ∈

S(M,α) iff en ∈ S(M,α), then α′ = αen+1vn+1 is an external M -

alternating walk and

S(M,α′) = S(M,α)∆{en+1}.

It is required, however, that en+1 6= en, unless en ∈ S(M,α) is a

loop.
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It is clear by the above definition that S(M,α) is a perfect internal

matching iff the endpoint vn of α is external, too. In this case we say that

α is a soliton walk .

As an alternative example, consider the graph G of Figure 12.1, and let

M = {e, h1, h2}. Then γ = (u, e, w, g, z1, h1, z2, l2, z3, h2, z4, l1, z1, g, w, f, v)

is a possible soliton walk from u to v with respect to M . Switching on γ

then results in S(M,γ) = {f, l1, l2}.

Every soliton graph G gives rise to a soliton automaton AG = (SG, X×

X, δ), where the set SG of states consists of all perfect internal matchings

of G. The input alphabet X × X for AG is the set of all (ordered) pairs

of external vertices in G, i.e., X = ExtG, and the transition function δ is

defined by

δ(M, (v, w)) = {S(M,α)|α is an M -alternating soliton walk from v to w}.

Augmenting the above general rule, if no soliton walk exists from v to w in

M , then by definition δ(M, (v, w)) = {M}. This transition function is then

extended for words of input y ∈ (X ×X)∗ as defined in Section 12.2.2.

Example. Consider the graph G in Figure12.1. This graph is a soliton

graph having states: seh = {e, h1, h2}, s
e
l = {e, l1, l2}, s

f
h = {f, h1, h2}, and

sfl = {f, l1, l2}. The transitions of AG are the following:

δ(seh, (u, v)) = δ(sel , (u, v)) = {sfh, s
f
l },

δ(sfh, (v, u)) = δ(sfl , (v, u)) = {seh, s
e
l },

δ(seh, (v, u)) = {sfh}, δ(sel , (v, u)) = {sfl },

δ(sfh, (u, v)) = {seh}, δ(sfl , (u, v)) = {sel },

δ(seh, (u, u)) = {sel }, δ(sel , (u, u)) = {seh},

δ(sfh, (v, v)) = {sfl }, δ(sfl , (v, v)) = {sfh}.

For example, the transition seh → sfl on input (u, v) is induced by the soliton

walk (u, e, w, g, z1, h1, z2, l2, z3, h2, z4, l1, z1, g, w, f, v).

Graph G is called deterministic if AG is such in the usual sense. If, for

every stateM and input (v1, v2), there exists at most one soliton walk from

v1 to v2 with respect toM , then G and AG are called strongly deterministic.

According to the definition in [24], an edge e of a soliton graph G is

impervious if there is no external alternating walk passing through e in any

state of G. We extend this definition word by word for vertices of G. Edge

e (vertex v) is then called viable if it is not impervious. It is clear that

impervious vertices and edges have no impact on the operation of soliton

automata. Thus, without loss of generality, we can restrict our attention

(regarding soliton automata) to soliton graphs without impervious vertices
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and edges. From the point of view of graphs, however, it is important when

two viable vertices can be connected by an impervious edge. Therefore our

objective is in fact to study soliton graphs with viable vertices only. Such

graphs will be called viable soliton graphs.

12.4 Elementary Decomposition of Soliton Graphs and

Automata

In this section we review the main results obtained in [12] on the structure

of soliton graphs. Further results on perfect internal matchings can be

found in the series of papers [5–7, 10–13, 15, 16].

We begin with a short summary of the matching theoretic concepts

involved. The reader can obtain a good understanding of these concepts by

following the definitions to come on Figure 12.5 below.

Again, let us fix a soliton graph G for the whole section. According

to [7] and [55] G is elementary if its allowed edges form a connected sub-

graph covering all of the external vertices. Note that an elementary graph

may contain forbidden edges. If it does not, then it is called 1-extendable.

A trivial elementary soliton graph is either a single external vertex or a

single mandatory external edge with a loop around its internal endpoint.

Clearly, the automata defined by a trivial elementary soliton graphs are

trivial themselves.

In general, the allowed edges of any soliton graph G will span a num-

ber of connected components as subgraphs in G. The full subgraphs of

G induced by the vertices of these components are called the elementary

components of G. An elementary component is called external if it con-

tains external vertices, and internal if this is not the case. A mandatory

elementary component is a single mandatory edge e ∈ E(G), which might

have a loop around one or both of its endpoints.

On the analogy of the original concept in [55], canonical equivalence of

elementary graphs was generalized for soliton graphs in [12]. The definition

of canonical equivalence is as follows. Let v, w ∈ IntG be internal vertices.

Then u ∼ v if u and v belong to the same elementary component and an

extra edge e connecting u and v becomes forbidden inG+e. It can be proved

that ∼ is indeed an equivalence relation. The classes determined by ∼ are

called canonical classes, which constitute the canonical partition of IntG.

By definition, the restriction of ∼ to any particular elementary component

C determines the canonical partition of the elementary graph Ch, which
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is C augmented by the so called hidden edges. A hidden edge e = (u, v)

of C, usually not originally present in G, emerges from an alternating ear

(see [55] or below) connecting u and v outside C. For more details, see [12].

With a slight ambiguity, when referring to an elementary component C of

G, we shall in fact mean the elementary graph Ch.

The structure of elementary components in a soliton graph G has been

analysed in [12]. To summarize the main results of this analysis, we first

need to review some of the key concepts introduced in that paper. An in-

ternal elementary component C is one-way if all external alternating paths

(with respect to any perfect internal matching M) enter C in vertices be-

longing to the same canonical class of C. This unique class, as well as the

vertices belonging to it, are called principal. Furthermore, every external

elementary component is considered a priori one-way (with no principal

canonical class, of course). An elementary component is two-way if it is

not one-way.

For example, the graph of Figure 12.5 has five elementary components,

among which D and E are mandatory external, while C1, C2 and C3 are

internal. Component C3 is one-way with the canonical class {u, v} being

principal, while C1 and C2 are two-way.

DE

Fig. 12.5 Elementary components in a soliton graph.

Let C be an elementary component of G, and M be a state. An M -

alternating C-ear is a negative M -alternating path or loop having its two

endpoints, but no other vertices, in C. The endpoints of the ear will nec-

essarily belong to the same canonical class of C.

We say that elementary component C′ is two-way accessible from com-

ponent C with respect to any perfect internal matching M , in notation

CρC′, if C′ is covered by an M -alternating C-ear. It was shown in [12]
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that the two-way accessible relationship is matching invariant. A family

of elementary components in G is a block of the partition induced by the

smallest equivalence relation containing ρ. A family F is called external if

it contains an external elementary component, otherwise F is internal. It

was proved in [12] that every family contains a unique one-way elementary

component, called the root of the family. With a slight ambiguity, we shall

identify family F with the subgraph of G spanned by its members.

Our example graph in Figure 12.5 has three families: F1 = {E,C1, C2},

F2 = {D},F3 = {C3}. Families F1 and F2 are external, whereas F3 is

internal. The roots of the families are E, D and C3.

For two distinct families F1 and F2, F2 is said to follow F1, in notation

F1 7→ F2, if there exists an edge in G connecting any non-principal vertex

in F1 with a principal vertex belonging to the root of F2. The reflexive and

transitive closure of 7→ is denoted by
∗
7→. One of the main results in [12] is

the observation that the relation
∗
7→ is a partial order among the families,

by which the external families are minimal elements.

The theorem below is a short summary of results on the elementary

structure of viable soliton graphs.

Theorem 12.1. The following conditions hold for the families of G.

(i) In each internal family F , the root of F has a unique canonical

class P , called principal, such that every external alternating path

leading to any vertex in F enters the family at a vertex belonging

to P .

(ii) There exists a partial order
∗
7→ among the families, which reflects

the order in which external alternating paths reach the families.

The minimal elements according to
∗
7→ are the external families.

(iii) In each family F , every viable forbidden edge is part of an alter-

nating C-ear (in a matching-invariant way) for some C ∈ F . For

the root R of F , the connected components of the subgraph F \ R

are adjacent to vertices in R belonging to separate non-principal

canonical classes.

(iv) An edge e of G is impervious iff e connects two principal vertices

belonging to either the same family or two different families.

For convenience, the inverse of the partial order
∗
7→ between G’s families

will be denoted by ≤G, or simply ≤ if G is understood. Referring to the

Hasse diagram of ≤, we say that family G is below family F if G ≤ F , that

is, G follows F . The relation ≤G suggests a top-down design of the families

with the external ones being on top.
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Using the elementary structure of soliton graphs described above, the

elementary decomposition of soliton automata was worked out in [9] and

[50]. As a result of this decomposition, the descriptional complexity of

soliton automata can be significantly reduced. The applied technique also

provides a basis for the characterization of special classes of automata.

These results will be presented in the next section.

12.5 Characterizing Soliton Automata

Determining the computational power of soliton automata is the main ob-

jective of their study. The way to achieve this goal is to characterize soliton

automata both structurally, using different kinds of products, and by their

transition monoids. Since the behavior of these automata is based entirely

on the underlying graph structure, their descriptional complexity, too, can

be analyzed through this structure.

The characterization of general soliton automata is a very complex tasks,

and requires some important special classes to be dealt with first. In this

section, chronologically, we review the results by Dassow and Jürgensen

(cf. [24–27]) on the transition monoids of certain simple classes of soliton

automata first, then we present our own results on deterministic soliton

automata, and on the structural decomposition of general and constant

soliton automata.

12.5.1 Special Cases of Deterministic Soliton Automata

In their introductory paper [24], Dassow and Jürgensen gave a characteri-

zation of strongly deterministic soliton graphs in terms of so called chestnut

graphs and trees.

Definition 12.2. A connected graph G is called a chestnut if it has a

representation in the form G = β + α1 + . . .+ αk with k ≥ 1, where β is a

cycle of even length and each αi (i ∈ [k]) is a tree subject to the following

conditions:

(i) V (αi) ∩ V (αj) = ∅ for 1 ≤ i 6= j ≤ k;

(ii) V (αi)∩V (β) consists of a unique vertex – denoted by vi – for each

i ∈ [k];

(iii) vi and vj are at even distance on β for any distinct i, j ∈ [k];
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(iv) any vertex wi ∈ V (αi) with d(wi) > 2 is at even distance from vi
in αi for each i ∈ [k].

Figure 12.6 shows an example of a chestnut.

Fig. 12.6 A chestnut.

Theorem 12.3. Let G be a connected soliton graph. Then G is strongly

deterministic if and only if G is a chestnut or a tree.

The transition monoids of strongly deterministic soliton automata were

also characterized in [24] as follows. The reader is referred to [64] for

the group theory concepts involved. Some of these concepts are explained

below.

Let G be a permutation group on a set Ω. A subset Ψ of Ω is called a

block if for each g ∈ G the image g(Ψ) either coincides with Ψ or is disjoint

from Ψ. The sets ∅, {ω}, for any ω ∈ Ω, and Ω are the trivial blocks. The

group G is called primitive if it is transitive and has only trivial blocks.

Theorem 12.4. The transition monoid of a strongly deterministic soliton

automaton is a direct product of primitive permutation groups which are

generated by involutorial elements.

As a refinement of the above theorem, Dassow and Jürgensen described

in [27] the primitive permutation groups which occur as transition monoids

of automata associated with a special class of trees.

Theorem 12.5. Let T be a soliton tree such that any two vertices of degree

at least 3 are at even distance from each other. Then the transition monoid

of AT is a symmetric group.

Recently, as a further refinement of the above result, in [42] and [45] new

bounds on the number of states of a tree-based soliton automaton have been

established and a sufficient condition was proved for when the transition
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monoid of such a soliton automaton consists only of even permutations of

the set of states.

The characterization of deterministic soliton automata is far more dif-

ficult than that of the strongly deterministic ones. Dassow and Jürgensen

have only analyzed two special cases with respect to their transition

monoids: deterministic soliton automata with a single external vertex [25]

and deterministic soliton automata with at most one cycle [26]. The main

result of [25] is stated in Theorem 12.6 below. In this theorem, we rely on

the concept of usable cycle, which is simply a cycle occuring as a subwalk

of some soliton walk in an arbitrary state.

Theorem 12.6. Let G be a deterministic, connected soliton graph with a

single external vertex. If G contains a usable cycle of even length, then G is

a chestnut, AG has 2 states and its transition monoid T (AG) is isomorphic

to the symmetric group of order 2. Otherwise, AG has a single state only

and T (AG) is trivial.

The results of [26] are summarized as follows. Let G be a connected

open graph with a single cycle β. Then G has a representation in the form

G = β + α1 + . . . + αr, r ∈ N , such that α1, . . . , αr are pairwise vertex-

disjoint trees and for each i ∈ [r], V (αi) ∩ V (β) consists of a single vertex.

This decomposition will be referred to as the tree-decomposition of G.

Theorem 12.7. Let G be a connected soliton graph with a single cycle β,

having a tree-decomposition G = β + α1 + . . . + αr. Moreover, let Vα =

{v1, . . . , vr}, where for each i ∈ [r], vi denotes the unique common vertex

of αi and of β. Then T (AG) is a primitive group of permutations if and

only if one of the following conditions fails to hold:

(a) β is an odd-length cycle.

(b) There are three distinct vertices vi1 , vi2 , vi3 of Vα such that each

αij , j = 1, 2, 3 consists of a single path, and for s = 1, 2 the unique

odd-length subpath of β connecting vis and vis+1 – apart from its

endpoints – does not contain vertices of Vα.

Finally, as a new approach, in recent works (cf. [19] and [20]), soliton

automata were analyzed as language acceptors. In these studies, the closure

properties of the class of all languages accepted by soliton automata have

been investigated. It was proved that the class of languages accepted by

soliton automata is nearly an anti-AFL, that is, not closed under most of

the usual operations on languages.
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12.5.2 Deterministic Soliton Automata

In the analysis of complex systems [23] it is crucial to find those character-

istics which make a given system deterministic. Hence the characterization

of deterministic soliton automata is a fundamental problem both in the-

ory and practice. In this section we provide a purely syntactical, that

is, state-(matching) independent characterization of deterministic soliton

graphs. Our first observation concerns the existence (rather non-existence)

of alternating cycles in deterministic soliton graphs.

Theorem 12.8. ( [14], [47]) A viable soliton graph G is deterministic iff

each connected component Gi of G is either a chestnut or does not contain

an alternating cycle with respect to any state of G.

By Theorem 12.8 it is clear that, with the exception of chestnuts, con-

nected deterministic viable soliton graphs have mandatory internal elemen-

tary components only. Therefore – by the very definition of soliton au-

tomata – every deterministic soliton automaton, the underlying graph of

which does not contain chestnut components, is strongly isomorphic to one

having external elementary components only. Indeed, the deletion of inter-

nal elementary components, all of them being mandatory, does not affect

the transition function of the automaton, not even the self transitions, as

they are present anyhow by the definition of δ, provided that the automaton

is deterministic. As a consequence, we obtain the following result.

Theorem 12.9. Every deterministic soliton automaton is strongly isomor-

phic to a disjoint ε-product of chestnut automata and elementary soliton

automata having no alternating cycles in their underlying graph.

The key to a matching-independent characterization of deterministic soliton

graphs is a reduction procedure worked out in [8, 14, 46]. We are going to

elaborate on this procedure below.

A redex r in graph G consists of two adjacent edges e = (u, z) and

f = (z, v) such that u 6= v are both internal, and the degree of z is 2. The

vertex z is called the center of r, while u and v (e and f) are the two focal

vertices (respectively, focal edges) of r.

Let r be a redex in G. Shrinking r in G means creating a new graph

Gr from G by deleting the center of r and merging the two focal vertices of

r into one vertex s (see an example in Figure 12.7). Now suppose that G

is a soliton graph. For a state M of G, let Mr denote the restriction of M

to edges in Gr. Clearly, Mr is a state of Gr. Notice that the state M can
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be reconstructed from Mr in a unique way. In other words, the connection

M 7→Mr is a one-to-one correspondence between the states of G and those

of Gr. Then it is easy to prove that the soliton automata AG and AGr
are

strongly isomorphic.

Fig. 12.7 Contracting a redex in graph G.

Another natural simplifying operation on graphs is the removal of a loop

from around a vertex v if, after the removal, v still remains internal. Such

loops will be called secondary. Let Gv denote the graph obtained from G

by removing a secondary loop e at vertex v. Clearly, if G is a soliton graph,

then so is Gv, and the states of Gv are exactly the same as those of G. The

automata AG and AGv
, however, need not be isomorphic. This is due to

the fact that any external alternating walk reaching v on a positive edge can

turn back in G after having made the loop e twice, while the turnaround

may not be possible for the same walk in Gv without the presence of e.

Nevertheless, it is still true that for every deterministic elementary soliton

graph G, AG and AGv
are strongly isomorphic.

For an arbitrary graph G, shrink all redexes and remove all secondary

loops in an iterative manner to obtain a reduced graph, that is, a graph free

from redexes and secondary loops. Denote the resulting graph by r(G). Ob-

serve that this reduction procedure has the so called Church-Rosser prop-

erty (cf. [4]), that is, if G admits two different one-step reductions to graphs

G1 and G2, then either G1 is isomorphic to G2, or G1 and G2 can further

be reduced to a common graph G1,2. In this context, one reduction step

means shrinking a redex or removing a single secondary loop. As an imme-

diate consequence of the Church-Rosser property, the graph r(G) above is

unique up to graph isomorphism.

Let G be a connected graph not containing even-length cycles. Clearly,

when shrinking each odd-length cycle to one vertex, G turns into a tree.
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For this reason we call G a generalized tree. It is easy to see that every

generalized tree is a viable deterministic soliton graph. The matching-

independent characterization of non-chestnut deterministic soliton graphs

is now stated as follows.

Theorem 12.10. For any graph G, if r(G) is a generalized tree, then G

is a deterministic soliton graph. Conversely, if G is a deterministic viable

elementary soliton graph, then r(G) is a generalized tree.

Observe that the condition r(G) being a generalized tree alone does

not necessarily imply that G is viable or elementary, because reduction

might remove some mandatory elementary components (or even imper-

vious parts) from G. Still, G and r(G) are strongly isomorphic as seen

before.

Let us call a chestnut graph G a baby chestnut if it consists of a pair

of parallel edges connecting two vertices (v1, v2), and a number of edges

or 2-length paths originating from the principal vertex v1 and leading to

different external vertices. See Figure 12.8 for an example. A baby chest-

nut is regular if it does not contain any 2-length paths according to the

above description. It is easy to see that every chestnut graph reduces to a

baby chestnut. Moreover, the reduction involved must not eliminate any

secondary loops, since chestnuts do not contain impervious edges. As a

further simplification, each 2-length path from any external vertex can be

trimmed down to length one without effecting isomorphism of automata.

Thus, we have the following matching-invariant strengthening of Theorem

12.9.

Fig. 12.8 A regular baby chestnut with n external vertices.

Theorem 12.11. Every deterministic soliton automaton is strongly iso-

morphic to a disjoint ε-product of regular baby chestnut automata and au-

tomata defined by generalized trees.
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12.5.3 Constant Soliton Automata

By definition, if an external edge e of a soliton graph G is constant, then

its external endpoint is contained in a trivial external elementary compo-

nent. This component is the external endpoint itself if e is negative, and

the mandatory edge e if it is positive. Even though the class of soliton

automata with only constant external edges is worth studying for itself, the

main reason for considering this special class separately is that such con-

stant automata play a central role in the decomposition of general soliton

automata. We start with the simplest case, when the underlying graph

has a single external vertex. The key issue is the characterization of self-

transitions via soliton trails. Recall from [9] that a self-transition of any

automaton in state s is one on a concrete input symbol (i.e. not on ε) that

leaves the automaton in state s.

A soliton trail α is an external alternating walk, stepping on positive

and negative edges in such a way that α is either a path, or it returns to

itself only in the last step, traversing a negative edge. The trail α is a c-trail

(l-trail) if it does return to itself, closing up an even-length (respectively,

odd-length) cycle. That is, α = α1+α2, where α1 is a path and α2 is a cycle.

These two components of α are called the handle and cycle, in notation, αh

and αc. See Figure 12.9 for an illustration of the above concepts. In this

figure, as well as in most of the further ones throughout the paper, double

lines indicate edges that belong to a given matching.

a) c-trail b) l-trail

Fig. 12.9 Soliton trails.

An M -alternating double soliton c-trail α from external vertex v is a

pair of distinct M -alternating soliton c-trails α = (α1, α2) from v such

that E(α1
h) ∩ E(α2

c) = ∅, E(α2
h) ∩ E(α1

c) = ∅, and either α1
c = α2

c or

V (α1
c) ∩ V (α2

c) = ∅. Figure 12.10 shows two simple examples of double

soliton c-trails. Notice that, in the case α1
c = α2

c , the difference between
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the handles E(α1
h) and E(α2

h) can be as minor as using two distinct parallel

negative edges connecting two given vertices along the handle. In particular,

for chestnut graphs this means that the introduction of just one forbidden

parallel edge in the graph creates a double soliton c-trail and makes the

corresponding automaton nondeterministic for reasons explained below.

Fig. 12.10 Example for double soliton c-trails.

Theorem 12.12. [9] For any state M of a soliton automaton AG =

((SG, (X×X), δ) and for any external vertex v ∈ X of G, M ∈ δ(M, (v, v))

iff one of the following conditions holds:

(i) G does not contain an M -alternating soliton c-trail from v.

(ii) G contains an M -alternating soliton l-trail from v.

(iii) G contains an M -alternating double soliton c-trail from v.

It was proved in [51] that the property of having either a double soliton

c-trail or a soliton l-trail is matching invariant in every soliton graph with

a single external vertex. (The trail in hand, however, can be l in one state

and double c in another.) Using this observation it is easy to derive the

following result from Theorem 12.12.

Theorem 12.13. [51] Let G be a soliton graph with a single external vertex

v. Then AG is either a full or a semi-full automaton. Moreover, AG is

semi-full iff G is a bipartite graph without double soliton c-trails.

Having characterized the structure of soliton graphs and automata with

a single external vertex, their transition monoids can be described in a

simple way. Since the deterministic case has already been dealt with in

Theorem 12.6, we can assume that our automata are nondeterministic. In
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order to state our result on the transition monoids of such automata, we

need a few simple concepts from the theory of semigroups.

A monoid (A, ◦) with |A| ≥ 2 is called a null monoid if there exists an

element a ∈ A such that x ◦ y = a for all x, y ∈ A \ {e}, where e denotes

the identity element. In that case a is called the zero element. The null

monoid consisting of exactly two elements – i.e. the identity and the zero

element – is called the trivial null monoid.

Theorem 12.14. Let G be a soliton graph with a single external vertex v

such that AG is not deterministic. Then T (AG) is a null monoid with at

most 3 elements. Moreover, T (AG) is nontrivial iff G is a bipartite graph

without double soliton c-trails.

Now we turn to the structural characterization of constant soliton automata

in general. An ordered system of elementary soliton automata (OSA, for

short) is a finite set of automata S = {At = (St, Xt, δt)|t ∈ [m]}, m ∈ N ,

arranged in a partial order ≤, so that the following conditions are met.

1. Every automaton in S is either full or semi-full, or it is an elementary

soliton automaton. Furthermore, an automaton appears as a maximal ele-

ment in the Hasse diagram of ≤ iff it is an elementary soliton automaton.

Also, the input alphabets of the soliton automata in S are pairwise disjoint.

2. If At is semi-full for some t ∈ [m], then the principal ideal {A′
t ∈

S|A
′
t ≤ At} determined by At is a chain of semi-full automata.

The OSA S is called constant if every elementary soliton automaton in

S is trivial.

Let (S,≤) be an OSA as specified above. An ordered ε-product of S is

an α0-ε-product A = (S,X, δ) of the automata A1, . . . ,Am equipped with

a feedback function φ = (φ1, . . . , φm) satisfying the four conditions below.

1. The given sequence of the automata At is an extension of ≤ to a

linear order.

2. For all states sj ∈ Sj, j ∈ [m] and x ∈ X , the set

I(s1, . . . , sm) = {t ∈ [m]|φt(s1, . . . , sm, x) 6= {ε}}

is either empty, or it is a nonempty subset of the (maximal) principal ideal

of ≤ determined by a soliton automaton Ai. In the latter case:

(i) i ∈ I(s1, . . . , sm), and

(ii) whenever t ∈ I(s1, . . . , sm) such that At is full or semi-full, t′ ∈

I(s1, . . . , sm) for all t′ such that At′ ≤ At.

Moreover, φt(s1, . . . , sm, x) depends only on x and si.

3. For every t ∈ [m], if At is full or semi-full, then φt is strict.
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4. X = (∪iYti)
2, where At1 , . . . ,Atk is the sequence of elemen-

tary soliton automata in S with Xti = Yti × Yti , and, furthermore,

φti(s1, . . . , sm, x) 6= {ε} iff x ∈ Xti .

Notice that condition 3 above applies for all automata in S, that is, also

for the elementary soliton automata in case they are full or semi-full. This

can only happen, however, if they are trivial, hence full. Also, if Ai is trivial

in 2 above, then I(s1, . . . , sm) is the whole principal ideal determined by

Ai. Consequently, if S is constant, then the resulting α0-product is a strict

quasi-direct ε-product.

Combining ordered products of elementary soliton automata with the

elementary decomposition of soliton graphs given in Section 12.4, we obtain

the following characterization of constant soliton automata.

Theorem 12.15. [53] The class of constant soliton automata and the class

of automata obtained as ordered strict quasi-direct ε-products of constant

OSA’s coincide up to strong isomorphism.

12.5.4 General Soliton Automata

On the basis of ordered ε-products defined in the previous section, we are

now ready to present the structural characterization of general soliton au-

tomata.

Let AG = (SG, X ×X, δ) be an arbitrary soliton automaton, and con-

sider the partial order ≤G of its families F1, . . . ,Fm, m ∈ N . We are going

to construct an OSA SG from these families in the following way. Repre-

sent each internal family Fi in SG by a full or semi-full automaton Ai over

the set Si of states, where Si is the cartesian product of the sets of states

(perfect matchings) of the elementary components in Fi. Automaton Ai

is chosen semi-full iff each family in the principal ideal determined by Fi

consists of a single (necessarily one-way) elementary component free from

c-trails and l-trails, and the ideal itself is a chain.

As to an external family Fj, its unique external elementary component

Cj contributes the corresponding elementary automaton Aj to SG. In case

there are internal elementary components in Fj, a number of full automata

A
1
j , . . . ,A

nj

j are also added to SG, which correspond to groups of two-way

internal elementary components in Fj originating from different canonical

classes of the elementary graphCj , taking the cartesian product of their sets

of states as above. See Theorem 12.1 (iii). The automata A
i
j are inserted

in the partial order ≤G – which is adopted for the OSA SG being created
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– in such a way that they come as descendants of Aj and are minimal in

the extended Hasse diagram. Clearly, if at least one A
i
j is present, and

state M and external vertex x in Cj are such that an internal component

amalgamated in A
i
j is accessible from x in M , then every transition of Aj

from x to each external vertex y in Cj may trigger an arbitrary transition

of Ai
j . By the same token, there will be a self-transition from x to x in any

state of AG extending M , even if no such a transition exists in Aj by itself

in state M . If this is not the case, however, then transitions of Aj from x

will stand alone, not affecting the states of Ai
j . In summary, we have the

following theorem.

Theorem 12.16. The soliton automaton AG is strongly isomorphic to an

ordered ε-product of the OSA SG.

Unlike for constant automata, however, we cannot say that an arbitrary

ordered ε-product of any OSA S is isomorphic to (let alone strong isomor-

phism) a soliton automaton.

12.6 Complete Systems of Soliton Automata

Having completed the structural analysis of soliton automata in the previ-

ous section, it is natural to ask about the computational power of systems

of such automata with respect to the general product. The first paper on

this issue was [34], where a detailed analysis was given for homomorphically

complete systems of strongly deterministic soliton automata. The results of

this analysis are summarized in Section 12.6.1. These results were general-

ized in [48] by characterizing the isomorphically complete systems of soliton

automata both in the deterministic and nondeterministic case, which cases

will be covered in Sections 12.6.2 and 12.6.3, respectively.

12.6.1 Homomorphic Representation of Deterministic

Automata

Recall from [55] that, for any n ∈ N , the n-star is the bipartite graph K1,n

with bipartition (A1, Bn) such that |A1| = 1, |Bn| = n, and the unique

vertex of A1 is adjacent to every vertex of Bn. (See Figure 12.11.)

Theorem 12.17. The class G = {AK1,n) | n ∈ N} is homomorphically

complete for the class of commutative permutation automata with respect to
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Fig. 12.11 n-star.

the α0-product. Furthermore, G is homomorphically complete with respect

to the α1-product.

It is known from [28] that the α2-product is homomorphically equiv-

alent to the general product. Therefore, homomorphic representations of

automata by αi-products of strongly deterministic soliton automata with a

concrete i ≥ 2 are the same as those by general products of such automata.

The final result of [34] describes the homomorphically complete classes of

strongly deterministic soliton automata with respect to general products.

Theorem 12.18. A class K of strongly deterministic soliton automata is

homomorphically (isomorphically) complete with respect to the general prod-

uct (or the αi-product for any i ≥ 2) if and only if K contains an automaton

whose underlying soliton graph G satisfies one of the following three condi-

tions:

(i) G consists of at least two connected components;

(ii) G is a tree;

(iii) G is a chestnut with at least two external vertices.

12.6.2 Isomorphic Representation of Nondeterministic

Automata

In this section we characterize the isomorphically complete systems of soli-

ton automata.

Isomorphic representations of nondeterministic automata were first

studied in [33], where necessary and sufficient conditions were given for

classes of automata to be isomorphically complete with respect to the gen-

eral product. This characterization was refined in [40] by showing that the

α1-product is isomorphically equivalent to the αi-product for any i ≥ 2,

thus, to the general product. A further refinement regarding soliton au-

tomata is the following statement.
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Theorem 12.19. ([48]) A class K of nondeterministic soliton automata is

isomorphically complete with respect to the α0-product iff K is isomorphi-

cally complete with respect to the general product (or the αi-product for any

i ≥ 1).

Theorem 12.19 implies that it is appropriate to consider general prod-

ucts for the characterization of isomorphically complete systems of soliton

automata with respect to any concrete αi-product. That is, we can speak

of isomorphically complete classes of soliton automata in general, without

specifying any concrete αi-product to rely on. The main result on isomor-

phically complete systems of nondeterministic automata in [48] describes

the underlying graph structure of the automata in these systems.

Theorem 12.20. A class K of nondeterministic soliton automata is iso-

morphically complete iff K contains (not necessarily distinct) automata

AGt
= (SGt

, Xt × Xt, δt) (t = 1, 2) such that for both t = 1, 2 there ex-

ists a state Mt ∈ SGt
with an Mt-alternating cycle γt and external vertices

v1t 6= v2t ∈ ExtGt
which satisfy the following conditions:

(i) γt is Mt-accessible from v1t ,

(ii) there exists either an Mt-alternating soliton l-trail from v1t or an

Mt-alternating double soliton c-trail from v1t ,

(iii) γ1 is M1-accessible from v21, and there does not exist either an

M1-alternating soliton l-trail from v21 or an M1-alternating double

soliton c-trail from v21 ,

(iv) either there exists an external vertex of G2 which is not connected

with v22 by an M2-alternating crossing, or one of conditions (i) −

(iii) of Theorem 12.12 holds for M2 and v22 such that γ2 is not

M2-accessible from v22.

By the above theorem it is easy to construct an isomorphically complete

system of two soliton automata. The graphs G1 and G2 are, however,

not necessarily distinct in Theorem 12.20, which provides a motivation for

finding singleton classes.

Corollary 12.21. Let AG = (SG, X × X, δ) be a soliton automaton, M

be a state of AG, γ be an M -alternating cycle, and v, w ∈ X be distinct

external vertices with the following conditions:

(i) γ is M -accessible from v and w,

(ii) there does not exist an M -alternating crossing between v and w,
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(iii) there exists either an M -alternating soliton l-trail from v or an

M -alternating double soliton c-trail from v.

Then {AG} is isomorphically complete with respect to the α0-product.

A simple example graph G that satisfies the conditions of Corollary

12.21 is given in Figure 12.12. Thus, we have the following corollary.

Corollary 12.22. The class {AG} is isomorphically complete with respect

to the α0-product.

Fig. 12.12 Example soliton graph determining an isomorphically complete system.

12.6.3 Isomorphic Representation of Deterministic

Automata

In the product hierarchy, it is natural to start studying products of deter-

ministic soliton automata with respect to the α0-products. It turns out,

however, that – similarly to the strongly deterministic case dealt with in [34]

– even homomorphic representations by the α0-product are not powerful

enough for any class of deterministic soliton automata to be complete. This

follows from the fact that every deterministic soliton automaton is a permu-

tation automaton, considering that subautomata and homomorphic images

of permutation automata are also permutation automata, and α0-products

preserve the ”permutation property” of automata (cf. [32]).

Theorem 12.23. There is no class of deterministic soliton automata which

is homomorphically complete with respect to the α0-product.

Recall that a bridge (or cut edge) of a connected graph G is an edge

e ∈ E(G), the deletion of which cuts G into two connected components

G1 and G2. A generalized tree not containing an internal bridge is called

a generalized star graph. Explaining the terminology, the procedure of
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shrinking all odd-length cycles in such a graph into one vertex results in a

star graph. In terms of generalized star graphs, our result on isomorphic

completeness of classes of deterministic soliton automata is as follows.

Theorem 12.24. A class K of deterministic soliton automata is isomor-

phically complete with respect to the αi-product (i ≥ 1) iff for every integer

n ≥ 2, there exists an AGn
∈ K such that Gn contains a nice subgraph that

reduces to a generalized n-star.

Notice that the graph Gn above cannot be a chestnut containing m ≥ n

external vertices, because any possible subgraph of a chestnut that reduces

to an n-star with n ≥ 2 fails to be nice.

Taking into account that each component of a strongly deterministic

soliton graph is either a chestnut or a tree, we obtain the counterpart of

Theorem 12.24 for strongly deterministic soliton automata.

Corollary 12.25. A class K of strongly deterministic soliton automata is

isomorphically complete with respect to the αi-product (i ≥ 1) iff for every

integer n ≥ 2, there exists an AGn
∈ K such that a non-chestnut component

of Gn contains a subgraph that reduces to an n-star.

Indeed, every subgraph of a tree that reduces to a star is necessarily nice.

By the above results it is easy to construct the simplest isomorphically

complete system for deterministic soliton automata.

Corollary 12.26. The class of soliton automata AGn
associated with an n-

star graphs n ≥ 2 is isomorphically complete with respect to the α1-product.

Our final result shows that, just as in the strongly deterministic case (see

Theorem 12.18) homomorphic and isomorphic representations are equiva-

lent with respect to the general product.

Theorem 12.27. A class K of deterministic soliton automata is isomor-

phically (homomorphically) complete with respect to the general product (re-

spectively, the αi-product with i ≥ 2) iff K contains an automaton AG such

that G satisfies one of the following conditions:

(i) G has a nontrivial external elementary component;

(ii) G has at least two chestnut components, or a single one with at

least two external vertices.
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12.7 Algorithms for Soliton Automata

In this section we consider two algorithmic problems related to soliton au-

tomata: the automaton construction problem, and the problem of deciding

if an arbitrary graph G is a deterministic viable soliton graph.

12.7.1 The Automaton Construction Problem

One of the most fundamental algorithmic problems for soliton automata,

like in circuit theory in general, is the verification and simulation of soliton

circuits. This problem is motivated by the practical demand that a circuit

be mathematically verified for its possible use before attempting to build

it [35]. Translating the above to the language of soliton automata, the

following challenge must be dealt with.

Automaton Construction Problem (ACP): Given a soliton graph G.

Construct the automaton AG associated with G.

The above problem was algorithmically analyzed in [49], while in [52] the

complexity of the method has been improved.

In order to solve ACP, a procedure is needed first to enumerate the set

SG of states of G. Then, after having obtained the state set, an algorithm

for constructing the transition function must be designed.

The first problem can be solved by adopting an extension of the method

suggested in [41] for bipartite graphs with perfect matchings. It is assumed

that a random state M of G has been previously found. This can be

achieved by a simple modification of any known matching algorithm (see

eg. [31]). A concrete alternating unit α with respect to M must also be

provided. The algorithm will use the straightforward observation that a

perfect internal matching is not unique iff it contains an alternating unit.

The idea borrowed from [41] is to define a procedure

NEWSTATES (G′,M ′,α′,L′)

for any nice subgraph G′ of G, perfect internal matching M ′ of G′, M ′-
alternating unit α′ and perfect internal matching L′ of G \ V (G′). This

procedure, when invoked with the initial parameters (G, M , α, ∅), will

recursively generate all the additional perfect internal matchings of G′ and
states of G by adding the edges in L′ to a perfect internal matching of G′.
Note that NEWSTATES is invoked only when M ′ is not unique.

After a careful complexity analysis of the method above, the following

result is obtained.
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Theorem 12.28. [49] Let G be a soliton graph with m = E(G) and k =

|SG|. Then SG can be constructed in O(k ·m) time.

We are now left with the problem of effectively constructing the transi-

tion function of AG. The basic idea of the solution is to determine the set of

input pairs (v, w) for any statesM1,M2 ∈ SG such thatM2 ∈ δ(M1, (v, w)).

First consider the case M1 6= M2. In this situation we can build on the

structure of the symmetric difference N(M1,M2) of M1 and M2.

Theorem 12.29. [9] Let M1,M2 be distinct states of soliton automaton

AG = (SG, (X × X), δ). Then for every pair of external vertices (v, w) ∈

X × X, M2 ∈ δ(M1, (v, w)) holds iff one of the following conditions is

satisfied by each M1-alternating trail α of N(M1,M2):

(a) α is an even M1-alternating cycle accessible from v in M1.

(b) α is an M1-alternating crossing from v to w. In this case v 6= w

holds and α is the unique crossing in N(M1,M2).

Applying the above result, our problem is reduced to testing the accessi-

bility of alternating cycles in N(M1,M2) by M1-alternating paths starting

from v. Using an appropriate efficient alternating path procedure (cf. [55])

for this purpose, we obtain the following result.

Theorem 12.30. Let M1 and M2 be distinct states of AG, m = |E(G)|

and let l denote the number of external vertices. Then the set of input pairs

(v, w) for which M2 ∈ δ(M1, (v, w)) can be constructed in O(l ·m) time.

Having found the transitions between distinct states, we move on to

identifying self-transitions , which are highlighted by soliton trails in the

graph. (See Theorem 12.12.) For an arbitrary external vertex v and state

M of G, construct the graph G[M, v] determined by the edges traversed by

an M -alternating path or an M -alternating soliton trail starting from v.

Then the main point of our algorithm is the following observation.

Theorem 12.31. [9] For any stateM of soliton automaton AG and for any

external vertex v of G, M ∈ δ(M, (v, v)) iff one of the following conditions

holds:

(a) G[M, v] is a non-bipartite graph.

(b) G[M, v] is a bipartite graph containing an M -alternating double

soliton c-trail from v.
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(c) G[M, v] is a bipartite graph not containing an M -alternating even-

length cycle.

On the basis of the above theorem it is possible to decide for any state

M and external vertex v of G if M ∈ δ(M, (v, v)) holds. For the concrete

implementation one needs an efficient procedure to construct G[M, v] and

one to search for alternating cycles with certain properties in G[M, v].

Locating G[M, v] is feasible again by applying certain standard alter-

nating path procedures (cf. [55]), therefore it can be accomplished in linear

time. Testing the bipartite property of graphs is also linear by applying a

simple breadth-first search, while the existence of an alternating cycle can

be checked using the method of [30] having the same complexity. It remains

to search for double soliton c-trails. This problem has been solved in [49] by

a O(|V | · |E|)-time algorithm using a simple breadth-first procedure, which

was later developed into a linear-time algorithm in [52].

In summary, we have obtained the following general result.

Theorem 12.32. [52] Let G be a soliton graph with m = |E(G)|, k = |SG|

and l denoting the number of external vertices. Then ACP can be solved in

O(k2 · l ·m)) time.

12.7.2 The Deterministic Property of Soliton Graphs

In this subsection we deal with the problem of deciding if an arbitrary

graph G is a deterministic viable soliton graph. As expected, the decision

will be based on the characterization of deterministic soliton graphs given

in Section 12.5.2. The results reported are quoted from [17] and [18].

In the light of Theorems 12.8 and 12.10, a connected graph G is a de-

terministic viable soliton graph iff G is a chestnut, or G is a viable soliton

graph such that its external elementary components reduce to a general-

ized tree and the full subgraph induced by the (vertices of the) internal

elementary components of G has a unique perfect matching.

It is straightforward to decide if a connected graph G is a chestnut.

The simplest way to accomplish this goal is to reduce G, and see if r(G) is

a baby chestnut, so that no loops have been eliminated during reduction.

The complexity of this trivial algorithm is linear, even if we did not have

a general algorithm to perform reduction in linear time. Fortunately, how-

ever, we do have one [18], which we are going to apply in the decision of

the general problem.

We begin with the outline of this linear-time reduction algorithm. The
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result is interesting by itself, for reduction can be used as a speed-up in a

number of other fundamental graph algorithms as well. See [18] for some

of the interesting graph theory applications of reduction.

Two redexes are said to be connected if they have at least one focus

in common. A collection of connected redexes is called a redex grove. A

redex grove R is maximum if there does not exist another grove R′ such
that ∪R ⊂ ∪R′. (Note that ∪R is the set of vertices covered by all the

individual redexes in R.)

A greedy algorithm to reduce graph G is as follows. Identify all maxi-

mum redex groves R in G, and shrink them into appropriate subgraphs GR.

During this process, eliminate all secondary loops on the fly, and continue

until r(G) is reached. For an example, see the graph G0 in Figure 12.13,

which contains four redexes centered at vertices 4, 7, 11, and 14. The ones

at 11 and 14 determine a maximum redex grove, the shrinking of which

gives rise to a new redex a in graph G1. Shrinking at 7 and a (as a second

grove) then yields vertex b, which is again a redex in G2. Finally, shrinking

the grove containing the redexes at b and 4 results in a single line, which is

r(G0).

Fig. 12.13 A reduction example.

The problem with this greedy algorithm is that redexes emerge recur-

sively when shrinking maximum redex groves. A maximum redex grove R

is called an implied redex if the graph GR is also a redex. In our example

the redex grove containing 11 and 14 in G0, as well as the one containing

a and 7 in G1, is an implied redex. Pursuing an unfortunate scenario, we

might shrink ordinary redex groves (ones that are not implied redexes) first,

and implied redexes last. The result is a reproduction of the original prob-

lem at the “macro” level, whereby the vertices are essentially the centers
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of the graphs GR. The complexity of the algorithm then accumulates in

a recursive way, resulting in a O(n2) algorithm, where n is the number of

vertices in G.

In order to bring down the complexity of the algorithm to O(m), where

m is the number of edges in G, we need to locate implied redexes (even

recursively emerging ones, like the cascade a, b of redexes in our example)

first, without performing any actual shrinking. Then, after replacing each

implied redex with a single redex, we come back to the greedy algorithm

desribed above to finish the job. An elegant way to find implied redexes

is to impose the structure of a depth-first tree on G. One can then design

a variation of an attribute grammar [43] to identify implied redexes and

replace them by a single redex during a bottom-up sweep of the tree. See

[18] for the details. As a result, the following theorem is obtained.

Theorem 12.33. The graph r(G) can be constructed in O(m) time.

As a corollary to Theorem 12.33 one can decide in O(m) time if graphG is a

deterministic elementary soliton graph as follows. Reduce G, and see if r(G)

is a generalized tree. If it is not, then G is not an elementary deterministic

soliton graph. If it is, then construct a perfect internal matchingM for r(G)

and reverse the steps of the reduction procedure to check if inverse reduction

preserves the elementary property. Graph G is elementary deterministic iff

a positive answer is obtained in each step of the inverse reduction process.

It is easy to see that the desired matchingM can be found for r(G) in O(m)

time, and the check for the elementary property during inverse reduction

takes only a constant amount of time in each step. Thus, we have the

following result.

Theorem 12.34. It is decidable in O(m) time if an arbitrary graph G is

a chestnut or an elementary deterministic soliton graph.

The second major task in deciding if an arbitrary graph G is a deter-

ministic viable soliton graph is to isolate the potential internal components,

and check the full subgraph induced by them for the unique perfect match-

ing (UPM) property. We elaborate on this issue following the steps of the

construction presented in [17].

Let e be a bridge in a connected graph G (open or closed), separating

two connected components G1 and G2. The bridge e is called odd if G1

and G2 are both closed, having an odd number of vertices, semi-odd if

G1 is odd closed and G2 is open, and open if both G1 and G2 are open.

A bridge of an arbitrary graph G is one of a connected component of G.
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The following theorem is a generalization of an old result by Kotzig [44]

on graphs having a UPM. Kotzig’s result says that every graph having a

UPM contains a bridge that belongs to that matching. Our generalization

follows directly from Theorem 12.1, observing that the mandatory root of

any internal family of a non-chestnut connected deterministic soliton graph,

situated at the bottom of the Hasse diagram of ≤, is necessarily a semi-odd

bridge.

Theorem 12.35. Every non-chestnut connected deterministic soliton

graph G having at least one internal family of elementary components con-

tains a semi-odd bridge which belongs to every state M of G.

Gabow et al. [30] gave the following algorithm to decide if a closed graph

G has a UPM, and specify that matching M in case of a positive answer.

Using the terminology of [30], a 2-edge component of graphG is a connected

component of the graph remaining from G after the deletion of all bridges.

Algorithm A

Initialize M = ∅ and R to be the set of all bridges of G.

While R 6= ∅ repeat the following steps:

1. Delete an edge (x, y) from R.

2. If (x, y) is an odd bridge, delete (x, y) from G, add (x, y) to M , and

repeat the following steps for each edge (v, w) incident with x or y:

a) Delete (v, w) from G, and from R if it is in R.

b) If v and w are still connected but are in different 2-edge compo-

nents (in the current graph), then:

Find a path p(v, w) connecting v and w, and add every bridge on

p(v, w) to R.
c) Delete vertices x and y.

GraphG has a unique perfect matchingM iff the final graph becomes empty

after running the above procedure. It was shown in [30] that Algorithm A

runs in O(m log4 n) time.

The correctness of Algorithm A is based on Kotzig’s theorem. We are

going to modify Algorithm A to be able to detach semi-odd bridges accord-

ing to Theorem 12.35. The changes are summarized as follows.

(i) In the initialization, R is set to the collection of all non-open bridges.

(Note that a non-open bridge need not be closed, e.g. it can be semi-odd.)

(ii) In Step 1, bridge (x, y) is considered only if it is odd or semi-odd,
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and in Step 2b only non-open bridges are added to R.

In the light of Theorem 12.35, if G is a non-chestnut connected viable

deterministic soliton graph, then the modified algorithm will remove every

internal family of G after checking each of these families for the UPM prop-

erty. Observe that the remainder graph at this point is still a collection of

external families, not components. Conversely, if, after running the modi-

fied algorithm, the remainder of G consists of a number of open components

with open bridges only (if any), then the closed subgraph induced by the

deleted vertices has a UPM. It is easy to see that the above changes do not

affect the complexity of Algorithm A.

After Algorithm A has successfully removed all potential internal fam-

ilies of G, it will pause for a while before it resumes on a modified version

of the remainder graph G′. The pause will last O(m) time, during which a

simplification of G′ takes place. We now describe the actions to be taken

during the pause.

Recall from [55] that a factor-critical graph is a closed graph G for

which G− v has a perfect matching for each v ∈ V (G). Such a matching is

called a near-perfect matching. Let G be a connected viable deterministic

soliton graph different from a chestnut. By pruning G we mean deleting

all of its external vertices and edges. Let pr(G) denote the resulting closed

graph. Furthermore, for each external e ∈ E(G), let pre(G) be the open

graph obtained from pr(G) by putting back the edge e only. Adding a loop

around the external endpoint of e then results in a closed graph, denoted

cpre(G).

Theorem 12.36. If pr(G) does not contain bridges, then it is factor-

critical. Moreover, for every external edge e, cpre(G) has a UPM.

Now let G be an arbitrary soliton graph consisting of a single external

family, and assume that G does contain internal bridges. By Theorem 12.1,

all these bridges must be open. Let c ∈ E(G) be an internal bridge. By

cutting c we mean deleting c from G first, then putting it back separately

in both of the resulting two connected components as an external edge.

Let G1 and G2 denote the two connected graphs obtained. Clearly, G1 and

G2 are still soliton graphs consisting of a single external family, and G is

deterministic iff both G1 and G2 are such. Cutting all internal bridges of

G will then result in a number of soliton graphs G1, . . . , Gk, each of which

is a single external family, so that G is deterministic iff all of G1, . . . , Gk

are such.
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Combining the above argument with Theorem 12.36, we decide if a

connected open graph G containing open internal bridges only is a deter-

ministic soliton graph as follows.

Algorithm B

Step 1. Cut all open internal bridges in G to obtain the open graphs

G1, . . . , Gk as described above.

Step 2. In each Gi still containing internal edges, keep one external edge

ei arbitrarily and delete the rest to obtain a graph Ḡi.

Step 3. For each 1 ≤ i ≤ k, check if Ḡi has a unique perfect matching, and

if so, find that matching Mi by applying Algorithm A.

Step 4. Taking Mi as a state of Gi, find those vertices Xi ⊆ V (Gi) that

lie on some crossing with respect to Mi. At the same time, locate all

M -alternating ears attached to the subgraph Gi[Xi] induced by Xi and

augment this graph by edges connecting the two endpoints of such ears

(the hidden edges).

Step 5. Check if Gi[Xi], augmented by the hidden edges, reduces to a gen-

eralized tree. Graph G is a deterministic soliton graph iff a positive answer

is obtained for each i.

Theorem 12.37. Algorithm B correctly decides in O(m) time if a con-

nected open graph G containing open internal bridges only is a deterministic

soliton graph.

Algorithms A and B can now be combined into one algorithm as follows.

First apply Algorithm A on G to recursively identify all odd and semi-odd

bridges. When this algorithm stops, a pause follows. During the pause

apply Steps 1 and 2 of Algorithm B to each connected component of the

current graph. At the same time, “freeze” (i.e., memorize) the graphs Gi

obtained in Step 1. The pause lasts O(m) time, during which the graph

has simplified.

After the pause add the edges ei specified in Step 2 to the set R of

bridges, and continue running the main loop of Algorithm A all the way

until the graph becomes empty or an error occurs. Since the size of the

graph after the pause is not greater than that of the original G, the overall

complexity of Algorithm A is still O(m log4 n).

At the end, with the matchings Mi obtained, perform the required

checks described in Steps 4 and 5 of Algorithm B on the graphs Gi.

At this point we have succesfully decided if G is a deterministic soliton

graph with all of its internal elementary components being mandatory. In
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case of a positive answer, we have also found a state M for G. In total, we

have used O(m log4 n) time only, but we still need to check if G is viable.

Knowing state M , this check can easily be performed in O(m) time by the

algorithm given in [11] to find the accessible vertices and isolate the families

of an arbitrary soliton graph.

As a corollary to the results presented in this subsection, we obtain the

following theorem.

Theorem 12.38. It is decidable in O(m log4 n) time if an arbitrary graph

G with n vertices and m edges is a viable deterministic soliton graph.

In the presence of a perfect internal matching M , the decision if G is

a viable deterministic soliton graph can already be done in O(m) time.

Indeed, as outlined in Steps 4 and 5 of Algorithm B, one can detach the

external elementary components of G in O(m) time, and check them for

the elementary deterministic property using Theorem 12.34. On the other

hand, the remainder graph G′, consisting of the internal elementary com-

ponents of G, can also be checked for the UPM property in O(m) time,

knowing that MG′ is a perfect matching. This result was proved in [30].

12.8 Extensions of the Model and Further Research

In this section we present a few ideas leading to possible extensions of the

soliton automaton model. These extensions may open up new directions

both at the theoretical and application-oriented levels to enhance the power

of soliton automata.

12.8.1 Soliton Automata with Outputs

As a new feature compared to previous definitions of soliton automata, we

extend AG with a binary output function ζ defined by

ζ(M, (v, w)) = 1 iff there exists a soliton walk from v to w.

The rationale for this extension is the following. We do not want the

automaton AG to crash upon receiving an input (v, w) for which there

exists no soliton walk from v to w in a given state M . This is reflected

by the standard definition of δ. On the other hand, if v = w, then there

might as well exist a soliton walk α from v to v, the traversal of which

does not change the current state M . If all soliton walks from v to v are of

this nature, then the only way to distinguish between having or not having
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a soliton walk is to introduce a binary output. The practical importance

of this observation is clear: we can actually build a variety of interesting

flip-flops using simple soliton automata.

Example 12.39. (Binary flip-flop) Consider the top graph G in Fig-

ure 12.14a with two external vertices. The automaton AG has two states,

which are shown below G in Figure 12.14a. (Double lines indicate positive

edges in the figure.) Without the output feature AG would be isomorphic

to AG′ , where G′ is the graph appearing on the top of Figure 12.14b. In AG

, the inputs (1, 1) and (2, 2) can be used to test the current state through

the output provided by the automaton. The same test is not possible in

AG′ .

1 2

1 2

2

1 2

1 2 1 2
1

(b)(a)

Fig. 12.14 A binary flip-flop.

Example 12.40. (Ternary flip-flop) The underlying graph G, and the

four states of the soliton automaton AG are shown in Figure 12.15. This

automaton comes with a distinguished “initial” state, in which all three

external vertices are covered by the corresponding matching. The initial

state is recognized by getting a negative output on each of the inputs (1, 1),

(2, 2), and (3, 3). The transition function and monoid of AG is described

in [24].

21

3

1

3

1 2 2 1 2

3 3

21

3

Fig. 12.15 A ternary flip-flop.
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Following the pattern of Examples 12.39 and 12.40 one can easily design

flip-flops with an arbitrary number of states as soliton automata. In order

for this idea to work in practice, one needs an interface sophisticated enough

to pick up the output signals provided by soliton automata.

12.8.2 Generalization of Soliton Automata

A more careful look at the definition of soliton automata reveals that the

restriction requiring the external vertices to have degree zero or one is

mainly technical. Therefore, as a generalization, it is natural to consider

matching based automata with designated external vertices of an arbitrary

degree, and to investigate their relationship to standard soliton automata.

In the generalized model, each internal vertex of the network is incident

with a unique marked (positive) edge in every state. We shall use the name

“open conjugated system” to identify this model. The analogy is taken

from chemistry, where a system of atoms covalently bonded with alternat-

ing single and multiple (e.g. double) bonds in a molecule of an organic

compound is called conjugated. In any state of a chemical conjugated sys-

tem, the multiple bonds are considered as ”marked” from the percolation

point of view.

Spelling out the above heuristic definition, in the underlying graph of

an open conjugated system there is a distinguished subset of vertices corre-

sponding to some interface points, which are referred to as external vertices.

Analogously to the soliton automaton concept, internal vertices are those

that are not external. Therefore the underlying graph G is identified as a

triple (V,E, T ), where T ⊆ V denotes the set of internal vertices. In this

context, graph G is called open, if V 6= T .

A perfect T -matching is a matching that covers all of the internal ver-

tices. An open graph G = (V,E, T ) having a perfect T -matching is called

an open conjugated system. The states of an open conjugated system are

the perfect T -matchings. Now all the standard definitions relating to soli-

ton automata can be adopted for open conjugated systems in a natural way,

substituting the concept soliton walk with that of a total external alternat-

ing walk [52]. The obvious restriction for such walks is that, whenever the

walk continues on an unmarked (negative) edge, then there are no marked

(positive) edges available to chose from. Unlike in standard soliton graphs,

however, this condition applies at the endpoints of the walk, too. The

concept of switching on a total external alternating walk is then adopted

without a change, and it is easily verified that switching always results in

a new state.
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For any open conjugated system G = (V,E, T ) it is easy to construct

an isomorphic standard soliton automaton. To this end let w be an inter-

nal vertex of G having degree 1. It is clear that the unique edge (w, u) is

mandatory, while all the other edges incident with u are necessarily forbid-

den (not contained in any state). Therefore the graph G − w − u defines

an isomorphic automaton. After removing all such “false” external ver-

tices iteratively, we end up with an isomorphic open conjugated system

G′ = (V ′, E′, T ′) having no internal vertices of degree 1. Now attach an

extra edge (v, v′) to each external vertex v ∈ V \ T to obtain graph G′′

in which the role of being external is taken over by the new vertices v′.
It is clear that G′′ is still isomorphic to G, and it is a standard soliton

graph (having no isolated external vertices). In summary we have proved

the following result.

Theorem 12.41. Every open conjugated system is isomorphic to a soliton

automaton.

Starting from Theorem 12.41, a possible future research objective is to

see if any type of network-based automata associated with graph matchings

or their generalizations have a stronger computational power than soliton

automata. Since the first generalization of matchings was the f -factor con-

cept [63], it is a natural to first extend our model in this direction. Recall

that an f -factor of a graph is a spanning subgraph having a prescribed

degree f(v) at each vertex v. If we drop the above degree-prescription for

certain external vertices, then, as a generalization of perfect T -matchings,

we obtain the concept of open f -factors. Graphs with open f -factors could

serve as a model to such generalized open conjugated systems in which a

molecule/atom corresponding to an internal vertex can be connected to its

surroundings by several double bonds. The definition of alternating walks

between external vertices can be adopted without a change, and switch-

ing on these walks will still produce a new state for the graph. These

definitions give rise to the model of f -factor automata. Even though the

description of this model is still in the preparatory phase, the abundance

of results on f -factors promises with great success. The structure theory

for f -factors in [54] could be an excellent starting point for the analysis of

these automata.
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12.9 Summary

We have presented a comprehensive overview of the most important results

on soliton graphs and automata. The results have been divided in four

major topics: the decomposition of soliton graphs and automata, the char-

acterization of different classes of soliton automata, complete systems, and

algorithms.

Regarding the first topic, the results were centered around the decom-

position of soliton graphs into elementary components, and the grouping

of these components into families arranged in a partial order that reflects

the order in which they can be reached by alternating paths starting from

the external vertices. The decomposition of soliton graphs then gave rise to

that of their automata, using a special restricted form of the α0-product.

Concerning the second topic, the automata of the following classes of

soliton graphs have been characterized through their transition monoids:

chestnut graphs, trees, soliton graphs with a single cycle, and constant

soliton graphs. In addition, a complete state-independent structural char-

acterization was given for deterministic soliton graphs in general.

As to the third topic, homomorphically and isomorphically complete

classes of soliton automata have been discussed with respect to the αi-

products. Classes of particular interest were: commutative permutation

automata, deterministic and strongly deterministic soliton automata, and

classes containing a single automaton.

The fourth topic was about finding an algorithmic solution to two sep-

arate problems: the automaton construction problem, and the decision

problem for deterministic soliton graphs. Regarding the first problem, it

was shown that the automaton of a soliton graph G can effectively be con-

structed in O(k2 · l ·m) time, where m, l, and k are the number of edges,

the number of external vertices, and the number of states in G, respec-

tively. Deciding the detrministic property of soliton graphs turned out to

be a more complex issue, requiring two sub-ordinate algorithms which are

also relevant in their own right. We have presented an O(m)-time algo-

rithm for reducing a graph to one that is free from subdividing vertices.

By the help of this algorithm we could decide if an arbitrary graph G

is a chestnut or an elementary deterministic soliton graph in linear time.

Then we have worked out a modification of the currently fastest unique

perfect matching algorithm, and gave a O(m · log4 n)-time algorithm to de-

cide the general problem whether graph G is a viable deterministic soliton

graph.
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Finally, in Section 12.8 we have presented an interesting extension of the

soliton automaton model with output, and considered some other possible

generalizations concerning open conjugated systems.
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In a typical human population, some features of the language are bound to

be in flux. Variation in each individual’s usage rates of optional features

reflects language change in progress. Sociolinguistic surveys have deter-

mined that some individuals use new features to a greater degree than

the population average, that is, they seem to be leading the change. This

article describes a mathematical model of the spread of language change

inspired by a model from population genetics. It incorporates the premise

that some individuals are linguistic leaders and exert more influence on

the speech of learning children than others. Using historical data from the

rise of do-support in English, a maximum likelihood calculation yields an

estimate for the influence ratio used in the model. The influence ratio so

inferred indicates that 19 of the 200 simulated individuals account for 95%

of the total influence, confirming that language change may be driven by a

relatively small group of leaders. The model can be improved in any num-

ber of ways, but additional features must be selected carefully so as not

to produce a computationally intractable inference problem. This project

demonstrates how data and techniques from different subfields of linguistics

can be combined within a mathematical model to reveal otherwise inacces-

sible information about language variation and change.

633
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13.1 Introduction

The purpose of this chapter is to introduce a sociolinguistic mathematical

model of a structured population of speakers and integrate it with histor-

ical data. The project began with a conversation between the author and

mathematical biologist Martin Nowak, in which the question at hand was

originally posed as: Given data from a language change, is it possible to

infer a population size, and what would that number actually mean? The

idea of inferring a population size might suggest trying to estimate how

many people lived in medieval England based on the writings of Chaucer,

but this is not what that question is meant to ask. Rather, the intent is

to formulate a mathematical model with some parameter that represents

the number of individuals relevant to some feature of the overall popula-

tion, such as the size of an average town or friendship network, then to

estimate the value of that parameter from data. There are many poten-

tially applicable mathematical models in the population genetics literature

in which several genetic variants of a particular species are present, but

one of them eventually takes over the entire population. This is called

fixation. It seems reasonable to interpret variants of a language analo-

gously to genetic variants of a species and to investigate what data about

one variant’s route to fixation might say about the underlying population.

Specifically, the original question of inferring a population size is better

posed as follows: Is the population homogeneous, or are some individu-

als more important than others in driving the change? Is there perhaps a

small core of leaders that switch to a new language variant, and the rest

of the population simply learns from them and reflects their speech pat-

terns? Inferring a size from language change data would presumably reflect

the size of this core. The central task of this chapter is to explain how

such a calculation can be carried out, thereby reconstructing the linguistic

leadership structure of medieval English society from data on a change in

syntax.

The model developed here adapts a genetic model to incorporate so-

ciolinguistic observations. It is then fit to historical data from a syntax

change in English. The inferred parameter yields an estimate for the size

of the leadership core. This project is part of a growing body of syntheses

of linguistic fields and mathematical modeling methods that were generally

not combined until the 1990s or so. Some remarks are in order about the

challenges and potential of such syntheses.
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Mathematics has traditionally been applied with great success to lin-

guistic sub-fields related to formal grammar and the idealized speaker.1

Statistical studies are essential for understanding language variation and

change. Linguists typically use well established tools such as hypothesis

tests, varbrul, or anova, but these tools have their limits. Recent stud-

ies have taken advantage of ever more sophisticated statistical models for

analyzing historical data [24, 57]. This chapter introduces a new kind of

tool to this collection and shows how it can deduce unexpected information

from well known data.

The use of biological models as bases for linguistic models has been

very useful in recent studies of the biological evolution of language,2 and

the study of language change on historical time scales.3 For example, the

logistic sigmoid function, a well known model of the S-curve characteris-

tic of language change, has its roots in the study of population growth

in a constrained environment. Many introductory textbooks on differen-

tial equations teach logistic growth in conjunction with census data; for

example there is a project on the subject in [12]. It should be noted that

the statistical curve fitting method in that project is somewhat suspect, but

since it is within a textbook for a first course on differential equations, there

is justification for not choosing a more robust method that might distract

students from the primary topic. However, this textbook project high-

lights a cultural difficulty within mathematics. The mathematical subfield

of dynamical systems focuses on the precise and the nonlinear. Statisti-

cal inference on the other hand must deal with noisy discrete data, and is

frequently limited to linear methods. Combining these two fields correctly

can be difficult, and as in the textbook, circumstances often dictate that

one field be sacrificed in favor of the other. A better resolution is to use

tools from the areas where dynamical systems theory and statistics overlap:

Markov chains, and maximum likelihood inference methods.

In addition to mathematical cultural difficulties, this project attempts

to combine historical linguistics and sociolinguistics in an unusual way. So-

ciolinguists have established that social networks contribute to the spread of

language changes [26–28]. Present-day investigations can partially identify

the relevant social structures from inteviews that reveal details about the

friendship networks and speech patterns of many individuals. Such studies

that produce a snapshot of the state of a language at a single moment in

1
See for example [7–9, 14, 18, 25, 53, 55].

2
See for example [6, 21–23, 29, 30, 32–34, 41–47, 49, 56]

3
See for example [4, 5, 10, 16, 17, 19, 20, 35–39, 48, 58]
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time are called synchronic. For example, one might spend a few months

recording spontaneous speech by one hundred individuals of varying ages,

then estimate the formant frequencies in their vowels or how often they use

certain syntactic alternatives. Assuming that adult speech changes very

little, the age variation indicates speech patterns going back in time several

decades in what is called apparent time. The interviews might also include

information about socio-economic class and friendships, indicating how one

person’s speech might influence another’s. Unfortunately, the data acquired

via interviews takes so much time to gather that the data sets are often far

sparser than statisticians would like. Furthermore, interviews and social

networking data are generally not available for studying language changes

older than the present oldest generation.

Studies of linguistic data across several decades or centuries are called

diachronic because they compare language use from two or more separated

time periods. Corpora consisting of written documents from across a wide

range of time are essential to such studies. Sociolingustic studies sometimes

include follow-up interviews years or decades after an initial study, but such

projects cannot span the centuries that corpus studies can. Unfortunately,

corpora are analogous to fossils or archaeological discoveries in that present-

day scientists have no control over the content of ancient documents, or

which documents survive to be included in a corpus. Furthermore, the

written record contains plenty of linguistic information, but the written

language is often distinct from the spoken language in ways that cannot be

confirmed centuries later.

The data set of interest for this project is from the change in late Middle

English syntax from verb-raising to do-support [13]. In verb-raising syntax,

main verbs are raised from a low position in the syntax tree to various high

positions. This means that the main verb raises above the subject, yielding

inverted questions, and the main verb raises above negation, so it appears

before not :

(13.1) Know you what time it is?

(13.2) I know not what time it is.

In do-support syntax, the main verb is restricted to a low position in the

syntax tree, so when a verb is needed to fill a high position, the auxiliary

verb do must be inserted:

(13.3) Do you know what time it is?

(13.4) I don’t know what time it is.
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Affirmative declarative statements have the same surface form under both

grammars; the insertion of do in this case is actually forbidden under the

do-support grammar:

(13.5) I know what time it is.

(13.6) *I do know what time it is.

The * indicates an ungrammatical utterance. The second example can

be made grammatical by stressing the do, which changes the meaning to

indicate that the speaker is contradicting a previously made statement.

Without that stress, the do is ungrammatical. Oddly, the insertion of do

is also ungrammatical for affirmative subject questions without stress:

(13.7) Who knows what time it is?

(13.8) *Who does know what time it is?

A previous study of the do-support data by Kroch [24] fit a logistic

sigmoid

y =
1

1 + e−a(t−t1/2)
(13.9)

to the S-curve of the usage rate y of do-support over time t. The notation

t1/2 refers to the fact that when t = t1/2, y = 1/2. Such a function may

be grounded in a logistic population model where the rate of spread of a

feature is jointly proportional to the fraction of people who have it and the

fraction who do not, as in the logistic differential equation

dy

dt
= ay(1− y)

to which the function (13.9) is the general solution. The logistic model

assumes an infinite, unstructured, homogeneous population. The point of

the calculations in [24] was to infer the rate constant a and demonstrate

that the rise of do-support in all different kinds of sentences was governed

by the same rate constant, although the time offsets t1/2 differ. Kroch

names this result the constant rate effect . Infelicities of the logistic model,

such as the fact that it admits populations with a fractional number of

people, were not important, nor was the overall population size.

In the interest of inferring a population size from the do-support data,

we turn to mathematical population genetics. One of the simplest and most

flexible tools for working with finite populations is the Moran model [40].

The population consists of a finite number of agents, each of which is in one

of a fixed number of states. An agent is removed to simulate death, and a
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new one is created by cloning a randomly selected agent thereby simulating

birth. Since births and deaths are paired, the overall population size is

fixed.

The mathematical framework at work is the discrete time, finite state

space Markov chain: At each time step, the population is in one of a large

but finite number of possible states. The dynamics specify that given the

current state, the population changes randomly to a new state at the next

time step, but the probability of selecting each possible new state is a

deterministic function of its current state. It is possible, though often

computationally infeasible, to use a vector to represent the probability that

the population is in each possible state at a given time step. A stochastic

matrix can be used to represent the transition process, and multiplying the

distribution vector by the transition matrix gives the distribution vector for

the next time step. A computer program with a random number generator

can implement the transition process and output a stream of states, that

is, a sample trajectory of the model.

The variable influence model in this project starts with the Moran

model, but assumes that individuals have different degrees of influence on

the speech of others. The cloning step is therefore modified to take influence

into account. Initially, most of the agents are in a state representing the

old language. A few influential agents start in a different state representing

the new language. New agents are more likely to be cloned from the more

influential agent, so the new language will spread and is likely to take over.

The state of each individual agent must be recorded, which makes for much

more complex calculations compared to the original Moran model and the

logistic model, in each of which the population state is a single number.

The main difficulty is that there are so many possible population states

that the vector-and-matrix representation of the Markov chain is compu-

tationally infeasible. Instead, the only way to investigate its behavior is to

accumulate many sample trajectories and take some sort of average. There-

fore, several simplifying assumptions are necessary to formulate a model for

which the calculations are feasible. A further complication is determining

when enough samples have been collected, so the analysis of the samples

will be done two different ways. One is a straightforward average and the

other estimates the same average from an approximate density. Based on

samples collected over a year of computer time, the two calculations agree,

which suggests that we have enough samples. So, despite the numerical

difficulties, it is possible to fit the model to the do-support data. The re-

sult is an estimate of an influence ratio that indicates the extent to which



August 2, 2010 10:11 World Scientific Book - 9in x 6in 00Chapter

Inferring Leadership Structure from Data on a Syntax Change in English 639

influence is concentrated in a few individuals.

In the rest of this chapter, we formulate the variable influence model,

then test a range of values of the influence ratio to determine which is

most harmonious with the Middle English data. The calculations strongly

support the conclusion that the population is distinctly skewed, specifi-

cally, that a leadership core of around 19 individuals out of the 200 in the

simulation account for 95% of the total influence.

13.2 The Available Data

The available data consists of counts of sentence types from clusters of Mid-

dle and Modern English manuscripts and the approximate dates of those

clusters [13, 24]. The sentences of interest are different kinds of questions

and negative statements, as these clearly show whether the speaker is gen-

erating them with a verb-raising grammar or a do-support grammar.

Do-support replaced verb-raising in several stages, affecting some types

of sentence before others. The cleanest data is for transitive affirmative

questions, as in ‘Do you want sugar?’ and this subset of the data will be

the focus of the remainder of this chapter. See Figure 13.1 for a graph of

this data.

Fig. 13.1 Occurrence rate of do-support as a fraction of total sentences, for transitive

affirmative questions. The curve is a logistic sigmoid fit to this data via maximum

likelihood.
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13.3 Formulation of the Variable Influence Model

The simulated population consists of n individual agents, with Yi(t) repre-

senting the type of the i-th agent at time step t, i ∈ {0, 1, . . . , n−1}. We fix

n = 200. True speech shows context- and individual-dependent variation,

but at this stage of the modeling process, a simplification is computationally

necessary. We therefore make the simplifying assumption that there are 2

relevant language variants in use, numbered 0 and 1, representing the old

verb-raising and new do-support grammars, respectively. Thus Yi(t) = k

means that at time t, agent i uses variant k exclusively.

The Markov chain has 2n possible states because the type of each in-

dividual must be tracked separately. This means that if the simulated

population is at all large, even 30 individuals, the transition matrix will be

too large to compute with directly.

Let Xk(t) be the number of individuals of type k at time t. Thus, if a

speaker is selected uniformly at random and asked to produce a sentence,

then the sentence is generated by language variant k with probability

Sk(t) =
Xk(t)

n
(13.10)

and for each t, S0(t) + S1(t) = 1.

Let ∆t be the real time associated with a unit change it t. The transition

function from time step t to t + 1 involves examining each agent. With

probability β∆t, the agent is replaced, otherwise it remains unchanged,

that is Yi(t+1) = Yi(t). To replace it, another agent is selected at random

and its type is used as Yi(t + 1). This operation simulates the birth of a

new individual who chooses a language variant based on the speech of a

single adult. For the calculations in this chapter, ∆t is taken to be one year,

and β = 1/40 so that each agent survives for a geometrically distributed

random lifetime with a mean of 40 years.

To model a population in which all individuals have equal influence on

learning, we would choose the agent to copy in the replacement step uni-

formly at random from among the whole population. For variable influence,

we can assign a score to the i-th slot in the population and choose the agent

to copy with probability proportional to that influence score. We will use

the function bi, where b is the influence ratio, 0 < b ≤ 1. That is, each

individual is a factor b less influential than the next most influential indi-

vidual. If b is close to 1, then influence is spread through a large part of the

population, but if b is even a bit less than 1 then influence is concentrated

in a few individuals.
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In the initial state, most agents are in state 0 to indicate that the popu-

lation was dominated by verb-raising initially, but a few agents are in state

1 to trigger the transition to do-support. For this chapter, the initial state

is that the four most influential agents are in state 1 and the rest are in

state 0. The initial time is interpreted as the year 1410, which is about the

time of the first data point in the corpus. In the long run, the population

will end up in one of two absorbing states, either all state 0 or all state 1.

Historically, the English converged to all state 1.

Some sample trajectories are displayed in Figures 13.2 to 13.4. They

were hand selected from a small random sample to illustrate the impact of

b, and exclude trajectories in which the new language went extinct. For

smaller values of b as in Figure 13.2, the usage rate of the new language

increases too quickly and overshoots the data. For larger values of b as in

Figure 13.4, the population is more influentially uniform, and the trajectory

behaves more like a symmetric random walk, almost as likely to go down

as up. An intermediate value as in Figure 13.3 fits the data better.

The average shapes of trajectories are shown in Figures 13.5 to 13.7.

These display quartiles of samples of many trajectories, and approximately

indicate the distribution of the population as a function of time for several

different values of b.

To understand why the trajectories have the shape that they do, con-

sider first the beginning of the change, where only a few of the most in-

fluential agents are in state 1. Each time step replaces approximately βn

agents, and many of the new ones will be clones of influential agents and

therefore type 1. This yields an approximately linear growth in the usage

rate of the new grammar, but slightly concave-up. The curvature happens

because as more influential agents are replaced, the fraction of new agents

of type 1 each step will increase. It is often very slight and does not match

the distinct initial upward curve of the usual sigmoid trajectory of lan-

guage changes, which suggests that some modifications should be made to

the model in future experiments.

The downward curve at the top of the simulated trajectories is at least

qualitatively in agreement with the downward curve typical of language

changes. This curvature happens because once most of the population has

switched to type 1, a large fraction of the agents that get replaced were

already type 1, so the net change of the usage rate of the new grammar is

slower.
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Fig. 13.2 Trajectories, shown as the fraction S1(t) of the population in state 1 as a

function of time. For these runs, b = 0.8. Different runs are marked by different symbols.

Big gray dots mark the do-support usage rate from the corpus.
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Fig. 13.3 Trajectories, shown as the fraction S1(t) of the population in state 1 as a

function of time, for b = 0.85.
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Fig. 13.4 Trajectories, shown as the fraction S1(t) of the population in state 1 as a

function of time, for b = 0.9.
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Fig. 13.5 An ensemble envelope of S1(t) as a function of time. The curves show the

minimum, first quartile, median, third quartile, and maximum at each time step over

5000 sample trajectories, for b = 0.8.
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Fig. 13.6 An ensemble envelope of S1(t) as a function of time, for b = 0.85.
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Fig. 13.7 An ensemble envelope of S1(t) as a function of time, for b = 0.9.
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13.4 Fitting the Do-support Data

13.4.1 The Maximum Likelihood Method

To represent the data, let t1, t2, . . . be the times at which clusters of

manuscripts are available, and define mk(j) be the number of sentences

of type k found in the manuscripts at time tj .

Any model of linguistic dynamics can be tuned to the manuscript count

data through maximum likelihood. The idea comes from Bayesian inference

[15]. We are really interested in the value of a parameter b. Probability

theory is a mathematical way to express partial information about unknown

quantities. So we will treat B as a random variable for the parameter b, and

our confidence that B has a particular value is represented by a probability

distribution P (B ∈ db) = p (b) db. Until we obtain data, our information

about B is some prior distribution that incorporates any assumptions we

might need to bring to the model. We assume 0 ≤ B ≤ 1 but any value

in this range is equally likely, so the prior is the uninformative uniform

distribution on the interval [0, 1], that is p (b) = 1 (0 ≤ b ≤ 1) .

The addition of data, also treated as a random variable, causes us to

have more confidence in some values than others. This modified knowledge

is represented by a posterior distribution p (b | m).4 Bayes’s formula gives

p (b | m) =
p (m | b) p (b)

p (m)

The distribution p (m | b) is called the likelihood , meaning the probability of

observing the data m given a particular value of the b. Since we are taking

the prior distribution to be the uniform distribution, and since p (m) is the

same no matter what b is, we can treat these as unknown constants and

use the form

p (b | m) ∝ p (m | b) .

The obvious choice of b is one in which we have high confidence after ex-

amining the data, that is, a b for which the posterior is high. Since the

posterior differs from the likelihood by a constant factor, we can choose b

to be the value that maximizes the likelihood. The point of this is that the

likelihood can be computed based on the model of which b is a parameter.

4
In classical frequentist statistics, one might assume that B has a normal distribution

with mean µ and variance σ2
and express this information as a confidence interval.

That is, p (b | m) ∝ e−(b−µ)
2
/σ

2
. The Bayesian approach allows the posterior to be

more general.
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By computing it for many values of b, one can then sketch the posterior

distribution up to a scale factor and select the maximum.

Given estimates sk(t) of the population-wide usage rate of variant k at

time t, the likelihood comes from the binomial distribution

p (m | s) =
∏

j

(

m0(j) +m1(j)

m1(j)

)

s0(tj)
m0(j)s1(tj)

m1(j) (13.11)

A straightforward calculation gives an upper bound on the likelihood of

the transitive affirmative do-support data. For each time point tj , there is

a value of ŝj that maximizes

ŝ
m0(j)
j (1− ŝj)

m1(j)

Putting those values of ŝj in for s0(tj), using s1(tj) = 1 − ŝj , and taking

the product yields the upper bound. It should be noted that a model

can only achieve that bound by over-fitting the data. For the transitive

affirmative question data, the upper bound is 5.48 × 10−10. Let ρ be the

natural logarithm of this upper bound, so ρ = −21.3248. For reference, the

likelihood achieved by the logistic curve in Figure 13.1 is 2.04× 10−17.

Logistic dynamics yield a fairly simple explicit formula for the likelihood

in terms of two unknown parameters. The curve in Figure 13.1 was drawn

by assuming the form s1(t) = 1/(1 + exp(−a(t − t1/2))) and solving for a

and t1/2.

In contrast, it is not possible to use an explicit formula for the likelihood

with the variable influence Markov chain. Instead, the likelihood must be

computed by conditioning on the population’s complete history. Let H be

the set of all possible histories yi(t) of the population. If y is given, then

the type counts xk(t) and the overall usage rates sk(t) are known in terms

of y. Thus

p (m | b) =
∑

y∈H
p (m | s) p (y | b)

= E (p (m | S))

(13.12)

Unfortunately, the summation over H is computationally infeasible. For

any reasonable population size, such as the modest n = 200 used in this

project, there are too many possible histories. A Monte Carlo method that

averages over a random sample S(b) of possible histories generated with a

particular value of b is the obvious alternative:

p (m | b) ≈
1

|S(b)|

∑

y∈S(b)

p (m | s) (13.13)
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An important property of (13.11) is that if either language variant goes

extinct too early in the trajectory, then for some j, s1(tj) will be one or

zero, thereby zeroing out the entire product. The syntactic change is known

to have taken place, and the old language persisted for some time. Therefore

any sample trajectory in which that change is impossible will be discarded,

that is, we condition on the fact that the Markov chain must be absorbed

into the state of all 1s but not before the old syntax disappears from the

written record.

It should be noted that this calculation is different from what is normally

meant by the terms Markov chain Monte Carlo, in which the goal is to

concoct a Markov chain whose stationary distribution matches some desired

distribution and to then sample from it. Rather, for this model the Markov

chain itself is the random process of primary interest. We are not interested

in a stationary distribution but in trajectories themselves, starting from a

particular starting point and moving toward absorption.

13.4.2 The Monte Carlo Calculation

Although the average (13.13) is computationally feasible, it turns out to

require a huge sample size to achieve acceptable results. The core diffi-

culty is that the trajectories y for which p (m | s) are largest are relatively

uncommon, but the corresponding values of p (m | s) are several orders

of magnitude larger than the likelihood values contributed by bulk of the

samples. In other words, the average (13.13) is dominated by rare events.

Figure 13.8 shows a histogram of ln p (m | S) for 500, 000 samples using

b = 0.85. That is, the horizontal scale is logarithmic. For reference, the

smallest positive number representable in the standard 64-bit floating point

format is about 2 × 10−308 or about e−708. To avoid hardware underflow

errors, the logarithm of the likelihood has to be computed all along. An

important reason to condition on the fact that the change took place is that

none of the likelihood samples can be zero, for which the logarithm would

be undefined.

The author wrote a computer program and ran it sporadically on a

shared computer cluster over the course of a year to generate 170, 000, 000

samples of the log-likelihood for each of 12 different values of b. On this

cluster, the program takes approximately 9.5 hours to produce 500,000

sample runs for each of the 12 values of b, which means that the full data

set required about 3200 hours or about 134 days of cluster computing time.

These samples were then processed in several different ways as described in

the following subsections.
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Fig. 13.8 Histogram of 500,000 samples of lnP (m | S) with b = 0.85.

13.4.3 Direct Average

The obvious approximation to the likelihood is a direct average of the sam-

ples as in (13.13). The safest way to compute it is to use a program like

Maple or Mathematica to read the log-likelihood samples, apply exp(·)

using arbitrary precision arithmetic rather than hardware floating point

arithmetic, and take the average. Likelihood ought to be a smooth func-

tion of b, but it takes many millions of samples to produce a reasonably

clean plot. The results are shown in Figure 13.9. As is typical of Monte

Carlo methods, the accuracy of the result depends on the square-root of the

sample size, so the error bars are fairly large even with 170, 000, 000 sam-

ples. Nevertheless, the likelihood increases dramatically as b decreases from

1 (evenly distributed influence) to b = 0.85, which indicates that influence

is concentrated in a few members of the population.

The confidence intervals shown in Figure 13.9 are drawn by comput-

ing a sample standard deviation s̄ for the set of likelihood samples, then

plotting ±2s̄/
√

|S|, assuming there is sufficient data to invoke the cen-

tral limit theorem. Interpreting the confidence intervals, there is enough

data to assert that the maximum is at no more than 0.9 and most likely

at 0.85

13.4.4 Fitting the Density

It is useful to process the samples a second way to confirm that enough

data has been collected. An alternative to the raw average is to fit a

curve to the log-likelihood histogram and use an integral to compute the
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Fig. 13.9 Estimates of p (m | b) from a direct average. Whiskers indicate a 95% confi-

dence interval.

likelihood. To make this process numerically simpler, the log-likelihood

samples are transformed by subtracting them from the log-upper-bound ρ,

thereby yielding all positive values that can theoretically go all the way

down to 0. That is, given a random history Y and the corresponding

X and S, set Z = ρ − ln p (m | S). A histogram of Z can be obtained

from Figure 13.8 by reflecting it about the vertical axis and shifting it

horizontally. Let p (z | b) be the density function for Z and let f̄(z; b) be

an estimate of p (z | b) obtained through a curve fit. Then

p (m | b) = E (expZ)

=

∫ ∞

0

eρ−z p (z | b) dz

≈

∫ ∞

0

eρ−z f̄(z; b)dz

(13.14)

This method does not escape from all the difficulties of the direct average

method. The integral is very sensitive to the density near z = 0 because

that is where most of e−z is concentrated, but that is precisely where there

is the least data and the most uncertainty. The curve fit effectively smooths

the histogram in that area.

The algorithm used to fit the density for each value of b is as follows.

Sample histories are transformed into samples for Z, which are then grouped

into bins of width 1. Empty bins are discarded. Each bin Bn contains

numbers z1, z2, . . . ∈ [n, n+ 1) which are mapped to the point

(un, vn) =

(

1

|Bn|

∑

i

zi,
|Bn|

|S|

)

(13.15)
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where |S| is the total number of samples in all the bins. The left-most

bins usually contain fewer points than the others because high likelihood

estimates are rare. The average of the numbers in Bn is used for the hori-

zontal coordinate of the point rather than the midpoint of the bin because

it better reflects the off-center numbers in those left-most bins, which yields

more stable likelihood estimates.

Although the shape of the density of Z consists of a smooth hill and a

long tail, it does not seem to be well represented by the commonly occurring

gamma or extreme-value distributions. Instead, a fairly general form was

chosen for the fit function based on trial and error and asymptotic consider-

ations. A polynomial a0+a1λ+a2λ
2 is fit to the log-log points (ln un, ln vn)

with un ≤ 40 using the method of least squares, with each point weighted

by the number of samples in the corresponding bin Bn. The transformation

to Z ensures that all the un are positive so ln un is defined. The weighting is

important because it continues the trend of points not quite at the extreme

left where more data is available, while not ignoring the points derived from

sparser data at the extreme left. This process yields a fit to a function of

the form

f̄(z) = ea0+a1λ+a2λ
2

where λ = ln z

= c0z
c1e−c2(ln z)2

(13.16)

with

c0 = ea0 > 0, c1 = a1 > 0, c2 = −a2 > 0,

This form takes advantage of the fact that the graph of (ln un, ln vn) is

fairly smooth, and that we need only fit the left side of the hill. It does not

match the tail of the density, but it does not need to. Only the shape of

the density for small z matters. See Figure 13.10.

A seemingly better fit to the log-log points can be found by including

higher powers of λ. However, for some b values, doing so yields negative

coefficients on the (ln z)3 terms and therefore a singularity as z → 0. The

correct asymptotic behavior at 0 requires that the coefficients on (ln z)2 be

negative and those on (ln z)3 be positive. Then, as z → 0, −(ln z)2 → −∞

and (ln z)3 → −∞, so f̄(z) → 0.

Given those approximate densities, the integral approximations of the

likelihoods are shown in Figure 13.12. The fitting procedure gives 95%

confidence intervals for the parameters, which are mapped into confidence

intervals for the likelihood estimates. The results are essentially the same

as from using the raw average, as in Figure 13.9, with the maximum at

b = 0.85.
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Fig. 13.10 Top: Log-log plot of (un, vn) and f̄ fit to the points with un ≤ 40, for

b = 0.85. Bottom: Same functions on normal scale. Areas of dots are proportional to

ln(|Bn|+ 1).

This process is particularly sensitive to the value of ρ. The calculations

were carried out once with an incorrect ρ, which resulted in a very noisy

likelihood graph with much larger error bars. Therefore, the form (13.16)

is probably not optimal. However, the error bars with the correct ρ are

very small, and the overall shape agrees well with the likelihood estimates

from the direct average.

13.5 Results and Discussion

To begin, we should compare the likelihood estimates from the two meth-

ods. See Figure 13.13. Both methods indicate that the maximum satisfies

0.8 ≤ b ≤ 0.85. They are largely in agreement, suggesting that 170, 000, 000

is nearly enough samples to estimate p (m | b) across the range of interest.
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Fig. 13.11 Plot of (un, e
ρ−unvn) and eρ−z f̄(z) for b = 0.85.
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Fig. 13.12 Estimates of p (m | b) from integrating against a fitted density. Whiskers

indicate a 95% confidence interval.

Let us be overly conservative and consider b = 0.9. Recall that within

the simulation, the influence score of individual i is bi. The ratio of the

net influence of the first m individuals to the total influence across the

population indicates the degree to which influence is concentrated among

the most influential individuals. This ratio is plotted in Figure 13.14. The

29 most influential individuals account for 95% of the total influence for

b = 0.9. For b = 0.875, the 23 most influential account for 95%. The b that

maximizes the likelihood appears to be at most b = 0.85, for which the 19

most influential individuals account for 95%.

Even though more samples would help to pin down the correct value of

b, the collected data is definitely more consistent with a variable-influence

population than a flat population: A leadership core of approximately 19
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Fig. 13.13 Estimates of p (m | b). For each value of b, the black half dot is the estimate

from the direct average and the white half dot is the estimate from integrating against

a fitted density. Whiskers indicate a 95% confidence interval.
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Fig. 13.14 Ratio of the net influence of the first h individuals to the total influence

across the population, as a function of h, for b = 0.9. The gray circle is centered at

h = 29, which accounts for 95%.

people account for most of the total influence. This suggests that if it were

possible to survey a large number of people and somehow determine who

was most influential on each of their speech patterns, we should expect 19

or so linguistic leaders for each community within the overall population.

13.6 Future Directions

This project focuses on inferring a single macroscopic feature of medieval

English society from data about syntax. However, the results suggest many
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improvements, further questions, and other applications of this mathemat-

ical modeling technique.

There is plenty of room for improvement in the variable influence model,

but at a cost. Many of its features as presented here are fixed at some

reasonable value so that b is the only parameter that has to be inferred.

The inescapable difficulty is that adding detail will add variables, which

must then either be set arbitrarily, like the choice of β = 1/40, or inferred

from samples of the Markov chain. There is no reason to suppose that the

unknown variables can be inferred independently in seeking to maximize the

likelihood. That is, if we seek to maximize the likelihood allowing some new

unknown c to vary, the maximum might occur at some bmax and cmax where

bmax is not 0.85 as found here (although it ought to be close). To maximize

the likelihood will require many samples at a much larger set of values

of (b, c), which will require a lot of computer time. Likelihood provides a

metric for how important a particular variable is to the model. If adding the

variable increases the likelihood significantly without overfitting the data,

then it is important and the increase in likelihood quantifies how much.

Otherwise, it can probably be omitted, and computer time can be better

spent on some other feature. On a practical note, the sampling program

could be written more efficiently, but any improvements will probably not

be sufficient to allow for inferring more than two or three interdependent

variables in a reasonable amount of time. New mathematical tools for

dealing with Markov chains such as this model are therefore needed.

To give a specific comparison, the logistic sigmoid in Figure 13.1 fits

the do-support data better than the variable influence model, in that the

likelihood of the data given the sigmoid model (2.04×10−17) is higher than

the likelihood given the variable influence model with the best choice of b

(10−18). This difference is to be expected because the logistic model has two

variables, a and t1/2, but the variable influence model has only one, b. The

difference should not be interpreted as a failure of the variable influence

model, because the two models give different information. Specifically,

the logistic model does not give any information about heterogeneity of

the population. Based on Figure 13.3, the main drawback to the variable

influence model is that its trajectories do not match the slow growth of the

change near its beginning, so refinement should focus first on this feature

to increase the likelihood.

With these concerns in mind, the question naturally arises of whether

the extra effort required by models of this kind is worthwhile. Alternatively,

one could try to run analyses based around a series of hypothesis tests. For
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example, we might consider as a null hypothesis that children learn from all

adults in their neighborhood equally, then ask whether a certain data set

allows us to reject this hypothesis at some confidence level. This approach

has the advantage of being computational easier, and the statistics are

potentially conventional and well understood. However, such a project gives

no indication of the degree to which individuals with varying influence might

drive language change. A hypothesis test may give the result that certain

models are statistically distinct, but it gives no information about what

the difference means, or whether it might be statistically significant but

subordinate to some other stronger force. A varbrul-based analysis might

initially seem to be a reasonable alternative. It gives relative strengths of

various factors on the probability of an overall binary outcome, but it can

only be used if the factors in question are also binary. Estimating the size

of a leadership core is not possible with varbrul, for example.

In contrast, the variable influence model includes a continuous parame-

ter b that indicates the strength of the effect. In the calculations, it ranges

from no effect at b = 1 to concentrating influence in 19 individuals at

b = 0.85. The likelihood calculation allows us to estimate how probable

each value of b is given the data, so we are essentially testing a whole range

of hypotheses rather than two as in a standard hypothesis test.

An obvious improvement would be a more realistic representation of

language usage and the learning process. The variable influence model cur-

rently assumes that children exactly copy one other individual’s speech,

when they should learn from several, including adults and peers. Further-

more, an individual’s state should include more possibilities than using one

language variant or another exclusively. Recognizing that the discrete cat-

egorial tools of formal grammars and idealized speakers are insufficient for

representing the intricate variations of language, there is increasing interest

in using probability in conjunction with traditional formalisms to under-

stand and represent language [2, 52, 31]. These features could be incorpo-

rated into the current model and would likely be worth the computational

cost.

An additional improvement would be in the interpretation of the

manuscript data. The likelihood formula (13.11) implicitly models the

creation of the corpus by selecting individuals uniformly at random and

asking for a sentence, which is rather näıve. The corpus contains collec-

tions of manuscripts written at estimated times by relatively few speakers

in a variety of genres, and these are the ones that happen to have survived

the centuries and been cataloged by linguists. There is clearly room for an
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improved model of corpus formation, but it, too, would introduce additional

parameters that must be fixed or inferred.

The present model does not try to account for how leaders arise. Stud-

ies reported in [27, 26] suggest that leadership in language change is deter-

mined more by personality, attitude, gender, and friendship networks than

any conventional notion of economic or political power. Furthermore, is

not clear how to properly scale the results of Section 13.5 to larger pop-

ulations. Simply increasing the population size n is not likely to affect b

significantly because the less influential bulk of the population effectively

copies the proportions of the leadership core. Larger populations will have

more complex social structure, in which some people are very influential

but over distinct subsets of the overall population. The ordered influence

structure used here was simple and gave reasonable results, but it would

be more realistic to represent the population as graph. Agents would be

vertices, edges would indicate linguistic influence, and new agents could be

incorporated through some form of preferential attachment process.5 For

example, each new agent might be linked or not to each existing agent with

probability determined by the number of links the existing agent already

has. Another alternative would be to retain the flat structure but use a

function other than bi for the influence of the i-th individual. However,

each of these potential improvements might make it more computationally

demanding to fit the model to the corpus data.

Labov and his collaborators have accumulated considerable data on pho-

netic changes in cities, including information about specific informants who

seem to be leading these changes. It should be possible to fit the variable

influence model to that phonetic data, in which case its conclusions about

leadership structure can be compared to the collected sociological informa-

tion. Such a project would provide an additional means of verifying this

method of statistical analysis.

The model developed in this chapter began as a population genetics

model, although the application is sociological and no explicit use is made

of natural selection. However, it should be possible to adapt the variable

influence model for use in studying biological evolution. Consider for ex-

ample a model of the evolution of imitation posed by Boyd and Richerson

[3]. Their underlying model was a set of individual agents who choose

a behavior based either on their observation of the environment, or by

copying a randomly selected individual when their observation is inconclu-

5
See [1, 54] and forthcoming articles by Swarup.
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sive. The mathematics is greatly simplified by assuming that all agents

are essentially interchangeable, and by focusing on the dynamics of average

properties of the population. Leadership structure breaks the assumption

of interchangeability, and may rule out the reduction of the dynamics to

average properties. It would be informative to revisit the Boyd-Richerson

model with leadership structure added in, and see which of their results

still hold and which are modified.

13.7 Conclusion

In conclusion, corpus data concerning the rise of do-support at the ex-

pense of verb-raising, in conjunction with an agent-based population model,

is consistent with the hypothesis that influence is distributed unevenly

through the population. The maximum likelihood method, computed two

different ways from sample runs of the variable influence Markov chain

model, yields an estimate of the influence ratio. That estimate asserts that

approximately 19 out of the 200 people within the simulation account for

95% of the total linguistic influence. This project provides an important

mathematical tool for combining sociolinguistics with historical methods

and sophisticated mathematical models, but there is plenty of room for

improvement.

The author gratefully acknowledges that this project was supported by

a grant from the National Science Foundation (DMS #0734783).

Appendix: Probability and Notation

The notation for probability distributions can be confusing, particularly

when mixing continuous and discrete distributions and when conditional

probability is involved. I provide this appendix to assist readers who may

not be as familiar with some of the concepts and my preferred notation.

Whenever possible, a capital letter (as in X) is used for a random vari-

able and the corresponding lower case letter (as in x) is used for a non-

random value that it might take. For instance, the density for X would be

written in terms of x, and a calculation involving random samples would

be written in terms of X .

The notation

P (X ∈ dx) = f(x)dx
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indicates that X has a continuous distribution with probability density func-

tion f , so that

P (a < X < b) =

∫ b

a

f(x)dx

For a random variable N with a discrete distribution, we can write

P (N = n) = g(n)

to indicate that g is the probability mass function for N . A mass function

can also be expressed using delta measures. The symbol δz(x) is special

notation for using an integral
∫

to pick out discrete values of a function:
∫

φ(x)δz(x)dx = φ(z)

so the mass function for N can also be expressed as

P (N ∈ dx) =
∑

n

g(x)δn(x)dx.

The bar notation indicates conditioning. That is, X | Y , read “X given

Y ,” means that we modify the distribution of X by assuming Y is known.

The basic property of conditioning is that

P (X ∈ dx and Y ∈ dy) = P (X ∈ dx | Y = y)P (Y ∈ dy) .

Since you can also condition on X ,

P (X ∈ dx and Y ∈ dy) = P (Y ∈ dy | X = x)P (X ∈ dx) .

Combining the two gives Bayes’s formula,

P (X ∈ dx | Y = y) =
P (Y ∈ dy | X = x)P (X ∈ dx)

P (Y ∈ dy)

which expresses the distribution of X given Y in terms of the distribution

of Y given X . (The dy’s effectively cancel; the details involve the Radon-

Nikodym derivative and are well beyond the scope of this chapter.)

Since it’s usually more convenient to work with densities (or to use delta

measures to pretend that discrete distributions have densities), the notation

p (x) is often used to indicate the density of the random variable X tied by

convention to the same letter in lower case,

P (X ∈ dx) = p (x) dx.

Conditional densities are expressed as

P (X ∈ dx | Y = y) = p (x | y) dx.
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The conditioning formula becomes

p (x, y) = p (x | y) p (y)

and Bayes’s formula becomes

p (x | y) =
p (y | x) p (x)

p (y)
.

Since the p (·) notation is compact and expressive, it is normally overloaded

to indicate the mass function of a discrete random variable as well, as in

p (n). The interested reader must use context to determine the correct

rigorous interpretation for p (·).

The expected value or mean or first moment of a continuous random

variable X is

E (X) =

∫

xP (X ∈ dx) =

∫

xp (x) dx.

For a discrete random variable N , the formula is the same except that the

integral becomes a sum:

E (N) =

∫

xP (N ∈ dx) =

∫

x
∑

n

p (n) δn(x)dx =
∑

n

n p (n) .

The notation for an indicator function is

1 (condition) =

{

1 if the condition is true

0 if the condition is false

References

1. Apolloni, A., Kumar, V. A., Marathe, M. V. and Swarup, S. (2009). Com-
putational epidemiology in a connected world, Computer 42, pp. 83–86,
doi:10.1109/MC.2009.386.

2. Bod, R., Hay, J. and Jannedy, S. (eds.) (2003). Probabilistic Linguistics
(MIT Press, Cambridge, MA).

3. Boyd, R. and Richerson, P. J. (1988). An evolutionary model of social learn-
ing: The effects of spatial and temporal variation, in T. R. Zentall and J. Ben-
nett G. Galef (eds.), Social Learning (Lawrence Erlbaum Associates, Inc.,
Hillsdale, New Jersey), pp. 29–48.

4. Briscoe, E. J. (2000). Grammatical acquisition: Inductive bias and coevo-
lution of language and the language acquisition device, Language 76, 2, pp.
245–296.

5. Briscoe, E. J. (ed.) (2002). Linguistic Evolution through Language Acquisi-
tion: Formal and Computational Models (Cambridge University Press).



August 2, 2010 10:11 World Scientific Book - 9in x 6in 00Chapter

Inferring Leadership Structure from Data on a Syntax Change in English 659

6. Cangelosi, A. and Parisi, D. (eds.) (2002). Simulating the Evolution of
Language (Springer-Verlag).

7. Chomsky, N. (1965). Aspects of the Theory of Syntax (MIT Press, Cam-
bridge, MA).

8. Chomsky, N. (1972). Language and Mind (Harcourt Brace Jovanovich, New
York).

9. Chomsky, N. (1988). Language and Problems of Knowledge (MIT Press).
10. Cucker, F., Smale, S. and Zhou, D.-X. (2004). Modeling language evolution,

Foundations of Computational Mathematics 4, 3, pp. 315–343.
11. di Sciullo, A. M. (ed.) (2005). UG and External Systems: Language, brain

and computation, no. 75 in Linguistics Today (John Benjamins).
12. Edwards, C. H. and Penney, D. E. (2008). Differential Equations and Bound-

ary Value Problems: Computing and modeling, 4th edn. (Pearson Prentice
Hall).

13. Elleg̊ard, A. (1953). The Auxiliary do: The Establishment and Regulation
of Its Use in English, Gothenburg Studies in English, Vol. II (Almqvist and
Wiksell).

14. Fong, S. (2005). Computation with probes and goals: A parsing perspective,
in [11], pp. 311–333.

15. Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian
Data Analysis, 2nd edn. (Chapman & Hall/CRC).

16. Gibson, E. and Wexler, K. (1994). Triggers, Linguistic Inquiry 25, pp. 407–
454.

17. Gold, E. M. (1967). Language identification in the limit, Information and
Control 10, pp. 447–474.

18. Joshi, A. and Schabes, Y. (1997). Tree-Adjoining grammars, in Handbook of
Formal Languages 3: Beyond Words, chap. 2, no. 3 in Handbook of Formal
Languages (Springer-Verlag), ISBN 978-3-540-60649-9, pp. 69–120, doi:10.1.
1.30.502.

19. Kirby, S. (2001). Spontaneous evolution of linguistic structure: an iterated
learning model of the emergence of regularity and irregularity, IEEE Trans-
actions on Evolutionary Computation 5, 2, pp. 102–110.

20. Kirby, S. and Hurford, J. R. (2002). The emergence of structure: An overview
of the iterated learning model, in [6], pp. 121–148.

21. Komarova, N. L., Niyogi, P. and Nowak, M. A. (2001). The evolutionary
dynamics of grammar acquisition, Journal of Theoretical Biology 209, 1, pp.
43–59.

22. Komarova, N. L. and Nowak, M. A. (2001a). The evolutionary dynamics of
the lexical matrix, Bulletin of Mathematical Biology 63, 3, pp. 451–485.

23. Komarova, N. L. and Nowak, M. A. (2001b). Natural selection of the critical
period for language acquisition, Proceedings of the Royal Society of London,
Series B 268, pp. 1189–1196.

24. Kroch, A. (1989). Reflexes of grammar in patterns of language change, Lan-
guage Variation and Change 1, pp. 199–244.

25. Kroch, A. S. and Joshi, A. K. (1985). The linguistic relevance of tree adjoin-
ing grammar, Tech. Rep. MS-CIS-85-16, University of Pennsylvania, URL



August 2, 2010 10:11 World Scientific Book - 9in x 6in 00Chapter

660 W. G. Mitchener

http://repository.upenn.edu/cis_reports/671/.
26. Labov, W. (1994). Principles of Linguistic Change: Internal Factors, Vol. 1

(Blackwell, Cambridge, MA).
27. Labov, W. (2001). Principles of Linguistic Change: Social Factors, Vol. 2

(Blackwell, Cambridge, MA).
28. Labov, W. (2007). Transmission and diffusion, Language 83, 2, pp. 344–387.
29. Mitchener, W. G. (2003a). Bifurcation analysis of the fully symmetric lan-

guage dynamical equation, Journal of Mathematical Biology 46, pp. 265–285,
doi:10.1007/s00285-002-0172-8.

30. Mitchener, W. G. (2003b). A Mathematical Model of Human Languages: The
interaction of game dynamics and learning processes, Ph.D. thesis, Princeton
University.

31. Mitchener, W. G. (2005). Simulating language change in the presence of
non-idealized speech, in Proceedings of the Second Workshop on Psychocom-
putational Models of Human Language Acquisition (Association for Compu-
tational Linguistics), pp. 10–19.

32. Mitchener, W. G. (2007). Game dynamics with learning and evolution of
universal grammar, Bulletin of Mathematical Biology 69, 3, pp. 1093–1118,
doi:10.1007/s11538-006-9165-x.

33. Mitchener, W. G. and Nowak, M. A. (2003). Competitive exclusion and
coexistence of universal grammars, Bulletin of Mathematical Biology 65, 1,
pp. 67–93, doi:10.1006/bulm.2002.0322.

34. Mitchener, W. G. and Nowak, M. A. (2004). Chaos and language, Proceedings
of the Royal Society of London, Biological Sciences 271, 1540, pp. 701–704,
doi:10.1098/rspb.2003.2643.

35. Niyogi, P. (1998). The Informational Complexity of Learning (Kluwer Aca-
demic Publishers, Boston).

36. Niyogi, P. (2006). The Computational Nature of Language Learning and
Evolution (MIT Press, Boston).

37. Niyogi, P. and Berwick, R. C. (1996). A language learning model for finite
parameter spaces, Cognition 61, pp. 161–193.

38. Niyogi, P. and Berwick, R. C. (1997a). A dynamical systems model
for language change, Complex Systems 11, pp. 161–204, URL ftp://

publications.ai.mit.edu/ai-publications/1500-1999/AIM-1515.ps.Z.
39. Niyogi, P. and Berwick, R. C. (1997b). Evolutionary consequences of lan-

guage learning, Linguistics and Philosophy 20, pp. 697–719.
40. Nowak, M. A. (2006). Evolutionary Dynamics: Exploring the equations of

life (Harvard University Press).
41. Nowak, M. A. and Komarova, N. L. (2001). Towards an evolutionary theory

of language, Trends in Cognitive Sciences 5, 7, pp. 288–295.
42. Nowak, M. A., Komarova, N. L. and Niyogi, P. (2001). Evolution of universal

grammar, Science 291, 5501, pp. 114–118.
43. Nowak, M. A., Komarova, N. L. and Niyogi, P. (2002). Computational and

evolutionary aspects of language, Nature 417, 6889, pp. 611–617.
44. Nowak, M. A. and Krakauer, D. C. (1999). The evolution of language, Pro-

ceedings of the National Academy of Sciences, USA 96, pp. 8028–8033.



August 2, 2010 10:11 World Scientific Book - 9in x 6in 00Chapter

Inferring Leadership Structure from Data on a Syntax Change in English 661

45. Nowak, M. A., Krakauer, D. C. and Dress, A. (1999a). An error limit for the
evolution of language, Proceedings of the Royal Society of London, Series B
266, pp. 2131–2136.

46. Nowak, M. A., Plotkin, J. and Jansen, V. A. A. (2000). Evolution of syntactic
communication, Nature 404, 6777, pp. 495–498.

47. Nowak, M. A., Plotkin, J. and Krakauer, D. C. (1999b). The evolutionary
language game, Journal of Theoretical Biology 200, pp. 147–162.

48. Pearl, L. and Weinberg, A. (2007). Input filtering in syntactic acquisition:
Answers from language change modeling, Language Learning and Develop-
ment 3, 1, pp. 43–72.

49. Plotkin, J. and Nowak, M. A. (2000). Language evolution and information
theory, Journal of Theoretical Biology 205, pp. 147–159.
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In genetic epidemiology, modeling Linkage Disequilibrium (LD) between

Single Nucleotide Polymorphisms (SNP) has become an important problem

for disease genes mapping. On the fine scale of high-density maps, the com-

plex diseases are often related to effects of combinations of multiple SNPs

while the main effects of the pairwise LD measure may be small or absent.

The major challenge of association study, especially at the whole-genome

level, is the lack of multilocus LD analysis. This chapter introduces Variable

Length Finite Automata (VLFA) for describing multilocus LD. Given a set

of haplotype-phenotype data, we propose a novel method and algorithm

to infer the structure of VLFA. This VLFA consists of an inhomogeneous

variable length Markov chain in which the length of memory of the model

depends on the nature of stochastic data. The model will have a longer

memory if the SNP markers are in the regions of high LD, whereas, the

memory will be short in the regions of low LD. Having a stochastic struc-

ture, the VLFA reflects the multilocus LD, the dependence structure of

haplotypes, the historical recombination events and the location of disease

mutations. Through the experimental results on real published SNP data

set, we show that our approach is flexible and robust for genetic association

studies.

663
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14.1 Introduction

The areas of bio-informatics and computational biology have strongly devel-

oped in recent years. There have been many applications of combinatorial

optimization and combinatorial structures in those fields. In particular,

discovering exactly or approximately patterns (motifs) are one of most in-

teresting problems of combinatorial optimization and have been shown re-

markably effective applications in computational biology. In computational

biology, motif finding problems are widely studied from genomic to post-

genomic. Most frequently, motif discovery applications arise when identi-

fying shared overrepresented regulatory motifs (binding sites) within DNA

sequences (promoter region) or regulatory protein (transcription factors)

sharing functional and structure elements within DNA or protein sequences

[2, 7, 11]. In the last decade, the combinatorial structures based on fi-

nite state automata, and more particularly stochastic finite state automata

(probabilistic automata), hidden Markov model and different variants of

graphical model have been used quite successfully to address several com-

plex pattern discovery and matching pattern problems in computational

biology [16]. These structures, however, typically built in this context

are subtended by uniform, homogeneous and fixed-memory length Markov

models.

This chapter will consider another essential application of the pattern

finding to be used for characterizing and predicting bio-sequence families.

Given different families of sequences, the goal is to find all frequent pat-

terns that are significantly more abundant in a specific family than in others

[2]. Here, we investigate this kind of pattern discovery to explore single nu-

cleotide polymorphism (SNP) data analysis, timely topics of computational

molecular biology, for identifying likely location of disease susceptibility

(DS) genes. Currently, haplotype analysis of disease chromosomes can help

identify probable historical recombination events and localize DS genes. In

particular, the haplotype pattern or haplotype block, known as multi-locus

SNP analysis, have been successfully applied to the identification of the

DNA variations and are now considered the most promising method for

localizing DS genes in complex disease [8, 10, 23, 26]. We are interested

in problem of identification of risk haplotype pattern. The basic idea in

disease-haplotype association is to search for genetic patterns that are more

common within affected haplotypes than control haplotypes. This con-

sists in identifying subset of individual haplotypes and subset of contiguous

SNP markers, where the haplotypes are strongly correlated behaviours and
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strongly significant associated with the disease, called disease-haplotype as-

sociation. The method directly explores the sharing of haplotype segments

in affected haplotypes from the common ancestral chromosome in the re-

gion where the functional mutation occurred in the past that are rarely

present in normal haplotypes (Identical By Descent, IBD). If most affected

individuals in a population share the same mutant allele at a causative lo-

cus, it is possible to narrow the genetic interval around the disease locus

by detecting linkage disequilibrium (LD) between nearby markers and the

disease locus [1, 14, 15].

Since the biological problems addressed by motif finding in this context

are complex and itself NP-complete, no existing methods can solve them

completely. Most available methods performed pattern discovery without

considering the dependent linkage between variables. On the fine scale

of high-density maps, the complex diseases are often related to effects of

combinations of multiple SNPs while the main effects of the pairwise LD

measure may be small or absent. The major challenge of association study,

especially at the whole-genome level, is the lack of multilocus LD analy-

sis. Several methods used sliding-window approaches [8, 10, 30], graphical

models [28, 22], tree-based recursive partitioning methods [29] and data

mining technique [23] taking multilocus LD into account to perform motif

finding problem in computational haplotype. These models, however, are

not structurally rich and advantageous. If the memory length of process and

the window size are too small, information is lost, whereas, if the memory

and the window size are too large, excessive noise is introduced. Moreover,

growing very large number of genetic markers (refer to HapMap project,

http://hapmap.ncbi.nlm.nih.gov/) offers new opportunities, but also ampli-

fies the challenging statistical and computational complexity. In fact, a

limit of gene-disease association is the relatively large number of observed

haplotype sequences that increase the degrees of freedom and then decrease

the power for a specific statistic test. Thus, large degrees of freedom reduce

the power of sequence association analyses and also limit the modelling ca-

pacity for incorporating other factors [8, 10, 29].

To overcome the challenges mentioned above, we introduce in this chap-

ter a combinatorial optimization based on discrete structure of variable

length finite automata (VLFA) for motif finding with a new mathematical

programming approach and divers novel applications. From a structural

point of view, the class of proposed VLFA models is structurally richer than

existing models. It includes and generates the class of stationary Markov

chains. Unlike the structure of automata widely studied in the literature,
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the memory of these models are allowed to be of variable length in which

the length of memory of the process depends on the context. In the region

where the variables are strongly dependent, the models will have a longer

memory, whereas, in the regions of low dependence, the memory of the mod-

els will be short. In particular, if the variables are independent, the models

have a structure of the homogeneous Markov chain. Having a stochastic

structure, the VLFA model is more suitable to describe the dependence

structure among several variables characterizing the observed haplotypes

such as ancestral haplotypes, recombination events, and location of disease

mutations. From an algorithmic view, the methods will adapt to the linkage

dependence within variables and do not need to choose the length segment

and window size parameters. So the algorithms are computationally very

fast for large dataset. The proposed algorithms combine and optimize large

statistical models represented by VLFA. These algorithms find optimal so-

lution underlying optimization problem with minimal complexity and au-

tomatically balance degrees of freedom and number of statistical tests for

extracting maximal information. The experimental results show that VLFA

model tends to be more effective and powerful for genetic association study

comparing with current methods. As a basic pattern discovery, the method

described in this chapter will follow four steps:

(1) Choosing the language (formalism) to represent the patterns in a big

search space,

(2) Choosing the rating for patterns, to tell what is better than others,

(3) Developing an algorithm that finds the best patterns from a pattern

class,

(4) Evaluating the complexity and the efficacy of the developed algorithms.

Next section briefly reviews some basic genetic research backgrounds on

gene mapping and computational haplotype analysis. Given a haplotype-

phenotype training data set, we generally formulate a combinatorial opti-

mization problem via linear programming formulation adapting to problem

of risk haplotype pattern discovery. Section 14.3 reviews some fundamen-

tal discrete structures that are basic structures and theoretical elements

for studying our contributed models. The new data structure, construction

algorithm and the applications of VLFA will be found in Section 14.4. Sec-

tion 14.5 reports some experimental results through real SNP marker data.

The comparative study with related work is also reported. We finish with

some conclusions and ideas for future works.
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14.2 Biological Problem and Formulation

14.2.1 Genetic Association Studies

14.2.1.1 Genetics Terminologies

In genomic research, the fundamental unit of population analysis is the

single nucleotide polymorphism (SNP). A SNP is a mutation occurring when

a single nucleotide in the genome differs between paired chromosomes in

an individual. It simply describes a single base pair change that is variable

across the population at a frequency of at least 1%. A locus of SNP marker

is a short identifiable sequence that has a known location, and this sequence

varies between individual chromosomes. Variants of markers are called

alleles. The number of alleles per marker is small, typically, less than 10

for micro-satellite markers or 2 for SNP markers. A genotype at a marker is

the pair of alleles occurring at that locus on two chromosomes of a diploid

individual. A genotype with two identical alleles is called homozygote,

otherwise, it is called heterozygote. An haplotype is an ordered sequence

of alleles in contiguous SNPs along a region of chromosome. For example,

Figure 14.1 represents five mutations at two identical DNA fragments of an

individual chromosome that define five associated SNP loci. In this case,

one says that the first SNP locus has two alleles, C and A; and second one

has alleles A and C, etc; the set of genotypes is {C/A, A/C, T/G, T/C,

G/T}; CATTG and ACGCT are haplotypes.

Fig. 14.1 SNP markers, genotypes and haplotypes.

A trait is a distinct variant of a phenotypic character of an organism.

A binary trait refers to binary variable defined as one that can take on

two values of disease status: affected chromosome (diseased) or unaffected

chromosome (not diseased). A phenotype is defined as a physical attribute

of a trait and in the context of association analysis generally refers to a

measure of disease progression.

The linkage disequilibrium (LD) is defined as an association in the alleles

present at each of two sites on a genome. When alleles at different loci in



September 14, 2010 14:43 World Scientific Book - 9in x 6in 00Chapter

668 T. Trang

an haplotype are not independent (none randomly associated in gametes),

they are said to be in LD and when alleles in a haplotype are independent,

they are said to be in linkage equilibrium (LE). Formally, let A|a and B|b

be the possible alleles at two loci. Denote PA and PB the allele frequencies

of alleles A and B, and PAB the frequency of the haplotype AB combining

from alleles A and B. If the alleles of two loci are in LE, then PAB = PAPB .

In contrast, when the alleles of two loci are in LD to each other, then

PAB 6= PAPB . In this case, the difference between the frequencies of allelic

combinations in LD and the frequencies of allelic combinations in LE, noted

DAB = PAB − PAPB = Dab = D and DAb = PAb − PA(1 − PB) = DBa =

−D, is the measure of the LD between the nearby loci on the chromosome.

In practice, the Pearson’s correlation coefficient r2 or the measurement D′

value, less sensitive to the allelic frequencies than D value, were used to

quantify the LD:

r2 =
D2

PAPB(1 − PA)(1 − PB)
,

D′ =











D

max(PAPB, (1− PA)(1− PB))
if D < 0,

D

min(PA(1 − PB), (1 − PA)PB)
if D > 0.

(14.1)

If |D′
|= 1 (resp. r2 = 1) then the two SNPs are in complete LD which

means knowing one of them is directly predictive of the other, and |D′
|= 0

(resp. r2 = 0) indicates that the two SNPs are independent. In the pro-

cess of gamete production, a pair of paternal homologous chromosomes

exchanges genetic material (segment of DNA) with each other during the

meiosis is called recombination event (see left graph of Figure 14.2). As

a result, a chromosome transmitted from a parent to an offspring is not

an exact copy of either parental chromosomes, but a mosaic of them. The

recombination event ensures that the variation is maintained in each gener-

ation between individual. This is very basic phenomenon in genetics. The

recombination event directly influences LD across generations. The rela-

tionship between recombination event and LD in each generation t is given

by:

D′
t = (1− θ)tD′

0, (14.2)

where 0 ≤ θ ≤ 1 is the recombination rate [1, 14]. The right graph of

Figure 14.2 gives an illustration of this relationship for θ = 0.5, θ = 0.2 and

θ = 0.1. Thus, we can see that the recombination event occurring between

SNPs reduces the LD between them and SNPs close together are less likely
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Fig. 14.2 Link between recombination event and LD over generations.

to be affected by recombination than two SNPs far away. Historical recom-

bination between pair of chromosomes results in the decay of D′ toward
zero along the time axis at a rate depending on the magnitude of the re-

combination rate θ between the two loci. Consequently, LD blocks, the key

for gene mapping analysis, are regions in which the standard measure D′

of pair-wise LD is consistent (or nearly consistent) with no recombination,

|D′
| ≈ 1 (r2 ≈ 1), for all (or nearly all) pairs of markers in the region.

14.2.1.2 Association Analysis

In general, the exact location of disease susceptibility (DS) gene is un-

known. The goal of gene mapping analysis is to identify a set of DNA

variations (SNPs) for localizing DS genes in complex disease. Association

analysis is a method potentially useful for identifying a set of SNP associ-

ated with target disease (also called marker-trait associations) based on LD

measure. This method was therefore sought for narrowing the interval in

which a disease gene might lie, and one of these was by the analysis of LD

[1, 13–15]. If most affected individuals in a population share the same mu-

tant allele at a causative locus, it is possible to narrow the genetic interval

around the disease locus by detecting disequilibrium between nearby mark-

ers and disease locus. The approach makes use of the many opportunities

for crossovers between markers and the disease locus during the large num-

ber of generations since the first appearance of the mutation (Figure 14.3).

Since the candidate gene generally involves multiple SNPs, the location of

candidate gene depends on the identification of block of SNPs in high LD.
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Fig. 14.3 Association analysis via LD around an ancestral mutation. The mutation

is indicated by a white region. Chromosomal stretches derived from common ancestor

of all mutant chromosomes are shown in dark region, and new stretches introduced by

recombination are shown in light grey.

Therefore, the approaches must be referred to as multi-locus methods and

are specifically designed to find multiple disease loci (Figure 14.4).

Single-SNP, genotype and haplotype information can be used to study

the genetic variations associated with a specific disease. However, haplo-

type information are more informative and have advantages compared with

the single-SNP analysis and genotype analysis [26]. In fact, the haplotype

sequences can be used to capture regional LD information and identifying

haplotype blocks is one way of the studying LD patterns[6, 14]. The LD

causes the associations between markers and disease even for markers that

are part of a disease-causing gene. These studies examine the association

between a particular set of haplotype patterns and disease. In particu-

lar, the use of haplotypes also capture information about common patterns

that may be descended from ancestral haplotypes (IBD). As illustrated by

Figure 14.3, around the DS gene region, it is expected that affected haplo-

types should share segments from the common ancestral haplotype where

the mutation occurred a long time ago in the past. It captures the sharing

of haplotype segments due to historical recombination events and incor-

porates the mutations. Instead, haplotypes from affected individuals are

expected to be more similar at the disease gene location than those from

controls that are assumed to be random samples.
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Fig. 14.4 Block of linkage disequilibrium and location of disease causing variant.

14.2.2 Haplotype Pattern Discovery Problem

In computational haplotype analysis, haplotype-disease association aims

at identify a set of risk haplotype patterns associated with target disease.

The input data consist of case (L+) and control (L−) haplotypes on a

map of loci markers along chromosome. In a population-based study, case

haplotypes are obtained from affected individuals; controls are from un-

affected individuals. In a family-based analysis, case haplotypes can be

parental haplotypes transmitted to offspring; control haplotypes are those

non-transmitted haplotypes. Table 14.1 represents the input haplotype-

phenotype data mapping from n loci markers in the physical order along

chromosome. Given a large number of mapping genetic markers and a

collection of affected and control haplotypes, the task is to identify likely

location of risk haplotype patterns in high LD to predict the location of the

disease susceptibility (DS) gene on the map. The basic idea is to search

haplotype patterns that are more common within cases than controls. In

each model, a group of case haplotypes is compared with a group of control

haplotypes in terms of haplotype frequencies. If most affected individuals

in a population share the same mutant allele at a causative locus, it is pos-

sible to narrow the genetic interval around the disease locus by detecting

LD between nearby markers and the disease locus.

An haplotype sequence can be viewed as string over an alphabet of size 2

for SNP markers and less than 10 for micro-satellite markers. Without loss

of generality, consider a family L = {s1, . . . , sm} of m strings of length n

over alphabet A = {x1, x2, . . . , xk} of size k. Let us denote L
+ and L− two

distinct subfamilies of related strings of L (L+∪L− = L). Given such data

structure, we address in this work a novel combinatorial problem, called
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Table 14.1 Input haplotype-phenotype training dataset.

Haplotype string Locus 1 Locus 2 . . . Locus n Phenotype

s1 s1,1 s1,2 . . . s1,n +

s2 s2,1 s2,2 . . . s2,n −
.
.
.

.

.

.

.

.

.

.

.

.

sm sm,1 sm,2 . . . sm,n +

protective linkage patterns , of the motif discovery on strings:

Given two subsets of positive strings L+ and negative one L−, find a

set of common patterns P such that each element M ∈ P has significantly

more occurrences in L+ than in L− and all elements within M are closely

related (dependent linkage or causal dependence).

There are basic common questions concerning this problem when search-

ing for unknown protective linkage patterns associated with a specific family

of strings: Are there sharing patterns between strings? Where these pat-

terns are located in? Is there the dependency linkage between elements

within pattern (Markov property)?

14.2.3 Combinatorial Optimization Formulation

Let X ∈ Mm,n(A) be symbolic matrix data over alphabet A which corre-

sponds to L = {s1, . . . , sm} of m strings of length n, each row of X is a

string of L along n columns. Let L+ and L− be two distinct subfamilies

of related strings of L. Suppose that we are given m+ = Card(L+) and

m− = Card(L−) (m+ +m− = m). A pattern of X is a subset of rows that

are identical string over alphabet A across a subset of arbitrary columns

(called submatrix, motif, bi-cluster ) [17, 25]. In this work we are inter-

ested in contiguous pattern. A contiguous pattern is a subset of rows that

are identical string over alphabet A across a subset of contiguous columns.

Formally, given subset of indices I = {i1, i2, . . . , i`} ⊆ [1, . . . ,m] of rows

and subset of consecutive indices J = {t, t + 1, . . . , t + h} ⊆ [1, . . . , n] of

columns (h > 0), the submatrix XI,J is called coherent contiguous pattern

(CCP) of matrix X if

Xi1,j = · · · = Xi`,j for all j ∈ J and i1, . . . , i` ∈ I. (14.3)

In other words, the pattern XI,J is then represented by an identical string

of length |J |. In general, there are 2m and 2n possibilities for choosing

two subsets I and J in the sets of m rows and n columns, respectively.
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Thus, there are 2m × 2n possible patterns in the matrix X . Here, we are

interested in problem of identification ofmaximal patterns (largest patterns)

that are shared by almost rows and columns of X . The problem consists

in identifying I and J such that XI,J has the largest size given by the map

f :M2m,2n(A) → N

XI,J 7→ f(XI,J) := |I|+ |J |. (14.4)

From this definition, the function f(.) is the size or the frequency of the sub-

matrix XI,J and considering as the objective function of the problem. The

setM2m,2n(A) is the search space of the size 2m × 2n. The maximization

of the objective function f(.) is a combinatorial optimization problem in

which we search the maximal value of f(.) for all submatrices verifying the

coherent constraint (14.3) in the search space M2m,2n(A). The extracted

matrix XI,J with f(XI,J) maximized is called maximum frequent coherent

pattern of the matrix X . An optimal solution ̂XI,J ∈ M2m,2n(A) is called

global maximum if for all XI,J ∈ M2m,2n(A), f( ̂XI,J ) ≥ f(XI,J).

For each pattern XI,J , with I and J defined as above, the dependent

linkage between variables in the pattern (so-called linkage pattern) is given

by the conditional probability defined as follows (see Section 14.3 for detail)

P (Xt+h | X1, X2, . . . , Xn) = P (Xt+h | Xt, Xt+1, . . . , Xt+h−1). (14.5)

We are interested in identifying CCP associated with a specific family of

strings by adding the following constraint

∀C ≥ 1, P (XI,J ∈ L
+) ≥ CP (XI,J ∈ L

−), (14.6)

where P (XI,J ∈ L
+) and P (XI,J ∈ L

−) are respectively the appearing

probabilities of the pattern XI,J in L+ and in L− and the coefficient C is

called degree of association. In practice, the standard ±χ2-score is used to

measure degree of association between string pattern and family of strings

of interest [10, 23]. Let mP , mAP and mCP denote the string pattern

count, the number of positive strings and the number of negative strings

in the pattern XI,J , respectively. Consider the following 2x2 contingency

table of the number of positive strings and negative strings in XI,J ,

Match Pattern Non Match Pattern
∑

Positive string mAP mAN m+

Negative string mCP mCN m−
∑

mP mN m
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where mAN = m+
−mAP ,mCN = m−

−mCP and mN = m −mP . This

contingency table can be constructed the ±χ2-score of association of XI,J

as follows:

±χ2(XI,J) =

√

m(mAP .mCN −mAN .mCP )
√

m+.m−.mP .mN

. (14.7)

The measure ±χ2 of a pattern is the standard χ2 measure where the sign

is positive if the relative frequency of the pattern is higher in L+ than in

L
− (mAP /m

+ > mCP /m
−) and negative otherwise. The string patterns

satisfying (14.7) with ±χ2 > 0 is called the protective patterns. And the

large positive ±χ2 value means strong association between the pattern and

the family L+ since many positive strings in L+ share the same factor.

Given a positive association threshold β > 0, we say that the pattern XI,J

is statistically significant associated with family L+ if ±χ2(XI,J) ≥ β.

Denote P+ = {XI,J ⊂ X |±χ2(XI,J ) ≥ β} the set of all strongly associated

patterns.

Theorem 14.1. Given a threshold β > 0 of lower bound for ±χ2(XI,J).

If the pattern XI,J is associated with family L+, we have

mAP ≥
m.m+.β

m.m− +m+.β
.

The proof of the theorem was reported in [23]. The threshold β is provided

by the user and discussed in the experimental section. Biologically, the pat-

tern in P with highest ±χ2-score means that many affected chromosomes

of present generation share a common genomic region. The marker posi-

tions associated with this pattern is taken as the prediction for predicted

DS genes.

Combining (14.3), (14.4), (14.5) and (14.7), the problem of finding pro-

tective linkage patterns is formulated by the following combinatorial opti-

mization problem:










































Maximize f(XI,J) := |I|+ |J |

subject to

(a) Xi1,j = · · · = Xi`,j , ∀i1, . . . , i` ∈ I and j ∈ J

(b) P (Xt+h | X1, . . . , Xn) = P (Xt+h | Xt, Xt+1, . . . , Xt+h−1),

(c) ± χ2(XI,J) ≥ β, ∀β > 0,

for I = {i1, i2, . . . , i`}, J = {t, t+ 1, . . . , t+ h}, ∀h > 0.

(14.8)

The extracted matrix XI,J identified by (14.8) is called maximum pro-

tective linkage pattern of the input matrix X . The two subsets I and J are
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called an optimal solution. The first constraint (a), called coherent con-

straint, ensures that the identified pattern is coherent (identical string) on

the consecutive locus columns. The second one (b) is called linkage con-

straint that guarantees that the variables in the pattern are related to each

other. This constraint means that the pattern follows the structure of inho-

mogeneous high order Markov chains. Finally, the association constraint (c)

ensures that the identified pattern is significantly more overrepresented in

L
+. Note that the problem (14.8) returns a local optimization (local maxi-

mum values). The computational complexity of the problem (14.8) depends

on the objective function f . In general, seeking an optimal solution for com-

binatorial optimization problem formulated as (14.8) is NP-complete [17].

Since the linkage pattern depends on the context and the size of search

space is very large, we search a model that has variable length memory to

model variant linkage patterns (sometime called learning linkage patterns)

and an efficient algorithm to maximize the contiguous patterns.

Biologically, the problem (14.8) is based on the simple observation that

LD with DS gene locus is likely to be where strongly disease-associated

haplotype segments are. In this approach, the LD is examined by looking

for haplotype patterns that consists of a set of consecutive markers. This

method makes use of the many opportunities for crossovers between markers

and the disease locus during the large number of generations since the first

appearance of the mutation. It directly explores the sharing of haplotype

segments, due to historical recombination events, in affected haplotypes

deriving from the common ancestral chromosome in the region where the

functional mutation occurred in the past that are rarely present in normal

haplotypes.

Example 14.2. Let L+ = {s1, s4, s5, s7} and L− = {s2, s3, s6, s8} be re-

spectively the sets of case and control haplotypes from 5 bi-allelic SNP

markers (each marker has only two alleles, major and minor alleles) coded

by binary strings over the alphabet A = {1, 2} (the first allele at a marker

is coded by symbol 1 and the second one is coded by symbol 2) and repre-

sented as Table 14.2. The submatrix X[2,3,5,8],[1,2] =

{

1 1 1

2 2 2

}T

, composed

by four haplotypes [2, 3, 5, 8] sharing the same alleles [1,2] at two consec-

utive markers [1, 2], is a pattern of size f(X[2,3,5,8],[1,2]) = 6 representing

haplotypic string pattern 12. This pattern has the number of case count

NAP = 1 and control count NCP = 3. We have then P (12 ∈ L+) = 1
4 <

P (12 ∈ L−) = 3
4 . Thus, the pattern 12 at markers [1, 2] is not associated



September 14, 2010 14:43 World Scientific Book - 9in x 6in 00Chapter

676 T. Trang

Table 14.2 Example of haplotype-disease data.

Haplotype SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 Phenotype

s1=AGCAG 1 1 1 1 2 +

s2=ATCAG 1 2 1 1 2 −
s3=ATTCA 1 2 2 2 1 −
s4=AGCAG 1 1 1 1 2 +

s5=ATCAG 1 2 1 1 2 +

s6=TTTCA 2 2 2 2 1 −
s7=TGCAG 2 1 1 1 2 +

s8=ATTCA 1 2 2 2 1 −

with the disease. While the submatrix X[1,2,4,5,7],[3,4,5] =







1 1 1 1 1

1 1 1 1 1

2 2 2 2 2







T

,

composed by five haplotypes [1, 2, 4, 5, 7] sharing the same alleles [1,1,2]

across over three consecutive markers [3, 4, 5], is a largest pattern with the

size f(X[1,2,4,5,7],[3,4,5]) = 8 representing haplotype pattern 112. This pat-

tern has the number of case count NAP = 4 and control count NCP = 1.

We have then P (112 ∈ L+) = 4/5 > P (112 ∈ L−) = 1
5 . That deduces

±χ2(112) = 2.01. The pattern 112 at markers [3, 4, 5] is a significant pat-

tern in risk disease and considered a risk haplotype pattern. The pair of

indices I = [1, 2, 4, 5, 7] and J = [3, 4, 5] is the optimal solution of combina-

torial maximization problem.

14.3 Fundamentals of Discrete Structures

14.3.1 Strings and Languages

Let A = {x1, . . . , xk} be an alphabet of the size k. A string (or word) s is

a sequence of elements of A. The empty string is denoted by ε. The set of

all possible strings over A is denoted by A∗. The length of the string s is

noted by |s|, and |ε| = 0. For any h ≥ 0, we note Ah = {s ∈ A∗
| |s| = h}.

A string u ∈ A∗ is called a factor (resp. a prefix) of a string s if there

exist strings x, y ∈ A∗ such that s = xuy (resp. s = uy). For i < j,

denote s[i : j] = sisi+1 . . . sj a factor of the string s starting at i and

ending at j. The prefix of length i of a string is also denoted by s[1, i]. A

longest common factor (LCF) of two string u and v beginning at the same

position i is defined as a longest factor a such that u = u[1 : i − 1]au′ and



September 14, 2010 14:43 World Scientific Book - 9in x 6in 00Chapter

Weighted Automata Modeling for Linkage Disequilibrium Mapping 677

v = v[1 : i − 1]av′ and noted by a = Facti(u, v). In the case u[1 : i − 1] =

v[1 : i− 1] = ε, the factor a is the longest common prefix of u and v [24].

Let L = {s1, . . . , sm} ⊆ A
∗ be a finite language containing m strings

such as, for j = 1, ..,m, |sj|∈ A
n. A string u is called a LCF of L at the

position i, noted by u = Facti(L), if for all s ∈ L, s = s[1 : i− 1]uv and |u|

is maximal. In this context, for u ∈ A∗, we define

Lu := {s ∈ L | ∃u ∈ A∗, s = s[1 : i− 1]uv} (14.9)

the subset of strings of L having the LCF u. The common factor u defined

by this way represents a CCP (coherent contiguous pattern) of L. The set

of all LCFs of L is denoted by

Fact(L) =
n
⋃

i=1

Facti(L). (14.10)

For u ∈ A∗, let us consider Nu = Card(Lu). In particular Nε = m. Thus,

∀u ∈ Ah, one has

Nu =
∑

x∈A
Nux and for any 0 ≤ h ≤ n,m =

∑

u∈Ah

Nu. (14.11)

Definition 14.3. Let L be a language and let Fact(L) be a set of all

LCFs of L. The objective function (14.4) of the combinatorial optimization

formulated as (14.8) is rewritten by

f : Fact(L) → N

u 7→ f(u) := |u|+Nu.

Using the notation (14.11), for u ∈ Ah and xi ∈ A, let us consider the

following ratios

Pu =
Nu

m
and Puxi

=
Nuxi

Nu
, i = 1, . . . , k. (14.12)

Since
∑

xi∈A Nuxi
= Nu then the ratios Puxi

define the discrete probability

over A∗, 0 ≤ Puxi
≤ 1 and for all u ∈ Ah,

∑

xi∈A Puxi
= 1. The probability

of string u conditionally dependent with string v, denoted by P (u | v), is

defined by

∀v ∈ A∗, P (u | v) =
Nvu

Nv
. (14.13)

Definition 14.4. A language L over an alphabet A is a probabilistic lan-

guage over A∗ if there exists a distribution function P : A∗
→ [0, 1] sat-

isfying
∑

s∈A∗ P (s) = 1. And two probabilistic languages L1 and L2 are

identical if for all s ∈ A∗, P (s|L1) = P (s|L2).
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Definition 14.5. Given three string u,v and w, we say w is conditionally

independent of u given v if and only if the conditional probability of w given

u and v does not depend on the value of v,

P (w | u, v) = P (w | v).

If we consider the joint distribution of string w and string u conditioned on

string v, this definition can be expressed in a slightly different way

P (w, u | v) = P (w | v)P (u | v). (14.14)

The definition of conditional independence can be also interpreted as fol-

lows: learning about w has no effect on knowledge information of u given

knowledge concerning v, and vice versa.

The basic measure between pairwise of strings frequently used in data

mining is the Hamming distance. It is only defined on words of equal length.

The Hamming distance takes into account the different symbols at the same

position within two strings.

Definition 14.6. The Hamming distance between any pair of strings of

L is the map dH : L × L → N such that ∀(si, sj) ∈ L × L, dH(si, sj) :=
∑n

h=1 1{sih 6=sjh}, where 1x 6=y is an indicator function which return 1 if

x 6= y and 0 otherwise.

Another measure based on string similarity by counting all identical sym-

bols at all positions within two strings is often used. The idea is that the

similarity is greater if the strings are closely related.

Definition 14.7. The similarity function which measures the similarity

between any pair of strings of L is defined as dS given by the map dS :

L ×L → [0, 1] such that ∀(si, sj) ∈ L × L, dS(si, sj) =
∑n

h=1 1{sih=sjh}/n,
where 1x=y is an indicator function.

Remark 14.8. Note that 1 − dS(si, sj) is then normalized Hamming dis-

tance. In biological term, the similarity is greater if the haplotypes across

SNP loci markers are closely related to a specific family and share more of

the genome IBD. Thus, the similarity function dS and Hamming distance

can be used to distinguish between different disease gene mutation carri-

ers and/or to measure a relationship between haplotypes in family. Most

existing clustering algorithms use the Hamming metric based on the muta-

tion model [8, 10, 23]. It allows us to quantitatively measure a (genetic)

similarity between any pair of haplotypes taken from the set L+ and L−.
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14.3.2 Elements of Probabilistic Automata

A Probabilistic Finite Automaton (PFA) is a finite state automaton where

the transition and/or emission functions are probabilistic functions. The

probabilistic language over an alphabet A can be generated by a PFA [20].

PFAs are finite state machines that generate strings of finite length in the

probabilistic manner as follows. A PFA has a set of designated starting

states and final states. Starting from an initial state, at each step an

edge outgoing from the current state is chosen according to the transition

probability assigned to that edge, and the symbol drawn from A labelling

the edge is emitted. We associate for each edge a probability, where the

sum of all outgoing probabilities and final probability of a state is equal to

one. The analytic structure of PFA is defined as follows.

Definition 14.9. A PFA is a 6-tuples A = (A,Q, I, F, T, P ), where

• A is a finite alphabet,

• Q is a finite set of states,

• I : Q → [0, 1] is the probability of initial states,

• F : Q → [0, 1] is the probability of terminal states,

• T : Q×A → Q is the transition function, ∀x ∈ A, ∀qi, T (qi, x) = qi+1,

• P : Q×A → [0, 1] is the next symbol probability function,

such that the applications I, P, F verify the following constraints:
∑

q∈Q
I(q) = 1, ∀p ∈ Q, F (p) +

∑

x∈A
P (p, x) = 1.

The transition function T can be extended to be defined recursively on

Q× A
∗ as well: ∀q ∈ Q and for all s = xi1 . . . xih ∈ A

∗, T (q, xi1 . . . xih) =

T (T (q, xi1 . . . xih−1
), xih ). The mechanism generating finite string of a PFA

is in the following manner. Beginning from an initial state I(q0), until a

final state F (p) is reached, if q is the current state, the next symbol x is

probabilistically chosen according to P (q, x). If x is the symbol generated,

the next state is T (q, x) = r. Thus, if A is a probabilistic non-deterministic

finite automata (PNFA), the probability of a string s = xi1 . . . xin ∈ A
∗

generated by A, denoted by PA(s) is computed by as follows:

PA(s) =
∑

qi0 ,qi1 ,...,qin∈Q
I(qi0 )

n−1
∏

h=1

P (qih , xih+1
)F (qin). (14.15)

A probabilistic deterministic finite automaton (PDFA) is a PFA A =

(A,Q, I, F, T, P ) where for each pair of state and input symbol x ∈ A
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there is one and only one transition to a next state, i.e. ∀p ∈ Q, the transi-

tion T (p, x) = q is unique. For each string, there is only one path from the

initial state to a final state labelled by this string. Thus, the probability of a

string s = xi1 . . . xin ∈ A
∗ generated by A, denoted by PA(s), is computed

by as follows:

PA(s) = I(q0)

n−1
∏

h=1

P (qih , xih+1
)F (qin). (14.16)

In this work, we consider the class of PDFA. The language recognized by a

PDFA is defined by

L = {s | PA(s) 6= 0 and
∑

s

PA(s) = 1}.

A PDFA recognizing the language L is described as follows. The states

are the nonempty sets of the string with form u−1
L for u ∈ A∗, where

u−1
L = {v ∈ A∗

|xv ∈ L}. The initial state corresponds to empty string ε

and the final states are the sets u−1
L with u ∈ L. The transition from the

state u−1
L to the state (xu)−1

L is labelled by letter x ∈ A.

Adapting the linear representation to probabilistic automaton, the com-

putations are done simply by using linear algebra [19, 20]. The following

definition gives the relationship between the morphism of monoid over A∗

and the monoid of square matrices with coefficients in probabilistic space.

Definition 14.10. Let K = [0, 1] a probabilistic space. Let A =

(A,Q, I, F, T, P ) be a PFA over K. The matrical representation of A is

the triplet (λ,P, γ), where

• λ ∈M1,N (K) is a row vector, λi = I(qi) if qi ∈ I,

• γ ∈ MN,1(K) is a column vector, γi = F (qi) if qi ∈ F ,

• P : A −→MN,N(K) is a morphism of monoid of A∗ representing A in

the monoid of the square matricesMN,N(K) with the coefficients in K.

For x ∈ A, the coefficient of transitions matrix P(x) of the symbol x is

given by

∀p, q ∈ Q, Ppq(x) =

{

P (p, x) if T (p, x) = q,

0 otherwise.

Proposition 14.11. For any u, v ∈ A∗, one has P(uv) = P(u)P(v). Ex-

pandedly, for any s = xi1 . . . xxn
∈ A

∗, one has P(w) = P(xi1) . . .P(xin).
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A major application of probabilistic automaton is to recognize a given

string. A string w is recognized by A = (λ,P, γ) if and only if it labels

a path going from the initial state to a final state.

Theorem 14.12. Let A = (λ,P, γ) be a PA. The appearance probability a

string s is computed by

P (s|A) = PA(s) = λPsγ.

In the case PA(s) 6= 0, the string s is recognized by automaton A.

14.3.3 Variable Length Processes on Strings

Consider a full stationary process {Xt}t∈Z of finite order h taking values

in A. Denote by capital letter X random variables and by small letters

x fixed deterministic values of X . Denote also by xj
i = xj , xj−1, . . . , xi ∈

A
∗, i ≤ j, i, j ∈ Z a substring written in reverse order. Thus, for all x0

−∞,

the process {Xt}t∈Z of order h can be expressed by

P (X1 = x1|X
0
−∞ = x0

−∞) := P (X1 = x1|X
0
−h+1 = x0

−h+1). (14.17)

We use the idea of a variable length memory which can also be seen as

block of states in the history x0
−h+1. Only some values from the infinite

history x0
−∞ of the variable X1 are considered. These can be thought of

as a context for X1. To achieve a flexible model, we let the length of

a context depend on the recent values x0
−∞. Based on such idea, we can

formulate such context by the variable length stationary processes adapting

the definition presented in [4].

Definition 14.13. Let {Xt}t∈Z, Xt ∈ A be a stationary stochastic pro-

cess. Denote by c : A∞
→ A

∞ a projection function such that ∀x0
−∞ ∈

A
∞, c(x0

−∞) := x0
−`+1, where ` is defined by

` = `(x0
−∞) = min{ h | ∀x1 ∈ A, P (X1 = x1|X

0
−∞ = x0

−∞) =

= P (X1 = x1|X
0
−h+1 = x0

−h+1)},

and ` = 0 corresponds to independence. Then c(.) is called a context

function and for any t ∈ Z, c(xt−1
−∞) is called the context for the process Xt

at time t. Now let 0 ≤ h ≤ ∞ be the smallest integer such that

∀x0
−∞ ∈ A

∞, |c(x0
−∞)| = `(x0

−∞) ≤ h.

Then the context c(.) is called the context function of order h, and if h <

∞, {Xt}t∈Z is called a stationary variable length process of order h.
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Clearly, a stationary variable length process of order h is a Markov chain

of order h, and now having a memory of variable length `. If the context

function c(.) of order h is the projection x0
−∞ → x0

−h+1 for all x0
−∞, the

process is a full Markov chain of order h. Here, the context refers to the

portion of the past that influences the next outcome of transitions. The

definition of ` implicitly reflects the fact that the context length of variable

Xt is ` = `(xt−1
−∞) = |c(xt−1

−∞)| depending on the history Xt−1
−∞ = xt−1

−∞. By

the projection structure of the context function c(.), the context length

`(.) = |c(.)| determines c(.) and vice versa. In other words, the memory of

stationary stochastic process is allowed to be of variable length, a function

of the values from the past. That means the time homogeneous transition

probabilities

P (Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, . . . )

are functions that depend on a variable number l of values

P (Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, . . . , Xt−l = xt−l),

where ` = `(xt−1, xt−2, . . . ) is itself a function of the past. If ` =

`(xt−1, xt−2, . . . ) = h we obtain the habitual stationary process of or-

der h (full homogeneous Markov chain of order h). If the variable `(.)

with sup{`(xt−1, xt−2, . . . );xt−1, xt−2, . . . } = h, we have stationary pro-

cess with an additional structure of a variable length memory `. We usu-

ally identify process {Xt}t∈Z with its probability distribution of transition

P (X1 = x1|X
0
−∞ = x0

−∞) = P (x1|c(x
0
−∞)) over AZ, well-known as condi-

tional probability of x1 knowing the context c(x0
−∞), i.e.,

P (Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, . . . ) = P (xt | c(xt−1, xt−1, . . . )).

The states determining the transition probability P (x1|c(x
0
−∞)) are given

by the value of the context function c(.). The most convenient is to rep-

resent these states by a minimal data structure. In order to represent the

minimal state space of the variable length process, we use the structure of

variable length finite automata.

14.4 Variable Length Finite Automata (VLFA)

14.4.1 Structure of VLFA

This section studies the structure of VLFA including probabilistic and

counting automata. Structurally, a VLFA is an automaton without any
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loops and has a particular structure of the stochastic automata defined as

Definition 14.9. Now we describe the structure of VLFA representing the

joint probabilistic distribution of L and the class of families C = {+,−}.

Definition 14.14. A VLFA is a 8-tuples A = (A, C,Q, P, T,B, I, F ), where

• A = {x1, x2, . . . , xk} is an alphabet of size k; C = {+,−} is the set of

family indicator (trait); Q is the set of states,

• I : Q → [0, 1] is the probability of initial states,

• F : Q → [0, 1] is the probability of final states,

• T : Q × A → Q is the transition function, ∀x ∈ A, ∀q ∈ Q, T (q, x) =

r ∈ Q,

• P : Q × A → [0, 1] is a set of transition probabilities labelled by a

symbol of A,

• B : Q × C → [0, 1] is a set of emission probabilities of class C over the

transitions.

The applications I, F, T, P,B must satisfy
∑

q∈Q
I(q) = 1,

∑

q∈Q

F (q) = 1,

∀q ∈ Q, T (q, x) 6= q, ∀q ∈ Q,
∑

x∈A
P (q, x) = 1,

∀q ∈ Q,
∑

c∈C,x∈A
B(q, c|x) =

{

1 if P (q, x) 6= 0,

0 otherwise .

For s = xi1xi2 . . . xin ∈ A
∗ and c ∈ C, the joint probability PA(s, c) is

computed by:

PA(s, c) = I(qi0)

n−1
∏

h=1

P (qih , xih+1
)B(qih , c|xih+1

)F (qin).

From this definition, the VLFA is an additive model that models both

possitive language L+ (class c = +) and the negative languageL− (class c =

−) over the transitions. Since VLFA is a PDFA, thus the time complexity

of the exact computation of the probability PA(s, c) is in O(n). For x ∈ A,

the transition probability P (q, x) labelled by the symbol x is only defined

if there is the transition T (q, x) = r from state q to state r. For c ∈ C,

the emission probability B(q, c|x) of class c is defined when the transition

P (q, x) is defined. Thus, any path from the initial state I(q0) to a final

state in qf ∈ F represents an individual string and it corresponding class.

In reading VLFA, the symbols are generated on the transitions and the
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strings are generated along the path of transitions from the initial state

to a final state. For x ∈ A and q, r ∈ Q, the transition T (q, x) = r with

high transition probability P (q, x) indicates that states q and r conserve

the same string and, alternatively, the low transition probability represents

the recombination event between strings.

A state q is called ”splitting state” when it has at least two outgoing

transitions from this state. The transitions associated to a splitting state

are called ”splitting transitions” (”splitting edges”). A splitting state rep-

resents the distinguished string clusters. A combination of consecutive non-

splitting states compose exactly the same string cluster. When two or more

transitions income into a same state q, state q is called ”incoming state”

or memory state, the stochastic process VLFA is loss of memory (Markov’s

property) at state q. That means the history of state q represents a union of

the histories represented by incoming transitions (”incoming edges”). This

Markov’s property models the historical recombination event between the

strings. The string clusters change at point of splitting state and incoming

state. Precisely, one supposes that an incoming state q represents a collec-

tion {x1
t , x

2
t} of two string clusters x1

t and x2
t at instance t. Let Xt+1 be

a random variable representing the sequences of symbol from t + 1 to n.

Thus,

PA(Xt+1 = xt+1|Xt = x1
t ) = PA(Xt+1 = xt+1|Xt = x2

t )

= PA(Xt+1 = xt+1|Xt = x1
t , Xt = x2

t ).

Meaning that the conditional probability of all sequences in the cluster

xt+1 does not depend on the symbols at the previous positions given by

two string clusters x1
t and x2

t . Consequently, the label of a path of non-

splitting states starting from a splitting state to an incoming state defines a

common string pattern for which the elements of this pattern are in linkage

dependence (closely related). Formally, if the model lost of memory at

instance i, we have

PA(Xt = xt|Xt−1 = xt−1, . . . , Xi = xi, Xi+1 = xi+1, . . . , Xi+h = xi+h) =

= PA(Xt = xt|Xt−1 = xt−1, . . . , Xi+1 = xi+1). (14.18)

Example 14.15. Figure 14.5 represents a VLFA model that follows a vari-

able length process. Let Xt be a random variable representing a symbol at

position t. By definition, state 9 is the incoming state. Thus, the VLFA

lost completely the memory at this state. State 9 is the memory state
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Fig. 14.5 An example of data struture of VLFA following a variable length process.

of the model and divides model into two independent subgraphs that cor-

respond to two independent blocks. The length memory of first block is

4 while the second one is 3. Consequently, the strings are divided into

two independent blocks of string segments, {ATGG,ACGA,GCAA} and

{TGT, TAG,CGG} respectively. The substrings in each block define then

the associated contiguous patterns. The variables in each pattern are closely

linked to each other. Since the model lost of memory in instance i = 4 at

state 9, according to (14.18) we have

P (X7 = G|X6 = G,X5 = T,X4 = G, . . . , X0 = A) =

= P (X7 = G|X6 = G,X5 = T )

and

P (X7 = G|X6 = G,X5 = T ) 6= P (X7 = G|X6 = A,X5 = T ).

Thanks to Definitions 14.10, the algebra structure of weighted automata

can be adapted for VLFA with their matrical representation. Let λ ≡ I, γ ≡

F and P : A −→MN,N(K) be a morphism of monoid of A∗ such that for

each a ∈ A, the transition matrix P(x) of the symbol x is defined by,

for all p, q ∈ Q,Ppq(x) = P (p, x) if T (p, x) = p 6= 0. Consequently, the

automaton A = (A, C,Q, P, B, I, F ) is the represented by (λ,P, γ), and the

appearance probability of a string s is computed by employing Theorem

14.12, PA(s) = λPsγ.

In practice, we use Directed Acyclic Graph (DAG) G = (V,E) to imple-

ment a VLFA, where V is a finite set of vertices representing the set of states

Q, and E is a set of edges labelled by the symbol and its weight describing
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the triplet function {T, P,B} of VLFA. A DAG represents a VLFA in the

following manner. Each state p ∈ V represents the level of locus position

and corresponding letter. At level 0, there is only one state, which does not

itself contain information. For i = 1, . . . , n, a state at level i represents a

history or a collection of a subset of strings. For p, q ∈ V and x ∈ A, each

edge (p, x, q) ∈ E labelled by x originating from state p at level i and termi-

nating at direct successor q at level i+1 indicates the event of symbol x at

position i following the history represented by state p. In order to facilitate

the computation of probability and the test of statistic, we associate, for

each edge (p, x, q) ∈ E , the number of strings, number of strings in fam-

ily L+ and number of strings in family L−: Nx, N
+
x and N−

x , respectively.

The DAG plotted in Figure 14.6 represents the VLFA of the haplotype data

given in Example 14.2 via the algorithm AcyclicAutomata described in

the next section.

0 1 2

3

4

5

6

7

A;6; 3; 3

T;2; 1; 1 G;3; 3; 0

T;5; 1; 4
C;5; 4; 1

A;5; 4; 1

G;5; 4; 1

T;3; 0; 3

C;3; 0; 3
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Fig. 14.6 VLFA and conditional independence.

14.4.2 Fitting VLFA

14.4.2.1 Minimization of Finite Automata

A given language L ⊂ A∗ can be recognized by different automata (∀s ∈

L, PA(s) 6= 0). However, there is a unique automaton with a minimal num-

ber of states, called the minimal automaton of L. We are always interested

in learning algorithms to identify the minimal automaton. Here, we con-

sider the following problem: for a given initial DFA (deterministic finite

automaton), find an equivalent DFA with a minimum number of states.
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The minimization algorithm identifying a minimum automaton is based on

the notation of distinguishability. In general, given an automata A, a string

s ∈ A∗ distinguishes between two states p, q ∈ Q if either T (p, s) ∈ F and

T (q, s) /∈ F , or T (p, s) /∈ F and T (q, s) ∈ F . Two states p, q ∈ Q are called

distinguishable iff there is a string that distinguishes between them. States

that are indistinguishable will also be called equivalent. This equivalence is

based on the Nerode equivalence and defined by

∀p, q ∈ Q, p ≡ q if and only if Lp = Lq, (14.19)

where Lp = {s ∈ L | T (p, s) ∈ F} is the set of strings recognized by the

automaton at state p. Based on this we can define the distinguishability of

probabilistic automata as follows.

Definition 14.16. Let A be a probabilistic automaton and let 0 ≤ α ≤ 1

be a parameter. A pair of states p and q in Q is α-distinguishable if there

exists a string u such that |Pp(u) − Pq(u)| ≥ α. The automaton A is α-

distinguishable if any pair of distinct states in A is α-distinguishable.

The distinguishability of an automaton leads to the following minimiza-

tion method: Start with an initial automaton A. If A has pair of indis-

tinguishable (equivalent) states p, q, merge them into one state (remove q

and reroute all transitions into q to go into p instead). Repeat this process

until no more pair of indistinguishable states can be found. Any automaton

whose all states are pairwise distinguishable must be minimum.

Lemma 14.17. A DFA is minimum if and only if all pairs of states are

distinguishable.

Proof. Given automaton A, if A has two indistinguishable states, one of

them can be eliminated, and the transitions into this state can be changed

to go to the other. Now, assume that in A all states are pairwise dis-

tinguishable. Let A have K states. Consider any other A∗ with L < K

states. We need to prove that LA∗ 6= LA. In fact, for each state q of A,

choose arbitrarily one string sq such that T (q0, sq) = q (with assumption

that all states are reachable). Since L < K, there are two states p 6= q

of A such that in A∗ we have T ∗(q0, sp) = T ∗(q0, sq). Since p, q are dis-

tinguishable in A, there is a string u ∈ A∗ such that T (q, u) ∈ F but

T (p, u) /∈ F . This means that A accepts spu but not squ. But in A∗, we
have T ∗(q0, spu) = T ∗(q0, squ), so A∗ either accepts both spu and squ or

rejects both. Therefore LA∗ 6= LA. �

The early idea of minimization method discussed above is repeatedly

merging pairwise indistinguishable states. However, we can do it with



September 14, 2010 14:43 World Scientific Book - 9in x 6in 00Chapter

688 T. Trang

multi-indistinguishable states. Precisely, suppose that two states p, q are

indistinguishable, and q, r are also indistinguishable. We want to combine p

with q and q with r. Then, it is better if p and r are also indistinguishable.

This property is formalized by the lemma below.

Lemma 14.18. State indistinguishability is an equivalence relation.

Proof. The following three conditions are trivial and directly checked

from the definition of the indistinguishability relation (14.19): i) Symmetry:

p ≡ p; ii) Reflexivity: p ≡ q implies q ≡ p; iii) Transitivity: if p ≡ q and

q ≡ r implies Lp = Lq = Lr. Thus p ≡ r. �

Lemma 14.19. For u ∈ A∗, let T (p, u) = p′ and T (q, u) = q′. If p′ and q′

are distinguishable then p and q are.

Proof. This is quite simple from the definition of the distinguishability:

if p′ and q′ are distinguished by some string v, then p, q are distinguished

by string uv. �

The minimization algorithm presented below is merging a set of equiv-

alent (indistinguishable) states into a single state such that the new au-

tomaton keeps the same language. Given an initial automaton A, we will

find all equivalence classes of the indistinguishability relation and join all

states in each class into one state of the new automaton A∗. In general, the

computation of minimal automaton consists of the three following steps:

(1) Choosing the appreciate criterion for the test of equivalence,

(2) Specifying the fitting model to optimize the minimization algorithm,

(3) Applying a specific minimization algorithm.

14.4.2.2 Probabilistic Equivalence Criterion

The basic of fitting acyclic automaton algorithm described below is how to

find the equivalence criterion and to test the equivalence of two transition

issued states. In term of probability, two states of VLFA model are defined

to be equivalent if their outgoing transition probabilities are equal for every

labelled symbol x ∈ A and their destination states (their descendants) of the

two transitions for each symbol are also equivalent according to a recursive

application of the same criterion. Formally,

∀p, q ∈ Q, ∀x ∈ A, p ≡ q ⇐⇒

{

P (p, x) = P (q, x),

T (p, x) ≡ T (q, x).
(14.20)
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Therefore, two states are compared by checking the equivalence of their

transition probabilities, followed by a recursive checking process of any

destination states reachable via transition symbols they have in common.

That provides a criterion in order to reject equivalence of states. However,

in practice, experimental data are subjected to statistical fluctuations and

equivalence must be accepted within a confidence range. In such case, the

states will be called compatible. To measure degree of compatibility, we

use the Hoeffding’s bound over binomial distribution defined as follows.

Definition 14.20. Let
f

m
be the observed frequency of a Bernoulli vari-

able of probability π. The confidence range for a Bernoulli variable with

probability π and
f

m
given by following bound:

P
(

|

f

m
− π| <

√

1

2m
log

2

α

)

> 1− α,

where α is a statistical significance level chosen as the cutoff probability.

Lemma 14.21. Let
f1
m1

and
f2
m2

be observed frequencies of a Bernoulli

variable with probability p, thus

P
(

|

f1
m1
−

f2
m2
| <

√

1

2
log

2

α
(

1
√

m1
+

1
√

m2
)
)

> (1− α)2.

Proof. Let εα(m) =

√

1

2m
log

2

α
. Since two observed frequencies of the

Bernoulli variable with probability π are independent, one has

P
(

|

f1
m1
−

f2
m2

| > εα(m1) + εα(m2)
)

<

< P
(

|

f1
m1
− π|+ |

f2
m2
− π| < εα(m1) + εα(m2)

)

< P
(

|

f1
m1
− π| < εα(m1) ∩ |

f2
m2
− π| < εα(m2)

)

< P
(

|

f1
m1
− π| < εα(m1)

)

.P
(

|

f2
m2
− π| < εα(m2)

)

< (1− α)2.
�

According to Lemmas 14.19 and 14.21, two states p and q of a VLFA

are called α-compatible if ∀x ∈ A, ∀u ∈ A∗ and 0 < α < 1 one has










(a) ∆p,q(x) = |
Np(x)
Np
−

Nq(x)
Nq
| <

√

1
2 log

2
α

(

1
√

Np

+ 1
√

Nq

)

,

(b) ∆p,q(xu) <
√

1
2 log

2
α

(

1
√

Np

+ 1
√

Nq

)

,
(14.21)
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where, Np is the entering frequency of state p and Np(x) is the transition

frequency of symbol x outgoing from p. The constraint (b) means that

T (p, xu) and T (q, xu) are also α-compatible satisfying Lemma 14.19. In

practice, the procedure of equivalent test for any pair of states is based on

the following standard statistical test:

(1) Formulate a null hypothesis (H0) and alternative hypothesis (Ha) for

the states of interest:

• H0 : π1 = π2 (two probabilities are the same)

• Ha : π1 6= π2 (two probabilities are different)

(2) Let Np and Nq be the number of strings arriving at two states p and

q. Let Np(x) and Nq(x) be the number of strings outgoing from these

states. Let α be a significance level chosen as the cutoff probability

below which the hypothesis H0 will be rejected.

(3) Two probabilities π1 and π2 represent the unknown true probabilities

and will be estimated by Np(x)/Np and Nq(x)/Nq, respectively. As-

sume that these can be modelled by binomial distribution B(x,m, p).

The test statistic S is the absolute difference of observed proportions

S = |
Np(x)

Np
−

Nq(x)

Nq
|.

(4) Calculate the probability of a given value of S assuming H0 is true. For

two binomial distributions with identical probability, by Lemma 14.21,

S <

√

1

2
log

2

α

( 1
√

Np

+
1

√

Nq

)

= K

with probability greater than (1− α)2. Since, we can not compute the

exact value of p-value, but we can conclude that it is less than α if S

is experimentally to be greater than K.

(5) If S > K, the statistic S has a p-value is smaller than α, we therefore

reject the null hypothesis and decide two probabilities are different.

Otherwise, the null hypothesis holds and we say that two probabilities

π1 and π2 are equivalent, then two corresponding estimators Np(x)/Np

and Nq(x)/Nq are equivalent.

Remark 14.22. The similarity of two frequencies can be measured by

maximal standard deviation (MSD). In fact, when comparing f1
m1

and f2
m2

,

the variance of the difference ∆( f1
m1

, f2
m2

) = | f1m1
−

f2
m2
| is the sum of the

variance of f1
m1

and of f2
m2

. Since both f1
m1

and f2
m2

variables follow Bernoulli’s
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law with probability π1 and π2 respectively, this variance is maximized when

π1 = π2 = 0.5. Therefore,

Var(∆(
f1
m1

,
f2
m2

)) = Var(
f1
m1

) + Var(
f2
m2

)

=
π1(1− π1)

m1
+

π2(1− π2)

m2

≤

0.5(1− 0.5)

m1
+

0.5(1− 0.5)

m2

=
1

4(m1 +m2)
.

The MSD of ∆( f1
m1

, f2
m2

) is η = 0.5(m−1
1 +m−1

2 )
1
2 . Thus f1

m1
is similar with

f2
m2

if ∆( f1
m1

, f2
m2

) is less than cutoff η. Based on this, two states p and q are

MSD-compatible if
{

(a) ∆p,q(x) = |
Np(x)
Np
−

Nq(x)
Nq
| ≤ 0.5(N−1

p +N−1
q )

1
2 ,

(b) ∆p,q(xu) ≤ 0.5(N−1
p +N−1

q )
1
2 , ∀u ∈ A∗.

(14.22)

An other similarity measure based on fixed cutoff value is used in [18].

Two states p and q are µ-compatible if

∆p,q(x) = |
Np(x)

Np
−

Nq(x)

Nq
| ≤

µ

2
, µ ≤ 0. (14.23)

14.4.2.3 Fitting Model

In general, learning a probabilistic automaton aims at inducing an automa-

ton generating a distribution ̂P from a sample drawn according to some

unknown target distribution P . The distribution ̂P forms the hypothesis

that approximates the target probabilistic automaton. The purpose of a

learning model is to formalize the notion of learning when a specific quality

measure defines the distance between P and ̂P [18].

Definition 14.23. Let A be the target PDFA and let ̂A be a hypothesis

PDFA produced by a learning algorithm. Let PA and P
Â
be the two proba-

bilistic distributions they generate respectively. We say that ̂A is an ε-good

hypothesis with respect to A, for ε ≥ 0, if D(PA, PÂ
) ≤ ε.

In practice, we usually use the Kullback-Leibler divergence as the distance

measure between the distributions PA and P
Â
:

DKL(PA, PÂ
) :=

∑

s∈L
PA(s) log

PA(s)

P
Â
(s)

. (14.24)
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The divergence can be interpreted as the number of additional bits needed

to encode a message when an optimal code is chosen according to distribu-

tion P
Â
while the message was produced according to distribution PA.

Remark 14.24. The Kullback-Leibler divergence bounds the L1 distance:

2 ln 2
√

DKL(PA, PÂ
) ≥ L1(PA, PÂ

) :=
∑

s∈L
|PA(s)− P

Â
(s)| (14.25)

and the Hellinger distance as well

DKL(PA, PÂ
) ≥ DH(PA, PÂ

) :=
∑

s∈L
|

√

PA(s)−
√

P
Â
(s)|2. (14.26)

Based on ε-good hypothesis property and divergence information, we

use a learning algorithm that minimizes the divergence from the training

sample distribution and the size of PDFA [9]. On one hand, this algorithm

bases on maximum likelihood model built from the learning samples. On

the other hand, favouring small automata, or equivalently automata de-

rived from PDFAs with a large number of merging operations, corresponds

to an increased prior probability associated to a reduced automaton size.

Assume Ai is an ε-good hypothesis PDFA produced by a learning algorithm

at instant i and Ai+1 is a tentative new ε-good hypothesis that can be de-

rived from Ai. In other words, Ai+1 can be obtained from Ai by merging

some candidate pair of states. The Ai+1 is the new temporary solution if

the divergence increment relative to the size reduction:

DKL(PA, PAi
)−DKL(PA, PAi+1)

|Ai| − |Ai+1|
< θ, ∀θ > 0. (14.27)

where |A| denotes the size of an automaton A. Given a confidence parameter

0 ≤ α ≤ 1, and an accuracy (precision) parameter 0 ≤ ε ≤ 1, the learning

algorithm outputs, with probability at least 1 − α, an ε-good hypothesis

PDFA ̂A with respect to target PDFA A.

14.4.2.4 Minimization Algorithm

Here we employ the methods proposed in [5, 18] to fit a VLFA. Given

a training data set of strings and trait statuses, the algorithm starts by

constructing a weighted prefix tree [24, 25]. Starting from the root, for

each level (depth) of the tree, the algorithm tests if pairs of states, which

corresponds to a large enough number of prefixes of strings, can be merged

into a state. Two states belonging to the same level are eventually merged

if the transition probabilities corresponding to all descendant states are
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statistically similar. In the state merging algorithm, the primitive operation

of merging two states is to replace them into a single state. Merging of

states corresponds to recognizing memory in the model and conditional

dependence (Markov properties) between variables.

The main pseudo-code of learning algorithm is described in Acycli-

cAutomata. This algorithm produces deterministic acyclic weighted au-

tomata. In the course algorithm, a series of directed acyclic leveled graphs,

A0(L),A1(L),A2(L), . . . ,An(L) are built such that

|An(L)| ≤ |An−1(L)| ≤ · · · ≤ |A1(L)| ≤ |A0(L)|

where the initial graph A0(L) is the weighted prefix tree T(L) [24]. The final

graph An(L) is the target weighted automaton and has smallest number of

states. Given the multiset of strings L, algorithm AcyclicAutomata

starts by taking successively the string and their class status and putting

them into a weighted prefix tree, A0. Each edge of A0 represents then the

number of strings, the number of strings in family L+ and the number of

strings in family L−, Np(x), N
+
p (x) and N−

p (x) [26]. The data structure

used along the run of the algorithm is only the current graph Ai with the

string counts on the edge of transition. For i = 0, . . . , n, we associate with

Ai a depth (level) d(i) (d(0) = 1 and d(i) < d(i + 1)). The Ai will be

transformed to Ai+1 at the depth d(i) by the call of the merging operation.

Beginning from the root of weighted prefix tree and working down the levels,

for each level d(i), the algorithm searches for pair of states p and q which

can be merged. Suppose that all pair of states at level d(i− 1) are merged

and the obtained automaton is Ai. Algorithm checks the similarity of p

and q at the level d(i) by calling the subroutine Compatible(p, q,Ai). If

Compatible(p, q,Ai) returns TRUE then the algorithm merges p and q in

graph Ai using the subroutine Merge(p, q,Ai). When the final depth d(n)

is reached, the target graph An is obtained from An−1 by merging all final

states into one final states.

The function Compatible(p, q,Ai) is implemented by recursive func-

tion. It recursively calls Different(Np, Np(x), Nq, Nq(x)) for all descen-

dent pairs of children nodes of p and q and returns TRUE if and only if pair

of states p and q is α-compatible (sufficiently similar) for all their down-

stream pair of children states, verifying formula (14.21). In the case if for

some pair of state p and q are not α-compatible, the Compatible returns

FALSE. Thus, two states p and q are not merged.

The subroutine Merge(p, q,Ai) is called if and only if the

Compatible(p, q,A) returns TRUE. That merges two compatible states p
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AcyclicAutomata(L)

1: Input: L, 0 ≤ α ≤ 1;

2: Output: Acyclic Deterministic Finite Automaton;

3: Initialize i← 0; A0 ← T(L); d(0)← 1;

4: while (d(i) < n) do

5: for each pair of states (p, q) from level d(i) in Ai do

6: if
(

Compatible(p, q,Ai)
)

then

7: Call Merge(p, q,Ai);

8: Ai+1 ← Ai;

9: Renumber the states of Ai+1 in range 1, . . . , |Ai+1|;

10: d(i + 1)← d(i); i++;

11: else

12: d(i)← d(i) + 1; i++;

13: end if

14: end for

15: end while

Compatible(p, q,A)

1: Input: p, q ∈ Q;

2: Output: Boolean;

3: if
(

Different(Np, F (p), Nq, F (q))
)

then

4: return false;

5: end if

6: for ∀x ∈ A do

7: if
(

Different(Np, Np(x), Nq , Nq(x))
)

then

8: return false;

9: end if

10: if
(

not Compatible(T (p, x), T (q, x))
)

then

11: return false;

12: end if

13: end for

14: return true;

and q into new state p and recursively their children states in order to elimi-

nate non-determinism in the underling model. It returns then a new smaller

graph, |Ai+1| ≤ |Ai|. Merge(p, q,Ai) respectively updates all information,

the number of strings, number of strings in family L+ and number of strings
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Different(Np, Np(x), Nq, Nq(x))

1: Input:

2: 0 ≤ α ≤ 1; Np, Nq: number of strings arriving at each node p and q;

3: Np(x), Nq(x): number of strings outgoing at each node p and q;

4: Output: Boolean;

5: if
(

|
Np(x)
Np
−

Nq(x)
Nq
| >

√

1
2 log

2
α

(

1
√

Np

+ 1
√

Nq

))

then

6: return false;

7: end if

Merge(p, q,A)

1: Input: p, q,A;

2: Output: Smaller A;

3: for all (s, x) ∈ Pred[q], ∀s ∈ Q, x ∈ A do

4: Set (s, x) ∈ Pred[p];

5: Np(x)← Nq(x) +Np(x);

6: N+
p (x)← N+

q (x) +N+
p (x);

7: N−
p (x)← N−

q (x) +N−
p (x);

8: end for

9: for ∀s, s′ ∈ Q such that ∀x ∈ A, (x, s) ∈ Succ[p] and (x, s′) ∈ Succ[q]

do

10: Call Merge(s, s′,A);
11: end for

12: A← A− {q};

in family L−, such that Np(x) = Nq(x) +Np(x), N
+
p (x) = N+

q (x) +N+
p (x)

and N−
p (x) = N−

q (x) +N−
p (x).

Remark 14.25. The cutoff coefficients in α-compatible and MSD-

compatible for merging algorithm is a function of the string counts rather

than a fixed value used in [18]. Since a state p having a small string count

will have high variability in the observed conditional probability Np(x)/Np

and thus it will be to have a score less than a fixed cutoff (µ/2 used in [18])

for a state q, even if p and q represent the same conditional probability

distribution. Thus, that guarantees that the low frequency strings are con-

tinually merged into the graph. While the use of µ-compatible with fixed

value cutoff µ has some limits. If µ cutoff is large then only high frequency

strings are merged.
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By this construction, the memory of VLFA models is allowed to be of

variable length in which the length of memory of the process depends on

the context. In the region the variables are closely dependent linkage, the

VLFA models will have a longer memory, whereas, in the regions of low

dependent linkage, the memory of the VLFA will be short. In particular,

if the variables are independent, the target automaton has a structure of

the homogeneous Markov chain. Thus, the class of proposed models is

structurally richer than existing models. It includes and generates the class

of stationaryMarkov chains. This class of automata is called variable-length

finite automata.

Proposition 14.26. The overall time complexity of the algorithm Acycli-

cAutomata is in O(nm2).

Proof. The complexity of the algorithm AcyclicAutomata depends

on the number of comparisons conducted by subroutine Compatible for

testing the similarity between states at each level of prefix trees. If we let t

be the number of states at a level of tree then requiring t(t− 1)/2 pairs of

states be compared, i.e. the number of comparisons is in O(t2). Since the

number of states per level is bounded by the number of strings m, thus the

maximal number of comparison at each level is in O(m2); and furthermore,

the recursive comparison continues to O(n) level. In worse-case the time

complexity of the algorithm is O(nm2). �

The computation of target VLFA depends on the parameter α in the

expression α-compatible (14.21). The identification in the limit of a VLFA

takes place if the function Compatible behaves in the limit of large m of

strings [5]. For this purpose, we allow the parameter α depending on the

size of the prefix tree (initial automaton A0), t = |A0|. Therefore,

Proposition 14.27. The minimization algorithm AcyclicAutomata re-

turns a target VLFA in the limit of large m if

lim
m→∞

(1 − α(t))t → 1.

Proof. In fact, the subroutine Compatible involves at most t = |A0|

iterations, then the subroutine Different is called (1 +A)t times. Thus,

following the formula (14.21), Compatible returns the correct value with

the probability greater than (1−α(t))2t. The condition (1−α(t))t → 1 for

large m signifies that α(t) decreases faster than 1/t. That means one takes

α(t) = γ/t, with 0 < γ < 1 is a small constant. The α(t) converges to 0

when m increases to infinite. �
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Fig. 14.7 An example of acyclic automaton learning.

Example 14.28. Consider the haplotype data represented in Table 14.3,

which consists of 250 case and 250 control haplotypes, on five bi-allelic SNP

marker loci and their trait. We assume that the first alleles at the loci are

A, G, T, C and T, respectively; and the second alleles are T, T, C, A, and

A. To optimize the implementation, the first alleles at a marker is coded

by symbol 1 and the second one is coded by symbol 2. A haplotype is
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Table 14.3 Haplotype data on five SNP marker loci

and their trait.

Haplotype Coded String |L+| |L−| |L|

AGCCA 11212 13 28 41

AGTAA 11122 60 31 91

ATTAA 12122 53 30 83

ATCCT 12211 50 75 125

TTTCT 22111 37 65 102

TTTCA 22112 37 21 58

250 250 500

then represented by a binary string over alphabet A = {1, 2}. The first

graph of Figure 14.7 is the weighted prefix tree associated with the coded

strings of haplotype data in table 14.3. Each path from the root (state

0) to a terminal state of the tree represents a distinct haplotype string.

A dashed edge between states at level i and i + 1 represents symbol 1;

a solid edge represents symbol 2. The triplet {x;Nx;N
+
x } on the edge

indicates the following information. The first element x is the real allele,

the next number Nx is haplotype count and the last N+
x indicates the

case haplotype count. Note that N−
x = Nx − N+

x . Thus, the edge (1, 4)

represents a cluster of 208 haplotypes which 103 are cases haplotypes that

have allele 1 at first SNP and allele 2 at the second SNP. The second graph

is the VLFA model obtained by the merging algorithmAcyclicAutomata

from weighted prefix tree with α = 0.001. The pairs of states 4 and 5 at

level 3, 6 and 8 at level 4 of tree have been respectively merged into state 4

and state 6 in VLFA, etc. The decision to merge these pairs of states also

results in the children states merging. Hence, the merge of 6 and 8 results

the merge of the pair 11 and 13. The VLFA model lost the memory at the

states 4, 6, 7 and 8. From these memories, we can determine the block of

haplotype. For example, two blocks of haplotype associated to state 4 are

P1 = {AT, TT} and P2 = {CCA,CCT, TCA,ACT}.

14.4.3 Applications of VLFA

14.4.3.1 Decision and Classification

Thank to VLFA stochastic processes, we will solve several following prob-

lems for gene mapping analysis. Firstly, the VLFA gives a tool for represent-

ing enormous mass of string data. Then, it provides efficient model to result

the prototype inference problem. We propose an algorithm which returns a
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string having the maximal joint probability for extracting prototype string

or most protective string of the training data. Starting from the root of the

VLFA and descending sequentially, at each state p, the choice of symbol

a corresponding to the maximum product of P (p, a, q)B(p, c = +, q|a) will

be used to determine the paths to follow of states which gives the string

having the maximal joint probability.

Theorem 14.29. Let A be the VLFA. A positive prototype or frequent

positive string of the training data L is given by

ŝ =
⋃

p̂,q̂∈Q,â∈A

(p̂, â, q̂) =
⋃

p,q∈Q,a∈A
arg max
p,q∈Q,a∈A

P (p, a, q)B(p, c = +, q|a).

Proposition 14.30. Searching for a prototype has the time complexity in

O(kn).

On the other hand, the recognition and the classification or prediction

problem are fundamental issues in data mining. The prediction procedure

consists of two steps. The first step is the recognition of a new individual

string to verify its existence in the model. The second step is to predict,

if it exists in the model, which class it will be classified. In recognition, a

string s is recognized by a VLFA A = (G, C,Q, P, B, I, F ) if and only if it

labels a path going from the initial state to a final state. Therefore,

Theorem 14.31. A given string s = xi1xi2 . . . xin is recognized by A if and

only if

PA(s) = I(q0)

n−1
∏

h=1

P (qh, xih )F (qn) = λPsγ 6= 0.

Proposition 14.32. Seeking a path in VLFA A corresponding to the string

s = xi1xi2 . . . xin is in time O(n).

In classification, the goal of a learning algorithm is to construct a clas-

sifier given a training data set. The VLFA provides a classifier permitting

to predict if an individual string will to be in a set of risk (positive) strings.

Therefore,

Theorem 14.33. (Decisional Theorem)Let A be the VLFA. An individual

string s is classified as the class c = + (positive string family) if and only

if

PA(s, c = +)

PA(s, c = −)
> 1.
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Proof. A classifier is a function that assigns a class label to a string.

According to Bayes’s rule, the probability of a string s being class c ∈ C is:

P (c|s) =
PA(s|c)P (c)

PA(s)
.

Thus, the string s is classified into the class c = + if and only if

fB(s) =
PA(c = +|s)

PA(c = −|s)
=

PA(s|c = +)P (c = +)

PA(s|c = −)P (c = −)
> 1, (14.28)

where fB(s) is called a Bayesian classifier. �

Theorem 14.34. (Decisional Theorem)Suppose that ŝ(+) and ŝ(−) are re-

spectively two optimal prototypes of positive language L+ (class c = +) and

the negative language L− (class c = −). Thank to Definition 14.6 and 14.7,

a string s is classified into the class c = + if and only if

dH(s, ŝ(+)) < dH(s, ŝ(−)) or dS(s, ŝ
(+)) > dS(s, ŝ

(−)).

Example 14.35. Given the probabilistic automaton in Figure 14.7. By

Theorem 14.29, the path of states 1 → 3 → 6 → 8 → 10 constituting the

string 1122 represents the most risk string with the maximal probability.

And thank to Theorem 14.33, this string is to be in the set of risk strings

because PA(1122, c = +) > PA(1122, c = −).

14.4.3.2 Cluster Association Test

Using VLFA model, we can test all edges of tree for the association with

trait status. However, not every edge of the VLFA needs to be tested. In

fact, an exhaustive search over the full tree is not computationally efficient

and, more importantly, involves excessively large numbers of comparisons,

which would make the procedure less powerful. Moreover, a state that is

not splitting represents exactly the same or similar string cluster as one or

more other states and tree has many non ”splitting states”. Since string

clusters change at points of splitting in the VLFA, we test only the ”split-

ting states”. In addition, we search only candidate string clusters associ-

ated with positive strings L+, so only clusters that have the positive count

greater than negative count (i.e. the edges that verify mAP > mCP ) will

be tested.

The pseudo code of the algorithm of cluster association is given inClus-

terAssociation. Denote Succ[p] = {(x, q)}x∈A the set of k labelled direct

successors corresponding k symbols of A at state p. The procedure for find-

ing candidate string clusters associated with disease consists of three steps:
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ClusterAssociation(A(L), β)

1: Input: a A(L), β > 0;

2: for each state p of VLFA A do

3: if (Card(Succ[p]) ≥ 2) then

4: for each successor (x, q) of p do

5: if (mAP > mCP ) then

6: compute ±χ2(x, q) score by (14.7);

7: if (±χ2(x, q) ≥ β) then

8: return cluster corresponding to (x, q);

9: end if

10: end if

11: end for

12: end if

13: end for

14: Output: Strong positive clusters;

(i) First, a set of candidate states satisfying Card(Succ[p]) ≥ 2 (i.e. split-

ting states) is identified through the search algorithm.

(ii) Then, for each selected candidate p, if it exists a successor (x, q) of p that

verifies the constraint mAP > mCP , we compare the string frequencies

between positive class L+ and negative class L− using the degree of

association±χ2(x, q) given by formula (14.7) or the Pearson’s chi-square

test.

(iii) Finally, clusters with ±χ2(x, q) score (or P -value satisfies a threshold

significance level) is greater than the threshold β will be selected as

candidate clusters.

Proposition 14.36. The time complexity of ClusterAssociation is

bounded by O(mn).

Example 14.37. With VLFA model illustrated in Figure 14.7, the haplo-

type clusters change at the splitting states 1, 3 and 4. Thus, the splitting

edges (1, 3), (3, 6) and (4, 6) of these states will be tested. For example, the

edge (3, 6) corresponds to the haplotype cluster of the form **1**, where

* is an arbitrary symbol (allele), with the 60 case haplotypic strings and 31

control haplotype strings, compared with 190 case and 219 control haplo-

types not on this edge, which gives the Chi-score ±χ2 = 10.5 and P -value

= 0.0012 with Chi-square’s test. This cluster may be associated with the

family of positive strings L+.
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14.4.3.3 Pattern Discovery

The essential application of VLFA is the search for maximal patterns in

a set of strings corresponding to problem (14.8). Concerning the linkage

constraint of these problems, the maximal patterns will be identified within

the independent blocks of substrings via the fitted memory of the model.

Suppose that in the ideal case the graph G is decomposed into a set of

independent subgraphs via the set of memory states of VLFA model. Let

G = {G1, . . . ,GK} refers a set ofK independent subgraphs decomposed from

VLFA A defining a set of corresponding (independent) blocks of substrings,

where Gi = (Vi, Ei) and ∀Gi,Gj ∈ G, Ei ∩ Ej = ∅, Vi ∩ Vj = {q} with q is

the memory state of VLFA A. Given a block Gi ∈ G, the size of patterns

defined by formula 14.4 is characterized as follows.

Definition 14.38. Given a block Gi ∈ G. Let u be the substring repre-

senting the pattern XI,J in Gi. According to the definition 14.3, the size

of XI,J is defined as:

f(XI,J) := |I|+ |J | = f(u) := |u|+Nu.

This is used to quantify the maximal patterns in each subgraph of VLFA.

However, since the substrings in each block Gi have the same length, the

objective function f is maximized when substring u has a maximal number

of occurrences,
̂f(u) = |u|+max

u∈Gi

Nu. (14.29)

In other words, for each Gi ∈ G, the optimal solution of (14.8), for which

the objective function is maximized, is

u = argmax
u∈Gi

̂f(u). (14.30)

In practice, we do not use the graph decomposition because the decompo-

sition of target graph of VLFA model is sometimes difficult. We therefore

propose two following searching algorithms that employ the path having

maximal frequency in VLFA and the memory states of the model. These

algorithms allow us to identify efficiently the optimal solution for (14.8).

Finding Frequency Linkage Pattern. One of advantages of VLFA

model is fast search using the maximal path in the model. We propose

an algorithm in linear time for the problem of frequent pattern. Denote

Pred[q] = {(p, x)}x∈A the implementation of the set of k direct predecessors

of state p. The algorithm begins from the initial state, following the top to

down of VLFA, and successively employs the probable path (path having
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maximum frequency). For each internal state p satisfying the constraint

max
(x,p)∈Succ[p]

Np(x), the algorithm checks property decay of memory of the

model at the successor state of p, q = T (p, x):

(i) if the state q is not the memory of the model, Card(Pred[q]) = 1 (there

is only one incoming edge into q), the state q represents then the same

cluster of strings as p from the root, the algorithm iteratively continues

by executing the next state,

(ii) if the state q decays the memory of model, Card(Pred[q]) ≥ 2 (q has

least two direct predecessors incoming into itself), VLFA model is lost

the memory at q. Then, algorithm returns the prefix u associated with

q with the size ̂f(u) = |u| + Nu that is the maximal linkage pattern

with high linkage disequilibrium verifying linkage constraint of problem

(14.8), where the variables in this pattern are closely related. Then,

input the pattern M =
(

u, ̂f(u)
)

into the set of patterns P .

Algorithm iteratively repeats step (i) and (ii) above by executing the next

internal state p = ux and p is now considered as a new root. The algo-

rithm stops when p is the final state. The pseudo code of this algorithm is

described in FrequentLinkagePattern. Since the algorithm executes

from the initial states at the depth 0 and stops at the final state at the

depth n, therefore

Proposition 14.39. The time complexity of the algorithm Fre-

quentLinkagePattern is in O(n).

Example 14.40. With VLFA model illustrated in Figure 14.7, the algo-

rithm begins from the state p = 0 and compares the frequency of two direct

successors (A, q = 1) and (T, r = 2). Since N1(A) = 360 > N2(T ) = 160,

the algorithm employs the path beginning by the edge (0, 1). Because

Card(Pred[1]) = 1, state 1 is not memory of the VLFA model, the algo-

rithm continues by setting p = q = 1 and considering next direct successors

of 1, (G, q = 3) and (T, r = 4). Since N3(G) = 132 > N4(T ) = 208, the

algorithm follows the edge (1, 4). Since the state 4 has Card(Pred[4]) = 2

(state 4 has two direct predecessors), thus the model lost of memory at

state 4. The path 0
A
−→ 1

T
−→ 4 constitutes then the maximal pattern

P = AT of the size f(AT ) = 2 + 208 in which X2 = T depends only on

X1 = A, P (X2 = T |X1 = A,X0, X−1, . . . ) = P (X2 = T |X1 = A) and

P (X2 = T |X1 = A) 6= P (X2 = T |X1 = T ). The algorithm continues by

executing the state 4 as the initial state. Finally, the maximal linkage pat-
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FrequentLinkagePattern(A(L))

1: Input: a A(L);

2: Output: a set of frequent conservative patterns P ;

3: P ← ∅; /*pattern vector*/

4: p← root;

5: while (p is not final state of VLFA A) do

6: if (∃q ∈ Succ[p] s.t. Nu maximum) then

7: if (Card(Pred[q]) = 1) then

8: p← q;

9: else

10: return u;

11: ̂f(u)← |u|+Nu;

12: P ← P ∪

(

u, ̂f(u)
)

;

13: p← q;

14: end if

15: end if

16: end while

terns AT, T and CT are identified on the maximal path of nodes 0, 1, 4, 7, 9

and 10.

Finding Protective Linkage Pattern. Similarly with algorithm Fre-

quentLinkagePattern, we propose an algorithm in linear time for the

problem of protective linkage pattern (14.8). This time the criterion of

execution is changed to decide the path of follows. The path with max-

imal positive string count and the degree of association ±χ2 is used to

determine the path to follow. The algorithm begins from the initial state,

following the top to down of VLFA, and successively employs the probable

positive path (path having maximum frequency of positive string count)

with string patterns satisfying ±χ2 > β, where β > 0 is the significance

threshold. For each internal state p satisfying respectively two constraints

max
(x,p)∈Succ[p]

Np(x) and ±χ
2(x) > β, the algorithm checks property decay of

memory of the model at the successor state of p, q = T (p, x):

(i) if the state q is not the memory of the model, Card(Pred[q]) = 1 (there

is only one incoming edge into q), the state q represents then the same

cluster of positive strings as p from the root, the algorithm iteratively

continues by executing the next state,
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(ii) if the state q decays the memory of model, Card(Pred[q]) ≥ 2 (there is

least two direct predecessors or incoming into the state q), VLFA model

is lost the memory at q. Algorithm returns the pattern u associated to

q with the size ̂f(u) = |u| + Nu. The string u represents then the

maximal protective pattern with high linkage disequilibrium verifying

linkage constraint of problem (14.8), where the variables in this pattern

are closely related. Then, input the pattern M+ =
(

u, ̂f(u),±χ2(u)
)

into the set of patterns P+.

Algorithm iteratively repeats step (i) and (ii) above by executing the next

internal state p = ux and p is now considered as a new root. The algorithm

stops when p is the final state. It stops when p reaches the final state. The

pseudo code of this algorithm is described in ProtectiveLinkagePat-

tern.

ProtectiveLinkagePattern(A(L), β)

1: Input: a A(L);

2: Output: a set of protective linkage patterns P+;

3: P
+
← ∅; /*pattern vector*/

4: p← root;

5: while (p is not final state of VLFA A) do

6: if (∃q ∈ Succ[p] s.t. N+
u maximum and ±χ2(u) > β) then

7: if (Card(Pred[q]) = 1) then

8: p← q;

9: else

10: return u;

11: ̂f(u)← |u|+Nu;

12: P
+
← P

+
∪

(

u, ̂f(u),±χ2(u)
)

;

13: p← q;

14: end if

15: end if

16: end while

Example 14.41. Given VLFA model in Figure 14.7, the algorithm Pro-

tectiveLinkagePattern works as follows:

• Beginning from the state p = 0 and compares the frequency of two direct

successors (A, q = 1) and (T, r = 2). Since N+
1 (A) = 176 < N−

1 (A) =

184 and N+
2 (T ) = 74 < N−

2 (T ) = 86 (±χ2 < 0), the algorithm does not

employ both edges (0, 1) and (0, 2).
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• At state p = 1, the direct successor (G, 3) of this state verifies N+
3 (G) =

73 > N−
3 (G) = 59 and ±χ2 = 1.74 > 0 (P -value = 0.18), thus the

algorithm follows the direction 1→ 3. Because Card(Pred[3]) = 1, state

3 is not memory of the VLFA model, the algorithm continues by setting

p = q = 3 and considering next direct successors of 3, (C, q = 5) and

(T, r = 6).

• On the edge (3, C, 5), since the haplotype count gives N+
5 (C) = 13 <

N5(C) = 28 thus this edge will not be tested for association test. Since

the edge (3, T, 6) has N+
6 (T ) = 60 > N−

6 (T ) = 31, this edge will be

tested for determining the protective pattern. The Chi-square’s test gives

±χ2 = 10.5 > 0 and P -value = 0.0012. Thus, the algorithm continues

by following the edge (3, 6) and the path 1
G
−→ 3

T
−→ 6 constitutes the

protective pattern GT with high statistical significance.

• Because the state 6 has Card(Pred[6]) = 2, thus the model lost of memory

at state 6. We obtain then the maximal protective pattern P = GT of the

size f(AT ) = 2 + 60 in which X3 = T depends on X2 = G and X1 = A,

P (X3 = T |X2 = G,X1 = A,X0, X−1, . . . ) = P (X3 = T |X2 = G,X1 =

A) and P (X3 = T |X2 = G,X1 = A) 6= P (X3 = T |X2 = T,X1 = T )

and P (X3 = T |X2 = G,X1 = A) 6= P (X3 = T |X2 = T,X1 = A). The

algorithm continues by executing the state 6 as the initial state and gives

the protective pattern AA.

Remark 14.42. The algorithms FrequentLinkagePattern and Pro-

tectiveLinkagePattern can be performed another way as follows. First,

we search the maximal path by the use of Theorem 14.29. Hence, we mark

all memory states on this path. The pattern located between two consecu-

tive memory states is the linkage pattern.

14.5 Experimental Results on SNP Data

14.5.1 VLFA Model for Haplotype Data

We evaluate the VLFA model through applications to a widely studied

real dataset originally presented by Kerem et al. in the study of the fine-

mapping of the cystic fibrosis gene [12]. The cystic fibrosis disease caused

by CFTR (Cystic Fibrosis Transmembrane conductance Regulator) gene

mutations is well understood and a single functional gene CFTR has been

located on chromosome 7q31. The cystic fibrosis data contain 94 case hap-

lotypes and 92 control haplotypes from 23 biallelic RFLP markers (each
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Fig. 14.8 Pair-wise LD of cystic fibrosis markers based on the D′
measure.

marker has only two alleles, major and minor alleles) in a 1.8-Mb region

including the CFTR gene. The disease susceptibility locus was located

between marker 17 and 18 (≈ 0.88 cM away from the first marker), and

a 3-bp deletion ∆F508 in the CFTR gene represents 66% (70 chromoso-

mal haplotypes) of chromosomal mutations in the same gene. The sample

incorporates genetic heterogeneity at the CFTR locus since only 62 of the

case chromosomes carry ∆F508. Consequently, the resulting haplotype data

have become a useful test dataset for fine-mapping methods. Figure 14.8

shows the pairwise LD between 23 SNP markers computed by using D′

value of the formula (14.1). We easily see that the 11 markers 9− 20 form

a block with the high LD in which the block of 7 markers 9 − 15 and the

block of 5 markers 16− 20 are completely LD with D′
≥ 0.9.

As we know that the loci markers are selected along from top to down

of a chromosome and the recombination between the sites along a chromo-

some, thus all transitions of the stochastic automaton have the top-down

transition form. In addition, a locus marker does not have the LD and the

recombination by itself, thus all states of the automaton have no loop. Due

to the LD between SNP markers mapping along a chromosome, the model

has to be inhomogeneous memory because such model has the transition

probabilities and memory length vary from one position to another on the

chromosome. By these reasons, the stochastic acyclic weighted automaton

can be well adapted. In fact, the structure of stochastic automata will
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adapt to the recombination and the LD between markers with increasing

marker distance. In particular, the VLFA processes have the structure of

variable length Markov chains in which the length of memory of the VLFA

processes depends on the LD between nearby markers. The model has the

longer memory if the markers are in the regions of high LD, whereas, the

memory is short in the regions of low LD (see Example 14.28).

Figures 14.9 and 14.10 represent the graphs of VLFA model

built from Cystic Fibrosis data with different compatible measures

(the graphs are plotted by the graph visualization software Graphviz,

http://www.graphviz.org/). For readability, only edges with the haplotype

frequency above 0.01 are shown. The graphs A and B are the VLFAs

learned by the µ-compatible (µ/2 = 0.75 and µ/2 = 0.9, respectively) and

the graph C is the VLFA built by MSD-compatible criteria. While the

VLFAs D, E, F and G are respectively constructed by α-compatible cri-

terion with α = 0.5, α = 0.1, α = 0.01 and α = 0.001. With α = 0.001,

the VLFA is decomposed into 4 independent subgraphs that define 4 hap-

lotypic blocks. The thickness path represents the haplotypic pattern strong

associated with the disease (±χ2 > 3.84). Biologically, the VLFA model

reflects then the historical recombination and string block LD structure.

We observe that the α-compatible measure gives the VLFA that fits well

with the data. In fact, with α = 0.001, the VLFA (graphG) shows clearly 4

blocks of haplotypes with high LD that corresponds to the blocks identified

by pairwise LD of 23 SNPs given in Figure 14.8. In this graph we see that

the model lost completely the memory at some states such as state 3, 8 and

19. These states divide the data into 4 independent blocks of haplotypes I,

II, III, IV, in which the block IV is very strong LD and the haplotypes are

distinguished into two clusters. The first cluster is associated with the case

haplotypes and the second one is associated with control haplotypes.

14.5.2 Haplotype-Disease Association

14.5.2.1 Haplotype Cluster Association

As the prediction, the association tests based on haplotypic clusters tend

to be more powerful than classical single marker analyses. The disadvan-

tage of haplotype association test is the relatively large number of observed

haplotypes, which increases the degrees of freedom for the test statistic.

That reduces the power of haplotype association analyses. For example,

for m haplotypes, a goodness-of-fit [27] test that compares haplotype fre-
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Fig. 14.9 VLFA of case and control haplotypes on the map of 23 loci markers with µ-compatible (A (µ/2 = 0.75) and B (µ/2 = 0.9))

and MSD-compatible (C).
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Fig. 14.10 VLFA of case and control haplotypes with α-compatible (α = 0.5, α = 0.1, α = 0.01 and α = 0.001, respectively).
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quencies in cases with those in controls asymptotically follows a chi-square

distribution with m− 1 degrees of freedom under the null hypothesis of no

association. We believe that haplotypes grouped into the same clusters by

VLFA model–each cluster consisting of haplotypes with similar haplotype

structure, and hopefully similar risks–reduces the degrees of freedom and

then increases the power of haplotype association tests. In this approach,

haplotype similarity in cases is compared with that in controls around each

marker. Based on this, using the algorithm ClusterAssociation, we

performed the association test for all splitting edges in order to recognize

cluster strongly associated with the phenotype trait. In this experimenta-

tion, the test of statistic is based on Chi-square ±χ test with the degrees of

freedom of 1. So if we choose the significant probability P -value< 0.05, the

haplotype clusters and haplotype patterns having the ±χ2-score greater

than β = 3.84 will be considered as the significant patterns. The result

represented in this section is affected by this threshold value.

Figure 14.11 presents the distribution of the Chi-square ±χ and corre-

sponding − log10 P values of all ”splitting edges” across 23 depths of VLFA

using Pearson’s chi-square test for 2x2 contingency table. We observed

that the cystic fibrosis data have a very strong signal-large variation allelic
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Fig. 14.11 The distribution of haplotypic cluster association test. The symbol (1) shows

the association test of allele 1, the symbol (2) represents the test of allele 2 at each

splitting edge and the (x) one indicates the single marker test. The solid vertical line

indicates the true location of ∆F508 at marker 17, the most common disease mutation

identified in the CFTR gene. We clearly see that the splitting edge test is more powerful

than single marker test.
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frequency between the cases and controls, so test P -values tend to be ex-

tremely small. With a statistical significance level of 0.001 we obtain the

subgraph beginning at state 8 and ending at the state 19 that represents

the haplotypic cluster, which is strongly associated with the disease (the

path marked in red in graph G of Figure 14.10). This cluster contains the

marker 17, the true location of deletion ∆F508 in the CFTR gene, where

the disease susceptibility locus was located. This result is coherent with

those reported in [12].

For comparison with results from our approach, we accurately compare

very small P -values between haplotype cluster test and single marker test

(allelic tests with one test per marker). We observed that the result of

association test on the haplotype cluster given by VLFA is more powerful

the single marker association test. The smallest splitting edge test P -value

was 5.9e−18, whereas the smallest single marker test P -value was 6.2×e−14.

14.5.2.2 Haplotype Pattern Association

According to algorithm ProtectivePattern, using the most association

path (path having maximum ±χ2 value) of cystic fibrosis VLFA (Fig-

ure 14.10), the blocks of risk haplotype patterns were recognized permitting

to locate disease susceptibility loci. The graphs of Figure 14.12 respec-

tively show the case frequency of maximal haplotype and the ±χ2-score

corresponding to the VLFA model with different compatible measure. The

result shows that the variation allelic frequency between the case and the

control is very large, so the ±χ2-scores of the association test are large and

then the LD is also large. The case frequency of maximal haplotype identi-

fied on the model associated to α-compatible is greater than those given by

MSD-compatible and µ-compatible. We observe that, with the significant

level ±χ2 > 3.84, the haplotype 11112221112212121121111 is strong

associated of the disease (the red paths on the graphs). The maximal hap-

lotype patterns with the high degree of LD will be found on this maximal

protective haplotype according to the memory of the VLFA model.

In fact, the VLFA model with α = 0.001 (graph G of Figure 14.10)

provides 4 great blocks of SNP markers in high LD at the memory states

3, 8 and 19. For each block, we only determine the haplotypic fragments

that are significantly overrepresented in case haplotype samples. The table

14.4 presents the most protective pattern identified from these blocks that

have significantly more occurrences in the family of case haplotype. In

particular, the 4 markers {16, 17, 18, 19} exhibits the common haplotypic
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Fig. 14.12 Location of disease susceptibility loci. The figure shows the frequency and

±χ2
-score of maximal protective haplotype associated with the disease. Gene location

was localized at the region between marker 17 and 18 (the region between vertical dashed

lines). The frequency and ±χ2
-score carried out by α-compatible in the region of gene

location are greater than those given by the µ-compatible and MSD-compatible.

pattern 2212. This pattern is shared by 69 (73%) case haplotypes and

passes through the most significant associated edge of the VLFA that has

the very large ±χ2-score (≥ 8.26), which is very close to the total number

of disease chromosomes that have the disease susceptibility mutation. That

could be viewed as the risk haplotype pattern of the cystic fibrosis. This

haplotype pattern is driving the results in both the RFLP and the coding

region. And then, the deletion ∆F508 is located in the region nearby RFLP

marker 17 and 18 with much high significant level, which is compatible with

the results given by [12]. These results demonstrate that our method is

competitive with standard single marker and haplotypic test on these data.

This method does not require a haplotype window size and it involves only

a small number of test.

Table 14.4 Block of markers with high LD and strong associated with the disease.

Block Markers Hap. pattern Hap. Freq. Case freq. Control freq. ±χ2

I 1-2 11 0.44 0.67 0.33 3.87

II 6-8 221 0.35 0.76 0.24 5.10

III 9-15 1122121 0.58 0.73 0.27 7.25

IV 16-19 2212 0.42 0.87 0.13 8.79
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14.5.3 Comparative Study

The approaches concerning the multilocus analysis related to our method

are introduced in [8, 10, 23]. These methods are based on data mining

technique including the clustering technique and discovery of frequent hap-

lotype pattern that are gaining more interest as potential tools in identifica-

tion of complex disease loci. In [23], the authors proposed a non-parametric

method for haplotype mapping called haplotype pattern mining (HPM). In

this approach, the haplotype patterns in case and control are examined

and the pattern frequencies are used for predicting the disease gene loca-

tions. This method shown a powerful localization, even when the number of

phenocopies and markers are large. Several methods used sliding-window

technique [8, 10], a commonly approach used for analyzing a large number

of markers. Given a fixed window size (WS), one slides this window along

the region of interest and computes the test statistic for each window. In

CLADHC program [8], the sliding-window approach via cladistic analysis

developed in a logistic-regression framework, for which, the cladistic and

haplotype similarity methods test for clustering of similar haplotypes within

cases and controls. Using direct data mining, the Hapminer algorithm, a

most recent algorithm developed in [10], is robust and effective even for data

containing a large number of markers and high rate of phenocopies (small

relative risks). This algorithm utilized the density-clustering algorithm. It

allows capturing the sharing of haplotype due to historical recombination

events. The effectiveness of Hapminer depends on the similarity of haplo-

type fragments.

However, the HPM approach has also a limitation, it does not consider

LD between consecutive markers by allowing ’don’t care’ symbol in the

patterns; and then many haplotypes have been counted multiple times.

In genetic epidemiology, HPM may not be appreciated studying complex

disease because the reason is that disease susceptibility gene embedded

haplotypes tend to be close to each other due to LD, while other haplotypes

may be viewed as the random noise. The CLADHC program and Hapminer

algorithm are powerful and returned more accurate results comparing with

the classical single test. These algorithms, however, are not structurally

rich and robust. Biologically, these approaches do not adapt to the degree

of LD, which can vary throughout a region. If the WS are too small, the

information of LD is lost, whereas, if the WS are too large, excessive noise

is introduced and it decreases then the degree of LD. The authors of the

paper [10] demonstrated that the proposed algorithm Hapminer is more



September 14, 2010 14:43 World Scientific Book - 9in x 6in 00Chapter

Weighted Automata Modeling for Linkage Disequilibrium Mapping 715

robust and efficient than CLADHC and HPM. Therefore, in this work we

only compare the our own method with two robust related works focused on

data mining technique including the clustering algorithm and discovery of

frequent haplotype pattern: the Hapminer algorithm[10] and the recursive

partitioning tree (RPT) [29]. These proposed methods are gaining more

interest as potential tools for identifying disease susceptibility gene.

Hapminer program depends on the similarity measure of pairwise hap-

lotype fragments defined with respect to a particular marker locus. Given

a fixed WS, for each marker, one slides this window along the region of in-

terest and computes the pair-wise distances of haplotype segments for each

window. Hence, one finds the similar clusters and reports the ones with

the highest statistic of the test (±χ-score). This method allows captur-

ing the sharing of haplotype due to historical recombination events. The

effectiveness of Hapminer program depends on the similarity measure of

pair-wise haplotype fragments defined with respect to a particular marker

locus. Given a fixed WS indexed by −`, . . . ,−1, 0, 1 . . . , r (WS = `+ r+1)

and the physical distance xt from any locus to locus 0, −` ≤ t ≤ r, the

similarity between pair of haplotype fragments si, sj with respect to the

locus 0 is defined by

S(si, sj) =

r
∑

t=`

w1(xt)1{si(t),sj(t)} +
r′
∑

t=1

w2(xt) +

`′
∑

t=−1

w2(xt), (14.31)

where 1{si(t),sj(t)} is the identity function (returns 1 if si(t) = sj(t) and 0

otherwise), s(t) is the allele at locus t, and r′ and −`′ are two boundary

loci such that the two haplotypes si, sj are identical between these two loci

and different at both locus r′ +1 and locus −`− 1. The weights w1 and w2

are two decreasing functions so that the measure on each locus is weighted

according to the distance from locus 0. This measure generalizes several

haplotype similarity measures in the literature. The first term in (14.31) is

a weighted measure of the number of alleles in common between haplotypes

si and sj in the region, which can be thought of as Hamming similarity.

The remaining terms form a weighted measure of the longest continuous

interval of matching alleles around locus 0, which has some resemblance to

the notion of a longest common substring

The second approach focused on the recursive partitioning tree (RPT)

based on the classification and regression of decision trees for predicting

the disease susceptibility marker [29]. The algorithm based on RPT is

well-known for its robustness and learning efficiency with its learning time

complexity of O(mn logn) [3, 21]. The algorithm takes the haplotype data
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and builds a classification binary RPT, in the presence of interactions em-

ploying a given set of independent marker alleles (co-variates or attributes),

to partition the haplotype data into relatively more similar subsets accord-

ing to a splitting rule. This splitting rule is defined based on an attribute

(marker) and its binary partition that divides the corresponding co-variate

space into two non-overlapping sub-regions. To choose a best attribute for

growing the RPT, the method used the Gini index function whose measures

the degree of interaction between different classes and choose attribute that

provides the minimal degree of interaction between classes of haplotypes in

the splitting process. In the recursive partitioning procedure, the haplotype

data is first split into two children nodes by choosing the best SNP marker

for the splitting. The splitting process can be repeated recursively on the

sub-trees until terminated by a stopping criterion. Finally, the algorithm

conducts the association test based on groups of haplotypes on the RPT

model instead of individual haplotypes.

The Hapminer algorithm, however, has a limitation. The degree of LD

can vary throughout a region. If the WS are too small, the information of

LD is lost, whereas, if the WS are too large, excessive noise is introduced

and it decreases then the degree of LD. Indeed, For the comparison, we

run the Hapminer program with the different haplotype segment length

parameters WS=3, WS=5 and WS=7. Because the major advantage of

our approach is adaptive to LD and haplotype similarity, for the coherence

in comparison, the weighted measure parameters in the Hapminer program

is set to be LD and Hamming similarity measures. More precisely, for each

WS, the Hapminer program runs successively with the following parameter:

w1 = LD,w2 = 0; w1 = 0, w2 = LD; w1 = w2 = LD (LD measure) and

finally w1 = 1, w2 = 0 (Hamming similarity measure). We observed that

the results have a large variance throughout haplotypic segment length and

weighted parameters. For any WS parameter, the results corresponding to

w1 = LD,w2 = 0 and w1 = 0, w2 = LD are bad at any meaning. While

the results with w1 = LD,w2 = LD and w1 = 1, w2 = 0 is much better. If

we set w1 = 1, w2 = 0 the results corresponding to the haplotype segment

parameters WS=3 and WS=5 are better than the one WS= 7, while the

results associated to WS= 5 are best in both cases w1 = w2 = LD and

w1 = 1, w2 = 0. In addition, the different WS and weighted parameter give

the different identified markers (see Table 14.5). It is difficult to capture

the disease susceptibility genes. That can be explained as follows. The hap-

lotype fragments are more similar in small WS than in large WS due to the

noise. This experiment shows that the effectiveness of the Hapminer algo-
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Fig. 14.13 Comparison VLFA model versus Hapminer. Our predicted disease location

is the region between two markers 17 and 18 with higher significant level than those by

Hapminer and single marker test.

rithm depends on the similarity measure and the power of association test

varies throughout the haplotype segment parameter WS and the weighted

parameters w1 and w2. Figure 14.13 and Table 14.5 illustrate the compar-

ison of VLFA model with Hapminer algorithm, RPT and simple χ-test of

single marker based on the power of association test measured ±χ2-score

and the statistical significance P -value.
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Table 14.5 Comparative study on cystic fibrosis data.

Method ±χ-score −log10(P -value) Identified SNPs

VLFA (α = 0.5) 9.13 18.6 16, 17, 18, 19

VLFA (α = 0.1) 8.46 16.65 16, 17, 18, 19

RPT 9.27 19.12 2

Hapminer WS= 3, w1 = w2 = LD 9.29 19.83 19

Hapminer WS= 3, w1 = 1, w2 = 0 9.29 19.83 19

Hapminer WS= 5, w1 = w2 = LD 9.46 20.54 19

Hapminer WS= 5, w1 = 1, w2 = 0 9.46 20.54 18

Hapminer WS= 7, w1 = w2 = LD 9.46 20.54 20

Hapminer WS= 7, w1 = 1, w2 = 0 7.96 14.76 15, 16, 17

Test of single marker 13.21 17

From the RPT, we perform the association test based on grouped hap-

lotypes and identify an optimal sub-tree on which the association test pro-

vides the strongest disease-associated allelic markers. For each sub-tree, we

compare the haplotype frequencies between case and control by the use of

±χ-score statistic. An optimal sub-tree will be selected if its raw P -value is

small enough (0.01). The RPT method predicts likely locating the group of

markers {2, 3, 7, 10, 17, 23} that is most strong disease-associated markers

with the P -value varying from 1.3e−4 (− log10(P -value)=3.88) to 7.5e−20

(− log10(P -value)=19.12) and the ±χ2-score varying from 4.06 to 9.27. The

marker 2 is predicted with strongest ±χ2-score (9.27) and smallest P -value

(7.5e−20). The known disease susceptibility marker 17 has the P -value

of 6.1e−14 (− log10(P -value)=13.21) and the ±χ2-score of 7.17. However,

some important markers {16, 18}, where the deletion ∆F508 was located

[12], are not identified by RPT, but they are identified by VLFA. The ex-

planation is that if the number of attributed marker is large, the recursive

partitioning algorithm makes the loss of important information in the split-

ting process. In fact, when we build the RPT for each small region in high

LD, for example block 1 − 8, 8− 15, 16− 20, the RPT of each block gives

the same results (results not show) with the VLFA. Thus, the advantage

of RPT is that it can be powerfully applied for pair-wise markers analysis

with a small number of markers.

We observed that the result from VLFA is better than Hapminer, RPT

and simple χ-test. In particular, in the region that had the disease suscep-

tibility mutation, the alleles are strong LD, the ±χ2-score (resp. P -value)

provided by VLFA model is greater (resp. smaller than) than the one given

by Hapminer for any WS parameter and any weighted parameter w1 and
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w2, by RPT and by the single marker test. In both cases α = 0.5 and

α = 0.1, our predicted disease location is the region of marker 16, 17, 18

and 19 (±χ2-score= 9.13 and significant P -value=− log10(P -value)= 18.6)

indicated by the dashed vertical lines that are very close to the true dis-

ease susceptibility mutation ∆F508. While, the predicted disease location

by Hapminer is varying depending on WS and weighted parameter and far

away comparing with the true location. In the case WS= 3, the disease

location is at marker 19 (±χ2 = 9.29, − log10(P -value)= 19.83) for both

weighted parameter w1 = w2 = LD and w1 = 1, w2 = 0; if WS= 5, the dis-

ease location is at marker 18 and 19 (±χ2 = 9.46, − log10(P -value)= 20.54)

for w1 = w2 = LD and w1 = 1, w2 = 0; and if WS= 7, the disease

location is at marker 20 (±χ2 = 9.46, − log10(P -value)= 20.54) for and

w1 = w2 = LD and at marker 15, 16 and 17 (±χ2 = 7.96, − log10(P -

value)= 14.76) for w1 = 1, w2 = 0. The RPT predicts the disease suscepti-

bility mutation at marker 2 with large ±χ2-score (9.27) and small P -value

(− log10(P -value)= 19.12). This marker is so far away with the true disease

susceptibility mutation. The true marker 17 is predicted with the smaller

significant statistic (±χ2=7.17, − log10(P -value)=13.21).

14.6 Conclusion

We have introduced combinatorial optimization method based on discrete

structure of VLFA for motif finding with mathematical programming ap-

proach and other applications. This method is based on symbolic method

and non-numerical algorithm that are powerfully applied for large database.

The structure of VLFA provided the tools to store, visualize, classify the

data and identify specific disease-associated genes from the biological data

with a simple method and efficient algorithm. While the mathematical

programming has not been applied to the pattern discovery problem, our

models demonstrated that it provides a powerful alternative to successfully

tool for diverse applications. The experimental results on biological data

shown that multigenetic marker analysis has higher potential for power-

ful detection of trait-marker associations than do single marker analysis.

The VLFA models could be adapted to diverse pattern finding in different

types of biological and biomedical data. In particular, these models can

be efficiently applied for data mining (clustering and the bi-clustering) and

knowledge discovery from such data.

The methods presented in this chapter open several promising directions
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for the future work. First, the learning linkage pattern via VLFA will be

applied for mining co-regulated genes from time series expression data (gene

expression is temporal process). This is a most important step for identify-

ing gene regulatory networks. Regulatory network will be constructed from

patterns with assumption that the genes in each pattern have the same reg-

ulation. In fact, the biological processes start and finish in a contiguous

period of time points. That exhibits a strong auto-correlation between suc-

cessive time points, and then it leads to increase (or decrease) the activity

of set of genes that may be appeared in linkage pattern with variable length

in time. Second, the combinatorial optimization method based on VLFA

models will offer a new tool for the diagnosis. Starting from a large col-

lection of individual patients, we will insulate the characteristic molecular

portraits of a given pathology. The characteristic haplotype could be seen

as a detectable signature. These problems will successively be studied in

the next future work.
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unary 2DFA to NFA/DFA, 18
unary 2NFA to 2DFA, 18
unary 2NFA to NFA/DFA, 18
unary 2NFA/2DFA to AFA, 19
unary AFA to 2NFA/2DFA, 19
unary AFA to DFA, 15
unary AFA to NFA, 15
unary CNF grammar to DFA, 32

unary CNF grammar to NFA, 32
unary DFA to AFA, 15
unary DFA to CNF grammar, 30
unary DPDA to DFA/2NFA, 28
unary NFA to 2DFA, 17
unary NFA to AFA, 16
unary NFA to DFA, 8
unary normalform DPDA to CNF

grammar, 31
Core XPath, 252, 258, 274
corpora, 274
correction query, 394

edit distance, 402
length bounded, 401
prefix, 388

crossing
alternating, 590

crossing sequence, 16
cut-off edit distance, 161
cycle

alternating, 590
accessible, 590

in graph, 588
usable, 602

cycle rank, 23
cyclic automaton, 182

data values, 256
datatypes, 222, 224
deep matching, 260
degree of association, 673
delta measure, 657
dense measure, 37
depth-first search, see DFS
derivation, 219, 249

forest derivation, 232
tree derivation, 232

derivations, 300
descriptional complexity, 1
descriptional system, 3
descriptors, 3
deterministic

finite string automata, 223
LPA, see DLPA

deterministic finite automaton, 6, see
DFA
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determinization, 2, 7, 12, 19, 32
DFA, 209
DFS, 213, 225, 227, 280
diachronic, 636
dictionary, 133, 134

compression, 197
dynamic, 135
implementations, 136
static, 135

difference cover, 574
differential equation, 635
direct sum and product, 567
directed acyclic graph, 685
disambiguating policy, 248, 251

left-longest, 248
non-deterministic choice, 248
right-longest, 248

discrete distribution, 657
discrete Fourier transform, 572
distinguishability, 687
DLPA, 227
do-support, 633–656

definition, 636
document order, 213
document type declaration, 216
document type definition, see DTD
DOM, 275
domain, 62
Domain Analysis, 424
Domain Specific Language, 421
double quotes, 215
down-relation, 227
DSL design, 426, 428
DSL development phases, 422
DTD, 216, 218, 223

external, 216
internal, 216

dynamic data value comparison, 271
dynamic programming, 161

earliest detection location, 283
early detection location, 283
Edc, 402
EDCQ, 389
edge

M -negative, 590

M -positive, 590
allowed, 589
constant, 589
cut edge, 613
external, 588
forbidden, 589
impervious, 596
internal, 588
mandatory, 589
of graph, 588
viable, 596

edit distance, 159
EditCorQ , 402
element, 214, see XL element270
element content, 214
element name, 214
elementary component

C-ear, 598
external, 597
family, 599
internal, 597
mandatory, 597
of soliton graph, 597
one-way, 598
two-way, 598
two-way accessible, 598

elementary net system, 362
contact-free, 362
with inhibitor arcs, 372

Empty(), 209
empty content, 214
empty element, 214
empty forest, 212
empty string, 208, 213
EN-system, 362
encoding, 212, 224
end tag, 214
end-tag, 275, 280, 281
ENI-system, 372
ENIM-system, 379
Epsilon Normal Form, 109, 110
equational monoid, 324
equivalence, 3
equivalence query, 392
equivalence relation, 320
EquQ , 392
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event, 365
event-based processing, 280
event-driven run, 281
events, 275
Evolutionary Algorithm, 422, 430
evolutionary picture processors, 551
evolutionary processor, 530
exchange format, 206
existential queries, 252, 253
expected value, 658
extended regular tree grammars, see

forest grammars
external predicates, 221, 224
extreme-value distribution, 649
extremum set, 576

factor, 63
family

of elementary components, 599
external, 599
internal, 599
root of, 599

father, 212
final states, 209, 227
FinInf , 393
finite automata

alternating (AFA), 10–13, 15, 16,
19

Boolean (BA), 11
Chrobak normalform, 8, 22
complete, 7, 12
deterministic (DFA), 6, 7, 9, 11,

12, 15, 17, 18, 21, 22,
26–28, 30, 32

Glushkov, 21
limited NFA, 9
multi-head, 48
multiple entry

deterministic (NDFA), 8, 9
nondeterministic (NNFA), 9,

12
nondeterministic (NFA), 6, 7, 9,

13, 15–18, 21, 22, 27, 30, 32
position, 21
sweeping, 19
two-way, 16–19, 28

two-way multi-head, 49
unambiguous, 19
unary, 7, 8, 15–19, 30
visit, 19

finite automaton, 209
finite string automata, 223, 268
finite-state automata, 137
finite-state machines, 137
finite-state transducers, 137
finite-turn pushdown automata, 28
FinTxt , 393
firing sequence, 362
F irst(), 210
first moment, 658
first order logic, see FO
fixation, 634
flat documents, 259
flow relation, 361
FluXQuery, 293
FO, 252, 256, 257, 276
Follow(), 210
FOREG, 257

guarded, 257
forest

right-completion, see
right-completion

forest automata
bottom-up, 225
pushdown forest automata, 225

forest derivation, 219, 232
forest derivations

with external predicates, 222
forest grammars, 217, 218, 221, 224,

230, 232, 291
and XML schema languages, 223
definition, 217
productions, 218
queries, 251
with external predicates, 221

forest states, 226
forests, 212
formal language, 3
formal system, 2
forward equivalent, 114
full word, 60, 62–64, 70, 71
functional programming
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pattern matching, 248
Fxgrep, 207, 251, 258, 259, 277

and XPath, 272
conjunctions

paths, 261
qualifiers, 263, 264

disjunctions
paths, 261

negations
paths, 261

paths, 260
pattern language, 260
patterns, 260
primer, 260
qualifiers, 262–264

attributes, 263
context, 264
structure, 262

regular expressions
context qulaifiers, 264
names, 260
paths, 261
qualifiers, 262
start and end markers, 263
text nodes, 260

wildcards, 263

g-comtrace alphabet, 354
g-comtrace congruence, 355
gamma distribution, 649
gazetteer, 161
generalized star graph, 613
generalized tree, 605
generating function, 571
generating networks of evolutionary

processors, 527
geometric distribution, 640
Glushkov K-graph, 108
Glushkov automata, 21
Glushkov construction, 107

extended, 106
Glushkov graph, 112
Glushkov K-graph, 120, 124–127
Glushkov WFA, 107, 108
Glushkov/Yamada-McNaughton

construction, 186

grafting, 244
grammar

LL(k), 48
LR(k), 33
context-free, 4, 29
monotone, 38
phrase structure, 38
right-linear context-free, 30, 34
self-embedding context-free, 36

grammar queries, 206, 230, 267
Grammatical Inference, 421, 429
graph, 588

2-edge component, 620
n-star, 610
bipartite, 588

bipartition, 588
bridge, 613
chestnut, 600
closed, 588
factor-critical, 621
generalized star graph, 613
open, 588
redex, 603
reducible, 112–114
soliton graph, 593
strongly stable, 126
strongly transverse, 126
subgraph, 589

graph without orbit, 112
graph-controlled insertion-deletion

systems, 464
insertion-only, 509
with priorities, 466

greedy maximally concurrent form,
342

Greibach normalform, 37
grep, 259
gso-structure, 333
guessing automaton, 155
GUI, 259

hammock, 111, 112
hashing function, 144, 150

minimal perfect, 150
hedge automata, 219, see forest

automata
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Hellinger distance, 692
Hermitian matrix, 567
Hilbert space, 567
Hoeffding’s bound, 689
hole, 62
homomorphic image of

automaton, 591
homomorphically complete

class of automata, 592
homomorphism of

automaton, 591
horizontal path formulas, 257
hypertree, 445
hypothesis test, 653
hypothesis tests, 635

incremental construction, 167
incremental construction from sorted

data, 168
incremental construction from

unsorted data, 175
incremental learning, 430
indicator function, 658
inhibitor arc, 372
initial state, 209
initial states, 227
inner product, 567
insertion systems, 497

graph-controlled, 509
insertion-deletion systems, 463

context-free, 464, 472
graph-controlled, 464
insertion-only, 497
one-sided, 464, 481

intermediate path formula, 257
internal, 216
invalid computations, 43

INVALCA, 43
INVALCC , 43
INVALCR, 43

invariant closure, 330
isolated cut point, 569
isolated-word correction, 158
isomorphically complete

class of automata, 592
isomorphism

of automaton, 591
strong, 591

iterated a-substitution, 36
iterated substitution expression, 36
iterative arrays, 50

K-expression
proper, 105
valid, 105

K-graph, 106, 108, 119, 120
K-balanced, 126
K-reducible, 119, 120, 127
K-stable, 124, 126
K-transverse, 125, 126
strongly K-balanced, 126

k-reversible language, 391
K-rules, 114
lBCorQ , 401
k -Rev , 391
Kullback-Leibler divergence, 691

L-attributed, 291
label, 212
labeling, 232, 287
labelled firing sequence, 366
labelled set, 319
labelled step sequence, 366
labelling, 319
Landau’s function, 7
languages

Boolean closure of CFL, 48
bounded, 28
Church-Rosser, 49
finite, 7, 8
simple, 24
ultralinear, 28
unary, 7, 8

lazy evaluation, 249
LBCorQ , 401
LBCQ, 401
leaf, 212, 213
learning grammar versions, 431
least-squares curve fit, 649
left sibling, 212
left-to-right pushdown forest

automaton, see LPA
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length, 105
litteral length, 105, 106

lexicographic order, 213, 283, 287, 303
lexicon, 134
likelihood, 644
LimInf , 392
limited nondeterminism, 9
LimTxt , 392
linkage constraint, 675
linkage disequilibrium, 667
linkage pattern, 673
local minimization, 169
locations, 214
logical formalism, 256
logistic differential equation, 637
logistic population model, 637, 638,

645
logistic sigmoid, 635, 637, 645

definition, 637
longest common factor, 676
loop

secondary, 604
lower bound, 5
lower bound techniques, 22
LPA, 226–228, 278, 280

deterministic, see DLPA
for XML streams, 278

LPath, 275
L∗, 388

µ-formulas, 229
MAGIc, 430, 432
magic numbers, 2
marking, 361

enabled, 361
Markov chain, 635–653

absorption, 646
definition, 638
stationary distribution, 646

Markov chain Monte Carlo, 646
match-relevant non-terminals, 280
matches

alternative definition, 300
of k-ary queries, 232
of unary queries, 231

matches of k-ary queries, 232

matching
covered vertex, 589
in graph, 588
perfect, 589
perfect T -matching, 625
perferct internal, 589

mathematical model, 633
matrix

input matrix, 125
orbit matrix, 124, 126
output matrix, 125

maximal patterns, 673
maximum likelihood method, 633,

635, 644–650
Mazurkiewicz trace, 324
mean, 658
measure-once, 564, 568
membership query, 392
Memetic Algorithm, 422, 430
MemQ, 392
Middle English, 636, 639
minimal automaton, 686
minimal period, 62
minimization

local, 169
minimization algorithm, 692
minimization of automata, 167
mixed content, 215
moderate pushdown automata, 25, 27
Modern English, 639
monadic second order logic, see MSO
monoid, 323

equational, 324
null monoid, 608
partially commutative, 324
trivial null monoid, 608

monoid of step sequences, 323
monotone grammar, 38
Monte Carlo method, 645–650

definition, 645
Moran model, 637, 638
morphological analysis, 153
morphological synthesis, 153
Mq, 402
MSO, 233, 251–258, 276, 277

guarded, 257
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Presburger MSO, 258
multi-head finite automata, 48
multiple entry

deterministic finite automata, 8
nondeterministic finite automata,

12
multiple entry states, 8, 12
mutex arc, 379

nearest common ancestor, 242
Nerode equivalence, 687
net, 361
networks of evolutionary processors,

525
networks of picture processors, 527
networks of splicing processors, 527
NFA, 209–212, 228, 249, 279, 280,

296, 302
nil, 224, 232
node, 213
nodes, 213
non-deterministic finite automaton,

see NFA
non-recursive trade-off, 5, 40

ambiguity bounded PDA, 47
branching bounded PDA, 47
cellular automata, 50
CFG, 46, 47
Church-Rosser languages, 49
deterministic space bounded TMs,

46
DFA/NFA, 41, 42, 46, 48
DPDA, 45, 47, 49
finite-turn PDA, 48
iterative arrays, 50
linear CFG, 41, 42
multi-head FA, 49
one-turn PDA, 42, 48, 49
PDA, 48, 49
proof scheme, 40, 44
restart automata, 49
two-way multi-head NFA/DFA, 49
unambiguous CFG, 45, 47
unary two-way multi-head

NFA/DFA, 49
verified ambiguous CFG, 47

verified PDA, 47
verified unambiguous CFG, 47

non-terminal symbols, 217
non-terminals, 219
nondeterministic finite automata, 6

lower bound techniques, 22
norm, 567
normal distribution, 644
normal matrix, 567
normalform

λ-free, 37
Chomsky, 29, 37
Chrobak, 8, 22
Greibach, 37
position restricted, 37
restricted, 37
right-linear, 34

numbered automaton, 155
numerical document queries, 258

observable, 569
occurrence net, 365
one-match policy, 249
one-pass query evaluation, 276
open conjugated system, 625
operation problem, 2
orbit, 111, 112, 119, 126, 128

maximal, 111–113, 125, 126
stable, 112
strongly stable, 112
strongly transverse, 112
transverse, 112, 125

ordered, 212, 258
ordered system

of elementary soliton automata,
608

constant, 608
orthogonal subspace, 567
orthograhic errors, 158
orthonormal subspace, 567

P, 391
PACS learning, 430
Parallel communicating grammar

systems, 526
parsers, 216
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partial word, 62
partial word(s), 59–99
partially commutative monoid, 324
partially ordered set, 320
partition, 70
path, 213

alternating, 590
external, 590
positive, 590

in graph, 588
pattern language, 391
pattern translation, 267
pattern-language, 273
PCorQ , 394
PCorQA, 395, 400
PCQ, 388
PDF, 206
period, 62, 63
periodic event, 570
periodic language, 580
permutation group, 601

block, 601
primitive, 601
trivial, 601

Petri net, 361
phrase structure grammar, 38
picture languages, 549
place, 361
Pol0BCorQ , 411
Pol(l-1)BCorQ , 411
Pol lBCorQ , 404
PolEditCorQ , 404
PolMemQ, 404
PolPCorQ , 404
population genetics, 637
poset, 320

intersection, 320
linearisation, 320
stratified, 320
total, 320

position automata, 21
position restricted normalform, 37
positive semidefinite matrix, 568
posterior distribution, 644
postorder, 167
powerset construction, 7, 12, 32

Pref (·), 400
Presburger formulas, 258
Presburger tree automata, 258
primaries, see primary match
primary match, 239
primitive partial word, 62
prior distribution, 644

uninformative, 644
probabilistic deterministic finite

automaton, 679
probabilistic finite automaton, 679
probabilistic non-deterministic finite

automata, 679
probability density function, 657
probability distribution, 644, 656
probability mass function, 657
process, 367
processing instruction, 270
processing instruction nodes, 215
processing instructions, 218
product of automata

αi-product, 592
disjoint ε-product, 592
feedback function, 591
general ε-product, 592
general product, 591
ordered ε-product, 608
quasi-direct product, 592
strict, 592

productions, 218, 221
meaning, 220, 222

proof scheme non-recursive trade-offs,
40, 44

protective linkage patterns, 672, 674
protective patterns, 674
pumping lemma, 44
pushdown automata, 4, 23–25

ambiguity bounded, 47
bounded, 29
branching bounded, 47
deterministic (DPDA), 23, 24, 26,

28
finite-turn (FTPDA), 28, 29, 32, 33
moderate, 25, 27
nondeterministic (PDA), 23, 24
normalform, 27–29, 31
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real-time, 24, 31
unary, 27, 28, 31
verified, 47

pushdown forest automata, 225, 249
languages of, 227
right-to-left, see RPA

quantum automaton, 568
quantum computing, 563
quasi-ε-equivalent, 115
queries

k-ary queries, 206, 230, 253,
256–258

definition, 232
evaluation, 248

binary queries, 232, 247, 248
evaluation, 247

grammar queries, 230, 251, 276
linguistics, 274
logical formalisms, 256
numerical document queries, 258
right-ignoring, 276, 278, 282
unary queries, 230, 252, 255, 256

definition, 231
query automata, 252
quotient monoid, 323

random variable, 644, 656
random walk, 641
ranked, 212, 224, 253, 255
reachable marking, 362
recognizer, 140
recombination event, 668
redex

center of, 603
connected, 618
focal edges, 603
focal vertices, 603
implied redex, 618
in a graph, 603
redex grove, 618

maximum, 618
shrinking, 603

reference constraints, 224
register automata, 256
register machine, 462

regular expression, 20–22, 186
lower bound technique, 22

regular expressions, 207, 227, 229,
257, 259
languages of, 208

regular forest languages, 217, 221, 225
and XML languages, 217, 230

regular hedge expressions, 254
regular path expressions, 261
regular ranked tree languages, 233
regular string language, 208
regular tree grammars, 224, 232, 233
regular tree languages, 225
regular vertical path, 268
relabeling, 219
relational invariant, 329
relational tuple, 318
RelaxNG, 222, 224
restarting automata, 19, 49
restricted normalform, 37
right sibling, 212
right-completion, 283
right-ignoring, 278, 280

match, 302
right-linear grammar, 34
right-linear normalform grammar, 34
right-to left pushdown forest

automaton, see RPA
root element, 214
row , 406
RPA, 227
rules, 112
run, 253, 300

suffix run, 302
runs, 219, 252

s-measure, 4
Sakoda and Sipser problem, 17
SAX, 275
schema, 216
schema languages, 217
SDI, 292
secondaries, see secondary match
secondary match, 239
selecting automata, 258
selecting states, 252
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selecting tree automata, 252
selective dissemination of

information, see SDI
self-transition

in soliton automata, 616
semantical framework, 362
sequence, 322

empty, 322
Sequential XPath, 293
Sequitur Algorithm, 431
serialisability, 337
set of holes, 62
siblings, 212
side-relation, 227
Σ≤k, 389
sigmoid, see logistic sigmoid
simple binary query, 239
simple language, 24
simultaneity, 337
single quotes, 215
size

of descriptors, 4
of grammar, 30

size, 390
sn-measure, 40
so-structure, 332
social network, 655
social networks, 635
software engineering, 421
soliton automaton, 596

constant, 606
deterministic, 596
self-transition, 616
strongly deterministic, 596

soliton graph, 593
1-extendable, 597
canonical class, 597
canonical equivalence, 597
canonical partition, 597
deterministic, 596
elementary, 597
elementary component, 597
pruning, 621
state, 593
strongly deterministic, 596
tree-decomposition, 602

trivial elementary, 597
viable, 597

soliton trail, 606
c-trail, 606
l-trail, 606
alternating double soliton c-trail,

606
cycle of, 606
handle of, 606

soliton walk, 596
spelling correction, 158
spelling errors, 158
SPEX, 293
star height, 20, 22, 23
Star Normal Form (SNF), 104, 108,

109
start expression, 218
start tag, 214, 275, 277, 280, 281
state

unreachable, 183
state elimination technique, 22
state merging algorithm, 693
state superposition, 569
states, 209, 219
static data value comparison, 271
stay transitions, 252
step, 322, 361

alphabet, 323
sequence, 322, 362

stochastic event, 569
stochastic matrix, 638
stratified order structure, 332
stratified poset extension, 332, 333
StreamGlobe, 293
strings, 208
structural constraints, 268

conjunctions, 268
STX, 293
subautomaton, 591
subgraph, 589

induced, 589
induced by, 589
nice, 589

succinctness, 2, 4
suffix run, 302
support, 105



September 2, 2010 13:52 World Scientific Book - 9in x 6in subjectnew

738 Index

sweeping automata, 19
sym, 210
symbols, 208
synchronic, 635
Szpilrajn’s Theorem, 321

tag, 214
Tail , 389
target processor, 215
terminal symbols, 217
text, 215
text content, 215
text nodes, 221, 222, 270
tgrep, 274
tgrep2, 274
Thompson construction, 186
timed accepting networks of

evolutionary processors, 533
tissue-like membrane systems, 526
top-down, 252, 253
trace alphabet, 335, 370
trace monoid, 335
trail

in graph, 588
transducer, 138, 147, 153

p-subsequential, 148
subsequential, 148

TransformX, 291
transition, 361
transition matrix, 569, 638
transition monoid

of automaton, 591
transition relation, 209, 210
transpose matrix, 566
tree derivation, 218, 232
tree derivations

with external predicates, 222
tree grammars, 253
tree queries, 258
tree states, 226
tree-walking automata, 255

marble/pebble automata, 256
trie, 137, 141–142, 166
triple construction, 31
TurboXPath, 293
Turing machine, 42

two-sided infinite word, 63
two-way finite automata, 16

multi-head, 49
two-way tree automata, 252
typograhical errors, 158

ultralinear language, 28
unambiguous, 231, 253, 291

content models, 223
unambiguous automata, 19
unary language, 570
unary quantum automaton, 569
unavoidable set, 60
Unicode, 221, 222
uniform distribution, 644
uninformative prior distribution, 644
uniqueness constraints, 224
unitary matrix, 567
universal queries, 252, 253
unordered, 258
unranked, 212
unranked trees, 252
unreachable state, 183
up-relation, 227
upper bound, 5

Valc, 398
valid, 216
valid computations, 42

VALCA, 43
VALCC , 43
VALCR, 43

validation, 216
XML streams, 281, 291

varbrul, 635, 654
variability, 441
variable length finite automata, 682
variable length memory, 682
variable length processes, 681
vector

head-orbit vector, 124
input vector, 125, 126
output vector, 125, 126
tail-orbit vector, 124

verb-raising, 636–656
definition, 636
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verified pushdown automata, 47
vertex

external, 588
internal, 588

accessible, 590
of graph, 588

vertical path formulas, 257
very large documents, 276
very large XML documents, 226
visit automata, 19
visXcerpt, 259

walk
empty, 588
external alternating, 595

switching on, 595
in graph, 588
soliton walk, 596
total external alternating walk, 625

Weighted Finite Automaton (WFA),
103, 104, 106–108, 110, 114, 124

white spaces, 214
wildcards

in grammars, 222
word, 3, 62

empty, 3
length, 3
reversal, 3

X2, 258
XDuce, 248
XFilter, 292
Xing, 259

XML
streams, 259

XML element, 270
XML language, 216
XML Schema, 224
XML schema, 206, 222
XML schema languages, 216
XML Stream Attribute Grammars,

291
XML streams, 207, 275, 276, 280
XML-GL, 259
XPath, 206, 231, 251, 258, 259, 269,

277
abbreviated syntax, 270
and Fxgrep, 272
axes

forward, 269
reverse, 269

Core, 274
dynamic data value comparison,

271
node test, 270
predicate, 270, 271
qualifiers, 271
static data value comparison, 271

XPush, 292
XQuery, 206
XSLT, 206, 215
XSM, 293
XStreamQuery, 293
XTrie, 292

YFilter, 292
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