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Preface

The present Lecture Notes volume combines aspects of two mathematical domains
which are closely connected to each other: group theory and the theory of buildings.
On the basis of investigations concerning twin buildings and subcomplexes of spher-
ical buildings, finiteness properties of some S-arithmetic groups are derived (cf. the

introduction for more details).

Large parts of this book are devoted to the theory of (twin) buildings and not
only written with group theoretic applications in mind. The first two sections of
Chapter I can serve very well as an introduction to twin buildings. §1 describes the
group theoretic background of this new theory. The basic definitions and facts (see
in particular Lemma 2) are introduced in §2. Though these results are mainly due
to Tits, the complete proofs are given here since they are hard to find in the original
papers or not yet published. The following two sections present some of my own
investigations concerning twin buildings. These are applied at the end of Chapter
I in order to yield Theorem A. This theorem is one major step on the way towards
the results about S-arithmetic groups presented in Chapter III. The second main
theorem needed in this context is proved in the course of Chapter II. It generalizes the
well known Solomon-Tits theorem and states that certain subcomplexes of spherical
buildings are homotopy equivalent to bouquets of spheres “in general” (cf. Section
4 of the introduction). The techniques of the proof combine Tits’ classification of
spherical buildings with some combinatorial ideas. This part of the book is accessible

to every reader who has studied Tits’ Lecture Notes volume on spherical buildings.

I gladly take the opportunity to thank at least a few of those who helped in one
way or the other that this book could be written. First of all, I am greatly indebted
to Prof. H. Belir for his personal interest in me, for the opportunities he offered to me
and for many stimulating mathematical discussions. I am also very obliged to Prof.
H. Abels who invited me several times to the SFB 343 in Bielefeld where I spent
more than 17 months altogether and where parts of these notes first took shape. In
this context, | would also like to thank the DFG for the financial support I received
during that time. Last but not least | express my warmest thanks to Mrs. Ch. Belz

for preparing the TgX-version of the present book and for doing this exceptionally well.

Frankfurt am Main, September 1996
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Introduction

In the following pages, I will try to describe briefly the background of this book, the
key questions, the progress that has been achieved and some of the problems which

are left for future work.

1. Finiteness properties of S—arithmetic groups

Large parts of the present notes are devoted to the theory of buildings and are of
interest in their own right. However, the origin of these investigations was a group

theoretic question which I am going to describe now.

Since the last century, groups of invertible matrices have been studied extensively,
partly because of their geometric significance (one may think of O,,(IR) and other
“groups of motion”). Since the books of Weyl (1946) and Dieudonné (1948/55),
important classes of these linear groups, namely the general and special linear, the
orthogonal (often also the spin-), the symplectic and the unitary groups over skew
fields, have been subsumed under the notion of “classical groups”. A common
feature of all classical groups is the fact that they can be defined by algebraic equations
over a commutative subfield & of the skew field K in question if the latter is
finite-dimensional over its center. In order to mention at least one example, I recall
that any orthogonal group is of the form O,,(k,Q) = {g € GL.(k)|¢'Qg = Q},
showing that the entries g;; of ¢ € O,,(k,Q) satisfy a system of quadratic equations.

Starting with the papers of Borel and Chevalley in the mid 1950’s, a systematic
abstract theory of linear algebraic groups has been developed. Classical groups
belong to the central subjects of this theory which was also strongly influenced by Lie
theory on the other side. Chevalley’s classification of semisimple algebraic groups over
arbitrary algebraically closed fields, motivated by and at the same time vastly gener-
alizing the corresponding result concerning semisimple complex Lie groups, represents

one of the highlights in the theory of linear algebraic groups.

From the beginning, not only the Lie groups but also their arithmetic subgroups
like e.g. SL.(Z), Spym(ZZ) have been of interest. By the way, “most” discrete
subgroups of finite covolume in semisimple Lie groups are arithmetic by a celebrated
theorem due to Margulis (for a precise statement and much more information about

S-arithmetic groups, | refer to [M]). However, the notion of an arithmetic group in



its original meaning (involving only Q-groups and the Ring ZZ) is too restrictive in
many respects. As S-arithmetic subrings of global fields are natural generalizations
of ZZ , arithmetic groups are generalized by S-arithmetic groups. The prototype
of an S-arithmetic group is represented by G((Os) , where G is an algebraic group
defined over a global field & and g is the ring of S-integers in k . In general, all
subgroups of G(k) commensurable with G((s) are called S-arithmetic. The appli-
cations mentioned in the title of this book refer to S-arithmetic groups of the form
G(IF,[t]) or G(IF,[t,t7']), where G is a semisimple algebraic IF -group (cf. Chapter
I11, §2, Theorem C, Corollary 20 and Remark 17 iv}).

Regarding the structure of an S-arithmetic group I' , some questions are sug-
gesting themselves. Can one find a finite set of generators for I' 7 Is I' finitely
presented? What about higher (homological) finiteness properties? In this context,
[ recall the following: T is said to be of type FP, (n € INoU{oo}) if there exists a
projective resolution of the trivial [-module ZZ such that the first n + 1 projective
['-modules are finitely generated. This implies for example that all homology and
cohomology groups H,(I'), H'(T'} are finitely generated abelian groups for 0 < ¢ < n.
I mention in passing that commensurable groups are of the same F P-type. The prop-
erties F P, and finitely generated are equivalent; finite presentability implies F P,
and “often” coincides with F'P, . (But there exist groups of type F P, which are not
finitely presented as was shown recently, ¢f. [BB].) I refer to [Bi] for further interest-
ing consequences of the F'P,-property. Modifying this notion slightly, one says that
[ is of type F,, if there exists an Eilenberg-MacLane complex of type K(I',1} with
finite n-skeleton (respectively, with finite m-skeleton for all m € IN if n = oo). This
is equivalent to requiring F'P, plus finite presentability in case n > 2 (cf. [Brl], Ch.
VIII, §7).

As for answers to the questions stated above, one has to distinguish between the
number field and the function field case. Suppose that ' is an S-arithmetic subgroup
of the linear algebraic group G defined over the global field k . We first assume that
k is a number field. If T is arithmetic in the narrow sence (i.e. & = Q and
S = {o0}), it is always finitely presentable and even of type F,, according to results
of Raghunathan (cf. [Ra]), respectively of Borel and Serre (cf. [BoS1]). If T is just
S-arithmetic, a similar statement is not true any longer. For example, the additive
group of Z[i] is not finitely generated. However, if G is reductive, I' is again

of type F,, as was shown by Borel and Serre in [BoS2]. In fact much more is proved



there, for example that [' is virtually of type FL and a duality group. Finally, the

finitely presented S-arithmetic groups were completely characterized by Abels in the
number field case (cf. [Al]).

Next we assume that k£ 1is a global function field, i.e. a finite extension of a
rational function field IF,(t) . We additionally suppose that G is reductive and
isotropic over k (if G is k-anisotropic, then ' is cocompact and hence of type Fi,
according to Theorem 4 of [Sel]}. Contrary to the number field case, I' need not even
be of type F) here. It was first observed by Nagao in 1959 that SL,(IF,[t]) is not
finitely generated (cf. [N]). Using group actions on trees, this fact was explained very
nicely by Serre some years later (cf. [Se2], Ch. II, §1.6). Since 1959 several mathe-
maticians contributed to the solution of the problem regarding finite generation and
finite presentability of I' (cf. the references in [Bel] and [Be2]). Eventually in 1992,
Behr was able to give a full proof for the complete characterization — conjectured
by him already years before — of all finitely presented S-arithmetic subgroups of
reductive groups defined over global function fields (cf. [Be2]). The complete solu-
tion of the corresponding problem concerning higher finiteness properties of I' will
perhaps require another couple of decades. At the moment, the result is only known
for some classes of S-arithmetic groups. It is shown in Stuhler’s paper [Stu] that
SL,(Og) is of type F,_, but not of type FF, for any S-arithmetic function ring
Os with # 5 =s . (By the way, a similar result concerning the subgroup of all upper
triangular matrices in SL;((s) is derived in [Bu].) On the other side, SL,41(IF,[t])
is of type F,_; but not of type FP, provided that ¢ is “sufficiently big” (cf. [Ab1]
and [A2]). Analogous results are derived - presupposing Theorem B (cf. Chapter II,
§ 8), the proof of which is published here for the first time — in [Ab3] for all classical
Chevalley groups over IF,[t] . They will reappear as special cases of Theorem C
below. Apart from Stuhler’s paper and from the quantitatively slightly better result
for SL,4,(IF,[t]) derived in [Abl] (cf. Remark 17 ii)}, this Theorem C contains all
what is known at the moment concerning higher finiteness properties of S-arithmetic

subgroups of reductive groups in the function field case.

2. Filtrations of Bruhat—Tits buildings

Almost all the results mentioned in the last paragraphs were proved by using topo-
logical methods. The definition of the property F, already indicates that finiteness

properties of groups are closely connected with topology. Even problems regarding
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finite generation and finite presentability, though in principle accessible to the meth-
ods of algebraic K-theory, are sometimes more successfully attacked by studying the
action of the group in question on an appropriate topological space. This is well

demonstrated by the proof of Behr’s theorem given in [Be2].

Now for a given S-arithmetic subgroup I' of a reductive group G defined over a
global field k , a suitable space X with natural I'-action can be obtained as follows:
Denote by k, the completion of & relative to v . Let X, be the quotient space of G(k,)
modulo a maximal compact subgroup if v is archimedian, respectively the Bruhat-
Tits building associated to G(k,) as described in [BrT1,2] if » is non-archimedian.

Then consider X = [[ X, with diagonal I'-action.
vES

Though space and action enjoy “nice” properties (X is contractible and the I'-
action is proper), finiteness properties for I' cannot be deduced directly unless the
quotient X/I" is compact. Essentially two methods have been applied so far in order
to treat the non-cocompact case. The first consists in compactifying X/I' suitably,
thus yielding a compact K(T',1)-complex. This idea was successfully exploited in the
number field case (cf. [Ra] and [BoS1,2]), showing in particular that I" is of type F.
A different approach has to be used if &k is a function field. Most of the results in
this case are based on an idea due to Stuhler. Studying I' = SL,(®s) , he filtered

X = U Xj by an increasing sequence of [-invariant subcomplexes
7€No

Xo € ... C X, € X,;41 C ... with compact quotients X;/I' . Since the filtration
constructed in [Stu] induces isomorphisms m;(X;} —— 7m(X;4.) for all (sufficiently
big) j and all 0 <1 < s — 2, all these homotopy groups are trivial in view of the
contractibility of X . This implies that SL,(Ogs) is of type F,_; . Using additionally a
criterion due to Brown (cf. [Br2]), it is also easily deduced from the properties of the

filtration that I' is not of type F;_; (Stuhler gave a different proof for this statement).

Stuhler’s method was applied independently by Abels and me in order to deter-
mine the “finiteness length” (i.e. the maximal m such that [ is of type F,) of
[ = S8L,1(IF,[t]) . Applying the “reduction theory” for X/I' , one has many choices
to construct filtrations of X which are finite modulo I' . The problem is to verify
the desired homotopy properties. The filtration used in [Abl] yields a slightly better
result (I refer again to Remark 17ii)} but the proof given in [A2] is more elegant and
accessible to generalizations. It is Abel’s filtration which will be applied in the present

book (cf. Chapter I, §5).



3. Twin buildings

The action of SL,4,(IF,[t]) on the corresponding Bruhat-Tits building admits a sim-
plicial fundamental domain in the strictest sense. More generally, given a (simply
connected) Chevalley group G , it was shown by Soulé in [So] that X/ G(IF,[t]) can be
identified with a “quartier” in the Bruhat-Tits building X associated to G(IF,((¢71)) ).
However, Soulé’s proof ist not very transparent since it depends on calculations and

not on geometric arguments.

A better understanding of this result is provided by the theory of twin buildings.
The group G = G(IF,[t,t7!]} possesses a twin BN—pair such that the two com-
ponents Ay, A_ of the corresponding twin building are canonically isomorphic to
the Bruhat-Tits buildings associated to G(IF,((¢71)) ), G(F,((¢))) (cf. Chapter I, §1,
Example 3). G(IF,[t]) and G(IF,[t™"]) are opposite maximal parabolic subgroups in
(G and are therefore stabilizers in (G of two opposite vertices 0_ € A_ and 0, € A,.
It follows (cf. Chapter I, §3, Proposition 3 and Corollaries 1,2) that the action of
I' = G(FF,[t]) on X = A, admits the same simplicial fundamental domain as the

action of G(IF,[t~']) = Stabg 0, , namely a quartier in A, .

Starting with this observation, it has turned out in many respects that the action
of I on A, is better understood if one interprets I' = G(IF,[t]} as the stabilizer of a
vertex in A_ , the “twin” of A, , Many arguments used in [Ab3] which I first thought
to be dependent on specific features of Bruhat-Tits buildings can in fact be deduced
more transparently in the framework of twin buildings (cf. in particular Ch. I, §5).
At the same time, this approach admits more general results, for example concerning
classical IF,-groups instead of Chevallcy groups over IF,[¢] but also regarding certain

Kac-Moody groups over IF, .

Therefore, Chapter I is completely devoted to twin buildings. Motivated by the
theory of Kac-Moody groups (cf. in particular [T8]), these objects which are general-
izations of spherical buildings were introduced by Ronan and Tits. Roughly speaking,
a twin building is a pair of buildings (A4, A_) together with an opposition relation
between the chambers of A, and A_ possessing similar properties as the opposition
relation in a spherical building. Only parts of what is known concerning twin build-
ings are published yet (cf. [T9-11] and [MR]; for the special case of twin trees see
also [RT]). However, firstly the group theoretic background regarding twin BN-pairs,

emphasizing the most important examples, and secondly the basic definitions and



lemmata (which are either contained in [T9-11] or in [AR]) are recalled in the first
two sections of Chapter 1. § 3 treats, as already mentioned, questions concerning fun-
damental domains for group actions on twin buildings. In order to deduce certain
local properties of the filtration described in § 5, one has to introduce “coprojections”
in twin buildings. This is done in §4, the main result being Proposition 4, where
coprojections are expressed by means of ordinary projections and the opposition re-
lation. (In case the reader is interested in a suitable notion of “convexity” for twin

buildings, I also refer to the appendix of §4.)

Finally, the goal of Chapter I, namely Theorem A, is deduced in §6. It states
the following: Given a group G acting “strongly transitively” (cf. Definition 5 in §2)
on a twin building (A;,A_}, where Ay, A_ are thick n-dimensional buildings, and
a simplex § # a_ € A_ . Then the stabilizer G,_ is of type F,_; but not of type F P,
provided that certain conditions, namely (LF), (F) and (S), are satisfied. (LF) states
that the apartments of Ay, A_ are infinite and locally finite which amounts to saying
that they are either of irreducible affine or of compact hyperbolic typc. (F) requires
the finiteness of the intersections G,_ N G,, for all § # by € A} and is equivalent
to the finiteness of the ground field in most examples (cf. Corollary 7 in §6). The
crucial condition (S) will be discussed below. As for applications, one should think
of the example G = G(IF,[t,t7"]), a_ = 0_ and G,_ = G(IF,[t]) described above.
Another application is concerned with groups acting on twin trees (cf. Corollary 8
and Proposition 6) and generalizes the Nagao—Serre theorem. Further consequences

of Theorem A will be stated below. But before | have to say a few words concerning

(S).

4. Spherical subcomplexes of spherical buildings

It is usually difficult to determine the homotopy properties of a filtration (X;);emn,
directly. However, in [Stu], [A2], [Ab1,3] and in [Be2], this problem could be reduced
to questions concerning the local structure of the respective I'-complex X . In all
these cases, the isomorphisms m;(X};) l)vr,-(XjH) were established up to a certain
level of i by showing that the occurring “relative links” fkx, ,, ()N X; have the “right”

connectedness properties for all (poly-) simplices ¢ € X, \ X; .

A similar proceeding is also possible with regard to the filtration described in

Chapter I, §5, provided that the condition (LF) is satisfied. The latter implies that



the full links of non-void simplices in X = A, are spherical buildings. Then the
relative links with respect to the filtration are determined by Corollary 6 in §5. They
are of the form ©°(a) with @ € ® = fkx(o) , where ©°(a) denotes the subcomplex of
© generated by all chambers of ©® which contain a simplex opposite to a . Now the
desired homotopy properties of the filtration of A, can be deduced from the following

condition.

(S) If © is the full link of a non-void simplex in A, , then ©°(a) is (dim ©)-spherical
for any a € O .

Recall that (the geometric realization of ) a d-dimensional simplicial complex is said to
be d-spherical if it is (d — 1)-connected. By the well known Solomon-Tits theorem,
every spherical building © is (dim @)-spherical. Chapter Il of the present book is

devoted to the question whether the same is true for the subcomplexes ©°(a) .

This question does not occur here for the first, time. Already in connection with the
determination of the finiteness length of SL,,,(IF [t]) , it was essential. It has also
been investigated for other purposes than studying finiteness properties of groups.
In [T7], Tits considers (among other things) the question whether @°(c) is simply
connected for a chamber ¢ of an irreducible spherical rank 3 building © and translates
it into a group theoretic problem (cf. also Chapter I1, §2, Lemma 19). For finite rank
2 buildings, the connectedness of @°(a) is investigated in [Brou]. By the way, two
new results concerning generalized m-gons are outlined in Chapter II, §2, namely the
Propositions 7 and 9. Proposition 7 can be used in order to verify in “almost all”
cases the condition “(co)” introduced in [MR]. In that paper, an extension theorem
for isometries between twin buildings is proved under the assumption (co) that ©%(c)
is connected whenever @ is a rank 2 link in one of the two components of the twin

building and ¢ is a chamber of © .

Unfortunately, it is definitely possible that ©%(a) is not spherical. To mention at
least one example (others are discussed in §2 of Chapter II), I recall that ©°(c) is a
torus if © is the A; building over IF; and ¢ a chamber of @ (cf. [T7], Section 16).

Counter-examples of this type show that ©°(a) can only be expected to be spherical
if @ s “thick enough”, i.e. if every panel (:= codimension 1 face of a chamber) is
contained in sufficiently many chambers. However, as Proposition 9 demonstrates,

this does not suffice. Thus we are led to the following



Conjecture 1: Let © be a spherical Moufang building of rank d+1 which is “thick
enough”. Then ©°%a) is d-spherical for any a € © .

The proof of this conjecture for “classical buildings”, i.e. for spherical buildings
corresponding to classical groups (a definition not referring to groups is given in

Chapter II, §3), occupies the largest part of Chapter II. The result is the following:

Theorem B: Let © be a building of type Auyr,Cayy or Day1 but not an exceptional
Cs building. Assume that every panel of © is contained in at least (2¢ 4 1) chambers
in the Agy1 case, respectively in at least (224! 4 1) chambers in the two other cases.
Then ©°(a) is d-spherical for any a € © .

The Ayy) caseis considerably easier than the other two and was already established
in [AA]. The general method underlying the proof of Theorem B is discussed in some
detail in §3 of Chapter II. It should be applicable to buildings of exceptional type as
well. However, the corresponding proofs will become technically complicated to such

an extent that I have dispensed with trying to carry them out.

Some characteristic features of the proof of Theorem B are the following: One
has to treat the spherical buildings case by case (this is already necessary for rank 2
Moufang buildings, cf. Proposition 7). In each case, one represents the buildings as
flag complexes of certain geomtries and uses induction on the rank. In order to obtain
sufficiently strong induction hypotheses, one also has to consider other subcomplexes
than those of type @O(a) . It is one of the main difficulties (at least in the D, case)
to choose the “right” class of subcomplexes. Decreasing the rank of the buildings is
connected with increasing the number of conditions defining the subcomplexes to be
considered. One ends up with bounds as stated in the theorem though the complexes
©°(a) are probably already spherical under much milder assumptions. Apart from
obvious quantative questions, there is also an interesting qualitative one: Is there a
fixed constant T € IN such that Theorem B remains true after replacing 2¢ + 1 ,
respectively 224! 41 by T ? The opinions about the answer to be expected diverge;

my guess would be “no”.

5. Group theoretic consequences

Equipped with Theorem B, it is now easy to draw conclusions from Theorem A.

As already mentioned, the main application is concerned with certain S-arithmetic



groups. For the first time, one also obtains some results regarding higher finiteness
properties in the function field case where the linear algebraic groups are non—split.
I will just state a variant — appearing as Corollary 20 in Chapter I11, §2 — of the
more detailed Theorem C of Chapter I1I here.

Theorem C’:  Let G be an absolutely almost simple I, -group which is not of excep-
tional type. Denote by n the F,-rank of G . Suppose n > 1 and q > 2*"~' . Then
G(IF,[t]) and G(IF,[t,¢t71]) are of type F,_, , and G(IF,[t]) is not of type FP, .

For the restrictions occurring in this statement, Theorem B is responsible. But a

similar result should also be true for the exceptional types.

Conjecture 2: The statement of Theorem C’ holds for any absolutely almost simple

IF,-group of IF;-rank n > 1 provided that ¢ is “big enough”.

[ am careful about the cases with small ¢ since | know meanwhile that Theorem A

becomes definitely wrong if one cancels assumption (S) (cf. the last remark concerning
(5) in Chapter 1, §6, directly before Theorem A).

As far as G = G(IF,[t,2t7']) is concerned, Theorem C’ just represents a preliminary
result since the action of G on the corresponding twin building is not fully exploited

yet (cf. Chapter I, §6, Remark 7). I expect that the following is true:

Conjecture 3: Let G be an absolutely almost simple IF,-group of IFy,-rank n > 1
and assume that ¢ is “sufficiently big”. Then G(IF,[t,t7']) is of type Fj,_1 but not of
type F'Py, .

Of course, much more general statements than the two conjectures mentioned
above may be suspected in the function field case. However, since there are so few
results, it does not seem to be appropriate at the moment to formulate these specu-

lations explicitly.

Instead, I conclude this introduction by noting a further consequence of Theorem
A which is obtained as a by-product. As already mentioned, the methods of Chapter
I can also be applied to certain Kac—Moody groups over IF,. From Theorem A (to
be more precise: from the Corollaries 10 and 11) and from Proposition 11 in Chapter

I1, §2, one can deduce the following



Example: Let Gp be a Kac-Moody group functor as described in [T§]
(cf. also Example 5 below). Assume that the Coxeter system (W,S) associated
to D is of rank 4 and of compact hyperbolic type. Let ¢ be a prime power > 16 .
Then G = Gp(IF,) is finitely presented. All proper parabolic (with respect to one of

the two natural BN-pairs in G) subgroups of G are finitely presented but not of type
FPs .
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I Groups acting on twin buildings

§ 1 Twin BN—pairs and RGD-systems

“BN-pairs”, later on also called “Tits systems”, were introduced by Tits in the context
of linear algebraic groups. Tits extracted the BN~axioms from Chevalley’s work (cf.
in particular [C1] and [C2]) on semisimple groups and showed together with Borel
that this axiomatization applies as well to arbitrary, not necessarily split reductive
groups (cf. [BoT], §5, or [Bo], §21). BN-pairs have proved to be a powerful tool in
group theory since, mainly for two reasons. Firstly, much is known of the structure
of a group if it possesses a BN—pair (key-words: Bruhat decomposition, parabolic
subgroups, criterions for simplicity). Secondly, a group with a BN-pair naturally acts
on a simplicial complex, namely the building associated to it. This renders certain

group theoretic problems accessible to geometric interpretations and solutions.

If a BN-pair belongs to the group G = G(k) of k-rational points of a reductive
k-group G as described by Borel and Tits, it possesses some additional features due
to the properties of the family (2, (k))ace of unipotent subgroups associated to the
(relative) root system ® = ;@ of G. These properties were axiomatized by Bruhat
and Tits in [BrT1], §6.1, where they defined “root data” (“données radicielles”). The
Tits system corresponding to a root datum always possesses a finite Weyl group
because the latter coincides with the Weyl group of the root system indexing the
root datum. Therefore, the associated building is of spherical type. In particular, it
is possible to define when two chambers or two (minimal) parabolic subgroups are
opposite. These opposition relations are among the important additional features of
root data which have no analogues in the general theory of buildings and BN-pairs.
Nevertheless, the notion of “oppositeness” can also be applied to certain situations
where the Weyl groups are infinite. For example, every “minimal” Kac-Moody group
(7 over a field gives rise to two BN-pairs (G, By, N) and (G, B_,N) with the same
Weyl group W (cf. [T8]). Though B, and B_ are not conjugate if W is infinite, they
are related to each other in the same way as the opposite minimal parabolic subgroups
B and woBwy' of a BN-pair with finite Weyl group, where wy denotes the element
of maximal length of the latter. A precise formulation of the relationship between
B, and B_ leads to the axioms of a “twin BN-pair” which will be recalled below.

The geometric structures corresponding to twin BN-pairs are “twin buildings”. They
were introduced by Ronan and Tits (cf. [T9], [T11] and [RT]) and will be treated in
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detail in the following sections.

As BN-pairs with finite Weyl groups are generalized by twin BN-pairs, root data
are generalized by “RGD-systems” (cf. [T11], §3.3; RGD = Root Groups Data).
Many twin BN-pairs, among them all those belonging to Kac-Moody groups, result
from RGD-systems, and the axioms for the root groups are often easily verified. For
this reason RGD-systems will also be introduced below. The geometric significance
of these systems, namely the Moufang property of the associated twin buildings, will

play hardly any role in the following.

For the basic definitions and properties of Coxeter systems and Tits systems, the
reader is referred to [Bou2], Ch. IV. Throughout this book, the following notations

will be used:
I denotes a finite index set and M = (my;);je1 a Coxeter matrix, i.e. a symmetric
matrix satisfying m;; € NU{oo} for all 1,5 € I, m; = 1 for all ¢ € I and m,; > 2
for all ¢ # 5 . A Coxeter system (W, S) is said to be of type M if W possesses a
presentation of the form

W = (si,1 € I|(si8;)™ = 1 for all 1,7 € [ satisfying m,; # o0)

with {s;|: € I} = S . Every Coxeter system with finite S is of type M for suitable
[ and M . We set W; := (s;|i € J) < W for every subset J of I and denote by
{ = fg : W— INp the usual length function with respect to S . A Tits system
(G,B,N,S)is called of type M if the corresponding Coxeter system (N/(BNN),S)
is of type M.

Definition 1 (cf. [T11], §3.2):  Let (G, B4, N,S) and (G, B_, N, S) be two Tits

systems (of type M ) with the same Weyl group W = N/(ByNN) = N/(B_-NN). Then

(G,B4+,B_,N,S) is called a twin BN-pair (of type M) if the following conditions

are satisfied:

(TBN1) B.wB-.sB_. = B.wsB_, fore ¢ {+,—} and all w € W, s € S such that
Lws) < f(w)

(TBN2) BysnB_ =0 foralese S

Example 1: Let (G, B, N, S) be a Tits system with finite Weyl group
W = N/(B 0 N). Denote by wy the element of maximal length of W. Then
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(G,B,wono_l,N,S) is a twin BN-pair.

Remark 1:  As we shall see in the proof of Lemma 1 (cf. also [T11], §3.2), any
twin BN-pair (G, By, B_, N, S) satisfies the following two axioms:

(TBN1) BwB_.sB_. C B{w,ws}B_ fore € {+,-},weWandseS
(TBN2) B,wnB_ =0 forall we W\ {1}

Note that (TBN1)" and (TBN2)' are also satisfied by (G, B, B, N,S) for every Tits
system (G, B, N, S) and are therefore weaker than (TBN1) and (TBN2). Nevertheless,
(TBN1)" and (TBN2) would be sufficient for our purposes during the first three

paragraphs as follows from the results of [Ab5] concerning “pre-twin BN-pairs” and

“pre-twin buildings”.

For a twin BN—pair, there exists a decomposition analogous to the Bruhat decom-
position but involving B, and B_ at the same time. This “Birkhoff decomposition”
is derived in [T11], §3.2, but will be proved anew below for the convenience of the

reader.

Lemma 1:  Let (G,B;,B-,N,S) be a twin BN-pair with Weyl group W. Then,
for e € {+,—}, the map

Be: W—B\G/B_,, w+— BwB_,
s bijective.

Proof: We first derive the axioms (TBN1)' and (TBN2)' mentioned in Remark 1.

(TBN1)": In view of (TBN1), it suffices to consider the case £(ws) > {(w) . Apply-
ing (TBN1) to w' = ws and recalling the identity B_,sB_,sB_, = B_, U B_.sB_,,

we obtain
(1) BewB_.sB_., = (BowsB_.sB_.)sB_,
= Baws(B_.UB_.sB-,) = B.{w,ws}B_,
(TBN2)":  Assume B,w N B_ # { and hence BywB_ = ByB_ for w € W\ {1} .
Choose s € S such that {(ws) < {(w) . Applying (TBN1), we obtain

BiwsB_ = (BywB_)sB_ = By B_sB_ . Spezializing (1), this yields
BywsB_ = ByB_U B,;sB_ . Therefore ByB. = B,sB_ (= BywsB_) . But then
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Bysn B_ # 0, contradicting (TBN2).

Now (TBN1)" implies, by induction on ¢(w'), BywB_,w'B_., C B.WB_, for all
w,w’ € W . Combining this with the Bruhat decomposition, we obtain
G=B_.WB_.=B.B_.WB_, = B.WB_, . Hence f, ist surjective.

To show that g, is also injective, we deduce from B,w'B_, = B,wB_, for
w,w’ € W by induction on min{¢(w),£(w")} that w’ = w . We may assume
f(w") < f(w) . The case £(w') = 0 is settled by (TBN2)' . Now assume w’ # 1 and
choose s € S such that {(w's) < £(w’) . From (TBNI1)’, we deduce
Bw'sB_, C Bow'B_,sB_, = BawB_.sB_, C B.{w,ws}B_, and therefore
B.ow'sB_, = B.wB_, or Baw'sB_, = BawsB_, . In view of {(w's) < {(w') < {(w)

and the induction hypothesis, this implies w's = ws and hence w’ = w . O

Before defining RGD-systems now, we have to recall how certain notions originally
connected with root stystems can be generalized. For this purpose, we shall use some
basic facts concerning Coxeter complexes which may be found for example in [T1] §2,
or in [Br3], Ch. IIL. To every Coxeter system (W, S), there is naturally associated a
Coxeter complex £ = X(W,S) . The chambers of ¥ are identified with the elements
of W , and W coincides with the group of type-preserving automorphisms of ¥ . A
“root” of ¥ is the image of a folding. If a is a root, the opposite root, i.e. the image
of the opposite folding, will be denoted by —a . A root is called “positive” if it
contains 1 and “negative” otherwise. If S = {s;|i € I} , we denote by a;(: € I)
the unique root containing 1 but not s; . The set of chambers of ¢; is equal to

{w e W |[{£(s;w) > £(w)} . Set

¢ := {a|aisarootof ¥} = {we;|we W andi €I}
¢, = {a€®|aispositive} = {wa;|w € W,i € [ and {(ws;) > £(w)}
®_ := {a€ ®|aisnegative} = {—a|a € d,}

Motivated by the theory of Kac-Moody algebras, a pair of roots is called prenilpo-
tent if a N G as well as (—a) N (—f) contains at least one chamber (cf. [T8], §§ 3.2,
3.4 and 5.1). For every prenilpotent pair {e, 3} , we set

@8] = {y€®|anfCyand(~a)N(—F)C ()} and
(a,8) = [ef]\ {e 5} .

Definition 2:  Let (W,S), &,0, and ®_ be as above. A triple (G,(Us)ace,H)
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consisting of a group G , a family of subgroups (Us)acs and a subgroup H < G

normalizing each U, (a € ®) is called an RGD-system if it satisfies the following

conditions:

(RGD0) U, # {1} foralla € ®

(RGD 1) For each prenilpotent pair {a, 8} C @ with o # B, the com-

mutator [U,, Ug] is contained in (U, |y € (a, 3))

(RGD2) Guweni €l andu € U, \ {1}, there exists an

m(u) € U_,ul_,, satisfying m(u)U,m(u)™! = U, o for all
a € © . Furthermore, m(u}H = m(u')H for any two
u,u’ € Uy, \ {1}

(RGD3) HU,NU-= {1} if U, := (Us| @ € ®,) fore € {+,-}
(RGD4) G = H{U,|a € ®)

Remark 2: The axioms stated above are not identical with but equivalent to

those formulated by Tits in [T11], §3.3. Because I am mainly interested in conditions

which imply the TBN-axioms and are easily verified in concrete examples, I made

two changes (cf. also the hints in [Ab5], proof of Lemma 5):

1)

2)

Tits defined H to be N Ng(U,) . Since it is often tedious to calculate this
acd

intersection directly, I only required H € | Ng(U,) . But it is easy to show
aed

that the conditions stated in Definition 2 actually imply H = N Ng(Uy) .
aecd

Instead of the above (RGD3), Tits only required for each ¢ € I that U_,, should
not be contained in I/, . However, by the methods developed in [T8], Section 5
(cf. in particular the proof of Theorem 2), first the equation “HU, NHU_ = H”
and then also our (RGD3) can be deduced from Tits’ weaker condition and the
other RGD-axioms. Because it is not difficult to verify HU, NU_ = {1} directly
in most of the examples I am interested in, I dispense with appealing to Tits’
tricky arguments here. This has the advantage that the proof of the following
proposition becomes more elementary. By the way, Tits’ remark in [T11], §3.3,
that this proof “is less easy than the familar proof in the special case where W
is finite” exactly refers to the less elementary arguments which are necessary if

one works with his weaker version of axiom (RGD3).
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Proposition 1 (cf. [T11], §3.3, Propostion 4):  If (G,(Uy)acs,H) is an
RGD-system with Cozeter system (W,S) of type M and

N = (Hm(u)|u € U, \ {1}, e € 1), then (G,HU,,HU_,N, S) is a twin BN-pair
of type M .

Proof:  Set B, := HU, (a € ®), B, := HU,, B_ := HU_ and verify the
axioms (RD1} - (RD5) of [T8], Section 5, for the triple (G, (Ba)acs, H) . Then
N/BL NN = N/B_NN = N/H is isomorphic to W and (G, B,, N, S) is a Tits
system for € € {+, —} . Furthermore, (G, B, B-, N, S) satisfies (TBN1). All these
statements are proved in loc. cit. by a similar reasoning as in [BrT1], §6.1, where
root data are treated. It is more difficult to deduce By N B_ = H from the RD-

axioms. Here, the tricky arguments mentioned in Remark 2 have to be used. But

B, N B_ = H is of course a direct consequence of our axiom (RGD3). Having estab-
lished this equality, (TBN2) is easily derived as well (cf. [T8], Corollary 1 of Theorem
2). O

Important examples of RGD-systems belong to Coxeter systems of affine Weyl
groups. In these cases, the notions introduced before Definition 2 specialize as
follows: Let W be a reduced and irreducible root system in the Euclidean space
V = R", II = {a,...,a.} a base of ¥, W, the corresponding system of positive
roots (in the classical sense), ¥_ = —W¥, and aq the root of maximal height in ¥, .
Denote by L, (a € ¥, £ € Z) the hyperplane L, := {v € V |(a,v)+ £ = 0} , by
Sq,¢ the reflection of V fixing L,, pointwise and by W = W, g(¥) the group of affine
transformations of V generated by {s,¢|a € ¥, £ € Z} .

Set I := {+ € Ng |0 £ i < n}, sp 1= S-gp,1, S = Sq0 (1 €7 < n) and
S :={s;|i € I} . Then (W,S) is a Coxeter system. The associated Coxeter complex
Y = X(W,S5) is isomorphic to the simplicial complex obtained from the decomposi-
tion of V into cells induced by H = {L.¢|a € ¥, £ € ZZ} . All these statements are
well known, cf. for example [Bou2], Ch. V, §3, and Ch. VI, §2, or [Br3], Ch. VI, §1.

The roots of £ can be identified with the half spaces of V bounded by elements of H .
Setting a, ¢ := {v € V| (a,v)+£ > 0} , we therefore obtain & = {a,¢|a € ¥, £ € Z}.
The chamber called 1 in the group theoretic description of ¥ becomes the open cell
¢ = {v € V|(ag,v) < 1 and (a;,v) > 0 for all 1 < 7 < n} in the geometric

description. The roots containing cp but not s;cp (¢ € I) are ag 1= a_4,; and
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o = ag,p for 1 <1 < n . Furthermore,

i

@,
$_

{oae € ®|(a€ ¥y and £2>0)or (a € V_ and £ > 1)} and
{aae € ®|(a €V, and £ < —1)or (e € V_ and £ < 0)}

I

Finally, a pair of roots {a, ¢, a4, } is prenilpotent if and only if b # —a . It is easy to

check that
[@a e, ¥tm] = {@payqbptigm | P,g 2 0,pa + gb € ¥ and pl + gm € Z}

in this case.

In the following examples, k denotes a field and k[t,t”!] the ring of Laurent

polynomials in ¢ over k.

Example 2: The group G = SL, ;(k[t,t™!]} We shall show that G possesses
an RGD-system with Coxeter group W = W,g(A,) . Denote by €1,...,en41 the
canonical basis of R™*! and set

V = {aij :=¢ —¢;|1 <i#j<n+1}. This is a root system of type A, in
n+41

V:{Z} Mg € R |A1+...+An+1=0}.
i=1

Choose I1 = {a; ;= a;;;1|1 €1 < n} as base of ¥ .
b
d

Gi = a, gi; =0, g;i =c¢, g;;j=4d, g, =1 forall r #1,7 and g,, = 0 everywhere else.
Set

We denote by ((é ) the (n + 1) x (n + 1)}matrix (g.,) with entries

ij

1 A C,
ei;(A) = (0 1)” (1<i#j<n+1),
ij
Us = {eij(ct™)|ce€k} for a=a,,r€d=oW),
H := SL,. (k)N {diagonal matrices}

Then (G, (Us)acs, H) is an RGD-system. (RGDO) is trivial, and (RGD1) follows
from the commutator formulae for elementary matrices. The following three equalities

imply (RGD2):
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0 ct~¢

mUgm™! = U, ,o for m = (-—c'ltl 0

) , CEk*, L€ Z and a = g

if

( 0 A) - ( 1 0)(1 A /o 0) .
—a7t o) T -t 1)\ 1)(4-1 1)
( 0 ct-f) _ (0 t~4\ ret 0
—c~ 1t 0 A=ttt 0 ) ( 0 c)
(RGD3) is a consequence of

HU+ -
U. =

(grs) € G| grs € k[t™!] for r < s and g,5 € 7 k[t7!] for r > s},
(9-5) € G| g,s € tk[t] for r < s, g, € 1 + tk[t] and g,; € k[t]

for r > s}

{
{

Finally, (RGD4) is satisfied because GG is generated by elementary matrices since

k[t,t7'] is a Euclidean domain.

Example 3: Chevalley groups over k[t,t™!] (see also [Ab5], Lemma 5)

Keep the notations introduced before Example 2. Let G be a Chevalley group (scheme)
of type ¥, 7 a maximal torus of G and A := A(7T) . Identify the root system
associated to G and 7 with ¥ . Denote by I, the one dimensional unipotent subgroup
of G corresponding to the root a € W. Set if, := (i, |a € ¥, ) and

U- = (U, |a € ¥_) . Then B, := T, and B_ := T l{- are opposite Borel sub-
groups of G . Select isomorphisms z, : Add —> 4, (a € ¥, Add = additive group),
defined over ZZ , such that the constants in Chevalley’s commutator formulae are

integers and such that there exist homomorphisms ¢, : SL, ~— G satisfying

eul(p 1D =z and () 1))=2mh)

All this can be achieved for example by using the explicit constructions described in
[St], §83 and 5. As Steinberg, we shall use the notations w,(A) 1= x,(A)z_o(—A ")z, (A)
and hu(A) := w,(A)wa(1)"!. Setting

G = G ) = (ma(N) o € B, € kL)) < ORI )
Uy = {zo(ct™|cck} for a=amc®=90W)
H = (hc)|a eV, cek”),
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we obtain an RGD-system (G, (Us)ace, H) with Coxeter group W = Wg(V). In
order to establish (RGD1), one uses Chevalley’s commutator formulae. (RGD2) is a

consequence of the equalities

7.t1a(c154)Uc,7.1Ja(ct"f)‘1 =Us, nloracV,cek"teZ,ac?,
wa(A) = w_o(=A71) = 2o (= A"z (AN)z_o(—A71) and
w, (ct™4) = wy (1) ke (c7Y)

which are easily deduced from the usual relations in Chevalley groups

(cf. [St], §3, p. 30, and §6). (RGD3) follows from

HU, NU_ C Gkt ) NG(k[t]) = G(k),
HU, N G(k) C By(k)and U_ N G(k) CU-(k) .

(RGD4) is satisfied by the definition of G .

If G is simply connected, the groups G,H,B, := HU,, B_ := HU_ and
N = (Hym(u)|u € U, \ {1}, ¢ € I} can be described more directly. Firstly
G = G(k[t,t™'}, H = T(k) and N = AN(k[t,t7']) . Secondly, there exist group
homomorphisms p, : G(k[t™¢]) — G(k) induced by reduction mod ¢t~¢ (where ¢t* :=1
and ¢t~ :=¢7') , and one obtains B, = p;! (B.(k)) for € € {+,—}.

I mention in passing that the affine BN-pair (B, N} in G is obtained by in-
tersecting an affine BN-pair in G(k(t))* with G (G need not be simply connected
here). This affine BN-pair in G(k(t))* results from the valuation of the root datum
(Ua(k(t))aecw induced by the discrete valuation w, of k(t) determined by w.(k*) = {0}
and w.(t"°} = 1 (¢ € {+,—}) as described in [BrT1], §6.5. The corresponding
Bruhat—Tits building coincides with the affine building associated to (G, B, N, S)

because k[t,t"] is dense in k(t) relative to w, .

Example 4: Almost simple k-groups over k[t,t™] (cf. [T11], §3.2)

Let G be an almost simple group, defined and isotropic over & . Applying the theory
of reductive groups over arbitrary ground fields (cf. [BoT]), it is again possible to
construct an RGD-system in G(k[t,t7'])" . The details are technically more involved
than in Example 3, especially if the relative root system of G is not reduced, and will
not be given here. Instead, I will only recall how the twin BN-pair in G = G(k[t,t™'])

looks like if ¢ is simply connected. Let 7 be a maximal k-split torus of G and denote
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by C its centralizer and by A/ its normalizer in G . Choose two opposite minimal
parabolic k-subgroups B, and B_ of G such that By NB- = C. Consider again
the homeomorphisms p, : G(k[t™¢]) — G(k) defined by reduction mod t™° and set
B, := p71(Be(k)) for € € {+,—} . If furthermore N := A (k[t,¢t7']}, H :=C(k)and
S is an appropriate set of generators of W := N/H (S is uniquely determined by each
of the two BN-pairs (B,, N)), then (G, B,,B_,N,S) is a twin BN-pair.

For classical groups, the existence of an RGD-system in G(k[t,t!])* can be estab-
lished by applying the relations stated in [BrT1], §10, without referring to the general
theory of reductive groups. In Chapter 111 the RGD-axioms will be verified explicitly

for the non-split classical groups occurring in Theorem C.

Example 5: Kac—Moody groups over k (cf. [T8] and [T11], §3.3)

In [T8], a group functor Gp is associated to every system

D = (A, (ew)icry (hi)ier) consisting of a finitely generated free ZZ-module A, a family
(a;)icr of elements of A and a family (hs)ier of elements of AY | the ZZ-dual of A,
provided that A = (Aij)ijer = ({e;,hi))ijes 1s a generalized Cartan matrix. If A
is even a Cartan matrix, Gp is a reductive Chevalley-Demazure group scheme. In
general, the restriction of the group functor Gp to fields yields the “minimal” Kac-
Moody groups of type D . We recall that Gp is generated by certain subfunctors 7 and
Ux, @ € . Here, T denotes the split torus scheme defined by 7(R) = Hom(A, B*)
for every commutative ring R. @ = ®(A) is the set of “real roots” associated to A.
It is identified with the set of roots of X(W,S) where (W, S) is the Coxeter system
belonging to the generalized Cartan matrix A . The Coxeter matrix M = (my;)ijer
of (W,S) is defined by m,; = 1 and m;; = 2,3,4,6 or co for ¢ # j according as
AijAji = 0,1,2,3 or AijA;; > 4 (4,7 € I} . As in [T8], Section 3, i, denotes the
group scheme associated to the root o € @ . It is isomorphic over ZZ to the additive

group scheme Add.

Inserting k into the various group functors, one obtains the RGD-system
(Gp(k), (Ux(k))acs,T(k)) . The RGD-axioms are verified in [T8]. ( RGDO0) and
(RGD4) are obvious according to the definitions; (RGD1) and (RGD2) follow, simi-
larly as in the case of Chevalley groups over k , from appropriate “Steinberg relations”.
But (RGD3) is more difficult here because it cannot be established by simply consid-
ering the shape of certain matrices. Instead, only the weaker condition “U_,, € U,

(and U,, € U_) for all ¢ € I” is checked directly, and from this, (RGD3) has to be
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deduced by different methods (cf. Remark 2).

Note that 7(k} G(k[t,t7!])* is a minimal Kac~Moody group of affine type over k&
in the sense of Tits for every Chevalley group ¢ with maximal torus 7. Hence the
RGD-system discussed in Example 3 can be derived directly from the RGD-system
above. However, I preferred including a more elementary treatment of G(k[t,t™!])*
for readers interested in the latter group but not in the general theory of Kac-Moody

groups.

§ 2 Twin buildings and twin apartments

To every Tits system (G,B,N,S), a thick building A = A(G, B) is associated,
the chambers of A being the left cosets of B in G (cf. [T1], Theorem 3.2.6).
Therefore, to a twin BN-pair (G, By, B_,N,S) , there belongs a pair of buildings
Ay = A(G,By), A_ = A(G, B_) . But due to the conditions (TBN1) and (TBN2),
(A;,A_) is endowed with an additional structure, The latter in particular provides a
symmetric opposition relation between the chambers of A, and the chambers of A_.
However, in order to axiomatize the properties of this opposition relation efficiently,

it is advantageous to introduce a “codistance” function between the chambers of A

and of A_ .

Before recalling the precise definition of 2 “twin building”, I will fix some notions
and notations. Throughout this book, a “building” is always understood to be a
chamber complex of finite rank in the sense of [T1], not necessarily thick, equipped
with a set of subcomplexes, called apartments, which are Coxeter complexes and
satisfy the usual axioms (listed as (B3) and (B4) in [T1]}. A building is said to be of
type M, if each apartment of A is isomorphic to L(W, S} , where (W, §) is a Coxeter
system of type M (see §1). If for one apartment ¥ of A an isomorphism between %
and E(W, S} is chosen, the function type : 5(W, S) — 2/, wW;+—— I\ J, extends
uniquely to a morphism of chamber complexes A — 27 | also denoted by “type”. We
fix a numbering of A, i.e. a type function as described above, for every building A.
Morphisms between buildings of type M are always required to be type-preserving,.
If A is a building of type M and a € A | the cotype of a is defined by
cotype (a) := I\ type(a) . a is said to be of spherical cotype or simply spherical if
W is finite for J = cotype(a} . Two chambers ¢,d € A are called i-adjacent (i € 1)
if cN dis of cotype {i} . A gallery (co,...,cn) is said to be of type (if,...,in) if
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c;-1 and ¢; are ¢j-adjacent forall 1 <j < m.

For every building A , we denote by C(A) its set of chambers. If A is of type M,
C(A) is a chamber system of type M in the sense of [T4]. Furthermore, one obtains
a well defined W-valued distance function é : C(A) x C(A) — W by associating
to each pair (c, d) of chambers the element s,, ...s;, € W, where (iy,...,4n) is the
type of any minimal gallery with origin ¢ and extremity d . A pair (C, é) consisting
of a set C and a function § : C x ¢ — W belongs to a building of type M if and only
if it satisfies the following conditions (cf. [T11], §2.1):

(Bul) é(c,d)y=1 <= c=4d
(Bu2) If é(c,d)=w € W and é§(d,e) =s € 5, then é(c,e) € {w,ws}.
If additionally £(ws} > €(w) ,then §(d, e) = ws.
(Bu3) Given ¢,d € C and s € S, there exists an e € ( satisfying
6(d,e) = s and §(c,e) = ws .
This characterization of buildings is, as far as 1 know, for the first time explicitly
stated in [T9], but it is essentially already contained in [T4], Section 3. It motivates
(together with Example 6 below) the definition of “twin buildings”. The W-distance é
associated to a building of type M will repeatedly be used in the following. However,
I do not adapt the point of view here that a building “is” a chamber system with
certain additional properties. I rather stick to the “classical” definition of a building
as given in [T1] because I think that simplicial complexes are closer to the geometric

intuition than chamber systems, and this will be helpful in the following.

Definition 3 (cf. [T11], §2.2):  Let Ay, A_ be two buildings of type M with
chamber sets Cy = C(AL), C- = C(A-) and W-distances §,,6_ . Let furthermore
a W-codistance 6" : ¢, x C_UC_ xCp — W be given. The triple (A, A_,6") is
called a twin building of type M if the following conditions are satisfied for all
¢ €Cey d_eye_. €C_cande € {+,-}:

(Twl) 8" (devrcs) = 6%(cuy d_,)"
(Tw2) If 6*(ced_c) = w, b_.(d_,e_.) =35 €S and L(ws) < {(w) ,

then 6*(c.,e_c) = ws .

(Tw3) Ifé*(cc,d_c) =w and s € S, there exists an z_, € C_, such
that 0_.(d_c,x_.} = s and 6*(c,,z_.) = ws .

Two chambers c;. € Cy, c. € C_ are called opposite if 6*(cy,c_) =1 ; this is also
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denoted by “ciopc_” or “c_opey”. Two simplices ay € Ay, a_ € A_ are called

opposite if they are of the same type and contained in opposite chambers.

If ¥ = E(W,S) is the Coxeter complex associated to (W, S) , we obtain a twin
building by setting ¥, = X¥_ = ¥ and

8" (wr, wy) = 84 (wy,w2) = §_(wy,wy) = wi'w, for all wy,wy € W = () .

Up to isomorphism, this is the only way how the structure of a twin building can be
imposed on a pair of Coxeter complexes of type M (consider (Tw3)). Analogously to
Example 1, every building of spherical type can also be interpreted as a twin building
(cf. [T11], Proposition 1). We are mainly interested in twin buildings here because

of the following

Example 6: The twin building associated to a twin BN-pair

(cf. [T11], §3.2)

Let (G, B4, B_, N, S) be a twin BN-pair with Coxeter system (W, S) of type M. Set
A, = A(G, B,) for ¢ € {+,~} . Then the W-distance . : C. x Cc — W can be

described as follows:
6:(9Be, hB.) =w < ¢ 'h € BowB, (g,h € G)

Using the Birkhoff decomposition introduced in Lemma 1, the W-codinstance 8* is

similarly defined by
&*(gBe, hB_.):= 7' (B.g~'hB_,) for g,h€G.

Now the TBN-axioms immediately imply the Tw-axioms. Hence (A, ,A_;6") is a
twin building of type M; it will be denoted by A(G, By, B_) in the following. Note
that two chambers ¢, € A, and ¢_ € A_ are opposite if and only if there exists a

g € G such that ¢, =¢gB, and c. = ¢B_ .
In the rest of this section, A = (A,,A_,§*) denotes a twin building of type M.

Remark 3: §é* is already determined by A, A_ and the opposition relation be-
cause 6*(c,, d_.} is the unique element of minimal length in
{6_c(c—e,d-¢)|coc € C—c and c_.0pc.} for ¢, € C. and d_. € C_. . This assertion is

stated as Proposition 1 in [T9], §2.2, and can easily be deduced from the Tw-axioms
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as follows:

First of all, (Tw2) and (Tw3) imply 6*(¢.,2_.) € {w,ws} , whenever

0 (ceyy-e) = w € Wand o_.(y_,2-.) = s € S . Using this and considering min-
imal galleries between c_. and d_. , we obtain £(6*(c.,d-.)) < {(6_.(c_.,d-.)) for
any chamber c_.op ¢, . Furthermore, if these two lengths are equal, then necessarily
0*(ceyd-c) = 6-.(c-,d-c). On the other hand, repeated application of (Tw3) yields

at least one chamber 2, satisfying 5*(c5,c‘15) =1 and 6_5(&5, d_e) = 0"(ce,d—s) .

It is an important feature of every twin building that it is equipped with a distin-

guished system of “twin apartments”.

Definition 4 (cf. [T11], §3.2, and [AR]): Ifc, € C; and c- € C- are oppo-
site, we denote by X(c,,c_.}) for ¢ € {+,—} the chamber subcomplexr of A, having
{d: € C. |6*(c—c,de) = 8c(ce, de)} as its set of chambers. The pair
Y{eqp e} = (E(ey, e ), E(eo,cy)) is called a twin apartment of A. We set

A: = {E(ze,z_c)|2. €C.y e € C—¢, zc0pz_.} for e € {+,—} and

A = {E{$+"T—}|$+ €Cy, T- €C-, TL0pT_} .

The following observations concerning twin apartments, also motivating this term,
are due to Tits (cf. [T9], §3.2, and [T11], §2.3). They are fundamental for an under-
standing of twin buildings and will therefore be provided with full proofs below.

Lemma 2: ¢ denotes again the sign + or - .

1) A. is a system of apartments for A, , i.e. every element of A, is a Cozeter
complez of type M and for any two c,, d, € C, , there exists a ¥, € A, containing

¢ and d, .

ii) Given ¢, € C, and d_ € C_ , there exists a ¥ = (¥,,X_) € A such that
cy €Y, and d.. € L. . X is uniquely determined if ¢, and d_ are opposite.

i) [fT = (5,,5_) € A4, then (£;,5_,6%) is a twin building.

iv) For any X, € A, , there exists ezactly one X_, € A_, such that (X, X_)E A .

24



Proof:

1)

i)

Given opposite chambers ¢, € C;,c_ € C- , we first have to show that X(cy,c_)

1s a Coxeter complex of type M. To this end, we prove the following claims:

(1) For any w € W , there is exactly one =, (w) € C, satisfying
e,z (w)) = bi(cy, 24 (w)) =w

(Tw3) and (Bu2) imply that there exists at least one =, (w) with the required
properties. The uniqueness of =, (w) is shown by induction on £(w). Assume
w = w's with s € S and {(w) = {(w') + 1 . Choose by (Bu3) z/, € ¢y with
6y(ey, 2 )=w"and &, (', 2z, (w)) = s. Then 6*(c_,z! ) = w’' by (Tw2). Hence
z!, = z,(w') by induction hypothesis. So z,(w) satisfies 6, (z(w'), z4(w)) = s
and 6*(c_,z4(w)) = w's . In view of (Tw2), there is only one chamber z(w)

with these properties.
(2) dp(zp(ws),z (w))=s for weWands€eS

This was proved under (1) in case f(ws) < f(w) . If {(ws) > {(w) , we just

apply this result to ws instead of w .

By (1) and (2), the map W —(C; , w > z4(w) , is an injective morphism of
chamber systems with image C(X(cs,c-)) . Hence it induces a type preserving
isomorphism between L(W, S) and £(cy,c_). Of course an analogous statement

is true for X(c_,c,) .

Now let ¢;,d; € C, be given. We are looking for a chamber c_opcy such
that di € E(cy,c_), le. §(c-,dy) = b4(cy,dy) . By (Tw3), we can find a
chamber c_ satisfying 8*(d;,c_) = 84(cy,dy)”" . Hence §*(c_,dy) = 64 (cy,dy)
by (Twl). But then, by choosing a minimal gallery between ¢, and d; and
applying (Tw2) repeatedly, one automatically obtains 6*(c_,c,)=1.

Given ¢, € (C4,d_ € (- , we now choose a chamber c_ € (- satisfying
d_(c-,d-) = 6"(cy,d_) . As above, 6*(c;,c_) = 1 then holds automatically.
Hence ¢, € ¥(c;,c.) and d_ € E(c_,cy) .

The second statement in ii) is a consequence of the following assertion:
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ifi)

(3) If ¢, and c_ as well as =, and z_ are opposite chambers such that
cy € E(zy,r_Yand c_ € B(z_,z, ), then X(c.,c_.) = E(ze, 7,
fore € {+,-}.

Let cy,c_,z,,z_ be given as in (3). Then 6*(c;,z_) = é4(cy,24) =: w and
8§ (coyz4)=06_(c_,z_)=:v . In view of Remark 3, we firstly obtain

{(v) < f(w) < £(v) and then v = w . We now prove (3) by induction on £(w).
We can suppose ¢ = + . Since YX(cy,c-) and X(z4,z_) are apartments, it
suffices to show X(z,,z_) € E(cy,c_) . The case w = 1 is clear. Next we
assume w = s € 5. Let y, € C(X(z,,2-)) be given and set

u = 0y (¥4, 24) = 0"(yy,2-) . Since c,,z,,y, are chambers of the apartment
Y(zy,z_), 1t follows 64 (y4,c) = us . We have to show y; € X(ej,c) , ie
0*(y4,c-) = us . In case £(us) < £(u) , the latter follows from (Tw2). So let us
assume {(us) > £(u) and choose by (Tw3) ¢_ € C- such that

o_(z_,c) = s and 6*(y;,c) = us . Repeated application of (Tw2) (and
(Twl)) yields 6*(c¢_,z,} = s . This means ¢ € E(z_,z,) . From

c. € X(z_,2,), s =0_(c_,z_) = é_(c_,z_) and i), we now deduce ¢’ = c_
and hence 6*(y4,c-) = us .

Finally, let w # 1 be arbitrary. We choose a representation w = sw' with s € §
and {(w) = £(w')+1 . Next we choose, for n € {+,~-}, z, € C(E(z,, z_,)) with
0,(Cyy 2,) = s and 6,(2,,z,) = w’ . Then also §*(2,,z_,) = w' for y € {+,—}
and hence 6"(z;,2_) = 1 by (Tw2). Now the induction hypothesis implies
Y(zp,2-) = X(zy,z_)and X(z_,2;) = E(z_,z,). In particular, ¢, € X(z,, 2_5)
for n € {+,—} and therefore

Y(ey,cn)=X(z4,2.) = X(74,z-) by the case w = s treated above.

Let c;,c_,X(cy,c} = X4 and z,.(w) be as under i). Define for v € W
z_(v) € X(co,cy) = Z_ analogously. In order to verify that (¥,,%_,é%)
is a twin building, it remains to show §*(z_(v),z4(w)} = v~'w . Note that
(2 (v),z_(v})) =1 by (Tw2} and (Twl). Hence we can apply (3) (roles of ¢
and z reversed) which yields X(z, (v),z_(v)) = E(cy,c_) . Therefore

ry(w) € X(z4(v),z_(v)) and hence

*(z_(v),z4(w)) =8, (x4 (v), z4(w)) = v~ 'w , the latter by (2).

We can assume ¢ = + and X, = E(cj,c.) with cpope . If (24,22) € 4,

then there exist opposite chambers z, and z_ such that ¥, = ¥X(z,,z_,) for
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n € {+,—} . We have to show X(z_,z;) = Z(c-,cs) . In view of (3), it
suffices to verify c. € E(z_,z4) . Let y- € E_ be opposite to c; and set
w:=§_(c_,y-) . According to (3), (X4,X_) = (E(cq,y-), E(y-,cy)) . Hence
we can find a chamber 2z, € ¥, satisfying 6,(z,,¢;) = 6*(z4,y-) = w . Then
(Tw2) implies 6"(z,,c.) = 1 . Since z; € X(c;,c_) , this is only possible if

zy =c; . Hencew=1land c. =y_ € X_ . O

The first part of statement ii) above is analoguous to axiom (B3) of [T1]; the second
generalizes a well known fact concerning spherical buildings (loc. cit., Proposition
3.25). In Lemma 3 (B4) will also be transferred to twin buildings. Before doing this,
we mention an important consequence of Lemma 2 iii) and introduce isomorphisms

of twin apartments.

Remark 4: If £ = (X;,X_) is a twin apartment, then for any chamber ¢, € Z,,
there exists exactly one chamber c_, € X_, opposite to ¢. . The bijection between
C(X;) and C(X_) obtained in this way extends to a type-preserving isomorphism
opy; : X4 — X_ of Coxeter complexes.

By an isomorphism of twin apartments we understand a pair of (type-preserving)
isomorphisms of Coxeter complexes preserving 6* . Given

¥ = (Z,2), ¥ = (iJr,f:) € A and isomorphisms a, : E,— X, for
e € {+,—}, the pair o = (ej,a_) : X — ¥ is an isomorphism of twin apartments

if and only if a_ 0 opy = op5 oay (see Remark 3).

Lemma 3: Given £ =(%,,2_),E = (§+,i_) € A and

a; € XN f)+, a_ € £_NE_ , there ezists an isomorphism of twin apartments
o= (ay,a.): ¥ — % satisfying oy(ap)=ay and a_(a_) = a_ .

Proof: In view of Lemma 2 ii), it is sufficient, to prove the claim under the additional
assumption that ay or a_ is a chamber, say a, € C, . According to ordinary building
theory, there exists an isomorphism oy : &, —— §+ fixing a,. In view of Remark 4,
there is exactly one isomorphism a_ : £_ =53 _ such that o = (ap,a ) X -— 3
preserves 8", namely a_ = opg oay 0 opy'. We have to show a_(a_) =a_ . If a_ is
a chamber, this follows from §*(ay,a_(a_)) = §*(ay(ay),a_(a.)) = §*(ay, a_),

a; € §+, a_,a_(a_) € >_ and Lemma 2 1ii).

Next, we assume that a_ is a panel, i.e. a simplex of codimension 1 in A_ . Let
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{i} be the cotype of a_ and s:=s; € S . In view of (Tw2) and (Tw3),
{6*(ay,2_)|z- €C- anda_ Cz_} = {w,ws} for some w € W .

We may assume {(ws) < {(w) . Again by (Tw2), there is exactly one chamber
c- € C- such that a_ C c_ and 6*(a;,c-) = w (c- is the “coprojection of a, onto

a_", see §4). Now the same reasoning applies to the twin buildings (X,,X_, ¢} ) and
(i+,§_,5|‘5§) . Therefore, c. € £_NE_ , implying a_(c.) = c_ as above and hence

also a_(a_) =a_ .

Finally, if e_ is an arbitrary simplex, we choose two chambers z_ € ¥_ and
F_eX. containing a_ . Join z_ and Z_ by a gallery
T_ = I9,Ty,...,%, = Z_ in the star of a_ and choose twin apartments
Y = 2,%,..,%, = ¥ such that ay € (Z;)y and z; € (I;)-
forall 0 < j < m. By the paragraph above, there exist isomorphisms a; : ,_; — I,
fixing ay and z,_;Nz,; (1 <j<m). Henceo/ :=a,,0... 00y : ¥ -2 8 fixes ay

!
+

explained at the beginning of the proof. O

and a_ . Note that ¢/ (a;) = ay(ay) implies o/, = . , and this forces o/ = a_ as

The statements of Lemma 2 ii), first sentence, and of Lemma 3 can be completed
by further conditions in order to obtain a characterization of twin buildings by twin

apartments (cf. [AR]}, but this will not be used in the following.

We are now turning to group actions on twin buildings (cf. also [T11],
§3.2). We say that a group G actson A = (A, A_, 6%} if it acts by (type-preserving)
automorphisms on A, as well as on A_ , thereby preserving the codistance é* . Be-
cause of Remark 3, the latter is already satisfied if (G preserves the opposition relation.
In the theory of buildings, “strongly transitive” actions are particularly interesting
(cf. [Br3], Ch. V, or [Ro], Ch. 5}. The natural analogue of this notion in the case of

twin buildings is the following:

Definition 5:  The action of a group G on a twin building A is called strongly
transitive if the induced action on {(c;,c.) € Cy X C- |cyopc_} is transitive.

If (G, By, B_,N,S)is a twin BN-pair, the action of G on A(G, By, B_) is strongly
transitive as is pointed out in Example 6. Note that the group B, is the stabilizer
of the chamber B. € A(G, B,) for ¢ € {+,—} . The group N stabilizes the twin
apartment ¥ = X{B,, B_} and acts transitively on C(X(B,, B_.)) = {nB.|n € N}
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for € € {+,—} . But N may be smaller than Stabg(Z) . In fact,
Stabg(X) = N(B; N B_) . This may be deduced either directly from Definition 1
or from the second statement in Lemma 2 ii). The twin BN-pair is call saturated

if By nB_ € N . For example, every twin BN-pair belonging to an RGD-system is

saturated.

If conversely a strongly transitive action of a group G on a thick twin build-
ing (Ay,A_,6") is given, a (saturated) twin BN-pair (G, By, B_, N, S) can be con-
structed as follows (cf. [T11], §3.2, or [Ab5], Proposition 2): choose opposite chambers
cy €Ay, c. €A_ | and set
B, := Stabg(c.) (¢ € {+,—}) and N := Stabg(Z{c;,c_}) -

We conclude this section by listing some simple properties of strongly transitive

actions which will be applied later.

Lemma 4:  Assume that the group G acts strongly transitively on the twin building
A . Then the following holds:

1) G acts transitively on A, A_ and A .

ii) For any twin apartment £ = (X, ,X_) ,
Stabg (X, ) = Stabg(X) = Stabg(X_) acts transitively on C(X4) and on C(X_).

ii1) Every isomorphism between two twin apartments of A is given by multiplication

with an element of G .

Proof: i) follows directly from the definitions. Lemma 2 iv) implies
Stabg(X4) = Stabg(X) = Stabg(X_) . Given ¢, d, € C(X.) , we denote by
c_.,d_, the respective opposites in C(X_.) . By definiton, there exists a g € G
satisfying gc. = d. and gec_, = d_. . By the second part of Lemma 2 ii), g is an
element of Stabs(X) . Now statement iii) follows from i}, ii) and the fact that every
isomorphism of twin apartments is already uniquely determined by the image of a

single chamber (see Remark 4). O
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§ 3 Fundamental domains for strongly transitive actions on
twin buildings

Throughout §3, A = (A, A_, 8"} denotes a twin building of type M and G a group

acting strongly transitively on A.

The results of this section are contained in the paper [Ab5], where they are treated
in the more general context of “pre-twin buildings”. The main purpose is to describe
“fundamental domains” for the action of G on A and for the actions of certain sub-
groups of G on A or A_ (see Propositions 2 and 3). The key argument is provided
by Lemma 5 below which for its part is merely a translation of Lemma 3 into the

language of group theory.

Lemma 5: Let ¥ = (£,,E.) be a twin apartment of A containing simplices
a; € Xy anda_ € X_ . Set P, := Stabg(a.) fore € {+,—-} , and let N be a
subgroup of Stabg(X) acting transitively on C(X, ) and on C(E_) . Then it follows

NOP_P,=(NANP)NNOP,)

Proof: Given n = p_p, € NN P_P, ,weset b, := p_a, =na, € ¥,. Because of
Lemma 3 and Lemma 4 iii), there exists a ¢ € G mapping p_X onto ¥ and fixing b,

as well as a_:
r P, vy
(as,0-) — (by,az) —> (by,a-)

In particular, ¢ € P_ and gp_ € Stabg(X) . In view of the assumption made on
N | there exists an h € G fixing all elements of ¥ such that gp_h € N . Hence it
follows ny := gp-h € NN P- and niay = gp_ay = gby = by = nay. This implies
ncNOnPL=n (NODPOYC(NNPHYNNOFPY. .

If a group acts strongly transitively on a building ® , a simplicial fundamental
domain for this action is obviously given by ¢ := {a € ©|a C c} for any chamber
¢ € O . In the case of twin buildings, things are not quite as trivial but still very
well describable. The following proposition yields in particular a subcomplex F' of
Ay x A_ satisfying GF = A, xA_ and gFNAF CO(gF)No(hF)forallg # h € G.
Hence F is a “fundamental domain” in the usual sense for the action of G on A x A_

if this product is considered as a polysimplicial complex. With regard to Proposition
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3, a precise description of the “identifications on the boundary of F” induced by G

is desirable and can in fact easily be derived from Lemma 5.

Proposition 2:  Let ¥ = (X,,X_) be a twin apartment of A, c. € C(X_) and
¢ :={a_ € A_|a_ Cc_}. Assume that N < Stabg(Z) acts transitively on C(X})
and C(X_-) . Then it holds:

1) G(Ey xe )= A; x AL

ii) Any two pairs (ay,a-),(a,,a’ ) € By x T_ lie in the same G-orbit if and only

if a_ =a_ and o/ € (NnNStabg(a_))ay .
Proof:

i) Given (b,,b_) € A, x A_ , we choose a twin apartment ¥ = (§+,§_) such
that b, € £, and b_ € E_ (cf. Lemma 2 ii}). By Lemma 4, there exists a
g € G such that ¢ = T and gb_ C c_ . Hence g(by,b_)e Xy xT_ .

i1} Because (G acts type-preservingly, we only have to show the following:
If ay € £; and @/, = p_a; € ¥y for some p_ € P. := Stabg(a_) , then
al, € (NN P_ja, . N acting transitively on C(X,) and a,a, being of the

!
+

n€ Nnp_Py € Nn P_P, , where P, := Stabg(ey) . Lemma 5 implies
n € (NN FP_}(Nn P.)and therefore o/, = nay € (NN P_)ay. o

same type, there exists an n € N satisfying ne;, = @, = p_a, . Hence

Proposition 2 has an interesting consequence concerning the action of Stabg(a_)
on A, . In the following, a “simplicial fundamental domain” or “sfd” for the
action of a group H on a simplicial complex © is understood to be a subcomplex
©' C O such that for every z € © , there exists exactly one =’ € O’ satisfying z = hz’
for at least one h € H .

Proposition 3: Let ¥ = (X,,5_),c_ and N be given as in Proposition 2. Assume
a. Cc_ and set P_ := Stabg(a-) . Then every sfd D, for the action of NN P_ on
Y.y is also an sfd for the action of P_ on A, .

Proof: Set B_ := Stabg(c_) € P- . Proposition 2 i) implies

B_(Z4 x {c-})=A, x{c_} and hence B_E, = A, . Therefore

31



P_.D, D B_(NNP.)D, =B.X, =A, . If ay,d|, € D, liein the same P_-orbit,
then the same is true for (aj,a-) and (@ ,a_) . According to Proposition 2 ii),
a}, € (NN P_)a, , and hence a!, = ay because D is an sfd for the action of N N P_
on ¥, . =

Recall that the apartments of A} and A_ are isomorphic to (W, S), where
(W,S) is a Coxeter system of type M . In the following, we fix an isomorphism
L(W,S) = X, by sending the chamber 1 to the unique chamber ¢, of ¥, which is
opposite to c. € ¥_ . Since N acts as the full group of type-preserving automorphisms
on X = X(W,S) , we obtain a surjective homomorphism v : N — W . If J is the
cotype of a_ C c_ and P_ = Stabg(a- )}, then (N N P_) = W; because an element
of N C Stabg(X) stabilizes a_ if and only if it stabilizes opg'(a-) C ¢, . In order
to apply Proposition 3, we therefore have to determine an sfd for the action of W;
on X(W,S) . This merely requires a reinterpretation of certain well known facts
concerning Coxeter groups (cf. [Bou2], Ch. 1V, §1, Exercise 3). A detailed proof of

the following lemma can be found in [Abj], Section 2.

Lemma 6: Let (W, S) be a Cozeter system of type M .

Set W7 = {w € Wlw is of minimal length in Wyw} for J C I .
Then ©7 = {wWgx|w € WY and K C I} is an sfd for the action of Wy on
E(W,S) . Ifai (¢ € I) denotes again the unique root containing I bul not s;, then

Ejzﬂa,'. O
e

Remark 5: It is easy to prove that every sfd for the action of W; on (W, S)
containing the chamber 1 must coincide with £7 .
Hence {vE” |v € W} is exactly the set of all sfd’s for the action of W; on Z(W,S) .

Using Example 6 and Lemma 6, Proposition 3 has the following application:

Corollary 1:  Let (G, By, B_,N,S) be a twin BN-pair with Cozeter system (W, 5)
of type M . Set Pj := BW.B, for L C I ande € {+,—} . Then forany J C 1,
57 = {whi |w € WY and K C I} is an sfd for the action of Py on Ay = A(G, By).

O

This statement appears already in [T7], Section 15, where it is derived purely

group theoretically without using twin buildings. Also the following specialization of
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Corollary 1 is mentioned there, though somewhat implicitly.

Corollary 2: Given a Chevalley group G of type ¥ and a field k , we consider
the twin BN-pair (G = G(k[t,t7'))t, By, B_, N, S) associated to the RGD-system
introduced in Example 3 of §1. Recall that W = Wg(¥) and

I ={i € No|0<i<n} in this case. Then for J:=1\ {0} , Wy = W(¥) is the

linear Weyl group of ¥ , and L7 = N a; is a closed Weyl chamber or “quartier”
icJ

in X(W,S) . Ildentifying this Cozeter complex with the “standard apartment” of the
(Bruhat-Tits) building Ay = A(G, By) , Corollary 1 implies that £ is an sfd for
the action of Py = G(k[t)Y(:= (z.(AN)la € ¥, A € k[t])) on A, . O

This result was first proved (in the case of simply connected Chevalley groups for
G(klt])) = G(k[t])") by Soulé (cf. [So]}). His proof depends on certain calculations
concerning Sl,;1 and on the technically complicated §9 of [BrT1]. In contrast to
Proposition 3 above, Soulé’s approach is therefore geometrically not very transparent.
Note also that Proposition 3, or more precisely Corollary 1, can immediately be

applied to all other examples discussed in §1.

The key of the proof of Corollary 2 as described above consists in the simple fact
that G(k[t])* is the stabilizer in G of a vertex of A_ = A(G,B_), the “twin” of
Ay . This observation is quite generally useful when the action of G(k[t])*t on A} is

studied as the following section will show.

§ 4 Coprojections in twin buildings

In ordinary building theory, “projections” play an important role. The existence of
projections of chambers onto lower dimensional simplices for example is equivalent to
the famous “gate property” (cf. [T1], 2.30.6 and 3.19.6) which is one of the charac-
teristic features of buildings. In the framework of [T1], projections are introduced in
connection with galleries and convex subcomplexes of buildings. But projections can
also be characterized by means of the W-distance (cf. [DS]). If one wants to introduce
the dual notion of “coprojection” into the theory of twin buildings (there are good

reasons for doing this, see for example §5 below), only the second approach can be

transferred because connecting galleries between chambers of A, and chambers of

A _ do not exist.
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The starting point for a general definition of coprojections in twin buildings is
the following consequence of the axioms (Tw2) and (Tw3) which was already used
in the proof of Lemma 3: If (A}, A-,6*) is a twin building, c_. € A_; a chamber
and b, € A, a panel, then there exists exactly one chamber d. € A, containing b,
such that 6*(c_., d.) is of maximal length in {6*(c_.,z.}|z. € Cc and b, C .} . This
statement can easily be generalized (cf. Lemma 10 i}} by replacing the requirement
“b, € A, is a panel” by “b, € A, is a simplex of spherical cotype”. We call d, the

coprojection of c_. onto b, and denote it by proj; c_. .

As in ordinary building theory, we also want to “project” lower dimensional sim-
plices, not only chambers. A definition of proj; a_,. which seems to be quite natural
will be given in case a_, and b, are both of spherical cotype. Some “nice” properties
of coprojections can be deduced then, see in particular Proposition 4 below. If only
be is spherical, one may still think of possible definitions of proj; a_. (see Lemma 10
ii}), but essential parts of the present section are not applicable in this case. On the
other hand, if b, is not spherical, the notion of a “coprojection of a_, onto b.” does

not make sense even if a_, is a chamber.

Before discussing coprojections in detail, we have to collect some facts concerning
Coxeter  groups. Let (W,S) be again a Coxeter system with
S = {s;|+ € I} and length function { = £s : W -—INy . For any subset
X € W | we call an element minimal (respectively, maximal) in X if it is of mini-
mal (respectively, maximal) length in X . The following statements are well known

(cf. for example [Bou2], Ch. 1V, §1, Exercises 3 and 22):

Lemma 7:  Assume J, K C I and w € W . Then it holds:

i) The minimal elements wy and wy in Wiw and in wWg are uniquely determined.
One obtains {(w'w,} = {(w') + £(wy)} for all w' € W and
L waw™) = {(wy) + L(w") for all w” € Wy .

ii) There ezists a unique minimal element wo in WyjwWy . If w is minimal in

Wiw and in wWg , then wy = w .

i) If Wy is finite, there ezists a unique mazimal element in Wy | called w5 in the
following. One has w%{s;|j € J}w§ = {s,|j € J} and
Lw'wd) = £(w§) — L(w') = L(wSw') for all w' € W . 0O
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The next lemma can be derived from the previous one. However, [ shall give a

different, very short proof using Coxeter complexes.

Lemma 8: Let w be minimal in WywWg and set

JNwKw™:={j € J|s; =wsyw™! for some k€ K} . Then
WinwWrw™ = Winure-1

Proof: Interpret W; and wWg as elements of (W, S) . Then W; N wWiw™! s
the stabilizer of the projection of wWjg onto W (cf. [T1], Proposition 12.5). On the

other hand, this projection is the face of cotype J N wKw™! of the chamber 1 (cf.
[DS], Proposition 3). a

Also the next result is probably not new. However, since everything else in this
section depends on it and I do not know of an appropriate reference, it will be proved

completely here.

Lemma 9: Assume that Wy and W are finite. Suppose further that w is
minimal in WywWy and set J' = JNwKw ™!, K':=w 'Jwn K . Then

w® = wuwGw wd = WG wuwdwd is the unique mazimal element in WywWk .

Proof: w™'wSw = ). follows from w™!{s;|j € J}w = {sx|k € K'} . Now let
z be an arbitrary maximal element in W,wWy . We shall show z = wlw5ww} .
Because 7 is maximal in Wz as well as in zWj |, one obtains wjz, = z = 2w} for
the minimal elements z; and z; in Wjz and in zWk (cf. Lemma 7). Let 2 be the
minimal element in z, Wk and set y, 1= 27’2, € Wy . Because of

{(z1) = £(z1} + £(y1) and the minimality of z; , z; is also minimal in Wjz2; and
coincides therefore with w by Lemma 7 ii). Analogously, z, = yow with y, € W .
To sum up, z = wwy; = yww and £(z) = £(wh) + L(w) + £(y1) = {(y2) + L{w) +
{(w}). Furthermore, y3'w§ = wuwdyr'w™! € Wy NnwWrw™! = Wy by Lemma 8
and hence y; € wSWy . The unique minimal element in wyWj: is ww5, by Lemma 7
iil). Set u:= (wjw$ )} 'y, € Wy . The following comparison of lengths implies u = 1

and hence z = wiw%ww); :

L(wSwS ) + £(u) + £(w) + L(wl) = £(ya) + L(w) + L(wd) = {(z) =

= f(wlwS uwwd ) = {(wlwS ww  lvwwd )y < L(wiwd) + L(w) + L(wh) .
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For the rest of this section, A = (A,,A_,é") denotes a twin building of type
M = (mis)ijer, a—e € A_, a simplex of spherical cotype J and b, € A, a simplex of
spherical cotype I . We set

Cla_c)={c.e €C-¢ |a: Cc_c} and C(b.) = {d. € C. |b. Cd.} .

The Tw-axioms immediately imply 6*(C(a-.) xC(b.)) = WywWk for some w € W, In
the following, we may and shall assume that w is minimal in W;wW} . The maximal
element in WywWyg , uniquely determined by Lemma 9 , will again be denoted by

w®. Finally, we set

C(be;a-e):={d: € C(be)|Tc_. € Cla_.) such that §*(c_.,d.) = w°}.

Definition 6:  The coprojection of a_. onto b, is the simplex
projy, @_e i= ﬂ d. € A, .
diec(bﬁa—c)

Elementary facts concerning coprojections, very similar to the properties of pro-
jections discussed in [DS], are listed in the lemma below. Without loss of generality,

we shall assume € = 4+ from now on.

Lemma 10:

i) If a_ is a chamber, then proj;, a_ is a chamber, too.

1) {Pr0j3:+ c-|co €C(a-)} =C(by;a”) . In particular

proj,, a. = [] proj, c_ .
bt c—cClar) by

i) Assume dy € C(by;a_) and & € C(by) . Then d, € C(by;a_) if and only if
o4 (dy,d ) € Wi, where K := wi(w™ ' Jwn Kyw) C K .
Hence C(by;a-) = C(proj;, a-} and cotype (proj;, a.) = K" .

Proof:

i) Choose a dy € C(by;a.),ie &"(a_,d;) = w’=wuw} . Let &\ be an arbitrary
element of C(by) . Then v:=46,(d,,d;) € Wx , and hence
f(wv) = £(w®) — £(v) by Lemma 7. Therefore (Tw2) implies §*(a_,d}) = w’v.
In particular, C(by;a-) = {d; } and proj;, a_ = dy.
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i} If dy € C(by;a-), there exists a c- € C(a_) such that §*(c_,d,) = w°. In

particular, §*(c-,d, ) is maximal in 6*({c_} xC(b;)) , and hence d, = proj,, c_.

Conversely, let c. € C(a.) be given, and set d, := proj;, ¢~ . We have to
show w? € 8*(C(a-) x {d,}) . Recall that §*({c_} x €(b;)) = vwWy for some
u € W; . We choose u minimal with this property. Then uw is minimal in
uwWp , because otherwise f(uwsy) < f(uw) for at least one k € K . But
w being minimal in wWy , this would imply uwsy = w'w with v’ € W; and
{(u") < {(u) , contradicting the choice of v . Now the minimality of uw in
uwWg implies the maximality of vww$ in uwWyr = §*({c-} x C(b4)) .
Hence www. = 6*(c_,proj;, c-} = &*(c_,d;) and
w? = (whuu Juwu € 5°(Cla) x {dy})

i) dy € C(bs;a-) implies 6*(C(a_) x {dy}) = Wyu® = Wywwy . Choose a
c- € C(a-) satisfying 6*(c_,d;) = wwd . Setting v :=d,(dy,d,) € Wk , the
equality 6*(c_,d!,) = wwlv follows as under i). Now we obtain the following

equivalences:

&, € C(by;a) w? € 0" (Cla-) x {d}}) = Wiwwiv
ww?\, € ijw?\,—v
w,o\.,vwlo( € Wi Nw 'Wyw

w%rvw?{ € Wkrw-1Jw = Wg (by Lemma 8)

[

v E W?(W]\’fw(})\-' = W}\-'n

(Recall that wi Kwy = K by Lemma 7 iii).) This proves the first claim, and

the second follows immediately. u

Corollary 3: Let ¥ = (E4,Z_) be a twin apartment of A such that
by € I; and a- € E_ . Recall that (£4,%.,8%5) is a twin building as well (cf.

Lemma 2 ii)). Then the coprojection sprojy, a— relative to ¥ coincides with

proj;, a~ = Aproj;, a- .

Proof: Since 6*((C(a-) N E_) x (C(by) N E4)) = WywWk, C(by;a-) N Xy is not
empty and contains a chamber d, . Now by Lemma 10 iii}, gproj;, a_ as well as

aproj;, a— is the face of cotype K" of d . O
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Proposition 4:  Assume that £ = (X,,X_) is a twin apartment of A containing
by and a_ . Let opy be as in Remark 4. Denote by “proj” the usual projection

in buildings and by OPs,, the opposition involution of the spherical Cozeter compler

Ty, = {fy €5, 1by S} . Then

proj;, a_ = oPg,, (projb+ (Opgl(au)))

Proof: In view of the above corollary, we can assume A = ¥ .

Set ay := opy'(a-) , and note that 6*(C(a-)} x {24}) = 6,(C(ay) x {z4}) for any
1 € C(Z4) . On the other hand, 6, (cy, 24 )04 (24,y4+) = 64(cy,y4) for any three
chambers ¢ ,z,,y, of the Coxeter complex X, . Therefore, for any d, € C(b,),
ww)- € 6*(Cla-) x {d,})} if and only if w € 8, (C(ay) x {op2b+(d+)}) . This implies

ops,, (C(byia-)) = {d, €C(b4) 13y € Clay) such that &, (cy, d}) = w}.

Since w is minimal in WjwW} , the set of chambers on the right hand is precisely
C(proj,, ay) (cf. [DS], Section 3).
Hence opy, (C(proj;, a-}) = C(proj,, ay), and the claim follows. O

[ mention in passing the following consequence of Proposition 4:
The term oPs,, (projs, (opg'(a-))) is independent of the choice of the twin apartment
¥ containing b, and a_ . An application of Proposition 4 to groups acting strongly
transitively on A will be given in §5, see Lemma 12 below. Here, 1 only demonstrate by
means of an example that coprojections can be useful in order to study the geometric

properties of group actions on certain affine bujldings.

Example 7: Keep the notations introduced in §1, Example 3, and in
§3, Corollary 2. Let A = (A,,A_,é*) be the twin building associated to the twin
BN-pair (G = G(k[t,t ']}, By, B_,N,S) , and consider the action of I := G(k[t])*
on A4 . Then for any b, € Ay, I',, := Stabp(by) automatically stabilizes a simplex
which is in general strictly bigger than b, . This fact can be explained very naturally
by using coprojections. Indeed, recalling the identity I' = Pz-i{o} (= B-Wp ey B-) and
denoting the corresponding vertex of A_ by 0_ , it is clear in view of Definition 6

that I's, = Go_ N Gy, stabilizes proj;, 0 as well.

If b; is of the form o, as described in [Ab3], proj;, 0- is nothing else but the

simplex denoted by o, there. This can be shown by combining Proposition 4
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above with Lemma 3 in [Ab3]. The fact that I, stabilizes o, can also be deduced
from the following observation due to Soulé (cf. [So]): Let X, be the “standard
apartment” of A, and identify its geometric realization |X,| with IR™ . Then for
any ¢ € R"\{0}, I, := Stabr(z) fixes the whole ray [z[:= {Az|A € R and A > 1}
pointwise. Also this stronger statement admits a natural interpretation in the context
of twin buildings, as we shall see after having introduced the notion of “coconvexity”

below.

Appendix: Coconvexity

As already mentioned at the beginning of §4, projections and convex subcomplexes
are closely related to each other in ordinary building theory. Having introduced
coprojections, it is natural to look for an appropriate notion of “coconvexity” in twin
buildings as well. Some results in this direction are presented in the following. The
proofs are omitted here because this appendix will be referred to only once (cf. §6,

Proposition 6) throughout the present book. They will be published elswhere.

Definition 7:  Let O, be a subcomplez of A, fore € {+,—} . The pair (04,0_)
is called coconvex if proj; a_. € O, for any two spherical simplices b, € O, and

a_. €0_, .

This definition is motivated by the following facts:

1. A chamber subcomplex % of a building is convex if and only if

proj, ¢ € & for any panel b € x and any chamber c € & .

2. An arbitrary subcomplex « of a Coxeter complex is convex if and only if

proj; e € & for any two simplices a,b € & .

Nevertheless, it is not quite obvious which definition of coconvexity is the “right”
one. Definition 7 states the minimal condition every coconvex pair should satisfy. But
this condition is “weak” if ©, and ©_ contain “few” spherical simplices. Furthermore,
it is not clear even in the case of chamber subcomplexes whether the coconvexity of
(@4,0_) implies that ©, and ©_ are convex. In fact, | have reason (though yet no

counter-example) for doubting that this is true.

However, an important special case will be mentioned below where all these diffi-

culties do not occur. Before, two further notions have to be explained:
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1. Because (ﬂ@‘_’{_ , ﬂ@",) is coconvex if all (@i,@f_) are coconvex, every pair
i i

(©,,0_) of subsets of (A;,A_) is contained in a unique minimal coconvex

pair of subcomplexes, called the conconvex hull of (0,,0_).

2. A pair of subcomplexes o = (a4, a_) is called a twin root of A if there exists
a twin apartment ¥ = (X,,X_) such that o, is a root, of X, for € € {+, -} and
opg(ay) = —a_ , the root opposite to a_ in ¥_ . Using Proposition 4, it is

easy to check that every twin root is coconvex.

Proposition 5: Let by € Ay, a- € A_ be simplices of spherical cotype and
Y= (X,,X.) a twin apartment of A containing b, and a_ . Then the coconvex hull

of ({by},{e-}) is the intersection of all twin roots of ¥ containing b, and a_ .

Proposition 5 goes well together with the characterization of convex subcomplexes
of Coxeter complexes (cf. [T1], Theorem 2.19) and of full convex hulls of subsets of
a building which are contained in an apartment (cf. [T1], Proposition 3.18). It is
somewhat surprising that one need not presuppose the existence of any spherical

simplices different from b, and a_ .

Corollary 4:  Let (©,,0_) be the coconvex hull of ({b,},{a-}) , and set
b_ :=opy(bs), ay :=opg'(ay) . Then it follows

O, = N{ay|a; isarootof L, by €, and ay € —ay}
O = N{a_|a_isarcotofL_, b_ € —a_ and a_ € a_}
In particular, ©, and O_ are conver subcompleres of rank

r:=rk proj;, a_ =rtk proj,, ay =tk proj,_b_ =rk proj;_ b, .

Using some results about convex subcomplexes of Coxeter complexes (cf. [Ab2],
Proposition 1}, we obtain the following statement: ©, is a chamber complex with the
property that every simplex of rank » — 1 is contained in at most two simplices of

rank r (O, is “thin with boundary”). This immediately implies

Corollary 5:  Let G be a group acting strongly transitively on A | and let (©,,0_)
be given as in Corollary 4. Then G,, N G,_ fites @, and O_ pointwise.
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Example 7 (continued):  We just specialize the last two corollaries to the fol-
lowing situation: a_ is the vertex 0_ of A_, a, = 0 the vertex of X, opposite to
0_ and by # 04 an arbitrary simplex of ¥, . Identifying again |X,| with R", 0}
coincides with 0 € IR" . Let z € IR" be an element of the cell corresponding to b, .
Then by the Corollaries 4 and 5,

[z =T, = Go_ NGy, fixes all elements of

04| =N{auela eV, €7, (a,z)+£>0and £<0},

where o, , = {v € R" |(a,v) + £ > 0} as in §1. In particular, |0, ] is a closed convex

subset of IR" containing the ray [z].

§ 5 A G, —invariant filtration of A,

We are now going to apply the results of the last two sections in order to deduce
finiteness properties of G,_ = Stabg(a-) , where G is a group acting strongly transi-
tively on a twin building (A, ,A_, §*) subject to certain conditions (see §6). F P, ~
and F,,—properties of a group are usually derived by studying the action of this group
on an appropriate space. In the case of G,_ , this will be the geometric realization
|A,| of Ay . Since the action of G,_ on A, admits an sfd by Proposition 3, we can
apply the concept of “I'-restrictions” introduced by Abels in [A2] and also used in

[Ab3]. We recall some notations and results in this context:

Let A be a building and C its set of chambers. Denote by d : C x ¢ ~— Ny the
usual gallery-distance (i.e. d =f€océ:CxC-— W -—N, if (W,S5) is the Coxeter

system associated to A). Set

d(a,b) := min{d(z,y)|z,y €C, a Cz and b C y} fora,be A and
d(A, B) := min{d(a,b)|a € A and b € B} for A, BC A.

Let I be a group acting on A , and suppose that there exists an sfd F for this
action (this is the essential assumption in this context!). Denote by r : A — F' the
simplicial retraction mapping each a € A onto the unique element of ['a N F . Fix a

chamber ¢y € F , and set

F, = {acF|d(a,e0) <),
A; = {beAld(b,Te) <j}=TF (j€No)
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Weset #:={y € A|ly Cz} foranyxz € A. If cis a chamber contained in Aj; \ 4, ,
then by [A2], Lemma 2.4, 8N (A;11\A;) possesses a unique minimal element, denoted
by R'(c) and called the I'-restriction of c. We set

Ry == {RY(c)|ceC and c € Ajp1\ A} and for any b € Ry,
S(b) = {a€AlaUbeA )} =sta,,(b),

T'(b) := {a€Sb)|lanb=0}=~Lks, (b},

T(b) = S(b)na,.

In order to analyse the I-invariant filtration (A;);en, of A , we need the four state-
ments listed below. The first three are proved in [A2], Sections 2 and 4, and the last
one in [Ab3], §2.2.

Lemma 11:  With the notations introduced above the following holds:

) A =4;U U S(b)

bERJ+1
i) S(BYNSWHYC A forallb#¥ € Rjyy
iii) T(b) = 0b*T'(b) , where 8b:=b\ {b} and %” means “oin”

v} T'(yb) = ¥T'(b) for all y € T,b € Ry and
T'(b)y=Ty{a € Ala Cproj,co and aNb=0} forallbe R; 1N F . a

Now we consider the following specialization: Given a group G acting strongly
transitively on a twin building (A, A—,é*) of type M and an element § # a_ € A_,
weset ' = G,_ and A = A, . We choose a twin apartment £ = (X,,X_) with
a_ € X_ and an sfd F = D, C X, for the action of G,_ on A, as described
in Proposition 3 (see also Lemma 6). Finally, ¢ is the (unique) chamber of D,

containing a, = ops'(a_) .

In order to derive finiteness properties of GG,_ from the set-up described above,
one has to analyse the homotopy properties of the various |7”(b;)|. In view of the
intended applications, we restrict ourselves to considering spherical simplices a— and
b, . In this case, 7"(b,) can be described more explicitly than in Lemma 11 iv), i.e.

without referring to I'y, . This is due to the following consequence of Proposition 4:
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Lemma 12: Assume that a_ and by € Dy are of spherical cotype.

Set  pp = proj;, @ , py = DPIOj, a4 , €4 = PIOj,, & 2 py and

Ay, = {zy € Ay |by Tz} . Then it follows

Lo ey = {zy € C(by) | 24 is opposite in A,, to a chamber containing p}} .

Proof: Set

Clby;py) == {24 € C(by)|zy is opposite in A, to a chamber containing p}}. By

Proposition 4, p, and p} are opposite in A,, , implying c; € C(by;pL). Since

I'y, = G._ NGy, stabilizes Ay, and p} , it is clear that it stabilizes C(by; p} ) as well.
Now assume that an arbitrary x; € C(by;p} ) is given. Since D, is an sfd for the

action of I' on Ay and b, € D, , there exists a v € I'y, such that y; =~z € D,.

Hence y,,c; € C(by;p3) N X4 , and both chambers must contain p, , the unique

element of ¥,, opposite to p} . By Lemma 4 ii), we can choose an n € Stabg(X)

such that ny, = ¢, . Then np, = p, = proj,, a; which implies nay = a; by
[T1], Proposition 12.5. Hence also na_ = a_ and n € G,_ N G, = Iy, , showing
Ty S F5+C_+_ . a

Motivated by Lemma 12, we introduce the following

Notation: If © is a spherical building, 5 € © and “op” denotes the opposition

relation, we set
®°b) := {f € O] there exist chambers ¢ 2 f and d D b such that cop d}
= U St@(a)

aopb

The complexes ©°(b) will be studied in detail in Chapter II. They are important

for us in view of the following consequence of Lemma 11 iv) and Lemma 12:

Corollary 6: Ifa_ and by € Dy N Rjyy are of spherical cotype, then

T'(by) = ©° ((proj;, a-) \ b} )

'U)h-ere(")ZEkA+(b+) = {f+€A+|f+Ub+€A+ andf+mb+:®}gAb+ . a

Remark 6:

i) If £4 is locally finite, the analysis of the homotopy properties of the filtration
(Aj);»0 is reduced by Lemma 11 and Corollary 6 to the study of subcomplexes
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of type ®%(b) in certain spherical buildings. In order to apply Theorem A below
(see §6), we shall have to decide whether the following generalization of the

Solomon-Tits theorem is true for a given spherical building © of rank r :

(Se) ©%b)is (r — 1)-spherical for any b € © , i.e. |©%(b)| is homotopy

equivalent to a bouquet of (» — 1)-spheres.

Unfortunately, (Se) is definitely false for some “small” buildings and “most” of
the rank 2 buildings which are not Moufang (see Ch. II, §2). It is the main
goal of the subsequent Chapter II to verify (Se) for every “classical” spherical
building with the property that each of its panels is contained in “sufficiently

many” (depending on r) chambers.

i) If by € D, N R;, is not spherical, 7'(b,) cannot be described any longer
without referring to the codistance 6* . The easily proved analogue of Lemma

12 1n this case is given by the equation
Ty, (proj,, co) = {z4 € C(by)|Ico € C(a-) such that §*(c-,z4) = w},

where w is minimal in 6*(C(a-) x C(b;)).

Even more disturbing than the occurrence of §* is the fact that 77(b, ) is hardly
(r—1)-spherical for r := rk fka, (b;). This may roughly be seen as follows: Take
a subcomplex B C fka,(b;) not contained in 77(b) such that B C T"(b,)
and the pair (|B|,|0B|) is homotopy equivalent to the (r — 1)-ball B"™~! and
its boundary S7"% . The existence of such a B has to be verified which, by
the way, is trivial if ks, (by) is a thick tree and a_ a chamber. Now by the
theorem of Mayer—Vietoris, 0 # ET_Q(B N T'(by)) injects into ﬁ,_g(T’(b+))
since Er_l(n) = 0 for any subcomplex & of fka, (b;) because |fka, (by)| is

contractible and (r — 1)-dimensional.

In order to determine the exact “finiteness length” of the group G,_ by means of
Brown'’s criterion (see §6), we also need to establish the existence of infinitely many
7 € INg such that |7T'(b, )| is not contractible for some &, € R;;; . This could be done

by the methods developed in Chapter II but it is more convenient to use the following

Lemma 13:  If ¥, is infinite and locally finite, then there exist infinitely many
chambers ¢, € D, such that RY(c.) is a panel. If additionally A, is thick and
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n:=rtk Ay — 1, there are infinitely many b, € ( U Rj+1) N D, such that
j€Ng

Hooa (T(54)) # 0 .

Proof: Set A := {a|a is a oot of £, ¢g € o and ay € Oa} , and recall that

D, = N o (cf. Lemma 6 and Remark 5). Firstly, we show that there exist in-
a€A

finitely many vertices in the interior of D, , i.e. not lying on any of the walls
Ja(a € A) . This is done most conveniently by using geometric arguments. [t
is well known that an infinite, locally finite Coxeter complex is irreducible and either
of affine or of compact hyperbolic type (cf. for example [Bou2], Ch. V, §4, Exercise
14). Hence ¥, can be obtained from an appropriate tesselation of a Euclidean or
hyperbolic space X by Euclidean or hyperbolic simplices. We identify |Z,| with X
and choose a ray r with origin zo € |ay| such that r \ {zo} is contained in the in-
terior of |D4| . The (Euclidean or hyperbolic} distance from the points of » to any
of the walls |0a|(a € A) is unbounded. On the other hand, every ball with radius

d := diameter of |co| contains at least one vertex.

Next, we associate to every vertex vy in the interior of D, a chamber
c; € D, satisfying tk (R (c;)) = rke; — 1. One simply takes c, = ops,, (proj,, co)
which is the unique chamber in ¥,, having maximal gallery-distance from ¢o . Since
¢y € X,, C Dy, RP(cy}is the minimal face b, of ¢, with the property
d(by,c0) = d(cy,co) , and this is by construction of ¢, the panel b, = c; \ vy
(b, = ¢, would imply the finiteness of £, ). This proves the first claim of the lemma.
By Corollary 6, T'(b, ) is the disjoint union of at least two points if A, is thick.
Hence |T'(by)| = |06y | * T'(by) (cf. Lemma 11 iii)) contains an (n — 1)-sphere, and

the second claim follows. 0

§ 6 Finiteness properties of G,_

We want to determine the “finiteness length” of G,_ , i.e. the largest number
m € INg U{oo} such that G,_ is of type F,, . Under suitable assumptions this can be
done by applying a criterion of K.S. Brown together with the results of §5. We recall

some notions which will be used in the following:

- A d-dimensional CW-complex is said to be d-spherical if it is (d—1)-connected,
consequently if and only if it is contractible or homotopy equivalent to a bouquet

of d-spheres.
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— A d-dimensional simplicial complex is called d-spherical if its geometric real-

ization is d-spherical.

- If a group ' acts on a CW-complex by homeomorphisms which permute the
cells, X is called a I'- CW-complex.

As already in [Abl], [A2] and [Ab3], a specialization of Brown’s criterion will be used

which is adapted to our purposes:

Lemma 14 (cf. [Br2], Corollary 3.3): Let X be a [-CW-complex. Suppose that

there exists an integer n > 1 such that the following conditions are satiéﬁed:

(a) X is n-connected,
(b} If o is a cell of dimension d < n , the stabilizer [', is of type F,_y4 .

(¢} X = 'eLIIJ\I X; with T'-invariant subcomplezes X; of X which are finite modulo T
i 0

forally .

(d) X;41 = X;U L]' S:j with contractible subcomplezes S;; C X;41 satisfying
1€ f

(di) Sn;NSi; C X, forallj and allh #:1 € I;
(d2) Si; N X; is (n — 1)-spherical for all j and all 2 € I;
(ds) There exist infinitely many j such that En_l(S;Jﬂ X;) # 0 for at least one
1 €1
Then T is of type F._1 and not of type F P, . a

In view of Corollary 11 below, we also recall a well known sufficient
F..-condition which is treated in [Br2] as well (c¢f. loc. cit., Proposition 1.1 and

Proposition 3.1).

Criterion: Let X be an (m — 1)-connected I'-CW-complex which is finite modulo
['. Assume that [, is of type F,,_q for any cell o of dimension d < m. Then I is of
type F. .

We are now going to apply Lemma 14 to the following situation:
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A = (A,,A_,6*) is a twin building, G a group acting strongly transitively on A
and I' = G,_ the stabilizer of a fixed simplex § # a_ € A_ . Then X = |A4| is a
[-CW-complex. We consider the I'-invariant filtration of A, introduced in §5 and
set X; := |Aj| . According to Lemma 11 i), X;;; = X; U %J |S(b)| . Hence the

bE 1+1

index set {; is equal to R;,; here, and S, ; = |S(b)| for b€ [; .

In order to fulfill the requirements (a) — (d) of Lemma 14, we make the following

assumptions:

(LF) The apartments of A, and A_ are infinite and locally finite.
e stabibzers Iy, = G,_ N G, are finite for a + € AL .
F) Th bili Ly, Gy finite for all 0 # b, € A

(S) If © is the full link of a non-void simplex in A, and d = dim @ , then ©%(z) is
d-spherical for any z € © .

Discussion of the assumptions:

(LF) The set-up described above is not very fruitful if A, and A_ are spherical
buildings. This is due to the fact that in this case I' = Ty, for the non-void

simplex b, = projja_ € A, .

On the other hand, Remark 6 of §5 shows that

|S(by) N X;| = |T(by)| = |8bs] # |T"(by)| is hardly spherical if b, is not of
spherical cotype. We are therefore requiring that all non-void simplices are of
spherical cotype, i.e. that the apartments are locally finite. We recall once more
that (LF) is satisfied precisely by those buildings which are either of irreducible
affine or of compact hyperbolic type.

(F) This condition may seem to be too restrictive at first sight. But we shall see
soon that it is quite natural in our context in case (LF) is satisfied. At first we

state some equivalent versions of (F):

Lemma 15: Let A and G be as above, assume (LF) and let ¥ = (X,,X_) be a

twin apartment of A . Then the following statements are equivalent:
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i) (F)
i) Ay (and hence also A_} is locally finite, and
Fixg(2):={g € Glgz =z for any x € ¥, UL_} is finite.

iii) Every panel of A, (and hence also of A_) is contained in only finitely many
chambers, and Fixg(X) is finite.

Proof: Without loss of generality, we assume that a_ € ¥_ .

i) = 1ii): Since G acts strongly transitively on A |

sta,(by) = Ty, sts, (b)) for any b, € £, (cf. Lemma 2 i), Lemma 3 and Lemma 4
iii) of §2). In view of (F) and (LF), sta, (by) is finite for any @ # b, € £, . Therefore

Ay is locally finite. Fixg(X) is finite because it is a subgroup of T'y, .
1) = i) trivial.

iii) = i} Choose chambers ¢; € ¥, c. € E_ such that c,opc_ and a_ C c_ .
Let 0 # b, € I, be given, and consider the action of I',, on C; x C- . We shall prove

the following two statements which obviously imply the finiteness of Iy, :

1. The stabilizer Stabr, (cy,c_ ) is finite.

2. The orbit I'y, (¢4, c.) is finite.

By Lemma 2 ii), an element of G stabilizing ¢, and c. has to stabilize ¥ . Hence

Stabr, (c4, c_) = Fixg(X) which is finite by assumption.

The first part of statement iii} implies the following: Given a chamber z in A} or
in A_ and an integer £ > 0, there exist only finitely many chambers having gallery

distance < £ from z . Taking into account (LF) as well, we see that

{v+ €Cs |di(ys,by) S dy(ey, 04)} = My
and {y. €C. |a-Cy-} = M_

are finite sets of chambers. The proof is now finished by observing

Fb+(C+,C_)gM+XM__. O
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Corollary 7:  Let (G, (Us)ace, H) be an RGD-system with Cozeter system

(W, S = {s:|i € I}) such that W; is finite for any I #J C I.

Let  furthermore A be the twin building associated to the twin BN-pair
(G,HU,,HU_,N,S) (c¢f. Proposition 1 and Fzample 6). Then the following holds:

1) (F) is satisfied if and only if H and all root groups U, are finite.

1) If (G, (Us)aes, H) is an RGD-system as described in one of the Examples 2 - 5
of §1, (F) is satisfied if and only if the ground field k is finite.

Proof:

1) Denote by ¥ = (X,,X_} the standard twin apartment of A containing the
opposite chambers B, = HU, and B_. = HU_ .
Then Fixqg(X) = By N B_ = H , the latter by (RGD3). Furthermore, it is easy
to see that the map

Ua; —{c; € Cy |y is 1-adjacent to B}, u — us; By (1 € 1)

is bijective (cf. for example [T8], Section 5, Lemma 4). Therefore, statement i)

immediately follows from Lemma 15.

ii) All root groups U, are isomorphic to the additive group of k in the Examples
2, 3 and 5. They are bijective to finite-dimensional k-vector spaces in Example
4. Hence in alle these examples, the root groups are finite if and only if & is
finite. It 1s also easily checked that H is always finite in case k is finite. Hence

staternent ii) is a specialization of statement 1). O

[ mention in passing that in all the Examples 2 - 5 of §1, the groups G and the
stabilizers G,_ are even not finitely generated if k is infinite. This follows from the
fact that an infinite field is never a finitely generated ZZ-algebra. Hence we need not

look for finiteness properties of I' in these cases if (F) is not satisfied.

S) This is the condition which is hardest to verify. As already announced in Remark
¥

6, the question whether the subcomplexes of type ©®%(z) are d-spherical for a

given d-dimensional building © of spherical type will be treated in detail in

Chapter 1. Therefore, I will restrict myself to some short comments here.
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1. There are some evidences indicating that the following statement is true:
Conjecture: If © is a spherical Moufang building of dimension d and if ev-

¢

ery panel of © is contained in “sufficiently many” chambers, then ©%%z) is

d-spherical for any z € © .

In Chapter II this conjecture will be proved for all buildings of type Agy; (this
case is already treated in [AA]), Cyyy (the “exceptional” Cj buildings described
in [T1], §9, excluded) and Dy, , “sufficiently many” being respectively sub-
stituted by 2% + 1, 229+ 4 1 and 22¢*! 4+ 1. These numbers result from the
corresponding induction proofs. The subcomplexes @%(z)} are probably still

spherical for significantly smaller buildings.

The conjecture is also true for all Moufang rank 2 buildings. I am convinced that
it will turn out to be correct for buildings of the exceptional types Fj, Fg, F7
and FEyg as well. But the methods used in Chapter II will lead to technically
highly complicated proofs in these cases; the argumentation is already rather

involved for the Dy, buildings.

2. It is easily checked (cf. Chapter II, §1, Lemma 16) that
O%z) = 09(z;) * OY(z,) if © = O, * O, is the join of two spherical buildings
and z = z; * 1, . Hence it suffices to consider buildings with connected Coxeter

diagrams in the conjecture stated above.

3. If ©® is a link in one of the buildings corresponding to the Examples
2 - 5, every panel of © is contained in “sufficiently many” chambers if and

only if the ground field & is “big enough” (see the proof of Corollary 7).

4. If (LF) and (F) are satisfied, the (proper) links in A are finite by Lemma 15.
Hence we could restrict our attention to finite buildings in the conjecture stated
above. But this would not simplify the arguments in Chapter II very much.
Besides, it may be helpful in other applications if the homotopy types of the

spaces |@%(z}| are known for infinite spherical buildings as well.

5. At first sight, assumption (S) seems to be a purely technical condition which is
needed in the proof of Theorem A. But the statement of this theorem becomes
definitely wrong if one cancels assumption (S} without any substitution. This
is shown by a recently discovered counter-example concerning twin buildings of

compact hyperbolic type (cf. [Ab6]). It is an interesting open question whether
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such counter-examples can also arise in affine situations. If so, then for small ¢
the groups G(IF,[t]) mentioned in Corollary 9 below are possibly not always of
type Fnoy .

We are now in a position to prove the following

Theorem A: Assume that G is a group acting strongly transitively on a twin build-
ing A = (A, A, 8%}, A, and A_ being thick n-dimensional buildings. Let a sim-
plex ) # a_ € A_ be given, and suppose that (LF), (F) and (S) are satisfied. Then
G._ = Stabg(a_) is of type F,_1 but not of type FP, .

Proof: We just have to put the pieces together. As already mentioned, the conditions
(a) - (d) of Lemma 14 are to be verified for I' = G,_, X = |A4|, X; =|4,| and
Seys = |S(b4)] (7 € No, by € Rjpy = L) .

(a) Since A, is not spherical, |A,| is contractible by a straightforward general-

ization of the original Solomon-Tits theorem (cf. for example [Br3], Ch. IV,
§6).

(b) is of course an immediate consequence of (F).
(c) is clear by the definition of Aj = 'F; given in §5.

(d) X;;i=X,u U |5(by)| follows from Lemma 11 i), and | S(b, )| is contractible

by E€ERy 11

since S(by) is the star of b, in Aj4y .
(d;) Lemma 11 ii) implies |S(b, )| N |S(¥, )| C X; for by # ¥, € Ry .

(dz) By definition and Lemma 11 iii),
|S(b ) N X; = |T(by)| = |06, | * |T"(by)] - Since |8b4| is an (s — 1)-sphere for
s:=dimb, =rkb, —1, it remains to show that 7"(b, ) is (n — s — 1 }-spherical.
Now Lemma 11 iv), (LF) and Corollary 6 of §5 imply 7°(b; } = ©%z) , where
O =Llkp_ (by) and £ € ©® . Thus T'(by) is (n — s — 1)-spherical by assumption
(S).

(ds) follows from (LF) and Lemma 13. a

We shall now discuss some applications of Theorem A. The first one deals with

twin trees, i.e. with twin buildings of type A (for a less technical definition of twin
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trees, the reader is referred to [RT]). Here we have n = 1 , and assumption (S)
is always satisfied for trivial reasons, 0-spherical simply meaning 0-dimensional and

non-void.

Corollary 8: Let G be a group acting strongly transitively on a thick twin tree
T = (T,,T_,6") , let a_ be a vertex or an edge of T , and suppose that (F) is
satisfied. Then G,_ 1s not finitely generated. a

One may suspect at once that condition (F) is superfluous in this context. This
is in fact true and can be shown by the methods developed in this chapter. Beyond
that, it is possible to generalize the proof of Nagao’s theorem presented in [Se2], Ch.
I, §1.6, to arbitrary stabilizers G,_ as in Corollary 8 (recall that SL,(k[t])} and also
G Ly(k[t]) are of this form). Proposition 6 below results from combining Theorem
10 of [Se2], Ch. I, §4.5 with Proposition 3 of §3 and the Corollaries 4 and 5 of the
appendix of §4. Details will be published together with the results of this appendix.
However, the interested reader will have no difficulties in reproducing the proof by

himself.

Proposition 6: Let G be a group acting strongly transitively on a twin tree

T = (Ty,T-,6*), a- a vertexr or an edge of T and I := G,_ . Choose a twin
apartment ¥ = (£,,X_) of T such that a_ € £_ , and denote by a, the simplez of
Y, opposite to a_ . Number the vertices of £, in the form ...z _5,z_ 1,29, %1, %2,..-
such that {2;, 2,41} is an edge and z; # 2,4, for all y € ZZ . Assume additionally

that either ay = z¢ orap = {z_1,z0} . Setting I'; := Iy, for j € ZZ | one obtains:
i) Ifa_ is a vertez, T = o *rpary (U T;) with T; C Tjpy for all j € IN.
i=1

ii) If a_ is an edge, T = ( .'G"l I;) *r_re “['jo T;) with T; C T,y for all j € Ng
J=- 1=
and'_; CT_,_( forallj €N .

i) If Ty is thick, I'; # 'j1q for all j € ZZ, and T is not finitely generated.

[ mention in passing that the unions occurring in i} and ii) are the stabilizers in T’
of the corresponding ends of ¥, . Note also that these two statements can be applied

to G as well since G = G,_*g, G, foranyedgea. ={z_,y_}of T .
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We are now turning to further applications of Theorem A. They are concerned
with the examples treated in §1. If ¥’ is a reduced root system, G’ a Chevalley group
of type ¥’ and k a field, the spherical building A(G', k) of G’ over k (cf. [T1], §5) is
(up to isomorphism) independent of the choice of ¢’ . It will be denoted by A(¥’, k)
in the following. Let ¥ and G be given as in Example 3, and let A, be the Bruhat-
Tits building associated to (G(k[t,¢ !]}", B4, N,S). Then all links in A, are of the
form A(W', k) , where ¥’ is a root system with Dynkin diagram diag(¥’) which is a
proper subdiagram of the extended Dynkin diagram (¥)~ . This fact is well known;
cf. [Ab3], Corollary 2, for a proof, if necessary.

In view of Corollary 7, we shall assume that & = IF, is finite in the following.

q
Since G(IF,[t])* , being maximal parabolic with respect to

(G(F,[t,t=1]*, B_,N,S), is the stabilizer of a vertex in A_ , Theorem A implies

Corollary 9: Let W be a reduced and irreducible root system of rank n and G
a Chevalley group of type V . Assume that ©%(z) is (£ — 1}-spherical for all root
systems W' of rank £ < n with diag(V') C diag(¥)}~ and all z € O := A(V',F,) .
Then G(IF,[t])t — and hence also G(IF[t]) since [G(IF,[t]) : G(IF,[t])T] < 00 — s of
type F,,_1 but not of type F'P, . a

This is the main result of [Ab3]. A similar statement is true if G is an almost
simple, isotropic IF;-group. We shall discuss this in Chapter 111 for those cases where

assumption (S) can be verfied by using the results of Chapter IL

Generalizing Corollary 9 in a different direction, we shall consider Kac~Moody
groups over finite fields next. Let D,Gp, T, ®, (s )aee be as in Example 5 and
set G:=Gp(lF,), H:=T(F,), Uy :=Us(IF;) (€ @)

Let (G,By = HU,,B_. = HU_,N,S) be the twin BN-pair corresponding to the
RGD-system (G, (U, )ace, H} and (A, A_, 6%} the twin building associated to it.

If (LF) is satisfied, every link in A} is a finite Moufang building with the property
that each of its panels is contained in exactly ¢+ 1 chambers (cf. the proof of Corollary
7). In view of the classification of finite Moufang buildings (cf. [T1], §11, [FS] and
[Ro], Appendix 6), each of these links has to be of the form A(¥',IF,) . The links
in A, are therefore completely determined by their Coxeter diagrams with the only

exception that A(By, IF,) cannot be distinguished from A(Cy, IF,} in this way. In order
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to achieve this as well, one has to analyse the full Kac-Moody data D . However,
since A(B¢,IF,) and A(C,, IF,) have similar properties from our point of view, we

shall not discuss these technicalities here.

Summing up, we obtain the following consequence of Theorem A:

Corollary 10:  Let G be a Kac-Moody group functor, (W, S) the Cozeter system
assoctated to D, n := #S — 1 and I' a proper subgroup of G = Gp(IF,) which 1s

parabolic with respect to (G, B., N, S) . Suppose that the following two conditions are
satisfied:

1. (W,S) is of irreducible affine or of compact hyperbolic type.

2. If the Cozeter diagram underlying diag(\V') is contained in the Cozeter diagram
of (W,8), ©%=z) is (£ — 1)-spherical for © := A(V,F,), £:= 1tk V' and any
€.

Then I is of type F, .1 but not of type FP, . ]

Combining the criterion below Lemma 14 with Theorem A, we also obtain a result
concerning the full group G . Note that ©_ = {a_ € A_|a_ C ¢c.} is an sfd for the

action of G on A_ for every chamber c_ € A_ .

Corollary 11:  Assume that G and A are given as in Theorem A . Suppose further
that (LF), (F) and (S) are satisfied. Then G is of type Fo_y . 0

Remark 7: [ am convinced that Corollary 11 only describes half of the truth.
The complete result I expect is that G is of type Fy,_; but not of type F'P,, . This
can presumably be deduced — appropriate conditions again presupposed — from
properties of the action of G on the polysimplicial complex A, x A_ . However, two
new problems are arising here. Firstly, this action does not admit a (polysimplicial)
fundamental domain in the strict sence used in §5 though £, x ©_ comes close to
being one according to Proposition 2 of §3. Secondly, the relative links occurring
with G-invariant filtrations of A, x A_ are significantly different from the complexes
©%z) introduced above. Nevertheless, I hope that a program roughly analogous to

that described for the stabilizers G,_ can be carried out for the group G as well.
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Theorem A and all its corollaries (with the exception of Corollary 8) depend on the
assumption (S). In the discussion above, I already announced some results concerning
this condition. The corresponding proofs should not be postponed any longer. So let

us enter the realm of spherical buildings now.
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II Homotopy properties of |A%a)

§ 1 Basic properties of A°(a)

This chapter is devoted to the analysis of topological properties of |A%(a)|, where A
is a spherical building, a € A and A%(a) the subcomplex of A introduced in Chapter
I, 85. (Since we shall not consider twin buildings in this context, the letter A will
always be reserved for spherical buildings from now on.) We shall show that |A%(a)]|
has the homotopy type of a bouquet of (dim A)-dimensional spheres provided that
A is Moufang, “big enough” and no irreducible factor of A is associated to a k-form
of one of the exceptional groups. It is this result which makes it possible to verify
the crucial condition (S) of the previous chapter in certain cases, thereby yielding

applications of Theorem A which do not depend any longer on any assumptions.

The proof of the above statement concerning |A%(a)| goes by induction on rk A
and uses the description of “classical” spherical buildings as flag complexes of certain
geometries. A similar approach should work in the case of “exceptional” buildings as
well. However, since the corresponding explicit descriptions are technically compli-
cated, necessitating also the introduction of a bunch of further notations (and since
the D, -case is already sufficiently involved), the exceptional buildings will not be

treated in this book.

Though we shall have to deal with buildings of type A,,C, and D, separately
in §§4 - 7 below, some basic facts concerning A%a) can be derived from the general
theory of spherical buildings without specifying the type of A , cf. [Ab4]. For the
convenience of the reader I shall include short, modulo [T1] self-contained proofs of
those statements of [Ab4], §1.1, which are used in the following. We denote by op
the opposition relation in A and, for any apartment ¥ of A , by opy : ¥ — X the

opposition involution of ¥ . Recall that

A%a)} := {f € A| there exist chambers ¢ 2 f and d 2 a such that ¢ op d}
e U StA(b)

bopa

Lemma 16: Given a € A and A%(a) as above, one obtains:
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i) If ¥ is any apartment containing a and a® := opy(a) , then

A’(a)NE = E%a) = stg(a’) .

i) A%a) is a full subcomplez of A | i.e. eU f € A%a) for any two e, f € A%a)
such thate U f € A .

iil) Ifa,b,aUb€ A, then A%(aUb) = A%a) N A%(D) .

1) If A = Ay x A, is the join of two spherical buildings Ay, A, and
a=ay*ay, then A%a) = A%ar)* A%as) .

Proof:

i) It is clear that X%(a) = sty(a®) C A%a)NX . Solet f € A%a)NX and opposite
chambers ¢, d € A satisfying ¢ D f, d D a be given. Denote by L’ the (unique)
apartment containing ¢ and d and choose an isomorphism « : £’ — X fixing f
and a . Then a(c) and a(d) are opposite chambers of £ containing f and a ,

respectively. Hence f € £%a) .

ii) Choose an apartment ¥ of A containing a and el f . By i)}, eUa® and fUa° are
elements of ¥ for a® = opy(a) . Hence eU f Ua® € T as well by [T1], Corollary
2.27. This implies e U f € stg(a?)} C A%a) .

iil) We have to show A%a)n A%b) C A% aUb). Solet f € A%a) N A%b) be
given. By definition, this also means @ € A% f) and & € A% f) . Therefore
aUbe A%f) by ii), implying f € A%aUb) .

iv) Given chambers ¢1,d; € A; and ¢;,dy € A, , the gallery-distance da(c, d)
between ¢ := ¢; * ¢; and d := d; *d; in A is equal to the sum
da,(€1,d1) + da,(c2,d2) . Hence ¢ and d are opposite in A if and only if ¢; and
d; are opposite in A; for : = 1,2 . Combined with the definition of A%a) , this
implies A%(a) = A%e, ) * A%a,) . a

Lemma 17: Assume that a group G acts strongly transitively (in the usual sense,

cf. [Br2], Ch. V) on A . Then the following holds:

i) For any a € A, Stabg(a) acts transitively on the set of chambers C(A%(a)) .
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i)

Let ¢ be a chamber of A and ¥ an apartment containing ¢ . Set

B := Stabg(c) and H := Fixg(X) = Nuee(x) Staba(c’) . Assume that there
exists a subgroup U of B satisfying B= UH and UN H = {1} . Then U acts
simply transitively on C(A%(c)) .

Proof:

)

i)

Since (G acts strongly transitively on A, Stabg(a) acts transitively on all apart-
ments containing a and hence also on all simplices opposite to a . Let b be such
a simplex and ¢, ¢; two chambers containing b. Since a is opposite to &, there
exists an apartment ¥ containing ¢, ¢; and @ (take an apartment containing c;
and proj, ¢, and note that proj, (proj, ¢1) = ¢ by [T1], Theorem 3.28). Again
by strong transitivity, there is an n € Stabg(X) satisfying ne; = ¢, . Since the
action of (G 1s type-preserving, this implies nb = b . Finally na = a , because a

is the unique simplex of ¥ opposite to b .

Applying i}, one obtains C(A%c)) = B® = UH® = U® , where ¢ := opg(c} .
Since ¥ is the unique apartment containing ¢ and ¢° ,

Stabg(c) N Stabg(®) = Fixg(X) . Therefore, uc® = ¢ and v € U imply
u € UNH and hence u =1 . a

Remark 8:

i)

Sometimes a “small” subgroup of Stabg(a) still acts transitively on C(A%(a)).
For example, if A is the spherical building A,, occurring in Lemma 12 of
Chapter I, 5, @ the simplex proj;, a_ and G the group Gs, , then not only
G. = Stabg(a) but even Ty, = Gy, NG, _ acts transitively on C(A%(a)) accord-
ing to that lemma. For this reason we are studying the simplicial complexes

A%(a) (and not some of their subcomplexes) here.

The canonical examples satisfying all the assumptions made in Lemma 17 ii)
arise in the following way: Let G be a group, ® a (not necessarily reduced) root
system and (H,(Uq)aco) @ generating root datum in G in the sense of [BrTl],
§6.1. Define U to be the subgroup of GG generated by all U, with a € ¢, ,
where @, is the set of all positive roots with respect to a fixed base II of ¢ .
Recall that G possesses a BN-pair with B = UH , and consider now the action
of G on the spherical building A = A(G, B) .

a8



§ 2 Examples and counter-examples

Before treating the classical spherical buildings in detail, we consider some (classes
of ) examples in order to see whether A%(a) is (dim A)-spherical or not in these cases.
Here we shall concentrate on thick buildings A of low rank and on subcomplexes
A%(a) where a is a chamber. The results discussed in this section are technically not
needed in the following. However, they are interesting in their own right. Proposition
9 for example answers an open question concerning generalized polygons which is
indicated in [T7], Section 16, and explicitly formulated in [Brou], Section 5. In the
present section, the proofs are just sketched, but the interested reader can easily

complete them by following the main arguments outlined in the text.

The rank 2 case
Here we are dealing with the question whether the subgraph A%(a} of a given gener-
alized m-gon A (i.e. of a building of type o "4, cf. [Ro], Ch. 3, §2) is connected.

We distinguish three cases, always assuming that A is thick.

a) A is Moufang

In this case, the problem can be transferred into a purely group theoretic one.
Let £ be an apartment of A . Number the vertices v,...,vs, of ¥ such that
{vi,v2},{v2,v3},. .., {vem,v1} are the chambers of ¥ . Denote by ¢; the root of
¥ containing v;,viy1,.-.,vi4m and by U; := U,, the corresponding root group (cf.

[Ro], Ch. 6). Set

G:=(U;|1 <1 <2m) < Aut(A), U:=({Ui|1 £: < my
H:= N Ng(U:), ¢:={vm,vms1} and B := Stabg(c) .

=

Then the following facts are well known (cf. [T5], Section 2, or again [Ro], Ch. 6):

- H = Fixg(X) , and B is the semidirect product of H and U

~ B is part of a BN-pair for G , and the corresponding building A(G, B) is iso-
morphic to A

— the product map U; x Uy x ... x U,, — U is bijective and

(U1, U] Uz . Unn
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In particular, we can apply Lemma 17 ii) and obtain C(A%c)) = U for

® ;= {vam,v1} . It is easily deduced from the properties of the root groups U; and

U., that ¢® and uc® (u € U) can be connected by a gallery in A%(c) if and only if
w e U := (U, Uy) = U [U,Un)U, <U

Hence we obtain the following

Lemma 18: The indez [U : U] is equal to the number of connected components of
A%c) . In particular, A%(c) is connected if and only if [Uy,Un] = Uz ... Uy,
a

Using some parts of Tits’ classification of Moufang m-gons, it is not difficult to

list all cases where U’ # U:

Proposition 7: Let A be a thick Moufang m-gon not associated to one of the
following 4 groups:

02(F2)25P4(F2), G2(1F2), Gz(lFs), 2F4(1Fz)

Then A%(c) is connected.

Sketch of proof: According to the theorem of Tits and Weiss, m € {3,4,6,8}.

m=3: [U;,U;] = U, is well known (cf. [T5], Corollary 2.10).
m=4: Setting U} := U; \ {1}, Uy, U;] = U;U; follows from [T5], Proposition 2.9.

m=6: We use the following two facts concerning Moufang hexagons:

1. The root groups Ui, ..., Uz of a Moufang hexagon constitute a root datum of

type Gz in the sense of [BrT1] (cf. [T12] for a proof).

2. Assuming 1., it is shown in [F], Chapter 3, that there exists a (commutative)

field k& and a Jordan division algebra J over k satisfying the following conditions:

i) The root groups corresponding to the long roots of G, are coordinatized

by the additive group of k .

ii) The root groups corresponding to the short roots of G, are coordinatized

by the additive group of J .
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1i1) The commutator formulae expressing  [u;, u,] for w; € U; ,

u; € Uj, 1 < j <14 6 as an element of Uiy ...Uj are given by 1.
(if [U:,U,;] = {1}) and by Theorem 3.55 in [F].

Analyzing these commutator formulae, one obtains U/’ = U with the following two
exceptions: J = k = Fp and J = k = F3 . In these cases, [U : U'] = 4 and
[U:U'] =3, respectively.

m=8: According to the classification of Moufang octagons (cf. [T5]), A corresponds

to a Ree group of type *Fy(k,a) , where k is a field of characteristic 2 and o an

endomorphism of & satisfying a?(A) = A% for all A € k. In particular, U = U(k) is
a subgroup of ?Fy(k,o) and U(IF,) is canonically embedded in U . This leads to the

following distinction of cases:

1.

k =IF2 The commutator formulae stated in [T5], §1.7.1, are easy to handle
here and make an explicit calculation of U’ possible. Using Tits’ notations, the

result is the following:

Lf’(le): {t] ’tg'tzf'...’tg'tgllt,‘,tgjl S IFz, t2+t4+t6:0}

k #F, Applying 1. and again [T5], §1.7.1, one deduces

Uy, Uy, U, Us, Us, U; € U'" = U'(k) . Now the formula for [t1,us] implies
zay4 € U’ for all z,y € k* . Putting the pieces together, we obtain
U'=Ufork#T,. a

Remark 9:

i

The classification of Moufang hexagons is also due to Tits. It is stated without
proof in [T2]. However, those parts of this classification which are needed above

are completely proved in the quoted publications.

In [T7], §16.7, Tits mentions without proof a statement which is essentially
equivalent to Proposition 7. Only the Moufang octagons are not considered
in that context and the counter-example G,(IF3) is missing. The latter was
observed by Baumgartner. Using the classification of finite BN-pairs of rank 2
(cf. [FS]}, he gave a detailed proof of Proposition 7 for finite Moufang m-gons
with m # 8 in [Bal, appendix.
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iii) Clearly A%a) is connected for every vertex a C ¢ if A%c) is connected. In
the four cases excluded in Proposition 7, we obtain by a reasoning similar to
Lemma 18: A%(a) is not connected if and only if A is associated to G,(IF3) or
to 2F4(IF;) and a corresponds to a short root. In these cases, A%(a) possesses

exactly 2 connected components (cf. also [Brou]).

b) A is finite

Using finite graph theory, Brouwer was able to prove that A%(c) (¢ € C(A)) is con-
nected for “almost all” finite m-gons. The counter-examples turn out to be exactly
those mentioned in Proposition 7, possibly together with non-classical hexagons of
order (3,3) and non-classical octagons of order (2,4} or (4,2} if these exist. Recall that
a generalized m-gon is said to be of order (s,t) if every vertex of the first type has

valency s + 1 and every vertex of the second type has valency ¢t + 1 .

Proposition 8 (cf. [Brou], Theorem 1.1): If A is a thick finite m-gon of order
(5,1) and (m,5,8) & {(4,2,2), (6,2,2),(6,3,3), (8, 2,),(8,4,2)} , then A%(c) is con-
nected for any chamber c € A . =

c) A is an arbitrary (thick) m-gon

So neither the tools of group theory nor those of finite graph theory can be applied
in order to decide whether A%(¢) (c € C(A)) is connected or not. Nevertheless, it is

still possible to describe what happens in the general case.
m=2: Obviously A%c) is connected.
m=3: It is easy to check that A%c) is connected.

m=4: One can show that A%c) is connected provided that A is not of order (2,2).
For example, the arguments mentioned in [Brou], Section 5, can be organized such

that they constitute a proof of this fact.

m > 5: Here I expected for a long time similar results as above, i.e. connectedness of
A%c)in the “generic” case and exceptions only for “small” buildings. However, since
this was hard to prove, I started to look for new counter-examples instead. Having

changed my expectations, it was not very difficult to deduce the following

62



Proposition 9: For every integer m > 5 , there erists a generalized m-gon A

together with a chamber ¢ € A satisfying the following conditions:

i) Fvery verter of A is contained in infinitely many chambers.

ii) A%c) is an infinite disjoint union of trees.

Sketch of proof: The key idea consists in modifying appropriately the “free con-
struction” described in [T3], §4.4. Take an arbitrary connected, bipartite graph of
girth (:= length of a shortest cycle) 2m and fix an edge c of I' . Construct a bipartite
graph I'V containing I' as follows (dr denotes the usual distance in I'): If  and y
are vertices of I' with dr(z,y) = m + 1, insert a new path p(z,y) of length m — 1
connecting them. If additionally dr(z,c¢) > m — 1 and dr(y,c¢) > m — 1 , insert a
further path p(z,y,c) of length m — 2 connecting a central vertex z(z,y) of p(z,y)
(for even m , there are two possibilities}) with ¢ . This is done such that the type

function on I' U p(z,y) can be extended to I' U p(z,y) U p(z,y,c¢) .

Example: m =25 plz,y) 5 =
z:= z(z,y) p(z,y,¢)
c
Now we define a sequence of graphs by Ty := I} (¢ € INg) and denote

by T?(c) the subgraph of I; generated by all vertices 2z € I; such that
dr,(z,¢) 2 m ~ 1. Then the following facts can be verified:

1. A= G ['; is an m-gon.
1=0

2. If every vertex of Iy is contained in at least 3 edges of I'; , then A is thick.
3. A%c) = U I'%e).
i=0

4. Elements of different connected components of I'%(c) lie in different connected

components of A%c) .

5. Every cycle of A%c) is contained in T9(c) .
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It is now easy to find a graph ' such that A satisfies i) and ii). Take for example
= G C; , where each C; is a 2m-cycle and C; N Cj = cfor all j # ;' . a

=1

In view of the freedom one has to construct further counter-examples, it is defi-
nitely not possible to say that A%c) is connected “in the generic case” (whatever this

means precisely) for non-Moufang m-gons with m > 5 .

The rank 3 case

Having already discussed the rank 2 buildings, we may assume in view of Lemma 16 iv)
that A is of irreducible type, i.e. that it is either an A; or a C5 building. According to
Tits’ classification of thick spherical buildings (cf. [T1]), A is the building associated
to a root datum of type Az, B3, C5 or BC5. This allows to translate again questions

concerning topological properties of |A%(¢)| (¢ € C(A)) into group theoretic problems.

Let (H, (Uy)acse) be a root, datum corresponding to A (cf. Remark 8 i)},

IT = {a1, 02,03} a base of ® and &, the associated set of positive roots,
Set U = (Uy|laeed,), U :=U, (1<i<3)and
Ui = (Upaitqm, | P,q € Nos pai +qoy € @) (1 <15 < 3).

Denote by U the amalgamated product of Uy, Uiz, Uz with respect to their intersec-
tions U] = U12 N U13, U2 = U12 N U23, U3 = U13m U23 .

We now fix the chamber ¢ = B = UH € A = A(G,B) . It is easy to verify
U = {Ur2,U13,U33) , which implies that |A%(c)| is connected. By Proposition 6 in
[T7], |A%c)]| is simply connected if and only if the canonical homomorphism {J ~— U
is an isomorphism. In view of Lemma 17 ii), Theorem 1.1 in [Sw] implies more

precisely:

Lemma 19: There exists an exact sequence of the form

1—m(|A%e))) — U -—U-—1

We shall discuss the cases Az and C; separately now.
a) A is of type As

This case is completely treated in [T7], Section 16. The result is the following:
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Proposition 10: Let A be a thick building of type Az .

i) If A% A(A3,TF3) , then U = U and A%c) is 2-spherical.

i) If A = A(A3,TFy) , then m(|A%(c)]) & Z x Z , and |A%c)| is homeomorphic
to the torus S' x S . O

By the way, almost the same result (sphericity of A%(c) in case
A = A(As, k) and #k > 4) can be derived by the geometric/combinatorial approach
introduced in [AA] in order to study the A, buildings of higher rank (cf. also §4
below).

b) A is of type C3

First we generalize some arguments used in {T7], Section 16, in the A; case. We may

1 2 3
assume that the numbering {a;, a3, a3} corresponds to the diagram @——&—®
Set Xi := (Upa, 4900 | P € N, g € Ny ; pay + qag € @) fori =1,3 .

Then Uy, = U< X, (i = 1,3} , whereas U3 = U; x Uz . Denote by R; the
set of all relations in X; , and set Y& := uzu™! .
of U, we get U = Upp<(X, U X3 | Ry; Ry [“uy,®uy) = Lu; € Uj, 1 <5 <3).

Denote the second factor on the right side of this equation by X . Applying Lemma

Rearranging the presentation

19, one obtains some further counter-examples now. The isometry groups occurring
below are denoted as in [HO!, §6.2.E. In finite group theory, different notations (such

as Us(2) instead of Us(IF4)) are more common.

Example 8: The buildings associated to Spg(IF2), Spe(IF3), Ug(IF4) and
208(1172)

We shall show in all these cases that m;(|]A%(¢)|) is infinite or, what amounts to the

same, that the group X introduced above is infinite. Note that
X1 =U1 x Uy o, = Uy x*U, for any u € U, \ {1} .

1) If we are dealing with the group Spg(IF;) or with Ug(IFy), it is easy to verify

X3 = X uU_?, .
‘uGUz

Hence for any v € Uz \ {1}, X projects onto the infinite group
x Wy x (U *"U3) x (U, = Us) .

uFlu
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ii) Consider now either Spe(IF;) or the non-split orthogonal group 0s(IF;)
corresponding to a quadratic IF,-space of dimension 8 and Witt index 3. Set
X3 1= Xyay+a, in the first case and X} := X, 424, in the second. Both times
we obtain X3/ X, = Uz x "Us for the unique element
u € Uy \ {1} . Setting X; =1, we see that X projects onto
(Uy **Us) x (U, x Us) .

Using some computer calculations, one can also show that U (though possibly
finite) is strictly bigger than U in the two cases corresponding to O7(IF3) and to
Spe(IF4) . 1 do not expect any further counter-examples in the C3 case. However, it
is a tedious job to deduce all necessary relations for U from the presentation of U .
Instead, one can use the method of §6 in order to prove that A%(c) is 2-spherical for
“most” (5 buildings. Analysing the proof (not just the statement; cf. also Remark

14) of Proposition 13 in §6, one obtains the following result:

Proposition 11: Assume that A is a thick building of type C5 .

1) If A is infinile and corresponds to a polar space with Desarguesian planes (cf.

[T1], §8), then A%(c) is 2-spherical.

ii) If A is associated to Spg(IF,), O7(TF, ), 0s(IF,), Us(IF, ), Uz (IF, ), respectively, then
A%(c) is 2-spherical provided that ¢ > 11,13,11,25,9 , respectively. m

I hope to complete both parts of this proposition in the future. On the one hand,
one has to consider additionally the non-embeddable polar spaces discussed in [T1],
§9. On the other side, the unpleasant task of checking the relations for U should
be carried out by a computer in those few cases not covered by Example 8 and by

Proposition 11 ii).

Higher ranks
Since the results of the following sections shall not be discussed here, I restrict myself

to some short remarks. We assume that A is a thick spherical building of irreducible
type.

For Moufang buildings of rank 2 and for rank 3 buildings, the sphericity of A%(¢)

is converted by Lemma 18 and by Lemma 19 into a group theoretic property. We
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are going to describe a similar translation for higher ranks now. Fix an apartment
2 of A such that ¢ € ¥, set ¢ := opg(c) , denote by ® the set of all roots of
Y and by &, the subset of all those containing ¢ . Recall that A is automatically
Moufang if n := tkA > 3 (cf. [T3], Section 3). Denote by U, (a € ®) the root
group corresponding to a and set U := (U, |a € ®,) which is a subgroup of Aut(A).
Finally, we define U, := Staby(z) for any vertex z of ¢ . It follows from Lemma 17
ii) that the nerve of the covering of U/ by all cosets ul/, (v € U,z € ¢’} is isomorphic

to A%(c) . Hence we obtain:

Lemma 20: A%c) is (n ~ 1}-spherical if and only if the famaly
{U:|z is a vertez of °} is (n — 1)-generating for U in the sense of [AH].
a

Unfortunately, I do not know whether this criterion can be used efficiently for
buildings of high rank in order to solve the sphericity problem for A%(c) . In {AH],
the reverse direction is emphasized in similar situations, i.e. higher generation is

deduced once certain homotopy properties are settled.

On the other side, the geometric/combinatorial approach to be discussed in the
following sections cannot be applied to a number of finite buildings which is increasing
exponentially with the rank. Nevertheless, only for the ground fields IF; and FF3

explicit counter-examples are known if n > 4 .

Example 9 (cf. [Bous], Chapter 2): Let A(X,IF,) be the building associated to
a Chevalley group of type X € {A,,C,} over F, | x(X,q) the Euler characteristic of
A%c) for A = A(X,TF,), c€ C(A) and x'(X,q) := (=1)"" (x(X,q) — 1} . Then for
q € {2,3}, x'(X,q) is negative (and hence A%(c) is not (n — 1)-spherical} in “many”
cases. For example, x'(X,q} < 0 for

X=A, ¢g=2 and n€{3,4,5,6,11,12,13,18,...}
X =A, ¢q=3 and n€{10,11,12,...,21,33,34,...}
X=Cn qg=2 and n€{3,4,510,11,12,13,17,...}
X=Cpn q=3 and ne€{9,10,11,...,20,32,33,...}

the complete list of the signs of x'(X,q} for ¢ € {2,3}, X € {A4,,C,} and n < 100

can be found in loc.cit.
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The lack of further counter-examples is due to computational difficulties in my
opinion since it is hardly possible to calculate the homology groups of A%c¢) directly
if rk A > 4 and the ground field contains at least 4 elements. However, I expect that
the following is true: Given a finite field IF, , there exists an n = n(q) such that A%}
is not (n — 1)-spherical for A = A(A,,F,).

I close this section by recalling a counter-example stated in [Abl], §4, Remark 7.

It shows that A%(a) can also be non-spherical if tk A > 3 and a is a vertex of A .

Example 10: Consider the building A = A(A4, IF2) as the flag complex associated
to the poset {0 < W < IF | W is a proper subspace of IF3} . Let a € A be a vertex
corresponding to a subspace of dimension 2 or 3. Then |A%(a}| is simply connected

and Hy(A%c))=Z 2 7Z .

§ 3 General remarks concerning the sphericity proofs

We keep the notations introduced at the beginning of this chapter and shall only
consider thick buildings henceforth. It is our goal to deduce sphericity properties of

A%a) in the case of “classical” spherical buildings.

Definition 8: A spherical building A is called classical if it satisfies one of the

following three conditions:

1) A is the flag complex of a Desarguesian projective space.
i1) A is the flag complez of an embeddable polar space.

i) A is a butlding of type D, .

Remark 10:

i) It is well known (cf. [T1], §6, or [Schl, §4.1} that every A, building is the
flag complex of an n-dimensional projective space and is therefore classical for

n > 3.

ii) According to [T1], §7, every C, building is the flag complex of a polar space

of rank n and according to §8, every polar space of rank > 3 whose maximal
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subspaces are Desarguesian is embeddable. In particular, every C, building is

classical for n > 4 .

iii) It follows that every spherical building of irreducible type and rank > 9 is

classical.

1v) Every finite Moufang building of type A,,C, or D, is also classical (for C this
follows from [FS]).

v) The classical buildings are precisely the buildings associated to the “natural”

BN-pairs of classical groups (cf. for example [BrT1], §10).

The results of §2 point to some aspects which have to be taken into account while

analysing the homotopy properties of |A%(a)]| .

1. As Proposition 9 shows, it is not possible to deduce that A%(a) is “usually”
spherical by applying exclusively the abstract theory of spherical buildings as
presented in [T1], §3. Therefore, the most natural and aesthetic proofs of the
original Solomon-Tits theorem (cf. for example [Br3], §4.6) cannot be trans-

ferred to our situation.

2. If one adds the Moufang condition, still the exceptional behaviour of “small”
buildings has to be taken care of. So the magnitude of the building (or to be
more precise: the number of chambers containing a given panel) is an additional
parameter which has to enter the reasoning somehow. Hence a second family of
proofs of the Solomon-Tits theorem, depending on group theoretic arguments
which do not admit any exceptions, cannot be modified appropriately for our

purposes,

3. Even for rank 2 Moufang buildings, classification theorems have to be used at
least partially in order to solve the sphericity problem for A%(a). This indicates
that one has to apply Tits’ classification (cf. [T1]) in the case of spherical
buildings of irreducible type and rank > 3 .

Though 1 intensively looked for nicer proofs (if you work through §6 and
§7 below, you will know why), I found only one approach respecting all three as-
pects and yielding the desired results at least for classical buildings. This approach
is based on Quillen’s proof of the Solomon-Tits theorem for buildings of type A,
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(cf. [Ql). It was already successfully used in [V], [Abl] and [AA] in order to de-
rive sphericity results for certain subcomplexes of A, buildings. I am now going to

describe the basic idea in terms which apply to all buildings of spherical type.

Let & be a (dim A)-dimensional full subcomplex of A , e.g. &£ = A%a) , and let
zo be a vertex of k . Denote by k¢ the subcomplex of & consisting of all simplices
y € k such that no vertex of y is opposite to z¢ and the full convex hull of y and
zo is contained in & . Then |kg| can be contracted along geodesics onto z¢ . (The
set underlying |A| may be endowed with a metric inducing the usual metric on each
sphere |X| for any apartment X of A .} Now we try to contruct an increasing sequence
Kg C K1 C ... C &¢ = & of subcomplexes of & such that the following holds for all

1<i<dt:

(1} If V; denotes the set of vertices of k; not contained in £;_; , then

ki = ki1 U U ste (z) and sty (2) Nste (2') C ki forall z #£ 2" € V.
eV,

(2) Li(z) :=stys;(z) N ki_y is (n — 2)-spherical for any = € Vi , where n :=r1k A .

Then suitable reduced Mayer-Vietoris sequences (cf. [Sp], Ch. 4, Sec. 6) yield
Ej(n,-) = ﬁj(ﬂf_]) = .., = ﬁj(no) =0foralliand all j <n-2. Ifn >3, the
theorem of Seifert-Van Kampen implies that all |;| are simply connected. Using the

Hurewicz isomorphism (cf. [Spl, Ch. 7, Sec. 5), we obtain the following

Lemma 21: If the conditions (1) and (2) are satisfied, then k is (n — 1)-spherical.
a

This lemma. shall be applied in the following way: Fix a class C of pairs (&', A’} ,
where A’ is always a spherical building and «' a (dim A’)-dimensional full subcomplex
of A’ . In particular, we require &' # § for rk A’ = 1 , which is the basis of the
induction below. Let & and A be as above and suppose (k,A) € C. Assume that the
k; are full subcomplexes of A and that all vertices in V; are of the same type. Then
condition (1) is satisfied automatically. If the &; can be chosen such that additionally
(Li(z),L(z)) € C for any z € V; and L(z) := fka(z)} , then (2) can be assumed by

using induction on n = rk A . Thus we have proved the following

Lemma 22: Let C be a class of pairs as described above. Assume that for any

(k,A) € C withtk A > 2, there exists a filtration kg C k) C ... C K = K of & such
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that the following is satisfied (set again V; = {vertices of k;} \ {vertices of ki_1}):

(0)
(1)

(2)

|ka| is contractible.

ki is a full subcomplex of A for all 0 < i < £, and all vertices in V; are of the
same type if 1 > 1 .

(st, () N ki1, €ka(z)) € C foranyz € V;and i > 1 .

Then & is (dim A)-spherical for any (k,A) € C . O

Lemma 22 is rather a program than a result. I mention some of the difficulties we

shall have to overcome in the next section.

Problems:

)

i)

111}

The main difficulty consists in finding suitable classes C which are invariant
under the induction step described in condition (2)'. Of course, we are first of
all interested in pairs of the form (A%a), A) , where A is a spherical building
(of given type) and @ € A . But the class of all these pairs is definitely too

small. It has to be enlarged suitably in order to permit applications of Lemma

22.

It is hardly possible to describe the relative links Li(z) = stq,(z) N &, ab-
stractly. One has to use coordinatizations of the spherical buildings in question.
Since the class C should contain the pairs of the form (A%(a), A}, we also need

to know concrete descriptions of the abstractly defined subcomplexes A%a) .

If we start with a pair (¥, A) € C with n = rk A and consider an inductively

defined sequence of relative links (L) := &, ¢, € LU

LM =L, (21) €AW := lka(z1),. . .,
LY = L (2nm1) CAC i= fky (ne) (201 ),

we have to guarantee L("') = @ . This leads to the requirement that every
panel of A is contained in “sufficiently many” chambers and excludes for every

n a (probably too big) finite number of finite buildings from our investigations.
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iv) It was not necessary to specify the contractible subcomplex x4 of « in the
statement of Lemma 22. However, there is hardly any chance to satisfy (2)"if
ko is “too small”. Hence our candidate for ko will be the complex described
before Lemma 21 (possibly slightly reduced in order to obtain more symmetric
relative links L;(z)). Now kg should be a full subcomplex of A which means
the following here: Given simplices a,b € & not containing any vertices opposite
to zg such that a Ub € A and the convex hull of @ and z; as well as of b and
7o is included in & , then the convex hull of a U b and z4 is also contained in
& . In the case of A, and C, buildings, this conclusion is in fact true if zg is
chosen appropriately, meaning that z¢ corresponds to a point in the associated
projective or polar space. But for D, buildings, such a choice of z¢ 1s not

possible, and this creates new problems.

I will close this section by briefly discussing a more special situation which is
present in the cases A,,C, and F; . Assume that we are considering spherical build-
ings which are flag complexes of certain geometries. If I is such a geometry of rank n ,

we denote by X; (1 £ j < n)theset of its subspaces of type j , where type = projective

dimension + 1 in the case of projective or polar spaces. Set X := U X; , and write
i=1

g <z'ifzr,z’ € X and z is a proper subspace of z' . We assume that z < z’ implies
type (z) < type ('} . Now A = Flag X is the simplicial complex associated to the
poset X | i.e. every d-dimensional simplex of A is a chain of the form z;, < ... < z44
with g, € X forall1 <k <d+1. Notethat 1 < type(z,}) < ... <type(z441) < n.
For any vertex z € X , wedefine X<*:= {s' € X |2' < z} , X>":={2' € X |z < 1},
A<® := Flag X<* , A>* = Flag X>* and obtain fkp(z} = A" x A>® .

If & is a full subcomplex of A and ¥ € X the set of its vertices, then « = FlagY .
To filter « by full subcomplexes k3 C £, C ... C k; = & means to filter ¥ by subsets
YoC...CY,=Y and toset x; = Flag¥; . Weget V; = Y;\Y,_, , and (1) is satisfied
if V; € X; for some j = j(i) (1 <i < ¥¢). Furthermore,

Li(z) = tka(z) N kioy = (Flag V;=%) * (Flag Y.25) =: 675 * &7

K} 1

for any 2 € V; . It is now sufficient to investigate the complexes £7% and %
separately since the sphericity of a join follows from the sphericity of the two factors.
Alternatively, we may assume that the class C in question is closed under formation

of joins. Then it suffices to check
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(k55, A<®) € C and (,75, A>") € C (z € V;, 1 <1 < {)in order to verify condition
(2)"
So if we are dealing with flag complexes of geometries, the program we have to

work off is the following:

Describe A%(a) explicitly as a subcomplex of Flag X = A .
~ Find a suitable class C containing all pairs (A% a), A} for “sufficiently big” A .

\
~ Given (k = FlagY, A = Flag X)) € C, construct a filtration
Yo C... C Yy =Y such that | Flag Y| is contractible and V; = ¥; \ Y;_; consists

of vertices of the same typeif : > 1.

Verify (£5%,A%%), (k25,A>%) e Clorallz € V;, 1 <i < L.

-1 1—1?

Of course, during the search for a complete proof, the last three points cannot be
treated linearly one after the other. They have to be attacked simultaneously since

the intended filtrations influence the choice of the class C .

So far for the general principles. Let us look at the details now.

§ 4 The case A,

The general remarks of the preceding section shall first be illustrated by means of
the simplest case, namely A, buildings. The conclusions as well as parts of the
argumentation will also be used while dealing with the more difficult cases C, and
D, . The main result of this section, namely Proposition 12 below, is not new but
contained in [AA]. However, in order to present a self-contained treatment of all

classical buildings, those of type A, shall briefly be discussed here as well.

Let K be a skew field and V an (n + 1)-dimensional vector space over K. Set
X:=X(V)={0<U<V|Uis a K-subspace of V} and A = Flag X. This is the
standard description of a classical A, building. For any M C V, we denote by {M)
the K-subspace generated by M . If e),... e, is a basis of V',
1< < ... <, <n4+1,1 €7 < n}

Y(ery..osentr) = Flag{{ei,...,€)
is an apartment of A . Every apartment ¥ of A is of the form
Y = E(e1,...,en41) for some basis. It is well known (cf. [Ab4], Lemma 1.2.1, if
necessary) that opg({ei,,...,€i.)) = (€+..-, €.y _.) , Where

{Jiseosdnmrt ={1,...,n+ 1}\ {4,...,1,} . From this it follows
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Lemma 23: Two vertices UW € X are opposite in A if an only if
V=U®W . Hence A%U) = Flag{W' €¢ X|W'NnU =0or W +U = V}
O

This observation leads to the following definition which is important for €, and

D, as well:

Definition 9:

i) Two subspaces U and W of V  are called transversal (in V) if
UNW =0 o0or U+ W =V . If this is the case, we write U(J/\W or simply

Udw .

1) For a given set £ of subspaces of V, Uhg means by definition that UNE for
al E€ & . We set

Xe(VY:={U e X|UME} and Te(V):= Flag Xs(V) .

In view of Lemma 16 ii1}, Lemma 23 implies

Corollary 12: For any simplez a = {E; < ... < E,} € A and
glay={E:|1<i<r}, A%a)=TFlag{U € X |UhE(a)} = Tera)(V) - s

In order to carry out the planned induction, we shall have to consider all subcom-
plexes of the form T;(V) , where £ is a finite set of subspaces of V' . Before doing

this, we recall two further standard facts concerning A, buildings:

- For any d-dimensional subspace U/ of V , A<V is the A;_, building associated
to X<V and A>Y is the A,_,_; building associated to X(V/U).

~ Let {bealineinV [ie dimf€=1,and a ={U, < ... < U,} € A a simplex
not containing any vertex opposite to £ . Then the full convex hull of £ and «

in A is the flag complex of {U;, Ui + £,£]|1 <¢<r}.

Proposition 12 (cf. [AA], Theorem 1.1): Let £ be a finite set of subspaces of

V,& :={E € &|dmE = j} and ¢; := #&; . Assume that #K > i (?:ll)ej .
1=1

Then Te(V) is (n — 1)-spherical.
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Proof: We consider the class C of all pairs (Tg(V'), FlagX') with

nE (7;'__11)63- < #K' and joins of these pairs. One has to show that £ = T¢(V)

=i
admits a filtration as described in Lemma 22 (cf. also the discussion at the end of

§3).
1. There exists a line £ € X (V)=:Y

This 1s clear if K is infinite. If ¢ := #K < oo, the union |J F contains at most
Ece

n n n n . . . . .
gq_;ll e < ng_;ll < 9% lines. Hence there exists a line £ in V with Mg .
ji=1

2. Description of the filtration
Choose a line £ € Y and set Yy := {U € Y|U + £ € Y} . Then |FlagY;| can be

contracted via U +— U + £ +— £ onto £. (This follows even without considering
convex hulls in A .) If U does not contain £, we observe that

dim(U+)NE =dimUnN(E+4£) forany E € £\{V} since ¢he . Hence U+ £he
is equivalent to UM g +£ , where of course £ +£ := {E + £|E € £} . This implies
Yo={UeX|((<UandUhg) or (£LU and UNEU(E+L))} .

For any integer 0 < i < n ,weset Y;:=YyuU{U € Y|dmU >n+1—i} and
ki := FlagYi . In particular, «, = & = T¢(V) and Y; \ Yi_; (1 < ¢ < n) contains only

elements of type n + 1 — ¢ , i.e. only (n + 1 — 1)-dimensional subspaces of V .
3. Determination of the relative links

Fix an ¢ with 1 < i < n and a U € Y;\ Y., . In particular,
dmU =n+1~i Uhg and £ £ U . We have to consider ¥;<V = YU and

>U _ yv>U
vl =y>U,

In view of U g , one obtains for all W < U:
er;g = W@gmU:: {ENU|E € &}

One just has to observe that WN E = W N (ENU) and that
W+ E=V <= W+ EDU << W+ (EnU)=Uincase U+ E=V.
Furthermore, W < U and U(hEimply W¢1E+E > W(j}(E'qLE)ﬂU . As above,

this is clearifU(hE-{—E. Solet us assume U4+ E4 £ # Vand UN(E+£) # 0. Then
it follows U+ E #V, UNE =0 and dimU N (£ + £) = 1. This implies
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WHE+E & WN(E+0=0 < WN(E+H)NU=0
= WNE+HNU
for any W < U . Therefore, all W < U satisfy the equivalence
WhE+H <= WhE+6HNnU .
Setting £ = (£NUYU ((£+£)NU) , we obtain
U={0<W<U| thg’} = X (U) . Now observe that

ep:=H#HE <et...tep ande = #8' < ejri1t+ej4ifor 2 < j < n—i. Therefore

gl (T <t e+ D (V5 +(00) <
<ert...+e_+ ﬁ (f:;)er < jé (?_‘11)6] < #K
This shows that (59, A<V) = (Flag X (U), Flag X(U)) € C .

In order to describe Y>V | we set V := V/U, W := W/U for any W > U,
E:=E+U/U and €:={E|E € £} . Since UME it is easy to verify
WQ)‘E' > Wd}:‘f for all W > U . Therefore the poset

%

{U<W<V| Wd’lé‘} Y>U = Y2V is isomorphic to

1

{0 < W< V|WMHE} = Xz(V) . Notice also that
v

fi (z’,:?)aj < i (?"2)63- <y (Tf:ll)e,» <H#K
Hence (k75, A>Y) 2 (Flag X£(V),Flag X(V)) € C . o

Corollary 13: Ifa ={F <...< E,} € A and dmE; =:d; (1 <1 < 1), then
A%(a) is (n — 1)-spherical provided that #K > i (;__11) . In particular, A possesses
i=1 V!

the property (Sa) introduced in Chapter I, §5, Remark 6, if #K > 21 | a

Remark 11:

1) For £ = 0 and T¢(V) = A, one recovers Quillen’s original proof of the Solomon-
Tits theorem for A, buildings.

ii) The case where £ = {Ey, 3}, dimE; = | and dim F, = n , was first treated
(for arbitrary K) by Vogtmann in [V], Proposition 1.4.
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i) For & consisting of a single d-dimensional subspace £ of V  and

#K > (3:11) , the sphericity of T¢(V') was proved in [Abl], §4.

iv) Instead of using a line £ € X¢(V) in order to define Y5 , one can dually work
with a hyperplane H € X(V) and then filter dimension - increasingly. In fact
this is done in [AA].

v) The occurrence of the binomial coefficents (?:11

) in Proposition 12 is due to
the estimation e; < €;4i1 + €4 in the proof above. For C, buildings, one
obtains €; < e;4i-1+2€,,;+ €;4i41 while analyzing Y0>U. This leads to binomial

coefficients of the form (2(;_‘11)) in Proposition 13 of §6.

§ 5 Lemmata on hermitian and pseudo—quadratic
forms

Throughout the next two sections, we shall work with the coordinatizations of classi-
cal C, and of D, buildings developed in [T1], §8. Roughly speaking, these buildings
belong to vector spaces endowed with a hermitian or pseudo-quadratic form. Some
facts concerning these forms will be established in the preseﬁt preparatory section.
Though I did not find them in the literature, I do not claim that all these results,
elementary as they are, appear here for the first time. For further information con-
cerning hermitian forms, the reader is referred to [HO] and [Boul]l. Throughout the

rest of this chapter, we shall use the following

Notations and agreements:
K is a skew field

o: K — K, a — a°, is an involution, i.e. an anti-automorphism of K satisfying

0'2 = ldh

ee{l, -1} CK;e=-1ifo #idy
K,.: ={a—-a%c|lac K},
K7 :={a€ K|a+a"c =0}

A is a form parameter relative to (o,e) , i.e. A is a subgroup of (K, +) satisfying

K, CACK and a®Aa CAforallae K .

V' is a right K -vector space of dimension m € INU{oo}
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f:V xV— Kisa (0,£)-hermitian form, i.e. f is biadditive and
flea,yB) = f(z,y)B, fly,z)= f(z,y)°c for allz,yeV, o, €K

@ : V— K/A is a (0,e)-quadratic form with associated (o,¢)-hermitian form

f, ie Qza) = o’Q(z)a+ A and Q(z +y) — Q(z) — Qly) = flz,y) + A for all
z,yeV, a€ K.

If A # K, fis uniquely determined by this last equation and automatically trace-
valued, i.e. f(z,2) € {a+o’c|la€ K} Vz e V. If A= K, we require that f is

alternating and hence also trace-valued in this case.
For any subset M of V , weset M+ :={z € V| f(z, M) =10} .

A subspace U of V is called non-degenerate if Un{/* = 0, totally degenerate if
U C U+, anisotropic if 0 ¢ Q (U \ {0}) , isotropicif 0 € Q (U \ {0}) and totally
isotropic if U C U+ and Q(U) = 0. Denote by n the Witt index of (V,Q, f) , i.e.
the common dimension of all maximal totally isotropic subspaces of V' . We require

that 0 < n < oo .

Remark 12:

1) The terminology introduced above agrees extensively with that of [T1], §8, but
the notions “non-degenerate”, “totally degenerate” and “totally isotropic” are
used slightly different here, namely in the sense of [HO]. Note also that pseudo-
quadratic forms are only defined relative to the form parameter A = K, . in [T1].
Since we are a little more flexible at this point, we can assume that the quadratic
space V parametrizing a classical C,, building is always non-degenerate “in the

narrow sense” ie. V4 =0 (cf. Lemma 27 below).

i) If A = K7° | then a subspace of V is totally isotropic if and only if it is totally

degenerate.

i1} If the characteristic of K is # 2 or if o is not the identity on the center of
K, then K,. = K and @ is uniquely determined by f . Hence it suffices to
consider just (V, f) instead of (V,Q, f) in these cases.

We are going to show now that V' contains “enough” isotropic lines if A is infinite.

As a first step, we prove
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Lemma 24: Assume that K is infinite and (o,¢) # (id,1) . Then K,. is also

infinite.

Proof: According to [HO], Lemma 6.1.1, the fixed field k := K~! of o is infinite.
In view of Remark 12 iii), this already establishes the assertion in most cases. So let

us assume char ' = 2, ¢ = 1 and o # id now. Suppose that K, 1s finite. Then 1t

follows inductively that h Ck(si) is infinite for any finite subset {s),...,s,} of k ,
=1

where Ci(s;} := {o € k|as; = s;a} . One just has to observe that ﬁ Ci(s;) is the
=1

kernel of the additive map
r—1
Oy ﬂ Ci(8i) — Ko1, a— as, + s,a = as, + (as;)”
i=1

Now choose a9 € K,; \ {0} , define s; := ap , choose inducitively
j=1 . .
s; € ('ﬂl Cr(si)) \ {51,...,5;-1} and set a; := slag = sfags; € K, (j € IN).
=
Using s;s; = s;s; , one obtains
_ 2 _ 2 2 _ _ .
=0 5 =8> (sits) =0=>s=5=>1=]

Hence {«; |j € IN} is an infinite subset of K, ; , contrary to the assumption that K,

is finite which is therefore false. a

Lemma 25: Let I be infinite, V isotropic and E\,. .., E, (r € IN) proper subspaces
of V.. Assume that V1 Q7(0) =0 and that m = dimV >3 if A= 0. Then the

set I of all isotropic vectors in V is not contained in E:= |J E; .
i=1

Proof: We use induction on r , the basis being the well known fact that V is spanned

by I (cf. [T1], §8, Lemma 8.2.7). Two cases have to be distinguished:
1. A#0

Choose z € I\ F, and y € T\ 02 E, . Then U := zK + yK is not contained in
Eforl <:<r. lfdmU = 11,_we are ready. If U is a degenerate plane, it has
to be totally isotropic and we may choose any vector in U outside _OI(U NnE;).
Finally, let U be a hyperbolic plane. It contains infinitely many is:o_tropic lines
since #A = oo by Lemma 24 (if (¢,¢) = (id,1) , use #K? = o0o). Therefore

again UNT ¢ U(Un Ey.
=1
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2.A=0

We first assume m = 3 . Then it is easily checked by using a Witt basis of V
that V' contains infinitely many isotropic lines. On the other hand, every proper

subspace of V contains at most 2 isotropic lines.

If m >3, wechoose z € I\ E,, y € I\(F:U...UE,U/{z}*) and set
H := z K + yK which is a hyperbolic plane. Also in case m = oo , it is easy
to check that H N Ht =0 and H+ H* =V . H* cannot be totally isotropic
since it would be contained in V+ N Q~!(0) then. It is therefore possible to
choose an anisotropic vector z € H+ | and we may additionally assume z ¢ E,
if H- € E, . Set U := H 4+ zK and observe that U € E; forall1 <7 <r
as well as Ut N @~1(0) = 0 . Hence the proof is finished by applying the case

m = 3 treated above. m

Next we consider a finite field K = IF, with g elements and calculate the number of
isotropic lines in V. Set V5 := VLN @Q~1(0) and mg := dim V. Choose a complement
Viof VoinV j1e. V=V V;, let m; be its dimension and n; its Witt index. Note
that m = mg+m;, n =mg+n; and 2n; < m; < 2n; +2 . We define € {U,%,l}
by #A =: ¢!~7 , and set again I := Q~'(0) \ {0} . Then the following holds:

Lemma 26: #{(x) = z]Fq |g; c [} = qlTl(qm—n + qn __qm—m—ﬂ — 1)

Proof: Choose n, pairwise orthogonal hyperbolic planes H,,..., H,, in V; and isotropic

vectors e;,e_; € H; satisfying f(ei,e_;) =1 (1 <¢<n,). Let A be the (anisotropic)
ny
orthogonal complement of | H; in V] . Then any z € V can uniquely be written in

i=1
the form

z=12x9+ %(e,-)\i + e_ipi)+ a with 2o € Vo, A pi € Fyanda € A
=1

Note that Q(z) = Q(a) + ( il/\m +A).

Now we define [;:={z € [ |\, =...= X1 =0and X\; =1} (1 <5 < ny) . Observe

that #1; = ¢" "1 #A =¢™ 777 . Since

#{(z) |z €1} = %1: #1+ #{{(z) |z € Vo + % e_;IF, } , the claim follows. =
j=1 =1

.
Using Lemma 26 in order to estimate the number of isotropic lines in £ = U F;,
=1

one obtains the following analogue of Lemma 25 for finite fields:
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Corollary 14: Keep the notations introduced above. Assume that V is isotropic

and Vo = 0. Let E,,... ,E, be proper subspaces of V . Then I is not contained in
E .= 0 E; provided that one of the following conditions holds:
=1

a) A=F_ andg>r
b) 0 #£id, m =2 and ¢z > r
c) m>3andqg>2r

d)m:2n+2(=>/\:0)andq2r+l d

We are interested in hermitian and pseudo-quadratic forms here because of the
following two results of Tits, the first being rather elementary (cf. [T1], 8.3.4 and
8.4.2) and the second a deep theroem (cf. [T1], Theorem 8.22):

1. Let (V,Q, f) be as described at the beginning of this section, assume that
Vo :=VENQ1(0) =0and set X := {0 < U < V|U is a totally isotropic
subspace of V'} . Then Flag X is a C), building which is thick unless
(m,A) = (2n,0) .

2. Every thick C,, building whose links of type A, correspond to Desarguesian
planes (in particular, any C,, building for n > 4) is of the form Flag X as above.

Following an idea described in [HOJ, §5.2.B, in the context of unitary groups, one
can achieve V+ = 0 in 1. by adjusting the choice of A . In order to see this, we can
assume char K = 2 in view of Remark 12 ii) and iii). Define A2 AbyA/A:=Q(V4).
Then A C K°* since f(z,2) = a+ o”c mod A for any o € Q(z) (cf. [HO], 5.1.14).
Hence A is a form parameter. Set V := V/V+ , denote by 7 : V —» V the canonical
projection and by f the (0,€)-hermitian form on V x V induced by f . Obviously,
Vi =0. Define Q:V-— K/A by Q(z + V1) :=Q(z) + A , and set
X :={0< U < V|U is totally isotropic relative to (Q, f)} .

Lemma 27:
1) 7 induces a bijection between Q~'(0) and Q(0) .
ii) The posets X and X (and hence also their flag complezes) are isomorphic.
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Proof:

i) TIQ(0) is injective since VE N Q~1(0) =0 . If Q(z + V*) =0, then
Q(z) = Q(z) for some z € V* . Therefore, since char { = 2,
Qz+2)=Q(z)+Q(z)=0,ie. c+2€x (z+ VE)NQI(0).

i1} Denote by & : @*1(0) — Q71(0) the inverse of Q-1 (0) Q=1 (0} — Q~'(0).
The restriction of « to any totally isotropic subspace U of V is linear. In fact,
given 7,5 € U, f(x(3),&(7)) = f(3,§) = 0 implies
Q(x(2) + ~(§)) = Q(r(3)) + Q(x(F)) = 0 and hence
k(z + ¥) = k(Z) + k(y) . Therefore, n(fj) is a totally isotropic subspace
of V. Now it is obvious that 7 and « induce inclusion-preserving maps be-

tween X and X which are inverse to each other. a

Remark 13: [t is shown in [HO] that the unitary groups of (V,@Q, f) and (‘N/, Q, f)
are isomorphic. The most prominent example is provided by the isomorphism between

O2,11([) and Sp,,(K) for a perfect field K of characteristic 2.

So we may and will assume V! = 0 in the following. But we have to admit
infinite dimensional quadratic spaces in order to describe all classical C, buildings.
The question occurs wether the usual laws for taking orthogonal complements are

still valid then. For our purposes, the following statements are sufficient.

Lemma 28: Set i := {0 < U < V|dimU < oo}, Y+ = {U+|U € U} and
W :=UuUuu* . Then for any A,B € W, it holds:

i) AL €W, At = A and codimy 4* = dim 4
i) (A+ B}t = At nBL

i) (AN B): = AL + B+

iv) A+ BEW and ANBEW

v) AhB if and only if A-thB*
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Proof:

i} Forany U € 4, U+ =U and codimy Ut = dimU by Corollary 1 of Proposi-

tion 4 in [Boul], §1, n® 6. This implies the non-trivial assertions in i).
ii} is obvious for arbitrary subspaces A, B of V .

iii} follows from Corollary 2 of Proposition 4 in loc.cit. if A,B €y . For A € Y
and B € Yt , this equation is (almost) proved in loc.cit., §1, Exercise 9. If
A, B € }{* , one obtains by applying i) and ii)
AL 4 BY = (AL 4+ BY)Y = (AL 0 B = (AN Bt

1v) is an immediate consequence of the first three statements.

v} Applying i) - iv} yields
ANB=0 <<= (ANB)!'=0! < Al + Bt =V and
A+B=V &= (A+B}=Vt & A*NB =0

§ 6 The case C,

Concerning (V, @, f) , we keep the notations introduced at the beginning of §5. Recall
that we always assume V* = 0 now. Furthermore, we require (m,A) # (2n,0)
throughout this section (ordinary quadratic spaces of dimension 2n and Witt index n
will be considered in §7 in connection with D, buildings). As already mentioned, one
obtains a thick C, building A = Flag X by setting X := X (V) ={0< U < V|U is
totally isotropic}, and every classical C, building can be described in this way. Any set
{e:,e_i |1 < i< n} of 2n isotropic vectors in V satisfying f(e,.e;) = f(e—i,e—;) =10

and f(e;e—;) = &; (1 €4,7 < n) determines an apartment of A , namely

E(ela'-"cn; 6_1,...,6_n) = Flag{(egl,...,eir) |i] # tik
forall (1 <j#k<r)}

Conversely, any apartment T of A is of this form (cf. [T1], §7).

Lemma 29 (cf. [Ab4], Lemma 1.2.3): U,E € X are opposite in A if and only
ifV=U®E* . Ué& A"E) holds if and only if UhE* .
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Proof: Choose an apartment ¥ = ¥(ey,...,en;€_y,...,€_,) containing U and £ .
We may assume E = (e,...,e,) . Since opy; is type preserving, opg({e;)) = (e;) for
some j. If j # i, one easily finds a wall of ¥ containing (e;) but not (e;) .
, and hence opg(E) = (e_y,...,e_,) = E°
Observe that E° @ E+ =V (E° + E+ =V follows from (E%' N E = 0 and Lemma
28) and that WNE* #£ 0or W+ EL £ V for all vertices W # E? of £ . This implies
the first claim and together with Lemma 16 i) of §1 also the second. a

Therefore, opg({e;)} = {e-;) for all ¢

If £ is a set of subspaces of V , we define as in §4 7
Xe(V):={U € X |UNE} and T¢(V) := Flag X¢(V) . Note that U h E* also yields
UNEifUEe X (in fact even U N E = 0 in view of Lemma 28). Hence Lemma 29

implies

Corollary 15: For any simplera = {E; < ... < E.} € A and
E(a):={E,Ef|1 <i<r}, A%)= Te)(V) . a

We shall only consider subcomplexes of the form T (V) if £ satisfies the following

two conditions, where the first is obviously motivated by Lemma 28:
1. £ is a finite subset of W = gy U+
2. £=¢4

Apart from being aesthetically appealing, the second condition is necessary in order
to guarantee that the “upper links” in T¢(V') are again of the same form. To be more

precise:

Given U € X, we set V := U*/U and denote by f (respectively Q) the (o,&)-
hermitian form (pseudo-quadratic form) induced by f (respectively @) on V x V
(respectively V) . Then the poset X>Y is canonically isomorphic to X(V) . If
additionally U € X (V}, we would like to obtain an induced isomorphism between
Xe(VYY and Xz(V) for € := {E = (ENUY)+ UJU | E € £} . We therefore have

to verify the following equivalence:

(%) Wd/\E‘i:} W/U@E for WeX>Y and Ee¢
7

Now, since £ = £' , we do not only know UME but also U h E* and hence U+ h E
by Lemma 28. Then (x) is in fact easily checked. It is trivial for U + F = V or
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ULNE=0.1fUNE=0and Ut + E=V , one obtains for U < W < Ut

= WnUnE+U)=U
= W/UNFE=0,
= W4+ U+ (EnU)=U*
= WU+E=V

WNE=0 < WnNnECU

W4+E=V << W+EDU*

If K is infinite, we shall need no other information about £ than the two conditions
stated above. However, if K = IF, is finite, we shall have to compare ¢ with a certain
natural number N(£) associated to £ . Recall that non-degenerate anisotropic spaces

over finite fields are at most 2-dimensional and therefore m < 2n 4+ 2 .

Definition 10: Set & :={E € & |dmFE =j}, ¢;:=#&, and

2s

egs) = jgo (2;) eny; for REIN, s € Ng and b +2s <m . We define

N(E) = e f is alternating (= m =2n) and @ =10,
NEY =" if m=2nand o #id,

NEY=2e""  if m=2n+1, and finally

N(g) = max{el™) + eV 41, 2657V} if mo=2n +2

Below we shall need the following technical

Lemma 30: Given natural numbers m, 1 <1 < %(m —2), m:=m — 2t and two
finite sequences (ey,...,€m_1), (€1,...,6m-1) contained in INg . Suppose that

a) &1 Ser+2(ea+ ...+ eip)+eiga

b) & < ey + 2615+ e 0 for 1<j<m—1

¢) Emot S emoicg + 2(€meic1 + -+ Em—2) + Emo1

E_- (2(3-‘"))5;1+j <o) = i

j=0 7=0

Then Eﬁj“" = (zjs)ehH for all s,h € IN salisfying

h+23<mandi§s§%(m~2).

Proof: The claim is verified by an elementary calculation using the identity

(92,2 + () = (1) wsem :
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Proposition 13: Let £ be a finite subset of W (cf. Lemma 28) satisfying £ = £+ .
Assume that either K is infinite or else K = I, and ¢ > N(E). Then the subcomples
Te(V) of the C,, building A = Flag X is (n — 1)-spherical.

Proof: We want to apply the method explained in §3. Here the class C consists of
all pairs described in §4, Proposition 12, all pairs (Te(V'), Flag X') satisfying the
conditions of the present section and joins of these pairs. We have to construct a

filtration of & = T¢(V) fulfilling the requirements of Lemma 22.

1. There exists a line £ € X (V) =Y

If K is infinite, this follows from §5, Lemma 25. If K = IF, , the assertion is a

consequence of Corollary 14, ¢ > N(£) and

NE>2e1+...+ena if A=1IF, (= f is alternating and m = 2n),
NEY>(er+...+em_1)? ifm=2nand o #id,
NE)Y>2ea+ ... +emy) ifm=2n+1,

NE >er+...+ema+1 ifm=2n+2.

Note that an isotropic line E[ﬁé’m_l automatically satisfies Er’ng;_l =& .
2. Description of kg = Flag Yj

Recall that U/ € X is opposite to £ in A if and only if U n ¢+ = 0 . If this is not
the case, then the convex hull of U and £ in A contains exactly the (not necessarily
distinct) vertices U, U M€+, (UNELY+£, £ and consists of the edges generated by these
vertices (consider an apartment ¥ = X(ey,...,€n5€_1,...,€_,) containing U and £).

In view of the discussion in §3, our first candidate for Y5 will therefore be the poset

Yo ={UeY|Uné, (Unty+£EeY).

Now observe that W + ¢ME is equivalent, to WME + ¢ for arbitrary subspaces
W, E of V not containing ¢ since
(W+OHNE=0 < WNE=0andfgW+FE << WN(E+£{=0
Dually, for subspaces W, E of V not contained in £+ |
(WY +E=V & WH+E=Vand (WNE) Ll «— WH(EntH)=V
which implies W N ¢+ MNE & WAHEN .
Hence the conditions defining Y may be rewritten in the following way: U € X is an

element of Y if and only if
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)e<Uand Uhg or
i) g U <+ and UNEU(E +£) or

i) U g ¢4, dimU > 1 and UNEU(ENELY U ((ENLL) + )

In view of the relative links we have to consider below, we replace ii1)’ by the following

condition
i) U €4, dimU > 1 and UhgU(ENEL) U (E+£) U ((E€N8L) + €)

and define Yo := {U € X | U satisfies 1), ii) or ii1)} .

Observe that |kg| = | FlagYy| can be contracted onto £ via

Ur— UNet — (UN ) + £+ £ . The contractibility of |#¢| can also be proved
without using convex hulls. Start with st (£) . Add successively in a dimension-
increasing order the U € X fulfilling ii). Since the occurring relative links are con-
tractible (onto U + £ , respectively),

| Flag{U € X |U satisfies i) or ii)}| is also contractible. Apply then a dimension-

decreasing filtration in order to deduce that | Flag Y5| is contractible.
3. A dimension-increasing filtration
The first part of the filtration of & is defined as follows: Set
Z = {UeY|t<Uor UhE+E},
Y, .= {UeZ|U€Yy0r dimU <i} and &, :=FlagY; (1 <7< n)
For arbitrary given U € Y; \ Yi_, , we have to study £°Y = Flag Z<V and
k?Y = Flag ¥>V . Note that dimU =1, £ ¢ U £ £+ and Uhg +£ .

a) Obviously, A<V = Flag{0 < W < U} is the A,.; building associated
to U . Since UDEU(E+E), WAF if and only if WHh(F N U) for any

W < U and F € £U(E+E) (cf. step 3 in the proof of Proposition 12). Setting
= {FNU|F € £U(E+£)} , one thus obtains Z<V = {0 < W < U|W((ij\8’}.

In case K = IF, , we note that ¢} := #8]'- < €j4m—i + €j—14m-i Which implies
i1 -
()< T (n)e < NE) <q.

U

1

3=1 j=m—1
Hence the pair (555, A<Y) is of the form described in Proposition 12.
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b) As already mentioned while motivating the condition £ = £%, A>Y is canoni-

cally isomorphic to the C,,_; building Flag X(V') associated to the quadratic space

V :=U'/U . We assume i < n here since we need not study the empty set.

Set F = EUENELYU(E+DU((ENLL) +0)

and € = {F=(FnUY+U/U|FeF}.

We want to show Y@V = Xz(V) . In the following, we always assume F' € F and
Eeceg.

1} There exist F', F" ¢ F satisfying F' < F < F" |, codimpF' <1,
ying
codimp« F' < 1 as well as UMF" and UL F' .

If F=For ENn¢t  choose F" = E .

If F=E+for(Entty+ 1L, choose F'=FE+1{.
If F=For E+{,choose F/'=F .

If F=Enttor (EOEJ‘)-{—E,choose Fr=En#t.

(2) dimF >1{ implies Ut + F=V
Choose F” as in (1) and observe Ut+F=V.

(3) codimyF > ¢ impliesUNF =0
Choose F” as in (1) and observe UN F" =0 .

(4) dim F < 1{implies either 1)U N F =0 or else
i) dim(U+ N F)=1, UNF =0 and

Fe((EU...UE)+DU(((E2U...UEINL) +£)

If F = Eor Entt i) follows from UthF . If F = ¢, U+N F = 0 since
ULt . M F=FE+4+for F=(En&)+£+#L, wesee by choosing F' as in
(1) that dim(U+ N F) < 1. Finally, U N F = 0 follows from ¢ < n < codimy F
and (3).

(5) codimyF < ¢ implies either i) U+ F =V orelse
ii) codimy(U+ F)=1, Ut + F =V and
F=En{* codimyE<i—lor F=(ENé)+£ 1< codimyF <.
The proof is dual to that of statement (4).

(6) For any subspace W satisfyinglU < W < U+, W l:[) Fis equivalent to W/U be.
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This is obvious if U* N F =0or U + F = V . In the situation described in (4)

11), one obtains
WHF > U'NFEW < Wn(U*NF)=0

— Wn(UtnF)Y+U)=U
— WUNF=0 < WUMNF
1%

Dually, in the situation described in (5} 11), it holds

thF = WLU+F & WUL+F=V  W/UNF

v

Assume dim F' > ¢ and codimyF >t at last. Then Ut + F=Vand UNF =0
by (2) and (3). But in this case, we already observed that de“nF and W/Ud]?
%

are equivalent (cf. the proof of (*} below Corollary 15).

Since Y2V = (U < W < U* |W € X and W F}, (6) implies

(7) Y;)>U is canonically isomorphic to the poset XE(V)

(8) £ =F and dimF < oo or dmF < ocoforany F € E .
This follows from Lemma 28 and F* = F C W .

If K =1, , we also have to estimate N(£) . (2) and (3) imply

(9) If dim F > ¢ and codimyF > i, then dimF =dim F — i ,
Now (4}, (5) and (9) yield the following statement:

(10) 1) Assume that 7 := m — 2¢ is greater than 2. Then it follows

€1 = #& < e+ 2(52 +..-+ €i+1) + €42,
€; = #E& < eiyjo1+2eq; e forl<j<m—1,
Eﬁ“‘l #E'm 1 < Erm i + 2(8171 —t=1 +. -+ em—Z) + €m—1

n Ifm=2(< m=2nandi=n-—1), then
e <e+2e+...+em2)tem

Applying Lemma 30 for s = n —1 and Definition 10 (note that n —¢ is the Witt

index of V), one derives from (10)
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(1) NE) < N(g)<q i K =T,
Statements (7),(8) and (11) show that

(k711, A7Y) = (Flag Y5, Flag X >V} = (T5(V), Flag X (V)) € C

4. A dimension-decreasing filtration

The second part of the filtration of & = FlagY is defined by
Yi:={UeY|U€ZordimU>2n+1-i} and

k;i=Flagy; for n<i<2n.

Obviously, Y,, = Z as above and Y;, = Y. We fix an arbitrary
UeY,\Yi.i(n+1 <4< 2n) and set k := 2n+1 —1 = dimU . Note that
(LU, YV =Z2V={0<Wc< U|w¢gU(g+Iz)} and Y2V = Y>V

a) Everything we need to know of Z<Y was already derived in Step 3 of the proof
of Proposition 12. Firstly, since U¢S, W¢F is equivalent to Wr‘Lb(F N U) for
any W < U and F € £U(E+£) . Setting & = (ENU)U ((E+€) N U) , we thus
obtain Z<V = {0 < W < U|Wr£|;g’}‘ Secondly, if K = IF, and in particular

d; _ k=1 ooy 1 k—1
imV =m < oo, we know that )y (j_l)ej <er+-cidlmep1+ X (T_(m_k))e, .
=1

r=m-—k

Now the term on the right side of this inequality is < N(£) . This follows from
€1 = €n_1, €2 = €,_2, N > 2and (r—?;l—k)) < (mr__“a_]) for any integer 0 < a < m— k.
Note that this is the only place where we make use of N(£) > 26:(;1_1) form = 2n + 2.
It is proved now that («59, A<Y) = (Flag Z<Y,Flag{0 < W < U}) € C.
b)Since £ = £+ and U ¢£, Y>Y is canonically isomorphic to Xz(V) for V := Ut /U
and £ := {F := (ENUY)4+U/U | E € £} . In this situation, N(£) < N(&) is obvious
for finite K . Hence («2Y, A>Y) = (Tx(V), Flag X(V)) € C. ]

t—1

Corollary 16: Let A = Flag X(V) be a classical C, building as described above.
Assume that either K is infinite or else K = ¥, and

q > 2™"2if f is alternating and Q@ =0,
g>2"1ifm=2nand o #£id ,
g>2"1lifm=2n+lor2n+2.

Then A%(a) is (n — 1)-spherical for any a € A . ]
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Remark 14: Though it is more difficult to deal with classical C, buildings than
with A, buildings, the result obtained above is exactly of the same form as in the 4,
case: A possesses the property (Sa) if every panel is contained in at least 2¢(*) 4 1
chambers, where ¢ is a linear function of n = rk A . It has been tried without success
to improve this result for A, buildings. Therefore, I did not dwell on looking for
better bounds while proving Proposition 13. Even in Corollary 16, the requirement
q > 2°"~! can be resplaced by ¢ > 2(2* 2 — (2:__22)) for m = 2n 42 since ¢, ,, = 0 for
£ = £(a} as in Corollary 15. Furthermore, one can study directly the connectedness

of T¢(V) in the C; case and then start the induction with n = 2 instead of n =1 .
For Cj buildings, this leads to part ii) of Proposition 11 in §2.

§ 7 The case D,

In this section, we specialize the notations and agreements of §5 in the following way:
K is a (commutative) field, 0 = idg, e =1, A =0, ¥V a K-vector space of dimension
m = 2n > 4, @ : V— K an ordinary quadratic form and f : V x V — K the
symmetric bilinear form associated to @) . We assume that V is non-degenerate and
of Witt index n . Hence (V, @, f) is the hyperbolic space of dimension 2n over
K which is unique up to isomorphism. Set again

X :=X(V):={0< U< V|U is a totally isotropic subspace of V'} .

Recall that A := Flag X is a weak C, building. One obtains a thick D, building by
defining X :=X(V):={U € X|dimU #n—1} and A := Orifl X ,

“Orifl” denoting the “oriflamme complex” in the sense of [T1], §7.12. This means

that A is the flag complex associated to the following incidence relation on X:
UIW: 2 UCWorUDWor dimUnW)=n—1(U,W € X)

For n > 4, every thick D, building is of the form A for some field /{ according
to [T1], Proposition 8.4.3. We also admit n = 2 and » = 3 here which leads to
certain D, = A, x A; and D; = A; buildings. As in §6, any hyperbolic basis

{e;,e_i|1 <7 < n} of V determines an apartment (e, ... en;€_1,...,6_,) of A,
Furthermore,
i(el,..,,en;e_l,...,e_n) = Orifl {{e;,,...,e;.. ) |1 <r <ny r#Fn—1;

i # tipforall 1 <j#k<r}
is an apartment of A , and every apartment % of A is of this form (cf. [T1], §7.12).
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In the following, we need a modification of the notion of transversality.

Definition 11: For arbitrary subspaces U, W of V , we define
UhW Urbw or (UUWeX, U=U+, W=W' and &im(U N W) = 1)

For any set £ of subspaces of V | one sets (deviating from Definition 9)

Xe(V)i= {U € X|UREY,  Te(V) = Flag Xe(V)
Xe(V)y:={U e X|Uhg}, Te(V):= Orifl X (V)

Lemma 31 (cf. [Ab4], 1.2.6 and 1.2.8):
i) U Ee X are opposite in A if and only if V= U @ E* .

1) For U E € X, Ue ZSO(E') is equivalent to UMNEL

i) Assume U E € X, dmU =n—1 and U = U, N U, for U, U; € X .

UhEL is equivalent to UerhEJ“ and U;ME* .

Proof: Choose a hyperbolic basis of V' such that
UEcT=2%(er,....n € 1,-..,6_,)in 1) and i) and
UEcX=%e,...,en;€1,-..,€_,)1n1ii).

1) Assume E = (e1,...,¢;) . Asin Lemma 29, dimopg({e;)) = 1 implies

opg({ei)) = (ei), opz(E) = (e-1,...,e—r) =: E° and hence the claim.

Then

ii) By Lemma 16 i), U € A°(E) if and only if U and opg(E) = E° are incident in

X . This implies ii}.

i11) Note that / € X implies U/; € ¥ and U, € E. For dim F < n, the claim easily

follows from E € ¥ . For F = E* , one uses

dim(Uy N E) # dim(U; N E) mod 2 in order to deduce UyNE =0o0r U,NE =0

from U, %E and Uer\E' .
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Corollary 17: Let a = {E, ..., E.} be a simplex of A = Orifl X and set
Elay:={F;, E}X|1<i<r}. Then it follows

i) A%a) = Ty (V) .

1i) |A%(a)| is homeomorphic to 1Ty (V)] -

Proof: Note that UFTIE,} implies UFTEE,- ifUeX.

i) follows from Lemma 16 and Lemma 31.

ii) Recall that A is a simplicial subdivision of A obtained by cutting in two the
chamber of A . One introduces one new vertex U; N U on every edge {U;, Uy}
of A with U; = U and U, = U;- . This vertex is joined to any simplex of
stx{U1, U} not containing {U;,U,} . The resulting simplicial complex is easily
identified with Flag X = A .

Now by Lemma 31 iii}, the simplicial subdivision obtained from Tg(a)(V) is

precisely Flag X)(V) , implying of course ii). .

Remark 15: I want to stress that |A%(a)| is not homeomorphic to |A%(a)] in case
a={E,....,E} e An A contains a vertex, say F, , satisfying E, = E'Tl . In fact,
Lemma 29 (which also holds for weak C,, buildings} shows that

A%a) = Flag{U € X |UMhE(a}} . In particular, given U € A%(a) with dimU = n—1,
only one of the two maximal totally isotropic subspaces Uy, U, containing U can
be an element of A°(a) in view of dim(U; N E;) # dim(U, N E; ) mod 2 . It follows
that |A°(a)| is homotopy equivalent to the (rn — 2}-dimensional space

| Flag{U € X | Ulhé‘(a)}| which can be shown to be non-contractible. On the other
side, we are going to prove now that A°(a)is (n — 1)-spherical provided that

4K > 21

Before proceeding, we have to decide whether we shall work with thick D, build-
ings or with weak C, buildings in the following. Both approaches lead to technical
difficulties which cannot be discussed in detail here. I just remind the reader of Prob-
lem 1v}) mentioned in §3. Suppose we are given a full subcomplex & of A , a line
(= vertex of type 1) £ € £ and an edge {Uy,U,} € & satisfying U; = U and
U, = U; . If the convex hulls of £ and U, and of £ and U, are included in & , we
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still do not know whether the convex hull of £ and {U;, U} is contained in « . This
problem leads to considering the center Uy N U, of {U;, U} as well, thus indicating
that one should study weak C,, buildings instead of thick D, buildings here. However,

the definition of M comes from the D,, structure and produces new difficulties now.

The most important is the following:

Given U € Xg(V) , we again want to identify X (V)Y with Xz(V) , where
Vi=UYU, € = {E = (EnU"+U/U|E € £ . But it may happen that

E € & is not maximal totally isotropic whereas E is maximal totally isotropic in

V. In this case, WHE is not equivalent to W/U@F for W € X>Y . Therefore, we
v Vv

have to introduce further restrictions which, by the way, cannot be translated into

transversality conditions in general.

Definition 12: Let U and E be subspaces of V, dimU < n and dim E = n. Assume
that E is not totally isotropic. Then we define

U@ E:e U'N E is not totally tsetropic

We list some facts concerning the relation @. Set
U = U (V) ={A<V]|dimA=nand A¢ X} and
M(A) = {M<A|dmM=n~1and M € X} forany A€ U,.

Lemma 32: Let subspaces U, E of V be given. Assume U € X, dimU < n
and UrhE, E* . Denote by V the hyperbolic K-space V := UL/U of Witt index
n:=n—dimU , and set E := (U N E)+ U/U . Then it holds:

Y EecUy, and U @ E imply E € U = U(V)
11) Provided that U @ E in case E € Y, ,

%4 lj:ﬁ E  es equivalent to W/U ¢E for any W € X>V .
Note that the latter is always true by definition if dimU =n —1 .

In the following statements, we suppose that E € U4, .
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i) For W< U, UQE impliesWQEFE . For We XV andU Q@ E,

W@ E ifand onlyif W/UQFE
v

iv) U @ F s equivalent to U @ E*

v) IfdimU =1, U @ E is equivalent to U £ M* for all M € M(E)

vi) # M(E) <2

Proof;

1)

)

i)

iv)

vi)

Since UNE=0and U* + E=V, dimE=dmE—-dimU =7.
Since U @ E, U'NE and E are not totally isotropic.

Below Corollary 15 in §6, we already showed WQ/\E = W/U mﬁ . This
%

proves our claim for dim £ # n and in view of i) also for F € Y. If E is

maximal totally isotropic, the same is true for E , and the assertion follows

from dim(W N E) = dim(W/U N E) .

The first part is trivial and the second follows from

(WU nE = (W-nE)+UJU .

Observe again that dimU + (UL NE}Y=n=dimU + (U+ N E*+) because of
U E,E*+ . If U+ N E is totally isotropic, this implies in particular

UNE CU+ E* and hence U 4+ (Ut N E)y=U+ (U+n E*Y) . Therefore,
Ut n E* is totally isotropic as well.

Since dim(U+* N E) = n —~1, U @ FE is equivalent to Ut N E # M for all
M € M(F) . Now observe
UtNE#M < U+Et# M < Ug& ML

Set Ey:= ENE*NQ™'(0) and ng :=dim E, . If ng < n— 2, the Witt index of
Fis<n—land M(E)=0.Ifng=n—-2and E=E,®E,, #M(E)=0
or 2 according as E| is anisotropic or a hyperbolic plane. Finally, if no =n—1,

then M(E) = {Eo} . O

Before going to analyse subcomplexes of type T¢(V) , we need two technical lem-

mata concerning certain relative links occurring in the proof of Proposition 14 below.
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The reader is supposed to be familiar with the general method of the sphericity proofs
as well as with the details of the preceding sections. Therefore, I will concentrate on

the essential arguments now.

Lemma 33: Assume U € X and k:=dimU > 2. Let £ be a finite set of subspaces
of U and setej :=#E& (1 <3<k—1). Let further F=F, D F2 2 ... D Fr1 be
finite subsets of U, (V') satisfying

(Y UNn F e £U{0} forall Fe F
(2) fjl-:f,’r

(3) dm(UNF)<k—1—-jforal FEF (1<j<k-1)

Set Xe.r(U; VY:={0< W<U|Wf£b€ and VV@]—"j for dimW = j}.

k=1
Finally, assume #K > 3 (;":f) e;+2""'s , where s ;= # F . Then Flag X,.-(U; V)
=1
ts (k — 2)-spherical.
Proof: 1. There exists a line £ € X, -(U;V)=:Y .

For any f € F = F1 = F; and M € M(F), U is not contained in M+ since
otherwise dim(U N F*+) > k — 1 . Therefore,

(EN{O,UHU{MtNU|,M € M(F), F € F} is a finite set of proper subspaces of
U. Its cardinality is < e; + ...+ ex_1 + 2s < #K . Hence there exists a line { < U
not contained in any of these subspaces.

By Lemma 32 (note also the = Erh(]—'ﬂU) = flh]—'), (@ r.
2. Description of Y
Assume A€ Y, £ L Aand j =dimA < k— 1. Recall that A 4 €®8 is equivalent to

Arng +£ (cf. §4). For any F € Fj;1 , we obtain

A+L@QF <= A'nltnFéX < (+(A'nFnit)e¢ X
e AAN((FRiY 40 ¢ X < AQ(FNE )y +L=: F

Note that F' € U,(V) since 3¢F, FY and £@ F and that (F))* = (F') . We have

proved now

A+LeY & ANE+L and A Q(Fjnlh) +1
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Set F 1= F; U((Fis1 ) +€)for 1 <j<k-—2 F :=F and

Yoi= {A€Y|f{<Aor (A@g+e,j:dim,4<k_1andA@J-;)}
= {A€eY|A+LcY}

Then | Flag Y5| can be contracted onto £ .
3. The poset YW

Here we assume W ¢ Y, £ £ W, 2 < dimW = k — ¢ < k — 1 and additionally
Wr{b(}‘ﬂU) +0. Weset £ = (ENWYU((E+) N W) . As in §4, Wr(l)g implies

A@SU(E +£f) < A{bé" for any A < W . Recall also that

L (55D o e

1=1 J_l

Next we observe that all the conditions stated in the lemma are satisfied with
(Us&:F;, 1 <j <k~—1})replaced by (W; €57, 1<j<k—i-1).

(1) follows from WNF=Wn (UnNF)and
WN((FNEY+H=Wn(F+H=Wn((UNF)+4£. (2)isobvious.

As for (3), we first note that W rLl;(fj NU) implies

dim(WnF)<k—i-1-35 VFeF, 1<j<k—i—1, hencealso
dim(Wn(F+0)<k—i—-1—-3 VFeF andl <j<k—-1-1.
Finally, W N (Fi_; +£) = {0} follows from W @(fmU) +0.

Summarizing, we obtain
={0< A< W|Avr‘b£," and A @ F; for dimA = j} = Xepnm(W;5 V),

k—1—1

where s :=# F' < 2s and E (k7i72)6’1+2k“i‘13’ < #K .

1-1
4, The poset Y>W

We just require W € Y and dimW = ki < k—1 here. Set V := Wt/w, U:= Uuiw,
E=E+WWI(Ec§g,E:={EEc¢g}, F:=(FnWt)+WW (F ¢ 7),
Fi={F|Fe€Fieip;} 1 <j<i-1)and F:= F . Since dim(UN F) << for all
F € Fi_iy1 and th(]—“ﬂU), WNF=0=WnFL HencedmF =n—(k—i)=:7

for all FF € F. Now F C (V) follows from W @ F,_; D Fi_ —it+1 - Furthermore, the
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identity Un F = (UN F) + W/W implies U NF C U {0} as well as
dim(UNF)<i—1—j forall F€ F; (1 <j<i—1). Hence

(V;U; € F;, 1 <5 <i— 1) satisfies all conditions of this lemma (the inequality is
easily checked). Observing

B@S = B/Wg;‘f for any W < B < U and B @ Froiy; & B/W gfj for

W < B <UanddimB=k—1i+j (cf. Lemma 32 iii)), we thus obtain
Y>W 2 {0<B< U|'E$‘g” and B Q F, for dimB = j} = Xz 7(T; V).
5. Two dimension-decreasing filtrations
First we set
Z = (WeY|L<Wor Wrtb(]-‘ﬂU)+£} DY, and
Y, = (WeZ|WeYoor dmW>k—i},1<i<k-1.

Step 3 shows YW = X,p0.rs(W; V) for W e V;\ Vi, (and i < k—1).
Now we assume ¢ > 1 . Z>" contains

R:={W<B< U|B@gu((fmU)+£) and B @ F; for dimB = j}

By Step 4, this poset is isomorphic to Xﬁf(U; V), where
D= EU((FNU) +£) . Notethat 3:= #F <s,d; := #D; < e; + s and hence

i-1 /- is1 g
—\. _9 | .

2:(; 1)dj+2'-1§§§:(; l)ej+2'—2s+2*-‘s§ LK

J=1 B -

In order to see that Flag Z>" is (1 — 2)-spherical, we consider the filtration defined

by
R,:={W<B<U|BeRor(dmB>k—~hand Be Z)} (0<h <i-1)

Since £ < W' for any W' € R, \ Rj_, , the structure of Z>W' = Y>W' is determined
by Step 4. Finally, a further application of Step 4 shows that R<"’ is isomorphic to
Xﬁ;?(W,V) with D' .= DnW' .
We complete the filtration of ¥ by defining
Zi={WeY|WeZor dmW >k—1},0<:i<k—1
Given W € Z;\ Z;_y, Z2¥ =Y>W is well known meanwhile.

Finally, Zf%W = Z<W = Xpaw,s(W; V), where again D:= £U((FNU) + £) . |
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Lemma 34: Let U k,& and ¢;(1 < j <k — 1) be given as in Lemma 33. Assume
that F is a subset of Un(V) with s < oo elements satisfying

(1) UnF Cgu{0} and

(2) UNF+r=0anddim(UNF)<1foradl FeF

Set Zer(U;V) = {0 < W < U|W@g and W @ F} . Then Flag Ze.r(U; V) is
A i k-1 k—2
(k — 2)-spherical if #K > ) (;‘—1)61 +2s .
i=1

Proof: This proof is easier than that of Lemma 33 since one can use a hyperplane
H < U instead of a line £ and apply the trivial part of Lemma 32 iii}). Before, the

following two statements are deduced similar as above:

(1) There exists alinef € Z, x(U;V) =Y
Here UNF* =0and k > 2 imply U £ M+ forall M € M(F)and F € F .

Having established this, statement (1) follows as in the proof of Lemma 33.

(2) Y>W Zg;f(U;V) for WeY, V:=WYW U:=U/W,
E={F+W/W|Fecg&} and F:={(FNWH+ W/W|F e F}
The verification of this statement is analogous to but easier than Step 4 in the

proof of Lemma 33.

Combining (1) and (2), one obtains

(3) There exists an H < U such that dimH =k —1and He Y

Now we define
Yo := {BeY|BnHEeY}
= {B€Y|B§Hor(dimB>landBrb(SﬂH)}
andset Y, := {(WeY|WeYyordmB<i} (1<i<k-1)

It follows for any W € Y; \ Yi_; :

4) YW =YW = {0< A< WlAvrbgﬂW}

Replacing £ by £ := £U(£NH) in (2), one also obtains
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(5) Y2W =YW = (W< B< U|B@g' and B @ F} = Zz7(U; V)
Thus the induction hypothesis can be applied. 0

We are turning to subcomplexes of A = Flag X at last.

Propostion 14: Let £ = £ be a finite set of subspaces of V ,
£ = {FE € &|dmE = j}, ¢ = #&, U, as in Lemma 32 and

£ = £.0Us. Set Ye(V)i= {U € X|Uhg and (U @&, for dimU < n)}. Then
Flag Y (V) is (n — 1)-spherical if #K >2 5 (77)e; .
7=1

7-1

Proof: This time we start the induction with n = 2 instead of n = 1 . Nevertheless,

we first establish the following, meanwhile familiar statement:
1. There exists a line £ € Y (V) =:Y
Set D:=(EU{M*|Mec M(ELEcEN\{E€c&.| M(E*)#0}U{0,V})

Lemma 32 vi) implies

1
#DS €1 +...+8n_1 +28n-+-6n+1 +---+62n—1 S §#K
According to the results of §5 (cf. Lemma 25 and Corollary 14), there exists an
isotropic line £ in V satisfying £ € D for all D € D . Then clearly (g, and £ @ £,

follows from Lemma 32 v).
2. The case n = 2

Applying 1., we find a line{ € Y . By Lemma 32 ii), the two maximal totally isotropic
subspaces U/; and U, containing £ are also elements of Y . It is now sufficient to show
that any U/ € Y \ {U;,U,} with dimU = 2 can be connected by a path in Flag ¥
with that U; satisfying U N U; = 0. We may assume ¢ = 1 . If we can find a line
g < Usuch that g € Y and g, :==¢* NU; € Y, the path

&
T 9

U g [/RGE g1 U,

provides the desired connection. Now ¢ € Y is equivalent to ¢ £ D for all D € D,
where D is defined as under 1. Note that Uhg implies U £ Dforall D €D . Asfor

g1 , we observe that

QEY & gtnU €D VDep < D*Lg+U, VYDeED
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For all D € D, U, + D* is either equal to V (in which case Dt &£ g + U, holds
trivially) or else 3-dimensional. In the latter case, one obtains
Dt L g+l < U +D+#g+U, < g £ U + Dt . Now choose
0 < g < Usuchthat ¢ # Un D for all D € D and g # UnN (U + D*) for all
D € D satisfying dim(U; + D+) = 3 . This is possible since
#K > 2(e1 +2e2+e3) 22#D.

We assume n > 3 in the following.

3. Description of Y,

The definition Y, here is motivated by that in the proof of Proposition 13. However,

the relation @ and some technical pecularities have to be taken into account. Set
F = EUENN)U(EHHU((ENET)+£) and

Fn = Fulld, . Then

Fuo = EnU(Eapn M) U (Gt +O)U ((Ea N ) +0)
since £M & and £ @ £, . Consider the following conditions

1) £< U, UFRE,'and U@§g, fordimU < n

i) £ZU <€ and (UM, U@ E, for dimU =n — 1
Uhgu(E +£), U@ F, for dimU < n — 2)

i) U 64, dimU > 1, UhF and U @ 7, for dimU < n

and define Y, := {U € X | U satisfies 1}, ii) or iii)} .

It is not difficult to verify U n ¢+ € Y, and un Y+ e Yyforall U €Y, and
thus the contractibility of | Flag Y;| . One just has to use the following observations:

(1) £ £ U , then U + £hg <= UME+L (cf. §4)

(2) HU <t anddimU=n—-1, UcY implies U +£ €Y
(cf. Lemma 32)

(3) If £ LU < £+ and dimU < n — 2, then
U+2QE, & U@, Nn{) + £ (cf. the proof of Lemma 33)

(4) HU £ €4 then Unéthg = Uhgnet — Uhgntt
(cf. the proof of Proposition 13 and note that &, N+ C I4,)
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(5) £ L U £ £, then (Un L)+ the — UbEnet) +¢
(This follows from dim((U nét) + €)oo F = dimUo ((EN€L) 4+ £) for o = + or
N and F € £)

(6) If U £ ¢+ and U is maximal totally isotropic, then UNE together with
(UN€L)+ £ME implies UN¢* @ E for any E € &,
(if the line (U + £) N E were isotropic, the maximal totally isotropic subspace
(Un€Y) + (U + £ N E) had to coincide with (U 1 £+) + £ contrary to the
assumption (U N¢+)+£ME)

4. A dimension-increasing filtration

We introduce a further condition:

iv) U gfj‘ and (Ur‘T]]—" for dimU =n
Uthr andU @ 7, for dimU = n — 1
UhgU(g+£) and U @ F,, for dimU < n — 2)

Set Z :={U e X|U satisfies 1), ii) or iv)} and
Y, . ={UeZ|UeYoor dmU<i},1<i1<n-2.

Let U € Y;\ Y;_; be given. In particular, U £ £* and dimU =i <n -2

a) Note that U @ F, implies W @ F, for any W < U . Hence we obtain as in
the proof of Proposition 13 Z<V = {0 < W < U | W@S’} , where

€= (ENUYU ((€+6)NU) and § (e < #K-

b) Set again V:=U*/U, A:=n—1 and
E:={F:=(FNUY)+U/U|F € F} . Then we obtain for any W € X>V :
(7) W¢F = W/U @“F’ for arbitrary F' € F
This was already shown in Step 3b) of the proof of Proposition 13.
(8) Since UMEU(E +£), UM F, as well.
(9) dmF=n += dimF =% forany FEF

“=" follows from (8} and F, = J—'HL . For the reverse direction, we observe that
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1 <7 <27 — 1 and the points (2) - (5} in the proof of Proposition 13 imply
Ut+F=VandUNF=0.

Hence # = dim F = dim F — 1.

(10) Ex={F|F € F.} and Ex={F|F € F.}
This follows from (9) and U @ Fo .

(7) - (10) together with Lemma 32 now imply

(1) WhHE < W/Ué‘g’

Lemma 32 together with (10) also yields

(12) W@ F, < W/U @ & provided that dimW < n
v

Thus we have proved Y;>¥ = YV} . Note that by (10) in the proof of Proposition
=1,
13 and by Lemma 30, 2 ¥} (2;__12)63- < #K .
P
5. Description of Z<V for U € Y, £ £ U and dimU < n —1
Set £ = (ENUYU ((E+£)NU). Let 0 < W < U be given and suppose Wr{l}g' )
Then it follows:

(13) WdVWEU(E +£) (cf. §4, proof of Proposition 12, Step 3)

(14) W @ &,_; +£ imphes W @ &, , nét
This follows from de\(é‘n_l +€)U (Eny1 M€Y and Lemma 32 iv).

(15) UﬂFL:(]forFeg‘nU(Sn_HLﬂ)

(16 UNFt=00r U @ Ffor F=(EN{*)+{fand E € £,
HfUNF+ #0, then Ut + F # V which implies U* N En ¢t = U+t N E by
comparing dimensions and using U+ + F = V . Since U @ F , it follows that
Ut N En#t s not totally isotropic.

Setting G := £, U (Eamr ) U {F € (En NéY)y+ £|U N F+ = 0} , one obtains
ZVV ={0< W< U|WrLf}g’ and W Q G} = Z.g(U; V) , and the conditions of

Lemma 34 are easily checked now.
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6. On elements U € Y with dimU =n — 1

The reasoning of Step 4 breaks down here since (9) is not true any longer. Instead of
looking for conditions implying the O-sphericity of Y>V | we simply require Y5>V #
in this case und define

Yoop=Z':=ZU{U €Y |dimU =n—-1and YV £ 0} .

Note that Flag Z’ is (n — 1)-spherical because of Step 4, Step 5 and Lemma
34. Preparing the next filtration, we show that Z’ contains “enough” elements of

dimension n — 1 .

(17) Let Uy, U; be the two maximal totally isotropic subspaces containing a given

(n — 1)-dimensional U € Y . Suppose Ull‘:bé', U&h(’fﬂUl) and U @ F for all
1
FeF, satisfying U, ¢F . Then Ugr;h]-" )

Assume F' € F = F+ . If dimF > n, then dim(U; N F) > 1 , implying

U1+F:U+F,a,nddim(UlﬂFJ‘)§1beca,useofUlrhS,henceUﬂFJ‘=0.
Therefore, V = Ut + F = Uy + Ui+ F = Uy + F . If dimF < n , then
dimFL >nand hence U + FLt =V, U, N F =0 .

Now we assume dim F =n . If dim(U; N F) = 2, then

FeX, dmUnF)=1, U+F =U+F U-+F = U, +F and
dim(U* + F) = 20— 1, implying UphF . If dim(U; 0 F) = 1 , then
dim(U; N Ft) # 2, hence dim(U; n F*) < 1 and U, + F = V as above.

Finally, suppose that Uy N F = 0 and F ¢ X (otherwise U2’;BF is obvious ). Then
UtNF L U,sincelU @ F . ThereforeOz(ULOF)QUzzU;.ﬂF.

7. A dimension-decreasing filtration

Set Y; .= {U ¢ Y|U € Z' or dimU > 2n — ¢} forn < ¢ < 2n -1 . For given
UeY,\Y,_,, weset k:=2n—1{=dimU and distinguish the cases k =n and k <n

now.

a) For dimU = n , define & := (ENU)V ((E+E) nU) , F := FnU ,
Hi=Hi=...:= Hnog:= Fn ad Hpo1 ;= {F € Fu|UNF =0} .
(18) f FE{E,E+¢{}, Ecg, W< U and dimW <n—2, then
W¢F = W@(FnU).
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For E ¢ £, := &, \&x , this follows from UMNE and for E € &, from
dm(FNU)<2.

(19) W < U, dmW =n -1, Wﬁ}” and W 9 Hn_y imply YW #£0 .
This ist just a reformulation of (17).
(20) HW < U, dimW < n—2, W@g*’anduﬁeﬁ,then Fiw.

This is true since there exists an E’ € £ satisfying F* < E' and
dimE <dimF +1.

It follows from (18) - (20) that Y,<Y contains
Xen(UsVIN{0<W <U|F £ Whorall0# F' e F'}=: 8

Using Lemma 33, one deduces (either by considering an appropriate subset
Xengy(U; V) of S and then “filling up” or by adding the condition “F’" £ W for
all F' € F'\{0}” throughout the proof of Lemma 33) that FlagS is (n — 2)-
spherical. Furthermore, any W € Y,</ \ S is of dimension n — 1 , and

Flag Y,<% = Flag 5<% is (n — 3)-spherical by Step 5. Hence Flag ¥,<Y is also
(n — 2)-spherical.

b) For dimU < n , the poset Y.<V = Z<V was studied in Step 5. On the other
side, Lemma 32 implies Y2y = Y>U = YZ(V) , where V := U*/U and

£ :={E = (EnUY) 4+ U/U|E € £} this time. The induction proof is

complete now. o

Let & = g(a) be given as in Corollary 17. Then &N, = 0
YE(V) = XE(V) y €1y -« €n—2y€ny2y-- 1 E2n 1 S 17€n S 2 and €h—1 = Eny1 = 0.

Hence Proposition 14 implies

?

Corollary 18: [f #K > 227! | then A°(a) is (n — 1)-spherical for any simplez a
of the thick D, building A . O

§ 8 Summary
For any spherical building A | let us denote by t(A} the “thickness of A”, i.e.
t(A):= min{#C(sta(a))|a € A is a panel}
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The results stated in §4, Corollary 13, § 6, Corollary 16, and in §7, Corollary 18, can

be summarized in the following way:

Theorem B: Let A be a classical spherical building in the sense of § 3.
27141 if A is of type A,
Assume that t(A) > < 222=1 L1 if A is of type C,,
227=1 L 1 if A is of type D,
Then A%a) is (n — 1)-spherical for any a € A . 0

In view of Remark 10 and the fact that arbitrary A, and C, buildings are elemen-

tary to deal with (cf.§2), one obtains the following

Corollary 19: Let A be an arbitrary building of type A.,C, or D, but not an
exceptional C5 building. Assume that t(A) satisfies the same condition as in Theorem

B. Then A%a) is (n — 1)-spherical for any a € A . Q
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IIT1 Finiteness properties of classical
[Fq—groups over IF [t]

In the last part of this book, we determine the “finiteness length” of the S-arithmetic
subgroup I' = G(IF,[t]) of an almost simple classical isotropic IF,-group ¢ by combin-
ing the main results of Chapter I and Chapter II. Here the term “classical” is used
in the sense of [BrT1],§10, i.e. we assume that § is symplectic, orthogonal, unitary
or special linear. It is easy to pass on to groups which are strictly IF,-isogenous to
these classical groups afterwards (cf. Corollary 20 below). The exceptional groups
are excluded here only because we did not derive a result analogous to Theorem B in

these cases.

In order to apply Theorem A, we have to establish the existence of a twin BN-pair
in G(IF,[t,¢t7'])* as claimed in Chapter [§1, Example 4. If G splits over IF, , this twin
BN-pair — or more precisely: the underlying RGD-system — is described in detail
in Example 3. It is also not difficult to introduce an RGD-system in G(IF,[t, t~'])}* if
G 1s a non-split classical IF-group, 1.e. if G is either non-split orthogonal or unitary.
However, this is not described in the literature and will therefore be discussed below,
indicating at the same time how to construct an RGD-system in an arbitrary, almost

simple isotropic k-group over k[t t"'] .

§ 1 Twin BN-pairs in isometry groups over k[t,t™!]

We use again the notations introduced in§5 of Chapter II. For our present purpose, it
is sufficient to restrict to the case where K is a field. We denote by k the fixed field
of ¢ . Note that [K : k]| =2 and k= K,, = K°° if ¢ #idx . The pseudo-quadratic
space V' is supposed to be of finite dimension m, of Witt index n > 1 and to satisfy
Vin@'(0) = 0. If 0 = idg, we only admit the form parameters A = 0 and
A = K corresponding to ordinary orthogonal and to symplectic groups, respectively.
Furthermore, we assume (m,A) # (2nr,0) throughout this section because the D,
case has some special features and a twin BN-pair in SOy, (k[t,t”'])T was already

constructed in Example 3.

Fix 2n vectors ¢; (¢ € {£1,...,tn}) satisfying f(e,,e;) = 6

,— for 1 > 0, respec-

tively f(ei,e;) =¢é;-;fort < 0. Set V, := e, K and V; := F] el . The isometry

i=—"
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group

Is(V):= {g € GL(V)| f(g(2),9(y)) = f(z,y), Qg(z)) = Q(z) Vz,y € V}

can be considered as an algebraic k-group (cf. for example [Bo], §23). We define
G:=Is(V)NSL(V) and

T:={g€g|g(V;)=Viforallic {0,£l,...,4n}}.

Note that 7 is the centralizer of a maximal k-split torus in G . The system of k-root
groups corresponding to that torus is described in detail in [BrT1],§10.1. 1 will not

reproduce all the definitions here but just remind the reader of the following facts:

- Given two indices ¢,j € {£1,...,+n} = J with ¢ # £ , one defines unipotent

isometries u;;(A) (A € K} and monomial matrices m,;(A) (A € K*) .

- Set Z := {(z,¢)|z € Vo,e € K and Q(z) = ¢+ A} . To any ¢« € J and
(2,¢) € Z one associates another unipotent isometry u;(z, ¢} and, provided that
(z,¢) # (0,0} , an element m,(z,¢) € G .

- For fixed (7,7} with ¢ # +£j, the elements of the form wu;;(A) constitute an
abelian root group called #f;; which is k-isomorphic to a dim; K-dimensional
affine space. For i € J, one introduces a metabelian root group If; consisting
of all elements of the form wu;(z,¢). As algebraic group, G is generated by
{Ui |7 € J}U{U; |i,7 € J, ¢ # +j}. For any k-algebra A |, we denote by
G(A)* the subgroup of G(A) generated by all 24(A) and all #,,(A) .

The isometries ui;(A), m;;(A), wi(z,c), m;(z,c) satisfy various relations, some of
them being listed below. Most of these relations appear in [BrT1],§10.1, and all are
verified by straightforward calculations. The necessary assumptions (e.g. ¢ # +j
when speaking of u;;(A)) are tacitly understood. The sign + is often not specified if

it 15 of no importance in the present context.
(1) wis(M)71 = ug (=), my(A)™1 = my(=4)
(2) uji(A) = wis(—er7), my(A) = mi;(—eA7)
(3) ui(z,¢)" " = ui(—2,ec?), my(z,¢)”" = my(—z,ec”)
(4) mi(A) = woi o (F(A7) g (Mpumi oy (£(A7)71)
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(5) mi(z,¢) = u_i(Fze™, £(e7) uilz, cju_i(£ze™!, £(c")7")
(6) [ug(A)yurs(p)] = 1 for {+1, 45} N {£r, +s} =0
(7) [wis(A),uys(u)] = 1 for s 5 —
(8) [wij(A), u-jo()] = wis(£Au)
(9) [wij(A)y u—ji(m)] = w0, £Ap + (Ap))
(10) [ui(z,¢), urs(p)] =1 for i ¢ {—r, —s}
(11) [ui(z, ¢}, uis(p)] = us(Lop, Tuc” phus(Lep)
(12) [u:(z, ¢),ui(y, b)] = wii(f(2,9))
(13) [z, ¢), wi(y, b)] = w(0, f(z,y) - f(y,2))

I add some typical conjugation formulae of the form “mum™! = u”:

(14) iy (Mg ()m (N = u_o(£Ap)
(18) may (Mo (u)mig(A)7" = ug(£Ap7A)
(16) mo(Mus(z, eJmg ()71 = u_,(£2(0), A" 1e(A7)")
(17) my(z, c)ui(8)mi(z, e)™' = w(Lep)
(18) mi(z, c)ui(y, b)ymi(z, )™ = u_i(Ly'c™!, (7)ol |
where ¢’ := m;(z,¢)(y) € Vo
By the way, m?(z, c) := my(z, c)|Vo is a (quasi-) reflection and in particular
(19) m9(z)A, A7cA) = m2(z,¢)
For d € T , we denote by d;(¢ € J U {0}) the <th diagonal entry of d

(do € Is(Vo)) . We write d = di;(A pu) if di = X (and hence d_; = (A7)~ for
1 #0),d; =pandd, =1 forall £¢ {4¢,£+5} . Then it holds:

(20) du,»j()\)d_l = u,'j(d_i)\d}-ﬂl)
(21) dui(z,c)d™! = wi(do(2)d7 ", d—_sedi ")
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(22) my(A)mai(e) = dij(=(pA™")7, = A" p)
(23) mi(z, e)mi(y,b) = doi(m)(z, c)m?(y,b),e(c”)™"b)

If we extend the scalars by tensoring with the rational function field
k' := k(t) , there is an obvious extension (again denoted by o) of o to
K' := K(t) satisfying t* = t . Then V' := V Qg K’ is a (¢,¢)-quadratic
K'-space, again of Witt index n , and G(k') can be identified with the group of
isometries of V'’ with determinant 1. All the relations above remain true if we ad-
mit A,p € K’ and so on. Analogously, we set R := k[t,t™!] , R’ := KJ[t,t7'] and
may consider G(R) as the special isometry group of the (o,¢)-quadratic R-module
V @ R.

Now we have to connect group theory with geometry again. Let €q,...,¢&, be the
canonical basis of the Euclidean space R™ . We associate a reduced irreducible root

system W and a possibly non-reduced root system ¥ to G in the following way:

a) If G is orthogonal, we set (recall that m # 2n)
Ui=0:={4e, 4|1 <i#j<n}U{xe|l <i<n)

b} If G is symplectic or unitary and m = 2n , we set

W= W= {de; e |1 <i#j <n}U{+2:]|1<i<n)

c) If G is unitary and m > 2n , we define ¥ as under b) and set
U= U {41 <i<n)

¥ is (isomorphic to) the relative root system associated to the reductive k-group G .

Setting ; := —e_; for 2 € {~1,...,—n} and defining
UE.-H'] = Uz; 3
U, = U; i &€ ‘1} and
Uze, = {u €Y, |uis of the form u;(0,c)} if 2¢; € ¥,

(T(k),(ua(k))aeﬁ;) yields a root datum in G(k) with finite Weyl group

W o= W(‘i) = W () (cf. [BrT1],§6.1 and§10.1). It is the purpose of the present sec-
tion to construct an RGD-system with affine Weyl group W := Wg(\¥) in G(k[t, ¢t '])*.
Recall the notions and notations (e.g. II,W,, L, H,cqas,®,®,,5 E(W,S)) intro-
duced before the Examples 2 and 3 in Chapter I, 1. We are now prepared for the

following
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Definition 13: In the context described above, we define the following groups:
G:=Gk[t,t™" ), H:=7k)ngk)*

and for any a=ca,, € ® (a €V, L c 7Z)

el

Us:={u(M |2 e K} ifa=¢ +¢

Us = {ui(zt ™ ct™¥)|2€ W, c=Q(2)} f a =&

Uy := {wi(0,ct™)|c € k} if a = 2¢; and £ is odd

Uy := {ui(zt_%,ct"l) | (z,¢} € Z} if a = 2¢; and £ is even

Q

I mention in passing that G(k) = G(k)t and G(k[t,¢7!]) = G(k[t,t7!]))t if G is
symplectic or unitary (cf. for example [HO], Sections 5.3, 6.4 and 9.2 B).

Lemma 35: The system (G, (Ux)acs, H) introduced in Definition 13 constitutes an
RGD-system with Cozeter group W = Wog(¥) .

Proof: In view of the relations (20) and (21), H normalizes each U, (e € ®). (RGD0)
is clear from the definitions. (RGDI1) follows from the commutator formulae (6) -

(13} together with
[ta e, ] = {raqsbreysy| T8 >0, ra+sbeWand rl+spe Z}

for a,b € ¥ with a # —b and {,p € ZZ . In order to establish (RGD2), we first
define m(u;;(A}) := m;(A) and m(ui(z,¢)) := mi(z,¢) . Then for any o = a,, € ®
and any v € U, \ {1}, the relations (4) and (5) show that m(u} € U_, uU_, (recall
that —a = a_,,—s). Furthermore, the conjugation formulae (14) - (18) (and variants
thereof, using for example (2)) together with the identity s, e(cs,) = s (8)p-2(5:0) >
where (b,a) := %b—:)l imply m(u)Usm(u)~' = Uy, 5 for any § € ® . Finally, the
relations (1),(3},(22),(23) and (19) show m(u)~'m(u') € H for any two u, v’ € U, \{1}.
As in Example 3, we note that HU, N U_ C G(k[t™']) n G(k[t]} = G(k) . From
T(k)U, (kYN Y-(k) = {1} it now follows that

HU . nU- = (HU, nG(k))N(U-NG(k)) = {1}, verifying (RGD3). Axiom (RGD4)
is satisfied by the definition of GG . U

Remark 16: According to Proposition 1 and Example 6 in Chapter I, there is
firstly a twin BN-pair and secondly a twin building A = (A, A_) associated to the
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RGD-system constructed above. A, and A_ are affine buildings with apartments
isomorphic to X(W, S) . For ¢ € {4+, -}, A. can also be described as the Bruhat-Tits

building associated to the valuation of the root datum (¢,(k(t))),.3 induced by the

discrete valuation w, of k(t) which is trivial on k and satisfies w,(t™¢) =1 . If ¥ is of
type B,,ChL, BC,, respectively, then the “échelonnage” of this Bruhat-Tits building
is of type B,,C,,C — BCLV | respectively (cf. [BrT1], 10.1.26).

§ 2 The finiteness length of G(IF,[t])

In this last section, we assume k = I, . If G is as described in §1, then either
K =k =IF, or else G is unitary and K = IF 2 . Applying Theorem A and Theorem

B, it is now easy to deduce the following

Theorem C: Let G be an absolutely almost simple classical IFj-group of IF,-rank
n > 1. Suppose that g satisfies

g=2"" if G=S8Lny,
g>2""% if G=S8p,, and
g > 271 i G =802, SO2my1, 2SO2ni2, SUsn or SUznyi.

Then G(IF,[t]) is of type F,_; but not of type FP, . Under the same conditions,
G(FF,[t,t']) is also of type F,_y .

Proof: We set again G := G(IF,[¢,t7']}" and denote by (G, (Us)aes, H) the RGD-
system established in Example 3 of Chapter I, respectively in Lemma 35.

Let (G,By = HU,, B_ = HU_, N, S) be the twin BN-pair corresponding to this
RGD-system (cf. Proposition 1) and A = (A,,A_) the twin building associated to
it (cf. Example 6). The maximal parabolic subgroup P_ := B_W(¥)B_ corresponds
to a vertex of type 0 in A_ and is at the same time the stabilizer in G of this vertex.
Obviously P- C G(IF,[t))r ¢ G, implying P. = G(IF,[t]}* . In order to apply
Theorem A to P- , one has to verify the conditions (LF), (F) and (S}. (LF) is clear
since the buildings A, A_ are affine and of irreducible type. (F) follows from the
finiteness of IF; (cf. Lemma 15 and Corollary 7 in Chapter I, §6).

Now let © be a proper link in A, . Then © is a finite building of rank < n , and
the thickness of © in the sense of Chapter II, §8, is > ¢ + 1 because each of the root
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groups U, contains at least g elements. Considering the Coxeter diagrams of affine
Weyl groups of type A,, B,,C,, and D, , one sees that © is a join of buildings of type
A;,C;, Dy with 4,3, < n . Now Theorem B implies that ©°(a} is (dim ©)-spherical
for any a € © (in case § = Sp,, , one has to apply Corollary 16 of Chapter II, §6,
directly). This establishes condition (S).

So we have shown that P_ is of type F,_; but not of type F'P, and also that G
1s of type Fi,_; (cf. Corollary 11 in Chapter I, §6, for the last statement). It follows
from the K-theory of classical groups (cf. again [HO], Sections 5.3, 6.4, 7.2 and 9.2
B) or from the theory of S-arithmetic groups that G(R)* is of finite index in G(R)
if R =1IF[t] or IF[t,t"!] . Therefore, G(R) and G(R)* possess the same finiteness
properties. a

If G 1s strictly IF,-1sogenous to one of the groups listed in Theorem C, the implica-
tions stated there remain valid. This follows from the fact that S-arithmetic groups
are mapped onto S-arithmetic groups by strict isogenies (cf. [M], Ch. I, Corollary
3.2.9). Hence we obtain the following

Corollary 20: Let G be an arbitrary absolutely almost simple IF,-group which is not

of exceptional type. Denote by n the Fy-rank of G . Suppose n > 1 and q > 2271 .

Then G(IF,[t]) and G(IF,[t,t7']) are of type F,_, , and G(IFF, [t]} is not of
type FP,. a

[ will finish by commenting on some aspects of Theorem C.

Remark 17:

i} As far as the properties F; and F, are concerned, the assumptions regard-
ing g are superfluous. In fact, the finitely generated and finitely presented
S-arithmetic subgroups of reductive groups defined over a global function field

are completely characterized meanwhile by the work of Behr (cf. [Bel] and

[Be2]).

ii} The finiteness length of SL,  ((IF,[t]} for ¢ > 2"~! was determined indepen-
dently by Abels and the author some years ago (cf. [A2] and [Abl]). In [Abl],
a different filtration adapted to the specific properites of A, buildings was used,

admitting a proof under the less restrictive condition ¢ > ([E]) .
2
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iif)

1v)

Presupposing Theorem B, that part of Theorem C dealing with classical Cheval-
ley groups was derived in [Ab3] by using the action of G(IF,[t]) on the corre-
sponding Bruhat-Tits building but not yet the action of G(IF,[t,™!]) on the

associated twin building.

If G is a semisimple IF -group such that all its almost simple factors are classical,
then Theorem C implies analogous results concerning G(IF,[t]) and G(IF,[t,t]).
This is due to the fact that a direct product I' = I'y x ... x I, is of type F P,

if and only if all factors I, are.

Finally, [ want to remind the reader of Remark 7 in Chapter I, §6. The book just
completed naturally represents an invitation to determine the exact finiteness
length of G(IF,[t,¢7']) next.
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K(T,1) 2
lkx(o): 6,7

M = (my;)ier: 12
Wj;: 12

£ =1F{5: 12
(W, S) 14
—a: 14

o, ]: 14

(o, B): 14
Wa(¥): 16
G(k[t t )% 18
Gp: 20

A(G, B): 21
C(A): 22

8y, 60-,8% 22
cpopec_: 23
A(G,B,,B_) 23
Y(c.,c ) 24
¥{eyp,e ) 24
A, A, A 24
opy: 27

¢ 30

Pr: 32

w9 34

C(a): 36
C(b.;;a_.): 36
proj;, a_e: 36
proj, a: 38

G, : 41
d(A,B): 41
RU'(c): 42
Ob: 42

©°(b): 43
(LF): 47

(F): 47

(S): 47
AW, k) 53
opy: 96
A%(a): 56
Flag X: 72
X<z X>*. 72
AT AZ®: T2
UQW: 74
K, K7 77
Ut: 78
N(£): 85
Orifl X: 91
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Subject Index

Affine Weyl group, 16 d-spherical, 7, 45f.

Almost simple k-group, 9, 19, 107f.

Anisotropic Eilenberg-MacLane complex, 2, 4
algebraic group, 3 Fchelonnage, 112

subspace, 78
Arithmetic group, 1,2 Finiteness length, 4, 45, 112
Flag complex, 68, 72
Birkhoff decomposition, 13, 23 Form parameter, 77
BN-pair: see Tits system

Bruhat decomposition, 11, 13, 14 '-CW-complex, 46

Bruhat-Tits building, 4, 5, 19, 112 I'-restriction, 41, 42

Building of type M, 21 Generalized m-gon, 7, 59f.

Global field, 2, 3, 4

Chevalley group, 3, 5, 18f., 33, 53 Group of type

Classical F,, 2,9, 46, 511, 113f.
group, 1, 107, 112 FP,, 2 09, 46, 51f., 113f.
spherical building, 8, 68

Coconvex pair of subcomplexes, 39 Hermitian form, 78

Coconvex hull, 40 Hyperbolic space over f(, 91

Codistance, 22f,

Compact hyperbolic type, 10, 45 Isometry group, 107f.
Coprojection, 34, 36f. Isotropic

Cotype of a simplex, 21 algebraic group, 3, 107
Coxeter subspace, 78

complex, 14
matrix, 12

system of type M, 12
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Join Prenilpotent pair of roots, 14

of simplicial complexes, 42 Projection in a building, 33, 38

of spherical buildings, 57 Pseudo-quadratic form, 78
Kac-Moody group, 5, 10, 20, 53f. Quartier, 5, 33
Laurent polynomial ring, 17 Reductive group, 2, 3, 4, 11

Relative link, 6, 7, 42, 71

Moufang RGD-system, 12, 15{., 49, 111

building, 8, 50, 69 Root

generalized m-gon, 591. datum, 11, 58, 110

group U,, 11, 15, 17f.,, 59f., 111

Negative root, 14 of a Coxeter complex, 14
n-generating, 67 system, 11, 16, 110

Non-degenerate subspace, 78

S-arithmetic group, 2, 3, 4, 113

Opposite Saturated twin BN-pair, 29
chambers, 22f. Semisimple algebraic group, 1, 2, 114
foldings, 14 Simplicial fundamental domain
parabolic subgroups, 5, 11, 20 =:sfd , 31, 32, 33, 41
roots, 14 Spherical

Opposition building, 7, 8, 23, 43, 44, 56{.
involution, 38, 56 complex: see d-spherical
isomorphism for twin apartments, 27 cotype, 21

simplex, 21
Panel, 7, 27 Strongly transitive action, 28

Positive root, 14
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Tits system (of type M}, 11, 12f.

Totally
degenerate subspace, 78
isotropic subspace, 78
Trace valued hermitian form, 78
Transversal subspaces, 74
Twin
apartment, 24f.
B N-pair (of type M), 5, 12f.
building (of type M), 5, 22f.
root, 40
tree, 51, 52
Type
of a gallery, 21

of a simplex, 21

W -codistance: see codistance
W -distance in buildings, 22
Weyl group, 11, 12f., 110
Witt index, 78
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