
this print for content only—size & color not accurate 7.5 x 9.25 spine = x.xxx" xxx page count

W
indow

s Azure

The eXPeRT’s VOIce® In .neT

Introducing

Windows
Azure

 cYAn
 MAGenTA

 YeLLOW
 BLAcK
 PAnTOne 123 c

Henry Li

Companion
eBook Available

Learn Windows Azure to create next-generation,
cloud-based applications

BOOKs fOR PROfessIOnALs BY PROfessIOnALs®

Introducing Windows Azure
Dear Reader,

Now is the time for you to learn the fundamentals of Windows Azure program-
ming, and this book gives you a first look at this exciting new cloud platform
from Microsoft.

Whenever a new technology is introduced, I find that the quickest way to get
ahead is to study code examples that demonstrate the core details of that tech-
nology. So I have written Introducing Windows Azure to provide you with a rich
set of example projects that cover the core skills you must learn to be a Windows
Azure developer.

In this book I also provide you with plenty of tools and re-useable compo-
nents for Azure development, such as a tool to work with large amounts of data
in cloud storage, and a tool to access SQL Azure services - which I found extreme-
ly useful while writing this book. These tools will help not only your own Azure
work, but also your understanding of the Azure platform. These practical appli-
cations give you all you need to dive straight into Azure development and write
production-ready applications.

I wrote this book to give you confidence and experience as a Windows Azure
developer. Most importantly, I wrote it so that you can get ready for the next big
wave in our industry: cloud computing. I am sure that you will be as excited and
impressed as I am with the many innovational features introduced by Windows
Azure after reading through this book.

Enjoy your Azure developing and happy reading.

Henry Y.H. Li

Henry Li

US $39.99

Shelve in:
Programming Languages / C#

User level:
Intermediate

THE APRESS ROADMAP

Pro
Silverlight for the Enterprise

Pro
Azure Services Platform

Beginning C#

Illustrated C#

Introducing
Windows Azure

Pro C# and the
.NET Platform

Pro Silverlight 3 in C#

Illustrated WPF

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2469-3

9 781430 224693

53999

Introducing

this print for content only—size & color not accurate 7.5 x 9.25 spine = x.xxx" xxx page count

Li

W
indow

s Azure
The eXPeRT’s VOIce® In .neT

Introducing

Windows
Azure

 cYAn
 MAGenTA

 YeLLOW
 BLAcK
 PAnTOne 123 c

Henry Li

Companion
eBook Available

Learn Windows Azure to create next-generation,
cloud-based applications

BOOKs fOR PROfessIOnALs BY PROfessIOnALs®

Introducing Windows Azure
Dear Reader,

Now is the time for you to learn the fundamentals of Windows Azure program-
ming, and this book gives you a first look at this exciting new cloud platform
from Microsoft.

Whenever a new technology is introduced, I find that the quickest way to get
ahead is to study code examples that demonstrate the core details of that tech-
nology. So I have written Introducing Windows Azure to provide you with a rich
set of example projects that cover the core skills you must learn to be a Windows
Azure developer.

In this book I also provide you with plenty of tools and re-useable compo-
nents for Azure development, such as a tool to work with large amounts of data
in cloud storage, and a tool to access SQL Azure services - which I found extreme-
ly useful while writing this book. These tools will help not only your own Azure
work, but also your understanding of the Azure platform. These practical appli-
cations give you all you need to dive straight into Azure development and write
production-ready applications.

I wrote this book to give you confidence and experience as a Windows Azure
developer. Most importantly, I wrote it so that you can get ready for the next big
wave in our industry: cloud computing. I am sure that you will be as excited and
impressed as I am with the many innovational features introduced by Windows
Azure after reading through this book.

Enjoy your Azure developing and happy reading.

Henry Y.H. Li

Henry Li

US $39.99

Shelve in:
Programming Languages / C#

User level:
Intermediate

THE APRESS ROADMAP

Pro
Silverlight for the Enterprise

Pro
Azure Services Platform

Beginning C#

Illustrated C#

Introducing
Windows Azure

Pro C# and the
.NET Platform

Pro Silverlight 3 in C#

Illustrated WPF

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2469-3

9 781430 224693

53999

Introducing

i

Introduction to
Windows Azure

An Introduction to Cloud Computing
Using Microsoft Windows Azure

Henry Li

ii

Introduction to Windows Azure
Copyright © 2009 by Henry Li

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-2469-3

ISBN-13 (electronic): 978-1-4302-2470-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Matthew Moodie
Technical Reviewer: Bing Long
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,
Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Anita Castro
Copy Editor: Hastings Hart
Compositor: Tricia Bronkella
Indexer: Potomac Indexers
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-
sbm.com, or visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to
answer questions pertaining to this book in order to successfully download the code.

iii

This book is dedicated to my dear father, math Professor Rondong Li, who is always my source
of spiritual encouragement, and my mother, who was my first math teacher at primary school.

iv

Contents at a Glance

■Contents .. v

■Foreword ... x

■About the Author .. xiii

■About the Technical Reviewer .. xiv

■Acknowledgments ... xv

■Introduction .. xvi

■Chapter 1: Create Cloud Table Storage .. 1

■Chapter 2: Access Cloud Table Storage ... 25

■Chapter 3: Working with Cloud Queue and Blob Storage .. 67

■Chapter 4: Windows Azure Application Integration Using WCF 113

■Chapter 5: Azure .NET Services—Access Control ... 129

■Chapter 6: Azure .NET Services— Service Bus ... 171

■Chapter 7: Azure .NET Services—Workflows .. 211

■Chapter 8: SQL Azure .. 243

■Chapter 9: Deploy Applications and Production Maintenance 297

■Appendix ... 313

■Index ... 315

■ CONTENTS

v

Contents

■Foreword ... x

■About the Author .. xiii

■About the Technical Reviewer .. xiv

■Acknowledgments ... xv

■Introduction .. xvi
Windows Azure Essentials .. xvi

Web Role ... xix
Worker Role ... xix
Azure Fabric .. xix

Who This Book Is For ... xx
Prerequisites .. xxi
How This Book Is Structured .. xxii

Chapter 1: Create Cloud Table Storage .. xxii
Chapter 2: Access Cloud Table Storage .. xxiii
Chapter 3: Working with Cloud Queue and Blob Storage .. xxiii
Chapter 4: Windows Azure Application Integration Using WCF .. xxiii
Chapter 5: Windows Azure .NET Services—Access Control .. xxiii
Chapter 6: Windows Azure .NET Services—Service Bus .. xxiii
Chapter 7: Windows Azure .NET Services—Workflows .. xxiv
Chapter 8: SQL Azure ... xxiv
Chapter 9: Deploy Windows Azure Applications to Production .. xxiv
Appendix A: Resources .. xxiv
Downloading the Code ... xxiv

Contacting the Author .. xxv

■Chapter 1: Create Cloud Table Storage .. 1
The Table Storage Specification .. 2
A Closer Look at Entities ... 3

■ CONTENTS

vi

Azure Development Storage .. 4
Create Cloud Data Storage with a Simple Data Structure ... 5

Using Portable Data Types for Data Columns .. 15
Using Data Tables Generated by Windows Azure Development Tool ... 15
Solutions to Non-Portable Data Types .. 15
Data Context Class Inheritance .. 17
Using PartitionKey and RowKey to Organize the Data to be Distributed ... 18

Create Cloud Data Storage with Relational Data Structure ... 19
A Constraint for Data Entity Classes Contains Embedded Entity Classes ... 21
Refactoring Data Entity Classes .. 22
Close SQL Analysis .. 23

Summary .. 23

■Chapter 2: Access Cloud Table Storage ... 25
Accessing a Single Cloud Data Storage Table ... 25

Data Entity Class Constructors ... 41
Table Storage Keys .. 42
Log Runtime Message and Event Information for Debugging .. 42
Leverage the Power of Development Fabric Services ... 43
Using Fiddler 2 to Debug Cloud Storage Applications ... 43
Leverage LINQ to Query Entities in Cloud Storage ... 45
Using HTTP REST to Query the Top N Entities ... 46
Using Continuation Tokens to Retrieve Paginated Data ... 46

Deleting and Updating an Entity in a Single Cloud Data Storage Table ... 48
Update Data Tables in Buckets .. 59
Best Practices in Using the DataServiceContext Object ... 60

Handling Relational Cloud Data Storage Tables ... 60
Summary .. 65

■Chaper 3: Working with Cloud Queue and Blob Storage .. 67
Azure Queue ... 67
Azure Blob Storage ... 69
Creating a Cloud Queue .. 70

Add a Worker Role in the Cloud Service Solution .. 70
Create a Queue Storage Container and Create a Named Queue
from the Start Handler of the Worker Role .. 71

Create the Queue Using Account Information from the Configuration File .. 72

Create the Queue Programatically ... 74

■ CONTENTS

vii

Put a Message into the Queue ... 74
Poll and Delete a Message from the Queue .. 76
Delete a Message from the Queue ... 78
Parse a Message Received from the Queue ... 78
Query a Queue Using HTTP REST ... 80

Creating Cloud Blob Storage ... 80
Creating a Loosely Coupled Event-Driven System ... 89
Implementing a Client Application to Access Cloud Blob Storage ... 96
Summary .. 111

■Chapter 4: Windows Azure Application Integration Using WCF 113
Using WCF .. 114
Host WCF Service from Azure ... 114
Verify HostWCFService from the Local Development Environment ... 127
Summary .. 128

■Chapter 5: Azure .NET Services—Access Control ... 129
Working with the .NET Access Control Service .. 129
Build Your First Cloud Application Using the .NET Access Control Service .. 131
CardSpace .Net Access Control Services ... 142

AzureForDotNetDeveloperWCFserviceLibrary ... 142
Service Implementations and Configurations .. 144
Client Implementations and Configurations .. 146
Test Results for What We Have Built .. 148
Authentication Using X.509 Certification or CardSpace in .NET Access Control Service 149

Installing the X.509 Certificate .. 149

Associating the Certificate to the Azure Application URL .. 153

Using CardSpace in the .NET Access Control Service .. 155

Summary .. 171

■Chaprter 6: Azure .NET Services— Service Bus .. 171
Connecting to Remote Applications with the Service Bus .. 171

Service Name Hierarchy System .. 173
Service Registry and Publishing ... 173
Endpoint Relay Connectivity ... 173
Using WCF with the Service Bus .. 173

Post a Net Event Using Relay Connection .. 175
Simple Direct Connected System Using Hybrid Relay Connection Mode .. 184

■ CONTENTS

viii

Using .NET Service Bus to Build a Distributed Connected Windows Application ... 191
SoftnetSolutions.IShape ... 192
SoftnetSolutions.Shape .. 192
SoftnetSolutions.RelayService.ServiceContract... 195
SoftnetSolutions.Shape.Draw ... 196
SoftnetSolutions.RelayService.ShapeController .. 198
Port Forwarding ... 200
Change Credential Type ... 202

.NET Service Bus Queue Client Facade.. 204
Summary .. 209

■Chapter 7: Azure .NET Services—Workflows .. 211
Hosting a Workflow Service in an Azure Cloud Environment .. 212
Coordinating WF Services Using HttpWebRequest ... 221
Summary .. 242

■Chapter 8: SQL Azure .. 243
Create a Virtual Server for SQL Azure .. 244
Connect to a SQL Azure Database Using SQL Server Management Studio ... 245
Create a Data Table Using SQL Server Management Studio .. 248
Simple Benchmark Testing Results ... 249
Verifying That SQL Azure Supports Relational Data Tables .. 251
Connect to a SQL Azure Database Using ADO.NET .. 255
Migrate Existing Databases from an On-Premises System to SQL Azure .. 256
SQL Azure Application Developing Tool: SQLAzureConnect.. 260

Functions of SQLAzureConnect .. 261
Using XML Data to Define UI Components Dynamically .. 263
SQLDataAccessComponent Class ... 266
SQLDataAccessHelper Class .. 271

Component Design and Implementation .. 282
ParameterControl ... 283
SQLDataServiceControl .. 286
FormSQLAzureConnect .. 294

Summary .. 296

■Chapter 9: Deploy Applications and Production Maintenance 297
Preparing the Application Package and Configuration Package for Deployment ... 297
Deploying Table Storage ... 299

■ CONTENTS

ix

Host an Application from the Cloud ... 302
Deploying Cloud Applications .. 303

Staging Deployment ... 305
Select the Application Package and Configuration Package .. 306
Running a Hosted Application .. 307

Maintenance of a Cloud Application .. 309
Increase or Decrease the Number of Instances .. 310
Override the Configuration ... 311
Redeploy an Application with a New Version .. 311

Summary .. 311
Azure Service Management Tools ... 314

■Appendix ... 313

■Index ... 315

 ■ FOREWORD

x

Foreword

Forget the buzzword-compliant prognostications of the IT pundits and forget the
fevered predictions of open vs. proprietary, because everything is changing and
changing fast. Maybe everything is changing so fast that some folks still see cloud
computing as a discussion about the future, when in fact it is real, with many
popular applications currently running in cloud environments. Cloud computing
is just a term for what has been slowly brewing on the back burner for many years.
It is the natural evolution of technology.

The evolution timeline goes something like this. In the beginning there was
the mainframe. The mainframe cost a lot and used a lot of power, so it made sense

to sell slices of time to companies needing computing power. After a while, computers became smaller
and less expensive and businesses and consumers began buying their own. But then networks began to
form, and the eventually ubiquitous Internet was born. This led the way to the idea of the application
service provider (ASP). Ah, those were the days.

Well, everyone forgot about all that stuff for a few years as the technology sector went through a
reality adjustment. But as always, business keeps moving forward. In that time a few companies began,
or shall I say fell into, the idea of the cloud more by necessity than anything else. Salesforce.com and
Amazon were so popular and successful that they sought to expand their businesses by providing
platforms that would allow developers to not only configure their applications (what used to be called
ASPs and are now called software as a service) but also customize them. But it was almost natural for
these well-architected platforms to start spawning new applications that didn’t have anything to do with
the original application, and thus we now have what is currently called cloud computing.

There is no doubt it will take years for the majority of companies to adopt cloud computing,
especially for their more mission-critical, enterprise, highly secure, or financial applications. But that is
okay, because there will be a lot of time for the companies and applications that are a perfect fit to work
out the bugs. They will pave the way for every company to take part. Because of competitive pressures
and the efficiency associated with cloud computing, it will be inevitable that most if not all companies
will use the cloud in some way.

The cost of hosting applications has traditionally been quite expensive. The first high-availability
web applications required that a company either maintain its own data center with redundant hardware
and 24-hour or on-call staff. The alternative was to pay managed services data centers thousands of
dollars per month to maintain a dedicated hosting environment. IT managers had to forecast the
processing power needed to run their applications, and often this led to an over-purchase of hardware
and software. This paradigm has led to vast data centers wasting huge amounts of power with many
thousands of servers humming along nicely with no more than two or three percent utilization. But in
the last decade, as virtual servers have evolved in both hosted and on-premise data centers, it was only a
matter of time before the technology allowed companies and applications to share processors with little
risk of one errant application affecting another.

The evolution of technology may have come full circle with utility computing (remember the
mainframe?), but it looks very different than anyone could have imagined. The inevitability of the virtual

■ FOREWORD

xi

future has played its hand in the convergence of process, platform, tools, architectures, and services, and
it is how we are currently building applications.

So let’s take a moment to explore why cloud computing will be hard to ignore in the coming years.
First of all, cloud computing by definition is inherently scalable and as reliable as any high-end managed
hosting service. We are accustomed to paying several thousand dollars a month for a handful of servers
in a traditional managed hosting environment. This has been the standard for mission-critical
applications for quite some time now. A similar entry-level cost of a fully scalable and redundant system
can cost hundreds instead of thousands often quoted by the enterprise managed hosting companies.
But probably the most important point when talking about the scalability of cloud computing is its
ability to scale up and scale down quickly, which will be very important for companies that might need
to acquire a substantial amount of processing power for a short amount of time. Now they can do so
without any long-term commitments or substantial capital expenditures.

The second benefit of cloud computing is reduced time to market for new applications. Managed
hosting companies or corporate data centers often needed weeks to months of lead time to acquire
hardware and install operating systems and database software required for most applications. Cloud
computing accounts can often be provisioned with applications deployed and made live within hours.

Last but certainly not one of the least benefits of cloud computing is that it is in line with green IT
initiatives, which are quickly becoming an integral part of corporate strategies. By sharing resources with
other organizations, we no longer have acres of server farms consuming huge amounts of power while
sitting nearly idle waiting for the peak load at some time in the future. The fact is that that peak load will
almost never happen as IT managers always err on the side of caution and purchase multiples of the
processing power they will ever actually use.

This book is an introduction to Windows Azure, Microsoft’s offering for cloud computing. Windows
Azure is not just a virtual hosting solution that infinitely scales. Nor is it just a few editing and
deployment tools tacked onto a virtual hosting solution. Windows Azure is a cloud application platform
that enables companies to build and run applications that scale in a reliable, available, and fault-tolerant
manner by providing the fundamental services every application needs. It is a suite of hosting services,
development environment, and development tools combined with a set of robust services. Some of
these services .NET developers have been working with for the last several years, and some are fairly
new.

Developers who have worked on other cloud platforms will quickly notice that in terms of
comprehensive services and features, this platform is leaps and bounds beyond any other cloud
computing platform on the market today, which is saying a lot given that Amazon and Salesforce.com
have been building and perfecting their solutions for the better part of the past decade. Microsoft has
also gone one step further and built its platforms and services in a manner that can be utilized by open
development technologies including Python, Ruby, PHP, and open protocols and standards, including
REST, SOAP, and XML.

This book will walk you through the development process with a detailed set of exercises. With the
many screenshots and code samples included, you can expect to be developing full-blown Windows
Azure applications that use almost every service and feature currently offered.

Your first steps in learning the Windows Azure platform will be to understand and utilize the cloud
table, queue, and blob storage services. You will walk through the process of integration using Windows
Communication Foundation (WCF) and Windows Workflow Foundation (WF). Next you will explore the
Windows .NET Access Control Service, the Service Bus, and workflows that allow you to coordinate
services and build distributed connected applications. You will explore SQL Data Services in depth, and
the final chapter explains how to deploy your applications into a production environment.

As with any new development technology introduced by Microsoft, there will be a steep learning
curve and lots of new terminology and concepts to understand. On the bright side, just as with the
introduction of .NET, Window Presentation Foundation, or Windows Communication Foundation, you
will not be alone in your quest. You will have lots of great resources to help you along the way, and

 ■ FOREWORD

xii

Henry’s book is certainly a great place to start. This will be another big programming paradigm shift for
programmers, so fully understanding the contents of this book will be a big start in the process of
learning this new and relevant technology.

I wish you all the best in your new adventures of developing applications for the Windows Azure
platform.

Bruce Wilson, CTO, Planned Marketing Solutions International

■ FOREWORD

xiii

About the Author

■Henry Li is a technical consultant, specializing in enterprise application
integration and distributed system automation solutions. He runs his own
consulting firm SoftnetSolutions Consulting, Inc., based in Hillsboro, Oregon,
delivering business solutions for large-scale enterprises, government agencies,
and small businesses.

He has been engaged in numerous large-scale middleware infrastructures,
front-end and back-end architecture designs, and implementations based upon
Microsoft .NET and BizTalk technologies. He has served clients across the United
States, including diverse enterprise organizations, government agencies,

semiconductor manufacturers, and industry equipment facility manufacturers. He also has intensive
experience designing data-driven, event-driven industry automation solutions using XML and design
patterns. He strongly believes that object-oriented programming is not only a software development
technology but also a philosophy that should be applied to any analysis of business solution architecture
design.

Henry Li resides with his wife, Wenyan, and lovely daughter, Emma, who is an all-A-qualified
swimmer of the USA Swimming Society, in the beautiful Portland metro area of Oregon. He can be
contacted at yinghong@softnetsolution.net with any questions regarding this book and his most-
interested-in areas, SOA (service-oriented architecture), AOP (aspect-oriented programming), and XML
data-driven solutions.

 ■ FOREWORD

xiv

About the Technical Reviewer

■Bing Long, Ph.D. in mathematics, lives in Seattle, WA. He is an IT consultant,
with extensive enterprise software design/development and system integration,
across platforms and languages. His e-mail is bing_long@yahoo.com.

■ FOREWORD

xv

Acknowledgments

I would like to thank the following individuals for their contributions to my professional life:

• Ronald Phaneuf, who provided me an opportunity to use Visual Basic 1.0 to program the
fantastic data acquisition user interface for the Electron Synchrotron Research project.

• Mark Beckner, who provided me with a road map of how to become a professional solution
architect and technical writer.

• Wesley Yong, who brought me to join the Microsoft BizTalk project and to learn how Microsoft
designs and develops software.

• Brandon Gross, Larry Smith, and Dan Alworth, who provided me with the opportunity of
designing and developing Microsoft award-winning BizTalk solutions at EMC Microsoft
Practice.

• Tom Wu, Mike Johnson, and Paul McKelvey, who provided me with an opportunity to
demonstrate my talent to design and build large-scale data-driven enterprise SOA solutions for
shop floor automation.

• Mike Cole, who brought me into a commercial software development team to learn how to be a
professional C++ developer.

• Yimin Zhu, who provided me with an opportunity to apply XML data-driven design concepts to
design and implement the Florida Department of Transportation Road User Cost application.

A great deal of gratitude is owed to the ever-widening network of friends and coworkers who are
bound for incredible successes, including the people from the Microsoft BizTalk group, the Shopping
Intel development group at the Intel marketing department, Timberline Software (Sage Software),
EMC’s Microsoft Practice, and Siltronic Co.

Special thanks goes to my wife, Wenyan. This book would not be able to come to the reader’s
bookshelf on schedule without her cooking and housekeeping for our family.

■ INTRODUCTION

xvi

Introduction

 The cloud platform is getting more and more attractive to the computing world. Today, service-oriented
architecture (SOA) and aspect-oriented programming (AOP) techniques are widely used in enterprise
solutions. A question an IT management team or a software development team may ask is, what is the
next trend going to be? Cloud computing seems to be the right answer. Different names are used for this
kind of platform, including utility computing, on-demand platform, and platform as a service. A set of
new buzzwords has been widely used in relation to cloud computing, such as Program as a Service
(PaaS), Software as a Service (SaaS), and anything you can think of as a service (XaaS).

For any enterprise business solution, the cost to build, deploy, host, and maintain infrastructures
and applications is always challenging for the administrative and development teams in an organization.
The cloud platform aims to take away the cost of building, deploying, updating, and maintaining.

Applications used in organizations today are called on-premises applications. In this case,
infrastructure and storage facilities, as well as the applications, are hosted within an organization. By
contrast, both storage and application services provided by the cloud platform are hosted externally
(they can also be hosted within an organization for a local cloud environment) through the Internet.
Microsoft offers such services to host both storage and applications from its data centers via its Windows
Azure cloud platform.

Windows Azure Essentials
Azure is a new cloud system from Microsoft that allows applications to run from a remote connected
system, hosted in a Microsoft data center, and store data in the cloud.

Figure 1 shows the Windows Azure architecture. The platform consists of three parts:

• Development runtime: Simulates the Azure runtime allowing you to test, debug, and tune your
application in a local development environment before deploying it to the cloud.

• Azure runtime: Includes the Azure fabric, Azure storage service, and Windows Azure OS.

• Applications: Applications are run from the Azure runtime. A set of Internet-based services work
as building blocks for you to build your applications. The services package includes .NET Services
(formerly BizTalk Services), SQL Azure, and Live Services.

■ INTRODUCTION

xvii

Figure 1. Windows Azure architecture

Figure 2 describes the concept of the Azure platform. Any on-premises type of application built in
an organization could also leverage the services provided by Azure through the Internet. However, to
host and run applications from the Azure cloud platform, the applications must be developed by using
the .NET Framework. Both Azure applications and on-premises applications can access the Azure
storage service using a representational state transfer (RESTful) approach. Cloud storage no longer relies
on the relational model in order to meet the requirements of Internet scalability, which we’ll look at in
this book. There are three types of storage available from the Azure platform: blob storage, queue
storage, and table storage, all covered in later chapters.

■ INTRODUCTION

xviii

Figure 2. Infrastructure of the Azure cloud platform

It is obvious that the features that Azure offers are tremendously beneficial to organizations. Instead
of spending a lot of money to build their own infrastructure, organizations can build their infrastructure
from the cloud and use it as a utility and never worry about maintenance and upgrade issues.

Figure 2 shows that Azure does at least two things:

• Host and run applications from a remote connected system at a Microsoft data center

• Provide data storage using a remote connected system at a Microsoft data center

An application running from the Azure platform may have multiple instances; each instance runs in
its own virtual machine supported by a 64-bit operating system. An application instance may have either
a web role or worker role or both.

■ INTRODUCTION

xix

Web Role
Each web role instance accepts incoming HTTP/HTTPS requests through Internet Information Services
(IIS) 7. A web role can be implemented using ASP.NET, Windows Communication Foundation (WCF), or
another .NET Framework technology that works with IIS.

At runtime, all web role instances work spread across connected infrastructures hosted from the
Microsoft data center. Azure provides built-in load balancing to spread requests across web role
instances that are part of the same application. We are going to provide more information in detail later
in this book.

Worker Role
In contrast, a worker role instance cannot accept requests directly from the outside world. A worker role
is not allowed to have any incoming network connections, nor is IIS running in its virtual machine.

A worker role gets input from a web role instance, typically via a queue in Azure storage. However,
the output results of a worker role can be written to Azure storage: blob storage, table storage, or queue
storage. But they can also be sent to the outside world directly; outgoing network connections are not
prohibited for a worker role.

In practice, a worker role takes a batch job and can run indefinitely, pretty much close to the
behavior of a regular Windows service. To send the results from a worker role to the outside world
directly, a worker role needs to create a handler to deal with the incoming HTTP request from a web role
and close the handler up when the request has been processed. A worker role can be implemented using
any .NET technology.

Azure Fabric
As noted, the major difference between a web role and worker role is that only the web role can
communicate via the Internet and take HTTP messages, whereas the worker role does not. A worker role
typically is a batched process and can communicate to the web role via a cloud queue or WCF services.
Both web roles and worker roles are run from the Azure fabric. The fabric is an innovative technology
and can be understood as the Azure runtime context. The concept of an Azure application is shown in
Figure 3. To reach the goal of Internet scalability, each web role instance and worker role instance has its
dedicated processor core. The default number of instances is configured to one when a cloud
application is created from Visual Studio. It can be increased by the account owner via the Web.config
configuration file even after deployment.

■ INTRODUCTION

xx

Figure 3. Concept of Azure applications running in the cloud

The Azure framework also provides a local fabric simulation environment to simulate the
environment of the cloud. This allows you to debug, test, and tune your application locally before
deploying to production. The local fabric can be started manually. The details will be covered later in
this book.

The functions of the fabric are summarized in the following list:

• Monitor the application’s state: Each Azure application has an owner. The owner account is
authenticated using Microsoft Live ID. The owner can control some aspects of the application’s
behavior by changing the configuration of the application to govern security and scalability (the
number of instances). The Azure fabric monitors the status of the application settings to fulfill the
requests from applications at runtime.

• Log and trace: When an application has been deployed to the cloud, the only way to log runtime
information and send alerts or notification to the application owner is through the fabric.

• Ensure the performance of applications: A cloud application runs in a cloud virtual machine (VM),
and Azure maintains a one-to-one relationship between a VM and a physical processor core. If an
application makes a request to increase the number of instances, the fabric will allocate new VM
resources from the cloud and assign these VMs to the cores.

• Failover handling: The fabric monitors the application’s runtime state. When one instance fails,
the fabric will start a new instance from a new VM resource.

You’ll find no difference between developing Azure applications from any .NET Windows or
ASP.NET applications.

Who This Book Is For
To shift to cloud computing, you need to understand the similarities and differences between the on-
premises platform and the cloud platform. This book assumes that you fully understand object-oriented
programming, the basic concepts of SOA, and distributed application systems. A major change from an

■ INTRODUCTION

xxi

on-premises platform to a cloud platform is that the services for both storage and application will
communicate across the Internet. For this reason, the cloud platform must support Internet-scale usage.
Any service within the cloud platform may be concurrently requested by a massive number of clients.

This book uses the Windows Azure Platform and Windows Azure SDK as the foundation to help you
across the bridge between the on-premises platform and the cloud platform. The basic methodology
used by this book is to expose the differences and similarities between these two kinds of platforms.

The readers of this book are those who need to shift from SOA to the cloud platform using Azure.
This book allows you to learn the fundamental concepts and essential skills by studying selected exercise
examples from the real world. This book also reveals undocumented information and practical solutions
to the challenges that you may encounter. Each exercise example is followed by a conclusion section to
discuss extended topics.

This book also provides useful tools, such as the LargeDataToBlobStorage tool from Chapter 3, for
you to be more efficient during your Azure development.

Prerequisites
This book uses examples to help you shorten your learning curve and get hands-on experience to build
and deploy cloud platform solutions.

Before you start to read this book you need to establish your Azure account. To get a free evaluation
account:

1. Get your Windows Live ID if you don’t have one yet at
https://accountservices.passport.net/ppnetworkhome.srf?vv=650&lc=1033, since
Azure uses your Windows Live ID as your global secure access ID.

2. Go to the Azure portal page at http://www.microsoft.com/azure/windowsazure.mspx.
Here you can request a new Azure account and download all the necessary SDKs for
Azure development. Microsoft did a great job to simplify the lives of Azure
developers by integrating a lot of important client-side APIs into the SDKs.

3. After you submit the request for an Azure evaluation account Microsoft will send you
an e-mail with an invitation code. When you receive the invitation code go to the
portal page and use the Windows Live ID to log in. You can use the secure web site at
https://lx.azure.microsoft.com.

4. Redeem your invitation code and carry out the initialization work to finalize your
participation. The web site will guide you step by step through the process smoothly.

Later in the book, I’m going to provide guidance for special cases related to particular services, such
as SQL Azure in Chapter 8.

To run examples provided by this book or by other resources, the following features need to be
available in your local environment:

• Windows Vista SP1 (or Windows Server 2008) or later

• .NET Framework 3.5 SP1 or later

• Microsoft Visual Studio 2008 or later

• IIS 7.0 (with ASP.NET and WCF HTTP Activation)

• Microsoft SQL Server Express 2005 or Microsoft SQL Server Express 2008

■ INTRODUCTION

xxii

To set up the environment to run all the exercises provided in this book, the following packages
need to be installed from a local development machine:

• WindowsAzureSDK-x86.msi

• VSCloudService.msi

• silverlight_chainer.exe

• sdsSDK.msi

• Microsoft .NET Services SDK Setup.exe

• LiveFrameworkTools.exe

• LiveFrameworkSDK.MSI

• LiveFrameworkClient.msi

■ Note All these packages can be downloaded from Microsoft.

How This Book Is Structured
There is no requirement to read the chapters sequentially. You can select any topic to read. This book
contains three parts. Part 1, from Chapter 1 to Chapter 3, covers Windows Azure Storage. Part 2, from
Chapter 4 to Chapter 8, covers .NET Services, including hosting WCF and WF services in the cloud, .NET
Services Access Control, .NET Service Bus Queue, and SQL Azure. Part 3 contains contains Chapter 9,
which covers the topic of how to deploy and manage cloud applications. Each exercise mentioned in this
section has a corresponding code bundle in the code download for this book.

Chapter 1: Create Cloud Table Storage
It is one of the most costly tasks for any development team to build and maintain infrastructure for data
storage. One of the most attractive advantages of Windows Azure is giving this tough task to Microsoft.
There is no need to worry about scalability, software upgrades, security patching, and so on, at all. They
are all the responsibilities of Microsoft. Windows Azure amazingly simplifies the data storage layer’s
design and implementation. The Windows Azure SDK development environment hides the complexity
of the transformation between data entity objects. Windows Azure allows a developer to focus on the
data modeling; the storage database, including all relational data tables, will be analyzed and
automatically generated by the SDK at design time. There is no data schema definition, data-access
stored procedure customizing, or data mapping required to build the data storage. They will all be taken
care of by the services provided by Windows Azure.

This chapter provides a simple example showing you how to create cloud data storage. This chapter
also provides an example of how to resolve the non-portable custom defined data type problem.

• Exercise 1-1: Creates cloud data storage with a simple data structure.

• Exercise 1-2: Creates cloud data storage with a relational data structure.

■ INTRODUCTION

xxiii

Chapter 2: Access Cloud Table Storage
Azure uses LINQ for data access. All data I/O functions are encapsulated into the Windows Azure SDK as
services. This chapter demonstrates the services provided by the Azure SDK for inserting, querying,
updating, and deleting cloud storage data.

• Exercise 2-1: Accesses a single cloud data storage table.

• Exercise 2-1: Deletes and updates an entity in a single cloud data storage table.

• Exercise 2-3: Handles relational cloud data storage tables.

Chapter 3: Working with Cloud Queue and Blob Storage
This chapter presents four exercise projects to walk you through how to create and use cloud queue and
blob storage.

• Exercise 3-1: Creates a message queue, puts messages into a queue, and queries messages from
the queue. This exercise also demonstrates how to poll a queue and create an event handler to
handle the queue polling event.

• Exercise 3-2: Introduces the fundamental steps to create blob storage, and upload, query, and
delete data from blob storage. This exercise also provides an example of how to use the REST API
to query blob data.

• Exercise 3-3: Uses both queue and blob storage to create a template for a loosely coupled event-
driven system using a web role and worker role in a cloud application.

• Exercise 3-4: Presents a solution using a .NET background worker and asynchronous
mechanisms to upload and delete large amounts of data from blob storage.

Chapter 4: Windows Azure Application Integration Using WCF
This chapter covers Windows Azure integration using Windows Communication Foundation.

• Exercise 4-1: Presents an example of how to build a cloud service to host WCF services.

Chapter 5: Windows Azure .NET Services—Access Control
This chapter covers access control in Azure applications.

• Exercise 5-1: Builds your first cloud application using .NET Services Access Control.

• Exercise 5-2: Explores using CardSpace in Azure.

Chapter 6: Windows Azure .NET Services—Service Bus
This chapter covers .NET Service Bus.

■ INTRODUCTION

xxiv

• Exercise 6-1: Creates a console-based .NET service host to host a WCF service using relay
bindings.

• Exercise 6-2: Demonstrates how two applications can run behind firewalls and be connected
directly through the cloud using relay hybrid connection mode.

• Exercise 6-3: Uses .NET Service Bus to create an event-driven distributed Windows application
system. A controller Windows application posts relay events to control another Windows
application.

• Exercise 6-4: Builds a .NET Service Bus QueueClient wrapper class, that provides an easy way for
you to integrate the .NET Service Bus queue access in applications.

Chapter 7: Windows Azure .NET Services—Workflows
As you’d expect, Windows Azure works with workflows, which I examine in this chapter.

• Exercise 7-1: Hosts a workflow service in the Azure cloud environment.

• Exercise 7-2: Coordinates workflow services using HttpWebRequest.

Chapter 8: SQL Azure
As this book was nearing completion, Microsoft replaced SQL Data Services with SQL Azure.

• Exercise 8-1: Creates a data-driven, XML application to work with the SQL Azure database
services.

Chapter 9: Deploy Windows Azure Applications to Production
This chapter does not contain any exercises but covers how to deploy and manage your applications to
the cloud.

Appendix
The appendix contains the specification Windows Azure blob storage and details of the Azure Services
Management Tools.

Downloading the Code
The source code for this book is available at http://www.apress.com or
http://www.softnetsolution.net/Apress/SourceCodeDownLoad/.

■ INTRODUCTION

xxv

■ Note All code used in this book is designed for proof of concept and could potentially be used. However, the
code has to be optimized and fine-tuned before you can use it in an application. It is especially important to add
data-validation and error-handling code.

Contacting the Author
Henry Li can be contacted via e-mail at yinghong@softnetsolution.net or via regular mail at
SoftnetSolutions, Inc., 192 NE 74th Ave., Hillsboro, OR 97124.

You can visit the web site of SoftnetSolutions at http://www.softnetsolution.net. All your
comments and feedback are appreciated.

C H A P T E R 1

■ ■ ■

1

Create Cloud Table Storage

An application, either on-premises or cloud-based, should use a kind of storage. For on-premises
applications, the storage can be either local or remote. Storage on the cloud platform comes in a
different style. It is hard to require a development team or an organization to provide generic, reusable
data schemas for remote storage. The following list contains some items to pay attention to when
switching from traditional relational data structure design to cloud table storage.

• The data structure for cloud remote storage should be as simple as possible.
The data model exposed to the outside world must be straightforward. The
objects generally should be a set of binary bytes stored as buckets in clouds.
Applications create, read, and delete objects in buckets. If an object needs to
be updated, delete it and replace it with an object with updated values. This
is how the cloud platform service changed to meet the Internet’s scalability
requirements. The simpler the data structure, the better the performance will be
for multiple Internet instances to access cloud data storage concurrently. Since
storage in the remote cloud is so cheap, for an organization to scale up will be
not an issue at all. The organization needs to simply increase the instance
number from the configuration file.

• You should be aware when migrating from on-premises storage to the cloud
platform that if you have a relational data structure, then you will be responsible
for managing the constraints between the data storage entities, because the cloud
storage tables are not relational. This may be a challenge and the price you have to
pay for using cloud storage. This is a new topic that .NET developers to have to face.

In the cloud, the application can access its data from anywhere at any time and store any amount of
data for any length of time. Azure storage provides a rich set of data abstractions in the following three
aspects:

• Blob storage, usually used to store data of large size.

• Table storage that provides structured storage for applications. However, table
storage is not relational data storage. Since table storage is in the cloud
environment, a relational structure is not allowed.

• Queue storage that provides asynchronous work dispatch to enable service
communication.

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

2

Azure Table is the structured storage provided by the Azure platform. It supports massively scalable
tables in the cloud, with capability to support up to billions of entities and terabytes of data. Depending
upon the traffic demand, the storage will efficiently scale up by automatically spreading to thousands of
servers.

Azure table storage supports the Language Integrated Query (LINQ) extensions for .NET 3.0 or later
versions, ADO.NET Data Services, and representational state transfer (REST), which allows applications
developed using non-.NET languages to access table storage via the Internet. There is no limit on the
number of tables and entities or on the table size. There is no need for table storage developers to handle
the data access transactions, optimistic concurrency for updates, and deletes. Also, there is no need
for developers to worry about performance, since cloud storage is highly scalable. Especially for long
queries or queries that encounter a time-out, partial results will be returned and the unfinished queries
can be continued with a return continuation token.

In this chapter we are going to look at cloud data storage in detail. We’ll cover

• The table storage specification

• Azure development storage, which allows us to test cloud storage on the local
machine

• Creating cloud data storage and all the issues surrounding moving your data into
the cloud

The Table Storage Specification
To access Azure storage you must use a valid account. When a new Azure storage account is created
using the Windows Azure portal web interface, a 256-bit public shared key will be sent to you via e-mail.
Usually it takes about couple of days for processing. The secret key must be passed as one of the
parameters when initializing storage table access. The access will be authenticated based on the secret
key. Authentication is required for each request to table storage. When REST is used to access table
storage, the account name is part of the host name in the URL string. The URL is constructed with the
format of http://<accountName>.table.core.windows.net. An example of an account can be found from
DevelopmentStorage.exe.config of the Windows Azure SDK.

The following are the key parts of the specification:

• Table: A table contains a set of entities. Table names are associated to the account.
There is no limit on how many tables an application may create within a storage
account.

• Entity: An entity can be understood as a row in cloud table storage, which is the
basic data item stored in a table. An entity has a set of properties.

• Property: A property can be understood as a value being held in an entity. The
name for a property is case-sensitive. A rich type set is supported for property
values, as Table 1-1 shows.

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

3

Table 1-1. Value Types Supported by Cloud Table Entity Properties

Property Type Details

Binary An array of bytes up to 64 KB

Bool A Boolean value

DateTime A 64-bit value expressed as UTC time; range is 1/1/1600 to 12/31/9999

Double A 64-bit floating point value

GUID A 128-bit globally unique identifier

Int A 32-bit integer

Int64 A 64-bit integer

String A UTF-16-encoded value; may be up to 64 KB

• PartitionKey: Every table has a special property called PartitionKey. Since the
actual data of table storage is physically distributed to many storage nodes, which
may cross many storage servers running in the cloud, the cloud storage system
uses this key to manage the storage nodes’ distribution.

• RowKey: RowKey is the second key property defined for each table storage. This is
the unique ID of the entity, and an entity can be identified using the combination
of the PartitionKey and RowKey in a table.

• Timestamp: The Timestamp indicates the time a table is created.

• Partition: The Partition is a logical set of entities defined in a table with the same
PartitionKey value.

• Sort Order: A single index is provided for all entities in a table. Data entities are
sorted by PartitionKey and then RowKey. This makes queries specifying these keys
more efficient.

A Closer Look at Entities
It’s worth having a closer look at entities before we go any further:

• Number of properties: The maximum number of properties an entity can define is
255, including PartitionKey, RowKey, and Timestamp.

• Type: PartitionKey and RowKey are of string type.

• Timestamp: Timestamp is a read-only property.

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

4

• Schema: There is no schema stored in Windows Azure tables. The data storage
model for properties is a name and typed value pair. A table can not have two
entities with the same name, but it may have two properties with the same name
because they belong to different parent entities.

• Size of an entity: The size limit for an entity is 1 MB. This size is the summation of
the size of the property, the property values or their types, and the two mandatory
key properties, PartitionKey and RowKey.

Now that we know a little about Azure’s table storage, we should look at development storage,
which allows us to test our Azure applications on our local machine.

Azure Development Storage
The Windows Azure SDK development environment includes out-of-the-box development storage, a utility
that simulates the storage services available in the cloud. The Azure SDK provides the development storage
services to allow developers to create, debug, and unit test the cloud data service on a local machine before
they deploy their application to production.

By default, development storage relies on a SQL Server Express database, either the 2005 edition or
the 2008 edition, to simulate the storage environment in the cloud. It’s possible to use the full SQL Server
as we’ll see next, but to use SQL Server Express, you must have it installed. You also need to install SQL
Server Management Studio to manage SQL Server Express. Development storage connects to SQL Server
Express by using Windows authentication.

To switch from SQL Server Express to SQL Server 2005 or 2008, you need to modify the configuration
file, DevelopmentStorage.exe.config, and one line in the DevtableGen.exe.config file, as shown in
Listing 1-1 and Listing 1-2. These configuration files are located in the bin directory of Windows Azure as
shown in Figure 1-1.

Figure 1-1. Azure SDK DevelopmentStorage.exe.config and DevtableGen.exe.config configuration files

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

5

Listing 1-1. The DevelopmentStorage.exe.config SQL Storage Service

 <connectionStrings>
 <add name="DevelopmentStorageDbConnectionString"
 connectionString="Data Source=.\SQLEXPRESS;Initial Catalog=DevelopmentStorageDb;
Integrated Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

 <appSettings>
 <add key="ClientSettingsProvider.ServiceUri" value="" />
 </appSettings>

 <developmentStorageConfig>
 <services>
 <service name="Blob"
 url="http://127.0.0.1:10000/"/>
 <service name="Queue"
 url="http://127.0.0.1:10001/"/>
 <service name="Table"
 url="http://127.0.0.1:10002/"
 dbServer="localhost\SQLExpress"/>
 </services>

Replace the data source configuration with the local machine name in two places in this
configuration file.

Listing 1-2. The DevtableGen.exe.config for SQL Table Service

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="DefaultSQLInstance" value=".\SQLExpress"/>
 </appSettings>
</configuration>

The first exercise in this chapter uses development storage to create cloud data storage with a
simple data structure.

Create Cloud Data Storage with a Simple Data Structure
In the following exercise, we are going to create a data table in the local cloud development
environment. The code is available in the Exercise 1-1 code bundle.

1. Create a new project from Visual Studio, using the Worker Cloud Service
template from the Add New Project dialog panel as Figure 1-2 shows. The
path to find the template is the Visual C# ➤ Cloud Service. Enter the name
CreateDataStorage for the solution.

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

6

Figure 1-2. Visual Studio Worker Cloud Service template

2. Visual Studio will generate two projects for this solution by default. Add a
reference to StorageClient.dll to the project. This assembly can be found
from the bin directory where the Azure SDK was installed, for example,
C:\Program Files\Windows Azure SDK\v1.0\Samples\StorageClient\Lib\
bin\Debug as Figure 1-3 shows.

■ Note You may need to load the sample project into Visual Studio after you have installed the SDK (as discussed
in the Introduction) and recompile it. After installation, a ZIP file named samples.zip will be generated under the
install target folder. For example, if the install folder is C:\Program Files then the full path to find this file is
C:\Program Files\Windows Azure SDK\v1.0\samples.zip. This ZIP file contains a set of sample projects.
Unzip this file and find the solution folder called CloudDrive. Load that solution into Visual Studio and recompile it
(this requires you to run Visual Studio under a login account with Administrator privilege), and the assembly file
StorageClient.dll will be generated as Figure 1-3 shows.

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

7

Figure 1-3. Azure SDK assembly StorageClient.dll location

3. Add a new C# library project, CloudData.Models, to the solution. In this project,
define a very simple data entity class, Address, which must inherit from a SDK base
class, Microsoft.Samples.ServiceHosting.StorageClient.TableStorageEntity.
Listing 1-3 shows that this class simply has a group of attributes of address
information and no method functions but the class constructors.

Listing 1-3. Class Address Definition

 public class Address : TableStorageEntity
 {
 private State? _state;

 public string Address1 { get; set; }
 public string Address2 { get; set; }
 public string City { get; set; }
 public int? State { get { return (int)_state; } set { _state = (State)value; } }
 public string Zip { get; set; }
 public string County { get; set; }
 public string Country { get; set; }

 public Address():this(Guid.NewGuid())
 {
 }

 public Address(Guid internalID)
: base(ConfigurationManager.AppSettings["PartitionKey"], internalID.ToString())
 { }
 public Address(string address1,
 string address2,
 string city,
 State state,
 string zip,
 string county,
 string country,
 Guid internalID)
 :this(internalID)
 {
 Address1 = address1;
 Address2 = address2;

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

8

 City = city;
 State = (int)state;
 Zip = zip;
 County = county;
 Country = country;
 }
 }

4. In the same project, create a folder called CloudDataService. Add three
interface definitions—IDataTableService, IHasDependencyTableService, and
INoDependencyTableService—to this folder. The interface IDataTableService
exposes three basic data table access functions: Insert, Update, and Delete. All
these functions accept a parameter of type TableStorageEntity defined in the
Microsoft.Samples.ServiceHosting.StorageClient namespace. The two other
interfaces are derived from the interface IDataTableService. The interface
IHasDependencyTableService exposes one method, UpdateDependencyTable(),
which also accepts a parameter of type TableStorageEntity. The third interface,
INoDependency, does not expose any methods but provides a type definition used
for marking a class as having no logical dependency data object.

5. Add two classes into the folder CloudDataServices—DataTableService
and AddressTableService. Mark the first class as an abstract class. The
AddressTableService class is a derived class from the DataTableService class
and implements the interface INoDependencyTableService. In the base class
DataTableService, all three basic data I/O methods—Insert, Update, and
Delete—are implemented. The Insert and Delete methods are marked as
virtual, allowing concrete classes derived from this base class to override them.
The implementation for all interfaces and classes is shown in Listing 1-4.

Listing 1-4. Implementation for All Interfaces and Classes Defined in the Folder CloudDataServices

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace CreateDataStorage.Models.CloudDataServices
{
 using Microsoft.Samples.ServiceHosting.StorageClient;

 public interface IDataTableService
 {
 bool Insert(TableStorageEntity entity);
 bool Update(TableStorageEntity entity);
 bool Delete(TableStorageEntity entity);
 }

 public interface IHasDependencyTableService : IDataTableService
 {
 bool UpdateDependencyTable(TableStorageEntity entity);
 }

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

9

 public interface INoDependencyTableService : IDataTableService
 {
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace CreateDataStorage.Models.CloudDataServices
{
 using Microsoft.Samples.ServiceHosting.StorageClient;
 using CreateDataStorage.Models.CloudDataContext;

 abstract public class DataTableService
 {
 protected UserDataContext _userDataContext = null;
 protected string _Table { get; set; }

 public DataTableService()
 {
 _userDataContext = new UserDataContext();
 }

 public UserDataContext DataContext() { return _userDataContext; }

 virtual public bool Insert(TableStorageEntity entity)
 {
 bool success = false;

 try
 {
 if (this is IHasDependencyTableService)
 {
 (this as IHasDependencyTableService).UpdateDependencyTable(entity);
 }
 _userDataContext.AddObject(_Table, entity);
 _userDataContext.SaveChanges();
 success = true;
 }
 catch { }

 return success;
 }

 public bool Update(TableStorageEntity entity)
 {
 bool success = false;

 try

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

10

 {
 if (Delete(entity))
 {
 success = Insert(entity);
 }
 }
 catch { }

 return success;
 }

 virtual public bool Delete(TableStorageEntity entity)
 {
 bool success = false;

 try
 {
 if (this is IHasDependencyTableService)
 {
 (this as IHasDependencyTableService).UpdateDependencyTable(entity);
 }
 _userDataContext.DeleteObject(entity);
 _userDataContext.SaveChanges();
 success = true;
 }
 catch { }

 return success;
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Configuration;

namespace CreateDataStorage.Models.CloudDataServices
{
 using Microsoft.Samples.ServiceHosting.StorageClient;
 using CreateDataStorage.Models.CloudData;

 public class AddressTableService : DataTableService, INoDependencyTableService
 {
 public AddressTableService()
 {
 _Table = ConfigurationManager.AppSettings["AddressTable"];
 }
 }
}

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

11

6. In the same project, add the class UserDataContext, derived from the Azure
SDK base class TableStorageDataServiceContext. This class encapsulates a
cloud storage query function as Listing 1-5 shows.

Listing 1-5. Class UserDataContext Definition

 public class UserDataContext : TableStorageDataServiceContext
 {
 public DataServiceQuery<Address> AddressTable
 {
 get
 {
 return
CreateQuery<Address>(ConfigurationManager.AppSettings["AddressTable"]);
 }
 }

 }

7. Right-click on the CreateDataStorage project node in the Solution Explorer
panel to bring up the Property dialog box. Select Development in the left pane.
Enter the database name, AzureForDotNetDeveloper, into the dialog box, as
Figure 1-4 shows.

Figure 1-4. Enter data table name

8. Add a reference to CloudData.Models.dll to the CloudStorageService_WorkerRole
project.

9. Right-click on the CreateDataStorage project and select Create Test Storage Table
as Figure 1-5 shows. The compiler will analyze the code and generate a table for
the database. The generated table in the database is shown in Figure 1-6.

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

12

Figure 1-5. Generate SQL storage

Figure 1-6. Data table has been generated in local SQL database

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

13

When development storage is created the first time, message boxes will be popped up as shown in
Figure 1-7 and Figure 1-8. The local development storage and development fabric can be manually
started from the Windows Start menu as Figure 1-9 shows. Figure 1-10 and Figure 1-11 show the results
of these services having been successfully started from the local development environment.

Figure 1-7. Dialog message to confirm installation of development storage

Figure 1-8. Confirming the settings using the default endpoint address for development storage the first

time local development storage is used

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

14

Figure 1-9. Manually starting local development storage and development fabric

Figure 1-10. Opening the information window to verify current status of the development fabric

Figure 1-11. Right-clicking on the development storage icon to shut down the development fabric

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

15

This exercise demonstrates the basic steps to create a cloud data storage table using Windows Azure
SDK development storage table service. In principle, the approach is fairly straightforward. However, in
practice, since storage usage in a cloud environment is quite different from that in the regular on-
premises environment, we should follow some rules and best practices.

Using Portable Data Types for Data Columns
Essentially, the data type of a data column should be portable to a SQL data type, or be able to be
understood as a system-defined basic data type.

Using Data Tables Generated by Windows Azure Development
Tool
Use the Azure development tool provided by the Azure development SDK to invoke the development
storage service from Visual Studio to generate the data storage database and data tables. The
development tool analyzes the data objects of all projects across the cloud application solution to
generate the data structure for you. The number of data tables equals the number of data entity classes
that derive from the TableStorageEntity class. The number of columns in a generated data table equals
the number of public access properties defined in that data entity class.

Solutions to Non-Portable Data Types
If the data type is a custom-defined type, the SDK development tools will fail to invoke
DevelopmentStorage.exe and DevtableGen.exe. The following example illustrates how to solve this
problem if we have to use a data column in a data table with a custom-defined type, generally an
embedded class of the parent, which is the type not portable to a SQL database.

In this example, we need to define two data object classes, the State and the Address. The State is the
enumeration type with total of 59 members representing the states used by United States Postal Service. Each
Address class has an attribute member with this custom-defined State type as shown in Listing 1-6.

Listing 1-6. An Address Class with an Attribute Member Using a Non-portable Custom-defined Type State

 public enum State
 {
 AL,AK,AS,AZ,AR,CA,CO,CT,DE,DC,FM,FL,GA,GU,HI,
 ID,IL,IN,IA,KS,KY,LA,ME,MH,MD,MA,MI,MN,MS,MO,
 MT,NE,NV,NH,NJ,NM,NY,NC,ND,MP,OH,OK,OR,PW,PA,
 PR,RI,SC,SD,TN,TX,UT,VT,VI,VA,WA,WV,WI,WY
 }

 public class Address : TableStorageEntity
 {
 ...
 public State State { get; set; }
 ...
 }

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

16

When we invoke Create Test Storage Table from Visual Studio again as we did before, we will be
asked to confirm removal of the existing storage from the database as Figure 1-12 shows.

Figure 1-12. Confirmation to remove existing table from cloud data storage dialog box when regenerating

the cloud storage

Click Yes to confirm this action. An error message pops up to show the failure of the action as
Figure 1-13 shows.

Figure 1-13. Error message from the compiler when attempting to regenerate the storage tables if a

non-portable data type is added to a cloud table

The error message from the output window of Visual Studio is:

DevTableGen(0,0): error DG10: No tables were generated. Either no candidate classes were

found or they did not meet the requirements for the table storage.

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

17

This error message does not make much sense for troubleshooting, nor does the compiler provide
any specific information on why the data table could not be created.

We can follow four steps to regenerate the table:

1. Make the State type inherit the type int, since int is a system-defined type
and portable to a SQL database.

2. Define a member variable _state with the type of State in the Address class.

3. Apply the .NET nullable design pattern to this member variable.

4. Cast the type between the portable and custom-defined enum type from the
access function.

The modified code is in boldface in Listing 1-7. After the modification, use Visual Studio to
regenerate the table. The error will go away, and the table will be recreated in the local SQL database.

Listing 1-7. An Example of Solutions for Non-portable Data Types

 public enum State : int
 {
 AL,AK,AS,AZ,AR,CA,CO,CT,DE,DC,FM,FL,GA,GU,HI,
 ID,IL,IN,IA,KS,KY,LA,ME,MH,MD,MA,MI,MN,MS,MO,
 MT,NE,NV,NH,NJ,NM,NY,NC,ND,MP,OH,OK,OR,PW,PA,
 PR,RI,SC,SD,TN,TX,UT,VT,VI,VA,WA,WV,WI,WY
 }

 public class Address : TableStorageEntity
 {
 private State _state;

 public int? State
 {
 get { return (int)_state; }
 set { _state = (State)value; }
 }
 }

Data Context Class Inheritance
In addition to the data entity class, for each data storage table, a class that inherits from the class
TableStorageDataServiceContext must be defined with a data service query function implementation as
Listing 1-8 shows.

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

18

Listing 1-8. The Context Query Class Derived from TableStorageDataServiceContext Implemented in a

Data Table Storage

 public class UserDataContext : TableStorageDataServiceContext
 {
 ...
 public DataServiceQuery<Address> AddressTable
 {
 get
 {
 CreateQuery<Address>(ConfigurationManager.AppSettings["AddressTable"]);
 }
 }
 ...
 }

■ Note The compiler does not provide detailed information about why the data storage generation failed.
Hopefully, the information will be available from Microsoft in future releases.

Using PartitionKey and RowKey to Organize the Data to be
Distributed
In order to support load balancing, tables and therefore entities in the cloud are partitioned across
storage nodes, which may be physically located in different servers. Each partition holds a consecutive
range of entities that have the same partition key value, which is how partitions are organized. As noted
above, we specify the partition key as the PartitionKey property in a table, and it must be unique to
allow for consecutive ordering into partitions. This sounds familiar, because the partition key forms part
of an entity’s primary key in combination with RowKey.

The data can be organized based on the usage of PartitionKey and RowKey for each data table entity.
By design, the values for both PartitionKey and RowKey could be empty strings, whereas null values are
not allowed. Table 1-2 below shows possible combinations of PartitionKey and RowKey.

Table 1-2. Using PartitionKey and RowKey to Organize the Table Structures

PartitionKey RowKey Usage Conditions

Empty string Empty string One partition or one row

Has value Empty string Multiple partitions or one row

Empty string Has value One partition or multiple rows per a partition

Has value Has value Multiple partitions of multiple rows for each partition

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

19

Create Cloud Data Storage with Relational Data Structure
Migrating existing relational data storage from an on-premises system to a cloud environment is a really
interesting topic and a challenge for an organization to face. There are a variety of good answers and
solutions. In this exercise, we are going to create data storage with a relational structure among data
entities to provide you with a starting point. SQL Azure provides a ready-made solution for relational
data storage infrastructure and is covered in Chapter 8. The rest of this chapter will provide an example
exercise to handle a simple relational data structure that runs in a cloud using table storage, as you may
not want the full-blown SQL Azure service.

The data structure we will build includes three data entities: Address, Person, and User. The
Address data entity is the same as the one we created in the first exercise. A Person data entity has an
encapsulated object Address. A User data entity has an encapsulated object Person. In terms of the
XML schema, the relationship among these entities can be understood as the reference of one schema
to another, such as a User reference to Person and a Person reference to Address. This is a typical
example using an object-oriented approach to data modeling and schema definitions. Figure 1-14 and
Figure 1-15 provide the relationship in terms of XML schemas.

Figure 1-14. User data structure schemas

Figure 1-15. Schema for Address, Person, and User

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

20

As explained in the previous exercise, we cannot use the property access attribute to expose an
embedded object from an entity class. We either have to alter the embedded object as we did previously
or use methods to provide access to the internal objects. Otherwise, the data table generation fails and
the compiler does not provide the specific reason. Listing 1-9 shows how to expose a custom-defined
inner data entity object from a data object class using class member methods instead of member
attributes.

Listing 1-9. Using a Member Method Instead of Member Attributes to Expose Inner Data Entity Objects of

a Non-portable Custom-defined Type

 public class Person : TableStorageEntity
 {
 ...
 private Address _address = null;

 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string MiddleInitial { get; set; }
 public string Suffix { get; set; }
 ...
 public Address GetAddress() { return _address; }
 ...
 }

Following the same procedures as we had in the first exercise, we successfully generated three data
tables from local cloud data storage as the screenshot shows in Figure 1-16.

Figure 1-16. Generated relational data storage

From this example, we learned that data entity classes with relational structures in a cloud platform
have some limitations. If an entity class has a dependency entity class, property attributes cannot be
used for access. Instead, member methods should be used. It should be borne in mind that you need to
refactor existing data storage for the cloud. We will discuss more refactoring issues in later chapters.

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

21

A Constraint for Data Entity Classes Contains Embedded Entity
Classes
Today, a lot of existing software uses data entity classes generated from XML schemas using the .NET
utility Xsd.exe shipped with the .NET Framework. By default, the generated data entity classes using
Xsd.exe use a property attribute function to access the embedded data entity objects. When we
refactor existing code to a cloud platform, we can simply derive these data entity classes from
TableStorageEntity. However, all property functions used to expose embedded data object from a
container or parent class must be refactored to Get/Set member method pairs instead.

Listing 1-10 shows the data entity class for Person generated by using Xsd.exe. All attribute
properties such as the AddressRoot, as highlighted in Listing 1-9, must be reimplemented as Get/Set
member method pairs.

Listing 1-10. The Person Class Generated from Xsd.exe Using the XML Schemas

 [System.CodeDom.Compiler.GeneratedCodeAttribute("xsd", "2.0.50727.3038")]
 [System.SerializableAttribute()]
 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.ComponentModel.DesignerCategoryAttribute("code")]
 [System.Xml.Serialization.XmlTypeAttribute(AnonymousType=true,
Namespace="http://AzureForDotNetDeveloper.Schema.User.Person")]
 [System.Xml.Serialization.XmlRootAttribute
(Namespace="http://AzureForDotNetDeveloper.Schema.User.Person", IsNullable=false)]
 public partial class PersonRoot {
 private string firstNameField;
 private string latNameField;
 private string middleInitialField;
 private string suffixField;
 private AddressRoot addressRootField;
 /// <remarks/>
[System.Xml.Serialization.XmlElementAttribute
(Form=System.Xml.Schema.XmlSchemaForm.Unqualified)]
 public string FirstName {
 get {
 return this.firstNameField;
 }
 set {
 this.firstNameField = value;
 }
 }
 /// <remarks/>
 [System.Xml.Serialization.XmlElementAttribute(
Namespace="http://AzureForDotNetDeveloper.Schema.User.Address")]
 public AddressRoot AddressRoot {
 get {
 return this.addressRootField;
 }

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

22

 set {
 this.addressRootField = value;
 }
 }
 }

Refactoring Data Entity Classes
A solution to the constraint for data entity classes containing embedded entity classes is to refactor. To
refactor the PersonRoot class for Windows Azure platform, follow these steps:

1. Add using Microsoft.Samples.ServiceHosting.StorageClient; into the project.

2. Make the PersonRoot class derive from the TableStorageEntity class.

3. Modify the Get/Set property pair into the GetAddress()/SetAddress() method
pair. Listing 1-11 shows the results after the Person data entity class has been
refactored.

Listing 1-11. Refactoring the Person Class to the Azure Cloud Platform

 using Microsoft.Samples.ServiceHosting.StorageClient;

 /// <remarks/>
 [System.CodeDom.Compiler.GeneratedCodeAttribute("xsd", "2.0.50727.3038")]
 [System.SerializableAttribute()]
 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.ComponentModel.DesignerCategoryAttribute("code")]
 [System.Xml.Serialization.XmlTypeAttribute(AnonymousType=true,
 Namespace="http://AzureForDotNetDeveloper.Schema.User.Person")]
 [System.Xml.Serialization.XmlRootAttribute(Namespace=
"http://AzureForDotNetDeveloper.Schema.User.Person", IsNullable=false)]
 public partial class PersonRoot : TableStorageEntity
 {
 public AddressRoot GetAddressRoot()
 {
 return this.addressRootField;
 }

 public void SetAddressRoot(AddressRoot address)
 {
 this.addressRootField = address;
 }
 }

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

23

Close SQL Analysis
When creating a test cloud storage table, any active SQL query analysis running against the existing
cloud storage table needs to be closed from SQL Management Studio to avoid the failure of data storage
creation.

Summary
As we have learned so far, creating cloud table storage is a straightforward job. Microsoft claims that
the Azure framework is a true developer-oriented framework. All the hard work should have been
done and encapsulated in the SDK. Your life as a .NET developer is now a lot easier; what remains for
you to do is nothing but derive your client classes from the base classes from the SDK and follow the
right procedures to build your cloud applications. However, I have not presented how to access cloud
table storage yet. That is the task we are going to pursue in the next chapter.

CHAPTER 1 ■ CREATE CLOUD TABLE STORAGE

24

C H A P T E R 2

■ ■ ■

25

Access Cloud Table Storage

To access Azure table storage, we must use Azure web roles, since the worker role cannot connect to
or communicate with the outside world directly. A worker role is usually used on batch jobs (see the
book's introduction). The Azure SDK provides a set of templates in a client service access library,
StorageClient.dll. This chapter has three exercises. In the first section of this chapter we will walk
through a process to access cloud storage step by step and see how to use these templates to insert and
query data using the cloud table storages. The second exercise focuses on deleting the records from a
cloud storage table. The third exercise is an example of how to manipulate data in tables with a
relational structure. The cloud storage we are going to use was created in Chapter 1. From these three
exercises you will learn the basic skills to deal with cloud table storage.

Essentially all cloud tables are addressable using a URI. The cloud table can be accessed by a web
request via HTTP. The Azure SDK provides client-side components that implement all the base classes
used to access Azure table storage. These components can be found in the bin folder of the SDK. You
then need to create classes derived from the base classes defined in the SDK.

Accessing a Single Cloud Data Storage Table
First, let’s see how to access a single cloud data storage table. Before we drill down into the details let’s
create a new WebRole cloud service in Visual Studio by selecting New Project ➤ Visual C# ➤ Cloud
Service ➤ Web Cloud Service and name it CloudTableStorageService.

■ Note The code for this example is in the exercise 2-1 bundle from the code download.

Visual Studio will automatically generate two projects as a solution package. One project is called
CloudTableStorageService, and another one is called CloudTableStorageService_WebRole. The first
project is a new type of Visual Studio project introduced by the Windows Azure framework.

There are two files automatically generated in the CloudTableStorageService project by Visual
Studio. One is ServiceConfiguration.cscf, a configuration XML file containing user account
information. By default, all the URI addresses generated in this file point to the local development
environment with a default account authentication key called AccountSharedKey with a base-64
encoding token key value. When a project is deployed to the remote cloud host in a Microsoft data
center, all the values in the configuration need to be changed to point to your account. You will find out
how to do this later in this book and get information in more detail about deploying an Azure project to a

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

26

remote cloud environment from Chapter 9. Visual Studio also adds a reference to point to the second
project. The second project, CloudTableStorageService_WebRole, is a regular ASP.NET project with a
default web form file defined inside the project. Renamed it AddressTable.aspx.

Right-click on the second project we have just created, CloudTableStorageService_WebRole, and insert
three new folders into that project—CloudTableStorageDataContext, CloudTableStorageDataService, and
CloudTableStorageDataEntity. We are going to add and implement more classes in these three folders in
the rest of this exercise.

■ Note You can delete the second web role project and create your own regular web application type project and
add it back by changing the reference to your own web application project. By design there is only one web
application project that can be referenced from an Azure storage service project.

1. As Listing 2-1 shows, create a base class TableContext. This class inherits
from TableStorageDataServiceContext. This class is part of the
Microsoft.ServiceHosting.Service.dll assembly from the Azure SDK.
The constructor of the TableContext class takes StorageAccountInfo as a
parameter. The StorageAccountInfo class instance retrieves the configuration
(DevelopmentStorage.exe.config, shown in Listing 2-2) from the SDK install
directory and reads it at runtime. There is no need to do any more work with
this derived class. All necessary jobs and hard tasks have been done from the
base class. This makes your life a lot easier since you do not need to know the
details of how to hook up to the Azure framework runtime environment. The
only thing for you to do is to provide correct authentication information.

Listing 2-1. A Cloud Data Object Class Must Inherit from the Base Class TableStorageDataServiceContext

abstract public class TableContext : TableStorageDataServiceContext
{
 public string TableName { get; set; }

 public TableContext(StorageAccountInfo accountInfo)
 : base(accountInfo)
 {
 }
}

Listing 2-2. The Configuration File DevelopmentStorage.exe.config

<developmentStorageConfig>
 <services>
 <service name="Blob"
 url="http://127.0.0.1:10000/"/>
 <service name="Queue"
 url="http://127.0.0.1:10001/"/>

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

27

 <service name="Table"
 url="http://127.0.0.1:10002/"
 dbServer="localhost\SQLExpress"/>
 </services>

 <accounts>
 <account name="devstoreaccount1"
 authKey="<AUTH_KEY>"
 isAdmin="false"
 contactInfo=""/>
 </accounts>
 </developmentStorageConfig>

2. Create another class called DataTableService. This class has two member
variables. One is the type of the TableContext class we have just created,
and the another member variable is the StorageAccountInfo type. This
class is also defined in the Microsoft.ServiceHosting.Service.dll
assembly of the Azure SDK. In the body of the constructor of the
DataTableService class, add a line of code to instantiate the class
StorageAccountInfo and the retrieve the account configuration
information from the configuration file DevelopmentStorage.exe.config
as shown in Figure 2-1. Figure 2-1 shows the debug information at the
breakpoint set at the constructor of the DataTableService class at runtime.
The configuration information retrieved by the framework should match the
configuration settings. The implementation of the TableContext class is fairly
straightforward. This class only implements a query interface to the cloud
table AddressTable, as Listing 2-1 and the class diagram in Figure 2-2 show.

Figure 2-1. Account information is configured in DevelopmentStorage.exe.config and retrieved at runtime

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

28

Figure 2-2. The AddressTableContext class diagram

3. Add a new class called AddressTableContext to inherit from the base class
TableContext, as shown in Listing 2-3. The purpose of creating this class is to
encapsulate the table storage interface function to a specific data table. In this
exercise we only access the Address table, so we only need to create one
derived class from TableContext. If there are multiple tables we need to access
then we need to create more classes derived from TableContext in the future.
Each derived class is dedicated to a specific data table. So why can't we come
up with a generic table-access class, which exposes the data table access
functions and returns generic types. The answer is the table name is a static
string and needs to match the name of the physical data storage table. Another
reason is that this allows the client code to accept the return data table type as
a concerte type without transforming the generic type. This will significantly
reduce unnecessary complexity. To reach that end there are three tasks that
need to be done.

1. Create a constructor to this class to accept a parameter of instance of
StorageAccountInfo.

2. Read the table name from the configuration settings in the body of the
constructor.

3. Add a query interface to query the Address table.

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

29

Listing 2-3. Implementation of Class AddressTableContext, a Derived Class of TableContext

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Configuration;

namespace CloudTableStorageService_WebRole.CloudTableStorageDataContext
{
 using Microsoft.Samples.ServiceHosting.StorageClient;
 using CloudTableStorageService_WebRole.CloudTableStrorageDataEntity;

 internal class AddressTableContext : TableContext
 {
 internal AddressTableContext(StorageAccountInfo accountInfo)
 : base(accountInfo)
 {
 TableName = ConfigurationManager.AppSettings["AddressTable"];
 }

 public IQueryable<Address> AddressTable
 {
 get { return CreateQuery<Address>(TableName); }
 }

 }
}

4. In the CloudTableStorageService_WebRole project create a C# class called
DataTableService and mark it as an abstract class since we are going to use it
as a base class. This class implements the facade design pattern to encapsulate
the StorageAccountInfo and TableContext classes. The definition of this base
class is shown in Listing 2-4.

Listing 2-4. Definition of Base Class DataTableService

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace CloudTableStorageService_WebRole.CloudTableStorageDataService
{
 using Microsoft.Samples.ServiceHosting.StorageClient;
 using CloudTableStorageService_WebRole.CloudTableStorageDataContext;

 abstract public class DataTableService
 {
 protected StorageAccountInfo _account = null;
 protected TableContext _dataTableContext = null;

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

30

 public DataTableService()
 {
 // Get the settings from the Service Configuration file
 _account = StorageAccountInfo.GetDefaultTableStorageAccountFromConfiguration();
 }

 public TableContext TableContext() { return _dataTableContext; }
 }
}

5. Add a new C# class AddressTableService in the same folder. (The class diagram
is shown in Figure 2-3. The implementation for the class is shown in Listing 2-5.)
This class is derived from the base class DataTableService and provides a set of
public access functions to perform basic data I/O between the table storage
context and the custom-defined data entity container classes. This class must
have at least the next four public methods:

• Select(): The Select() method can include functionality to retrieve an
enumerable collection of data items and to retrieve a single item. In this
example we are going to implement Select() to retrieve the enumerable
item collection from the table AddressTable.

• Insert(): To insert an entity into a cloud storage table; in this example, to
the table AddressTable.

• Update(): To refresh changes of a data entity to a cloud storage table; in this
example, to the table AddressTable.

• Delete(): To remove a data entity from a cloud storage table; in this
example, from the table AddressTable.

Figure 2-3. Class AddressTableService provides data IO services

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

31

Listing 2-5. Implementation of the Class AddressTableService

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Data.Services.Client;
using System.Configuration;

namespace CloudTableStorageService_WebRole.CloudTableStorageDataService
{
 using Microsoft.Samples.ServiceHosting.StorageClient;
 using CloudTableStorageService_WebRole.CloudTableStrorageDataEntity;
 using CloudTableStorageService_WebRole.CloudTableStorageDataContext;

 public class AddressTableService : DataTableService
 {
 /// </summary>
 public AddressTableService()
 {
 _dataTableContext = new AddressTableContext(base._account);
 dataTableContext.RetryPolicy =
 RetryPolicies.RetryN(Convert.ToInt32(
 ConfigurationManager.AppSettings["Retry"]),
 TimeSpan.FromSeconds(1));
 }

 public IEnumerable<Address> Select()
 {
 if (null == _dataTableContext ||
 null == (_dataTableContext as AddressTableContext))
 {
 return null;
 }

 var results =
 from a in (_dataTableContext as AddressTableContext).AddressTable select a;

 if (0 == (results as
 DataServiceQuery<Address>).ToArray<Address>().Count<Address>())
 {
 return null;
 }

 TableStorageDataServiceQuery<Address> query =
 new TableStorageDataServiceQuery<Address>(
 results as DataServiceQuery<Address>);
 IEnumerable<Address> queryResults = query.ExecuteAllWithRetries();
 return queryResults;
 }

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

32

 public bool Insert(Address entity)
 {
 bool success = false;

 try
 {
 _dataTableContext.AddObject(_dataTableContext.TableName, entity);
 _dataTableContext.SaveChanges();
 success = true;
 }
 catch { }

 return success;
 }

 public bool Update(Address entity)
 {
 bool success = false;

 try
 {
 if (Delete(entity))
 {
 success = Insert(entity);
 }
 }
 catch { }

 return success;
 }

 public bool Delete(Address entity)
 {
 bool success = false;

 try
 {
 _dataTableContext.AttachTo(_dataTableContext.TableName, entity, "*");
 _dataTableContext.DeleteObject(entity);
 _dataTableContext.SaveChanges();
 success = true;
 }
 catch { }

 return success;
 }
 }
}

6. Open AddressTable.aspx from the project in Visual Studio and insert two table
objects into the body of the form as Figure 2-4 shows.

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

33

Figure 2-4. Create a web form table for input and a GridView on the ASPX page

7. In the first table add an ASP.NET FormView and implement an InsertItemTemplate
in the body of the FormView as Listing 2-6 shows. Define an ASP.NET GridView in
the second web form table as Listing 2-7 shows.

Listing 2-6. Implement FormView with InsertItemTemplate from the First ASP.Net Web Form Table

<table cellspacing="0" cellpadding="0" border="1"
 style="width: 600; height: 145px;">
 <asp:FormView
 id="formAddAddress"
 DataSourceId="AddressTableData"
 DefaultMode="Insert"
 Runat="server"><%-- Address Table--%>
 <InsertItemTemplate>
 <tr>
 <td bgcolor="#FFCC00"></td>
 <td bgcolor="#FFCC00" colspan="3">Address Information Input</td>
 </tr>
 <tr>
 <td class="input_lable">Address1</td>
 <td class="input_Text">
 <asp:TextBox

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

34

 ID="txtAddress1"
 Text='<%# Bind("Address1") %>'
 runat="server"
 Width="125px">
 </asp:TextBox>
 </td>
 <td class="input_lable">Address2</td>
 <td class="input_Text">
 <asp:TextBox
 ID="txtAddress2"
 Text='<%# Bind("Address2") %>'
 runat="server"
 Width="125px"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td class="input_lable">City</td>
 <td class="input_Text">
 <asp:TextBox
 ID="City"
 Text='<%# Bind("City") %>'
 runat="server"
 Width="125px"></asp:TextBox>
 </td>
 <td class="style10">Zip</td>
 <td class="style11">
 <asp:TextBox
 ID="Zip"
 Text='<%# Bind("Zip") %>'
 runat="server"
 Width="125px">
 </asp:TextBox>
 </td>
 </tr>
 <tr>
 <td class="style10">County</td>
 <td class="style11">
 <asp:TextBox
 ID="County"
 Text='<%# Bind("County") %>'
 runat="server"
 Width="125px">
 </asp:TextBox>
 </td>
 <td class="style10">Country</td>
 <td class="style11">
 <asp:TextBox
 ID="Country"
 Text='<%# Bind("Country") %>'
 runat="server"
 Width="125px">

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

35

 </asp:TextBox>
 </td>
 </tr>
 <tr style=" background-color: #ffffbe;
 font-weight:normal;
 font-size: 10pt;
 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
 padding: 2px 2px 2px 6px;
 text-align: center; color:Black; height:25px;">
 <td class="input_lable">State</td>
 <td class="input_Text">
 <asp:DropDownList
 ID="combState"
 runat="server"
 SelectedIndex='<%#Bind("State")%>'
 Height="23px"
 Width="119px">
 <asp:ListItem>AL</asp:ListItem>
 <asp:ListItem>AK</asp:ListItem>
 <asp:ListItem>AS</asp:ListItem>
 <asp:ListItem>AZ</asp:ListItem>
 <asp:ListItem>ZR</asp:ListItem>
 <asp:ListItem>CA</asp:ListItem>
 <asp:ListItem>CO</asp:ListItem>
 <asp:ListItem>CT</asp:ListItem>
 <asp:ListItem>DE</asp:ListItem>
 <asp:ListItem>DC</asp:ListItem>
 <asp:ListItem>FM</asp:ListItem>
 <asp:ListItem>FL</asp:ListItem>
 <asp:ListItem>GA</asp:ListItem>
 <asp:ListItem>GU</asp:ListItem>
 <asp:ListItem>HI</asp:ListItem>
 <asp:ListItem>ID</asp:ListItem>
 <asp:ListItem>IL</asp:ListItem>
 <asp:ListItem>IN</asp:ListItem>
 <asp:ListItem>IA</asp:ListItem>
 <asp:ListItem>KS</asp:ListItem>
 <asp:ListItem>KY</asp:ListItem>
 <asp:ListItem>LA</asp:ListItem>
 <asp:ListItem>ME</asp:ListItem>
 <asp:ListItem>MH</asp:ListItem>
 <asp:ListItem>MD</asp:ListItem>
 <asp:ListItem>MA</asp:ListItem>
 <asp:ListItem>MI</asp:ListItem>
 <asp:ListItem>MN</asp:ListItem>
 <asp:ListItem>MS</asp:ListItem>
 <asp:ListItem>MO</asp:ListItem>
 <asp:ListItem>MT</asp:ListItem>
 <asp:ListItem>NE</asp:ListItem>
 <asp:ListItem>NV</asp:ListItem>
 <asp:ListItem>NG</asp:ListItem>

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

36

 <asp:ListItem>NJ</asp:ListItem>
 <asp:ListItem>NM</asp:ListItem>
 <asp:ListItem>NY</asp:ListItem>
 <asp:ListItem>NC</asp:ListItem>
 <asp:ListItem>ND</asp:ListItem>
 <asp:ListItem>MP</asp:ListItem>
 <asp:ListItem>OH</asp:ListItem>
 <asp:ListItem>OK</asp:ListItem>
 <asp:ListItem>OR</asp:ListItem>
 <asp:ListItem>PW</asp:ListItem>
 <asp:ListItem>PA</asp:ListItem>
 <asp:ListItem>PR</asp:ListItem>
 <asp:ListItem>RI</asp:ListItem>
 <asp:ListItem>SC</asp:ListItem>
 <asp:ListItem>SD</asp:ListItem>
 <asp:ListItem>TN</asp:ListItem>
 <asp:ListItem>TX</asp:ListItem>
 <asp:ListItem>UT</asp:ListItem>
 <asp:ListItem>VT</asp:ListItem>
 <asp:ListItem>VI</asp:ListItem>
 <asp:ListItem>VA</asp:ListItem>
 <asp:ListItem>WA</asp:ListItem>
 <asp:ListItem>WV</asp:ListItem>
 <asp:ListItem>WI</asp:ListItem>
 <asp:ListItem>WY</asp:ListItem>
 </asp:DropDownList>
 </td>
 <td class="style10"></td>
 <td class="style9">
 <asp:Button
 ID="btnAddAddress"
 runat="server"
 Text="Add"
 CommandName="Insert"
 Width="94px" />
 </td>
 </tr>
 </InsertItemTemplate>
 </asp:FormView>
 </table>

Listing 2-7. A GridView Used to Display Query Results from Cloud Table Defined in the Second Web Form

Table in AddressTable.aspx

<asp:GridView
 id="AddressView"
 DataSourceId="AddressTableData"
 DataKeyNames="PartitionKey,RowKey"
 AllowPaging="False"
 AutoGenerateColumns="True"

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

37

 GridLines="Vertical"
 Runat="server"
 BackColor="White" ForeColor="Black"
 BorderColor="#DEDFDE" BorderStyle="None" BorderWidth="1px"
 CellPadding="4" Font-Size="Small">
 <Columns>
 <asp:CommandField ShowDeleteButton="true" />
 </Columns>
 <RowStyle BackColor="#F7F7DE" />
 <FooterStyle BackColor="#CCCC99" />
 <PagerStyle BackColor="#F7F7DE" ForeColor="Black" HorizontalAlign="Right" />
 <SelectedRowStyle BackColor="#CE5D5A" Font-Bold="True" ForeColor="White" />
 <HeaderStyle BackColor="#6B696B" Font-Bold="True" ForeColor="White" />
 <AlternatingRowStyle BackColor="White" />
 </asp:GridView>

8. Insert code at the bottom of the AddressTable.aspx file to create an
ObjectDataSource and then bind the Address data entity class to
AddressTableService as Listing 2-8 shows.

Listing 2-8. Insert an ObjectDataSource Definition into the AddressTable.aspx File and Bind It to the

Address Data Entity Class

<asp:ObjectDataSource
 runat="server"
 ID="AddressTableData"
 TypeName=
 "CloudTableStorageService_WebRole.CloudTableStorageDataService.AddressTableService"
 DataObjectTypeName="CloudTableStorageService_WebRole.CloudTableStrorageDataEntity.Address"
 SelectMethod="Select" DeleteMethod="Delete" InsertMethod="Insert">
</asp:ObjectDataSource>

■ Note The class object name must be fully qualified, with the combination of name space and class name.

9. Open AddressTable.aspx.cs and insert code into the Page_Load event handling
function and implement the AddAddress_Click event-handling function. Since
we use data binding between the GridView and the ObjectDataSource in
AddressTable.aspx and the data binding is bidirectional, the code-behind file
is extremely concise as Listing 2-9 shows.

Listing 2-9. Code in AddressTable.aspx.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

38

using System.Web.UI;
using System.Web.UI.WebControls;
using System.Threading;
using System.Data.Services.Client;

namespace CloudTableStorageService_WebRole
{
 using CloudTableStorageService_WebRole.CloudTableStorageDataService;
 using CloudTableStorageService_WebRole.CloudTableStrorageDataEntity;
 using CloudTableStorageService_WebRole.CloudTableStorageDataContext;

 public partial class WebForm1 : System.Web.UI.Page
 {
 private AddressTableService _addressTableService = null;

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsCallback)
 {
 _addressTableService = new AddressTableService();
 }
 else
 {
 _DataBinding();
 }
 }

 protected void btnAddAddress_Click(object sender, EventArgs e)
 {
 if (Page.IsValid)
 {
 _DataBinding();
 }

 }

 private void _DataBinding()
 {
 AddressView.DataBind();
 }
 }
}

10. Set the CloudTableStorageService project as the startup project by right-
clicking on the project node in Solution Explorer; start the service from Visual
Studio by pressing F5 (with debugging) or Ctrl+F5 (without debugging). Visual
Studio will start the table storage service and launch the AddressTable.aspx
page in the default browser as Figure 2-4 shows.

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

39

11. Before we start testing what we have achieved so far, I strongly recommend
you do one more thing. The cloud storage table needs to be created in cloud
storage, either locally during development or remotely after being deployed, at
the time of the first data access request. To improve performance and avoid
creating the table multiple times, insert a piece of code into the static function
ApplicationStartUponFirstRequest in Global.asax as shown in Listing 2-10.

Listing 2-10. Call to Create Cloud Storage Table at the Time of Application Starting

private static void ApplicationStartUponFirstRequest(HttpContext context)
{
 StorageAccountInfo account =
 StorageAccountInfo.GetDefaultTableStorageAccountFromConfiguration();

 TableStorage.CreateTablesFromModel(typeof(AddressTableContext), account);
}

Now it is time to insert and query data from cloud table storage. Use the two ASP.NET web form
tables we added in step 7: Address Information Input, used to accept the user input, and AddressTable,
used to display the results as Figure 2-5 shows.

Figure 2-5. AddressTable.aspx has been loaded in IE, though there is no data in AddressTable

At this point, the development storage and development fabric services should also be launched
from the local system. Their icons can be found in the system tray as shown in Figure 2-6. Right-click on
development storage to open the window shown in Figure 2-7. You can find Blob, Queue, and Table
services running on the local cloud platform. The current data table should be AddressTable in the
database AzureForDotNetDeveloper. Figure 2-8 shows the local fabric windows where the running

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

40

WebRole service instance can be found with the debug log information showing in the black resizable
windows.

Figure 2-6. Icons from the system tray showing that the development storage service and development

fabric services have been launched from the local development environment

Figure 2-7. Development storage service window showing cloud storage services running from local system

Figure 2-8. Development fabric service window showing the instance running from local cloud system

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

41

Enter the address information and click the Add button. The data will be persisted into the database and
then retrieved back into the GridView. The results shown in the GridView match those when querying the
database from SQL Server Management Studio directly. The screenshot for testing results is shown in Figure 2-9.

Figure 2-9. Data have been inserted into local cloud table storage

There is a Delete link in the first column of the GridView used to delete the entry as Figure 2-9 shows.
So far we have successfully performed basic data I/O with local cloud table storage. If you don’t see

the data updating correctly after inserting a new row of data, refresh the web page from the toolbar of
the web browser.

There are a few important things you should be aware of to ensure access to cloud table storage, so
let’s look at them now.

Data Entity Class Constructors
For any data entity container class used in a cloud storage application, if the class is derived from an
Azure SDK StorageClient like the Address class used in this example, it is a must to explicitly define a
non-parameterized default constructor in addition to parameterized constructors, as Listing 2-11 shows.
The non-parameterized default constructor is required from the StorageClient component of the Azure
SDK at runtime.

Listing 2-11. A Data Entity Class Requires a Non-parameterized Constructor to Be Explicitly Defined

public Address()
 : this(Guid.NewGuid().ToString(), Guid.NewGuid().ToString())
{
}

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

42

public Address(string partitionKey, string rowKey)
 : base(partitionKey, rowKey)
{
}

Table Storage Keys
By default, cloud storage tables use two primary keys as a compound key, PartitionKey and RowKey. If we
need to use just one primary key and set another primary, usually the partition key, as a constant value,
we can specify the value from the configuration file and modify this constructor and insert a value into
the configuration file for the web role as Listing 2-12 shows.

Listing 2-12. Modify the Entity Class to Use a Constant Value as the PartitionKey

public Address()
: this(ConfigurationManager.AppSettings["PartitionKey"],
 Guid.NewGuid().ToString())
{
}

<appSettings>
 <add key="PartitionKey" value="AzureForDotNetDeveloper"/>
 <add key="UserTable" value="UserTable"/>
 <add key="PersonTable" value="PersonTable"/>
 <add key="AddressTable" value="AddressTable"/>
 <add key="AzureForDotNetDeveloperUserRowKey"
 value="AzureForDotNetDeveloperUserRowKey"/>
 <add key="Retry" value="3"/>
</appSettings>

The PartionKey takes any valid string value including an empty string, but not null values.

Log Runtime Message and Event Information for Debugging
Logging support is one of the things most .NET developers are interest in. The local development fabric
service provides a nice way for you to test and troubleshoot your applications or components. After an
application has been deployed to the local fabric or the Azure fabric, the only way to diagnose and debug
the application is using the log. Visit the MSDN documentation at http://msdn.microsoft.com/en-us/
library/dd179455.aspx to learn about the Azure log mechanisms.

In the local development environment the simplest way to write log messages or events is using the
RoleManager class to log messages to the local fabric service. The log information will be shown in the
development fabric log window as we have seen before. You need to be aware of a limit with this way of
logging messages or events. Since the RoleManager is not available until the services start, to log events or
messages, especially exceptions that happen before a service has been started, you need to use the Azure
SDK command-line tool CSRun.exe with the /dumplogs option. Information on how to get and use the
Azure command-line tools can be found at http://msdn.microsoft.com/en-us/library/dd179412.aspx.
There is a very good article published by Bruno Terkaly from Microsoft that talks about how to log
messages and events in both the development fabric and the Azure fabric and provides a useful

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

43

approach for handling Azure message login. His article can be found at http://
blogs.msdn.com/brunoterkaly/archive/2009/01/18/windows-azure-services-exercise-2-
configuration-logging-and-debugging.aspx.

Leverage the Power of Development Fabric Services
We briefly described the development fabric in the Introduction. The development fabric is a powerful
feature of the Azure Framework. The development fabric simulates the Azure fabric service on a local
computer environment. You can run, test, debug, and do any necessary tuning on performance or local
configuration before deploying applications to production.

An Azure application can be deployed to the local fabric and run stand-alone from the local fabric
as well as launching from Visual Studio if step-by-step debugging is needed. Azure applications need
to be packed before being deployed to either the local fabric or the Azure fabric. The package can be
generated using a command-line utility from the SDK, CSPack, with the /copyonly option. CSPack will
generate a structured package, including the configuration file. The package will be automatically
generated if you select Publish by right-clicking on the solution node of an application from Visual
Studio. The generated configuration package and application package can be found from the project
folder as shown in Figure 2-10.

Figure 2-10. The package used to deploy an Azure application to fabric

The command-line utility provided by the Azure SDK, CSRun.exe, is the tool used to deploy
the package to the local fabric, which can be found from the installed SDK bin directory. Detailed
information to use this tool can be found from MSDN http://msdn.microsoft.com/en-us/library/
dd179412.aspx. Based on my experience, in most cases Visual Studio in conjunction with the Azure
Portal should handle all deployment tasks very well.

Using Fiddler 2 to Debug Cloud Storage Applications
Fiddler 2 is a very powerful web debugging tool from Microsoft and can be downloaded from
http://www.fiddler2.com/fiddler2/. This tool can be used to compose, listen to, and send HTTP
messages. This tool can also be used to debug and test Azure applications including cloud storage
applications. Below is an example of how to use this tool to help debug a cloud storage application. In
order to do the demo we need to deploy the cloud storage application we created previously to run from
the remote Azure fabric.

Deploying an application to the remote Azure cloud environment is a topic covered in
Chapter 9. When the application is successfully hosted in the cloud, there is an URL assigned as
shown in Figure 2-11.

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

44

Figure 2-11. The URL is assigned after the storage web role has been deployed to Microsoft and is running

from the remote cloud environment

Copy that URL in your browser and Default.aspx will launch the application and access the remote
storage as Figure 2-12 shows. Figure 2-13 shows the debugging information captured when we click on
the Add button using Microsoft Fiddler 2.

Figure 2-12. As the web role been hosted from Microsoft, using the URL as shown from Figure 2-11 to

launch the default.aspx page and access the storage running in the cloud

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

45

Figure 2-13. The HTTP debugging information captured when adding data to a cloud storage table using

Microsoft Fiddler2

Leverage LINQ to Query Entities in Cloud Storage
LINQ is a feature introduced with Microsoft .NET 3.0 that provides an agile way to query cloud table
entities. Listing 2-13 is an example of using LINQ to print out all RowKey values of all rows from the table
Address for tracing purposes.

Listing 2-13. Using LINQ to Query RowKey Values of All Rows from Address Table

_addressTableService.TableContext().CreateQuery<Address>
(_addressTableService.TableContext().TableName).ToList<Address>().ForEach(
 x => System.Diagnostics.Trace.WriteLine(string.Format("--- Row Key = <{0}>",
 x.RowKey)));

An example using LINQ to return the top two entities from the Address table is shown in Listing 2-14.

Listing 2-14. Using LINQ to Query RowKey Top N Rows from the Address Table

int i = 0;
foreach(Address a in _addressTableService.TableContext()
.CreateQuery<Address>(_addressTableService.TableContext().TableNam)
.ToList<Address>().Take<Address>(2))
{
 System.Diagnostics.Trace.WriteLine(

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

46

 string.Format("--- Row Key[{0}] = <{1}>", i, a.RowKey)
);
 ++i;
}

Using HTTP REST to Query the Top N Entities
REST (Representational State Transfer) provides a powerful way to access Internet resources using HTTP
and is widely used for web-related applications. It can also be used to access Azure table storage. The
syntax to retrieve the top N entities from a cloud table is the following, using HTTP GET:

http://<TableStorageSolution>.table.core.windows.net/<TableName>()?$top=N

To query our Address table for the top 10 records the syntax is:

http://softnetsolutionstorage.table.core.windows.net/AddressTable()?$top=10

Using Continuation Tokens to Retrieve Paginated Data
When querying a large set of data from cloud tables, the number of entities returned in the query may be
limited due to one of the following reasons:

• The number of total entities to return is greater than the maximum number of
entities allowed in the response by the server (currently 1,000).

• The total size of the entities in the response is greater than the maximum size of a
response, currently 4 MB including the property names but excluding the XML
tags used for REST.

• The time for completing the query is more than the timeout (currently 60
seconds).

If your queries fall foul of these restrictions, you can use continuation tokens to page the data.
You can consider continuation tokens to be keys used to query data sequentially, where one chunk of
data follows another one. The continuation tokens can be obtained from the return header from the
current query results. Listing 2-15 is sample code to peek at continuation tokens. This piece of code is
a stand-alone piece and not part of the project of this exercise. We leave it to you as homework. (The
class DataServiceQuery used in this piece of code is a class from the StorageClient assembly of the
Azure SDK.) The highlighted code in the next listing shows how to get the continuation token
programmatically from the response header. There is no continuation token returned if the query
does not meet the limit conditions listed above. This function is extracted from the project in the next
exercise and can be found from the code in Default.aspx.cs. We are going to talk more about the
continuation tokens used in the code in the next section.

Listing 2-15. Sample Code for Peeking at the Continuation Tokens

private void _ContinuationKeyPeek()
{
 AddressTableContext tableContext =

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

47

 _addressTableService.TableContext() as AddressTableContext;
 ContinuationToken continuationToken = null;
 do
 {
 var topTenAddress =
 tableContext.CreateQuery<Address>(tableContext.TableName).Take(10);
 var query = topTenAddress as DataServiceQuery<Address>;

 if (continuationToken != null)
 {
 query = query.AddQueryOption("NextPartitionKey",
 continuationToken.PartitionKey);
 if (continuationToken.RowKey != null)
 {
 query = query.AddQueryOption("NextRowKey", continuationToken.RowKey);
 }
 }

 var response = query.Execute() as QueryOperationResponse;

 if (response.Headers.ContainsKey("x-ms-continuation-NextPartitionKey"))
 {
 continuationToken.PartitionKey =
 response.Headers["x-ms-continuation-NextPartitionKey"];
 if (response.Headers.ContainsKey("x-ms-continuation-NextRowKey"))
 {
 continuationToken.RowKey =
 response.Headers["x-ms-continuation-NextRowKey"];
 }
 }
 else
 {
 continuationToken = null;
 }
 } while (continuationToken != null);
}

public class ContinuationToken
{
 public string PartitionKey { get; set; }

 public string RowKey { get; set; }
}

There are rich technologies available to retrieve the data from cloud table storage, including the web
role service offered by the Azure Framework, LINQ or REST, or tools such as Fiddler using the HTTP
protocol. Next we are going to learn other basic cloud table storage data I/O actions—deleting and
updating data from cloud table storage.

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

48

Deleting and Updating an Entity in a Single Cloud Data
Storage Table

Below are some concepts we should be aware of before we move to the exercise for deleting and
updating data from cloud table storage. Essentially, the class DataServiceContext plays a core role for all
cloud table storage I/O, including the data retrieving action we have been using so far. If you go back to
look at the project we created, the base class of AddressTableContext is in a hierarchical relationship
with DataServiceContext; you can trace down like this: AddressTableContext ➤ TableContext ➤
TableStorageDataServiceContext ➤ DataServiceContext.

• For each entity table in Azure cloud table storage there is an internal property
called tracked that is assigned when a table is created. This is for the
DataServiceContext to track the concurrency of the data table. The options for the
value for this property are AppendOnly, OverwriteChanges, PreserveChanges, and
NoTracking. It is mandatory to assign a value to this property before the data I/O
actions, such as updating, inserting, and deleting. How to determine the selection
of this attribute should be analyzed on a case-by-case basis.

• The default setting is AppendOnly. This option means the server will not
load the entity instance if the instance is already presented in the caches.
When this option is selected and the entity is already tracked by a previous
retrieve call, the DataServiceContext object will not update. There is a
chance the update will fail unless the application has very good
information about the previous action's updating call.

• If the OverwriteChanges option is selected, the DataServiceContext always
loads the entity instance from the server and keeps it up to date and
overwrites the previously tracked entity.

• If PreserveChanges is selected, any property changes made to the
entity object DataServiceContext are preserved. This should be a good
choice when recovering from concurrency errors is required. Using
PreserveChanges is the best way to ensure that the data is updated,
because the server always loads the entity prior to update. The price to
pay is less efficient performance.

• If NoTracking is selected, the AttachTo() method must be called prior to
updating the data.

• Use LINQ to put data into the DataServiceContext object, and use a C# class as a
data container object to hold the values to be updated.

• Add the C# object back to the same DataServiceContext object for update by
calling the AttachTo() method and use the same object to perform update actions.

• Call the method SaveChanges() using the instance of DataServiceContext class to
send the update request to the server.

Next we go back to the main topic of this exercise. In order to reuse the code in the next exercise
we are going to abstract our object architecture based on the previous exercise to introduce three
interfaces—ICloudEntity, ITableContext, and ICloudTableStorageService—and three new classes—

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

49

TableContext, DataTableService, and CloudTableServiceFactory. This will allow us to reuse the code to
handle multiple data entities in our future development. Figure 2-14 shows the definition of properties
and methods for the three interfaces in detail.

Figure 2-14. Interfaces definition for cloud entity, cloud table storage service, and cloud table context

■ Note The code for this example is in the exercise 2-2 bundle from the code download.

The interface definition for ICloudEntity is shown in Listing 2-16. This interface exposes four
methods: GetPartitionKey(), GetRowKey(), GetDependencyEntity(), and SetDependencyEntity().

Listing 2-16. Interface ICloudEntity Definition

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace CloudTableStorageService_WebRole.CloudTableStrorageDataEntity
{
 using Microsoft.Samples.ServiceHosting.StorageClient;

 public interface ICloudEntity
 {
 string GetPartitionKey();
 string GetRowKey();
 ICloudEntity GetDepenencyEntity();
 void SetDependencyEntity(ICloudEntity entity);
 List<ICloudEntity> DependencyType();
 }
}

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

50

The interface definition for ICloudTableStorageService is shown in Listing 2-17. This interface
expose four methods. One method is called TableContext() with return type of TableContext (we are
going to define this new base class after the interfaces definitions), and the remaining three are basic
data table I/O methods: Insert(), Update(), and Delete(). These three data table I/O functions accept
the ICloudEntity type parameter. A class that implements the interface ICloudTableStorageService is
used as the I/O service to expose the cloud table data. It is also responsible for resolving dependency
issues (the relation between parent or child entity objects) during data table access in order to keep the
integrity of the entire data structure.

Listing 2-17. Interface ICloudTableStorageService Definition

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace CloudTableStorageService_WebRole.CloudTableStorageDataService
{
 using Microsoft.Samples.ServiceHosting.StorageClient;
 using CloudTableStorageService_WebRole.CloudTableStrorageDataEntity;
 using CloudTableStorageService_WebRole.CloudTableStorageDataContext;

 public interface ICloudTableStorageService
 {
 bool Insert(ICloudEntity entity);
 bool Update(ICloudEntity entity);
 bool Delete(ICloudEntity entity);
 TableContext TableContext();
 }
}

The interface definition for ITableContext is shown Listing 2-18. This interface defines one property
TableName with a get/set accessing pair and two methods, QueryEntitiesByPartitionKey() and
QueryEntitiesByRowKey(). The return type for these two methods is ICloudEntity, and the input
parameter is PartitionKey and RowKey respectively. ITableContext is the facade class of a cloud data
storage table that is responsible for retrieving URL endpoint information during the table context
construction. This interface defines the basic query function for retrieving the cloud storage table.

Listing 2-18. Interface ITableContext Definition

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace CloudTableStorageService_WebRole.CloudTableStorageDataContext
{
 using CloudTableStorageService_WebRole.CloudTableStrorageDataEntity;
 public interface ITableContext
 {

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

51

 string TableName { get; set; }
 ICloudEntity QueryEntitiesByPartionKey(string partitionKey);
 ICloudEntity QueryEntitiesByRowKey(string rowKey);
 }
}

As Listing 2-19 shows, a new abstract base class TableContext is defined to implement the interface
ITableContext. This base class inherits from the class TableStorageDataServiceContext of StorageClient
implemented in the Azure SDK. This class has one property access function, TableName, and two abstract
methods, QueryEntitiesByPartitionKey() and QueryEntitiesByRowKey().

Listing 2-19. Abstract Base Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace CloudTableStorageService_WebRole.CloudTableStorageDataContext
{
 using Microsoft.Samples.ServiceHosting.StorageClient;
 using CloudTableStorageService_WebRole.CloudTableStrorageDataEntity;

 abstract public class TableContext : TableStorageDataServiceContext, ITableContext
 {
 public string TableName { get; set; }

 public TableContext(StorageAccountInfo accountInfo)
 : base(accountInfo)
 {
 }

 abstract public ICloudEntity QueryEntitiesByPartionKey(string partitionKey);
 abstract public ICloudEntity QueryEntitiesByRowKey(string rowKey);
 }
}

The class CloudTableServiceFactory is a utility class that implements the factory method design
pattern using.NET Reflection to dynamically instantiate the concrete cloud table entity subclasses. The
implementation of this class is shown in Listing 2-20.

Listing 2-20. The Class CloudTableServiceFactory Implements the Factory Method Design Pattern Used

to Dynamically Create a Concrete Cloud Table Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Reflection;

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

52

namespace CloudTableStorageService_WebRole.CloudTableStorageDataService
{
 using CloudTableStorageService_WebRole.CloudTableStrorageDataEntity;
 public class CloudTableServiceFactory
 {
 public CloudTableServiceFactory()
 {
 }

 public ICloudTableStorageService FactoryCloudTableService(ICloudEntity entity)
 {
 ICloudTableStorageService cloudTableStorageService = null;

 try
 {
 Assembly assembly = Assembly.GetExecutingAssembly();
 string typeName =
 string.Format(
 "{0}.{1}TableService", this.GetType().Namespace,
 entity.GetType().Name);
 cloudTableStorageService =
 Activator.CreateInstance(assembly.GetType(typeName), new object[] { })
 as ICloudTableStorageService;
 }
 catch (Exception ex)
 {
 }

 return cloudTableStorageService;
 }
 }
}

As Listing 2-21 shows, we have re-engineered the class DataTableService to implement the interface
ICloudTableStorageService. A new member variable with type of CloudTableServiceFactory is defined
in this class and has been instantiated in the constructor. The major modification to the cloud table data
I/O methods, such as Insert(), Update(), and Delete(), from the versions used in the previous exercise
is looping through the dependency tables to apply the data I/O actions. The instances of the data table
service for all dependency data tables are dynamically created using the class names. The dependency
table collection list of a data entity table is populated in the data entity table class constructor by calling
the method _Initialization().

Listing 2-21. Re-engineering the Class DataTableService to Implement the Interface

ICloudTableStorageService

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Data.Services.Client;

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

53

namespace CloudTableStorageService_WebRole.CloudTableStorageDataService
{
 using Microsoft.Samples.ServiceHosting.StorageClient;
 using CloudTableStorageService_WebRole.CloudTableStorageDataContext;
 using CloudTableStorageService_WebRole.CloudTableStrorageDataEntity;

 abstract public class DataTableService : ICloudTableStorageService
 {
 protected StorageAccountInfo _account = null;
 protected TableContext _dataTableContext = null;
 protected CloudTableServiceFactory _cloudTableFactory =
 new CloudTableServiceFactory();

 public DataTableService()
 {
 // Get the settings from the Service Configuration file
 account = StorageAccountInfo.GetDefaultTableStorageAccountFromConfiguration();
 _cloudTableFactory = new CloudTableServiceFactory();
 }

 public TableContext TableContext() { return _dataTableContext; }

 virtual public bool Insert(ICloudEntity entity)
 {
 bool success = false;
 ICloudEntity dependency = null;

 try
 {
 _dataTableContext.AddObject(_dataTableContext.TableName, entity);
 _dataTableContext.SaveChanges();

 dependency = entity.GetDependencyEntity();
 while (null != dependency)
 {
 cloudTableFactory = new CloudTableServiceFactory();
 cloudTableFactory.FactoryCloudTableService(dependency)
 .Insert(dependency);
 dependency = dependency.GetDependencyEntity();
 }
 success = true;
 }
 catch { }

 return success;
 }

 virtual public bool Update(ICloudEntity entity)
 {

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

54

 bool success = false;

 if (null != entity)
 {
 _dataTableContext.MergeOption = MergeOption.PreserveChanges;

 _dataTableContext.AttachTo(_dataTableContext.TableName, entity, "*");
 _dataTableContext.UpdateObject(entity);
 _dataTableContext.SaveChanges();

 success = true;
 }

 return success;
 }

 virtual public bool Delete(ICloudEntity entity)
 {
 bool success = false;

 if (null != entity)
 {
 foreach (ICloudEntity entityType in entity.DependencyType())
 {
 ICloudEntity dependency =
 QueryDependencyEntity(entityType,
 (entity as TableStorageEntity).RowKey);

 if (null != dependency)
 {
 _cloudTableFactory.FactoryCloudTableService(dependency)
 .Delete(dependency);
 }
 }

 try
 {
 _dataTableContext.AttachTo(_dataTableContext.TableName, entity, "*");
 _dataTableContext.DeleteObject(entity);
 _dataTableContext.SaveChanges();
 success = true;
 }
 catch (Exception ex)
 {
 }

 }

 return success;
 }

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

55

 protected ICloudEntity QueryDependencyEntity(ICloudEntity entity, string key)
 {
 ICloudEntity dependencies = null;
 ICloudTableStorageService cloudTableservice =
 _cloudTableFactory.FactoryCloudTableService(entity);
 dependencies = cloudTableservice.TableContext().QueryEntitiesByPartionKey(key);

 return dependencies;
 }
 }
}

We re-engineered the Address class based upon these new definitions as Listing 2-22 shows. There is
no cloud table entity upon which the Address entity depends, so the body of the overridden method
_Initialization() is empty.

Listing 2-22. Class Address Is Derived from the Base Class TableStorageEntity

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Configuration;

namespace CloudTableStorageService_WebRole.CloudTableStrorageDataEntity
{
 using Microsoft.Samples.ServiceHosting.StorageClient;

 public enum State : int
 {
 AL, AK, AS, AZ, AR, CA, CO, CT, DE, DC, FM, FL, GA, GU, HI,
 ID, IL, IN, IA, KS, KY, LA, ME, MH, MD, MA, MI, MN, MS, MO,
 MT, NE, NV, NH, NJ, NM, NY, NC, ND, MP, OH, OK, OR, PW, PA,
 PR, RI, SC, SD, TN, TX, UT, VT, VI, VA, WA, WV, WI, WY
 }

 public class Address : CloudTableStorageEntity
 {
 private State _state =
 CloudTableStorageService_WebRole.CloudTableStrorageDataEntity.State.OR;

 public string Address1 { get; set; }
 public string Address2 { get; set; }
 public string City { get; set; }
 public int? State { get { return (int)_state; } set { _state = (State)value; } }
 public string Zip { get; set; }
 public string County { get; set; }
 public string Country { get; set; }

 public Address()
 : this(Guid.NewGuid().ToString(), Guid.NewGuid().ToString())

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

56

 {
 }

 public Address(string partitionKey, string rowKey)
 : base(partitionKey, rowKey)
 {
 }

 public Address(string partitionKey)
 : this(partitionKey, Guid.NewGuid().ToString())
 {
 }

 public Address(string address1,
 string address2,
 string city,
 State state,
 string zip,
 string county,
 string country,
 string parentRowKey)
 : this(parentRowKey, Guid.NewGuid().ToString())
 {
 Address1 = address1;
 Address2 = address2;
 City = city;
 State = (int)state;
 Zip = zip;
 County = county;
 Country = country;
 }

 override public ICloudEntity GetDependencyEntity() { return null; }
 override public void SetDependencyEntity(ICloudEntity entity) { }

 override protected void _Initialization()
 {
 }
 }
}

Listing 2-23 shows a code example for deleting and updating an Address. In terms of proof of
concept we just simply use the default settings of the MergeOption for the DataContext object without
assigning any value.

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

57

Listing 2-23. Code Example of Implementation for Delete and Update an Entity from a Single Cloud

Storage Table

public bool Update(Address entity)
{
 bool success = false;

 try
 {
 _dataTableContext.AttachTo(_dataTableContext.TableName, entity, "*");
 _dataTableContext.UpdateObject(entity);
 _dataTableContext.SaveChanges();
 success = true;
 }
 catch(Exception ex)
 {
 }

 return success;
}

public bool Delete(Address entity)
{
 bool success = false;

 try
 {
 _dataTableContext.AttachTo(_dataTableContext.TableName, entity, "*");
 _dataTableContext.DeleteObject(entity);
 _dataTableContext.SaveChanges();
 success = true;
 }
 catch { }

 return success;
}

As Listing 2-23 shows, the final update is via a DataServiceContext object. To dig into the technical
details is out of the scope of this book, so check out the documentation.

The code example to implement the Default.aspx file used to test the Address table update is shown
in Listing 2-24.

Listing 2-24. Request Update Address Table from Multiple Thread Concurrently

protected void btnAddAddress_Click(object sender, EventArgs e)
{
 if (Page.IsValid)
 {
 _UpdateTest();

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

58

 _DataBinding();
 }

}

private void _UpdateTest()
{
 const string PREVIOUS_ENTITY = "PREVIOUS_ENTITY";
 _previousEntityAddress = Session[PREVIOUS_ENTITY] as Address;

 if (null != _previousEntityAddress)
 {
 _addressTableService.Delete(_previousEntityAddress);
 }

 Address address = new Address(txtAddress1.Text.Trim(),
 "0",
 txtCity.Text.Trim(),
 (State)combState.SelectedIndex,
 txtZip.Text.Trim(),
 txtCounty.Text.Trim(),
 txtCountry.Text.Trim(),
 string.Empty);

 _addressTableService.Insert(address);

 Session.Add(PREVIOUS_ENTITY, address);

 for (int i = 1; i < 4; ++i)
 {
 Thread thread = new Thread(new ParameterizedThreadStart(_Update));
 thread.Start(new object[] { i, address } as object);
 thread.Join(100);
 }

 _DataBinding();
}

private void _Update(object parameters)
{
 AddressTableService addressTableService = new AddressTableService();
 TableContext tableContext = _addressTableService.TableContext();
 var currentEntity = from a
 in tableContext.CreateQuery<Address>(tableContext.TableName)
 where a.RowKey == ((parameters as object[])[1] as Address).RowKey
 select a;
 if (null != currentEntity)
 {
 ICloudEntity currentAddress = currentEntity.Single<Address>();
 int currentValue = int.Parse((currentAddress as Address).Address2.Trim());
 (currentAddress as Address).Address2 =

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

59

 Convert.ToString(currentValue +
 (int)((parameters as object[])[0] as object));
 addressTableService.Update(currentAddress);
 }
}

For demonstration, we are going to update only one column (Address 2) in the same record to prove
the concept described above. The easiest way to reach that goal is to set all of the columns including the
PartitionKey and RowKey to empty or null values. (Remember that null is a valid value to these key
columns. In this way we do not have to specify the keys every time we call the updating method.)

In btnAddAddress_Click() we call the _UpdateTest() method to insert an empty entity and set the
Address2 attributed value to “0”. Then we create three work threads to concurrently update the entity we
have just inserted. In the thread handler we create a new AddressTableService (TableContext) and use
LINQ to query the entity on the server. After we retrieve the entity from the server we add the value of
Address2 to the index of the thread and update the server with the new value. We should observe that
value increasing. Some very nice features from LINQ have been used in this method, such as using
currentEntity.Single<Address>() to extract a single object from a numeric collection. They make the
code much more concise.

The test results should match the value displayed in Figure 2-15.

Figure 2-15. Test results for update request from multiple threads

Update Data Tables in Buckets
In Internet-based cloud table storage, the simplest way to update a single entity is to replace it with a
completely new object. This means deleting it from the table and inserting a new entity object with
updated values. In other words, we want to update data in buckets. The price we have to pay is that we
need to make double trips for each update action. This will challenge relational cloud tables to maintain
data integrity.

To meet the requirements of Internet-scaleable data storage, updating data in buckets is sensible, since
cloud storage is designed to be Internet scaleable, and the cost is not a concern. To update data in buckets
should tremendously simplify the effort for the development team when dealing with relational data

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

60

infrastructures. As we know, with traditional database structures inserting, updating, or deleting a record from
a relational database applies to the record's dependencies too. We should design and implement our data
storage and data access approaches for cloud storage differently from the traditional approaches for
databases we are used to. We are going to focus on the topic of how to handle relational cloud tables next.

Best Practices in Using the DataServiceContext Object
Before we discuss updating data in buckets, let us spend a little time talking about best practices in using
the DataServiceContext object , since we are going to apply these rules in our example. The following are
best practices recommended for using DataServiceContext.

• Make the DataServiceContext object thread-safe, since the DataServiceContext
does not support thread-safe access.

• Instantiate an instance of the DataServiceContext object every time you need to
use it, since there is no mechanism for a DataServiceContext instance to persist its
state in a thread. For instance, using the same DataServiceContext instance across
all inserts, updates, and deletes may cause a failure. Each of these actions requires
invoking the SaveChanges() method to commit the changes. If the same instance is
used to do all these activities, the internal trace of the instance to the actual object
may be lost when the instance is used across the different actions.

• DataServiceContext has MergeOption, which is used to control how the
DataServiceContext handles the tracked entities. We covered this topic in the last
section.

• Call AttachTo() before calling Insert(), Update(), or Delete() as the following
snippet shows. This will cause the server to track the data entity with an ETag and
make sure the action is applied to the correct entity. If the MergeOption of the
context object is set to the value of AppendOnly and the entity is already being
tracked by a previous action with the same DataServiceContext object instance,
then a failure may occur and you may get the error message saying that the data
have been tracked already.

_dataTableContext.AttachTo(_dataTableContext.TableName, entity, "*");

Now it is the time for us to back to our topic of handling updating and deleting data from cloud
storage in buckets.

Handling Relational Cloud Data Storage Tables
As we mentioned in Chapter 1, Azure table storage is not relational data storage. In the real world, the
solution Microsoft has comes up with to handle relational data structures is SQL Azure (covered in
Chapter 8).

The following example is based on an assumption that the relational data structure in the cloud
environment for an application to access is relatively simple and that the number of objects in the data
model is small. This example proves the concept of dealing with such types of cloud relational data
structures without using SQL Azure. This approach may add value to a development team as an
alternate design option.

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

61

■ Note The code for this example is in the exercise 2-3 bundle from the code download.

Our design will use the interfaces we have just defined from the last section. As Figure 2-16 shows, using
the PartitionKey and RowKey provided by cloud table storage, we can establish the relational constraints
between the cloud data entities. Our three cloud entity classes are Address, Person, and User. The Address
holds a reference to the child class Person, and the Person entity has a child entity class Address.

Consider that there are multiple records from the Person table but that only one row is referenced
by its parent table Address, where the RowKey matches the PartitionKey from the row of its parent table
Address. In a similar way we can establish the reference relationship between a row from the User table
and the Person table. Figure 2-17 shows the results after inserting the data into these tables.

Figure 2-16. Using the PartitionKey and RowKey to establish constraints between relational data entities

of cloud storage tables

Figure 2-17. Results of inserted tables with relational relationship established using the PartitionKeys

and RowKeys

RowKey
PartitionKey

User

RowKey

PartitionKey

Person

RowKey
PartitionKey

Address

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

62

The following are tips on how to use the PartitionKeys and RowKeys to build up the relationship
between cloud tables.

• A cloud table storage data entity class in a relational structure needs to provide
information on which data entity is a dependency entity. This can be done in the
class constructor to call the method _Initialization() to instantiate an instance
for each dependent entity class and then to persist the dependency information in
a protected member variable. The dependency information will be used to resolve
constraints between the cloud storage table entity objects when accessing the
cloud tables in a relational structure at runtime. The source code we are going to
present later will show you how to get this task done in detail.

• Expose all data entities in an interface and implement a factory method to
dynamically instantiate concrete table entities at runtime and return the class
instance with the type of the interface. This is the typical object-oriented
programming approach. The implementation of the factory method has been
shown in Listing 2-20. This approach allows the data table access to be handled in
a unified way.

• When inserting data to cloud storage tables, a parent entity object is responsible
for instantiating an instance of an embedded entity data entity object and
populating the data. This usually happens in the client-side code, as shown in
Listing 2-25 and Listing 2-26. The Insert() handler method recursively finds the
embedded object, dynamically.

Listing 2-25. Parent Entity Object Instantiating the Embedded Entity Object at the Create Time

private void _InsertUser()
{
 User user = new User();
 user.Password = txtPassword.Text.Trim();

 Person person = new Person(txtFirstName.Text.Trim(),
 txtLastName.Text.Trim(),
 txtMiddelInitial.Text.Trim(),
 txtSufix.Text.Trim(),
 user.GetRowKey());

 user.SetDependencyEntity(person);

 Address address = new Address(txtAddress1.Text.Trim(),
 txtAddress2.Text.Trim(),
 txtCity.Text.Trim(),
 (State)combState.SelectedIndex,
 txtZip.Text.Trim(),
 txtCounty.Text.Trim(),
 txtCountry.Text.Trim(),
 person.GetRowKey());

 person.SetDependencyEntity(address);

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

63

 _userTableService.Insert(user as User);

}

Listing 2-26. Recursively Loop the Embedded Entity Object to Insert a Relational Data Set to Cloud

Storage Tables

virtual public bool Insert(ICloudEntity entity)
{
 bool success = false;
 ICloudEntity dependency = null;

 try
 {
 _dataTableContext.AddObject(_dataTableContext.TableName, entity);
 _dataTableContext.SaveChanges();

 dependency = entity.GetDependencyEntity();
 while (null != dependency)
 {
 CloudTableServiceFactory cloudTableFactory =
 new CloudTableServiceFactory();
 cloudTableFactory.FactoryCloudTableService(dependency)
 .Insert(dependency);
 dependency = dependency.GetDependencyEntity();
 }
 success = true;
 }
 catch { }

 return success;
}

• To delete a set of relational data entities from cloud table storage, a parent entity
object is responsible for passing the partition key that is the RowKey of the child
record. The list of dependency entities is the one we built up when constructing
each entity instance . The highlighted lines from Listing 2-27 show how to
accomplish this task.

Listing 2-27. Recursively Loop the Embedded Entity Object to Delete a Relational Data Set

virtual public bool Delete(ICloudEntity entity)
{
 bool success = false;

 foreach (ICloudEntity entityType in entity.DependencyType())
 {
 ICloudEntity dependency =
 QueryDependencyEntity(entityType, (entity as TableStorageEntity).RowKey);

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

64

 if (null != dependency)
 {
 _cloudTableFactory.FactoryCloudTableService(dependency).Delete(dependency);
 }
 }
 try
 {
 _dataTableContext.AttachTo(_dataTableContext.TableName, entity, "*");
 _dataTableContext.DeleteObject(entity);
 _dataTableContext.SaveChanges();
 success = true;
 }
 catch {}

 return success;
}

• The implementation for the Update() method is relatively simple as shown in
Listing 2-28. It is just a combination call to the Delete() and Insert() methods
based upon the strategy updating cloud storage data in buckets.

Listing 2-28. Updating Relational Entities in Buckets

virtual public bool Update(ICloudEntity entity)
{
 bool success = false;

 try
 {
 if (Delete(entity))
 {
 success = Insert(entity);
 }
 }
 catch { }

 return success;
}

• Elaborately designed, tested, and tuned PartitionKey and RowKey are very
important tasks for cloud table data modeling. To learn more about this topic
from the Microsoft documentation search the web for “Azure Choosing a partition
key is important for an application to be able to scale well.”

If you are interested in the data center traffic characteristics you can find the Microsoft official
documentation at http://research.microsoft.com/en-us/people/mzh/wren09.pdf.

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

65

Summary
In this chapter we covered a lot of ground; we examined quite a few aspects of cloud table storage. We
saw how to access data in the cloud and worked through quite a few hints and tips to use when working
with cloud table storage data access. There are many useful tools available to you, such as Fiddler 2,
LINQ, and REST.

Storing your data in the cloud would be useless if you couldn't alter it or remove it, so we covered
this aspect of data storage next. We saw how to update data in buckets (a useful technique with cloud
storage) and covered some best practices.

Finally, we looked at relational storage in cloud table storage, which is definitely an option for some
projects.

CHAPTER 2 ■ ACCESS CLOUD TABLE STORAGE

66

C H A P T E R 3

■ ■ ■

67

Working with Cloud Queue and
Blob Storage

Azure Queue and Blob storage services are two basic forms of storage offered by the Azure framework.
Another basic cloud storage offered by the Azure framework is table storage, which we covered in the
last two chapters. In this chapter we are going to focus on Queue and Blob. Azure Queue messages can
be listened for via event subscription. This feature makes Azure Queue a good candidate for building an
event-driven distributed system. In this chapter I’ll provide the basic know-how for using these two
types of storage, a description of how to use both storage types to build an event-driven distributed
system, and a tool for you to load a large stream to cloud Blob storage.

The first exercise is about the basics of how to create and use the Azure Queue. The second exercise
is an example of cloud Blob storage. In this exercise we will use Azure Queue as a trigger to create a blob
record when the queue receives a message. The third exercise uses both Azure Queue and Blob storage
services to build an event-driven distributed system.

Before we see the exercises, however, let’s see what Azure Queue and Blob Storage services are.

Azure Queue
Azure Queue provides a simple and asynchronous work dispatch mechanism. This makes Azure Queue a
great message delivery tool that can be used to connect different components of a cloud application into
an integrated service system. The outstanding merits of Azure Queue are high availability, durability,
and performance efficiency. Azure Queue guarantees message delivery and ensures that a message can
be processed at least once. Azure Queue provides REST interfaces, which allow applications written in
languages other than C# to access the queue at any time from anywhere across the Internet. This makes
a cloud application or on-premises application very easily integrated, extendable, and scalable.

Azure Queue can be used for both cloud applications and on-premises applications for the
following two purposes:

• Message communication bus

• Component or functional module decoupling

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

68

For service-oriented applications built on a front-end architecture with distributed infrastructure,
the immediate advantages to be taken from Azure Queue (in conjunction with Azure Blob storage) are
related to scalability:

• Back-end traffic measurement using length of queue: If an application is built on
Azure Queue and needs to determine scalability based on back-end traffic, the
application can do so by measuring the queue length. Since the queue length
directly reflects the delay time of the back-end workload, a growing queue length
indicates that the back-end servers cannot process the work fast enough, so
increasing the back-end instances for the application would help the server to
process the workload in the queue more quickly. In contrast, if the measurement
of queue length is close to zero, it is an indication that the capacity of the server
process may be more than is needed, and you can consider decreasing the back-
end server instances to save system resources. Therefore applications can monitor
the queue length to make resource usage more efficient and scale-up more
smooth.

• System module decoupling: Applications built based on the message
publish/subscribe architecture are loosely coupled, which gives applications
extreme flexibility for extension and scaling up. If all modules and all components in
an application use the message queue to communicate with each other either in the
front end or in the back end, an application can easily replace any component
independently, adjust the workflow logic, and upgrade the features without either
interrupting irrelevant components (the components from presentation UI layers,
business logical layers, or data storage access layers) or recompiling the code.

• Efficient resource management: Message-queue-based applications can manage
system resource allocation more efficiently. System resources can be grouped and
assigned into distinct queues according to their critical levels. For instance,
components that consume large system resources, such as audio or video
processing, can have their own dedicated queues for communication in order to
reduce the impact on other components or processes in the system.

• Buffering messages when traffic soars: Queue-based system architecture allows
message buffering and delayed processing without data loss if the traffic flow
suddenly soars. Azure Queue has been designed to support guaranteed message
delivery, which frees applications from handling data persistence due to traffic
burst or other message-delivery difficulties. Traditionally, an application needs to
persist the inbound message if it cannot process the message due to the volume of
the message. To build data persistence at runtime is very costly. Using the
message-buffering feature provided by the Azure Queue tremendously reduces
the cost of application development for persisting inbound messages and for
resubmitting messages if there are errors during transmission.

Usually, to use Azure Queue as a message bus an application needs to use Azure Blob storage as well
in order to reduce memory usage and improve performance. The exercises provided in this chapter
show examples of how to achieve that goal.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

69

Azure Blob Storage
Blob storage can be understood as special table storage in the cloud. Basically cloud Blob storage
extends table storage and targets large amounts of data. The difference between the two types of cloud
storage is:

• Table storage uses PrimaryKey and RowKey to manage the tables, whereas Blob
storage uses a storage container and a blob ID (GUID) to manage the storage.

• Table storage stores all portable system-defined data types, such as characters,
strings, texts, integers, float numbers, and XML in storage tables. Blob storage
stores data in binary format as data chunks.

Figure 3-1 shows the concepts of cloud Blob storage. Blob storage access is based on an account. An
Azure account can create multiple Blob containers. A Blob container can be understood as a placeholder
for a group of Blob storages. Blob storage can have metadata, which can be understood as a collection of
header attributes. Blob storage can be partially updated and committed using block objects. Each Blob
can own a set of metadata in NameValueCollection string format. The Microsoft specification for blob
storage can be found in Appendix A.

Azure Blob
Container

XML

Images

Musics

Movies

User
Account

Blob
Storage

Metadata

Figure 3-1. Cloud blob storage structure concepts

The data object model of Azure Blob storage is shown in Figure 3-2. (This data map is generated
using SQL Server Management Studio against the DevelopmentStorageDb on a local machine. The
DevelopmentStorageDb database will be created the first time development storage is accessed and the
local development storage is initialized by the Azure framework.) This database map actually reflects the
concept diagram of Figure 3-1 and the relationship among the participants of all Blob storage tables. For
example, a Blob container has an ID as its primary key, which is a foreign key of the Blob table. As I have
mentioned, the local development environment and runtime environment fabric simulate the remote
cloud environment. In the Azure cloud environment a physical table may have multiple instances
running from distinct remote virtual machines.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

70

Figure 3-2. Object models of blob storage

Creating a Cloud Queue
This exercise shows the basic steps to create a cloud queue, and how to put messages in and retrieve
messages from queues. A queue can be created from either a worker role or a web role. In order to
explore the collaboration mechanism between a web role and worker role in a cloud application, this
exercise creates a queue from a worker role.

■ Note The code for this example is in the Exercise 3-1 bundle from the code download.

Add a Worker Role in the Cloud Service Solution
Add a worker role and associate that role to the service, as Figure 3-3 shows. The purpose of this
approach is to demonstrate that the queue message can be manipulated from different processes. The
responsibilities of this worker role are defined as:

• Retrieve account information from the configuration.

• Create a named queue storage container from cloud storage.

• Create a named queue within the queue storage.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

71

These responsibilities will be implemented in one function and called by the start handler of the
worker role when the service application starts from the Azure fabric.

Figure 3-3. Insert a worker role for queue initialization

Create a Queue Storage Container and Create a Named Queue
from the Start Handler of the Worker Role
The data object model for Azure Queue storage is shown in Figure 3-4. The AcctQueueContainerMap
table is used to map a queue name to the unique queue ID. This ID is used as a foreign key in the
QueueContainer table and the Message table. These tables will be generated using the same approach we
used in Chapter 1 to create the data entity C# classes; that is, we'll use Visual Studio to generate them.

Figure 3-4. The data object model of Azure Queue

All queue names must be alphanumerical characters and are case-sensitive as well. Characters only
in lowercase are accepted for a queue name.

A QueueStorage instance needs to be instantiated before a named queue can be created. The
constructor of QueueStorage accepts an account information object as a parameter. As is the case when

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

72

creating table storage, an account with a base-64 security key and storage end points is assigned at the
time you register a storage type project on the Azure portal page. In the development environment the
account information can either be hard-coded in the configuration file or entered programmatically.
Listing 3-1 shows the configuration settings from the configuration file for queue storage.

Listing 3-1. Account and HTTP Port End Point Configuration for Queue Storage in the Development

Environment

 <appSettings>
 <add key = "AccountName" value="devstoreaccount1"/>
 <add key = "AccountSharedKey" value="<ACCOUNT_KEY>"/>
 <add key="QueueStorageEndpoint" value="http://127.0.0.1:10001" />
 </appSettings>

Create the Queue Using Account Information from the Configuration File
Listing 3-2 is the implementation of the worker role project. The lines in bold show an example of how to
create a named queue.

Listing 3-2. Implementation of WorkerRole Shows How to Create Queue Using Configuration Files

using System;
using System.Threading;
using Microsoft.ServiceHosting.ServiceRuntime;
using Microsoft.Samples.ServiceHosting.StorageClient;
using System.IO;
using System.Configuration;
using System.Net;
using System.Xml;

namespace CloudTableStorageService_WorkerRole
{
 public class WorkerRole : RoleEntryPoint
 {
 public const string XML_PAYLOAD_QUEUE_NAME = "createxmlmessagequeue";
 public const string XML_CONTAINER_NAME = "xmlpayload";

 private Stream CreateXmlStreamBlob(byte [] byteData)
 {
 return new MemoryStream(byteData);
 }

 public override void Start()
 {
 QueueStorage queueStorage =
 QueueStorage.Create(StorageAccountInfo
 .GetDefaultQueueStorageAccountFromConfiguration());
 MessageQueue queue = queueStorage.GetQueue(XML_PAYLOAD_QUEUE_NAME);

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

73

 bool containerAndQueueCreated = false;
 while (!containerAndQueueCreated)
 {
 try
 {
 queue.CreateQueue();
 containerAndQueueCreated = true;
 }
 catch (WebException e)
 {
 if (e.Status == WebExceptionStatus.ConnectFailure)
 {
 RoleManager.WriteToLog(
 "Error",
 string.Format("Connect failure! The most likely reason is that
the local Development Storage tool is not running or your storage account configuration is
incorrect. " +
 "Message: '{0}'", e.Message)
);
 System.Threading.Thread.Sleep(5000);
 }
 else
 {
 throw;
 }
 }
 }

 while (true)
 {
 try
 {
 Message msg = queue.GetMessage();
 if (msg != null)
 {
 string path = msg.ContentAsString();

 RoleManager.WriteToLog("Information",
 string.Format("Done with '{0}'", path));
 }
 else
 {
 Thread.Sleep(1000);
 }
 }
 catch (StorageException e)
 {
 RoleManager.WriteToLog(
 "Error",
 string.Format("Exception when processing queue item. Message: '{0}'",
 e.Message)

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

74

);
 }
 }
 }

 public override RoleStatus GetHealthStatus()
 {
 // This is a sample worker implementation. Replace with your logic.
 return RoleStatus.Healthy;
 }
 }
}

Create the Queue Programatically
Listing 3-3 is an example of creating a queue programatically inside a C# class instead of reading the
information from a configuration file. This code snippet can be used to replace the highlighted part in
Listing 3-2.

Listing 3-3. Create the Queue Programatically

 string accountName = "devstoreaccount1";
 string accountKey = "<ACCOUNT_KEY>";
 string address = "http://127.0.0.1:10001";
 StorageAccountInfo accountInfo =
 new StorageAccountInfo(new Uri(address), null, accountName, accountKey);

 QueueStorage queueStorage = QueueStorage.Create(accountInfo);
 MessageQueue messageQueue = queueStorage.GetQueue(XML_PAYLOAD_QUEUE_NAME);

Before a client can access the cloud queue one of the two initialization steps shown in the previous
listing is required.

Put a Message into the Queue
There are three data types you can use as a raw queue message: stream, byte array, and string.

In this exercise we are going to use the class Address defined in Chapter 1 and Chapter 2 as a data
entity class. Since XML is the most popular data exchange format, we are going to transform the data of
an instance of Address into an XML string by using the .NET XmlSerialization class and put it into the
queue as a message. Listing 3-4 shows the code to transform the data entity Address into an XML string
and put it into the queue as a queue message.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

75

Unlike the behavior of a regular Windows queue object, when a message is put into the cloud queue
it can be read (de-queued) multiple times by applications. The message will not be removed from the
queue until another service calls to delete the queue explicitly. The message body is encoded and stored
in a data field of the Message table after the message has been put into the queue. Figure 3-5 shows the
data query results from the local database when the message is submitted to the queue in the local
development environment. The data has been encoded as you can see.

Listing 3-4. Convert Address Data Entity Object into XML String and Put into Queue

 protected void btnAddAddress_Click(object sender, EventArgs e)
 {
 if (Page.IsValid)
 {
 _GetXmlPayloadQueue().PutMessage(new Message(_ComposeXmlString()));
 }
 }

 private string _ComposeXmlString()
 {
 Address address = new Address(txtAddress1.Text.Trim(),
 txtAddress2.Text.Trim(),
 txtCity.Text.Trim(),
 (State)combState.SelectedIndex,
 txtZip.Text.Trim(),
 txtCounty.Text.Trim(),
 txtCountry.Text.Trim(),
 string.Empty);

 XmlSerializer serializer = new XmlSerializer(address.GetType());
 StringBuilder sb = new StringBuilder();
 StringWriter writer = new StringWriter(sb);

 serializer.Serialize(writer, address);

 return writer.GetStringBuilder().ToString();
 }

 private BlobContainer GetXmlPayloadContainer()
 {
 _Initialization();
 return _blobStorage.GetBlobContainer(WorkerRole.XML_CONTAINER_NAME);
 }

 private MessageQueue _GetXmlPayloadQueue()
 {
 _Initialization();
 return _queueStorage.GetQueue(WorkerRole.XML_PAYLOAD_QUEUE_NAME);
 }

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

76

 protected void btnDelete_Click(object sender, EventArgs e)
 {
 Message message = _GetXmlPayloadQueue().GetMessage(UPDATE_TIMEOUT_SEC);
 if (message != null)
 {
 _GetXmlPayloadQueue().DeleteMessage(message);
 }
 }

Figure 3-5. Queue message persisted in data field of Message table and encoded

Poll and Delete a Message from the Queue
The MessageQueue class defined in the StorageClient assembly also provides polling infrastructure
under the covers and delivers the message via venting. The default poll interval setting in the
MessageQueue class is 30 seconds. This polling interval value can be set during initialization of a queue
instance. Listing 3-5 is the initialization handler implemented in the code behind Default.aspx.cs.
To receive the queue polling events, a local event-handler function needs to be defined. The event
handler function is called private void _OnMessageReceive(object sender, EventArgs args), which
has the typical event-handler signature with two parameters. The first parameter is the basic object
type, and the second parameter is the EventArgs type. The application can have any logic it needs in
the event-polling handler. In this example, we simply print out the content of the message polled from
the queue. As the highlighted part shows in Listing 3-5, the event handler is hooked up right after the
queue is created. This function also uses the synchronization object _syncObj to make it thread-safe in
a multi-thread environment.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

77

■ Note Never call queue.StartReceiving() if there is no event handler such as queue.MessageReceived +=
new MessageReceivedEventHandler(_OnMessageReceive) implemented in the class. Otherwise it causes a
NullObject reference exception to be thrown at runtime.

Listing 3-5. Polling the Queue and Handling Received Events

 private void _Initialization()
 {
 if (_initialized)
 {
 return;
 }

 lock (_syncObj)
 {
 try
 {
 _queueStorage =
 QueueStorage.Create(StorageAccountInfo
 .GetDefaultQueueStorageAccountFromConfiguration());
 MessageQueue queue =
 _queueStorage.GetQueue(WorkerRole.XML_PAYLOAD_QUEUE_NAME);

 queue.MessageReceived +=
 new MessageReceivedEventHandler(_OnMessageReceive);
 queue.PollInterval = 1000; // in milliseconds
 queue.StartReceiving(); // start polling
 }
 catch (WebException ex)
 {
 throw new WebException(
 string.Format(
 "---{0}:_Initialization, Azure failed to instatiate storage using
current account information. exception caught : {1}",
 this.ToString(),
 ex.Message
)
);
 }

 _initialized = true;
 }
 }

 private void _OnMessageReceive(object sender, EventArgs args)
 {
 Message message = (args as MessageReceivedEventArgs).Message;

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

78

 System.Diagnostics.Trace.WriteLine(
 string.Format(
 {0}:_OnMessageReceive, message = <{1}>",
 this.ToString(),
 message.ContentAsString()
)
);
 }

 private MessageQueue _GetXmlPayloadQueue()
 {
 _Initialization();
 return _queueStorage.GetQueue(WorkerRole.XML_PAYLOAD_QUEUE_NAME);
 }

Delete a Message from the Queue
To delete a message from a queue is straightforward as Listing 3-6 shows. The method btnDelete_Click() is
implemented in the Default.aspx.cs file and is the button click event handler used to delete a message from
the queue.

Listing 3-6. Listen and Delete Message from a Queue Implementation

 const int UPDATE_TIMEOUT_SEC = 5;
 protected void btnDelete_Click(object sender, EventArgs e)
 {
 Message message = _GetXmlPayloadQueue().GetMessage(UPDATE_TIMEOUT_SEC);
 if (message != null)
 {
 _GetXmlPayloadQueue().DeleteMessage(message);
 }
 }

The reason for specifying the timeout before calling to delete a message from the queue is that
having received a message that has been put into queue, that message is locked for the specified
timeout. If the message is not deleted within the timeout, it is unlocked and becomes visible again to
other queue readers. Microsoft designs this to prevent a queue reader trying to process a message and
then dying as a result of an error or exception, leaving the message locked. This approach is known as a
loose transaction, since transactions in cloud queue storage are not supported.

Parse a Message Received from the Queue
When a message has been received, we need to parse it back to the original data format. The Message
class from the Azure SDK provides functions to parse the raw message as either an array or a string as
Listing 3-7 shows.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

79

Listing 3-7. Parse Message Received from a Queue into String

 const int UPDATE_TIMEOUT_SEC = 5;
 Message message = _GetXmlPayloadQueue().GetMessage(UPDATE_TIMEOUT_SEC);
 if (message != null)
 {
 btnDelete.Enabled = true;

 LabelMessage.Text = Server.HtmlEncode(message.ContentAsString());
 }
 else
 {
 btnDelete.Enabled = false;
 }

The results of Exercise 3-1 are shown in Figure 3-6. The messages put into the queue will be
displayed in a loop one after another on the update panel. The automatic updating is controlled by the
Ajax update manager component, which needs to be inserted in the Default.aspx page.

Figure 3-6. Results of Exercise 3-1 displaying multiple data records in a loop

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

80

Query a Queue Using HTTP REST
The syntax to use HTTP REST to query a queue is listed in Table 3-1.

Table 3-1. Syntax Used to Query Queue Message with REST

REST API HTTP Example Description

Create Queue PUT http://myaccount.queue.core.
windows.net/myqueue

Delete Queue DELETE http://myaccount.queue.core.
windows.net/myqueue

Get Metadata GET/HEAD http://127.0.0.1:10001/myaccount/
myqueue?comp=metadata

Also returns the message
count; other properties are
free-form name/value pairs

Set Metadata PUT http://127.0.0.1:10001/myaccount/
myqueue?comp=metadata

Get Messages GET http://127.0.0.1:10001/myaccount/
myqueue/messages

Peek Messages GET http://myaccount.queue.core.
windows.net/myqueue/messages?
peekonly=true

Delete Message DELETE http://127.0.0.1:10001/myaccount/
myqueue/messages/messageid?popreceipt
=string-value"lightweight commit"

Clear Messages DELETE http://myaccount.queue.core.
windows.net/myqueue/messages

Deletes all the messages in the
queue

Creating Cloud Blob Storage
The following exercise demonstrates how to create, query, and delete blob data. This exercise uses the
data from the queue message, which we created in Exercise 3-1, and stores data in a blob.

■ Note The code for this example is in the Exercise 3-2 bundle from the code download.

Add blob-related member variables to the Default.aspx code as shown in Listing 3-8.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

81

Listing 3-8. Blob-Storage-Related Member Variables Defined in Default.aspx

 public const string BLOB_CONTAINER_NAME = "blobcontainerpayload";
 private static BlobStorage _blobStorage = null;
 private static BlobContainer _blobContainer = null;
 const int UPDATE_TIMEOUT_SEC = 5;
 const string SUFFIX = "xml";

Add initialization code to the _Initialization handler as Listing 3-9 shows. The ContainerAccessControl
should be set to Public so applications can query the blob using REST APIs. By design, to change the access
scope there are two CreateContainer() methods. The first instantiates a blob container object by passing
a blob container’s name (characters in the blob container’s name should be all in lowercase), and
is called from the instance of the blob storage. The second is just a call to an overloaded function
of the blob container class. This call must use a valid instance of a blob container by passing in the
enumeration value ContainerAccessControl.Public. This call is optional and should not override the
instance itself but modify the access scope.

Listing 3-9. Initialization Code for Blob Storage Access

 private void _Initialization()
 {
 if (_initialized)
 {
 return;
 }

 lock (_syncObj)
 {
 try
 {
 _blobStorage =
 BlobStorage.Create(StorageAccountInfo
 .GetDefaultBlobStorageAccountFromConfiguration());
 _blobContainer = _blobStorage.GetBlobContainer(BLOB_CONTAINER_NAME);
 // Make the container public so that we can use REST API to query blob
 // via the URLs from the web
 _blobContainer.CreateContainer(new NameValueCollection(),
 ContainerAccessControl.Public);

 _queueStorage =
 QueueStorage.Create(StorageAccountInfo
 .GetDefaultQueueStorageAccountFromConfiguration());
 _queueStorage.RetryPolicy =
 RetryPolicies.RetryN(3, TimeSpan.FromSeconds(5));
 MessageQueue queue = _queueStorage.GetQueue(BLOB_PAYLOAD_QUEUE_NAME);
 queue.CreateQueue();
 queue.MessageReceived +=
 new MessageReceivedEventHandler(_OnMessageReceive);

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

82

 queue.PollInterval = 500; // in milliseconds
 queue.StartReceiving(); // start polling
 }

 catch (WebException ex)
 {
 throw new WebException(
 string.Format(
 "---{0}:_Initialization, Windows Azure failed to instatiate storage
using current account information. Exception caught : {1}",
 this.ToString(),
 ex.Message
)
);
 }

 _initialized = true;
 }
 }

After the call to _Initialization(), both the blob storage and blob container have been
instantiated, and a blob record can be created using the instance of the blob container. Listing 3-10
shows the code to create a blob storage record. In this exercise, the name of the blob storage is created at
the time a queue message has been received.

The blob name is assigned when a blob is created. How to construct a blob’s name is flexible as long
as the name meets the specification, except it must be unique. The specification for the blob name
convention is listed in Appendix A. It is not recommended to include the Azure user account in the name
string, because the account name could be changed via a configuration file when the application is
deployed to the Azure cloud.

Azure offers a service called Service Bus, which uses the end point to address a cloud component. To
adapt blob storage to Azure .NET Service Bus, it is recommended that the blob name should be elaborately
constructed. The following are the recommendations how to construct the blob name based upon my
experience using other commercial information message buses. This makes it a lot easier not only for a cloud
application but also for any REST API using the Azure .NET Service Bus to address cloud blob storage.

• Use the .NET name space convention to compose the blob name.

• Compose the blob name in a virtual hierarchy based upon the logical or relational
structure of blob storages, although Azure blob storage in the cloud storage
platform is not physically hierarchical.

The metadata of Azure blob storage is constructed when the BlobProperties object has been
instantiated. The metadata object is embedded into the object instance of BlobProperties. As we
mentioned, the metadata is used as the set of attributes of blob storage. The metadata is in the
name-value pair format. The actual class for the metadata is called NameValueCollection, which is a
.NET class. The namespace System.Collections.Specialized must be included before this class can
be instatiated.

Blob containers take two parameters for blob storage creation, BlobContents and
BlobProperties. The first parameter holds the body of the information, and the second parameter
holds the attribute information. Only two data types can be used for these two parameters, Stream
and Byte array. The information body must be transformed into either of these two types before
instantiation of a BlobContents object. As Listing 3-10 shows, in this exercise we create the blob

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

83

object in the message queue event handler. Figure 3-7 shows the screenshot of the Default.aspx
page at runtime, and Figure 3-8 shows the results of using SQL Server Management Studio to
query tables Accounts, AcctBlobContainerMap, BlobContainer, and Blob from the local
DevelopmentStorageDb.

The results show the structure of the relation between these tables and how the tables reference
each other as we have presented in Figure 3-1 and Figure 3-2 at the beginning of this chapter. It also
shows that access scope of the blob container has been set to public (a value of 1).

Listing 3-10. Create a Blob to Store Information from a Message Sent from a Queue

 private void _OnMessageReceive(object sender, EventArgs args)
 {
 Message message = (args as MessageReceivedEventArgs).Message;
 System.Diagnostics.Trace.WriteLine(
 string.Format(
 "--- {0}:_OnMessageReceive, message = <{1}>",
 this.ToString(),
 message.ContentAsString()
)
);

 string blobName = string.Format("{0}{1}", message.Id, SUFFIX);

 if (!_blobContainer.DoesBlobExist(blobName))
 {
 BlobProperties properties = new BlobProperties(blobName);

 // Create metadata to be associated with the blob
 NameValueCollection metadata = new NameValueCollection();

 metadata["MediaID"] = message.Id;

 properties.Metadata = metadata;
 properties.ContentType = "text/xml";

 // Create the blob
 byte[] buffer =
 UTF8Encoding.UTF8
 .GetBytes(message.ContentAsString().Replace("\r\n", string.Empty));
 MemoryStream ms = new MemoryStream(buffer);

 BlobContents mediaBlob = new BlobContents(ms);
 _blobContainer.CreateBlob(properties, mediaBlob, true);
 }

 _DataBind();
 }

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

84

Figure 3-7. Screenshot of the blob creating results

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

85

Figure 3-8. Quering results after blob storage records have been created

To retrieve information stored in a blob, the BlobContainer class provides a set of access functions
to query blobs in a blob container or the properties of a specific blob. The following are the steps to
retrieve the information from a blob.

1. As Listing 3-11 shows, we create a C# container class called MediaInfo with
three properties—BlobName, MediaUri, and MediaID—used to hold the
information of a blob record.

2. In this exercise we define a GridView from the Default.aspx page to display
the blob record as shown in the bold lines in Listing 3-12. The columns of
the GridView bind to the properties of the MediaInfo class accordingly. For
example, the DataTextField is bound to the property MediaID, and
DataNavigateUrlFields is bound to MediaUri.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

86

3. Use the instance _blobContainer to call ListBlobs() and pass two parameters:
prefix (an empty string in this exercise) and a boolean flag,
CombineCommonPrefixs (false in this exercise). This function should return an
instance of the IEnumerable type.

4. Loop through the collection of the blob record and populate the record into a
local collection instance of mediaList with List<MediaInfo> type.

5. Assign the mediaList as the DataSource of the GridView and call the DataBind()
method to bind the data to the GridView. By design, the call to ListBlobs()
must occur prior to the call of GetBlobProperties(). Otherwise the call to
GetBlobProperties() always returns a null object.

Listing 3-11. Retrieving information from a blob

 public class MediaInfo
 {
 public MediaInfo(string blobName,
 string mediaAddress,
 string mediaID)
 {
 BlobName = blobName;
 MediaUri = mediaAddress;
 MediaID = mediaID;
 }

 public string MediaUri{get; set;}
 public string BlobName { get; set; }
 public string MediaID { get; set; }
 }

 private void _DataBind()
 {
 IEnumerable<object> blobs = _blobContainer.ListBlobs(string.Empty, false);
 List<MediaInfo> mediaList= new List<MediaInfo>();

 foreach (object blob in blobs)
 {
 if ((blob as BlobProperties)!= null)
 {
 BlobProperties blobProperties =
 _blobContainer.GetBlobProperties((blob as BlobProperties).Name);
 NameValueCollection mediaEntryProperties = blobProperties.Metadata;
 mediaList.Add(
 new MediaInfo(
 blobProperties.Name,

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

87

 (blob as BlobProperties).Uri.ToString(),
 mediaEntryProperties["MediaID"]
)
);
 }
 }

 BlobLinksView.DataSource = filesList;
 BlobLinksView.DataBind();
 }

To delete a blob, the blob name needs to be passed as Listing 3-12 shows. In order to get the blob
name, we need to insert a row command handler into the GridView from Default.aspx of this exercise as
a linked button. To retrieve the specific blob item ID when the corresponding view item is clicked, a
code behind handler RowCommandHandler should be inserted into Default.aspx.cs as Listing 3-13 shows.

Listing 3-12. Pass Blob Name of the Blob Container Instance to Delete a Blob

 <asp:GridView
 id="BlobLinksView"
 DataKeyNames="BlobName"
 AllowPaging="False"
 AutoGenerateColumns="False"
 GridLines="Vertical"
 Runat="server"
 onrowcommand="RowCommandHandler"
 BackColor="#B3F2FD" ForeColor="Black"
 BorderColor="#0066FF" BorderStyle="None" BorderWidth="1px" CellPadding="4"
 Font-Size="Small" Width="394px">
 <Columns>
 <asp:ButtonField Text="Delete" CommandName="DeleteEntry"/>
 <asp:HyperLinkField
 HeaderText="Blob ID"
 DataTextField="MediaID"
 DataNavigateUrlFields="MediaUri" />
 </Columns>
 <RowStyle BackColor="#F7F7DE" />
 <FooterStyle BackColor="#CCCC99" />
 <PagerStyle BackColor="#F7F7DE" ForeColor="Black" HorizontalAlign="Right" />
 <SelectedRowStyle BackColor="#CE5D5A" Font-Bold="True" ForeColor="White" />
 <HeaderStyle BackColor="#6B696B" Font-Bold="True" ForeColor="White" />
 <AlternatingRowStyle BackColor="White" />
 </asp:GridView>

 protected void RowCommandHandler(object sender, GridViewCommandEventArgs e)
 {
 try
 {

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

88

 if (e.CommandName == "DeleteEntry")
 {
 int index = Convert.ToInt32(e.CommandArgument);
 string blobName = (string)BlobLinksView.DataKeys[index].Value;

 if (_blobContainer.DoesBlobExist(blobName))
 {
 _blobContainer.DeleteBlob(blobName);
 }
 }
 }
 catch { }

 _DataBind();
 }

Listing 3-13. Command Handler Used to Interprete Which Blob Item Row Has Been Selected

 protected void RowCommandHandler(object sender, GridViewCommandEventArgs e)
 {
 try
 {
 if (e.CommandName == "DeleteEntry")
 {
 int index = Convert.ToInt32(e.CommandArgument);
 string blobName = (string)BlobLinksView.DataKeys[index].Value;

 if (_blobContainer.DoesBlobExist(blobName))
 {
 _blobContainer.DeleteBlob(blobName);
 }
 }
 }
 catch { }

 _DataBind();
 }

In addition to using ListBlobs() to retrieve blob records in a C# class as I demonstrated, the blob
record can also be retrieved using a REST query with tools or applications, such as Fiddler, that can
generate web HTTP GET/POST/UPDATE requests.

Figure 3-9 shows an example of the REST query results against our blob storage. The tool used to do
the REST query is Fiddler 2.

The example of syntax for the query string is as follows:

http://127.0.0.1:10000/devstoreaccount1/blobpayload/caa95517-3414-4bc2-8f16-0a44a6f156e1xml

The return code for a success REST query is 200.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

89

Figure 3-9. REST query results of blob data using Fiddler 2 HTTP debug tool

Creating a Loosely Coupled Event-Driven System
Using both queue and blob storage, we can easily design loosely-coupled, event-driven applications.
Figure 3-10 is the case study diagram of this type of application design. The concept is very simple and
straightforward as the diagram shows. The following are the highlights of the design concepts.

• Define an events listener to monitor a specific event. The event is fired at the time
a message is delivered to the queue. A listener from the server side should be
constructed with two components: a dedicated queue to accept a message with a
specific topic (queue name) and an event handler. For example, if we need to
handle actions that insert and delete data, we need to define two queues and
implement two event handlers to deal with these two events respectively.

• The domain for all listeners is the blob container. The blob container is the data
access layer to the under-the-hood blob storage.

• A listener queue may have no event handler if there is no need to access the data.
For example, after a blob has been inserted successfully, we send a message to the
results queue with the message body containing the blob name. In this case
sending a response queue message is good enough. This allows us to remove the
responsibility for the server sending notification to the client when a blob is
inserted or deleted, and to avoid sending a big message over the Internet. A client
application can implement its own event listener to monitor the result events
from the results queue using a synchronized approach.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

90

Create Blob
Request Queue

Delete Blob
RequestQueue Blob Container Create Blob

Message Event
Handler

 Delete Blob
Message Event

Handler

 Results Queue

Delete Blob Message

Add Blob Message

Figure 3-10. Case study diagrams for an event-driven system design, using both queue storage and blob

storage

■ Note The code for this example is in the Exercise 3-3 bundle from the code download.

To reach this goal, we need to accomplish the following steps.

1. Move all code related to blob creation and deletion from the Default.aspx.cs
code behind into the worker role as shown in Listing 3-14. In the
_Initialization() method, we need to do the following:

1. Instantiate an instance of BlobContainer.

2. Instantiate an instance of QueueStorage.

3. Use the instance of QueueStorage to create a dedicated queue to listen to the
blob create request message and register the event handler.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

91

4. Create a dedicated queue to deliver the results (in other words, notification
that a blob name has been created). For this queue we don’t need to
register an event handler. Note: it is very important that you don’t call the
StartReceiving() method to start polling the queue if a queue does have
an event handler registered. This will cause an ObjectNullReference
exception at runtime, and there is no way to catch the exception or trace
down the error stack, even in the development environment.

2. Delete a message from the queue after it has been processed to avoid duplicate
message appearing after the locking period.

3. Use XmlSerializer to serialize the object into an XML string and place it in the
body of the blob storage.

Listing 3-14. Worker Role to Implement Listener Queues to Handle Blob Create and Delete Requests

using System.Drawing;
using System.Configuration;
using System.NET;
using System.Xml;
using System.Xml.Serialization;
using System.Collections.Specialized;
using System.Diagnostics;

namespace CloudQueueStorageService_WorkerRole
{
 public class WorkerRole : RoleEntryPoint
 {
 public const string PAYLOAD_RESULTS_QUEUE_NAME = "resultspayloadqueue";
 public const string PAYLOAD_CREATE_REQUEST_QUEUE_NAME = "createblobrequestqueue";
 public const string PAYLOAD_DELETE_QUEUE_NAME = "deleteblobqueue";
 public const string PAYLOAD_BLOB_CONTAINER_NAME = "blobpayload";
 public const string PAYLOAD_BLOB_SUFFIX = "xml";
 public const int UPDATE_TIMEOUT_SEC = 5;

 private static BlobStorage _blobStorage = null;
 private static QueueStorage _queueStorage = null;
 private static BlobContainer _blobContainer = null;

 private static bool _initialized = false;
 private static object _syncObj = new Object();
 const int POLLING_INTERVAL = 1000;// in milliseconds

 public void LogLevel(string logStream, string logString)
 {
 if (!RoleManager.IsRoleManagerRunning)
 {
 Trace.WriteLine(logString);
 }
 else
 {

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

92

 RoleManager.WriteToLog(logStream, logString);
 }
 }

 static WorkerRole()
 {
 }

 public void Log(string logString)
 {
 LogLevel("Information", logString);
 }

 public void LogError(string logString)
 {
 LogLevel("Error", logString);
 }

 public override void Start()
 {
 while (!_initialized)
 {
 try
 {
 _Initialization();
 }
 catch (WebException e)
 {
 if (e.Status == WebExceptionStatus.ConnectFailure)
 {
 RoleManager.WriteToLog(
 "Error",
 string.Format("Connect failure. Message: '{0}'", e.Message)
);
 System.Threading.Thread.Sleep(5000);
 }
 else
 {
 Throw e;
 }
 }
 }

 while (true)
 {
 Log(string.Format("---{0} heart beat ---", this.ToString()));
 Thread.Sleep(1000);
 }
 }

 public override RoleStatus GetHealthStatus()

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

93

 {
 return RoleStatus.Healthy;
 }

 private void _Initialization()
 {
 if (_initialized)
 {
 return;
 }

 lock (_syncObj)
 {
 try
 {
 //Instatiate BlobStorage
 _blobStorage =
 BlobStorage.Create(StorageAccountInfo
 .GetDefaultBlobStorageAccountFromConfiguration());
 _blobContainer =
 _blobStorage.GetBlobContainer(WorkerRole.PAYLOAD_BLOB_CONTAINER_NAME);
 // Make the container public so that we can hit the URLs from the web
 _blobContainer.CreateContainer(new NameValueCollection(),
 ContainerAccessControl.Public);

 //Instatiate QueueStorage
 _queueStorage =
 QueueStorage.Create(StorageAccountInfo
 .GetDefaultQueueStorageAccountFromConfiguration());
 _queueStorage.RetryPolicy =
 RetryPolicies.RetryN(3, TimeSpan.FromSeconds(5));

 //Create a queue to listen blob create request message
 //and register the events
 MessageQueue requstQueue =
 _queueStorage.GetQueue(PAYLOAD_CREATE_REQUEST_QUEUE_NAME);
 requstQueue.CreateQueue();
 requstQueue.MessageReceived +=
 new MessageReceivedEventHandler(_OnCreateBlobMessageReceive);
 requstQueue.PollInterval = POLLING_INTERVAL;
 requstQueue.StartReceiving();

 //Create a queue without to register any event to send the blob created
 //message with blob name to the queue
 MessageQueue resultsQueue =
 _queueStorage.GetQueue(PAYLOAD_RESULTS_QUEUE_NAME);
 resultsQueue.CreateQueue();

 //Create a queue to listen blob delete request message
 //and register the events
 MessageQueue deleteQueue =

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

94

 _queueStorage.GetQueue(PAYLOAD_DELETE_QUEUE_NAME);
 deleteQueue.CreateQueue();
 deleteQueue.MessageReceived +=
 new MessageReceivedEventHandler(_OnDeleteBlobMessageReceive);
 deleteQueue.PollInterval = POLLING_INTERVAL;
 deleteQueue.StartReceiving();

 _initialized = true;
 }
 catch (Exception ex)
 {
 LogError(
 string.Format(
 "--- {0}:_Initialization, exception caught : {1}",
 this.ToString(),
 ex.Message
)
);
 }

 _initialized = true;
 }
 }

 private void _CreateBlob(Message message)
 {
 lock (_syncObj)
 {
 string logMessage =
 string.Format(
 "---{0}:_OnMessageReceive, message = <{1}>",
 this.ToString(),
 message.ContentAsString()
);
 System.Diagnostics.Trace.WriteLine(logMessage);
 Log(logMessage);

 string blobName = string.Format("{0}{1}", message.Id, PAYLOAD_BLOB_SUFFIX);
 if (!_blobContainer.DoesBlobExist(blobName))
 {
 // Compose a unique blob name
 BlobProperties properties = new BlobProperties(blobName);

 // Create metadata to be associated with the blob
 NameValueCollection metadata = new NameValueCollection();

 metadata["MediaID"] = message.Id;

 properties.Metadata = metadata;
 properties.ContentType = "text/xml";

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

95

 // Create the blob
 byte[] buffer =
 UTF8Encoding.UTF8.GetBytes(
 message.ContentAsString().Replace("\r\n", string.Empty)
);
 MemoryStream ms = new MemoryStream(buffer);

 BlobContents blobContents = new BlobContents(ms);
 _blobContainer.CreateBlob(properties, blobContents, true);

 var blob = (from m in _blobContainer.ListBlobs(string.Empty, false)
 where (m as BlobProperties).Name == blobName
 select m as BlobProperties).Single <BlobProperties>();
 if (null != blob)
 {
 MediaInfo mediaInfo =
 new MediaInfo(
 blobName,
 (blob as BlobProperties).Uri.ToString(),
 message.Id
);
 Message resultsMessage = _CreateMediaInfoMessage(mediaInfo);
 MessageQueue queue =
 _queueStorage.GetQueue(PAYLOAD_RESULTS_QUEUE_NAME);
 queue.PutMessage(resultsMessage);
 }

 }
 _queueStorage.GetQueue(PAYLOAD_CREATE_REQUEST_QUEUE_NAME)
 .DeleteMessage(message);
 }
 }

 private void _OnCreateBlobMessageReceive(object sender, EventArgs args)
 {
 lock (_syncObj)
 {
 _CreateBlob((args as MessageReceivedEventArgs).Message);
 }
 }

 private Message _CreateMediaInfoMessage(MediaInfo info)
 {
 StringBuilder sb = Helper.XmlPersist(info, typeof(MediaInfo));
 return new Message(UTF8Encoding.UTF8.GetBytes(sb.ToString()));
 }

 private void _OnDeleteBlobMessageReceive(object sender, EventArgs args)
 {
 lock (_syncObj)
 {

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

96

 Message message = (args as MessageReceivedEventArgs).Message;
 string blobName = message.ContentAsString();
 Log(
 string.Format(
 "---{0}:received delete blob request, blob name = <{1}>",
 this.ToString(),
 blobName
)
);

 if (_blobContainer.DoesBlobExist(blobName))
 {
 Log(
 string.Format(
 "---{0}:delete blob request, blob name = <{1}>",
 this.ToString(),
 blobName
)
);
 _blobContainer.DeleteBlob(blobName);
 }
 _queueStorage.GetQueue(PAYLOAD_DELETE_QUEUE_NAME).DeleteMessage(message); ;
 }
 }
 }
}

Compiling the code and running the application, we get the same results with this new architecture
design as Figure 3-8 shown in the last exercise.

Through this exercise, we have actually built a template for a cloud application that can be used as a
communication bus between the web roles and worker roles. This is the solution to decouple a web role
from a worker role. Since a worker role cannot expose its end point, it cannot accept external HTTP
requests. We can leverage the queue as the message bus to build the communication bridge between a
web role and worker role. In fact Azure uses the same approach to decouple its front-end services to
increase efficiency and performance.

Implementing a Client Application to Access Cloud Blob
Storage
If we need to upload or delete a large amount of data from cloud blob storage in a client-side
application, we should consider not only using an asynchronous approach to handle the task in a
background thread, but also supporting manually interruption if something goes wrong, which may be
caused by network failure or other reasons since Azure blob storage handles transactions on the server
side, not on the client side.

Under the hood, the SDK client wrapper dispatches the request by calling two different overloaded
handler methods based upon the size of the data. If the data size is greater than 2 MB, the data will be
processed through the large data upload hander from the Azure storage client. The Azure blob storage
client may contact a group of connected servers in the cloud based upon the balance of the server load.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

97

The contents will be split into numerous data blocks and spread to multiple servers. The Azure blob
storage client will call a method to commit the transaction. If any process fails or an interruption occurs,
the transaction will not be committed.

This exercise provides a workaround to resolve uploading and downloading a large amount of blob
data on the client side. This application may potentially be used as a utility tool for anyone who needs to
transmit a large amount of data to a cloud blob. In this exercise we will walk you through creation of a
Windows-based tool that can be used to upload and delete large amounts of data from cloud blob
storage.

■ Note The code for this example is in the Exercise 3-4 bundle from the code download.

There are two technologies for handling large amounts of data, especially data transmission over the
network:

• Asynchronous data transmission

• Background worker item thread

The .NET Framework provides extensive support for these two technologies, such as a thread pools
and a background worker class. This exercise uses these two technologies in conjunction with other
software design patterns, such as the command and facade design patterns to come up with a useful
client-side tool to handle large data I/O to Azure blob storage. At the highest level, we define two
modules: AzureStorageFacade and BlobStorageActionStatus. The responsibilities of these two classes are
as follows.

• AzureStorageFacade is an abstract base class that wraps the class of the Azure
storage SDK client. The responsibility of the base class is to instantiate the Azure
account object, including the authentication key information. We are going create
two classes called BlobStorageFacade and TableStorageFacade that will inherit
from this class. BlobStorageFacade encapsulates the blob container and blob
properties objects used to access a specific named blob storage from the cloud.
This class provides an agile way to perform insert and delete actions to blob
storage (update can be done by changing the overwrite flag to false). To reach
this goal, the constructor of this class accepts three parameters of blob storage:
BlobContents, BlobProperties, and a boolean flag of overwrite.

• BlobStorageActionStatus is an abstract base class. This class uses a combination
of the bridge design pattern and the command design pattern (without supporting
the memento pattern, because there is actually no transaction supported from the
client side in the cloud platform. The constructor of this class has exactly the same
structure as that of BlobStorageFacade. The responsibility of this class is to spawn
a worker thread to handle the long-running blob storage access tasks and to
provide the progress status of the data access. BlobStorageActionStatus has two
derived classes, CreateBlobStatus and DeleteBlobStatus, which are responsible
for blob storage creation and deletion respectively. All derived classes implement
the ICommand interface, which provides an Excuse() function to update the
progress status.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

98

Figure 3-11 is the diagram for the class layout. As noted above, in order to make our components
reusable, we define a base class called AzureStorageFacade, which encapsulates the account
initialization function in the constructor. We subclass three classes also using the facade design pattern
to wrap up all the interfaces used to access Azure basic storages, table, queue and blob, respectively.
These three subclasses are AzureStorage, TableStorage, and BlobStorage. In this exercise we are going to
use this base class to re-engineer the blob access classes from previous exercise and leave you to apply
the first two classes to all existing exercises from previous chapters or use them in future development.

Figure 3-11. Class diagram for large data I/O to cloud blob storage tools

Listing 3-15 is the implementation of the base class AzureStorageFacade. There is only one member
method _Initialization() defined, which is used to retrieve the account information from the
configuration file.

Listing 3-15. Implementation of the Base Class AzureStorageFacade

using System;
using System.Configuration;

namespace AzureForDotNetDevelopers.LargeDataToBlob
{
 using Microsoft.ServiceHosting.ServiceRuntime;
 using Microsoft.Samples.ServiceHosting.StorageClient;

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

99

 public class AzureStorageFacade
 {
 protected StorageAccountInfo _accountInformation;
 protected int retry = 1;
 protected int retryInterval = 1000;

 public StorageAccountInfo StorageAccountInfo
 {
 get{ return _accountInformation; }
 }

 public AzureStorageFacade()
 {
 _InitializationStorages();
 }

 protected void _InitializationStorages()
 {
 retry = Convert.ToInt32(ConfigurationManager.AppSettings["Retry"]);
 retryInterval =
 Convert.ToInt32(ConfigurationManager.AppSettings["RetryInterval"]);
 _accountInformation =
 StorageAccountInfo.GetDefaultBlobStorageAccountFromConfiguration();
 }
 }
}

Listing 3-16 shows the implementation of the blob facade class, which encapsulates all blob storage
access functions and attributes of blob storage needed for a client application in a more comprehensive
manner than in the implementation in the previous exercise.

Listing 3-16. Implementation of the BlobStorageFacade Class Derived from the AzureStorageFacade Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Configuration;
using System.Collections.Specialized;
using System.Threading;
using System.IO;

namespace AzureForDotNetDevelopers.LargeDataToBlob.CloudStorage.BlobStorage
{
 using Microsoft.ServiceHosting.ServiceRuntime;
 using Microsoft.Samples.ServiceHosting.StorageClient;

 using CSharpBuildingBlocks;

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

100

 public class BlobStorageFacade : AzureStorageFacade
 {
 static public long LARGE_BLOB_SIZE = 2 * 1024 * 1024;// 2 MB
 protected BlobStorage _blobStorage;
 protected BlobContainer _blobContainer;
 protected string _blobContainerName =
 ConfigurationManager.AppSettings["BlobContainerName"];
 protected NameValueCollection _metadata = null;
 protected Thread _createBlobWorkerthread = null;
 public BlobContents Contents { get; set; }
 public BlobProperties Properties { get; set; }
 public bool Overwrite { get; set; }

 public BlobStorageFacade()
 {
 _blobStorage = BlobStorage.Create(_accountInformation);
 _blobStorage.RetryPolicy =
 RetryPolicies.RetryN(retry, TimeSpan.FromMilliseconds(retryInterval));
 _blobContainer = _blobStorage.GetBlobContainer(_blobContainerName);
 }

 public BlobStorageFacade(NameValueCollection metadata):this()
 {
 _metadata = metadata;
 _blobContainer.CreateContainer(_metadata, ContainerAccessControl.Private);
 }

 public BlobStorageFacade(BlobContents blobContents,
 BlobProperties blobProperties,
 bool overwrite) : this(blobProperties.Metadata)
 {
 Contents = blobContents;
 Properties = blobProperties;
 Overwrite = overwrite;
 }

 public BlobContainer BlobContainer
 {
 get { return _blobContainer; }
 }

 public IEnumerable<BlobContainer> GetBlobContainers()
 {
 return _blobStorage.ListBlobContainers();
 }

 public void CreateBlob()
 {
 _blobContainer.CreateBlob(Properties,
 Contents,

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

101

 Overwrite);
 }

 public void DeleteBlob()
 {
 if (_blobContainer.DoesBlobExist(Properties.Name))
 {
 _blobContainer.DeleteBlob(Properties.Name);
 }
 }
 }
 }

As mentioned before, we use a background worker thread and ICommand design pattern in this
application. The base class implementation for these two classes comes from my existing building block
collection library. The reference assemblies are called CSharpBuildingBlocks and
CSharpBuildingBlocks.QueuedBackgroundWorker. These two assemblies come with the source code
download and will be used several places in other chapters.

Listing 3-17 and Listing 3-18 are the implementation for CreateBlobStatus and DeleteBlobStatus. A
worker thread is created at the time a message arrives for either creating or deleting a blob request. Two
member functions are used to handle create or delete activities accordingly. The algorithms for progress
are different in these two classes.

For blob creation, the percentage of the creation progress is determined by comparing the size of
the blob to be created against the actual size of the data that has been committed to cloud blob storage.
No incremented progress can be reported to the client application, because the detailed information of a
newly created or deleted blob will not be updated until the transactions have been committed on the
server.

Listing 3-17. The CreateBlobStatus Class Derived from the BlobStorageAction Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Configuration;
using System.Collections.Specialized;
using System.Threading;

namespace AzureForDotNetDevelopers.LargeDataToBlob.CloudStorage.BlobStorage
{
 using Microsoft.ServiceHosting.ServiceRuntime;
 using Microsoft.Samples.ServiceHosting.StorageClient;
 using CSharpBuildingBlocks;

 public class CreateBlobStatus : BlobStorageActionStatus, ICommand
 {
 public long CreateContentSize { get; set; }

 public CreateBlobStatus(BlobContents blobContents,
 BlobProperties blobProperties,

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

102

 bool overwrite)
 : base(blobContents,
 blobProperties,
 overwrite)
 {
 }

 public void Execute()
 {
 try
 {
 if (_blobStorageFacade.BlobContainer
 .DoesBlobExist(_blobStorageFacade.Properties.Name))
 {
 var blob =
 (from m
 in _blobStorageFacade.BlobContainer.ListBlobs(string.Empty, false)
 where (m as BlobProperties).Name
 == _blobStorageFacade.Properties.Name
 select m as BlobProperties).Single<BlobProperties>();
 _percentComplete =
 (float)(((blob as BlobProperties).ContentLength * 100.0) /
 (CreateContentSize * 1.0));
 System.Diagnostics.Trace.WriteLine(
 string.Format(
 "---{0}:Execute, _percentComplete = <{1}>",
 this.ToString(),
 _percentComplete
)
);
 }

 }
 catch (Exception ex)
 {
 System.Diagnostics.Trace.WriteLine(
 string.Format(
 "---{0}:Execute,exception caught <{1}>",
 this.ToString(),
 ex.Message
)
);
 }
 }

 override protected void _blobStorageWorkerThread(object paramters)
 {
 try
 {

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

103

 (paramters as BlobStorageFacade).CreateBlob();
 }
 catch { }
 }
 }
}

Listing 3-18. The DeleteBlobStatus Class Derived from the BlobStorageAction Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;

namespace AzureForDotNetDevelopers.LargeDataToBlob.CloudStorage.BlobStorage
{
 using Microsoft.ServiceHosting.ServiceRuntime;
 using Microsoft.Samples.ServiceHosting.StorageClient;
 using CSharpBuildingBlocks;

 public class DeleteBlobStatus : BlobStorageActionStatus, ICommand
 {
 public DeleteBlobStatus(BlobContents blobContents,
 BlobProperties blobProperties,
 bool overwrite)
 : base(blobContents,
 blobProperties,
 overwrite)
 {
 }

 public void Execute()
 {
 try
 {
 if (!_blobStorageFacade.BlobContainer
 .DoesBlobExist(_blobStorageFacade.Properties.Name))
 {
 _percentComplete = 100.0f;
 }
 }
 catch { }
 }

 override protected void _blobStorageWorkerThread(object paramters)
 {
 try
 {
 (paramters as BlobStorageFacade).DeleteBlob();
 Thread.Sleep(2000);

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

104

 }
 catch { }
 }
 }
}

The CSharpBuildingBlock.QueuedBackgroundWorker assembly contains a building block
component called QueuedBackgroundWorkerComponent. This component can place a worker item into
a queue and run from a background thread. There are three events that can be fired up from that
component, DoWork, ProgressChanged, and RunWorkerCompleted as Figure 3-12 shows. The event
handlers need to be registered either at design time via the properties dialog as in Figure 3-12 or
programmatically as shown in Listing 3-19. Listing 3-20 shows the event handlers for DoWork,
RunWorkerCompleted, and ProgressChanged. After accomplishing these steps to create or delete blob
storage with a large amount of data the rest is relatively simple and straightforward. What is left for
you is instantiating CreateBlobStatus of DeleteBlobStatus as an ICommand type and passing it to
QueuedBackgroundWorkerItem.

The job will run in the background without locking up the UI thread. The progress and task
accomplished event will be reported to the client as we expected. The upload blob name can be
automatically generated. If the size of the contents of blob is greater than 2 MB, a suffix _large is
attached to the end of the name. There is no particular constraint for the blob name as long as it meets
the specification illustrated in Appendix A. To interrupt ongoing processing, either for creating or
deleting, a user needs to set the flag of CancelAll from QueuedBackgroundWorkerItem by clicking on the
Abort button.

Figure 3-12. Event bindings if using the QueuedBackgroundWorkerComponent

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

105

The rest of this chapter, from Listing 3-19 to Listing 3-23, shows the implementation of a Windows
form user interface, including the event handling, application initialization, and GUI updating. This part
should be straightforward to any professional .NET developer, and we are not going to drill down to
analysis in detail. You can download the source code and verify the results attached to the end of this
chapter and potentially use this as an administration tool to transmit a large amount of data to blob
storage as part of the infrastructure of a cloud application.

Listing 3-19. Register Events for Background Worker Items from the Client UI Class Constructor

 public FormBlobAccess()
 {
 InitializeComponent();

 this._backgroundWorkeComponent = new QueuedBackgroundWorkeComponent();
 this._backgroundWorkeComponent.DoWork +=
 new System.ComponentModel.DoWorkEventHandler (this._backgroundWorker_DoWork);
 this._backgroundWorkeComponent.RunWorkerCompleted +=
 new System.ComponentModel.RunWorkerCompletedEventHandler(
 this._backgroundWorker_RunWorkerCompleted
);
 this._backgroundWorkeComponent.ProgressChanged +=
 new System.ComponentModel.ProgressChangedEventHandler(
 this._backgroundWorkeComponent_ProgressChanged
);

 _UpdateUI();
 }

Listing 3-20. Event Handler for DoWorker, RunWorkerCompleted, and ProgressChanged

 private void _backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
 {

 if (e.Argument is CreateBlobStatus)
 {
 _command = (CreateBlobStatus)e.Argument;
 if (_backgroundWorkeComponent._QueuedBackgroundWorker
 .IsCancellationPending(_command))
 {
 e.Cancel = true;
 }
 }
 else if (e.Argument is FibGeneratorState)
 {
 _command = (FibGeneratorState)e.Argument;
 }

 if (null != _command)
 {
 while (!_backgroundWorkeComponent._QueuedBackgroundWorker

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

106

 .IsCancellationPending(_command)
 && _command.PercentComplete < 100)
 {
 _backgroundWorkeComponent._QueuedBackgroundWorker
 .ReportProgress(_command.PercentComplete, _command);
 _command.Execute();
 e.Result = _command;
 Application.DoEvents();
 }
 }
 }

 private void _backgroundWorker_RunWorkerCompleted(object sender,
 RunWorkerCompletedEventArgs e)
 {
 if (null != _fileStream)
 {
 _fileStream.Close();
 toolStripProgressBar1.Visible = false;
 }

 lblTimeEnd.Text = DateTime.Now.ToString();
 if (_command is CreateBlobStatus)
 {
 toolStripStatusLabel1.Text = "Upload blob success.";
 }
 else if (_command is DeleteBlobStatus)
 {
 toolStripStatusLabel1.Text = "Delete blob success.";
 }

 _UpdateUI();
 }

 private void _backgroundWorkeComponent_ProgressChanged(object sender,
 ProgressChangedEventArgs e)
 {
 //_progressBar.Value = e.ProgressPercentage;
 Update();
 Application.DoEvents();
 }

Listing 3-21. Instantiate an Instance of CreateBlobStatus and Pass It to QueuedBackgroundWorker to

Create a Large Blob in the Background

 private void btnUpload_Click(object sender, EventArgs e)
 {
 toolStripProgressBar1.Visible = true;
 toolStripStatusLabel1.Text = string.Empty; ;
 btnAbort.Enabled = true;

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

107

 btnDelete.Enabled = false;
 lblTimeStart.Text = DateTime.Now.ToString();
 lblTimeEnd.Text = string.Empty;
 lblTimeElapsed.Text = string.Empty;
 timer1.Enabled = true;

 if (null == _azureStorage)
 {
 _azureStorage = new AzureStorageFacade();
 }

 _fileStream = new FileStream(_fileName.Text.ToString().Trim(),
 FileMode.Open,
 FileAccess.Read);
 if (txtBlobName.Text.ToString().Trim() == string.Empty)
 {
 btnGenerateBlobName_Click(this, null);
 }

 string blobName = txtBlobName.Text.ToString().Trim();

 BlobProperties properties = new BlobProperties(blobName);
 NameValueCollection metadata = new NameValueCollection();
 properties.Metadata = metadata;
 properties.ContentType = "byte";
 BlobContents blobContents = new BlobContents(_fileStream);

 _command = new CreateBlobStatus(blobContents,
 properties,
 true)
 {
 CreateContentSize = _fileInfo.Length
 } ;

 _backgroundWorkeComponent._QueuedBackgroundWorker.RunWorkerAsync(_command);
 }

Listing 3-22. Instatiate an Instance of DeleteBlobStatus and Pass It to QueuedBackgroundWorker to Delete

a Large Blob from Background

 private void btnDelete_Click(object sender, EventArgs e)
 {
 toolStripProgressBar1.Visible = true;
 toolStripStatusLabel1.Text = string.Empty;
 toolStripStatusLabel1.ForeColor = Color.Black;
 btnAbort.Enabled = true;
 lblTimeStart.Text = DateTime.Now.ToString();
 lblTimeEnd.Text = string.Empty;
 lblTimeElapsed.Text = string.Empty;
 timer1.Enabled = true;

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

108

 string blobName = combBoxBlobList.SelectedItem.ToString();
 try
 {
 BlobProperties properties = new BlobProperties(blobName);
 NameValueCollection metadata = new NameValueCollection();
 properties.Metadata = metadata;
 properties.ContentType = "byte";
 BlobContents blobContents = new BlobContents(new MemoryStream());

 _command = new DeleteBlobStatus(blobContents,
 properties,
 true);
 _backgroundWorkeComponent._QueuedBackgroundWorker.RunWorkerAsync(_command);
 }
 catch (Exception ex)
 {
 toolStripStatusLabel1.ForeColor = Color.Red;
 toolStripStatusLabel1.Text = ex.Message;
 }
 }

Listing 3-23. Set Flag from QueuedBackgroundWorker to Interrupt Create or Delete Blob Actions

 private void btnCancel_Click(object sender, EventArgs e)
 {
 timer1.Enabled = false;
 btnUpload.Enabled = true;
 btnDelete.Enabled = true;
 btnAbort.Enabled = false;
 toolStripStatusLabel1.Text = "Actiong aborted.";
 _backgroundWorkeComponent._QueuedBackgroundWorker.CancelAllAsync();
 }

■ Note To run this application from the local development environment, the development storage service and
development fabric must be started first.

The following screenshots are the test results of Exercise 3-4.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

109

First, we upload a large amount of data to blob storage. The results are shown in Figures 3-13 and 3-14.

Figure 3-13. File of size 278 MB created and uploaded to blob, taking 61.358 seconds in the local

development environment with the system configuration shown in Figure 3-14

Figure 3-14. System configuration to run Exercise 3-4

We can also upload a small amount of data to blob storage.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

110

This tool, of course, can also be used to transmit any size of data between local systems and cloud
blob storage. Figure 3-15 shows an example using this tool to upload a small file to a blob storage table.
Note that the file name created by the tool in this case has no suffix.

Figure 3-15. Creating a small blob

Since the job is done from a queued worker thread running in the background, aborting an action
turns out to be very easy; you can simply click on the Abort button to interrupt the processing as
Figure 3-16 shows.

Figure 3-16. The background blob create action can easily be interrupted and aborted at any time.

To delete a record from blob storage, select an available item from the list and click the Delete
button. All information retrieved by this tool is in raw data format, as shown in Figure 3-17. One
enhancement would be to display the information as a human readable string or provide mapping
information for the user, both of which would help to prevent accidental record deletion.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

111

Figure 3-17. All blobs in the specified container are queried and listed in the drop-down list.

Summary
In this chapter we looked at the final two forms of basic storage provided by Azure: Blob and Queue.
When they are combined, we can create some powerful, loosely coupled systems to link our applications
together. I showed you how to create a cloud queue and how to poll messages from it, as well as how to
remove messages when you have processed them. I followed that up by showing how to create blob
storage.

The natural thing to do was combine the two into a loosely coupled, event-driven system that takes
advantage of these two technologies. I provided a full example that handled events and notifications
using a queue. The final example was a tool to help you work with blob storage.

CHAPTER 3 ■ WORKING WITH CLOUD QUEUE AND BLOB STORAGE

112

C H A P T E R 4

■ ■ ■

113

Windows Azure Application
Integration Using WCF

Whenever a new technology is introduced to the computing world, it raises a lot of questions for an
enterprise or organization regarding integration. How do you integrate an application built on new
technology into the existing system infrastructure? What are appropriate tools to select for integration?
How do you select the right candidate subsystem to migrate, refactor, or re-engineer? Although Windows
Azure provides a revolutionary new platform, it is almost impossible for any organization to migrate the
entire existing on-premises system and infrastructure into the cloud platform. Therefore, integration
strategies are extremely important. Even subsystems, which are built with Windows Azure technology,
still need to be integrated together. Microsoft has already provided cloud-computing-based services,
such as .NET Services, SQL Azure, and Live Services. These services provide organizations with rich
functionality and a broad range of building blocks for integration.

Windows Azure offers amazing, innovative, and attractive features. One of these features is the
ability to host an application in the cloud. Not only cloud-based applications, but also the on-premises
applications can leverage cloud services and applications. As I mentioned, to run an application from
the cloud is far from the whole story. There is always an integration issue associated with the system
architecture design. It should not be too difficult to understand why integration plays the essential role.
All applications, services, and infrastructures involved in a computing system need to be coordinated in
data exchange, resource sharing, status persisting, logic synchronizing, and so on. All these tasks should
be done via integration.

No matter what integration strategy an organization plans to use, an essential feature of an
integration platform is that it must support cross-platform communication. Microsoft BizTalk server
and WCF (Windows Communication Foundation, part of .NET 3.0 or later versions of the .NET platform)
should meet these criteria. In principle, Microsoft BizTalk server is designed to support any existing
communication protocol in the computing world through built-in, third-party, or custom adapters. The
great advantages we can take from Microsoft BizTalk server are its power to integrate and call any
existing .NET components, to extend a solution with custom pipelines, data mapping functions, and
dynamic data transforming and mapping. And it has sophisticated workflow control, business rules
integration, and error handling via Windows BizTalk orchestrations. In contrast, the advantage we can
get from WCF is that it is a web-services-based platform. WCF is built in to .NET 3.0 and later versions
and can be deployed and hosted from Windows Azure. The scope of this book is limited to covering the
topic of integrating Windows Azure applications with each other or with other non-cloud-based on-
premises applications using Windows WCF.

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

114

Using WCF
WCF unifies all the communication models supported by web services, including message queues, .NET
Remoting and distributed transactions into a general service-oriented architecture (SOA), and it also
supports SOAP (with an optimized SOAP binary format). WCF also supports both JSON and REST data
formats. You can flexibly consume data from Windows Azure using Ajax or .NET by simply providing
URLs of the target resources. When a method is invoked against specific URLs, parameters from the
URLs are automatically extracted and passed into the target method.

These features as described make WCF a great integration tool not only for on-premises
applications but also for Windows Azure cloud applications, in addition to Windows BizTalk server. WCF
services can be hosted from Windows API applications or from IIS. It would make WCF more attractive
from the perspective of integration if WCF services could be hosted from Windows Azure.

Microsoft .NET Services, originally called BizTalk Services, was designed as a set of highly scalable
developer-oriented services hosted in Microsoft data centers as part of the Windows Azure platform.
These services are common building blocks or infrastructure services for cloud-based applications. As
one of the core services offered by .NET Services, .NET Workflow Services allows you to define highly
scalable cloud-based workflows using Workflow Foundation (WF). In addition, the .NET Workflow
Service also provides management tools and web-service-based APIs for .NET Workflow Services type
and instance management. Moving forward,.NET Workflow Services tightly collaborates with WCF. In
this chapter, we are going to explore the fundamental steps of using WCF and WF as a cloud-based
application integration platform.

Host WCF Service from Azure
In this exercise, we are going to build an example to host a WCF service from Windows Azure. Following
are the steps we need to perform to reach this goal.

1. From Visual Studio, create a new cloud service web role service project called
HostWCFService as shown in Figure 4-1.

Figure 4-1. Create a cloud web role service, HostWCFService, from Visual Studio

2. Create a DLL library project called AzureForDotNetDeveloperWCFServiceLibrary. In
this project we define a WCF service contract interface, IUserRegisterService, and
a data contract class, User, as Listing 4-1 shows. The service contract interface,
IUserRegisterService, has two operation contracts defined. AddUser() (taking an
instance of User as a parameter) is used to provide a service to add a user when a
user registers to a cloud application. GetUserList() is used to retrieve the
collection of users who have registered to a cloud application.

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

115

Listing 4-1. WCF Service Contract IUserRegisterService and Data Contract User Definition

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.Serialization;
using System.ServiceModel;

namespace AzureForDotNetDeveloperWCFServiceLibrary
{
 [ServiceContract]
 public interface IUserRegisterService
 {
 [OperationContract]
 void AddUser(User user);

 [OperationContract]
 List<User> GetUserList();
 }

 [DataContract]
 public class User
 {
 [DataMember]
 public string FirstName;

 [DataMember]
 public string LastName;

 [DataMember]
 public DateTime TimeRegistered;

 [DataMember]
 public string Password;
 }
}

3. From the HostWCFService_WebRole project in the Solution Explorer panel, right-
click on the project node and select Add ➤ New Item to bring up the Add New
Item dialog box. Select WCF Service from the dialog window and name it
UserRegisterService.svc as Figure 4-2 shows. Add the reference to
AzureForDotNetDeveloperWCFServiceLibrary we have just created. There are
three changes we need to make after the service component has been inserted
into the project:

• Open UserRegisterService.svc from Visual Studio by double-clicking on
that file node and correct the string value for Service. The string in
quotation marks should be the fully qualified class name with namespace:

AzureForDotNetDeveloperWCFServiceLibrary.UserRegisterService

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

116

• Delete UserRegisterService.svc.cs from the project because we
have already defined the services contracts from
AzureForDotNetDeveloperWCFServiceLibrary.

• Remove the following section from UserRegisterService.svc by double-
clicking on that file node from the Solution Explorer panel of Visual Studio.
The results are shown in Listing 4-2:

<Code behind="HostWCFService_WebRole.UserRegisterService.svc.cs"

Figure 4-2. Insert a WCF service item into the HostWCFService_WebRole project

Listing 4-2. Modify the File UserRegisterService.svc to Use the Correct Namespace and Remove the

Code-behind Section

<%@ ServiceHost Language="C#" Debug="true"
 Service="AzureForDotNetDeveloperWCFServiceLibrary.UserRegisterService" %>

4. From Visual Studio, select Tools ➤ WCF Configuration Editor and open the
Web.config file of the HostWCFService project as shown in Figure 4-3. Use this
tool to configure the WCF service endpoint and metadata endpoint. The
results for Web.config are shown in Listing 4-3. The Web.config file can be
edited by using any XML editor instead of using WCF Configuration Editor.
However I recommend that you edit the WCF configuration file with the
configuration editor. This is tedious work, and it is very easy to make mistakes.

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

117

Figure 4-3. Launch WCF Configuration Editor from Visual Studio

Listing 4-3. Configuration for WCF Service UserRegisterService.svc

<?xml version="1.0"?>

<configuration>

 <appSettings>
 <add key="AccountName" value="devstoreaccount1"/>
 <add key="AccountSharedKey" value="<KEY>"/>
 <add key="BlobStorageEndpoint" value="http://127.0.0.1:10000"/>
 <add key="QueueStorageEndpoint" value="http://127.0.0.1:10001"/>
 <add key="TableStorageEndpoint" value="http://127.0.0.1:10002/"/>
 </appSettings>
 <connectionStrings/>

 <system.webServer>
 <validation validateIntegratedModeConfiguration="false"/>
 <modules>
 <remove name="ScriptModule" />
 <add name="ScriptModule" preCondition="managedHandler"
 type="System.Web.Handlers.ScriptModule, System.Web.Extensions,
 Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 </modules>
 <handlers>

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

118

 <remove name="WebServiceHandlerFactory-Integrated"/>
 <remove name="ScriptHandlerFactory" />
 <remove name="ScriptHandlerFactoryAppServices" />
 <remove name="ScriptResource" />
 <add name="ScriptHandlerFactory" verb="*" path="*.asmx"
 preCondition="integratedMode"
 type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions,
 Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 <add name="ScriptHandlerFactoryAppServices" verb="*" path="*_AppService.axd"
 preCondition="integratedMode"
 type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions,
 Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 <add name="ScriptResource" preCondition="integratedMode" verb="GET,HEAD"
 path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler,
 System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35" />
 </handlers>
 </system.webServer>
 <system.serviceModel>
 <client>
 <remove contract="IMetadataExchange" name="sb" />
 <endpoint address=""
 binding="netTcpRelayBinding"
 bindingConfiguration="metadataExchangeRelayBinding"
 contract="IMetadataExchange" name="sb" />
 </client>
 <behaviors>
 <serviceBehaviors>
 <behavior name="HostWCFService_WebRole.UserRegisterServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 <behavior name="HostWCFService_WebRole.Service1Behavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <services>
 <service
 behaviorConfiguration="HostWCFService_WebRole.UserRegisterServiceBehavior"
 name="HostWCFService_WebRole.UserRegisterService">
 <endpoint
 address=""
 binding="wsHttpBinding"
 contract="AzureForDotNetDeveloperWCFServiceLibrary.IUserRegisterService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex"

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

119

 binding="mexHttpBinding"
 contract="IMetadataExchange" />
 </service>
 <service behaviorConfiguration="HostWCFService_WebRole.Service1Behavior"
 name="HostWCFService_WebRole.Service1">
 <endpoint address=""
 binding="wsHttpBinding"
 contract="HostWCFService_WebRole.IService1">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex"
 binding="mexHttpBinding"
 contract="IMetadataExchange" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

5. Insert an App.config file to the project AzureForDotNetDeveloperWCFServiceLibrary
and modify it as shown in Listing 4-4.

Listing 4-4. Configuration for AzureForDotNetDeveloperWCFServiceLibrary

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <compilation debug="true" />
 </system.web>
 <!-- When deploying the service library project, the content of the config
 file must be added to the host's app.config file.
 System.Configuration does not support config files for libraries. -->
 <system.serviceModel>
 <services>
 <service
 behaviorConfiguration="AzureForDotNetDeveloperWCFServiceLibrary.Service1Behavior"
 name="AzureForDotNetDeveloperWCFServiceLibrary.UserRegisterService">
 <endpoint address="" binding="wsHttpBinding"
 contract="AzureForDotNetDeveloperWCFServiceLibrary.IUserRegisterService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8080/UserRegisterService" />
 </baseAddresses>
 </host>

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

120

 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="AzureForDotNetDeveloperWCFServiceLibrary.Service1Behavior">
 <!-- To avoid disclosing metadata information,
 set the value below to false and remove the metadata endpoint above
 before deployment -->
 <serviceMetadata httpGetEnabled="True"/>

 <!-- To receive exception details in faults for debugging purposes,
 set the value below to true. Set to false before deployment
 to avoid disclosing exception information -->
 <serviceDebug includeExceptionDetailInFaults="False" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

6. Add a new Visual Studio Team Test project called HostWCFServiceUnitTest
from the Solution Explorer panel.

7. Add a service reference to the client test project HostWCFServiceUnitTest and
enter a name for that reference (the name can be changed after adding the
reference) as shown in Figure 4-4.

Figure 4-4. Add a service reference to the client application HostWCFServiceUnitTest

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

121

8. Visual Studio will generate a service client proxy. There is actually a package
generated, including service.wsdl, the web service definition language file,
and Reference.cs. The first file contains information of the endpoint address,
service contract definition, and data object definitions. The second one is
where the C# classes have been generated by Visual Studio using the WSDL
file. Listing 4-5 is extracted from the generated service.wsdl file, and Listing 4-
6 is the C# client proxy classes generated by Visual Studio. If an application,
either a Windows application or a web application, is also developed using the
.NET platform, the generated C# proxy classes can be directly referenced. An
application built with other platforms, such as Java, can use the generated
WSDL to create its own web service proxy and communicate with this service.
The auto-generated proxy package should contain all service interface
functions as well as the data structure container classes. To use these
generated classes from client applications should be straightforward as with
other regular C# classes.

Listing 4-5. Extract from the Generated WSDL File service.wsdl

 <wsdl:service name="UserRegisterService">
 <wsdl:port name="WSHttpBinding_IUserRegisterService"
 binding="tns:WSHttpBinding_IUserRegisterService">
 <soap12:address location="http://localhost:8080/UserRegisterService" />
 <wsa10:EndpointReference>
 <wsa10:Address>http://localhost:8080/UserRegisterService</wsa10:Address>
 <Identity xmlns="http://schemas.xmlsoap.org/ws/2006/02/addressingidentity">
 <Dns>localhost</Dns>
 </Identity>
 </wsa10:EndpointReference>
 </wsdl:port>
 </wsdl:service>

Listing 4-6. Service Proxy Classes Generated by Visual Studio

//--
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:2.0.50727.3053
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

namespace HostWCFSrviceUnitTest.HostWCFService {
 using System.Runtime.Serialization;
 using System;

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.CodeDom.Compiler.GeneratedCodeAttribute("System.Runtime.Serialization",

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

122

 "3.0.0.0")]
 [System.Runtime.Serialization.DataContractAttribute(
 Name="User",
 Namespace=

"http://schemas.datacontract.org/2004/07/AzureForDotNetDeveloperWCFServiceLibrary")]
 [System.SerializableAttribute()]
 public partial class User : object, System.Runtime.Serialization.IExtensibleDataObject,
 System.ComponentModel.INotifyPropertyChanged {
 [System.NonSerializedAttribute()]
 private System.Runtime.Serialization.ExtensionDataObject extensionDataField;

 [System.Runtime.Serialization.OptionalFieldAttribute()]
 private string FirstNameField;

 [System.Runtime.Serialization.OptionalFieldAttribute()]
 private string LastNameField;

 [System.Runtime.Serialization.OptionalFieldAttribute()]
 private string PasswordField;

 [System.Runtime.Serialization.OptionalFieldAttribute()]
 private System.DateTime TimeRegisteredField;

 [global::System.ComponentModel.BrowsableAttribute(false)]
 public System.Runtime.Serialization.ExtensionDataObject ExtensionData {
 get {
 return this.extensionDataField;
 }
 set {
 this.extensionDataField = value;
 }
 }

 [System.Runtime.Serialization.DataMemberAttribute()]
 public string FirstName {
 get {
 return this.FirstNameField;
 }
 set {
 if ((object.ReferenceEquals(this.FirstNameField, value) != true)) {
 this.FirstNameField = value;
 this.RaisePropertyChanged("FirstName");
 }
 }
 }

 [System.Runtime.Serialization.DataMemberAttribute()]
 public string LastName {
 get {
 return this.LastNameField;

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

123

 }
 set {
 if ((object.ReferenceEquals(this.LastNameField, value) != true)) {
 this.LastNameField = value;
 this.RaisePropertyChanged("LastName");
 }
 }
 }

 [System.Runtime.Serialization.DataMemberAttribute()]
 public string Password {
 get {
 return this.PasswordField;
 }
 set {
 if ((object.ReferenceEquals(this.PasswordField, value) != true)) {
 this.PasswordField = value;
 this.RaisePropertyChanged("Password");
 }
 }
 }
 [System.Runtime.Serialization.DataMemberAttribute()]
 public System.DateTime TimeRegistered {
 get {
 return this.TimeRegisteredField;
 }
 set {
 if ((this.TimeRegisteredField.Equals(value) != true)) {
 this.TimeRegisteredField = value;
 this.RaisePropertyChanged("TimeRegistered");
 }
 }
 }
 public event System.ComponentModel.PropertyChangedEventHandler PropertyChanged;

 protected void RaisePropertyChanged(string propertyName) {
 System.ComponentModel.PropertyChangedEventHandler propertyChanged =
 this.PropertyChanged;
 if ((propertyChanged != null)) {
 propertyChanged(
 this,
 new System.ComponentModel.PropertyChangedEventArgs(propertyName));
 }
 }
 }

 [System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "3.0.0.0")]
 [System.ServiceModel.ServiceContractAttribute(
 ConfigurationName="HostWCFService.IUserRegisterService")]
 public interface IUserRegisterService {
 [System.ServiceModel.OperationContractAttribute(

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

124

 Action="http://tempuri.org/IUserRegisterService/AddUser",
 ReplyAction="http://tempuri.org/IUserRegisterService/AddUserResponse")]
 void AddUser(HostWCFSrviceUnitTest.HostWCFService.User user);
 [System.ServiceModel.OperationContractAttribute(
 Action="http://tempuri.org/IUserRegisterService/GetUserList",
 ReplyAction="http://tempuri.org/IUserRegisterService/GetUserListResponse")]
 HostWCFSrviceUnitTest.HostWCFService.User[] GetUserList();
 }

 [System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "3.0.0.0")]
 public interface IUserRegisterServiceChannel :
 HostWCFSrviceUnitTest.HostWCFService.IUserRegisterService,
 System.ServiceModel.IClientChannel {
 }
 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "3.0.0.0")]
 public partial class UserRegisterServiceClient :
 System.ServiceModel.ClientBase
 <HostWCFSrviceUnitTest.HostWCFService.IUserRegisterService>,
 HostWCFSrviceUnitTest.HostWCFService.IUserRegisterService {

 public UserRegisterServiceClient() {
 }
 public UserRegisterServiceClient(string endpointConfigurationName) :
 base(endpointConfigurationName) {
 }
 public UserRegisterServiceClient(string endpointConfigurationName,
 string remoteAddress) :
 base(endpointConfigurationName, remoteAddress) {
 }
 public UserRegisterServiceClient(string endpointConfigurationName,
 System.ServiceModel.EndpointAddress remoteAddress)
:
 base(endpointConfigurationName, remoteAddress) {
 }
 public UserRegisterServiceClient(System.ServiceModel.Channels.Binding binding,
 System.ServiceModel.EndpointAddress remoteAddress)
:
 base(binding, remoteAddress) {
 }
 public void AddUser(HostWCFSrviceUnitTest.HostWCFService.User user) {
 base.Channel.AddUser(user);
 }
 public HostWCFSrviceUnitTest.HostWCFService.User[] GetUserList() {
 return base.Channel.GetUserList();
 }
 }
}

9. Compile the solution, and we are ready to test the results.

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

125

10. Add two unit test cases and test initialization code into the
HostWCFServiceUnitTest project as in Listing 4-7.

Listing 4-7. Unit Test Cases for WCF Service Hosted in Azure

using System;
using System.Text;
using System.Collections.Generic;
using System.Linq;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace HostWCFSrviceUnitTest
{
 using HostWCFService_WebRole;
 using NUnit.Framework;

 [TestFixture]
 [TestClass]
 public class HostWCFClientUnitTest
 {
 private HostWCFService.UserRegisterServiceClient _userRegisterServiceClient = null;

 public HostWCFClientUnitTest()
 {
 }

 private TestContext testContextInstance;

 public TestContext TestContext
 {
 get
 {
 return testContextInstance;
 }
 set
 {
 testContextInstance = value;
 }
 }

 #region Additional test attributes
 [TestInitialize()]
 [SetUp]
 public void MyTestInitialize()
 {
 _userRegisterServiceClient =
 new HostWCFSrviceUnitTest.HostWCFService.UserRegisterServiceClient(
 "WSHttpBinding_IUserRegisterService"
);
 }

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

126

 #endregion

 [TestMethod]
 [Test]
 public void TestRegisterUser()
 {
 HostWCFService.User user = new HostWCFService.User();
 user.FirstName = "Henry";
 user.LastName = "Li";
 user.Password = "Hello Azure WCF host";
 _userRegisterServiceClient.AddUser(user);
 }

 [TestMethod]
 [Test]
 public void TestGetUserList()
 {
 TestRegisterUser();
 HostWCFService.User[] users =
 (HostWCFService.User[])_userRegisterServiceClient.GetUserList();
 Assert.IsTrue(users.Count<HostWCFService.User>() > 0);
 }
 }
}

11. To test a single unit test case using the Visual Studio test framework, mouse
over to the context of the specific test code body in Visual Studio and set a
break point for debugging purposes as Figure 4-5 shows.

Figure 4-5. Mouse over the test code body and right-click to bring up the context menu to run a single test

case from the context in Visual Studio

12. If you want to test the entire test suite you can simply press the F5 key or select
Debug ➤ Start Debugging.

The program will stop at the break point, and an icon in the system tray will indicate that the WCF
service has been hosted in HostWCFService_WebRole, as Figure 4-6 shows. Mouse over the variable users,
and the instance watch dialog windows should display the data we have just added via the WCF service.
The data is stored in the memory and is the local instance of List<User> userList = new List<User>()
defined in the UserRegisterService class.

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

127

Figure 4-6. Icon from system tray shows the WCF service has been hosted from HostWCFService_WebRole

Verify HostWCFService from the Local Development
Environment
Set HostWCFService as the startup project and run from Visual Studio by pressing F5. When the service
host icon shows from the system tray as in Figure 4-6 and the instance is shown in the local fabric as
shown in Figure 4-7, start Internet Explorer and enter http://localhost:8080/UserRegisterService in
the address bar to retrieve the metadata from the service. The results are shown in Figure 4-8.

Figure 4-7. The WCF service is hosted from the local development cloud and run from the local fabric

CHAPTER 4 ■ WINDOWS AZURE APPLICATION INTEGRATION USING WCF

128

Figure 4-8. Metadata and WSDL retrieved from the WCF service

In Chapter 7 we are going to discuss hosting workflow services in cloud-based development.

Summary
In this chapter I introduced the concept of integrating applications using WCF and Windows Azure.
WCF is a powerful tool for writing enterprise-class applications and makes loosely coupled applications
easier to write and manage. Add to that the benefits of Windows Azure, and there are plenty of
possibilities. A lot of the intricacies of WCF and Azure are beyond the scope of this book, so I simply
showed you how to host a WCF service in the cloud. I demonstrated how other .NET applications (and
even Java applications) will be able to take advantage of your cloud-based WCF services.

C H A P T E R 5

■ ■ ■

129

Azure .NET Services—Access
Control

Azure .NET Services contains a collection of three services: .NET Service Bus, .NET Workflow Service,
and .NET Access Control Service. .NET Access Control Service is the core service, which provides the
endpoint registration and access rules services for not only the other two .NET services of the service
collection set but also SQL Azure (an additional cloud-based service from the Microsoft cloud-based
service family, which is covered in Chapter 8), to access the cloud. To submit any application to the
cloud you must go through the .NET Service Bus, and the .NET Service Bus relies on the .NET Access
Control Service for securing access to cloud applications through a claims-based model. .NET Service
Bus, the partner service of the Access Control Service, significantly simplifies the communication
between applications and their clients. With .NET Service Bus, an application no longer needs to resolve
the endpoint IP address from organizations. Instead it uses the IP address provided by the .NET Service
Bus. At the time of this writing you cannot yet intuitively manage the registered endpoint address from
.NET Access Control Service, meaning that you have no direct access to modify the low-level data of
.NET Access Control Service yet.

.NET Access Control Service is built on the WCF services. You just need to specify the type of
federation in configuration files. In this chapter, after an introduction to the .NET Access Control
Service, we are going to provide exercises showing how to use WCF services in conjunction with the
Azure portal, instead of the using the Azure Service Management Tools, to manage the .NET Access
Control Service for cloud-based applications.

Working with the .NET Access Control Service
With the .NET Access Control Service, cloud-based applications or on-premises applications can
federate authentication information and allow services to be called across the firewall. Whether the
Azure application uses a security directory system, such as Active Directory or any standards-based
infrastructure, the application responds as if the user’s account were managed locally. Since the .NET
Access Control Service supports using programming frameworks and web protocols, it offers an easy
way for you to integrate an application with different platforms and architectures.

For most distributed applications, identity is a fundamental issue. The application needs information
on the application’s user to determine what they are allowed to do. Imagine that a single company has tens
or hundreds of applications or services, and each application has its private storage for user identities, and
each storage needs a particular approach to authentication. This turns out to be not only very expensive for
a company to maintain but also extremely tedious work for application development and integration. The
.NET Access Control Service provides an attractive approach to solve this problem. The concept uses a

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

130

claims-based identity model to allow the common features of authentication and authorization to be
provided by an external service. To reach that goal applications use the Security Assertion Markup
Language (SAML) to claim SAML tokens. Each SAML token carries a piece of information about a user. For
instance, one token contains user name information, while another token contains user role information.
Tokens are generated by a program called Security Token Service (STS).

However, there is another challenge for this approach to address. A SAML token may not contain claims
that the application is not expecting, and the services that generated the response token cannot be trusted by
the application. A solution to this is to involve another STS in the process to ensure that all SAML tokens carry
the correct claims and to perform the transformation to convert the SAML token into the application-trusted
token based on the rules defined for the transformation. To ensure tokens are generated from a trusted STS,
the .NET Access Control Service uses a federation mechanism to establish the trust relationship between the
new STS and the one that generated the token; it runs the STS from the cloud to do the federation.

Figure 5-1 shows how the .NET Access Control Service provides claims transformation and
identity federation. Figure 5-2 is the screenshot using the Azure Services Management Tool. From this
screenshot we can see that two default rules have been assigned to each Azure development account.
The claim name is “Action,” with two associated values, “Listen” and “Send.”

STS

Rules

ASP
Page

Application

Web Service

1.Retrieve WSDL

2. Request
SAML token

 with
SAML token

3.New SAML
token been
generated

4. Send SAML
token

Figure 5-1. Logic flow for the Access Control Service showing how it provides rule-based claims and

identity federation

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

131

Figure 5-2. Screenshot of the rules currently assigned to my Azure development account using

AzureServiceMMC

Build Your First Cloud Application Using the .NET Access
Control Service
In this exercise, we are going to build a very simple WCF service, which supports duplex communication
between server and client, and host it in a Windows console application. Using a local console
application is the simplest way to host a service, which we use as our host to prove the concept.

■ Note The code for this example is in the Exercise 5-1 bundle from the code download.

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

132

1. Create a WCF service library project, WCFServiceLibrary. For this simple example, there is only one

operation contract defined, PingService, which accepts a string parameter, which is posted from the

client application. The implementation for this operation contract is very straightforward as shown in

Listing 5-1; it simply returns the posted message back to the client. (Note that the attribute of the

service declaration uses a namespace. A namespace can be given a hierarchical structure, and there is

no restriction on the number of levels and name conventions. A Relay sublevel has been defined in the

namespace in this example for us to reuse when we deal with the relay bindings.)

Listing 5-1. WCF Service Contract Interface IAccountFederationService

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;

namespace AzureForDotNetDeveloper.DotNetService.ServiceBus.WCFServiceLibrary
{
[ServiceContract(Name = "IAccountFederationService",
 Namespace = "http://SoftnetSolutions.com/ServiceModel/Relay/")]
 public interface IAccountFederationService
 {
 [OperationContract]
 string PingServer(string message);
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;
using System.Diagnostics;

namespace AzureForDotNetDeveloper.DotNetService.ServiceBus.WCFServiceLibrary
{
 [ServiceBehavior(Name = "AccountFederationService",
 Namespace = "http://SoftnetSolutions.com/ServiceModel/Relay/")]
 public class AccountFederationService : IAccountFederationService
 {
 public string PingServer(string message)
 {
 string results =
 string.Format(
 "---{0}:PingServer, message received from client : {1}{2}",
 this.ToString(),
 Environment.NewLine,
 message
);

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

133

 Console.WriteLine(results);
 Trace.WriteLine(results);
 return message;
 }

 #region Console Utilities

 static public string ProcessPassword()
 {
 StringBuilder password = new StringBuilder();

 ConsoleKeyInfo info = Console.ReadKey(true);
 while (info.Key != ConsoleKey.Enter)
 {
 if (info.Key == ConsoleKey.Backspace)
 {
 if (password.Length != 0)
 {
 password.Remove(password.Length - 1, 1);
 Console.Write("\b \b");
 }
 }
 else if (info.KeyChar >= ' ')
 {
 password.Append(info.KeyChar);
 Console.Write("*");
 }
 info = Console.ReadKey(true);
 }

 Console.WriteLine();
 Console.Write(
 string.Format(
 "--- Please sit back and wait for your account to be authenticated
from .Net access service {0}{0}...{0}",
 Environment.NewLine
)
);

 return password.ToString();
 }

 #endregion
 }
}

2. Define a client communication channel interface IAccountFederationClientChannel derived from

the interface System.ServiceModel.IClientChannel in order to do the duplex communication.

The code is shown in Listing 5-2. This listing is for the implementation of the Main() function of

the host application.

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

134

Listing 5-2. WCF Client Channel Service Contract Definition

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;

namespace AzureForDotNetDeveloper.DotNetService.ServiceBus.WCFServiceLibrary
{
 public interface IAccountFederationClientChannel :
 IAccountFederationService, IClientChannel { }
}

3. Next, we are going to build a console application to host the WCF service. As Listing 5-3 shows,

we need to do the following steps to the initialization on the server side.

1. Create a endpoint URI. The URI address for the .NET Access Control Service is
sb://servicebus.windows.net/services/AzureForDotNetDeveloper/[SolutionName].

2. Define a TransportClientEndpointBehavior instance. This instance takes the
user credential information. Currently the .NET Access Control Service accepts
three types of credential: Solution Password, Windows CardSpace Information
Card, and X.509 Certificates. In this example we use the user name and
password for credential information. The user name is the solution name used
to create a solution in the cloud via the portal. The password is the password to
the solution. Follow the steps shown in Listing 5-3 to construct the transport
client endpoint behavior instances.

3. Construct a host instance. The host instance takes the WCF service
implementation class type for instantiation. The syntax is as follows and is also
shown in Listing 5-3.

ServiceHost host = new ServiceHost(typeof(AccountFederationService), address);

4. Add the authentication token, username, and password to the endpoint. Once
the host instance has been instantiated, the endpoint needs to be bound to the
service behavior.

5. Start services. When the user credential information has been sent to the .NET
Access Control Service for authentication, the process we saw illustrated in
Figure 5-1 runs its course. Note that in order to use the URI of the .NET Access
Control Service, two namespace declarations—Microsoft.ServiceBus and
Microsoft.ServiceBus.Description—must be inserted into the using clause
section to distinguish the URI from the WCF System.ServiceModel namespace.
References to the assembly Microsoft.ServiceBus.dll must also be added to
the project. This assembly can be found in the Microsoft .NET Services SDK
Assemblies folder. You call host.Open() to start services and host.Close() to
close up the service when the user presses the key to stop the service.

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

135

Listing 5-3. A Console Application Server Host Implementation Used to Host the Authentication WCF Services

using System;
using System.ServiceModel;
using System.ServiceModel.Description;
using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Description;
using System.Text;

namespace AzureForDotNetDeveloper.DotNetService.ServiceBus
{
 using AzureForDotNetDeveloper.DotNetService.ServiceBus.WCFServiceLibrary;

 class Program
 {
 static void Main(string[] args)
 {
 Console.Write(
 string.Format(
 "--- WCF Service local host --- {0}--- Please enter your Azure Solution
Name:{0}",
 Environment.NewLine
)
);
 string solutionName = Console.ReadLine();
 Console.Write(string.Format("--- Solution Password: {0}",
 Environment.NewLine));
 string solutionPassword = AccountFederationService.ProcessPassword();

 Uri address =
 new Uri(String.Format("sb://{0}/services/{1}/AuthenticationService/",
 ServiceBusEnvironment.DefaultRelayHostName, solutionName));
 TransportClientEndpointBehavior userNamePasswordServiceBusCredential =
 new TransportClientEndpointBehavior();
 userNamePasswordServiceBusCredential.CredentialType =
 TransportClientCredentialType.UserNamePassword;
 userNamePasswordServiceBusCredential.Credentials.UserName.UserName =
 solutionName;
 userNamePasswordServiceBusCredential.Credentials.UserName.Password =
 solutionPassword;

 ServiceHost host =
 new ServiceHost(typeof(AccountFederationService), address);

 //add the Service Bus credentials to all endpoints specified in configuration
 foreach (ServiceEndpoint endpoint in host.Description.Endpoints)
 {
 endpoint.Behaviors.Add(userNamePasswordServiceBusCredential);
 }

 host.Open();

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

136

 Console.WriteLine(
 string.Format(
 "--- Authentication success from .Net access service.{1}Service address:
{1}{0}{1}",
 address,
 Environment.NewLine
)
);
 Console.WriteLine(
 string.Format(
 "--- Ready to receive message...{0} Press <Enter> to terminate server ---",
 Environment.NewLine
)
);

 Console.ReadLine();

 host.Close();
 }
 }
}

4. Add a configuration file to the project and insert configuration information as Listing 5-4 shows.

Listing 5-4. Configuration for Service Host

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service name="AzureForDotNetDeveloper.DotNetService.ServiceBus
.WCFServiceLibrary.AccountFederationService">
 <endpoint contract="AzureForDotNetDeveloper.DotNetService.ServiceBus
.WCFServiceLibrary.IAccountFederationService"
 binding="netTcpRelayBinding" />
 </service>
 </services>
 </system.serviceModel>
<configuration>

5. Create a new Windows console application to be a test client as Listing 5-5 shows. The

implementation URI for the client is the same as the server. We use the ChannelFactory class

provided by System.ServiceModel to instantiate a client channel WCF service instance used to

send an acknowledgement message back to the server. As we did for the server host program, the

namespace Microsoft.ServiceBus and the reference to assembly Microsoft.ServiceBus.dll need

to be added to the project as well. Note that when creating the client channel factory, the relay

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

137

endpoint needs to be specified because the authentication for the client application to use the

WCF service endpoint is through the relay from the server endpoint.

Listing 5-5. Implementation for Client Application

using System;
using System.ServiceModel;
using Microsoft.ServiceBus;

namespace AzureForDotNetDeveloper.DotNetService.ServiceBus
{
 using AzureForDotNetDeveloper.DotNetService.ServiceBus.WCFServiceLibrary;

 class Program
 {
 static void Main(string[] args)
 {
 Console.Write(
 string.Format(
 "--- Test Client--- {0}--- Please enter your Azure Solution Name:{0} ",
 Environment.NewLine
)
);
 string solutionName = Console.ReadLine();
 Console.Write(string.Format("--- Solution Password: {0}",
 Environment.NewLine));
 string solutionPassword = AccountFederationService.ProcessPassword();

 // create the service URI based on the solution name
 Uri serviceUri =
 new Uri(String.Format("sb://{0}/services/{1}/AuthenticationService/",
 ServiceBusEnvironment.DefaultRelayHostName, solutionName));
 TransportClientEndpointBehavior userNamePasswordServiceBusCredential =
 new TransportClientEndpointBehavior();
 userNamePasswordServiceBusCredential.CredentialType =
 TransportClientCredentialType.UserNamePassword;
 userNamePasswordServiceBusCredential.Credentials.UserName.UserName =
 solutionName;
 userNamePasswordServiceBusCredential.Credentials.UserName.Password =
 solutionPassword;

 //create the channel factory loading the configuration
 ChannelFactory<IAccountFederationClientChannel> channelFactory =
 new ChannelFactory<IAccountFederationClientChannel> ("RelayEndpoint",
 new
EndpointAddress(serviceUri));

 //apply the Service Bus credentials
 channelFactory.Endpoint.Behaviors.Add(userNamePasswordServiceBusCredential);

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

138

 // create and open the client channel
 IAccountFederationClientChannel channel = channelFactory.CreateChannel();
 channel.Open();

 Console.WriteLine(string.Format("--- Please type message to ping service:{0}",
 Environment.NewLine));
 string inputMessage = Console.ReadLine();
 while (inputMessage != String.Empty)
 {
 try
 {
 Console.WriteLine("--- Receive response from Server: {0}",
 channel.PingServer(inputMessage));
 }
 catch (Exception e)
 {
 Console.WriteLine(
 string.Format("--- Test Client:Program, exception caught :{0}",
 e.Message));
 }
 inputMessage = Console.ReadLine();
 }

 channel.Close();
 channelFactory.Close();
 }
 }
}

6. Add App.config to the client application and input the binding information as Listing 5-6 shows.

Listing 5-6. Configuration for Client Application

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
<service name="AzureForDotNetDeveloper.DotNetService.ServiceBus
.WCFServiceLibrary.AccountFederationService">
<endpoint contract="AzureForDotNetDeveloper.DotNetService.ServiceBus
.WCFServiceLibrary.IAccountFederationService"
 binding="netTcpRelayBinding" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

To start the server application, we are going to enter the Azure solution name and password, which
will be used to do the authentication by the .NET Access Control Service. When the .NET Access Control
Service has finished authenticating the request, the server is running to listen for the message posted to
the endpoint.

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

139

One thing that needs to be clear is that the custom service we host is running from the local
machine, but the access is controlled and established through the endpoints from remote Azure
services. This can be verified by the atom feed automatically assigned to every service by Azure services
from the Azure portal page. Go to the Azure portal at http://portal.ex.azure.microsoft.com/ and log
on to the .NET Services Bus. Figure 5-3 shows how to access the feed, and Figure 5-4 shows our service
as expected.

Figure 5-3. The Atom feed for our service

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

140

Figure 5-4. Verifying that the WCF service is leveraging .NET Access Control Service

Start the client application and enter the solution name and password. Send a message from the
client, and the server sends back acknowledgement information.

Finally, close both client and server applications. Go back to the Azure portal. We can see that the
endpoint is also removed from Azure as Figure 5-5 shows.

Figure 5-5. The service endpoint has been removed from Azure when the service is closed

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

141

This exercise demonstrates how to tremendously simplify authentication by using the .NET Access
Control Service from the cloud; all you need to do is deal with the configuration.

The .NET Access Control Service redirected the service call back to the local machine, where the
service is also hosted; in so doing, it crossed the Internet and reached behind the local machine's
firewall. The client application has not even noticed that it actually invoked a WCF service host. This is
really a gift to all .NET developers.

CardSpace .Net Access Control Services
In the previous exercise we used the user name and password as security credentials. This is just an
alternate approach to access security. In this exercise we explore the .NET Access Control Service with
CardSpace security and learn how the token claim and STS work from the .NET Access Control Service.
Be mentally prepared that there is heavy local and remote configuration involved to reach that goal.

This exercise is divided into two sections. The first section is the fundamental step that needs to
be done before we move to the second section. The source code for the first section is separated from
that for the second section. The file name of the source code is Exercise_5_2_1.zip, which can be
downloaded from the download site of the book. The source code for the second section is
Exercise_5_2.zip, which can also be found in the same location as the previous one.

In the first section we are going to create three projects: a WCF services project
AzureForDotNetDeveloperWCFserviceLibrary, a service host project Service, and a client project
Client. This is a typical WCF client-server solution without using the .NET Access Control Service
and security access.

AzureForDotNetDeveloperWCFserviceLibrary
In this project we’ll define a simple WCF service contract interface. This interface has three methods
declared: Ping(), RegisterUser(), and GetRegisteredUser(). The service is a simulation service to handle
user registration to a site. The source code is shown in Listing 5-7, the implementation for this interface
is shown Listing 5-8, and the configuration is shown in Listing 5-9. There is nothing special except that
the decorated attribute parameter InstanceContextMode of ServiceBehavior is assigned a value of Single,
which means using a singleton pattern for service calls because we need to share the service instance in
order to return the information of the last registered user.

The attribute values to the GetRegisteredUser() operation contract, Action and ReplayAction,
are used by the WCF service to dispatch an input or output message to an appropriate handler
method. In this example there is no output handler, so the reply attributes do not trigger any action
and can be removed from the code. It won’t cause any trouble though if you leave it alone. For
more information about Action and ReplayAction see http://msdn.microsoft.com/en-us/
library/system.servicemodel.operationcontractattribute.replyaction.aspx.

Listing 5-7. Service Contact IAzureForDotNetDeveloper and Data Contract User

using System;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Channels;

namespace AzureForDotNetDeveloper.DotNetService.ServiceBus

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

142

{
[ServiceContract(Name = "UserRegisterService",
 Namespace = "http://AzureForDotNetDeveloper.DotNetService.ServiceBus")]
 public interface IAzureForDotNetDeveloperWCFservice
 {
 [OperationContract(Action = "Ping", ReplyAction = "PingResponse")]
 string Ping();

 [OperationContract(Action = "RegisterUser", ReplyAction = "AddUserResponse")]
 void RegisterUser(string xmlString);

 [OperationContract(Action = "GetRegisteredUser",
 ReplyAction = "GetUserListResponse")]
 string GetRegisteredUser();
 }

 [DataContract]
 public class User
 {
 [DataMember]
 public string FirstName;

 [DataMember]
 public string LastName;

 [DataMember]
 public DateTime TimeRegistered;

 [DataMember]
 public string Password;
 }
}

Listing 5-8. Implementations for IAzureForDotNetDeveloperWCFService

using System;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Channels;
using System.Collections.Generic;
using System.IO;
using System.Xml;
using System.Xml.Serialization;
using System.Text;

namespace AzureForDotNetDeveloper.DotNetService.ServiceBus
{

 [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
 public class AzureForDotNetDeveloperWCFservice : IAzureForDotNetDeveloperWCFservice
 {

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

143

 private User _registeredUser = null;

 #region IUserRegisterService Members

 public string Ping()
 {
 return string.Format("--- I am here <{0}>", this.ToString());
 }

 public void RegisterUser(string xmlString)
 {
 try
 {
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.LoadXml(xmlString);
 XmlSerializer serializer = new XmlSerializer(typeof(User));
 StringReader reader = new StringReader(xmlString);

 _registeredUser = (User)serializer.Deserialize(reader);
 }
 catch (Exception ex)
 {
 }
 }

 public string GetRegisteredUser()
 {
 XmlSerializer serializer = new XmlSerializer(typeof(User));
 StringBuilder sb = new StringBuilder();
 StringWriter writer = new StringWriter(sb);

 serializer.Serialize(writer, _registeredUser);
 return writer.GetStringBuilder().ToString();
 }

 #endregion
 }
}

Service Implementations and Configurations
The following is the implementation of the server (Listing 5-9) and its configuration (Listing 5-10).

Listing 5-9. Implementations for Service Host

using System;
using System.Security.Cryptography.X509Certificates;
using System.ServiceModel;
using System.ServiceModel.Description;

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

144

namespace AzureForDotNetDeveloper.DotNetService.ServiceBus
{
 class Program
 {
 static void Main(string[] args)
 {
 ServiceHost host = new ServiceHost(typeof(AzureForDotNetDeveloperWCFservice));
 host.Open();

 Console.WriteLine("---UserRegister service is running.");
 Console.WriteLine("---Press <Enter> to terminate server");
 Console.ReadLine();

 host.Close();
 }

 private static string ReadSolutionName()
 {
 Console.Write(
 string.Format(
 "---Please enter your solution name: {0}",
 Environment.NewLine
)
);
 return Console.ReadLine();
 }

 }
}

Listing 5-10. Configurations for Service Host

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="basicHttpBinding1" />
 </basicHttpBinding>
 </bindings>
 <services>
 <service behaviorConfiguration="UserRegisterServiceBehavior"
 name="AzureForDotNetDeveloper.DotNetService.ServiceBus
.AzureForDotNetDeveloperWCFservice">
 <endpoint address=""
 binding="basicHttpBinding"
 bindingConfiguration=""
 name="UserRegisterEndpoint"
 contract="AzureForDotNetDeveloper.DotNetService.ServiceBus
.IAzureForDotNetDeveloperWCFservice" />
 <endpoint address="mex"

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

145

 binding="mexHttpBinding"
 name="mexEndpoint"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost/AzureForDotNetDeveloperWCFservice" />
 </baseAddresses>
 </host>
 </service>
 </services>

 <behaviors>
 <serviceBehaviors>
 <behavior name="UserRegisterServiceBehavior">
 <serviceMetadata httpGetEnabled="True"
 httpGetUrl="http://localhost/AzureForDotNetDeveloperWCFservice/wsdl" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Client Implementations and Configurations
The client proxy class needs to be generated from Visual Studio. Compile the server and start the server.
When the server is running, right-click on the client project References node and select Add Service
Reference from the context menu to bring up the Add Service Reference dialog windows. As Figure 5-6
shows, enter the service address http://localhost/AzureForDotNetDeveloperWCFservice in the address
text box, and the name of the client class in the namespace text box to generate the client proxy class.

Figure 5-6. Run server and generate the client proxy class from Visual Studio

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

146

The following is the client implementation using the proxy.

Listing 5-11. Using the Proxy in a Client Implementation

 static void Main(string[] args)
 {
 UserRegisterServiceClient.UserRegisterServiceClient client =
 new UserRegisterServiceClient.UserRegisterServiceClient();

 try
 {
 Console.WriteLine(string.Format("--- Ping server return = <{0}>{1}",
 client.Ping(),
 Environment.NewLine));

 User user = new User();
 user.FirstName = "Henry";
 user.LastName = "Li";
 user.Password = "Hello Azure WCF host";
 user.TimeRegistered = DateTime.Now;
 XmlSerializer serializer = new XmlSerializer(user.GetType());
 StringBuilder sb = new StringBuilder();
 StringWriter writer = new StringWriter(sb);

 serializer.Serialize(writer, user);
 client.RegisterUser(writer.GetStringBuilder().ToString());

 string xmlString = client.GetRegisteredUser();
 XmlSerializer deSerializer = new XmlSerializer(typeof(User));
 StringReader stringReader = new StringReader(xmlString);

 User registeredUser = (User)serializer.Deserialize(stringReader);
 Console.WriteLine(
 string.Format("--- User <{0} {1}> register success @[{2}].{3}",
 registeredUser.FirstName,
 registeredUser.LastName,
 registeredUser.TimeRegistered.ToString(),
 Environment.NewLine));

 }
 catch (Exception e)
 {
 DumpException(e);
 }

 client.Close();

 Console.WriteLine();
 Console.WriteLine("Press <ENTER> to exit client.");
 Console.ReadLine();
 }

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

147

 static void DumpException(Exception e)
 {
 Console.WriteLine(e.Message);
 }

Test Results for What We Have Built
At this point we have done the first section of development. Let’s test what we have so far. Start the
server if it is not running yet; in this case we have the server running as localhost. Now enter the service
address http://localhost/AzureForDotNetDeveloperWCFservice in a browser; we should see the results
as Figure 5-7 shows. Run the client program, and we should have results as in Figure 5-8.

Figure 5-7. Run the server and use Internet Explorer to verify that the service has been created

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

148

Figure 5-8. Run the client; we have the echo from the server, and a user has been registered successfully

The Access Control Service can provide authentication interactively using CardSpace. This
approach will be covered at the end of this exercise. Alternatively, the authentication can be done
using X.509 certification. Both approaches require that the client application preregister client-side
information in the Azure cloud environment. Before we move forward to discuss the Access Control
Service using X.509 and CardSpace authentication, we have to do some configuration in the local
development environment.

Authentication Using X.509 Certification or CardSpace in .NET
Access Control Service
Let’s start the process by installing the X.509 certificate.

Installing the X.509 Certificate
The source code of this exercise (Exercise_5_2) contains a generated certificate file called
localhost.cer, which can be found in the subfolder Certificate after unzipping the source code
as Figure 5-9 shows.

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

149

■ Note To generate a new certificate you need to use the certificate enrollment service. Since Windows
Vista/7 and Windows Server 2008 are designed as high-security operating systems, by default this service
is disabled from Windows Vista/7 and Windows Server 2008. If the operating system from your local
development is either Windows Vista/7 or Windows Server 2008, the easiest workaround to this issue is to
request a new certificate from another computer that runs Window XP or Windows Server 2003. (You can
reference the following article from The Code Project to request a new certificate using Windows XP or
Windows 2003: http://69.10.233.10/kb/wcf/wcf_certificates.aspx. For troubleshooting the
certificate enrollment, see http://blogs.msdn.com/windowsvistanow/archive/2008/04/08/
troubleshooting-certificate-enrollment.aspx.)

Figure 5-9. Locate the certificate file that will be associated with the scope of an Azure solution in .NET

Access Control Service

Find that file, right-click it, and select Install Certificate. Follow the steps shown in Figure 5-10 to
install the certificate in the Trusted Root Certificate Authorities/Local Computer/Certificates store. The
results are shown in Figure 5-11.

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

150

Figure 5-10. Import certificate using certmgr.exe

Click the Windows Start button and type “mmc” in the search bar to find the utility program
mmc.exe, and bring up the snap-in management console. From the File menu, select the certmgr.msc
certificate management snap-in.

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

151

Figure 5-11. Start certmgr.msc Windows snap-in certificate management tool

Figure 5-12 shows the results after the certificate has been installed successfully. Follow the arrow to
get the detailed information of the Thumbprint and copy the data to the “<behavior>” section of the
Service project configuration file App.config as shown in the boldface lines in Listing 5-12.

Figure 5-12. Certificate has been installed to Trust Root Certificate Authorities, Local Computer store

Listing 5-12. Insert the Data of the Installed Certificate Thumbprint Information in the Configuration File

App.config of the Service Project

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

152

 <behaviors>
 <serviceBehaviors>
 <behavior name="UserRegisterServiceBehavior">
 <serviceMetadata httpGetEnabled="True"
 httpGetUrl="http://localhost/AzureForDotNetDeveloperWCFservice/wsdl" />
 <serviceDebug includeExceptionDetailInFaults="True" />
 <serviceCredentials>
 <clientCertificate>
 <authentication certificateValidationMode="True" />
 </clientCertificate>
 <serviceCertificate storeLocation='LocalMachine'
 storeName='My'
 x509FindType='FindByThumbprint'
 findValue='01 20 90 8a 7e 12 52 45 9b 37 4b 92 64 14 18 e8 0d 12 63 fc' />
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
 </behaviors>

Associating the Certificate to the Azure Application URL
To associate an installed X.509 on a client-side machine to the Azure cloud you use the registration
process. The installed certification can be exported into a file of the .pfx format via the certificate
management snap-in tool we used above. The file exported with the extension .pfx contains the
certificate information and a corresponding private key (for CA-issued certification of a self-signed
certificate). This exercise’s code also provides the exported .pfx certificate file, which can be found in
the same folder as the localhost.cer file. In the next section I am going to walk you through this
procedure step by step.

To associate a certificate with an Azure application:

1. Sign in to the Azure portal and navigate to X.509 Certificates in .NET Access
Control and select the Basic configuration as Figure 5-13 shows.

2. On the X.509 Certificates setup page, enter the endpoint address of the WCF
services.

3. Uncheck the box labeled “Retrieve certificate from URL (http or https)” and
select Browse.

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

153

Figure 5-13. On the X.509 certificate setup page enter the endpoint of the service and select Browse to find

Regcert.exe

4. Navigate to the Microsoft .NET Services SDK Tools folder and launch
RegCert.exe to generate the verification code as Figure 5-14 shows.

5. Copy the generated code and paste to the Verification Code box.

6. Click the Save button to associate the certificate to the WCF services. If there is
a certificate already associated with the same URL, there will be an error
message, and you need to go back to the previous page and select the
Advanced configuration to fix it.

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

154

Figure 5-14. Generate a verification code with Regcert.exe and copy to the X.509 Certificates setup page

Using CardSpace in the .NET Access Control Service
Sign in to the Azure Services Platform portal and navigate to the Windows CardSpace Card Setup page.
Add a new card if there is no card, as shown in Figure 5-15, to create one and send it to Azure. There is no
extra installation needed to generate the CardSpace after the local Azure development has been set up.
This CardSpace will be sent to the Access Services at runtime for interactive authentication.

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

155

Figure 5-15. Procedure to send CardSpace from the local computer

Associating a Card with a Solution

Click the Send button shown in the last step of Figure 5-15 to send the card to Azure for association. The
setup will save the file as Figure 5-16 shows. The file name must be unique, and duplication is not
allowed.

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

156

Figure 5-16. Sending a card to Azure to associate an URL using a unique name

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

157

Registering the Generated CardSpace with Azure Access Control

The generated CardSpace needs to be registered before it can be used at runtime for interactive
authentication. The screenshot in Figure 5-17 shows how to register the CardSpace from the Azure
portal.

Figure 5-17. Defining the access rules for each operation contract respectively

Modifying the Code to Use the CardSpace .NET Access Control Service

Create a new project FederateAccessManager and add three classes to this project. These three classes are all
derived from classes of the System.ServiceModel.Security namespace as Table 5-1 shows. Listing 5-13,
Listing 5-14, and Listing 5-15 are the implementation for these classes respectively.

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

158

Table 5-1. Class Definition in FederateAccessManager Assembly

Class Derived From Override Input
Parameters

Output

CloneCore UserRegister
Service
Credentials

ServiceCredentials

CreateSecurity
TokenManager

 SecurityTokenManager

UserRegister
Security
TokenManager

ServiceCredentials
SecurityTokenManager

CreateSecurity
TokenAuthenticator

SecurityToken
Requirement

SecurityToken
Authenticator
SecurityTokenResolver

UserRegister
Token
Authenticator

SamlSecurityToken
Authenticator

ValidateTokenCore SecurityToken ReadOnlyCollection
<IAuthorizationPlicy>

The UserRegisterServiceCredentials class is derived from ServiceCredentials and accepts the

name of the corresponding Azure solution and overrides two methods of its base class, CloneCore() and
CreateSecurityTokenManager(). At runtime the certificate that has been installed on a local device and
registered from Azure Access Control will be assigned to the instance of this class. The type of the
ServiceCredentials class must be specified when you instantiate a service host instance, and an
instance of the UserRegisterServiceCredentials class needs to be added to the host behaviors collection
after the host has been instantiated. The responsibility of the class UserRegisterTokenAuthenticator is to
communicate to the Access Control Service to validate the security token for authentication. This class is
used by the UserRegisterSecurityTokenManager class.

Listing 5-13. Implementations for Class UserRegisterServiceCredentials

using System;
using System.IdentityModel.Selectors;
using System.ServiceModel.Description;

namespace AzureForDotNetDeveloper.DotNetService.ServiceBus
{

 public class UserRegisterServiceCredentials : ServiceCredentials
 {
 String solutionName;

 public UserRegisterServiceCredentials(String solutionName)
 : base()
 {
 this.solutionName = solutionName;
 }

 protected override ServiceCredentials CloneCore()
 {

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

159

 return new UserRegisterServiceCredentials(solutionName);
 }

 public override SecurityTokenManager CreateSecurityTokenManager()
 {
 return new UserRegisterSecurityTokenManager(this, solutionName);
 }
 }
}

Listing 5-14. Implementations of Class UserRegisterSecurityTokenManager

using System;
using System.IdentityModel.Selectors;
using System.IdentityModel.Tokens;
using System.ServiceModel.Security;

namespace AzureForDotNetDeveloper.DotNetService.ServiceBus
{

 public class UserRegisterSecurityTokenManager : ServiceCredentialsSecurityTokenManager
 {
 UserRegisterServiceCredentials UserRegisterServiceCredentials;
 String solutionName;

 public UserRegisterSecurityTokenManager(
 UserRegisterServiceCredentials UserRegisterServiceCredentials,
 String solutionName
)
 : base(UserRegisterServiceCredentials)
 {
 this.UserRegisterServiceCredentials = UserRegisterServiceCredentials;
 this.solutionName = solutionName;
 }

 public override SecurityTokenAuthenticator CreateSecurityTokenAuthenticator(
 SecurityTokenRequirement tokenRequirement,
 out SecurityTokenResolver outOfBandTokenResolver
)
 {
 if (tokenRequirement.TokenType.Equals(
 "http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1",
 StringComparison.OrdinalIgnoreCase))
 {
 base.CreateSecurityTokenAuthenticator(tokenRequirement,
 out outOfBandTokenResolver);
 return new UserRegisterTokenAuthenticator(
 new SecurityTokenAuthenticator[] {
 new X509SecurityTokenAuthenticator(X509CertificateValidator.None),
 new RsaSecurityTokenAuthenticator()
 },

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

160

 solutionName
);
 }
 else
 {
 return base.CreateSecurityTokenAuthenticator(tokenRequirement,
 out outOfBandTokenResolver);
 }
 }
 }
}

Listing 5-15. Implementations of Class UserRegisterTokenAuthenticator

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.IdentityModel.Claims;
using System.IdentityModel.Policy;
using System.IdentityModel.Selectors;
using System.IdentityModel.Tokens;
using System.ServiceModel;

namespace AzureForDotNetDeveloper.DotNetService.ServiceBus
{

 class UserRegisterTokenAuthenticator : SamlSecurityTokenAuthenticator
 {
 IList<SecurityTokenAuthenticator> supportingAuthenticators;
 SamlSecurityTokenAuthenticator innerSamlSecurityTokenAuthenticator;
 String solutionName;

 public UserRegisterTokenAuthenticator(
 IList<SecurityTokenAuthenticator> supportingAuthenticators, String solutionName)
 : base(supportingAuthenticators)
 {
 this.supportingAuthenticators =
 new List<SecurityTokenAuthenticator>(supportingAuthenticators);
 this.innerSamlSecurityTokenAuthenticator =
 new SamlSecurityTokenAuthenticator(supportingAuthenticators);
 this.solutionName = solutionName;
 }

 public UserRegisterTokenAuthenticator(
 IList<SecurityTokenAuthenticator> supportingAuthenticators, TimeSpan maxClockSkew)
 : base(supportingAuthenticators, maxClockSkew)
 {
 this.supportingAuthenticators =
 new List<SecurityTokenAuthenticator>(supportingAuthenticators);
 this.innerSamlSecurityTokenAuthenticator =
 new SamlSecurityTokenAuthenticator(supportingAuthenticators, maxClockSkew);

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

161

 }

 protected override
 ReadOnlyCollection<IAuthorizationPolicy>ValidateTokenCore(SecurityToken token)
 {
 if (token == null)
 {
 throw new ArgumentNullException("token");
 }

 SamlSecurityToken samlToken = token as SamlSecurityToken;

 if (samlToken == null)
 {
 throw new SecurityTokenException("Not a SamlSecurityToken.");
 }

 if (!samlToken.Assertion.Issuer.Equals(
 String.Format("http://accesscontrol.windows.net/{0}", this.solutionName),
 StringComparison.OrdinalIgnoreCase))
 {
 throw new SecurityTokenException("Not expected issuer.");
 }

 return this.innerSamlSecurityTokenAuthenticator.ValidateToken(token);
 }
 }
}

Now insert code on the server to use security credentials as Listing 5-16 shows.

Listing 5-16. Insert Security Credential Code into Server Implementations

using System;
using System.Security.Cryptography.X509Certificates;
using System.ServiceModel;
using System.ServiceModel.Description;

namespace AzureForDotNetDeveloper.DotNetService.ServiceBus
{
 class Program
 {
 static void Main(string[] args)
 {
 ServiceHost host = new ServiceHost(typeof(AzureForDotNetDeveloperWCFservice));

 String solutionName = ReadSolutionName();
 ServiceCredentials sc = host.Credentials;
 X509Certificate2 cert = sc.ServiceCertificate.Certificate;
 UserRegisterServiceCredentials serviceCredential =
 new UserRegisterServiceCredentials(solutionName);

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

162

 serviceCredential.ServiceCertificate.Certificate = cert;
 host.Description.Behaviors.Remove((typeof(ServiceCredentials)));
 host.Description.Behaviors.Add(serviceCredential);

 host.Open();

 Console.WriteLine("---UserRegister service is running.");
 Console.WriteLine("---Press <Enter> to terminate server");
 Console.ReadLine();

 host.Close();
 }

 private static string ReadSolutionName()
 {
 Console.Write(string.Format("---Please enter your solution name: {0}",
 Environment.NewLine));
 return Console.ReadLine();
 }

 }
}

Add a new class AccessControlHelper to the WCF service project AzureForDotNetDeveloperWCFserviceLibrary.
This is a helper class used to validate the claim token string. The string parameters passed in should match
those that we defined in the rules when we configured the rule from Azure (see Figure 5-14).

Listing 5-17. Implementation of Class AccessControlHelper

using System;
using System.Collections.Generic;
using System.IdentityModel.Claims;
using System.IdentityModel.Policy;
using System.ServiceModel;

namespace AzureForDotNetDeveloper.DotNetService.ServiceBus
{
 public class AccessControlHelper
 {
 public static void DemandActionClaim(string claimValue)
 {
 foreach (
 ClaimSet claimSet in
 OperationContext.Current.ServiceSecurityContext.AuthorizationContext.ClaimSets
)
 {
 foreach (Claim claim in claimSet)
 {
 if (AccessControlHelper.CheckClaim(
 claim.ClaimType,

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

163

 claim.Resource.ToString(),
 "http://docs.oasis-open.org/wsfed/authorization/200706/claims/action",
 claimValue))
 {
 if (AccessControlHelper.IsIssuedByIbn(claimSet))
 {
 return;
 }
 }
 }
 }

 throw new FaultException("Access denied.");
 }

 static bool IsIssuedByIbn(ClaimSet claimSet)
 {
 foreach (Claim claim in claimSet.Issuer)
 {
 if (AccessControlHelper.CheckClaim(
 claim.ClaimType,
 claim.Resource.ToString(),
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/dns",
 "accesscontrol.windows.net"))
 {
 return true;
 }
 }

 return false;
 }

 static bool CheckClaim(string claimType, string claimValue,
 string expectedClaimType, string expectedClaimValue)
 {
 if (
 StringComparer.OrdinalIgnoreCase.Equals(claimType, expectedClaimType) &&
 StringComparer.OrdinalIgnoreCase.Equals(claimValue, expectedClaimValue)
)
 {
 return true;
 }
 return false;
 }
 }
}

Now let's modify the WCF service operation implementation. For all implementations of the
operation in the WCF service contract we need to insert the code to demand the claim for the security
token by using the previous helper class as Listing 5-18 shows.

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

164

Listing 5-18. Implementation of the WCF Service Contract

using System;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Channels;
using System.Collections.Generic;
using System.IO;
using System.Xml;
using System.Xml.Serialization;
using System.Text;

namespace AzureForDotNetDeveloper.DotNetService.ServiceBus
{

 [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
 public class AzureForDotNetDeveloperWCFservice : IAzureForDotNetDeveloperWCFservice
 {
 private User _registeredUser = null;

 #region IUserRegisterService Members

 public string Ping()
 {
 AccessControlHelper.DemandActionClaim("UserRegister.Ping");
 return string.Format("--- I am here <{0}>", this.ToString());
 }

 public void RegisterUser(string xmlString)
 {
 try
 {

 AccessControlHelper.DemandActionClaim("UserRegister.RegisterUser");
 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.LoadXml(xmlString);
 XmlSerializer serializer = new XmlSerializer(typeof(User));
 StringReader reader = new StringReader(xmlString);

 _registeredUser = (User)serializer.Deserialize(reader);
 }
 catch (Exception ex)
 {
 }
 }

 public string GetRegisteredUser()
 {
 AccessControlHelper.DemandActionClaim("UserRegister.GetRegisteredUser");
 XmlSerializer serializer = new XmlSerializer(typeof(User));
 StringBuilder sb = new StringBuilder();

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

165

 StringWriter writer = new StringWriter(sb);

 serializer.Serialize(writer, _registeredUser);
 return writer.GetStringBuilder().ToString();
 }

 #endregion
 }
}

Finally, update the service reference on the client project. Start running the service, and go to Visual
Studio. Right-click on the Service Reference node to update the client proxy class. The App.config file is
also going to be regenerated by Visual Studio to reflect the security access information with binding type
ws2007FederationHttpBinding as Listing 5-19 shows.

Listing 5-19. Generated Client Proxy Configuration with Security Access Claim Token Encoding

 <ws2007FederationHttpBinding>
 <binding name="UserRegisterEndpoint1" closeTimeout="00:01:00"
 openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"
 bypassProxyOnLocal="false" transactionFlow="false"
 hostNameComparisonMode="StrongWildcard"
 maxBufferPoolSize="524288" maxReceivedMessageSize="65536" messageEncoding="Text"
 textEncoding="utf-8" useDefaultWebProxy="true">
 <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 <reliableSession ordered="true" inactivityTimeout="00:10:00"
 enabled="false" />
 <security mode="Message">
 <message algorithmSuite="Default" issuedKeyType="SymmetricKey"
 issuedTokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1"
 negotiateServiceCredential="false">
 <issuer
 address=
 "http://accesscontrol.windows.net/sts/replacewithsolutionname/issued_for_certificate"
 binding="customBinding"
 bindingConfiguration=
 "http://accesscontrol.windows.net/sts/replacewithsolutionname/issued_for_certificate">
 <identity>
 <certificate
 encodedValue="AwAAAAEAAAAUAAAAQW5vpdmCsJaTH79CxKPc1giFbJUgAAAAAQAAADMGAAAwggYvM
IIFF6ADAgECAgowSxUCAAUAAN+/MA0GCSqGSIb3DQEBBQUAMIGLMRMwEQYKCZImiZPyLGQBGRYDY29tMRkwFwYKCZImi
ZPyLGQBGRYJbWljcm9zb2Z0MRQwEgYKCZImiZPyLGQBGRYEY29ycDEXMBUGCgmSJomT8ixkARkWB3JlZG1vbmQxKjAoB
gNVBAMTIU1pY3Jvc29mdCBTZWN1cmUgU2VydmVyIEF1dGhvcml0eTAeFw0wODA5MDQyMDExMDJaFw0wOTA5MDQyMDExM
DJaMH0xCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJXQTEQMA4GA1UEBxMHUmVkbW9uZDESMBAGA1UEChMJTWljcm9zb2Z0M
RcwFQYDVQQLEw5Qcm9qZWN0IFp1cmljaDEiMCAGA1UEAxMZYWNjZXNzY29udHJvbC53aW5kb3dzLm5ldDCBnzANBgkqh
kiG9w0BAQEFAAOBjQAwgYkCgYEAreESUDU/HSaVXHmBHfBdUZW7yLlvFRiB+GX/gIEz94H6HW85Doo+0gT8GEORtite+
oREcom6euSUYarP3Rt/1rIvtJAU/+GhcupKvICZAavx9vPLrfjxgayHuSCc8QbAOnpn44f/LE37q+Y22g8uqOg3aQE7J

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

166

Olb0wW//+2yXScCAwEAAaOCAyQwggMgMAsGA1UdDwQEAwIEsDAdBgNVHSUEFjAUBggrBgEFBQcDAgYIKwYBBQUHAwEwe
AYJKoZIhvcNAQkPBGswaTAOBggqhkiG9w0DAgICAIAwDgYIKoZIhvcNAwQCAgCAMAsGCWCGSAFlAwQBKjALBglghkgBZ
QMEAS0wCwYJYIZIAWUDBAECMAsGCWCGSAFlAwQBBTAHBgUrDgMCBzAKBggqhkiG9w0DBzAdBgNVHQ4EFgQUaqPI5cP+U
HaMNfk5i8kWU3mza84wHwYDVR0jBBgwFoAUFFXEOeA9LtFVLkiWsNh+FCIGk7wwggEKBgNVHR8EggEBMIH+MIH7oIH4o
IH1hlhodHRwOi8vbXNjcmwubWljcm9zb2Z0LmNvbS9wa2kvbXNjb3JwL2NybC9NaWNyb3NvZnQlMjBTZWN1cmUlMjBTZ
XJ2ZXIlMjBBdXRob3JpdHkoNSkuY3JshlZodHRwOi8vY3JsLm1pY3Jvc29mdC5jb20vcGtpL21zY29ycC9jcmwvTWljc
m9zb2Z0JTIwU2VjdXJlJTIwU2VydmVyJTIwQXV0aG9yaXR5KDUpLmNybIZBaHR0cDovL2NvcnBwa2kvY3JsL01pY3Jvc
29mdCUyMFNlY3VyZSUyMFNlcnZlciUyMEF1dGhvcml0eSg1KS5jcmwwgb8GCCsGAQUFBwEBBIGyMIGvMF4GCCsGAQUFB
zAChlJodHRwOi8vd3d3Lm1pY3Jvc29mdC5jb20vcGtpL21zY29ycC9NaWNyb3NvZnQlMjBTZWN1cmUlMjBTZXJ2ZXIlM
jBBdXRob3JpdHkoNSkuY3J0ME0GCCsGAQUFBzAChkFodHRwOi8vY29ycHBraS9haWEvTWljcm9zb2Z0JTIwU2VjdXJlJ
TIwU2VydmVyJTIwQXV0aG9yaXR5KDUpLmNydDA/BgkrBgEEAYI3FQcEMjAwBigrBgEEAYI3FQiDz4lNrfIChaGfDIL6y
n2B4ft0gU+Dwu2FCI6p0oVjAgFkAgEGMCcGCSsGAQQBgjcVCgQaMBgwCgYIKwYBBQUHAwIwCgYIKwYBBQUHAwEwDQYJK
oZIhvcNAQEFBQADggEBAB3JqyYxQ80PLVFMRoE2chN0+QlA8oijsPNkEz0ycysiyQQ3zpDgJxqa2IgULzFvuKB7C1FlD
SM5U6tWQcKKeJQ2sqAreR1mYec1JIpJQZG6KZDAQHqe2Rvhg54kD8MZeJCbd7Rkxl2E5ivekhbxZhKoNnsC0pEN2rEoQ
urCSkzDQ1eTNp3PaiHds+6iVNsg+u8aIXkWqn7/mj9x6UJQe0vXGhy/h/tBJLrCXzBl8gDdG7ie5VNC1LzW6gjukQEJf
mlEZTWW/EnMhj7cubG7/VHjk/2rvjbJS2pjxojRwyqLwyRHfSMpTP92pJ7REu91d1jReylDFdn58PfA3eYOoik=" />
 </identity>
 </issuer>
 <issuerMetadata
 address="http://accesscontrol.windows.net/sts/replacewithsolutionname/mex">
 <identity>
 <dns value="accesscontrol.windows.net" />
 </identity>
 </issuerMetadata>
 <tokenRequestParameters>
 <trust:SecondaryParameters
 xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 <trust:TokenType
 xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1
 </trust:TokenType>
 <trust:KeyType
 xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey
 </trust:KeyType>
 <trust:KeySize
 xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 256
 </trust:KeySize>
 <trust:Claims Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity"
 xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 <wsid:ClaimType
 Uri="http://docs.oasis-open.org/wsfed/authorization/200706/claims/action"
 xmlns:wsid="http://schemas.xmlsoap.org/ws/2005/05/identity" />
 </trust:Claims>
 <trust:KeyWrapAlgorithm
 xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
 </trust:KeyWrapAlgorithm>
 <trust:EncryptWith
 xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

167

 http://www.w3.org/2001/04/xmlenc#aes256-cbc
 </trust:EncryptWith>
 <trust:SignWith
 xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 http://www.w3.org/2000/09/xmldsig#hmac-sha1
 </trust:SignWith>
 <trust:CanonicalizationAlgorithm
 xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 http://www.w3.org/2001/10/xml-exc-c14n#
 </trust:CanonicalizationAlgorithm>
 <trust:EncryptionAlgorithm
 xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 http://www.w3.org/2001/04/xmlenc#aes256-cbc
 </trust:EncryptionAlgorithm>
 </trust:SecondaryParameters>
 </tokenRequestParameters>
 </message>
 </security>
 </binding>
 </ws2007FederationHttpBinding>
 </bindings>
 <client>
 <endpoint address="http://localhost/AzureForDotNetDeveloperWCFservice"
 binding="basicHttpBinding" bindingConfiguration="UserRegisterEndpoint"
 contract="UserRegister" name="UserRegisterEndpoint" />
 <endpoint address="http://localhost/AzureForDotNetDeveloperWCFservice"
 binding="ws2007FederationHttpBinding" bindingConfiguration="UserRegisterEndpoint1"
 contract="UserRegisterService.UserRegisterService" name="UserRegisterEndpoint1">
 <identity>
 <certificate encodedValue="AwAAAAEAAAAUAAAAASCQin4SUkWbN0uSZBQY6A0SY/wgAAAAAQAAALU
BAAAwggGxMIIBX6ADAgECAhDvE+ZAuwIqhU9cQqsE44DOMAkGBSsOAwIdBQAwFjEUMBIGA1UEAxMLUm9vdCBBZ2VuY3k
wHhcNMDcwNDA0MjMyMTAxWhcNMzkxMjMxMjM1OTU5WjAUMRIwEAYDVQQDEwlsb2NhbGhvc3QwgZ8wDQYJKoZIhvcNAQE
BBQADgY0AMIGJAoGBAK3fOF9Q789iQiEs5FpNTOLOnraBTcoNMxK+jFasM+S8FMLSqPGRgrKearjGwAum3diRBKOngDj
bJ+Vp8TxtgvhEhed9JBuWh5hg6nk0jVS7emHjwkBoacULtYTo4QC2/Bav/eK6ibO/kSknnVG45v7kNWG2gyJh+/HCJIc
xQ3oFAgMBAAGjSzBJMEcGA1UdAQRAMD6AEBLkCS0GHR1PAI1hIdwWZGOhGDAWMRQwEgYDVQQDEwtSb290IEFnZW5jeYI
QBjdsAKoAZIoRz7jUqlw19DAJBgUrDgMCHQUAA0EAdZ/POL0NGuxU3kAoTsbSPdvi3k5PhAYLYbIL2RRHxjcV5lPHqK9
BP2QoctoRFt1Kqb30ZSrGXH5oaq3B/Vdpdg==" />
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

Start the server and enter the Azure solution name. The server will retrieve the certificate
information from the system as Figure 5-18 shows.

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

168

Figure 5-18. The certificate information retrieved when server is starting

Run the client application. You are asked to send the card every single time to invoke the WCF service action
via .NET Access Control Service to claim the security tokens. As Figure 5-19 shows, there is an interactive model
involved for this activity. The desktop is grayed out, and the CardSpace card is selected and sent. The action will
not be processed until the security token has been claimed and validated successfully.

Figure 5-19. The CardSpace card must be sent to the .NET Access Control Service to claim the security

access token on each WCF action

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

169

If a problem is caught, the error information can be viewed from the EventViewer as Figure 5-20
shows.

Figure 5-20. Using EventViewer for troubleshooting

CHAPTER 5 ■ AZURE .NET SERVICES—ACCESS CONTROL

170

Summary
This chapter forms the foundation for the next two, as it describes the underlying authentication
mechanism used for all the Azure Services. In it I took you through authentication in Azure, using the
.NET Access Control Service. I started by describing the underlying mechanisms, before showing an
example of a cloud-based application that used authentication.

The second part of the chapter covered CardSpace and X.509 certificates. We saw how to use these
security mechanisms in an Azure application, so that you have more options when writing your own.

C H A P T E R 6

■ ■ ■

171

Azure .NET Services—
Service Bus

.NET Service Bus solves the following two problems to help connect applications:

• How to get service requests through a firewall

• How to discover service endpoints

Currently the most popular solutions to these two problems are web services. Web services are
based on SOAP communication protocols. Application clients use WSDL as the metadata to generate
proxy classes to find the endpoints and reach the services provided by applications behind firewalls.
.NET Framework 3.0 introduced the Windows Communication Foundation (WCF), which provides a
powerful tool to solve these problems. It uses all web-based communication protocols, including SOAP.
However, the challenge these two approaches need to face is not how to request a service behind a
firewall but how to locate the service endpoint IP address, since an application frequently does not have
a fixed IP address to expose externally.

Today existing workarounds to this challenge take two approaches. The first approach is used for
small network environments. The approach used to solve the firewall and the NAT (network address
translation) issue is to selectively allow applications to open inbound ports on the local and network
router firewalls, such as the familiar DHCP (Dynamic Host Configuration Protocol) or Dynamic DNS
technology. The limit of this approach is the scalability. It realistically only works for small networks, and
security is a big concern. The second approach, which a large organization usually uses, is to use relay
services. A relay service stands between firewalls and client applications as a bridge to route the
messages. The challenge with relay services is that they are extremely hard to build to meet Internet
scalability requirements, routing between thousands or millions of connections, with acceptable costs
and effort. The data traffic exponentially increases and turns the connection into a bottleneck.

In this chapter you are going to see how Windows Azure solves these two problems nicely via .NET
Service Bus and how you can leverage this building block to construct cloud-based distributed
applications.

Connecting to Remote Applications with the Service Bus
The .NET Service Bus addresses these challenges based upon the concept shown in Figure 6-1.
Applications that need to communicate via .NET Service Bus must register with the .NET Service Bus
registry. When an application requests a service from a source behind a firewall, it needs to simply find
the endpoint of the target service via .NET Service Bus and to establish the communication channel for

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

172

services. In other words, the services are provided by service applications run behind the firewall, and
the connection endpoints are provided by .NET Service Bus. The reason .NET Service Bus makes
communication easier is that all its clients now see only an IP address provided by it instead of one
directly exposed by organizations. It also improves service access security because it is designed to
collaborate with .NET Service Access Control, which applies user-defined rules to ensure security when
an application claims tokens via the STS service provided by .NET Service Access Control.

In practice, an application that intends to expose its service via .NET Service Bus implements the
services based upon WCF, but it does not have to. As long as the calling application can make the
request via SOAP or REST, there is no restriction for which technology the target application uses to
implement the service interfaces.

Figure 6-1. .NET Service Bus concept

The core and essential part of .NET Service Bus uses globally addressable Internet access based on
REST or SOAP. All endpoints, resources, and applications provide a URI for access. The Internet services
provided by .NET Service Bus cover the following three major categories:

• Service name hierarchy system

• Service registry and publishing

• Endpoint relay connectivity

Let’s look at each of these in turn.

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

173

Service Name Hierarchy System
.NET Service Bus is built upon WCF. All interactions with the application are URI-addressable. The URI
address uses a hierarchical structure. In principle this name hierarchy system in .NET Service Bus is a
forest and can go infinitely deep. There is no need for applications to explicitly perform name system
housekeeping. The name system is a virtual logic system. When an application’s registration is deleted
or removed from the system, all names under that application are automatically deleted.

.NET Service Bus maintains the name system based upon the Azure solution created from the
cloud. In other words, the Azure solution name is the first level in the URI hierarchy structure. It is an
application’s call how to organize its name hierarchy system starting from the application root (the
registered solution name from Azure), as long as the solution’s name makes sense to the application. An
application associated with .NET Service Bus can have multiple instances. The solution name is to allow
.NET Service Bus to manage and distinguish the applications. On the client or user side, there is no limit
to how many applications can be registered or how many instances can be associated to an application.

Service Registry and Publishing
The service registry is where we publish service endpoint references to the .NET Service Bus name
system by sending an HTTP PUT request; we send an HTTP DELETE request to remove the registration
from the name system. We can discover a service by traversing the name hierarchy tree.

Endpoint Relay Connectivity
The core part of .NET Service Bus is the relay service that supports connection-oriented bidirectional
communication. Relay services listen for HTTP requests from the cloud instead of from a local source.
The connection usually starts with a listener, either local or remote. To establish the bidirectional
communication, the approach is to simply pair up two connections and reverse the listener and sender
roles. The advantage of using relay services is obvious. An application can use the relay service as a filter
to block the traffic it is not interested in and hides all detailed information about network locations to
reduce security threats. The relay services can also provide access control to request application
authentication before establishing the connection.

Using WCF with the Service Bus
The key difference between a standard WCF binding and its counterpart relay binding is where the
service establishes the listener. The standard WCF application establishes the listeners locally,
whereas the relay binding does so from the cloud. .NET Service Bus allows applications to connect
across platforms since it is based on open Internet standards. Those applications using the
WCF communication framework to switch to .NET Service Bus services just need to modify the
configuration file to change the regular WCF binding types to relay binding types. For example, the
WebHttpBinding has a corresponding WebHttpRelayBinding, the BasicHttpBinding has a corresponding
BasicHttpRelayBinding, and so forth. The significant difference after switching to the relay service is
that the application is listening for the HTTP request from the cloud instead of locally. All relay
connections must connect to the .NET Service Bus. That is the essential difference between using
relay connections and regular WCF connections. The .NET Service Bus also supports all regular WCF
features, such as reliable message delivery, message security, and transport security. However, the

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

174

transaction delivery between clients and servers is not supported by .NET Service Bus. Highlights of
the technical features are shown in Table 6-1.

Using the Microsoft .NET Service Bus in conjunction with WCF is the easiest way to build a
connected distributed system.

Table 6-1. Highlights of Technical Features for Available .NET Service Bus Connection Modes

.NET Service Bus Relay Binding Types
and Connection Mode

Technical Specification Highlight Open Port Required

netEventRelayBinding
netOnewayRelayBinding

Provide lightweight event-distribution
mechanisms to deliver events to all
participating parties via relay services
from the cloud. Do not support duplex
or call back. Do not support event
filtering.

n/a

Relayed Relayed mode is the default mode of
TcpRelayConnection when configuring
the connection bindings using the TCP
relay binding.

Direct In Direct mode, a typical scenario is
two parties residing in the same
intranet, and the service tries to
promote the connection to direct. If the
connection cannot be established, the
initialization will fail.

netTcpRelayBinding
netTcpRelayContextBinding

Hybrid For the Hybrid connection mode, the
relay service uses the Relayed mode to
establish the connection and switches
the connection to Direct connection.

808 or 828 for
operation transport
security bindings, 818
for data channel

wsHttpRelayBinding
wsHttpRelayContextBinding

Web services relay binding, like regular
WCF WS binding, sends and receives
interoperable messages, which can be
consumed using HTTP or HTTPS.

There is no special port
opening required; these
binding types use the
regular IIS ports, such
as 80 for HTTP and 443
for HTTPS.

basicHttpRelayBinding
basicHttpRelayContextBinding

Similar to regular WCF
basicHttpBinding. The
basicHttpRelayBinding creates a
publicly discoverable HTTP endpoint
listening to the cloud-based Service
Bus application.

80 and 443 for HTTP
and HTTPS respectively
For the SSL protected.

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

175

The TCP relay binding offers the best performance and throughput. That supports request-response
operation, one-way operation, and event duplex callback.

Post a Net Event Using Relay Connection
This exercise uses a very simple Windows console application to demonstrate how to post a net
message event through .NET Service Bus. The connection model used in this exercise is the relay hub
connection as shown in Figure 6-2. All participating parties are hooked up as a publisher as well as a
subscriber. Any message posted to the hub will be delivered to all participating parties, which use
the same endpoint address to bind to the WCF services. The type of binding used for this relay hub
connection is netEventRelayBinding, which does not support two-way communication. It is good
enough for this demo, since we just need to listen for events. All service operation contracts must be
marked as OperationContract(IsOneWay = true) as the boldface lines show in Listing 6-1.

■ Note The code for this example is in the Exercise 6-1 bundle from the code download.

Figure 6-2. .NET Service Bus event hub

Let’s implement this now.

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

176

1. Create a WCF service. Listing 6-1 shows the service contract definition for the WCF
service IPublishEventService. This interface exposes only one method, PostMessage().

Listing 6-1. Service Contract and Data Contract Definition for WCF Service IPublishEventService

using System;
using System.ServiceModel;

namespace SoftnetSolutions.RelayService.PublishChannel
{
[ServiceContract(
 Name = "IPublishEventService", Namespace = "http://SoftnetSolutions.RelayService/")]
 public interface IPublishEventService
 {
 [OperationContract(IsOneWay = true)]
 void PostMessage(PostData postData);
 }

public interface IRelayPublishEventService : IPublishEventService, IClientChannel {
}

using System;
using System.ServiceModel;
using System.Runtime.Serialization;
using System.Text;

namespace SoftnetSolutions.RelayService.PublishChannel
{
 [ServiceBehavior(Name = "PublishEventService",
 Namespace = "http://SoftnetSolutions.RelayService/",
 InstanceContextMode = InstanceContextMode.Single)]
 public class PublishEventService : IPublishEventService
 {
 private StringBuilder _messageBuffer = new StringBuilder();

 public void PostMessage(PostData postData)
 {
 _messageBuffer.Append(string.Format("[{0}]:received message - {1}{2}",
 DateTime.Now.ToString(),
 postData.Message,
 Environment.NewLine));
 Console.Write(_messageBuffer.ToString());
 }
 }

 [DataContract]
 public class PostData

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

177

 {
 [DataMember]
 public string Message;
 }
}

2. Now create the configuration for this service as shown in Listing 6-2, where the
default binding netEventRelayBinding is used. This type of binding only supports one-
way communication.

Listing 6-2. Configuration for IPublishEventService WCF Service Using netRelayEvent Bindings

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="Topic" value="Pheonix"/>
 <add key="Solution" value="SoftnetSolutionsServiceBus"/>
 <add key="password" value="My password"/>
 </appSettings>
 <system.serviceModel>

 <bindings>

 <netEventRelayBinding>
 <binding name="default" />
 </netEventRelayBinding>
 </bindings>

 <client>
 <endpoint name="RelayEndpoint"
 contract="SoftnetSolutions.RelayService.PublishChannel.IPublishEventService"
 binding="netEventRelayBinding"
 bindingConfiguration="default"
 address="" />
 </client>

 <services>

 <service name="SoftnetSolutions.RelayService.PublishChannel.PublishEventService">
 <endpoint name="RelayEndpoint"
 contract="SoftnetSolutions.RelayService.PublishChannel.IPublishEventService"
 binding="netEventRelayBinding"
 bindingConfiguration="default"
 address="" />
 </service>
 </services>

 </system.serviceModel>
</configuration>

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

178

3. Create a service host class. The format to compose an address of .NET Service Bus is
the following, where, [] = optional, < > = required.

<[sb][http][https]>://<solution>.servicebus.windows.net[/service topic][/sub topic]

The endpoint address to be used in this exercise is

sb://softnetsolutionsservicebus.servicebus.windows.net/Pheonix/RelayService/

4. Listing 6-3 shows the implementation for the host class. This class declares two
constructors. The second constructor takes the endpoint URI as a parameter. This
allows the host to be able to accept different endpoints in order to support multiple
modes for the .NET relay connection. As you can see, we use a username and password
to authenticate in this example. The class constructor of the service host accepts four
parameters that will be passed in when the host instance is instantiated. The first
parameter is a generic type parameter of the WCF service implementation class (not the
service contract interface type), and the other three parameters are account-related
parameters: solutionName, password, and topic. The topic parameter is used to
construct the URI address as a lower-level hierarchy in case there are multiple service
hosts registered under the same solution, and we can get all URI addresses that
are globally unique. The remaining part of the host implementation is pretty
straightforward. We use the URI address to instantiate a ChannelFactory instance (the
ChannelFactory class can accept the WCF interface type IRelayPublishEventService,
which is derived from both the custom-defined WCF service interface and the
IClientChannel interface defined from the System.ServiceModel namespace). We then
call the CreateChannel() and Open() methods sequentially to start the service request
listener on the host side from the cloud.

Listing 6-3. Implementation of the Host Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Security.Cryptography;
using System.ServiceModel;

namespace SoftnetSolutions.RelayService.PublishChannel
{
 using Microsoft.ServiceBus;
 using Microsoft.ServiceBus.Description;
 public class RelayPublishEventHost <T> where T : class
 {
 protected ChannelFactory<IRelayPublishEventService> _channelFactory = null;
 public string ServiceTitle { get; set; }
 public IRelayPublishEventService Channel { get; set; }

 public RelayPublishEventHost(T serviceImpl,
 string topic,
 string solutionName,
 string password)
 {

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

179

 ServiceBusEnvironment.SystemConnectivity.Mode = ConnectivityMode.AutoDetect;
 TransportClientEndpointBehavior relayCredentials =
 new TransportClientEndpointBehavior();
 relayCredentials.CredentialType =
 TransportClientCredentialType.UserNamePassword;
 relayCredentials.Credentials.UserName.UserName = solutionName;
 relayCredentials.Credentials.UserName.Password = password;
 ServiceTitle = topic;

 Uri serviceAddress =
 ServiceBusEnvironment.CreateServiceUri("sb", solutionName,
 String.Format("{0}/RelayService/", ServiceTitle));
 ServiceHost host = new ServiceHost(serviceImpl.GetType(), serviceAddress);
 host.Description.Endpoints[0].Behaviors.Add(relayCredentials);
 host.Open();

 _channelFactory =
 new ChannelFactory<IRelayPublishEventService>("RelayEndpoint",
 new EndpointAddress(serviceAddress));
 _channelFactory.Endpoint.Behaviors.Add(relayCredentials);
 Channel = _channelFactory.CreateChannel();
 Channel.Open();
 }

 public RelayPublishEventHost(T serviceImpl,
 Uri serviceAddress,
 TransportClientEndpointBehavior relayCredentials)
 {
 ServiceHost host = new ServiceHost(serviceImpl.GetType(), serviceAddress
 host.Description.Endpoints[0].Behaviors.Add(relayCredentials);
 host.Open();

 _channelFactory =
 new ChannelFactory<IRelayPublishEventService>("RelayEndpoint",
 new EndpointAddress(serviceAddress));
 _channelFactory.Endpoint.Behaviors.Add(relayCredentials);
 Channel = _channelFactory.CreateChannel();
 Channel.Open();
 }
 }
}

5. Create a Windows console application, as shown in Listing 6-4. This class reads the
password and solution name from the configuration file and creates an instance of
the host class. A user can type any text message and post to the hub. All parties
hooked to the hub will be notified when the event happens. The credential
authentication is against a .NET Service Bus instead of the local Windows system.
Therefore the event can be delivered to applications behind a firewall.

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

180

Listing 6-4. Implementation for Windows Console Application

using System;
using System.Collections.Generic;
using System.Text;
using System.Security.Cryptography;
using System.ServiceModel;
using Microsoft.ServiceBus.Description;
using System.Configuration;

namespace SoftnetSolutions.RelayService.PublishChannel
{
 using Microsoft.ServiceBus;

 class Program
 {
 private Program(string[] args)
 {
 }

 static void Main(string[] args)
 {
 Program programInstance = new Program(args);
 programInstance.Run();
 }

 private void Run()
 {
 string subject = ConfigurationManager.AppSettings["Topic"];
 string solutionName = ConfigurationManager.AppSettings["Solution"];
 string password = ConfigurationManager.AppSettings["password"];

 PublishEventService service = new PublishEventService();
 RelayPublishEventHost<PublishEventService> _host =
 new RelayPublishEventHost<PublishEventService>(service,
 subject,
 solutionName,
 password);

 Console.WriteLine(string.Format(
 "{0}--- Connecting success, Press <Enter> to exit ---{0}",
 Environment.NewLine));

 string input = Console.ReadLine();
 while (input != String.Empty)
 {

 PostData postData = new PostData();
 postData.Message = input;
 _host.Channel.PostMessage(postData);

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

181

 input = Console.ReadLine();
 }

 _host.Channel.Close();
 }
 }
}

6. Set up CardSpace .NET Service Bus Relay Authentication. To use the CardSpace
runtime authentication mode, the following steps need to be done.

1. Add a card to the solution in the cloud via the .NET Service Bus manage-
ment portal page. Log in to the .NET Services and SQL Azure portal at
http://portal.ex.azure.microsoft.com/default.aspx. (Note that this portal
page is a different portal page from the Windows Azure portal page and the
Azure Services Developer Portal.) Then follow the instructions to submit the
card shown in Figure 6-3.

2. Modify the code of the host implementation from Listing 6-3 as shown in
Listing 6-5.

Authentication Modes

.NET Service Bus supports runtime authentication with six modes:

Discussion of all these modes is beyond the scope of this book. We are going to investigate two of these
supported modes as an example. The UserNamePassword mode is the most frequently used runtime
authentication mode. That is also used in this exercise as the boldface lines show in Listing 6-3.

Listing 6-5. Use the CardSpace for .NET Service Bus Connection Authentication

relayCredentials.CredentialType = TransportClientCredentialType.CardSpace;

1. UserNamePassword

2. CardSpace

3. X509Certificate

4. Unauthenticated

5. FederationViaCardSpace

6. AutomaticRenewal

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

182

Figure 6-3. Submit a CardSpace to .NET Services

7. Send the card interactively at runtime. Now, when you run the application, you are
asked to submit the same card for authentication as Figure 6-4 shows.

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

183

Figure 6-4. A correct card must be sent to .NET Service Bus for authentication in order to establish a

connection for the relay services

Test results are shown in Figure 6-5, which demonstrates how a message (event) is posted from an
application and how all participating parties are notified via relay services.

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

184

Figure 6-5. Test results

One thing you need to bear in mind that whenever an event happens all clients hooked up to the
event hub will be notified whether they are interested or not. In practice, a peer-to-peer connected
distributed system is a very useful system that enables the message flow to be controlled nicely. Before
Azure, the technogy used by the .NET Framework to build such a system is .NET Remoting. The
challenge in .NET Remoting is how to connect applications run behind firewalls. .NET Service Bus
makes this goal very easy to achieve. Next we are going to look at how to build a non-connected system
using the .NET Service Bus.

Simple Direct Connected System Using Hybrid Relay
Connection Mode
As I mentioned before, the .NET Service Bus can be used to build distributed connection systems.
Figure 6-6 presents the concept of how to use the WCF relay and Hybrid connection mode to establish a
direct connection between two applications residing behind firewalls. The process includes two steps.

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

185

1. A client application negotiates the connectivity to a service application
through the cloud using a relay connection.

2. When the endpoint has been found and the relay connection has been
established, .NET Service Bus automatically promotes the connection from a
relay connection to a direct connection.

The connection mode used in this approach is the Hybrid connection mode, and the binding type of
the WCF service is the netTcpRelayBinding. This can be done by modifying the App.config file of the
previous exercise to the code shown in Listing 6-6.

■ Note The code for this example is in the Exercise 6-2 bundle from the code download.

Figure 6-6. Use the .NET Service Bus to Create a Direct Connection Distributed Application System

Download at WoweBook.Com

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

186

Listing 6-6. WCF Service Configuration Using netTcpRelayBinding with Hybrid Connection Mode

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="Topic" value="Pheonix"/>
 <add key="Solution" value="SoftnetSolutionsServiceBus"/>
 <add key="password" value="9j!Ns$R8%7"/>
 </appSettings>
 <system.serviceModel>

 <bindings>

 <netEventRelayBinding>
 <binding name="default" connectionMode="Hybrid"/>
 <security mode="None" />
 </netEventRelayBinding>
 </bindings>

 <client>
 <endpoint name="RelayEndpoint"
contract="SoftnetSolutions.RelayService.PublishChannel.IPublishEventService"
 binding="netTcpRelayBinding"
 bindingConfiguration="default"
 address="" />
 </client>

 <services>
 <service name="SoftnetSolutions.RelayService.PublishChannel.PublishEventService">
 <endpoint name="RelayEndpoint"
 contract="SoftnetSolutions.RelayService.PublishChannel.IPublishEventService"
 binding="netTcpRelayBinding"
 bindingConfiguration="default"
 address="" />
 </service>
 </services>

 </system.serviceModel>
</configuration>

The data contract we use for this exercise is the same as defined in Listing 6-1. Listing 6-7 shows the
implementation for creating a communication channel used to post the messages. There is not much
difference from the implementation compared to the same part of the last exercise except for the
interface type passed to the channel factory.

Listing 6-7. Implementation of HybridPublishService

using System;
using System.ServiceModel;
using System.ServiceModel.Description;
using Microsoft.ServiceBus;

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

187

using System.Text;
using System.Configuration;

namespace SoftnetSolutions.RelayService.ServiceContract
{
 public class HybridPublishService
 {
 public IPublishEventServiceChannel ClientChannel { get; set; }

 private ChannelFactory<IPublishEventServiceChannel> _channelFactory = null;

 public HybridPublishService(string endpoint)
 {
 string subject = ConfigurationManager.AppSettings["Topic"];
 string solutionName = ConfigurationManager.AppSettings["Solution"];
 string password = ConfigurationManager.AppSettings["password"];

 TransportClientEndpointBehavior relayCredentials =
 new TransportClientEndpointBehavior();
 relayCredentials.CredentialType =
 TransportClientCredentialType.UserNamePassword;
 relayCredentials.Credentials.UserName.UserName = solutionName;
 relayCredentials.Credentials.UserName.Password = password;

 Uri serviceUri = ServiceBusEnvironment.CreateServiceUri("sb",
 solutionName,
 subject);
 _channelFactory =
 new ChannelFactory<IPublishEventServiceChannel>(
 endpoint, new EndpointAddress(serviceUri));
 _channelFactory.Endpoint.Behaviors.Add(relayCredentials);
 ClientChannel = _channelFactory.CreateChannel();
 ClientChannel.Open();
 }

 public void Dispose()
 {
 ClientChannel.Close();
 _channelFactory.Close();
 }
 }
}

Listing 6-8 shows how to instantiate the communication with relay service and register the
connection status change event. The status change event will be triggered when the connection type
switches from relay connection to direct connection. Compared to the same part from the last exercise,
as the boldface lines in Listing 6-7 show, an event handler function, ConnectionStateChanged(), has to be
defined and registered to the service instance. The event handler in this exercise is used to monitor the
connection status change. You can insert any business logic into the event handler in your application,
but in this exercise we only output trace information to acknowledge the status change. The connection

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

188

status is initially set to relay binding and will be automatically switched to direct binding a few seconds
after the connection has been established.

Listing 6-8. Implementation of Console Application Instantiates a Connection Starting with Relay Service

using System;
using System.ServiceModel;
using Microsoft.ServiceBus;
using System.Text;
using System.Configuration;

namespace SoftnetSolutions.RelayService.PublishChannel
{
 using SoftnetSolutions.RelayService.ServiceContract;

 class Program
 {
 static void Main(string[] args)
 {

 PublishEventService service = new PublishEventService();
 string endpoint = "RelayEndpoint";
 HybridPublishService hybridPublishService = new HybridPublishService(endpoint);
 Console.WriteLine(
 string.Format(
 "---Relay connection has been established ----{0}", Environment.NewLine
)
);

 IHybridConnectionStatus hybridConnectionStatus =
 hybridPublishService.ClientChannel.GetProperty<IHybridConnectionStatus>();

 hybridConnectionStatus.ConnectionStateChanged +=
 new EventHandler<HybridConnectionStateChangedArgs>(
 hybridConnectionStatus_ConnectionStateChanged
);

 Console.WriteLine(
 string.Format("---Press <Enter> to exit publishing----{0}",
 Environment.NewLine));

 string input = Console.ReadLine();
 while (input != String.Empty)
 {

 PostData postData = new PostData();
 postData.Message =
 string.Format("[{0}]:{1}", DateTime.Now.ToString(), input);
 (hybridPublishService.ClientChannel as IPublishEventService)
 .PostMessage(postData);

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

189

 input = Console.ReadLine();
 }

 hybridPublishService.ClientChannel.Dispose();
 }

 static private void hybridConnectionStatus_ConnectionStateChanged(
 object sender, HybridConnectionStateChangedArgs args)
 {
 Console.WriteLine(
 string.Format(
 "---Connection has been switched from relay to direct connection ---{0}",
 Environment.NewLine
)
);
 }
 }
}

The screenshot of Figure 6-7 caught at the breakpoint from Visual Studio shows that the connection
type is relayed when the connection is established. Figure 6-8 shows that the connection has been
automatically switched to direct a few seconds later and that a notification event has been raised and
caught by the console application.

Figure 6-7. When the connection has been established the type of connection is relayed

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

190

Figure 6-8. The relay service switches the connection from relayed to direct a few seconds later

Test results of the exercise are shown in Figure 6-9, which demonstrates how a connection switches
from relayed to direct and the messages are delivered from publisher to listener.

Figure 6-9. Runtime screenshots from the results of Exercise 6-2

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

191

Using .NET Service Bus to Build a Distributed Connected
Windows Application
The building blocks we built in the last exercise can be used to build a direct connected Windows
application system leveraging the .NET Service Bus. As Figure 6-10 shows, this system contains two
Windows applications. The Draw Shape application draws shapes using random colors, sizes, and
positions. The Shape Controller application picks the types of shape to draw and sends a notification to
the Draw Shape application via a .NET TCP connection using WCF services. The binding mode is also
the Hybrid type. The communication is initialized using the .NET Service Bus relay connection and
automatically switches to direct bindings.

■ Note The code for this example is in the Exercise 6-3 bundle from the code download.

Figure 6-10. Distributed direct-connected Windows application system

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

192

The entire solution contains five C# projects.

• Two projects, SoftnetSolutions.IShape and SoftnetSolutions.Shape, are used to
handle the shape drawing.

• SoftnetSolutions.RelayService.ServiceContract defines a WCF service contact.

• The final two projects, SoftnetSolutions.RelayService.ShapeController and
SoftnetSolutions.Shape.Draw, are Windows client-server applications.

SoftnetSolutions.IShape
This project defines an IShape interface, which contains one read-only property Map and one method
Draw() as Listing 6-9 shows. All classes used to handle the shape drawing implement this interface.

Listing 6-9. Interface Definition for IShape

using System;
using System.Drawing;

namespace SoftnetSolutions.Shape
{
 public enum SHAPE_TYPE { CIRCLE, ELLIPSE, SQUARE, RECTANGLE, NOT_SUPPORTED_TYPE };

 public interface IShape
 {
 void Draw();
 Bitmap Map{ get; }
 }
}

SoftnetSolutions.Shape
The implementation for base class Shape is shown in Listing 6-10. The constructor for this class accepts
one parameter with type of windows Panel, which is used as the shape-drawing surface. The base class
implements shared methods for all derived subclasses, such as those that generate random color and
drawing sizes.

Listing 6-10. Implementation for Base Class Shape

using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.Windows.Forms;

namespace SoftnetSolutions.Shape
{
 abstract public class Shape : IShape
 {

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

193

 const PixelFormat PIXELFORMAT = PixelFormat.Format24bppRgb;
 protected Bitmap _bitmap = null;
 protected Random _random = null;
 protected Graphics _graphics = null;
 protected int _shapeWidth = 0;
 protected int _shapeHeight = 0;
 protected int _drawAreaWidth = 0;
 protected int _drawAreaHeight = 0;

 public Shape(Panel drawArea)
 {
 if (null == drawArea
 || drawArea.Width <= 0
 || drawArea.Height <= 0)
 {
 throw new ArgumentException(
 "The draw area must be specified and valid", drawArea.ToString());
 }

 _random = new Random((int)DateTime.Now.Ticks);
 _bitmap = new Bitmap(drawArea.ClientRectangle.Width,
 drawArea.ClientRectangle.Height,
 PIXELFORMAT);
 _graphics = Graphics.FromImage(_bitmap);
 _drawAreaWidth = drawArea.Width;

 public Bitmap Map
 {
 get { return _bitmap; }
 }

 public int ShapeWidth
 {
 get { return _shapeWidth; }
 }

 public int ShapeHeight
 {
 get { return _shapeHeight; }
 }

 protected int _RandomWidth
 {
 get
 {
 _shapeWidth = _random.Next(0, _drawAreaWidth);
 return _shapeWidth;
 }
 }

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

194

 protected int _RandomHeight
 {
 get
 {
 _shapeHeight = _random.Next(0, _drawAreaHeight);
 return _shapeHeight;
 }
 }

 protected Pen _RandomColorPen
 {
 get
 {
 return new Pen(Color.FromArgb(_random.Next(0, 255),
 _random.Next(0, 255),
 _random.Next(0, 255)));
 }
 }

 #endregion

 #region Protected Method

 protected void _Reset()
 {
 if (null != _bitmap)
 {
 Graphics.FromImage(this._bitmap).Clear(Color.Black);
 }
 }

 #endregion

 abstract public void Draw();
 }
}

A class derived from this base class is responsible for drawing a specific shape. Listing 6-11 shows
how to draw a Circle bitmap programmatically on the panel surface. A protected function, _Reset(),
is called before drawing. This function clears the previously drawn bitmap and sets the bitmap to the
background color. When an application needs to draw different shapes on the same panel surface,
it just needs to dynamically construct a drawing class and pass in the panel object instance. The
implementation will be presented later in this exercise.

Listing 6-11. Derived Drawing Class Used to Draw a Circle Bitmap on a Panel Surface

using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.Windows.Forms;

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

195

namespace SoftnetSolutions.Shape
{

 public class Circle : Shape, IShape
 {
 public Circle(Panel drawArea) : base(drawArea)
 {
 }

 override public void Draw()
 {
 int width = base._RandomWidth;
 int height = base._RandomHeight;
 int radius = width / 2;

 base._Reset();
 base._graphics.DrawEllipse(base._RandomColorPen,
 width - radius,//convert to bounding rectangle
 height - radius,//convert to bounding rectangle
 radius,
 radius);
 }
 }
}

SoftnetSolutions.RelayService.ServiceContract
The WCF service contract stays the same as the one we defined in the last exercise except for adding an
operation contract, as Listing 6-12 shows.

Listing 6-12. Adding an Operation Contact OnShapeSelecChanged to the Service Contract

IPublishEventService

using System;
using System.ServiceModel;

namespace SoftnetSolutions.RelayService.ServiceContract
{
 [ServiceContract(Name = "IPublishEventService",
 Namespace = "http://SoftnetSolutions.RelayService/")]
 public interface IPublishEventService
 {
 [OperationContract(IsOneWay = true)]
 void PostMessage(PostData postData);

 [OperationContract(IsOneWay = true)]
 void OnShapeSelectChanged(PostData shapeData);
 }

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

196

 public interface IPublishEventServiceChannel : IPublishEventService, IClientChannel { }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.Serialization;
using System.Reflection;

namespace SoftnetSolutions.RelayService.ServiceContract
{
 using SoftnetSolutions.Shape;

 [DataContract]
 public class PostData : IComparable
 {
 [DataMember]
 public string Message;

 [DataMember]
 public SHAPE_TYPE shape { get; set; }

 public int CompareTo(object obj)
 {
 if (obj is PostData)
 {
 PostData temp = (PostData)obj;

 return shape.CompareTo(temp.shape);
 }
 throw new ArgumentException(
 string.Format("object is not a <{0}> type", this.GetType().Name));
 }
 }
}

SoftnetSolutions.Shape.Draw
SoftnetSolutions.Shape.Draw is a Windows application that has two responsibilities:

1. Listen to the event published by the ShapeController and update the UI. This
is done by implementing the WCF service contract IPublishEventService as
the class declaration shows in Listing 6-13.

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

197

Listing 6-13. The FormDrawShape Implements the WCF Service Contract IPublishEventService

 [ServiceBehavior(Name = "PublishEventService",
 Namespace = "http://SoftnetSolutions.RelayService/",
 InstanceContextMode = InstanceContextMode.Single)]
 public partial class FormDrawShape : Form, IPublishEventService
 {
 }

2. Draw a shape according to the selected shape type. This is done by using a factory
method design pattern in conjunction with a reflection class to dynamically load a
drawing object into memory as shown in Listing 6-14. Bitmap drawing is done by
implementing the drawPanel_Paint() method and associating the bitmap to the
background image of the drawing panel as shown in Listing 6-15.

Listing 6-14. Use Factory Method Design Pattern and Reflection Class to Dynamically Create a Shape

Object as a Type of IShape

 private IShape _ClassFactory()
 {
 string assemblyName = "SoftnetSolutions.Shape";
 string className = string.Format("{0}.{1}",
 assemblyName,
 SHAPE_NAME[(int)this._shapeType]);
 Assembly assembly = Assembly.Load(assemblyName);
 Type classType = assembly.GetType(className);
 IShape shapeClass =
 (IShape)Activator.CreateInstance(
 classType, new object[] {this.drawingPanel});

 return shapeClass;
 }

Listing 6-15. Implement the drawingPanel_Paint Method to Associate the Bitmap Instance to the

Background Image of the Drawing Panel

private void drawingPanel_Paint(object sender, System.Windows.Forms.PaintEventArgs e)
{
 if (null == _shape)
 {
 return;
 }

 drawingPanel.BackgroundImage = this._shape.Map;
}

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

198

SoftnetSolutions.RelayService.ShapeController
The Draw Shape Controller is another part of this system. The responsibility of this Windows-based
application is to select a drawing shape type and publish a message with the type of PostData that contains a
string description and the enumeration value for the selected drawing shape. The data contract PostData is
defined in Listing 6-12 and implements the IComparable interface to allow the service application to check for
selected drawing shape changes from the client drawing controller application. The implementation of this
class is straightforward as Listing 6-16 shows. When a button is clicked, a different drawing shape is selected
and a new PostData object is created and sent out as part of the publishing message sent from the drawing
controller to the shape-drawing application. The component that we use to create out the communication
channel is the HybridPublishService we created in the last exercise.

Listing 6-16. Implementation of ShapeController

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.ServiceModel;
using Microsoft.ServiceBus;

namespace SoftnetSolutions.RelayService.ShapeController
{
 using SoftnetSolutions.RelayService.ServiceContract;
 using SoftnetSolutions.Shape;
 using SoftnetSolutions.Shape.Draw;
 public partial class FormController : Form
 {
 private IPublishEventService _publishEventService = null;
 private HybridPublishService _hybridPublishService = null;
 private string _connectionStatus = "Disconnected";

 public FormController()
 {
 InitializeComponent();
 }

 public FormController(IPublishEventService publishEventService)
 {
 InitializeComponent();

 _publishEventService = publishEventService;
 string endpoint = "RelayEndpoint";
 _hybridPublishService = new HybridPublishService(endpoint);

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

199

 IHybridConnectionStatus hybridConnectionStatus =
 _hybridPublishService.ClientChannel.GetProperty<IHybridConnectionStatus>();
 _connectionStatus = hybridConnectionStatus.ConnectionState.ToString();

 hybridConnectionStatus.ConnectionStateChanged +=
 new EventHandler<HybridConnectionStateChangedArgs>(
 hybridConnectionStatus_ConnectionStateChanged);

 (_publishEventService as FormDrawShape).Show();
 }

 private void btnCircle_Click(object sender, EventArgs e)
 {
 PostData shapeData = new PostData();
 shapeData.shape = SHAPE_TYPE.CIRCLE;
 _PostMessage(shapeData);
 }

 private void btnRectangle_Click(object sender, EventArgs e)
 {
 PostData shapeData = new PostData();
 shapeData.shape = SHAPE_TYPE.RECTANGLE;
 _PostMessage(shapeData);
 }

 private void btnSqure_Click(object sender, EventArgs e)
 {
 PostData shapeData = new PostData();
 shapeData.shape = SHAPE_TYPE.SQUARE;
 _PostMessage(shapeData);
 }

 private void btnEcllipse_Click(object sender, EventArgs e)
 {
 PostData shapeData = new PostData();
 shapeData.shape = SHAPE_TYPE.ELLIPSE;
 _PostMessage(shapeData);
 }

 private void hybridConnectionStatus_ConnectionStateChanged(
 object sender, HybridConnectionStateChangedArgs args)
 {
 System.Diagnostics.Trace.WriteLine(
 string.Format(
 "---Connection has been switched from relay to direct connection ---{0}",
 Environment.NewLine));
 _connectionStatus = args.ConnectionState.ToString();
 }

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

200

 private void _PostMessage(PostData postData)
 {
 postData.Message =
 string.Format("[{0}]:Shape Controller select <{1}>", DateTime.Now.ToString(),
 postData.shape);
 _publishEventService.OnShapeSelectChanged(postData);
 _publishEventService.PostMessage(postData);
 }

 private void timer1_Tick(object sender, EventArgs e)
 {
 textBoxConnectinStatus.Text = _connectionStatus;

 switch (_connectionStatus)
 {
 case "Relayed":
 textBoxConnectinStatus.ForeColor = Color.Red;
 break;
 case "Direct":
 textBoxConnectinStatus.ForeColor = Color.Lime;
 break;

 }
 }

 }
}

Before going any further, we should look at port forwarding when using netTcpRelayBinding
with Hybrid mode. This may or may not be a potential issue depending upon the Internet service
provider behind the system infrastructure, especially if you are working from a small LAN system or
from home.

Port Forwarding
If the DHCP connection type is used by the local gateway system, port forwarding usually needs to
be configured in order that the communication from .NET Service Bus can be routed to the
application correctly. How to configure port forwarding depends on the Internet provider your
organization has. Port forwarding should be configured to allow Internet access to port 80 using
HTTP and port 808 using TCP. Figure 6-11 shows how to configure port forwarding based on the
Verizon FIOS gateway.

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

201

Figure 6-11. An example of port forwarding configuration using Verizon FIOS gateway

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

202

Change Credential Type
To modify the access federation type, modify the configuration file App.config for ShapeController. The
boldface lines in Listing 6-17 and Listing 6-18 show how to use the CardSpace and AutomaticRenewal
credentials respectively. The most frequently used options of federation are

• CardSpace

• UserNamePassword

• X509Certificate

• AutomaticRenewal

Listing 6-17. Change the Credential Type to CardSpace in the Configuration File App.config of

ShapeController

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="Topic" value="PublishEventService"/>
 <add key="Solution" value="SoftnetSolutionsServiceBus"/>
 <add key="password" value="9j!Ns$R8%7"/>
 </appSettings>
 <system.serviceModel>

 <bindings>
 <netTcpRelayBinding>
 <binding name="default" connectionMode="Hybrid">
 <security mode="None" />
 </binding>
 </netTcpRelayBinding>
 </bindings>

 <behaviors>
 <endpointBehaviors>
 <behavior name="CardSpaceBehavior">
 <transportClientEndpointBehavior credentialType="CardSpace">
 <clientCredentials>
 <userNamePassword
 userName="SoftnetSolutionsServiceBus"
 password="9j!Ns$R8%7" />
 <federationViaCardSpace>
 <issuer address="http://idp.sts.microsoft.com" />
 <claimTypeRequirements>
 <add claimType=http://schemas.xmlsoap.org/claims/Group
 isOptional="false" />
 </claimTypeRequirements>
 </federationViaCardSpace>
 </clientCredentials>
 </transportClientEndpointBehavior>

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

203

 </behavior>
 </endpointBehaviors>
 </behaviors>

 <client>
 <endpoint name="RelayEndpoint"
 contract="SoftnetSolutions.RelayService.ServiceContract.IPublishEventService"
 binding="netTcpRelayBinding"
 bindingConfiguration="default"
 behaviorConfiguration="CardSpaceBehavior"
 address="http://AddressToBeReplacedInCode/" />
 </client>
 <services>
 <service name="SoftnetSolutions.Shape.Draw.FormDrawShape">
 <endpoint name="RelayEndpoint"
 contract="SoftnetSolutions.RelayService.ServiceContract.IPublishEventService"
 binding="netTcpRelayBinding"
 bindingConfiguration="default"
 behaviorConfiguration="CardSpaceBehavior"
 address="" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

Listing 6-18. Change the Credential Type to automaticRenewalClientCredentials in the Configuration

File App.config of ShapeController

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="Topic" value="PublishEventService"/>
 <add key="Solution" value="SoftnetSolutionsServiceBus"/>
 <add key="password" value="9j!Ns$R8%7"/>
 </appSettings>
 <system.serviceModel>

 <bindings>
 <netTcpRelayBinding>
 <binding name="default" connectionMode="Hybrid">
 <security mode="None" />
 </binding>
 </netTcpRelayBinding>
 </bindings>

 <behaviors>
 <endpointBehaviors>
 <behavior name="automaticRenewalClientCredentials">
 <transportClientEndpointBehavior credentialType="AutomaticRenewal" />
 </behavior>

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

204

 </endpointBehaviors>
 </behaviors>

 <client>
 <endpoint name="RelayEndpoint"
 contract="SoftnetSolutions.RelayService.ServiceContract.IPublishEventService"
 binding="netTcpRelayBinding"
 bindingConfiguration="default"
 behaviorConfiguration="automaticRenewalClientCredentials"
 address="http://AddressToBeReplacedInCode/" />
 </client>
 <services>
 <service name="SoftnetSolutions.Shape.Draw.FormDrawShape">
 <endpoint name="RelayEndpoint"
 contract="SoftnetSolutions.RelayService.ServiceContract.IPublishEventService"
 binding="netTcpRelayBinding"
 bindingConfiguration="default"
 behaviorConfiguration="automaticRenewalClientCredentials"
 address="" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

In Chapter 3 we discussed Azure Queue storage, which is one of the three basic storage types used
as part of the Azure framework. .NET Service Bus also provides application-level queue storage, called
.NET Service Bus Queue, that tremendously simplifies the message delivery between applications run
behind a firewall. In the next exercise we are going to refactor this exercise to use .NET Service Bus
Queue and let you get hands-on experience with .NET Service Bus Queue. You'll be able to reuse the
libraries from the project in your future development.

.NET Service Bus Queue Client Facade
The .NET Service Bus Queue leverages every Internet communication protocol to allow message delivery
through the cloud. The .NET Services SDK provides rich .NET Service Bus Queue examples and covers all
its features in detail. This book does not intend to duplicate these examples but build a facade
QueueClientFactory component allowing you to easily integrate the .NET Service Bus Queue into
applications run from either a cloud or on-premises environment. You should be able to easily find a lot
of blogs and technical articles, such as http://vasters.com/clemensv/PermaLink,guid,0f64f592-7239-
42fc-aed2-f0993701c5f6.aspx.

Before we move on, let us cover some background information that may be useful in future
development. As you know from Chapter 3, the Azure Queue service runs from local or cloud fabric. In
contrast, .NET Service Bus Queue exists on the Internet and is URI addressable using the address format
list shown in the following bullet points. The URI addresses should contain the phrase
servicebus.windows.net.

There is no limitation to the format for the .NET Service Bus queue, so the queue message can carry
user-defined data types. The .NET Service Bus uses the URI for the name or address of a queue.

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

205

The format of a queue address is:

• sb://solution.servicebus.windows.net/QueueName

• http://solution.servicebus.windows.net/QueueName

• https://solution.servicebus.windows.net/QueueName

The queue name can be in any format. In other words, the .NET Service Bus queues can be
addressed by subject in the hierarchical structure. This makes the .NET Service Bus Queue a good
candidate to be used in an event-driven distributed system.

This exercise refactors the .NET Services SDK example TypedMessages. The original source code and
document can be found at [install drive]:\Program Files\Microsoft .NET Services
SDK\Samples\ServiceBus\ExploringFeatures\Queues\TypedMessages.

■ Note The code for this example is in the Exercise 6-4 bundle from the code download.

To use the .NET Service Bus Queue it is essential to create an instance of the QueueClient class.
The core class is the QueueClientFactory, which accepts a generic type T as a parameter since the core
member variable in this class, _queueMessage (of type of QueueMessage), does. The steps to create a .NET
Service Bus QueueClient are straightforward.

1. Create a service URI by calling a static method CreateServiceUri() from the
class ServiceBusEnvironment in the Microsoft.ServiceBus.dll assembly. (This
assembly can be found in the Assemblies folder of the .NET Services SDK path.)

2. Create a QueuePolicy. The simplest way, which this exercise uses, is to create
the queue policy using the .NET Services SDK’s
Microsoft.ServiceBus.QueuePolicy class. The QueueClient instances cannot be
created directly but must be created via the QueueManagementClient.

3. Create the QueueClientFactory class to wrap up the methods from the SDK’s
TypedMessages example. This class can be used for both client-side and server-
side applications. If this factory class is used for a server-side application, the
application can register an update callback notification when a new queue
message is detected.

The implementation of the QueueClientFactory is shown in Listing 6-19. In order to process the
update callback notification, the data entity object needs to implement the IComparable interface
allowing the caller object to detect the value change of the internal custom-defined data types (in this
example the custom data is the enumerator type). This all applies where a WCF data contract type class
is used (since under the hood QueueClient uses the WCF service for communication).

The QueueClientFactory class has two member variables, _queueMessage and _lastQueueMessage,
with the type of QueueMessage defined in the Microsoft.Samples.ServiceBus namespace. Unlike the
Azure Queue we explored in Chapter 3, this class dose not fire the callback event when a new message
is put into the queue. Therefore our wrapper class has to actively poll the queue periodically to get the
new message. This is done from the timer tick handler PollingQueueData. If the internal data value of the
message is different from that of the last message, the factory wrapper class fires a notification event and
persists the message instance to the member variable _lastQueueMessage. This is the reason why the data

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

206

contract class must implement the IComparable interface if the embedded data is a custom-defined type.
Another difference between the Azure Queue storage and .NET Service Bus Queue is that the queue
message is not persisted in the QueueMessage class. As I mentioned at the beginning of this exercise, the
.NET Service Bus Queue is an application-level queue available through the Internet. Therefore, it would
make sense to expect it to have a permanent persistence storage space. This also explains why the Azure
Queue does not actively remove the message from queue storage until the client explicitly calls a service
to delete it, while the .NET Service Bus Queue does actively remove messages.

Listing 6-19. Implementation of QueueClientFactory

using System;
using System.ServiceModel;
using System.ServiceModel.Description;
using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Description;
using System.Text;
using System.ServiceModel.Channels;
using System.Configuration;

namespace SoftnetSolutions.ServiceBus.QueueFacade
{
 using Microsoft.Samples.ServiceBus;
 using SoftnetSolutions.AzureSolutionCredential;
 using CSharpBuildingBlocks.EventsHelper;

 public class QueueClientFactory<T> where T: class
 {
 protected System.Timers.Timer _timer = null;
 protected QueueClientFactory<T> _queueClientFactory = null;
 protected QueueMessage<T> _queueMessage = null;
 protected QueueMessage<T> _lastQueueMessage = null;
 protected event EventNotificationHandler _dataUpdateEvent = null;

 public QueueClient<T> QueueClient { get; set; }
 public QueueClientFactory()
 {
 _Initialization();
 _StartQueuePollingTimer();
 }

 public event EventNotificationHandler DataUpdateEvent
 {
 add
 {
 _dataUpdateEvent += value;
 _StartQueuePollingTimer();
 }
 remove { _dataUpdateEvent -= value; }
 }

 private void _StartQueuePollingTimer()

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

207

 {
 _timer = new System.Timers.Timer(1000);
 _timer.Elapsed += new System.Timers.ElapsedEventHandler(PollingQueueData);
 _timer.AutoReset = true;

 _timer.Enabled = true;

 _timer.Start();
 }

 private void _Initialization()
 {
 string solutionName = ConfigurationManager.AppSettings["Solution"];
 string queueName = ConfigurationManager.AppSettings["QueueName"];

 AzureSolutionCredential azureSolutionCredential =
 new AzureSolutionCredential(solutionName);
 Uri queueUri =
 ServiceBusEnvironment.CreateServiceUri("sb", solutionName,
 string.Format("/{0}/", queueName));

 TransportClientEndpointBehavior userNamePasswordServiceBusCredential =
 new TransportClientEndpointBehavior();
 userNamePasswordServiceBusCredential.CredentialType =
 TransportClientCredentialType.UserNamePassword;
 userNamePasswordServiceBusCredential.Credentials.UserName.UserName =
 solutionName;
 userNamePasswordServiceBusCredential.Credentials.UserName.Password =
 azureSolutionCredential.Password;

 QueuePolicy queuePolicy = new QueuePolicy();
 queuePolicy.ExpirationInstant = DateTime.UtcNow + TimeSpan.FromHours(1);
 QueueClient = QueueRenewalHelper<T>.GetOrCreateQueue<T>(
 userNamePasswordServiceBusCredential, queueUri, ref queuePolicy);
 }

 protected void PollingQueueData(object source, System.Timers.ElapsedEventArgs e)
 {
 if (null != QueueClient)
 {
 try
 {
 _queueMessage = QueueClient.Retrieve();
 }
 catch { }
 if (null != _queueMessage)
 {
 T queueData = _queueMessage.Value as T;

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

208

 if (queueData is IComparable)
 {
 if (null == _lastQueueMessage ||
 (queueData as IComparable).CompareTo(_lastQueueMessage.Value) != 0)
 {
 _lastQueueMessage = _queueMessage;
 if (null != _dataUpdateEvent)
 {
 _dataUpdateEvent(this, new

 QueueDataUpdateArgs<T>(_queueMessage.Value));
 }
 }
 }
 else
 {
 throw new ArgumentException(
 "The data object must implement IComparable interface!",
 queueData.GetType().Name);
 }
 }
 }
 }
 }
}

4. Add a new class, QueueDataUpdateArgs<T>, to the project
SoftnetSolutions.ServiceBus.QueueFacade. This class is derived from the
EventArgs class and accepts a generic type class as the embedded object for the
queue message class. The implementation is shown in Listing 6-20.

Listing 6-20. Implementation of QueueDataUpdateArgs<T> Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SoftnetSolutions.ServiceBus.QueueFacade
{
 using CSharpBuildingBlocks.EventsHelper;

 public class QueueDataUpdateArgs<T> :EventHelperArgs
 {
 public T QueueData { get; set; }
 public QueueDataUpdateArgs() { }
 public QueueDataUpdateArgs(T queueData)
 {
 QueueData = queueData;
 }

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

209

 public override string ToString()
 {
 return string.Empty;
 }
 }
}

Adapting the QueueFacade class to the applications created in the previous exercise, we have the
same results as that from the previous exercise but using the .NET Service Bus Queue.

Summary
In this chapter we saw how .NET Service Bus solves two major problems:

• How to get service requests through a firewall

• How to discover service endpoints

We started by examining the .NET Service Bus in detail, including how its service name hierarchy
worked and how we register and discover applications with its service registry.

The rest of the chapter contained examples of using the .NET Service Bus to connect applications.
We wrote a message hub that clients subscribed to. It was fairly simple but demonstrated the simplicity
of .NET Service Bus. The next two examples were distibuted connected systems, one of which
demonstrated a loosely coupled distributed drawing application.

Our final example used the .NET Service Bus Queue and demonstrated the difference between the
.NET Service Bus Queue and the Queue storage we saw in Chapter 3.

CHAPTER 6 ■ AZURE .NET SERVICES—SERVICE BUS

210

C H A P T E R 7

■ ■ ■

211

Azure .NET Services—Workflows

The .NET Workflow Service provides a highly scalable host for running workflows in the cloud.
Workflows can be designed and constructed using Visual Studio’s Workflow Designer. A workflow
is a set of activities working together to reach the goal of controlling the logic flow and managing the
status of an application, as Figure 7-1 shows. Each activity performs a predefined action, for example,
sending or receiving a message, implementing the logic of an if-match, or controlling a while loop.
In practice, the set of activities is implemented in a separate .NET assembly library to be reused by
different applications.

Two types of Windows workflows are available in .NET 3.0 or later: sequential workflows and state
machine workflows. At the time of this writing, only one type of workflow template is available for a
cloud application, the sequential workflow template. To deploy a state machine workflow to the
cloud, the dependent .NET assemblies for the workflow item must be deployed to the cloud fabric,
which is not supported by Microsoft yet. (All custom-defined machine workflows, where an activity
is derived from the base activity class, are not supported either, because you have to deploy the base
activity assembly together with the application. I will provide reasons in detail during the exercise
project later in the chapter.) An alternate way to support a state machine workflow from a cloud
application is using HttpWebRequest and HttpWebResponse instead of using the template from the
workflow designer. In this chapter I'll provide a sample solution to address this issue. We are going
to see a .NET Workflow Service example limited to the CloudSequential workflow and provide an
example of a work-around for a state machine workflow running in the cloud using HttpWebRequest.

■ Note Windows Workflow Foundation (WF) uses a SQL Server database to persist its status. However, this
database is not installed by the .NET Framework. This database needs to be manually set up before working with
WF. Follow the steps at http://msdn.microsoft.com/en-us/library/aa349366(VS.85).aspx to set up the
database in your local development environment.

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

212

Figure 7-1. Concept of Microsoft .NET workflow services

Hosting a Workflow Service in an Azure Cloud Environment
In this exercise we are going to create a very simple cloud workflow service and deploy it to Azure data
centers. To build a cloud-based workflow is very similar to building a Windows-based workflow except
there is no code-behind allowed.

■ Note The code for this example is in the Exercise 7-1 bundle from the code download.

1. Create a WCF DLL library project in order to get services from WCF and .NET
Service Bus, as Listing 7-1 shows. This WCF service has only one method,
called Ping(). Set the contact attribute to [OperationContract(IsOneWay =
true)], otherwise it causes an error at runtime because the default value is
false, which is not supported yet. Hopefully it will be supported in future
releases.

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

213

Listing 7-1. ShoppingCart WCF Service Library

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.Serialization;
using System.ServiceModel;

namespace CloudWorkflowServiceLibrary
{
 [ServiceContract]
 public interface IShoppingCartService
 {
 [OperationContract(IsOneWay = true)]
 void Ping();
 }

 [DataContract]
 public class ShoppingCartItem
 {
 [DataMember]
 public string SKU;

 [DataMember]
 public string ProductName;

 [DataMember]
 public DateTime AddTime;

 [DataMember]
 public int ItemCount;
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Diagnostics;

namespace CloudWorkflowServiceLibrary
{
 [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
 public class ShoppingCartService : IShoppingCartService
 {
 public void Ping()
 {
 string message =

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

214

 string.Format("---{0}:Ping, {1}", DateTime.Now.ToString(), this.ToString());
 Trace.WriteLine(message);
 Console.WriteLine(message);
 }

 #endregion
 }
}

2. Create a console application project to host the WCF service that we have
just created. Name the project ShoppingCartServiceHost. Add a reference to
System.ServiceModel.dll and Microsoft.ServiceBus.dll. (This assembly can
be found in C:\Program Files\Microsoft .NET Services SDK\Assemblies.)
Insert a few lines of code into the Main() method body as Listing 7-2 shows.
The setting options NetEventRelayBinding, TransportClientEndpointBehavior,
and UserNamePassword credentials to authenticate to the .NET Service Bus are
needed here because the workflow will be calling the service. There is not
much difference from the Main() methods we have seen in previous chapters:
the security authentication type can be switched from the user name and
password to other types such as CardSpace or X.509 certificate.

Listing 7-2. Local WCF Service Host ShoppingCartServiceHost

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;
using System.ServiceModel.Description;

namespace ShoppingCartServiceHost
{
 using Microsoft.ServiceBus;
 using CloudWorkflowServiceLibrary;

 class Program
 {
 static void Main(string[] args)
 {
 ServiceHost host = new ServiceHost(typeof(ShoppingCartService));

 ServiceEndpoint endpoint =
 host.AddServiceEndpoint("CloudWorkflowServiceLibrary.IShoppingCartService",
 new NetEventRelayBinding(),
 "sb://servicebus.windows.net/services/SoftnetSolutions_113/ShoppingCart");
 TransportClientEndpointBehavior transportEndpointBehavior =
 new TransportClientEndpointBehavior();
 transportEndpointBehavior.CredentialType =
 TransportClientCredentialType.UserNamePassword;
 transportEndpointBehavior.Credentials.UserName.UserName = "[your user name]";

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

215

 transportEndpointBehavior.Credentials.UserName.Password =
 "[your solution password]";

 endpoint.Behaviors.Add(transportEndpointBehavior);

 try
 {
 host.Open();
 Console.WriteLine("Host is running");
 Console.ReadLine();
 host.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(
 string.Format("---ShoppingCartServiceHost:Main, exception caught {0}",
 ex.Message));
 }
 }
 }
}

3. Create a cloud sequential workflow project from Visual Studio as shown in
Figure 7-2 and call it CloudSequentialShoppingCartWorkflow.

Figure 7-2. Create a cloud sequential workflow project

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

216

4. Drag a CloudXPathUpdate from the toolbox and drop it on the workflow design
surface, as Figure 7-3 shows. Call it CreateShoppingCartServiceBusMessage.

Figure 7-3. Add a CloudXPathUpdate activity to the design surface

5. Enter the binding information into the Properties dialog box as shown
following. At runtime, the input information (InNewValue) will be populated
into the <input></input> node using the XPath expression as the search
string.

InNewValue = "Hello from ShoppingCart Workflow"
InXml = "<Ping><input></input></Ping>"
InXPathExpresssion ="/Ping/input"

6. Add a CloudServiceBusSend activity below the CloudXPathUpdate activity on
the workflow design surface and call it SendShoppingCartInfo.

7. Make sure the binding information is as following.

Action = "urn:IShoppingCartService/Ping"
Body Name = "CreateShoppingCartServiceBusMessage"
Body Path = "OutXml"
ConnectionMode = "Multicast"
URL = "sb://servicebus.windows.net/services/SoftnetSolutions_113/ShoppingCart"

8. Now we have all the necessary information for the workflow design and are
ready to deploy to the Microsoft data center. Right-click on the workflow
design surface to bring up the Workflow Cloud Deployment dialog box, and
enter your credential information.

9. Go to https://workflow.ex.azure.microsoft.com/WorkflowManagement.asp
and verify that the workflow has been successfully deployed to Microsoft as
shown in Figure 7-4.

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

217

Figure 7-4. Verifying that the service has been deployed using Azure Portal

Before we finish our development let’s shift the topic a little bit to discuss the limitations of using
cloud state machine workflows with the current .NET Workflow Service. In order to understand what is
going to happen at runtime if we deploy a state machine workflow to the cloud, let us deploy a workflow
with state machine type or with a custom-defined activity to the cloud. For example, let's switch back to
our project and define a custom workflow activity as Listing 7-3 and Listing 7-4 show. This is a very
simple custom activity used to send an e-mail notification when a WCF service call is received. If we host
this workflow activity in a worker role like in Listing 7-2, we get a security exception, saying that the
worker role failed to start because an assembly call cannot be loaded from a partially trusted assembly,
as Figure 7-5 shows. Actually, the assembly related to the exception is System.Workflow.Activities as
highlighted in Listing 7-3; we have to reference this assembly from the project, but it has not been

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

218

officially signed by Microsoft yet. (If you use Red Gate’s .NET reflector to load the assembly, you will see
that it has no strong name key assigned by Microsoft.) If the state machine workflow is required from a
cloud application the only way to work around this issue is using HttpWebRequest to generate a REST call
via HTTP. That is the topic we are going to focus on in the next exercise, which provides an example of a
work-around to address the issue.

Listing 7-3. Define a Custom Workflow Activity to Send a Notification E-mail When a WCF Call Is

Received

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Workflow.ComponentModel;
using System.Workflow.Activities;
using System.Net.Mail;
using System.Diagnostics;

namespace ActivityClassLibrary
{
 public class EmailNotificationActivity : Activity
 {
 public string To { get; set; }
 public string From { get; set; }
 public string Subject { get; set; }
 public string MessageBody { get; set; }

 protected override ActivityExecutionStatus Execute(
 ActivityExecutionContext executionContext)
 {
 SmtpClient smtpClient = new SmtpClient();
 smtpClient.Host = "smtp.1and1.com";
 smtpClient.EnableSsl = false;
 smtpClient.UseDefaultCredentials = true;
 MailMessage message = new MailMessage(From,
 To,
 Subject,
 MessageBody);
 try
 {
 Trace.WriteLine(
 string.Format("---{0}:Execute, send notification to :{1}",
 this.ToString(), To));
 smtpClient.Send(message);
 }
 catch (Exception ex)
 {
 Trace.WriteLine(
 string.Format("---{0}:Execute, exception caught:{1}",
 this.ToString(), ex.Message));

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

219

 }

 return (ActivityExecutionStatus)ActivityExecutionResult.Succeeded;
 }
 }
}

Listing 7-4. Host the Workflow with the Custom-Defined Activity from a Worker Role

using System;
using System.Collections.Generic;
using System.Threading;
using System.Linq;
using System.Text;
using Microsoft.ServiceHosting.ServiceRuntime;
using System.ServiceModel;
using System.Workflow.Runtime;
using System.Workflow.ComponentModel;

namespace Workflow_WorkerRole
{
 using CustomerRegisterNotification;
 public class WorkerRole : RoleEntryPoint
 {
 public override void Start()
 {
 RoleManager.WriteToLog("Information", "Worker Process entry point called");

 using (WorkflowRuntime workflowRuntime = new WorkflowRuntime())
 {
 AutoResetEvent waitHandle = new AutoResetEvent(false);
 workflowRuntime.WorkflowCompleted +=
 delegate(object sender, WorkflowCompletedEventArgs e) {
 waitHandle.Set();
 };
 workflowRuntime.WorkflowTerminated +=
 delegate(object sender, WorkflowTerminatedEventArgs e) {
 Console.WriteLine(e.Exception.Message);
 waitHandle.Set();
 };

 WorkflowInstance instance =
 workflowRuntime.CreateWorkflow(
 typeof(CustomerRegisterNotificationWorkflow)
);
 instance.Start();

 waitHandle.WaitOne();
 }

 while (true)

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

220

 {
 Thread.Sleep(10000);
 RoleManager.WriteToLog("Information", "Working");
 }
 }

 public override RoleStatus GetHealthStatus()
 {
 // This is a sample worker implementation. Replace with your logic.
 return RoleStatus.Healthy;
 }
 }
}

Figure 7-5. A custom-defined workflow activity caused the worker role to fail

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

221

Coordinating WF Services Using HttpWebRequest
The .NET Framework provides two classes, HttpWebRequest and HttpWebResponse, which are designed to
handle communication using HTTP for URIs beginning with http, https, ftp, and file. These two
classes with WCF REST support allow us to coordinate WF service applications running in the cloud. In
this exercise we use HttpWebRequest to communicate with applications running in the cloud and
implement WCF services to support REST queries and drive the activities of a WF service. To do so, we
implement custom WF activities that must be derived from a System.Workflow.Activities base class
(StateMachineWorkflowActivity). With this exercise, we will learn

• How to compose a WF state machine

• How to implement a WCF service to support a REST query

• How to drive the WF state machine using HttpWebRequest and HttpWebResponse

■ Note The code for this example is in the Exercise 7-2 bundle from the code download.

The concept of this solution is shown in Figure 7-6. Since the entire Azure framework is based on
the HTTP paradigm, if WCF client services are hosted in Azure and support HttpWebRequest, then both
on-premises applications and cloud applications can post an HTTP message via HttpWebRequest to
invoke the WCF service running in the cloud; WCF will also drive the workflows through HttpWebRequest.

Figure 7-6. Using WCF services hosted in Azure to drive WF workflows via HttpWebRequest and

HttpWebResponse

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

222

Having understood the big picture, let’s get started building a WCF state machine workflow that
supports HttpWebRequest. In order to be consistent, we use the shopping cart example we used in the
previous exercise.

■ Note A library WebHttpContext is required for this exercise. This library is defined in the
Microsoft.ServiceModel.Samples namespace. The source code for this library comes with the source code
package of this exercise.

1. Create a State Machine Workflow Library project called
ShoppingCartWorkflow from Visual Studio (as Figure 7-7 shows)
and add a reference to the System.ServiceModel and
System.ServiceModel.Web assemblies.

Figure 7-7. Create a state machine workflow library project ShoppingCartWorkflow from Visual Studio

2. Add an interface, IShoppingCartService, to the project. This interface is
the WCF service contract definition as shown in Listing 7-5. You may
notice that the attributes of the operation contracts in the service
interface definition are slightly different from those we have used in past
chapters. The WebInvoke attribute has been attached to each operation
contract in order to support HttpWebRequest. There are two parameters

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

223

passed into the WebInvoke attribute, Method and UriTemplate. The value
for Method could be either POST or PUT. The value of POST is used for
inserting or deleting data, and the value of PUT is used for updating
data. There are four methods defined in this interface:

 PlaceShoppingCartItem()

 UpdateShoppingCartItem()

 DeleteShoppingCartItem()

 PayShoppingCartItem()

Listing 7-5. WCF Service Contract Interface Definition of IShoppingCartService

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;
using System.ServiceModel.Web;
using ShoppingCartServiceLibrary;

namespace ShoopingCartWorkflows
{
 [ServiceContract]
 public interface IShoppingCartService
 {
 [OperationContract]
 [WebInvoke(Method="POST", UriTemplate="ShoppingCartItem")]
 ShoppingCartItem PlaceShoppingCartItem(ShoppingCartItem ShoppingCartItem);

 [OperationContract]
 [WebInvoke(Method = "PUT", UriTemplate = "ShoppingCartItem/{id}")]
 ShoppingCartItem
 UpdateShoppingCartItem(string id, ShoppingCartItem ShoppingCartItem);

 [OperationContract]
 [WebInvoke(Method = "POST", UriTemplate = "ShoppingCartItem/{id}")]
 ShoppingCartItem
 DeleteShoppingCartItem(string id, ShoppingCartItem ShoppingCartItem);

 [OperationContract]
 [WebInvoke(Method="PUT",
 UriTemplate="CreditCardPayment/ShoppingCartItem/{id}")]
 void PayShoppingCartItem(string id, CreditCardPayment CreditCardPayment);
 }
}

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

224

3. Add a C# library project ShoppingCartServiceLibrary to implement the
IShoppingCartService service contract and data contract as shown in
Listing 7-6 and Listing 7-7. Listing 7-6 is the implementation for the
service interface, and Listing 7-7 is the data contract used to hold the
shopping card property data.

Listing 7-6. WCF IShoppingCartService Service Contract Implementation

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.Serialization;

namespace ShoppingCartServiceLibrary
{
 [Serializable]
 [DataContract(Name="ShoppingCartItem",
 Namespace="http://costco.com/OnlineShopping")]
 public class ShoppingCartItem
 {
 static public string ENDPOINT_CREDITCARD_PAYMENT =
 "http://costco.com/OnlineShopping/CreditCardPayment/";
 static public string ENDPOINT_ITEM_UPDATE =
 "http://costco.com/OnlineShopping/ShoppingCartItem/update/";
 static public string ENDPOINT_ITEM_DELETE =
 "http://costco.com/OnlineShopping/ShoppingCartItem/delete/";
 static public string CREDIT_CARD_PAYMENT_URI =
 "http://localhost:8000/CreditCardPayment/ShoppingCartItem/";
 static public string SHOPPING_CART_URI =
 "http://localhost:8000/ShoppingCartItem/";

 public string ShoppingCartItemId { get; set; }

 [DataMember(Name="ItemName")]
 public string ItemName { get; set; }

 [DataMember(Name="Price")]
 public decimal? Price { get; set; }

 [DataMember(Name="NextItem")]
 public NextItem[] NextItem { get; set; }
 }

 [Serializable]
 [DataContract(Name="NextItem", Namespace="http://costco.com/OnlineShopping")]
 public class NextItem

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

225

 {
 [DataMember(Name="Relative")]
 public string Relative { get; set; }

 [DataMember(Name="uri")]
 public string Uri { get; set; }

 [DataMember(Name="type")]
 public string Type { get; set; }

 public NextItem()
 {
 Type = "application/xml";
 }
 }
}

Listing 7-7. WCF IShoppingCartService Service Data Contract Implementations

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.Serialization;

namespace ShoppingCartServiceLibrary
{
 [Serializable]
 [DataContract(Name = "CreditCardPayment",
 Namespace = "http://costco.com/OnlineShopping")]
 public class CreditCardPayment
 {
 public string ShoppingCartItemId { get; set; }

 [DataMember(Name = "CardNumber")]
 public string CardNumber { get; set; }

 [DataMember(Name = "ExpiresDate")]
 public string ExpiresDate { get; set; }

 [DataMember(Name = "CardHolerName")]
 public string CardHolerName { get; set; }

 [DataMember(Name = "amount")]
 public decimal ChargedAmount { get; set; }
 }
}

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

226

4. Go back to the State Machine Workflow design surface and drag and
drop four state artifacts onto the design surface and name them
WaitingForShoppingCartItem, ShoppingCartItemPlaced, ItemCheckOut,
and CartClosed, as shown in Figure 7-8. The process to work out the
logic of state transaction is the same as the process to work on the
standard WF state machine. Please see http://msdn.microsoft.com/
en-us/netframework/aa663328.aspx to understand Microsoft Windows
Workflow Foundation and how to work on the WF state machine design
in Visual Studio.

Figure 7-8. States defined in ShoppingCartWorkflow state machine

5. Now let's build up the state machine used to handle a shopping cart
service. Implement a code-behind for the ShoppingCartItemWorkflow
state machine as shown in Listing 7-8. The event handler functions in
the code-behind will be bound to events in the state machine during
the next state machine design. This shopping cart example has four
state transaction handlers from the code-behind. These handlers are
generated from the WF design surface; insert the code from the listing
into the handlers’ bodies. (Right-click the design surface and select View
Code, or press F7, to get into the state transaction handler body.) There
is an array called NextItem defined in each handler, which is the data
contract of the WCF services in this example. The member items in the
array also have the type of NextItem that is used to simulate the business
activities, such as shopping cart data insert, update, or delete. The state
will be transacted depending on the activities in the handler.

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

227

Listing 7-8. Code-behind for ShoppingCartWorkflow

using System;
using System.ComponentModel;
using System.ComponentModel.Design;
using System.Collections;
using System.Drawing;
using System.Linq;
using System.Workflow.ComponentModel.Compiler;
using System.Workflow.ComponentModel.Serialization;
using System.Workflow.ComponentModel;
using System.Workflow.ComponentModel.Design;
using System.Workflow.Runtime;
using System.Workflow.Activities;
using System.Workflow.Activities.Rules;
using System.ServiceModel.Web;
using ShoppingCartServiceLibrary;
using System.ServiceModel;

namespace ShoppingCartWorkflows
{
 using ShoppingCartServiceLibrary;

 public sealed partial class ShoppingCartItemWorkflow : StateMachineWorkflowActivity
 {
 public ShoppingCartItem receivedShoppingCartItem;
 public string receivedId;
 public ShoppingCartItem currentShoppingCartItem;
 public CreditCardPayment ShoppingCartItemCreditCardPayment;

 public ShoppingCartItemWorkflow()
 {
 InitializeComponent();
 }

 private void OnShoppingCartItemPlacedCode_ExecuteCode(object sender, EventArgs e)
 {
 var id = WorkflowEnvironment.WorkflowInstanceId.ToString();

 currentShoppingCartItem = new ShoppingCartItem();
 currentShoppingCartItem.ShoppingCartItemId = id;
 currentShoppingCartItem.Price = receivedShoppingCartItem.Price;
 currentShoppingCartItem.ItemName = receivedShoppingCartItem.ItemName;

 currentShoppingCartItem.NextItem = new NextItem[]
 {
 new NextItem {
 Relative = ShoppingCartItem.ENDPOINT_CREDITCARD_PAYMENT,
 Uri = string.Format("{0}{1}",
 ShoppingCartItem.CREDIT_CARD_PAYMENT_URI,
 WorkflowEnvironment.WorkflowInstanceId.ToString()),

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

228

 },
 new NextItem {
 Relative = ShoppingCartItem.ENDPOINT_ITEM_UPDATE,
 Uri = string.Format("{0}{1}",
 WorkflowEnvironment.WorkflowInstanceId.ToString())
 },
 new NextItem {
 ShoppingCartItem.SHOPPING_CART_URI,
 Relative = ShoppingCartItem.ENDPOINT_ITEM_DELETE,
 Uri = string.Format("{0}{1}",
 ShoppingCartItem.SHOPPING_CART_URI,
 WorkflowEnvironment.WorkflowInstanceId.ToString())
 }
 };

 WebOperationContext.Current.OutgoingResponse.StatusCode =
 System.Net.HttpStatusCode.Created;
 }

 private void codeUpdateShoppingCartItem_ExecuteCode(object sender, EventArgs e)
 {
 var id = WorkflowEnvironment.WorkflowInstanceId.ToString();

 currentShoppingCartItem.ShoppingCartItemId = receivedId;
 currentShoppingCartItem.ItemName = receivedShoppingCartItem.ItemName;
 currentShoppingCartItem.Price = receivedShoppingCartItem.Price;
 currentShoppingCartItem.NextItem = new NextItem[]
 {
 new NextItem
 {
 Relative = ShoppingCartItem.ENDPOINT_CREDITCARD_PAYMENT,
 Uri = string.Format("{0}{1}",
 ShoppingCartItem.CREDIT_CARD_PAYMENT_URI,
 id.ToString()),
 },
 new NextItem
 {
 Relative = ShoppingCartItem.ENDPOINT_ITEM_UPDATE,
 Uri = string.Format("{0}{1}",
 ShoppingCartItem.SHOPPING_CART_URI,
 id.ToString()),
 },
 new NextItem
 {
 Relative = ShoppingCartItem.ENDPOINT_ITEM_DELETE,
 Uri = string.Format("{0}{1}",
 ShoppingCartItem.SHOPPING_CART_URI,
 id.ToString()),
 }
 };

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

229

 WebOperationContext.Current.OutgoingResponse.StatusCode =
 System.Net.HttpStatusCode.OK;
 }

 private void codePayShoppingCartItem_ExecuteCode(object sender, EventArgs e)
 {
 var id = WorkflowEnvironment.WorkflowInstanceId.ToString();

 currentShoppingCartItem.ShoppingCartItemId = receivedId;
 currentShoppingCartItem.ItemName = receivedShoppingCartItem.ItemName;
 currentShoppingCartItem.Price = receivedShoppingCartItem.Price;
 currentShoppingCartItem.NextItem = new NextItem[]
 {
 new NextItem
 {
 Relative = ShoppingCartItem.ENDPOINT_CREDITCARD_PAYMENT,
 Uri = string.Format("{0}{1}",
 ShoppingCartItem.CREDIT_CARD_PAYMENT_URI,
 id.ToString()),
 },
 new NextItem
 {
 Relative = ShoppingCartItem.ENDPOINT_ITEM_UPDATE,
 Uri = string.Format("{0}{1}",
 ShoppingCartItem.SHOPPING_CART_URI,
 id.ToString()),
 },
 new NextItem
 {
 Relative = ShoppingCartItem.ENDPOINT_ITEM_DELETE,
 Uri = string.Format("{0}{1}",
 ShoppingCartItem.SHOPPING_CART_URI,
 id.ToString()),
 }
 };
 WebOperationContext.Current.OutgoingResponse.StatusCode =
 System.Net.HttpStatusCode.Created;
 }

 private void codeCheckOutShoppingCartItem_ExecuteCode(object sender, EventArgs e)
 {
 WebOperationContext.Current.OutgoingResponse.StatusCode =
 System.Net.HttpStatusCode.Created;
 }
 }
}

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

230

6. Now we need to bind the state machine workflow item properties
to the corresponding handler. Figure 7-9 shows the bindings for
WaitingForShoppingCartItem:eventItemAdded.

Figure 7-9. Bindings for WaitingForShoppingCartItem:eventItemAdded

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

231

7. The bindings for ShoppingCartItemPlaced:eventItemUpdated are shown
in Figure 7-10.

Figure 7-10. Bindings for ForShoppingCartItem:eventItemUpdated

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

232

8. Bindings for ShoppingCartItemWorkflow:ShoppingCartItemPlaced are
shown in Figure 7-11.

Figure 7-11. Bindings for ShoppingCartItemWorkflow:ShoppingCartItemPlaced

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

233

9. Bindings for ShoppingCartItemWorkflow:StateCheckout are shown in
Figure 7-12.

Figure 7-12. Bindings for ShoppingCartItemWorkflow:StateCheckout

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

234

10. Bindings for ShoppingCartItemWorkFlow:Timeout are shown in Figure 7-13.

Figure 7-13. Bindings for ShoppingCartItemWorkFlow:Timeout

11. Create a host project, ShoppingCartWorkflowServiceHost, as Listing 7-9
shows. There are three callback delegates created in the Main() method.
The first two are used to output trace information regarding the state
transaction, and the third one is used to bind the persistence service for
the workflow, so we can persist the workflow state.

Listing 7-9. Create a Host Project ShoppingCartWorkflowServiceHost to Run the Workflow as a Service

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Workflow.Runtime;
using System.Workflow.Runtime.Hosting;
using System.ServiceModel;
using System.ServiceModel.Description;

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

235

namespace ShoppingCartWorkflowServiceHost
{
 using ShoopingCartWorkflows;

 class Program
 {
 static void Main(string[] args)
 {
 Uri baseAddress = new Uri("http://localhost:8000");

 WorkflowServiceHost host =
 new WorkflowServiceHost(typeof(ShoppingCartItemWorkflow), baseAddress);
 host.Description.Behaviors
 .Find<WorkflowRuntimeBehavior>().WorkflowRuntime.WorkflowTerminated +=
 delegate(object sender, WorkflowTerminatedEventArgs e) {
 Console.WriteLine("WorkflowTerminated: " + e.Exception.Message);
 };
 host.Description.Behaviors
 .Find<WorkflowRuntimeBehavior>().WorkflowRuntime.WorkflowCompleted +=
 delegate(object sender, WorkflowCompletedEventArgs e) {
 Console.WriteLine("WorkflowCompleted.");
 };

 host.Description.Behaviors
 .Find<WorkflowRuntimeBehavior>().WorkflowRuntime.AddService(
 new SqlWorkflowPersistenceService(
 "Initial Catalog=WorkflowPersistenceStore;Data Source=localhost
\\SQLEXPRESS;Integrated Security=SSPI;",
 true,
 TimeSpan.FromHours(1.0),
 TimeSpan.FromSeconds(5.0)
));
 host.Open();

 Console.WriteLine("---- Press <enter> key to exit ----");

 Console.ResetColor();
 Console.ReadLine();

 host.Close();
 }
 }
}

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

236

12. In order to use HttpWebRequest and HttpWebResponse, add an
App.config file to the project and insert the configuration for the
host as shown in Listing 7-10. This host creates a Windows console
application. When the host application starts, it instantiates a
WorkflowServiceHost instance. Two parameters need to pass into the
constructor to instantiate the host instance. The first one is the type of
the workflow, which in our case is ShoppingCartItemWorkflow, and the
second one is the URI of the base address that the host is going to
listen to for HTTP messages. The host is going to look for the service
contract from the workflow instance. This is why we have to keep the
service contract interface definition IShoppingCartService in the same
assembly as the host and the implementation stays in a separate
assembly ShoppingCartServiceLibrary; this assembly is also
referenced by a client application.

Listing 7-10. Configurations for the Service Host Program

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true" />
 <services>
 <service name="ShoopingCartWorkflows.ShoppingCartItemWorkflow">
 contract="ShoopingCartWorkflows.IShoppingCartService" />
 </service>
 </services>
 <bindings>
 <webHttpContext>
 <binding name="myServiceBinding" contextMode="UriTemplate">
 <uriTemplates>
 <add name="ShoppingCartItems value="ShoppingCartItem/{instanceId}"></add>
 <add name="CreditCardPayments
 value="CreditCardPayment/ShoppingCartItem/{instanceId}"></add>
 </uriTemplates>
 </binding>
 </webHttpContext>
 </bindings>
 <behaviors>
 <endpointBehaviors>
 <behavior name="MyServiceBehavior"><webHttp /></behavior>
 </endpointBehaviors>
 </behaviors>
 <extensions>
 <bindingExtensions>
 <add name="webHttpContext"
 type="Microsoft.ServiceModel.Samples.WebHttpContextBindingCollectionElement,
 WebHttpContext, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=null" />
 </bindingExtensions>
 </extensions>

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

237

 <diagnostics>
 <messageLogging logMalformedMessages="true"
 logMessagesAtServiceLevel="true"
 logEntireMessage="true"
 logMessagesAtTransportLevel="true" />
 </diagnostics>
 </system.serviceModel>
 <system.diagnostics>
 <sources>
 <source name="System.ServiceModel.MessageLogging"
 switchValue="Information, ActivityTracing">
 <listeners>
 <add name="ServiceModelMessageLoggingListener" />
 </listeners>
 </source>
 <source name="System.ServiceModel" switchValue="Verbose, ActivityTracing"
 propagateActivity="true">
 <listeners>
 <add name="ServiceModelTraceListener" />
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add initializeData="messages.svclog"
 type="System.Diagnostics.XmlWriterTraceListener, System, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"
 name="ServiceModelMessageLoggingListener" traceOutputOptions="Timestamp">
 </add>
 <add initializeData="tracelog.svclog"
 type="System.Diagnostics.XmlWriterTraceListener, System, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089"
 name="ServiceModelTraceListener" traceOutputOptions="Timestamp">
 </add>
 </sharedListeners>
 <trace autoflush="true" />
 </system.diagnostics>
</configuration>

In order to test the results locally we need to set up a SQL Server database. The WF workflow
state machine runtime needs SQL Server database support to persist runtime transaction data. This
database can be set up using a SQL script. The SQL scripting file used to create this database can
be found in C:\Windows\Microsoft.NET\Framework\v3.0\Windows Workflow Foundation\SQL\EN, as
Figure 7-14 shows. Before running the script from SQL Server Management Studio, manually create a
new database WorkflowPersistenceStore from SQL Server Management Studio or run CREATE TABLE
WorkflowPersistenceStore.

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

238

Figure 7-14. Use the SQL scripts provided by the .NET 3.0 Windows Workflow Foundation to set up the

persistent SQL data table from the local development environment

Create a console application as a test client for testing. This test application instantiates a unit test
library class InvokeWorkflows and calls InvokeHttpWebRequest. In this test client, we use HttpWebRequest to
post or put a message via HTTP with the following steps to trigger the workflow state machine transaction
from one state to another. Note that the client does not need to reference the System.Workflow.Activities
assembly at all. That is why we can deploy an application that uses this approach to the cloud without
dealing with authentication security trust issues. The sample client code is shown in Listing 7-11, and the
following steps are the actions to simulate a shopping cart business flow.

1. Create a ShoppingCartItem object and call HttpWebRequest to post data to the
workflow server. This should advance the workflow state machine from the
initial state of waiting for shopping cart item state to shopping cart item
place state.

2. Update the contents of the ShoppingCartItem and call HttpWebRequest to
update the data in the shopping cart. The state in this activity should loop
back to the same state by design, and the workflow state machine continues
to wait for the next event.

3. Create a credit card payment object and call HttpWebRequest to trigger the
state machine to move to the check out state. The workflow state machine
should finish at the shopping card closed state.

Listing 7-11. Client Code Using HttpWebRequest to Invoke the State Machine Workflow

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net;
using System.IO;
using System.Runtime.Serialization;
using System.ServiceModel;

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

239

using System.ServiceModel.Channels;
using System.ServiceModel.Web;

namespace ClientApplication
{
 using ShoppingCartServiceLibrary;

 class Program
 {
 static void Main(string[] args)
 {
 //Create a new ShoppingCartItem
 ShoppingCartItem shoppingCartItem =
 new ShoppingCartItem {
 ItemName = "Nikon Camera", Price = (decimal)1000.0
 };
 HttpWebRequest createShoppingCartItemRequest =
 CreateRequest(new Uri("http://localhost:8000/ShoppingCartItem"), "POST",
 shoppingCartItem);
 shoppingCartItem =
 InvokeHttpWebRequest<ShoppingCartItem>(
 createShoppingCartItemRequest.GetResponse()
);

 Console.WriteLine("ShoppingCartItem Price {0}", shoppingCartItem.Price);
 foreach (NextItem NextItem in shoppingCartItem.NextItem)
 {
 Console.WriteLine("Check NextItem {0}", NextItem.Uri);
 }

 //Update
 shoppingCartItem.ItemName = "Dell latiture D620";
 shoppingCartItem.Price = (decimal)710.0;

 Uri updateShoppingCartItemUri =
 new Uri(shoppingCartItem.NextItem.Where(
 n => n.Relative == ShoppingCartItem.ENDPOINT_ITEM_UPDATE).Single().Uri);

 HttpWebRequest updateShoppingCartItemRequest =
 CreateRequest(updateShoppingCartItemUri, "PUT", shoppingCartItem);
 ShoppingCartItem updatedShoppingCartItem =
 InvokeHttpWebRequest<ShoppingCartItem>(
 updateShoppingCartItemRequest.GetResponse()
);

 Console.WriteLine("ShoppingCartItem Price {0}", updatedShoppingCartItem.Price);
 foreach (NextItem NextItem in updatedShoppingCartItem.NextItem)
 {
 Console.WriteLine("Process NextItem {0}", NextItem.Uri);
 }

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

240

 //Pay
 CreditCardPayment CreditCardPayment =
 new CreditCardPayment {
 CardHolerName = "David Smith",
 CardNumber = "1234567,
 ExpiresDate = "10/10",
 ChargedAmount = updatedShoppingCartItem.Price.GetValueOrDefault()
 };

 Uri payShoppingCartItemUri = new Uri(shoppingCartItem.NextItem.Where(
 n => n.Relative == ShoppingCartItem.ENDPOINT_CREDITCARD_PAYMENT).Single().Uri);
 HttpWebRequest payShoppingCartItemRequest =
 CreateRequest(payShoppingCartItemUri, "PUT", CreditCardPayment);

 int statusCode = Execute(payShoppingCartItemRequest.GetResponse());

 if (statusCode == 201)
 Console.WriteLine("Transaction success!");
 else
 Console.WriteLine("Failed to process the CreditCardPayment");

 //Checkout
 Uri deleteShoppingCartItemUri =
 new Uri(shoppingCartItem.NextItem.Where(
 n => n.Relative == ShoppingCartItem.ENDPOINT_ITEM_DELETE).Single().Uri);

 HttpWebRequest deletehoppingCartItemRequest =
 CreateRequest(deleteShoppingCartItemUri, "POST", shoppingCartItem);

 ShoppingCartItem deletedShoppingCartItem =
 InvokeHttpWebRequest<ShoppingCartItem>(
 deletehoppingCartItemRequest.GetResponse()
);
 }

 static HttpWebRequest CreateRequest(Uri address, string method, object contract)
 {
 HttpWebRequest webRequest = (HttpWebRequest)WebRequest.Create(address);
 webRequest.ContentType = "application/xml";
 webRequest.Timeout = 20000;
 webRequest.Method = method;

 DataContractSerializer serializer =
 new DataContractSerializer(contract.GetType());
 using (Stream stream = webRequest.GetRequestStream())
 {
 serializer.WriteObject(stream, contract);
 stream.Flush();
 }

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

241

 return webRequest;
 }

 static T InvokeHttpWebRequest<T>(WebResponse response)
 {
 DataContractSerializer serializer = new DataContractSerializer(typeof(T));
 using (Stream stream = response.GetResponseStream())
 {
 return (T)serializer.ReadObject(stream);
 }
 }

 static int InvokeHttpWebRequest (WebResponse response)
 {
 using (Stream stream = response.GetResponseStream()) { };
 return (int)((HttpWebResponse)response).StatusCode;
 }
 }
}

Start the host service to listen to the HTTP web request. When the service host starts, it listens to the
HTTP web request.

---- Press <enter> key to exit ----

Run the test client project. The test results show that the workflow state machine goes through all
states, ending with the shopping cart state:

---- Press <enter> key to exit ----

WorkflowCompleted.

Create a cloud service HostWCFServiceInCloud with a WorkflowsClient_WorkerRole and invoke
the state machine workflows from the local cloud fabric. We have the same results as previously. This
demonstrates that with the help of HttpWebRequest we can invoke the state machine workflows from the
cloud to work around the limitation from the current Azure .NET service state machine workflow. The
code for the worker role is shown in Listing 7-12.

Listing 7-12. Invoke State Machine Workflows from the Cloud Using Worker Role

using System;
using System.Collections.Generic;
using System.Threading;
using System.Linq;
using System.Text;
using Microsoft.ServiceHosting.ServiceRuntime;
using System.Runtime.Serialization;

CHAPTER 7 ■ AZURE .NET SERVICES—WORKFLOWS

242

using System.ServiceModel;
using System.ServiceModel.Channels;
using System.ServiceModel.Web;
using System.Net;
using System.IO;

namespace WorkflowsClient_WorkerRole
{
 using ClientUnitestibrary;

 public class WorkerRole : RoleEntryPoint
 {
 public override void Start()
 {
 RoleManager.WriteToLog("Information", "Worker Process entry point called");

 InvokeWorkflows invokeWorkflows = new InvokeWorkflows();
 invokeWorkflows.HttWebRequestInvokeWorkflows();

 while (true)
 {
 Thread.Sleep(10000);
 RoleManager.WriteToLog("Information", "Working");
 }
 }

 public override RoleStatus GetHealthStatus()
 {
 return RoleStatus.Healthy;
 }
 }
}

Summary
In this chapter we covered workflows and how to host them in the cloud. We started with an example
of a sequential workflow service and saw how easy it was to use in Azure. The workflow service was
essentially the same as regular .NET workflow, with the exception that we could not use any code-
behind files.

Our second example provided a work-around to a limitation in the .NET Workflow service: namely
that we can't deploy state machine or custom workflows to the cloud. Our example used HttpWebRequest
to switch the states of a state machine workflow to demonstrate the work-around.f

C H A P T E R 8

■ ■ ■

243

SQL Azure

At the end of July 2009 Microsoft announced SQL Azure community technology preview (CTP) and
aimed to go live in November 2009 for SQL Azure and to phase out SQL Data Services (SDS). SQL Azure
and SDS are both cloud-based services but are built using different data models. With the introduction
of SQL Azure, Azure has reached a breakthrough point, leaving this new platform in a good position to
be accepted by the enterprise and for winning marking share, since:

• SQL Azure is the first cloud service completely supporting the relational database
model.

• SQL Azure is fully committed to supporting T-SQL, SQL query, stored procedures,
data views, and so on.

• SQL Azure supports the traditional Windows user/password security model.

• The first release of SQL Azure is almost fully compatible with all existing relational
development tools and IDEs, such as SQL Server Management Studio (SSMS) and
Visual Studio.

• SQL Azure allows all SQL developers and IT staff to seamlessly migrate from an on-
premises environment to a cloud environment with almost no learning curve. All
knowledge and skills for SQL developers and IT staff can be applied to SQL Azure.
This should remove a big concern from when the Azure framework was announced
in October 2008 regarding potential job losses for the IT industry (worries brought on
because the infrastructure and data storage hardware for an organization no longer
need to exist in the organization).

• SQL Azure supports PHP, which makes SQL Azure more friendly to Internet
applications.

The most important thing is that SQL Azure is the first platform supporting the rational database
model and database as a service running in the cloud. The major changes are not in the physical domain
but in the logical virtual domain.

Since SQL Server and T-SQL have been in the market for decades, there is a lot of information that
can be found on them. This chapter does not cover SQL or T-SQL based upon the assumption that you
know SQL. Instead, this chapter covers the fundamentals, including how to register to set up your SQL
Azure account and how to connect to a cloud database from SSMS.

CHAPTER 8 ■ SQL AZURE

244

Create a Virtual Server for SQL Azure
The first step to using SQL Azure is to create a SQL service. For a CTP account user, redeem your
invitation code from Microsoft and create a SQL service. You will see the results when a SQL service has
been created in the cloud as Figure 8-1 shows.

Figure 8-1. The results of creating a SQL Azure server from the cloud

Click the Manage link, and you will be redirected to the management page where you can see that
a default database, master, has been created in the SQL Azure server you have just created. Click the
Connection Strings button, and you get the connection strings for ADO.NET, ODBC, and OLE DB as
shown in Figure 8-2. You can use them to access this database using SQL access clients. You will also be
able to see that the server name is assigned to the SQL Azure server that you have just created.

CHAPTER 8 ■ SQL AZURE

245

Figure 8-2. The connection strings used to access SQL Azure using ADO.NET, ODBC, or OLE DB

You can easily create a new database by clicking the Create Database button in the management
page. An example of the results of creating a custom database is shown in Figure 8-3.

Figure 8-3. Create a custom SQL Azure database SQLAzureIntroduction

Connect to a SQL Azure Database Using SQL Server
Management Studio
Please bear in mind that SQL Azure does not support object browsing from SQL Server Management
Studio. To connect to the SQL Azure database in the cloud using SQL Server Management Studio, launch
SQL Server Management Studio. Close the Connect to Server dialog box and click the ribbon button New
Query as Figure 8-4 shows. This will lead you back to the Connect to Server dialog box again. By clicking
the Options button and selecting the Connection Properties tab, you can specify the target custom

CHAPTER 8 ■ SQL AZURE

246

database you created in the cloud. The correct server name must be filled in as Figure 8-4 shows. The
format of the server name is:

[Data server name assigned by SQL Azure].ctp.database.windows.net

The authentication type that should be selected is SQL Server Authentication. The login name
and password are the same as the ones you used to redeem your invitation code. After the connection
succeeds you may get an error message box as Figure 8-5 shows. This is a known issue in the current SQL
Azure release, but it will not prevent you moving forward.

Figure 8-4. To connect to SQL Azure database, click the ribbon button New Query

CHAPTER 8 ■ SQL AZURE

247

Figure 8-5. A known issue in the current SQL Azure release when connecting to the SQL Azure database

using SQL Server Management Studio

A quick way to verify the creation of the database from the cloud is to execute the following T-SQL
query:

SELECT * FROM sys.databases

The returned message should show that the database exists in the current virtual SQL Azure server
as Figure 8-6 shows.

Figure 8-6. Using SELECT * FROM sys.databases to query information of existing databases from the

virtual data server

SQL Azure Timeout

The connection to SQL Azure will be automatically deactivated if there is no activity detected by SQL Azure.
The error message will be thrown as below, and you just need to reconnect to the service by clicking on
the button shown in Figure 8-7 from SQL Server Management Studio.

Msg 10053, Level 20, State 0, Line 0
A transport-level error has occurred when sending the request to the server. (provider:

CHAPTER 8 ■ SQL AZURE

248

TCP Provider, error: 0 - An established connection was aborted by the software in your
host machine.)

Figure 8-7. The connection can be resumed by clicking the Change Connection button from SQL

Management Studio if the connection has been interrupted

Create a Data Table Using SQL Server Management Studio
A custom table can be created in the SQL Azure cloud database by using SQL Server Management Studio
in a way that is pretty similar to creating a database on a server running in an on-premises environment.
One difference, for example, is that the USE statement is not supported when using SQL Azure since we
have used New Query to connect to the specific database already. If you need to access a different
database, you can start a new query by clicking the New Query button. To find more guidelines and
limitations to using SQL Azure, see http://msdn.microsoft.com/en-us/library/ee336245.aspx.

Run the script in Listing 8-1 to create a data table called UserTable. The results are shown in Figure 8-8.

Listing 8-1. SQL Script Used to Create a Data Table in SQL Azure

CREATE TABLE [dbo].[UserTable](
 [UserID] [int] IDENTITY(1,1)NOT NULL PRIMARY KEY CLUSTERED,
 [Password] [nvarchar](100) NULL,
 FirstName [nvarchar](100) NOT NULL,
 LastName [nvarchar](100) NOT NULL,
 [Timestamp] [timestamp] NOT NULL
)
GO
INSERT INTO UserTable
([Password],
 FirstName,
 LastName)
 Values(
 'password',
 'Henry',
 'Li'
)
 GO
SELECT COUNT(*) FROM UserTable
SELECT * FROM UserTable

CHAPTER 8 ■ SQL AZURE

249

Figure 8-8. Query results from Listing 8-1

Simple Benchmark Testing Results
Results of a simple benchmark test for SQL Azure access are shown in Table 8-1. (The scripts for the test
follow.) It may satisfy your curiosity as to the performance of the database in the cloud (I certainly was
curious). Figure 8-9 shows the Internet access bandwidth used to get the results of Table 8-1. (A free speed-
testing tool Speakeasy (www.speakeasy.net/speedtest) can be used to determine your broadband speed.)

Table 8-1. Results of a Simple Benchmark Test for SQL Azure Database Access

Number of Rows 1,000,000 10,000 100

INSERT 19 min, 46 sec 12 sec < 1 sec

SELECT 4 min, 39 sec 7 sec < 1sec

UPDATE 20 min, 11 sec 12 sec 1 sec

DELETE 20 min, 47 sec 13 sec < 1 sec

Figure 8-9. Broadband speed of the network used to get the benchmark testing results of Table 8-1

CHAPTER 8 ■ SQL AZURE

250

To get benchmark testing results you need to create an index table using the script shown in
Listing 8-2.

Listing 8-2. SQL Script Used to Create an Index Table Using FirstName as Index Key

CREATE INDEX IX_UserTable_FirstName
ON [UserTable](FirstName)
Go

The SQL script used to do this benchmark testing is shown in Listing 8-3.

Listing 8-3. SQL Scripts Used for Benchmark Testing to Get the Results of Table 8-1

CREATE PROCEDURE BatchInsert
@rows int
AS
DECLARE @index int
SELECT @index = 1
WHILE (@index < @rows)
BEGIN
 INSERT INTO UserTable
 ([Password],
 FirstName,
 LastName)
 VALUES
 ('password',
 'Henry' + CAST(@index as nvarchar),
 'Li')
 SELECT @index = @index + 1
END
go

CREATE PROCEDURE BatchUpdate
@rows int
AS
DECLARE @index int
SELECT @index = 1
WHILE (@index < @rows)
BEGIN
 UPDATE UserTable
 SET
 [Password] = 'passworduPDATE',
 FirstName = 'Henry' + CAST(@index as nvarchar),
 LastName = 'Li'
 WHERE [UserID] = @index
 SELECT @index = @index + 1
END
go

CREATE PROCEDURE BatchDelete

CHAPTER 8 ■ SQL AZURE

251

@rows int
AS
DECLARE @index int
SELECT @index = 1
WHILE (@index < @rows)
BEGIN
 DELETE UserTable
 WHERE [UserID] = @index
 SELECT @index = @index + 1
END
go

--truncate table UserTable
DECLARE @NUMBER_OF_TEST_ROWS INT
SET @NUMBER_OF_TEST_ROWS = 100000
EXEC BatchInsert @NUMBER_OF_TEST_ROWS
select * from UserTable where FirstName like 'Henry%'
EXEC BatchUpdate @NUMBER_OF_TEST_ROWS
EXEC BatchDelete @NUMBER_OF_TEST_ROWS

Verifying That SQL Azure Supports Relational Data Tables
Run the SQL script in Listing 8-4 against the SQL Azure cloud database described previously to create
two relational data tables. The diagram of the table structure and relationships is shown in Figure 8-10.
In the Address table the field UserID is a foreign key, which references UserID in UserTable. The script to
create the foreign key is shown in the boldface lines in Listing 8-4.

Listing 8-4. SQL Script Used to Create Relational Data Tables

DROP TABLE [UserTable]
GO

CREATE TABLE [dbo].[UserTable](
 [UserID] [int] IDENTITY(1,1)NOT NULL,
 [Password] [nvarchar](100) NULL,
 FirstName [nvarchar](100) NOT NULL,
 LastName [nvarchar](100) NOT NULL,
 [Timestamp] [timestamp] NOT NULL
)
GO

ALTER TABLE [UserTable]
ADD CONSTRAINT UserID_PK PRIMARY KEY (UserID)
GO

CREATE TABLE [dbo].[Address](
 AddressID [int] IDENTITY(1,1)NOT NULL,
 [UserID] [int] NOT NULL,

CHAPTER 8 ■ SQL AZURE

252

 Address1 [nvarchar](100) NULL,
 Address2 [nvarchar](100) NULL,
 City [nvarchar](100) NULL,
 State [nvarchar](100) NULL,
 Zip [nvarchar](9) NULL,
 County [nvarchar](50) NULL,
 Email1 [nvarchar](100) NOT NULL,
 Email2 [nvarchar](100) NULL
)
GO

ALTER TABLE [Address]
ADD CONSTRAINT AddressID_PK PRIMARY KEY (AddressID)
GO

ALTER TABLE [dbo].[Address] WITH CHECK ADD CONSTRAINT [FK_Address_UserTable]
 FOREIGN KEY([UserID])
REFERENCES [dbo].[UserTable] ([UserID])
GO
ALTER TABLE [dbo].[Address] CHECK CONSTRAINT [FK_Address_UserTable]
GO

Figure 8-10. Table structure and relationship between UserTable and Address tables

■ Note Since SQL Azure does not support object browsing from SQL Server Management Studio, this database
diagram is generated from a local SQL database. The script used to create this database table is exported and
executed against the SQL Azure server. We are going to cover data table migration later in this chapter.

CHAPTER 8 ■ SQL AZURE

253

Run the SQL script in Listing 8-5 to insert data into these two tables and run the script in Listing 8-6.
You will see that the correct data is returned.

Listing 8-5. Sample Data to Insert into the Tables Created Previously

INSERT INTO UserTable
([Password],
 FirstName,
 LastName)
VALUES
('password',
 'Henry',
 'Li')
 GO

 INSERT INTO UserTable
([Password],
 FirstName,
 LastName)
VALUES
('password',
 'Emma',
 'Li')
 GO

 INSERT INTO UserTable
([Password],
 FirstName,
 LastName)
VALUES
('password',
 'David',
 'Kruger')
GO

INSERT INTO Address(
 UserID,
 Address1,
 City,
 [State],
 Zip,
 County,
 Email1,
 Email2
)
VALUES(
 1,
 '12 King Street',
 'Salem',
 'OR',
 '97304',

CHAPTER 8 ■ SQL AZURE

254

 'Polk',
 'yinghong@softnetsolution.net',
 'henry@softnetsolution.net')
GO
INSERT INTO Address(
 UserID,
 Address1,
 City,
 [State],
 Zip,
 County,
 Email1,
 Email2
)
VALUES(
 3,
 '99 Universal Park',
 'Denver',
 'CO',
 '80201',
 'Denver',
 'david.kruger@example.com',
 ' ')
GO

INSERT INTO Address(
 UserID,
 Address1,
 City,
 [State],
 Zip,
 County,
 Email1,
 Email2
)
VALUES(
 2,
 '19 West Ave',
 'Aberdeen',
 'WA',
 '98520',
 'Grays Harbor',
 'emma@example.com',
 ' ')
GO

CHAPTER 8 ■ SQL AZURE

255

Listing 8-6. Query Data with Joined Tables

SELECT U.FirstName, U.LastName, A.Address1, A.City, A.Email1 FROM UserTable U
JOIN Address A
ON A.UserID =U.UserID
WHERE U.LastName = 'Li'
GO

SELECT * FROM UserTable
SELECT * FROM [Address]
GO

Now try to delete a record from UserTable using the highlighted code in Figure 8-11. An expected
SQL exception will be thrown because the record is referenced by Address. This demonstrates that SQL
Azure is truly a relational database service.

Figure 8-11. An expected SQL exception is thrown when trying to delete a record from a referenced table

Connect to a SQL Azure Database Using ADO.NET
To connect to SQL Azure using ADO.NET is very similar to connecting to a traditional database.
The difference is the connection string format. Let's take an example where there are two identical
databases, with one from SQL Azure and the other from the local workstation. Listing 8-7 shows the
difference between the two connection strings used to connect to these two databases.

Listing 8-7. Comparison of Connection Strings Between SQL Azure and Local SQL Database

"Server=tcp:{SQL Azure Server Name}.ctp.database.windows.net;Database={SQL Azure
Database};User ID={my user ID};Password={my password};Trusted_Connection=False;"

"Data Source={Local Database Workstation};Initial Catalog={Database Name};Integrated
Security=True;"

An example of how to connect to SQL Azure from C# code will be presented in a SQL Azure access
tool, SQLAzureConnect, developed later in this chapter.

CHAPTER 8 ■ SQL AZURE

256

Migrate Existing Databases from an On-Premises System to
SQL Azure
Existing on-premises databases can easily migrate to SQL Azure. In the first release of SQL Azure, the
scripts generated by SQL Server Management Studio need some extra cleanup. This can be avoided in
future SQL Azure releases.

In this section we are going to use SQL Server Management Studio to generate SQL scripts and
migrate an existing database from a local database to a SQL Azure database. The database we'll use is
SQLAzure, which you can create on a local workstation using Listing 8-1 and Listing 8-3. The steps are as
follows.

1. Open SQL Server Management Studio, right-click on the database node SQLAzure
in the object browser pane, and select Tasks Generate Script.

2. Select the database SQLAzure (as Figure 8-12 shows) and check all objects from
the dialog boxes.

Figure 8-12. Select database SQLAzure

3. Before moving forward, some options need to be set correctly as Figure 8-13
shows.

• Convert UDDTs to Base Type: This option needs to be set to true since SQL
Azure does not support user-defined types. They need to be converted into
underlying SQL Azure portable types.

CHAPTER 8 ■ SQL AZURE

257

• Script extended properties: This option needs to be set to false since SQL Azure
does not support extended properties.

• Script USE DATABASE: This option needs to be set to false since SQL Azure
does not support the USE statement.

• Script Data: This option needs to be set to false since we do not care about the
data at this moment.

Figure 8-13. Set the values to false for those options that SQL Azure does not support

CHAPTER 8 ■ SQL AZURE

258

4. Click Next. SQL Server Management Studio will generate the scripts in a new SQL
script edit window. Figure 8-14 shows a successful generation.

Figure 8-14. The scripts were successfully generated

5. Log in to the Azure platform portal at https://lx.azure.microsoft.com/ and
create a database AzureForDotNetDeveloper from SQL Azure in the cloud (recall
that the screenshot shown in Figure 8-3 shows the created database).

6. Copy the previously generated script to the clipboard or save it into a file. Close
SQL Server Management Studio and reopen it by following the steps shown in
Figure 8-4 to establish a connection to the AzureForDotNetDeveloper database in
the cloud.

7. If you run the generated script without any modification, then you will get an
error message as Listing 8-8 shows.

Listing 8-8. Error Message from Running Scripts Generated by SQL Server Management Studio Against

SQL Azure Without Modification

Msg 195, Level 15, State 5, Line 2
'ANSI_NULLS' is not a recognized SET option.
Msg 40512, Level 16, State 1, Procedure InsertInstanceState, Line 3
Deprecated feature 'Data types: text ntext or image' is not supported in this
 version of SQL Server.
Msg 195, Level 15, State 5, Line 2

CHAPTER 8 ■ SQL AZURE

259

'ANSI_NULLS' is not a recognized SET option.
Msg 40512, Level 16, State 1, Procedure InsertCompletedScope, Line 5
Deprecated feature 'Data types: text ntext or image' is not supported in this
 version of SQL Server.
Msg 195, Level 15, State 5, Line 2
'ANSI_NULLS' is not a recognized SET option.
Msg 195, Level 15, State 5, Line 2
'ANSI_NULLS' is not a recognized SET option.
Msg 40517, Level 16, State 1, Line 16
 Option 'pad_index' is not supported in this version of SQL Server.

8. Modify the output script as follows.

a. Delete all:

SET ANSI_NULLS ON
GO

b. Delete all:

PAD_INDEX = OFF,

c. Delete all:

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON

d. And, replace it with the following:

ALLOW_ROW_LOCKS = OFF, ALLOW_PAGE_LOCKS = OFF

e. Delete:

SORT_IN_TEMPDB = OFF

f. The first release of SQL Azure does not support partitions. The KEY constraint
statement for all table-creation scripts needs to be removed and replaced with
a separate script. For example, the original script for creating a data table
generated by SQL Server Management Studio should look like Listing 8-9. The
highlighted parts need to be removed and replaced with a separate KEY
constraint statement as Listing 8-10 shows:

Listing 8-9. Table-creating Script Generated by SQL Management Studio

CREATE TABLE [dbo].[UserTable](
 [UserID] [int] IDENTITY(1,1) NOT NULL,
 [Password] [nvarchar](100) NULL,
 [FirstName] [nvarchar](100) NOT NULL,
 [LastName] [nvarchar](100) NOT NULL,
 [Timestamp] [timestamp] NOT NULL,
PRIMARY KEY CLUSTERED
(
[UserID] ASC
)WITH (STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]
 GO

CHAPTER 8 ■ SQL AZURE

260

Listing 8-10. Replace the KEY Constraint Statement from Listing 8-9 with a Separate ALTER TABLE Script

to Assign a Key to a Table

ALTER TABLE [UserTable]
ADD CONSTRAINT ID_PK PRIMARY KEY (UserID)

g. Remove the boldface lines in the CREATE NONCLUSTERED INDEX scripts generated
by SQL Server Management Studio as shown in Listing 8-11.

Listing 8-11. Remove Code from All Index-creating Scripts

CREATE NONCLUSTERED INDEX [IX_UserTable_FirstName] ON [dbo].[UserTable]
(
 [FirstName] ASC
)WITH (STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF,
 ONLINE = OFF) ON [PRIMARY]
GO

9. Try to resolve all issues if there are other complaints from executing the
generated scripts, and you will successfully run the script against the SQL Azure
cloud database. You can run a query to verify that the expected tables have been
created as shown in Figure 8-6.

SELECT * FROM sys.databases

SQL Azure Application Developing Tool: SQLAzureConnect
In this section I am going to present a Windows application designed and developed for .NET developers
to access SQL Azure services. This project will show you how to use ADO.NET to create a connection to
SQL Azure services to execute SQL queries and stored procedures just as you do from SQL Server
Management Studio. The major added value provided by this tool are detailed below. They make this
application a very handy tool for SQL Azure or on-premises SQL application development. It provides:

• A quick way to switch back and forth between SQL Azure cloud services and
traditional on-premises SQL Server environments.

• A SQL data access component class that can be used for both SQL Azure and on-
premises SQL application development.

• XML data-driven SQL query and stored procedure composition, editing, and
executing, and UI dynamic factoring. A SQLAccessHelper class makes SQL query and
stored procedure execution from C# extremely easy. All scripts and parameters
needed for a stored procedure can be put into an XML data file or added on the fly
and executed using this tool.

CHAPTER 8 ■ SQL AZURE

261

Functions of SQLAzureConnect
A screenshot of SQLAzureConnect is shown in Figure 8-15. Two radio buttons can be found to the left
of the button Test Connection, which allows users to quickly switch the connection back and forth
between the SQL Azure cloud service and on-premises SQL workstation environments. A new SQL
service can be added by clicking the Add Service button. The script box is below the text box Description.

Figure 8-15. Screenshot of SQLAzureConnect

There are two ways to execute a script. One way is to click the Execute button, and the other way
is to select and highlight the text and press F5. If there is a script selected, the caption of the Execute
button turns to Execute Selected, and the background color of the button changes, as Figure 8-16 shows.

CHAPTER 8 ■ SQL AZURE

262

Figure 8-16. The caption of the Execute button turns to Execute Selected, and the background color turns to gold

There are two SQL execution options selected from a pair of radio buttons, Query and
Storedprocedure. When Storedprocedure is selected, you can add and delete parameters required by a
stored procedure. A specific SQL Azure service execution can be navigated using the tabs of the tab
control in the window. The results of executing the SQL service are displayed in the bottom window,
along with the error report. Figure 8-17 shows the results of the connection test.

All the newly created service configuration data can be saved as an XML data file and played back
later. (You also can manually create an XML data file and load it into this tool to execute.) Next we are
going to go over the XML schema and data file that are the driving force of this tool.

Figure 8-17. Connect to SQL Azure test results

CHAPTER 8 ■ SQL AZURE

263

■ Note Use SQLAzureConnect to connect to the local on-premises SQL server. If this tool is used for on-premises
SQL development and database security requires local administrator access privileges, then you may need to run
this application with Windows administrator privileges, since by design Windows integration security is going to be
applied when this tool is used for an on-premises system, and SQL security is used for SQL Azure cloud services.
What you need to do is to create a shortcut on your desktop and right-click on the shortcut icon to launch the
Shortcut Properties dialog box. In the Advanced pane, check the box “Run as administrator” as Figure 8-18 shows.

Figure 8-18. Run SQLAzureConnect as local administrator when using this tool in an on-premises

environment

Using XML Data to Define UI Components Dynamically
Using XML data as the driving force for SQL Azure and on-premises SQL application service execution is
an essential design concept for the SQLAzureConnect tool. Another essential design concept is to define
user interface components dynamically. The binding source component from Visual Studio is also
introduced to this tool to allow data bindings and data updating dynamically. The data domain of the
binding source component is the XML data behind data objects.

The hierarchical structure of the schema definition is shown in Figure 8-19. The schema SQLDataAccess
has two record nodes, ServiceConnection and SqlDataService. SqlDataService is unbounded, which means
that this node is a collection node and is a group record of SqlDataService records. Each SqlDataService has

CHAPTER 8 ■ SQL AZURE

264

one attribute Subject and one element Description and a child collection node Command. The Command
node has an imported schema SQLParameter, which also is a group collection of the Parameter record. The
SQLParameter schema defines the attribute Direction, with optional values In, Out, InOut, and ReturnValue,
and four elements Name, Type, Value, and Size, that are required for specifying a SQL parameter. An example of
an XML data file matching this schema is shown in Listing 8-12.

Figure 8-19. XML schema definition for the XML data source used as the driving force of SQLAzureConnect

Listing 8-12. An Example of an XML Data File Used for SQL Azure Service

<ns0:SQLDatabaseAccessRoot xmlns:ns0="http://SQLAzureConnect.Schema.SQLDatabaseAccess">
 <ServerConnection>
 <ServerName>kbp4b7cq8e</ServerName>
 <Database>SQLAzureIntroduction</Database>
 <Login>Henry</Login>
 <Password>mypassword</Password>
 </ServerConnection>
 <SqlDataService Subject="QueryUserTable">
 <Description>QueryUserTable</Description>
 <Command Type="Query">
 <Text>
 <![CDATA[
select * from UserTable where FirstName like 'Henry%'
]]>
 </Text>
 </Command>
 </SqlDataService>
 <SqlDataService Subject="TruncateTable">
 <Description>TruncateTable</Description>
 <Command Type="Query">
 <Text>
 <![CDATA[

CHAPTER 8 ■ SQL AZURE

265

TRUNCATE TABLE UserTable
]]>
 </Text>
 </Command>
 </SqlDataService>
 <SqlDataService Subject="BatchInsert">
 <Description>BatchInsert</Description>
 <Command Type="Storedprocedure">
 <Text>sp_BatchInsert</Text>
 <ns1:SQLParameterRoot xmlns:ns1="http://SQLAzureConnect.Schema.SQLParameter">
 <Parameter Direction="In">
 <Name>rows</Name>
 <Type>INT</Type>
 <Value>100</Value>
 <Size>4</Size>
 </Parameter>
 </ns1:SQLParameterRoot>
 </Command>
 </SqlDataService>
 <SqlDataService Subject="BatchUpdate">
 <Description>BatchUpdate</Description>
 <Command Type="Storedprocedure">
 <Text>sp_BatchUpdate</Text>
 <ns1:SQLParameterRoot xmlns:ns1="http://SQLAzureConnect.Schema.SQLParameter">
 <Parameter Direction="In">
 <Name>rows</Name>
 <Type>INT</Type>
 <Value>100</Value>
 <Size>4</Size>
 </Parameter>
 </ns1:SQLParameterRoot>
 </Command>
 </SqlDataService>
 <SqlDataService Subject="BatchDelete">
 <Description>BatchDelete</Description>
 <Command Type="Storedprocedure">
 <Text>sp_BatchDelete</Text>
 <ns1:SQLParameterRoot xmlns:ns1="http://SQLAzureConnect.Schema.SQLParameter">
 <Parameter Direction="In">
 <Name>rows</Name>
 <Type>INT</Type>
 <Value>100</Value>
 <Size>4</Size>
 </Parameter>
 </ns1:SQLParameterRoot>
 </Command>
 </SqlDataService>
</ns0:SQLDatabaseAccessRoot>

CHAPTER 8 ■ SQL AZURE

266

SQLDataAccessComponent Class
The SQLDataAccessComponent class encapsulates the client-side functions for SQL database access,
including database connection handling using ADO.NET, transaction handling, and all basic SQL
client-access actions that should be familiar to all SQL developers and ADO.NET users. It includes the
following methods:

• ExecuteNonQuery()

• ExecuteScalar()

• GetDataReader()

• ExecuteDataSet()

• ExecuteDataTable()

All those methods accept SqlCommand as a parameter. The code is shown in Listing 8-13. A
parameterized constructor has been defined besides the default constructor, which accepts the
connection string as a parameter. The three public methods defined in this class, BeginTrans(),
CommitTrans(), and RollbackTrans(), are used for applications to force invoking a transaction manually.
The connection will time out in two seconds to avoid the calling thread been stacked if there is a
connection difficulty.

Listing 8-13. Implementation for Class SQLDataAccessComponent

using System;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;
using System.Globalization;
using System.Collections;
using System.ComponentModel;
using System.Text;

namespace SQLAzureConnect
{
 public class SQLDataAccessComponent : IDisposable
 {
 #region Private Fields

 static protected SqlConnection _connection = null;
 private const Int32 COMMAND_TIMEOUT = 60;
 private SqlTransaction _transaction;
 protected string _SQL_CONNECTION_STRING = string.Empty;

 #endregion

 #region Constructors/Destructors

 /// <summary>
 /// Default Contstructor

CHAPTER 8 ■ SQL AZURE

267

 /// </summary>
 public SQLDataAccessComponent()
 {
 _transaction = null;
 _connection = new SqlConnection(_SQL_CONNECTION_STRING);
 }

 public SQLDataAccessComponent(String connectionString)
 {
 _transaction = null;
 _connection = new SqlConnection(connectionString);
 _SQL_CONNECTION_STRING = connectionString;

 }

 public void Dispose()
 {
 CloseConn();
 _transaction = null;
 _connection = null;
 }

 #endregion

 #region Public Properties

 public bool IsInTransaction
 {
 get
 {
 return _transaction != null;
 }
 }

 #endregion

 #region Private Methods

 private void OpenConn()
 {
 Dispose();

 if (_connection == null)
 {
 _connection = new SqlConnection(_SQL_CONNECTION_STRING);
 }

 _connection.Open();

 TimeSpan timeOutSetting = new TimeSpan(0, 0, 2);//2 sec

CHAPTER 8 ■ SQL AZURE

268

 DateTime connectingStart = DateTime.Now;
 int timeout = 0;
 while (_connection.State == ConnectionState.Connecting && timeout <= 1)
 {
 DateTime timeNow = DateTime.Now;
 TimeSpan timespanElapsed =
 new TimeSpan(timeNow.Hour - connectingStart.Hour,
 timeNow.Minute - connectingStart.Minute,
 timeNow.Second - connectingStart.Second);
 timeout = TimeSpan.Compare(timespanElapsed, timeOutSetting);
 }
 }

 private void CloseConn()
 {
 lock (_connection)
 {
 while (null != _connection && _connection.State != ConnectionState.Broken
 && _connection.State == ConnectionState.Open)
 {
 _connection.Close();
 }
 }
 }

 #endregion

 #region Public Methods

 public void BeginTrans()
 {
 if (_connection.State != ConnectionState.Closed &&
 _connection.State != ConnectionState.Broken)
 {
 CloseConn();
 }
 OpenConn();
 _transaction = _connection.BeginTransaction();
 }

 public void CommitTrans()
 {
 if (null != _transaction)
 {
 _transaction.Commit();
 }
 CloseConn();
 _transaction = null;
 }

 public void RollBackTrans()

CHAPTER 8 ■ SQL AZURE

269

 {
 if (null != _transaction)
 {
 _transaction.Rollback();
 }
 CloseConn();
 _transaction = null;
 }

 public SqlDataReader GetDataReader(SqlCommand command)
 {
 try
 {
 OpenConn();
 command.Connection = _connection;
 command.Transaction = _transaction;
 command.CommandTimeout = COMMAND_TIMEOUT;

 return command.ExecuteReader(CommandBehavior.CloseConnection);

 }
 finally
 {
 if (_transaction != null)
 {
 RollBackTrans();
 }
 command.Dispose();
 }
 }

 public Object ExecuteNonQuery(SqlCommand command)
 {

 OpenConn();
 command.Connection = _connection;
 command.Transaction = _transaction;
 command.CommandTimeout = COMMAND_TIMEOUT;

 try
 {
 int rowsAffected = command.ExecuteNonQuery();

 return
 (command.Parameters.Contains("@ReturnValue")) ?
 Convert.ToInt32(command.Parameters["@ReturnValue"].Value) : rowsAffected;

 }
 finally
 {
 if (_transaction != null)

CHAPTER 8 ■ SQL AZURE

270

 {
 RollBackTrans();
 }
 command.Dispose();
 }
 }

 public string ExecuteScalar(SqlCommand command)
 {
 try
 {
 OpenConn();
 command.Connection = _connection;
 command.Transaction = _transaction;
 command.CommandTimeout = COMMAND_TIMEOUT;
 return command.ExecuteScalar().ToString();
 }
 finally
 {
 if (_transaction != null)
 {
 RollBackTrans();
 }
 command.Dispose();
 }
 }

 public DataSet ExecuteDataSet(SqlCommand command)
 {
 DataSet oDataSet = new DataSet();
 try
 {
 SqlDataAdapter da;
 oDataSet.Locale = CultureInfo.InvariantCulture;

 OpenConn();
 command.Connection = _connection;
 command.Transaction = _transaction;
 command.CommandTimeout = COMMAND_TIMEOUT;

 da = new SqlDataAdapter(command);

 da.Fill(oDataSet);
 }
 finally
 {
 command.Dispose();
 }
 return oDataSet;
 }

CHAPTER 8 ■ SQL AZURE

271

 public int ExecuteDataTable(SqlCommand command, ref DataTable datatable)
 {
 int rowAffected = 0;
 try
 {
 SqlDataAdapter da;
 datatable.Locale = CultureInfo.InvariantCulture;

 OpenConn();
 command.Connection = _connection;
 command.Transaction = _transaction;
 command.CommandTimeout = COMMAND_TIMEOUT;

 da = new SqlDataAdapter(command);
 rowAffected = da.Fill(datatable);
 }
 finally
 {
 command.Dispose();
 }
 return rowAffected;
 }

 #endregion

 }
}

SQLDataAccessHelper Class
A helper class SQLDataAccessHelper is designed to help applications use SQLDataAccessComponent based
on the XML service configuration data in a simple and agile way. The responsibilities of this class are to:

• Extract the SQL data-access-configuration data by using the service name as the key
from the deserialized XML data classes.

• Invoke a SQL query to execute a stored procedure depending on the type of
command. If the service request is a SQL stored procedure, populate the parameter
with the corresponding SQL data type and assign values to the parameter.

• Invoke a SQL query to execute the selected script text.

• Compose the return results as the display message for UI updating.

• Handle errors.

• Serialize and deserialize XML.

CHAPTER 8 ■ SQL AZURE

272

This class has two parameterized constructors. Both constructors take the deserialized XML data
object as an input parameter. There are five public access methods that have been exposed from this
helper class.

• XmlRetrive() and XmlPersist(), used to deserialize and serialize XML data files and
data objects.

• Execute(), used to execute a SQL query or stored procedure predefined in the XML
data file. The application just needs to pass the subject name of the SQL service and a
reference to an object that will hold a possible return object from the SQL services.
This method will invoke either a SQL query or execute a stored procedure from the
SQLAccessComponent according to the command type specified from the data file. This
makes the code extremely concise and lean for a SQL Azure or on-premises SQL
application.

• ExecuteSelected(), used to execute a SQL query script text block selected by a user
on the fly. This function can be invoked by a user using the F5 shortcut key after the
user selected a block of script text.

• CreateStoredProcedure(), which has not been integrated into the user interface of
SQLAzureConnect yet. It is ready for any other client application to invoke. With the
current SQLAzureConnect this function can be mimicked by using the
ExecuteSelected() feature.

Compose a connection string using the XML data. The connection string will come up in two
distinct formats, SQL Azure cloud connection string format and on-premises connection string format to
allow this tool to support both cloud SQL services and on-premises SQL server access.

Listing 8-14 is the source code of the class SQLDataAccessHelper. We have explained all member
methods and their responsibilities. The other member methods, such as _PopulateParameters() and
_PopulateStoredProcedureParameters(), are fairly straightforward.

Listing 8-14. Implementation for Class SQLDataAccessHelper

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Data.Sql;
using System.Data.SqlClient;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
using Microsoft.SqlServer.Management.Smo;
using Microsoft.SqlServer.Management.Common;
using System.Text.RegularExpressions;

namespace SQLAzureConnect
{
 using SQLAzureConnect.Schema.SQLDatabaseAccess;
 using SQLAzureConnect.Schema.SQLParameter;

CHAPTER 8 ■ SQL AZURE

273

 public class SQLDataAccessHelper
 {
 protected SQLDatabaseAccessRoot _sqlDatabaseAccessRoot = null;

 #region Constructors

 public SQLDataAccessHelper(SQLDatabaseAccessRoot sqlDatabaseAccessRoot)
 {
 _sqlDatabaseAccessRoot = sqlDatabaseAccessRoot;
 }

 public SQLDataAccessHelper(SQLDatabaseAccessRoot sqlDatabaseAccessRoot,
 string connectionString) : this(sqlDatabaseAccessRoot)
 {
 ConnectionString = connectionString;
 }

 #endregion

 #region Properties

 public string ConnectionString { get; set; }
 public string ConnectedDatabase
 {
 get
 {
 string database = string.Empty;
 string[] split = ConnectionString.StartsWith("Server")?
 Regex.Split(ConnectionString, "Server=")
 :Regex.Split(ConnectionString, "Data Source=");
 if (null != split && split.Length > 1)
 {
 string strValue = split[split.Length - 1];
 int indexEnd = strValue.IndexOf(';');
 try
 {
 database = strValue.Substring(0, indexEnd);
 }
 catch { }
 }

 return database;
 }
 }

 #endregion

 #region Public Methods

 public StringBuilder Execute(string subject, ref Object results)

CHAPTER 8 ■ SQL AZURE

274

 {
 StringBuilder sb = null;
 if (null != _sqlDatabaseAccessRoot)
 {
 SQLDatabaseAccessRootSqlDataService dataService =
 this._sqlDatabaseAccessRoot.SqlDataService
 .FirstOrDefault<SQLDatabaseAccessRootSqlDataService>(
 x => x.Subject == subject);
 if (null != dataService)
 {
 if (dataService.Command.Type ==
 SQLDatabaseAccessRootSqlDataServiceCommandType.Query)
 {
 sb = _ExecuteQuery(dataService.Command.Text);
 }
 else if (dataService.Command.Type ==
 SQLDatabaseAccessRootSqlDataServiceCommandType.Storedprocedure)
 {
 sb = _ExecuteStoredProcedure(dataService);
 }
 }
 }
 else
 {
 throw new ApplicationException(
 string.Format("---SqlDatabaseService:Query, Subject = <{0}>,
 SqlDatabaseService is not initialized correctly.", subject));
 }

 return sb;
 }

 public StringBuilder ExecuteSelected(string selectedText)
 {
 return _ExecuteQuery(selectedText);
 }

 public bool CreateStoredProcedure(string storedProcedureName,
 string storedProcedureBody,
 SQLDatabaseAccessRootSqlDataServiceCommand serviceCommand)
 {
 bool success = false;
 StoredProcedure stroredProcedure = null;
 if (null != storedProcedureName
 && null != storedProcedureBody
 && null != serviceCommand
 && string.Empty != storedProcedureName
 && string.Empty != storedProcedureBody)
 {
 try
 {

CHAPTER 8 ■ SQL AZURE

275

 SqlConnection _connection = new SqlConnection(ConnectionString);
 if (null != _connection)
 {
 _connection.Open();

 Server server = new Server(new ServerConnection(_connection));
 Database db = server.Databases[ConnectedDatabase];
 stroredProcedure = new StoredProcedure(db, storedProcedureName);
 stroredProcedure.TextMode = false;
 stroredProcedure.AnsiNullsStatus = false;
 stroredProcedure.QuotedIdentifierStatus = false;

 stroredProcedure.TextBody = storedProcedureBody;

 if (null != serviceCommand)
 {
 this._PopulateStoredProcedureParameters(ref stroredProcedure,
 serviceCommand);
 }
 stroredProcedure.Create();
 success = stroredProcedure == null ? false : true;
 }
 }
 catch (Exception ex)
 {
 string msg = string.Empty;
 if (null != ex.InnerException)
 {
 msg = ex.InnerException.Message;
 if (ex.InnerException.InnerException != null)
 {
 msg = ex.InnerException.InnerException.Message;
 if (
 msg.Equals(
 string.Format(
 "There is already an object named '{0}' in the database.",
 storedProcedureName
)
)
)
 {
 success = true;
 }
 }
 }
 else
 {
 msg = ex.Message;
 }
 }
 }

CHAPTER 8 ■ SQL AZURE

276

 return success;
 }

 static public object XmlRetrive(Type type, XmlDocument xmlDoc)
 {
 object o = null;

 if (null != xmlDoc && null != xmlDoc.DocumentElement)
 {
 XmlSerializer serializer = new XmlSerializer(type);
 StringReader reader = new StringReader(xmlDoc.OuterXml);

 try
 {
 o = serializer.Deserialize(reader);
 }
 catch (Exception e)
 {
 System.Diagnostics.Trace.WriteLine(e.Message);
 System.Diagnostics.Trace.WriteLine(e.StackTrace);
 throw e;
 }
 }

 return o;
 }

 static public StringBuilder XmlPersist(object o, Type type)
 {
 XmlSerializer serializer = new XmlSerializer(type);
 StringBuilder sb = new StringBuilder();
 StringWriter writer = new StringWriter(sb);

 try
 {
 serializer.Serialize(writer, o);
 }
 catch (Exception e)
 {
 System.Diagnostics.Trace.WriteLine(e.Message);
 System.Diagnostics.Trace.WriteLine(e.StackTrace);
 throw e;
 }

 return writer.GetStringBuilder();
 }
 #endregion

 #region Private Methods

CHAPTER 8 ■ SQL AZURE

277

 protected StringBuilder _ExecuteQuery(string commandText)
 {
 int rowAffected = 0;
 DataTable datatable = new DataTable();
 StringBuilder sb = new StringBuilder();

 SQLDataAccessComponent dac = null;
 SqlCommand Command = null;

 try
 {
 dac = new SQLDataAccessComponent(this.ConnectionString);
 Command = new SqlCommand(commandText, new SqlConnection());
 dac.BeginTrans();
 rowAffected = dac.ExecuteDataTable(Command, ref datatable);
 dac.CommitTrans();
 if (datatable.Rows.Count > 0)
 {
 foreach (DataRow dataRow in datatable.Rows)
 {
 StringBuilder rowBuilder = new StringBuilder();
 foreach (object obj in dataRow.ItemArray)
 {
 if (!(obj is DBNull || (obj is System.Byte[])))
 {
 rowBuilder.Append(string.Format("{0} ", obj.ToString()));
 }
 }
 sb.Append(string.Format("{0}{1}", rowBuilder.ToString(),
 Environment.NewLine));
 }
 }
 sb.Append(
 string.Format("------ SQL execute success, row affected : {0} ------{1}",
 rowAffected, Environment.NewLine));
 sb.Append(Environment.NewLine);
 }
 catch (Exception ex)
 {
 throw new ApplicationException(
 string.Format("------ SQL execute failed, error message: {0}",
 ex.Message, Environment.NewLine));
 }
 finally
 {
 if (null != Command)
 {
 Command.Dispose();
 }
 if (null != dac)
 {

CHAPTER 8 ■ SQL AZURE

278

 dac.Dispose();
 }
 }

 return sb;
 }

 protected StringBuilder _ExecuteStoredProcedure(
 SQLDatabaseAccessRootSqlDataService dataService)
 {
 StringBuilder sb = new StringBuilder();
 int rowAffected = 0;
 SQLDataAccessComponent dac = null;
 SqlCommand Command = null;

 try
 {
 SQLDatabaseAccessRootSqlDataServiceCommand serviceCommand =
 dataService.Command;
 string storedProcedure = serviceCommand.Text;
 dac = new SQLDataAccessComponent(this.ConnectionString);
 Command = new SqlCommand(storedProcedure, new SqlConnection());
 Command.CommandType = CommandType.StoredProcedure;

 bool output = this._PopulateParameters(serviceCommand, ref Command);
 dac.BeginTrans();
 rowAffected = (int)dac.ExecuteNonQuery(Command);
 dac.CommitTrans();
 if (output)
 {
 foreach (SqlParameter parameter in Command.Parameters)
 {
 if (parameter.Direction == ParameterDirection.Output)
 {
 sb.Append(parameter.Value.ToString());
 sb.Append(Environment.NewLine);
 }
 }
 }
 sb.Append(
 string.Format(
 "------ SQL execute success, row affected : {0} ------{1}",
 rowAffected, Environment.NewLine
)
);
 sb.Append(Environment.NewLine);
 }
 finally
 {
 if (null != Command)
 {

CHAPTER 8 ■ SQL AZURE

279

 Command.Dispose();
 }
 if (null != dac)
 {
 dac.Dispose();
 }
 }

 return sb;
 }

 private bool _PopulateParameters(
 SQLDatabaseAccessRootSqlDataServiceCommand serviceCommand,
 ref SqlCommand Command)
 {
 bool output = false;
 string direction = string.Empty;

 try
 {
 Command.Parameters.Clear();
 foreach (SQLParameterRoot parameterRoot in serviceCommand.SQLParameterRoot)
 {
 direction =
 parameterRoot.Parameter.Direction.ToString().Trim().ToUpper();
 output |= direction == "OUT" || direction == "INOUT" ? true : false;
 if (parameterRoot.Parameter.Type.ToUpper().StartsWith("NCHAR"))
 {
 int length = 0;
 length = Convert.ToInt32(parameterRoot.Parameter.Size);
 Command.Parameters.Add(
 string.Format("@{0}", parameterRoot.Parameter.Name),
 SqlDbType.NChar,
 length).Value = parameterRoot.Parameter.Value;
 }
 else if (parameterRoot.Parameter.Type.ToUpper().StartsWith("VARCHAR"))
 {
 int length = Convert.ToInt32(parameterRoot.Parameter.Size);
 Command.Parameters.Add(
 string.Format("@{0}", parameterRoot.Parameter.Name),
 SqlDbType.VarChar, length).Value = parameterRoot.Parameter.Value;
 }
 else if (parameterRoot.Parameter.Type.ToUpper().StartsWith("NVARCHAR"))
 {
 int length = Convert.ToInt32(parameterRoot.Parameter.Size);
 Command.Parameters.Add(
 string.Format("@{0}", parameterRoot.Parameter.Name),
 SqlDbType.NVarChar,
 length).Value = parameterRoot.Parameter.Value;
 }
 else if (parameterRoot.Parameter.Type.ToUpper().StartsWith("INT"))

CHAPTER 8 ■ SQL AZURE

280

 {
 Command.Parameters.Add(
 string.Format("@{0}", parameterRoot.Parameter.Name),
 SqlDbType.Int, 4).Value =
 Convert.ToInt32(parameterRoot.Parameter.Value);
 }
 else if (parameterRoot.Parameter.Type.ToUpper().StartsWith("UNIQUE"))
 {
 Command.Parameters.Add(
 string.Format("@{0}", parameterRoot.Parameter.Name),
 SqlDbType.UniqueIdentifier, 32).Value =
 new Guid(parameterRoot.Parameter.Value);
 }
 else if (parameterRoot.Parameter.Type.ToUpper().StartsWith("XML"))
 {
 Command.Parameters.Add(
 string.Format("@{0}", parameterRoot.Parameter.Name),
 SqlDbType.Xml, 0).Value = parameterRoot.Parameter.Value;
 }
 else if (parameterRoot.Parameter.Type.ToUpper().StartsWith("TIMSTAMP"))
 {
 Command.Parameters.Add(
 string.Format("@{0}", parameterRoot.Parameter.Name),
 SqlDbType.Timestamp, 0).Value = parameterRoot.Parameter.Value;
 }
 else if (parameterRoot.Parameter.Type.ToUpper().StartsWith("DATETIME"))
 {
 DateTime dt = DateTime.Now;
 if (parameterRoot.Parameter.Value != string.Empty)
 {
 dt = DateTime.Parse(parameterRoot.Parameter.Value);
 }
 Command.Parameters.Add(
 string.Format("@{0}", parameterRoot.Parameter.Name),
 SqlDbType.DateTime,
 0).Value = dt;
 }
 }
 }
 finally
 {
 if (null != Command)
 {
 Command.Dispose();
 }
 }

 return output;
 }

 private bool _PopulateStoredProcedureParameters(ref StoredProcedure storedProcedure,

CHAPTER 8 ■ SQL AZURE

281

 SQLDatabaseAccessRootSqlDataServiceCommand serviceCommand)
 {
 bool success = false;
 try
 {
 foreach (SQLParameterRoot parameterRoot in serviceCommand.SQLParameterRoot)
 {
 StoredProcedureParameter param = null;
 if (parameterRoot.Parameter.Type.ToUpper().StartsWith("NCHAR"))
 {
 param = new StoredProcedureParameter(storedProcedure,
 string.Format("@{0}", parameterRoot.Parameter.Name),
 DataType.NVarCharMax);
 }
 else if (parameterRoot.Parameter.Type.ToUpper().StartsWith("VARCHAR"))
 {
 param = new StoredProcedureParameter(storedProcedure,
 string.Format("@{0}", parameterRoot.Parameter.Name),
 DataType.VarCharMax);
 }
 else if (parameterRoot.Parameter.Type.ToUpper().StartsWith("NVARCHAR"))
 {
 param = new StoredProcedureParameter(storedProcedure,
 string.Format("@{0}", parameterRoot.Parameter.Name),
 DataType.NVarCharMax);
 }
 else if (parameterRoot.Parameter.Type.ToUpper().StartsWith("INT"))
 {
 param = new StoredProcedureParameter(storedProcedure,
 string.Format("@{0}", parameterRoot.Parameter.Name),
 DataType.Int);
 }
 else if (parameterRoot.Parameter.Type.ToUpper().StartsWith("UNIQUE"))
 {
 param = new StoredProcedureParameter(storedProcedure,
 string.Format("@{0}", parameterRoot.Parameter.Name),
 DataType.UniqueIdentifier);
 }
 else if (parameterRoot.Parameter.Type.ToUpper().StartsWith("XML"))
 {
 param = new StoredProcedureParameter(storedProcedure,
 string.Format("@{0}", parameterRoot.Parameter.Name),
 DataType.NVarCharMax);
 }
 else if (parameterRoot.Parameter.Type.ToUpper().StartsWith("TIMSTAMP"))
 {
 param = new StoredProcedureParameter(storedProcedure,
 string.Format("@{0}", parameterRoot.Parameter.Name),
 DataType.Timestamp);
 }
 else if (parameterRoot.Parameter.Type.ToUpper().StartsWith("DATETIME"))

CHAPTER 8 ■ SQL AZURE

282

 {
 DateTime dt = DateTime.Now;
 if (parameterRoot.Parameter.Value != string.Empty)
 {
 dt = DateTime.Parse(parameterRoot.Parameter.Value);
 }
 param = new StoredProcedureParameter(storedProcedure,
 string.Format("@{0}", parameterRoot.Parameter.Name),
 DataType.DateTime);
 }

 if (null != parameterRoot.Parameter)
 {
 storedProcedure.Parameters.Add(param);
 }
 }

 success = true;
 }
 catch (Exception ex)
 {
 string msg = string.Empty;
 if (null != ex.InnerException)
 {
 msg = ex.InnerException.Message;
 }
 else
 {
 msg = ex.Message;
 }
 }

 return success;
 }
 #endregion
 }
}

Component Design and Implementation
The concept of using XML data as a driving force can also be applied to user interface design and
implementation. Usually user interface implementation is a tedious job. Using XML data to design and
implement the user interface will tremendously reduce the lines of code and make the UI design more
componentized and more object-oriented. The user interface for SQLAzureConnect is composed of two user
controls and a Windows form. The core concept to identify the UI user control is very straightforward. A
user control should naturally reflect the XML schema. When the XML schema is defined, all C# data objects
and all UI user controls are actually defined. Since we use the UI user controls and Windows form as the
front end for presenting the XML data, the instance of the XML data object will be bound to the underlying
data source object.

CHAPTER 8 ■ SQL AZURE

283

As I mentioned, there are two XML schemas that have been defined, SQLParameter.xsd
and SQLDatabaseAccess.xsd, therefore we have corresponding UI components identified as
ParameterControl and SQLDataServiceControl. Now let us have a close look at how this approach
tremendously simplified the UI design and development for an application such as SQLAzureConnect.

ParameterControl
The UI layout of the ParameterControl is shown in Figure 8-20, and the implementation is shown in
Listing 8-15. A parameterized constructor has been added to this user control. The parameterized
constructor accepts the XML data object SQLParameterRoot (marked as a reference type) and the instance
of the parent form (used to display the message back to the parent form). A BindingSource component is
defined in this control and has been bound to the instance of the XML data object with the type of XML
schema SQLParameter in the constructor of the user control as shown in the Listing 8-15.

Figure 8-20. UI layout of the user control ParameterControl

Listing 8-15. Implementations for ParameterControl

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;
using System.Data;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace SQLAzureConnect
{
 using SQLAzureConnect.Schema.SQLParameter;

 public partial class ParameterControl : UserControl
 {
 private FormSQLAzureConnect _parentForm = null;
 public SQLParameterRoot _sqlParameter = null;

 public ParameterControl()
 {
 InitializeComponent();
 }

 public ParameterControl(ref SQLParameterRoot sqlParameter,
 FormSQLAzureConnect parentForm)

CHAPTER 8 ■ SQL AZURE

284

 {
 InitializeComponent();
 this.bindingSource.DataSource = _sqlParameter = sqlParameter;
 _parentForm = parentForm;
 _UpdateUI();
 }

 public void Add(SQLParameterRoot sqlParameter)
 {
 this.bindingSource.Add(sqlParameter);
 }

 public void DoDataExchange()
 {
 _sqlParameter.Parameter.Value = this.txtValue.Text.Trim();
 _sqlParameter.Parameter.Size = this.txtSize.Text;
 _sqlParameter.Parameter.Type = this.comboBoxType.SelectedItem.ToString();
 if (radioButtonIn.Checked)
 {
 _sqlParameter.Parameter.Direction = SQLParameterRootParameterDirection.In;
 }
 else if (radioButtonOut.Checked)
 {
 _sqlParameter.Parameter.Direction = SQLParameterRootParameterDirection.Out;
 }
 else if (radioButtonInOut.Checked)
 {
 _sqlParameter.Parameter.Direction =
 SQLParameterRootParameterDirection.InOut;
 }
 else if (radioButtonReturn.Checked)
 {
 _sqlParameter.Parameter.Direction =
 SQLParameterRootParameterDirection.ReturnValue;
 }
 }

 private void _UpdateUI()
 {
 if (null != _sqlParameter)
 {
 this.txtValue.Text = _sqlParameter.Parameter.Value;
 this.txtSize.Text = _sqlParameter.Parameter.Size;
 this.comboBoxType.SelectedIndex =
 comboBoxType.Items.IndexOf(_sqlParameter.Parameter.Type);
 switch (_sqlParameter.Parameter.Direction)
 {
 case SQLParameterRootParameterDirection.Out:
 this.radioButtonOut.Select();
 break;
 case SQLParameterRootParameterDirection.InOut:

CHAPTER 8 ■ SQL AZURE

285

 this.radioButtonInOut.Select();
 break;
 case SQLParameterRootParameterDirection.ReturnValue:
 this.radioButtonReturn.Select();
 break;
 case SQLParameterRootParameterDirection.In:
 default:
 this.radioButtonIn.Select();
 break;
 }
 }
 }

 private void ParameterControl_Leave(object sender, EventArgs e)
 {
 DoDataExchange();
 }
 }
}

For this user control and all other user controls following we use a BindingSource control to bind
and synchronize the data object with the data that was edited by the user. This component comes with
Visual Studio and can be found from the Toolbox pane under the Data category as Figure 8-21 shows.
Figure 8-22 shows how to set up the property of the component after dragging it from the toolbox onto
the user control design surface.

Figure 8-21. Drag and drop the BindingSource component from Visual Studio Toolbox data pane to the

ParameterControl design surface

CHAPTER 8 ■ SQL AZURE

286

Figure 8-22. A BindingSource of ParameterControl is defined to bind the data source to the data object

instance’s XML SQLParameterRoot

When the instance of SQLParameterRoot has been accepted, the values of the element and attribute
will be updated to the UI component via the private method call to _UpdateUI(). When the control loses
focus, the updated value modified by the user will be synchronized back to the XML data object via the
method DoDataExchange(). The access to DoDataExchange() method is marked as public so that the
parent host control can force a data refresh if necessary.

SQLDataServiceControl
The UI layout of the user control SQLDataServiceControl is shown in Figure 8-23, and the data
binding source is defined to bind the data to the SQLDatabaseAccessRootSqlDataService as shown in
Figure 8-24. The implementation of this user control is similar to that of ParameterControl. As with
ParameterControl there are two methods, _UpdateUI() and DoDataExchange(), defined in this class that
are used to handle UI updating and data synchronization. Since this control is the host control of
Parameter controls, this control is responsible for handling the adding and deleting of the underlying
Parameter controls and forcing data synchronization when this control loses focus or when a data
synchronization request is received from the parent form. These tasks are handled in the methods
_AddPage() and btnAddParameter_Click(). Listing 8-16 shows the implementation for the user control
SQLDatabaseAccess.

CHAPTER 8 ■ SQL AZURE

287

Figure 8-23. UI layout of the user control SQLDataServiceControl

Figure 8-24. A BindingSource of SQLDataServiceControl is defined to bind the data source to the data

object instance’s XML SQLDatabaseAccessRootSqlDataServiceRoot

Listing 8-16. Implementation for SQLDatabaseAccessControl

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;
using System.Data;
using System.Linq;
using System.Text;
using System.Windows.Forms;

CHAPTER 8 ■ SQL AZURE

288

namespace SQLAzureConnect
{
 using SQLAzureConnect.Schema.SQLDatabaseAccess;
 using SQLAzureConnect.Schema.SQLParameter;

 public partial class SQLDataServiceControl : UserControl
 {
 public SQLDatabaseAccessRootSqlDataService _sqlDatabaseAccessService = null;
 private FormSQLAzureConnect _parentForm = null;
 private TabPage _currentSelectedPage = null;
 public string SelectedText {
 get { return this.richTextBoxCommandText.SelectedText.Trim(); }
 }

 public event EventNotificationHandler eventSelectedTextChanged;
 public event EventBubblePreviewKeyDownHandler eventBubblePreviewKeyDown;

 public SQLDataServiceControl()
 {
 InitializeComponent();
 }

 public SQLDataServiceControl(ref SQLDatabaseAccessRootSqlDataService
 sqlDatabaseAccessRoot,
 FormSQLAzureConnect parentForm)
 {
 InitializeComponent();
 this.bindingSourceService.DataSource =
 _sqlDatabaseAccessService = sqlDatabaseAccessRoot;
 _parentForm = parentForm;
 _UpdateUI();
 this.richTextBoxCommandText.PreviewKeyDown +=
 new PreviewKeyDownEventHandler(richTextBoxCommandText_PreviewKeyDown);
 }

 public void DoDataExchange()
 {
 _sqlDatabaseAccessService.Subject = this.txtSubject.Text.Trim();
 _sqlDatabaseAccessService.Description = this.txtDescription.Text.Trim();
 _sqlDatabaseAccessService.Command.Text =
 this.richTextBoxCommandText.Text.Trim();

 if (this.radioButtonQuery.Checked)
 {
 _sqlDatabaseAccessService.Command.Type =
 SQLDatabaseAccessRootSqlDataServiceCommandType.Query;
 }
 else if (this.radioButtonStoredProcedure.Checked)
 {
 _sqlDatabaseAccessService.Command.Type =

CHAPTER 8 ■ SQL AZURE

289

 SQLDatabaseAccessRootSqlDataServiceCommandType.Storedprocedure;
 }

 foreach (TabPage page in this.tabParameter.TabPages)
 {
 (page.Controls[0] as ParameterControl).DoDataExchange();
 }
 }

 private void _UpdateUI()
 {
 if (null != _sqlDatabaseAccessService)
 {
 this.txtSubject.Text = _sqlDatabaseAccessService.Subject;
 this.txtDescription.Text = _sqlDatabaseAccessService.Description;

 switch (_sqlDatabaseAccessService.Command.Type)
 {
 case SQLDatabaseAccessRootSqlDataServiceCommandType.Storedprocedure:
 this.radioButtonStoredProcedure.Select();
 break;
 case SQLDatabaseAccessRootSqlDataServiceCommandType.Query:
 default:
 this.radioButtonQuery.Select();
 break;
 }

 this.richTextBoxCommandText.Clear();
 this.richTextBoxCommandText.AppendText(
 _sqlDatabaseAccessService.Command.Text
);
 if (null != _sqlDatabaseAccessService.Command &&
 null != _sqlDatabaseAccessService.Command.SQLParameterRoot)
 {
 for (int i = 0; i <
 _sqlDatabaseAccessService.Command.SQLParameterRoot.Length; ++i)
 {
 _AddPage(ref _sqlDatabaseAccessService.Command.SQLParameterRoot[i]);
 }
 }
 if (this.tabParameter.TabPages.Count > 0)
 {
 tabParameter.SelectedTab = this.tabParameter.TabPages[0];
 }
 }
 }

 private void tabParameter_SelectedIndexChanged(object sender, EventArgs e)
 {
 _currentSelectedPage = this.tabParameter.SelectedTab;

CHAPTER 8 ■ SQL AZURE

290

 }

 private void btnAddParameter_Click(object sender, EventArgs e)
 {
 if (null != _parentForm)
 {
 _parentForm.DisplayMessage(string.Empty, false);
 }

 this.txtParameter.Focus();

 if (string.Empty == this.txtParameter.Text)
 {
 if (null != _parentForm)
 {
 _parentForm.DisplayMessage("Please enter parameter name!", true);
 }

 return;
 }
 SQLParameterRoot sqlParameterRoot = new SQLParameterRoot();
 sqlParameterRoot.Parameter = new SQLParameterRootParameter();
 sqlParameterRoot.Parameter.Name = this.txtParameter.Text.Trim();

 sqlParameterRoot.Parameter.Type = "INT";
 sqlParameterRoot.Parameter.Size = "4";
 TabPage page = _AddPage(ref sqlParameterRoot);
 if (null != page)
 {
 this.tabParameter.SelectedTab = page;
 }

 int parameterCount = 0;
 _sqlDatabaseAccessService.Command.SQLParameterRoot =
 new SQLParameterRoot[parameterCount + 1];

 if (null != _sqlDatabaseAccessService.Command.SQLParameterRoot)
 {
 parameterCount = _sqlDatabaseAccessService.Command.SQLParameterRoot.Length;
 List<SQLParameterRoot> currentParameterList =
 new List<SQLParameterRoot>(
 _sqlDatabaseAccessService.Command.SQLParameterRoot
);
 currentParameterList.CopyTo(
 _sqlDatabaseAccessService.Command.SQLParameterRoot
);
 }
 else
 {
 parameterCount = 1;
 }

CHAPTER 8 ■ SQL AZURE

291

 _sqlDatabaseAccessService.Command.SQLParameterRoot[parameterCount - 1] =
 sqlParameterRoot;
 }

 private TabPage _AddPage(ref SQLParameterRoot sqlParameterRoot)
 {
 TabPage page = null;
 if (null != sqlParameterRoot && null != sqlParameterRoot.Parameter)
 {
 if (String.IsNullOrEmpty(sqlParameterRoot.Parameter.Name))
 {
 if (null != _parentForm)
 {
 _parentForm.DisplayMessage(
 "Please enter parameter name to add", true
);
 return null;
 }
 }

 if (FormSQLAzureConnect.IsPageExisted(sqlParameterRoot.Parameter.Name,
 this.tabParameter))
 {
 if (null != _parentForm)
 {
 _parentForm.DisplayMessage(
 string.Format("The name <{0}> of parameter already exists",
 sqlParameterRoot.Parameter.Name), true);
 }
 return null;
 }

 page = new TabPage(sqlParameterRoot.Parameter.Name);
 ParameterControl parameterControl =
 new ParameterControl(ref sqlParameterRoot, _parentForm);
 page.Controls.Add(parameterControl);
 parameterControl.Dock = DockStyle.Fill;
 this.tabParameter.TabPages.Add(page);
 }
 return page;
 }

 private void btnDelete_Click(object sender, EventArgs e)
 {
 if (null != _parentForm)
 {
 _parentForm.DisplayMessage(string.Empty, false);
 }

 this.txtParameter.Focus();

CHAPTER 8 ■ SQL AZURE

292

 if (string.Empty == this.txtParameter.Text)
 {
 if (null != _parentForm)
 {
 _parentForm.DisplayMessage(
 "Please enter parameter name for deleting", true
);
 }

 return;
 }

 TabPage page = null;
 foreach (TabPage p in tabParameter.TabPages)
 {
 if (p.Text == txtParameter.Text.Trim())
 {
 page = p;
 break;
 }
 }

 if (null != page)
 {
 int parameterCount =
 _sqlDatabaseAccessService.Command.SQLParameterRoot.Length;
 if (null != _sqlDatabaseAccessService.Command.SQLParameterRoot &&
 parameterCount > 0)
 {
 List<SQLParameterRoot> parameterList = new List<SQLParameterRoot>();

 foreach (SQLParameterRoot param in
 _sqlDatabaseAccessService.Command.SQLParameterRoot)
 {
 if (String.Compare(param.Parameter.Name, page.Text, true) != 0)
 {
 parameterList.Add(param);
 }
 }

 _sqlDatabaseAccessService.Command.SQLParameterRoot =
 new SQLParameterRoot[parameterList.Count];
 if (parameterList.Count > 0)
 {
 parameterList.CopyTo(
 _sqlDatabaseAccessService.Command.SQLParameterRoot
);
 }
 this.tabParameter.TabPages.Remove(page);
 }
 }

CHAPTER 8 ■ SQL AZURE

293

 else if (null != this._parentForm)
 {
 this._parentForm.DisplayMessage(
 string.Format("Can not find the parameter <{0}>", txtParameter.Text),
 true
);
 }
 }

 private void radioButtonQuery_CheckedChanged(object sender, EventArgs e)
 {
 this.groupParameter.Enabled = false;
 }

 private void radioButtonStoredProcedure_CheckedChanged(object sender, EventArgs e)
 {
 this.groupParameter.Enabled = true;
 }

 private void richTextBoxCommandText_MouseUp(object sender, MouseEventArgs e)
 {
 if (null != eventSelectedTextChanged)
 {
 try
 {
 eventSelectedTextChanged(
 this,
 new SelectedTextArgs(String.IsNullOrEmpty(SelectedText)?null:this)
);
 }
 catch { }
 }
 }

 void richTextBoxCommandText_PreviewKeyDown(object sender, PreviewKeyDownEventArgs e)
 {
 if (null != eventBubblePreviewKeyDown)
 {
 eventBubblePreviewKeyDown(this, e);
 }
 }

 private void SQLDataServiceControl_Leave(object sender, EventArgs e)
 {
 this.richTextBoxCommandText.Clear();
 this.richTextBoxCommandText.Text = _sqlDatabaseAccessService.Command.Text;
 richTextBoxCommandText_MouseUp(this, null);
 }

 }
}

CHAPTER 8 ■ SQL AZURE

294

FormSQLAzureConnect
The main window of SQLAzureConnect also has a binding source object defined to bind the data source to
the data object instance’s XML SQLDatabaseAccessRoot as Figure 8-25 shows.

Figure 8-25. A BindingSource of the FormSQLAzureConnect is defined to bind the data source to the data

object instance’s XML SQLDatabaseAccessRoot

When an XML data file is loaded, the data will be deserialized into a data object and assigned to
the member variable _sqlDataAccessRoot, and a member method _UpdateUI() is called. This method
loops through all the predefined services, factors out the SQLDataServiceControls, and calls the
_AddPage() method to assign each control to a tab page. Each SQLDatabaseControl has an underlying
ParameterControl if the SQL command type is a stored procedure and requires parameters as
Listing 8-12 shows. When a tab page has been created, it registers two events from the underlying
SQLDataAccessControls, eventSelectedTextChanged and eventBubblePreviewKeyDown, triggered when
the script text is selected by the user, and the F5 shortcut key is pressed to invoke the SQL script.
These two events have been handled in two anonymous methods. These two anonymous methods are
implemented in the method _AddPage() and shown in Listing 8-17.

Listing 8-17. The Main Form Formsqlazureconnect Uses the Data Objects Deserialized from an XML Data

File to Factor Out the UI Tab Pages and Underline SQLServiceControls

 private void _UpdateUI()
 {
 if (null != _sqlDataAccessRoot)
 {
 this.txtServer.Text = _sqlDataAccessRoot.ServerConnection.ServerName;
 this.txtDatabase.Text = _sqlDataAccessRoot.ServerConnection.Database;
 this.txtUserID.Text = _sqlDataAccessRoot.ServerConnection.Login;
 this.txtPassword.Text = _sqlDataAccessRoot.ServerConnection.Password;

 for (int i = 0; i < _sqlDataAccessRoot.SqlDataService.Length; ++i)

CHAPTER 8 ■ SQL AZURE

295

 {
 this._AddPage(_sqlDataAccessRoot.SqlDataService[i].Subject,
 ref _sqlDataAccessRoot.SqlDataService[i]);
 }
 this.tabControlServices.SelectedIndex = 0;
 }
 }

 private TabPage _AddPage(string pageKey,
 ref SQLDatabaseAccessRootSqlDataService sqlDatabaseAccessRoot)
 {
 TabPage page = null;
 if (IsPageExisted(pageKey, this.tabControlServices))
 {
 DisplayMessage(
 string.Format("The name <{0}> of service already exists",
 pageKey),
 true
);
 return null;
 }

 page = new TabPage(pageKey);
 page.ForeColor = Color.Navy;
 SQLDataServiceControl serviceCotnrol =
 new SQLDataServiceControl(ref sqlDatabaseAccessRoot, this);
 serviceCotnrol.eventSelectedTextChanged += (s, e) =>
 {
 this.btnExecute.Text = null ==
 (e as SelectedTextArgs).ServiceControl? "&Execute" : "&Execute Select";
 this.btnExecute.BackColor = null ==
 (e as SelectedTextArgs).ServiceControl ? Color.WhiteSmoke : Color.Goldenrod;
 this._TextSelected = null ==
 (e as SelectedTextArgs).ServiceControl ? null :
 ((e as SelectedTextArgs).ServiceControl as
 SQLDataServiceControl).SelectedText;
 };
 serviceCotnrol.eventBubblePreviewKeyDown += (s, e) =>
 {
 if (e.KeyCode == Keys.F5)
 {
 this.btnExecute_Click(this, null);
 }
 };
 page.Controls.Add(serviceCotnrol);
 serviceCotnrol.Dock = DockStyle.Fill;
 this.tabControlServices.TabPages.Add(page);
 this.tabControlServices.SelectedTab = page;

 return page;
 }

CHAPTER 8 ■ SQL AZURE

296

SQLAzureConnect also allows the user to create a new service and underlying parameters manually and
edit or delete existing services. The data can be saved and played back. The rest of the implementation for
the UI is fairly straightforward, and the total number of code lines is just around 300, thanks to the XML
data-driven dynamic factory approach. You can download the source code from the bundled project ZIP
file. Feel free to use it directly or to add more functions.

Summary
In this chapter I covered the newly minted SQL Azure features that replaced SQL Data Services. SQL
Azure is an exciting innovation, as it is the first relational model cloud database, and it has many
advantages. One of the main advantages is that it provides a familiar environment for most developers,
which means existing applications can easily be migrated from existing databases.

During the course of this chapter I took you through the fundamentals of SQL Azure to show you its
basic features. We created tables, inserted data, and queried the database using SQL Server Management
Studio. The main example in the chapter is a tool for working with SQL Azure, and on-premises SQL
Server installations, which allows you to unify all your relational database testing and debugging.

C H A P T E R 9

■ ■ ■

297

Deploy Applications
and Production Maintenance

In this chapter I am going to provide examples of how to deploy Azure Storage and applications to the
cloud. The process of deployment is fairly straightforward and intuitive. The steps are as follows, each of
which I’ll touch on in this chapter:

1. Prepare the application package and configuration package for deployment.

2. Deploy table storage.

3. Deploy the cloud application.

I’ll also cover the maintenance of a deployed cloud application.

Preparing the Application Package and Configuration
Package for Deployment
The application and associated configuration need to be packed up before they can be deployed to the
cloud. These packages can be generated from Visual Studio as Figure 9-1 shows. This example can be
found in Exercise_4-3 from the download. Select Publish from the context menu by right-clicking on the
cloud application solution’s node in Solution Explorer.

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

298

Figure 9-1. Generate the application package and configuration package from Visual Studio

The packages will be generated by Visual Studio, and a new folder called Publish will be created to
hold the package files. The path of the folder is under the project node of the specific compiler setting. For
example, if the compiler setting is Debug, the folder is located under the Debug folder as Figure 9-2 shows.

Figure 9-2. The generated package can be found in the folder Publish under the project tree in Windows Explorer

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

299

Deploying Table Storage
We are going to use the table storage we created in Exercise 2-2 as an example to illustrate how to deploy
table storage to the cloud.

1. From Internet Explorer, enter the Azure portal address and sign in with your
Live ID. Select New Project ➤ Storage Account as Figure 9-3 shows.

Figure 9-3. Create a new storage account from the Azure portal page

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

300

2. Check the availability of the account as Figure 9-4 shows. The name must be in
lowercase.

Figure 9-4. Create a new storage account from Azure portal page

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

301

3. When the storage account is created from the cloud, the endpoint for blob,
table, and queue storage will be displayed, and a new account shared key will
be assigned to that account as Figure 9-5 shows.

Figure 9-5. Account shared key and the endpoint will be assigned to this newly created account

4. Modify the configuration using the assigned secretary key as Listing 9-1 shows.

Listing 9-1. Updated Configurations for Exercise 2-2

<?xml version="1.0"?>
<ServiceConfiguration serviceName="CloudTableStorageService"
 xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration">
 <Role name="WebRole">
 <Instances count="1"/>
 <ConfigurationSettings>
 <!--Local Development-->
 <!--Setting name="AccountName" value="devstoreaccount1"/>
 <Setting name="AccountSharedKey" value="<SHARED_KEY"/>
 <Setting name="TableStorageEndpoint" value="http://127.0.0.1:10002/"/-->
 <!--Production Environment-->
 <Setting name="AccountName" value="softnetsolutionstorage"/>

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

302

 <Setting name="AccountSharedKey" value="<ACCOUNT_SHARED_KEY>"/>
 <Setting name="TableStorageEndpoint" value="http://table.core.windows.net/"/>
 </ConfigurationSettings>
 </Role>
</ServiceConfiguration>

Host an Application from the Cloud
Follow the steps illustrated in the next section to deploy the application that contains the table storage
access web role. The results of a successful deployment are shown in Figure 9-6. Test the application
after deployment and you can have the same results as in Exercise 2-2.

Figure 9-6. Both the table storage and the application used to access the table storage need to be deployed

to the cloud

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

303

Deploying Cloud Applications
Now let’s see how to deploy a cloud application.

1. Select Hosted Services after you have signed in from the Azure portal, as Figure 9-7 shows.

Figure 9-7. Select the Hosted Services from the portal to deploy an application to the cloud

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

304

2. Enter a name for the application that will be hosted from the cloud. The
maximum length of the name that can be entered is 20 characters, and the
name should be unique, as Figure 9-8 shows.

Characters more than
20 will be truncated

Figure 9-8. Verify the available name for the application name

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

305

Staging Deployment
Staging deployment (shown in Figure 9-9) is the step where an application runs in pre-production. In
this status the application should be fully functional. This provides an opportunity for you to do testing
and final tuning in the remote cloud environment. If the application has never been deployed before,
then when the Deploy button is pressed the application will be given Staging status and should be fully
functional. Revisit this page after testing and deploy the application from Staging to Production as
Figure 9-13 shows.

Figure 9-9. Staging deployment is one step before an application is hosted in production

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

306

Select the Application Package and Configuration Package
At this step you need to provide the path for both the compiled package file and the configuration
package file, as Figure 9-10 shows.

Figure 9-10. Select the application package and configuration package file for deployment

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

307

Running a Hosted Application
Figure 9-11 shows that a web role is running from the cloud. Double-click on the URL to access the
service provided by that web role.

Figure 9-11. An example of a web role hosted and run from the cloud

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

308

Figure 9-12 shows a worker role that has been hosted in the cloud.

Figure 9-12. An example of a worker role hosted and run from the cloud

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

309

Click on the Promote button, and the application will be promoted from Staging to Production
status as Figure 9-13 shows.

Figure 9-13. An example of an application that has been deployed to the cloud

Maintenance of a Cloud Application
In principle, cloud storage, resources, and applications are maintenance-free for users. There is
very limited work left for end users to do. Let’s have a quick look at some of the tasks you may have
to carry out.

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

310

Increase or Decrease the Number of Instances
The number of cloud application instances can be changed directly from the Azure portal page without
redeployment by selecting the application and clicking on the Configure button as Figure 9-14 shows.

Figure 9-14. Change the number of instances of a cloud application directly from the Azure portal

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

311

Override the Configuration
Click the Browse button and upload a new version of the configuration file. This action will cause the
application to restart.

Redeploy an Application with a New Version
Delete the application and deploy a new version.

Summary
This chapter was short and sweet compared to the rest of the book, as befits a chapter on cloud
application deployment and maintenance. Once your application has been deployed, there is very little
for you to worry about; maintenance is largely taken care of.

We started by seeing how to prepare an application for deployment and set up cloud table storage.
We then looked at how to deploy the application, including how to use application staging. The final
section covered some quick tips on how to configure your application.

CHAPTER 9 ■ DEPLOY APPLICATIONS AND PRODUCTION MAINTENANCE

312

A P P E N D I X

■ ■ ■

313

Table A-1. Specifications for Windows Azure Blob Storage

Specification Tables Queues Blobs

ID • Block ID, b4 byte/block

• Blob metadata, 8 KB/blob

• Blocks, 4 MB each

Container
Name

 • Valid DNS resolvable name

• 3-63 characters

• Letters, numbers and dash

• Every dash must be
immediately preceded and
followed by a letter or
number.

Name • Alphanumeric
characters only

• Case-insensitive

• 3-63 characters

• Up to 255 entity
properties (including
PartitionKey, RowKey,
and Timestamp)

• Valid DNS resolvable

• Must be in lowercase

• 3-63 characters

• Begin with a letter or
number

• First and last letter
must be
alphanumeric.

• Letters, numbers and
dashes are accepted.

• Dash may not be the
first or last letter

• 1,024 characters

• Reserved URL characters
must be properly escaped.

• Blob storage is not
hierarchical; specify a
delimiter within a blob name
to create a virtual hierarchy
endpoint address.

Property • Case-sensitive Must be unique

APPENDIX ■

314

Specification Tables Queues Blobs
Name • Alphanumeric

characters only

• Maximum 255
characters

• Must starting with a
letter

Capacities < 1 MB • < 8 KB/message

• FIFO (First In First
Out)

• Infinite number of
messages

• Public blob, 64 MB

• Public block/public list,
50 GB each

Azure Service Management Tools
Azure Service Management Tools can be downloaded from http://code.msdn.microsoft.com/
AzureManagementTools. Follow the instructions to install on your local development system. When
you first start this Windows snap-in, you need to enter your Azure solution name as the user name as
Figure A-1 shows.

Figure A-1. The Azure solution name should be entered as User Name for Azure Services

315

Index

A
Access Control Service, 129—70

building cloud application with, 131—41
with CardSpace security, 141—69

AccessControlHelper class, 162
accessing cloud blob storage, 96—111
accessing cloud table storage, 1—41

data tables, updating in buckets, 35, 36—
41

single storage table, 1—23
data entity class constructors, 17
deleting and updating entities, 24—

35
leveraging developing fabric

services, 19
logging support, 18
retrieving paginated data, 22
table storage keys, 18

AccountSharedKey property, 1
Action value (GetRegisteredUser), 141
AddressTableContext class, 4
AddressTableService class, 6
AddUser() method (IUserRegisterService),

2
ADO-NET, connecting to SQL Azure

database using, 13
AppendOnly value (tracked property), 24
application packages

preparing for deployment, 297—98
selecting for deployment, 306

application-level queue storage, 204
applications. See cloud applications
ApplicationStartUponFirstRequest

function (Global.asax), 15

associating X.509 certificate to application

URL, 152
asynchronous data transmission, 97
AttachTo() method (DataServiceContext),

24, 36
authentication, 129, See also Access

Control Service
with SQL Azure, 4

authentication modes, .NET Service Bus,
181

Azure .NET Access Control Service, 129—70
building cloud application with, 131—41
with CardSpace security, 141—69

Azure .NET Service Bus, 82, 129, 171—209
authentication modes, 181
connecting to remote applications,

171—75
distributed connected application, 191—

204
posting events using relay connection,

175—84
simple direct connected system, 184—90

Azure .NET Service Bus Queue, 204—9
Azure .NET Services, 129, See also .NET

Access Control Service; .NET
Service Bus; .NET Workflow
Service

Azure .NET Workflow Services, 1—32
coordinating using HttpWebRequest,

11—32
hosting workflow service, 2—10

Azure Blob. See Blob storage

 INDEX

316

Azure development tool, data tables
generated by, 15

Azure integration using WCF, 1—16
hosting WCF service, 2—15
verifying HostWCFService, 15—16

Azure Queue, 67—68
accessing cloud blob storage, 96—111
creating cloud blob storage, 80—89
creating cloud queue, 70—80

parsing received messages, 78
polling and deleting messages, 76
putting message into queue, 74

loosely coupled event-driven system,
89—96

querying cloud queue using HTTP
REST, 80

Azure SDK. See CSR.exe tool
Azure storage. See storage
Azure Storage deployment, 297—311

cloud application deployment process,
303—9

cloud application maintenance, 309—11
hosting application from cloud, 302
preparing packages for, 297—98
table storage, 299—302

Azure table. See also cloud storage tables
Azure Table, 2
AzureForDotNetDeveloperWCFserviceLibr

ary project, 141
testing, 147

AzureStorageFacade class, 97

B
back-end traffic measurement, 68
background worker threads, 97, 101
basicHttpRelayBinding type, 174
basicHttpRelayContextBinding connection

mode, 174
BataBind() method, 86
BeginTrans() method (SqlCommand), 24
benchmark testing of SQL Azure, 7—9
Binary type (table entity properties), 3
BizTalk server, 1
blob storage, 1, 69—70

cloud blob storage
accessing, 96—111
creating, 80—89

cloud queue, creating, 70—80
parsing received messages, 78
polling and deleting messages, 76
putting message into queue, 74

cloud queue, querying with HTTP
REST, 80

loosely coupled event-driven system,
89—96

BlobContainer class access functions, 85
BlobContents class, 82
BlobName property (MediaInfo), 85
BlobProperties class, 82
BlobStorageActionStatus class, 97
BlobStorageFacade class, 97, 99
Bool type (table entity properties), 3
buffering messages, 68

C
CardSpace security, 141—69

associating card with solution, 155
registering card with Access Control,

157
Certificate Import Wizard, 149
certificates. See CardSpace security; X.509

certification
certmgr.exe utility, 149
ChannelFactory class, 136
CloneCore() method

(UserRegisterServiceCredentials),
158

cloud applications
application-level queue storage, 204
deployment process, 303—9
maintenance of, 309—11

cloud blob storage
accessing, 96—111
creating, 80—89

cloud queue
creating, 70—80
parsing received messages, 78
polling and deleting messages, 76

 INDEX

317

putting message into queue, 74
querying with HTTP REST, 80

cloud state machine workflows, limitations
of, 7

cloud storage tables, accessing, 1—41
data tables, updating in buckets, 35,

36—41
single storage table, 1—23

data entity class constructors, 17
deleting and updating entities, 24—

35
leveraging development fabric

services, 19
logging support, 18
retrieving paginated data, 22
table storage keys, 18

cloud storage tables, creating, 1—23
best practices, 15—18
development storage, 4—15

creating for first time, 13
entities, about, 3
relational data structure, 19—23
specification for, 2—3

cloud storage tables, deploying, 299—302
CloudTableServiceFactory class, 25, 27
CloudTableStorageService project, 1
CloudTableStorageService_WebRole

project, 2
CommitTrans() method (SqlCommand),

24
configuration packages

preparing for deployment, 297—98
selecting for deployment, 306

connecting to remote applications, 171—75
connection modes (.NET Service Bus), 174
ConnectionStateChanged() method, 187
ContainerAccessControl class, 81
continuation tokens, 22
Convert UDDTs to Base Type option, 14
/copyonly option (CSPack), 19
Create Database button (SQL Azure), 3
CreateBlobStatus class, 101
CreateChannel() method

(IRelayPublishEventService), 178
CreateContainer() method, 81

CreateSecurityTokenManager() method
(UserRegisterServiceCredentials),
158

CreateServiceUri() method
(ServiceBusEnvironment), 205

CreateStoredProcedure() method
(SQLDataAccessHelper), 30

credentials with SQL Azure, 4. See also
Access Control Service

CSharpBuildingBlocks assembly, 101, 104
CSPack utility, 19
CSR.exe tool, 19

/dumplogs option, 18
data context class inheritance, 17
data entity classes

constructors, 17
containing embedded entity classes,

21—22

D
data model for storage, 1, 4
data tables

creating with SQL Server Management
Studio, 6—7

relational, verifying support for, 9—13
data types

for queue messages, 74
for table entity properties, 3, 15

database model support, 1
DataServiceContext class

best practices in using, 36
using tracked property, 24

DataServiceQuery class, 22
DataTableService class, 3, 5, 25
DateTime type (table entity properties), 3
debugging

Fiddler 2 tool, 19
logging support for, 18

decreasing number of application
instances, 310

DELETE request (HTTP), 80
Delete() method

AddressTableService class, 6, 39
DataServiceContext class, 36

 INDEX

318

ICloudTableStorageService interface,
26

DeleteBlobStatus class, 101
deleting entities

in buckets, 35, 36—41
single storage table, 24—35

deleting messages from cloud queue, 76
developing fabric services, 19
development storage, 4—15

best practices, 15—18
creating for first time, 13

direct connected system, 184—90
Direct mode (TcpRelayConnection), 174
distributed connected Windows

application, 191—204
DoDataExchange() method

ParameterControl class, 44
SQLDataServiceControl c, 44

Double type (table entity properties), 3
DoWork event

(QueuedBackgroundWorkerComp
onent), 104

Draw() method (IShape), 192
Draw Shape application, 191
Draw Shape Controller, 198
/dumplogs option (CSRun.exe), 18

E
endpoint relay connectivity (Service Bus),

173
entities (table storage), 2, 3

deleting and updating
in buckets, 35, 36—41
in single storage table, 24—35

querying
with HTTP REST, 22
with LINQ, 21

retrieving paginated data, 22
size limit on, 4
sort order, 3

event-driven system (loosely coupled),
creating, 89—96

events listeners, 89

Execute() method (SQLDataAccessHelper),
30

ExecuteDataSet() method
(SQLDataAccessComponent), 24

ExecuteDataTable() method
(SQLDataAccessComponent), 24

ExecuteNonQuery() method
(SQLDataAccessComponent), 24

ExecuteScalar() method
(SQLDataAccessComponent), 24

ExecuteSelected() method
(SQLDataAccessHelper), 30

executing scripts in SQLAzureConnect, 19

F
FederateAccessManager project, 157
Fiddler 2 tool, 19
FormSQLAzureConnect components, 52—

54

G
generating X.509 certificates, 149
GET request (HTTP), 80
GetBlobProperties() method, 86
GetDataReader() method

(SQLDataAccessComponent), 24
GetDependencyEntity() method

(ICloudEntity), 25
GetPartitionKey() method (ICloudEntity),

25
GetRegisteredUser() method

(IAzureForDotNetDeveloper), 141
GetRowKey() method (ICloudEntity), 25
GetUserList() method

(IUserRegisterService), 2
GridView class, 85
GUID type (table entity properties), 3

H
HEAD request (HTTP), 80
hosting applications from cloud, 302
hosting WCF service, 2—15
hosting workflow services, 2—10, 11—32

 INDEX

319

HostWCFService, verifying from
development environment, 15—16

HTTP REST
querying cloud queue with, 80
querying table storage entities, 22

HttpWebRequest class, 11—32
HttpWebResponse class, 11, 26
Hybrid mode (TcpRelayConnection), 174,

184—90

I, J
IAccountFederationClientChannel

interface, 133
IAccountFederationService interface, 132
IAzureForDotNetDeveloper interface, 141
ICloudEntity interface, 25
ICloudTableStorageService interface, 25,

26
ICommand design pattern, 97, 101
IComparable interface, 205
identity, 129, See also Access Control

Service
increasing number of application

instances, 310
Insert() method

AddressTableService class, 6, 38
DataServiceContext class, 36
ICloudTableStorageService interface,

26
installing development storage, 13
installing X.509 certificate, 148
instances of applications, number of, 310
Int type (table entity properties), 3
Int64 type (table entity properties), 3
integration using WCF, 1—16

hosting WCF service, 2—15, 15—16
InvokeHttpWebRequest class, 28
InvokeWorkflows class, 28
IPublishEventService interface, 176
IRelayPublishEventService interface, 178
IShape interface, 192
ITableContext interface, 25, 26
IUserRegisterService interface, 2

K
KEY constraint, 17

L
LINQ, for querying entities, 21
ListBlobs() method, 86
listeners (event-driven systems), 89
logging support, 18
loosely coupled event-driven system,

creating, 89—96

M
maintaining cloud applications, 309—11
Map property (IShape), 192
MediaID property (MediaInfo), 85
MediaInfo class, 85
MediaUri property (MediaInfo), 85
MergeOption property

(DataServiceContext), 32, 36
message buffering, 68
MessageQueue class, 76
messages in cloud queue

data types for, 74
polling and deleting, 76
putting into queue, 74
received, parsing, 78

Microsoft BizTalk server, 1
Microsoft .NET Services, 2
Microsoft .NET Workflow Services, 2
Microsoft SQL Azure. See SQL Azure
Microsoft.ServiceBus namespace, 134, 136
migrating databases to SQL Azure, 14—18

N
name hierarchy system (Service Bus), 173
names for blobs, 82
NameValueCollection, 82
.NET Access Control Service, 129—70

building cloud application with, 131—41
with CardSpace security, 141—69

.NET Service Bus, 82, 129, 171—209
authentication modes, 181

 INDEX

320

connecting to remote applications,
171—75

distributed connected application, 191—
204

posting events using relay connection,
175—84

simple direct connected system, 184—90
.NET Service Bus Queue, 204—9
.NET Services (Azure), 129, See also .NET

Access Control Service; .NET
Service Bus; .NET Workflow
Service

.NET Services (Microsoft), 2

.NET Workflow Services (Azure), 1—32
coordinating using HttpWebRequest,

11—32
hosting workflow service, 2—10

.NET Workflow Services (Microsoft), 2
netEventRelayBinding type, 174, 175
netOnewayRelayBinding connection

mode, 174
netTcpRelayBinding type, 174

port forwarding with, 200
netTcpRelayContextBinding connection

mode, 174
non-portable data types for table entities,

15
NoTracking value (tracked property), 24
number of application instances,

changing, 310

O
Open() method

(IRelayPublishEventService), 178
organizing table structures, 18
OverwriteChanges value (tracked

property), 24

P
paginated data, retrieving, 22
ParameterControl components, 41—44
parsing messages received from cloud

queue, 78
Partition property, 3

PartitionKey property, 3
accessing storage tables, 18
building relational storage tables, 38
organizing data to be distributed, 18
querying entities by, 26

partitions, SQL Azure and, 17
.pfx format, 152
Ping() method

(IAzureForDotNetDeveloper), 141
polling messages from cloud queue, 76
PollingQueueData class, 205
port forwarding, 200
-portable data types for table entities, 15
posting events using relay connection,

175—84
PostMessage() (IPublishEventService), 176
PreserveChanges value (tracked property),

24
ProgressChanged event

(QueuedBackgroundWorkerComp
onent), 104

properties of table entities, 2
maximum number of, 3

Public value (ContainerAccessControl), 81
PUT request (HTTP), 80

Q
QueryEntitiesByPartitionKey() method

(TableContext), 26, 27
QueryEntitiesByRowKey() method

(TableContext), 26, 27
querying

cloud queue using HTTP REST, 80
entities in cloud storage

with HTTP REST, 22
with LINQ, 21

queue. See cloud queue
queue message data types, 74
queue storage, 1
QueueClient class, 205
QueueClientFactory class, 205

.NET Service Bus facade, 204—9
QueueDataUpdateArgs class, 208

 INDEX

321

QueuedBackgroundWorker assembly, 101,
104

QueuedBackgroundWorkerComponent
component, 104

QueuedBackgroundWorkerItem class, 104
QueueManagementClient class, 205
QueuePolicy class, 205

R
refactoring data entity classes, 22
registering CardSpace with Access Control,

157
RegisterUser() method

(IAzureForDotNetDeveloper), 141
relational cloud data storage tables

accessing, 36—41
creating, 19—23

relational data structure, 21—22
relational data tables, verifying support

for, 9—13
relational databases, 1
relay connection, posting net events using,

175—84
Relayed mode (TcpRelayConnection), 174
remote applications, connecting to, 171—

75
ReplayAction value (GetRegisteredUser),

141
resource management, 68
RoleManager class, 18
RollbackTrans() method (SqlCommand),

24
RowKey property, 3

accessing storage tables, 18
building relational storage tables, 38
organizing data to be distributed, 18
querying entities by, 26
querying with LINQ (example), 21

running hosted applications, 307
RunWorkerCompleted event

(QueuedBackgroundWorkerComp
onent), 104

S
SAML tokens, 129
SaveChanges() method, 24, 36
schemas in Azure tables (none), 4
Script Data option, 15
script execution in SQLAzureConnect, 19
"Script extended properties" option, 15
Script USE DATABASE option, 15
security. See Access Control Service;

CardSpace security; X.509
certification

Security Assertion Markup Language. See
SAML tokens

Security Token Service (STS), 130
Select() method (AddressTableService), 6
Service Bus service, 82, 129, 171—209

authentication modes, 181
connecting to remote applications,

171—75
distributed connected application, 191—

204
posting events using relay connection,

175—84
queue client facade, 204—9
simple direct connected system, 184—90

service name hierarchy system (Service
Bus), 173

service registry and publishing (Service
Bus), 173

ServiceBusEnvironment class, 205
ServiceConfiguration.cscf file, 1
ServiceConnection node, 21
ServiceCredentials class, 158
SetDependencyEntity() method

(ICloudEntity), 25
Shape class, 192
Shape Controller application, 191
sort order (table entities), 3
Speakeasy utility, 7
SQL Azure, 1—54

benchmark test for access, 7—9
component design and

implementation, 40—54
FormSQLAzureConnect

components, 52—54

 INDEX

322

ParameterControl components, 41—
44

SQLDataServiceControl
components, 44—51

connecting to database, 3—6
connecting using ADO.NET, 13
connection timeout, 5
creating data tables, 6—7
developing applications for, 18—40

defining UI components
dynamically, 21—23

SQLDataAccessComponent class,
24—29

SQLDataAccessHelper class, 29—40
migrating databases to, 14—18
support for relational data tables,

verifying, 9—13
virtual server for, creating, 2—3

SQL Azure for relational data structure, 19
SQL Server Express, 4
SQL Server Management Studio

connecting to SQL Azure databases, 3—6
creating data tables, 6—7
testing for SQL Azure access, 7—9
verifying support for relational data

tables, 9—13
SQLAzureConnect tool, 13, 18—40

component design and
implementation, 40—54

FormSQLAzureConnect
components, 52—54

ParameterControl components, 41—
44

SQLDataServiceControl
components, 44—51

defining UI components dynamically,
21—23

functions of, 19—21
SQLDataAccessComponent class, 24—

29
SQLDataAccessHelper class, 29—40

SqlDataAccess schema, 21
SQLDataAccessComponent class, 24—29
SQLDataAccessHelper class, 29—40
SqlDataService node, 21

SQLDataServiceControl components, 44—
51

staging deployment, 305
StartReceiving() method, 77, 91
state machine workflows, limitations of, 7
storage, 1—23

accessing single storage table, 1—23
data entity class constructors, 17
deleting and updating entities, 24—

35
leveraging development fabric

services, 19
logging support, 18
retrieving paginated data, 22
table storage keys, 18

application-level queue storage, 204—9
Azure Queue, 67—68
blob storage, 69—70

accessing, 96—111
creating, 80—89

cloud queue
creating, 70—80
parsing received messages, 78
polling and deleting messages, 76
putting message into queue, 74
querying using HTTP REST, 80

deploying Azure Storage applications,
297—311

cloud application deployment
process, 303—9

cloud application maintenance,
309—11

hosting application from cloud, 302
preparing packages for, 297—98, 299—

302
entities, about, 3
loosely coupled event-driven system,

89—96
table storage, creating

best practices, 15—18
development storage, 4—15
relational data structure, 19—23
specification for, 2—3

updating tables in buckets, 35, 36—41
StorageAccountInfo class, 2

 INDEX

323

StorageClient class, 17
Storedprocedure option

(SQLAzureConnect), 20
String type (table entity properties), 3
STS (Security Token Service), 130
system module decoupling, 68
system resource management, 68

T
table storage, accessing, 1—41

single storage table, 1—23
data entity class constructors, 17
deleting and updating entities, 24—

35
leveraging development fabric

services, 19
logging support, 18
retrieving paginated data, 22
table storage keys, 18

updating data tables in buckets, 35, 36—
41

table storage, creating, 1—23
best practices, 15—18
development storage, 4—15

creating for first time, 13
entities, about, 3
relational data structure, 19—23
specification for, 2—3

table storage, deploying, 299—302
TableContext class, 2, 25, 27
TableContext() method

(ICloudTableStorageService), 26
TableName property (TableContext), 26,

27
TableStorageDataServiceContext class, 17,

2
TableStorageEntity class, 15
TableStorageFacade class, 97
timeout, SQL Azure connection, 5
Timestamp property, 3
tracked property (entity tables), 24
TransportClientEndpointBehavior class,

134

U
Update() method

AddressTableService class, 6, 40
DataServiceContext class, 36
ICloudTableStorageService interface,

26
updating entities

in buckets, 35, 36—41
in single storage table, 24—35

UserRegisterSecurityTokenManager class,
158

UserRegisterServiceCredentials class, 158
UserRegisterTokenAuthenticator class, 158

V
verifying HostWCFService from

development environment, 15—16
virtual server for SQL Azure, creating, 2—3

W
WCF (Windows Communication

Foundation), 1, 2
Azure integration using, 1—16
building application with Access

Control Service, 131—41
using CardSpace security, 141—69

hosting WCF service from Azure, 2—15
.NET Service Bus with, 173
verifying HostWCFService, 15—16

web services, about, 171
WebInvoke attribute, 12
WF (Workflow Foundation), 1
Windows Azure integration using WCF, 1—

16
hosting WCF service, 2—15
verifying HostWCFService, 15—16

Windows CardSpace Setup, 154
Windows Workflow Foundation (WF), 1
workflows, 1—32

coordinating using HttpWebRequest,
11—32

hosting workflow service, 2—10
wsHttpRelayBinding type, 174

 INDEX

324

wsHttpRelayContextBinding connection
mode, 174

X, Y, Z
X.509 certification, 148—54

associating certificate to application
URL, 152

installing certificate, 148
XML for SQL Azure application UI, 21—23
XmlPersist() method

(SQLDataAccessHelper), 30
XmlRetrieve() method

(SQLDataAccessHelper), 30
Xsd.exe, 21—22

	Apress - Introducing Windows Azure (December 2009) (ATTiCA)
	Books for Professionals
	Contents at a Glance
	Contents
	Foreword
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Windows Azure Essentials
	Who This Book Is For
	Prerequisites
	How This Book Is Structured
	Contacting the Author

	Create Cloud Table Storage
	The Table Storage Specification
	A Closer Look at Entities
	Azure Development Storage
	Create Cloud Data Storage with a Simple Data Structure
	Create Cloud Data Storage with Relational Data Structure
	Summary

	Access Cloud Table Storage
	Accessing a Single Cloud Data Storage Table
	Deleting and Updating an Entity in a Single Cloud Data Storage Table
	Handling Relational Cloud Data Storage Tables
	Summary

	Working with Cloud Queue and Blob Storage
	Azure Queue
	Azure Blob Storage
	Creating a Cloud Queue
	Creating Cloud Blob Storage
	Creating a Loosely Coupled Event-Driven System
	Implementing a Client Application to Access Cloud Blob Storage
	Summary

	Windows Azure Application Integration Using WCF
	Using WCF
	Host WCF Service from Azure
	Verify HostWCFService from the Local Development Environment
	Summary

	Azure .NET Services—Access Control
	Working with the .NET Access Control Service
	Build Your First Cloud Application Using the .NET Access Control Service
	CardSpace .Net Access Control Services
	Summary

	Azure .NET Services— Service Bus
	Connecting to Remote Applications with the Service Bus
	Post a Net Event Using Relay Connection
	Simple Direct Connected System Using Hybrid Relay Connection Mode
	Using .NET Service Bus to Build a Distributed Connected Windows Application
	.NET Service Bus Queue Client Facade
	Summary

	Azure .NET Services—Workflows
	Hosting a Workflow Service in an Azure Cloud Environment
	Coordinating WF Services Using HttpWebRequest
	Summary

	SQL Azure
	Create a Virtual Server for SQL Azure
	Connect to a SQL Azure Database Using SQL Server Management Studio
	Create a Data Table Using SQL Server Management Studio
	Simple Benchmark Testing Results
	Verifying That SQL Azure Supports Relational Data Tables
	Connect to a SQL Azure Database Using ADO.NET
	Migrate Existing Databases from an On-Premises System to SQL Azure
	SQL Azure Application Developing Tool: SQLAzureConnect
	Component Design and Implementation
	Summary

	Deploy Applications and Production Maintenance
	Preparing the Application Package and Configuration Package for Deployment
	Deploying Table Storage
	Host an Application from the Cloud
	Deploying Cloud Applications
	Maintenance of a Cloud Application
	Summary
	Azure Service Management Tools

	Index

