
Student Solutions Manual.

Elementary Linear Algebra
A Matrix Approach

Second Editjon

Spence insel Friedberg

S canned by TMAC



Student Solutions Manual

Elementary Linear Algebra
A Matrix Approach

Second Edition

Spence Insel Friedberg

ni
IIafl

Upper Saddle River, NJ 07458



Editorial Director, Computer Science, Engineering, and Advanced Mathematics:
Marcia J. Horton
Senior Editor: Holly Stark
Editorial Assistant: Jennifer Lonschein
Senior Managing Editor: Scott Disanno
Production Editor: Craig Little
Supplement Cover Designer: Daniel Sandin
Manufacturing Buyer: Lisa McDowell

PEARSON

hail

© 2008 by Pearson Education, Inc.
Pearson Prentice Hall
Pearson Education, Inc.
Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without
permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind, expressed or implied,
with regard to these programs or the documentation contained in this book. The author and pub-
lisher shall not be liable in any event for incidental or consequential damages in connection with,
or arising out of, the furnishing, performance, or use of these programs.

Pearson Prentice is a trademark of Pearson Education, Inc.

This work is protected by United States copyright laws and is provided solely for the use of
instructors in teaching their courses and assessing student learning. Dissemination or sale of any
part of this work (including on the World Wide Web) will destroy the integrity of the work and is
not permitted. The work and materials from it should never be made available to students except
by instructors using the accompanying text in their classes. All recipients of this work are expected
to abide by these restrictions and to honor the intended pedagogical purposes and the needs of
other instructors who rely on these materials.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN O-13-239734-X
97&-O-13-239734-6

Pearson Education Ltd., London
Pearson Education Australia Pty. Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education—Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Upper Saddle River, New Jersey



Contents

1 Matrices, Vectors, and Systems of Linear Equations

1.1 Matrices and Vectors
1.2 Linear Combinations, Matrix-Vector Products, and Special Matrices
1.3 Systems of Linear Equations
1.4 Gaussian Elimination
1.5 Applications of Systems of Linear Equations
1.6 The Span of a Set of Vectors
1.7 Linear Dependence and Linear Independence

Chapter 1 Review Exercises
Chapter 1 MATLAB Exercises

2 Matrices and Linear Transformations 29

2.1 Matrix Multiplication
2.2 Applications of Matrix Multiplication
2.3 Invertibility and Elementary Matrices
2.4 The Inverse of a Matrix
2.5 Partitioned Matrices and Block Multiplication
2.6 The LU Decomposition of a Matrix
2.7 Linear Transformations and Matrices
2.8 Composition and Invertibility of Linear Transformations.

Chapter 2 Review Exercises
Chapter 2 MATLAB Exercises

1

3

7

9

15

18
21

25
28

29
31
34
38
40
42
48
53
56
57

111



iv Table of Contents

3 Determinants 59

3.1 Cofactor Expansion 59
3.2 Properties of Determinants 61

Chapter 3 Review Exercises 65
Chapter 3 MATLAB Exercises 67

4 Subspaces and Their Properties 68

4.1 Subspaces 68
4.2 Basis and Dimension 72
4.3 The Dimension of Subspaces Associated with a Matrix 78
4.4 Coordinate Systems 83
4.5 Matrix Representations of Linear Operators 87

Chapter 4 Review Exercises 93
Chapter 4 MATLAB Exercises 96

5 Eigenvalues, Eigenvectors, and Diagonalization 98

5.1 Eigenvalues and Eigenvectors 98
5.2 The Characteristic Polynomial 100
5.3 Diagonalization of Matrices 105
5.4 Diagonalization of Linear Operators 109
5.5 Applications of Eigenvalues 113

Chapter 5 Review Exercises 121

Chapter 5 MATLAB Exercises 123

6 Orthogonality 125

6.1 The Geometry of Vectors 125

6.2 Orthogonal Vectors 130

6.3 Orthogonal Projections 134

6.4 Least-Squares Approximations and Orthogonal Projection Matrices 139

6.5 Orthogonal Matrices and Operators 142

6.6 Symmetric Matrices 146

6.7 Singular Value Decomposition 150

6.8 Principal Component Analysis 157

6.9 Rotations of R.3 and Computer Graphics 159
Chapter 6 Review Exercises 164

Chapter 6 MATLAB Exercises 166



Table of Contents v

7 Vector Spaces 170

7.1 Vector Spaces and Their Subspaces 170
7.2 Linear Transformations 174
7.3 Basis and Dimension 177
7.4 Matrix Representations of Linear Operators 181
7.5 Inner Product Spaces 185

Chapter 7 Review Exercises 189
Chapter 7 MATLAB Exercises 193



Chapter 1

Matrices, Vectors, and
Systems of Linear

Equations

1.1 MATRICES AND VECTORS
— [2 0

T — 2 4

6 8
— 4 8

1. Each entry of 4A is 4 times the corre-
sponding entry of A; 50 9. Matrix AT can be obtained by inter-

changing the rows of A with the corre-
4A — f4(2) 4(—1) sponding columns; so

—
4(4) 4(1)]

23
— 8—4201 AT=_14.

1216 4j 51
3. We have 13. Matrix —A can be obtained by multiply-

ing each entry of A by —1; hence
4A-2B

=4 —2 — —1(3) —1(—1) —1(2) —1(4)

— —1(1) —1(5) —1(—6) —1(—2)

=
+

=

= [8 10 _4} 17. Because A and B have different sizes,
A — B is not defined.

5. We have 21. Because A and B have different sizes,
T A+Bisnotdefined.

2B T — 12(1) 2(0) 2(—2)1
— L2(2 2(3) 2(4)] 25. The row 1, column 2 entry is —2.

1



2 Chapter 1 Matrices, Vectors, and Systems of Linear Equations

29. The first column of C is 1
21. (a) The jth column of A + B and

[2eJ a, + b, are m x 1 vectors. Now
the ith component of the jth col-33. Let v be the vector given by the arrow
unrn of A + B is the (i,j)-entry ofin Figure 1.7. Because the arrow has

length 300, we have A + B, which is + b23. By defini-
tion, the ith components of a, and

v1 300 sin 300 150 b, are and respectively. So
the ith component of a, + b, is also

v2 = 300 cos 30° = a2, + b,. Thus the jth column of
A + B is a, + b,.

For v3, we use the fact that the speed in
the z-direction is 10 mph. So the veloc- (b) The jth column of cA and ca, are
ity vector of the plane in is m x 1 vectors. The ith component

of the jth column of cA is the (i, j)-
1 150 1 entry of cA, which is cafl. The ith

v = mph. component of is also Thus

L 10 J the jth column of cA is car,.

37. True 38. True 39. True 61. If 0 is the m x ii zero matrix, then both
A and A + 0 are m x n matrices; so

40. False, a scalar multiple of the zero ma- we need only show they have equal cor-
trix is the zero matrix, responding entries. The (i, j)-entry of

41. False, the transpose of an rn x n matrix A+O is +0 which is the (i,j)-

is an n x m matrix, entry of A.

42. True 65. The matrices (sA)T and sAT are n x m
matrices; so we need only show they

43. False, the rows of B are 1 x 4 vectors, have equal corresponding entries. The

44. False, the (3,4)—entry of a matrix lies (i,j)-entry of (sA)T is the (j,i)-entry of

in row 3 and column 4 sA, which is sa,2. The (i,j)-entry of
sAT is the product of s and the (i, j)

45. True entry of AT, which is also sa,2.

46. False, an m X n matrix has mn entries. 69. If B is a diagonal matrix, then B is
47. True 48. True 49. True square. Since BT is the same size as

B in this case, BT is square. If i
50. False, matrices must have the same size then the (i, j)-entry of BT is = 0. So

to be equal. BT is a diagonal matrix.

51. True 52. True 53. True 73. Let 0 be a square zero matrix. The

54. True 55. True 56. True (i,j)-entry of 0 is zero, whereas the
(i, j)-entry of 0T is the (j, i)-entry of 0,

57. Suppose that A and B are m x n matri- which is also zero. So 0 = 0T, and
ces. hence 0 is a symmetric matrix.
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2 5 6 r 3. Wehave
77. No. Consider 5 7 8 and ' —

684
1 0 —1 1

which is obtained by deleting row 3 and o 2 4 2
column 2 of the first matrix.

2 —1 381. Let =2 1 +1 0 +2 —1
0 2 4

It is easy to show that A = A1 +A2. By
Theorem 1.2(b), (a), and (c) and Theo- 0

rem 1.1(a), we have 10

Af = + AT)T = + (AT)T] 7. We have

[3 O1T 41 [3 2114
= + A) + AT) [2 1] 5] {o ij [5

Thus A1 is symmetric. By similar rea-
soning, we have — 22

1 1
—4 = -(A — AT)T = _[AT — (AT)TJ

2 2 11. We have

= — A) — AT) 2 —3 2 —3

5 1=4 —4 +2 5
=—A2. 3 —1 3 —1

So A2 is skew-symmetric.
2

-6
1.2 LINEAR COMBINATIONS, 10

MATRIX-VECTOR PRODUCTS,
AND SPECIAL MATRICES 15. We have

1. We have
T

+
[4]

I
[—i] = ([g +

— 1 2
1—21 ['1 14 11141 1(4)(4) + (1)(5)- 4 + (-
[ 0] + [2] = L2 1] [5J = [(2)(4) + (1)(5)

— [12] [21
[14j
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y
A60o U

U

x

Figure for Exercise 19

and hence the vector obtained by rotat-
ing u by 2700 is

r 0 111—21 13A270eu=
[—1 oj [ 3] = [2

27. We have

cos 300° — sin 300°
A3000 = sin 300° cos 3000

2 2

1

2 2

1]'
and hence the vector obtained by rotat-
ing u by 300° isii

i 3

31. The vector u is not a linear combination
of the vectors in S. If u were a linear

combination of then there would be

a scalar c such that

1—il 141 14c

L

1jC[4j[4c
But then 1 = 4c and —1 = 4c. This is
impossible.

35. We seek scalars Ci and c2 such that

1—il Iii 1 2

1.11] [3] +C2 [_i

= [ +
[3CiJ 1c2

19. We have

Icos 60° — sin 60°
A600 = [sin60° cos60°

2 2

I
2 2

ij'
and hence

1 1

1

2

23. We have

Icos 270° — sin 270°
= 270° cos27O°

r 0 11

=1.—i 0]'



1.2 Linear Combinations, Matrix-Vector Products, and Special Matrices 5

Ic1 + 2c2l ICji
= 13c1 — c2j = I I

Lc3]
That is, we seek a solution of the follow-
lug system of linear equations: Thus we must solve the following system

of linear equations:
Cl + 2C2 = —1

3c1— c2= 11.
C2 =—5

Because these equations represent non- = 6parallel lines in the plane, there is ex-
actly one solution, namely, c1 = 3 and Clearly this system is consistent, and so
c2 —2. So

1—41

[] =3 +(—2)
. 1—51

L—6]

39. We seek scalars c1 and c2 such that Iii 101 101

[ 31 1 2]
+C2

[11 =(-4) lol +(—5) Ill +(-6) 101.

5 I = o 1 I
Lo] Loj [ij

5] L1 o]
45. True

I2c1 — C2

= I

]
. 46. False. Consider the linear combination

L

3
Thus we must solve the following system

[2] + (—6)
=

of linear equations:
If the coefficients were positive, the sum

2c1 — 2c2 = 3 could not equal the zero vector.
c2= 5

—c1 —5. 47. True 48. True 49. True

From the second and third equations, we 50. False, the matrix-vector product of a
see that the only possible solution of this 2 x 3 matrix and a 3 x 1 vector is a 2 x 1
system is c1 = 5 and c2 = 5. Because vector.
these values do not satisfy the first equa-
tion in the system, the system is incon- 51. False, the matrix-vector product is a lin-

ear combination of the columns of thesistent. Thus u is not a linear combina-
tion of the vectors in s. matrix.

43. We seek scalars Cj, c2, and c3 such that 52. False, the product of a matrix and a
standard vector is a column of the ma-

1_41 Iii 101 101 trix.
1—51 =c1 lol +c2 lii +c3
[—6] Lo] Lo] [ij 53. True
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54. False, the matrix-vector product of an — F(.85)(400) + (.03)(300)1
m x n matrix and a vector in yields — + (.97)(300)]
a vector in

1349

55. False, every vector in is a linear corn- = [351]
bination of two nonparallel vectors.

Thus there are 349,000 in the city
56. True and 351,000 in the suburbs.

(b) We compute the result using the
57. False, a standard vector is a vector with answer from (a).

a single component equal to 1 and the
r85 .031 13491others equal to 0.

= .97] [351]A(Ap)
58. True

59. False, consider — 1(.85)(349) + (.03)(351)]
— [(.15)(349) + (.97) (351)]

[ 1 —11 111 1307.181A = [i 1]
and u = [ij . = [392.82]

60. True Thus there are 307,180 in the city
and 392,820 in the suburbs.61. False, A9u is the vector obtained by ro-

tating u by a counterclockwise rotation 73. The reflection of u about the x-axis is
of the angle 9. [ a]

the vector [b]• To obtain this vector,
1 1 —1

62. False. Consider A = and
let B =

11 01

21 [o —ii.
Then

the vectors u
[i],

and v = [2]. = [1 0 a a
Bu

63. True 64. True 0 —1] =

65. We have
77. Letv=

Icos QO — sin
Then

A0ov= 0[sin 0 cos0°j [v2j
Av

— [1 01 1a1 ral
Ii 01 1v11 1v11 — 0 oj [oj = [oj

v.

= [o 1] [p2] = [v2]
81. We can write v = a1u1 + a2u2 and

14001 85 •Q31 w = b1u1 + b2u2 for some scalars a1,
69. Let = [300]

and A = [15 a2, b1, and b2,.Then a typical linear
combination of v and w has the form(a) We compute

1 85 .031 14001 cv + dw
Ap = [:15 .97] [300] = c(aiui + a2u2) + d(biui + b2u2)
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= (cai + dbi)ui + (ca2 + db2)u2, the desired matrix is

for some scalars c and d. The preced- 1 —1 0 2 —3

ing calculation shows that this is also a 3 3

linear combination of u1 and u2. 0 2 —4 4 2

85. We have 13. If we denote the given matrix as A,
then the (3, j)-entry of the desired ma-

0 trix equals 4a23 + a33 for every j. Thus
the desired matrix is

0
1 —1 0 2 —3

1
—2 6 3 —1 1

—8268 0 6

O 17. As in Exercises 9 and 13, we obtain

1

1

0 0
1

89. The jth column of is e3. So
21. As in Exercises 9 and 13, we obtain

Iflv—vlel+v2e2+.••+vflefl=v.
1 —2 0

—1 1 —1

1.3 SYSTEMS OF
2 —4 6

LINEAR EQUATIONS
—1 0 3

25. No, because the left side of the second

(a)
[0 1 21 equation yields 1(2) — 2(1) 0 —3.

L' 3 0] Alternatively,

(b) [?
1 1

0 1 2 —
1 2

2

—1 1 2
1 0 —5 — 2(—1) = —3,

9. If we denote the given matrix as A, the given vector satisfies every equation
then the (2, j)-entry of the desired ma- in the system, and so is a solution of the
trix equals 2a13 + for every j. Thus system.
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33. Because 49. The system of linear equations is consis-
tent because the augmented matrix con-

2 — 2(1) + 1 + 0 + 7(0) = 1 tains no row where the only nonzero en-
2 — 2(1) + 2(1) + 10(0) = 2 try lies in the last column. The corre-

2(2) — 4(1) + 4(0) + 8(0) = 0, sponding system of linear equations is

the given vector satisfies every equation x2 = —3

in the system, and so is a solution of the X3 = —4
system. x4 = 5.

37. Since 0 — 2(3) + (—1) + 3 + 7(0) 1, The general solution is
the given vector does not satisfy the first

free
equation in the system, and hence is not = —3
a solution of the system.

X3 = —4
x4= 5.41. The system of linear equations is consis-

tent because the augmented matrix con- The solution in vector form is
tains rio row where the only nonzero en-
try lies in the last column. The corre- Fxi1 111 F 01

sponding system of linear equations is I
I

I 01 I —31

1x31
X1 lol + 1—41

— 2x2 = 6 Lx4J Lo] L 5]

Ox1 + 0X2 = 0.
53. The system of linear equations is not

The general solution is consistent because the second row of the
augmented matrix has its only nonzero

= 6 + 2x2 entry in the last column.
X2 free.

57. False, the system Ox1 + Ox2 = 1 has no
solutions.

45. The system of linear equations is consis-
tent because the augmented matrix con- 58. False, see the boxed result on page 29.
tains no row where the only nonzero en-
try lies in the last column. The corre- 59. True

12 01sponding system of linear equations is 60. False, the matrix
[o

is in row eche-

— 2x2 = 4 lon form.
x3=3

Ox1 + Ox2 + Ox3 = 61. True 62. True

[2 01 Ii 01
The general solution is 63. False, the matrices

[0 0]
and

[o oj

12 01= 4 + are both row echelon forms of Lo
x2 free
x3=3. 64. True 65. True
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66. False, the system

Ox1 + Ox2 = 1
Ox1 + Ox2 = 0

is inconsistent, but its augmented ma-
ro o itnxis
[0 0 0

67. True 68. True

69. False, the coefficient matrix of a system
of m linear equations in n variables is an
in 1< ii matrix.

70. True 71. True 72. True

73. False, multiplying every entry of some
row of a matrix by a nonzero scalar is
an elementary row operation.

74. True

75. False, the system may be inconsistent;
consider Ox1 + Ox2 = 1.

76. True

77. If [R c) is in reduced row echelon form,
then so is R. If we apply the same
row operations to A that were applied
to [A bi to produce [R c], we obtain
the matrix R. So R is the reduced row
echelon form of A.

81. The ranks of the possible reduced
row echelon forms are 0, 1, and 2.
Considering each of these ranks, we see

85. Multiplying the second equation by c
produces a system whose augmented
matrix is obtained from the augmented
matrix of the original system by the el-
ementary row operation of multiplying
the second row by a From the state-
ment on page 33, the two systems are
equivalent.

1.4 GAUSSIAN ELIMINATION

1. The reduced row echelon form of the
augmented matrix of the given system
is [1 3 —2] . So the general solution
of the system is

= —2 — 3x2
x2 free.

3. The augmented matrix of the given sys-
tem is

{ 1 —2 —6
[—2 3

Apply the Gaussian elimination algo-
rithm to this augmented matrix to ob-
tain a matrix in reduced row echelon
form:

—2 —61 2r1+r2—*r2

3 7]

[1 —2 —61

[0 —1 —5j

—61 2r2+rj—.ri

5]

[1
[—2

Ii
[o

—2

1

that there are 7 possible reduced row
[0 0 0 Ii * *

echelon forms:
[0 o o ' [o o o

O 1 * 0 0 1 [1 0 *000' 000' [o 1 *'
1 * 01 0 1 0
O 0

1 5

This matrix corresponds to the system

x1 = 4

= 5,

which yields the solution.
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7. The augmented matrix of this system is 2r1 + r2 —i
—r1 + r3 r3

11 —2 —1 —31

t2 —4 2 2] 1 3 1 1 —10012 3
Apply the Gaussian elimination algo-

0 0 1 2 3
rithm to this augmented matrix to ob-
tain a matrix in reduced row echelon
form:

[1 —2 —1 —31 —2r1+r2—.r2 1 3 1 1 —1

L2 —4 2 2] 0 0 1 2 30000 0
—2 —1 —31

[o 0 4 8] —r2+rj--.rj

Ii —2 —1 —31

0 1
1 3 0 —1 —4

L 001 2 3.
{i —2 0 —1 0 0 0 0 0

[o 0 1 2

This matrix corresponds to the system
This matrix corresponds to the system

— 2x2 = —1 x1 + 3x2 — = —4
x3= 2. x3+2x4= 3.

Its general solution is
Its general solution is

= —1 + 2x2
x2 free = —4 — + x4
x3 2. X2 free

x3= 3—2x4
11. The augmented matrix of this system is x4 free.

1 3 1 1 —1

—2 —6 —1 0 5 . .

1 3 2 3 2
15. The augmented matrix of this system is

Apply the Gaussian elimination algo- 1 0 —1 —2 —8 —3
rithm to this augmented matrix to ob- —2 0 1 2 9 5
tam a matrix in reduced row echelon 3 0 —2 —3 —15 —9

form:

1 3 1 1 —1 Apply the Gaussian elimination algo—
—2 —6 —1 0 5 rithm to this augmented matrix to ob-

1 3 2 3 2 tam a matrix in reduced row echelon
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form: Its general solution is

xi=—2+ x5
1 0 —1 —2 —8 —3 X2 free

—2 0 1 2 9 5 x3= 3—3x5
3 0 —2 —3 —15 —9 = —1 2x5

x5 free.
2r1 + r2 r2

—3r1 + r3 —.

19. The augmented matrix of the system is

1 0 —1 —2 —8 —3 Ii —2 0
00—1—2—7—1 —8 r00 1 3 9 0

Adding —4 times row 1 to row 2, we ob-
tam

[1 —2 0

10—1—2—8—3 [o 0 r
0 0 —1 —2 —7 —1 So the system is inconsistent if r 0.
0 0 0 1 2 —1

23. The augmented matrix of the system is
2r3 + r2 r2
2r3+ri—.rj r

I—i r2
[ r —9 6

1 0 —1 0 —4 —5
0 0 —1 0 —3 —3 Adding r times row 1 to row 2 produces
0 0 0 1 2 —1 the matrix

r 2

0 r2—9 2r+6
1 0 —1 0 For the system corresponding to this
0 0 1 0 3 augmented matrix to be inconsistent,
0 0 0 1 2 1 the second row must have its only

nonzero entry in the last column. Thus

1 0 0 0 —1 —2

0 0 1 0 3 3 27. The augmented matrix of the system is
0 0 0 1 2 —1

[1 r 5

6 s
This matrix corresponds to the system

Adding —3 times row 1 to row 2 pro-
duces the matrix

r
X3 +3x5= 3 r

[0 6—3r s—15
x4 + 2x5 = —1.
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(a) As in Exercise 23, for the system to 1 —1 —1 01
—2r1 + r2 r2
—r1 + r3 r3

be inconsistent, we need 6— 3r = 0 I 2 1 —2 1 I 4ri + r4 -.
r and

2 3 ii
(b) From the second row of the preced- L

1 —1 —2 3]
ing matrix, we have

Ii —1 —1 01

(6 — 3r)x2 s — 15. 10 1 0 ii r2 + r3 r3

Io —1 —1 21 2r2+r4—.r4

For the system to have a unique 10 —2 —1 ii
solution, we must be able to solve L° 0 —1 3]
this equation for x2. Thus we need
6 — 3r 0, that is, r 2. [1 —1 —1 01

lo 1 0 ii
(c) For the system to have infinitely

10 0 —1 3 —r3 + r5 —. r5
many solutions, there must be a lo 0 —1 3!
free variable. Thus 6 — 3r 0 and I I

L0 0 —1 3]s—15=0. Sor=2ands=15.
Ii —1 —1 01

31. The augmented matrix of the system is 0 1 0 1

10 0 —1 31
r —31

lo 0 0 01
[2 5

Lo 0 0 o]

Adding —2 times row 1 to row 2 pro-
1 —1 —1 0

duces the matrix 1 1
0
1

0 0
0 0 0]

(a) As in Exercise 23, for the system
to be inconsistent, we must have Ii 1 0 —31

So
10 1 0 ii

r = and s —6. 10 0 1 3 r2+rl—.rj

(b) For the system to have a unique so- I 0 0 0 0 i
lo 0 0 ollution, we need —2r + 5 0, that L .1

is, r
(c) For the system to have infinitely 11 0 0 —21

many solutions, there must be a I 0 1 0 ii
lo 0 1 —31 =R.free variable. Thus —2r+5 0 and
I1000 Oi

Lo 0 0 oj

35. To find the rank and nullity of
the given matrix, we first find The rank of the given matrix equals the
its reduced row echelon form R: number of nonzero rows in R, which is
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3. The nullity of the given matrix equals 47.
its number of columns minus its rank,
which is 4 — 3 = 1.

39. Because the reduced row echelon form
of the augmented matrix is

1 0 —2 001 30,00 01
its rank is 3 (the number of nonnzero 51.
rows in the matrix above), and its nullity
is 4 3 = 1 (the number of columns in
the matrix minus its rank).

43. Let x1, x2, and x3 be the number of
days that mines 1, 2, and 3, respec-
tively, must operate to supply the de-
sired amounts.

(a) The requirements may be written
with the matrix equation

1 1 2 80
1 2 2 x2 100

2 1 0 x3 40

The reduced row echelon form of
the augmented matrix is

1 0 0 10

0 1 0 20

0 0 1 25

X2 = 20, x3 = 25.
system of equations
reduced row echelon

1 0 0

0 1 0

10

60
0 0 1 —15

Because x3 = —15 is impossible for
this problem, the answer is no.

We need f(—1) 14, f(1) = 4, and
f(3) = 10. These conditions produce
the system

a— b+c=14
a+ b+c= 4

9a+3b+c=10,

which has the solution a = 2, b = —5,

c=7. Sof(x)=2x2—5x-f-7.

Column j is e3. Each pivot column of
the reduced row echelon form of A has
exactly one nonzero entry, which is 1,
and hence it is a standard vector. Also,
because of the definition of the reduced
row echelon form, the pivot columns in
order are e1, e2 Hence, the third
pivot column must be e3.

53. True

54. False. For example, the matrix

can be reduced to 12 by interchanging
its rows and then multiplying the first
row by or by multiplying the second
row by and then interchanging rows.

55. True 56. True 57. True

58. True

59. False, because rank A + nullity A equals
the number of columns of A (by defini-
tion of the rank and nullity of a matrix),
we cannot have a rank of 3 and a nullity
of 2 for a matrix with 8 columns.

60. False, we need only repeat one equation
to produce an equivalent system with a
different number of equations.

61. True 62. True 63. True

64. False, there is a zero row in the aug-

so x1 = 10,

(b) A similar
yields the
form
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102
mented matrix 0 1 3 , but the cor-000
responding system has the unique solu-
tion x1 = 2, x3 = 3.

65. False, there is a zero row in the aug-
ro 0 iimented matrix

0 0]' but the sys-

tern is not consistent.

66. True 67. True

68. False, the sum of the rank and nullity of
a matrix equals the number of columns 91.
in the matrix.

69. True 70. True

71. False, the third pivot position in a ma-
trix may be in any column to the right
of column 2.

72. True

75. The largest possible rank is 4. The re-
duced row echelon form is a 4 x 7 matrix
and hence has at most 4 nonzero rows.
So the rank must be less than or equal to
4. On the other hand, the 4 x 7 matrix
whose first four columns are the distinct
standard vectors has rank 4.

79. The largest possible rank is the mini-
mum of m and ii. If m � n, the so-
lution is similar to that of Exercise 75.
Suppose that A is an m x n matrix with
n m. By the first boxed result on
page 48, the rank of a matrix equals the
number of pivot columns of the matrix.
Clearly, the number of pivot columns of
an m x n matrix cannot exceed n, the
number of columns; so rank A < n. In
addition, if every column of the reduced
row echelon form of A is a distinct stan-
dard vector, then rank A = n.

83. There are either no solutions or in-
finitely many solutions. Let the under-
determined system be Ax = b, and let
R be the reduced row echelon form of
A. Each nonzero row of R corresponds
to a basic variable. Since there are fewer
equations than variables, there must be
free variables. Therefore the system is
either inconsistent or has infinitely many
solutions.

87. Yes, A(cu) = c(Au) = = 0; 50 Cu 1S
a solution of Ax = 0.

If Ax b is consistent, then there ex-
ists a vector u such that Au = b. So
A(cu) c(Au) = cb. Hence cu is
a solution of Ax = cb, and therefore
Ax = cb is consistent.

95. By proceeding as in Exercise 7, we see
that the general solution of the given
system is

= 2.32 + 0.32x5
X2 = —6.44 + 0.56x5

= 0.72 — 0.28x5
X4 = 5.92 + 0.92x5
X5 free.

99. The reduced row echelon form of the
given matrix is (approximately)

1 0 0 0 0.0000
0 1 0 0 1.0599
0 0 1 0 0.8441
0 0 0 1 0.4925
0 0 0 0 0.0000

The rank equals the number of nonzero
rows, 4, and the nullity is found by sub-
tracting the rank from the number of
columns, and hence equals 5 — 4 = 1.
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1.5 APPLICATIONS OF SYSTEMS OF
LINEAR EQUATIONS

1. True 2. True

3. False, x — Cx is the net production vec-
tor. The vector Cx is the total output
of the economy that is consumed during
the production pirocess.

4. False, see Kirchoff's voltage law.

5. True 6. True

7. Because C34 = .22, each dollar of output
from the entertainment sector requires
an input of $.22 from the services sector.
Thus $50 million of output from the en-
tertainment sector requires an imput of
.22($50 million) = $11 million from the
services sector.

9. The third column of C gives the
amounts from the various sectors re-
quired to produce one unit of services.
The smallest entry in this column, .06,
corresponds to the input from the ser-
vice sector, and hence services is least
dependent on the service sector.

13. Let
30
40
30
20

The total value of the inputs from each
sector consumed during the production
process are the components of

.12 .11 .15 .18 30

.20 .08 .24 .07 40Cx=

.18 .16 .06 .22 30

.09 .07 .12 .05 20

16.1

17.8
18.0
10.1

Therefore the total value of the inputs
from each sector consumed during the
production process are $16.1 million of
agriculture, $17.8 million of manufactur-
ing, $18 million of services, and $10.1
million of entertainment.

17. (a) The gross production vector is x =

40

30 . If C is the input-output ma-
35

trix, then the net production vector
is

x-Cx
40 .2 .20 .3 40

= 30 — .4 .30 .1 30
35 .2 .25 .3 35

15.5
= 1.5

9.0

So the net productions are $15.5
million of transportation, $1.5 mil-
lion of food, and $9 million of oil.

(b) Denote the net production vector
by

32
d= 48

24

and let x denote the gross produc-
tion vector. Then x is a solution
of the system of linear equations
(13 — C)x = d. Since
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13-c
1 0 0 .2 .20 .3

= 0 1 0 — .4 .30 .1

0 0 1 .2 .25 .3

.80 —.20 —.30
= —.40 .70 —.10

—.20 —.25 .70

the augmented matrix of this sys-
tem is

.80 —.20 —.30 32
—.40 .70 —.10 48
—.20 —.25 .70 24

The reduced row echelon form of
the augmented matrix is

1 0 0 128
0 1 0 160
0 0 1 128

and hence the gross productions re-
quired are $128 million of trans-
portation, $160 million of food, and
$128 million of oil.

21. The input-output matrix for this econ-

70 .1 .1 .15 70
= 50 — .2 .4 .10 50

60 .2 .2 .30 60

49
10

18

Therefore the net productions are
$49 million of finance, $10 million
of goods, and $18 million of ser-
vices.

40
d= 50

30

the net production vector, and let x
denote the gross production vector.
Then x is the solution of the matrix
equation (13 — C)x = d. Since

13-c
1 0 0 .1 .1 .15

= 0 1 0 — .2 .4 .10
0 0 1 .2 .2 .30

.90 —.10 —.15

= —.20 .60 —.10

—.20 —.20 .70

the augmented matrix of this sys-
tem is

.90 —.10 —.15 40
—.20 .60 —.10 50
—.20 —.20 .70 30

The reduced row echelon form of
the augmented matrix is

1 0 0 75
0 1 0 125
0 0 1 100

and hence the gross productions
are $75 million of finance, $125 mil-
lion of goods, and $100 million of
services.

(b) Let

omy is

.10 .10 .15
C= .20 .40 .10

.20 .20 .30

(a) Let
70

x= 50
60

Then the net production vector is
given by

x — Cx
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(c) We proceed as in (b), except that At the junction C, Kirchoff's current law
in this case yields the equation

1401

d= 1361
11=12+13.

Thus the currents 12, and 13 satisfy
In this case, the augmented matrix the system
of (13 — C)x = d is

11+512 =29
1 .90 —.10 —.15 401 Ii +413=29
I—.20 .60 —.10 361, Ii— 12 13= 0.
L—.2o —.20 .70 44]

which has the reduced row echelon Since the reduced row echelon form of

form the augmented matrix of this system is

11 0 0 Th'
1 0 0 9

10 1 0 1 0
1 0 1 5]

Therefore the gross productions are
$75 million of finance, $104 million this system has the unique solution

of goods, and $114 million of ser- 9, 4, 13 5.

vices.
29. Applying Kirchoff's voltage law to the

A -, B closed path ABGHA in the network
3 ohms shown on the next page, we obtain the

2 ohms equation

1 ohm Ii
213 + = 60.

______

C
25. 29 volts Similarly, from the closed path

BCFGB, we obtain
13

112 + 1(—15) + 1(16) + 2(—13) = 0,
4 ohms

D
and from the closed path CDEFC, we

Figure for Exercise 25 obtain
Applying Kirchoff's voltage law to the 214 + 115 = 30.
closed path FCBAF in the network
above, we obtain the equation At the junctions B, C, F, and G, Kir-

choff's current law yields the equations
312+212+111=29.

Similarly, from the closed path = 12 + 13
FCDEF, we obtain 12 + 15 = 14

14=15+16



18 Chapter 1 Matrices, Vectors, and Systems of Linear Equations

and 1.6 THESPANOFA
13+16 = SET OF VECTORS

H A

4 ohms 60 volts

1. Let

= 0 1 lJ and v=I 41.A
[1 -1 11 1_il

11 1 13] [7]
2 ohms Vector v is in the span if and only if

C B
13 the system Ax = v is consistent. The

reduced row echelon form of the aug-
1 ohm 12 mented matrix of this system is

16 iohm 11 0 2 31
R__[O 1 1 4!.

iohm 0 0 0 0

15
Thus the system is consistent, and so v

is in the span of the given set.

30 volts 14

3. Let

D
1 —i 1 0

A = 10 1 11 and v = 151

1 3] [2]
Figure for Exercise 29

Vector v is in the span if and only if
the system Ax = v is consistent. The
reduced row echelon form of the aug-

Thus the currents 12, 13, 14, and mented matrix of this system is
satisfy the system

+ 213 = 60 Ii 0 2 01

R=I0 1 1 oj.12213 —15+16—— 0
0 0 iJ

214+15 =30
Ii — '2 13 = 0 Because of the form of the third row of

12 — 14 + 15 0 R, the system is inconsistent. Hence v
is not in the span of the given set.141516— 0

— 13 — '6 = 0. 5. Let

7.5,13=5,14=12.5,15=5,andl6= A= 0 1 ii and ii.
Solving this system gives = 12.5, 12 = [1 —i i1 1_il

7.5. 1 1 3] L
iJ
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The reduced row echelon form of the 17.
augmented matrix of this system is

1020
R= 0 1 1 10000

Thus the system is consistent, and so v
is in the span of the given set.

9. Let

1 2—1 0

2—1 2 —1A=
—1 1 0

andvz=
1

1 0 3 0

The reduced row echelon form of the
augmented matrix of this system is

1000
R—

0 1 0 00010.0001
Because of the form of the third row of
R, the system is inconsistent. Hence v
is not in the span of the given set.

1 2—i 4

2—1 2 0A=1
1 0

andv=5.
1 0 3 8

The reduced row echelon form of the
augmented matrix of this system is

1 0 0 —1

R—
0 1 0 4

0

Thus the system is consistent, and so v
is in the span of the given set.

The vector v is in the span of $ if and
only if the system Ax v is consistent,
where

1 —1

A= 0 3

—1 2

The augmented matrix of Ax = v is

1 —i 2

0 3 r.
—1 2 —1

Applying elementary row operations to
this matrix, we obtain

r i —1 21

0 3 r1
[—1 2 —ij

11 —1 21

0 3
rz.-.r3

r
1 1]

Ii —1 2]
3r2+r3—+ra

1 ii —

Lo 3 r]

1 —1 2

0 1 1

0 0 r—3

So the system is consistent if and only if
r — 3 0, that is, r = 3. Therefore v is
in the span of S if and only if r = 3.

21. No. Let A
=

The reduced

row echelon form of A is
0 0

which

has rank 1. By Theorem 1.6, the set is
not a generating set for

13. Let

25. Yes. Let

1

A= 0
—2

—1 1

1 2.
4 —2
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The reduced row echelon form of A is 52.

100010,
001

which has rank 3. By Theorem 1.6, the
set is a generating set for R3.

29. Yes. The reduced row echelon form of A

is which has rank 2. By Theo-

rem 1.6, the system Ax = b is consistent
for every b in

33. The reduced row echelon form of A is

1001,
00

which has rank 2. By Theorem 1.6,
Ax = b is inconsistent for at least one
b in

37. The desired set is {
}.

we

delete either vector, then the span of S
consists of all multiples of the remaining
vector. Because neither vector in S is
a multiple of the other, neither can be
deleted.

41. One possible set is {
}. The

last

two vectors in S are multiples of the
first, and so can be deleted without 73.
changing the span of S.

45. True 46. True 47. True

48. False, by Theorem 1.6(c), we need
rank A = m for Ax = b to be consis-
tent for every vector b.

49. True 50. True 51. True

False, the sets Si = {e1 } and 82 =
{ 2e1 } have the same spans, but are not
equal.

53. False, the sets = {ei} and 82 =
{ei,2e1} have equal spans, but do not
contain the same number of elements.

54. False, S {ei} and SU{2ei} have equal
spans, but 2e1 is not in S.

55. True

58. True

61. True

64. True

56. True 57. True

59. True 60. True

62. True 63. True

65. (a) 2

(b) There are infinitely many vectors
because every choice of the scalars
a and b yields a different vector
au1 + bu2 in the span.

69. For r k, let {u1,u2, .. . ,Uk} and
52 = {u1, u2,. .. , Ur}, and suppose that

is a generating set for R.Th. Let v be in
Then for some scalars a1, a2,. . . , ak

we can write

V = + a2u2 + ... + akuk
= a1u1 + a2u2 + .•. + akuk

So 52 is also a generating set for

No, let A = Then R
= g]•

The span of the columns of A equals all

multiples of [i], whereas the span of the

columns of R equals all multiples of e1.

77. Letui,u2,...,umbetherowsofA. We
must prove that Span{ u1, u2,. . . , urn } is
unchanged if we perform any of the three
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types of elementary row operations. For
ease of notation, we will consider opera-
tions that affect only the first two rows
of A.

Case 1 If we interchange rows 1 and 2
of A, then the rows of A are the
same as the rows of B (although
in a different order), and hence the 81.
span of the rows of A equals the
span of the rows of B.

Case 2 Suppose we multiply the first
row of A by k 0. Then the rows
of B are ku1, u2, . . . Any vec-
tor in the span of the rows of A can
be written

= + C2U2 + + CmUm,

which is in the span of the rows of
B. Likewise, any vector in the span
of the rows of B can be written

ci(kui) + C2U2 + + CmUm

= (cik)ui + C2U2 + + CmUm,

which is in the span of the rows of
A.

Case 3 Suppose we add k times the
second row of A to the first row
of A. Then the rows of B are 13.

Ul+kU2,U2,...,Um. Any vector
in the span of the rows of A can be
written

C1U1 + C2U2 + + CmUm

= ci(ui + ku2) + (c2 — kci)u2

which is in the span of the rows of
B. Likewise, any vector in the span
of the rows of B can be written

c1(u1 + ku2)

= c1u1 + (kci + c2)u2 +
+ CmUm,

which is in the span of the rows of
A.

By proceeding as in Exercise 1, we see
that the given vector is not in the span
of the given set.

1.7 LINEAR DEPENDENCE AND LIN-
EAR INDEPENDENCE

1. Because the second vector in the set is
a multiple of the first, the given set is
linearly dependent.

5. No, the first two vectors are linearly in-
dependent because neither is a multiple
of the other. The third vector is not
a linear combination of the first two be-
cause its first component is not zero. So,
by Theorem 1.9, the set of 3 vectors is
linearly independent.

9. A set consisting of a single nonzero vec-
tor is linearly independent.

Because the second vector in S is a mul-
tiple of the first, it can be removed from
S without changing the span of the set.

17. Because the second vector in S is a mul-
tiple of the first, it can be removed from
S without changing the span of the set.
Neither of the two remaining vectors is a
multiple of the other; so a smallest sub-
set of S having the same span as S is

(2 1

0

5 2
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21. Note that

—2
1

0 —4

2 0 +— 4 = 1

3 6

Hence, by Theorem 1.7, the third vec-
tor in S can be removed from S without
changing the span of S. Because neither
of the two remaining vectors is a multi-
ple of the other, a smallest subset of S
having the same span as S is

25. Yes, let

—2 00,4

1 1 i]
2 —3 21A=[ I

0 1 —21'
—1 —2 3j

which has reduced row echelon form

100
010001'
000

So rank A = 3. By Theorem 1.8, the set
is linearly independent.

29. No, let

1 —1 —1 01

—1 0 —4 il
—1 1 1 —21'

2 —1 3 iJ
which has reduced row echelon form

So rank A 3. By Theorem 1.8, the set
is linearly dependent.

33. Let A be the matrix whose columns are
the vectors in S. From the reduced row
echelon form of A, we see that the gen-
eral solution of Ax = 0 is

= —5x3
= —4x3

X3 free.

So one solution is x1 —5, x2 = —4,

and x3 = 1. Therefore

Hence

0 1 4

—5 1 —4 0 + 5 =0.
1 —1 1

4 0 1

5 =5 1 +4 0

1 1 —1

37. The reduced row echelon form of the ma-
trix whose columns are the vectors in S
is 100 5

0 1 0 —3

001 3

As in Exercise 33, we see that

1 0 —1 2

5 2 —3 1 +3 —2 = 1

—1 —1 0 —2

41. Using elementary row operations, we
can transform the matrix

into

—2 1 —1

A= 0 1 1

1 —3 r

10 1

01 1

0 0 r+2
Then rank A = 2 if r = —2. By Theo-
rem 1.8, the set is linearly dependent if
r = -2.
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45. The given set is linearly dependent if the
third vector is a linear combination of
the first two. But the first two vectors
are nonparallel vectors in and so the
boxed statement on page 17 implies that
the third vector is a linear combination
of the first two vectors for every value of

49. Neither of the first two vectors in the set
is a multiple of the other. Hence Theo-
rem 1.8 implies that the given set is lin-
early dependent if and only if there are
scalars c1 and C2 such that

1 3 —1

2 1 3
Ci +C2 6 — —2

—1 1 r

Thus c1 and c2 must satisfy

ci + 2c2 —1

2c1+ C2 3

3c1 + 6c2 = —2
—Ci + C2 r.

Consider the system of three equations
in c1 and C2 consisting of the first three
equations above. The reduced row eche-
ion form of the augmented matrix of this
system is 13, and so there are no values
of c1 and c2 that satisfy the first three
equations above. Hence there is no value
of r for which the system of four equa-
tions is consistent, and therefore there is
no value of r for which the given set is
linearly dependent.

53. The general solution of the given system
is

Ii = —312 — 214

12 free
13 614
x4 free.

So the vector form of the general solu-
tion is

Ii —312 — 214

12 — 12

X3 — 614

14 14

—3] 1_21

12

[

+14
I 61

oj L ij

Ii = —14 — 316
12 free
X3 214— 16
14 free
X5 0

16 free.

So the vector form of the general solu-
tion is

—

12 12
13 = 214—16
14 14
15 0

16 16

0

1

0
X2

o
+14

0

0

61. The general solution of the given system

Ii = —212 + 13 — + 16
12 free
13 free
X4 —415—316

free
16 free.

r

57. The general solution of the given system
is

—1

0

2

1

0

0

—3

0

—1
+16

0

0
1

is
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So the vector form of the general solu- 73. False, consider n = 3 and the set
tion is

(1 2
—2x2+x3—2x5+x6 o , o

x2 x2 0
x3 — x3

— —4x5 — 3x6 74. True 75. True 76. True
x5

77. False, see the matrix in Exercise 64.
—2 1 78. True

1 0

o 1 79. False, if c1u1 + c2u2 + ckuk = 0+X3
o 0 onlywhenel=c2=..._—ck—_O,then
o 0 {u1, u2,.. . , Uk} is linearly independent.
o 0

—2 1
80. True 81. True 82. True

o 0 85. In 1Z3, take u1 = e1, u2 e2, and
+X5 0 v = e1 + e2. Then {u1, u2}, and

{v} are both linearly independent, but
1 0 {ui, u2, v} is not because v = u1 + u2.
0 1

89. Suppose a1, a2,. . . , are scalars such
63. True that

64. False, the columns are linearly indepen- ai(cjui)+a2(e2u2)+. = 0,
dent (see Theorem 1.8). Consider the

1 0 that is,

matrix 0 1
. (alcl)ul+(a2c2)u2+••.+(akck)uk=O.

Because {u1, u2,. . . , } is linearly in-
65. False, the columns are linearly indepen- dependent, we have

dent (see Theorem 1.8). See the matrix
in the solution to Exercise 64. a1c1 = a2c2 = .•. akck = 0.

66. True 67. True 68. True Thus, since c1, c2,.. . , ck are nonzero, it
follows that a1 =a2=••=ak =0.69. False, consider the equation 12x = 0.

70 True 93. Suppose that v is in the span of S and
that

71. False,
V 01111+ C2U2 + ... +

72. False, consider the set
and

{ [?]
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,ck=dk.

97. Suppose

c1Au1 + c2Au2 + CkAUk = 0

for some scalars c1, c2, .. . , Then

A(ciui + c2u2 + + CkUk) 0.

By Theorem 1.8, it follows that

C1U1+ + + CkUk = 0.

Because S is linearly independent, we
have c1 = c2 = 0.

101. Proceeding as in Exercise 37, we see that
the set is linearly dependent and v5 =
2v1 — v3 + v4, where v3 is the jth vector
in the set.

CHAPTER 1 REVIEW

1. False, the columns are 3 x 1 vectors.

2. True 3. True 4. True

5. True 6. True 7. True

8. False, the nonzero entry has to be the
last entry.

11. True 12. True

False, in A = [i 2], the columns are
linearly dependent, but rank A = 1,

which is the number of rows in A.

15. True

(1 2)
16. False, the subset 2 , 4 of is

6)
linearly dependent.

17. False, consider the example in Exercise
16.

19. (a) By Theorem 1.8, if A is an m x 11
matrix with rank n, then Ax = b
has at most one solution for every
b in

(b) By Theorem 1.6, if A is an m x n
matrix with rank m, then Ax = b
has at least one solution for every
b in

for scalars cl,c2,.. .,ck,dl,d2,. .. ,dk. 10. True

Subtracting the second equation from
the first yields 13.

0=(Cl—di)ul+...+(ck—-dk)Uk.

Because S is linearly independent, 14. True

32
21. A+B= —2 7

43
25. We have

1 —2 0

42
2

— [(1)(1) + (—2)(—1) + (0)(2)
(3)(1) + (4)(—1) + (2)(2)

[3

9. False, consider the matrix in reduced002
row echelon form 0 1 3 . The as- 29. The components are the average values

0 0 0 of sales at all stores during January of
sociated system has the unique solution last year for produce, meats, dairy, and

= 2, x2 = 3. processed foods, respectively.
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1 + (1)(-1)
2 [(—1)(2) +

_1
2

37. Let A be the matrix whose columns are
the vectors in S. Then v is a linear com-
bination of the vectors in S if and only
if the system Ax = v is consistent. The
reduced row echelon form of the aug-
mented matrix of this system is

1 0 0

01 0.
00 01

Because the third row has its only
nonzero entry in the last column, this
system is not consistent. So v is not a
linear combination of the vectors in S.

41. The reduced row echelon form of the
augmented matrix of the system is

Because the third row has its only
nonzero entry in the last column, the
system is not consistent.

45. The reduced row echelon form is
[1 2 —3 0 1], and so the rank is
1. Thus the nullity is 5 — 1 = 4.

49. Let x1, x2, x3, respectively, be the ap-
propriate numbers of the three packs.
We must solve the system

lOx1 + lOx2 + 5x3 = 500
lOx1 + 15x2 + lOx3 = 750

lOx2 + 5x3 300,

where the first equation represents the
total number of oranges from the three
packs, the second equation represents
the total number of grapefruit from the
three packs, and the third equation rep-
resents the total number of apples from
the three packs. We obtain the solution

= 20, x2 = 10, x3 = 40.

Let A be the matrix whose columns are
the vectors in the given set. Then by
Theorem 1.6, the set is a generating set
for if and only if rank A = 3. The
reduced row echelon form of A is

1

0

Therefore rank A = 2, and so the set is
not a generating set for

57. For an m x n matrix A, the system
Ax = b is consistent for every vector b
in -jam if and only if the rank of A equals
m (Theorem 1.6). Since the reduced row
echelon form of the given matrix is 13, its
rank equals 3, and so Ax = b is consis-
tent for every vector b in R3.

33. We have

— fcos (—30°)
— [sin (—30°)

— sin (—30°)] [ 2

(—30°)j [—1

_2
2 2

2

-1

11 0 _1 013

tO 1 0!.
3

I

L0 0 0 iJ



100010
001'
000

65. Let A be the matrix whose columns are
the vectors in S. By Theorem 1.8, there
exists a nonzero solution of Ax = 0. The
general solution of this system is

xi = —2x3

X2 —X3

x3 free.

So one solution is x1 = —2, X2

= 1. Therefore

—3x3 —3
= 2

1

73. We prove the equivalent result: Suppose
that w1 and w2 are linear combinations
of vectors v1 and v2. If and v2 are
linearly dependent, then w1 and w2 are
linearly dependent.

By assumption, one of v1 or v2 is a mul-
tiple of the other, say v1 = kv2 for
some scalar k. Thus, for some scalars
a1,a2,b1,b.2, we have

Wi = a1v1 + a2v2

and

a1kv2 + a2v2 = (aik + a2)v2

w2 = b1vj + b2v2 = b1kv2 + b2v2

(b1k + b2)v2.

Let c1 = a1k + a2 and c2 b1k + b2.
Then w1 = c1v2 and w2 = c2v2. If
w1 = 0 or w2 = 0, then w1 and w2 are
linearly dependent. Otherwise, c2 0,
and

(1 '\Wi = C1V2 = Cl W2 J —W2,
\C2 J C2

Chapter 1 Chapter Review 27

61. Let A be the matrix whose columns are 69. The general solution of the system is
the vectors in the given set. By Theorem
1.8, the set is linearly independent if and Xi

only if rank A = 3. The reduced row 2x3

echelon form of A is x3 free.

So

and hence rank A 3. So the set is
linearly independent.

Thus

1 1 3

—2 2 — —1 + 3 =0.
3 2 8

3 1 1

3 =2 2 + —1
8 3 2

proving that wi and w2 are linearly de-
pendent.
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CHAPTER 1 MATLAB EXERCISES (b) The reduced row echelon form of
the augmented matrix [A b} con-

[ 3.381 tains the row [0 0 0 0 0 0 1].

—2.2! = 116.11!(a) A [
1.51 8.86 I

So this system is inconsistent.

2.71 I 32.321
(c) The reduced row echelon form of

13] the augmented matrix [A b]
does not contain the row

F 13.45] [0 0 0 0 0 0 1]. Thus
21

—4.30! the system is consistent, and its
(b) A [ 2.1

I —1.89J general solution is

—1.1
L

10.69] Fx11 —9.0573 _21
!X2!

1.4815

1
20.181 0.0000

(c)A[

I
1—11.79!

1x31
= +x

= I
7.711

,X41
4.0000 0!

8.52 0.0000
I

01
—1

L
0.28] LX6J o.o000 L

0]

5. Answers are given correct to 4 places af-
ter the decimal point. —0.88191
(a) The reduced row echelon form of

+
I 0.00001

I 0.272flthe augmented matrix [A b]
does not contain the row
[0 0 0 0 0 0 1]. So the L

0.0000]
system is consistent, and its gen-
eral solution is 1_9.21421

I 0.59971

I

0.0000[xli 1—8.21421 [—21 +X6 3.2727!
!x21

I

Ix31 0.0000! 1

1x4T 3.2727!
+X3 L 1.0000]

1x5! 0.0000!
Lx6i L

0.0000]
L

0] (d) The reduced row echelon form of
the augmented matrix [A b] con-

F_0.15691 1_9.21421 tains the row [0 0 0 0 0 0 1].
I —0.8819

I

0.5997 So this system is inconsistent.
I 0.0000!+X5
f

+X6
3.2727!

1.0000! I o.ooool
L

0.0000] L 1.0000]



Chapter 2

Matrices and Linear
Transformations

2.1 MATRIX MULTIPLICATION

1. AB is defined and has size 2 x 2.

5. Cy=r 1 +3 +(—5)

9. ACx is undefined since ACx A(Cx)
and Cx is undefined because C is a
2 x 3 matrix, x is a 2 x 1 matrix, and the
number of columns in C does not equal
the number of rows in x.

13. The first column of BC is

__

129117 41

_

Li 2]
— 3 [it] + 2

= L 7]

Similarly, the second column of BC is

r56117 41

[1 2j
8 + 0

= I. 8]'

and the third column of BC is

1231[7 41

Ii 2]
=1 + 4

= L 9]•
r29 56 231

S0BC=t7 8 9]

17. A3=A(AA)

1] 1])

— [1 —21 1—5 —10

4j[15 10

— 1—35 —30

L
45 10

19. C2 = CC is undefined because C is a
2 x 3 matrix and two 2 x 3 matrices can-
not be multiplied because the number of
columns of C does not equal the number
of rows of C.

23. Since

AB — 1 41 — F 5 01

[i 2] — L25 20]

we have (AB)T
=

Also

BTAT — 1 — 5 25

— 2] L—2 4] — 0 20

27. By the row-column rule, the (2, 3)-entry
of CA equals the sum of the products of
the corresponding entries from row 2 of
C and column 3 of A, which is

4(3) + 3(4) + (—2)(0) = 24.

31. Column 1 of CA equals the matrix-
vector product of C and the first column

29
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of A, which is 48. True 49. True 50. True

12 1 —1 f
1] 51. (a) The number of people living in

L—2

single-unit houses is .70v1 + .95v2.
3 Similarly, the number of people

living in multiple-unit housing is
= 1 + 2 + (—3) .30v1 + .05v2. These results may be

expressed a.s the matrix equation
1 71
{16j . 1.70 .951 Iv1l fail

[30 .05j Lv2]

33. False, the product is not defined unless So take
n in. 1.70 951

34. False, ifA is a2 x 3 matrix and B is a
B— [30 .05j'

3 x 4 matrix.
(b) Because A lvii represents the

35. False, see Example 5. [v2j
number of people living in the city

36. True and suburbs after one year, it fol-
lvii

37. False, if A is a 2 x 3 matrix and B is a lows from (a) that BA gives
LV2J

3 x 2 matrix, the number of people living in

38. False, (AB)T BTAT. single- and multiple-unit housing
after one year.

39. True 40. True 55. We prove that C(P + Q) = CP + CQ.
41. False, see the box titled "Row-Column Note that P + Q is an n x p matrix, and

Rule for the (i,j)-Entry of a Matrix so C(P + Q) is an m x matrix. Also
Product." CP and CQ are both m x p matrices; so

CP + CQ is an m x p matrix. Hence the
42. False, it is the sum of the products of matrices on both sides of the equation

corresponding entries from the ith row have the same size. The jth column of
of A and the jth column of B. P + Q is P3 + so the jth column of

C(P + Q) is C(p3 + qj), which equals43. True Cp3 + Cqj by Theorem 1.3(c). On

44. False, (A + B)C = AC + BC. the other hand, the jth columns of CP
and CQ are Cp3 and Cqj, respectively.
So the jth column of CP + CQ equals45. False. If A = B = [?

then AB = + Cqj. Therefore C(P + Q) and
11

OJ

CP + CQ have the same corresponding
Lo 1 columns, and hence are equal.

46. True 59. By the row-column rule, the (i,j)-entry
of AB is

47. False, let A
=

and B
= + + ... +
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Suppose i < j. A typical term above
has the form for k = 1,2,.. .,n.
If k <j, then = 0 because B is lower
triangular. If k � j, then k > i; so

= 0 because A is lower triangular.
Thus every term is 0, and therefore AB
is lower triangular.

63. LetA= andB= Then

67. Using (b) and (g) of Theorem 2.1, we
have

(ABC)T = ((AB)C)T = CT(AB)T

= CT(BTAT) = CTBT AT.

71. (b) After 20 years, the populations are
given by

A2° — 1205.668

So the population of the city will
be 205,668, and the population of
the suburbs will be 994,332.

(c) After 50 years, the populations are
given by

A5° — 1200.015
—

So the population of the city will
be 200,015, and the population of
the suburbs will be 999,985.

(d) As in (b) and (c), the populations
after 100 years will be 200,000 in
the city and 1,000,000 in the sub-
urbs. Moreover, these numbers
do not appear to change there-
after. Thus we conjecture that the

population in the city will eventu-
ally be 200,000, and the population
in the suburbs will eventually be
1,000,000.

2.2 APPLICATIONS OF
MATRIX MULTIPLICATION

1. False, the population may be decreasing.

2. False, the population may continue to
grow without bound.

3. False, this is only the case for i 1.

4. True 5. True

False, z = BAx.

True

8. False, a (0, 1)-matrix need not be square,
see Example 2.

9. False, a (0, 1)-matrix need not be sym-
metric, see Example 2.

13. (a) Using the notation on page 108, we
have P1 = q and p2 .5. Also,

= 0 because females under age 1
do not give birth. Likewise, b2 = 2

and b3 = 1. So the Leslie matrix is

021
.8 00
0 .5 0

AB =0, but

6.

7.

b1 b2 b3 0

Pi 0 0 = q

0 P2 0 0

(b) Ifq=.8,then

2100.
.5 0

and
300

xo= 1180
130
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The population in 50 years is given (f) The rank of A — 13 must be less
by than 3 by Theorem 1.8. We can

19.281 use elementary row operations to
A50x0 5.40 . transform the matrix

L1.96] 10 2 11

So the population appears to grow A 13 I q 0 0

without bound. .5 0J

(c) Ifq=.2,then to

10 2 ii ri —2 —1

0

0 —2(1—2q)+q]
As in (b), we compute For rank (A — 13) <3, we need

1.3697

11.009]
—2(1 — 2q) + q 0,

L•0689
that is, q = .4. This is the value
obtained in (d).and conclude that the population

(g) For q .4, the solution of the equa-appears to approach zero.
tion (A — 13)x = 0 is

(d) q = .4. The stable distribution is
lxii 151

14001 $ x2 I X3 I 2 I

1601 . Lx3] Li]
L 80]

For x3 = 90, we obtain the solution

12101 in (e).

(e) For q = .4 and x0 240 , the re- 17. Let p and q be the amounts of donations
L'80J and interest received by the foundation,

spective vectors A5x0, A10x0, and and let n and a be the net income and
A30x0 equal fund raising costs, respectively. Then

1513.601 1437.361 n .Tp + .9q

1144.961, 1189.991, a=.3p+.lq,
Lh14.00] [ 85.l7J and hence

and 1.7 .91
1499.981
1180.011. [a] [.3 .1] [qj

L 89.99] Next, let r and c be the amounts of
It appears that the populations ap- net income used for research and clinic
proach maintenance, respectively. Then

[450]
180

r=.4n
c=.6n

L
90] a= a,
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r .4 0 In
c .6 0 I

a 01
Finally, let m and f be the material
and personnel costs of the foundation,
respectively. Then

m .8r + .5c + .7a
f = .2r + .5c + .3a,

Iml 1.8 .5 .71
r

[f][.2 .5 .4]

Combining these matrix equations, we
have

-l .4 0
mj .8 .5 .7j In
f] = [.2 .5 .4]

.6
?

[a

— [.8 .5 [.7

1
[.3 .1] [q

[0.644 0.6281 [p
[0.356 0.372] [q

21. (a) We need only find entries such
that a23 = 1. The friends are 25. (a)

land2, land4,2and3,and3
and 4.

(b) The (i,j)-entry of A2 is

+ + + a24a43.

The kth term equals 1 if and only if
= 1 and ak3 1, that is, person

i likes person k and person k likes
person j. Otherwise, the term is 0.
So the (i,j)-entry of A2 equals the
number of people who like person
j and are liked by person i.

01011010B=
0 1 0 11010

which is symmetric because B =
BT.

(d) Because B3 B2B, the (i, i)-entry
of B3 equals a sum of terms of the
form where Cik equals a sum
of terms of the form b3k. There-
fore the (i, i)-entry of B3 consists
of terms of the form The
(i, i)-entry of B3 is positive if and
only if some term is pos-
itive. This occurs if and only if
b23 = 1 = that is, there
are friends k and j who are also
friends of person i, that is, person
i is in a clique.

(e) We have

0404
B3—

4 0 4 00404'4040
so the (i, i)-entry is 0 for every i.
Therefore there are no cliques.

Using the notation in the example,
we have

100
200
300

8000

Using the equation xk = Axk_1,
we obtain the following table.

k Sun Noble Hon. MMQ

and hence (c) We have

and hence

1 100
2 100
3 100

300 500 7700
400 800 7300
500 1200 6800
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k Sun Noble Hon. MMQ
9 100 1100 5700 1700
10 100 1200 6800 500
11 100 1300 8000 -800

(c) The tribe will cease to exist be-
cause every member is required
to marry a member of the MMQ,
and the number of members of the
MMQ decreases to zero.

(d) We must find k such that

Sk + + hk > mk,

that is, there are enough members
of the MMQ for the other classes
to marry. From equation (6), this
inequality is equivalent to

s0 + (no + kso)

/ k(k—1)
2

SQ

k(k+1)>m0—kn0—
2

Let 100, no 200, k0 = 300,
and m0 8000 in the preceding in-
equality. By simplifying the result,
we obtain

k2 + 5k —74>0.

The smallest value of k that satis-
fies this inequality is k 7.

2.3 INVERTIBILITY AND
ELEMENTARY MATRICES

1. No, we must have AB = BA = In
this case AB

5. Since AB = BA = we have B =

12 1

9. = (A)T = 2 0 1

3 1 —1

13. By Theorem 2.2, we have

=
=

5 7 3
= —3 —4 —1

12 7 12

17. The given matrix is obtained from 13 by
adding —2 times row 1 to row 2. So
adding 2 times row 1 to row 2 trans-
forms the given matrix into 13. Perform-
ing this elementary operation on 13 pro-100
duces 2 1 0 , which is the inverse001
of the given matrix.

21. The given matrix is obtained from 14
by interchanging rows 2 and 4. Inter-
changing these rows again transforms
the given matrix into 14. So the given
matrix is its own inverse.

25. Matrix B is obtained by interchanging
rows 1 and 2 of A. Performing this op-
eration on 12 produces the desired ele-

[0 1mentary matrix

29. Since B is obtained from A by adding
—5 times row 2 to row 3, the desired

1 00
elementary matrix is 0 1 0 , as in

0 —5 1

33. False, the n x n zero matrix is not in-
vertible.

34. True 35. True

Exercise 17.
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36. False, let 59. Using Theorem 2.1(b) and Theorem
2.2(b), we have

[ 1 01
Ii 0 o1

A
= [o 1 0]

and B = 0 1 . (ABC)—'
0 Oj

Then AB = '2, but neither A nor B is
square; so neither is invertible. = C'B'A*

37. True 38. True 63. By Theorem 1.6, Bx = b has a solution

39. False, see the comment below the defi- for every b in So, for every stan-

nition of inverse. dard vector there is a vector that
satisfies Bu2 = e2. Let

40. True 41. True 42. True
C [u, u2

43. False, (AB)' = B'A'.
Then

44. False, an elementary matrix is a matrix
that can be obtained by performing one BC = [Bu, Bu2 ... Bun]
elementary row operation on an identity = [ei e2
matrix. —In.

45. True
67. From the column correspondence prop-

12 0] Ii 01
46. False,

to
and

3]
are elemen- erty, it follows that the third column of

A equals
tary matrices, but

Lo ij Lo 3] Lo ]

a, + 2a2 +2 [i].12 0111 01 12 0

1 3 2 7]
Therefore A

which is not an elementary matrix.
1 5 9j

71. Because r2 2r,, we have r1 =
47. True 48. True 49. True Thus, by the column correspondence
50. True property, we have

1
51. False, see Theorem 2.4(a). a1 =

52. True 1121 111

55. By the boxed result on page 127, every 2 L4i

elementary matrix is invertible. By the Also, r4 = 4r, + 3r3. So
boxed result on page 125, the product of
invertible matrices is invertible. Hence a4 = 4a, + 3a3

the product of elementary matrices is in-
= 4 +

—vertible.
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Ii 2 3 131ThusA=
L2 4 5

75. The reduced row echelon form of A is

1 —2 0 2 3
R= 0 0 1 —3 —5

0 00 0 0

So columns 1 and 3 of A are its pivot
columns. By the column correspondence
property, the entries of the second col-
umn of R tell us how to write the second
column of A as a linear combination of
its pivot columns:

a2 = (—2)ai + 0a3.

The reduced row echelon form of B is

1 0 1 —3 0 3

R—
0 1 —1 2 0 —2

— 0 0 0 0 1 —1

00 0 00 0

Proceeding as in the solution to Exercise
75, we have

b3 = lb1 +(—l)b2+0b5.

83. Let R be the reduced row echelon form
of A. Because u and v are linearly in-
dependent, a1 u 0, and hence
a1 is a pivot column. Thus r1 = e1.
Since a2 = 2u = 2a1, it follows that 91. Let
r2 = 2r1 = 2e1 by the column corre-
spondence property. Since u and v are
linearly independent, it is easy to show
that ii and u + v are linearly indepen-
dent, and hence a3 is not a linear combi-
nation of a1 and a2. Thus a3 is a pivot
column, and so r3 = e2. Finally,

a4 = a3 — U = a3 — a1,

and hence r4 = r3 — r1 by the column
correspondence property. Therefore

1 2 0 —l
R= 0 0 1 1000 0

87. (a) Note that, in the form described
for RT, the first r rows are the
transposes of the standard vectors
of lZm, and the remaining rows
are zero rows. As we learned
on page 48, the standard vectors

es,. . . , of must appear
among the columns of R. Thus
their transposes occur among the
rows of RT. By Theorem 2.4(b),
every nonpivot column of R is a
linear combination of eç, . ,

Thus, by appropriate row addi-
tion operations, the rows of RT
that correspond to the nonpivot
columns of R can be changed to
zero rows. Finally, by appropriate
row interchanges, the first r rows
of RT can be changed to the trans-
poses of This is the
form described for RT.

(b) The reduced row echelon form of
RT given in (a) has r nonzero rows.
Hence

rank RT r = rank R.

A=Ia b c

tr- q

We first prove the result for the opera-
tion of interchanging rows 1 and 2 of A.
In this case, performing this operation
on 12 yields
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and

EA — F0 lila b ci [p q rl

— Li Oj q rj — La S cj

which is the result of interchanging rows
land 2ofA.
Next, we prove the result for the oper-
ation of multiplying row 1 of A by the
nonzero scalar k. In this case, perform-
ing this operation on '2 yields

?]

01 [a b ci

ljLp q rj

Ika kb kcl

q rj'

which is the result of multiplying row 1
of A by the k. The proof for the oper-
ation of multiplying row 2 of A by k is
similar.

Finally, we prove the result for the oper-
ation of adding k times the second row
of A to the first. In this case,

kl ra b

ij{p q r]

— a+kp b+kq c+krl
— p q r

which is the result of adding k times the
second row of A to the first. The proof
for the operation of adding k times the
first row to the second is similar.

95. (a) The reduced row echelon form of A
is 14; so A is invertible. In fact,

—7 2 3 —2

A—'—
5 —1 —2 1

— 1 0 0 1.
—3 1 1 —1

(b) As in (a), both B and C are invert-
ible, and

3 2 —7 —2
—2 —i 5 1

— 0 0 1 1

1 1 —3 —1

(c) B' can be obtained by inter-
changing columns 1 and 3 of A1,
and can be obtained by inter-
changing columns 2 and 4 of A'.

(d) can be obtained by inter-
changing columns i and j of A—'.

(e) Let E be the elementary matrix
that corresponds to interchanging
rows i and j. Then B = EA.
So by Theorem 2.2(b), we have

= (EA)' = It
follows from Exercise 94 that B'
is obtained from A' by perform-
ing the elementary column opera-
tion on A' that is associated with
E'. But because E is associated
with a row interchange, we have
E2 = and hence E' E.

and

and

—7 —2
5 1

1 1

—3 —1

3 2

—2 —1

0 0.
1 1

Then

99. Observe that
10 —2 —1 —1

A'— —6 1 —1 2

— —2 0 1 0
1 0 1 —1
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r 101 17. As in Exercise 1, the matrix is invert-
I
—6J ible, and its inverse is(a) The solution of Ax = e1 is

Lii Ii 1 1 —2
(b) The solutions of Ax = are the 1

I i 1 2 11

corresponding columns of A'. 3
J

1 —2 1 1 1

L2 1 1 ij

2.4 THE INVERSE OF A MATRIX 21. Using the algorithm for computing
we form the matrix

12 212 4 2 61. We use the algorithm for matrix in-
version to determine if A is invertible. t2 1 0 —2 8 _4]
First, form the matrix

and compute its reduced row echelon
Ii 3 1 01 form [12 A'BI, which equals

Li 210 ij•
1 0 —1 4 7 —7

Its reduced row echelon form is 1 2 6 —6 10]

[1 0 I —2 31 Thus A'B [—1 4

Lo 1 1 —ij 2 6 —6

Thus the algorithm implies that A is in- 25. As in Exercise 21, we obtain
vertible and

—5 —1 —61

I
—1 1 olA-' = [1

L43 1

5. As in Exercise 1, the matrix is invertible,

and its inverse is
]. 29. R

Lo 0 0 oj
9. As in Exercise 1, the matrix is invertible, By the discussion on page 136, the re-

and its inverse is duced row echelon form of [A is

1
2 31 [R P}, where PA = R. Applying this
0 3 I . procedure, we obtain

8 —1 —3]

= 0 1

0 01

13. AsinExercise 1, the matrix is invertible,
2 —3 1]

1 2 —iJ.and its inverse is
[1 31

1 4 —2] 35. True



2.4 The Inverse of a Matrix 39

36. False, let 59. (a) The matrix equation is

r 10 —1 0 1 X1
0 0] and B= 0 1 . 1 2 —2 x2 3

10 1 0
0 0 2 —1 1 x3

Then AB = 12, but A is not square; so
it is not invertible. (b) When we use the algorithm for ma-

trix inversion, we find that the re-

37. True 38. True 39. True duced row echelon form of [A 13] is
[13 A'}, where

40. True 41. True 42. True 012
43. True 44. True 45. True A1 = 5 3 1

46. True 47. True

48. False, if A = 12 B = 12, then 1

A + B = 0, which is not invertible. (c) The solution is A—1b = —2

—3

49. True
63. (a) The matrix equation is

50. False, C = A'B.
1 —2 —1 1 x1

51. False, if A = 0, then A1 does not exist. 1 1 0 —1 x2
—1 —1 1 1 x3

52. True 53. True 54. True 3 1 2 0 x4

55. Let A be an ii x n invertible matrix.

To prove that (a) implies (e), consider i
the system Ax = b, where b is in —1

If we let u = A'b, then

Au = A(A1b) (b) Using the same reasoning as in

= = b, ercise 59(b), we have

and so u is a solution, that is, the system —1 0 1 —1

is consistent. — —3 —2 1 —2

— 0 11
To prove that (a) implies (h), suppose —4 —3 2 —3
that u is a solution of Ax = 0, that is,
Au =0. Then

—2

u = (A'A)u (c) The solution is A'b =
= A'(Au) = =0.
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67. (a) If k = 1, then A = and the
result is clear. If k > 1, rewrite the
equation

A is invertible by (j) of
the Invertible Matrix Theorem.

(b) From (a), we have A' =

71. By Theorem 2.3, there exists an invert-
ible matrix P such that PA = R, where
R is the reduced row echelon form of A.
Then by Theorem 2.2(c), Exercise 70,
and Exercise 87(b) of Section 2.3, we
have

rank AT = rank(QR)T rank RTQT

= rankRT rankR = rank A.

75. (a) Using Gaussian elimination, we
obtain the solution

x,==—3+ X3
x2=
x3 free.

(b) It is not a solution because A is not
invertible.

77. In Exercise 19(c) of Section 1.5, we have
two sectors, oil and electricity. The
input-output matrix is given by

As in Example 5, we need to compute 3
times the second colunm of ('2 — C) 1

Since

J
the amount required is $2 million of elec-
tricity and $4.5 million of oil.

81. Suppose that the net production of sec-
tor i must be increased by k units, where

k > 0. The gross production vector is
given by

where C is the input-output matrix, d is
the original demand vector, and is the
ith column of — C) —'. All the entries
of are positive. Hence the gross pro-
duction of every sector of the economy
must be increased.

85. (a) We are given that = P'AP for
some invertible matrix P. It fol-
lows that

A = =

(b) We are given that 0 = P1AP for
some invertible matrix P. It fol-
lows that A = =0.

(c) We are given that A is similar to
B = ci,,. It follows that

A = PBP1 =

= cPP' cIi,.

ThusA=B.

89. The reduced row echelon form of A is 14.

2.5 PARTITIONED MATRICES AND
BLOCK MULTIPLICATION

1. We have

and

1

[—13 1} —1 =—4
0

2

[—13 1

1

So the product is [—4
I

2].
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5. We have 25. As in Exercise 21, we obtain BTA =

12 011—i 21 1—2 41 [—1 —2 +
[8 —4 16

[3 i] [ 2 2] = [—i 8]' 0 0 oj [2 —1 4

12 01 1 3 01 16 01
+ [—9 6 0

[3 i] [—i 2] [8 2]' 6 4 0

[—1 5] [—i 21 — [ii 81 29. True 30. True
[ 1 2] [ 2 2j[3 6]'

31. False, for example v can be in R.2 and

and w can be in R!3, then is a 2 x 3
matrix.

1—i 511 3 01 1—8 101

1 2] [_i 2] 1 4]
. 32. True

33. False, if either v or w is 0, then vwT is
So the product is o.

—2 4 6 0 34. False, if the matrices have sizes 2 x 1 and
—1 8 8 2 1 x 2, then their product can be written
11 8 —8 10 as a sum of two matrices of rank 1.
36 1 4

35. The product equals =

9. As in Exercise 5, the product is rAT CT1 IA B39. We have [BT DTj [c D =36
9 12 {ATA+CTC ATB+CTD
2 [BTA+DTC BTB+DTD68

43. We have
13. Multiplying row 1 of A times B, we r 1 1 —1

obtain the first row of AB, which is 0 A1 0 D

[16 4}
[D 0] [A' 0

FAA-' 0
17. Multiplying row 3 of B times C, we = [ 0 DD'

obtain the third row of BC, which is o
=

21. By multiplying each column of A times
the corresponding row of B (as de- 47. We have
scribed on page 149), we obtain AB = B1 [ P —PB

—1 0 8 2 9 —6
LC I,,] t—CP I,, + CPB

—2 0 + —4 —1 + 12 —8 . - 11' - BCP -PB + + CPB)
3 0 -8 -2 0 0 - [CP-CP
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IP(In
BC) —PB + B + BCP] axid the lower right submatrix is0 In

B -

B — (In — BC)PB1 A 011 A1 01
[in B] [—B-'A—' B'j —

[0 In ] and
A 0

so [i is invertible with inverse
B—B] 01

j = [o '2n.

[

0 1
B1j

51. In order to guess the form of the in- 2.6 THE LU DECOMPOSITION
verse if the matrix is invertible, con- OF A MATRIX

Ia 01sider the matrix
[1.

where a and

b are nonzero scalars. It is easy to 3. We apply elementary row operations to
show that this matrix is invertible with transform the given matrix into an up-

0
inverse [(b)i b_i]. So a reason- per triangular matrix:

A 0 li—i 211
able guess for the inverse of [i is 2 3 5 4 f

[—3 2 5 4]
1 A' 0
[—B-'A-' B_i].

[ 1 —1 2 iiNow we must that this guess is
0 —1 1 2 f

3r1 +r3
correct. In the product

2 —4 0]

1A 011 A1 0 ], 1i —1 2 iiB] [—BA—' B'
o —i 1 2

the upper left submatrix is [0 —1 2

AA' + 0 =
0 —1 1 =U.the upper right submatrix is

L° o 1 1]

A0 + 0B1 0+ 0 = 0, Since U consists of 3 rows, L is a 3 x 3
matrix. As in Example 3, the entries ofthe lower left siibmatrix is
L below the diagonal are the multipliers,
and these can be obtained directly from

nI — = A1 — A'
the labels above the arrows describing

= 0, the transformation of the given matrix
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into an upper triangular matrix. In par-
ticular, a label of the form Cr2 + r3 in-
dicates that the (i,j)-entry of L is —c.
Thus 100

L= 2 1 0

—3 1 1

7. We apply elementary row operations to
transform the given matrix into an up-
per triangular matrix:

1 0 —3 —1 —2 1

2

—1

—1

1

—8

5

—1

1

—5 0

42
0 1 2 1 34
1 0 —3 —1 —2 1

0
—1

—1

1

—2

5

1

1

—1 —2

4 2

1 1

1

o 1 1 1

1 2

0 1

1

1 1

2

4 rows, L is a 4 x 4
matrix. As in Example 3, the entries of
L below the diagonal are the multipliers,
and these can be obtained directly from
the labels above the arrows describing
the transformation of the given matrix
into an upper triangular matrix. In par-
ticular, a label of the form cr2 + r3 in-
dicates that the (i,j)-entry of L is —c.

1 000
L= 2

—1

0

100
—1 1 0

—1 0 1

A=
1

2

—3

—1 2 1

—3 5 4

2 —4 0

1b=8.
5

Then the system of equations can be
written as Ax = b. By Exercise 3,
A = LU is an LU decomposition of A,
where

and

100
2 1 0

—3 1 1

1 —1 2 1

U= 0 —1 1 2

0 011
We first solve the system Ly = b, which
is

=1
2y1+y2 =8

—3Yi + Y2 + = 5.

Clearly Yl 1. Substututing this value
into the second equation, we obtain Y2 =
6. Substituting these values into the
third equation we obtain = 2. Thus
we obtain

Thus

11. Let

and

0 —3 —1 —2 1

—1 —2 1 —1 —2 1r2+r3—.r3

1 2 0 2 3

1 2 1 3 4

1

0
0
0

1

0
0
0

1

0

0

0

Yi 1

Y= Y2 = 6
2
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Next, using back substitution, we solve
the system Ux y, which is

x1— x2+2x3+ x4=1
—x2+ x3+2x4=6

x3+ x4=2.
We solve the third equation for x3, while
treating x4 as a free variable to obtain

= 2 — x4.

Similarly, we substitute the value of x3
obtained in second equation to solve for
x2, and we substitute both these values
into the first eqution and solve for x1.
Thus we have

x2=—4+x4 and xi=—7+2x4.

Therefore we obtain the general solution

Fxil 1—71 [
V21 — ii
1x31

+X4

Lx4J L 0] L

1 0 —3 —1 —2 1

A—
2 —1 —8 —1 —5 0

—1 1 5 1 4 2
0 1 2 1 34

b

=

and

Then the system of equations can be
written as Ax b. By Exercise 7,
A = LU is an LU decomposition of A,

and

1 0 —3 —1 —2 1

U—
0 —1 —2 1 —1 —2

0 0
0 0 0 2 2 2

We first solve the system Ly b, which
becomes

Y2 +Y4——2.

Clearly yl = 1. Substituting this value
into the second equation, we obtain Y2 =
6. Continuing in this manner we can
solve for the other values to obtain

Yi 1

Y2 6
y— —

y3

y4 4

Next, using back substitution, we solve
the system Ux y, which becomes

xi X4—2X5+ x6=1
—x2--2x3+ x4— x5—2x6=6

x4+ x5+ x6=2
2x4 + 2x5 + 2x6 = 4.

We solve the fourth equation for x4,
while treating x5 and x5 as free variables
to obtain

= 2 — — x6.

Since the third equation is equivalent to
the fourth equation, it can be ignored.
Now solve the third equation for x2,
using the value for x4 obtained in the
fourth equation. Notice that x3 is a free
variable, and hence we obtain

—4 — 2x3 — 2x5 — 3x6.

y1

2y1+ Y2

—yl—- Y2+Y3
=8

15. Let

where

1 0 0 01
2 1 0 0'L=[ I

—1 —1 1 01

0 —1 0 1]
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Finally, we solve the first equation for x1
to obtain

= 3 + + x5 — 2x6.

This produces the general solution

rx1l r 3] 1 31

k21 1—21

— I I

1X41 21
+X3

I
01

IX5I I ol I

Lx6i Loi Loi
1 —2

—2 —3

0 0
+X5

—1 —1

1 0

0 1

19. Using the procedure described in the so-
lution of Exercise 23, which follows, we
obtain

100 100
P= 0 0 1, L= —1 1 0,

010 201
and

1 1 —2 —1

U= 01 —3 0.
00 1 1

23. We use Examples 5 and 6 as a model,
placing the multipliers in parentheses in
appropriate matrix entries:

1 2 1 —1

(2) 0 —1 3

3

3

2 —1

3

1

2

1 —1

(2) 0 —1 3

—4 —4 1

2

1 2 1 —1

(2)
(3)

1

—4 —4 1

(2)

1 1

2

—1

(2) 1 1 2

(2) 0 —1 3

(3) (—4) 0 9

The last matrix in the sequence contains
the information necessary to construct
the matrices L and U in an LU decom-
position of A. Matrix L is the unit lower
triangular matrix whose subdiagonal en-
tries are the same as the subdiagonal en-
tries of the final matrix, where parenthe-
ses are removed, if necessary. U is the
upper triangular matrix obtained from
the final matrix in the sequence by re-
placing all subdiagonal entries by zeros.
Thus we obtain

1 000
2 1 0 0

2 010
3 —4 0 1

1 2 1 —1

2 4 1 1 —2r1+r2—-.r2A=321
—2

25 3 0
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and

fi 2 1 —ii

U—
0 1 1 21

— 0 0 —1

[0 0 0 9j

1000000100100100
1000
0 0 0 1

0 1 0 00010

and

Finally, we obtain P by applying to 14
the row interchanges that occur in the
preceding sequence of elementary row
operations. Thus

r2—r4
14

1 1 —2 —1

U= 0 —1 —3 0
0 0 1 1

Since P is invertible, Ax = b is equiva-
lent to

100 1

PAx==Pb= 0 0 1 5

0 1 0 —1

1

= -1 =b'.
5

We can solve this system using the LU
decomposition of PA given above. As in
Example 4, set y = Ux, and use forward
substitution to solve the system Ly =
b', which can be written as

Yi = 1

Y1+Y2 =:—1

2yi +Y3 5.

The resulting solution is

1

Y Y2 0

y3 3

Finally to obtain the original solution,
use back substitution to solve the system
Ux y, which can be written as

x1+ X2—2X3—X41
—x2—3x3 =0

27. Let

and

1

A= 2

—1

1 —2 —1
2 —3 —1

—2 —1 1

1

b= 5.
—1

Then the system can be written as a ma-
trix equation Ax = b. By Exercise 19,
PA LU, where

1 0 0 X3+X43.
P= 0 0

0 1

1

0

,

The solution is

L= —1

100
1 0 ,

x1

X2

X3 =

16
—9

+X4

—4

3
—1 •

201 x4 0 1
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1 2 1 —1

24 1 1A=
3 2 —1 —2

25 3 0

3

2
b—

7

Then the system can be written as the
matrix equation Ax b. By Exer-
cise 23, PA = LU, where

1000
0 0 0 1

0 1

0

0 0 9

We can solve this system using the LU
decomposition of PA given above. As in
Example 4, set y = Ux, and use forward
substitution to solve the system Ly =
b', which can be written

Yi 3

Y2 1
y—

—

y4 —9

Finally, to obtain the solution of the
original system, use back substitution to
solve Ux y, which can be written as

x1+2x2+ x3— x4= 3

2x2+ X3+2X4 1

—X3 + 3X4 = —4

9x4=z 9.

x1 —3

— 2

— 1

—1

This solution is

33. False, the matrices in Exercises 17—24 do
not have LU decompositions.

True

False, the entries below and to the left
of the diagonal entries are zeros.

36. False, consider the LU decomposition of
the matrix in Exercise 1.

37. False, for example, if A is the rn x n zero
matrix and U = A, then A = LU, where
U is any m x m unit lower triangular
matrix.

31. Let

and Yi

Y2

3Y1 —

=3
=7
=2

+ = —4.

The resulting solution is

and

Since P is invertible, Ax = b is equiva-
lent to

PAx=Pb
1000 30001 2

— 0 1 0 0 —40010 7

=
[4] =b'.

34.

35.
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38. True and

39. False, the (i,j)-entry of L is —c. 12 —2 —1.0 3.0 41

40. True 41. True Jo 1 2.0 —1.0 ii
U 0 0 —1.5 —0.5 —2

45. By means of elementary row operations, Jo 0 0.0 —1.0 —2
L can be transformed into a unit lower [0 0 0.0 0.0 9j
triangular matrix L1 whose first col-
umn is e1. Additional elementary row
operations can be applied to transform 2.7 LINEAR TRANSFORMATIONS
L1 into a unit lower triangular matrix AND MATRICES
whose first two columns are e1 and e2.
This process can be continued until L is
transformed into which is in reduced

1. Since A is a 2 x 3 matrix, the domain is
and the codomain is R.2.row echelon form. Hence L has rank n,

and so L is invertible. Thus LT is in in- 5. Since BT is a 3 x 3 matrix, the domain
vertible upper triangular matrix whose is and the codomain is R3.
diagonal entries all equal 1. So it follows

81from Exercise 43 that (L_1)T (LT)_1
61is an upper triangular matrix with diag- Tc

=onal entries equal to 1/1 = 1. Therefore,
L' is a lower triangular matrix whose 1 41

F 41 1diagonal entries are all equal to 1. 13. TA (i ol = A OJ
[22j

49. Each entry of AB requires 11 — 1 addi- L-3j
tions and n multiplications for a total of

1—3 1—32n—1 flops. Since ABhasmpentries,
17. TB =B I ol = 1—91a total of (2n — 1)mp flops are required

to compute all the entries of AB. \ L
2]

53. Use the imported MATLAB function 21. The domain consists of vectors with 3
elu2 (see Appendix D) to compute the components; so ii = 3. The codomain

answer. Enter [L U P] = elu2(A) to consists of vectors with 2 components;
so in 2.obtain

[0 1 0 0 01 25. The standard matrix of T is
Ii 0 0 0 ol

0 1
0 1 0 [T(ei) T(e2)} =

10 00 1 0!
[o 0 0 0 1]

29. The standard matrix of T is
1.0 0 0 0 01

Ii —110.0 1 0 ooJ I

12 —3!0.5 2 1 0 [T(ei) T(e2)J= '0
—0.5 —1 —3 1 0!

Lo ij1.5 7 9 —9 1]
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33. The standard matrix of T is
= 2 [—4]

=
[T(ei) T(e2) = 0 1 0

0 0 1 and

(1—41'\ ( 118
35. False, only a linear transformation has a T T

L2
standard matrix.

1 ({8
36. True

37. False, the function must also preserve
1

2 —1

vector addition. = —4 = 2
2

6 —3
38. True

39. False, the standard matrix is a 2 x 3 ma- 61. Write 1_21 = a + b 101 and solve
trix. I 6J I 0J

for a and b. We obtain
40. True

1—2] 2 1—31 10

41. False, the function must be linear. [ 6] 3 L oj +

42. True Hence

43. False, the range of a function is the set T (E.21
— T + 1°

of all images. [ 6]) — Oj 2

44. False, the range is contained in the
— 2T + (10

codomain. — 3 L
0 ) 2

45. False, the function must be one-to-one. 2
6 8 16

3 +- 0 = 2

46. True 47. True 48. True 3 2
0

49. True 50. True 51. True 65

52. False, Jr —÷ R defined by f(x)
does not preserve scalar multiplication. T = T(xiei + x2e2)

53. False, the functions must be linear. xiT(ei) + x2Te2)

54. True 121 4zXl +X2
57

16 8 8
— 2x1 4X2] — 12x1+4x2

([4]) = T (2 [2]) = 2T ([2]) 3x1
+

X2 j — L 3x1 +



50 Chapter 2 Matrices and Linear Transformations

69. We begin by finding the standard matrix ALTERNATE PROOF. We can use the
of T. This requires that we express each definition of a linear transformation by
of the standard vectors of as a linear proving that T preserves vector addition

and scalar multiplication.
combination of and For the

Let u and v be vectors in Then we
equation have

ru F

+b[1]
+ lvii)

[oj =a[2 , kju2j Lv2i

weobtain
+ V2j)

el =3 +2 [h]. F 0 1 1 o 1

[2(ui + vi)] L2u1 + 2v1j
Likewise

Also

e2 =1 +1 [3]. T(u) + T(v) = T (Full + T hlvul

So
Fo
[2u1] +T(ei)

=3 + 2 [3j
So T(u + v) = T(u) + T(v), and hence

Similarly, T (e2)
=

Therefore the T preserves vector addition.

Now suppose c is any scalar. Thenstandard matrix of T is

2 51 =T fIcuil\
A = [13

1]• Lu2

10So
= [c(2ui)]

F12x1+5x2l
[x2j [3xi+x2 Also

u11 \

73. T is linear. Let A
=

Then
cT

1 0 1

Ax
[0

01 Fxul [0 1
= C

l2ui]
= 2 Oj [x2j = [2xij = T(x).

So T(cu) = cT(u). Therefore T pre-.
So T = TA, and hence T is a linear serves scalar multiplication. Hence T is
transformation by Theorem 2.7. linear.
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75. T is not linear. We must show that ei- COMMENT. For this example, we can
ther T does not preserve vector addition also show that T is not linear by noting
or T does not preserve scalar multipli- that
cation. For example, let u e1 and
v=e2. Then

T

1

)
79. Since

=1+1+0—1=1.
On the other hand, but

T(u) + T(v) T(ei) + T(e2) T (2. = T(ir)
=

T ( + T ( T does not preserve scalar multiplication

o ) o ) and so is not linear.

— 11
83. We must show that the transformation

—' + + — cT preserves vector addition and scalar
+ (0 + 1 + 0 1) multiplication. Let u and v be in

= 0.
Because T is linear,

So T(u+v) T(u) +T(v) for the given
(cT)(u + v) = cT(u + v)

vectors. Therefore T does not preserve = c(T(u) + T(v))
vector addition and hence is not linear. = cT(u) + cT(v)
ALTERNATE PROOF. Let c = 4 and (cT)(u) + (cT)(v).
u=e1. Then

Also

T(4u) = T(4e1) T ( 0
)

(cT)(u) + (cT)(v) = cT(u) + cT(v).

\ 0 J So cT preserves vector addition. Now

= 4 + 0 + 0 — = 3. suppose k is a scalar. Because T is lin-
ear,

On the other hand,
(cT)(ku) = cT(ku)

11 \ = c(kT(u)) ckT(u).
4T(u)=4T(ei)=4T1 0\o) Also

= 4(1 + 0 + 0 — 1) = 0. k((cT)(u)) = k(cT(u))

So T(4u) 4T(u) and hence T does not
= kcT(u) = ckT(u).

preserve scalar multiplication. There- So cT preserves scalar multiplication.
fore T is not linear. Hence cT is linear.
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87. By Theorem 2.9, there exists a unique 99.
matrix A such that T(v) = Av for all v

ía biiri.1Z2 LetA=
dj

Then

T(1x1 ía bl [xi
\[X2 I dj

— [axi + bx2

91. (a) Because it is given that T is linear,

it follows from Theorem 2.9 that T
is a matrix transformation.
ALTERNATE PROOF. Let

TA
1—i 01 lxii

0 1]

f—xi

L
X2

=T( x1
\

(b) Every vector v
=

in 7?,2 is an

image because

lvii
V2j)

Thus the range ofT is

95. We have T(u) = T(v) if and only if
T(u) — T(v) = 0. Because T is linear,

the preceding equation is true if and only
if T(u — v) =0.

A vector v is in the range of T if and
only if v = T(u) = Au for some u in

which is true if and only if v is in
the span of the columns of A.

2

—1
is in the

3

range of T if and only there is a vector

u such that T(u) = v. If A is the stan-
dard matrix of T, then this condition is
equivalent to the system Ax = v being

consistent, where

Fl 1 1 21

A— 1 2 —3 41

— 0 1 0 21

[1 5 —1 0]

If we solve this system, we obtain

5

2

3

—l

So T(u) = v, and thus v is in the range
of T.

Alternatively, we can show that the re-

duced row echelon form of A is 14 and
conclude from (b) and (e) of Theo-
rem 2.6 that the system Ax = b is con-
sistent for every b in R4.

Then

103. The given vector v =

and hence T TA.
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2.8 COMPOSITION AND is the standard matrix of T. The general
INVERTIBILITY OF solution of Ax 0 is

LINEAR TRANSFORMATIONS
X1

x2 = —x3
1. The columns of the standard matrix x3 free,

12 31

[4 5]
or

of T form a generating set for the range =

ofT. So {
,

} is one possible gen- 1

erating set. So a generating set is

5. As in Exercise 1, one generating set is
( i

(2 1 1)
2 , 2 , 3

1

4 1 0 ) By Theorem 2.11, T is not one-to-one.

9. As in Exercise 1, one generating set is 21. As in Exercise 17, a generating set for

( i o
the null space of T is {e2}, and so T is

0 , i not one-to-one.

1 0 0 J 25. The standard matrix of T is

13. The null space of T is the solution set of 12 3

Ax=0, where
[T(ei) T(e2)]=

[4 5

A — 10 11 The reduced row echelon form of this
Li 1] matrix is

Ii 0
is the standard matrix of T. Thus the [o i
general solution of Ax = 0 is

which has rank 2. So by Theorem 2.11,
0 T is one-to-one.

x2 0.
29. As in Exercise 25, the standard matrix

So a generating set is {0}. By Theorem of T is
2.11, T is one-to-one. 1 1 0

0 1 —1
17. The null space ofT is the solution set of 1 0 —1

Ax 0, where
which has rank 2. So T is not one-to-

1 2 1 one.
A= 1 3 2

2 5 3 33. The standard matrix of T is
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A 2, we see that T is
onto by Theorem 2.10.

37. The standard matrix of T is

0 1 —2

1 0 —1

—1 2 —3

Its reduced row echelon form is

1 0 —1

0 1 —2

00 0

and so its rank is 2. So T is not onto by
Theorem 2.10.

41. True

42. False, the span of the columns must
equal the codomain for the transforma-
tion to be onto.

10
43. False, A = 0 1 has linearly indepen-

00
0

dent columns, but the vector 0 is not
1

in the range of TA.

True 45. True 46. True

False, TA must be onto.

48. True

49. False, the range must equal its
codomain.

53. True

54. False, the function must be linear.

55. False, the rank must equal ii.

56. True 57. True

58. False, the standard matrix of TU is AB.

59. True 60. True

63. (a) Span {e1}. The only vectors that
are projected to 0 are the multiples
of e1.

(b) No, because T(ei) = 0.
(c) Span {e2 }. Clearly every vector is

projected onto the y-axis and hence
is a multiple of e2.

(d) No, from (c), it follows that e1 is
not in the range of T.

67. (a) T is one-to-one. The columns of
the standard matrix ofT are T(ei)
and T(e2), which are linearly inde-
pendent because neither is a mul-
tiple of the other. So by Theorem
2.11, T is one-to-one.

(b) T is onto. The standard matrix of
13 41 . . -T is Since its reduced row

echelon form is 12, its rank is 2.
Thus, by Theorem 2.10, T is onto.

71. The standard matrices of T and U are
1 1

A— 1 —3 andB=[1
3 0'40

75. The standard matrix of TU found in Ex-
ercise 74 equals

2 24
AB= —2 —10 4

4 —4 16

44.

47.

respectively.

50. True

51. False, the function must be linear.

52. False, the rank must equal rn.
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where A and B are the matrices in the 95. Let T be the projection on the x-axis,
solution to Exercise 71. and let U be the reflection about the y-

axis. Then
79. The standard matrix of UT found in Ex-

ercise 77 equals

B are the matrices in the
solution to Exercise 78.

83. The standard matrix of T is

This matrix is invertible, and

1 1

3H1 2
Thus, by Theorem 2.13, T is invertible,

and the standard matrix of its inverse is
A'. Therefore

1 1

T' = +

1 2
——x1 + —x2.

/ x1 Xl—2X2+ X3
T' ( x2 ) = —x1 + x2 —

\ x3 J 2x1—7x2+3x3

91. The result is true for arbitrary func-
tions. Suppose that f: —÷ and
g: 7?Y are one-to-one functions.
To show gf: —p 'IV' is one-to-one,
assume that (gf)(u) = (gf)(v). Then
g(f(u)) = g(f(v)). Because g is one-to-
one, we have f(u) f(v), and since f
is also one-to-one, we have u = v.

and

So

lxii
\Lx2i)

/ lx1i \ l—xi]
X2j

(UT)
(lxii\ — [—xii
1X2j)[ 0]

= (TU)

1 3 —2 1

3 0 41
2 —1 0 2

0 0 11
1 0 —3

0 1 —1

—20 4•
51 0

99. (a) We have A

andB=

87. As in Exercise 83, we have
1 4 10 4 —14]
I 0 1 71(b) AB= 1—2

12 1 -_51

Li 31 4]

(c) By Theorem 2.12, the rule for TU

I k21isTUf

\
4x1
4x1

—2x1

xi

+ lOx2 + 4x3 — 14x4

+ x3+ 7x4
+12x2+ x3—
+ 3x2+ x3+ 4x4
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CHAPTER 2 REVIEW 21. True

1. True 23. (a) BA is defined if and only if q = m.
(b) If BA is defined, it is a p x n matrix.

2. False, consider [
]. 2

3. False, the product ofa2x 2 and3x3
27. Cw=r 29

matrix is not defined.
31.

4. True

iT lii flf2 45. False, see page 122. A B
k —2] [3 6

6. False, consider 12 + 12 = 212 $ 0. — 1 {5 10

612 47. True 8. True 9. True

10. False, Ox = 0 is consistent for b = 0, 35. Because u is a 3 x 1 matrix, the product
but 0 is not invertible. u2 = nu is not defined.

11. True 39. The reduced row echelon form of the
given matrix is 13; so it is invertible. Its12. False, the null space is contained in the

domain. 1
22 14 2

inverse is — —42 —2 11
13. True 50

—10 5

14. False, let T be the projection on the x- 43. The inverse of the coefficient matrix is
axis. Then {e2} is a linearly indepen-
dent set but {T(e2)} = {0} is a linearly 1 —1

dependent set. —1 2

15. True 16. True So the solution is

17. False, the transformation

[

1 [3] — [_2]

TA
47. Since TB:R2 the codomain is

The range equals
is one-to-one, but not onto. (4 2

18. True 1 , —3

19. False, the null space consists exactly of 0 1

the zero vector.
51. The standard matrix of T is

20. False, the columns of its standard r
matrix form a generating set for its [T(ei) T(e2) T(e3)} = 12 0 —1

codomain. 0 0
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53. The standard matrix of T is
65. The standard matrix of T is 10 ii.A—[T(ei) T(e2)].

L1

Now Because its rank is 2 and the codomain

T(e1) = 2e1 + U(ei)
of T is R3, T is not onto by Theo-
rem 2.10.

— 2 + —1

— 69. The matrix BA = I

1 1 —1 is the

L3 1 Oj

+ standard matrix of the the linear trans-
formation UT.

Also 73. The standard matrix of T is
T(e2) = 2e2 + U(e2)

= 2
[?] + U

By Theorem 2.13, T is invertible and
1{3 2

+
A1 is the standard ma-

trix of Therefore
So

ii T' 1 13x1 _2x21
\Lx2i)51x1+X2i

57. The given function is the matrix trans-
Ii 1 0

formation induced by
Lo 0

so this
CHAPTER 2 MATLAB EXERCISES

4 10
function is linear by Theorem 2.7. 1 2

61. The null space is the solution set of 1. (a) AD = 5 8 151

Ax = 0, where A is the standard ma- 5 8 —8

trix of T. The general solution is L4 —8 ij
= —2X3 [ 6 —2 5 11

x2= x3
j_3 —1 10 7

X3 free. (b) DB
=

—3 1 2 —1 —3

2 —2 7 9
Thus

L
0 —1 10 10

1x21 = I
X3 ii. (c) , (d) (ABT)C=A(BTC)=Ix1] 1—2x3l [_21

[x3J
L

x3J 1] 38 —22 14 38 57

(1—21 10 —4 4 10

So the generating set is
I

11 By —12 —9 —11 —12 12

L'JJ I
141

Theorem 2.11, T is not one-to-one. L
28 10 20 28
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5. (a) First, note that if the matrix [C D}
is in reduced row echelon form, then
C is also in reduced row echelon

Given an m x n matrix A, let
B[A Im],themx(m+n)ma-
trix whose first n columns are the
columns of A, and whose last m
columns are those of 'm• By Theo-
rem 2.3, there is an invertible mx m
matrix P such that PB is in re-
duced row echelon form. Further-
more, PB PEA Im] [PA P].
Thus PA is in reduced echelon
form, and the final m columns of
PB are the columns of P.

(b)P=

0.0 —0.8 —2.2 —1.8 1.0
0.0 —0.8 —1.2 —1.8 1.0
0.0 0.4 1.6 2.4 —1.0
0.0 1.0 2.0 2.0 —1.0
1.0 0.0 —1.0 —1.0 0.0

7. The calculations in (a) and (b) both pro-
duce the matrix A1B =

(e) D(B — 2C) =

—2 10
—31 —7

—11 —5

—14 2

—26 —1

5 3
—8 —21
—4 —9

—1 —7

—4 —16

11

8
(f)Av=r 20

—3

—9

(g) , (h) C(Av) (CA)v =

(i)A3=

—17

—1

7
—11

—6

1

—18

81

46
10

11

—36

—12

23
2

21

—6

—33

14 9
11 6
26 —8

18 53
—6 35

—7

—2

—17

24
25

form.

6 —4 3 19
—1 2 —4 —1
—2 0 2 6

0 1 —3 —8
—1 0 2 —6

5 —2 —5
4 —3 —2

—1 6 3

2 —3 1

—5 2 2
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3.1 COFACTOR EXPANSION

1. det = 6(—1) — 2(—3)

= —6+6=0

5. det (—5)(12) — (—6)(10)

= —60+60=0

7. =4(—1)--3(--2)

-4+6= 2
11. The (3, 1)-cofactor of A is

(_i)3+1 det [1
= 1[(—2)(3) — 4(6)]

= 1(—30) = —30. 2.

15. The cofactor expansion along the third 23. We have

row is

Determinants

19. The cofactor expansion along the second
row is

1 1 —1

0 + det 4 2 —1 + 0
0 0 —2

1 21
4 —3 2

0 30

+ 1(3)(_1)3+2 det

2[1(2) — 1(4)] — 3[1(2) — 1(4)]

2(—2) - 3(—2)

[—2 21

—1 3]

+1(_1)3+2det[1
2 3]

+
Ii —21

{2 —ij

= 0 + (—1)[1(3) — 2(2)]

+ (—1)[1(——1) — (—2)(2)]

—6 0 0

det 7 —3 2

det [1 21

— 2(9)] 180.

27. We have
—2 —1 —5 1

0 0 0 4
det

0 —2 0 5

3 1 6 —2

59
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1—2 —1 —51
det

ía b= 4(_1)2+4 det
I 0 —2 ol 46. False,

[c d] = ad — be.

1 6]
47. False, if the determinant of a 2 x 2 matrix

_51 is nonzero, then the matrix is invertible.= 4(_2)(_1)2+2 det [1 6] 48. False, if a 2 x 2 matrix is invertible, then
= —8[—2(6) — (5)(3)] its determinant is nonzero.

49. True= -24.
50. False, the (i,j)-cofactor of A equals

31. The area of the parallelogram deter- (—1 )i+i times the determinant of the
mined by u and v is (n—i) x(n—1) matrix obtained by delet-

16 311
ing row i and column j from A.

I det ju vjt = det
[4 2] 51. True 52. True

6(2) — 3(4)1 = 01 o. 53. False, cofactor expansion is very ineffi-
cient. (See pages 204—205.)

35. The area of the parallelogram deter-
54. Truemined by u and v is

11 21
411 55. False, consider [2

56. True 57. True
= 6(3) — 4(—1)l 57. False, see Example 1 on page 154.
= 221 = 22.

58. False, a matrix in which all the entries
37. The matrix is not invertible if its deter- to the left and below the diagonal entries

minant equals 0. Now equal zero is called an upper triangular
matrix.

det [3 6]
3(4) — 6(c) = 12 — 6c. 59. True 60. TrueIc 4

Therefore the matrix is not invertible if 61. False, the determinant of an upper trian-
12 — 6c = 0, that is, if = 2. gular or a lower triangular square matrix

equals the product of its diagonal entries.
41. We have

62. True
det = c2 — (—2)(—8) 63. False, the area of the parallelogram de-

= —16. termiried by u and v is det [u vfi.

64. False, if A is the standard matrix of T,
Therefore the matrix is not invertible if then

— 16 = 0, that is, if c ±4.

45. False, the determinant of a matrix is a I det [T(u) T(v)] I = I
det Al I det v]

scalar.
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65. We have Thus

Icos 0 sin 01 det i
a b 1

det A8 det
0 Lc + kp d + kqj

=cos20— (—sin2O)
=det Fa bl +kdet {a bl

= COS2 0 + sin2 0 = 1. Lc dj LP qj

69. Let A
[a bl Then

81. (c) No, det(A + B) det A + det B for
allnxnmatricesAandB.

detAT=det[0b 3.2 PROPERTIES OF

ía b1
DETERMINANTS

=ad—cb=det[ dj

= det A.
3. The cofactor expansion along the second

column yields

73. WehavedetE=kanddetA=ad—bc;
so (detE)(detA) k(ad— bc). Also —

EA kd]
+ 4(_1)2+2 det

Thus

detEA = a(kd) — b(kc)
1[1(1) — (—2)(—-1)1

= k(ad — bc) = (det E)(det A).
+ 4[2(1) — 3(—1)j + 0

77. Wehave =1(—1)+4(5)+0

det{ a b 1 =19.
[c+kp d+kqj

7. The cofactor expansion along the first
= a(d + kq) — b(c + kp) column yields

==ad+akq—bc—bkp
1 20(_1)1+1 det

[ ]and

det
[a +kdet ía bl

tp qj

= (ad — bc) + k(aq — bp)
+ det

= ad — bc + akq — bkq 0 + (—1)[2(1) — 0(—1)] + 0

=ad+akq—bc—bkp.
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19. We have

121 1 21
det 1 1 2 =det 0 —1 1

3 4 8 0 —2 5

1 21
=det 0 —1 1

0 03
= 1(—1)(3) = —3.

1 0 4 —1 11

det —3 1 1 21

1 0 —2

3 0 1]

23. We have

c2 + 4e —12

(c+6)(c— 2).

The matrix is not invertible if its deter-
minant equals 0; so the matrix is not
invertible if c = —6 or c = 2.

31. We have

1 —1 2

det —1 0 4
2 ic

1 —1 2

=det 0 —1 6
o 3 c—4

1 —1 2

=det 0 —1 6

0 0 c+14

11. We have

0 0 5
det 0 3 7

4 —1 —2

4 —1 2
=—det 0 3 7

0 05

15. We have

3 —2 1

det 0 0 5
—9 4 2

3 —2 1

=—det —9 4 2

0 05
3 —2 1

=—det 0 —2 5

0 05

f 1 0 —2 31

z=r_detjl
[ 2 3 0 1]

Ii 0 —2 31

— det
0 1 —5 iii

[0 3
4

0
1

0 0
0

0
1

[0 0
19

= —1(1)(19)(5) = —95.

27. We have

det c±4] — c(c+4) —12
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= 1(—1)(c+ 14) —(c+ 14).

35. The given matrix A is not invertible if its
determinant equals 0. Because det A =
— (c + 1), we see that A is not invertible
if c = —1.

39.

False, multiplying a row of a square ma-
trix by a scalar c changes the determi-
nant by a factor of c.

42. True

43. False, consider A = [e1 0] and B =
[0e2].

44. True

45. False, if A is an invertible matrix, then
detA 0.

46. False, for any square matrix A, det AT
detA.

47. True

48. False, the determinant of 212 is 4, but
its reduced row echelon form is '2.

49. True 50. True

51. False, if A is an n x n matrix, then
detcA = ctmdetA.

52. False, Cramer's rule can be used to solve
only systems that have an invertible co-
efficient matrix.

53. True 54. True 55. True

56. False, if A is a 5 x 5 matrix, then
det(—A) = —detA.

False, if an n x n matrix A is transformed
into an upper triangular matrix U using
only row interchanges and row addition
operations, then

detA = . . unn,

where r is the number of row inter-
changes performed.

59. We have
162det [3=
Ii 2det[3

6 0

—5 1 3
2

- 1 0 —2

—1 1 3
02 1

The matrix is not invertible if its deter-
minant equals 0; so the matrix is not True

invertible if c = —14. 58.

— 6(4) — 2(—3)

1(4)—2(3)

1(—3) — 6(3)

—2

= -15

and

=

= 10.5.

63. We have

det

=

det

6 0 —2

det —5 1 3

— 14 0 —5

1 0 —2

det 0 1 1

02 1
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6(—5) — (—2)(14)
— 21(1)—1(2) —

1 6 —2

det —1 —5 304 1

1 0 —2

det —1 1 3

02 1

1 6 —2

detOl 1 1 aa2
— 0 4 1 det 1 b b2

— —1 1 c C2

1(1) — 1(4) 1 a a2

—1
3 =det 0 b—a b2—a2

0 c—a c2—a2

1 a a2

=(b—a)(c—a)det 0 1 b+a
10 6 01 c+a
1 1 5 1 a a2
0 2 4 —(b—a)(c—a)det 0 1 b+a
10—2 00 c—b

=(b-a)(c-a).(1)(1)(c-b)

—_(b--a)(c—a)(c—b).

79. Let A be an n x n matrix, and let B
be obtained by multiplying each entry of
row r of A by the scalar k. Suppose that

is the (i,j)-cofactor of A. Because
the entries of A and B differ only in row
r, the (r, j)-cofactor of B is Crj for j =
1,2,.. . , n. Evaluating det B by cofactor
expansion along row r gives

detB briCri +... + brnC,-n

(kari)cri + ... + (karn)crn

= k(a,-ic,.i + +

= (det B')(det A)(det B)

= (det A)(det B)

(detA) (detB)

detA.

75. We have

and

det

x3 = —
det

106
det 0 1 1

— 024
—1

1(4)—1(2)
2

—1

67. TakeA=I2andk=3. Then

whereas k .detA = 3.1 = 3.

71. By (b) and (d) of Theorem 3.4, we have

det (B'AB) = k(detA).
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83. (a) We have 2. False, for n � 2, the (i,j)-cofactor of

an n x n matrix A equals (_l)i+i times
r 0.0 3.O 2 —5] the determinant of the (n — 1) x (n — 1)

I 2.4 3.0 6
91 matrix obtained by deleting row i and

I —4.8 6.3 4 —2 I column j from A.

L
9.6 1.5 5 9]

3. Truer1 .-+r2

4. False, consider A = [e1 0] and B =
1 2.4 3.0 —6 9] [0 e2}.

I
0.0 —3.0 —2 —5 I

I —4.8 6.3 4 —2
5. True

L
9.6 1.5 5 9] 6. False, if B is obtained by interchanging

2ri +r3 two rows of an n x n matrix A, then
—4r1 + r4 detB=—detA.

7. False, an n x n matrix is invertible if and
12.4 3.0 —6 91 only if its determinant is nonzero.
10.0 —3.0 —2 —5 I

Io.o 12.3 —8 16! 8. True
L0.0 —10.5 29 —27]

9. False, for any invertible matrix A,
4.1r2 + r3 —i
—3.5r2+r4 —.r4 detA1 =

detA

12.4 3 —6.0 9.01 10. False, for any n x n matrix A and scalar

p0.0 —3 —2.0 —5.01 c, detcA =
Io.o 0 —16.2 11. False, the determinant of an upper trian-
Lo.o 0 36.0 —9.5] gular or a lower triangular square matrix

— equals the product of its diagonal entries.

15. The (3, 1)-cofactor of the matrix is
12.4 3 —6.0 9.01

10.0 —3 —2.0 —5.01 (—1)
10.0 0 —16.2

3+1 det

Lo.o 0 0.0 = 1[(—1)(—1) — 2(2)] = —3.

(b) detA 19. The determinant of the given matrix is
= (—1)'(2.4)(-—3)(—16.2)(-—19.5)

1(_1)1+1 det= 2274.48 [2 —1]

CHAPTER 3 REVIEW + (_1)(_1)1+2 det

1. False, det
[a b] = ad — bc. + det
[c d
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1[2(3) — (—1)(1)J 31. We have
+ [(—1)(3) — 2(1)]

5 11
+ 2[(—1)(--1) - 2(2)] det [6 3]

x1
=—4.

det[

2 1]

—4 3j

23. We have — 5(3) — 1(—6) 21
— 2JIi —3 11 - fi —3 ii — 2(3) — 1(—4) 10

det J4 —2 =det 10 —3j
arid

—ii Lo ii —3]

_31
— det

[_2 51
=

3] 4 —6]

= 1[i0(—3) - (-3)(i1)] 3 - det

27. We have 2(—6) — 5(—4) — 8
= 0.8.

10 10
—1 c±5i

detf_3 3

Lc+6 3 C+7] 35. IfdetA=5, then

Ic+4 —1 c+51
=det( 3c+9 0 3c+11I

det2A=23(detA)=8(5)=r40

1—2c — 6 0 —2c because we can remove a factor of 2

= 3c + 9 3c +
from each row of 2A and apply Theo-

_2c_8j rem 3.3(b).

3 3c+111 37. If we add 3 times row 2 of the given= (c + 3) det [_2
—2c — 8] matrix to row 1, we obtain A. Since,

= (c + 3)[3(—2c — 8) — (3c + ii)(—2)] by Theorem 3.3(b), row addition opera-

tions do not change the value of the de-
= —2(c + 3). terminant, the determinant of the given

matrix equals det A = 5.
So the matrix is not invertible if and
only if c = —3.

41. IfB2=B,then
29. The area of the parallelogram in R2 de-

det B det B2 = det BB
termined by and is

= (det B)(det B) (det B)2.

Thus det B is a solution of the equation
x2=x,sothatdetB=lordetB=0.
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CHAPTER 3 MATLAB EXERCISES entries of U (rounded to 4 places af-
ter the decimal point) are —0.8000,

1. Matrix A can be transformed into an —30.4375, 1.7865, —0.3488, —1.0967,

upper triangular matrix U using only and 0.3749. Thus det A equals the prod-

row addition operations. The diagonal uct of these numbers, which is 6.2400.
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Subspaces and Their
Properties

4.1 SUBSPACES a generating set for the subspace is

1. A vector in the subspace has the form 2 _5

s for some scalar s. Hence

{ , }.
1 13. For the given vector v, we have Av $ 0.

is a generating set for the subspace. Hence v does not belong to Null A.

5. Since 17. Because
—1 1 o

2s— t =s 2 +t —1 , A
1 = 0

s+3t 1 3 1
0

a generating set for the subspace is
3

(—i 1) 1

2 —1 the vector
1

is in Null A.

3) 2

9. Since 1

2s — 5t 0 2 21. Vector u —4 belongs to ColA if
3r+s—2t — 3 1 2

r — 4s + 3t 1
+

—4 and only if Ax = u is consistent. Since
—r+2s —1 2 —7

is a solution of this system, u be-

+tl,
0 longs to ColA.

68
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5 Hence the general solution of Ax 0 is
25. Let u —4 . The equation Ax = u is

—6
x1r=3x2— x4—2x6
x2 free

—2x4—3X6
consistent; in fact, is a solution. x4 free

0 —2x6

Hence u is in the column space of A. X6 free,

29. The reduced row echelon form of the and the vector form of the general solu-
given matrix A is tion of Ax = 0 is

1 0 —2 1 3 —1 —201 13. 1 0 000 00 0 —2 —3
X2 +X4

Hence the general solution of Ax 0 is 0 1 0

0 0 —2

x1=2x3— X4 0 0 1

= —x3 — 3x4
x3 free Thus a generating set for Null A is
X4 free,

3 —1 —2

and so the vector form of the general 1 0 0

solution is 0 —2 —3

2x3—x4
1. 0

—x3—3x4
0 0 1

X3

35. The standard matrix of T is
2 —1

—1 —3 A=[1 2
X3

1
+X4

0
0 1 The range of T equals the column space

of A; so {1, 2, —1} is a generating set or
Hence a generating set for NUll A is the range ofT. Note that A is in reduced

2 —1
row echelon form. The general solution

—1 3 ofAx=Ois
1 ' 0 x1=—2x2+x3
0 1 x2 free

x3 free,
33. The reduced row echelon form of the

given matrix A is and its vector form is

1 —3 0 1 0 2 —2 1

0 0 1 2 0 3 . X2 X2 1 +x3 0
0 00012 0 1
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Hence 49. False, the row space of an m x n matrix
(1—21 Ii] is contained in

I
I iI,IoI
L oj Lii) 50. False, the column space of an m x n ma—

is a generating set for the null spaces of trix equals {Av: v is in
both A and T.

51. True 52. True 53. True
39. The standard matrix of T is

54. True
Ii 1 —11

A 10 0 0 I . 55. False, the range of a linear transforma-
L2 0 —1] tion equals the column space of its stan-

dard matrix.
Since the range of T equals the column
space of A, a generating set for the range 56. True 57. True 58. True
of T is

( Ifl 111 111 59. True 60. True 61. True
IoI,Iot,i ol 62. True
L2] Loi L—'i J

Since the reduced row echelon form of A 65. From the reduced row echelon form of
the matrix A in Exercise 32, we see thatis

Ii 0 —.51 the pivot columns of A are columns 1, 2,
0 1 — .5 , and 4. Choosing each of these columns

L0 0 and exactly one of the other columns
gives a generating set for the column

the vector form of the genereal solution space of A that contains exactly four
of Ax = 0 is vectors. (See Theorems 2.4(b) and 1.7.)

1.51 One such generating set is the set con-

I .51 taming the first four columns of A.

L
ij

69. The reduced row echelon form of the
Hence a generating set for Null A is given matrix A is

( 1.51 ( 11 0 2 01

I-si or lo 1 —3 01

IL2iJ lo 0 0

Lo 0 0 oj
43. True 44. True

The columns of A form a generating set
45. False, {0} is called the zero subspace. for the column space of A. But the ma-

trix above shows that the third column46. True 47. True
of A is a linear combination of columns

48. False, the column space of an m x n ma- 1 and 2. Hence, by Theorem 1.7, a gen-
trix is contained in erating set for ColA containing exactly
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3 vectors is 91. Denote the given set by V. Since

—2 —1 3 2ul+5u2—4u3=0
4 1 —4

5 ' 2 ' —5 for u1 = u3 = 0, we see that 0 is
—1 0 1 inV.LetuandvbeinV.Then

Ii 11
2U1+5U2—4U3=0

73. Consider A = I. The reduced row
L22i

r 1
and

echelon form of A is R= 11. Since
L0 Oj 2v1+5v2—4v3=0.

belongs to ColA but not to Col R, Now
U1 + V1

we see that ColA Co1R. U+V U2+V2
77. Let V and W be subspaces of - Since U3 + V3

0 is contained in both V and W, 0 is and
contained in V fl W. Let v and w be
contained in VflW. Then v and ware 2(ui + vi) + 5(u2 + v2) — 4(u3 + v3)
contained in both V and W, and thus (2u1 + 5u2 — 4U3)
v + w is contained in both V and W. + (2v1 + 5v2 — 4v3)
Hence v + w is contained in V fl W. Fi-

0 0nally, for any scalar c, cv is contained in +

bothVandW;socvisinVflW. It =0.
follows that V fl W is a subspace of R.Th. So u + v belongs to V. Thus V is closed

lii 101 . under vector addition.
81. The vectors

I and I I
are in the set,

[0] L1J For any scalar c,
but their sum is not.

Ct'1
83. If 0 were in the set, then there would be =

scalars s and t such that
3s =2
2s+ 4t= 0 and

—t 0. 2(cui)'+ 5(cu2) — 4(cu3)

Since the system has no solutions, 0 is = c(2u1 + 5u2 — 4u3)
not in the given set. c(0)

87. Consider 0.

2 6 Thus cu belongs to V, and hence V is
v = 1 and 3v = 3 also closed under scalar multiplication.

2 6 Since V is a subset of that contains
The vector v belongs to the given set 0 and is closed under both vector ad-
because 2 = 1(2). However, 3v does not dition and scalar multiplication, V is a
belong to the given set because 6 3(6). subspace of
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95. Let V denote the null space of T. Since
T(0) 0, 0 is in V. If u and v are in
V, then T(u) = T(v) 0. Hence

T(u + v) = T(u) + T(v) =0+0=0;

so u + v is in V. Finally, for any scalar
c and any vector u iii V, we have

T(cu) = cT(u) = c(0) = 0;

so cu is in V. Thus V is also closed
under scalar multiplication. Since V is
a subset of W" that contains 0 and is
closed under both vector addition and
scalar multiplication, V is a subspace of

99. Because A0 = 0 B0, the zero vector
is in V. Assume that u and v are in V.
Then Au = Bu and Av By. Hence

A(u+v) =Au+Av
= Bu + By = B(u + v).

Thus u+v is in V, and so V is closed un-
der vector addition. Also, for any scalar
C,

A(cu) cAu = cBu = B(cu).

Hence cu is in V, and V is closed under
scalar multiplication. Since V is a sub-
set of that contains 0 and is closed
under both vector addition and scalar
multiplication, V is a subspace of

101. (a) The system Ax u is consistent
since the reduced row echelon form
of [A u] contains no row whose only
nonzero entry lies in the last col-
umn. Hence u belongs to ColA.

(b) On the other hand, Ax v is not
consistent, and so v does not be-
long to ColA.

4.2 BASIS AND DIMENSION

1. The reduced row echelon form of the
given matrix A is

[1 —3 4 —2

00 0.
(a) The pivot columns of A form a ba-

sis for ColA. Hence

{[2]}
is a basis for the column space of
A.

(b) The null space of A is the solution
set of Ax = 0. Now the general
solution of Ax 0 is

= 3x2 — 4x3 + 2x4
x2 free
x3 free
x4 free.

Thus the vector form of the general
solution is

X4

3

1

0

0

Hence

—41 121
01

+X3

[
101

oj Lii

3 —4 2

1 0 00' 1'O
0 0 1

is a basis for the null space of A.

x4
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5. The reduced row echelon form of the 7. The reduced row echelon form of the
given matrix A is given matrix A is

Ii —2 0 21
Ii 0 0 41

lo 0 1
to 1 0 41

tO 0 1 il•
[o 0 0 0] [o 0 0 oj

(a) Hence the first and third columns (a) Hence the first three columns of the
of the given matrix are its pivot given matrix are its pivot columns,
columns, and so and so

{ 1_li 1 ii I
21 01 1—511.

t
i-il ,liI>

I I—if' I-i, I
L

2]
L J

is a basis for the column space of is a basis for the column space of
A. A.

(b) The general solution of Ax o is (b) The null space of A is the solu-
tion set of Ax = 0. Since the vec-

Xi = 2X2 — 2x4 tor form of the general solution of
x2 free Ax=Ois
X3 = X4 Ix1l 1_4]
X4 free. k21 I—41= x4

1x31 H'Thus the vector form of the general Lx4J L
1]

solution is
the set

{ r_41
F2x2-_2x41

1—41

}

1X21
I I_ilIX31 I I

L 'iLx4] L X4 j
is a basis for the null space of A.

f21 1_21
ii I 01 11. The standard matrix of T is

—X2 fof I ii . 1 —2 1 1

Lo] L '-i A = 12 —5 1 31

Hence
Li —3 0 2]

(a) The range of T equals the column
(121 1_21 'I space of A; so we proceed as in Ex-

) Ii I I 0 I I ercise 7. The reduced row echelon
lot'' formofAis
L0] L 'iJ 11 0 3 —11

1 1 —ii.
is a basis for the null space of A.

LO o o oj
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Hence the set of pivot columns of (b) The vector form of the general so-
A, lutionofAx=Ois

( 111 1_21
lxii

L1 1x21
1x31

is a basis for the range of T.
(b) Since the null space of T is the Lx5i

same as the null space of A, we
1 101 r 21

must determine the vector form of I I I I

1—31the general solution of Ax = 0. I IX3 ii +X4
0

I

Oj
L

1][xii 131 I-il
1x21 + lii Thus
1X31

1—21 101 I

Lx4] L 0] Li] { F ii 101 1 21

Hence I ii, IoI,l ol "
I

I 01 1
111

J Ii! i L
oj Loj L i]J

' I i ' lol
I' is a basis for the null space ofT.

L oi LiU
17. Since

r ris a basis for the null space of T.
1—28] = 1—2]

15. The standard matrix of T is

Ii 2 3 0 41 and { } is linearly independent,

A 3 1 —1 0 —3 I , this set is a basis for the given subspace.
4 1 0 —2]

21. The general solution of xi —3x2+5x3 =
and the reduced row echelon form of A 0 is

3x2 — 5x3
is

Ii 0 —1 0 —21 x2 tree

lo 1 2 0 x3 free.

0 0 0 0j Thus the vector form of the general so-
lution is(a) As in Exercise 9, the set of pivot

columns of A, [xii I3x2 — 5x31

1 2
1x21=I x2 I

{
[3]

}
[x3J [ X3

7 4 131 1_51
=x2 Iii +X3 ol

is a basis for the range of T. Loj L 1]
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Hence 34. True
( 131 1_51 1

1 I , I 01 35. False, a basis for a subspace is a gener-
L0j L

1] J ating set that is as small as possible.

is a basis for the given subspace. 36. True 37. True 38. True
25. Let

11 2 ii 39. True
A=12 1 —41.

Li 3 3] 40. False, the pivot columns of any matrix
form a basis for its column space.

Then the given subspace is Col A, and so
a basis for the given subspace can be ob-
tained by choosing the pivot columns of 41. Faise, if A

=
then the pivot

A. Since the reduced row echelon form columns of the reduced row echelon form
of A is

U _31 of A do not form a basis for ColA.

0 o]

this basis is 43. False, every generating set for V con-
tains at least k vectors.(r11

,IiI 44. True 45. True 46. True

47. True 48. True 49. True

29. As in Exercise 25, form a 4 x 5 matrix 50. False, neither standard vector is in the
whose columns are the vectors in the

bspace {
[u11 e u1 + u2 = o}.given set. The pivot columns of this ma- 5U
U2j

trix form a basis for the given subspace.
Since the reduced row echelon form of 51. True 52. True
this matrix is

53. A generating set for W" must contain atIi 0 —5 2 01 least n vectors. Because the given set is
1 3 —1 Oj

a set of 3 vectors from 1Z4, it cannot be
0 0 0 ii'

a generating set for
Lo 0 0 0 0]

one basis for the given subspace is 55. It follows from Theorem 4.5 that every
basis for RI' must contain exactly n vec-

{ r ii 1 11 1 01

}

tors. Hence the given set of 2 vectors
I 0 I I 1 I 1 I cannot be a basis for R3.

[ 2]
L

1]
L

2] 57. By property 4 of linearly dependent and
independent sets in Section 1.7, a set of

33. False, every nonzero subspace of RI' has more than 2 vectors from fl.2 must be
infinitely many bases. linearly dependent.
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61. We proceed as in Example 4. Let W be
the subspace in Exercise 29, A denote
the matrix whose columns are the vec-
tors in Exercise 29, and 13 be the set of
three vectors given in Exercise 61. For
each vector v in 13, the equation Ax = v
is consistent. Hence 13 is contained in
W. Moreover, the reduced row echelon
form of the matrix whose columns are
the vectors in 13 is [ei e2 e3}; so 13 is
linearly independent. Finally, Exercise
29 shows that the dimension of W is 3,
which equals the number of vectors in 13.
Thus the 3 conditions of the boxed state-
ment on pages are satisfied, and
so 13 is a basis for W.

65. Let A denote the matrix in Exercise 7
and B be the set of three vectors given
in Exercise 65. Because the column
space of a matrix equals the span of its
columns, Exercise 65 can be worked in
the same way as Exercise 61. For each
vector v in B, the equation Ax v
is consistent, and so 13 is contained in
ColA. Moreover, the reduced row ech-
elon form of the matrix whose columns
are the vectors in 13 is tej e2 e3}; so B is
linearly independent. Finally, Exercise
7 shows that the dimension of ColA is
3, which equals the number of vectors in
13. Thus the 3 conditions of the boxed
statement on pages 248—249 are satis-
fied, and so B is a basis for W.

Since 13 is a linearly independent gen-
erating set for V, we see that B is a
basis for V. Hence the dimension of V
equals the number of vectors in B, which
is n — 2.

Vector v belongs to V = Span A. Thus
B = {v, u2, u3,.. . , is a subset of
V, because u2, 113,. . . , belong to A,
which is a subset of V.

We claim that B is linearly independent.
Suppose that c1, c2,.. . , are scalars
such that

Civ + + + ekUk = 0.

+ C2U2 + = 0

that is,

ciui + (c1 + c2)u2 +
+ + Ck)Uk = 0.

Since A is linearly independent, it fol-
lows that c1 = 0, ci + C2 = 0,

c1 + Ck = 0. Hence c1 = c2 =
0, proving that 13 is linearly in-

dependent. Since 13 contains k vectors,
it follows from Theorem 4.7 that 13 is a
basis for V.

(a) Because V and W are subspaces of
0 is in both V and W. Assume

that u is in both V and W. Then

ating set for V, for if v is in V, then

0
0

v V3 = v3e3 +

vn

Then

69. Let V denote the given subspace of W1.
Clearly 13 {e3, e4,. . . , is a subset
of V, and B is linearly independent be- 77.
cause every column of je3 e4 is
a pivot column. Moreover, 13 is a gener-
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u = vi + w1, where v1 = u and
w1 0, and also u = v2 + w2,
where v2 = 0 and w2 = u. The
uniqueness of the representation of
u in the form v + w for some v in
V and some w in W implies that
U V1 = v2 = 0. Hence the only
vector in both V and W is 0.

(b) Let = {vi, v2,.. . , } be a ba-
sis for V, 132 {wi, W2,. . . , Wm}
be a basis for W, and 13 =
{vi, v2, .. ., w1, w2, . .. ,
Note that dim V = k and
dim W m. We will show
that 13 is a basis for so that,
by Theorem 4.5, the number of
vectors in 13 must be n, that is,
dim V+dim W=k+rn=n.
First we show that 13 is linearly in-
dependent. Let a1, a2,.. . , ak and
b1, b2,. .. , bm be scalars such that

a1v1 +a2v2 +akvk
+ b1w1 + b2w2 + . +
=0.

thenal=a2=...=ak=0
because is linearly independent.

Similarly, b1 112 ... = bm 0.
Thus B is linearly independent.
Next, we show that 23 is a generat-
ing set for 1V2. For any u in W2,
there exist v in V and w in W such
that u = v + w. Because is
a basis for V, there exist scalars
a1,a2,.. .,ak such that

V = + a2v2 + + akvk.

Similarly, there exist scalars
bi,b2,...,bm such that

w b1w1 + b2w2 + . . + bmWm.

Hence u = v + w is a linear combi-
nation of the vectors in B, and so 13
is a generating set for Because
13 is a linearly independent gener-
ating set for RI', B is a basis for
RI', completing the proof.

1 —1 2 1

A= 2 —2 4 2

—3 3 —6 —3

Since the reduced row echelon form of A
is

1 —1 2 1

o ooo,
o ooo

the vector form of the general solution
of Ax = 0 is

81. Let

Let

V = a1v1 + a2v2 + . +

and

w = b1w1 + b2w2 + .. + bmWm.

Then v = —w. Because 0 is the
only vector in both V and W, it
follows that v = 0 and w = 0. But
if

V a1v1 + a2v2 + ... + akVk
=0,

x2

Hence

1

1=x2

0

—2

0
+X3

0

—1

0
+X4.

1

1 —2 —1

1 0 00' 1' 0
0 0 1
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is a basis for Null A. Hence

I 2.91 I

10 1 —2 —ii
1.01 , I o.oI (.

Since the reduced row echelon form of

{

1 1.21 1_ 1.4]

12 1 0
I IIi 0 1 ol
L

0.0]
L

1.0])
0 0 1]

is a basis for Null A.
is

11 0 1 01
4.3 THE DIMENSION(0 1 —2 ol

lo 0 0 n , OFSUBSPACES
ASSOCIATED WITH A MATRIX0 o oj

it follows from Exercise 78 that 1. (a) The dimension of ColA equals

110] 111 1_il rankA, which is 2.

j I 2 I 1 $ I 0
I

(b) The dimension of Null A equals the

1 0 0
nullity of A, which is 4 — 2 = 2.

1 [oj [oj
L

ij (c) The dimension of Row A equals
rank A, which is 2.

is a basis for Null A that contains £. (d) The dimension of Null AT equals
the nullity of AT. Because AT is

85. The reduced row echelon form of A a 4 x 3 matrix, the nullity of AT
equals

Ii 0 —1.2 0 1.41
lo 1 2.3 0 —2.9 . — rank AT = 3 rank A

0 0.0 1 0.7] =3—2=1.

(a) As in Exercise 7, 5. Clearly rank A = 1. So, as in Exercise
1, the answers are:

(1 o.il 10.21 1 0.51 } (a) 1 (b) 3 (c) 1 (d) 0.

I
I 0.71, 0.91,1—0.51

[0.5] [—o.5j 9. The reduced row echelon form of A is

Ii 0 6
is a basis for the column space of

to 1 —4 ii
A.

L0 0 0 0]
(b) The vector form of the general so-

lution of Ax = 0 is Hence rank A = 2. As in Exercise 1, the
answers are:

Ixil 1 1.2] 1441 (a) 2 (b) 2 (c) 2 (d) 1.
1X21 1—2.31 I 2.91

I
= 1.0! + x5 I 0.01 . 13. Every vector in the given subspace V

1X41 I o.ol H071 1_2s1
hastheformi l=s

[x5] [ o.oj L L

[1] for some
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ATis
scalars. Hence 13= is agen- [1 0 1 0]
erating set for V. But a set containing I 0 1 —1 0!
a single nonzero vector is linearly inde- I 0 0 0 1

pendent, and so 8 is a basis for V. Thus 0 0 0 01

the dimension of V equals 1, the number 0 0 0 01

of vectors in 8. L0 0 0 0]

Because the pivot columns of AT are
17. The reduced row echelon form of A is columns 1, 2, and 4, it follows that rows

Fi 0

3I

1, 2, and 4 of A are linearly independent.
R

1 2 Hence

(Iii 1 21
1

01)

formed from the nonzero rows of R:
I I

—1 I 1

By Theorem 4.8, a basis for Row A is

j

01 —1 1

I

I i
1 I

L
4]

L 9] L-3i J
L3] L2] J

is a basis for Row A consisting of rows
of A.21. Proceeding as in Exercise 17, we see that

a basis for Row A is 33. The standard matrix ofT is and

I

I ii 1 01 1
I

its reduced row echelon form is 12.iol
I

ii I oil
I_31 ' 21' I

umn space of A, the dimension of
0

I
I i

I

(a) Since the range of T equals the col-

I the range of T equals the rank of
I

ii I_li
LL 3] L—2j

A, which is 2. Thus, by Theorem
2.10, T is onto.

(b) The null space of T equals the null
25. It follows from Exercise 17 that the di- space of A. Hence the dimension

mension of Row A equals 2. Hence a ba- of the null space of T equals the
sis for Row A must consist of 2 vectors, nullity of A, which is 0. Thus T is
and so

(1 ii 101
one-to-one by Theorem 2.11.

I
l—il, 37.

L L2J [i 01

is the only basis for Row A consisting of 2 1

rows of A. [0 4]
and its reduced row echelon form is

29. Exercise 21 shows that the dimension of
Row A equals 3, and so a basis for Row A 11 01

consists of 3 linearly independent rows lo 1

of A. The reduced row echelon form of Lo 0]
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(a) As in Exercise 33, the dimension 56. False, the dimension of the null space of
of the range of T is 2. Since the any in x n matrix A plus the dimension
codomain of T is T is not onto. of its column space equals

(b) As in Exercise 33, the dimension of
the null space of T is 0. Hence T is rank A + nullity A

one-to-one. = rank A + (n — rank A) = n.

57. True 58. True 59. True
41. False, the dimensions of the subspaces

V=Span{e1}andW=Span{e2}of 60. True
lZ2arebothl butV$W. . 361. Taking s = and t = we have

42. True 43. True 2s—t] — Iii.
s+3tj — [0]

44. False, the dimension of the null space of
a matrix equals the nullity of the matrix, and taking s = 4 and t = 4, we have

45. False, the dimension of the column space [28
— tl = 10

of a matrix equals the rank of the ma- L5 + 3tj L1

trix. Hence B is contained in V. Moreover, B
is linearly independent. Since the vec-

46. True 47. True tors in V have the form

48. False, consider A
=

and the = S + t

reduced row echelon form of A, which
the set

is a basis for V. Hence dimV = 2.

Therefore B is a basis for V because the
50. False, the nonzero rows of the reduced 3 conditions of the boxed statement on

ivw echelon form of a matrix form a ba- pages 248—249 are satisfied.
sis for its row space. 65. Takingr=2,s==1,andt=1,wehave

1 0 0 —r+3s 1

51. False, consider 0 0 0 . 0 0010 s—t 0'

52. False, consider
?

taking r = 5,s=2, and t= 3, we have

—r+3s 1

53. True 54. True 0 — 0

s—t — —1

55. False, consider any nonsquare matrix. r — 2t —1
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and taking r 2, s = 1, and t 0, we is a basis for Row A. Also, the vec-
have tor form of the general solution of

F—r + 3sl Iii Ax = 0 is
I 0 1101

s—t
I
— Iii. 1—61 1 01

Lr—2ti L2] IX2I I 41 I—u
I IX3

Hence B is contained in V.
I I

1 I
+ 01

LX4J LU] Lii
Since the reduced row echelon form of

ThusIi 1 ii

lo —1 ii I—il

lo o ol

{L—61

r 01

}
LU —1 2] il'l 01

0] [ ujis
ri 0 01
I 1 0 I is a basis for Null A.

0 0

1]

, (b) It is easily checked that set

L0 0 0
{ ru r 01 1—61 1

B is linearly independent. The vectors
j 0 I 1 I 4

I I —1 I I.in V have the form I 6]' I ' 1 ' I 0 I (

1_r+381 1—il
1

01
[o [1] [ o] [ i]Jlo I lol 0 0

r — 2t]
L

1] [oj [—2] contains 4 vectors, it is a basis for
L

—
= r

ol +8
1 —1 . is linearly independent. Since it

by Theorem 4.7.
It is easily checked that the set

73. Let v be in the column space of AB.
{ 1—il 131 1 01 Then v = (AB)u for some u in

I 0 I I 0 I I 01 } Consider w = Bu. Since Aw =
I ol' hI ' I—il A(Bu) (AB)u = v, v is in the
L

1] L0] L—2j umn space of A.

is linearly independent, and so it is a ba- 77. Since the ranks of a matrix and its trans-
sis for V. Hence dim V = 3. It follows, pose are equal, we have
as in Exercise 61, that B is a basis for
V. rankAB rank (AB)T = rank BTAT.

69. (a) Refer to the solution to Exercise 9.
By Theorem 4.8, By Exercise 75,

{ Iii 1 01 rank BTAT <rank BT = rank B.
lo' I ill
6 I I I Combining the preceding results yields

Lo] 1 ij J rankAB <rank B.
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= T(v) + T(u).

Also, for any scalar c,

/
T(cv)=T(

= (evi)ui + ... + (cvk)uk

= cT(v).

Thus T is a linear transformation.
(b) Since {ui, u2,.. . , is linearly

independent,

implies x1 = = = = 0.
Thus T(x) = 0 implies x = 0, so
that the null space of T is {0}. It
follows from Theorem 2.11 that T
is one-to-one.

(c) For every x in Rk, T(x) is a lin-
ear combination of u1, u2,.. . ,

and hence is a vector in V. Con-
versely, if v is in V, then we have
V =

a1

a2

ak

we have T(a) = v. Hence
every vector in V is the image of a
vector in Thus the range of T
isV.

85. (a) Let B be a 4 x 4 matrix such that
AB =0. Then

0= AB A[b1 b2 b3 b4]
= [Ab1 Ab2 Ab3 Ab4].

So each column of B is a solution of
Ax = 0. The reduced row echelon
form of A is

and so the vector form of the gen-
eral solution of Ax = 0 is

I ii 121

1X21 I—il Iii

L

I=x3' 1+X41x3i I 101
X4j

L
0] Lii

1200
B—

—1 1 0 0

— 10000100
is a 4 x 4 matrix with rank 2 such
that AB =0.

(b) If C is a 4 x 4 matrix such that
AC = 0, then the preceding ar-
gument shows that each column

81. (a) Let v and w be in fljc• Then

V1 + WI

V2 + W2
T(v+w)=T

Vk + Wk

(vj + wi)ui
+ (vk + Wk)Uk

= (viui + ... + vkUk)

+(W1U1+•••+WkUk)

10
01
00
00

—1 —2

1 —1

0 0'
0 0

Hence
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of C is a vector in NullA, a 2-
dimensional subspace. Hence C
can have at most two linearly in-
dependent columns; so rank C � 2.

4.4 COORDINATE SYSTEMS

1. Because we see that

v—41 +31_li _ 111

L

Equivalently, if B denotes the matrix
whose columns are the vectors in B, then

1 —1114 Iiv = B{v]8 = —1 2] [3 [2

5. As in Exercise 1, we have

v = 2
[—U

+ [1] =

9. As in Exercise 1, we have

0 —1 1

v = (—1) 1 + 5 0 + (—2) 1

1 1 1

—7

=—3.
2

13. (a) Let B be the matrix whose columns
are the vectors in B. Since the re-
duced row echelon form of B is 13,
B is linearly independent. So B is
a linearly independent set of 3 vec-
tors from and hence B is a basis
for by Theorem 4.7.

(b) The components of [v]8 are the co-
efficients that express v as a lin-
ear combination of the vectors in
8. Thus

17. By Theorem 4.11,

3
[v]8= 0

—1

r 1 _11' 1 51 [71

2] [—3] = [2]

21. By Theorem 4.11,

0—11' 1 —5

v]13= 1 0 1 —3 = 1

1 1 1 —2 2

25. The unique representation of u as a lin-
ear combination of b, and b2 is given
by the coordinate vector of u relative to
{b1,b2}, which is

1—2 31' 1a'[b, b2]'u=
L

—5] Lb]

— 1—5a—3b
— L—3a—2b

Thus

u = (—5a — 3b)b1 + (—3a — 2b)b2.

29. Proceeding as in Exercise 25, we have

[b, b2 b3]'u

1 —1 —2
—1

a
=0 1 0 b

1 0 —1 c

—a—b+2c
= b

—a—b+c
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Thus (c) From (b), we see that

u = (—a b + 2c)b, + bb2 A = [B1e1
+ (—a — b + c)b3. = B'[ei e2] = B'12 = B—'.

31. False, every vector in V can be uniquely So A and B are inverses of each
represented as a linear combination of other.
the vectors in S if and only if S is a
basis for V. 55. Let v = [x]

and
= [x,],

where

32. True 33. True 34. True is the basis obtained by rotating the vec-
tors in the standard basis by 3Q0• Then

35. True 36. True 37. True

38. True 39. True 40. True [x,] = (A300)'

41. True 42. True 43. True i r
= = 2 2 1X

44. False, = 4

45. True 46. True 47. True Hence

48. False, the graph of such an equation is ,
a hyperbola. Y — 2X + 2

49. True 50. True 59. Let B be the matrix whose columns are
the vectors in /3. Then

51. (a) Since the reduced row echelon form
Ii 21 . 11 01 . . Ix'] —1 xl {—5 —31 Ix

of
L2 3] [o i]' B isa linearly B

yj = [—2 —1] [y
independent subset of 7?,2 contain-
ing 2 vectors. Hence B is a basis —5x —

for by Theorem 4.7. L 2x —

(b) Let B = [b1 b2j. Then Hence
= —5x —

=
= [1]

y' = —2x — y.

63. Let
and 11 0

[e215 = B'e2
=

B = 0 1 -2

Then, as in Exercise 55,
Hence

A=
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—1 1 2 x
= 2 —1 —2 y

1 —1 —1 z

lxi lx'i
and [v]B

=
where

B is the basis obtained by rotating the
vectors in the standard basis by 60°. As
in Example 4,

[xl
I I =v=A600[vJB

1

1
—

71. Let B be the matrix whose columns are
the vectors in B. Then

1 —1 0 x'
= 3 1 —1 y'

0 1 1 z'

x=
y = 3x' + y' — z'
z= y'+z'.

79. As in Exercise 55, we have

1XIAT 2 2 X
600

Thus

f lxi— _I 21

—

Thus
x'=

Rewrite the given equation in the form
4(x')2 — 9(y')2 36. and substitute the
preceding expressions for x' and y' to
obtain

—23x2 — + 3y2 = 144.

Hence

67. Let v =

Thus

—x + y + 2z
= 2x — y — 2z

z'= x—y— z.

Hence
x=

x'=

Rewrite the given equation in the form

25(x')2 + 16(y')2 = 400.

Then substitute the expressions for x'
and y' into this equation to obtain

912 = 400,

that is,

= 1600.

83. As in Exercise 79, we have
lxi — B xi — I x' + 3y'

— — L2x' + 4y'

Hence
x= x'+3y'

y = 2x' + 4y'.

75. Let
1 —1 0

3 1 —1

0 1 1

As in Exercise 67, we have

x
y =v=B[vJ8
z
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87'. As in Exercise 67, we have 99. Consider

Ixl [xl] — [4 —41 ix'] A = {ei,e2} and B =
=

— L4 4] Then [el]A = e1 and = e1, but
Thus

X = — 103. (a) Let B be the matrix whose columns

y = 4x' + are the vectors in B. By Theorem
4.11,

Substituting these expressions for x and
y into the given equation produces T(v) [v]13 = B'v

4(x')2 — 10(y1)2 = 20, for every vector v in Hence

that is, T is the matrix transformation in-
duced by B1, and so T is a linear

2(x')2 — 5(y')2 = 10. transformation.
(b) Because the standard matrix of

91. As in Exercise 87, we have T is B—', an invertible matrix,

x
A30

i ii the columns of the standard ma-
. trix of T are linearly independent

L 2 J and form a generating set for
Thus Hence T is one-to-one and onto by

x = 4x' —
Theorems 2.11 and 2.10.

+ 107. Suppose that A {ui,.. . , Uk} is a lin-
early independent subset of and let

Substituting these expressions for x and ci,. .. , be scalars such that
y into the given equation produces

ci[u1113 + + Ck[UkIB = 0.
16(x')2 — 12(y')2 = 240,

that is, Define T: by T(v) = [v]8 for
all v in Then T is a linear transfor-

4(x')2 — 3(y')2 60. mation by Exercise 103(a), and so

95. By the definition of [VIA, we have ciT(ui) + ... + CkT(uk) = 0

v=a,u1 T(ciui = 0.

a1
= —(ciui) + ... + Therefore c1u1 + ... + ckuk is in the

Ci Cn null space of T. Since T is one-to-
Hence one by Exercise 103(b), it follows thatra1,— c1u1 + + CkUk 0. Hence the un-

Cl ear independence of {ui,.. . , } yields

[VJB — : C1 = = Ck 0. It follows that
— .

. . , is linearly inde-
pendent.

L Cn -I The proof of the converse is similar.
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111. Let B be the matrix whose columns are If B is the matrix whose columns are the
the vectors in B. Since [v]B = B'v, we vectors in 8, then, by Theorem 4.12, we
must find a nonzero vector v in R.5 such have

that

[T]B=B*4B= 1 2

B'v=.5v 1 1

— .5v = 0 7. The standard matrix of T is
(B' — .515)v = 0.

0 4 0

Because the reduced row echelon form A 1 0 2

ofB'—.515is 0 —2 3

1 o o o o IfB is the matrix whose columns are the

o i o 0 —2 vectors in B, then, by Theorem 4.12, we

o 0 1 0 2 have

o o 0 1 —2 0 —19 28
o 0 0 0 0 [T]B = B'AB = 3 34 —47

the vector form of the general solution 3 23 —31

of(B'—.515)x=Ois
11. Let A be the standard matrix of T and

B be the matrix whose columns are the

2
vectors in B. Then, by Theorem 4.12,

=X5 —2 wehave

X4 2 10 —19
i A

= [ 3

So by taking . .

15. As in Exercise 11, if B is the matrix
0 whose columns are the vectors in B, then

2 the standard matrix of T is
v= —2 2 5 10

2 = —6 1 —7
1 2—2 0

we have {v]B .5v.
.19. False, a linear operator on is a lin-

ear transformation whose domain and
4.5 MATRIX REPRESENTATIONS codomain both equal

OF LINEAR OPERATORS 20. True 21. True

22. False the matrix representation of T3. The standard matrix of T is
with respect to B is

A
=

[T(b2)J5 ...
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23. True Likewise

24. False, [TI8 = B'AB. 2

25. False, [TI8 = B'AB. [T(b2)]8 = 0

26. True
and

27. False, T(v) = v for every vector v on L. 3

[T(b2)]8 = 0
28. False, T(v) = v for every vector v on L.

1

29. False, there exists a basis B for such
1 0

Hence
that [T]8 = 0 2 3

30. True {T]8 = —5 0 0

4 —7 1

31. False, B consists of one vector on L and
one vector perpendicular to L.

1

32. False, an n x n matrix A is said to be
47. (a) Let b1 = and b2 = {2]

similar to an n x n matrix B if B Because T(b1) = 0b1 + lb2 and
P'AP for some invertible matrix P. T(b2) = 3b1 + 0b2, we have

33. True 34. True 35. True r \1 \1 I'T'fk
= LI1

36. True
_1° 3

37. False, [T18[v18 = [T(v)]8. — Li 0

38. True (b) The standard matrix A of T sat-

39. Because T(b1) = b1 + 4b2, the coordi- sifies A = B[T]8B' by Theorem
nate vector of T(b1) with respect to B is 4.12. (Here B = {b1 b2].) Hence

Similarly, the coordinate vector of
A — fi 3 fl -1

T(b2) with respect to B is Hence

—

2iL1 0 Li 2j

= [T(b2)]8] = I.
1 1

[i —3 (c) Because A is the standard matrix
[4 0 ofT, we have

43. Since T(b1) 0b1 —5b2+4b3, we have T(x) = A 1—1 21 [x1
x2] [1 1][x2

=

=
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51. Let —xi+2x2+x3
= 2x2—x3

1 0 1 x1—x3
b1 = 0 , b2 = 1 , and b3 = 1

1 o o 55. From Exercise 39, we have

(a) Since T(b1) = 0b1 — b2 + 0b3, we [T]B
=have

Hence, by the comment preceding Ex-
0 ample 1, we have

[T(bl)}B= 1

o [T(3b1 — 2b2)}B = — 2b2}5

Likewise = [Tj5
=

= Therefore T(3b1 — 2b2) = 9b1 + 12b2.

2 Equivalently, using the linear transfor-
mation properties of T, we have

and
T(3b1 — 2b2) = 3T(bi) 2T(b2)

1 = 3(bj + 4b2) — 2(—3b1)
= = 9b1 + 12b2.

Hence 59. Proceeding as in Exercise 55 and using
the answer to Exercise 43, we have001

[Tj5= —1 0 2 [T(2b1—b2)]5=[T]8[2b1—b2]5
020 0 23 2

(b) The standard matrix A of T is =
given by

—2

A B[T]8B' = -10

—12 1
15

= 0 2 —1 , Therefore
1 0 —1

T(2b1 — b2) = —2b1 — lOb2 + 15b3.
where B = [b1 b2 b3].

63. For any v in we have 1(v) = v.
(c) For any vector x in 7Z3, we have Hence if B = {b1, b2,. , then

T(x) = Ax [118 = [EI(bl)JB

—1 2 1 x1 =
0 2 —1 x2
1 0 —1

= [ei =
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=
and b2

[i].
Then b1 lies on the line with equation
y = —2x, and b2 is perpendicular to this
line. Hence if B = {b1, b2}, then

[i 0
—1

So the standard matrix of T is

T11"
\\

— —.6x1--.8x2

and b2 [i].

Then b1 lies on the line with equation
y = —3x, and b2 is perpendicular to this
line. Hence U(b1) = b1 and U(b2) = 0,
so that for B {b1, b2}, we have

0

o

It follows that the standard matrix of U
is

B[U]8B'==

where B = [b1 b2]. Therefore

x1 .1x1—.3x2
x2 ) — —3x1+.9x2

75. We must determine a basis for 7Z.3 con-.
sisting of two vectors in W and one vec-
tor perpendicular to W. Solving the

equation defining W, we obtain

x = 4y — 3z

y free
z free.

Hence the vector form of this general so-
lution is

x 4 —3

y =y I +z 0

z 0 1

1 4 —3

1, 0

1

1

is a basis for W. Also, the vector —4

3

whose components are the coefficients in
the equation defining W, is perpendicu-
lar to W. Therefore

1 4 —3 1

1 , 0 , —4

1 3

is a basis for R.3 consisting of two vectors
in W and one vector perpendicular to
W. For every vector u in W, Tw(u) =
u, and for every vector v perpendicular
to W, Tw(v) = —v. Hence

10 0
0 1 0
0 0 —1

Thus, if B is the matrix whose columns
are the vectors in B, then by Theorem
4.10, the standard matrix of Tw is

A = B[TW]BB'

13
—3

i[12 4

—3 12
121.

—31

4j

67. Take

Thus

where B = [b1 b2J. Thus

71. Take
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It follows that and

/ lxii \ lxii [Uw(b3)]8 = [O]B = 0.

Tw (x21) =A 1x21 Therefore
Lx3] Lx3]

= [ei e2 0]
I 12x1+4x2—3x3 1

= 4x1 — 3x2 + 12x3 I

. ri 0 01

L—3x1+12x2+4x3] =
0 0J

79. We proceed as in Exercise 75, using the
basis (c) Let B = [bi b2 b3]. Then by The-

orem 4.12, the standard matrix of
(r21 r41 1 i.

L0] L'i [—4 B[UW]BB1

Then
14

2 10 6L
1

[13 —2 31

( lxi]\ 3 6 5]
Tw (x2

Lx3
(d) Using the preceding standard ma-

trix of Uw, we have
r 19x1 + 4x2 + 8x3 1

L8x1_16x2_h1x3i Uw
(\

81. Let l[13xi_2x2+3x31
I_21

[31

14
+ lOx2 + 6x3 I

b1= I ii, oj , 3x1+6x2+5x3 ]

[ o] 1 85. We proceed as in Exercise 81, using the
basisand Iii

13 5 1
= I 21.

= {
11,101,

}.[3] [o] [i]
(a) Since b1 and b2 lie in W, we have

Then= b1 and Uw(b2) = b2.
Moreover, since b3 is perpendicular / lx1i \
toW,Uw(b3)0. Uw (

(b) By definition, the columns of \ LX3J /
are 134x1 +3x2+5x31

=— '3x1+26x2—15x31[Uw(bi)jB = [bl]B e1, 35
— 15x2 + lox3]

[Uw(b2)]B = [b2]5 = e2,
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89. Let T be a linear operator on A be
the standard matrix of T, B be a ba-
sis for and B be the matrix whose
columns are the vectors in B. Because
B is linearly independent, B is invertible
by the Invertible Matrix Theorem.

By Theorem 4.12, A = B[Tj5B-1.
Hence if is invertible, then A is a
product of invertible matrices, and so A
is invertible by Theorem 2.2(b). Thus T
is invertible by Theorem 2.13.

Conversely, if T is invertible, then A is
invertible by Theorem 2.13. But, by
Theorem 4.12, [T]8 = B'AB, and so
[T]13 is a product of invertible matri-
ces. Thus fT]8 is invertible by Theorem
2.2(b).

91. Let A be the standard matrix of T and
B be the matrix whose columns are the
vectors in B. Then

fT]8 = B'AB

by Theorem 4.12. Since B and B1 are
invertible, rank [T]8 = rank A by Ex-
ercises 68 and 70 of Section 2.4. Be-
cause the range of T equals the column
space of A, the dimension of the range
of T equals the dimension of the col-
umn space of A, which is rank A. Thus103
the dimension of the range of T equals
rank [T]8.

95. Let A and B be the matrices whose
columns are the vectors in A and B, re-
spectively, and let C be the standard
matrix of T. Then, by Theorem 4.12,

= A1CA

[T]8 = B'CB.

Solving the second equation for C, we
obtain C = B[T]8B1. Hence

= A'CA A'(B[TJ8B1)A
= (A'B)[T]8(B'A)
= (B—'A)--'[T]8(B1A)

by Theorem 2.2(b). Thus [T]A and [Tj8
are similar.

99. Consider column j of [TI8. Let

Cl

C2
=

Because the jth column of [T]8 is
if fT]8 is an upper triangular

matrix, then = 0 for i > j. Thus we
have

T(b3) = c1bj + c2b2 + ... +

which is a linear combination of
b1, b2,. . . , b3. Conversely, if T(b3) is a
linear combination of b1, b2, .. . , for
each j, then the (i,j)-entry of the ma-
trix fT]8 equals 0 for i > j. Hence [T]8
is an upper triangular matrix.

(a) Let B = [b1 b2 b3 b4]. The stan-
dard matrices of T and U are

1 —2 0

A—
0 0 1

— —1 0 3

0 20

0 1 —1 2

—2 0 0 3

— 0 2 —1 030 01
and

0

0

0
—1

and
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respectively. So, by Theorem 2.12, that A is invertible and that the stan-
the standard matrix of UT is dard matrix of T' is A—'. Hence, by

Theorems 4.12 and 2.2(b), we have
1 4 —2 —2]

CA= I
I —2 10 0 _3j [T'J8 = B'A'B

1 0 —1 0 = (B'AB)' =
L

0 —1

Thus, by Theorem 4.12, we have
CHAPTER 4 REVIEW

= B'AB
ii 5 13 1] 1. True 2. True

.._I—2 0 —5 —31
3. False, the null space of an rn x n matrix

I is contained in1—8 —3 —9
L6 1 8 1

4. False, the column space of an m x n ma-
[U]8 = B'CB trix is contained in lZm.

_5 10 —38 311 5. False, the row space of an m x n matrix
— 2 3 9 61 is contained in
— 6 —10 27 171'

—4 7 —25 —19] 6. True 7. True

[UT]8 = B—' (CA)B 8. False, the range of every linear transfor-
mation equals the column space of its

1 43 58 —21 —66 1 standard matrix._I —8 —11 8 17 I

I —28 —34 21 53 I . 9. False, a nonzero subspace of has in-

[ 28 36 —14 44 j finitely many bases.

(b) From (a), we see that 10. False, every basis for a particular sub-
space contains the same number of vec-

[U}8[T]8 = (B'CB)(B'AB) tors.

= B'CI4AB 11. True 12. True 13. True
= B'(CA)B 14. True 15. True 16. True
= [UT]8.

17. False, the dimension of the null space of
107. We will show that [T']8 = ([T]8)1. a matrix equals the nullity of the matrix.

By Theorem 4.12,
18. True

[T]8 = B'AB, 19. False, the dimension of the row space of
a matrix equals the rank of the matrix.where A is the standard matrix ofT and

B is the matrix whose columns are the 11 21

vectors in 5. Recall from Theorem 2.13 20. False, consider
Li
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21. True 22. True

23. False, {T]B = B1AB.

24. True 25. True

27. (a) There are at most k vectors in a
linearly independent subset of V.

(b) No conclusions can be drawn about
the values of k and m in this case.

(c) There are at least k vectors in a
generating set for V.

31. The reduced row echelon form of the
given matrix A is

10 3

R—
0 1 —2_00 0•
00 0

(a) The null space of A consists of the
solutions of Ax = 0. The general
solution of this system is

= —3x3

12= 2x3
x2 free.

Hence the vector form of the gen-
eral solution of Ax 0 is

Thus

x1 —3

12 =11 2

1

{ }
is a basis for the null space of A.

(b) The pivot columns of the given ma-
trix form a basis for its column
space. From R above, we see that

the pivot columns of the given ma-
trix are columns 1 and 2. Hence

1 2

—1 —12' 1

1 4

is a basis for the column space of
the given matrix.

(c) A basis for the row space of
the given matrix consists of the
nonzero rows in its reduced row
echelon form. From R above, we
see that this basis is

(1 0

1

3 —2

33. The standard matrix of T is

0 1 —21

—1 3 ii
1 —4 ii'
2 —1 3]

and its reduced row echelon form is
[ei e2 e3].

(a) The set

0 1 —2

—1 3 1

1 ' —4 ' 1

2 —1 3

of pivot columns of A is a basis for
the range of T.

(b) The only solution of Ax = 0 is x =
0; so the null space of T is the zero
subspace.

37. Let B be the matrix whose columns are
the vectors in B.

(a) Since the reduced row echelon form
of B is 13 is a linearly indepen-
dent subset of fl,3. Since 8 contains
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exactly 3 vectors, B is a basis for (c) Using the result of (b), we have
by Theorem 4.7. (lxi] = A lxii(b) We have T

Ux2i) [x2]

v
[ 01 1 11 1—11 1 —7xi — 5X2 1

= 0! —21-_i! [—14xi—9x2j
1] L'i L 1]

lxi
= —21 . [yj =

where43. Let v = I
I and {v

5] B is the basis obtained by rotating the
vectors in the standard basis by 120°.

(c) By Theorem 4.11, we have As in Section 4.4, we have

I ii
= B'w

= 18] .
= [v]6 =

6 = (A1200)Tv = I
I I[j

39. (a) Let B be the matrix whose columns 2 —

are the vectors in B. Then Hence

= = +

131 — 1—171 = —4x —= B
{4j — L—ioj Rewrite the given equation in the form

and 9(x')2 + 4(y')2 = 36,

[T(b2)jB = (T(b2)) and substitute the expressions above for
x' and y'. The resulting equation is

—1 1—il — Iii
212 312= B

L ij — I.ui — + 36,

Therefore that is,

[T]8 = [T(b2)]13] 21x2 — + 31y2 = 144.

[—17 ii
= ij• 47. Take

(b) Let A denote the standard matrix
b1

=
and b2

=
of T. By Theorem 4.12, we have Then b1 lies on the line with equation

A = B[T]5B' y = and b2 is perpendicular to
this line. Hence if B = {b1,b2}, then

= =
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A = B[T]8B'
=

where B = [b1 b2]. Thus

T(1x1
\V2 J

1 —5x1—12x2
13 —12x1 + 5x2

51. See the solution to Exercise 107 in Sec-
tion 4.5.

CHAPTER 4 MATLAB EXERCISES

(a) For the given vector v, the equation
Ax = v is consistent. Thus v is in
the column space of A.

(b) For the given vector v, the equation
Ax = v is not consistent. Thus v is
not in the column space of A.

(c) For the given vector v, the equation
Ax = v is not consistent. Thus v is
not in the column space of A.

(d) For the given vector v, the equation
Ax = v is consistent. Thus v is in
the column space of A.

5. Let (1 i <6) denote the ith vector
in 8.

(a) 8 is a linearly independent set of 6
vectors from

(b) For each vector v, the coefficients
that express v as a linear combi-
nation of the vectors in B are the
components of = B'v, where
B is the matrix whose columns are
the vectors in 8. In this manner,
we find that

(c) From (b), we obtain
coordinate vectors.

2 1

—1 —1

—3 .. 1
(1)

o
(ii)

2

2 —3

—1 1

1 —1

3 0

b1= —1 , b2= 1

0 2

2 1

Form the matrix

0
2

b3= 0
2

3

A = [b1 b2 b3 e1 e2 e3 e4 e5],

where e2 denotes the ith standard vec-
tor in From the reduced row echelon
form of A, we see that the pivot columns
of A are columns 1, 2, 3, 4, and 6. Thus
13 = {bi,b2,b3,ei,e3} is a linearly in-
dependent set of 5 vectors from 7Z5, so
that 13 is a basis for R.5. Let B be the
matrix whose columns are the vectors in
23 and

C=[O 0 0 e1

Then, as explained in Exercise 98 of Sec-
tion 4.5 and Exercise 8 in the Chapter 4
MATLAB exercises, the matrix

So the standard matrix of T is (i) 2b1 — b2 — 3b3 + 2b5 — b6

(ii) b1 — b2 + b3 + 2b4 — 3b5 + b6
(iii) —3b2 + b3 + 2b4 — 4b5

the following

0

—3

1

2

—4

0

9. Let

and
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Chapter 5

Eigenvalues,
Eigenvectors, and
Diagonalization

5.1 EIGEN VALUES AND and so
EIGENVECTORS f[—i

1L 1

1. The eigenvalue is 6 because is a basis for the eigenspace Of A corre-
sponding to eigenvalue 3.

[—10 —81 [ii [ 61 ['1
L

24 18] L—2] = L—12]
= 6

L—2] 17. Let A denote the given matrix. The re-
duced row echelon form of A — 313 is

5. is —2 because
1 1

19 —71 1 —21 Iii 0 0 1

42 —16] 3 —6]
—2 0 0 0

and so
9. The eigenvalue is —4 because

—1

I =
—2 16 —13 2 —8 is a basis for the eigenspace of A corre-

—1 sponding to eigenvalue 3.
=(-4) 1

2 21. Let A denote the given matrix. The re-
duced row echelon form of A — (—1)13 =
A+I3is13. Let A denote the given matrix. The re-

duced row echelon form of A 313 is
1 1

3 3iii 00
0 0 0 0

98
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and so Hence
( —1 2 1 ( —1 —31,0

0 3J 0 1

is a basis for the eigenspace correspond- is a basis for the eigenspace correspond-
ing to eigenvalue —1. ing to eigenvalue 2.

25. The eigenvalue is 6 because 41. False, if Av Av for some nonzero vec-

11—21'\ 1—121
— 6

1—21
tor v, then A is an eigenvalue of A.

T
U 3]) — [ 18] — { 3] 42. False, if Av = Av for some nonzero vec-

tor v, then v is an eigenvector of A.
29. The eigenvalue is —3 because

/ 3 \ 9
43. True 44. True 45. True

T 2 = —6 —3 2 . 46. False, the eigenspace of A correspond-
1 J —3 1 ing to eigenvalue A is the null space of

A — AIR.
33. The standard matrix of T is

1 —2
47. True 48. True

A
— [6 —6]' 49. False, the linear operator on that

tates a vector by 90° has no real eigen-and the reduced row echelon form of
A (—2)12 = A + 212 is

values. (See pages 298—299.)

21 50. True

L0 0j 51. False, the exception is the zero vector.

Thus the eigenvectors corresponding to 52. True 53. True 54. True
eigenvalue —2 are the nonzero solutions
of Xi — = 0. So a basis for the 55. False, the exception is c = 0.

eigenspace of T corresponding to eigen-
56. Truevalue —2 is

57.
L3J) eigenvalue of but not of A+B =

37. The standard matrix of T ]S 58. True
1 —1 —3

A = —3 —1 59. False, if A = B = then A 2 is an

1 1 5 ' eigenvalue of but not of AB =

and the reduced row echelon form of 60. True

A — 213 is 63. Let A be the eigenvalue of A correspond-
1 1 3 ing to v. Then v 0, and
0 0 0

A(ev) = c(Av) = c(Av) = A(cv).
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65. The eigenspace of A corresponding to 0
is the set of vectors v such that Av
Ov, that is, such that Av = 0. So the
eigerispace corresponding to 0 is the null
space of A.

69. If v is an eigenvector of A with A as the
corresponding eigenvalue, then Av =
Ày. So

A2v = A(Av) = A(Av) = A(Av)

= A(Av)

Hence A2 is an eigenvalue of A2.

73. Suppose that clvi + c2v2 = 0 for some
scalars c1 and c2. Then

0 T(0) = T(civi + c2v2)

= c1A1vj + c2A2v2

Ai(—c2v2) + c2A2v2

(A2 — Ai)c2v2.

Since A1 A2 and v2 0, we have c2 =
0. Thus we also have c1 = 0, and so
{vi, v2} is linearly independent.

77. The eigenvalues of A are —2.7, 2.3,
and —1.1 (with multiplicity 2), but the
eigenvalues of 3A are —8.1, 6.9, and
—3.3 (with multiplicity 2).

81. Yes, the eigenvalues of AT are the same
as those of A. Eigenvectors of AT are
found by solving (AT — A14)x = 0 for
each eigenvalue A. Four eigenvectors of
AT are

5.2 THE CHARACTERISTIC
POLYNOMIAL

1. The eigenvalues of the given matrix A
are the roots of its characteristic poiy-
nomial, which are 5 and 6. The reduced
row echelon form of A — 512 is

1 1.5
0 0'

and so the vector form of the general
solution of (A — 512)x = 0 is

fxi —1.5
I =x2
LX2

or

is a basis for the eigenspace of A cor-
responding to eigenvalue 5. Also, the
reduced row echelon form of A — 612 is

fi 1

LU 0

and so the vector form of the general
solution of (A — 612)x = 0 is

Thus

fxil f—i
I I=X21
[X2J

{ LII }
is a basis for the eigenspace of A corre-
sponding to eigenvalue 6.

5. The eigenvalues of the given matrix A
are the roots of its characteristic poly-
nomial, which are —3 and 2. Since the

So

1—11 [2] 11 [ 01

I 'I I_li I_liand cII.
L

1]
L oJ [ ij
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reduced row echelon form of the matrix
A—(—3)13 =A+313 is

1 0 —1

o 1 —1

00 0

we see as in Exercise 1 that a basis for
the eigenspace corresponding to eigen-
value —3 is

{ [U }•
Likewise, the reduced row echelon form
of A — 213

1 0 —1

01 0,
00 0

{ }
is a basis for the eigenspace correspond-
ing to eigenvalue 2.

9. Proceeding as in Exercises 1 and 5, we
see that the eigenvalues of the given ma-
trix A are —3, —2, and 1. Bases for the

respective eigenspaces are {
[ },

13. The characteristic polynomial of the
given matrix A is

det(A — t12) = det
[1

]
(t— 1)(t+4).

So the eigenvalues of A are 1 and —4.
Proceeding as in Exercises 1 and 5,
we see that bases for the respective
eigenspaces are

I i]) 1 —3

5

17. The characteristic polynomial of the
given matrix A is

= —(t—1)(t+3)2.

Proceeding as in Exercises 1 and 5, we
see that bases for the eigenspaces corre-
sponding to eigenvalues 1 and —3 are

{
} and

{

21. The characteristic polynomial of the
given matrix A is

det(A — t13)

—4—t 0 2

=det 2 4—t —8

2 0 —4—t

=—(t—4)(t+2)(t+6).

Proceeding as in Exercises 1 and 5, we
see that bases for the eigenspaces corre-
sponding to eigenvalues 4, —2, and —6
are

det(A — t13)

—7 — t
=det 0

—8

5 4

—3—t 0

9 5—t

and so

1 0 ) (1) 1 —1

1 1 1

1
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25. The standard matrix of T is 37. The standard matrix of T is

1-_i 61 1 7 —10 01
A

= L—8 13j I 5 —8 oJ

L—i 1

The eigenvalues of T are the roots of its

characteristic polynomial, which are 5 and its characteristic polynomial is
and 7. The eigenvectors of T are the + + 8t — 12 = —(t + 3)(t — 2)2.
same as the eigenvectors of A; so we
must find bases for the null spaces of So the eigenvalues of T are —3 and 2.
A — 512 and A — 712. As in Exercise As in Exercise 25, we find the following
1, we obtain the following bases for the bases for the eigenspaces:
eigenspaces corresponding to 5 and 7:

1111) 11°1
and

{ }
and

{ }. [oj Lii

29. The standard matrix of T is 41. The characteristic polynomial of the

given matrix is t2 — 3t + 10, which has

A

[

0 —2 41 no (real) roots.
= —3 1

3],—1 1 5 45. Let A denote this matrix. The charac-
teristic polynomial of A is t2 — 2t + 5. So

and its characteristic polynomial is the eigenvalues of A, which are the roots
of this polynomial, are 1 2i and 1 + 2i.

det(A — t13) —(t — 4)2(t + 2). The vector form of the general solution

Bases for the eigenspaces corresponding of (A — (1 — 2i)12)x = 0 is

to4and—2are 1lxii
1 1fl (Iii Lx2i = X2

tIOIJ
and

4th1
Lii Lou

So
1

33. The standard matrix of T is { [1] }
or

{ }
r_4 11 is a basis for the eigenspace of A corre-

A
[—2 _ij ' sponding to the eigenvalue 1 2i.

Likewise, the vector form of the general
and its characteristic polynomial is solution of (A — (1 + 2i)12)x 0 is

det(A—t12) = (t+2)(t+3). 1
lxii

Bases for the eigenspaces corresponding [X2]
[—

to —2 and —3 are
So

} and { [fl }. { [1] }
or

{
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is a basis for the eigenspace of A corre- 53. False, consider the matrix A in Exam-
sponding to the eigenvalue 1 + 2i.

ple 1 and B
=

which both
49. The given matrix is upper triangular; so have (t +3) (t — 5) as their characteristic

its eigenvalues are its diagonal entries 2i, polynomial.
4, and 1 Since the reduced row echelon
form of A — (2i)13 is 54. True 55. True

10 1 01 56. False, see page 303.

10 0 1 I 57. False, see page 303.
L0

58. False, consider
a basis for the eigenspace corresponding

59. False, the rotation matrix A900 has noto the eigenvalue 2i is
eigenvectors in

( Iii
60. True

I
loH..
L°] .J 61. False, has a characteristic

Since the reduced row echelon form of polynomial of t2 + 1.
A — 413 is 62. True

01 63. False, consider 413; here 4 is an eigen-
I 0 0

1]

, value of multiplicity 3.
Lo 0 0

64. False, see Example 4.

a basis for the eigenspace corresponding 65. True
to the eigenvalue 4 is

66. False, consider the matrix given in Ex-
( 1j1 ercise 49.

67. True[0] J
68. False, see Example 3 of a matrix with

Since the reduced row echelon form of no (real) eigenvalues.
A —13 is

Ii 0 2i1 69. True 70. True
10 1

I 71. False, it has the eigenvalue 0.
[0 0 0]

72. Truea basis for the eigenspace corresponding
to the eigenvalue 1 is 73. If the reduced row echelon form of

A—cIa is then = 0 has no
( 121 'l solutions except 0. Thus there can be no

I 1 I eigenvector corresponding to c, and so c
I Ld J is not an eigenvalue of A.
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77. (a) By Theorem 5.1, the eigenvalue 5
must have a multiplicity of 3 or
more. In addition, the eigenvalue
—9 must have a multiplicity of 1
or more. Since A is a 4 x 4 ma-
trix, the sum of the multiplicities
of its two eigenvalues must be 4.
Hence eigenvalue 5 must have mul-
tiplicity 3, and eigenvalue —9 must
have multiplicity 1. Thus the char-
acteristic polynomial of A must be
(t — 5)3(t + 9).

(b) By Theorem 5.1, the eigenvalue —9
must have a multiplicity of 1 or
more. As in (a), the sum of the
multiplicities of the two eigenvalues
of A must be 4. Since eigenvalue 5
must have a multiplicity of at lea.st
one, there are three possibilities:

(i) Eigenvalue 5 has multiplicity
1, and eigenvalue —9 has mul-
tiplicity 3, in which case the
characteristic polynomial of A
is (t—5)(t+9)3.

(ii) Eigenvalue 5 has multiplicity
2, and eigenvalue —9 has mul-
tiplicity 2, in which case the
characteristic polynomial of A
is (t—5)2(t+9)2.

(iii) Eigenvalue 5 has multiplicity
3, and eigenvalue —9 has mul-
tiplicity 1, in which case the
characteristic polynomial of A
is (t—5)3(t+9).

(c) If dim W1 = 2, then eigenvalue 5
must have a multiplicity of 2 or
more. This leads to the two cases
described in (ii) and (iii) of (b).

81. (a) Matrix A has eigenvalues of 1 and
2, and

{[-U} and {[1}

are bases for the corresponding
eigenspaces.

(b) Matrix 3A has eigenvalues of 3 and
6, and

11—i •I 11—2
1

are bases for the corresponding
eigenspaces.

(c) Matrix 5A has eigenvalues of 5 and
10, and

Ir—in 11—2ijf and iLi
are bases for the corresponding
eigenspaces.

(d) If c is a nonzero scalar, then v is an
eigenvector of B if and only if v is
an eigenvector of cB because

(cB)v = c(Bv) = c(Av) = (cA)v.

(e) If c is a nonzero scalar, then .X is an
eigenvalue of B if and only if cA is
an eigenvalue of cB because

(cB)v = c(Bv) = c(Av) = (cA)v.

85. If

A

the
polynomial

A has real eigenvalues.
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89. From the result of Exercise 88, we ex- entries are the corresponding eigenval-
pect that the matrix ues:

o 0 0 5 1—2 —31 14 0

100 —7 ij andD=[05.
o 1 0 —23

0 0 1 11 Then A = PDP1.

might have the desired characteristic 5. The eigenvalues of A are —5, 2, and
polynomial, and it does! 3. Eigenvectors corresponding to eigen-

value —5 are solutions of (A+513)x = 0,
and so a basis for this eigenspace is

5.3 DIAGONALIZATION
OF MATRICES 0

1

1. The eigenvalues of A are 4 and 5. Eigen-
vectors corresponding to eigenvalue 4 Eigenvectors corresponding to eigen-
are solutions of (A — 412)x = 0. Since value 2 are solutions of (A — 213)x = 0,
the reduced row echelon form of A — 412 and so a basis for this eigenspace is
is

11 21 1 —1 ( —2

Lo oj' or 3

these solutions have the form 1 J 2

1—2 Eigenvectors corresponding to eigen-
X2 . value 3 are solutions of (A — 313)x = 0,

and so a basis for this eigenspace is
Hence

is a basis for the eigenspace of A corre- 1

sponding to eigenvalue 4. Likewise, the Thus if we take
reduced row echelon form of A — 512 is

0 —2 —1
11 3] P= 1 3 1

1 2 1

and so and
—5 0 0fl1jJ D= 020,

is a basis for the eigenspace of A corre- 0 0 3

sponding to eigenvalue 5. Let P be the then A = PDP1.
matrix whose columns are the vectors in
the bases for the eigenspaces, and let D 9. The eigenvalues of A are 5 (with mul-
be the diagonal matrix whose diagonal tiplicity 1) and 3 (with multiplicity
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2). Eigenvectors corresponding to eigen- respectively. Hence we may take
value 5 are solutions of (A — 513)x = 0,
and so a basis for this eigenspace is Ii —1

1 1]

{r
11—11

121}
or 41}.

and

0 0 5

Lii [2]
r_1 0 01

Eigenvectors corresponding to eigen- D = f
0 —3 of

value 3 are solutions of (A — 313)x = 0, 0 0 2]
and so a basis for this eigenspace is

(
21. The characteristic polynomial of A is

ii, t2 — 4t + 5, and hence the eigenvalues
of A are 2 — i and 2 + i. Bases for the

L
oj Liii corresponding eigenspaces are

Thus if we take

ri —1 11
{ }

and
{ },

4 1

0 ij respectively. Hence we may take

and r
15 0 01 P—I,

D= 3 o] — L ' ij

L° 0 and

D= [2_i

13. The characteristic polynomial of A is
25. The characteristic polynomial of A is

— 2t + 1 = (t — 1)2.

Since the rank of A — 12 is 1, the —(t2 — 2t + 2)(t — 2)

eigenspaceof A corresponding to eigen- = (t 1 i)(t — 1 + i)(t — 2),

value 1 is 1-dimensional. Hence A is not
diagonalizable because the eigenvalue 1 and so the eigenvalues of A are 1 + i,
has multiplicity 2 and its eigenspace is 1—i, and 2. Bases for the corresponding

1-dimensional. eigenspaces are

17. Since the given matrix is upper triangu- ( 1 —1 1 ( 1 —1 1

lar, its eigenvalues are its diagonal en- 2 + i] 2 — i
I

},tries, which are —1, —3, and 2. Bases [ 1
(.. L

1 ]
for the corresponding eigenspaces are

and

{[
i1'l

j
if

},
and

L0J Lo] 5 iJ
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respectively. Hence we may take 46. True

—1 —1 1 47. False, this is true oniy if the multiplicity
P = 2 + i 2 — i —1 of each eigenvalue is equal to the dimen-

1 1 1 sion of the corresponding eigenspace.

and 48. False, this is true only if the sum of the

1 + o o multiplicities of the eigenvalues is equal

D = 0 i — 0 to the number of columns in A.

0 0 2 49. The first boxed statement on page 318
implies that the matrix is diagonaliz-

29. False, see Example 1. able.
30. True 31. True 32. True .

53. The matrix is diagonalizable if and only
33. False, the eigenvalues of A may occur in if the eigenspace corresponding to the

any sequence as the diagonal entries of eigenvalue —3 is 4-dimensional.
D.

57. We have A where
34. False, if an n x n matrix has n linearly

independent eigenvectors, then it is di- 1 2 D = 0

agonalizable. 1 1 0 3

35. False, is diagonalizable and has only Thus, as in the example on page 314, we
one eigenvalue. have

36. True =

37. False, see Example 1.
— 11 21 [4k 0 1 —1 2

38. False, for A to be diagonalizable, its — 1] [0 3kj
1 1

characteristic polynomial must also fac- 4k 2 . 3k] —1 2
tor as a product of linear factors. 4k 3kj 1 —i

39. True [2.3k_4k
— J

3k_4k
40. False, the dimension of the eigenspace L

corresponding to .\ is the nullity of
A — 61. We have A = where

41. False, for example, has only one —i 0 —2
eigenvalue, namely 1. p = 1 0 1

01 042. True 43. True

44. False is a diagonal matrix, and 500
45. False, for example, any nonzero multiple D = 0 5 0

of an eigenvector is an eigenvector. 0 0 1
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65. Since there is oniy one eigenvalue (with
multiplicity 1), this matrix is not diago-
nalizable for any scalar c.

69. It follows from the first boxed statement
on page 318 that the given matrix is
diagonalizable if c —2 and c —1.

Thus we must check only the values of
—2 and —1. For c = —2, we see that
—2 is an eigenvaiue of multiplicity 2, but
the reduced row echelon form of A + 213,
which is 100001,000
has rank 2. Hence A is not diagonal-
izable if c = —2. Likewise, for c = —1,

the eigenvalue —1 has multiplicity 2, but
the reduced row echelon form of A + 13,
which is 100001,000
has rank 2. Thus A is also not diagonal-
izable if c = —1.

73. The desired matrix A satisfies A =
PDP1, where

Ii ii —3 0
3]

and D=

(Here the columns of P are the given
eigenvectors of A, and the diagonal en-
tries of D are the corresponding eigen-
values.) Thus

Ioo 10 1A=[0
1

andB=[0
—1

are diagonalizable by the first boxed re-
suit on page 318, but their sum is the
matrix in Example 1 that is not diago-
nalizable.

81. Let A = PDP1, where D is a diago-
nal matrix and P is an invertible matrix.
Then for Q = (pT)_1, we have

AT (PDP_l)T (P-1 )TDT pT

= (pT)-1DpT = QDQ1,

and so AT is also diagonalizable.

85. (a) Suppose that A is diagonalizable.
Then A = QDQ' for some diago-
nal matrix D and invertible matrix
Q. Since

B = PAP' = P(QDQ')P1
= (PQ)D(PQ)1,

B is also diagonalizable. The proof
of the converse is similar.

(b) The eigenvalues of A and B are
equal. See the box on page 307.

(c) We claim that v is an eigenvector of
A if and oniy if Pv is an eigenvector
of B. For if then

B(Pv) = (PAP')(Pv)
= PAy = = ,\(Pv).

Conversely, if B(Pv) =
then

Ày = (P'BP)v
= P'(APv) = Ày.

Thus, as in Exercise 57, we have

=

_Sk+2
= 5k1

0

77. The matrices

0

0

0 5k

A
[—7 4
[—12 9
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89. (a) Let A PDP—1, where D is a di-
agonal matrix and P is an invert-
ible matrix. By the hint, the trace
of A = PDP' equals the trace of
PP'D = D, which is the sum of
the eigenvalues of A.

(b) In p(t), the characteristic polyno-
mial of A, the coefficient of is

— —

= (_1)n+i(A1+A2+.
which by (a) equals times
the trace of A.

(c) The constant term of p(t) is
(—1)Th(---X1)(-—A2) . .. that
is, . . . = det D = det A.

93. The characteristic polynomial of the
given matrix is —(t—2)2(t—1)3, and thus
the eigenvalue 1 has multiplicity 3. The
rank of the matrix A — 115 is 3, however,
and so the eigenspace corresponding to
this eigenvalue has dimension 2. There-
fore the matrix is not diagonalizable by
the test on page 319.

5.4 DIAGONALIZATION OF
LINEAR OPERATORS

3. The standard matrix of T is

0 —1 —2

A=0 2 0.
1 1 3

If B is the matrix whose columns are the
vectors in 5, then

210
0 2 0001

Since [T]B is not a diagonal matrix, the
basis 5 does not consist of eigenvectors
of T.

—3 5 —5

A= 2-3 2.
2 —5 4

If B is the matrix whose columns are the
vectors in B, then

200
0 1 0

0 0 —3

Since [T]B is a diagonal matrix, the basis
B consists of eigenvectors of T.

11. The standard matrix of T is

—5

— Lb —8

A basis for the eigenspace of T corre-
sponding to the eigenvalue —3 can be
obtained by solving (A + 312)x = 0,
and a basis for the eigenspace of T cor-
responding to eigenvalue 2 can be ob-
tained by solving (A — 212)x = 0. The
resulting bases are

51
= { }

and 52
{ }.

Combining these two sets produces a ba-
sis for consisting of eigenvectors of T.

15. The standard matrix of T is

—1 —1 0
A=

1 10
Since the reduced row echelon form of
A + 13 is

7. The standard matrix of T is

101010,000
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the dimension of the eigenspace of T cor-
responding to eigenvalue —1 is

3 — rank (A + 13) = 1.

But the multiplicity of the eigenvalue
—1 is 2, so that T is not diagonalizable.
That is, there is no basis for consist-
ing of eigenvectors of T.

19. The eigenvalues of T are —3 (with mul-
tiplicity 1) and 1 (with multiplicity 3).
By solving (A + 314)x 0, we obtain
the basis

{ }
for the eigenspace corresponding to
eigenvalue —3. Similarly, by solving
(A — 114)x = 0, we obtain the basis

—1 1 —1

2 0 00'2' 0

o o 2

for the eigenspace corresponding to
eigenvalue 1. Combining the bases for
these two eigenspaces produces a basis

1 —1 1 —1

o 2 0 01' O'2' 0
o o 0 2

for consisting of eigenvectors of T.

23. The standard matrix of T is

—2 3

4 —3

and its characteristic polynomial is
t2+5t—6=(t—1)(t+6). AsinExer- 30.
cisc 11, we find that

Bi={[fl} and

are bases for the eigenspaces of T cor-
responding to the eigenvalues —6 and 1,
respectively. Combining these two sets
produces a basis 8 for consisting of
eigenvectors of T, and so

[T]B=

is a diagonal matrix.

27. The standard matrix of T is

10 0

—1 1 —1

00 1

and its characteristic polynomial is

—t3+3t2 —3t+1 = —(t—

Since the reduced row echelon form of
A —13 is 101000,000
the dimension of the eigenspace of T cor-
responding to eigenvalue 1 is

3 — rank (A — 13) = 2.

Because this dimension does not equal
the multiplicity of the eigenvalue 1, T
is not diagonalizable. That is, there is
no basis B for R.3 such that [TJ5 is a
diagonal matrix.

29. False, its standard matrix is diagonaliz-
able, that is, similar to a diagonal ma-
trix.

False, the linear operator on 7V that ro-
tates a vector by 90° is not diagonaliz-
able.

31.
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32. False, 13 can be any basis for consist- Because the last two rows of A + 413 are
ing of eigenvectors of T. linearly independent, the rank of A+413

is at least 2. Hence the dimension of the
33. False, the eigenvalues of T may occur in eigenspace of T corresponding to eigen-

any sequence as the diagonal entries of value —4 is 1. Since this dimension does
D. not equal the multiplicity of the eigen-

value —4, T is not diagonalizable for any34. True 35. True 36. True
scalar c.

37. True 55. The only real eigenvalue of T is c, and

38. False, in addition, the multiplicity of its mutiplicity is 1. Thus T is not diag-
onalizable for any scalar c.each eigenvaue must equal the dimen-

sion of the corresponding eigenspace. 59. The vector form of the general solution
of the equation x + y + z = 0 is

39. True

1w]

[_11
40. False, in addition, the sum of the mu!- = ii + t 0]

tiplicities of the eigenvalues must equal o] L 1

IL

Hence
41. False, it is an eigenvector corresponding ( r_ ii r_ ii

totheeigenvaluei. ji,!
L

0]
L

ijJ
42. False, it is an eigenvector corresponding

is a basis for W, the eigenspace ofto the eigenvalue —1.
corresponding to eigenvalue 1. As on

43. True page 329, the vector

44. False, a linear operator on may have Iii
no eigenvalues. I 1

[ij
45. True 46. True 47. True

whose components are the coefficients of
48. False, this statement is true only when the equation x + y + z = 0, is normal

T is diagonalizable. to W, and so is an eigenvector of Tw
corresponding to eigenvalue —1. Thus

51. The standard matrix of T is
( 1_li 1_il Ii

r c 0 01
13=UA= I—i

L °J Li] L1
L—8 1 —5

is a basis for 7Z3 consisting of eigenvec-
and so tors of Hence

Ic+4 0 01 Ii 0 01

A+413zzr1 —1 1 —iL [Tw}s_10 1 UI.
L—8 1 _ij LU 0 —ij
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Let B be the matrix whose columns are
the vectors in B. Then the standard ma-
trix of Tw is

A = B[TW]BB'

Therefore

1
1 —2 —2

=— —2 1 —2

—2 —2 1

/ x1 :1:1

Tw( x2 )=A x2
\

1
x1—2x2—2x3

= — —2x1 + X2 —
X3

63. As in the solution to Exercise 59, we
choose a basis

( —8 5 1

1 , 0 , 8

0 1 —5

for IZ)3 consisting of eigenvectors of Tw.
Here the first two vectors lie in the
plane with equation x + 8y — 5z 0
and the third vector is perpendicular to
this plane. Let B be the matrix whose
columns are the vectors in 13. Then the
standard matrix of Tw is

A = B[Tw]5B1

—8 5

—19 40
40 20

/ Xi
TW(\x2 =

X3

1
44x1 — 8x2 + 5x3

— —8x1 — 19x2 + 40x3
+ 40x2 + 20x3

67. (a) Let {vi,v2} be a basis for W and
v3 be a nonzero vector perpendic-
ular to W. Then 23 = {vj,v2,v3}
is a basis for Furthermore,
Uw(vi) = v1, = v2, and

So

100
[UW]B 0 1 0000

(b) Since = v1, = v2,
and Tw(v3) = —v3, we have

10 0

0 1 0

0 0 —1

/10 0 100
i 0 + 0 1 0

\0 0—1 001
100
0 1 0 zzz[UWJB000

(d) Let I denote the identity operator

on 7Z3. Then [I] = 13, and hence

= + [JiB)

=

(c)

1

where

10 0

[Tw}5— 0 1 0

0 0 —1

is as in Exercise 59. Thus

So Uw = + I). Therefore

I xi
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—
( 1 x1 — 2x2 — 2x3 1" 83. Let U be a diagonalizable linear op-

I —2x1 + x2 — 2x3 I
}

erator on having only nonnegative— 2

L—2x1 2x2 + x3] / eigenvalues, and let B be a basis for
consisting of eigenvectors of U. If C is
the standard matrix of U and B is the
matrix whose columns are the vectors in
B, then [U]8 = B—1CB. Let A be the
diagonal matrix whose entries are the

— 1

2x1 — X2 — x3
—x1 + 2x2 — I. square roots of the entries of the diag-—

[—xi — x2 + 2x3j onal matrix [U]8. Then A2 = [U]8, and
so

71. By Exercise 67(c) and the answer to Ex-
ercise 63, we have C = = BA2B1

Uw(x) + I)(x) (BAB1)2.

—
[89x1 — 8x2 + 5x3 1 So if T is the matrix transformation in-

— 90
—8xi + 26x2 + 40x3 I. duced by BAB', then T is a square

5x1 + 40x2 + 65x3j root of U.

75. We combine (a) and (b). Let B =
{u,v,w}. Observe that T(u) u, 5.5 APPLICATIONS
T(v) = v, and T(w) = 0. Hence u and OF EIGENVALUES
v are eigenvectors of T with correspond-
ing eigenvalue 1, and w is an eigenvec-
tor of T with corresponding eigenvalue 1. False, the column sums of the transition

matrix of a Markov chain are all 1.
0. Consequently, {u, v} is a basis for
the eigenspace of T corresponding to 2. False, see the matrix A on page 334.
the eigenvalue 1, and {w} is a basis for
the eigenspace ofT corresponding to the 3. True
eigenvalue 0. It also follows that T is di-

0
agonalizable because there is a basis for 4. False, consider A = oj and p =
R.3 consisting of eigenvectors of T.

.8

79. Let c be any scalar. If v is an eigen- [.2].

vector of T corresponding to eigenvalue 5. True 6. True 7. True
A, then it is also an eigenvector of cT
corresponding to eigenvalue A, because 8. False, the general solution of y' = ky is

y =
cT(v) = c(T(v)) = c(Av) = (cA)v.

9. False, the change of variable y = Pz
transforms y' = Ay into z' Dz.Thus if B is a basis for consisting of

eigenvectors of T, then B is also a basis 10. True
for consisting of eigenvectors of cT
for any scalar c. 11. False, the solution is y = Pz.
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12. True

13. No, for the given transition matrix A,
the second column of equals e2 for
every positive integer k. Thus the (1, 2)-
entry of is always zero.

17. No, the (1,2)-entry of Ak is zero for cv-

.36 .05 .08 .06

2 .08 .25 .10 .1819. Yes, A = .24 .45 .72 .04
has no

.32 .25 .10 .72

1 0 —.5

0 1 —.5

00 0

a basis for the eigenspace corresponding
to eigenvalue 1 is

{ [U }
Thus the eigenvectors corresponding to
eigenvalue 1 have the form

1 Cci = c.
2 2c

We seek a vector of this form that is also
a probability vector, that is, such that

c+c+2c= 1.

.25

.25

.50

25. As in Exercise 23, the eigenvectors cor-
respoilding to eigenvalue 1 are multiples

1

of 3 . The desired steady-state vector
2

The two states of this Markov chain
are buying a root beer float (F) and
buying a chocolate sundae (S). A
transition matrix for this Markov
chain is

Last visit
F S

F 1.25 .51Next visit S [75 .5j = A.

Note that the (1,2)-entry and the
(2, 1)-entry of A can be determined
from the condition that each col-
umn sum in A must be 1.

(b) If Alison bought a sundae on her
next-to-last visit, we can take

10

Then the probabilities of each pur-
chase on her last visit are

So c = .25, and the steady-state vector
is

ery k.

is the multiple whose components sum
to 1, that is, the vector

zero entries.

23. A steady-state vector is a probability
vector that is also an eigenvector cor-
responding to eigenvalue 1. We begin
by finding the eigenvectors correspond- 29. (a)
ing to eigenvalue 1. Since the reduced
row echelon form of A — 113 is

Ap =
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and the probabilities of each pur-
chase on her next visit are

2 .375Ap=A(Ap)_—
.625

Thus the probability that she will
buy a float on her next visit is .375.

(c) Over the long run, the proportion
of purchases of each kind is given
by the steady-state vector for A.
As in Exercise 23, we first find a ba-
sis for the eigenspace correspond-
ing to eigenvalue 1, which is

{ }.
The vector in this eigenspace that
is also a probability vector is

1121 — 1.4
[3j [.6

Hence, over the long run, Alison
buys a sundae on 60% of her trips
to the ice cream store.

33. For a fixed j, 1 � j � n, the probabil-
ity of moving from page j to page i is

for 1 < i < ii. Since it is certain
that the surfer will move from page j to
some page, the sum of all these proba-
bilities must be 1. That is, the sum of
the entries of the jth column of A is 1.

37. (a) In general, the probability of mov-
ing from state j to state i in one
time period is So the probabil-
ity of moving from state 1 to state
2 in one time period is a21 = .05,
and the probability of moving from
state 1 to state 3 in one time period
is a31 = .05.

(b) The probability of moving from
state 2 to state 1 in one time period

is a12 = .1, and the probability of
moving from state 2 to state 3 in
one time period is a32 = .1.

(c) Similarly, the probability of moving
from state 3 to each of the other
states in one time period is .3.

(d) In general, suppose we have a tran-
sition matrix of the form

1—2a b c
M= a 1—2b c

a b 1—2c

where 0 < a,b,c < 1. For ex-
ample, in the given matrix A,
we have a = .05, b .1, and
c = .3. Suppose also that p is the
steady state vector for M. Then
(M — I3)p = 0, and hence

—2a b c Pi
a —2b C P2
a b —2c

—2 1 1 ap1
1-2 1 bp2
1 1 —2 Cp3

0

= 0.
0

Since a basis for the null space of
the matrix

—2 1 1 (11
1 —2 1 is 1

1 1—2

it follows that ap1 = bp2 cp3. So

Cp3
Pi , P2 =

and
CJ33

P3 = —.
C
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It follows that (c) Since Ivk I 0, the preceding in-
equality implies that < 1.

p = k 1 47. The given system of differential equa-

Li
tions can be written in the form y' =
Ay, where

where k So, for the
A=given matrix A,

Since the characteristic polynomial of A
— iI_— isp

k[1 L.1] t2 +6t+8 = (t+4)(t+2),
A has the eigenvalues —4 and —2. Bases

(e) For the vector p in (d), we have for the corresponding eigen-spaces of A
Ap = p. are

41. Let A be an n x n stochastic matrix and
p be a probability vector in Then

{ }
and

{ }.
each component of Ap is nonnegative,
and the sum of the components is Hence A = PDP', where

and
(a1ipj + a12p2 + + ainpn) [_2 1] = [_4 01

+ + an2p2 + + annpn) 3 1
D

0 _2j

The solution of z' = Dz is

= P1 + + = ae_4t

= 1. Z2 = be_2t.

43. (a) The absolute value of the ith corn- The algorithm on page 341 gives the so-

ponent of ATv is lution of the original system to be

+... + = = = —1] Iae_4t1

<laiillvil + ... + LY2]

r_2ae—4t — b62t1< + +
= L

3ae_4t + be_2ij
<lVkI.

(b) Let v be an eigenvector of AT 49. The given system of differential equa-
responding to eigenvalue A. Then tions can be written in the form =
ATv = Av. It follows from (a) Ay, where

that the absolute value of the kth 1 2 0 01
component of ATv is AVICI � A

= f

3 2 31Hence Al Vkl < VkI. L3
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Here A has the eigenvalues —1 and 2
(with multiplicity 2). Bases for the cor-
responding eigenspaces of A are

{ }

—1 0

and 0 , 1110
Hence A = PDP1, where

and

0 —1 0

P= -1 0 1

1 10

—1 0 0

D= 0 2 0002
The solution of z' = Dz is

zi =
z2 =

=

The algorithm on page 341 gives the so-
lution of the original system to be

=y=Pz

0 —1 0 ae_t
= —1 0 1

1 1 0 ee2t

— be2t

= _ae_t + ce2t
+ be2t

53. The given system of differential equa-
tions can be written in the form y' =
Ay, where

A has eigenvalues of —1 and 3, and
bases for the corresponding eigenspaces
of A are

{ [1] }
111

Hence A PDP', where

p
= [1 and D

=
The solution of z' Dz is

z1 ae_t

Thus the general solution of the original
system is

r_1 ii rae—ti=y=Pz=
L

2 2] lbe3tiLY2J

F_ae_t + be3t
L2aet + 2be3t

Taking t = 0, we obtain

and

15 =yi(O) = —a+b

—10=y2(0)=2a+2b.

Solving this system, we obtain a = —10

and b = 5. Thus the solution of the
original system of differential equations
and initial conditions is

Yi = lOe_t + 5e3t
Y2 = _20e_t + lOe3t.

57. The given system of differential equa-
tions can be written in the form y' =
Ay, where

6 —5 —7

A= 1 0 -1
3 —3 —4
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Here A has eigenvalues of —1, 1, and 2 y2(O) = b + c
2, and bases for the corresponding
eigenspaces of A are and

I 11] ( 111 1 = y3(O) = a +

LU L0] Solving this system, we obtain a = 4,

b = 5, and c = —3. Thus the solution of
and

( 13
the original system of differential equa-

I
I i]

}

tions and initial conditions is

[i = 4e_t + 56t —

Hence A = PDP', where
= Set — 3e2t

= — 3e2t.

ri 1 31

p=Io 1 61.
Li 0 1] obtain the system

and Y2

[—1 0 01 = 3Yi + 2Y2,

D= I 0 1 ol
L

0 0 2] which in matrix form can be written
y' = Ày, where

The solution of z' = Dz is

zl==ae_t

A = PDP1, for
Z3 = CC.

Thus the general solution of the original
=

and D
=system is

and the general solution of z' Dz is

Ey1y2]
= y = Pz

z1 = ae3t, z2 = be_t. It follows that

= y = Pz
= Ii [zil

Ii 1 31 Faetl LY2J [3 ij [z2j

= 10 1 ii bet
I

Iae3t+be_tl
Li 0 1] Lce2ti [3ae3t — be_tj

Iae_t + bet + 3ce2tl
bet + ce2t I

. and hence y = Yi = ae3t + be_t.

= L
ae_t + ce2t] 65. Take w = 10 ibs, b 0.625, and k =

1.25 lbs/foot in the equation
Taking t = 0, we obtain

0 = yi(O) = a + b + 3c + by'(t) + ky(t) = 0.
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Then the equation simplifies to the form

y" + 2y' + 4y = 0.

We transform this differential equation
into a system of differential equations by
letting Yi = y and Y2 = y'. These sub-
stitutions produce

Y2

= —4yi —

which can be written as y' Ay, where

The characteristic polynomial of this
matrix is t2 + 2t + 4, which has the roots
—1 + i and —1 — i. The general
solution of the original differential equa-
tion can be written using Euler's for-
mula as

y = +
= + i sin

+ be_t(cos —

or, equivalently, as

y

y" + ay" + by' + cy = 0

can be written as y' = Ày, where

0 1 0

A= 0 0 1

—c —b --a

The characteristic polynomial of A is
—t3—at2—bt--c; so =
fori=1,2,3. Now

1

=
A3 A2i i

1

A2

is an eigenvector of A with as its cor-
responding eigenvalue. So {vi, v2, v3 }
is a basis for consisting of eigen-
vectors of A. Thus the solution of the
given equation is given by the boxed
result of y' = Ay on page 341 with
P = [vi v2 and

A1 0 0
D= 0 A2 0

0 0 A3

73. The given difference equation can be
written as s,-, where

[ ]
and A = [0 1]

4 3

Taking

P
=

and D
=

we have A = PDP* Hence
and so

= =

Thus

69. The differential equation

1 A2

AA2=

01 .8 —.2

— 0 .2 .2 [i

— 4fl
.6

— (1)n+1 .4

+
— + 4(4n+1)
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Equating the first components of and Thus = + for n 0,
the preceding vector, we have and so r6 = 198.

= .6(—1Y + .4(4fl) for n 0. 81. Since the given difference equation is of

Hence the third order, is a vector in and
A is a 3 x 3 matrix. Taking

r6 = .6(_1)6 + .4(46) = 1639.
0 10

77'. The given difference equation can be = and A = 0 0 1

written as = where rfl+2 5 —2 4

we see that the matrix form of the given
= equation is =

rfl+2

and 85. We have010
A= 0 0 1 . ASo=11

0 1

1

1 11
P= 0 —1 2 Ii 0 Ii

0 1 4 Asl=t a [ri
and [ 1 1 Ii

0 0 0 = Lc+arii = Lr2
D= 0 —1 0

0 0 2 and, in general,
we have A = PDP'. Hence =

and so Ii 0 1 1

Sn =
[C a

{ 1 1 111

0 0 0 r0 — [c +
— Sfl.

=P 0 0 r1
0 0 r2

Hence

0 0 0 9
s,-, = =

= P 0 0 0 = = =
0 0 18 =Anso.

+ (For those familiar with mathematical
= — induction, this proof can be written us-

6(_1)n + ing induction.)



Chapter 5 Chapter Review 121

89. The given system of differential equa-
tions has the form y' = Ày, where

y

=

3.2 4.1 7.7 3.7

A
—

—0.3
—1.8

1.7

1.2

—1.8

—0.7

0.2
—4.4

2.9

0.5
—1.8

0.4

The characteristic polynomial of A is

— 0.4t3 — 0.79t2 + .166t + 0.24
= (t + o.8)(t + 0.1)(t — 0.3)(t — 1).

Since A has four distinct eigenvalues, it
is diagonalizable; in fact, A = PDP',
where

—0.8 0.0 0.0 0

D — 0.0
— 0.0

—0.1

0.0
0.0
0.3

0

0

0.0 0.0 0.0 1

Hence the general solution of the origi-
nal equation is

Yi

Y2

y3

y4

ae_OSt — be_Olt — ceO3t +
— 2ceO3t — det

— det

ae_OSt + + 3ceO3t + 2det

When t = 0, the preceding equation
takes the form

1 a
-4

2 c'
3 d

andsoa=—6,b=2,c==—1,andd=
4. Thus the particular solution of the
original system that satisfies the given
initial condition is

Ui = _6e_O$t — 2e0.lt + + 8et

Y2 _2e_O.it + 2e0.3t — 4et
= — 4et
= + 4e°'t — + 8et.

1. True

2. False, there are infinitely many eigen-
vectors that correspond to a particular
eigenvalue.

3. True 4. True 5. True

6. True

7. False, the linear operator on R.2 that ro-
tates a vector by 90° has no real eigen-
values.

8. False, the rotation matrix A900 has no
(real) eigenvalues.

and

1 1 —1 —1 21

0 —1 —2 —ii
— —1 0 0 —ii

[ 1 2 3 2]

and

CHAPTER 5 REVIEW

The solution of z' = Dz is

Zi ae_OSt

Z2

Z3 = ceO3t

Z4 det
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9. False, has only one eigenvalue,
namely 1.

10. False, if two nxn matrices have the same
characteristic polynomial, they have the
same eigertvalues.

11. True 12. True

13. False, if A PDP', where P is an in-
vertible matrix and D is a diagonal ma-
trix, then the columns of P are a basis
for consisting of eigenvectors of A.

14. True 15. True 16. True

True

The characteristic polynomial of the
given matrix A is

r5_t 6 1

det(A—t12)=
1—2 —2—tj

— (t — 1)(t —2),

and so its eigenvalues are 1 and 2. The
eigenspace of A corresponding to eigen-
value 1 is the null space of A—lI2. Since
the reduced row echelon form of this ma-
trix is

Ii 3
I 2

LO 0

{ [1] }
Similarly, the eigenspace of A corre-
sponding to eigenvalue 2 is the null space
of A — 112, and the reduced row echelon
form of this matrix is

Ii 21

[o oj'

23. The characteristic polynomial of A is

det(A — t12) = (t — 2)(t — 7),

and so its eigenvalues are 2 and 7. As iii
Exercise 19, the eigenspace of A corre-
sponding to eigenvalue 2 has the basis

11.1] 5'

and the eigenspace of A corresponding
to eigenvalue 7 has the basis

{ }.

the matrix whose columns are the vec-
tors in these bases, and

the diagonal matrix whose diagonal en-
tries are the eigenvalues of A that cor-
respond to the respective columns of P.
Then A = PDP1.

27. The standard matrix of T is

14 2A=[4

A basis for consisting of eigenvectors
of A is also a basis for consisting of
eigenvectors of T. So we proceed as in
Exercise 23. Here the eigenvalues of A
are —4 and 3, and bases for the corre-
sponding eigenspaces are

17.

19.
Take

a basis for this eigenspace is

Thus a basis for this eigenspace is

{ }.
11—i 'I 1[—2and Ui
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By combining these bases, we obtain a
basis for R.2 consisting of eigenvectors of
A or T, namely.

1 {—2
4]'[ 1

31. The given matrix A has eigenvalues of
2, 3, and c. By the first boxed result on 39.
page 318, A is diagonalizable if c 2

and c 3. We must check these two
cases separately. When c = 2, the eigen-
value 2 has multiplicity 2. Since the
rank of A — 213 equals 1 when c = 2,

the dimension of the eigenspace corre-
sponding to 2 is

nullity (A—213)=3—l=2,

which is the multiplicity of the eigen-
value. Since the only other eigenvalue
has multiplicity 1, it follows from the
test on page 319 that A is diagonaliz-
able in this case. Similarly, A is diago-
nalizable when c 3. Thus there are no
values of c for which A is not diagonal-
izable.

35. The characteristic polynomial of A is

det(A—t12) = t2—t—2 = (t+1)(t—2).

So the eigenvalues of A are —1 and 2.
Bases for the eigenspaces of A corre-
sponding to the eigenvalues —1 and 2
are Ii) 1211and

respectively. Hence A = PDP', where

1 2 Ifl—i 0andD==[
0

So, for any positive integer k,

=

11 21 [(_1)1c 0 [—i 2

—Li iJ{ 0 2k Li —i
1 21

1 i][ 2k
2(_1)k

1(_1)k+1 +
[ +

2(_1)k —

2(_i)k
2k+1

—

If a = b, then the eigenvalue a has mul-
tiplicity 3, but its eigenspace has dimen-
sion 2. If a b, then the eigenvalue a
has multiplicity 2, but its eigenspace has
dimension 1. In either case, A is not di-
agonalizable.

43. If B is the matrix whose columns are the
vectors in B, then [T]8 B1AB. So
the characteristic polynomial of [T]8 is

det (B'AB — tIn)

which is the characteristic polynomial of
A.

CHAPTER 5 MATLAB EXERCISES

1. (a) Proceeding as in Exercise 23 of the
Chapter 5 Review Exercises, we
see that A = PDP' for P =

1.0 0.8 0.75 1 1.0
—0.5 —0.4 —0.50 1 —1.0

0.0 —0.2 —0.25 0 —0.5 ,

0.5 0.4 0.50 0 0.0
1.0 1.0 1.00 1 1.0

and 300 00010 00
D= 000

0 0 0000
00

—i 0
02

.

= det (B'(A —

= (det B)'(det (A — B)

= det (A — tIn),
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(b) For this 4 x 4 matrix, the eigen-
value has multiplicity 2, but
rank (A = 3. Thus the ma-
trix is not diagonalizable by the
test on page 319.

(c) As in (a), the matrix is diagonaliz-
able with P =

—1.25 —1.00 —0.50 —1

—0.25 —0.50 0.50 0
0.75 0.50 1.00 0

1.00 1.00 0.00 1

—1 0 0 0

D— 0 2 0 0
— 0010.0001

(d) In this matrix, the eigen-
value 0 has multiplicity 2, but
rank (A — 015) = 4. So the test on
page 319 fails.

5. (a) A basis does not exist because the
sum of the multiplicities of the
eigenvalues of the standard matrix
of T is not 4.

(b) The vectors

—1 0 11

—1 —1 10
0 , —1 , —3

1 0 —13

0 1 3

15 5

8 10

—4 ,and 0
—15 —7

1 1

form a basis for consisting of
eigenvectors of T.

'7'. Let B be the matrix whose columns are
the vectors v1, v2, v3, and v4.

(a) By the definition of T, we have

02 0010 00
[T1s=

0 0 —1 000 02
Thus, by Theorem 4.12, the stan-
dard matrix of T is B[T}8B1 =

11.5 —13.7 3.4 —4.5

5.5 —5.9 1.8 —2.5

—6.0 10.8 —1.6 0.0
5.0 —5.6 1.2 —3.0

So the rule for T is as follows:

f
TI X2 =

X3

X4

11.5xi — 13.7X2 + 3.4x3 — 4.5x4
5.9x2 + 1.8x3 — 2.5X4

—6.Oxi + 10.8x2 — 1.6x3

5.Oxi 5.6x2 + 1.2x3 — 3.0x4

(b) The vectors listed below, obtained
using the MATLAB eig function,
form a basis of eigenvectors of T.
(Answers are correct to 4 places af-
ter the decimal point.)

and

0.7746 0.0922
0.5164 0.3147
0.2582 ' 0.9440
0.2582 —0.0382

0.6325 0.3122
0.3162 0.1829

—0.6325
, and

0.5486
0.3162 0.7537
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0 rthogonality

6.1 THE GEOMETRY OF VECTORS 19. We have

lull2 = 22+32 = 13,
1. hull = + (_3)2 =

11v112 =02+02=0,
llvll= i122+42 —

and and

d= lu—vu
+ v112 = (2 + 0)2 + (3 + 0)2 = 13.

— 2)2 + (—3 — 4)2
Since

=
Hull2 + 1v112 = 13 + 0 = 13 = lu + vu2,

5. 111111 = f12 + (_1)2 +32 =
the Pythagorean theorem shows that u

Ilvil = v'22 + 12 + 02 v
and

23. We have
d= Ilu—vIl

HuM2 = 12 + 22 + 32 = 14,= \/(12)2+(1_1)2+(3_O)2
11v112 = (_11)2 + 42 + 12 = 138,

=
and

9. Since u.v=3(4)+(—2)(6) ==0, uand
hlu+vhl2v are orthogonal.

=(1_11)2+(2+4)2+(3+1)2
11. Sinceu.v=(1)(2)+(—1)(1) =1,uand = 152.v are not orthogonal because u.v 0.

Since15. The dot product of u and v equals
lull2 + llv 112 = 14 + 138

(1)(2) + (—1)(3) + (_2)(1) + 1(1) = —2, = lu + v112,

and so u and v are not orthogonal be- the Pythagorean theorem shows that u
cause u • v 0. and v are orthogonal.

125
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27. We have

Mull = =

Ilvil = + (_1)2 =

and

So

Ilu + vii

= \/(4+3)2+(2_1)2

= lull + Mvii.

31. We have

lull = + (_1)2 + 32 =

lvii = + 02 + 12 =

and

Ilu + vIl

So

=

= MuM + IivM.

35. We have

and

lvii = + (_2)2 = =2,

u.v = 4(0) + 1(—2) = —2.

This illustrates the Cauchy-Schwarz in-
equality because

u.vl = I —21 = 2

= IluillivIl.

39. We have

Mull = V/42 + 22 + 12

lvii = + (_1)2 + (_1)2 =

and

u.v = (4)(2) + 2(—1) + (1)(—1) = —5.

So lu.vl = 5 Ilulilivil.

43. Let v
= [f], a nonzero vector that lies

along the line y = —x. Then w cv,
where u.v 1

C — — —,

and hence w

= v.v

Therefo:e

[

— 1171 — 7111
— 2L7j — 2L1] — 2

47. As in Exercise 43, let v
=

a

nonzero vector that lies along the line
y = —3x. Then w = cv, where

u.v 13
c = = = 1.3,v.v 10

and hence w = 1.3 . Therefore

d = lu - wll = - 1.3

= = UL1 = i.iyiO.

51. Using Theorem 6.1, we obtain

liu + v112 = huh2 + 2u.v + 1iv112

= 22 + 2(—1) + 32 =
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53. As in Exercise 51, we obtain 81.

liv — 4w1i2 = 11v112 — 8v.w + 1611w112 u.u = u1(u1) + u2(u2) + +

________________________

2= 32 — 8(—4) + 16(52)
— + +... + lull2

= 441.

57. v.u = u.v = 7 85. Suppose that u and v are in Then

61. l'rue (cu).v = (cui)vi + +

62. False, the dot product of two vectors is = c(u.v).
a scalar.

The proof that (cu) . v = u. (cv) is sim-
63. False, the norm of a vector equals the

ilar.square root of the dot product of the
vector with itself. 89. Let u and v be vectors in We show

that
64. False, the norm is the product of the

lu + vii = lull + liv iiabsolute value of the multiple and the
norm of the vector, if and oniy if u is a nonnegative multiple

of v or v is a nonnegative multiple of u.
65. False, for example, if v is a nonzero vec- Suppose first that iiu+ vii = huh + ilvil.tor, then If u = 0 or v = 0, the result is im-

mediate; so assume that the vectors are
iv + (—v)ii = 0 iivii + ii — vii.

nonzero. Then

66. True 67. True 68. True lull2 + 2u.v + iivii2

69. True

= (huh + livID2
70. False, consider nonzero orthogonal vec-

tors. huh2 + 2hluii . iivlh + iivii2,

71. False, we need to replace = by and therefore u.v = hull . Thus
u • v is nonnegative. By Exercise 88, it

72. True 73. True 74. True follows that u or v is a multiple of the
other. Suppose u = kv for some scalar

75. True k. Then

76. False, Au.v = u.ATv. 0 � u.v = kv.v = k(v.v) = kihvii2.

77. True So k � 0. A similar argument may be
used if v = ku.78. False, we need to replace = by <.
Conversely, suppose one of the vectors

79. True 80. True is a nonnegative multiple of the other.
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Since both of these vectors are nonzero, and so IlAvil 0. Thus Ày = 0,
we may assume that v = cu, where c is and it follows that Null ATA is con-
a nonnegative scalar. Then tamed in Null A. Therefore

iu+cuM = II(1+c)uii Nu11ATA=zNullA.

= i1+ciikull = (1+c)iiuii, (b) Since

and Null ATA = Null A,

+ iivM = huM + iicuH = hull + ichihuli we have that
= (1 + cl)iIuhi = (1 +c)hIuil. nullity ATA = nullityA.

Therefore lu + vii = huh + ilvhl. Notice that ATA and A each have
n columns, and hence

93. Since 0.z 0 for all z in S, we see that
0 is in W. Now suppose that u and V rank ATA = n — nullity ATA
are in W. Then, for all z in 8, = — nullity A

(u+v).z = u.z + v.z = 0 + 0 = 0, = rankA.

and hence u + v is in W. Finally, let 101. Let 9 denote the angle between u and v.
c be any scalar. Then, for all z in 8, Since

(cu).z = c(u.z) c0 = 0, UV = huHMvllcos9

(—2)(1) +4(—2) =
and hence cu is in W. We conclude that

—10 = lOcosGW is a subspace.
—1 = cosO,

97. (a) Suppose that v is in Null A. Then
we see that 6 = 1800.

(ATA)v = AT(Av) = ATO = 0,
105. Let 0 denote the angle between u and v.

and hence v is in Null ATA. Thus Since
Null A is contained in Null ATA.

u.v= hiuhhhlvhicosOConversely, suppose that v is in
Nu11ATA. Then 1(—1) + (—2)(1) + 1(0) =

—3 =0 = 0.v
= (ATA)v.v

—4 = cos9,
= (ATAv)Tv

we see that 0 = 150°.
= VTATAV

109. ForuinlZ3,= (Av)T(Av)
Iu20 — u3Ol lo= (Ay) . (Ay)

= IiAvhI2,
U x 0 = [n30 — u10 I = 10] = 0.

Ul0—U20] Lo
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By Exercise 108,

Oxuz=—(uxO)=—O=O.

113. Let u, v, and w be in. fl.3. By Exer-
cises 108 and 112,

(u+v) x w = —(w x (u+v))
= x U + W X v)

= —(w x u) + —(w x v)
= U X w + V X W.

117. Let u, v, and w be in By Exer-
cises 108 and 116, we have

(u x v) x w = —(w x (u x v))
= —((w.v)u— (w.u)v)
= (%v.u)v —

121. The supervisor polls all 20 students
and finds that the students are divided
among three sections. The first has
8 students, the second has 12 students,
and the class has 6 students. She di-
vides the total number of students by
the number of sections and computes

— 8+12+6 26v= -.-=86667

When the investigator polls 8 students
in Section 1, they all report that their
class sizes are 8. Likewise, for the other
two sections, 12 students report that
their class sizes are 12, and 6 students re-
port that their class sizes are 6. Adding
these sizes and dividing by the total
number of polled students, the investi-
gator obtains

* 244
V

= 8+12+6 26
= 9.3846.

125. In (a), (b), and (c), we describe the use
of MATLAB in the default (short) for-

Entering nonn(u + v) produces
the output 13.964, and entering
norui(u) + norm(v) yields 17.3516.
We conclude that

iIu+v!I < huh + Ilvhl.

(b) As in (a), we obtain the out-
puts norin(u + vj) = 16.449 and
norin(u) + norm(vi) = 16.449.
However, these outputs are
rounded to 4 places after the
decimal, so we need an additional
test for equality. Entering the
difference

norm(u) +norm(vi)
norni(u + vi)

yields the output 1.0114 x 10—6,
which indicates that the two are
unequal but the difference is small.
Thus

hlu+vihl < Iluhi +

(c) As in (b), we obtain a strict in-
equality. In this case, the differ-
ence, given by the MATLAB out-
put, is 5.0617 x

(d) Notice that in (b) and (c), v1 and
v2 are "nearly" positive multiples
of u and the triangle inequality is
almost an equality. Thus we con-
jecture that hIu+vII = IhuII+hIvhb if
and only if u is a nonnegative mul-
tiple of v or v is a nonnegative mul-
tiple of u.

(e) If two sides of a triangle are par-
allel, then the triangle is "degener-
ate," that is, the third side coin-
cides with the union of the other
two sides.

mat.

(a)
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6.2 ORTHOGONAL VECTORS 11. (a) Let

1 7

3. Since u1 —2 and u2 = 7
—1 5

1 2 Then
—1 • —1

1 0
1

v1=u1= —2
= 1(2)+(—1)(—1)+1(o) —1

and

some pair of distinct vectors in the given v2 = u2 —
U2 Vi

v1
set is not orthogonal. Thus the set itself Vi

is not orthogonal. 7 1

7 . —2
7. Wehave

—1=7- -2
1 1 5

12
2 1 —2

3 • —1 —1

=
[] - (-12)

[ —i So the desired orthogonal set is

=1(3)+2(-3)+3(O)+(-3)(-1)
—1 3

and
(b) Normalizing the vectors above, we

obtain the orthonormal set

[_i]
.

['i]
0 —1

13. (a) Let

= 1(3) + 1(—3) + (—1)(0) + 0(—1) 0 1

=0. 1 0
U1

1
U2

1 '
Therefore the set is orthogonal. 1 1
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and resulting vectors are
111

01[I
U3—

0
1 1

Lii

1

1 1 1—21vi = Ui,
U2•V1 =V2U2— v1

L
1]IIV1 j2

111 101 1 31 and

1°' 2 1 1—21 r
31— iiJ 3 iii 3 ii' 1 1 31

Li] L'] L
1]

11v3H2 = I
41

L i]
and

U3•V1 U3.V2
V3 = U3 — Vi V2 17. Using the boxed result on page 376, weIlvi 112 lv2 12

obtain
Iii lol 1 31 Iii 121

— lii 2 Id 2 1—21
L8i Lii 2

— o1 I 2

Li] L1] L lj
[ii

31 Iii r_ii
11 L8]J 2] -1

+ ii { 2]
1]

II[
Thus

10 r2i 15 1—11
{vi,v2,v3} ki

+
I.

2]

1101 f 31 1 31

hI 11—21 1 I 31

Suppose =

2 +3

Lii L ii L U hat c1, c2, and c3 are the
is the corresponding orthogonal scalars such that v = e1vi + c2v2 + c3v3,
set. where

(b) To obtain the vectors in the or- I ii 1
thonormal set, we normalize each v1 Oj v2 = 2 I v3 = I —i
of the vectors v1, v2, v3 in (a). The Lii L—1] L—ii
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Then, by the boxed result on page 376, 10 1 ii
1 0 iiwe have 29. Let A = The vectors in
1 1 01.

v.v1
Li i]c1=

lvi 12 2' the answer to Exercise 13(b) are the
V • v2 3 1 columns of Q, so that

C2=
6 2'

0 1

2
01 + I 21 +0 I L For i j, the entries of the 3 x 3 upper

Li] Li] [—ii triangular matrix R can be computed
using = a3 . so that

1 2

1 21
obtained an orthonormal basis for ColA: R

= L

0

0 0

{ } 33. We proceed as in Example 5 to solve
Ax b, where

These vectors are the columns of Q, so

that r1 51 r_3i
A_—li —11 and b=l

L 0iIi
J We use the matrices Q and R from the

The entries of B can be found as in Ex- QR factorization of A found in Exer-

ample 4: cise 25:

11 i-I
3 Ii it

I' ol

and

Thus R R
= 0

0
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We must solve the equivalent system 41. False, if 0 lies in the set, then the set is
= which has the form linearly dependent.

+ = 42. True 43. True 44. True

= 45. True 46. True 47. True

or 48. True
0

49. False, consider the sets {ej} and {—ei}.
X2 —1. The combined set is {ej, —ei}, which is

The latter system is easily solved by not orthonormal.
starting with the last equation: x2 = 1

50. False, consider x = e1, y = 0, and z =
and x1 —2(—i) = 2. In vector form,

e1.

the solution is x
51 True

37. We proceed as in Example 5 to solve 52. False, in Example 4, Q is not upper tn-
Ax = b, where angular.

10 1 i

Ii 0 :11 iiA= andb= .

Li 1 1j
L

2j (cic,) . 0 = 0.

We use the matrices Q and R from the Hence and c3v3 are orthogonal.
QR factorization of A found in Exer-

57. By Exercise 56, S can be extended to an
cise 29. We must solve the equivalent orthonormal basis
system Rx = QTb, which has the form

2 {vl,v2,...,vk,vk+1,...,vfl}
+ +

for By Exercise 55(c),
11+
21 lull2 = (u.vi)2 + .. +=

+ (U.vk+1)2 + ... +
or

3x1 + 2x2 + 2x3 = 2 (a) The desired inequality follows im-
mediately from the equation above5x2+2x3=11
since

x3= 3.
(u.vk+1)2 +... + � 0.The latter system is easily solved:

= 3, x2 = 1, and x1 = —2. In vector (b) The inequality in (a) is an equality
if and only if

form, the solution is x = I 1

L
3] (u.vk+1)2 +... = 0,
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that is, if and only if u • 0 for is
i> k. In this case, 1 —2

1, 0

0 1

which is true if and only if u is in 5. As in Exercise 1, we must find a basis
Span S. for the solution set of

61. From Exercise 60, we have 0 for xi — 2x2 + x3 + x4 = 0

every i. If <0, then replacing q. by x1 — x2 + 3x3 + 2x4 = 0.

—qj changes the corresponding entry of
R to which is positive. One such basis is

65. Suppose QR = Q'R', where both R and 5

R' have positive diagonal entries. Multi- —2 —1

plying both sides on the left by QT and 1 ' 0

on the right by we obtain 0 1

QTQ/R/R11, 1 [ i.
9.

which by Exercise 63, reduces to
RR'' By Exercises 42 and 43 (a) As in Example 3, we have

of Section 2.6, RR'', and hence
• . . . w=(u.vi)viis an upper triangular matrix with pos-
itive diagonal entries. By Exercise 64, = 1

the columns of QTQI form an orthonor- 1

ma! basis. Hence, by Exercise 58, QTQI 1—il
is a diagonal matrix. But a diagonal ma- =
trix with positive diagonal entries whose
columns are unit vectors must equal 13. and
So

RR'1 = 13, =
= — [—i] =and therefore Q = Q' and R = R'.

(b) The orthogonal projection of u on

6.3 ORTHOGONAL PROJECTIONS W is the vector w in (a).

(c) The distance from u to W is1. A vector v is in S if and only if I—

= Ilu — wil = v8.
1

V. —1 = Vi — V2 + 2v3 = 0. 13. Let v1, V2, and v3 denote the vectors in

2 8, in the order listed.

(a) As in Example 3, we have
So a basis for is a basis for the solu-
tion set of this system. One such basis w = (u.vi)vi + (u.v2)v2
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2 2 0

4 2 2

— 1 — 3 — —2
3 1 2

(b) The orthogonal projection of u on

W is the vector w

=

in (a).

(c) The distance from u to W is
Izil = lu — wi =

17. (a) Clearly { } is a basis for W.

Let C
=

the matrix whose

column is this basis vector. Then

Pw = C(CTCY4CT

1 9 —12

25 —12 16

(b) The orthogonal projection of u on
W is the vector

w =

z U — W

— 1—101 1—61 1—4

L
8j[-3

(c) The distance from u to W is

=5.

21. (a) Choose the pivot columns of

1 1 5

—1 2 1

—1 1 —1

2 —1 4

to obtain a basis

1 1

—1 2

—1 ' 1

2 —1

for W. Let C be the matrix whose
columns are these basis vectors.
Then

22 11 0
1 11 19 9

33 0 9 6

11 —8 —9

(b) The orthogonal projection
W is the vector

and+ (u.v3)v3
6 3 3—Vi+ V2+ V3

121-
—

'3j[i

z = U — W

and

11

—8

—9 -

19

of u on

and
_1 9 —12][—10

16j{ 5

1—6[8'

3

0w = = —1

3

—2

1z=u—w=
3 -

3
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(c) The distance from u to W is

lizil =

Thus we take

—1 —1

2 0
1 0
0 1

and proceed as in the solution to Exer-
cise 21 to obtain the following results.

6 —2 —1 —5

8 4 —2

4 2 —1

—2 —1 6

0 1

4 1(b) w=
2 —1

—2 1

(c) =2

33. False, (S-'-)1 is a subspace for any set
S. So, if S is not a subspace, then nec-
essarily S (S')-'-.

34. False, in let F = {ei,e2} and
G = {ei,2e2}. Then F-i- = {0} = G',
but F C.

35. True

36. False,

37. True

40. True

42. False, dimW=zn—dimW-.

43. False, we need the given basis to be or-
thonormaL

44. True 45. True

46. False, the only invertible orthogonal
projection matrix is the identity matrix.

47. True

48. False, the columns of C can form any
basis for W.

49. False, we need the columns of C to form
a basis for W.

True

False, see Example 4.

True 53. True

False, the distance is lu — Pwull.

True 58. True

25. By solving the equation

x1 + — = 0,

we obtain the basis

( —2 11,0
1.0 1

for W. Proceeding as in the solution
to Exercise 21, we obtain the following
results.

1
5 —2 1

(a) —2 2 2

1 25
2 1

(b) w= —1 andz= 2

0 —1

(c) The distance from u to W is

29. As in Exercise 25, a basis for W is

—1 —1

2 01' 0
0 1

(Row A)' = Nu11A.

38. True 39. True

41. True

1 1—2
(a)

[—5

50.

51.

52.

54.

55.
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57. Suppose that v is in W'. Because ev- 69.
cry vector in S is also in W, it follows
that v is orthogonal to each vector in S.
Therefore W' is contained in

Conversely, let u be in 8.L and w in
W. There exist scalars a1, a2,. .. ,

and vectors v1, v2,.. . , in S such that

Thus

w.u=(aivl+..+akvk).u
(vi. u) + ... + ak(vk . u)

=0,

and therefore u is in W'. Thus 8L is
contained in and we conclude that

=8'.
61. (a) Suppose that v is in (Row A)'.

Then v is orthogonal to every row
in A. But each component of Av is
the dot product of a row of A with
v, and hence every component of
Av is zero. So Av = 0, and hence
v is in NullA. Thus (Row A)1 is
contained in Null A.
Now suppose that v is in Null A.
Then Ày = 0, and hence v is or-
thogonal to every row of A. So v is
in (Row A)' by Exercise 57. Thus
Null A is contained in (Row A)',
and the result follows.

(b) By (a), (Row AT)± = Null AT. But
the rows of AT are the columns of
A, and hence = Null AT.

65. Suppose v is in both Row A and Null A. 77.
Because Null A = (Row A)' by Exercise
61(a), v is orthogonal to itself, that is,
v.v = 0. So v = 0.

By Theorem 6.7, there are unique vec-
tors w in W and z in such that
u w+z. It follows that u is in W' if
and only if u = z, and hence if and only
if w = 0. By Theorem 6.8, Pwu = w,
and hence Pwu 0 if and only if u is
in W1.
ALTERNATE PROOF: By Theo-
rem 6.8, Pw C(CTC)_1CT, where C
is a matrix whose columns form a basis
for W. Now suppose that u is in
Then u is orthogonal to each column of
C, and hence CTu 0. Therefore

Pwu = c(CTC)—iCT

=

= =0.

Conversely, suppose that Pwu 0.
Then

C(CTC)_1CTu =0
CTG(CTCY1CTu = CT0 =0

CTu =0.

This last equation asserts that u is or-
thogonal to the columns of C, a gener-
ating set for W. Therefore u is in
by Exercise 57.

Let 11 be a vector in W1. By Theorem
6.7, there are unique vectors w and z
in W and W', respectively, such that
u=w+z. Then

+Pwi)u
= w + z U = mU.

Thus + =

(a) We first show that 1 and 0 are
eigenvalues of Pw. Since k 0, we
can choose a nonzero vector w in
W. Then = w, and hence w



138 Chapter 6 Orthogonality

is an eigenvector with correspond-
ing eigenvalue 1. Since k n, we
can choose a nonzero vector z in
Wa-. Then = 0, and hence z
is an eigenvector with correspond-
ing eigenvalue 0.
Next we show that 1 and 0 are the
only eigenvalues of Pw. Suppose
that A is a nonzero eigenvadue of
Pw, and let u be an eigenvector
corresponding to A. Then PwU =
Au, and hence Pw(*u) = u. Thus
u is an image of and so u is in
W. Therefore

71\ 1 1
u = =

Hence 1 = that is, A 1.

(b) Since = u if and only u is in
W, we see that W is the eigenspace
of Pw corresponding to eigenvalue
1. Similarly, since = 0 if and
only if u is in W', we have that

is the eigenspace of Pw corre-
sponding to eigenvalue 0.

(c) Let T be the matrix transformation
induced by Pw. Since T(u) =
u for all u in and T(u) =
v for all v in 82, we have ET}B =
D, and hence = BDB' by
Theorem 4.12.

81. By computing its reduced row echelon
form, we see that the first two columns
of A are its pivot columns. Thus the
rank of A is 2 and a basis for ColA is

82= {
['U }•

1 0 1 —1

B—
0 1 2 —1

— —1 —2 1 0
1 10 1

1000
0 1 0 0

0000
Notice that B is the matrix whose
columns are the vectors in US2. Then
by Exercise 77(c),

2 —1 0 1

_1 —1 1 —1 0

3 0 —1 2 —1

1 0 —1 1

85. (a) There is no unique answer. Us-
ing Q in the MATLAB function
[Q RI = qr(A, 0) (see Table D.3 in
Appendix D), where A is the ma-
trix whose columns are the vectors
in 8, we obtain an orthonormal ba-
sis containing the vectors

can find a basis

for (ColA)'. Let

and

BDB'

[J] , [J]

As in Example 2 on pages 390—391, we

0 .7808
.2914 —.5828

—.8742 , —.1059
0 0

.3885 .1989
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1—.09941 1— .10171 1 1 21 1 701 11351

I—.32431 I—.13601 = 20 [—4 ij [300j
I— .46771, and — .05891.
I .10821 I —.9832 Therefore y = 13.5 + x.

L— .8090] [—.0304] 5. Let
(b) Let C be the 5 x 4 matrix whose

columns are the vectors in (a). [i fl 1401

Then the orthogonal projection of I 1 31 1361

C Ii 71 and y= 1231uonWis IIi 81 1211

w C(CTC)_1CTu Li iOj L13]

r_6.3817] Then the equation of the least squares
I 6.89251 line for the given data is y = a0 += I 7.2135 I where

1.36871

[ 2.3111] [aol = (CTC)_1CTy
Lad

(c) The distance from u to W is
1401

1 1194 136 20 —9 _67]=
[—24 —14 6 ii

1211

6.4 LEAST-SQUARES [13]
APPROXIMATIONS AND

1 441ORTHOGONAL PROJECTION
MATRICES [_3j

That is, the equation of the least squares
1. Using the data, let line is y = 44 — 3x.

Ii ii 1141
9. Let

1171C= and y= 1191 [i 3.5] [1.01

L' 7] L20] 1 4.01 — 12.21
and y

1 4.51 12.81
Then the equation of the least squares [1 50] [4.3]
line for the given data is y a0 + a1x,
where and proceed as in Exercises 1 and 5. The

Iaol
equation of the least squares line is y =

[aij
= (CTC)_1CTy —6.35 + 2.ix, and so the estimates of k

and L are 2.1 and
1141 a — (—6.35)14 161111 1 1 11 1171 3.02,

= [16 84] [1 3 5 7] 1191
k 2.1

L20J
respectively.
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Here the matrix C has a third column
whose entries are (the square of the
first coordinate of each data point). As
in Exercises 1 and 5, we compute

ao 2

a1 (CTC)_1CTy 0.5
a2 0.5

The equation of the least squares line is
y = a0 + a1x + a2x2 2 + 0.5x + 0.5x2.

17. As in Example 3, the vectors that mini-
mize Az — are the solutions of Ax =

Let

1 2

Cz1 -1
2 1

be the matrix whose columns are the
pivot columns of A. Then

21. The system Ax b is consistent, and
its general solution has the form

5 —1

= —3 +x3 1

0 1

Thus a vector is a solution of Ax = b if
and only if it has the form v v0 + z,
where

5

v0= —3

andzisinNuhlA=SP:n{[1]}. As

described on page 408, the solution of
Ax b having least norm is given by
v0 — PZVO, where Z = Null A. Let

—1

C= 1.
1

Pzvo = C(CTC)_1CTv0

=1 [-fl'
and so the solution of Ax b having
least norm is

1
—1

8

25. In the solution to Exercise 17, we found
that the vectors of the form

13. Let

10C-ill12
13

2

3y=5.
8

Then

0

2

2

and the general solution of Ax = Pwb
is

1
4 —1

x2 —2 +x3 1

0 1

Thus vectors of the form

1
4 —1

— —2 +x3 1

i

are the vectors that minimize I!Az — bH.

1
—1

— —2 +X3 1

1

are the vectors that minimize lAx —

We proceed as in Example 4 to find the
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vector z of this form that has the least II lyl — (ao + aixi)l 12

norm. Let Z = Nu11A, 112 — (ao + aix2) I

1_li 1 41

C= ii, and 1—21.

Lii [oj
= [yl — (ao + aixi)]2 +

Then
+ — (ao +

Pzvo
=E.

37. Let A = QR be a QR-factorization of A,
So the vector of least norm that mini- and let W denote the column space of A.
mizes lAx — bIt is The solutions of Ax = Pwb minimize

Ax — bit. It follows from Exercise 36
that Ax = Pwb if and only if QRx =

vo — PzV0 = . QQTb. If we multiply both sides of this
equation by QT and simplify, we obtain
Rx=QTb.

28. False, the least-squares line is the line
that minimizes the sum of the squares 41. Following the hint, let W denote the col-

of the vertical distances from the data umn space of A. Then we have (with en-

points to the line, tries rounded to 4 places after the deci-
mal)

29. True
10.9962 0.08721

30. False, in Example 2, the method is used 0.9848 0.1736 I
to approximate data with a polynomial 10.9659 0.25881A=I I

of degree 2. 0.9397 0.3420 I
10.9063 0.4226'

31. False, the inconsistent system in Exam-
Lo.866o o.5000j

pie 3 has infinitely many vectors that
minimize this distance. and

32. True 12.80391

12.6003 I
33. We have = A(ATA)_1ATy = 2.37691

2.13551
— (aovi +aiv2)112

11.87771
2

111

111Y21
lii The matrix equation Ax = has=

. —aoj,I—aii
a = 2.9862 and b = —1.9607 as its solu-

Li Li tion (rounded to 4 places after the dec-
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imal). When rounded to 2 significant
figures, we have a 3.0 and b = —2.0.

6.5 ORTHOGONAL MATRICES AND
OPERATORS

1. Since the given matrix is not square, it
cannot be an orthogonal matrix.

5. Since

01 0T 010001 001100 100
001 010=100 001010 100

the matrix
6.9(b).

= 13,

is orthogonal by Theorem

1 Ii ii
9. Since

1
detA = —1) = —1,

Theorem 6.11 shows that the operator is
a reflection. The line of reflection is the
same as the eigenspace of A correspond-
ing to eigenvalue 1. This is the solution
set of (A — 112)x = 0. Because the re-
duced row echelon form of A — 112 is

11

0 j'
the general solution of this system is x =

+ l)y, that is,

1

+1

Thus y = — 1)x is the equation of
the line of reflection.

13. Let A = Since

detA = —144) —1,

the operator is a reflection. As in Ex-
ercise 9, the line of reflection is the
eigenspace of A corresponding to eigen-
value 1, which is the solution set of
(A 112)x = 0. Because the reduced
row echelon form of A 112 is

1 3
2

0 0'
the general solution of this system is x =

that is, y = Thus y = is the
equation of the line of reflection.

17. True

18. False; for example, if T is a translation
by a nonzero vector, then T preserves
distances, but T is not linear.

19. False, only orthogonal linear operators
preserve dot products.

20. True 21. True 22. True

23. False, for example, let P = and
Q -Ia.

24. False, for example, let P =

25. True

26. False, consider

11
1 2

27. False, consider from Example 4 in
Section 6.3.

28. True 29. True 30. True

31. False, we need detQ = 1.
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32. False, for example, if T is a translation is an orthonormal basis for {v}'. Hence
by a nonzero vector, then T is a rigid we may take
motion, but T is not linear and hence is
not orthogonal.

1
39

AT___ —26
33. False, for example, if T is a translation 91

o 78
by a nonzero vector, then T is a rigid
motion but T is not linear, so that

34. True 35. True 36. True
1

0
3 A —

37. Let v —2 , and suppose that T 91
39 —26 78

6

is a linear operator on R.3 such that Thus one possibility for the desired op-
T(v) = e3. If A is the standard matrix erator is T = TA.
of T, then A is an orthogonal matrix,
and so ATA = 13. Since Av = T(v) 41. We extend {vi,v2} and {wi,w2} to or-
e3, it follows that thonormal bases for R3 by including

v = (ATA)v AT(Av) = ATe3,
1

2
1

V3 —2 and w3=— —6
and so v must be the third column of i 2
AT. As in Example 3, we construct an
orthonormal basis for {v}-'-. The vectors respectively. Let
in satisfy

1 2 2

— 2x2 + 6X3 = 0. B = [Vi V2 v3] = 2 1 —2

A basis for the solution set of this equa-
2 —2

tion is and

{ }. W2 W3]

Applying the Gram-Schmidt process to = 3 2 —6
this set, we obtain 6 —3 2

2 -18
which are orthogonal matrices. Take

13J
20 4—5

which is an orthogonal basis for {v}'. A = CBT = —5 20 —4

Thus 5 20

( 1
2

1
—18 ) and T = TA to obtain an orthogonal

3 , 12 operator that meets the given require-
t. 0 13 J
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45. Let B = {v, w}. Observe that (e)

T(v) = (v.vcos9 + v.wsin9)v Qwv = (2Pw — 12)v

+(—v.vsinO-f-v.wcosO)w 2Pwv—12v
=O—v= —v

Similarly, T(w) = sin Gv + and (f) Select nonzero vectors w in W and
hence v in W-1-. Then {w, v} is a basis

for R2 since it is an orthogonal set
r COS 0 of nonzero vectors. Set P = [w v],
(._- sine cos Oj and let T be the matrix transfor-

Since [T]8 is an orthogonal matrix, T mation induced by Qw. Then Qw

an orthogonal operator. is the standard matrix of T, and T
is an orthogonal operator because

49. Suppose that A is an eigenvalue for Q, Qw is an orthogonal matrix. Also,
and let v be a corresponding eigenvec-
tor. Then Qw = PDP',

IlvIl = llQvll = llAvll = l)tlllvll. where D
= ?]. Thus

Since IvIl 0, it follows that A 1.

Therefore A = ±1. det Qw = det (PDP1)
53. (a) = (detP)(detD)(detP1)

= (2Pw — I)T = —
= (det P)(—1)(det P)'
= -1.=2Pw-12=Qw

(b) It follows that T is a reflection.
Furthermore, since T(w) = w, T

Q2w (2Pm — 12)2 is the reflection of R.2 about W.

57•
- 4Pw +1212

IIT(u)ll = IIT(u) —
(c) By (a) and (b), we have = !T(u) —

QTwQw QwQw = = '2, = lu - Ofi = lull

and hence Qw is an orthogonal ma- 61. Since
trix.

(d) F + F

Qww(2PwI2)w
= — 12w

=2w—w=w =q1+q2+2b
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and 69. Let Q be the standard matrix of U, w =
1 andz— —m1

+b {m]' — { ij Sincew lies along
F ([f]) = Q ([b] +

£ and z is perpendicular to £, we have=qj+q2+b, U(w) = wand U(z) = —z. Let B =
it follows that {w, z} and P = zj. Then B is a basis

for and hence

121 Iii 121

{U]8
=

and Q P[Uj8P'.

- [4] + [3] [3] = [4j Thus

Thus

b 1 ml [1 011 1 m1'Q = F - -ij [-m 1]
121 111 111

[ 1 mill 01 F 1 m1'= [oj = [-m ij -ij 1]

and 1 11—m2 2m 1

Q = F — b
= 1 + m2 2m m2 —

73. By Exercise 69, the respective standardI ii 111 1 01

[3] — [4] = matrices of the reflections of R.2 about
the lines with equations y = 1.23x and

Ii 01 y —0.24x are
Therefore Q = _ij Il—a2 2a 1

65. Let u and v be in Then
A = 1 a2 [ 2a a2 — i]

IT(u) — T(v)112 and
= [T(u) —T(v)I.[T(u) —T(v)] ri_b2 2b 1

=T(u).T(u) —2T(u).T(v) B
[ 2b b2 — ij'

+ T(v) .T(v)
where a = 1.23 and b = —0.24. Thus,
by Theorem 2.12, the standard matrix

Hence IT(u) — T(v)II = lu — it of the composition of these reflections is

follows that T is a rigid motion. Fur-

E

.6262 :77971thermore, BA =
—.7797 — .6262j

T(0).T(0) = 0.0 = 0,
From the form of a rotation matrix, we

and hence T(0) = 0. Therefore T is an see that the angle of rotation 0 must sat-
orthogonal operator by Theorem 6.13. isfy cos0 = —.6262 and sin9 = —.7797.
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Because both of these values are nega- and it is the rotation matrix corre-
tive, we have 180° < 0 < 2700. Now sponding to the angle
cos'(.6262) 51°, and hence 0
1800 + 51° = 231°. 8.13°.

6.6 SYMMETRIC MATRICES (c) The equations relating x,y and
x', y' are given by

1. (a) The associated quadratic form of
the given equation Ix] 1x1

Lyi
2x2 — l4xy+50y2 —255=0

that is,
is 2x2 — l4xy + 50y2. As described
on pages 428—431, we must find an x =

—orthonormal basis for consist-
ing of eigenvectors of Y = X' + y'.

(d) The columns of P are eigenvectorsA = {_7 50] corresponding to the eigenvalues
A1 = 1 and A2 = 51, respectively,

(b) The eigenvalues of A are A1 1 and so the transformed quadratic
and A2 = 51, and form is

{ }
and

{ } Ai(x')2 +A2(y')2 (x')2

are bases for the corresponding Thus the transformed equation is
eigenspaces. The vectors in these
bases are orthogonal, as guaran- (x')2 + 51(y')2 — 255 = 0

teed by Theorem 6.14. So (x')2 + 51(y')2 = 255

1 1 1 1—il } (x')2 (y')2 =1.Li] L
7] +

is the desired orthonormal basis (e) This is the equation of an ellipse.
for R.2 consisting of eigenvectors of
A. From among these basis vectors 5. (a) As in Exercise 1, take
and their negatives, we choose the
vector having two positive compo-

A
=1

17]
nents, which is

Lii'
and make

a rotation matrix with this as its (b) The eigenvalues of A are 7 and 3,
first column. This rotation matrix and

{rl,
r 11is

P 1 17 —1]
I iI'I ii7j' I
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is an orthonormal basis for 7Z2 con- is an orthonormal basis for R2 con-
sisting of corresponding eigenvec- sisting of corresponding eigenvec-
tors. Choose tors. Choose

P
1 1

ri 2i
=

Then P is the rotation matrix cor-Then P is the rotation matrix cor- responding to the angleresponding to the angle

63.43°.
= 450 C

(c) The equations relating x, y and
(c) The equations relating x, y and x', y' are given by

x', y' are given by
x = —

Ix1 = P y +

(d) The columns of P are eigenvec-
that is, tors corresponding to the eigenval-

ues —10 and 5, respectively, and so
X =

— the transformed equation is
y = + ky'.

—10(x')2 + 5(y')2 = 200

(d) The columns of P are eigenvec- (x')2 (y')2
1.tors corresponding to the eigenval- +

ues 7 and 3, respectively, and so the
transformed equation is (e) The conic section is a hyperbola.

7(x')2 + 3(y1)2 = 9
13. The characteristic polynomial of A is

7(x')2 (y')2 det(A—t12) =det [t_3
t—3]

9
+31•

= (t — 3)2 — 1

(e) The conic section is an ellipse.
= (t—2)(t--4).

9. (a) As in Exercise 1, take
Thus A has the eigenvalues

A
=

and A2 = 4, and and are

eigenvectors that correspond to these
(b) The eigenvalues of A are —10 and eigenvalues. Normalizing these vectors,

5, and we obtain unit vectors
r

2 1
U2
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that form an orthonormal basis {u1, u2 }
for Using these eigenvectors and
corresponding eigenvalues, we obtain
the spectral decomposition

A = +
r

=21

111

— 2
0.5 —0.51 0.5 0.5

— —0.5 0.5] +
0.5 0.5

17. The characteristic polynomial of A is

3—t 2 2
=det 2 2—7 0

2 0 4—t

—18t + 9t2 — t3

= —t(t — 3)(t — 6),

and so A has the eigenvalues = 3,
A2 = 6, and A3 = 0. For each select
a nonzero solution of (A — A213)x = 0 to
obtain an eigenvector corresponding to
each eigenvalue. Since these eigenvalues 21. True
are distinct, the eigenvectors are orthog-
onal, and hence normalizing these eigen- 22.

vectors produces an orthonormal basis
for R.3 consisting of eigenvectors of A.
Thus if

1
—1

1
2

u1=— —2 , u2=— 1

2

then {ui,u2,u3} is an orthonormal ba-
sis for R.3 consisting of eigenvectors of
A. Using these eigenvectors and cor-
responding eigenvalues, we obtain the
spectral decomposition

A Aiuiuf + +

Hi
-2 2]

+6(i) 1 2]

411

False, any nonzero vector in is an
eigenvector of the symmetric matrix 12,
but not every 2 x 2 matrix with nonzero
columns is an orthogonal matrix.

1 21

j-_ ij are elgenvectors of A that corre-

spond to the eigenvalues 3 and —1, re-
spectively. But these two eigenvectors
are not orthogonal.

det(A—t13)

4 4 2
9

4 2
9

9 9

and

23. True

24. False, let A
=

Then and

1
—2

U3— 2
3

1
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25. False, if v is an eigenvector, then so is 49. Suppose that = Pr + Pr+i + + Ps.
2v. But these two eigenvectors are not Then
orthogonal.

26. True 27. True pT + PrT+1 + + pT

Ii 01
28. False, is not the sum of orthog-

onal projection matrices. 53. Let A iiQ, + + + be
the spectral decomposition, as in Exer-

29. True 30. True 31. True cise 47. Then A5 is the sum of all prod-

32. False, if 8 is an acceptable angle of rota- ucts of s terms (with possible duplica-

tion, then so is 8 ± tion) from the sum above. Any such
term containing factors and Q3 with

33. True i j equals 0. Otherwise, each fac-
tor of the term is of the form and

34. False, see Exercise 41. hence the nonzero terms are of the form
= Therefore

35. False, the matrix must be symmetric.

[a b]
36. False, the correct matrix is

[b
57. be

37• True 38. True the spectral decomposition, as in Exer-
cise 47. By Exercise 55, we have

39. False, we also require that det P = 1.

40. False, we need the coefficient of xy to be —

2b.
— +

+ + + fk(113)Qk
41. Two different spectral decompositions

_. + ... + 1Q3 + ... + OQk = Q3.

of 212 are 2 + 2 ?] and 61. Suppose that A is positive definite.
Then A is symmetric, and hence A1 is15 51

2 .5j + 2 also symmetric. the eigen-
values of A' are the reciprocals of the

45. For i = j, we have eigenvalues of A. Therefore, since the
eigenvalues of A are positive, the eigen-

P2P2 = = values of A' are also positive. It follows
u2(1)uT = = that is positive definite by Exercise

59.

and for i j, we have
65. We prove that the sum of two positive

= = ui(uTuj)uT semidefinite n x n matrices A and B
is also positive semidefinite. Note first

= 0. that A+B is symmetric because both A
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and B are symmetric. Also, vTAv � 0
and vTBv � 0 because A and B are
positive semidefinite. Therefore

vT(A+B)v=vTAv+vTBv> 0,

and hence A + B is positive semidefinite.

69. We prove that if A is a positive semidef-
mite matrix, then there exists a pos-
itive semidefinite matrix B such that
B2 = A. Since the eigenvalues of A are
nonnegative, each eigenvalue has a non-
negative square root. As in Exercise 47,
write

A = + ... +

where the 's are the distinct eigenval-
ues of A. Define

B = + +

Then B2 = A by Exercise 53. Moreover,
B is symmetric by Theorem 1.2 and Ex-
ercise 49. Since the eigenvalues of B are
nonnegative, B is a positive semidefinite
matrix.

73. Suppose that A is invertible. Let v
be any nonzero vector in Since
nullity A = 0, it follows that Av 0.
Thus

vTATAv = (Av)T(Av)

= (Av).(Av) >0,

and hence ATA is positive definite. Sim-
ilarly, AAT is positive definite.

6.7 SINGULAR VALUE
DECOMPOSITION

1. We wish to write A as UEVT, where the
columns of U and V form orthonormal
bases for satisfying equations (9) and
(10) on page 439. We begin by comput-
ing

ATA — 11 11 fi 0] — 12 0

L0 ojIl ojlo O•
The eigenvalues of ATA are its diagonal
entries, 2 and 0. So the singular value
of A is ci! = and the matrix E is

0
0•

Because ATA is a diagonal matrix,
{ei, e2} is an orthonormal basis for 7V
consisting of eigenvectors of ATA. So
we may take v1 = e1 and v2 = e2 as the
columns of V.

Next, we obtain an orthonormal basis
for 1V to serve as the columns of U.
From equation (9), we obtain

1 1 Ii
u1 = —Av1 = —

O•1

For the second column of U, we can
choose any unit vector that is orthog-
onal to u1. We can find such a vector
by solving x.u1 0, that is,

X1 + X2 = 0.

For example, we can take xi = —1 and
= 1, and then normalize this vector

to obtain u2 =
[—f].

Thus A = UEVT is a singular value de-
composition of A, where

1 Ii —iiU=(ui u21=711 ij'
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E
01

= 0 oj'

and
For the third column of U, we can choose

Ii 01 any unit vector that is orthogonal to
V = [vi v2]

[o ij both u1 and u2. We can find such a
vector by solving the system of linear

5. We begin by finding the eigenvalues of equations

3x1— x2+5x3=0ATA
= 6]' x1 + 3x2 = 0.

which are 7 and 2. (These are ordered 1—3]
from largest to smallest.) Thus the sin- For example, one possibility is I i
gular values of A are = and

[ 2]
= For each of the eigenval-

ues of ATA, we must find a correspond- Then normalize this vector to obtain the

ing eigenvector of ATA. Thus we solve third column of U:

the equations (ATA — 712)x = 0 and
1

[_31
(ATA — 212)x = 0 to obtain the vectors u3 = 7ZZ 1

2]Ii
L2]

and
Thus if we let

r 3 1 —3Normalizing these vectors gives us the
I

columns of V: I

1 r1

= 7=
and V2 = 0

The first two columns of U can be ob- [ai 01 1

tamed from the vectors v1 and v2 using = I 0 (721 I 0

equation (9) on page 439: L
0 0] [ 0 0 j

1
1 [1]

and
u1 = 1Av1 =

[ [vi v2]
2

ri 2

I we obtain the singular value decomposi-
5] tion A = UEVT.

and 9. We begin by finding the eigenvalues of

1
1 2 16 0 01

U2 = = —ij ATA = 10 2 21,
o-i

Lo 2 5]
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which are 6, 6, and 1. (These are or-
dered from largest to smallest.) Thus
the singular values of A are

= a.nd c3 1. As in Exercise 5,
we can obtain an orthonormal basis for
R)3 consisting of eigenvectors of ATA,
for example,

{ [J] }
Let v1, v2, and v3 denote the vectors
in this basis. These vectors are the
columns of V.

To obtain the colmnns of U, we compute

and

Iii
1

121,

1

U2 = —Av2

1 01
u3=-1LAv3= 1

we obtain the singular value decomposi-
tion A = UEVT.

13. From the given characteristic polyno-
mial, we see that the eigenvalues of ATA
are 7, 2, and 0. Thus the singular values
of A are a1 = and It can
be shown that

and

3

—5vi =

1

v2= 0

3

3

2
V3

are eigenvectors of ATA corresponding
to the eigenvalues 7, 2, and 0, respec-
tively. Take these vectors to be the
columns of V. To obtain the columns
of U, let

1 1 1
u1 = —Av1 = —

O.i

Thus if we takeri 5 01

U— 2 -2 ii
—

1 -1 -21

E= 0

0

00
01

and

and

1 1 12
U2 —Av2 = —

These vectors form an orthonormal basis
for Thus A = UEVT is a singular
value decomposition of A, where

1 2

—2 1

oj'

ri 0 01

V— 0 1 21-
2 -ii
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3 1 3

—5 n 2V U

—1 3 —1

17. From the given characteristic polyno-
mial, we see that the eigenvalues of ATA
are 21, 18, 0, and 0. Thus the singular
values of A are CT1 = and a2
It can be shown that

1 1

1 2 1 —1
V1 , V2

1 1

1 1

1 1 1 0

3
,andv4=:7

0

0 —1

are eigenvectors of ATA corresponding
to the eigenvalues 21, 18, 0, and 0, re-
spectively. Take these vectors to be the
columns of V. To obtain the columns of
U, let

1 1
1

u1=—Av1=— 1

1 1
2

u2=—Av2=—-— —1
1

Since u1 and u2 are orthonormal, the set
of these vectors can be extended to an
orthonormal basis {u1, u2, u3} for
So we must choose u3 to be a unit vector
that is orthogonal to both u1 and u2.

Proceeding as in Exercise 5, we obtain

10

Thus A = is a singular value de-
composition of A, where

1 2 01
1 —1 1 I

—1 1 1 I

0 0 0
E= 0 0 0

0 0 00

1 1 1

1

1

1 1 0

21. To find the unique solution of Ax = b
with least norm, we find a singular value
decomposition of A, where

Ii ii 12A=[2
2]

and b=[4

The eigenvalues of ATA are 10 and 0,
and

1 lii 1 1 1and

are eigenvectors of ATA corresponding
to the eigenvalues 10 and 0, respectively.
These vectors are the columns of V,
Ui is the singular value of A, and

and

and

and

0

0•
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Let are eigenvectors of ATA corresponding

1
Av1

1 1
to the eigenvalues 7, 5, and 0, respec-

[2]
tively. These vectors are the columns of=
V, 01 = and are the singu-

and choose a unit vector u2 orthogonal lar values of A, and
to u1 such as

1121
Let

Then, for
u1

1
Av1

1 11

1 Ii 21 a1 ij
_i],

and
A = UEVT is a singular value decom-

1
Av

1 111
position of A. U2 —

a2
So, by the boxed result on pages 448—
449, so that A = UEVT is a singular value

decomposition of A, where
z UTb

01 1 Ii 21T
121

i 11

=
o] —ij [4]

L
1 ij

Iii So, by the boxed result on pages 448—

Li]

is the unique solution of Ax b with Z =

least norm. i 0
1

1 1—1
11Tç- 31

25. We proceed as in Exercise 21 with v o
I

[
1 —2 11

A = 1 2]
and b

=
L 0 0]
r 201

The eigenvalues of ATA are 7, 5, and 0, 37

and Liii

— i [_21 1 01 is the unique solution of Ax b with
V1 — 31 ,v2 vr= LI]

least norm.
ij

29. Let z be the unique solution of Ax = b
and with least norm, where

r51
r1 21 r_11V3 =

1

131 A
= L2 4]

and b
= LLii
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As in Exercise 5, it can be shown that 111

A = UEVT is a singular value decom- 37. Let A = 21. By Exercise 3, A =
position of A, where L2J

UEVT is a singular value decomposition
1 r1 —2 of A, whereV712 1]'

1 2 2

and U = V. So, by the boxed result on 131
2 —1 4pages 448—449, we have U , E = o

I

z = VEt UT b I 2 -5 I L0J
L3

UTb =10.2 01 [0.041 and=VL0 oj 0.08j

33. Let z be the unique solution of Ax = b
with least norm, where Thus the pseudoinverse of A is

= 1 1 ii and 61.A
[1 1 _-il 1—41 At = V UT

0 0 1]
L

3]

As in Exercise 5, it can be shown that
A = UEVT is a singular value decom- 41. A singular value decomposition of the
position of A, where given matrix A was obtained in Exercise

i 0
5. Using the matrices U, >2, and V in the

1 0 1
solution to that exercise, we find that
the pseudoinverse of A is

1 [4 8 21
12 0 01 At = VEtUT

E==io
OI,Lo 0 0 45. A singular value decomposition of the

and given matrix A was obtained in Exer-

1

cise 13. Using the matrices U, >2, and V

U = I

in the solution to that exercise, we find
that the pseudoinverse of A isLo

4 —flSo, by the boxed result on pages 448— = VEtUT = J_ [_2
449, we have 14

8 5J
z = VEt UTb

11 01
ro.5 0 01 Let A = 10 —1 I. Using the method of

= V I o UI UTb=

Exercise 5, we see that UEVT is a sin-
Li 1]

Lo 0 0]
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for some scalars a1, a2,. . . in equation (11), is a diagonal matrix
Thus whose diagonal entries are the eigenval-

ues of A. Since A has a negative eigen-
= (Av) . (Av) value, at least one of the diagonal entries

= (Av)T(Av) of E is negative. This entry cannot be a
= vTATAv singular value of A, and it follows that

A VEVT is not a singular value de-
= v. (ATAv) composition of A.
= (aivi + ... +

89. If E is an m x n matrix of the form in
+ equation (11) and is an n x m matrix

= + + of the form in equation (14), their prod-
uct is the m x m diagonal matrix whose

1
first k diagonal entries are — 1

o.i
and whose last n — k diagonal entries=
are zero.

and hence IlAvil
The proof that � 6.8 PRINCIPAL COMPONENT
similar. ANALYSIS

(b) Let v = and w = v1, where Vi
and are as in (a).

1. By definition, the mean of a set of m
81. Since E is a singular value observations equals their sum divided by

decomposition of it follows that the m; so = — 3 + 4] = 1.
pseudoinverse of E is Et.

5.
85. Suppose that A is a positive semidefinite

matrix. Since A is symmetric, there ex- cov(x, y)
ists an orthogonal matrix V and a diag-

[(2 1) (4 — 3)onal matrix D such that A = VDVT. = 2
Furthermore, the diagonal entries of D + (—3 — 1)(2 — 3)
are the eigenvalues of A, and these are

+ (4 — 1)(3 — 3)]nonnegative by Exercise 60 of Section
6.6. Also, V and D can be chosen so = =
that the diagonal entries are listed in de-
creasing order of absolute value. Since 9. True
D has the form given in equation (11),
we see that A = VDVT is a singular 10. False, to obtain the variance, the sum
value decomposition of A. should be divided by m — 1.

Now suppose that A is not positive 11. False, the covariance may be any real
semidefinite. Then A has a negative number.
eigenvalue. In any factorization of the
form A = VEVT, where V is an orthog- 12. False, the correlation may be any real
onal matrix and E is of the form given number between —1 and 1, inclusively.
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13. False, their correlation is either —1 or 1. 33. We must show that has a mean
sx

14. True of 0 and a standard deviation of 1. Its
15. False, the covariance may be any real mean is

number.
1

16. True 17. True 18. True m

Im ml19. True 20. True = 1

—

Li=1 i=1 j
1

21.

m 1
(x — . (y — Using Exercise 29, we see that the van-

1 1
1 ance of (x — is — times the van-

rn—i x x

— cov(y,x) ance of By Exercises 27 and 24,
— the variance of x — is

cov(x — x — = cov(x, x)

25. Suppose that cov(x, x) = 0. Then So the variance of — equals 1.
(x — — 0. So x — 0 or
x = It follows that = for all i. 37. (a) By Exercises 27 and 22, we have
Now suppose that all the components of
x are equal. Then the mean of x equals r cov(x, y)
this common value, and so x = Thus SxSy

cov(x, x) 0. cov(x — y —

sxsy

29. By Exercise 28(a), the variance of cx is = coy
,sx sy j

1 =cov(x*,y*).

1 (b) By Exercise 30 and (a) above, we
= (cx — . (cx — havern—i

21
= [c(x — ii)] . —

0
rn—i

= 4. + 4. ± 2cov(x*,y*)

=2+2r.rn-i
= c24. So ±r 1, that is, 1.
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0 —1 1

0 —1 1

det 1 0 0 >0,
0 11
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6.9 ROTATIONS OF
AND COMPUTER GRAPHICS

3. We have

M = P900R450

10
10
01

1

7. Let v3 = 0 . We must select

nonzero vectors w1 and w2 so that w1,
w2, and v3 form an orthogonal set and
w2 lies in the direction of the counter-
clockwise rotation of w1 by 90° with re-
spect to the orientation defined by v3.
First choose w1 to be any nonzero vec-

0

tor orthogonal to v3, say w1 = 1
.

0

Then choose w2 to be a nonzero vector
orthogonal to w1 and v3. Two possibil-

1 —1

ities are 0 and 0 . Since
—1 1

—1

we choose w2 0 so that the de-
1

terminant of the matrix [w1 w2 w3J is
positive. (Once we replace w2 by a unit
vector in the same direction, we can ap-
ply Theorem 6.20.) Now let v1 = wi,

1 1
—1

V2-—W2-— 0

1

and

0 1 1

V=[vi v2 v3]= 1 0 0

0 1 1

—1 0 0

Since R1800 = 0 —1 0 , we have
0 01

0 01
P = VR1800VT = 0 —1 0

1 00

Let v3 = As in Exercise 7,

we select nonzero vectors w1 and w2
that are orthogonal to v3 and to each
other so that

det [w1 w2 v3] > 0.

We choose

1 0
w1= 1 and w2= 0

0 1

Next, set

1
1

0

and
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V2 w2, and

10 1

V = [vi v2 V3] = 0

01 0

2

Since R300 = 1

0

15. The rotation matrix described in Exer-
cise 1 is

01 0
M= 0 0 -1

—1 0 0

(a) The axis of rotation is the span
of an eigenvector of M corre-
sponding to the eigenvalue 1, and
hence we seek a nonzero solution of
(M 13)x = 0. One such vector is

—1

—1 . So the axis of rotation is
1

SPan{
[ifl }.

(b) Choose any nonzero vector that is
orthogonal to the vector in (a), for
example,

and let be the angle between w
and Mw. Notice that =
wil because M is an orthogonal

matrix. Therefore by Exercise 98
in Section 6.1,

Mw.w Mw.w

0 1

—1 . 0

— —1 1 — 1

— 1
2

0

1

19. The rotation matrix described in Exer-
cise 5 is

0

2

(a) The axis of rotation is the span
of an eigenvector of M corre-
sponding to the eigenvalue 1, and
hence we seek a nonzero solution of
(M — 13)x = 0. One such vector is

+ 2 . So the axis of rotation
1

Span {
+ 2]

}.
(b) Choose any nonzero vector that is

orthogonal to the vector in (a), for
example,

—1

w= 1

0

and let be the angle between w
and Mw. Because = 11w,

0

0 , we have

01

2

1

1
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we have, by Exercise 98 in Section and therefore, by Theorem 4.12,
6.1,

Mw.w Mw.w i[2 2

cosct= = 2 —1 2].
lIwlIlIwlI —1 2 2

— — 1 1
27. Let A be the standard matrix of the re-[ 1_li

flection of R.3 about the plane W with

L 0]= equationx+2y—2z=0. Aba.sisforW12

{

2 2

i—li, 1011.
L 0] [1JJ

— 8 fil
23. Let A be the standard matrix of The vector

I
2!, whose components

Choose a nonzero vector orthogonal to L2]
111 r 11

[ 11

are the coefficients of the variables in

12 I and 0 , for example, 2 , and
the equation of W, is orthogonal to W.

— Thus
[3] L'i

121 1 11 )

isa

'I,loLj 2j
let

(111 1 11 1 ii
0] [1] [—2] )

L3] L1J L basis for R}3, and

Then B is a basis for and ( 1—21 \ 1_21
Irfl\ f11 T ii) = I

Tw(J2'
) =

L
0]

L °]
L3i1 [3

/12]\ 12

/1 i1\ I ii Tw

(I oj)
= [

[1] [1
[—1 —1

and
and

/1 11\ 1 11
(1 11\ 1 11

Tw 2].

U 'i) L
1]

-2 -2

Let B be the matrix whose columns are Let B be the matrix whose columns are
the vectors in B. Then the vectors in B. Then

Ii 0 ol Ii 0 01

= 0 1 [T]8 = 0 1 0

[0 0 —1 L0 0 —1]
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and therefore, by Theorem 4.12, Let A be the standard matrix of Tw.

7 4
Then, as in Exercise 31, we have

A = 8]. A = [Wi W2 v]'

31. First, obtain a basis {wi, w2} for W by = 12 9 —20

selecting two linearly independent vec- —15 —20 0

tors that are orthogonal to v such as

1 2
39. The given matrix does not have 1 as an

eigenvalue. Therefore it is neither a ro-w1= 0 and w2= —1 .

1 0
tation matrix nor the standard matrix
of a reflection operator, both of which

Although we could proceed as in Ex- have 1 as an eigenvalue.
ercise 23, we will use an alternate ap-
proach. 41. (a) Since

Let A be the standard matrix of Tw.
1Then

det 0 —i 0 =1,
1 2 1 0 0—1

A 0 —1 2

1 0 —1 the matrix is a rotation matrix by
Theorem 6.20.

= [A A A

[i]] (b) Observe that is an eigenvec-

1 2 —1 tor of the matrix corresponding to
= 0 —1 —2 , eigenvalue 1, and therefore this vec-

1 0 1 tor forms a basis for the axis of ro-
tation.

and therefore

1 2 —1 1 2 1
—1 45. Let M denote the given matrix.

A = 0 —1 —2 0 —1 2 (a) Since det M = —1, M is not a rota-
1 0 1 1 0 —1 tion matrix by Theorem 6.20. We

can establish that M is the stan-
1

2 2 1 dard matrix of a reflection by show-
= —2 —1 2

. ing that M has a 2-dimensional
1 2 2 eigenspace corresponding to eigen-

value 1. For, in this case, it
35. As in Exercise 31, we begin by finding must have a third eigenvector cor-

two vectors that form a basis for W: responding to eigenvalue —1 be-
—4 —5 cause its determinant equals the

w1 = 3 and w2 = 0 . product of its eigenvalues. The re-
0 3 duced row echelon form of M — 13
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is 53. True 54. True 55. True
1 0

o o 0 56. False, for example, if = 0 = 90°, then

00 0 001
and hence the eigenspace corre- 1 0 0

sponding to eigenvalue 1 is 2- 0 1 0

dimensional. Therefore M is the
bstandard matrix of a reflection. U

(b) The matrix equation (M—12)x = 0 0 —1 0
is the system = 0 0 1

— (1 + = 0,
—1 0 0

57. True 58. True
and hence the vector form of its
general solution is 59. False, the matrix is

0
cos0 0 sin0
0 1 0

S2 1 +53 0
—sinO 0 cos9

53 0 1

60. True 61. True 62. TrueIt follows that
63. False, the rotation, as viewed from v3,

+ is counterclockwise.

( 0 1 J 64. False, the determinant is equal to —1.

is a basis for the 2-dimensional sub- 65. False, the eigenvector corresponds to the
space about which is reflected. eigenvalue 1.

—1 0 0 66. False, any nonzero solution of the matrix

47. False, consider p = 0 i 0 . equation (P9 — = 0 forms a basis
0 0 1 for the axis of rotation.

61'. True
48. False, let P be the matrix in the solution

to Exercise 47 69. We have
1 0 0

—1 0 0 det P9 = det 0 cos 0 sinG
49. False, let Q = 0 0 —1

. 0 sine cosO01 0

rcoso —sinG=deti50. False, consider 13. Ls1110 cos9

51. True = cos2 0 + sin2 0 = 1.

52. False, consider the matrix Q in the so- The other determinants are computed in
lution to Exercise 49. a similar manner.
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73. (a) Clearly, Tw(w) = w for all w CHAPTER 6 REVIEW
in W, and hence 1 is an eigen-
value of Tw. Let Z denote the 1. True 2. True
eigenspace corresponding to eigen-
value 1. Then W is contained in 3. False, the vectors must belong to for
Z. Observe that dim Z < 3, for some n.
otherwise Tw would be the iden-

4. True 5. True 6. Truetity transformation, which it is not.
Since dim W = 2, it follows that 7. True 8. True
w = z.

(b) Since Tw(z) = —z for all z in 9. False, if W is a 1-dimensional subspace
W', —1 is an eigenvalue of Tw of 1Z3, then dimW' = 2.

and W' is contained in the corre-
sponding eigenspace. Because the False, is an invertible orthogonal pro-

jection matrix.eigenspace corresponding to 1 has
dimension 2, the eigenspace corre- 11. True
sponding to —1 has dimension 1.
But dimW' = 1, and hence these 12. False, let W be the x-axis in and let
two subspaces are equal. Iii

= [b], which is not
L2f

Thenw

77. By Exercise 72, B and C are orthogonal orthogonal to v.
matrices, and hence BC is an orthogonal
matrix by Theorem 6.10. In addition, 13. False, the least-squares line minimizes

the sum of the squares of the vertical dis-det B = det C = —1 by Exercise 75. So
ta'nces from the data points to the line.

detBC = (detB)(detC) 14. False, in addition, each column must
= (—1)(—1) = 1, have length equal to 1.

and hence BC is a rotation matrix by is. False, consider which has deter-
Theorem 6.20.

minant 1 but is not an orthogonal ma-
81. Let Q = CB'. Then trix.

[Qvi Qv2 Qv3] = QB = CB'B 16. True 17. True

= C = [vi v2 — v3], 18. False, only symmetric matrices have
spectral decompositions.

and hence Qv1 = v1, Qv2 = v2, and
Qv3 = —v3. Since {vi,v2} and {v3} 19. True
are bases for W and W', respectively, 21. (a) hull = (_6)2
we have Qv = v for every vector v in W,
andQv= —vforeveryvectorvinW-1-. = +22

Therefore Q = CB' is the standard
matrix of the reflection of about w.

d = lu — vU =
L—8] =

(c) u.v=0
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(d) The vectors are orthogonal because
their dot product equals 0.

Therefore an orthogonal basis for S is

25. Choose a vector on £ and proceed { 1 [11 1_21
as in Example 3 on page 366 to obtain 1 I 1

I 1 I 1 I

}.w= Thedistanceis
Iii 3 121 '5 I ii
L

oj [—i]

iI{31 (—1) 1
d =

12] — —s-— [2] = 35. We have

w = (v.vi)vi + (v.v2)v2
27.

r_2i
(2u+3v).w=2(u.w)+3(v.w) 5 1 9 1

ii=2(5)+3(-3)=1 [ 3j

31. The dot product of no pair of vectors in 1 321
1

S is 0. Thus S is not orthogonal. = I 19

Let u1, u2, and u3 denote the vectors
in S, listed in the same order. Define

andvi = Ui,

101 1 ii
V2U2 U2•V1 — lol —1

1 1
321 1_181

ilvill — i_il =
I

191 = 1

Li] [ 0] — 4 [—27] [—15]

Iii
The distance from v to W is1 Iii

'2]
,

[3

and 39. A vector is in W if and only if it is or-
thogonal to both of the vectors in theU3.V1 U3.V2V3U3— 2V1

lviii —

v2 given set, that is, if and oniy if it is a
solution of the system

111 1 ii Iii
121 ii

(2)
fi\ lii xi—x2 =0

= Ioi _il 121
+X3 =0.

L 0] [3] Thus a basis for W is

1

I
31 '—ii lo' I

1—21 { 1_il 101

I 1I•
[—ij [ [i]J
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(d) If M is a matrix whose columns
—0.1994 form an orthonormal basis for a

0.1481 subspace W of then by The-
— —0.1361 orems 6.8 and 6.9(b),

1 — —0.6282
-0.5316 Pw = M(MTM)1MT

0.4924 = = MMT.

0.1153
0.0919 So MMT is the orthogonal projec-

— —0.5766
tion matrix for W.

V2— 0.63u6 7'. Answers are given correct to 4 places af-
—0.4565 ter the decimal point.

0.1790

and (a) = {B Cl, where
0.3639 B =

—0.5693
0.5469 0.3913 0.0730 —0.1763

V3
0.1493 0.0730 0.7180 —0.1688

—0.4271 —0.1763 —0.1688 0.8170
0.1992 —0.2716 —0.1481 —0.2042

0.2056 0.1328 0.1690
(b) For each of the given vectors u, the —0.2929 0.3593 0. 1405

orthogonal projection of u on W is
given by the boxed formula on page and C =
376:

—0.2716 0.2056 —0.2929

(u.vi)vi + (u.v2)v2 + (u.v3)v3. —0.1481 0.1328 0.3593
—0.2042 0.1690 0.1405

These computations produce the 0.7594 0.1958 0.0836
following vectors: 0.1958 0.8398 0.0879

0.0836 —0.0879 0.4744
1.3980 1

—1.5378 —2 (b) same as (a)
1.4692 .. 2

(i)
2.7504

(ii)
—1 (c) Pwv v for all v in S.

1.4490 —3 (d) Let A be the matrix whose columns
—1.6574 2 are the vectors in S. By Exercise 61

0
of Section 6.3,

0 = (ColA)' = Null AT.
(ni) 0

0 As described in Table D.2 of Ap-
0 pendix D, the MATLAB command

(c) The vectors are the same. null(AT, 'r') yields a matrix whose
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basis obtained in (b)). For each j,
we can compute u2 by entering the
MATLAB expression P(:,j), as de-
scribed in Table D.4 of Appendix D.
The resulting spectral decomposi-
tion is
A=

columns form a basis for
Null AT having ration-al number
entries. The resulting basis is

—1.75 0.85
—0.50 —0.60
—1.00 —0.10
—1.25 ' 0.05

1.00 0.00
0.00 1.00

In each case, Pwv = 0.

11. Answers are given correct to 4 places af-
ter the decimal point.

(a) Since A is symmetric, we can use
the command [P D] = eig(A) to
determine the matrices P and D:
P=

0.25
—0.25

—4 0.25
0.00

—0.25

—0.25
0.25

—0.25
0.00
0.25

0.25 0
—0.25 0

0.25 0

0.00 0
—0.25 0

—0.25
0.25

—0.25
0.00
0.25

— .2000
—.2000

.1333

.1333

.1333

.3 .3 —.2000

.3 .3 —.2000
+0 —.2 —.2 .1333

—.2 —.2 .1333
—.2 —.2 .1333

.2000
—.2000

.1333

.1333

.1333

—0.5 —0.5477 —0.5 c 0.0000
0.5 —0.5477 0.5 c 0.0000

—0.5 0.3651 0.5 c 0.4082 ,

0.0 0.3651 0.0 c —0.8165
0.5 0.3651 —0.5 c 0.4082

—0.25 —0.25 0 0.25
0.25 0.25 0 —0.25
0.25 0.25 0 —0.25
0.00 0.00 0 0.00

—0.25 —0.25 0 0.25

where c = —0.4472, and

0.25
—0.25

8 —0.25
0.00
0.25

0.2
0.2

+5 0.2
0.2
0.2

00
00

+12 0 0
00
00

0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2

—4 0 0 0 0
00 00 0

D= 0 0

00
0 0

—8 0

05
0 0

0

0

12

0.0000
0.0000
0.1667

—0.3333
0. 1667

0.0000
0.0000

—0.3333
0.6667

—0.3333

0.0000
0.0000
0. 1667

—0.3333
0. 1667

(b) The columns of P form an or-
thonormal basis of 7Z5 consisting of
eigenvectors of A, and the diagonal
entries of D are the corresponding
eigenvalues (in the same order).

(c) The spectral decomposition of A is
a sum of terms of the form P3,
where is the jth diagonal entry
of D (that is, the jth eigenvalue
obtained in (b)) and P3

u3 is the jth colurim of P
(which is the jth eigenvector in the

(d) As on pages 433—435, we obtain
—2 2 2 0 —2

2 —2 —2 0 2

A2= 2 —2 0 —4 4
0 0 —4 8 —4

—2 2 4 —4 0

(e) = 6.4031 and = 15.7797

(f) The percentage of information lost
by approximating A by A2 is

40.58,o.
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13. The answer is given correct to 4 places
after the decimal point.

0.3913 0.0730 —0.1763
0.0730 0.7180 —0.1688

B — —0.1763
—0.2716

0.2056
—0.2929

—0.1688
—0.1481

0.1328
0.3593

0.8170
—0.2042

0.1690
0.1405

—0.2716
—0.1481

0.2056
0.1328

—0.2929
0.3593

—

—0.2042
0.7594
0.1958
0.0836

0.1690
0.1958
0.8398

—0.0879

0.1405
0.0836

—0.0879
0.4744

( —2 1

1,0
10 1

is a basis for W, and the vector
1

2 is orthogonal to W. So
—1

these three vectors form a basis for
R.3 consisting of eigenvectors of Tw
with corresponding eigenvectors 1,
1, and —1, respectively. Let

Using the rational format in MAT-
LAB, we obtain the exact matrix

Aw = PDP1
2/3 —2/3 1/3

= —2/3 —1/3 2/3
1/3 2/3 2/3

(b) Since is a rotation, its de-
terminant is equal to 1. Observe
that det Aw = —1. Since Aw
and Q23° are orthogonal matrices,
AwQ23oAw is an orthogonal ma-
trix. Furthermore,

det(AwQ23o Aw)

= (det Aw)(det Q23o)(det Aw)
= (—1)(1)(—1) = 1.

So AwQ23oAw is a rotation matrix
by Theorem 6.20.

—2

(c) v = —1 is an eigenvector of
2

the matrix in (b) corresponding to
eigenvalue 1, and so it is a vector
that lies on the axis of rotation.
The angle of rotation is 23°.

(d) Let R be a rotation matrix and Aw
be the standard matrix of the reflec-
tion of about a two- dimensional
subspace W. If v is a nonzero vec-
tor that lies on the axis of rotation
of R, then a nonzero vector w lies
on the axis of rotation of AwRAw
if and only if w = Awv. Fur-
thermore, the angle of rotation of
AwRAw is equal to the angle of
rotation of R.

= [B C], where

and

17. (a) Observe that

—2 1 1

P= 10 2

0 1 —1

and

10 0

D= 0 1 0
0 0 —1

Then Aw = PDP'.



Chapter 7

Vector Spaces

7.1 VECTOR SPACES
AND THEIR SUBSPACES

1. Consider the matrix equation

0 2 0 Ii 2 1

1 1 1 0 0

[0 0 0
+X2L1 1 1

101
+X3

1 2 3

Comparing the corresponding entries of
the right and left sides of this ma-
trix equation yields the system of linear
equations

x1 + x3=0
2x1 =2
x1 + x3=0

x2+ 13=1
x2 + 2x3 = 1

12 + 3x3 = 1.

The reduced row echelon form of the
augmented matrix of this system is

10000100_0010
R—

0 0 0 100000000
170

indicating that the system is inconsis-
tent. Thus the matrix equation has no
solution, and so the given matrix does
not lie in the span of the given set.

5. As in Exercise 1, the given matrix lies
in the span of the given set if and only
if the matrix equation

12 2 21 Ii 2 1

Li 1

1 1

0 1

+X3[1 2 3

has a solution. Comparing the corre-
sponding entries of the right and left
sides of this matrix equation yields the
system of linear equations

11 + 13=2
2x1 =2

+ 13=2
12+ 13=1
12 + 213 = 1

12 + 313 = 1.

The reduced row echelon form of the
augmented matrix of this system is the
marix R in the solution to Exercise 1.
Therefore the matrix equation has no so-
lution, and so the given matrix does not
lie in the span of the given set.
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9. Proceeding as in Exercise 1, we obtain + 1(1 + x2)
the system of equations + (—l)(1 + x — x3).

X1 + X32
So the given polynomial lies in the span

2x1 =—8 of the given set.
x1 + x3=—2

X2 + X3 5 17. As in Exercise 1, the given matrix is in
x2 + 2x3 = 7 the span of the given set if and only if
x2 + 3x3 = 9. the matrix equation

This system has the solution x1 = —4, 1 i 21 r 1 01 10 11

= 3, x3 = 2, and so the given matrix [_3 4] = X1 [_i o]
+ X2 Lo 1]

is a linear combination of the matrices
Ii iiin the given set: + x3
Lo 0]

—2 —8 —21

[ 5 7 9] = (4) has a solution. Comparing the right and
left sides of the corresponding entries of

10 0 01 the matrix equation yields the system of
+

Li 1 ij linear equations

11 0 ii X1 +X3 1

2 X2+X3= 2

=—3
Thus the given matrix lies in the span X2 = 4.
of the given set.

This system has the unique solution
13. Suppose that c1, c2, and c3 are scalars z = 3, x2 = 4, and x3 = —2. Therefore

such that
1 1 21 1 1 01 10 11

—2+x+x2+x3=ci(1—x)
L—3 4] =3L—i o] i]

+c2(1+x2)+ca(1+x—x3).
1 ii

oj•Equating the coefficients of like powers
of x on the left and right sides of this
equation produces the following system Thus the given matrix lies in the span

of the given set.of linear equations:
21. As in Exercise 17, we find thatCl+C2+ C32

—Cl + C3 = 1 1 1 _21 1 1
1

L—3 0] 3L—i 0] +O[O ij
—C3 1 Ii 11

o]This system has the solution Xi = —2,

= 1, X3 = —1. Thus
So the given matrix lies in the span of

—2 +x + x3 = (—2)(1 — x) the given set.
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25. Any vector in a set lies in the span of
that set. So 1 + x lies in the span of the
given set.

29. A polynomial is a linear combination of 33. True
the polynomials in S if and only if has
the form 34.

a(9 + 4x + 5x2 — 3x3)

+ b(—3 — 5x — 2x2 + x3)

+ (5a — 2b)x2 + (—3a + b)x3.

for some scalars a and b. Comparing the
coefficients of the given polynomial with

38the form above, we obtain the system of
linear equations

9a—3b= 12

4a—5b= —13
5a—2b= 5

—3a+ —4.

Since this system has the solution a = 3 42. True
and b = 5, the given polynomial is a
linear combination of the polynomials in
S with 3 and 5 as its coefficients:

we see that x2 is in W. Since {1, x, x2} is
a generating set for 22 that is contained
in W, it follows that W = 22.

False, by Theorem 7.2, the zero vector
of a vector space is unique.

False. For example, if p(x) = 1+ XT' and
q(x) = 1 xTh, then p(x) and q(x) each

have degree ri, but p(x)+q(x) has degree
0. So the set of polynomials of degree n

is not closed under addition.

43. True

False, the empty set contains no zero
vector.

= [f(s) + g(s)] + h(s)
= f(s) + [g(s) + h(s)]
=f(s)+(g+h)(s)
= [f+(g+h)](s),

= (9a — 3b) + (4a — 5b)x 36. True

35. False, consider a = 0 and v 0.

37. False, any two polynomials can be
added.

39. True 40. True 41. True

12 13x + 5x2 — 4x3

=3(9+4x+5x2 3x3)

+5(—3—5x—2x2+x3).

31. Let W denote the span of the set 54. True

45. True 46. True 47. True

48. True 49. True 50. True

51. True 52. True 53. True

55. Let f, g, and h be in .1(5). For any s

in 5, we have

[(f + g) + h](s) (f + g)(s) + h(s)

{1+x, 1—x, 1+x2, 1_x2}.

Since

1 = .5(1 + x) + .5(1 —

we see that 1 is in W. Since

= .5(1 + x) + (—.5)(1 —

we see that x is in W. Since

x2=.5(1+x2)+(—.5)(1—x2), and hence (f+g)+h=f+(g+h).
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59. Let f be in s(S) and a and b be scalars. = 0 + 0 = 0,

Then for any .9 in S, we have
and hence I +g is in V. Thus V is closed

[(a + b)f}(s) = (a + b)f(s) under addition. Let c be any scalar.
Thenaf(s) + bf(s)

= (af)(s) + (bf)(s) (cf)(si) + ... +
= (af + bf)(s), = c[f(si) + ... +

= c(0 + + 0) = 0,and hence (a + b)f = af + bf.
and hence cf is in V. Thus V is closed63. We show that V is a subspace. Since under scalar multiplication.OB = BO = 0, the zero matrix is in

V. Now suppose that A and C are in V. 75. Let
Then

p(x) = a0 + a1x+ . +
(A+C)B=AB+CB=BA+BC

=B(A+C), and

and hence A+C is in V. So V is closed q(x) = b0 + b1x + ... +
under addition. Also, for any scalar c, be polynomials (not necessarily of the

(cA)B = c(AB) = c(BA) = B(cA), same degree). With this notation, we
verify two of the axioms of a vector

and hence cA is in V. Therefore V is space. The others are proved similarly.
closed under scalar multiplication. Axiom 1 We have

67. Because V is not closed under addition, p(x) + q(x)
it is not a subspace. Consider m = 2,

p(x) = 1+x2 andq(x) = —1+2x2.
Both p(x) and q(x) are in V, but = (bo + ao) + +

= q(x) +p(x).
p(x)+q(x) =0+3x2

Axiom 7 Let c be any scalar. Then
is not in V.

c[p(x) + q(x)J
71. We show that V is a subspace. Let 0

denote the zero function. Then c(ao + b0) + ... + +
= (cao + cbo) + ... + (can +
= (cao + ... +

and hence the zero function is in V. Sup- + (cbo + ... +
pose that f and g are in V. Then

= cp(x) + cq(x).

79. Suppose that u+v = u+w. Then
= f(si) + .. . + v + u = w + u by axiom 1, and hence

+ g(si) + ... + g(Bn) v = w by Theorem 7.2(a).
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83. It follows from axioms 8 and 7, respec-
tively, that

(a+b)(u+v) =a(u+v)+b(u+v)
= au + av + bu + by.

(—c)(—v) = (—c)((—1)v)

= cv

91. (a) Since 0(t) 0(—t) = 0, the zero
function is even. Suppose that f
and g are even functions. Then

(1 + g)(t) f(t) + g(t)
= f(—t) + g(—t)

= (f+g)(-t),

and hence f + g is even. Further-
more, for any scalar a,

(af)(t) = a[f(t)] = a[f(—t)]

= (af)(—t),

and hence af is even. Thus the
subset of even functions is closed
under addition and scalar multipli-
cation. Therefore this set is a sub-
space.

(b) Since O(—t) = —0(t) = 0, the zero
function is odd. Suppose that f
and g are odd functions. Then

(1 + g)(—t) = f(—t) + g(—t)

= —1(t) — g(t)

= (—f—g)(t)
=

and hence f + g is odd. Further-
more, for any scalar a,

=—(af)(t),

and hence af is odd. Thus the sub-
set of odd functions is closed under
addition and scalar multiplication.
Therefore this set is a subspace.

95. Suppose that W is a subspace of V.
Then (i) is satisfied. Let w1 and w2 be
in W, and let a be a scalar. Then aw1 is
in W because W is closed under scalar
multiplication, and hence aw1 + w2 is in
W because W is closed under addition.
Therefore (ii) is satisfied.

Conversely, suppose conditions (i) and
(ii) are satisfied. By (i), the zero vector
lies in V. Let w1 and w2 be in W. Then
w1 + W2 1. w1 + W2, which is in W by
(ii). Hence W is closed under addition.
Furthermore, for any scalar a, aw1 =
aw1 + 0, which is in W by (ii). Hence
W is closed under scalar multiplication.
Therefore W is a subspace of V.

7.2 LINEAR TRANSFORMATIONS

1. Yes, T is one-to-one. First, observe that

the matrix C = is invertible.

Suppose that T(A) = AC = 0. Then
A = = 0. Therefore T is one-to-
one by Theorem 7.5.

5. No, T is not one-to-one. Since

T(1)=x.0=0,
we see that T is not one-to-one by The-
orem 7.5.

9. Yes, T is onto. Let C
=

and

note that C is invertible. Then for any
matrix A in

87.

(af)(—t) = a(f(—t)) = a(—f(t)) T(AC') = AC1C = A,
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and hence A is in the range of T. 33. We show that T does not preserve scalar
multiplication and hence is not linear.

13. No. The constant polynomial 1 is not Let f(x) be any nonzero polynomial.
the product of x and any polynomial. Then

Ii 2
17. Let C = 4]. For any A and B in T(2f(x)) = [2f(x)12

and for any scalar s, = 4[f(x)]2 2T(f(x)).

T(A + B) = (A + B)C = AC + BC 37. We show that T is linear, but not an
= T(A) + T(B) isomorphism. Let f and g be in D(R.).

Thenand
1

T(sA) = (sA)C = s(AC) = sT(A). T(f +g) = 1 (1(t) + g(t)) dt
Jo

Therefore T is linear.
1 1

= I f(t)dt+
21. Foranyf(x) andg(x) in?2, Jo

I g(t)dt
Jo

T(f(x) + g(x)) = x[f(x) + g(x)]' = T(f) + T(g).
= x[f'(x) + g'(x)}

Similarly, T(cf) = cT(f) for any scalar
= xf'(x) + xg'(x) c, and hence T is linear. However, T is
= T(f(x)) + T(g(x)). not one-to-one. Let 1(t) = 2t 1. Then

Similarly, T(cf(x)) = cT(f(x)) for any 1 1

scalar c, and therefore T is linear. T(f) = I (2t — 1) dt = t2
Jo

25. =0—0=0,
1a bi ri 21\

UT ([: = U dj {3 4]) and hence T is not by Them
rem 7.5.

2a+4bl\ 39. True2c+4dj)
40. False, it may fail to be onto.

Ia+3b 2a+4bl\= trace + 3d 2c + 4d]) 41. True 42. True 43. True

a + 3b + 2c + 4d. 44. False, all polynomials are in C°°.

45. True29.

/ Isi \ \ 46. False, the definite integral of a function
TU I It I = T ([: j) = Lt j

in C([a, b]) is a real number.

47. True

[s t]
=

. 48. False, the zero function is not in the so-
U lution set.
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49. Proof of (a): The zero vector of 53.
is the function for which the image
of every nonnegative integer is zero.
Clearly this function is in V. Let f
and g be in V. Then f is nonzero
at oniy finitely many nonnegative inte-
gers ai, a2,. .. , a,., and g is nonzero at
only finitely many nonnegative integers

Then f+g is zero except
possibly at the finitely many nonnega-

tive integers a1, a2, . . . , ar, b,, b2, . . . , bs.

So f+g is in V. Finally, for any scalar c,

the function cf can be nonzero at only
a2,.. . , ar.; so cf is in V. It follows

that V is a subspace of

Proof of (b): Let f and g be in V, and let
n be a positive integer such that f(k)
g(k) = 0 for k > n. Then

T(f+g) (f+g)(0)+(f+g)(1)x
+ + (1 +

=

+ [g(0) + g(1)x + ...+ g(n)xTh]

= T(f) + T(g).

Similarly, T(cf) = cT(f) for any scalar
c, and hence T is linear.

We now show that T is an isomorphism.
Suppose that T(f) = 0, the zero poly-
nomial. Then f(k) = 0 for all k, and
hence f is the zero function. So T is
one-to-one. Now consider any polyno-
mial p(x) = a0 + a1x + + Let
f: V —+ R. be defined by

f(k)=Iak ifk<n

lO ifk>n.

Then T(f) = p(x), and hence T is onto.
Therefore T is an isomorphism.

Let V, W, and Z be vector spaces and
T: V W and U: W —* Z be isomor-
phisms. Since T and U are both one-
to-one and onto, UT is one-to-one and
onto. Consider any vectors u and v in
V. Then

UT(u + v) = U(T(u + v))
= U(T(u) + T(v))
= UT(u) + UT(v).

Similarly, UT(cu) = cUT(u) for any
scalar c. Therefore UT is linear, and
hence it is an isomorphism.

Let z be in Z. Then

= U(TT')U'(z)
= UU1(z)
=

and hence T1U'(z) = (UT)1(z).
We conclude that (UT)' T'U'.

57. Since T(O) = 0, it follows that 0 is in
the range ofT. Suppose that w1 and W2
are in the range of T and c is a scalar.
Then there exist vectors v, and v2 in V
such that T(v,) = w1 and T(v2) = w2.
Thus

and

T(v, + v2) = T(v,) + T(v2)
= Wi +

T(cvi) = cT(v,) = cw1.

Hence the range of T is closed under vec-
tor addition and scalar multiplication.
We conclude that the range of T is a
subspace of V.
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7.3 BASIS AND DIMENSION

1. Consider the matrix equation

1121 Ii —5
ij +X2

1—4 0

13 —ii lo 0+X3[2 2j[0 0

Equating corresponding entries, we ob-
tain the system of linear equatioas

x1+ x2+3x3=O
2x1—5x2— x3=0
3x1 — 4x2 + 2x3 = 0

+2x3=0.
The reduced row echelon form of the
augmented matrix of this system is

102001100000•0000
Thus the preceding system has nonzero
solutions, for example, x1 —2, x2 =
—1, and x3 = 1, and so the given set of
matrices is linearly dependent.

5. Consider the matrix equation

Ii oil 1—i 1

2 2 —1

1—i 0 i
1 —1 0

_0000 00.
Equating corresponding entries, we ob-
tain the system of linear equations

x1— x2—x3=0
x2 =0

x1 + 2x2 + x3 = 0

—x1 + 2x2 + x3 0
2x1— x2—x3=0
xi+ x2 =0.

The reduced row echelon form of the
augmented matrix of this system is

100001000010000000000000
So the preceding system has no nonzero
solutions, and thus the given set of ma-
trices is linearly independent.

9. Consider the polynomial equation

a(1+x)+b(1 —x)+c(1+x+x2)

+ d(1 + x — x2) = 0.

Equating corresponding coefficients, we
obtain the system of linear equations

a-Fb+c+d——0
a—b+c+d=0

c—d=0.
The reduced row echelon form of the
augmented matrix of this system is

100 20010 00.
o o 1 —1 0

Thus the preceding system has nonzero
solutions, for example, a = —2, b = 0,
c = 1, and d = 1, and so the given set of
polynomials is linearly dependent.

13. Consider the polynomial equation

a(x3 + 2x2) + b(—x2 + 3x + 1)

+c(x3—x2+2x—1)=0.

Equating corresponding coefficients, we
obtain the system of linear equations

a +c=0
2a— b— c=0

3b + 2c 0
b— c=0.

2

1
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The reduced row echelon form of the
augmented matrix of this system is

1000
0100
0000

Thus the preceding system has no
nonzero solutions, and so the given set
of polynomials is linearly independent.

17. Assume that {t,tsint} is linearly de-
pendent. Since these are both nonzero
functions, there exists a nonzero scalar
a such that t sin t = at for all t in
Setting t = we obtain sin
from which we see that a = 1. Setting
t = we obtain sin = from

which we see that a This is a
contradiction, and it follows that the set
is linearly independent.

21. We show that for any positive integer m,
any subset consisting of n functions is
linearly independent. This is certainly
true for n = 1 because any set consisting
of a single nonzero function is linearly
independent.

Now suppose that we have established
that any subset consisting of k func-
tions is linearly independent, where k is
a fixed positive integer. Consider any
subset consisting of k + 1 functions

Ieflt efl2t
1.

Let a1,. .. , be scalars such that

alefht + .. . + + = 0

for all t. We form two equations from
the equation above. The first equation
is obtained by taking the derivative of 25. Let
both sides with respect to t, and the sec-
ond equation is obtained by multiplying

both sides of the equation by The
results are

nlalefht + ... +
+ nk+lak+lenk+lt = 0

nk+lalefht + ... +

+ 0.

Now subtract both sides of the second
equation from both sides of the first
equation to obtain

(nj — nk+l)alenht +...
I \ flkt =

Since this last equation involves a lin-
ear combination of a set of k functions,
which is assumed to be linearly inde-
pendent, each coefficient —

is zero. But n1 for each i,
1 i k, and hence each = 0.

Thus the original equation reduces to
ak+levk+1t 0, from which we conclude
that ak+1 0. It follows that any subset
consisting of k + 1 functions is linearly
independent.

Since a set of 1 function is linearly in-
dependent, the preceding paragraph im-
plies that a set of 2 functions is linearly
independent. Repeating this reasoning,
we see that any set of 3 functions is lin-
early independent. Continuing this ar-
gument n — 1 times, we conclude that
any set of n functions is linearly inde-
pendent.

(This proof can also be written using
mathematiáal induction.)

( \ (x—1)(x—2)
(0— 1)(1 —2)'

and
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(x — O)(x — 2) 31. False. For example, the infinite setp2(x)
= (1 — O)(1 — 2)' {1, x, x2,. . .} is a linearly independent

subset of P.

and
32. False. Only finite-dimensional vector

p3(x)
(x — O)(x — 1) spaces have finite bases.
(2 — O)(2 1) 33. False. The dimension of is equal to

Then n+1.

34. False. For example, P2 is a 3-
p(x) = lpj(x) + 0p2(x) + 3p3(x) dimensional subspace of the infinite-

1 3
= — 1)(x — 2)+ —1) dimensional vector space P.

= 2x2 — 3x + 1. 35. False. Finite-dimensional vector spaces
only have finite bases, and infinite-
dimensional vector spaces only have in-29. Let
finite bases.

(x—O)(x—1)(x—2)
Pi(X)

(—1—O)(—1—1)(---1—2)'
36. True 37. True 38. True

1 39. False, the set is linearly independent.= + 3x2 — 2x)

40. True 41. True
(x+1)(x—1)(x—2)

p2(x)
(0 + 1)(o — 1)(o — 2)' 42. False, its dimension is mn.

= — 6x2 — 3x + 6) 43. True 44. True

p3(x)
(x + 1)(x — 0)(x — 2)

45. False, its dimension is mn.

(1+1)(1—0)(1—2)' 46. True 47. True

= + 3x2 + 6x) 48. False. For example {1, x, 1+x} is a finite
linearly dependent subset of?, but P is
infinite-dimensional.

and
49. This set is linearly dependent. To show

p4(x)
(x + 1)(x — 0)(x — 1) this, we find a nonzero solution of
(2+1)(2—0)(2--1)
1

(af+bg+ch)(n)
—x). ==a(n-i-1)-i-b+c(2n—l)

=(a+2c)n+(a-i-b—c)=O
Then

for all n. Thus we set the coefficients
p(x) 5p1(x) +

equal to zero to obtain the system

+ (—1)p3(x) + 2p4(x)

=x3—4x+2.
a+ 2c=0
a+b— c=0,
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which has the nonzero solution a —2,

b=3,andc=1. So—2f+3g+h=0.

A,

A= lxi ri 01

[x3 —x1j = X1
Lo _i]

0 ii 0 0
+X2

0
0]+X3

1 0

fi 01 011 00
0 —1]' 0 0]' 1 0

is a basis for W.

57. Observe that the polynomials in W have
degrees less than 2. Hence { 1, x } is a
basis for W.

61. (a) Since every entry of is the
sum of any row, column, and diag-
onal is equal to 1. Therefore is
a magic square with sum 1.

(b) Let A be an nxn magic square with
Since A 69.

and are in it follows that B
is in and B has sum s—s•1 0.
So B is in and A

B = A — it is necessarily
unique.

65. Consider the system of linear equations
that results from equating the ii row
sums, the ii column sums, the sum of
the entries of the diagonal, and the sum
of the entries of the secondary diagonal
to 0. The coefficient matrix of this ho-
mogeneous system contains 2n + 2 rows
(because there are 2n +2 equations) and
n2 columns (because there are n2 vari-
ables, which are the n2 entries of an n x n

matrix). Add rows 1 through n — 1 to
row n, creating a row with all entries
equal to 1. Now subtract rows n + 1
through 2n from this new nth row of is
to obtain a zero row. The other 2n + 1
rows are linearly independent, and hence
the coefficient matrix has rank 2n + 1.
Therefore the dimension of the solution
space is n2 — (2n + 1) = n2 — 2n — 1.

xii

'I' . =

x11 X12 X1r1

X2i X22 X2n

Xn2 Xnn

This mapping is an isomorphism, and
is the image of the solution space

of the homogeneous system described in
the preceding paragraph. Since an iso-
morphism preserves dimensions, it fol-
lows that r=n2—2n--1.

Choose a basis B for a vector space V
of dimension n, and let V be
the isomorphism defined on page 513.

(a) Consider any subset S of V con-
taining more than n vectors, and
let be the set of images of these
vectors under Then is a sub-
set of consisting of more than
n vectors, and hence is linearly de-
pendent. As a consequence, S is
linearly dependent. For otherwise,
the images of vectors in a linearly
independent set under an isomor-
phism would be linearly dependent,
contrary to Theorem 7.8.

(b) Part (b) follows from (a) and Ex-

xi53. A matrix A = I

LX3
only if x1+x4 =0.

X21 . .

I is in W if and
X4j

For any such matrix

It follows that
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ercise 68.

73. Suppose that B = {v1, v2,.. . , is a
basis for a vector space V, and let u
and v be in V. Then there exist unique
scalars al,a2,.. and
such that

and

Thus

U = + a2v2 + +

= + bi)v1 +

a1 + b1
— a2+b2

±

a1

a2
+

= +

Similarly = for every u
in V, and hence is linear.

77. Let T: 1Z be defined by

b

T(f(x)) f f(x) dx.

Then T is linear because the definite in-
tegral of a sum of polynomials is the sum
of the definite integrals, and the definite
integral of a scalar multiple of a polyno-
mial is the same multiple of its definite

integral. Therefore T is in 7Z).

By Exercise 76, {To,T1,.. . is a ba-
sis for £(P,-4, R.), and hence there exist
unique scalars c1, c1,. . . , en such that

Thus, for any polynomial f(x) in

b

f
= (coTo + c1T1 + ... +

= coTo(f(x)) + ciTi(f(x))
+

cof(O) + cif(1) + ... +

81. As in Exercise 1, the given set of matri-
ces is linearly dependent, and

M3 =(-3)M1+2M2+0M4,

where M3 is the jth matrix in the set.

7.4 MATRIX REPRESENTATIONS
OF LINEAR OPERATORS

1. Since

Ii 21 Ii 0

[3
4] = 1

o]
+ 3

it follows that

111

L2i
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5. It is easy to see that and

1—il 111 111
[ 01

u=(-3) +2 +1
I

0] Lo] Li] L °j

So [uls
[—31

10 1 —2

2]. Hence [TJ8 = 0 0 2

1
100 0 3!
L0 0 0 0]

9. Since 17. (a) Let B = {1, x,x2}. Then, from Ex-
ample 3, we have

D(et) = D(e2t) =
10 1 01

[D]8= 10 0 21.and
L0 0

D(e3t) 3e3t So

we see that

0 °1
=

[T},3 = = 10 2 01 . 10 1 0 61

L° 0 3] — to 0 21 1

[o 0 0] [_4j
13. The images of the basis vectors are

r
T(1)=i'—l"=O—O=O =1—81,
T(x)=x'—x"=l=O=l L

0]

T(x2) = (x2)' —(x2)" = 2x—2 and hencep'(x) = —8x.

T(x3) — (x3)' — (x3)" = 3x2 — 6x. (b) As in (a),

Thus the coordinate vectors relative to [P'(x)18 =
B of these images are =

101 1fl 10 1 01 121

[T(x)]5= = lo 0 21

Lo 0 0] L5]
L0i [0

1 31
[—21 =
I 21

L0J[T(x2)js
= 0]

[ t Thus p'(x)=3+lOx.
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(c) Taking B = {1, x, x2, x3}, we have

So

10 1 0 01

0 0 2

— 0 0 0
0 0 0]

=

= [DJB[p(x)]s

0100000200000300000 1

0
0

3
0

Thus p'(x) = 3x2.

21. Let T = D, the differential operator on
V = Span{et,t2t,e3t}. By Exercise 9,

100
0 2 0003

and hence 1, 2, and 3 are the eigenval-
ues of D with corresponding bases {et},
{

{e3t}.

25. In Exercise 13, we saw that if B =
{1,x,x2,x3}, then

0 1 —2 0
0 0 2 —6{TJ5=
0 0 0 3

00 0 0

Since this is an upper triangular matrix,
its diagonal entries are the eigenvalues
of T. So 0 is the only eigenvalue of T.

As in Chapter 5, we find that a basis
for the eigenspace of this matrix corre-
sponding to eigenvalue 0 is {ei}. By the
boxed result on page 527, a basis for the
corresponding eigenspace of T consists
of the polynomial whose coordinate vec-
tor relative to B is e1, which is the poly-
nomial 1.

28. False, let T be the 90°-rotation operator
on

29. False, the vector space on which the
operator is defined must be finite-
dimensional.

30. True 31. True 32. True

33. True

34. False. Let D be the linear operator on
C°° defined in Example 2 of Section 7.2.
Then, as is shown in Example 5 of this
section, every real number is an eigen-
value of D.

35. False, the eigenspace is the set of sym-
metric matrices.

36. False,

37. False. As written, this expression may
make no sense. What is true is that
{T(v)]5 [T]5[v}5.

38. True 39. True

41. For B = {1,x,x2}, which is a basis for
we see that

010
ED]B=° 0 0 2000



184 Chapter 7 Vector Spaces

(a) Since the eigenvalues of D are the
0 21 = 10 01

diagonal entries of D has only [3 4] [0 0]

one eigenvalue, which is 0.
(b) Since 0

(1)
0

0 )
= [i oj) 3 4

is a basis for the eigenspace of [D] Ii 21 r0 01
corresponding to the eigenvalue 0, 0 3 4] = 0 0]'
it follows that { 1 } is a basis for the L L

eigenspace of D corresponding to and
the eigenvalue 0.

45. (a) For any matrices A and C in T (10 0

\[0 1

T(A + C) = (trace (A + C))B (trace 0] 1 2

= (trace A + trace C)B \ L° 1J 1

= (traceA)B + (traceC)B
1

2

=T(A)+T(C). — [3 4

Similarly, T(cA) cT(A) for any
— 1

11 01
2

0 1

scalar c, and therefore T is linear.
— (9 0] +

0 0

(b) Let B be as in Example 9. Then
+ 3 1°

0]
+ 4 10 0

/11 O1\
[1 0] L° 1

TtI H\ Oj j Hence

/ Ii o\[i 21 1 0 0 1

to ü t3 4]
FT]

— 2 0 0 2

3 0 0 3
=111 21 4 0 0 4

[3 4]

(c) Suppose that A is a nonzero matrix
= 1 + 2

[0 1] with trace equal to zero. Then

[0 0 lo T(A) = (traceA)B
+3[1 0 +4[0 1 ' =OB=O=OA,

/10 11 \ and hence A is an eigenvector of
T o]) T with corresponding eigenvalue

equal to 0.
/ 10 1 '\ Ii 21 (d) Suppose that A is an eigenvector

=
[o 0 ) [3 4] of T with a corresponding nonzero
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eigenvalue A. Then (c) (i) We have

A.4—T(A)_—(traceA)B,
)

fa+b+clT(f(x)
and soA=(tr La+2b+4bj

[T(f(x))]c.
49. Let W be the eigenspace of T corre-

sponding to A. Since T(O) = 0 = AO, lal
the zero vector is in W. For any u and (ii) Clearly, = I b and
vinW, LcJ

T(u-i-v)=T(u)+T(v)
1 1

ral
=Au+Av=A(u+v),

2 4] IbI
[c]

and hence u + v is in W. Similarly, any
r a+b+e 1

scalar multiple of u is in W, and hence
= La + 2b + 4bjW is closed under addition and scalar

multiplication. Therefore W is a sub-
space of V. For any nonzero vector u in
V, the equation T(u) = Au is satisfied
if and only if u is an eigenvector corre- 7.5 INNER PRODUCT SPACES
sponding to A, and hence if and only if
u is in W. 3. We have

53. (a) For any polynomials f(x) and g(x) 2

in P2, (f,g) = I f(t)g(t)dtii
If(1)+g(1)l 2

T(f(x) + g(x))
= Lg(') + g(2)j f t(t2 +1) dt

2— {f(1)1 + Ig(1)1
+

— Lf(2)i [g(2)j
— 2

=T(f(x))+T(g(x)).
— 1 1 21=(4+2)

Similarly T(cf(x)) = cT(f(x)). So
T is linear. 7. We have

(b) Since
2 2

T(i) , T(x) [1] (f, g) f f(t)g(t) dt = f dt
J1

= tet —
and

Iii = (2e2 — e2) (e — e) = e2.T(x2)
L4i'

11 1 ii ii.it follows that
= Li 2 4j

(A, B) = trace (ABT)
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—ii 12 1= trace
3j

27. False, an inner product has scalar val-
ues.

= trace 0.
28. False, any positive scalar multiple of an

inner product is an inner product.

29. True15.

30. False, if the set contains the zero vector,
(A, B) = trace (ABT)

it is linearly dependent.

211—i 01 31. True 32. True 33. True
—ij 2 4jj

34. True
trace = 35. False, the indefinite integral of functions

is not a scalar.
19. We have 36. True 37. True

1

(f(x),g(x)) = I (x2 — 2)(3x + 5) dx 38. False, the norm of a vector equals
-1

1

= I (3x3 + 5x2 6x — 10) dx 39. False, the equality must hold for every
—1 vector u.

I'
= x4 + — 3x2 — lOxi 40. False, (A, B) = trace(ABT).

I—I
41. True 42. True

31 19 50

— 3 3 — 3 43. False, to obtain the normalized Leg-
endre polynomials, these polynomials

23. We have must be normalized.

(f(x),g(x)) =
J

(x2 + 1)(x — 1)dx 44. False, B must be an orthonormal basis.
—1

45. Let f, g, and h be in C([a, b]).
p1

=J (x3—x2-j-x—1)dx Axiom 3 Wehave
—1

b

14 1
= — +

—
(1 + g,h) = 1 (1+ g)(t)h(t) dt

xI Ja
-1

b

7 25 — 8 = [ f(t)h(t)dt—
— Ja

b

25. False, it is a scalar.
+ f g(t)h(t) dt

a

26. True = (f, h) + (g, h).
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Axiom 4 For any scalar c, we have

b

(cf, g)
= f (cf(t))g(t) dt

b

=cf f(t)g(t)dt_—c(f,g).

49. Let u, v, and w be in If u
then

(u,u) Au.u
= (Au)Tu = UTAU > 0

because A is positive definite, establish-
ing axiom 1.

We have

(u, v) = (Au) . v = (Au)Tv = UTAV

= u. (Ày) = (Av) . u = (v, u),

establishing axiom 2.

Notice that

(u+v,w) = (A(u+v)).w
= (Au+Av).w
= (Au).w+ (Av).w
= (u, w) + (u, w),

establishing axiom 3.

Finally, for any scalar a,

(au,v) = (A(au)).v
= a((Au).v) a(u,v),

establishing axiom 4.

53. We show that the rule is not an inner
product because axiom 1 is not satisfied.
Letf: [0,2] be defined by

lo if0<t<1
(t—i ifi

Since f is continuous, it is in V. Further-
more, f is not the zero function. How-
ever

(f,f) =ff(t)2dt=fodt=0.

This rule defines an inner product, as
shown below.

Axiom 1 Let u be a nonzero vector in
V. Then

(u, u) = a (u, u)1 + b (U, u)2 > 0

since (u,u)1 > 0, (u,u)2 > 0, and
a and b are positive.

Axiom 2 Let u and v be in V. Then

(u, v) = a (u, v)1 + b(u, v)2

= a (v, u)1 + b(v, u)2

= (v, u).

Axiom 3 Let u, v, and w be in V.
Then

(u+v,w)

= a(u + v, w)1 + b(u + v, w)2

= a (u,w)1 + a (v,w)1

+b(u,w)2+b(v,w)2

= a(u, w)1 + b(u, w)2
+a(v,w)1 +b(v,w)2

= (u,w) + (v,w).

Axiom 4 Let u and v be in V, and let

c be a scalar. Then

(cu,v) = a(cu,v)1 +b(cu,v)2

= ac(u,v)1+bc(u,v)2

= c(a(u,v)1 +b(u,v)2)

= c (u, v).
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61. Let u1 = 1, u2 et, and u3 = e_t. 69. Suppose that (u,v) = 0 for all u in V.
We apply the Gram-Schmidt process to Since w is in V, we have (w, w) = 0,
{uj, U2, to obtain an orthogonal ha- and hence w = 0 by axiom 1.
sis {vi, v2, v3 }. Let v1 u1 = 1,

73. Observe that
(u2 v1) r 1

V2 = — ' T — a11 a12 1b11 b21
1 [a21 a22j [b12 b22

= et — Ianbii +a12b12 a11b21 +a12b22

f01 dt — La2ibii + a22b12 a21b21 + a22b22

c—i t andhence=e —---1--—1=e —e+1,
(A, B) = trace (ABT)

and = a11b11 + a12b12 + a21b21 + a22b22.

(u3,vi) (u3,v2)
V3 — U3

— 2 V1 — 2
v2 77. If u or v is the zero vector, then both

Vi V2 sides of the equality have the value zero.

1
So suppose that u 0 and v 0. Then

= e_t — f0 e 1 dt
1— there exists a scalar c such that v = cu.

Hence (u,v)2 = (u,cu)2 = c2(u,u)2,
and

fle_t(et_e+1)dt
fi(t+1)2dt (e —e+l) (u,u)(v,v)=(u,u)(cu,cu)

=(u,u)c2(u,u)
=c2(u,u)2.

— 2(e2 — 3e + 1) (t — e+ 1)
Therefore (u,v)2 = (u,u) (v,v).

e(e — 1)(e — 3)
81. (a) This is identical to Exercise 72 in

2 2 — 1
Section 6.6.

e_t +
e e

(b) Let B be a basis for that is
e(e — 3) orthonormal with respect to the

— 2(e2 — 3e + 1) et given inner product, let B be
e(e — 1)(e — 3) the n x n matrix whose columns

are the vectors in B, and let
Thus {v1, v2, v3} is an orthogonal ba- A = (Although B
sis for the subspace generated by is orthonormal with respect to the
{ 1, e_t}. given inner product, it need not

be orthonormal with respect to the
65. We have usual dot product on Then A

is positive definite by Exercise 72 in
(u, 0) (0, u) Section 6.6. Furthermore, by The-

(OO,u)0(O,u)0. orem 4.11, = B'u for any
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vector u in So, for any vec- Axiom 2 Let f, g, and h be in V.
tors u and v in we may apply Then, for any x in 1Z,
Exercise 71 to obtain

((f g) h)(x) = (f g)(x)h(x)
(u,v) = (f(x)g(x))h(x)

= (B1u). (B1v) f(x)(q(x)h(x))
= (B'u)T(B'v) = f(x)(g h)(x)

= uT(B_l)T(B_lv) = (f ® (g h))(x).

=uTAv=AuTv
=(Au).v.

Axiom 7 Let f and g be in V, and let
a be a scalar. Then, for any x in

85. Let u and v be in W. By Exercise 84,

u +v (u+ v,wi)wi + - (a® (f = ((feg)(x))a
+ (u + v, =

= ((u,wi) + (v,wi))wi + ..• = f(x)ag(x)a

+ + = (a®f)(x)(a®g)(x)
= ((a®f)®(a®g))(x).

Thus =
CHAPTER 7 REVIEW

15. No, W is not a subspace. Since A 0,
it follows that A is not an eigenvalue of

1. False, for example, C°° is not a subset of 0, and hence 0 is not in W. Thereforefor any
W is not a subspace of V.

2. True
19. Consider the matrix equation

3. False, the dimension is mn.
1 2

4. False, it is an mm x mn matrix.
_i] + X2 + [2

ilrue =

6. False, for example, let u and w be any Comparing the corresponding entries on
vectors in an inner product space that both sides of this equation, we obtain
are not orthogonal, and let v = 0. the system

7.True —x3= 4
2x1+ x2+3x3= 1

11. Yes, V is a vector space. We verify some x1 + 2X2 + x3 = —2
of the axioms of a vector space. —x1 + x3 = —4,
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whose augmented matrix has the re- f(O) g(0)
duced row echelon form = + g'(O)

1 0 0 3 f0'f(t)dt f0'g(t)dt
o i 0 —2

o o 1 —1 =T(f(x))+T(g(x)).000 0
Thus T preserves addition. Further-

Therefore the system has the solution more, for any scalar c,
= 3, x2 = —2, and x3 = —1. These

are coefficients of a linear combination (cf) (0)

that produces the given matrix. T(cf(x)) = (cf)'(O)

23. A polynomial f(x) = a + bx + cx2 + dx3 f0' cf(t) dt

is in W if and only if cf(0)

f(0)+f'(O)+f"(O) =a+b+2c=0, = cf(0)

that is,
f(O)

a=—b—2c. =c j
So f(x) is in W if and only if f0' f(t) dt

f(x) = (—b — 2c) + bx + + dx3 = cT(f(x)),

= b(—1 — x) + c(—2 + x2) + dx3. and hence T preserves scalar multiplica-
tion. Therefore T is linear.

It follows that W is the span of
To show that T is an isomorphism, it

{—1 + x, —2 + x2, x3}. suffices to show that T is one-to-one be-
cause the domain and the codomain ofT

Since this set is linearly independent, it are finite-dimensional vector spaces with
is a basis for W. Therefore dim W 3. the same dimension. Suppose f(x) =

a + bx + cx2 is a polynomial in P2 such
27. T is both linear and an isomorphism. that T(f(x)) = 0, the zero polynomial.

Let 1(x) arid g(x) be in P2. Then Comparing components in this vector
equation, we have

(f+g)(0)
T(f(x) + g(x)) = (1+9)1(0) f(0) 0, f(o) = 0,

f0'(f+g)(t)dt and
1

1(0) + g(0)
f f(t)dt =0.

= f'(O)+g'(O) Since f(0) = a+bO+c02 = a, we have
f0' f(t) dt + f0' g(t) dt a = 0. Similarly, we obtain b = 0 from
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the second equation, and c = 0 from the 35. Using the matrix computed in Exercise
third equation. Therefore f is the zero 31, we have
polynomial, and so the null space of T
is the zero subspace. We conclude that 13 0 0 01

1

T is one-to-one, and hence T is an iso- [T—'} = 10 2 1 0

morphism. 0 1 2 0 I

Lo 0 0 3]
31. We have

11 0 0 01

r1 01T 1 Io 2 —1
T = 2 + [o 0] I o —1 2 0

Lo 0 0 ij
Ii 01

=3Lo oj' 1a biHence for any matrix in
Lc

+ [o 0] IT_i (Ia b])]
L

d

10 ii
= 2Lo oj

+1 [T' [a bl
dj]8

\ lo ol 11 0 0 01 IalT([? o] _i lo 2 -1 01

10 01 lo ii 10 —i 2 ol IC]
= 2 [i o] + Ip oj ' L0 0 0 1] L1

Foil Fool I a 1

o] +2 [i o]' — 1 2b—c I
3 I—b+2c1
Ldand 4

Therefore
\ Fo 0] 10

01T
T ?]) 2Lo ij + [o ij T-1 (Ia bl

d])
1001 11 a 2b—c

3Lo d

Therefore 39. Let A By Exercise 31,

o 0 01 13 0 0 ol
2 i[TJ8=10
1 2

A=H0 2 1 ol
1 2

Lo 0 0 3] I
I

L0 0 0 3]
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We begin by finding the eigenvalues of Since 1
0

is the matrix whose co-
A. The characteristic polynomial of A is 1 0]

(t — 3)3(t — 1), and hence the eigenvalues ordinate vector relative to B is the pre-
of A are 3 and 1. ceding basis vector, we see that

Next, we find a basis for the eigenspace ii 0 1
of A corresponding to the eigenvalue 3. 1 0
Since the reduced row echelon form of
A — 314 is is a basis for the eigenspace of T corre-

o 1 —1 0
sponding to the eigenvalue 1.

o 0 0 0 fa b
o 0 0 0 43. For any matrix

d
in

00 00
/10 lila b

a basis for the eigenspace of A corre- trace
1 0! d

sponding to the eigenvalue 3 is \ L J L

=trace[c d]

U ' 1 ' 0 . =c+b,
0 0 1 andsothematrixisinWifandonlyif

The matrices whose coordinate vectors c = —b. Thus the matrix is in W if and
relative to B are the vectors in the pre- only if it has the form
ceding basis form the basis lab

111 o] 10 ii [0 01 1 [_b d
ito 0] 'Li oj 'Lo ij f

for the eigenspace of T corresponding to a + b [? + d

the eigenvalue 3.

Finally, we find a basis for the The matrices in this linear combination
eigenspace of A corresponding to the form an orthogonal set. If we divide each
eigenvalue 1. Since the reduced row ech- matrix by its length, we obtain
elon form of A 114 is

1 0 1 0 1

1 0 0 0
M1__{0 M2=7[1

0110
0 0 0 1 ' and0000

10 0
a basis for this eigenspace is M3 = [0 i

I ? 1 So {M1, M2, M3 } is an orthonormal

—1
sisforW.

0 J
Therefore the orthogonal projection of
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A
=

on w is + — 6x + 1)

(M1,A)M1 +(M2,A)M2 = +
+(M2,A)M2

/ 11011=2
0 0] + L—i 0] CHAPTER 7 MATLAB EXERCISES

+ (—3) 10 0 1. The given set contains polynomials from
L° 1 P4. Let 8 = { 1, x, x2, x3, x4}, which is

a basis for 'P4. Then
f2 —21

t2 —3j 1

2
47. We use the orthonormal basis [1 + 2x + x2 — x3 + 1

{wi,w2,w3} from Exercise 45 to —i
obtain the desired orthogonal pro- i
jection. Let w denote the function

2w(x) = By equation (2) on page
1538, we have

t2 +x +x3 + = 0
w = (w, w1) w1 + (w, w2) w2 1

1

1

Now —1

2 [1 — x + x2 + 2x3 +
2

2

0

2and 2 2

—2

— Note that [p(x)JB = Since
— 105 RP is an isomorphism, it fol-

Thus lows from Theorem 7.8 that the given set

2 2 of polynomials is linearly independent if
w = + 1) and only if the set of coordinate vectors
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of these polynomials is linearly indepen-
dent. So because the reduced row eche-
ion form of

12 1 1

2 1 —1 2

10 1 2

—1 1 2 —1

1 1 2 —2

is [e1 e2 e3 e4j, the given set is lineariy
independent.

5. Let 13 {E11,E12,E13,E21,E22,E23},
where is the 2 x 3 matrix whose (i, j)-
entry is 1 and whose other entries are 0.
As explained on page 516, 13 is a basis
for For any 2 x 3 matrix A, we
have T(A) = BAG, where

and

Thus

and

4

c= 3

—3

—2 0
—1 3
31

14 —2
T(E11) = [4 —2 0]'

13 —1 31T(E12) = [3 —1 3]'
1—3 3 1

T(E13) = [—3 3 1

112 —6 01T(E21) = [—4 2 0]

19—3 9
T(E22) = I.—3 1

1—9 9
T(E23)

= [ —3 —1]

Therefore the respective coordinate vec-
tors relative to B of these matrices are

4 3 —3 12 9
—2 —1 3 —6 —3

0 3 1 0 9
4 ' 3 , —3 , —4 , —3

—2 —1 3 2 1

0 3 1 0 —3

and
—9

9

3

—3

—1

So is the 6 x 6 matrix having these
coordinate vectors as its columns.

(a) The characteristic polynomial of
[T]5 is

(t—8)(t—4)2(t+4)2(t+8),
and so the eigenvalues of [T]B and
T are 8, 4, —4, and —8.

(b) By using the MATLAB command
null(A, we can obtain bases
for each of the corresponding
eigenspaces. The resulting bases
are

[1—3 3 31
iL—i 1 1

[303 21 211
o 1 0 ' i 0 i]f'

[ —3 2 —3 —1 oil
01 O'Ll 0 i]f'

and
111 —1 —1

11:-i
Combining these four eigenspace
bases yields a basis for M2 >< con-
sisting of eigenvectors of T.
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