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Chapter 1

Matrices, Vectors, and
Systems of Linear

.
Equations
1.1 MATRICES AND VECTORS A7 2 4
_ [2 0 4] I P
4 6 8 4 8
1. Each entry of 44 is 4 times the corre-
sponding entry of A; so 9. Matrix AT can be obtained by inter-
changing the rows of A with the corre-
4A = 4(2) 4(-1) 4(5) sponding columns; so
43) 4(4) 4(1)
2 3
_[8 —4 20 AT = | -1 4.
T 112 16 4] 5 1
3. We have 13. Matrix —A can be obtained by multiply-
ing each entry of A by —1; hence
4A - 2B
—-A=(-1)A
= [2 - 5} 2[1 0 _2} 13) -1(-1) -1(2) -1(4)
- 4 1| 7|2 4 =" - - -
3 3 [—1(1) -1(5) —1(-6) —1(—2)}
8 —4 20 —2 0 4
‘[12 16 4]*[—4 -6 —8] —(3 1 2 -4
-1 -5 6 2

17. Because A and B have different sizes,
A — B is not defined.

(6 —4 24
T8 10 -4

5. We have 21. Because A and B have different sizes,
A + B is not defined.

2(1) 2(0) 2(—2)]"”

‘2B)T=[2<2) 23)  2(4)

25. Therow 1, column 2 entry is —2.
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Chapter 1 Matrices, Vectors, and Systems of Linear Equations

The first column of C is [25].

Let v be the vector given by the arrow
in Figure 1.7. Because the arrow has
length 300, we have

v1 = 300sin 30° = 150
va = 300 cos 30° = 150v/3.
For vz, we use the fact that the speed in

the z-direction is 10 mph. So the veloc-
ity vector of the plane in R3 is

150
v = {150v/3| mph.
10
True 38. True 39. True

False, a scalar multiple of the zero ma-
trix is the zero matrix.

False, the transpose of an m x n matrix
is an n x m matrix.

True
False, the rows of B are 1 x 4 vectors.

False, the (3,4)—entry of a matrix lies
in row 3 and column 4.

True
False, an m x n matrix has mn entries.
True 48. True 49. True

False, matrices must have the same size
to be equal.

True 52. True 53. True

True 55. True 56. True

Suppose that A and B are m X n matri-
ces.

61.

65.

69.

73.

(a) The jth column of A + B and
a; + b; are m x 1 vectors. Now
the ith component of the jth col-
umn of A + B is the (7, j)-entry of
A+ B, which is a;; +b;;. By defini-
tion, the 7th components of a; and
b; are a;; and b;;, respectively. So
the ith component of a; +b; is also
aij + bij. Thus the jth column of
A+ Bis a; + bj.

(b) The jth column of cA and ca; are
m x 1 vectors. The sth component
of the jth column of cA is the (4, j)-
entry of cA, which is ca;;. The ith
component of ca; is also ca;;. Thus

the jth column of cA is ca;.

If O is the m x n zero matrix, then both
A and A + O are m X n matrices; so
we need only show they have equal cor-
responding entries. The (2, j)-entry of
A+0 isa;; +0 = a;j, which is the (¢, j)-
entry of A.

The matrices (sA)” and sAT are n x m
matrices; so we need only show they
have equal corresponding entries. The
(3, 7)-entry of (sA)T is the (4,4)-entry of
sA, which is saj;. The (i,7)-entry of
sAT is the product of s and the (4, j)-
entry of AT, which is also saj;.

If B is a diagonal matrix, then B is
square. Since BT is the same size as
B in this case, BT is square. If i # j,
then the (i, j)-entry of BT is bj; = 0. So
BT is a diagonal matrix.

Let O be a square zero matrix. The
(i,7)-entry of O is zero, whereas the
(3, §)-entry of O7 is the (4,4)-entry of O,
which is also zero. So O = OT, and
hence O is a symmetric matrix.




1.2 Linear Combinations, Matrix-Vector Products, and Special Matrices

2 5 6 9 6
77. No. Consider |5 7 8| and [5 8]’
6 8 4

which is obtained by deleting row 3 and
column 2 of the first matrix.

81. Let
A = %(A+AT) and Ag = %(A — A7),

It is easy to show that A = A; + A;. By
Theorem 1.2(b), (a), and (c) and Theo-
rem 1.1(a), we have

1 1
Al = S(A+ AN = §[AT + (AT
= AT+ A) = (A + A7)

:Al-

Thus A; is symmetric. By similar rea-
soning, we have

A = S(A— AT = J[AT — (ATT]
1 1
= S(AT—A) =~ (A~ AT)
= —As.

So A; is skew-symmetric.

1.2 LINEAR COMBINATIONS,
MATRIX-VECTOR PRODUCTS,
AND SPECIAL MATRICES

1. We have

3. We have

11. We have

EETRENE

15. We have

(L +F )

3
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and hence the vector obtained by rotat-

/] ing u by 270° is
Agoou
0 1 [|-2 3
o= |5 o] [7] = B
27. We have
A _|cos300° - sin 300°
60° u 800° = 15in300°  cos300°
1 3
— 2
2
Figure for Exercise 19 —_ = 3
2 _\/ﬁ 1
19. We have .
and hence the vector obtained by rotat-
Ao — |CO8 60° —sin60° ing u by 300° is
60° = 15in60°  cos60°
111 3{ [3
1 _¥3 Aspoeun = 3 [ ]
_ [ 2 ] 2 [_\/ﬁ ﬂ 0
% 3
_1
l 1 2 |:_3\/§] '
2 V3 1
31. The vector u is not a linear combination
and hence of the vectors in . If u were a linear
combination of [j , then there would be
111
Aggou = 3 I: /3 ﬂ a scalar c such that
-1 [4] _ l4ec
1 [ 3] 1 T 4| T 4|
T2 (3341 But then 1 = 4c and —1 = 4c. This is
impossible.
23. We have 35. We seek scalars ¢; and ¢y such that
cos270° —sin 270°
o = -1 1 2
Azr0 [sin 270° cos 270°] [11] =c1 [3] +c2 [_1]

-l o)

=[]+ [




39.

43.

1.2 Linear Combinations, Matrix-Vector Products, and Special Matrices 5

_|a+2c
T 13¢; — | T

That is, we seek a solution of the follow-
ing system of linear equations:

c1 +2c=-1
3c; — cp= 11.

Because these equations represent non-
parallel lines in the plane, there is ex-
actly one solution, namely, ¢; = 3 and
¢ =—2. So

(] =3l +ea )

We seek scalars ¢; and ¢y such that

3 2 -1
5] =a 0| +c 1
-5 -1 0
2c; — ¢y
— C2
-

Thus we must solve the following system
of linear equations:

261 - 262 = 3
Cy = 5
—C1 = —35.

From the second and third equations, we
see that the only possible solution of this
system is ¢ = 5 and ¢; = 5. Because
these values do not satisfy the first equa-
tion in the system, the system is incon-
sistent. Thus u is not a linear combina-
tion of the vectors in S.

We seek scalars ci, ¢z, and c3 such that
—4 1 0 0
—5| =c1 |0] + ¢ |1| +¢3 |0

—6 0 0 1

45.

46.

47.

50.

51.

52.

o

3.

Thus we must solve the following system
of linear equations:

(&3] =4
Co =-5

C3 = —6.

Clearly this system is consistent, and so

—4
-5
—6
1 0 0
=(—4) [0| +(=5) |1] +(—6) |0
0 0 1
True

False. Consider the linear combination

sl sl -

If the coefficients were positive, the sum
could not equal the zero vector.

True 48. True 49. True

False, the matrix-vector product of a
2 x 3 matrix and a3 x 1 vectorisa 2x1
vector.

False, the matrix-vector product is a lin-
ear combination of the columns of the
matrix.

False, the product of a matrix and a
standard vector is a column of the ma-
trix.

True
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54.

55.

56.
57.

58.
59.

60.
61.

62.

63.
65.

69.

Chapter 1 Matrices, Vectors, and Systems of Linear Equations

False, the matrix-vector product of an
m X n matrix and a vector in R™ yields
a vector in R™.

False, every vector in R? is a linear com-
bination of two nonparallel vectors.

True

False, a standard vector is a vector with
a single component equal to 1 and the
others equal to 0.

True

False, consider

True

False, Agu is the vector obtained by ro-
tating u by a counterclockwise rotation mg.
of the angle 6.

1 -1

False. Consider A = [_ 1 1

], and

the vectors u = [ﬂ, and v = [g] .

True 64. True
We have
77.
Aoy = cos0° —sin0°| [v;
0°Y ™ |sin0° cos0°| |vq
{1 0f Juy| _ || _
o )=l
81.
400] 85 .03
Let p = [300_ and A = [.15 .97]'

(a) We compute

Ao — [85 03] [400
P=115 97| |300

_ [(.85)(400) + (.03)(300)]
~ |(.15)(400) + (.97)(300)

_ 1349

1351
Thus there are 349,000 in the city
and 351,000 in the suburbs.

(b) We compute the result using the
answer from (a).

=% o )

_ [(.85)(349) + (.03)(351)]
~ |(.15)(349) + (.97)(351)

_ [307.18
= |392.82

Thus there are 307,180 in the city
and 392,820 in the suburbs.

The reflection of u about the z-axis is

the vector [ a]‘ To obtain this vector,

-b
1 0
0 -1

e -

a
0

1 0f |a a|l _
av=[o of o] o] -~
We can write v = aiu; + asuz and
w = byuy + bauy for some scalars a;,

a2, b1, and be,. Then a typical linear
combination of v and w has the form

let B = [ ] Then

)

Let v= [ } Then

cv + dw
= c(a1u1 + G,QUQ) + d(b1l11 + b2112)




= (cay + dby)uy + (caz + dbs)uz,

for some scalars ¢ and d. The preced-
ing calculation shows that this is also a

linear combination of u; and us.

85. We have
o
0
Ae]‘ = A 1
0

=0a; +0ag +---+0a;_; + 1a;

+0aj+1+'--+0an

= aj.

89. The jth column of I, is e;. So

Iv=ve+ves+ - +uve, =V.

1.3 SYSTEMS

OF

LINEAR EQUATIONS

u

-1
3
-1
3

r
[l ]

r -
[ =]

1
=N O =N

(b) |-

N=O N=O

0

9. If we denote the given matrix as A,
then the (2, j)-entry of the desired ma-
trix equals 2a;; + ag; for every j. Thus

2 0
0 -1
-3
2
1
-3 4
2 -6
1 0

13.

17.

21.

25.

29.

1.3 Systems of Linear Equations 7

the desired matrix is

1 -1 0 2 -3
0 4 3 3 -5
0 2 4 4 2

If we denote the given matrix as A,
then the (3, j)-entry of the desired ma-
trix equals 4ay; + a3; for every j. Thus
the desired matrix is

1 -1 0 2 -3
-2 6 3 ~1 1
-8 26 8 0 6

As in Exercises 9 and 13, we obtain

1 -2 0
-1 1 -1
0 0 6
-3 2 1

As in Exercises 9 and 13, we obtain

1 -2 0
-1 1 -1
2 -4 6
-1 0 3

No, because the left side of the second
equation yields 1(2) — 2(1) = 0 # —-3.
Alternatively,

1 -4 0 3
0 01 -2

Because

9-4(0) +3(-1)= 6
—5—2(=1) = -3,

—= N O W
I
r—
oo
| S—
~H
!

w o
)

the given vector satisfies every equation
in the system, and so is a solution of the
system.
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33.

37.

41.

45.
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Because
2-21)+ 14+ 04 7(0)=1
2-2(1)+2(1) +10(0) =2
2(2) — 4(1) +4(0) + 8(0) =0,

the given vector satisfies every equation
in the system, and so is a solution of the
system.

Since 0 — 2(3) + (1) + 3+ 7(0) # 1,
the given vector does not satisfy the first
equation in the system, and hence is not
a solution of the system.

The system of linear equations is consis-
tent because the augmented matrix con-
tains no row where the only nonzero en-
try lies in the last column. The corre-
sponding system of linear equations is

T — 21:2 =6
Oz + 0zo =0.

The general solution is

1 =6+ 22,
zo free.

The system of linear equations is consis-
tent because the augmented matrix con-
tains no row where the only nonzero en-
try lies in the last column., The corre-
sponding system of linear equations is

=4
r3=3
Oz, + Ox5 + Oz3 = 0.

ry — 21:2

The general solution is

Ty =4+ 229
Ty free
z3 =3.

49.

53.

57.

58.
59.

61.

63.

64.

The system of linear equations is consis-
tent because the augmented matrix con-
tains no row where the only nonzero en-
try lies in the last column. The corre-
sponding system of linear equations is

o =-3
T3 =4
T4 = 5,

The general solution is

z1 free
T = -3
r3= —4
g4 = 5.

The solution in vector form is

I 1 0
2| 0 -3
zal T o] | -4
T4 0 5

The system of linear equations is not
consistent because the second row of the
augmented matrix has its only nonzero
entry in the last column.

False, the system Ox; + Oz2 = 1 has no
solutions.

False, see the boxed result on page 29.

True
.12 0y. .,
False, the matrix 0 ol isinTow eche-
lon form.
True 62, True

. 2 0 1 0
False, the matrices [0 0} and [0 0}

are both row echelon forms of [g g} .

True 65. True




66.

67.

69.

70.

73.

74.

75.

76.

77,

81.

False, the system
Oz; + 0z =1
0z, +0z2=0

is inconsistent, but its augmented ma-
trix is 0 01
I 1 0 0 0 .

True 68. True

False, the coefficient matrix of a system
of m linear equations in n variables is an
m X n matrix.

True 71. True 72. True

False, multiplying every entry of some
row of a matrix by a nonzero scalar is
an elementary row operation.

True

False, the system may be inconsistent;
consider 0z; + 0xo = 1.

True

If [R c] is in reduced row echelon form,
then so is R. If we apply the same
row operations to A that were applied
to [A b] to produce [R ¢|, we obtain
the matrix R. So R is the reduced row
echelon form of A.

The ranks of the possible reduced
row echelon forms are 0, 1, and 2.
Considering each of these ranks, we see

that there are 7 possible reduced row

echelon forms: 000 1w x
0 0 of [0 0 0)

0 1 = 0 0 1 1 0 =

[0 0 o]’ [0 0 0}’ [0 1 *]

1 % 0 0 1 0]

[0 0 1]’a'nd 0 0 1}

85.

1.4

1.4 Gaussian Elimination 9

Multiplying the second equation by c
produces a system whose augmented
matrix is obtained from the augmented
matrix of the original system by the el-
ementary row operation of multiplying
the second row by ¢. From the state-
ment on page 33, the two systems are
equivalent.

GAUSSIAN ELIMINATION

The reduced row echelon form of the
augmented matrix of the given system
is [1 3 —2] . So the general solution
of the system is

Ty = -2 — 3(L‘2
zo free.

The augmented matrix of the given sys-

tem is
1 -2 -6
-2 3 71

Apply the Gaussian elimination algo-
rithm to this augmented matrix to ob-
tain a matrix in reduced row echelon
form:

1 -2 -6 2ry+ra—ra
-2 3 7

1 -2 -6 —rg—r;y
0 -1 -5
1 -2 —6] 2ryt+n—n
0 1 5

1 0 4

0 1 5|°

This matrix corresponds to the system

(L‘1=4
iL‘2=5,

which yields the solution.
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11.
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The augmented matrix of this system is

1 -2 -1 -3
2 -4 2 2|

Apply the Gaussian elimination algo-
rithm to this augmented matrix to ob-
tain a matrix in reduced row echelon
form:

1 —2 -1 -3] —2r1+r2—r;
2 -4 2 2] —
[1 -2 -1 -3] ire—r
o o 4 8~
—1 —2 —1 —3. ra+ri;—ri
10 0 1 2]

1 -2 0 -1
0 01 2|

This matrix corresponds to the system

T -2y =-1
I3 = 2,
Its general solution is
1 =—-14 2z,
Ty free
T3 = 2.

The augmented matrix of this system is

1 3 11 -1
-2 -6 -1 0 5
1 3 23 2 15.

Apply the Gaussian elimination algo-
rithm to this augmented matrix to ob-
tain a matrix in reduced row echelon
form:

1 3 11 -1
-2 -6 -1 0 5
1 3 2 3 2

2r; +rz o r2
-ry+rs—rs

1 311 -1

0 01 2 3

0 01 2 3
—r2+raz—ra

1 311 -1

0 01 2 3

0 00O 0
—ra+r;—r;

1 30 -1 —4

0 01 2 3

el
el
el
el
el

This matrix corresponds to the system

1 + 3z2 — x4=-—-4
T3+ 24 = 3.
Its general solution is
1 =—4—3x2+ x4
z2 free
3= 3 —2x4
z4 free.

The augmented matrix of this system is

10 -1 -2 -8 -3
-2 0 1 2 9 5
30 -2 -3 ~-15 -9

Apply the Gaussian elimination algo-
rithm to this augmented matrix to ob-
tain a matrix in reduced row echelon




form:
1 0 -1 -2 -8 -3
-2 0 1 2 9 5
3 0 -2 -3 —-15 -9
2ry +rg — ra
—3r1 +r3 —r3
10 -1 -2 -8 -3
0 0 -1 -2 -7 -1
0 0 1 3 9 0
ro+ra-—r3
1 0 -1 -2 -8 -3
0 0 -1 -2 -7 -1

0 0 0 1 2 -1
2r3 +rg — ra

2r3 +ry —ry
_—

1 0 -1 0 —4 —5]

00 -1 0 -3 -3

00 01 2 -1
—rgers

_—

1 0 -1 0 -4 —5]

0 0 1 0 3 3

|0 0 0 1 2 —1_
rot+ri—r

1 0 00 -1 -2

0 01 0 3 3

0 0 01 2 -1

This matrix corresponds to the system

T —x5 = —2
T3 + 3z5= 3
T4 + 225 = —1.

19.

23.

27.

1.4 Gaussian Elimination 11

Its general solution is

T1=-24+ x5

zo free

3= 3 — 3z5

Ty = -1-— 2235

x5 free.

The augmented matrix of the system is

1 -2 0]
4 -8 rf’

Adding —4 times row 1 to row 2, we ob-
tain

1 -2 0]
0 Or_'

So the system is inconsistent if r # 0.

The augmented matrix of the system is
-1 r 2
r =9 6|’

Adding r times row 1 to row 2 produces
the matrix

-1 T 2
0 r2—9 2r+6|"

For the system corresponding to this
augmented matrix to be inconsistent,
the second row must have its only
nonzero entry in the last column. Thus
we must have 72 —9 = 0 and 2r + 6 # 0.
So r = %3 and r # —3, that is, r = 3.

The augmented matrix of the system is
1 r 5
3 6 s|’
Adding —3 times row 1 to row 2 pro-
duces the matrix

1 T 5
0 6~-3r s—15|"
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(a) Asin Exercise 23, for the system to [1 -1 —1 0] 2trz—r
. . —ry+rz —r3
be inconsistent, we need 6 —3r = 0 2 -1 =2 1] 4r 4rs—rq
and s —15 # 0. Sor = 2 and 1 -2 =2 2 -rmi+trs—rs
s # 15. -4 2 31| __
(b) From the second row of the preced- | 1 -1 -2 3
ing matrix, we have -
[1 -1 -1 0
(6 —3r)ze =s— 15. 0 1 0 1 s,4r5—rs
0 -1 -1 2 2r2+rqg —ry
For the system to have a unique 0O -2 -1 1 —
solution, we must be able to solve 0o 0 -1 3J
this equation for z2. Thus we need _ -
6 — 37 # 0, that is, r # 2. (1) ‘} ‘(1) (1’
(c) For the system to have infinitely 0 0 -1 3 i i i
many solutions, there must be a 0 0 -1 3
free variable. Thus 6 — 3r = 0 and 0 0 -1 3J
8§—15=0. Sor =2 and s =15. -
[1 -1 -1 0]
31. The augmented matrix of the system is 0 1 01
0 0 -1 3 ~r3+3r3
B : ‘3] , o 0o oof
s o 0 0o
Adding —2 times row 1 to row 2 pro- 1 -1 -1 0
duces the matrix 0 1 0 1
L e &) R M
0 -2r+5 6+s|° I——
0 0 0 0

(a) As in Exercise 23, for the system
to be inconsistent, we must have 1
~2r+5=0and 6+5 # 0. So 0 1
r= % and s # —6. 0 0

(b) For the system to have a unique so- 0 0
lution, we need —2r + 5 # 0, that 0 0

is, 7 # 2.

0
0
1 -3 rz+r1—r;
0
0

(c) For the system to have infinitely [1 (1) 0 —f
many solutions, there must be a 0 0 0 o
free variable. Thus —2r+5 = 0 and g : (1) —0 =

_ _5 _
6+3——0- SO"'—§and8——6. LO 0 0 0

35. To find the rank and nullity of
the given matrix, we first find The rank of the given matrix equals the
its reduced row echelon form R: number of nonzero rows in R, which is




39.

43.

3. The nullity of the given matrix equals 47.

its number of columns minus its rank,
which is4-3=1.

Because the reduced row echelon form
of the augmented matrix is

10 -2 0
01 3 0/,
0 0 01

its rank is 3 (the number of nonnzero
rows in the matrix above), and its nullity
is 4 — 3 = 1 (the number of columns in
the matrix minus its rank).

Let z;, z2, and z3 be the number of
days that mines 1, 2, and 3, respec-
tively, must operate to supply the de-
sired amounts.

(a) The requirements may be written
with the matrix equation

T 80
To| = 100
I3 40

N = =
[
O NN

The reduced row echelon form -of
the augmented matrix is

OO =
(=R )
- O O
83

so z1 = 10, x5 = 20, z3 = 25.
A similar system of equations
yields the reduced row echelon

form
1 0 0 10
01 0 60
0 01 -15
Because 3 = —15 is impossible for

this problem, the answer is no.

51.

53.

54.

55.
58.
59.

60.

61.

64.

1.4 Gaussian Elimination 13

We need f(—1) = 14, f(1) = 4, and
f(38) = 10. These conditions produce
the system

a— b+c=14
a+ b+c= 4
9a + 3b+ ¢ =10,

which has the solution @ = 2, b = -5,
c=1. So f(z) =222 -5z + 7.

Column j is es. Each pivot column of
the reduced row echelon form of A has
exactly one nonzero entry, which is 1,
and hence it is a standard vector. Also,
because of the definition of the reduced
row echelon form, the pivot columns in
order are e;,esz,.... Hence, the third
pivot column must be ez.

True

False. For example, the matrix (2] (1]]

can be reduced to I» by interchanging
its rows and then multiplying the first
row by %, or by multiplying the second
row by % and then interchanging rows.

True 56. True 87. True

True

False, because rank A + nullity A equals
the number of columns of A (by defini-
tion of the rank and nullity of a matrix),
we cannot have a rank of 3 and a nullity
of 2 for a matrix with 8 columns.

False, we need only repeat one equation
to produce an equivalent system with a
different number of equations.

True 62. True 63. True

False, there is a zero row in the aug-
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65.

66.
68.

69.
71.

72.
75.

79.
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1 0 2
mented matrix [0 1 3|, but the cor-
0 00

responding system has the unique solu-
tion z1 = 2, 3 = 3.

False, there is a zero row in the aug-
0 01
0 00

tem is not consistent.

mented matrix [ ], but the sys-

True 67. True

False, the sum of the rank and nullity of
a matrix equals the number of columns
in the matrix.

True 70. True

False, the third pivot position in a ma-
trix may be in any column to the right
of column 2.

True

The largest possible rank is 4. The re-
duced row echelon form is a 4 X 7 matrix
and hence has at most 4 nonzero rows.
So the rank must be less than or equal to
4. On the other hand, the 4 x 7 matrix
whose first four columns are the distinct
standard vectors has rank 4.

The largest possible rank is the mini-
mum of m and n. If m < n, the so-
lution is similar to that of Exercise 75.
Suppose that A is an m x n matrix with
n < m. By the first boxed result on
page 48, the rank of a matrix equals the
number of pivot columns of the matrix.
Clearly, the number of pivot columns of
an m X n matrix cannot exceed n, the
number of columns; so rank A < n. In
addition, if every column of the reduced
row echelon form of A is a distinct stan-
dard vector, then rank A = n.

83.

87.

91.

95.

99.

There are either no solutions or in-
finitely many solutions. Let the under-
determined system be Ax = b, and let
R be the reduced row echelon form of
A. Each nonzero row of R corresponds
to a basic variable. Since there are fewer
equations than variables, there must be
free variables. Therefore the system is
either inconsistent or has infinitely many
solutions.

Yes, A(cu) = ¢(Au) =c-0=0; s0 cu is
a solution of Ax = 0.

If Ax = b is consistent, then there ex-
ists a vector u such that Au = b. So
A(cu) = ¢(Au) = cb. Hence cu is
a solution of Ax = cb, and therefore
Ax = cb is consistent.

By proceeding as in Exercise 7, we see
that the general solution of the given
system is

1= 2.32+40.32z5
r9 = —6.44 4+ 0.56x5
r3= 0.72 —0.28x5
z4= 5.92+4 0.92xy
z5 free.

The reduced row echelon form of the
given matrix is (approximately)

1 0 0 O 0.0000
01 0 0 1.0599
0 01 0 08441
0 0 0 1 0.4925
0 0 0 O 0.0000

The rank equals the number of nonzero
rows, 4, and the nullity is found by sub-
tracting the rank from the number of
columns, and hence equals 5 -4 = 1.
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13.

1.5 Applications of Systems of Linear Equations

APPLICATIONS OF SYSTEMS OF
LINEAR EQUATIONS

True 2. True

False, x — Cx is the net production vec-
tor. The vector Cx is the total output
of the economy that is consumed during
the production plrocess.

False, see Kirchoff’s voltage law.

True 6. True

Because ¢34 = .22, each dollar of output
from the entertainment sector requires
an input of $.22 from the services sector.
Thus $50 million of output from the en-
tertainment sector requires an imput of
.22($50 million) = $11 million from the
services sector.

The third column of C gives the
amounts from the various sectors re-
quired to produce one unit of services.
The smallest entry in this column, .06,
corresponds to the input from the ser-
vice sector, and hence services is least
dependent on the service sector.

Let

30
40
30
20

The total value of the inputs from each
sector consumed during the production
process are the components of

A2 .11 .15 .18 {30
Cx = 20 .08 .24 .07| |40
18 .16 .06 .22] |30
09 .07 .12 .05] |20

17.

15

16.1
17.8
18.0
10.1

Therefore the total value of the inputs
from each sector consumed during the
production process are $16.1 million of
agriculture, $17.8 million of manufactur-
ing, $18 million of services, and $10.1
million of entertainment.

(a) The gross production vector is x =

40
30| . If C is the input-output ma-
35

trix, then the net production vector
is

x—Cx

40] [2 .20 .3
=130 - |4 .30 1
35 |2 25 .3

40
30
35

[15.5
=115
| 9.0

So the net productions are $15.5
million of transportation, $1.5 mil-
lion of food, and $9 million of oil.

(b) Denote the net production vector
by
32
d= 48],
24

and let x denote the gross produc-
tion vector. Then x is a solution

of the system of linear equations
(Is — C)x =d. Since
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I31-C
1 00 2 .20 3
=01 0/]—-]4 30 .1
0 01 2 25 3
.80 —.20 -.30
=|—-40 .70 -.10{,
—-20 -25 .70
the augmented matrix of this sys-
tem is
80 —20 -30 32
—40 .70 —-.10 48
-20 -25 .70 24

The reduced row echelon form of
the augmented matrix is

1 0 0 128

01 0 160/,

0 0 1 128
and hence the gross productions re-
quired are $128 million of trans-

portation, $160 million of food, and
$128 million of oil.

21. The input-output matrix for this econ-

omy is
10 .10 .15
C=1.20 40 .10
20 .20 .30
(a) Let
70
x = [50
60

Then the net production vector is
given by

x-Cx

(b)

[70] 1 .1 .15] [70
=150l - |.2 .4 .10] |50
60 2 2 .30| |60
[49]
= 110] .
18]

Therefore the net productions are
$49 million of finance, $10 million
of goods, and $18 million of ser-
vices.
Let

40

d= |50],

30
the net production vector, and let x
denote the gross production vector.
Then x is the solution of the matrix
equation (I3 — C)x = d. Since
I3-C

1 0 0 1 .1 .15

=101 0|l-|2 4 .10
0 0 1 2 2 30
90 —.10 -.15

=|-20 60 -.10],
|-20 —.20 .70

the augmented matrix of this sys-
tem is

90 -10 -15 40
-.20 .60 —.10 50
—20 -20 .70 30

The reduced row echelon form of
the augmented matrix is

100 75
01 0 125(,
0 0 1 100

and hence the gross productions
are $75 million of finance, $125 mil-
lion of goods, and $100 million of
services.
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(c) We proceed as in (b), except that At the junction C, Kirchoff’s current law
in this case yields the equation
40
d= 136 L =1+ Is.
44

Thus the currents I, Iz, and I3 satisfy
In this case, the augmented matrix the system
of (Iz3-C)x=dis

I + 51 =29
90 —.10 —.15 40 I AL =29
-20 .60 -—-.10 36|, _ _ —
I I I3= 0.
-.20 —-.20 70 44
which has the reduced row echelon Since the reduced row echelon form of
form the augmented matrix of this system is
1 00 75 100 9
0 1 0 104 01 0 4,
00 1 114 00 1 5
Therefore the gross productions are . ) .
$75 million of finance, $104 million this system has the unique solution I; =
of goods, and $114 million of ser- 9,I2=4, ;=5
vices. 29. Applying Kirchoff’s voltage law to the
A M B closed path ABGHA in the network
3 ohms shown on the next page, we obtain the
22 ohms L) equation
213 + 41 = 60.
| lohm L c 3+ 2h
29 volts Similarly, from the closed path
BCFGB, we obtain
13 V
.y ; — ) =
5| 4 ohums i 117 + 1(—1Is) + 1(I6) + 2(—1I35) = 0,
o and from the closed path CDEFC, we
Figure for Exercise 25 obtain
Applying Kirchoff’s voltage law to the 214 + 115 = 30.
closed path FCBAF in the network . . )
above, we obtain the equation At the junctions B,C, F, and G, Kir-
choff’s current law yields the equations
31 + 21, + 1I; = 29.
Similarly, from the closed path h=L+13
FCDEF, we obtain I+ I = I,

1, + 413 = 29. Iy =15+ Iq




18 Chapter 1 Matrices, Vectors, and Systems of Linear Equations

and
I3+ Ig=1.

H ——-I-A
4 ohms 3

‘ T

I] V

2 ohms
G¢—mm—<—— B
I3

1 ohm

AAA.

A Is ;E 1 ohm

1 Iy
30 volts T v

2 ohms
E W D

Figure for Exercise 29

Thus the currents I, Iz, I3, Iy, Is, and

I satisfy the system

41, + 213 =60
I~ 21, ~Is+Ig= 0

21, + Iy = 30

L-L— I =0
I - L+1s =0
Ii—Is—Ig= 0

L - I ~Ig= 0.

Solving this system gives I, = 12.5, I, =
75, I3=5,1;, =125, Is =5, and Is =

7.5.

60 volts

THE SPAN OF A
SET OF VECTORS

Let
1 -1 1 -1
A= |0 11 and v = 4
1 1 3 7

Vector v is in the span if and only if
the system Ax = v is consistent. The
reduced row echelon form of the aug-
mented matrix of this system is

1 0 2 3
R=1]0 11 4
0000

Thus the system is consistent, and so v
is in the span of the given set.

Let
1 -1 1 0
A=1|0 11 and v= 1[5
1 1 3 2

Vector v is in the span if and only if
the system Ax = v is consistent. The
reduced row echelon form of the aug-
mented matrix of this system is

R=

oo
O - O
[ 2NN )
- o O

‘Because of the form of the third row of

R, the system is inconsistent. Hence v
is not in the span of the given set.

. Let

1 -1 1 -1
A= 10 11 and v = 1
1 1 3 1
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The reduced row echelon form of the 17. The vector v is in the span of S if and

augmented matrix of this system is

R =

OO =
o = O

2 0
11
00

Thus the system is consistent, and so v
is in the span of the given set.

Let
1 2 -1 0
2 -1 2 -1
A= 1 1 0 and v = 1
1 0 3 0

The reduced row echelon form of the
augmented matrix of this system is

oo O
O = O
o =0o o
= o O 0

Because of the form of the third row of
R, the system is inconsistent. Hence v
is not in the span of the given set.

Let

and v =

[o 2 B el o

-1
2
0
3

O = =N

The reduced row echelon form of the
augmented matrix of this system is

oo O
OO~ O
O=, OO
O WA=

Thus the system is consistent, and so v
is in the span of the given set.

only if the system Ax = v is consistent,
where

1 -1
A= 0 3
-1 2

The augmented matrix of Ax = v is

1 -1 2
0 3 r
-1 2 -1

Applying elementary row operations to
this matrix, we obtain

1 -1 2 .
0 3 pf 2T

-1 2 -1

[T -1 2] e

0 3 r —23—->
0 11

- .

(1) —} f-} —3rg+rz—rs
0 3 r

1 =1 2

0 1 1

0 0 r-3

So the system is consistent if and only if
r —3 =0, that is, r = 3. Therefore v is
in the span of § if and only if r = 3.

1

No. Let A = [__1

—g] The reduced

row echelon form of A is [(1) _(2)] , which

has rank 1. By Theorem 1.6, the set is
not a generating set for R2.

25. Yes. Let

A= 0 1 2
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29.

33.

37.

41.

45.
48.

49.
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The reduced row echelon form of A4 is
1 00
0 1 0},
0 01

which has rank 3. By Theorem 1.6, the
set is a generating set for R3.

Yes. The reduced row echelon form of A

is li(l) (1)], which has rank 2. By Theo-

rem 1.6, the system Ax = b is consistent

for every b in R2.

The reduced row echelon form of A is
10
0 1},
00

which has rank 2. By Theorem 1.6,
Ax = b is inconsistent for at least one
b in R3.

The desired set is {[é] , [(1]] } If we

delete either vector, then the span of S
consists of all multiples of the remaining
vector. Because neither vector in S is
a multiple of the other, neither can be
deleted.

1
-2

1
two vectors in & are multiples of the
first, and so can be deleted without
changing the span of S.

One possible set is . The last

True 46. True 47. True

False, by Theorem 1.6(c), we need
rank A = m for Ax = b to be consis-
tent for every vector b.

True 50. True 51. True

52.

54.

55.
58.
61.
64.
65.

69.

73.

77.

False, the sets & = {e;} and S, =
{2e1} have the same spans, but are not
equal.

False, the sets $; = {e1} and S; =
{e1,2e1} have equal spans, but do not
contain the same number of elements.

False, S = {e; } and SU{2e, } have equal
spans, but 2e; is not in S.

True 56. True 57. True
True 59. True 60. True
True 62. True 63. True
True

(a) 2

(b) There are infinitely many vectors
because every choice of the scalars
a and b yields a different vector
au; + bus in the span.

For r > k, let §; = {u;,uy,...,u;} and
Sz = {u;,uz,...,u,}, and suppose that
&, is a generating set for R™. Let v bein
R"™. Then for some scalars a3, az,...,ax
we can write

vV =qai1U; +azU2 + -+ agug
= qiu; +aguz + - -+ axgug
+ Ougyg + - - - + Ou,..

So &; is also a generating set for R"™.

10 10
No,letA:[1 0].ThenR—[O 0].

The span of the columns of A equals all
multiples of [ﬂ , whereas the span of the
columns of R equals all multiples of e;.

Let uj, uz, ..., u,, be the rows of A. We
must prove that Span{u;,uz,...,u,}is
unchanged if we perform any of the three
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types of elementary row operations. For
ease of notation, we will consider opera-~
tions that affect only the first two rows
of A.

Case 1 If we interchange rows 1 and 2
of A, then the rows of A are the
same as the rows of B (although
in a different order), and hence the
span of the rows of A equals the
span of the rows of B.

Case 2 Suppose we multiply the first
row of A by k # 0. Then the rows

of B are ku;,uy,...,u,,. Any vec-
tor in the span of the rows of A can
be written

ciug +couz+ -+ cpum
= (f‘kl)kul +coug + -+ ey,
which is in the span of the rows of

B. Likewise, any vector in the span
of the rows of B can be written

c(kug) + cpuz + -+ iy
= (erk)u; + couz + -+ - + Cm U,

‘which is in the span of the rows of

A.

Case 3 Suppose we add k times the
second row of A to the first row
of A. Then the rows of B are

u; + kug,ug,...,u,,. Any vector
in the span of the rows of A can be
written

ciug +cpuz + -+ Cplim
= c1(u1 + kug) + (e2 — ker)uz
+czuz+ -+ cpiy,
which is in the span of the rows of

B. Likewise, any vector in the span
of the rows of B can be written

c1(uy + kug)

81.

1.7

13.

17.

21

+couz + -+ cppuy,
=ciuy + (ker + cz)uz + -+

+ cmum,

which is in the span of the rows of

A.

By proceeding as in Exercise 1, we see
that the given vector is not in the span
of the given set.

LINEAR DEPENDENCE AND LIN-
EAR INDEPENDENCE

Because the second vector in the set is
a multiple of the first, the given set is
linearly dependent.

No, the first two vectors are linearly in-
dependent because neither is a multiple
of the other. The third vector is not
a linear combination of the first two be-
cause its first component is not zero. So,
by Theorem 1.9, the set of 3 vectors is
linearly independent.

A set consisting of a single nonzero vec-
tor is linearly independent.

Because the second vector in § is a mul-
tiple of the first, it can be removed from
S without changing the span of the set.

Because the second vector in § is a mul-
tiple of the first, it can be removed from
S without changing the span of the set.
Neither of the two remaining vectors is a
multiple of the other; so a smallest sub-
set of S having the same span as S is

2 1
-3!,10
5 2
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25.
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Note that
-2 1 0 -4
2 o + Z 4{ = 1
3 0 6

Hence, by Theorem 1.7, the third vec-
tor in S can be removed from S without
changing the span of S. Because neither
of the two remaining vectors is a multi-
ple of the other, a smallest subset of S
having the same span as S is

-2 0
0{,!4
3 0
Yes, let
1 1 1
2 -3 2
A= 0 1 -2{
-1 =2 3
which has reduced row echelon form
1 00
010
0 0 1
0 0O

So rank A = 3. By Theorem 1.8, the set
is linearly independent.

No, let
1 -1 -1 0
-1 0 -4 1
A=1_1 1 1 2|

2 -1 3 1

which has reduced row echelon form

1 0 40
0150
0 0 01
0 0 0O

So rank A = 3. By Theorem 1.8, the set
is linearly dependent.

33.

Let A be the matrix whose columns are
the vectors in S. From the reduced row
echelon form of A, we see that the gen-
eral solution of Ax =0 is

Ty = —dr3
To = —4x3
z3 free.
So one solution is z; = —5, Ty = —4,
and z3 = 1. Therefore
0 1 4
=511 —4| Ol +|5| =0
1 -1 1
Hence
4 0 1
5! =511 +4| ©
1 1 -1

. The reduced row echelon form of the ma-

trix whose columns are the vectors in S
is

1 00 5
01 0 -3
0 01 3
As in Exercise 33, we see that
1 0 -1 2
51 21 -3 1[{+3|-2{=| 1
-1 -1 0 -2

Using elementary row operations, we
can transform the matrix

-2 1 -1
A= 0 1 1},
1 -3 r
into
1 0 1
01 1
0 0 r+2

Then rank A = 2 if » = —2. By Theo-
rem 1.8, the set is linearly dependent if
r=-2.
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The given set is linearly dependent if the
third vector is a linear combination of
the first two. But the first two vectors
are nonparallel vectors in R2, and so the
boxed statement on page 17 implies that
the third vector is a linear combination
of the first two vectors for every value of
7.

Neither of the first two vectors in the set
is a multiple of the other. Hence Theo-
rem 1.8 implies that the given set is lin-
early dependent if and only if there are
scalars ¢; and ¢ such that

3 -1
11 3
6] |2
1 T

Thus ¢; and c; must satisfy

c1 + 2co=-1
201+ c2= 3
3¢y + 6cag =—-2

—C1+ C2= T

Consider the system of three equations
in ¢ and ¢y consisting of the first three
equations above. The reduced row eche-
lon form of the augmented matrix of this
system is I3, and so there are no values
of ¢; and ¢z that satisfy the first three
equations above. Hence there is no value
of r for which the system of four equa-
tions is consistent, and therefore there is
no value of r for which the given set is
linearly dependent.

The general solution of the given system
is

T = —3.’1,‘2 - 2.’1,‘4
To free
I3 = 6x4
x4 free.

So the vector form of the general solu-
tion is

&) —3.’132 - 2.’1,‘4

2| __ T2
z3| 6z,
Tq Tq

-3 -2

1 0

=2 0 + 4 6

0 1

57. The general solution of the given system

18

Ty = —T4 — 3.’1,‘6
T9 free
T3 = 2.’1,‘4 — T
x4 = free
Ty = 0
ze free.

So the vector form of the general solu-
tion is

roA

T ——-.’1,‘4 — 3.’1,‘6-

T2 T2

3| _ 2.’1,‘4 — Tg

Tq Tq

Ty 0

L Z6 | | T6
0] —1] [—3]
1 0 0

= T2 g +z4 ? + z6 (1)

0 0 0
0_ 0_ L 1_

681. The general solution of the given system

18

Ty, = —2x9 +x3 — 225 + x¢
zo free
x3 free
T4 = - 4:1:5 - 3.’1,‘6
zs free

ze free.
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So the vector form of the general solu- 73. False, consider n = 3 and the set

tion is
(2] [-222 + 23 — 25 + 26 |
T2 i)
3| _ T3
Ty - —4:1,‘5 - 31‘6
Ty s
| Z6 ] L Z6 i
[—2] 17
1 0
0 1
= T2 0 +x3 0
0 0
| 0] 0]
o 1
0 ( 0
0
+ x5 4 + Tg _g
1 0
- 0- = 1-
True

False, the columns are linearly indepen-
dent (see Theorem 1.8). Consider the

1 0
matrix |0 1].
0 0

False, the columns are linearly indepen-
dent (see Theorem 1.8). See the matrix
in the solution to Exercise 64.

True 67. True 68. True
False, consider the equation Iox = 0.
True

False, if v # 0.

False, consider the set

{ERHRH)E

74.

77.
78.
79.

80.
85.

89.

93.

1 2
0}],1{0
0 0
True 76. True 76. True

False, see the matrix in Exercise 64.
True

False, if cjuy + coup + -« + cgug = 0
only when ¢y =cz = -+ = ¢ = 0, then
{u1,ug,...,ux} is linearly independent.

True 81. True 82. True

In R3, take u; = e;, uy = ey, and
v = e + e;. Then {u;, uy}, and
{v} are both linearly independent, but
{u1,uz, v} is not because v = uy + u,.

Suppose aj,as,...,a; are scalars such
that

ar(ciuy)+az(couz)+- - -+ar{ceug) = 0,
that is,
(aycr)uy +(azep)ug+- - -+ (akcy)ug = 0.

Because {u;,uq,...,ux} is linearly in-
dependent, we have

ajc1 = agCy = -+ = arcg = 0.
Thus, since ¢;, g, ..., cx are nonzero, it
follows that a1 = a9 =--- =a; = 0.

Suppose that v is in the span of S and
that

vV =ciu +cug + -+ cpug

and

v =dju; +daug + -+ + druy




97.

101.
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for scalars eci,c2,...,Ck,dy,dz2,...,ds. 10.
Subtracting the second equation from

the first yields 13.
0= (Cl — dl)lll +o 4 (e — dk)uk.

Because & is linearly independent,
Cl—dl =62—-d2 = ---=Ck——dk = 0.

Ja—y

4.

Soci =dy,c2=da, -,k =dg.
16.
Suppose

ciAu; +cpAug + -+ ¢ Aug =0
for some scalars ¢1,c¢g,...,ck. Then

A(ciuy + coug + - - + cpug) = 0.
19.
By Theorem 1.8, it follows that

ciug +coug + - - -+ cpug = 0.

Because S is linearly independent, we
haveecy =co =--- =cx = 0.

Proceeding as in Exercise 37, we see that
the set is linearly dependent and vs =
2vj —v3 -+ vy, where v; is the jth vector
in the set.

25.

False, the columns are 3 x 1 vectors.

True 3. True 4. True

True 6. True 7. True

False, the nonzero entry has to be the
last entry.

False, consider the matrix in reduced
0 0 2
row echelon form |0 1 3].
0 00
sociated system has the unique solution
1 =2, 10 =3.

The as- 29.
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True 11. True 12. True
False, in A = [1 2], the columns are
linearly dependent, but rank A = 1,

which is the number of rows in A.

True 15. True
1 2

False, the subset ¢ |2], |4| } of R3is
3 6

linearly dependent.

False, consider the example in Exercise
16.

(a) By Theorem 1.8, if Ais an m x n
matrix with rank n, then Ax = b
has at most one solution for every
b in R™.

By Theorem 1.6, if A is an m x n
matrix with rank m, then Ax = b

has at least one solution for every
b in R™.

(b)

3 2
A+B=|-2 7
4 3

‘We have
1
1 -2 0
TNT __ .
ADT =13 4 2} ;

_[O@)+ (-2)(-1) + (0)(2)}
| (3)(1) + (4)(=1) + (2)(2)

The components are the average values
of sales at all stores during January of
last year for produce, meats, dairy, and
processed foods, respectively.
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33.

37.

41.
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We have
o]
el e
[
1% A
17 (V3)(@) + (1)(-1)
2 [(—1)(2) + (\/3)(—1)]
_172v3-1
T2 [—2 - \/EJ ‘
Let A be the matrix whose columns are

the vectors in S. Then v is a linear com-
bination of the vectors in § if and only
if the system Ax = v is consistent. The
reduced row echelon form of the aug-
mented matrix of this system is

0
0
1

O W= D=

1 0
01
0 0

Because the third row has its only
nonzero entry in the last column, this
system is not consistent. So v is not a
linear combination of the vectors in S.

The reduced row echelon form of the
augmented matrix of the system is

0
0
1

o wlut =

10
01
0 0

49.

53.

57.

Because the third row has its only
nonzero entry in the last column, the
system is not consistent.

The reduced row echelon form is
(1 2 -3 0 1], and so the rank is
1. Thus the nullity is 5 — 1 = 4.

Let z1, z2, x3, respectively, be the ap-
propriate numbers of the three packs.
We must solve the system

10z, + 10z2 + 5z3 = 500
10z, + 15z2 + 10z3 = 750
10z2 + 5x3 = 300,

where the first equation represents the
total number of oranges from the three
packs, the second equation represents
the total number of grapefruit from the
three packs, and the third equation rep-
resents the total number of apples from
the three packs. We obtain the solution
Iy = 20, Iy = 10, I3 = 40.

Let A be the matrix whose columns are
the vectors in the given set. Then by
Theorem 1.6, the set is a generating set
for R3 if and only if rank A = 3. The
reduced row echelon form of A is

10 2 1}
01§ -
00 0 O

Therefore rank A = 2, and so the set is
not a generating set for R3.

For an m x n matrix A, the system
Ax = b is consistent for every vector b
in R™ if and only if the rank of A equals
m (Theorem 1.6). Since the reduced row
echelon form of the given matrix is I3, its
rank equals 3, and so Ax = b is consis-
tent for every vector b in R2.




61.

65.

Let A be the matrix whose columns are 69.

the vectors in the given set. By Theorem
1.8, the set is linearly independent if and
only if rank A = 3. The reduced row
echelon form of A is

OO O -
[ e
o= OO0

and hence rankA = 3. So the set is

linearly independent. 73.

Let A be the matrix whose columns are
the vectors in S. By Theorem 1.8, there
exists a nonzero solution of Ax = 0. The
general solution of this system is

T = —213
T2 = —I3
z3 free.
So one solution is 1 = -2, x2 = —1,

x3 = 1. Therefore

1 1 3
2121 - |-1{+ 3| =0.
3 2 8
Thus
3 1 1
3] =2 |2| + |-1
8 3 2

Chapter 1 Chapter Review 27

The general solution of the system is

1 = —3x3
T2 = 21,‘3
T3 free.
So
T1 —3133 -3
z2| = 2z3| = x3 2
T3 T3 1

We prove the equivalent result: Suppose
that wj; and wo are linear combinations
of vectors v; and va. If vi and vo are
linearly dependent, then w; and w; are
linearly dependent.

By assumption, one of v; or v, is a mul-
tiple of the other, say vi = kvq for
some scalar k. Thus, for some scalars
ay, az,by, by, we have

W) = a1vy + a2ve
= a1kva + azve = (a1k + a2)va
and

wo = b1vy + bave = bikva + bava
= (blk‘ -+ bg)Vg.

Let ¢ = a1k + a2 and ¢ = b1k + ba.
Then w; = c1ve and wo = covo. If
w; = 0 or wo = 0, then w; and ws are
linearly dependent. Otherwise, ¢y # 0,
and

1 C1
W] = C1V2 =C1 | —W2 | = —W2,
C2 C2

proving that w; and wy are linearly de-
pendent.
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15 5%
-2.2 :

(@) 4| 55| = |16.11

: 4J 32.32

L 15.13

- g [ 13.45

51 ~4.30

(b) A ol = {-189

11 7.78

L] 10.69

20.18

F3g —~11.79

(c) A 1'2 = 7.71
7 8.52

L 0.28

5. Answers are given correct to 4 places af-

ter the decimal point.

(a) The reduced row echelon form of

the augmented matrix [A  b]
does not contain the row
0 0 0 0 0 0 1]. So the
system is consistent, and its gen-
eral solution is

(2] [—8.2142] [—2]
2 —0.4003 -1
zs| | 0.0000 1
ze| = | 32727] 7% o
25 0.0000 0
z6] | 0.0000] | 0]
—0.1569 —9.2142
—0.8819 0.5997
0.0000 0.0000
T2 ga727| T2 | 39707
1.0000 0.0000
0.0000 1.0000

(b)

Chapter 1 Matrices, Vectors, and Systems of Linear Equations

The reduced row echelon form of
the augmented matrix [A b] con-
tains therow [0 0 0 0 0 0 1].
So this system is inconsistent.

The reduced row echelon form of
the augmented matrix [A b
does not contain the row
0 0 0 0 0 0 1. Thus
the system is consistent, and its
general solution is

21 [—9.0573] -
! 1.4815

T2 -1

N 0.0000 )
3| _ + s

T4 4.0000

Ts 0.0000

Te | 0.0000 A

[—0.1569]
~0.8819
0.0000
0.2727
1.0000
| 0.0000)

+ x5

[—9.2142]
0.5997
0.0000
3.2727
0.0000
1.0000|

+ Zg

(d) The reduced row echelon form of

the augmented matrix [A b| con-
tains therow [0 0 0 0 0 0 1].
So this system is inconsistent.
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Transformations

MATRIX MULTIPLICATION

AB is defined and has size 2 x 2.

-]

ACx is undefined since ACx = A(Cx)
and Cx is undefined because C is a
2 % 3 matrix, x is a 2 x 1 matrix, and the
number of columns in C does not equal
the number of rows in x.

The first column of BC is
[7 4] [3] [7] [4]  [29]
12 2] =3 T2 T 7]
Similarly, the second column of BC is
(7 4] (8] . [7] 4] _ [56]
12| o] =81 T2 T | 8]
and the third column of BC is
(7 4] [1] (7] (4]  [23]
12| (o) T ] T2 T e

29 56 23
SoBC--[7 8 9}.

A3 = A(AA)

“(l 6 )

19.

23.

27.

29

-5 i
- )

45
C? = CC is undefined because C is a
2 x 3 matrix and two 2 x 3 matrices can-
not be multiplied because the number of
columns of C does not equal the number
of rows of C.

-10
10

Since
|1 =21 (7 4] _[5 O
AB = [3 4] [1 2] - [25 20} ’

5 25
0 20}. Also

rar [T 11[1 3] [5 25
srar= 1 s 3=l )

By the row-column rule, the (2, 3)-entry
of C A equals the sum of the products of
the corresponding entries from row 2 of
C and column 3 of A, which is

we have (AB)T = [

4(3) +3(4) + (—2)(0) = 24.

. Column 1 of CA equals the matrix-

vector product of C and the first column
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33.

34.

35.
36.
37.

38.
39.
41.

42,

43.
44.

45.

46.

47.
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of A, which is

2 1 -1 ;
43 2|

=i+l

|7
= |16 -
False, the product is not defined unless

n = m.

False, if A is a 2 x 3 matrix and B is a
3 X 4 matrix.

False, see Example 5.
True

False, if A is a 2 x 3 matrix and B is a
3 X 2 matrix.

False, (AB)T = BT AT.

True 40. True

False, see the box titled “Row-Column
Rule for the (¢,7)-Entry of a Matrix
Product.”

False, it is the sum of the products of
corresponding entries from the ith row
of A and the jth column of B.

True
False, (A + B)C = AC + BC.

01

False. If A=B = [1 0

b )

True

10 00
False, letA—[O 0] a.ndB—[1 0].

], then AB =

48. True

49. True 50. True

51. (a) The number of people living in

55.

59.

single-unit houses is .70v; + .95vs.
Similarly, the number of people
living in multiple-unit housing is
.30v; +.05vy. These results may be
expressed as the matrix equation

o ] =Ta)

So take
.70 .95
B = [.30 .05]'

Because A [:)}1] represents the
2

number of people living in the city
and suburbs after one year, it fol-

lows from (a) that BA [Z;] gives

the number of people living in
single- and multiple-unit housing
after one year.

We prove that C(P + Q) = CP + CQ.
Note that P+ @ is an n X p matrix, and
so C(P + @) is an m X p matrix. Also
CP and CQ are both m X p matrices; so
CP+CQ is an m X p matrix. Hence the
matrices on both sides of the equation
have the same size. The jth column of
P + Q@ is p; + q;; so the jth column of
C(P + Q) is C(p; + q;), which equals
Cp; + Cq; by Theorem 1.3(c). On
the other hand, the jth columns of CP
and CQ are Cp; and Cq;, respectively.
So the jth column of CP + CQ equals
Cp; + Cq;. Therefore C(P + Q) and
CP + CQ have the same corresponding
columns, and hence are equal.

By the row-column rule, the (i, j)-entry
of AB is

a;1b15 + aioboj + - - - + ainbp;.




63.

67.

71.

Suppose i < j. A typical term above
has the form axbi; for k = 1,2,...,n.
If k < j, then bx; = 0 because B is lower
triangular. If kK > j, then k > 4; so
a;x = 0 because A is lower triangular.
Thus every term is 0, and therefore AB
is lower triangular.

Let A= [1 0] and B = [O 0}. Then

0 0 1 0
AB = 0, but
0 0
BA—[1 0]# 0.

Using (b) and (g) of Theorem 2.1, we
have

(ABC)T = ((AB)C)T = CT(AB)T
=CT(BTAT) =CTBTA".

(b) After 20 years, the populations are
given by

20, _ [205.668

ATp= [994.332 '

So the population of the city will
be 205,668, and the population of
the suburbs will be 994,332.

After 50 years, the populations are
given by

A0 — [200.015]

()

999.985

So the population of the city will
be 200,015, and the population of
the suburbs will be 999,985.

As in (b) and (c), the populations
after 100 years will be 200,000 in
the city and 1,000,000 in the sub-
urbs. Moreover, these numbers
do not appear to change there-
after. Thus we conjecture that the

(d)

2.2

2.2
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population in the city will eventu-
ally be 200,000, and the population
in the suburbs will eventually be
1,000,000.

APPLICATIONS OF
MATRIX MULTIPLICATION

False, the population may be decreasing.

2. False, the population may continue to

® N R w

13.

grow without bound.

False, this is only the case for i = 1.

True 5. True
False, z = BAx.
True

False, a (0, 1)-matrix need not be square,
see Example 2.

False, a (0, 1)-matrix need not be sym-
metric, see Example 2.

(a) Using the notation on page 108, we
have p1 = ¢ and p2 = .5. Also,
b1 = 0 because females under age 1
do not give birth. Likewise, b, = 2
and b3 = 1. So the Leslie matrix is

by by b3 0 2 1
prp 0 O]l=1g 0 O
0 po O 0 5 0
(b) If g = .8, then

0 2 1

A=18 0 0

0 5 0

and

300
X = 1180§ .
130
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The population in 50 years is given (f) The rank of A — I3 must be less
by than 3 by Theorem 1.8. We can
0.98 use elementary row operations to
A% ~ 10° |5.401 . transform the matrix
1.96 0 21
So the population appears to grow A-Iy= g ,(5) g

without bound.

(¢) If ¢ =.2, then to
0 21 1 -2 -1
A=1]2 0 0 0 1 —2
0 5 0 0 0 —2(1-2¢) +g¢q
As in (b), we compute For rank (A — I3) < 3, we need
-3697 —2(1-2g) +¢ =0,
A% ~ 1073 |1.009 ( :
.0689 that is, ¢ =( z; This is the value
. obtained in (d).
and conclude that the population (g) Forq = .4, the solution of the equa-
appears to approach zero. tion (A — Is)x = 0 is
(d) ¢ = 4. The stable distribution is - ,
1
400 zo| =23 |2
1601 . Z3 1
80 . )
, For z3 = 90, we obtain the solution
210 in (e)
(¢) Forg=.4andxo= |240{,there- 17, et p and g be the amounts of donations
180 and interest received by the foundation,

and let n and a be the net income and

spective vectors A%xg, A'%xg, and 4 4
fund raising costs, respectively. Then

A3%%q equal

513.60 437.36 n=.7p+ .9q
144.96( , [189.99] , a=.3p+ 1gq,
114.00 85.17 and hence
and
499.98 ["] - [; fl’] [p] _
180.011 . a <
89.99 Next, let r and ¢ be the amounts of
It appears that the populations ap- net income used for research and clinic
proach maintenance, respectively. Then
450 r=.4n
180 c=.6n
90

a= a,




21.

and hence

-5 90

Finally, let m and f be the material
and personnel costs of the foundation,
respectively. Then

[==]

m=.8r+ .5¢c+ .7a
f=.2r+ .5¢+ .3a,

and hence

7155 e

Combining these matrix equations, we

have
8 5 7
2 5 4

7=
dER
- [osue oo o],

We need only find entries a;; such
that a;; = aj; = 1. The friends are
1land 2,1 and 4, 2 and 3, and 3
and 4.

The (i, j)-entry of A? is

- o o

. -"r . .
SR OO

- o o

(b)
;1015 + Q2025 + A;303; + Q404 .

The kth term equals 1 if and only if
a;; = 1 and ax; = 1, that is, person
i likes person & and person k likes
person j. Otherwise, the term is 0.
So the (i, j)-entry of A2 equals the
number of people who like person
j and are liked by person .

2.2 Applications of Matrix Multiplication

25.
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(c) We have

B =

-0 = o
(=N =
- = O
o = o -

which is symmetric because B =
BT,

Because B3 = B?B, the (i, i)-entry
of B® equals a sum of terms of the
form c;;by;, where c;; equals a sum
of terms of the form b;;b;x. There-
fore the (i,i)-entry of B3 consists
of terms of the form b;;b;1bx;. The
(i,7)-entry of B? is positive if and
only if some term b;;b;ibx; is pos-
itive. This occurs if and only if
bij =1= bjk = by, that is, there
are friends k£ and 7 who are also
friends of person %, that is, person
1 is in a clique.

We have

O O

B3 =

[ =T =]
(=
O O

4

so the (i,4)-entry is O for every i.
Therefore there are no cliques.

Using the notation in the example,
we have

100
200
300
8000

o =

Using the equation zp = Azg_1,
we obtain the following table.

k| Sun Noble Hon. MMQ
1) 100 300 500 7700
2| 100 400 800 7300
3100 500 1200 6800
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k |Sun Noble Hon. MMQ
( ) 9 1100 1100 5700 1700
10| 100 1200 6800 500
11 (100 1300 8000 -800

(c) The tribe will cease to exist be-
cause every member is required
to marry a member of the MMQ,
and the number of members of the
MMQ decreases to zero.

We must find % such that

Sk +ng + hi > my,

that is, there are enough members
of the MMQ for the other classes
to marry. From equation (6), this
inequality is equivalent to

Sg + (no -+ ksO)
k(k - 1)

+ (ho + kng + TSO)

1
>mg — kng — @SO.

Let sp = 100, ng = 200, kg = 300,
and mg = 8000 in the preceding in-
equality. By simplifying the result,
we obtain

k> +5k—74>0.

The smallest value of k that satis-
fies this inequality is k = 7.

INVERTIBILITY AND
ELEMENTARY MATRICES

No, we must have AB = BA=1,. In
this case AB # I,.

Since AB = BA = I,,, we have B =
AL

9.

13.

17.

21.

25.

29.

33.

34.

1 2 1
AN 1=UA )T =2 0 1
3 1 -1
By Theorem 2.2, we have
(ABT)—I — (BT)—-IA—-l
— (B—I)TA—I
5 7 3
=(-3 -4 -1
12 7 12

The given matrix is obtained from I3 by
adding —2 times row 1 to row 2. So
adding 2 times row 1 to row 2 trans-
forms the given matrix into I3. Perform-
ing this elementary operation on I3 pro-

1 00
duces {2 1 O0f, which is the inverse
0 01

of the given matrix.

The given matrix is obtained from I
by interchanging rows 2 and 4. Inter-
changing these rows again transforms
the given matrix into I;. So the given
matrix is its own inverse.

Matrix B is obtained by interchanging
rows 1 and 2 of A. Performing this op-
eration on Ip produces the desired ele-

mentary matrix 0
y 1 ol

Since B is obtained from A by adding
—5 times row 2 to row 3, the desired

1 00
elementary matrix is |0 1 0f,asin
0 -5 1

Exercise 17.

False, the n x n zero matrix is not in-
vertible.

True 35. True




36.

37.
39.

40.
43.
44.

45.

46.

47.
50.
51.
52.
55.

False, let

1 00 10
A= [0 1 0] and B=10 1
00

Then AB = I, but neither A nor B is

square; so neither is invertible.
True 38. True

False, see the comment below the defi-
nition of inverse.

True
False, (AB)~! = B~1A~L

41. True 42. True

False, an elementary matrix is a matrix
that can be obtained by performing one
elementary row operation on an identity
matrix.

True

2 0 10
False, [0 1] and [O 3] are elemen-

tary matrices, but
2 01 O _12 0
0 1|0 3| (o 3|’

which is not an elementary matrix.

True 48. True 49. True
True
False, see Theorem 2.4(a).

True

By the boxed result on page 127, every
elementary matrix is invertible. By the
boxed result on page 125, the product of
invertible matrices is invertible. Hence
the product of elementary matrices is in-
vertible.

2.3 Invertibility and Elementary Matrices

59.

63.

67.

71.

35

Using Theorem 2.1(b) and Theorem
2.2(b), we have
(ABC)™! = [(AB)C] ™
=C"HAB)!
- C—l(B—lA—-l)
=C'BtATL
By Theorem 1.6, Bx = b has a solution
for every b in R™. So, for every stan-

dard vector e;, there is a vector u; that
satisfies Bu; = €;. Let

C=[u uz --- u,}
Then
BC = [Bu; Buy --- Buy,]
= [el ey - en]
=1I,.

From the column correspondence prop-
erty, it follows that the third column of
A equals

o (Y]]

327]

Therefore A = [_1 5 9

Because ro = 2r;, we have ry = %l‘z.
Thus, by the column correspondence
property, we have

1

a)] = —ag
2

___1_ 2 _ 11
T2 4] T2l
Also, r4 = 4r; + 3r3. So
ay = 4a; + 3a3

-1
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75.

79.

83.
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11 2 3 13
ThusA—[2 45 23}.

The reduced row echelon form of A is

1 -2 0 2 3
R=]0 01 -3 -5

0 00 o0 o
87.

So columns 1 and 3 of A are its pivot
columns. By the column correspondence
property, the entries of the second col-
umn of R tell us how to write the second
column of A as a linear combination of
its pivot columns:

ap; = (—2)a; + Oag.

The reduced row echelon form of B is

1 -3 0 3
-1 2

OO O =
O O M=o
e
e
O = O

Proceeding as in the solution to Exercise
75, we have

bz = 1b; + (—-1)b2 + Obs.

Let R be the reduced row echelon form
of A. Because u and v are linearly in-
dependent, a; = u # 0, and hence
a; is a pivot column. Thus r; = e;.
Since ag = 2u = 2a,, it follows that
ro = 2r; = 2e; by the column corre-
spondence property. Since u and v are
linearly independent, it is easy to show
that u and u + v are linearly indepen-
dent, and hence a3 is not a linear combi-
nation of a; and az. Thus a3 is a pivot
column, and so rz = e3. Finally,

91.

a4 =az—u=ag—a,

and hence ry = r3 — r; by the column
correspondence property. Therefore

1 2 0 -1
R=10 0 1 1
000 o0

(a) Note that, in the form described
for RT, the first r rows are the
transposes of the standard vectors
of R™, and the remaining rows
are zero rows. As we learned
on page 48, the standard vectors
e}, eh,...,e. of R™ must appear
among the columns of R. Thus
their transposes occur among the
rows of RT. By Theorem 2.4(b),
every nonpivot column of R is a
linear combination of e}, €5, ..., €.
Thus, by appropriate row addi-
tion operations, the rows of RT
that correspond to the nonpivot
columns of R can be changed to
zero rows. Finally, by appropriate
row interchanges, the first r rows
of RT can be changed to the trans-
poses of €},e5,...,e). This is the
form described for RT.

The reduced row echelon form of
RT given in (a) has r nonzero rows.
Hence

(b)

rank RY = r = rank R.

A= [a b c] ‘
P qgr
We first prove the result for the opera-

tion of interchanging rows 1 and 2 of A.
In this case, performing this operation

on I, yields
01
=]} 4

Let




and

0 1llfa b ¢| _|p g T
EA= [1 O] [p q r] - [a b c] ’
which is the result of interchanging rows

1 and 2 of A.

Next, we prove the result for the oper-
ation of multiplying row 1 of A by the
nonzero scalar k. In this case, perform-
ing this operation on I yields

0
e=[o 3]

k Olla b ¢
EA—[O 1] [P g r]
B [ka kb kc]

p g r]’

and

which is the result of multiplying row 1
of A by the k. The proof for the oper-
ation of multiplying row 2 of A by k is
similar.

Finally, we prove the result for the oper-
ation of adding k times the second row
of A to the first. In this case,

2[5 4

Then

1 klla b ¢
EA'[O 1] [P g r]

_[a+kp b+ kq c+kr]
" 99

p q T

which is the result of adding k times the
second row of A to the first. The proof
for the operation of adding k times the
first row to the second is similar.

2.3 Invertibility and Elementary Matrices

95.

37

(a) The reduced row echelon form of A
is I;; so A is invertible. In fact,

~7 2 3 -2
5 -1 -2 1
—1 __
A7 = 1 0 0 11
-3 1 1 -1
(b) Asin (a), both B and C are invert-
ible, and
3 2 -7 -2
-2 -1 5 1
-1 _
B~ = 0 0 1 1
1 1 -3 -1
and
-7 -2 3 2
5 1 -2 -1
—-1 _
c = 1 1 0 0
-3 -1 1 1

B~1 can be obtained by inter-
changing columns 1 and 3 of A7,
and C~! can be obtained by inter-
changing columns 2 and 4 of A1,
B~ can be obtained by inter-
changing columns i and j of A™1.

Let E be the elementary matrix
that corresponds to interchanging
rows 2 and j. Then B = FEA.
So by Theorem 2.2(b), we have
B—l — (EA)—l — A—lE_l. It
follows from Exercise 94 that B!
is obtained from A~! by perform-
ing the elementary column opera-
tion on A™! that is associated with
E~!. But because E is associated
with a row interchange, we have
E?=1, and hence E1 = E.

Observe that

10 -2 -1 -1
o |- 1 -1 2
AT=19 0 1 o
1 0 1 -1
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10

—921"
1
(b) The solutions of Ax = e; are the
corresponding eolumns of A~!,

(a) The solution of Ax = e is

THE INVERSE OF A MATRIX

We use the algorithm for matrix in-
version to determine if A is invertible.
First, form the matrix

1 3|1 0
1 270 1}°
Its reduced row echelon form is

1 0f-2 3
0 1y 1 —-1}°

Thus the algorithm implies that A is in- 25-

vertible and

a_[-2 3
Y

As in Exercise 1, the matrix is invertible,

L . 5 -3
and its inverse is _3 2] .

As in Exercise 1, the matrix is invertible,
and its inverse is

1 -7 2 3
3 -6 0 3
8 -1 -3

As in Exercise 1, the matrix is invertible,

-1 -5 3
and its inverse is 1 2 -11.
1 4 -2

17.

21.

29,

35.

As in Exercise 1, the matrix is invert-
ible, and its inverse is

1 1 1 -2
111 1 -2 1
3] 1 -2 1 1

-2 1 1 1

Using the algorithm for computing
A~!B, we form the matrix
2 212 4 2 6
2 1

0 -2 8 —4

and compute its reduced row echelon
form [I; A~!B], which equals

1 0{-1 4 7 =7
0 1 2 6 -6 10]°
-1 -4 7 =7
-1p
Thus A='B = [ 9 6 —6 10].

As in Exercise 21, we obtain

5 -1 -6
G -1 1 0
ATB=| , | 3
3 1 2
1 0 -2 —1
R=101 1 -1
00 0 0

By the discussion on page 136, the re-
duced row echelon form of [A I,] is
[R P], where PA = R. Applying this
procedure, we obtain

P=

-1 0
0 0
2 1

w = o

True




36.

37.
40.
43.
46.

48.

49.
50.
51.
52.

55.

False, let

1
100 _
A:[O . 0] and B_[o

it is not invertible.

True 38. True 39. True
True 41. True 42, True
True 44. True 45. True
True 47. True

False, if A = I and B = —Ij, then

A + B = O, which is not invertible.
True

False, C = A"1B.

False, if A = O, then A~ does not exist.

True 53. True 54. True

0
1.
0 0

Then AB = I,, but A is not square; so

Let A be an n x n invertible matrix.

To prove that (a) implies (e), consider
the system Ax = b, where b is in R™.

If we let u = A~ !b, then

Au= A(A"'Db)
= (AA" )b =I,b =b,

and so u is a solution, that is, the system

is consistent.

To prove that (a) implies (h), suppose
that u is a solution of Ax = 0, that is,

Au=0. Then

u=(A"1A)u
=A"l(Au)=A"10=0.

59.

63.

(b)

(b)

(c)

2.4 The Inverse of a Matrix 39

The matrix equation is

-1 0 1] tz1 —4
1 2 -2 ol = 3
2 -1 1| |z3 1

When we use the algorithm for ma-
trix inversion, we find that the re-
duced row echelon form of [A I3] is
[I3 A~1], where

1 01 2
A-l_g 5 31
5 1 2
1]
The solution is A=™1b = | —21.
—3]
The matrix equation is
1 =2 -1 1] [z]
1 1 0 -1} |z
-1 -1 1 11 lz3
3 1 2 0f |z
[ 4
|12
!
-1
L

Using the same reasoning as in Ex-
ercise 59(b), we have

-1 0 1 -1]
-3 -2 1 -2

-1 __
AT=109 11 o
-4 -3 2 -3
—2]
The solution is A'b = | "3/ .
-5
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(@) If k = 1, then A = I,, and the
result is clear. If k > 1, rewrite the
equation A* = [, as A(4*-1) =
In. Then A is invertible by (j) of
the Invertible Matrix Theorem.

(b) From (a), we have A~! = 4k-1

By Theorem 2.3, there exists an invert-
ible matrix P such that PA = R, where
R is the reduced row echelon form of A.
Then by Theorem 2.2(c), Exercise 70,
and Exercise 87(b) of Section 2.3, we
have

rank AT = rank(QR)7 rank RT QT

= rank RT = rank R = rank A.
(a) Using Gaussian elimination, we
obtain the solution

Ty =-3+4+ 3
To = 4- 2(1?3
r3 free.

It is not a solution because A is not
invertible.

(b)

In Exercise 19(c) of Section 1.5, we have
two sectors, oil and electricity. The
input-output matrix is given by

o-[3 3

As in Example 5, we need to compute 3
times the second column of (I; — C)~!.

Since
4 2
-1_+o{3 3] _ |40 20
(e —-0)7 =3 [% %] - [1.5 4.5] ’

the amount required is $2 million of elec-
tricity and $4.5 million of oil.

Suppose that the net production of sec-
tor ¢ must be increased by k units, where

k > 0. The gross production vector is
given by

(In - C)—ld + kpu

where C is the input-output matrix, d is
the original demand vector, and p; is the
tth column of (I,—C)~!. All the entries
of p; are positive. Hence the gross pro-
duction of every sector of the economy
must be increased.

85. (a) We are given that I,, = P"1AP for
some invertible matrix P. It fol-
lows that

A=PL,P'=pPP =
(b) We are given that O = P~ AP for
some invertible matrix P. It fol-
lows that A = POP~! = O.
(c) We are given that A is similar to
B =cI,,. It follows that
A=PBP!= P(cI,)P!
=cPP7 ! = cI,.
Thus A = B.

89. The reduced row echelon form of A is 1.
2.5 PARTITIONED MATRICES AND
BLOCK MULTIPLICATION

1. We have

[~131)|-1] =-4
0

131][
-4

So the product is [

and

[ 2.




5. We have

(Rl

Ll

So the product is

25

-2 4| 6 0
-1 8| 8 2
11 8| -8 10
36'1 4

9. As in Exercise 5, the product is

3 6
9 12
2 4
6 8

13.
(16 —4).
17.
-2 -3 1).

21.

-1 0 8
-2 0| + |4
3 0 -8

Multiplying row 1 of A times B, we
obtain the first row of AB, which is

Muitiplying row 3 of B times C, we
obtain the third row of BC, which is

2 9 -6
-1| + 112 -8§.
-2 0 0

Partitioned Matrices and Block Multiplication 411

25. As in Exercise 21, we obtain BTA =

-1 -2 —3+8 -4 16
0 0 0 2 -1 4
-9 -6 0
+ [ 6 4 0] '
29. True 30. True
31. False, for example v can be in R? and
w can be in R3, then vwT is a 2 x 3
matrix.
32. True

33. False, if either v or w is 0, then vwT is

0.

34. False, if the matrices have sizes 2x 1 and
1 x 2, then their product can be written
as a sum of two matrices of rank 1.

35. The product equals A~1A+I,,I,, = 2I,.

AT CT|[A B
We have [BT DT] [C’ D]:

ATA+CTC ATB+CTD
BTA+DTC BTB+DTD|"

39.

By multiplying each column of A times
the corresponding row of B (as de-
scribed on page 149), we obtain AB =

43. We have
O A O D!
D O|lA™Y O
_ AA-1L O
- O DD™?
I, O
= [o In} = In
47. We have

I. B[ P —-PB

C I.||-CP I.+CPB
_[P-BCP —-PB+ B(I, +CPB)
~lcP-CcP -CPB+I,+CPB
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_[Pln-BC) -PB+B+ BC’P]
L 0 I.

_[PP* B—(PB-BCPB)
“l o In

(I, B-(I.—-BC)PB
- |lo In

_[r. B- P—IPB]

|0 I,
_[I. B-B] _[I, O -
~ {0 I. |7 |0 I~ "

In order to guess the form of the in-
verse if the matrix is invertible, con-
sider the matrix [‘;
b are nonzero scalars. It is easy to
show that this matrix is invertible with
0
b——l

2], where a and

. —-a!
inverse -1 . So a reason-
—(ab)

able guess for the inverse of [}4 g] is
Al 0
—-B~1A-1 Bl

Now we must verify that this guess is
correct. In the product

A O] a&' o
L, B||-B7'A! B’

the upper left submatrix is

AAT' 4+ O(-B A Y=, +0 =1,

the upper right submatrix is
AO+OB'=0+0=0,

the lower left submatrix is

I,LAT'—B(B™ 1A )= A1 _ 47!
=0,

2.6

and the lower right submatrix is
LO+BB'=0+1I,=1I,.

Thus
A O Al O
I, B _B1p4-1 p-1 = Iy,

and so [}4 g] is invertible with inverse

Al o
~-B-14-1 B-1|

THE LU DECOMPOSITION
OF A MATRIX

We apply elementary row operations to
transform the given matrix into an up-
per triangular matrix:

BRe i) Ee
-3 2 5 4

1 -1 2 1 351 premr
0 -1 1 g DTETEs
-3 2 -4 0

é :} ? ; —~lro+rz—r;s

0 -1 2 3]

(1 -1 2 1]

0 -1 1 2|=U

0 0 1 1

Since U consists of 3 rows, L isa 3 x 3
matrix. As in Example 3, the entries of
L below the diagonal are the multipliers,
and these can be obtained directly from
the labels above the arrows describing
the transformation of the given matrix




into an upper triangular matrix. In par-
ticular, a label of the form cr; + r; in-
dicates that the (i, )-entry of L is —c.
Thus

1 00
L=} 210
-3 1 1
. 11.
We apply elementary row operations to
transform the given matrix into an up-
per triangular matrix:
[ 1 0o -3 -1 -2 1
2 -1 -8 -1 =5 0] —2ritra—rz
-1 1 5 1 4 2
0 1 2 1 3 4
[ 1 0 -3 -1 -2 1
0 -1 -2 1 -1 -2 1iritrz—rs
—_—
-1 1 5 1 4 2
0 1 2 1 3 4
1 0 -3 -1 -2 1]
0 -1 -2 1 -1 =2 1irz+rz—rg
0 1 2 0 2 3
o 1 2 1 3 4
M 0 -3 -1 -2 1]
0 -1 -2 1 -1 =2| iratrg—ry
0 0 0 1 1 1
o 1 2 1 3 4
1 0 -3 -1 -2 1]
0 -1 -2 1 -1 -2
0 0 0 1 1 1l U
o o 0o 2 2 2

Since U consists of 4 rows, L is a4 x 4
matrix. As in Example 3, the entries of
L below the diagonal are the multipliers,
and these can be obtained directly from
the labels above the arrows describing
the transformation of the given matrix
into an upper triangular matrix. In par-
ticular, a label of the form cr; 4+ r; in-
dicates that the (4, j)-entry of L is —c.

2.6 The LU Decomposition of a Matrix

43

Thus
1 0 0O
2 1 00
L=14 1 10
0 -1 0 1
Let
1 -1 2 1
A=| 2 -3 5 4
-3 2 -4 0
and
1
b= |8
5

Then the system of equations can be
written as Ax = b. By Exercise 3,
A = LU is an LU decomposition of A,
where

1 00
L={2 10
-3 1 1
and
1 -1 2 1
U=10 -1 1 2
0 011

We first solve the system Ly = b, which
is
n =1
2y, + 2 =8
~3y1 + Y2 + y3 =5.

Clearly y; = 1. Substututing this value
into the second equation, we obtain ys =
6. Substituting these values into the
third equation we obtain y3 = 2. Thus
we obtain
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Next, using back substitution, we solve
the system Ux =y, which is

Tr— T2+ 2z3+ z4=1
—Z2+ I3+ 2x4 =6

3+ xT4=2.

We solve the third equation for z3, while
treating x4 as a free variable to obtain

13=2—l‘4.

Similarly, we substitute the value of z3
obtained in second equation to solve for
z2, and we substitute both these values
into the first eqution and solve for z;.

Thus we have
zo=—-44x4 and z,=-7+ 2x4.

Therefore we obtain the general solution

Iy -7 2
2| __ —4 1
I3 - 2 + 24 1
T4 0 1
Let
1 0 -3 -1 -2 1
2 -1 -8 -1 -5 0
A= -1 1 5 1 4 2
0 1 2 1 3 4
and
1
8
b= -5
—2

Then the system of equations can be
written as Ax = b. By Exercise 7,
A = LU is an LU decomposition of A,
where

1 000
2 100
L=171 11 ¢
0 -1 0 1

and

1 0 -3 -1 -2 1
0 -1 -2 1 -1 -2
0O 0 o 1 1 1
0 0 0 2 2 2

U=

We first solve the system Ly = b, which
becomes

) = 1
2n + Yo = 8
Y1 — Y2-+us =-5

—Y2 +ys = -2

Clearly y; = 1. Substituting this value
into the second equation, we obtain y; =
6. Continuing in this manner we can
solve for the other values to obtain

% 1
_y2} _ |6
Y= Y3 2
Ya 4

Next, using back substitution, we solve
the system Ux =y, which becomes

T —3z3— x4— 225+ 26=1
—Io —2x3+ T4— 5 —225=206
Ta+ x5+ =2

2z4 + 225 + 226 = 4.

We solve the fourth equation for zg4,
while treating =5 and z5 as free variables
to obtain

I4=2—I5—Iﬁ.

Since the third equation is equivalent to
the fourth equation, it can be ignored.
Now solve the third equation for z,
using the value for x4 obtained in the
fourth equation. Notice that z3 is a free
variable, and hence we obtain

Ty = —4 — 2x3 — 225 — 3x6-




Finally, we solve the first equation for z,
to obtain

$1=3+3.’IJ3+.’IJ5—2.’I:5.

This produces the general solution

Ty 3 3
] —4 -2
3| _ 0 1
T4 - 2 + %3 0
s 0 0
Tg 0 0

17 r_2'\

-2 -3

0 0

+ x5 -1 + z6 1

1 0

L 0] L L

19. Using the procedure described in the so-

23.

lution of Exercise 23, which follows, we
obtain

1 00 1 00
P=10 0 1{, = (-1 1 0f,

010 2 01
and

11 -2 -1
U=10 1 -3 0

00 1 1

We use Examples 5 and 6 as a model,
placing the multipliers in parentheses in
appropriate matrix entries:

1 2 1 -1
2 4 1 1| —2ritrz—r2
A= 3 2 -1 -2
12 5 3 0
1 2 -1
(2) 0 -1 3| -8ritrg—rs
3 2 -1 =2
| 2 5 3 0

26 The LU Decomposition of a Matrix 45

1 2 1 -1

(2) 0 -1 3! —2ri4ra—ory
3) -4 -4 1

| 2 5 3 0]

1 2 1 1]

(2) 0 -1 3 roery
3 -4 -4 1|
(@ 1 1 2

[ 1 2 1 1]

(2) 1 1 2| 4ratrzors
(3 4 -4 1 g
2y 0 -1 3]

[ 1 2 1 -1]

(2) 1 1 2 r3ery
3 (-4 0 9

2 o -1 3]

[ 1 2 1 —1]

2 1 1 2

2 o0 -1 3

(3) (-4 0 9

The last matrix in the sequence contains
the information necessary to construct
the matrices L and U in an LU decom-
position of A. Matrix L is the unit lower
triangular matrix whose subdiagonal en-
tries are the same as the subdiagonal en-
tries of the final matrix, where parenthe-
ses are removed, if necessary. U is the
upper triangular matrix obtained from
the final matrix in the sequence by re-
placing all subdiagonal entries by zeros.
Thus we obtain

[F-3N SN SR
- O = O
O~ OO0
-~ oo
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and

OO O -
OO =N
|
O = -
O W N =

Finally, we obtain P by applying to I,
the row interchanges that occur in the
preceding sequence of elementary row
operations. Thus

1 0 0 0O
Il'z*-'!'4 0001
4T "o 010
0 1 0 0
[1 0 0 0]
r3ery 0 0 01
1o 1 0 ol =%
0 0 1 0]
Let
1 1 -2 -1
A= -3 -1
-1 -2 -1 1
and
1
b=| 5
-1

Then the system can be written as a ma-
trix equation Ax = b. By Exercise 19,
PA = LU, where

-0 o

1
P=10
0

oS = O

[ 1
L=|-1
2

-

o = O
-0 O

and

1 1 -2 -1
U={0 -1 -3 0.
0 0 1 1

Since P is invertible, Ax = b is equiva-
lent to

1 00 1
PAx=Pb=1{0 0 1 5
0 1 0y (-1
1
= |-1| =b.
5

We can solve this system using the LU
decomposition of PA given above. As in
Example 4, set y = Ux, and use forward
substitution to solve the system Ly =
b/, which can be written as

n = 1
-+ Y2 =-1
2y +yz= 3.

The resulting solution is

(1 1
y=|y| = 0
Y3 3
Finally to obtain the original solution,

use back substitution to solve the system
Ux =y, which can be written as

Ty + x2—2x3—x24=1
—T9 — 3x3 =0
T3+ x4 = 3.

The solution is

5] 16 -4
T2 _ -9 3
zs| = 3 + x4 _1

T4 0 1
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31. Let
12 1 -1
2 4 1 1
A=13 9 1 —2
25 3 0
and
3
2
b=
7

Then the system can be written as the
matrix equation Ax = b. By Exer-
cise 23, PA = LU, where

1 000
0 0 01
P= 01 0 of’
0 010
1 0 00
2 1 00
L= 2 0 1 oy’
3 -4 01
and
1 2 1 -1
01 1 2
U= 0 0 -1 3
00 O 9

Since P is invertible, Ax = b is equiva- 33.

lent to
PAx = Pb 34.

(1 0 0 O 3 35.

o0 01 2

“10 1 0 0 |-4 36.
0 0 10 7
1; 37

_— _— i

= |_9 =b
| 4

We can solve this system using the LU
decomposition of PA given above. Asin
Example 4, set y = Ux, and use forward
substitution to solve the system Ly =
b’, which can be written

n = 3
21+ Y2 =7
2y1 + Y3 = 2
3y1 - 4y2 +ys = —4.

The resulting solution is

Y1 3
oy |1

y Ys -4
Ya -9

Finally, to obtain the solution of the
original system, use back substitution to
solve Ux =y, which can be written as

Ty + 229+ 23— 4= 3
2224+ z3+2r4= 1
—r3+ 324 = —4
9.’174 = 0.
This solution is
1 -3
T2 _ 2
3 - 1
T -1

False, the matrices in Exercises 17-24 do
not have LU decompositions.

True

False, the entries below and to the left
of the diagonal entries are zeros.

False, consider the LU decomposition of
the matrix in Exercise 1.

. False, for example, if A is the m x n zero

matrix and U = A, then A = LU, where
U is any m X m unit lower triangular
matrix.
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True
False, the (¢, j)-entry of L is —c.
True 41. True

By means of elementary row operations,
L can be transformed into a unit lower
triangular matrix L; whose first col-
umn is e;. Additional elementary row

operations can be applied to transform 2.7
L, into a unit lower triangular matrix
whose first two columns are e; and es.

This process can be continued until L is 1

transformed into I,,, which is in reduced

row echelon form. Hence L has rank n,

and so L is invertible. Thus LT is inin- 5,
vertible upper triangular matrix whose
diagonal entries all equal 1. So it follows
from Exercise 43 that (L~1)T = (LT)~!
is an upper triangular matrix with diag-
onal entries equal to 1/1 = 1. Therefore,
L~! is a lower triangular matrix whose

diagonal entries are all equal to 1. 13.

Each entry of AB requires n — 1 addi-
tions and n multiplications for a total of
2n — 1 flops. Since AB has mp entries,
a total of (2n — 1)mp flops are required
to compute all the entries of AB.

Use the imported MATLAB function
elu2 (see Appendix D) to compute the
answer. Enter [L U P] = elu2(A) to
obtain

17.

21.

25.

!

i
cCoomro
cooc o~
coroo
or~rooo
===

29,
1.0
0.0

L= 05

=N -=O
NeRNJUR i e B an
O = O OO
= o 000

1.5

and
2 -2 -~-10 3.0 4
. 0 1 20 -1.0 1
U= 10 0 -15 -05 -2
0 0 00 -10 -2
0 0 0.0 0.0 -9

LINEAR TRANSFORMATIONS
AND MATRICES

Since A is a 2 X 3 matrix, the domain is
R3 and the codomain is R2.

Since BT is a 3 x 3 matrix, the domain
is R? and the codomain is R3.

()=~ [
([d]) L
(13)-+1- 1

The domain consists of vectors with 3
components; so n = 3. The codomain
consists of vectors with 2 components;
som=2.

=N

The standard matrix of T is
01
ey Tl = | 1]

The standard matrix of T is

-1
-3
0
1

[T(e1) T(ez)] =

DO N =
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38.
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40.
41.
42.

43.

44.

45.
46.
49,

52.

53.
54.
57.
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The standard matrix of T is

o = o
oo

]

False, only a linear transformation has a
standard matrix.

1
[T(e1) T(e2) T(es)]= [g

[y

True

False, the function must also preserve
vector addition.

True

False, the standard matrix isa 2x3 ma- g
trix.

ot

True
False, the function must be linear.
True

False, the range of a function is the set
of all images.

False, the range is contained in the
codomain.

False, the function must be one-to-one.

True 47. True 48. True

True 50. True 51. True

65.

False, f: R — R defined by f(z) = 22
does not preserve scalar multiplication.

False, the functions must be linear.

True

r([4) =2 R - (B)

. Write [—2] =a [—(3)] +b [2] and solve

for a and 5. We obtain

ERHE

T(z1€1 + To€3)

~
TN
8 8
N
[
N—’
I

i

z1T(e1) + z2Te)

e ffen

27 i dzy| _ |2z + 4z
3z, T2 | 7 | 3z1 4z
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We begin by finding the standard matrix
of T'. This requires that we express each

of the standard vectors of R? as a linear

combination of [_;l and [—;} For the

equation
1 1 1
ol =< 2] ++[3]
we obtain
F 1) r_1]
6123-_2-"{‘2_ 3-.
Likewise
F 1] T
e =1 +1 .
_—2J L 3J
So

ey =7 (|_y)) +or (7))
=3H+z[3] 3

Similarly, T (e [i’ . Therefore the
standard matrix of T is
12 5
A= [ 2 1] .
So
I _ A . 12$1+51L‘2
r(n)) =4l =[5

00
2 0

=l Y] [

So T = T4, and hence T is a linear
transformation by Theorem 2.7.

T is linear. Let A = [ } Then

ALTERNATE PROOF. We can use the
definition of a linear transformation by
proving that T preserves vector addition
and scalar multiplication.

Let u and v be vectors in R2. Then we
have

rwsv = ([4]+[2])
~r([ura])

_ 0 _ 0
T2 )] T 2w+ 200
Also

rw -+ = ([]) 47 ([2])
= o] + o]

_ 0
- 2uy + 2u |’

So T'(u + v) = T(u) + T(v), and hence
T preserves vector addition.

Now suppose ¢ is any scalar. Then

7 (ell) =7 ([oa])

- [2(4211): N [0(22‘1)] '

¢T(u) = T ( Z;D

=c¢ [221} = [c(?g“)] ‘

So T(cu) = ¢T'(u). Therefore T pre-
serves scalar multiplication. Hence T is
linear.

T(cu) =

Also




75. T is not linear. We must show that ei-

ther T does not preserve vector addition
or T does not preserve scalar multipli-
cation. For example, let u = e; and
v = e3. Then

1
Tu+v)=T(e;+ex)=T (ll )
0

=1+14+0-1=1
On the other hand,
T(u) +T(v) =T(e1) + T(e2)

-+ () (B

=(14+0+0-1)
+(0+1+0-1)

=0.

So T(u+v) # T(u)+T(v) for the given
vectors. Therefore T does not preserve
vector addition and hence is not linear.

ALTERNATE PROOF. Let ¢ = 4 and
u =e;. Then

4
T(4u) =T(4e;) =T ( [O:I )
0

=4+0+0-1=3.
On the other hand,

1

AT(u) = 4T(e;) =4T | |0 )
0

=4(1+0+0-1)=0.

So T'(4u) # 4T (u) and hence T does not
preserve scalar multiplication. There-
fore T is not linear.

2.7 Linear Transformations and Matrices 51

83.

COMMENT. For this example, we can
also show that 7" is not linear by noting
that

T©)=0+0+0—1=-1%0.
So T is not linear by Theorem 2.8(a).

Since

but

r(o-9-mo=[]

T does not preserve scalar multiplication
and so is not linear.

‘We must show that the transformation
cT preserves vector addition and scalar
multiplication. Let u and v be in R™.
Because T is linear,

(cTY(u+v)=cT{u+v)
= (T (u) +T(v))
= cT'(u) + cT'(v)
= (cT')(u) + (cT)(v).
Also

(cT){(u) + (cT){v) = cT(u) + cT'(v).

So T preserves vector addition. Now
suppose k is a scalar. Because T is lin-
ear,

(cT)(ku) = cT'(ku)
= c(kT(u)) = ckT(u).

Also

k((cT')(a)) = k(cT (u))
= kcT'(u) = ckT'(u).

So ¢T preserves scalar multiplication.
Hence cT is linear.
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87.

91.

95.

Chapter 2 Matrices and Linear Transformations

By Theorem 2.9, there exists a unique 99. A vector v is in the range of T if and

matrix A such that T'(v) = Av for all v

in R2. Let A = [a b]. Then
c d
I _ a b T
r(z) =1 Ak
_ |azy + bxo
T ex + dza|’

(a) Because it is given that T is linear,
it follows from Theorem 2.9 that T
is a matrix transformation.
ALTERNATE PROOF. Let

-39

Then

and hence T'=T4.

(b) Every vector v = [:1] in R? is an
2

image because

(=[]

Thus the range of T is R2.

We have T'(u) = T(v) if and only if
T(u) — T(v) = 0. Because T is linear,
the preceding equation is true if and only
if T(u—v)=0.

only if v = T(u) = Au for some u in
R™, which is true if and only if v is in
the span of the columns of A.

2

-1 . .

ol I8 in the
3

range of T if and only there is a vector

u such that T(u) = v. If A is the stan-
dard matrix of T', then this condition is
equivalent to the system Ax = v being
consistent, where

The given vector v =

11 1 2
1 2 -3 4
A=19 1 o0 2|
15 -1 0

If we solve this system, we obtain

I
== W N OV

So T'(u) = v, and thus v is in the range
of T.

Alternatively, we can show that the re-
duced row echelon form of A is Iy and
conclude from (b) and (e) of Theo-
rem 2.6 that the system Ax = b is con-
sistent for every b in R%.
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2.8 COMPOSITION AND
INVERTIBILITY OF
LINEAR TRANSFORMATIONS

1. The columns of the standard matrix

5 3

of T form a generating set for the range

of T. So { [i] , [2] } is one possible gen-

erating set.

5. As in Exercise 1, one generating set is

(-6l

9. As in Exercise 1, one generating set is

{8RlE

13. The null space of T is the solution set of

Ax = 0, where

A=)

is the standard matrix of T. Thus the

general solution of Ax = 0 is

.'171=0
132=0.

So a generating set is {0}. By Theorem

2.11, T is one-to-one.

17. The null space of T is the solution set of

Ax = 0, where

.

N =
[SAC &
W BN =

|

is the standard matrix of . The general
solution of Ax =0 is

1= X3
Iy = —I3
3 free,

I 3 1
2| = |—z3| =23 |—1
T3 T3 1

So a generating set is

()

By Theorem 2.11, T is not one-to-one.

As in Exercise 17, a generating set for
the null space of T is {e2}, and so T is
not one-to-one.

The standard matrix of T is
2 3
(o) Teeal = [§ 3.

The reduced row echelon form of this
matrix is
1 0
o i
which has rank 2. So by Theorem 2.11,
T is one-to-one.
As in Exercise 25, the standard matrix
of Tis
1 -1 0
0 1 -1},
1 0 -1

which has rank 2. So T is not one-to-
one.

The standard matrix of T is
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37.

41.
42,

43.

44.
47.
48.
49.

50.
51.
52.
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A:[Z g]

Because rank A = 2, we see that T is

53.
54.

True

False, the function must be linear.

onto by Theorem 2.10. 55. False, the rank must equal n.
The standard matrix of T is 56. True 57. True
01 -2 58. False, the standard matrix of TU is AB.
1 0 -1
-1 2 -3 59. True 60. True
Its reduced row echelon form is 63. (a) Span{e,}. The only vectors that
are projected to O are the multiples
1 0 -1 of e;.
0 1 -2y, (b) No, because T'(e;) = 0.
00 0 (c) Span {e;}. Clearly every vector is

and so its rank is 2. So T is not onto by
Theorem 2.10.

True

False, the span of the columns must 67.

equal the codomain for the transforma-
tion to be onto.

1 0
False, A = {0 1] has linearly indepen-
0 0
0
dent columns, but the vector |0} is not
1
in the range of T'a.
True 45. True 46. True 71.
False, T4 must be onto.
True
False, the range must equal its
codomain. 5.
True
False, the function must be linear.

False, the rank must equal m.

projected onto the y-axis and hence
is a multiple of es.

No, from (c), it follows that e; is
not in the range of T'.

T is one-to-one. The columns of
the standard matrix of T are T'(e;)
and T'(ez), which are linearly inde-
pendent because neither is a mul-
tiple of the other. So by Theorem
2.11, T is one-to-one.

T is onto. The standard matrix of
Tis ? ;] Since its reduced row
echelon form is Iz, its rank is 2.
Thus, by Theorem 2.10, T is onto.

The standard matrices of T and U are
1 1

A= |1 -3 andB=E - g]
4 0
respectively.

The standard matrix of TU found in Ex-

ercise 74 equals
2 2 4
-2 =10 4},

4 -4 16

AB =
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where A and B are the matrices in the 93.

solution to Exercise 71.

The standard matrix of UT found in Ex-
ercise 77 equals

-1 5
BA= [15 —5]’

where A and B are the matrices in the
solution to Exercise 78.

The standard matrix of T is
2 -1
A= [1 1] .
This matrix is invertible, and

L 1711
4 —3|-1 2|°

Thus, by Theorem 2.13, T is invertible, gg,

and the standard matrix of its inverse is
A~L. Therefore

1 1
—([m]y_| 3" 7 3™
T2 1 2

—g.’l)l + g.’l)g.

As in Exercise 83, we have

T
T_l ) =
T3

The result is true for arbitrary func-
tions. Suppose that f: R™ — R™ and
g: R™ — RP? are one-to-one functions.
To show gf: R™ — RP is one-to-one,
assume that (gf)}(u) = (¢f)(v). Then
g(f(u)) = g(f(v)). Because g is one-to-
one, we have f(u) = f(v), and since f
is also one-to-one, we have u = v.

-y + T2 — I3

T —-2z2+ T3
2xy — 722 + 33

Let T be the projection on the z-axis,
and let U be the reflection about the y-
axis. Then

r([2)-15)

and

So

on () =17

1 3 -2 1
3 0 4 1
(a) We have A = 9o -1 o0 2|
0 0 11
0 1 0 -3
2 01 -1
and B = 1 -2 o 4l
0 5 1 0
4 10 4 -14
4 01 7
(b) AB= -2 12 1 -5
1 31 4
(¢} By Theorem 2.12, the rule for TU
z1
isTU | [72] | =
T3
T4

4z) + 1025 + 43 — 1424
4z + z3+ Tx4
-2z + 1225 + x3 — 524
1+ 3z2+ z3+ 4dx4
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N o o e

10.

11.
12.

13.
14.

15.

17.

18.
19.

20.

CHAPTER 2 REVIEW
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21.
True 23.
. 1 2
False, consider [ 4 ]
False, the product of 2 2 x 2 and 3 x 3
matrix is not defined.
31.
True
False, see page 122.
False, consider I + I, = 21, # O.
True 8. True 9. True
False, Ox = 0 is consistent for b = 0, 35.
but O is not invertible.
True 39.
False, the null space is contained in the
domain.
True
False, let T be the projection on the z- 43,
axis. Then {e} is a linearly indepen-
dent set but {T'(e2)} = {0} is a linearly
dependent set.
True 16. True
False, the transformation
T
1
() - |z
T2 0 47.
is one-to-one, but not onto.
True
False, the null space consists exactly of
the zero vector. 51

False, the columns of its standard
matrix form a generating set for its
codomain.

True

(a) BA is defined if and only if g = m.
(b) If BA is defined, it is a p x n matrix.

2
Cw= 129
4
11 1][2 4
-1p7T __ 1
4 B—6[4 —2”3 6]
_ 1[5 10
612 4

Because u is a 3 x 1 matrix, the product
u? = uu is not defined.

The reduced row echelon form of the
given matrix is I3; so it is invertible. Its

22 14 -2
inverse is — |—42 -2 11].
0 5 _10 5

The inverse of the coefficient matrix is

1 -1
-1 21
So the solution is
1 1] 3] _ [-2
-1 21151 — | 70

Since Tg: R?2 — RS3, the codomain is
R3. The range equals

4 2
Span 11,1-3] ;.

0 1

The standard matrix of T is

(e Tler) Teenl= [} o |-




53.

57.

61.

The standard matrix of T is
A =[T(e1) T(e2)].
Now

")
gl
o)
-1

4 1
-ty
The given function is the matrix trans-
Lo 1 0
formation induced by [0 0 1
function is linear by Theorem 2.7.

] ; so this

The null space is the solution set of
Ax = 0, where A is the standard ma-
trix of T. The general solution is

ry = —2.’1:3
T = T3
T3 free

-2
So the generating set is { |: 1] } By
1

Theorem 2.11, T is not one-to-one.

65.

69.

73.

1.

Chapter 2 MATLAB Exercises 57

3 -1
The standard matrix of T is |0 11}.
1 1

Because its rank is 2 and the codomain

of T is R3, T is not onto by Theo-
rem 2.10.

5 -1 4
The matrix BA= |1 1 -1} is the
3 1 0

standard matrix of the the linear trans-
formation UT.

The standard matrix of T is
1 2
)
By Theorem 2.13, T is invertible and

-1__
A 51 1

trix of T—1. Therefore

T-1 T - l 3.’1)1 - 2.’1)2
Z2 5| zy+x2 |~

l [3 —2] is the standard ma-

CHAPTER 2 MATLAB EXERCISES

[ 4 10 9
1 2 9
() AD=| 5 8 15
5 8 -8
-4 -8 1
6 -2 5 11 9
-3 -1 10 7 -3
b)yDB=1|-3 1 2 -1 -3
2 -2 7 9 3
0 -1 10 10 2

(c) , (d) (ABT)C = A(BTC) =

38 22 14 38 57
10 -4 4 10 11
-12 -9 -11 -12 12

9 -5 4 9 14
28 10 20 28 -9
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(e) D(B -2C) =

-2 10
-31 -7
-11 -5
-14 2
-26 -1

11

(i) 4° =
23 14
2 11
21 26
-6 18
-33 -6

(a) First, note that if the matrix [C D]
is in reduced row echelon form, then
C is also in reduced row echelon

form.

5 3 17
-8 -21 -1
-4 -9 7
-1 -7 -11
-4 -16 -6

1
(CAWv = [—-18}

81

9 -7 46
6 -2 10
-8 -17 11
53 24 --36
3% 25 -12

Given an m x n matrix A4, let
B = [A I,], the m x (m + n) ma-
trix whose first n columns are the
columns of A, and whose last m
columns are those of I,,. By Theo-
rem 2.3, there is an invertible mxm
matrix P such that PB is in re-
duced row echelon form. Further-
more, PB = P[A I,] = [PA P].
Thus PA is in reduced echelon
form, and the final m columns of
PB are the columns of P.

(b) P =

00 -08 -~-22 -18 1.0
00 -08 -12 -1.8 1.0
0.0 04 16 24 -1.0
0.0 10 20 20 -1.0
106 00 -10 -1.0 0.0

7. The calculations in (a) and (b) both pro-
duce the matrix A™!B =

6 -4 3 19 5 -2 -5

-1 2 -4 -1 4 -3 -2
-2 0 2 6 -1 6 3

0 1 -3 -8 2 -3 1

-1 0 2 -6 -5 2 2
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Determinants

3.1 COFACTOR EXPANSION
6 2]
1. det 3 -1, =6(—1) - 2(-3)
=—6+6=0
5. det -5 —6] _ (=5)(12) — (—6)(10)
: |10 12]
=—-60+60=0
[ 4 3]
7. det B = 4(—1) - 3(-2)
=—446=2

11. The (3,1)-cofactor of A is

(—1)3'*'1 det [_2 g]
(=2)(3) — 4(6)]
-30

1
1(—30) = —30.

o

19. The cofactor expansion along the second
row is

11 -1
0+ (—1)(—1)**2det {4 2 -1| +0
0 0 -2

1 21
+1(—~1)*"*det {4 -3 2
0 30

= ()20 e [y

+1(3)(—1)*+2 det [}1 ;]

= 2[1(2) - 1(4)] - 3[1(2) - 1(4)]
=2(—2) — 3(-2)
=2,

15. The cofactor expansion along the third 23. We have

row is

-2 2
_1)3+1
0(—1)°"" det [__1 3]

+ 1(—1)3*2 det B :2))]
+ (=1)(=1)**3 det B :ﬂ
=0+ (-1)[1(3) — 2(2)]

+ (-D[(-1) - (=2)(2)]
= -2

N o

[N e
O wo

» [’ ]
= —6(=1)"*1 det [_3 2]

9 4
= —6[(—3)4 — 2(9)] = 180.

W

27. We have
-2 -1 -5 1
0 0 0 4
det | o 52 o 5
3 1 6 —2

59
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31.

35.

37.

41.

45.
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-2 —-1 -5

=4(-1)>*det | 0 -2 0
3 1 6

= 4(-2)(~1)**2 det [‘g —2]

= —8[~2(6) — (—5)(3)]

= -24.

The area of the parallelogram deter-
mined by u and v is

i 3

= 16(2) — 3(4)| = Jo} = 0.

| det [u v]| =

The area of the parallelogram deter-
mined by u and v is

| det [u v]| = |det [__(15 ;]l
= 16(3) — 4(-1)|
= |22] = 22.

The matrix is not invertible if its deter-
minant equals 0. Now

3

det [c 4] = 3(4) — 6(c) = 12 — 6c.

Therefore the matrix is not invertible if
12 - 6¢ =0, that is, if ¢ = 2.
‘We have

det [_; "i] = &~ (=2)(-8)
=c* - 16.

Therefore the matrix is not invertible if
2 — 16 = 0, that is, if ¢ = +4.

False, the determinant of a matrix is a
scalar.

46.

47.

48.

49.
50.

51.
53.

54.

55.

56.
57.
58.

59.
61.

62.
63.

64.

a
False, det [c d

b] = ad - bc.

False, if the determinant of a 2x 2 matrix
is nonzero, then the matrix is invertible.

False, if a 2 x 2 matrix is invertible, then
its determinant is nonzero.

True

False, the (i,j)-cofactor of A equals
(~1)**7 times the determinant of the
(n—1)x(n—1) matrix obtained by delet-
ing row % and column j from A.

True 52. True

False, cofactor expansion is very inefhi-
cient. (See pages 204-205.)

True
. 1 2
False, consider [2 1] .

True 57. True

False, see Example 1 on page 154.

False, a matrix in which all the entries
to the left and below the diagonal entries
equal zero is called an upper triangular
matrix.

True 60. True

False, the determinant of an upper trian-
gular or a lower triangular square matrix
equals the product of its diagonal entries.

True

False, the area of the parallelogram de-
termined by u and v is | det [u v]|.

False, if A is the standard matrix of T,
then

|det [T'(u) T'(v)]| = |det A]-|det [u( v]l.
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77.

3.2 Properties of Determinants 61

We have Thus
cos@ —sinf a b
det Ag = det [sin() cos 9} det [c +kp d+ kq]
= cos? @ — (—sin? 8)
a b a b
=cos? 0 +sin?0 = 1. = det [c d]+kdet [p q]'
_la b 81. (c) No, det(A+ B) # det A+ det B for
Let A= [c d]' Then all n x n matrices A and B.
T _ a ¢
det A" = det [b d] 32 PROPERTIES OF
o b DETERMINANTS
=ad — cb = det [ ]
c d
— det A. 3. The cofactor expansion along the second

We have det E = k and det A = ad — bc;
so (det E)(det A) = k(ad — bc). Also

a b
EA= [kc kd]'

Thus
det EA = a(kd) — b(kc)

— k(ad — bc) = (det E)(det A).

We have

det [c ko d :kq]
= a(d+ kq) — b{c + kp)
= ad + akq — bc — bkp

and

det [2 Z] + k det [Z Z]
= (ad — be) + k(agq — bp)
= ad — bc + akq — bkg
= ad + akq — bc — bkp.

column yields

— 1(—1)'*2 det [_i —ﬂ

2
-1

w

+ 4(=1)**? det [

i

2 3
_q1\3+42
+ 0(—1)""=det [1 _2]

= 1{1(1) - (=2)(-1)]

+4[2(1) - 3(-1)] +0
=1(-1)+4(5) +0
=19.

7. The cofactor expansion along the first
column yields

0(=1)1*1 det [-1 2]
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11. We have
0 0 5
det [0 3 7
4 -1 -2
4 -1 2
= —det {0 3 7
0 0 5
= —(4)(3)(5) = —60.
’ 15. We have
3 -2 1
det | O 0 5
-9 4 2
[ 3 —2 1
= —det {—9 4 2
| 0 0 5
3 -2 1
=—det|0 -2 5
0 0 5
= —(3)(-2)(5) = 30
19. We have
1 21 1 2
det |1 1 2| =det |0 -1
3 4 8 0 -2
L
1 2
=det |0 -1
0 0
=1(-1)(3) =
23. We have
0 4 -1 1
-3 1 1 2
det| 1 o _2 3
2 3 01

1 0 -2 3]
N =T
=-det] o o4 11
23 0 1
[1 0 -2 3]
B 01 -5 11
=-det o 4 1 1
0 3 .4 -5
f1 0 -2 3]
01 -5 11
==det |y o 19 _43
0 0 19 -38
1 0 -2 3]
01 -5 11
=—det |y o 19 43
0 0 0o 5

= —1(1)(19)(5) = —95.

2'7. We have
c 6
det [2 c+4] =c(c+4)-12
=c?+4c-12
= (c+6)(c—2).

The matrix is not invertible if its deter-
minant equals 0; so the matrix is not

invertible if c = -6 or ¢ = 2.
31. We have
1 -1 2
det | -1 0 4
2 1 ¢
1 -1 2
=det {0 -1 6
0 3 ¢c—4
1 -1 2
=det |0 -1 6
|0 0 c+14




35.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

49.
51.

52.

53.

= 1(=1)(c+ 14) = —(c + 14).

The matrix is not invertible if its deter-
minant equals 0; so the matrix is not
invertible if ¢ = —14.

The given matrix A is not invertible if its
determinant equals 0. Because det A =
—(c+1), we see that A is not invertible
ifc=-1.

1 2
False, det [3 4] #1-4.

True

False, multiplying a row of a square ma-
trix by a scalar ¢ changes the determi-
nant by a factor of c.

True

False, consider A = [e; 0} and B =
[0 62].

True

False, if A is an invertible matrix, then
det A # 0.

False, for any square matrix A, det AT =
det A.

True

False, the determinant of 215 is 4, but
its reduced row echelon form is Is.

True 50. True

False, if A is an n X n matrix, then
det cA = c™* det A.

False, Cramer’s rule can be used to solve
only systems that have an invertible co-
efficient matrix.

True 54. True 55. True

56.

58.

59.

63.

3.2 Properties of Determinants 63

False, if A is a 5 x 5 matrix, then
det (—A) = —det A.

True

False, if an nxn matrix A is transformed
into an upper triangular matrix U using
only row interchanges and row addition
operations, then

det A= (—-1)’u11uz2 c Upp,

where 7 is the number of row inter-
changes performed.

We have
6 2
e 5 4 sw-aca
1= = =
1 2 1(4) — 2(3)
det [3 4]
=15
and
1 6
det
o [3 —3] 1(-3) - 6(3)
9 = - - ==
1 2 -2
det [3 4]
=10.5.
We have
[ 6 0 -2]
det | -5 1 3
4 2 1
Ty = E =
1 0 -2
det |—-1 1 3
| 0 2 1]
[ 6 0 —2
det |-5 1 3
{14 0 -5
- 1 0 -2
det |0 1 1
0 2 1
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_6(=5) - (-2)(14) _

1(1) - 1(2) ’

1 6 -2
det {—1 -5 3
0 4 1
T = =
1 0 -2
det | -1 1 3
0 2 1
1 6 -2
det |0 1 1
. 0 4 1
- -1
1(1) —
_m-u
-1
and
[ 1 0 6]
det|—-1 1 -5
| 0 2 4]
I3 = = =
1 0 -2
det | -1 1 3
| 0 2 1]
(1 0 6
det |0 1 1
_ 0 2 4
- -1
1(4) -1
_ X )_1 @ _ 4

67. Take A=1I; and k = 3. Then

3 0

det kA = det [0 3

]:3-3:9,

whereas k-det A=3-1=3.
71. By (b) and (d) of Theorem 3.4, we have
det (B~'AB)

= (det B™')(det A)(det B)
= (det A)(det B~)(det B)

= (det A) (&Etls_B) (det B)

= det A.

75. We have

1 a a?
det |1 b »?
1 ¢ ¢

1 a a?
=det |0 b—a b —a?
0 c—a c?-a?

1 o a2 ]
1 b+a
1 c+aj

ot

= (b—a)(c— a)det

oo

9 -

1
—t

a a
1 b+a
0 c-—b

L .

= (b—a)(c—a) - (1)(1)(c-b)
=(b—a)(c—a)(c—b).

= (b—a)(c—a)det

oo

79. Let A be an n x n» matrix, and let B
be obtained by multiplying each entry of
row r of A by the scalar k. Suppose that
ci; is the (i, j)-cofactor of A. Because
the entries of A and B differ only in row
r, the (r, j)-cofactor of B is c,; for j =
1,2,...,n. Evaluating det B by cofactor
expansion along row r gives

det B = bricr1 + -+ + bpnCrn
= (kar1)er1 + - + (karn)Crn
= k(aricr1 + -+ @rnCrn)
= k(det A).
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83. (a) We have 2. False, for n > 2, the (3, j)-cqfagtqr of
an n x n matrix A equals (—1)**7 times
00 -30 -2 -5 the determinant of the (n —1) x (n — 1)
24 30 -6 9 matrix obtained by deleting row ¢ and
-48 63 4 -2 column j from A.
96 15 &5 9
r;+<ry 3. True

4. False, consider A = [e; 0] and B =

24 30 -6 9 0 €.
00 —-30 -2 -5

48 63 4 —2 5. True
96 15 5 9 6. False, if B is obtained by interchanging
2ry +r3 —r3 two rows of an m X n matrix A, then
TAntremi det B = — det A.

7. False, an n xn matrix is invertible if and

2.4 3.0 -6 9 only if its determinant is nonzero.

00 -30 -2 -5
00 123 -8 16

00 -105 29 -27
Adrg 4 rg — r3 9. False, for any invertible matrix A,

—3.5r2 +r4 —ryg det A——l

%

True

- det A
94 3 —60 9.0 10. False, for any n x n matrix A and scalar
00 -3 -20 -50 ¢, det cA = c"(det A).

gg g —égg —32 11. False, the determinant of an upper trian-
L - gular or a lower triangular square matrix
~fPratryorg equals the product of its diagonal entries.

—_—

) 15. The (3,1)-cofactor of the matrix is
24 3 —-60 9.0

00 -3 -20 -50 (—1)**1 det [—1 2

00 0 -162 —45|° 2 -1
_0.0 0 0.0 -19.5 = 1[(=1)(~1) ~ 2(2)] = -3.
(b) detA . . .

19. The determinant of th t

= (~1)}(2.4)(~3)(~16.2)(~19.5) ' ¢ glven mate s

= 2274.48 1(—1)'*1 det B —;]
CHAPTER 3 REVIEW (1) 2 get |1 2
+ (=1)(-1) det[ ) 3]

a b -1 2
1. False, det [c d] =ad - be. +2(~1)**3 det [ 9 _1]
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=1(2(3) - (-1)(1)
+(-1)3) - 2(1)
+2((-1)(-1) - 2(2)]
= —4.

23. We have

1 -3 11 7 1 -3
det 14 -2 1] =det {0 10 -

0 11 -

2 5 -1

— q(_1\1+1 10 -3
1(-1)"*" det [11 _3]

1}

= 1{10(=3) - (—3)(11)] = 3.

27. We have
c+4 —-1 c+¥5
det | -3 3 -4
c+6 -3 c+7
c+4 -1 c+5
=det | 3c+9 0 3c+11

—2¢—-6 0 —2¢—8

6 —2c—-8

(1Y 1\1+2 3c+9 3c+11
= (-1)(-1) det[_zc_ ]

— (c+3) det [_3 3¢+ 11]

2 -2¢-—-8

= (c+3)[3(~2c — 8) ~ (3¢ + 11)(~2)]

= —2(c+3).

So the matrix is not invertible if and

only if ¢ = -3.

29. The area of the parallelogram in R? de-

termined by [3] and [ﬂ is

det [3 ﬂl = [3(1) — 4(7)| = 25.

. We have

“li

_5@3)-1(-6) 21

NSO ot

Ty =

T3 —1(—4) ~ 10 - 21
and
2 5
det [_4 —6]
Ty = —F— ==
2 1
det [_4 3]
_2(=6)—-5(-4) 8 _
T R T

. If det A =5, then

det 24 = 23(det A) = 8(5) = 40

because we can remove a factor of 2
from each row of 24 and apply Theo-
rem 3.3(b).

. If we add 3 times row 2 of the given

matrix to row 1, we obtain A. Since,
by Theorem 3.3(b), row addition opera-
tions do not change the value of the de-
terminant, the determinant of the given
matrix equals det A = 5.

. If B2 = B, then

det B = det B®> = det BB
= (det B)(det B) = (det B)%.

Thus det B is a solution of the equation
z? =z, so that det B =1 or det B = 0.
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1. Matrix A can be transformed into an
upper triangular matrix U using only
row addition operations. The diagonal

Chapter 3 MATLAB Exercises 67

entries of U (rounded to 4 places af-
ter the decimal point) are —0.8000,
—30.4375, 1.7865, —0.3488, —1.0967,
and 0.3749. Thus det A equals the prod-
uct of these numbers, which is 6.2400.




Chapter 4

Subspaces and Their
Properties

4.1 SUBSPACES

1. A vector in the subspace has the form

[g] =35 [(1)] for some scalar s. Hence

13.
is a generating set for the subspace.
5. Since 17.
—s+ t] -1 1
2s— t| =s| 2| +t|-1},
s+ 3t} 1 3
a generating set for the subspace is
[—1 1
21,(-1 .
! 3
9. Since
2s — 5t 0 [ 2] 2%
dr+s—-2t{ 3 n 1
r—4s+3t| | 1] 7% -4
-r+2s -1 | 2]
5T
-2
+ t 3 b
L OJ

{

1

68

a generating set for the subspace is

0 2 =
3 1 -2
1y {-411 3
-1 2 0

For the given vector v, we have Av # 0.
Hence v does not belong to Null A.

Because
o
A =10],
L 0
2
31
the vector 1 is in Null A.
2-
[ 1
Vector u = |—4| belongs to Col A if
2

and only if Ax = u is consistent. Since
-7

0
0
longs to Col A.

is a solution of this system, u be-




25.

29.

33.

Let u =

consistent;

5
—4]. The equation Ax = u is
—6
-3

in fact, is a solution.

-4
0
0

Hence u is in the column space of A.

The reduced row echelon form of the
given matrix A is

Hence the

and so the vector form of the general

solution is

z
]
T3
Ty

10 -2 1

01 1 3

00 00

general solution of Ax =0 is

Ty = 211)3 — T4
Lo = —I3 — 3L4
T3 free
z4 free,

211)3 — T4
| —T3— 314
= 25
T4
2 -1
-1 -3
=Z3| + 4 0
0 1

Hence a generating set for Null A is

2 -1
-1 -3
1{°1 0
0 1

The reduced row echelon form of the
given matrix A is

1

4.1 Subspaces
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Hence the general solution of Ax = 0 is

A} =3.’1)2 — T4 — 211)6

Ty free
T3 = b 211)4 - 311)6
T4 free
Ty = - 2.’E6
ze free,

and the vector form of the general solu-

tion of Ax =0 is

z; 3] [—1]
To 1 0
T3 ___ 0 —2
Ty = T2 0 + T4 1
Ty 0 0
zﬁ I-Od = O—

+ Zg

0
-3
0
-2
1

Thus a generating set for Null A is

31 [-1] [-2
1 0 0
of |-2| |-3
o{’ 11’ o
0 of (-2
0f [ o] | 1]

. The standard matrix of T is
A=[1 2 -1].

o]

The range of T' equals the column space
of A; so {1,2,—1} is a generating set for
the range of T. Note that A is in reduced
row echelon form. The general solution

of Ax=01is
Ty = =29 + T3
z9 free
z3 free,

and its vector form is

T -2 1
2| =g 1l +23 |0
T3 0 1
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39.

43.
45.
46.
48.
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Hence
-2 1
11,10
0 1

is a generating set for the null spaces of
both A and T..

The standard matrix of T is
1 1 -1
A=10 0 0
2 0 —-1

Since the range of T equals the column
space of A, a generating set for the range
of T is

1 1 -1
0],{0{,] O
2 0 -1
Since the reduced row echelon form of A
is
1 0 -5
0 1 -5,
00 0

the vector form of the genereal solution
of Ax =0 is '

X 5
o = X3 5
X3 1
Hence a generating set for Null 4 is
5 1
5 or 1
1 2
True 44. True

False, {0} is called the zero subspace.
True 47. True

False, the column space of an m X n ma-
trix is contained in R™.

49.

50.

51.

54.

55.

56.

59,

62.

65.

69.

False, the row space of an m x n matrix
is contained in R™.

False, the column space of an m x n ma-
trix equals {Av: v is in R"}.
True 52. True

53. True

True

False, the range of a linear transforma-
tion equals the column space of its stan-
dard matrix.

True 57. True 58. True
True 60. True 61. True
True

From the reduced row echelon form of
the matrix A in Exercise 32, we see that
the pivot columns of A are columns 1, 2,
and 4. Choosing each of these columns
and exactly one of the other columns
gives a generating set for the column
space of A that contains exactly four
vectors. (See Theorems 2.4(b) and 1.7.)
One such generating set is the set con-
taining the first four columns of A.

The reduced row echelon form of the
given matrix A is

OCOO M
OO RO
OOCI/JN)
o= OO

The columns of A form a generating set
for the column space of A. But the ma-
trix above shows that the third column
of A is a linear combination of columns
1 and 2. Hence, by Theorem 1.7, a gen-
erating set for Col A containing exactly




73.

7.

81.

83.

87.

3 vectors is

-2 -1 3
4 1 —4
5(71 2|’ |-b
-1 0 1
. 11
Consider A = [2 NE The reduced row

echelon form of Ais R = [0 0

1 l] . Since

B] belongs to Col A but not to Col R,

we see that Col A # Col R.

Let V and W be subspaces of R™. Since
0 is contained in both V and W, 0 is
contained in VN W. Let v and w be
contained in VN W. Then v and w are
contained in both V and W, and thus
v + w is contained in both V and W.
Hence v + w is contained in VNW. Fi-
nally, for any scalar ¢, cv is contained in
both V and W;socevisin VNW. It
follows that V NW is a subspace of R™.

The vectors [(1)] and [(1)] are in the set,
but their sum is not.

If 0 were in the set, then there would be
scalars s and ¢ such that

3s =
2s + 4t

2
0
—-t=0.

Since the system has no solutions, 0 is

not in the given set.
Consider
2 6
v= |1 and 3v=|3
2 6

The vector v belongs to the given set
because 2 = 1(2). However, 3v does not
belong to the given set because 6 # 3(6).

4.1 Subspaces 71

91. Denote the given set by V. Since

2u1 + dug —4uz =0

for u; = us = ugz = 0, we see that 0 is
inV. Let uand v be in V. Then

2uy + Sug —4uz =0

and
2v; + Svg — 4vz = 0.
Now
u; + 0
u+v={ug+uv2|,
U3z + U3
and

2(u1 + v1) + 5(ug + v2) — 4(uz + v3)
= (2u1 + Sug — 4us)
+ (2v; + 5ug — 4vs)
=0+0
=0.

So u+v belongs to V. Thus V is closed
under vector addition.

For any scalar c,

and

2(cu1)’+ 5(cuz) — 4(cus)
= c(2u1 + Sug — 4’&3)
=c(0)
=0.
Thus cu belongs to V, and hence V is
also closed under scalar multiplication.

Since V is a subset of R3 that contains
0 and is closed under both vector ad-
dition and scalar multiplication, V is a
subspace of R3.




72

95.

99.

101.
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Let V denote the null space of T. Since
T(0)=0,0isin V. If u and v are in
V, then T(u) = T'(v) = 0. Hence

T(u+v)=T(u)+T(v)=0+0=0;

so u+ v is in V. Finally, for any scalar
¢ and any vector u in V, we have

T(cu) = cT'(u) = ¢(0) = 0;

so cu is in V. Thus V is also closed
under scalar multiplication. Since V is
a subset of R™ that contains 0 and is
closed under both vector addition and
scalar multiplication, V is a subspace of
R™.

Because A0 = 0 = BO, the zero vector
is in V. Assume that u and v are in V.
Then Au = Bu and Av = Bv. Hence

A(u+v) = Au+ Av
= Bu+ Bv = B(u+v).

Thus u+visin V, and so V is closed un-
der vector addition. Also, for any scalar
c,

A(cu) = cAu = cBu = B(cu).

Hence cu is in V, and V is closed under
scalar multiplication. Since V is a sub-
set of R™ that contains 0 and is closed
under both vector addition and scalar
multiplication, V is a subspace of R".

(a) The system Ax = u is consistent
since the reduced row echelon form
of [A u] contains no row whose only
nonzero entry lies in the last col-
umn. Hence u belongs to Col A.
On the other hand, Ax = v is not
consistent, and so v does not be-
long to Col A.

4.2

1.

BASIS AND DIMENSION

The reduced row echelon form of the
given matrix A is
-3 4

1 -2
0O 00 oy

(a) The pivot columns of A form a ba-
sis for Col A. Hence

{0}

is a basis for the column space of
A.

The null space of A is the solution
set of Ax = 0. Now the general
solution of Ax =0 is

T; = 3xo — 4x3 + 214

Ty free
z3 free
x4 free.

Thus the vector form of the general
solution is

T 3zy — 4x3 + 214
) _ I
I3 - I3
Ia T4
3 —4 2
1 0 0
=722 |, + 3 1 + x4 0
LO 0 1
Hence
(3] [-4] [2
1 0 0
0’ 11710
L |0 0 1

is a basis for the null space of A.




5. The reduced row echelon form of the
given matrix A is

0 2
1 -1
0O 0

oSO
o oN

(a) Hence the first and third columns
of the given matrix are its pivot
columns, and so

17 o
~1/, {1
2] 13

is a basis for the column space of

A

(b) The general solution of Ax =0 is
Ty = 219 — 214
zo free
I3 = Zy
x4 free.

Thus the vector form of the general
solution is

I 29 — 2x4
Ta| T
z3l T4
T4 Ty
2] -2
1 0
0] 1
Hence
2] [-2
1 0
0]’ 1
0 | 1

is a basis for the null space of A.

11.
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The reduced row echelon form of the
given matrix A is

1 0 0 4
010 4
0011
00 00

(a) Hence the first three columns of the
given matrix are its pivot columns,

and so
-1 1 2
2 0 -5
11'1-11"1-1
0 1 -2

is a basis for the column space of
A.

(b) The null space of A is the solu-
tion set of Ax = 0. Since the vec-
tor form of the general solution of

Ax=01is
Iy -4
To _ -4
I3 = T4 -1’
Iy 1
the set
—4
—4
-1
1

is a basis for the null space of A.

The standard matrix of T is
1 -2 1 1

A=1(2 -5 1 3

1 -3 0 2

(a) The range of T equals the column
space of A; so we proceed as in Ex-
ercise 7. The reduced row echelon
form of A is

-1

-1

1 03
R=10 11
000 O
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Hence the set of pivot columns of

A’
1] [-2
2|, 1-5] %,
1] |-3

is a basis for the range of T.

(b) Since the null space of T is the
same as the null space of A, we
must determine the vector form of
the general solution of Ax = 0.
This representation is:

T -3 1
T . -1 1
I3 =3 1 + s 0
) 0 1
Hence
-3 1
-1 1
1y70
0 1

is a basis for the null space of T'.

15. The standard matrix of T is

12 30 4
A=13 1 -1 0 -3},
7 4 10 -2

and the reduced row echelon form of A
is

0 -1 0 -2
1 2 0 3
0 0 0 0

o O =

(a) As in Exercise 9, the set of pivot
columns of A,

1] [2
IR RS
7| |4

is a basis for the range of T.

(b) The vector form of the general so-
lution of Ax =0 is

T
T2
Tr3| =
T4
Ts
1 0 2
-2 0 -3
I3 1} +24 (0 + zg 0
0 1 0
0 0 1
Thus
1 0 2
-2 0 -3
11,107, 0
0 1 0
0 0 1

is a basis for the null space of 7.

)=+

is linearly independent,

17. Since

= {3}

this set is a basis for the given subspace.

. The general solution of z; —3z5 + 523 =

0is
) = 3xy — 523
Ty free
z3 free.

Thus the vector form of the general so-
lution is

T 3xy — 5z3
T2| = T2
z3 z3




25.

29.

33.

Hence
3 -5
11,1 0
0 1

is a basis for the given subspace.

Let

1 2 1
A=12 1 -4
13 3

Then the given subspace is Col A, and so
a basis for the given subspace can be ob-
tained by choosing the pivot columns of
A. Since the reduced row echelon form
of Ais

1 0 -3
01 21,
0 0 0
this basis is
1 2
21,11
1 3

As in Exercise 25, form a 4 x 5 matrix
whose columns are the vectors in the
given set. The pivot columns of this ma-
trix form a basis for the given subspace.
Since the reduced row echelon form of
this matrix is

10 -5 20

01 3 —-10

00 o0 o0 1)

00 0 00O

one basis for the given subspace is

1 1 0
0 1 1

-1 |-2]’]-1
2 1 2

False, every nonzero subspace of R™ has
infinitely many bases.

41.

42,

43.

44.

47.

50.

51.

53.

]

7.
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True

False, a basis for a subspace is a gener-
ating set that is as small as possible.

True 37. True 38. True

. True

False, the pivot columns of any matrix
form a basis for its column space.

. 12
False, if A = 1 2l

columns of the reduced row echelon form
of A do not form a basis for Col A.

then the pivot

True

False, every generating set for V con-
tains at least k vectors.

True 45. True 46. True

True 48. True 49. True

False, neither standard vector is in the

subspace { [Z;] ER?*: Uy +uy = O}.

True 52. True

A generating set for R™ must contain at
least n vectors. Because the given set is
a set of 3 vectors from R*%, it cannot be
a generating set for R*.

It follows from Theorem 4.5 that every
basis for R™ must contain exactly n vec-
tors. Hence the given set of 2 vectors
cannot be a basis for R3.

By property 4 of linearly dependent and
independent sets in Section 1.7, a set of
more than 2 vectors from R? must be
linearly dependent.
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61,

65.

69.
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We proceed as in Example 4. Let W be
the subspace in Exercise 29, A denote
the matrix whose columns are the vec-
tors in Exercise 29, and B be the set of
three vectors given in Exercise 61. For
each vector v in B, the equation Ax = v
is consistent. Hence B is contained in
W. Moreover, the reduced row echelon
form of the matrix whose columns are
the vectors in B is [e; e; e3); so B is
linearly independent. Finally, Exercise
29 shows that the dimension of W is 3,
which equals the number of vectors in B.
Thus the 3 conditions of the boxed state-
ment on pages 248-249 are satisfied, and
so B is a basis for W.

Let A denote the matrix in Exercise 7
and B be the set of three vectors given
in Exercise 65. Because the column
space of a matrix equals the span of its
columns, Exercise 65 can be worked in
the same way as Exercise 61. For each
vector v in B, the equation Ax = v
is consistent, and so B is contained in
Col A. Moreover, the reduced row ech-
elon form of the matrix whose columns
are the vectors in B is [e; ey es); so B is
linearly independent. Finally, Exercise
7 shows that the dimension of Col A is
3, which equals the number of vectors in
B. Thus the 3 conditions of the boxed
statement on pages 248-249 are satis-
fied, and so B is a basis for W.

Let V denote the given subspace of R™.
Clearly B = {e3,e4,...,e,} is a subset
of V, and B is linearly independent be-
cause every column of [eg eq --- ,] is
a pivot column. Moreover, B is a gener-

73.

77.

ating set for V, for if v is in V, then

0
0

v=|Y| =uzes+ - +uvne,.

Un

Since B is a linearly independent gen-
erating set for V, we see that B is a
basis for V. Hence the dimension of V'
equals the number of vectors in B, which
isn—2

Vector v belongs to V = Span.4. Thus
B = {v,u2,us,...,u;} is a subset of
V, because us,us,...,u; belong to A,
which is a subset of V.

We claim that B is linearly independent.
Suppose that c¢j,c3,...,cr are scalars
such that

av+cauz+ -+ cpup =0.
Then

C](U1+UZ+"'+uk)
+ecoup+ - +cup =0

that is,

ciuy + (¢1 +cz)ug + - -
+ (a + ck)uk = 0.

Since .A is linearly independent, it fol-
lows that ¢, = 0, ¢ + ¢ =0, -+,
c1 +c, = 0. Hence ¢
¢ = 0, proving that B is linearly in-
dependent. Since B contains k vectors,
it follows from Theorem 4.7 that B is a
basis for V.

202=---=

(a) Because V and W are subspaces of
R"™, 0isin both V and W. Assume
that u is in both V and W. Then




(b)

u = vy + wy, where vi = u and
w; = 0, and also u = vy + wg,
where vo = 0 and w2 = u. The
uniqueness of the representation of
u in the form v + w for some v in
V and some w in W implies that
u = v, = vy = 0. Hence the only
vector in both V and W is 0.

Let By = {vy,v2,..., vk} be a ba-
sis for V, Bs = {w1,Wa,..., W}
be a basis for W, and B =
{vi, Vo, .oy Vi, Wi, Wo, .o, Wi L
Note that dim V = k and
dim W = m. We will show
that B is a basis for R" so that,
by Theorem 4.5, the number of
vectors in B must be n, that is,
dim V+ dim W=k+m=n.
First we show that B is linearly in-
dependent. Let a,aq,...,ar and
b1,ba,. .., b, be scalars such that

a1vy +agve + -+ agVvg
+biwy +bowo + -+ bWy,
=0.

Let
Vv=a3Vv) +axve +- -+ arvi

and

w="bywy+bewg + -+ b, Wy,

Then v = —w. Because 0 is the
only vector in both V and W, it
follows that v = 0 and w = 0. But
if

V=a1V1 +a2Va +-:-+apVvi
:0,

then a1 = a; = ... = ap = 0
because By is linearly independent.

81.
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Similarly, by = b2 = ... =b,, = 0.
Thus B is linearly independent.
Next, we show that B is a generat-
ing set for R™. For any u in R",
there exist v in V and w in W such
that u = v+ w. Because B; is
a basis for V, there exist scalars
a,as,...,a such that

v=a1vi +azve + -+ arpvi.

there exist scalars

, b, such that

Similarly,
by, ba,...

w=>byw; +baway + -+ b, w,,.

Hence u = v+ w is a linear combi-
nation of the vectors in B, and so B
is a generating set for ™. Because
B is a linearly independent gener-
ating set for R*, B is a basis for
R"™, completing the proof.

Let
1 -1 2 1
A= 2 -2 4 2
-3 3 -6 -3
Since the reduced row echelon form of A
is
1 -1 2 1
0 0 0 0f,
10 0 0 O
the vector form of the general solution
of Ax=01is
) 1 -2 -1
2 _ 1 0 0
T3 = T2 0 + z3 1 + T4 0
Ty ‘_0 0 1
Hence
1 -2 -1
1 0 0
o’ 11’1 0
0 0 1
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is a basis for Null 4. Hence
Since the reduced row echelon form of 1.2 -14
-2.3 2.9
01 -2 -1 1.0{,| 0.0
21 0 0 0.0| |-0.7
10 1 0 0.0 1.0
00 0 1

is a basis for Null A.
is

1

1 0 1 0
01 -2 0 43 THE DIMENSION
00 0 11’ OF SUBSPACES
00 00 ASSOCIATED WITH A MATRIX
it follows from Exercise 78 that 1. (a) The dimension of ColA equals
0 ] 1 rank A, which is 2.
9 1 0 (b) The dimension of Null A equals the
1o lol ! o nullity of A, which is 4 —2 = 2.
ol o 1 (¢) The dimension of Row A equals
- rank A, which is 2.
is a basis for Null A that contains £. (d) The dimension gf Null A7 eq;a?s
the nullity of A*. Because A* is
The reduced row echelon form of A is a 4 x 3 matrix, the nullity of AT
equals
10 -12 0 14 r
0 1 23 0 —29/!. 3 —rank A" =3 —rank A
0 0 00 1 0.7 =3-2=1.
(a) As in Exercise 7, 5. Clearly rank A = 1. So, as in Exercise

1, the answers are:

0.1 0.2 0.5 (a) 1 (b) 3 (c) 1 (d) 0.
0.7!,109],]-0.5
—051 los -0.5 9. The reduced row echelon form of A is

) ) 1 0 6 0
is a basis for the column space of 01 -4 1.
A. 00 00
(b) The vector form of the general so-
lution of Ax =0 is Hence rank A = 2. As in Exercise 1, the
L L4 answers are:
I . —1.
2 b) 2 2 d) 1.
z2 ~2.3 2.9 () (b) (2 (@

3| =23 10} + z5 0.0|. 13. Every vector in the given subspace V

T4 0.0 0.7 -2s] _ [-2
s 0.0 1.0 has the form [ s] =35 [ 1 for some
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scalar s. Hence B = [_ﬂ} is a gen-

erating set for V. But a set containing
a single nonzero vector is linearly inde-
pendent, and so B is a basis for V. Thus
the dimension of V equals 1, the number
of vectors in B. :

The reduced row echelon form of A is

103
R‘[o 1 2]'

By Theorem 4.8, a basis for Row A is
formed from the nonzero rows of R:

17 [o
of, |1
3| 12

Proceeding as in Exercise 17, we see that
a basis for Row A is

171 [ o] [ o]
0 1 0
0 0 1

=311 2’| o
1l -1 0

L 3- |—2] [-1]

It follows from Exercise 17 that the di-
mension of Row A equals 2. Hence a ba-
sis for Row A must consist of 2 vectors,
and so

17 [o
~1{, 1
1 |2

is the only basis for Row A consisting of
rows of A.

Exercise 21 shows that the dimension of
Row A equals 3, and so a basis for Row A
consists of 3 linearly independent rows
of A. The reduced row echelon form of

33.

37.

79

AT is

SO O ==
SO~ OO

oo oo
oo Oo RO

00

Because the pivot columns of AT are
columns 1, 2, and 4, it follows that rows
1, 2, and 4 of A are linearly independent.
Hence

[ 11 [ 2] [ O]
ol [-1 1
-1] (-1 1
=31’ 1-8|’| 2
1 3 |-1
- 4-1 - 9.4 __3-

is a basis for Row A consisting of rows
of A.

1 2
9 1] , and
its reduced row echelon form is I5.

The standard matrix of T is [

(a) Since the range of T equals the col-
umn space of A, the dimension of
the range of T equals the rank of
A, which is 2. Thus, by Theorem
2.10, T is onto.

The null space of T equals the null
space of A. Hence the dimension
of the null space of T equals the
nullity of A, which is 0. Thus T is
one-to-one by Theorem 2.11.

(b)

The standard matrix of T is

1 0
2 1y,
0 -1
and its reduced row echelon form is
1 0
01
0 0




80

41.

42,

44.

45.
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(a) As in Exercise 33, the dimension
of the range of T is 2. Since the
codomain of T is R3, T is not onto.
As in Exercise 33, the dimension of
the null space of T' is 0. Hence T is
one-to-one.

(b)

False, the dimensions of the subspaces
V = Span {e;} and W = Span {e;} of
R? are both 1, but V # W.

True 43. True

False, the dimension of the null space of
a matrix equals the nullity of the matrix.

False, the dimension of the column space
of a matrix equals the rank of the ma-
trix.

True 47. True

} g and the

reduced row echelon form of A, which
.1 2
N

True

False, consider A =

False, the nonzero rows of the reduced
row echelon form of a matrix form a ba-
sis for its row space.

1 00
False, consider |0 0 O0f.
0 10

False, consider [(1) 0 O].

—
=]

True 54. True

False, consider any nonsquare matrix.

56.

57.
60.
61.

65.

False, the dimension of the null space of
any m x n matrix A plus the dimension
of its column space equals
rank A + nullity A
=rank A + (n —rank A) = n.

True 58. True 59. True
True
Taking s = %— and t = —%, we have
2s —t] _ [1]
s+3t] — [0]’
and taking s = % and t = %, we have
2s —t| _ 0]
s+3t] |1

Hence B is contained in V. Moreover, B
is linearly independent. Since the vec-
tors in V have the form

-,
(AR

is a basis for V. Hence dimV = 2.
Therefore B is a basis for V because the
3 conditions of the boxed statement on
pages 248-249 are satisfied.

Taking r =2, s =1, and ¢t = 1, we have
1

0 -

0 9y

0

taking r =5, s = 2, and ¢ = 3, we have

—r+3s 1
0 . 0l .
s—t | |-1|"
r— 2t -1
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and taking r = 2, s =1, and ¢t = 0, we
have

—r+3s 1

0 |0
s—t | |1
r—2t 2

Hence B is contained in V.

Since the reduced row echelon form of

1 1 1

0 0 0

0 -1 1

0 -1 2

is

1 0 0

0 10

0o 0 1{°
0 0 0

B is linearly independent. The vectors
in V have the form

—r+3s -1 3 0

0 0 0 0
s—t | =T ol T8 |1 Tt| 1
r—ot 1 o] |[-2

It is easily checked that the set

-1 3 0]
ol (o 0
of 1|’ }|-1
1] (o] [-2]

is linearly independent, and so it is a ba-
sis for V. Hence dimV = 3. It follows,
as in Exercise 61, that B is a basis for
V.

(a) Refer to the solution to Exercise 9.
By Theorem 4.8,

is a basis for Row A. Also, the vec-
tor form of the general solution of

Ax =01is
Iy —6 0
T2 | _ 4 -1
ol =% 1) T o
T4 0 1
Thus
—6 0
4 -1
11’] 0
0 1

is a basis for Null A.
(b) It is easily checked that set

1 0 —6 0
0 1 4 -1
6(°|—-4]’) 1’ O
0 1 0 1
is linearly independent. Since it

contains 4 vectors, it is a basis for
R* by Theorem 4.7.

73. Let v be in the column space of AB.

Then v = (AB)u for some u in RP.
Consider w = Bu. Since Aw =
A(Bu) = (AB)u = v, v is in the col-
umn space of A.

Since the ranks of a matrix and its trans-
pose are equal, we have

rank AB = rank (AB)T = rank BT AT
By Exercise 75,
rank BT AT < rank BT = rank B.

Combining the preceding results yields
rank AB < rank B.




82

81.

Chapter 4 Subspaces and Their Properties

(a) Let v and w be in R¥. Then

U1 +wy

V2 + wa
T(v+w)=T

Vg + wg

= (v +wi)u; +---

+ (vx + wi)ug
= (viu; + - -+ + veug)

+ (wiug + - + wieuy)
=T(v) + T(u).

Also, for any scalar ¢,

V1
T(ev)=T :
CU
= (evp)uy + - + (cvg)ug

= c(viuy + - -+ + vpuy)
= cT'(v).

Thus T is a linear transformation.
Since {u;,ug,...,ux} is linearly
independent,

$1U1+$QUQ+"'+$kllk=0

implies 2y = 29 = --- =z, = 0.
Thus T(x) = 0 implies x = 0, so
that the null space of T is {0}. It
follows from Theorem 2.11 that T
is one-to-one.

For every x in R¥, T(x) is a lin-
ear combination of uj,us,...,ux
and hence is a vector in V. Con-
versely, if v is in V, then we have
vV = ajuj +asus + -+ aipu, for

(b)

some scalars aj,as,...,a;. For
ai
az
a=1{.]|,
75

in R*, we have T'(a) = v. Hence
every vector in V is the image of a
vector in R¥. Thus the range of T
isV.

Let B be a 4 x 4 matrix such that
AB = O. Then

O = AB = A[b; by bg by]
= [Ab] Aby Abg Ab4]
So each column of B is a solution of

Ax = 0. The reduced row echelon
form of A is

1 0 -1 =2
01 1 -1
00 0 of’
00 0 O

and so the vector form of the gen-
eral solution of Ax =0 is

z1 1 [2
T2 _ —1 1
zs] =] 1| T o
T4 0 Ll
Hence
1 2 0 0]
-11 00
B= 1 000
010 0

is a 4 X 4 matrix with rank 2 such
that AB = O.

If C is a 4 x 4 matrix such that
AC = O, then the preceding ar-
gument shows that each column
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13.

of C is a vector in NullA4, a 2-
dimensional subspace. Hence C
can have at most two linearly in-
dependent columns; so rank C < 2.

COORDINATE SYSTEMS

Because [v]g = [g], we see that

el goal3-1)

Equivalently, if B denotes the matrix
whose columns are the vectors in B, then

v=Blvls= [_} t] [ﬂ - H |

As in Exercise 1, we have

=2l =)

As in Exercise 1, we have

0 -1 1
v H v { 0] e H
1 1 1
-7
= |-3
2

(a) Let B be the matrix whose columns
are the vectors in B. Since the re-
duced row echelon form of B is I3,
B is linearly independent. So B is
a linearly independent set of 3 vec-
tors from R3, and hence B is a basis
for R3 by Theorem 4.7.

17.

25.
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(b) The components of [v]g are the co-
efficients that express v as a lin-
ear combination of the vectors in

B. Thus

3
vl = |: 0:| .
-1

By Theorem 4.11,

we= [ 3 [0

By Theorem 4.11,
-5
1].
2

0 -1 177'[ 1
1 01 -3f =
1 11 )

The unique representation of u as a lin-
ear combination of b; and b; is given
by the coordinate vector of u relative to
{bl, b2}, which is

wree[3 3

_ |—5a—3b
T [-3a—2b|"

v|g =

Thus
u = (—5a — 3b)b; + (—3a - 2b)b,.

. Proceeding as in Exercise 25, we have

[b1 b2 b3]_1u
1 -1 2] ' [a
=10 1 0 b
|1 0 —1_ c
—a — b+ 2c]
= b
_—a—b+c_
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Thus

u= (—a —b+ 2C)b1 + bby
+ (—a — b+ c)bs.

False, every vector in V' can be uniquely
represented as a linear combination of
the vectors in S if and only if S is a

basis for V.

True 33. True 34. True
True 36. True 37. True
True 39. True 40. True
True 42, True 43. True

/
False, [I,] = A7 [I]
y Y
True 46. True 47. True

False, the graph of such an equation is
a hyperbola.

True 50. True

(a) Since the reduced row echelon form
of B g] is [(1) (;], B is a linearly
independent subset of R? contain-

ing 2 vectors. Hence B is a basis
for R? by Theorem 4.7.

(b) Let B = [by by}. Then
_ -3
lells =B 'e; = [ 2]
and
[92]3 = B“1e2 = [_ﬂ .
Hence

55.

59.

63.

(c) From (b), we see that

A=[B'e; B lep
= B‘l[el 92] = B—IIQ =B"L.

So A and B are inverses of each
other.

!
Let v = [;] and [v]g = [z,], where B

is the basis obtained by rotating the vec-
tors in the standard basis by 30°. Then

[Zf] = Vs = (Aage) " v

r_[% §]|[e
= A300v = 1 ﬁ [y] .
2 2
Hence
' = 3?:0 + 3y
v =tz + Ly

Let B be the matrix whose columns are
the vectors in B. Then
=3| |z

rI

_ |-bz —3y
Tl =-2z—-y |
Hence
' = -5z — 3y
Yy =-2z— y.
Let

Then, as in Exercise 55,

[y:] =[vls=B""v
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71.

75.

-1 1 2] |z
-1 =2| |y
1 -1 -1] 1=z

Hence

r’=-z+y+22
2r —y— 22
T—y— 2

<
Il

!

Let v = Lﬂ and [v]g = [;,], where

B is the basis obtained by rotating the
vectors in the standard basis by 60°. As
in Example 4,

[z] = v = Ago-[V]p

Hence N
— _ V3.
= 2:5 2 Y

y=La' + ly.

Let B be the matrix whose columns are
the vectors in B. Then

z] _ g z’ _ ' + 3y
y yl 2xl+4yl .

Hence

z= ' +3y

y=2z'+4y'.
Let

1 -1 0

3 1 -1

0 1 1

As in Exercise 67, we have

T
y| =v=B[vlg
z

Qo

79.

3.
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Thus
z=z' -y
y:3xr+y1_zr
z= ¥+ 2.

As in Exercise 55, we have

Fl-= -4 )0

31
2
Thus
o= iz+ @y
y=-Bz+ 1y

Rewrite the given equation in the form
25(z")? + 16(y’)? = 400.

Then substitute the expressions for z’
and ¢ into this equation to obtain

73 2 9v3 91 ,
4 + 2 Ty + 1 y° = 400,
that is,

7322 + 18v/3zy + 91y? = 1600.

As in Exercise 79, we have

' -1 ¥3 T
[y] Atzr [y] [é 21] [y]
T2 T2
Thus
z = ~%x+3§y
y=-%o- Iy

Rewrite the given equation in the form
4(z")? — 9(y')? = 36. and substitute the
preceding expressions for z’ and ¥’ to
obtain

—2322 — 26v/3zy + 3y% = 144.
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As in Exercise 67, we have 99.
gl _ 4 z'| “@ "%Q z’
y 45 y/ ﬁ ﬁ y/ .
2 2
Thus '
_ V2 2
z=Yla — 2y 103.
y =Yz’ + 2y,
Substituting these expressions for x and
y into the given equation produces
4(z')? — 10(y')? = 20,
that is,
2(z')? - 5(y')? = 10.
As in Exercise 87, we have
z| _ 4 z'| @ -3 [«
y = £130° yl - 1 ﬁ y/ .
2 "2
Thus
z = 32@:5’ - 3y
107.

y= 1z’ + lzéy’ .
Substituting these expressions for  and
y into the given equation produces

16(z")? — 12(y')% = 240,
that is,
4(z")? - 3(y')? = 60.
By the definition of [v] 4, we have
v=a;u +'-+a,u,
a

a
= a(clul) +oee 4 Z;—L(cnun).

Hence
a)
8]

[Vls =

Cn

Consider
A= {el,ez} and B = {el, 202}.

Then [e1]4 = e; and [e1]s = e;, but
A#B.

(a) Let B be the matrix whose columns
are the vectors in B. By Theorem
4.11,

T(v)=[vl]g=B v

for every vector v in R™. Hence
T is the matrix transformation in-
duced by B~!, and so T is a linear
transformation.

Because the standard matrix of
T is B™!, an invertible matrix,
the columns of the standard ma-
trix of T are linearly independent
and form a generating set for R™.
Hence T is one-to-one and onto by
Theorems 2.11 and 2.10.

(b)

Suppose that A = {u;,...,u;} is a lin-
early independent subset of R™, and let
€1,-- ., Cx be scalars such that

) [ul]B + -+ ck[uk]B =0.

Define T': R™ — R"™ by T(v) = [v]g for
all vin R™. Then T is a linear transfor-
mation by Exercise 103(a), and so

clT(ul) + -+ ckT(uk) =0
T(cyu; + -+ +cxug) = 0.

Therefore ciuy + --- + cxug is in the
null space of T. Since T is one-to-
one by Exercise 103(b), it follows that
ciu; + - -+ cgur = 0. Hence the lin-
ear independence of {uy,...,u;} yields

o = - = ¢, = 0. It follows that
{[u1]B, [u2]s, ..., [uk]g} is linearly inde-
pendent.

The proof of the converse is similar.
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Let B be the matrix whose columns are
the vectors in B. Since [v]g = B~'v, we
must find a nonzero vector v in R5 such
that

B v = 5v
B 'v—-5v=0
(B! - 5I5)v =0.

Because the reduced row echelon form
of B~ — 55 is

1000 0
0100 -2
0010 2,
000 1 -2
0000 O

the vector form of the general solution
of (B~! — .5Is)x =0 is

I 0
X2 2
3| = &5 -2
T4 2
s 1

So by taking

we have [v]p = .5v.

MATRIX REPRESENTATIONS
OF LINEAR OPERATORS

The standard matrix of T is

A=E ﬂ

11.

15.

19.

20.
22,

87

If B is the matrix whose columns are the
vectors in B, then, by Theorem 4.12, we
have

[Tls = B™'AB = E ﬂ .

The standard matrix of T is

0 40
A=11 0 2
0 -2 3

If B is the matrix whose columns are the
vectors in B, then, by Theorem 4.12, we
have

0 -19 28
[Tls=B'AB= |3 34 -47
3 23 -31

Let A be the standard matrix of T and
B be the matrix whose columns are the
vectors in B. Then, by Theorem 4.12,
we have

3 1 [10 -19
A= B[T|zB _[3 _4].

As in Exercise 11, if B is the matrix
whose columns are the vectors in B, then
the standard matrix of T is

2 5 10
B[T|gB~'=1|-6 1 -7
2 -2 0

False, a linear operator on R"™ is a lin-
ear transformation whose domain and
codomain both equal R"™.

True 21. True

False, the matrix representation of T
with respect to B is

[[T(b1)]s [T(b2)]s -+ [T(bn)ls].




88

23.
24.
25.
26.
27.
28.
29.
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31.

32.

33.
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38.
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True

False, [T)g = B~1AB.

False, [T)g = B~'AB.

True

False, T(v) = v for every vector v on L.
False, T(v) = v for every vector v on L.
False, there exists a basis B for R™ such
that [T)g = [(1) _(1)].

True

False, B consists of one vector on L and
one vector perpendicular to L.

False, an n X n matrix A is said to be
similar to an n x n matrix B if B =
P~LAP for some invertible matrix P.

True 35. True
True
False, [T)g[v]s = [T(V)]s-

True

34. True

Because T'(by) = b; + 4bg, the coordi-
nate vector of T'(b;) with respect to B is

[i] Similarly, the coordinate vector of

T'(b2) with respect to B is [_g] Hence
[T(b1)ls = [[T(b1)]s [T (b2)]s]
1 -3
- [4 0] ‘

Since T'(by) = Ob, — 5b, + 4b3, we have

0
[T(b1)]s = |:-5] :
4

Likewise
2
[T(b2)ls = { 0]
-7
and
3
[T'(b2)]s = [0} .
1
Hence
0o 2 3
Tg = l:—5 0 0:| .
4 -7 1

(a) Let by = H and by = BJ

Because T'(b;) = Ob; + 1b; and
T'(bz) = 3b; + Obg, we have

[T(b1)]s = [[T(b1)]s [T(b2)]s]
0 3
-3
(b) The standard matrix A of T sat-

sifies A = B[T|gB~! by Theorem
4.12. (Here B = [b; by].) Hence

LR YEY
-1,

(c) Because A is the standard matrix
of T', we have

-4l =7 1] [2)]
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51. Let

o

(a) Since T'(b;) = Oby — by + Obg, we

o)
O ==

have
0
T(b))s = |-1| .
0
Likewise
0
[T(b2)]s = |0
2
and
1
[T(b3)lg = 2] -
0
Hence
0 01
Tls=|-1 0 2.
0 20
(b) The standard matrix A of T is
given by

A= BI[T]|gB!

-1 2 1
=0 2 -1/,
1 0 -1

where B = [bl b2 b3]

(c) For any vector x in R3, we have

T(x) = Ax

-1 2 1 r
=10 2 -1 |z
1 0 -1 I3

Matrix Representations of Linear Operators 89

-y +2z9 + 23
= 219 — 13 .
Ty — &3

55. From Exercise 39, we have

(T]s = [}1 _g] .

Hence, by the comment preceding Ex-
ample 1, we have

[T(3by — 2bg)]s = [T]8[3b; — 2bs]s

me( 3[4

Therefore T(3b1 - 2b2) = 9b; + 12bs.

Equivalently, using the linear transfor-
mation properties of T', we have

T(3b; — 2by) = 3T(b;) — 2T (by)
= 3(b1 + 4b2) - 2(—-3b1)

59. Proceeding as in Exercise 55 and using

the answer to Exercise 43, we have
[T(2b; — by)]s = [T]5[2by — b2]s

[0
=|-5

2 3] 2
0 o] [-1
4 -7 1] | 0

[ -2
| 15
Therefore

T(2b; — by) = —2b; — 10b, + 15bs.

63. For any v in R", we have I(v) = v.

Hence if B = {by,b,,...,b,}, then
[l ={[I(b1)]ls --- [I(bn)]s]
=[[b1]s -+ [bsls]
=[e1 - ep]=1I,.
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Take

S )

Then b, lies on the line with equation
y = —2z, and by is perpendicular to this
line. Hence if B = {b1, b}, then

[T)s = [(1) _(1)] :

So the standard matrix of T is

pmsnt =23 7o),

where B = [b; bs]. Thus

T 3] — —.6.’E1 - .8.’52
T —.8z1 + 622 |

Take

e 2] wenf]

Then by lies on the line with equation
y = —3z, and bs, is perpendicular to this
line. Hence U(by) = by and U(bs) = 0,
so that for B = {by,b,}, we have

[Uls = [(1) g} :

It follows that the standard matrix of U

is
1 =3
-3 91

where B = [by by]. Therefore

U 3] _ .11‘1 - .3.’1)2
T9 - =3z, + 9xzq |’
We must determine a basis for R3 con-

sisting of two vectors in W and one vec-
tor perpendicular to W. Solving the

B[U]gB™! = [

equation defining W, we obtain

=4y — 3z
y free
z free.

Hence the vector form of this general so-

lution is
T [4 -3
1| + =2 of.
z L0 1

Yy 1=y
Thus .
4 -3
1{, O
0 1

1
is a basis for W. Also, the vector l:—4:| ,
3

whose components are the coefficients in
the equation defining W, is perpendicu-
lar to W. Therefore

4] [-3 1
B={11],]| of,|-4
0 1 3

is a basis for R® consisting of two vectors
in W and one vector perpendicular to
W. For every vector u in W, Ty (u) =
u, and for every vector v perpendicular
to W, Tw(v) = —v. Hence

10 0
Twlg= 10 1 of.
00 -1

Thus, if B is the matrix whose columns
are the vectors in B, then by Theorem
4.10, the standard matrix of Ty is

A = B[Tw]gB™!

L2 4 -3
=— | 4 -3 12|.
1Bl.3 19 4
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It follows that

.’171- I
Tw | |z2 =A |z
.’173_ I3

[ 12z, + 4z5 — 3z3
= — | 4z — 325 + 1223
L—3zl + 12z + 4z3

We proceed as in Exercise 75, using the

[HE

Then
.’L‘l-
TW Io
E3J
1 [ 192, + 4z2 + 8z3
= 51 4z, + 13z3 — 1623
_81‘1 - 16.’1)2 el 11.’1)3
Let

o[

(a) Since b; and by lie in W, we have
Uw(bl) = b1 and Uw(b2) = b2.
Moreover, since bs is perpendicular
to W, Uw(b3) =0.

(b) By definition, the columns of
[Uw]s are

[Uw (b1)]s = [b1]s = e,
[Uw (b2)]s = [b2]s = ey,

and
[Uw(bs)]s = [0]s = 0.

Therefore

[Uwls = [e1 ez 0]
00
= 1 0f.
b

(c) Let B = [b; b bs]. Then by The-
orem 4.12, the standard matrix of
Uw is

OO =

B[Uw]|sB™*

L [138 -2 3
== -2 1 .
o 06

3 6 5

(d) Using the preceding standard ma-
trix of Uw, we have

.’171T
Uw | |22
.’E3_

[ 1321 — 225 + 323 ]

= ﬁ —2x1 + 1023 + 623

L 3.’E1 + 6.’E2 + 5.’E3

. We proceed as in Exercise 81, using the

basis

-(H1)

Then
.’L‘l-‘
.’E3J
1 [ 34xq + 3xz9 + bx3
= 35 3z, + 26x5 — 15z3

_5.’E1 — 1522 + 10z3
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Let T be a linear operator on R", A be
the standard matrix of T, B be a ba-
sis for R™, and B be the matrix whose
columns are the vectors in B. Because
B is linearly independent, B is invertible
by the Invertible Matrix Theorem.

By Theorem 4.12, A = B[T|gB™'.
Hence if [T]g is invertible, then A is a
product of invertible matrices, and so A

is invertible by Theorem 2.2(b). Thus T gq

is invertible by Theorem 2.13.

Conversely, if T is invertible, then A is
invertible by Theorem 2.13. But, by
Theorem 4.12, [T]g = B~1AB, and so
[T)s is a product of invertible matri-
ces. Thus [T is invertible by Theorem
2.2(b).

Let A be the standard matrix of T and
B be the matrix whose columns are the
vectors in B. Then

[T]s = B~'AB

by Theorem 4.12. Since B and B! are
invertible, rank [T]z = rank A by Ex-
ercises 68 and 70 of Section 2.4. Be-
cause the range of T equals the column
space of A, the dimension of the range
of T equals the dimension of the col-
umn space of A, which is rank A. Thus
the dimension of the range of T equals
rank [T}z.

Let A and B be the matrices whose
columns are the vectors in 4 and B, re-
spectively, and let C be the standard
matrix of T. Then, by Theorem 4.12,

[T)4=A"1CA

and
[T]B = B~!CB.

103.

Solving the second equation for C, we
obtain C = B[T|gB~!. Hence
[T)a=A"1CA= A"Y(B[T|zgB™1)A
= (A"!B)[T|s(B~1A)
= (B™1A)"'T]s(B7"4)

by Theorem 2.2(b). Thus [T]4 and [T}g
are similar.

Consider column j of [T]g. Let
C1
[T (b))l =
Cn

Because the jth column of [T]p is
[T(b;)]s, if [T]s is an upper triangular
matrix, then ¢; = 0 for ¢ > j. Thus we
have

T(bj) = c1by +c2ba + -+ + ciby
=c1by + coba + - - + ¢;b;,

which is a linear combination of
by, ba,...,b;. Conversely, if T'(b;) is a
linear combination of by, bgy,...,b; for
each j, then the (,j)-entry of the ma-
trix [T]g equals O for ¢ > j. Hence [Tz
is an upper triangular matrix.

(a) Let B = [by bz bs by]. The stan-
dard matrices of T and U are

1 -2 0 O
A=10 03 o
0 2 0 -1
and
0 -1
C= -2 0

[e=]
SONO -
|
—
_ O W N
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respectively. So, by Theorem 2.12, that A is invertible and that the stan-
the standard matrix of UT is dard matrix of T~! is A~!. Hence, by
Theorems 4.12 and 2.2(b), we have

1 4 -2 -2
cA= |72 10 0 -3 [T-Ys=B'A'B

1 0 -1 o0 i1 A=l _ -1
3 —4 0 -1 “(B AB) —[T]B'

Thus, by Theorem 4.12, we have
CHAPTER 4 REVIEW

[T]s = B'AB
(11 5 13 1 1. True 2. True
|72 0 -5 =3 3. False, the null space of an m X n matrix
-8 -3 -9 0|’

is contained in R™.

4. False, the column space of an m x n ma-

[Uls=B~'CB trix is contained in R™.
("‘5 10 —38 -31 5. False, the row space of an m X n matrix
_ 2 -3 9 6 is contained in R".

6 —-10 27 17§’
—4 7 =25 -19

o

True 7. True

and
T B~1(CA)B 8. False, the range of every linear transfor-
B =

mation equals the column space of its

43 58 -21 —66 standard matrix.
| -8 -11 8 a7
928 —-34 21 53 |- 9. False, a nonzero subspace of R" has in-
28 36 —14 —44 finitely many bases.

10. False, every basis for a particular sub-

b) Fr a), we that .
(b) From (a), we see space contains the same number of vec-

[U]s[T]s = (B~1CB)(B~'AB) tors.
= BT1CI,AB 11. True 12. True 13. True
=B'(CA)B 14. True  15. True  16. True
= [UT]s.

17. False, the dimension of the null space of
107. We will show that [T = ([T]5)~". a matrix equals the nullity of the matrix.
By Theorem 4.12,
18. True
_ p-1
(Tls = B~ AB, 19. False, the dimension of the row space of

where A is the standard matrix of T" and a matrix equals the rank of the matrix.

B is the matrix whose columns are the

vectors in B. Recall from Theorem 2.13

20. False, consider B g]
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True 22. True

False, [T]s = B~'AB.

True 25. True

There are at most k vectors in a
linearly independent subset of V.
No conclusions can be drawn about
the values of £ and m in this case.
There are at least & vectors in a
generating set for V.

The reduced row echelon form of the
given matrix A is

10 3
0 1 -2
R= 00 O
0 0 O

(a) The null space of A consists of the
solutions of Ax = 0. The general
solution of this system is

I = ——3$3
9= 213
To free.

Hence the vector form of the gen-
eral solution of Ax =0 is

I -3
2| =T 2
T3 1
Thus
-3
2
1

is a basis for the null space of A.

The pivot columns of the given ma-
trix form a basis for its column
space. From R above, we see that

(b)

33.

37.

the pivot columns of the given ma-
trix are columns 1 and 2. Hence

1 2
-1 -1
21’11
1 4

is a basis for the column space of
the given matrix.

A basis for the row space of
the given matrix consists of the
nonzero rows in its reduced row
echelon form. From R above, we
see that this basis is

()

1 0
o, | 1
3| |[-2

The standard matrix of T is

0 1 -2
-1 3 1

A= 1 —4 1]’
2 -1 3

and its reduced row echelon form is
[el €2 e3].

(a) The set
0 1] [-2
-1 3 1
1|’ )-4)’ 1
21 [-1 3

of pivot columns of A is a basis for
the range of T'.

The only solution of Ax =0 is x =
0; so the null space of T is the zero
subspace.

(b)

Let B be the matrix whose columns are

the vectors in B.

(a) Since the reduced row echelon form
of B is I3, B is a linearly indepen-
dent subset of R3. Since B contains
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exactly 3 vectors, B is a basis for
R3 by Theorem 4.7.
(b) We have

SRR
=Fﬂ

(c) By Theorem 4.11, we have
1
[wlg =B 'w=|-8].

—6

(a) Let B be the matrix whose columns
are the vectors in B. Then

[T'(b1)]s = B1(T'(by))
-t
[T(b2)]s = B~ (T(b2))
g
[Tl = [[T(by)]s [T(b2)]s]
-3 1)

(b) Let A denote the standard matrix
of T. By Theorem 4.12, we have

and

Therefore

A= B[T)gB™*

ol v

Chapter 4 Chapter Review 95
(c) Using the result of (b), we have
o)=L
T2 I

_ —71:1 - 51:2
T | —14zy — 9z2 |

/
. Let v = [z] and [v]g = [;,], where

B is the basis obtained by rotating the
vectors in the standard basis by 120°.
As in Section 4.4, we have

[?ﬂ = [Vls = (Ai200) '

1 B,
- T, _ 2 2
= (Ai200)" v = - [y]
2 2
Hence
z = —%z+%—§y
y=-Lz- iy

Rewrite the given equation in the form
9(z")2 + 4(y')? = 36,

and substitute the expressions above for
z' and y’. The resulting equation is

21 , 5V3 31,
-2

2 —zy + Ty = 36,
that is,

2122 — 10v/3zy + 31y° = 144,

)

Then b; lies on the line with equation
y = —%w, and by is perpendicular to
this line. Hence if B = {b;, bz}, then

[T]s = [(1) _(1)] :

. Take
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So the standard matrix of T is

1 [ -5 —12
— -1 _
A=B[TsB™ = [_12 5],

where B = [b; bg]. Thus

— _1_ - 5271 — 12272
T 13| —12z7 + 5za|”

See the solution to Exercise 107 in Sec-
tion 4.5.

CHAPTER 4 MATLAB EXERCISES

(a) For the given vector v, the equation
Ax = v is consistent. Thus v is in
the column space of A.

(b) For the given vector v, the equation
Ax = v is not consistent. Thus v is
not in the column space of A.

(c) For the given vector v, the equation
Ax = v is not consistent. Thus v is
not in the column space of A.

(d) For the given vector v, the equation
Ax = v is consistent. Thus v is in
the column space of A.

5. Let b; (1 < i < 6) denote the ith vector

in B.

(a) B is a linearly independent set of 6
vectors from RS.

(b) For each vector v, the coefficients
that express v as a linear combi-
nation of the vectors in B are the
components of [v]g = B~1v, where
B is the matrix whose columns are
the vectors in B. In this manner,
we find that

(i) 2b; — b2 — 3bz 4+ 2bs — bg
(ii) b; — by + bz + 2b, — 3bs + bg
(iii) —3by + b3z + 2by — 4bs
(c) From (b), we obtain the following
coordinate vectors.

9. Let

2 1 0
-1 -1 -3
~ | -3 .. 1 1
i) 0 (i) 9 (iii) 9
2 -3 -4
-1 | 1 L 0,
1 -1
3 0
by =|-1{, b= 1f,
0 2
2 1
and
0
2
b3= 0
2
3

Form the matrix
A=[b1 b2 b3 €] €3 €3 €y e5],

where e; denotes the ith standard vec-
tor in R®. From the reduced row echelon
form of A, we see that the pivot columns
of A are columns 1, 2, 3, 4, and 6. Thus
B = {b;,bs,bs,e;,e3} is a linearly in-
dependent set of 5 vectors from RS, so
that B is a basis for R®. Let B be the
matrix whose columns are the vectors in
B and

C=[0 00 € e3].

Then, as explained in Exercise 98 of Sec-
tion 4.5 and Exercise 8 in the Chapter 4
MATLAB exercises, the matrix
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A=CB7!
1 00 075 —0.50
0 00 000 0.00
=10 0 1 -075 050
0 00 000 0.00
0 00 000 0.00

has the property that W = Null A.
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5.1

13.

Eigenvalues,
Eigenvectors, and
Diagonalization

EIGENVALUES AND
EIGENVECTORS

The eigenvalue is 6 because

L= ] ol e

Thefigenvalue is —2 because

i ) bl - ] -

1
The eigenvalue is —4 because

Let A denote the given matrix. The re-
duced row echelon form of A — 313 is

b o)

98

and so

1)

is a basis for the eigenspace of A corre-
sponding to eigenvalue 3.

Let A denote the given matrix. The re-
duced row echelon form of A — 313 is

ii
L)

is a basis for the eigenspace of A corre-
sponding to eigenvalue 3.

and so

. Let A denote the given matrix. The re-

duced row echelon form of A—(-1)I5 =
A+ I3 is

=
O O wi=
OO wio




25.

29.

33.

37.

and so

-1 2
31,10
0 3
is a basis for the eigenspace correspond-

ing to eigenvalue —1.

The eigenvalue is 6 because

r(1E) - =[]

The eigenvalue is —3 because

3 —9 3
T( 12| | =|-6| ==312
1 ~3 1

The standard matrix of T is

1 -2
a=ls T
and the reduced row echelon form of
A (——2)[2 =A+2Lis

4

Thus the eigenvectors corresponding to
eigenvalue —2 are the nonzero solutions
of x; — %xz = 0. So a basis for the
eigenspace of T' corresponding to eigen-

T m

The étandard matrix of T is

1 -1 -3
-3 -1 -9/,
1 1 5

and the reduced row echelon form of
A— 2] 3 is

A=

113
0 0 0f.
0 0 0

5.1 Eigenvalues and Eigenvectors 99

(Kl

is a basis for the eigenspace correspond-
ing to eigenvalue 2.

Hence

41. False, if Av = A\v for some nonzero vec-
tor v, then A is an eigenvalue of A.

42. False, if Av = Av for some nonzero vec-
tor v, then v is an eigenvector of A.

43. True 44. True 45. True

46. False, the eiéenspace of A correspond-
ing to eigenvalue A is the null space of
A— M.

47. True 48. True

49. False, the linear operator on R? that ro-

tates a vector by 90° has no real eigen-
values. (See pages 298-299.)

. True

. False, the exception is the zero vector.

. True 53. True 54. True

. False, the exception is ¢ = 0.

. True

. False,if A=B=1,,then A =1is an
eigenvalue of I, but not of A+ B = 2I,,.

. True

. False,if A=B =2I,,then A=2is an

eigenvalue of 2I,, but not of AB = 41,,.

. True

. Let A be the eigenvalue of A correspond-

ing to v. Then v # 0, and

A(ev) = ¢(Av) = ¢(Av) = Aev).
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65.

69.

73.

77.

81.
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The eigenspace of A corresponding to 0 5.2

is the set of vectors v such that Av =
Ov, that is, such that Av = 0. So the
eigenspace corresponding to 0 is the null
space of A.

If v is an eigenvector of A with A as the
corresponding eigenvalue, then Av =
Av. So

A?v = A(AV) = A(\Ww) = A\(Av)
= A(\v) = A\2v.

Hence A\? is an eigenvalue of AZ.

Suppose that ¢;v; + cove = 0 for some
scalars ¢; and ¢y. Then

0 =T(0) = T(cyvy + cava)
=ciAivi + vy
= A (—cav2) + c2Agvy
= (A2 — A1)cave.

Since A1 # A2 and va # 0, we have cg =
0. Thus we also have ¢; = 0, and so
{v1,vz2} is linearly independent.

The eigenvalues of A are —2.7, 2.3,
and —-1.1 (with multiplicity 2), but the
eigenvalues of 3A are —8.1, 6.9, and
—3.3 (with multiplicity 2).

Yes, the eigenvalues of AT are the same
as those of A. Eigenvectors of AT are
found by solving (AT — Al4)x = O for
each eigenvalue A. Four eigenvectors of
AT are

-1 2 1 0
1 lo] |—1 -1
ol 13|] 2] @d |
1| |3 0 1

THE CHARACTERISTIC
POLYNOMIAL

The eigenvalues of the given matrix A
are the roots of its characteristic poly-
nomial, which are 5 and 6. The reduced
row echelon form of A — 515 is

1 15

0 0’
and so the vector form of the general
solution of (A —5I2)x =0 is

E)-nft]
()« {9)

is a basis for the eigenspace of A cor-
responding to eigenvalue 5. Also, the
reduced row echelon form of A — 61 is

11

0 0}
and so the vector form of the general
solution of (A — 6I3)x =0 is .

===
{3}

is a basis for the eigenspace of A corre-
sponding to eigenvalue 6.

So

Thus

The eigenvalues of the given matrix A
are the roots of its characteristic poly-
nomial, which are —3 and 2. Since the
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reduced row echelon form of the matrix
A-(-3)3=A+31is

1 0 -1
01 -1f,
00 0

we see as in Exercise 1 that a basis for
the eigenspace corresponding to eigen-
value —3 is

1
1
1

Likewise, the reduced row echelon form
of A—2I3is

1 0 -1
01 ol,
00 0
and so
1
0
1

is a basis for the eigenspace correspond-
ing to eigenvalue 2.

Proceeding as in Exercises 1 and 5, we
see that the eigenvalues of the given ma-
trix A are —3, —2, and 1. Bases for the

-1
respective eigenspaces are 1] 7,
' 1
-1 1
1| 2, and 0
0 1

The characteristic polynomial of the
given matrix A is
3
—4-—t

= (t—1)(t+4).

det(A — tI;) = det [1 0— t

17.

21.
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So the eigenvalues of A are 1 and —4.
Proceeding as in Exercises 1 and 5,
we see that bases for the respective
eigenspaces are

ol = 3]}

The characteristic polynomial of the
given matrix A is

det(A — tl3)
-7—t 5 4
= det 0 -3 0
-8 9 5—t
=—(t—1)(t+3)2
Proceeding as in Exercises 1 and 5, we

see that bases for the eigenspaces corre-
sponding to eigenvalues 1 and —3 are

1 1
0 and 0
2 1

The characteristic polynomial of the
given matrix A is

det(A — tIs)
—4—t 0 2
=det| 2 4-t -8
2 0 —4-t

=—(t—4)(t+2)(¢t+6).
Proceeding as in Exercises 1 and 5, we

see that bases for the eigenspaces corre-
sponding to eigenvalues 4, —2, and —6

are
0 1
1 5,41
0 1 1
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The standard matrix of T is
-1 6

=[5 )
The eigenvalues of T are the roots of its
characteristic polynomial, which are 5
and 7. The eigenvectors of T are the
same as the eigenvectors of A; so we
must find bases for the null spaces of
A —5I, and A — 7I;. As in Exercise

1, we obtain the following bases for the
eigenspaces corresponding to 5 and 7:

(B} = {3

The standard matrix of T is 41.
0 -2 4
A=|-3 1 3,
-1 1 5 45,

and its characteristic polynomial is
det(A —tl3) = —(t — 4)%(t + 2).

Bases for the eigenspaces corresponding
to 4 and —2 are

1 1
0 and 1
1 0

The standard matrix of T is
-4 1
A= 4)
and its characteristic polynomial is

det(A — tI3) = (t + 2)(t + 3).

Bases for the eigenspaces corresponding
to —2 and —3 are

(B} = {0}

37. The standard matrix of T is

7 —-10 0
5 -8 0],
-1 1 2

and its characteristic polynomial is
— 3+ +8t—12=—(t+3)(t — 2)2.

So the eigenvalues of T' are —3 and 2.
As in Exercise 25, we find the following
bases for the eigenspaces:

) = {8}

The characteristic polynomial of the
given matrix is t2 — 3t + 10, which has
no (real) roots.

Let A denote this matrix. The charac-
teristic polynomial of A is t2 —2t+5. So
the eigenvalues of A, which are the roots
of this polynomial, are 1 — 2¢ and 14 2i.
The vector form of the general solution
of (A—(1-2i)I)x=0is

HESH
() = {1

is a basis for the eigenspace of A corre-
sponding to the eigenvalue 1 — 2i.

Likewise, the vector form of the general
solution of (A — (1 + 2i)I;)x =0 is

-]
{0 = {0
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is a basis for the eigenspace of A corre-
sponding to the eigenvalue 1 + 2.

The given matrix is upper triangular; so
its eigenvalues are its diagonal entries 24,
4, and 1. Since the reduced row echelon

form of A — (2i)I5 is
010
00 1,
0 00

a basis for the eigenspace corresponding
to the eigenvalue 2: is

1
0

Since the reduced row echelon form of
A — A4l 3 is

1 -3 0

0o 0 1],
0 0 O

a basis for the eigenspace corresponding
to the eigenvalue 4 is

i
0

Since the reduced row echelon form of
A-1T 3 is

1 0 2
01 if,
00 O

a basis for the eigenspace corresponding
to the eigenvalue 1 is

2
1
i

53.

54.
56.
57.
58.
59.

60.

61.

62.
63.

64.
65.
66.

67.
68.

69.
71.
72.
73.
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False, consider the matrix A in Exam-

ple 1 and B = [‘g g] which both

have (t+ 3)(t — 5) as their characteristic
polynomial.

True 55. True
False, see page 303.
False, see page 303.
False, consider I,,.

False, the rotation matrix Agge has no
eigenvectors in R2.
True

-1
0
polynomial of #2 + 1.

False, [(1) has a characteristic

True

False, consider 41I3; here 4 is an eigen-
value of multiplicity 3.

False, see Example 4.
True

False, consider the matrix given in Ex-
ercise 49.

True

False, see Example 3 of a matrix with
no (real) eigenvalues.

True 70. True

False, it has the eigenvalue 0.
True

If the reduced row echelon form of
A—cly is I, then (A—cl,)x = 0 has no
solutions except 0. Thus there can be no
eigenvector corresponding to ¢, and so ¢
is not an eigenvalue of A.
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(a) By Theorem 5.1, the eigenvalue 5

must have a multiplicity of 3 or

more. In addition, the eigenvalue

—9 must have a multiplicity of 1

or more. Since A is a 4 X 4 ma-

trix, the sum of the multiplicities

of its two eigenvalues must be 4.

Hence eigenvalue 5 must have mul-

tiplicity 3, and eigenvalue —9 must

have multiplicity 1. Thus the char-
acteristic polynomial of A must be

(t—5)3(t+9).

By Theorem 5.1, the eigenvalue —9

must have a multiplicity of 1 or

more. As in (a), the sum of the
multiplicities of the two eigenvalues

of A must be 4. Since eigenvalue 5

must have a multiplicity of at least

one, there are three possibilities:

(i) Eigenvalue 5 has multiplicity
1, and eigenvalue —9 has mul-
tiplicity 3, in which case the
characteristic polynomial of A
is (t —5)(t+9)3.

(ii) Eigenvalue 5 has multiplicity
2, and eigenvalue —9 has mul-
tiplicity 2, in which case the
characteristic polynomial of A
is (t —5)2(t + 9)%.

(iii) Eigenvalue 5 has multiplicity
3, and eigenvalue —9 has mul-
tiplicity 1, in which case the
characteristic polynomial of A
is (t—5)3(t +9).

(¢) If dimW; = 2, then eigenvalue 5
must have a multiplicity of 2 or

more. This leads to the two cases
described in (ii) and (iii) of (b).

Matrix A has eigenvalues of 1 and
2, and

= {7}

85.

are bases for the corresponding
eigenspaces. :
Matrix 3A has eigenvalues of 3 and
6, and

R ()

are bases for the corresponding
eigenspaces.

(¢) Matrix 5A has eigenvalues of 5 and
10, and

{0} = {0)

are bases for the corresponding
eigenspaces.

If ¢ is a nonzero scalar, then v is an
eigenvector of B if and only if v is
an eigenvector of ¢B because

(eB)v = ¢(Bv) = ¢(Av) = (eA)v.

If ¢ is a nonzero scalar, then A is an
eigenvalue of B if and only if ¢ is
an eigenvalue of cB because

(e)

(eB)v = ¢(Bv) = ¢(Av) = (eA)v.

a b
4= d]
then the characteristic polynomial of A
18

t2 — (a + o)t + (ac — b?).

Since the discriminant of this quadratic
polynomial is

(a—c)?+4p* >0,

A has real eigenvalues.
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5.3

From the result of Exercise 88, we ex-
pect that the matrix

0 00 5
100 -7
01 0 -23
0 01 11

might have the desired characteristic
polynomial, and it does!

DIAGONALIZATION
OF MATRICES

. The eigenvalues of A are 4 and 5. Eigen-

vectors corresponding to eigenvalue 4
are solutions of (A — 4I2)x = 0. Since
the reduced row echelon form of A —41I5

is
1 2
0 0y’
3

these solutions have the form

==
{7}

is a basis for the eigenspace of A corre-
sponding to eigenvalue 4. Likewise, the
reduced row echelon form of A — 515 is

b o)
{7}

is a basis for the eigenspace of A corre-
sponding to eigenvalue 5. Let P be the
matrix whose columns are the vectors in
the bases for the eigenspaces, and let D
be the diagonal matrix whose diagonal

Hence

and so
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entries are the corresponding eigenval-
ues:

[

Then A = PDP1,

4 0
and D—[O 5].

. The eigenvalues of A are —5, 2, and

3. Eigenvectors corresponding to eigen-
value —5 are solutions of (A+5I3)x = 0,
and so a basis for this eigenspace is

0
1
1

Eigenvectors corresponding to eigen-
value 2 are solutions of (A — 2I3)x = 0,
and so a basis for this eigenspace is

-1 -2
% or 3
1 2

Eigenvectors corresponding to -eigen-
value 3 are solutions of (A — 3I3)x =0,
and so a basis for this eigenspace is

-1
1
1
Thus if we take
0 -2 -1
P=]1 3 1
1 1
and
-5 0 0
p=| 0 2 of,
0 0 3

then A = PDP~ L.

The eigenvalues of A are 5 (with mul-
tiplicity 1) and 3 (with multiplicity
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2). Eigenvectors corresponding to eigen-
value 5 are solutions of (A — 5I3)x = 0,
and so a basis for this eigenspace is

-1
or 4
2

— DON=

Eigenvectors corresponding to eigen-
value 3 are solutions of (A — 3I3)x =0,
and so a basis for this eigenspace is

-1 1
1],10
0 1
Thus if we take
-1 -1 1
P=] 4 10
2 01
and
5 00
D=0 3 0],
0 0 3

then A= PDP™1,
The characteristic polynomial of A is
2 -2t +1=(t-1)>~%

Since the rank of A — I, is 1, the
eigenspace of A corresponding to eigen-
value 1 is 1-dimensional. Hence A is not
diagonalizable because the eigenvalue 1
has multiplicity 2 and its eigenspace is
1-dimensional.

Since the given matrix is upper triangu-
lar, its eigenvalues are its diagonal en-
tries, which are —1, —3, and 2. Bases
for the corresponding eigenspaces are

1 -1 -1

1 , and 1 ,
0 0 5

=

21.

25.

respectively. Hence we may take

1 -1 -1
P=10 1 1
0 0 5
and
-1 0 0
D= 0 -3 0
0 0 2

The characteristic polynomial of A is
t2 — 4t + 5, and hence the eigenvalues
of A are 2 — 7 and 2 + i. Bases for the
corresponding eigenspaces are

() = L

respectively. Hence we may take
—i 1
P-[1

2—i 0
D'[ 0 2+i]'

and

The characteristic polynomial of A is

—(t? -2t +2)(t - 2)
=—(t—1—1d)(t—1+i)(t—2),
and so the eigenvalues of A are 1 + i,

1—¢, and 2. Bases for the corresponding
eigenspaces are

—1 ~1
2+i| %, 2-i Y,
1 1
1
-1 ,
1




29.
30.
33.

34.

35.

36.
37.
38.

39.
40.

41.

42.
44.
45.

respectively. Hence we may take
-1 -1 1
P=124+7 2—-7 -1
1 1 1
and
1+¢ 0 0O
D=1 0 1-i 0
0 0 2
False, see Example 1.
True 31. True 32. True
False, the eigenvalues of A may occur in

any sequence as the diagonal entries of
D.

False, if an n X n matrix has n linearly
independent eigenvectors, then it is di-
agonalizable.

False, I, is diagonalizable and has only
one eigenvalue.

True
False, see Example 1.

False, for A to be diagonalizable, its
characteristic polynomial must also fac-
tor as a product of linear factors.

True

False, the dimension of the eigenspace
corresponding to A is the nullity of
A= Al,.

False, for example, I, has only one
eigenvalue, namely 1.
True 43. True
False, P"1 AP is a diagonal matrix.

False, for example, any nonzero multiple
of an eigenvector is an eigenvector.

46.

47.

48.

49.

53.

57.

61.
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True

False, this is true only if the multiplicity
of each eigenvalue is equal to the dimen-
sion of the corresponding eigenspace.

False, this is true only if the sum of the
multiplicities of the eigenvalues is equal
to the number of columns in A.

The first boxed statement on page 318
implies that the matrix is diagonaliz-
able.

The matrix is diagonalizable if and only
if the eigenspace corresponding to the
eigenvalue —3 is 4-dimensional.

We have A = PDP~!, where

1 2 4 0
P=[1 1] and D:[O 3}.

Thus, as in the example on page 314, we
have

A* = PDFP™!

1 2] [4* o][-1 2
1o i1 -1
4% 2.3%1[-1 2
T4F 0 31 -1

_[2-3k—4% 2.48-2.3F
T 3k-4 2.4k _3F |°

We have A = PDP~!, where

-1 0 -2
P= 1 0 1
01 0
and
5 0 0
D=10 5 0
0 01
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Thus, as in Exercise 57, we have

AF = ppFp-t

-58+2 -2.5F4+2 0
=|5F-1 2.5°-1 0
0 0 5k

Since there is only one eigenvalue (with
multiplicity 1), this matrix is not diago-
nalizable for any scalar c.

It follows from the first boxed statement
on page 318 that the given matrix is
diagonalizable if ¢ # —2 and ¢ # -1.
Thus we must check only the values of
—2 and —1. For ¢ = -2, we see that
—~2 is an eigenvalue of multiplicity 2, but
the reduced row echelon form of A+215,
which is

1 00

0 0 1},

0 00
has rank 2. Hence A is not diagonal-
izable if ¢ = —2. Likewise, for ¢ = -1,

the eigenvalue —1 has multiplicity 2, but
the reduced row echelon form of A + I3,
which is
1 0 0
0 01
0 0 0
has rank 2. Thus A is also not diagonal-
izable if ¢ = ~1.

b

The desired matrix A satisfies A
PDP-1, where

P=|i 5] wa 0=[7 Y

1 3 0 5

(Here the columns of P are the given
eigenvectors of A, and the diagonal en-
tries of D are the corresponding eigen-
values.) Thus

-7 4
A= [—12 9] '

77. The matrices

00 o 1
Az[o 1] andB—[0 _1]

are diagonalizable by the first boxed re-
sult on page 318, but their sum is the
matrix in Example 1 that is not diago-
nalizable.

Let A = PDP~!, where D is a diago-
nal matrix and P is an invertible matrix.
Then for Q = (PT)™!, we have

81.

AT — (PDP—I)T — (P—I)TDTPT
= (PT)"'DPT =QDQ ",

and so AT is also diagonalizable,

85. (a) Suppose that A is diagonalizable.
Then A = QDQ~* for some diago-
nal matrix D and invertible matrix

Q. Since

B=PAP ! = P(QDQ~!)P-1
= (PQ)D(PQ)™",

B is also diagonalizable. The proof
of the converse is similar.

The eigenvalues of A and B are
equal. See the box on page 307.
We claim that v is an eigenvector of
A if and only if Pv is an eigenvector
of B. For if Av = A\v, then

B(Pv) = (PAP1)(Pv)
= PAv = P(Av) = A(Pv).

Conversely, if B(Pv) = M(Pv),
then

Av = (P"'BP)v
= P~}(APv) = Av.




89.

93.

5.4

(a) Let A= PDP~!, where D is a di-
agonal matrix and P is an invert-
ible matrix. By the hint, the trace
of A= PDP™! equals the trace of
PP-1D = D, which is the sum of
the eigenvalues of A.
In p(t), the characteristic polyno-
mial of A, the coefficient of t" ! is
D™= =A== An)

= (—1)n+1()\1 + X+ +)\n),
which by (a) equals (—1)""! times
the trace of A.
The constant term of p(t) is
(=D)™(=A1)(=A2)--- (=Ap), that
is, Mg -+ An = det D = det A.

(b)

(c)

The characteristic polynomial of the
given matrix is —(t—2)%(¢~1)3, and thus
the eigenvalue 1 has multiplicity 3. The
rank of the matrix A— 115 is 3, however,
and so the eigenspace corresponding to
this eigenvalue has dimension 2. There-
fore the matrix is not diagonalizable by
the test on page 319.

DIAGONALIZATION OF
LINEAR OPERATORS

The standard matrix of T is

0 -1 -2
A=|0 2 0f.
1 1 3

If B is the matrix whose columns are the
vectors in B, then

0

ol .

1

Since [T)g is not a diagonal matrix, the
basis B does not consist of eigenvectors
of T.

2 1
[Tls =B 'AB= |0 2
0 0

5.4 Diagonalization of Linear Operators

109

7. The standard matrix of T is

11.

15.

-3 5 -
A=\ 2 -3 2].
2 -5 4

If B is the matrix whose columns are the
vectors in B, then

2 0 0
Tls=B"'AB= |0 -1 0
0 0 -3

Since [T is a diagonal matrix, the basis
B consists of eigenvectors of T'.

The standard matrix of T is
7 -5

A= [10 —8] ’
A basis for the eigenspace of T corre-
sponding to the eigenvalue —3 can be
obtained by solving (A4 + 3L)x = 0,
and a basis for the eigenspace of T cor-
responding to eigenvalue 2 can be ob-

tained by solving (A — 2I3)x = 0. The
resulting bases are

e () = w- ()

Combining these two sets produces a ba-
sis for R? consisting of eigenvectors of T'.

The standard matrix of T is

-1 -1 0
A=1] 0 -1 0
1 1 0

Since the reduced row echelon form of

A+ 1 is

S =

0
1
0

o O =
o
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the dimension of the eigenspace of T cor-
responding to eigenvalue —1 is

3—rank(A+ I3) =1.

But the multiplicity of the eigenvalue
—1is 2, so that T is not diagonalizable.
That is, there is no basis for R3 consist-
ing of eigenvectors of T

The eigenvalues of T are —3 (with mul-
tiplicity 1) and 1 (with multiplicity 3).
By solving (A + 3I4)x = 0, we obtain
the basis

—_

0

for the eigenspace corresponding to
eigenvalue —3. Similarly, by solving
(A — 1I4)x = 0, we obtain the basis

-1 1 -1
2 0 0
o]’121°'| ©O
0 0 2

for the eigenspace corresponding to
eigenvalue 1. Combining the bases for
these two eigenspaces produces a basis

1 -1 1 -1
0 2 0 0
1{’]1 01’(2]'j O
0 0 0 2

for R* consisting of eigenvectors of 7.

The standard matrix of T is

]

and its characteristic polynomial is

t2 4 5t — 6 = (t — 1)(t +6). As in Exer- 30-

cise 11, we find that

so{[) v s} w

27.

29.

are bases for the eigenspaces of T cor-
responding to the eigenvalues —6 and 1,
respectively. Combining these two sets
produces a basis B for R? consisting of
eigenvectors of T', and so

[Tls = [(1) _g]

is a diagonal matrix.

The standard matrix of T is

10 0
-1 1 -1},
00 1

and its characteristic polynomial is
—3 4+ 32 -3t +1=—(t— 1)

Since the reduced row echelon form of
A— I3 is

101
0 0 of,
0 00

the dimension of the eigenspace of T cor-
responding to eigenvalue 1 is

3 —rank (A - I3) =2.

Because this dimension does not equal
the multiplicity of the eigenvalue 1, T
is not diagonalizable. That is, there is
no basis B for R3 such that [T]z is a
diagonal matrix.

False, its standard matrix is diagonaliz-
able, that is, similar to a diagonal ma-
trix.

False, the linear operator on R? that ro-
tates a vector by 90° is not diagonaliz-
able.

True




32.

33.

34.

37.

38.

39.

40.

41.

42.

43.

44.

45.

48,

51.

False, B can be any basis for R™ consist-
ing of eigenvectors of T'.

False, the eigenvalues of T' may occur in
any sequence as the diagonal entries of

D.

True 35. True 36. True

True

False, in addition, the multiplicity of
each eigenvaue must equal the dimen-
sion of the corresponding eigenspace.

True

False, in addition, the sum of the mul-
tiplicities of the eigenvalues must equal
n.

False, it is an eigenvector corresponding
to the eigenvalue 1.

False, it is an eigenvector corresponding
to the eigenvalue —1.

True

False, a linear operator on R™ may have
no eigenvalues.

True 46. True 47. True

False, this statement is true only when
T is diagonalizable.

The standard matrix of T is

c 0 0
A=|-1 -3 -1],
-8 1 -5
and so
c+4 0 0
A+4lz =] -1 1 -1
-8 1 -1

5.4 Diagonalization of Linear Operators
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Because the last two rows of A+ 413 are
linearly independent, the rank of A+413
is at least 2. Hence the dimension of the
eigenspace of T corresponding to eigen-
value —4 is 1. Since this dimension does
not equal the multiplicity of the eigen-
value —4, T is not diagonalizable for any
scalar c.

The only real eigenvalue of T is ¢, and
its mutiplicity is 1. Thus T is not diag-
onalizable for any scalar c.

The vector form of the general solution
of the equation x +y+ 2 =01is

x -1 -1
yl=y| 1] +2]| O
z 0 1
Hence
-1 -1
11,1 0O
0 1

is a basis for W, the eigenspace of Tw
corresponding to eigenvalue 1. As on
page 329, the vector

1
1
1

whose components are the coefficients of
the equation « + y + z = 0, is normal
to W, and so is an eigenvector of Tw
corresponding to eigenvalue —1. Thus

-1] [-1] [1
B= 1|, of, |1
0 1] |1

is a basis for R3 consisting of eigenvec-
tors of Tw. Hence

Twls =

SO =
S = O
(=]
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Let B be the matrix whose columns are T
the vectors in B. Then the standard ma- Tw ) =
trix of Tw is T3
1 441, — 8xg9 + Sz3
A= B[Tw]sB™! 25 | 801 — 1922 + 40z3
1 1 =2 -2 5x1 + 40x5 + 20z3
-3 -2 1 -2 67. (a) Let {vi1,v2} be a basis for W and
-2 -2 1 vz be a nonzero vector perpendic-
Theref ular to W. Then B = {vi,vs,Vvs}
eretore is a basis for R3. Furthermore,
3 T Uw(v1) = v1, Uw(vz) = v, and
Tw | |z2| | = A |z Uw(vs) =0. So
T T
; : 10 0
_1 2961 P gma Uwls=1{0 1 0
=3\ Ty + To — 23 . 00 0

—2z1 — 2x9 + 3
(b) Since Tw(VI) =V, Tw(V2) = Vo,
As in the solution to Exercise 59, we and Ty (v3) = —vs, we have
choose a basis

10 O
8] 5 1 Twls=10 1 0

B= 1|, lo],| 8 00 -1
of (1] |-5

() 3(Twls +Is)

1 0 0 1 0 0
01 Of+(0 1 O
0 0 -1 0 0 1

for R3 consisting of eigenvectors of Ty .

Here the first two vectors lie in the

plane with equation =z + 8y — 52 = 0 =3 <

and the third vector is perpendicular to

this plane. Let B be the matrix whose 1
0
0

00
columns are the vectors in B. Then the — 1 0| =[Uwls
standard matrix of Ty is 0 0
A = B[Tw]gB™! (d) Let I denote the identity operator
on R3z. Then [I|p = I3, and hence
1 4 -8 5 )
=—|-8 -19 40
) U = —([Twis + I
51 - 40 2 [Uwls = 5((Twls + [I]5)
1
where = 5([TW + I).
1 0 0
Twls = |0 1 So Uw = (Tw + I). Therefore
00

-1 zy
UW )
is as in Exercise 59. Thus 3




71.

75.

79.

Ty — 2x9 — 213

=% % —21131 +1L'2—2CII3
—2x1 — 229 + 3

Ty

+1 |z

2 2

T3

21 — T2 — I3
=1 |-z + 22— x3].
—CIJ1—$2+2CII3

By Exercise 67(c) and the answer to Ex-
ercise 63, we have

Uw (x) = 3(Tw + I)(x)

891 — 8zo + bdzs
—8x; + 26z + 403
5z; + 40z5 + 65x3

T 90

We combine (a) and (b). Let B =
{u,v,w}. Observe that T(u) = u,
T(v) = v, and T(w) = 0. Hence u and
v are eigenvectors of T' with correspond-
ing eigenvalue 1, and w is an eigenvec-
tor of T' with corresponding eigenvalue
0. Consequently, {u,v} is a basis for
the eigenspace of T corresponding to
the eigenvalue 1, and {w} is a basis for
the eigenspace of T' corresponding to the
eigenvalue 0. It also follows that T is di-
agonalizable because there is a basis for
R3 consisting of eigenvectors of T'.

Let ¢ be any scalar. If v is an eigen-
vector of T' corresponding to eigenvalue
A, then it is also an eigenvector of cT
corresponding to eigenvalue A, because

cT(v) = ¢(T(v)) = c(Av) = (cA)v.

Thus if B is a basis for R"™ consisting of
eigenvectors of T', then B is also a basis
for R™ consisting of eigenvectors of ¢T'
for any scalar c.

83.

5.5

10.
11.

5.5 Applications of Eigenvalues 113

Let U be a diagonalizable linear op-
erator on R" having only nonnegative
eigenvalues, and let B be a basis for R"
consisting of eigenvectors of U. If C is
the standard matrix of U and B is the
matrix whose columns are the vectors in
B, then [U]g = B7'CB. Let A be the
diagonal matrix whose entries are the
square roots of the entries of the diag-
onal matrix [U]g. Then A% = [U]g, and
80

C = B[U]gB™! = BA?B™!
= (BAB™1)%

So if T is the matrix transformation in-
duced by BAB™!, then T is a square
root of U.

APPLICATIONS
OF EIGENVALUES

False, the column sums of the transition
matrix of a Markov chain are all 1.

False, see the matrix A on page 334.

True
. 0 1
False, consider A = 1 O] and p =
.8
2(
True 6. True 7. True
False, the general solution of ¢/ = ky is
y = ceFt.

False, the change of variable y = Pz
transforms y’ = Ay into z’ = Dz.

True

False, the solution is y = Pz.
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True

No, for the given transition matrix A,
the second column of A equals e, for
every positive integer k. Thus the (1, 2)-
entry of A* is always zero.

No, the (1,2)-entry of A* is zero for ev-
ery k.

36 05 .08 .06

. |08 .25 .10 .18
Yes, A= 194 45 72 4| Dasmo

32 25 .10 .72

Zero entries.

A steady-state vector is a probability
vector that is also an eigenvector cor-
responding to eigenvalue 1. We begin
by finding the eigenvectors correspond-
ing to eigenvalue 1. Since the reduced
row echelon form of A — 113 is

1 0 -5
01 -5/,
00 0

a basis for the eigenspace corresponding
to eigenvalue 1 is

1
1
2

Thus the eigenvectors corresponding to
eigenvalue 1 have the form

1 c
cjlj=| ¢
2 2¢

We seek a vector of this form that is also
a probability vector, that is, such that

c+c+2c=1.

25.

29.

So ¢ = .25, and the steady-state vector

is
.25

.25
.50

As in Exercise 23, the eigenvectors cor-
responding to eigenvalue 1 are multiples
1

31. The desired steady-state vector
2

is the multiple whose components sum
to 1, that is, the vector

of

1 1
5 3
2

(a) The two states of this Markov chain
are buying a root beer float (F') and
buying a chocolate sundae (S). A
transition matrix for this Markov

chain is
Last visit
F S
... F|[25 5
Next visit S [‘75 .5] = A.

Note that the (1,2)-entry and the
(2, 1)-entry of A can be determined
from the condition that each col-
umn sum in A must be 1.

If Alison bought a sundae on her
next-to-last visit, we can take

o= 3]

Then the probabilities of each pur-
chase on her last visit are

Ap = [g] ,




and the probabilities of each pur-
chase on her next visit are

2 _[a35
A’p = A(4p) = [.625] '

Thus the probability that she will
buy a float on her next visit is .375.
Over the long run, the proportion
of purchases of each kind is given
by the steady-state vector for A.
As in Exercise 23, we first find a ba-
sis for the eigenspace correspond-
ing to eigenvalue 1, which is

(I}

The vector in this eigenspace that
is also a probability vector is

1=l

Hence, over the long run, Alison
buys a sundae on 60% of her trips
to the ice cream store.

33. For a fixed j, 1 < j < n, the probabil-
ity of moving from page j to page i is
aij for 1 < i < n. Since it is certain
that the surfer will move from page j to
some page, the sum of all these proba-
bilities must be 1. That is, the sum of
the entries of the jth column of A is 1.

37.

(a)

(b)

In general, the probability of mov-
ing from state j to state i in one
time period is a;;. So the probabil-
ity of moving from state 1 to state
2 in one time period is az; = .05,
and the probability of moving from
state 1 to state 3 in one time period
is az = .05.

The probability of moving from
state 2 to state 1 in one time period

()

(d)
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is a12 = .1, and the probability of
moving from state 2 to state 3 in
one time period is azz = .1.
Similarly, the probability of moving
from state 3 to each of the other
states in one time period is .3.

In general, suppose we have a tran-
sition matrix of the form

1—-2a b c
M= a 1-2b c ,
a b 1-2¢

where 0 < a,b,c < 1. For ex-
ample, in the given matrix A,
we have a = .05, b = .1, and
¢ = .3. Suppose also that p is the
steady state vector for M. Then
(M — I3)p = 0, and hence

—2a b c 1|

a =-2b ¢ D2

a b —2c| [p3]
[—2 1 17 [ap:

=| 1 -2 1| |bp,
1 1 -2 _Cp3

Since a basis for the null space of
the matrix

2 1 1 1
1 -2 1] is 1] %,
1 1 -2 1

it follows that ap; = bpy = ¢ps. So

_ Ccps3 — Cp3
P11 = a ) D2 b 3
and
cp3
Pz = —
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It follows that

1
a
p=Fk|%|,
1
[ed
where k = %-I- % +% So, for the
given matrix A,
1
‘08 .6
— 1 —
N 1
3

(e) For the vector p in (d), we have
Ap =p.

41. Let A be an n X n stochastic matrix and

p be a probability vector in R™. Then
each component of Ap is nonnegative,
and the sum of the components is

(@11p1 + a12p2 + -+ - + Q1npp) + -+
+ (@n1p1 + GnaPz + -+ - + GnnPn)
=(an 4 +an)pr+ -
+ (ain + -+ + @pn)pn
=1.

43. The absolute value of the ith com-

ponent of ATv is

|a1iv1 + -« - + Gnivnl
< lawillvr] + -+ - + |@nil|vn]
< (laws| 4+ -+ - + |ani|) v
< okl

Let v be an eigenvector of AT cor-
responding to eigenvalue A. Then
ATv = Av. It follows from (a)
that the absolute value of the kth
component of ATv is |Avk| < |vkl-
Hence |A| - juk] < |vk)-
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(c) Since |vg| # 0, the preceding in-
equality implies that |A| < 1.

47. The given system of differential equa-
tions can be written in the form y’ =

Ay, where
2 4
A= [—6 —8] '

Since the characteristic polynomial of A
is

t2+6t+8=(t+4)(t+2),
A has the eigenvalues —4 and —2. Bases
for the corresponding eigen-spaces of A

are
-2 -1
{3l = {00}
Hence A= PDP~!, where

-2 -1 —4 0
P—[3 1] a.ndD—[0 _2].

The solution of 2’ = Dz is

z, = age™ %

zy = be 2.

The algorithm on page 341 gives the so-
lution of the original system to be

vl o [-2 -1] [ae®
) v -rm [ s
_ [—2ae™4 — pe~2t
T | 3ae % 4 be 2
49. The given system of differential equa-

tions can be written in the form y’' =
Ay, where

20 0
3 2 3
-3 0 -1

A




Here A has the eigenvalues —1 and 2
(with multiplicity 2). Bases for the cor-
responding eigenspaces of A are

0 -1 0
-1 and 0],]1
1 1 0

Hence A = PDP~1, where
1 0
0 1
1 0
and

0 0
2 0
0 2
The solution of 2’ = Dz is

t

Z1 = ae
zz = be?
zZ3 = cezt

The algorithm on page 341 gives the so-
lution of the original system to be

n
=y =Pz
[sz Y
' 0 -1 0] [aet
=|=1 0 1| |ve*
| 1 1 0f |ce*
i — be?t
= | —qe"t + ce?t
ae”t + be?t

53. The given system of differential equa-

tions can be written in the form y’ =

Ay, where
11
A= [4 1].

57.
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Here A has eigenvalues of —1 and 3, and
bases for the corresponding eigenspaces
of A are

Ut = {lf}

Hence A = PDP~!, where
(-1 0
L0 3]

-1 1
P_[ 2 2] and D =

The solution of 2’ = Dz is

21 = ae”*

29 = be3t .

Thus the general solution of the original
system is

nl . 5. _[-1 1] [ae?
) === [ [
_ [—ae™t + be3
" [2ae”t +2be3|
Taking t = 0, we obtain

15 = yl(O) =-—-a+b
and

—10 = y(0) = 2a + 2b.

Solving this system, we obtain a = —10
and b = 5. Thus the solution of the
original system of differential equations
and initial conditions is

1= 10e™t+ 5edt
y2 = —20e™t + 10e3t.

The given system of differential equa-
tions can be written in the form y' =
Ay, where

6 -5 -7
A=11 0 -1
3 -3 —4
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Here A has eigenvalues of —1, 1, and
2, and bases for the corresponding

eigenspaces of A are

1 1
0 b ]‘ b
1 0
and
3
1
1

Hence A = PDP~!, where

1 1 3
P=10 11
1 01
and
-1 0 0
D= 01 0
0 0 2

The solution of z’ = Dz is

t

z1 = ae
29 = bet
zZ3 = ce2t.

Thus the general solution of the original
system is

()1
| =y=Pz
Ys
[1 1 3] [ae®
=10 1 1 bet
1 0 1j |ce*
[ ge~t 4+ bet + 3ce?t
= bet + ce?
| ae™" + ce?t

Taking ¢ = 0, we obtain

0=y:(0)=a+b+3c

65.

2=9y(0)= b+ ¢

and

l1=y3(0)=0a+ c.

Solving this system, we obtain a = 4,
b =5, and ¢ = —3. Thus the solution of
the original system of differential equa-
tions and initial conditions is

1 = 4e~t 4+ 5et — 9e?
Yo = 5et — 3e?t
Yz = 4de? — 3e?,

Setting y; = y and y2 = y| = ¢, we
obtain the system

1= Y2
5 = 3y1 + 2y,

which in matrix form can be written
y' = Ay, where

01
)
Observe that A = PDP~L, for

11 30
P"[:s —1] and D‘[o —1}’

and the general solution of z’ = Dz is
21 = ae3t, zp = be™t. It follows that

) =v=ra=ls ][]

and hence y = y; = ae® + be~t.

Take w = 10 lbs, b = 0.625, and k =
1.25 Ibs/foot in the equation

%Mm+wm+@m=u
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Then the equation simplifies to the form
¥ +2y +4y=0.

We transform this differential equation
into a system of differential equations by
letting 1 = y and y2 = 3. These sub-
stitutions produce

which can be written as y’ = Ay, where

0 1

A= [_ ’ _2] .
The characteristic polynomial of this
matrix is t2 + 2t + 4, which has the roots
—1++3iand -1 — V3i. The general
solution of the original differential equa-
tion can be written using Euler’s for-
mula as

y = qe(~1-V3it + pe(—1+v3it
= ge Y(cos V3t + isin v/3t)
+ be~*(cos V3t — isin v3t)

or, equivalently, as

y = ce~tcos V3t + detsinV3t.

The differential equation

"

v +ay" +by' +ey=0

can be written as y’ = Ay, where

0 1 0
A= 0 0 1
- =b —a

The characteristic polynomial of A is
—t3—at?—bt—c; 50 A3 = —aX?—b);—c
fori=1,2,3. Now

1 i
All] = A2
)\12 —c—=b); — a)\f

5.5 Applications of Eigenvalues 119

Ai | 1
=X =X |\
A A}
Thus _
1
vi= |\
A

is an eigenvector of A with )A; as its cor-
responding eigenvalue. So {vi,vga,v3}
is a basis for R® consisting of eigen-
vectors of A. Thus the solution of the
given equation is given by the boxed
result of y' = Ay on page 341 with
P =[vy vz v3] and

A 000
D=0 X2 O
0 0 M3

The given difference equation can be
written as s, = As,,_;, where

Tn |01
s"_[rn_H] and A—[4 3].

Taking

11 -1 0
P—[_l 4] and D-—[O 4},

we have A = PDP L
PD"P~1, and so

Hence A™ =

s, = A"sg = PD"P !5,
2[5 23 3]
G Vo W

~ -y 4"+1n] [4]

[ .6(—1)" + .4(4™)
6(=1)"*! +.4(47*1)
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Equating the first components of s,, and
the preceding vector, we have

=.6(-1)" + .4(4™) for n > 0.
Hence

e = .6(—1)% + .4(4%) = 1639.

The given difference equation can be
written as s, = As,,_1, where

Tn
Sn = |Thn+1
Tn42
and
010
A=1{0 0 1
0 21
Taking
1 1 1
pP= -1 2
4
and
0 00
D=0 -1 0j,
0 0 2
we have A = PDP~!. Hence A" =
PD"P~1, and so
'—‘AnSO pPD™"pP
[0 0 0] o
=Pl0 (-1)» o|Ptn
10 0 2n T2
[0 0 0] 9
=P0 (-1)» of{P'|o0
10 0 27| 18
6(—1)™ + 3(2™)
= |—6(-1)" —6(2")

6(—1)" + 12(27)

Thus r, = 6(—1)" + 3(2") for n > 0,
and so r¢ = 198.

Since the given difference equation is of
the third order, s, is a vector in R® and
A is a 3 x 3 matrix. Taking

T 0 10
Sn = |Tn+1| and A= [0 0 1],
Tn4o 5 2 4

we see that the matrix form of the given
equation is s,, = As,_.

85. We have
as0=[ 2] o
LC a To
I S N I )
T letare] T | b
an=[t o2
l_C a T
I I T (O B % I
" letan T 7%

and, in general,

1 0][ 1
ds= o]

N T B O S
T et arp_1| T \ral T

Hence
= ASn_l = A(ASn 2) = A2Sn 2
——A (As,_3) = Adsp,_ 3 ="
= AnSO.

(For those familiar with mathematical
induction, this proof can be written us-
ing induction.)




89. The given system of differential equa-

tions has the form y’' = Ay, where

n
_ Y
y= Ys
Ya
and
3.2 4.1 7.7 3.7
A= -0.3 1.2 0.2 0.5

-18 -18 -44 -138
1.7 -07 29 04

The characteristic polynomial of A is

t* — 0.4¢% - 0.79¢> + .166t + 0.24
= (t+0.8)(t +0.1)(t — 0.3)(t — 1).
Since A has four distinct eigenvalues, it

is diagonalizable; in fact, A = PDP!,
where

1 -1 -1 2
0 -1 -2 -1

P=1_1 o o0 -1
1 2 3 2
and
-0.8 00 00 O
D~ | 00 =01 00 0
=] 00 00 03 0
00 00 00 1

The solution of z’ = Dz is

P ae—O.St
22 be——O.lt
23 ceO.3t
24 det

Hence the general solution of the origi-
nal equation is

Chapter 5 Chapter Review 121

Y
Y2
Ys
Ya

e—O.Bt _ be—O.lt _ ceO,St +2det

_be—O,lt _ 2C€0'3t _ det
_ae—-O.Bt . det
ae~ %8 1 2pe=01t 4 3003t 4 ot

o]

When t = 0, the preceding equation
takes the form

1 a
-4 b

2 =P c|’

3 d

andsoa=-6,b=2,c=-1,andd=
4. Thus the particular solution of the
original system that satisfies the given
initial condition is

y1 = —68_0‘& - 2e—0.1t + e0.3t + 8et
Yo = —2e70-1t 1 2¢0-3t _ 4t
y3 = 6e % — 4¢
Ys = — e—0.8t + 4e—0.1t _ 330,31 + 881.

CHAPTER 5 REVIEW

True

False, there are infinitely many eigen-
vectors that correspond to a particular
eigenvalue.

True 4, True 5. True

True

False, the linear operator on R? that ro-
tates a vector by 90° has no real eigen-
values.

False, the rotation matrix Agge has no
(real) eigenvalues.
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10.

11.
13.

14.
17.
19.
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False, I, has only one -eigenvalue,
namely 1.

False, if two n.xn matrices have the same
characteristic polynomial, they have the
same eigenvalues.

True 12. True

False, if A= PDP~! where P is an in-
vertible matrix and D is a diagonal ma-
trix, then the columns of P are a basis
for R™ consisting of eigenvectors of A.

True 15. True 16. True
True

The characteristic polynomial of the
given matrix A is

det(A — tI,) = [5_'2t N t]

= (t - 1)(t - 2))

and so its eigenvalues are 1 and 2. The
eigenspace of A corresponding to eigen-
value 1 is the null space of A—115. Since
the reduced row echelon form of this ma-

trix is 3
135
0 0y’

a basis for this eigenspace is

{3}

Similarly, the eigenspace of A corre-
sponding to eigenvalue 2 is the null space
of A— 115, and the reduced row echelon
form of this matrix is

b o)

Thus a basis for this eigenspace is

{1}

23.

27.

The characteristic polynomial of A is
det(A —th) =(t—2)(t - 7),

and so its eigenvalues are 2 and 7. Asin
Exercise 19, the eigenspace of A corre-
sponding to eigenvalue 2 has the basis

{l)

and the eigenspace of A corresponding
to eigenvalue 7 has the basis

{lal}

2 1
P[4
the matrix whose columns are the vec-
tors in these bases, and

2 0
o= 5 7

the diagonal matrix whose diagonal en-
tries are the eigenvalues of A that cor-
respond to the respective columns of P.
Then A = PDP1.

Take

The standard matrix of T is
4 2
)

A basis for R? consisting of eigenvectors
of A is also a basis for R? consisting of
eigenvectors of T. So we proceed as in
Exercise 23. Here the eigenvalues of A
are —4 and 3, and bases for the corre-
sponding eigenspaces are

(A} = {0




31.

35.

By combining these bases, we obtain a
basis for R? consisting of eigenvectors of
A or T, namely.

-1 -2
{03

The given matrix A has eigenvalues of
2, 3, and c¢. By the first boxed result on
page 318, A is diagonalizable if ¢ # 2
and ¢ # 3. We must check these two
cases separately. When ¢ = 2, the eigen-
value 2 has multiplicity 2. Since the
rank of A — 2I3 equals 1 when ¢ = 2,
the dimension of the eigenspace corre-
sponding to 2 is

nullity (A —2I3) =3-1=2,

which is the multiplicity of the eigen-
value. Since the only other eigenvalue
has multiplicity 1, it follows from the
test on page 319 that A is diagonaliz-
able in this case. Similarly, A is diago-
nalizable when ¢ = 3. Thus there are no
values of ¢ for which A is not diagonal-
izable.

The characteristic polynomial of A is
det (A—tl) =t —t—2 = (t+1)(t—2).

So the eigenvalues of A are —1 and 2.
Bases for the eigenspaces of A corre-
sponding to the eigenvalues —1 and 2

(B} = {L}

respectively. Hence A = PDP~!, where

1 2 -1 0
P—[l 1] andD—[ 0 2].

So, for any positive integer k,

Ak = ppkp!?

39.

43.

1.
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_[ro2]fe=nF o]f-1 2
SIS
k! 1“ 2k —2’“}
(

_ _1)k+1 + 2k+1 2(_1)k _ 2k+1
| (DR 2R (-1 -2k |-

If @ = b, then the eigenvalue a has mul-
tiplicity 3, but its eigenspace has dimen-
sion 2. If a # b, then the eigenvalue a
has multiplicity 2, but its eigenspace has
dimension 1. In either case, A is not di-
agonalizable.

If B is the matrix whose columns are the
vectors in B, then [T]g = B~'AB. So
the characteristic polynomial of [Tz is
det (B~'AB —tI,,)

= det (B~!(A - tI,)B)

= (det B)~!(det (A — tI,))(det B)

=det (A —tI,,),

which is the characteristic polynomial of

A

CHAPTER 5 MATLAB EXERCISES

(a) Proceeding as in Exercise 23 of the
Chapter 5 Review Exercises, we
see that A = PDP-! for P =

1.0 0.8 075 1 1.0
-05 -04 -050 1 -1.0
00 -02 -025 0 -05],
0.5 0.4 050 0 0.0
1.0 1.0 1.00 1 1.0
and
300 00
010 00
D=0 00 0 0f.
0 00 -1 0
0 00 0 2
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(b) For this 4 x 4 matrix, the eigen-

value % has multiplicity 2, but

rank (A — 214) = 3. Thus the ma-
trix is not diagonalizable by the
test on page 319.
(c) Asin (a), the matrix is diagonaliz-
able with P =
-1.25 —-1.00 -0.50 -
—-0.25 —-0.50 0.50
0.75 0.50 1.00
1.00 1.00 0.00

and

=0 O =

SO N O
o= OO
[l e B e R e

(d) In this matrix, the eigen-
value 0 has multiplicity 2, but
rank (A — 0I5) = 4. So the test on
page 319 fails.

(a) A basis does not exist because the
sum of the multiplicities of the
eigenvalues of the standard matrix
of T is not 4.

(b) The vectors

-1 0 11
-1 -1 10
o, 1-1¢, -3},
1 0 -13
0 1 3
15 5
8 10
—41, and 0
—15 -7
1 1

form a basis for RS consisting of
eigenvectors of T'.

7. Let B be the matrix whose columns are

the vectors vy, vo, v3, and v,.
(a) By the definition of T, we have

02 00
10 00
[T]B_00—10
00 0 2

Thus, by Theorem 4.12, the stan-
dard matrix of T is B[T|gB~! =

115 —-13.7 34 -4.5
55 =59 1.8 =25
-6.0 10.8 -16 0.0
50 -56 1.2 -3.0

So the rule for T is as follows:

)
T2
z3
T4

11.5z1 — 13.7z2 + 3.423 — 4.524
5.521 — 5.922 + 1.823 — 2.514
—6.0zy + 10.8z2 — 1.623
5.0z; — 5.622 + 1.223 — 3.0z4

‘(b) The vectors listed below, obtained

using the MATLAB eig function,
form a basis of eigenvectors of T'.
(Answers are correct to 4 places af-
ter the decimal point.)

0.7746 0.0922
0.5164 0.3147
0.2582( | 0.9440(°
0.2582 —0.0382

0.6325 0.3122
0.3162 0.1829
—0.6325| ° 24 |0 5486
0.3162 0.7537




Chapter 6

6.1

11.

15.

Orthogonality

THE GEOMETRY OF VECTORS

lull = /37 + (=37 = V34,
IVl = VZ+2 = Va0,

and
d=lu-v|
= (5-2)2+ (-3 -4)2
=58
Jull = 12+ (-1)? + 32 =

[vll = v22 + 12 + 02 = V/5,
and
d=llu—v]

=V(1=22+(-1-1)?+(3-0)?
= V14

Since u.v = 3(4) + (-2)(6) = 0, u and
v are orthogonal.

Since w.v = (1)(2)+(-1)(1) = 1, u and
v are not orthogonal because u.v # 0.

The dot product of u and v equals
MW@)+(DE) +(-2)1) +1(1) = -2,

and so u and v are not orthogonal be-
cause u.v # 0.

125

. We have

lul|?> = 2% + 32 = 13,
Ivl* = 0% +0% =0,
and
lu+v|?=(2+0)?+(3+0)2 =13
Since
Jlull® + IV =13 +0 =13 = lu+ v|/%,

the Pythagorean theorem shows that u
and v are orthogonal.

. We have

lul|? =12 4+ 22 + 3% = 14,
VI = (=11)% + 42 + 12 = 138,

and
JJu + v]|?
=(1-112+(2+4)?2+(3+1)?2
= 152.

[l + |v]|* = 14 + 138

= flu+v|?,

the Pythagorean theorem shows that u
and v are orthogonal.
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27.

31.

35.
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We have 39.
lull = V42 +22 = V20,
IVl = /32 + (-1)2 = V10,
and
o+ vl
=+/(4+3)? + (2 - 1)2 = V50.
So 43.
lu+ v|| = V50 < v20 + V10
= [[ull + [Ivil-
We have
full = VEF (P8 = VE,
IVl = V42 + 02 + 12 = V17,
and
o+ vl
=(2+4)2+(-1+0)2 + (3+1)2
= V53. 47.
So
lu+v| = V53 < V14 + V17
= [luf| +[Iv]l.
We have
lull = V&4 17 = VAT,
vl = V02 + (-2)2 = Vi =2,
and
u.v =4(0)+1(-2) = -2.
This illustrates the Cauchy-Schwarz in-
equality because 51.
uev]=|-2|=2
<VI7-2 = |lulljjv].

We have
ull = VA ¥ 225 12 = VL,
Ivll = V22 + (-1)2 + (—-1)% = V6,
and

v = (@)(2) +2(=1) + (1)(-1) = -
So fu.v| =5 < VZIVE = [lulvI|

Letv= [ 1] , a nonzero vector that lies

along the line y = —x. Then w = ¢v,
where

and hence w =

N =
| |
—_ =

B ] . Therefore

st [[]-4[ 1
BB
- [ -

nonzero vector that lies along the line

As in Exercise 43, let v

y = —3z. Then w = ¢v, where
e=2V_B_y3
vev 10

and hence w = 1.3 1] Therefore

-
st [-2[3)
[l b

Using Theorem 6.1, we obtain

lu+ v{? = jju]]? + 2u.v + v
=22 42(-1)+3% =11
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57.
61.

62.

63.

64.

65.

66.
69.

70.

71.
72.
75.
76.
7.
78.

79.

As in Exercise 51, we obtain
v —4w|® = [[v]|* - 8vew + 16]/w]|}?
=32 — 8(—4) + 16(5%)
= 441.
viu=usv=7
True

False, the dot product of two vectors is
a scalar.

False, the norm of a vector equals the
square root of the dot product of the
vector with itself.

False, the norm is the product of the
absolute value of the multiple and the
norm of the vector.

False, for example, if v is a nonzero vec-
tor, then

v+ (=)l =0# vl + | = vl

True 67. True 68. True
True

False, consider nonzero orthogonal vec-
tors.

False, we need to replace = by <.
True 73. True 74. True
True

False, Au.v =u.ATv.

True

False, we need to replace = by <.

True 80. True

81.

85.

89.
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usu= ul(ul) -+ u2(u2) +---+ 'un('un)
2
~ (Vawdeaaa) =

Suppose that u and v are in R"™. Then

(cu)ev = (cug)vs + -+ + (cup)v,
= c(u1v1 + e+ 'unUn)

= c(u.v).

The proof that (cu)+v = u.(cv) is sim-
ilar.

Let u and v be vectors in R™. We show
that

lfa+ vl = [l + (v
if and only if u is a nonnegative multiple

of v or v is a nonnegative multiple of u.

Suppose first that lu+v|| = |Ju|| + ||v]|.
If u =0or v =0, the result is im-
mediate; so assume that the vectors are
nonzero. Then

ull* +2u.-v + |Iv]]*
= |lu+v|?
= (lall + [Ivl))®
= [[ull® +2)fu]} - IV + [IvII?,
and therefore u.v = |ju|| - ||v||. Thus
u.v is nonnegative. By Exercise 88, it

follows that u or v is a multiple of the

other. Suppose u = kv for some scalar
k. Then

0<uev=Fkvev=Fk(v.v) =k|v|>%

So £ > 0. A similar argument may be
used if v = ku.

Conversely, suppose one of the vectors
is a nonnegative multiple of the other.
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93.

97.
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Since both of these vectors are nonzero,
we may assume that v = cu, where c is
a nonnegative scalar. Then

lu+ vl = [lu+ecul = [l(1+cull
=1+l = (1 + c)ul,

and

[ull + vl = fha]l + lleul| = [[ul| + |c|ul
= (1+ eDlfull = (1 + c)full.

Therefore ||u+ v| = |[ul| + [|v]|-

Since 0.z — ( for all z in S, we see that
0 is in W. Now suppose that u and v
are in W. Then, for all z in S,

(u+v)ez=u.z+v.z=0+0=0,

and hence u + v is in W. Finally, let 101.

¢ be any scalar. Then, for all z in S,
(cu)+z =c(u.z) =c-0=0,

and hence cu is in W. We conclude that
W is a subspace.

(a) Suppose that v is in Null A. Then
(ATA)v = AT(Av) = ATo =0,

and hence v is in Null ATA. Thus
Null A is contained in Null AT A.
Conversely, suppose that v is in
Nult AT A. Then
0=0.v

= (ATA)v.v

= (ATAV)Tv

=vT AT Av

= (Av)T (Av)

= (Av).(Av)

= | Av]}?,

105.

109.

and so ||Av|| = 0. Thus Av = 0,
and it follows that Null AT A is con-
tained in Null A. Therefore

Null ATA = Null A.
Since

Null ATA = Null A,
we have that

nullity AT A = nullity A.

Notice that AT A and A each have
n columns, and hence

rank AT A = n — nullity AT A
=n — nullity A
= rank A.
Let 8 denote the angle between u and v.

Since

uev = [u[v]l cos6
(=2)(1) + 4(-2) = V20V5cos 8
~10 =10cos 8
—1 = cos ¥,
we see that 6 = 180°.

Let 6 denote the angle between u and v.
Since

u.v = [luflflvll cos &

1(-1) + (=2)(1) + 1(0) = vV6v2cos 8

—3=112cos6
—? = cos 8,

we see that 8 = 150°.

For u in R3,

’u,20 - u;;O 0
ux0= U30—’U,10 = |0 =0.
10 — u20 0
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117.

121.

By Exercise 108,

Oxu=—-(ux0)=-0=0.

Let u, v, and w be in. R3. By Exer-
cises 108 and 112,

(utv)xw=—(wx(u+v))
=—(Wxu+wxv)

—(w xu)+ —(wxv)
SUXWHVXW.

Let u, v, and w be in R3. By Exer-
cises 108 and 116, we have

(uxv)xw=—(wx{uxv))
= —((wev)u— (weu)v)

= (w.u)v— (wevu.

The supervisor polls all 20 students
and finds that the students are divided
among three sections. The first has
8 students, the second has 12 students,
and the class has 6 students. She di-
vides the total number of students by
the number of sections and computes

8+12+6 26
3 =3 = 8.6667.

When the investigator polls 8 students
in Section 1, they all report that their
class sizes are 8. Likewise, for the other
two sections, 12 students report that
their class sizes are 12, and 6 students re-
port that their class sizes are 6. Adding
these sizes and dividing by the total
number of polled students, the investi-
gator obtains

U=

v*_8-8+12-12+6-6_2_4é
h 8+12+6 26
= 9.3846.

125.
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In (a), (b), and {c), we describe the use
of MATLAB in the default (short) for-

mat.

(a) Entering norm(u + v) produces
the output 13.964, and entering
norm(u) + norm(v) yields 17.3516.
We conclude that

u+vil < fuff+ vl

As in (a), we obtain the out-
puts norm(u + v;) = 16.449 and
norm(u) + norm(vi) = 16.449.
However, these outputs are
rounded to 4 places after the
decimal, so we need an additional
test for equality. Entering the
difference
norm(u) + norm(vy)
—norm(u + vq)

yields the output 1.0114 x 1075,
which indicates that the two are
unequal but the difference is small.
Thus

la+val| < flufl + fIvali.

(¢) As in (b), we obtain a strict in-
equality. In this case, the differ-
ence, given by the MATLAB out-
put, is 5.0617 x 1077,

Notice that in (b) and (c), v; and

va are “nearly” positive multiples

of u and the triangle inequality is
almost an equality. Thus we con-
jecture that |[u+v| = |ju| + |v|| if
and only if u is a nonnegative mul-
tiple of v or v is a nonnegative mul-

tiple of u.

(e) If two sides of a triangle are par-
allel, then the triangle is “degener-
ate,” that is, the third side coin-
cides with the union of the other
two sides.
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6.2 ORTHOGONAL VECTORS

3. Since

gy

=1(2) + (-1)(-1) + 1(0)
=3#0,
some pair of distinct vectors in the given

set is not orthogonal. Thus the set itself
is not orthogonal.

7. We have
1 1
2 1
31" |1
-3 0
=1(1) +2(1) + 3(~1) + (=3)(0)
=0,
1 3
2 -3
3“1 0
-3 -1
=1(3) + 2(-3) + 3(0) + (-3)(-1)
=0,

and

1 3
1 -3
-1l o0
0 -1
=1(3) + 1(=3) + (—1)(0) + 0(-1)
=0.

Therefore the set is orthogonal.

11. (a) Let

1 7
u; = |-2 and u; = |7].
-1 5

Then
1
vVi=u = | —
-1
and
Vo = 1 —12._‘,1‘1
R A A

So the desired orthogonal set is

(B}

(b) Normalizing the vectors above, we
obtain the orthonormal set

]

u =

13. (a) Let

—_ O
[ o YR Y




and
1
1
ugz = 0
1
Set
V] =ug,
u 112.vlv
V2 2~ T V1
fivali
1 0 3
o121y _1)-2
1 31 "3t 1|’
1 1 1
and
v u 113.vlv 113.vzv
=uz — 1— 2
° vl llvall?
1 0 3
(1222
) 311 5] 1
1 1 1
3
1 3
T 5 |-4
1
Thus
{Vl,Vz,V3}
0 3 3
_ 1 l -2 1 3
- 11’3 1’5 |—4
1 1 1

is the corresponding orthogonal
set.

To obtain the vectors in the or-
thonormal set, we normalize each
of the vectors v;, vg, v3 in (a). The

6.2 Orthogonal Vectors

resulting vectors are

0
1 1 |1
—V e
iz~ V3 |1
1
1 1
—_—V g —
Iv2l2 2~ V15
L
and
)
1 1
—V = —
vl >~ V35

17. Using the boxed result on page 376, we

obtain

V= ————=

30
T

22

ol

21. Suppose that ¢;, cp, and c3 are the
scalars such that v = c; vy +cva +e3vs,

where

-l
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Then, by the boxed result on page 376,

we have
o = vevy 5
SRRV
= VeVy _§_l
2T lvalP "6 2
and
vevy 0
c3=+—==-—=0.
> Jivsl? T 3
5 1 1 1 1
Thusv=§ 0 +§ 21 +0-1].
1 -1 -1
1 5
25. Let A= |1 -1]. In Exercise 9, we
1 2

obtained an orthonormal basis for Col A:

(5[] 5[]}

These vectors are the columns of @, so
that

1 1
V3 V2
— X i
Q‘\/ﬁ V2
1 0
V3

The entries of R can be found as in Ex-
ample 4:

™1 =a1*q1 =

7‘22 = a2.q2 =

3
V3
6
T12=32°Q1=7—§=2\/§
6
V2

Thus R = [\/g z\\;—a

29, Let A =

==
S ==

1
0 .
1 The vectors in
11

the answer to Exercise 13(b) are the
columns of @, so that

—

b g o o K
2t gl & 8l

S &l"‘ &"" o

For i < 7, the entries of the 3 x 3 upper
triangular matrix R can be computed
using r;; = a; - q;, so that

2 2
B 5 5

R — ¥15 2
=105 V15

7
0 0 V35

. We proceed as in Example 5 to solve

Ax = b, where

1 5 -3
A= |1 -1 and b= 3}.
1 2 0

We use the matrices @@ and R from the
QR factorization of A found in Exer-
cise 25:

O
i

PN EN
|

=) &l"" &]H

and

=
[
o
w o
S8




37.

We must solve the equivalent system
Rx = QTb, which has the form

V3z, + 2¢/3z, = 0
3v2zy; = —3v/2
or
1+ 2= 0
To = —1.

The latter system is easily solved by
starting with the last equation: zo = —1
and z; = —2(—1) = 2. In vector form,

the solution is x = [_ﬂ .

We proceed as in Example 5 to solve
Ax = b, where

— = = O

[ S o

—0 =
[y

We use the matrices @@ and R from the
@R factorization of A found in Exer-
cise 29. We must solve the equivalent
system Rx = QTb, which has the form

2 2 . 2
V3z, + B2t BT = 5
15 2 _ 1
“Pas + gz~ A
.L.z — 21
V3573 T V36
or
3z + 2z9 + 223 = 2
5z + 23 =11
I3 = 3.
The latter system is easily solved:
3 =3, 9 =1, and z; = —2. In vector
-2
form, the solution is x = 1].
3

41.

42,
45.
48.
49.

57.
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False, if O lies in the set, then the set is
linearly dependent.

True 43. True 44, True
True 46. True 47. True
True

False, consider the sets {e;} and {—e; }.
The combined set is {e;, —e;}, which is
not orthonormal.

False, consider x = e;, y =0, and z =
e].

True

False, in Example 4, @ is not upper tri-
angular.

For any % # 7,

(civi)(cjv;) = (cics)(Viev;)
= (ci;) - 0=0.

Hence c;v; and c;v; are orthogonal.

By Exercise 56, S can be extended to an
orthonormal basis

{V],Vz, ey Vs Vi1, ... ,Vn}
for R™. By Exercise 55(c),

lull = (@ev1)2+ - 4 (u.vy)?
+ (u.vk+1)2 RS (u'Vn)2,

(a) The desired inequality follows im-
mediately from the equation above
since

(@evit1)? 4+ (uevy)2 > 0.

(b) The inequality in (a) is an equality
if and only if

(ll-Vk+1)2 + e (u.vn)2 = 0,
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61.

65.
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that is, if and only if u.v; = 0 for
i > k. In this case,

u=(u-vy)vy + -+ (- vg) vy,

which is true if and only if u isin 5.

Span§.

From Exercise 60, we have r;; # 0 for
every 4. If r;; < 0, then replacing q; by
—q; changes the corresponding entry of
R to —ry;, which is positive.

Suppose QR = Q'R’, where both R and
R’ have positive diagonal entries. Multi-
plying both sides on the left by QT and
on the right by R’ —1, we obtain

QTQRRI"l — QTQ,R,R,—l,

which, by Exercise 63, reduces to
RR™! = QT(Q'. By Exercises 42 and 43
of Section 2.6, RR'™*, and hence QTQ’,
is an upper triangular matrix with pos-
itive diagonal entries. By Exercise 64,
the columns of QTQ’ form an orthonor-
mal basis. Hence, by Exercise 58, QTQ’
is a diagonal matrix. But a diagonal ma-
trix with positive diagonal entries whose
columns are unit vectors must equal /3.
So
RR™ =Q"Q =1,

and therefore @ = Q' and R = R'.

ORTHOGONAL PROJECTIONS

A vector v is in 8t if and only if
1

-1
2

Ve =v; —v2+2v3 =0.

So a basis for S+ is a basis for the solu-
tion set of this system. One such basis

1 -2
1{,] 0| ;.
0 1
As in Exercise 1, we must find a basis

for the solution set of

r1 — 222+ Zz3+ x4=0
1 — Tz +3x3 + 224 =0.

One such basis is

) -3
-2 -1
11’1 O
0 1

7l

(a) Asin Example 3, we have

Let Vi =

w = (U.vy)Vy

_—2v_—21[1]
V2 Veave |-l

55
o[-

The orthogonal projection of u on

W is the vector w = [—ﬂ in (a).

The distance from u to W is

llz]l = flu —w|| = V8.

(c)

Let vy, vg, and vz denote the vectors in
S, in the order listed.

(a) As in Example 3, we have

w = (u-vl)vl -+ (ll-Vz)Vz




(b)

(c)

17. (a)

(b)

+(U°V3)V3
*—G—v +iv +iv
V3l VBT VB
2
.
= |3l
1
and
zZ=u-—-Ww
2 2 0
N 3 I 1 N
1 31 (-2
3 1 2
The orthogonal projection of u on
2
W is the vector w = 3 in (a).
1

The distance from u to W is

lizlf = flu — wij = V12.

Clearly {[-Z]} is a basis for W.

3
4

column is this basis vector. Then

Let C = [’

], the matrix whose

Py =c(CTc)~'cT

_ 1 9 —-12
T 25 |-12 16} °

The orthogonal projection of u on
W is the vector

w = Pyu

_ 1 9 -12] [-10
T 925|-12 16 5

it

21,

(b)
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and
zZ=u—Ww

_|-10f _|[-6] _ |4
- 5 8l |-3}"
The distance from u to W is

|| = 5.

Choose the pivot columns of

1 1 5
—1 2 1
-1 1 —1

2 -1 4

to obtain a basis

1
-1
=11’

2

)

v

1
2
1
-1}

for W. Let C be the matrix whose
columns are these basis vectors.
Then

Py =c(cTc) c”

22 1 0 1

_ 1411 19 9 -8
~33|l0 9 6 -9
11 -8 -9 19

The orthogonal projection of u on
W is the vector

- -

3
w = Pyu= 0 ,
-1
L. 3—
and
o]
Z=u—-W= !
- 13
L. 3_1
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(c) The distance from u to W is
2 = v23.
By solving the equation
Ty + 229 —x3 =0,

we obtain the basis

(L)

for W. Proceeding as in the solution

to Exercise 21, we obtain the following
results.
1 l 5 -2 1}
1 25
2 1
(b) w= —1] and z = 2]
0 -1

(c) The distance from u to W is /6.

As in Exercise 25, a basis for W is

-1 -1
2 0
11’1 0
0 1
Thus we take
-1 -1
2 0
C= 1 0]’
0 1
and proceed as in the solution to Exer-
cise 21 to obtain the following results.
6 -2 -1 -5
1 -2 8 4 -2
@ Pv=g71_4 4 2 -1
-5 -2 -1 6

0 1
4 1
(b) w= 9 and z = 1
-2 1
(c) llzlt =2

33. False, (S1)! is a subspace for any set
S. So, if S is not a subspace, then nec-
essarily S # (S4)*.

34. False, in R?, let F = {e;,e;} and
G = {e;1,2e2}. Then F+ = {0} = G+,
but F #G.

35. True

36. False, (Row A)* = Null A.

37. True 38. True 39. True

40. True 41. True

42. False, dimW =n —dimW+.

43. False, we need the given basis to be or-
thonormal.

44. True 45. True

46. False, the only invertible orthogonal
projection matrix is the identity matrix.

47. True

48, False, the columns of C can form any
basis for W.

49, False, we need the columns of C' to form
a basis for W.

50. True

51. False, see Example 4.

52. True 53. True

54. False, the distance is ||u — Py ul.

True 56. True
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57. Suppose that v is in WL, Because ev- 69. By Theorem 6.7, there are unique vec-

61.

65.

ery vector in § is also in W, it follows
that v is orthogonal to each vector in S.
Therefore W+ is contained in S*.

Conversely, let u be in S* and w in
W. There exist scalars ai,as,...,ax
and vectors vy, Vg, ..., Vg in § such that

w=a1Vy +---+agVk.
Thus
weu = (a1vy + -+ agvg)eu
=aj(vi-u) + - +ap(vig-u)

=a;-0+---+ax-0
=0,

and therefore u is in W+. Thus 8% is
contained in W+, and we conclude that
Wi =8+,

(a) Suppose that v is in (Row A)<.
Then v is orthogonal to every row
in A. But each component of Av is
the dot product of a row of A with
v, and hence every component of
Av is zero. So Av = 0, and hence
v is in NullA. Thus (Row A)* is
contained in Null A.

Now suppose that v is in Null A.
Then Av = 0, and hence v is or-
thogonal to every row of A. So v is
in (Row A)* by Exercise 57. Thus
NullA is contained in (Row A)t,
and the result follows.

(b) By (a), (Row AT)L = Null AT. But

the rows of AT are the columns of
A, and hence (Col A)* = Null AT.

Suppose v is in both Row A and Null A.
Because Null A = (Row A)* by Exercise
61(a), v is orthogonal to itself, that is,
vev=10. Sov=0.

73.

77.

tors w in W and z in W+ such that
u=w +z. It follows that u is in W+ if
and only if u = 2z, and hence if and only
if w = 0. By Theorem 6.8, Pyu = w,
and hence Pyu = 0 if and only if u is
in W+,

ALTERNATE PROOF: By Theo-
rem 6.8, Py = C(CTC)~1CT, where C
is a matrix whose columns form a basis
for W. Now suppose that u is in W+,
Then u is orthogonal to each column of
C, and hence CTu = 0. Therefore

Pyu=C(CTC)"CTu
=C(CTC)"Y(CTu)
=Cc(CcTc) o =o0.

Conversely, suppose that Pypu = 0.
Then

cictcy'cTu=0
cTeecte)y ' cTu=CcTo=0
CTu=o0.

This last equation asserts that u is or-
thogonal to the columns of C, a gener-
ating set for W. Therefore u is in W+
by Exercise 57.

Let u be a vector in R™. By Theorem
6.7, there are unique vectors w and 2z
in W and W+, respectively, such that
u=w 4 z. Then

(PW + PWJ.)u = Pyu+ Py.iu
=w+z=u= Iu

Thus Pw + Py = I,.

(a) We first show that 1 and 0 are
eigenvalues of Py,. Since k # 0, we
can choose a nonzero vector w in
W. Then Pww = w, and hence w
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is an eigenvector with correspond-
ing eigenvalue 1. Since k& # n, we
can choose a nonzero vector z in
W+L. Then Pwz = 0, and hence z
is an eigenvector with correspond-
ing eigenvalue 0.

Next we show that 1 and 0 are the
only eigenvalues of Pyw. Suppose
that A is a nonzero eigenvalue of
Py, and let u be an eigenvector
corresponding to A. Then Pyu =
Au, and hence Pw(iu) = u. Thus
u is an image of Uy, and so u is in
W. Therefore

1 1 1
u = Py (Xu) = XPWu = Xu.

Hence 1 = %, that is, A = 1.

Since Piwu = u if and only u is in
W, we see that W is the eigenspace
of Pw corresponding to eigenvalue
1. Similarly, since Pwu = 0 if and
only if u is in W+, we have that
W+ is the eigenspace of Py corre-
sponding to eigenvalue 0.

Let T be the matrix transformation
induced by Pw. Since T(u) =1
u for all u in By and T(u) = 0 -
v for all v in B;, we have [T|g =
D, and hence Pw = BDB™! by
Theorem 4.12.

()

By computing its reduced row echelon
form, we see that the first two columns
of A are its pivot columns. Thus the
rank of A is 2 and a basis for Col A is

1 0
0 1
Bi=q1_1] -2
1 1

As in Example 2 on pages 390-391, we

85.

can find a basis

1 -1
2 -1
32 = 11° 0
0 1
for (Col A)*. Let
1 01 -1
0 1 2 -1
B=141 221 o
1 1 0 1
and
1 0 0 O
01 00
D= 0 0 0 O
0 0 0 O

Notice that B is the matrix whose
columns are the vectors in By UB5. Then
by Exercise 77(c),

Py = BDB™!
2 -1 0 1
_lf-1 1 -1 0
—3!1 0 -1 2 —1
1 0 -1 1

(a) There is no unique answer. Us-
ing @ in the MATLAB function
[@Q R] = qr(A,0) (see Table D.3 in
Appendix D), where A is the ma-
trix whose columns are the vectors
in 8, we obtain an orthonormal ba-
sis containing the vectors

0 7808
2914 —.5828
—8742{, |-.1059],

0 0
3885 1989
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—.0994 —.1017
—.3243 —.1360
—.4677|, and | —.0589].
.1082 —.9832
—.8090 —.0304

(b) Let C be the 5 x 4 matrix whose
columns are the vectors in (a).
Then the orthogonal projection of

uon Wis

w = Pyu=C(CTC)"'CTu
—6.3817
6.8925
=] 7.2135
1.3687
2.3111

(¢) The distance from u to W is

lu — w|| = 4.3033.

6.4 LEAST-SQUARES
APPROXIMATIONS AND
ORTHOGONAL PROJECTION
MATRICES

1. Using the data, let

14
17
19
20

C= and y=

Pt et

1
3
5
7

Then the equation of the least squares
line for the given data is y = ao + a7,

where

] = cmeyery

1' 14
4 18] (1 1 1 1] (17
T |16 84 1 3 5 77119

20

_1[21 —4][70]_[135
T20{-4 1|(300] " | 10|

Therefore y = 13.5 + z.

Let
1 1 40
1 3 36
c=1|1 7 and y= |23
1 8 21
1 10 13

Then the equation of the least squares
line for the given data is y = ag + a12,
where

] = (cmor ety

40

_ 1 1194 136 20 -9 —67 gg
To74|-24 -14 6 11 21

_ [jg] .

13
That is, the equation of the least squares
line is y = 44 — 3z.

Let
1 35 1.0
1 40 2.2
C=|] 45| ad ¥y=|og
1 50 43

and proceed as in Exercises 1 and 5. The
equation of the least squares line is y =
—6.35 4 2.1z, and so the estimates of &k
and L are 2.1 and

a_ (—6.35)

L=-2-_ (635 o
% 51 302

respectively.
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Let
100 2
i1 BE
C=11 9 4f 2d y=|5
13 9 8

Here the matrix C has a third column
whose entries are z? (the square of the
first coordinate of each data point). As
in Exercises 1 and 5, we compute

ag 2
a| =(CTC)"'1cTy = |05
az 0.5

The equation of the least squares line is
Y = ag +a17 + ax? = 2+ 0.5z + 0.5z2.

As in Example 3, the vectors that mini-
mize || Az —b|| are the solutions of Ax =
Pyb. Let

1 2
C=1{1 -1
2 1
be the matrix whose columns are the
pivot columns of A. Then
0
Pyb=C(CTC)"1CTb = |2},
2
and the general solution of Ax = Pyb

18

T 4 -1
To| = § -2 + x3 1
I3 0 1

Thus vectors of the form

4 -1
l =2 +z3 1
0 1

are the vectors that minimize || Az — bl}.

21,

25.

The systemm Ax = b is consistent, and
its general solution has the form

I 5 -1
x| = -3 +x3 1
I3 0 1

Thus a vector is a solution of Ax = b if
and only if it has the form v = vq + z,
where

5
Vg = -3
0
-1
and z is in Null A = Span 11 3. As
1

described on page 408, the solution of
Ax = b having least norm is given by
vg — Pzvq, where Z = Null A. Let

Then
Pzvo = C(CTC) 1C v,

8 —1
=-31 1|,
1

and so the solution of Ax = b having
least norm is

1 7
Vg — P2V0 = :3— -1
8

In the solution to Exercise 17, we found
that the vectors of the form

1 4 -1
§ -2 +.’E3 1
0 1

are the vectors that minimize ||Ax ~ b}
We proceed as in Example 4 to find the




28.

29.
30.

31.

32.
33.
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vector z of this form that has the least n ~ (a0 + a121)
norm. Let Z = Null A, y2 — (ap + a122)
1 T :
C=1| 1|, and vo=- |-2]. Yn — (a0 + a125)
1 31 0

[y1 - (a() +a1m1)]2 +---

Th
n + [yn — (@0 + a125)]?

Pzvo = C(CTC) " CT v,

_20
311

37. Let A = QR be a QR-factorization of A,

So the vector of least norm that mini- and let W denote the column space of A.
mizes ||Ax — b|| is The solutions of Ax = Pywb minimize
|[Ax — b||. It follows from Exercise 36

1 2 that Ax = Pwb if and only if QRx =
vo — Pzve = 3 0 QQTb. If we multiply both sides of this
2 equation by Q7 and simplify, we obtain

Rx =QThb.

41. Following the hint, let W denote the col-
umn space of A. Then we have (with en-
tries rounded to 4 places after the deci-

False, the least-squares line is the line
that minimizes the sum of the squares
of the vertical distances from the data
points to the line.

mal)
True _ .
0.9962 0.0872
False, in Example 2, the method is used 0.9848 0.1736
to approximate data with a polynomial A= 0.9659 0.2588
of degree 2. 109397 0.3420
. . 0.9063 0.4226
False, the inconsistent system in Exam- 0.8660 0.5000
ple 3 has infinitely many vectors that - -
minimize this distance. and
True [2.8039]
2.6003
‘We have _ 2.3769
Pwy = AATA) ATy = |5 555
ly — (aov1 + a1v2)|f? 1.8777
7" 1 z 2 | 1.6057 |
= '7{2 —ag 1 —a 'T.z The matrix equation Ax = Pyy has

: : : a = 2.9862 and b = —1.9607 as its solu-
Un 1 Zn tion (rounded to 4 places after the dec-
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imal). When rounded to 2 significant
figures, we have ¢ = 3.0 and b = —2.0.

ORTHOGONAL MATRICES AND
OPERATORS

Since the given matrix is not square, it
cannot be an orthogonal matrix.

Since

01 0]%[o 1 0

001! oo 1

100 |1 00
00170 1 0
={1 0 0o|l]o 01
01 0/{1 00
=I3,

the matrix is orthogonal by Theorem
6.9(b).

1
Let A = —
© ﬂ[

det A = %(—1 1) = -1,

1 1 .
1 _1]. Since

Theorem 6.11 shows that the operator is
a reflection. The line of reflection is the
same as the eigenspace of A correspond-
ing to eigenvalue 1. This is the solution
set of (A — 1I)x = 0. Because the re-
duced row echelon form of A — 115 is

L]

the general solution of this system is x =
(v/2 4 1)y, that is,

1
V=Bt (V2 -1z

Thus ¥ = (V2 — 1)z is the equation of
the line of reflection.

13.

17.
18.

19.

20.
23.

24.

27.

28.
31.

115 12 .
Let A= 13 [12 _5]. Since

1
det A = 1—32( 25 — 144) = -1,

the operator is a reflection. As in Ex-
ercise 9, the line of reflection is the
eigenspace of A corresponding to eigen-
value 1, which is the solution set of
(A — 1I3)x = 0. Because the reduced
row echelon form of A — 115 is

1 -3
0 0]’

the general solution of this system is =
%y, that is, y = %x Thus y = %x is the
equation of the line of reflection.

True

False; for example, if T is a translation
by a nonzero vector, then T preserves
distances, but 7" is not linear.

False, only orthogonal linear operators
preserve dot. products.

True 21. True 22. True

False, for example, let P I, and

Q=-I

False, for example, let P = [} ;]

True

. 1 1
False, consider [1 _1].

False, consider Py from Example 4 in
Section 6.3.

True 29. True 30. True

False, we need det Q = 1.




32.

33.

34.

37.

False, for example, if T is a translation
by a nonzero vector, then T is a rigid
motion, but 7 is not linear and hence is
not orthogonal.

False, for example, if T is a translation
by a nonzero vector, then T is a rigid
motion but T is not linear.

True 35. True 36. True
3

Let v = % —2|, and suppose that T
6

is a linear operator on R® such that
T(v) = e3. If A is the standard matrix
of T, then A is an orthogonal matrix,
and so ATA = I5. Since Av = T(v) =
es, it follows that

v = (ATA)v = AT(Av) = ATes,

and so v must be the third column of
AT. As in Example 3, we construct an
orthonormal basis for {v}+. The vectors
in {v}+ satisfy

3z, — 2z5 + 623 = 0.

A basis for the solution set of this equa-
tion is

2 -2
31,1 0
0 1

Applying the Gram-Schmidt process to
this set, we obtain

2 —18

3, | 12

0 13
which is an orthogonal basis for {v}+.
Thus

L[, [
— 3|, —==| 12
VI3 [o] VB | 13
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41.

143

is an orthonormal basis for {v}+. Hence
we may take

. 1413 -18y13 39

AT=ﬁ 21v/13 12413 -26],
0 13/13 78
so that
14V/13 2113 0
A:§I -18y/13 12v/13 1313 .

39 —26 78

Thus one possibility for the desired op-
erator is T = T}y.

We extend {v1, vz} and {wy, ws} to or-
thonormal bases for R? by including

1 2 3
V3 = g -2 and W3 = — -6 y
1 2

o2 2
B=[vi v v3]=5 2 1 -2
2 -2 1

1 2 6 3
6 -3 2

which are orthogonal matrices. Take

s 1 20 4 -5
A=CB" = o1 -5 20 —4
4 5 20

and T = T4 to obtain an orthogonal
operator that meets the given require-
ments.
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Let B = {v,w}. Observe that

(e)
T(v) = (vevcosf +ve.wsinf)v

+ (—v.vsinf + v.wcosf)w

= cos fv — sin fw.

()

Similarly, T(w) = sinfv + cosfw, and
hence

—sinf@ cosf

[T]Bz{ cos § sin0]‘

Since [T is an orthogonal matrix, T is
an orthogonal operator.

Suppose that A is an eigenvalue for Q,
and let v be a corresponding eigenvec-
tor. Then

Vil = fl@vll = Ixv(l = [Alllv]l.

Since ||v|| # 0, it follows that |A| = 1.
Therefore A = +1.

(a)
QL = (2Pw — I)T = 2P}, — IF
=2Py ~ 2 =Qw
(b)
Qi = 2Pw — I)*
=4P% — 4Py, + I,
=4Py — 4Py + L = 1>

57.

(¢) By (a) and (b), we have

QL Qw =QwQw = Q¥ =L,

Qwv = 2Py — Io)v
=2Pwv — Izv

=0-v=-v

Select nonzero vectors w in W and
v in WL. Then {w,v} is a basis
for R? since it is an orthogonal set
of nonzero vectors. Set P = [w v],
and let T be the matrix transfor-
mation induced by Qw. Then Qw
is the standard matrix of T, and T'
is an orthogonal operator because
Qw is an orthogonal matrix. Also,

Qw = PDP™!,
1 0
where D = [O _1]. Thus

det Qw = det (PDP™1)
= (det P)(det D)(det P7?)
= (det P)(—1)(det P)™!
= —-1.
It follows that T is a reflection.

Furthermore, since T(w) = w, T
is the reflection of R? about W.

IT(w)|| = | T(w) - O]
= [T (w) - T(0)||
= |lu—0] = [

and hence Qw is an orthogonal ma- 61. Since

trix.
(d)
Qww = (2Pw — I2)w
= 2PWW had Izw
=2w—w=w

#(b]) = (B])

=Q[(1)] +b+Qm +b
=q;+q2+2b
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and

(ORI

it follows that

o= )+ (1) - (1]
-1+ Bl- -

Thus

Therefore Q = [q1 q2] = [(1)

0
3
Let w and v be in R™. Then
I T () - T(v))?
= [T(u) - T(v)]+{T'(u) = T(v)]
=T(u)T{u) — 2T(u)T(v)

+T(v)-T(v)
=u.u-2u.v+v.vju-v|?
Hence ||T(u) - T(v)|| = lu—v|. It

follows that T is a rigid motion. Fur-
thermore,

IT(0)]1? = T(0)-T(0) = 0.0 =0,

and hence T(0) = 0. Therefore T is an
orthogonal operator by Theorem 6.13.
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Let @ be the standard matrix of U, w =
[1] ,and z = [—m] . Since w lies along
m 1

L and z is perpendicular to £, we have
Uw) = wand U(z) = —z. Let B =
{w,z} and P = [w z|. Then B is a basis
for R2, and hence

Ulo=[p 3| wnd Q= PisP.
Thus
Q = P[U]gP!

Lol S
=Ln b Al
1 [1—m2 mgan'

“1+m2| 2m
By Exercise 69, the respective standard
matrices of the reflections of R? about
the lines with equations y = 1.23z and
y = —0.24z are

2
A__l[la 2a]

T 14a2| 2a a%2-1
and

1 182 2b

T 142 26 -1y

where ¢ = 1.23 and b = —0.24. Thus,
by Theorem 2.12; the standard matrix
of the composition of these reflections is

—.6262

7797
BA= [—.7797 ] '

—.6262

From the form of a rotation matrix, we
see that the angle of rotation # must sat-
isfy cosf = —.6262 and sinf = —.7797.
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Because both of these values are nega-

tive, we have 180° < 8 < 270°.

Now

cos™1(.6262) =~ 51°, and hence 6§ =~
180° + 51° = 231°,

SYMMETRIC MATRICES

(a)

The associated quadratic form of
the given equation

222 — 14zy + 50y° — 255 = 0

is 222 — 14y + 50y2. As described
on pages 428-431, we must find an
orthonormal basis for R? consist-
ing of eigenvectors of

2 -7
A‘[—7 50]'

The eigenvalues of A are A\; = 1
and Ao = 51, and

) = {1

are bases for the corresponding
eigenspaces. The vectors in these
bases are orthogonal, as guaran-
teed by Theorem 6.14. So

(] 7l

50 [1]°v50 | 7

is the desired orthonormal basis
for R? consisting of eigenvectors of
A. From among these basis vectors
and their negatives, we choose the
vector having two positive compo-

nents, which is \/%3_0 [ﬂ , and make

a rotation matrix with this as its
first column. This rotation matrix
is )
7 -1
P=— ,
V50 [1 7]

()

and it is the rotation matrix corre-
sponding to the angle

cos™! —7— =~ 8.13°.

V50

The equations relating z,y and
z',y are given by

=)

that is,
- 1
=T T Y
. W 7o
vy=7%% T 7Y

The columns of P are eigenvectors
corresponding to the eigenvalues
A1 = 1 and Ay = 51, respectively,
and so the transformed quadratic
form is

M)+ 22 (y)? = () +51(y')%
Thus the transformed equation is

(z')? +51(y')2 — 255 =0
(z')% + 51(y)? = 255

@7, W)

—— = 1.
255 5

This is the equation of an ellipse.

As in Exercise 1, take
5 2
A= [2 5] .

The eigenvalues of A are 7 and 3,

TR




(c)

(d)

(e)

is an orthonormal basis for R? con-
sisting of corresponding eigenvec-
tors. Choose

L1
P=[?§ f]
V2 V2

Then P is the rotation matrix cor-
responding to the angle

1
cos™! — =45°.

V2

The equations relating z,y and
z',y are given by

that is,
=L Ly
z= '~ 5y
y= 52 + 5y

The columns of P are eigenvec-
tors corresponding to the eigenval-
ues 7 and 3, respectively, and so the
transformed equation is

(=)’ +3(y)> =9

LG Oy

9 3
The conic section is an ellipse.

As in Exercise 1, take

4= ]

The eigenvalues of A are —10 and

IR
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is an orthonormal basis for R? con-
sisting of corresponding eigenvec-
tors. Choose

1 —2
P= [f f] .
V5 V5
Then P is the rotation matrix cor-
responding to the angle

1
cos~! — = 63.43°.

NG

(¢) The equations relating z,y and
z',1y/ are given by
1 2
=z’ — Z=y
y= %m’ + ﬁy’ .
(d) The columns of P are eigenvec-
tors corresponding to the eigenval-

ues —10 and 5, respectively, and so
the transformed equation is
-10(z")? + 5(y')? = 200
n2 2
IGO0

20 40

(e) The conic section is a hyperbola.

13. The characteristic polynomial of A is

det (A — tIp) = det [t;f‘ ti3]
=(t-3)%-1
= (t—2)(t - 4).

Thus A has the eigenvalues \; = 2

and A2 = 4, and [_ﬂ and [ﬂ are

eigenvectors that correspond to these

eigenvalues. Normalizing these vectors,
we obtain unit vectors

1 1
V2 V2
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that form an orthonormal basis {u;, u,}
for R2. Using these eigenvectors and
corresponding eigenvalues, we obtain
the spectral decomposition

T T
A= Aiuiuy + Aquu;

1

-2 3l -4

17. The characteristic polynomial of A is

det (A —tl3)
3—t 2 2
= det 2 2-7 0
2 0 4-t
= —18t + 9% — ¢
= —t(t — 3)(t ~ 6),

and so A has the eigenvalues \; = 3,
A2 = 6, and A3 = 0. For each JA;, select
a nonzero solution of (A — X\;I3)x =0 to
obtain an eigenvector corresponding to

each eigenvalue. Since these eigenvalues 21.

are distinct, the eigenvectors are orthog-
onal, and hence normalizing these eigen-
vectors produces an orthonormal basis
for R3 consisting of eigenvectors of A.

Thus if
1 -1 1 2 23.
u1=-§ -2 , U = — 1 s
2 2 24.
and
w3
3“3 ’

then {uj,ug,us} is an orthonormal ba-
sis for R® consisting of eigenvectors of
A. Using these eigenvectors and cor-
responding eigenvalues, we obtain the
spectral decomposition

A= Aluluf + )\gugug + A3u3u§

- (%) :é HERRY

2
|
ve(2) (1|t 1 g
3/ |5|3
-2
1 1
+o(=)| 2|52 21
3/ ] 1]3
12 29 4 2 4
9 9 9 9 9 9
4 4 2 1
=3| 3 5-5|+6(3 5 3
2 _4 2 4 2 4
9 9 9- 9 9 9
s _4 2
9 9 9
vol-5 % 3
2z 1
9 9 9

True

False, any nonzero vector in R? is an
eigenvector of the symmetric matrix Ip,
but not every 2 x 2 matrix with nonzero
columns is an orthogonal matrix.

True

False, let A = E ﬂ Then [ﬂ and

_ﬂ are eigenvectors of A that corre-

spond to the eigenvalues 3 and -1, re-
spectively. But these two eigenvectors
are not orthogonal.




25.

26.

28.

29.
32.

33.
34.
35.

36.

37.
39.
40.

41.

45.

False, if v is an eigenvector, then so is 49.

2v. But these two eigenvectors are not
orthogonal.

True 27. True

False, [(1) __(1)] is not the sum of orthog-

onal projection matrices. 53.

True 30. True 31. True

False, if 6 is an acceptable angle of rota-
tion, then so is 6 & 7.

True
False, see Exercise 41.

False, the matrix must be symmetric.

False, the correct matrix is [(; Ic)] .

57,
True 38. True
False, we also require that det P = 1.

False, we need the coefficient of zy to be
2b.

Two different spectral decompositions

10 0 0
of 21, are2[0 0]-{-2[0 1] and

JHR R

For ¢ = j, we have

61.

— T T __ T T
P,P; = w;u; u;u; = u;(uj u;)u;

=u;()u” = wu = F;

d for i # j, we h
and for i # j, we have 65.

PP, = uiu?ujuf =w;(u
= ui[O]u? =0.
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Suppose that Q; = Pr+ FPryy + - -+ Ps.
Then

Qf =(Pr+ P+ +P)T
=PT+PL,+---+PT
=Pr+Pr+l+"'+Ps=Qj-

Let A= @1 + p2@2 + -+ + puxQx be
the spectral decomposition, as in Exer-
cise 47. Then A® is the sum of all prod-
ucts of s terms (with possible duplica-
tion) from the sum above. Any such
term containing factors Q; and @; with
i # j equals O. Otherwise, each fac-
tor of the term is of the form u;@;, and
hence the nonzero terms are of the form
piQ: = i Q;. Therefore

A = piQ1 + p3Q2 + -+ - + pxQk-

Let A = Q1 + p2@2 + -+ - + pxQx be
the spectral decomposition, as in Exer-
cise 47. By Exercise 55, we have

fi(4)
= fi(p)@1 + -

+ fi(ui)Q5 + -+ + fi(ps)Qr
=0Q; + - +1Q; + -+ -+ 0Qx = Q.

Suppose that A is positive definite.
Then A is symmetric, and hence A~ is
also symmetric. Furthermore, the eigen-
values of A~! are the reciprocals of the
eigenvalues of A. Therefore, since the
eigenvalues of A are positive, the eigen-
values of A~! are also positive. It follows
that A~! is positive definite by Exercise
59.

We prove that the sum of two positive
semidefinite n X n matrices A and B
is also positive semidefinite. Note first
that A+ B is symmetric because both A
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and B are symmetric. Also, viAv >0 6.7

and vIBv > 0 because A and B are
positive semidefinite. Therefore

vI(A+ B)v =vTAv + vTBv > 0,

and hence A+ B is positive semidefinite.

We prove that if A is a positive semidef-
inite matrix, then there exists a pos-
itive semidefinite matrix B such that
B? = A. Since the eigenvalues of A are
nonnegative, each eigenvalue has a non-
negative square root. As in Exercise 47,
write

A=pmQ1 + p2Q2 + -+ + e Qx,

where the p;’s are the distinct eigenval-
ues of A. Define

B = /@1 + /112Q2 + - - - + /1 Qx.

Then B? = A by Exercise 53. Moreover,
B is symmetric by Theorem 1.2 and Ex-
ercise 49. Since the eigenvalues of B are
nonnegative, B is a positive semidefinite
matrix.

Suppose that A is invertible. Let v
be any nonzero vector in R™. Since
nullity A = 0, it follows that Av # 0.
Thus

vT AT Av = (Av)T (Av)
= (Av)+(Av) > 0,

and hence AT A is positive definite. Sim-
ilarly, AAT is positive definite.

SINGULAR VALUE
DECOMPOSITION

1. We wish to write A as ULVT, where the

columns of U and V form orthonormal
bases for R? satisfying equations (9) and
(10) on page 439. We begin by comput-
ing

r, [ 1]t 0] 2 o0
ATA= [0 o[ {1 of (o o|"
The eigenvalues of AT A are its diagonal

entries, 2 and 0. So the singular value
of A is o7 = v/2, and the matrix ¥ is

>:=[‘/g g].

Because ATA is a diagonal matrix,
{e1,e2} is an orthonormal basis for R?
consisting of eigenvectors of ATA. So
we may take v; = e; and vp = e as the
columns of V.

Next, we obtain an orthonormal basis
for R? to serve as the columns of U.
From equation (9), we obtain

1 1|1
== 51

For the second column of U, we can
choose any unit vector that is orthog-
onal to u;. We can find such a vector
by solving x.u; = 0, that is,

1+ a2 =0.

For example, we can take z; = —1 and
z2 = 1, and then normalize this vector

to obtain u; = :% [_ﬂ

Thus A = UZVT is a singular value de-
composition of A, where

setuwi= )




and

V=[v; vi] = [(1) g’}

. We begin by finding the eigenvalues of

. I3 2
AA—[z 6]

which are 7 and 2. (These are ordered
from largest to smallest.) Thus the sin-
gular values of A are o7 = /7 and
oy = /2. For each of the eigenval-
ues of AT A, we must find a correspond-
ing eigenvector of AT A. Thus we solve
the equations (ATA — 7I;)x = 0 and
(AT A — 2I,)x = 0 to obtain the vectors

ol = L]

Normalizing these vectors gives us the
columns of V:

i [1] and v = —1— [ 2]
V5 12 =7 -1l
The first two columns of U can be ob-

tained from the vectors vi and v; using
equation (9) on page 439:

V1 =

1
1 1
u; = —Av; = — [1 -1
o1

() —
——
S~
o

—
N =
——

S
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11
=—\/_i—_dg

For the third column of U, we can choose
any unit vector that is orthogonal to
both u; and us. We can find such a
vector by solving the system of linear
equations

3y — x4+ 5z3=0
z1 + 3x2 =0.

2

Then normalize this vector to obtain the
third column of U:

3

1].

2

o L
3T /1a

Thus if we let

-3
For example, one possibility is 1:|.

3 1 =3
35 10 V14
U=[u uz uz]= ;31”5 ‘\/STS ﬁ y
-5 0 2
V35 V14
o1 0 VT 0
=10 o|l=]0 +2],
0 O 0 0
and
12
V=[V1 V2]= |:\g§ f],
V5 V5

we obtain the singular value decomposi-
tion A =UZVT.

9. We begin by finding the eigenvalues of

6 0 0
ATA= {0 2 2},

0 2 5
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which are 6, 6, and 1. (These are or-
dered from largest to smallest.) Thus
the singular values of A are 0; = /6,

02 = V6, and 03 = 1. As in Exercise 5, 13.

we can obtain an orthonormal basis for
R3 consisting of eigenvectors of AT A,
for example,

of L] L] 3

o] V52| V5|3
Let vi, vo, and vz denote the vectors
in this basis. These vectors are the
columns of V.

To obtain the columns of U, we compute

1
1 1
u = —Av; = — |2],
1 = 1 \/61
5
1
u2=—-AvQ=—1— =21,
(251 30 -1
and
0
1 1
ug=—Avz=-—=1| 1
3 o1 V3 B s
Thus if we take
L 5.
V6 V30
U= 2 =2 1
—|ve V30 V5>
A =1 =2
L/6 V30 V6
(V6 0 0]
E=(0 V6 0],
| 0 0 1]
and
1 0 017
1 2
V=10 % |
0 <2 =L
LY 5 B4

we obtain the singular value decomposi-
tion A=UXVT,

From the given characteristic polyno-
mial, we see that the eigenvalues of AT A
are 7, 2, and 0. Thus the singular values
of A are 03 = V7 and 05 = v/2. It can
be shown that

3 1
V35 10
-5
vy = V35|’ Vg = 0 )
-1 3
V35 ;10
and
_3_
V14
-2
V3= ' /14
=L
V14

are eigenvectors of AT A corresponding
to the eigenvalues 7, 2, and 0, respec-
tively. Take these vectors to be the
columns of V. To obtain the columns

of U, let
1
-2

Ll L2
u2—02 V2—\/5_ 1l

These vectors form an orthonormal basis
for R?2. Thus A = UELVT is a singular
value decomposition of A, where

1
u = —Av; =
o1

Sl

and

2
o= 1% %]
Vs 5
s [VT 0 0]
=% s ol
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and Proceeding as in Exercise 5, we obtain
3 1 3 1 0
V35 10 V14 uz = 7___ 1
—5 2 2
V=\7m O 14 1
'ial“r, 7% 7_11=4 Thus A = ULVT is a singular value de-
composition of A, where
From the given characteristic polyno- -1 2 0
mial, we see that the eigenvalues of AT A V3 VB
are 21, 18, 0, and 0. Thus the singular U=+ =3 3
) y Vs V3 76 73 ,
values of A are o7 = v/21 and o, = V18. 1 a1 .
It can be shown that L3 VB V2
1 1 (V21 0 0 0
1 |2 _1 |1 =] 0 18 0 0],
=7 hl 2T A o) 0 0 00
1 1
and
1 1 F1 1 17
1 1 d 1 0 Vi Vi VI 2
V3= == y and vq = —x 2 -1 _1
viL |3 vz o R b
- 1 -3
v AR
are eigenvectors of AT A corresponding L 1 g =L
to the eigenvalues 21, 18, 0, and 0, re- VT VB V2

spectively. Take these vectors to be the . )
columns of V. To obtain the columns of 21+ To find the unique solution of Ax = b

U. let with least norm, we find a singular value
’ decomposition of A, where
1
1 1 1 1 2
~lan=L1 A=[ ] db—H.
t o1 Vi \/§ ~1 2 2 4

The eigenvalues of AT A are 10 and 0,
and and

2 v—i[l} and v———l— 1
= lan=L |- T Vval Coval-)
uz = pn AV2 = \/g 1}.

2
1 are eigenvectors of AT A corresponding

) to the eigenvalues 10 and 0 tively.
Since u; and u; are orthonormal, the set genva, anc v, respective y

of these vectors can be extended to an Th(ise \/;%c.t Ozi are tllle collumn? Z t V(i
orthonormal basis {uj,uz,us} for R3. = 1s the smgiiar value of 4, an
So we must choose ugz to be a unit vector V10 0

that is orthogonal to both u; and us. L= [ 0 0} ’
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Let
1 1N
we g =l

and choose a unit vector us orthogonal
to u; such as

u _L[ 2]
Then, for
1 1 2
v-Fb 1)

A = UXVT is a singular value decom-
position of A.

So, by the boxed result on pages 448-
449,

z=VStUTb
1 T
—ylve O Lt o2pn 2
0 o0|lVv5i2 -1 |4

1N
-
is the unique solution of Ax = b with
least norm.
We proceed as in Exercise 21 with
1 -2 1 3
A——[_l 1 2] and b—[_l].

The eigenvalues of ATA are 7, 5, and 0,

and
SN U | I O I
1\/ﬁ1)2m3>
and

are eigenvectors of AT A corresponding
to the eigenvalues 7, 5, and 0, respec-
tively. These vectors are the columns of
V, 01 = V7 and o2 = /5 are the singu-
lar values of A, and

s_[v7T 0 0
L0 VB oo
Let
1 1 [-1
u1—-;AV1——2[1]
and

so that A = UXVT is a singular value
decomposition of A, where

_1f11

v A1k
So, by the boxed result on pages 448
449,

z=VztuTh
1
L 0
V7
=vio L _1._ -1 lT 3
= VBl V2l 1 1 |1
0 0

20

1
= — |-37
35 [ 11]

is the unique solution of Ax = b with
least norm.

. Let z be the unique solution of Ax =Db

with least norm, where

by el
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As in Exercise 5, it can be shown that
A = UZVT is a singular value decom-
position of A, where

=gl el )

and U = V. So, by the boxed result on
pages 448-449, we have

z=VXiUTb

02 0],,r 0.04
o[ e o)

Let z be the unique solution of Ax = b
with least norm, where

11 -1 —4
A=11 1 1 and b= 6
00 1 3

As in Exercise 5, it can be shown that
A = UXVT is a singular value decom-
position of A, where

oo -1
Vv=—1(1 o0 1},

V2 1o V2 0

2 0 0

=10 V3 0

0 0 0

and

) 3v2 —-2/3 6
U=g 32 23 -6].
0 2v3 2v6

So, by the boxed result on pages 448-
449, we have

3

3

2

z=VZUTb

[=2F

05 0 O
0 0 0

37.

45.

49.
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1
Let A = [2].
2

UXVT is a singular value decomposition
of A, where

By Exercise 3, A =

1 2 2
3 V5 3v5 3
2 -1 4

U=15 & 5| =0,
2 g =5 0
3 3v5

and
V =11].

Thus the pseudoinverse of A is

At=vzluT=v [} 0 ojUT

1
=522

. A singular value decomposition of the

given matrix A was obtained in Exercise
5. Using the matrices U, X, and V in the
solution to that exercise, we find that
the pseudoinverse of A is
8 2
-5 4

1 [4
14 (1
A singular value decomposition of the
given matrix A was obtained in Exer-
cise 13. Using the matrices U, X, and V

in the solution to that exercise, we find
that the pseudoinverse of A is

At=yztyT =

At =vziuT =

oo
(1]

1 0

Let A= I:O —1] . Using the method of
1 1

Exercise 5, we see that ULV is a sin-
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gular value decomposition of A, where
. V6 —-3v2 -23
U=z |-v6 -3v2 2v3},
2V6 0 2v3
V3 0
X=] 0 1},
0 0
and
1 ]1 -1
-7 )
Since rank A = 2, let
1 00
D=0 1 0}.
0 00

Then using these matrices U and D, we
find by equation (13) that

2 1ot
PW=UDUT=§ 1 2 -1].
1 -1 2

In Exercise 5, we found a singular value
decomposition of

Using the matrix U in Exercise 5 and
this matrix D, we find by equation (13)

that
1 5 3 6
T
Py =UDU =1 3 13 -=-2].
6 -2 10

55. False, 02 is an eigenvalue of AT A.

56. True

57. False, see Example 7.

58. True

59. False, every matrix has a pseudoinverse.

60. False, B, is an orthonormal basis of
AT A,

61. True 62. True

63. False, By is an orthonormal basis of
AAT.

64. True 65. True

66. False, if A = UZVT is a singular
value decomposition of A, then A =
(=U)Z(-V)T is also a singular value de-
composition of A.

67. False, only the nonzero diagonal entries
are singular values.

68. True

69. False, VETUT is a singular value de-
composition of AT.

70. True 71. True

72. False, u is the unique vector of least
norm that minimizes [|Au — b]|.

73. True

74. False, At = VZtUT.

75. True

77. (a) Let B= {v1,va,...,v,} be an or-

thonormal basis for R" satisfying
equation (9), and let v be in R™.
Then

v=a1vi+agva+---+apvn




81.

85.

for some scalars aj,a2,...,an
Thus
| Av]? = (Av)(4v)

= (AV)T(Av)

=vT AT Av

=v.(AT Av)

=(avi+---+apvy).

(102v1+ -+ amoivy)
=af0f+---+afna,2n
Safaf-}—----!—afnaf
< (af +-- +ap)ot
= |[vli*st,

and hence ||Av|l < oq|lv]|.

The proof that om|v]| < [[Av] is
similar.

Let v = v,, and w = vy, where v;
and v,, are as in (a).

(b)

Since ¥ = I,XIT is a singular value
decomposition of X, it follows that the
pseudoinverse of ¥ is I, 21T = ©f.

Suppose that A is a positive semidefinite
matrix. Since A is symmetric, there ex-
ists an orthogonal matrix V and a diag-
ona]l matrix D such that A = VDVT.
Furthermore, the diagonal entries of D
are the eigenvalues of A, and these are
nonnegative by Exercise 60 of Section
6.6. Also, V and D can be chosen so
that the diagonal entries are listed in de-
creasing order of absolute value. Since
D has the form given in equation (11),
we see that A = VDV7T is a singular
value decomposition of A.

Now suppose that A is not positive
semidefinite. Then A has a negative
eigenvalue. In any factorization of the
form A = VEVT, where V is an orthog-
onal matrix and ¥ is of the form given

89.

6.8

10.

11.

12.
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in equation (11), 3 is a diagonal matrix
whose diagonal entries are the eigenval-
ues of A. Since A has a negative eigen-
value, at least one of the diagonal entries
of ¥ is negative. This entry cannot be a
singular value of A, and it follows that
A = VEVT is not a singular value de-
composition of A.

If ¥ is an m X n matrix of the form in
equation (11) and X is an n x m matrix
of the form in equation (14), their prod-
uct is the m x m diagonal matrix whose

first k diagonal entries are o; - == 1

i
and whose last n — k diagonal entries
are zero.

PRINCIPAL COMPONENT
ANALYSIS

By definition, the mean of a set of m
observations equals their sum divided by
m;soT=3[2-3+4]=1

cov(x,y)
= 22~ 1)(-3)
+(=3-1)(2-3)

+(4-1)(3-3)]
1 5
=sl+4+0=3

True

False, to obtain the variance, the sum
should be divided by m — 1.

False, the covariance may be any real
number.

False, the correlation may be any real
number between —1 and 1, inclusively.
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13.
14.
15.

186.
19.

21.

25.

29.
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False, their correlation is either —1 or 1. 33.

True

False, the covariance may be any real
number.

True 17. True 18. True
True 20. True
cov(x,y) = ——(x—%)+(y - )
¥) = ——(x-%)(y-¥
1 — _
=——(-¥)-x-%
= cov(y, X)
Suppose that cov(x,x) = 0. Then

(x—%X)(x—%X)=0.Sox—X=0or
x = X. It follows that z; = T for all <.
Now suppose that all the components of
x are equal. Then the mean of x equals
this common value, and so x = X. Thus
cov(x,x) = 0.

By Exercise 28(a), the variance of ¢x is

ml_ (cx = TX) » (ex — X)
=E_1:_(cx—ci)-(cx—ci)
- ml_ cle(x — %))+ le(x ~ %))
= 2 1 Xx—X)e(x—X
=02:2L_ ( )« ( )

37.

1
We must show that - (x—X) has amean

of 0 and a standard deviation of 1. Its
mean is

11 _

i=1
1 m m
= e [.Z %= D]
i=1 i=1
|
= [mZ — mZ] = 0.
msx

Using Exercise 29, we see that the vari-
1 1 . .

ance of —(x — X) is — times the vari-
Sx 52

ance of (x —X). By Exercises 27 and 24,

the variance of x — X is

2

cov(x — X, x —X) = cov(x, X) = s5.

So the variance of —(x — X) equals 1.

(a) By Exercises 27 and 22, we have
. cov(x,y)
SxSy

_cov(x—-X,y~¥)

Sx Sy

(x—'i y—y)
= cov y —
Sx sy

= cov(x*,y").

(b) By Exercise 30 and (a) above, we
have

0 S si':‘:y'
=s2. + s?,* =+ 2cov(x*,y*)
=2+2r

So £r < 1, that is, |r| < 1.




6.9
6.9 ROTATIONS OF R3
AND COMPUTER GRAPHICS
3. We have
M = Pyoo Rys0
1 1 g
1 0 o]V V2
_ 1 1
S ERIEEER
0 01
1 1 -1 0
=—1{0 0 —V2
V2 1 1 0
1 1
7. Let = — |0]. We must select
et Vg \/5 . 8

nonzero vectors wy and wo so that wy,
wa, and v3 form an orthogonal set and
wy lies in the direction of the counter-
clockwise rotation of w; by 90° with re-
spect to the orientation defined by vs.
First choose w; to be any nonzero vec-
0
tor orthogonal to vs, say w; = |1].
0
Then choose wa to be a nonzero vector
orthogonal to w; and v3. Two possibil-

—1]
ities are 0| and 0} . Since
~1] 1)
[0 1 1]
det |1 0 <0
0 -1 1)
and
0 -1 1
det |1 0 0] >0,
0 1 1

Rotations of R® and Computer Graphics 159
-1

we choose wg = 0! so that the de-
1

11.

terminant of the matrix [w; wo ws] is
positive. (Once we replace wy by a unit
vector in the same direction, we can ap-
ply Theorem 6.20.) Now let v; = wy,

e 1%
= —Woy == —r y
2T well T V2|

and
1 1
0 -7% ~
V=[vy vz vz]= |1 0 0
1 1
0 B 7
-1 0 0
Since Rjgge = 0 -1 0], we have
0 01
0 01
P=VRigeVIi=10 -1 0
1 0 0
1
Let v = — |[—1|. As in Exercise 7,
vZi g

we select nonzero vectors w; and wsp
that are orthogonal to vs and to each
other so that

det [W1 W32 Vg] > 0.

We choose
1 0
wy = |1 and wp = |0
0 1

Next, set
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Vo = wWo, and

1 1
7% x5
V=I[v; vy v3] = % 0 —%
01 0
R
Since R3p0 = % 4 0|, we have
0 0 1
P =VR3oVT

1 [V3+2
=14 V3-2
V2

V3—-2 —2
V3+2 —V2
V2 2V3

and let o be the angle between w
and Mw. Notice that |Mw| =
|lw|| because M is an orthogonal
matrix. Therefore by Exercise 98
in Section 6.1,

Mw.w Mw.w
cosa = =

[Mwll[w]  [[w]lw]

0 1

—17 « 10
_ -1 1 1
= o =-3

1

19. The rotation matrix described in Exer-

cise 5 is
15. ;I;lslee 1r(;z;mon matrix described in Exer- . 2/3 0 9
M== 1 2v3 —V3|.
01 0 Y13 2 3
M = 0 0 -1
-1 0 0 (a) The axis of rotation is the span

(a) The axis of rotation is the span
of an eigenvector of M corre-
sponding to the eigenvalue 1, and
hence we seek a nonzero solution of
(M — I3)x = 0. One such vector is

-1
—11. So the axis of rotation is
1
-1
Spang |—1 .
1 (b)

(b) Choose any nonzero vector that is
orthogonal to the vector in (a), for
example,

of an eigenvector of M corre-
sponding to the eigenvalue 1, and
hence we seek a nonzero solution of
(M — I3)x = 0. One such vector is
V3+2
V3 +2|. So the axis of rotation
1

V342
Span<{ [v3+2
1

Choose any nonzero vector that is
orthogonal to the vector in (a), for
example,

and let a be the angle between w
and Mw. Because |[Mw| = ||w],




23.
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we have, by Exercise 98 in Section

6.1,
. Mw.w Mw.w
CoOsSQx = =
(Mw|llwll  [lwiliw]
L[ =23 -1
y 2v/3-1| .| 1
243 0

-1 2
1
0
_43-1

8

Let A be the standard matrix of Tw .
Choose a nonzero vector orthogonal to

1 1 1
2| and | 0], for example, | —2]|, and

3 -1 1

NI AEAE]

Then B is a basis for R3, and

wa';*);;],
3] 3
[ 1] [ 1
w([])- 14
| —1] -1
(1)L
Tw il |-2| | =-|-2]|.
[ 1] 1

Let B be the matrix whose columns are
the vectors in B. Then

10 0
Twls=(0 1 0f,
0 0 -1

and

—

and therefore, by Theorem 4.12,

2 2 -1
A=B[TW]BB-1=g 2 -1 2
-1 2 2

. Let A be the standard matrix of the re-

flection of R3 about the plane W with
equation £+ 2y — 2z = 0. A basis for W
is

-2 2
1{,10
0 1
1
The vector 2|, whose components
-2

are the coefficients of the variables in
the equation of W, is orthogonal to W.
Thus

-2] [2 1
B= 1,10],| 2
of [1] |-2

is a basis for R3, and

2] [—2
Tw il )= 1,

0 | 0

2] 2
Tw | (0] | = |0],

1

(313

Let B be the matrix whose columns are
the vectors in B. Then

1 0 0
[T]B=[0 1 0}7

0 0 -1

and
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35.
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and therefore, by Theorem 4.12,

[ 7 -4 -4
A=B[T]BB_‘=§ -4 1 8.
4 8 1

First, obtain a basis {w;, wy} for W by
selecting two linearly independent vec-
tors that are orthogonal to v such as

1 2
0 and wo = [-1
1 0

wi

Although we could proceed as in Ex-
ercise 23, we will use an alternate ap-
proach.

Let A be the standard matrix of Ty .
Then

1 2 1
Alo -1 2
1 0 -1
[ 1 2 1
=|Alo] A|-1[ A4 2
|1 0 -1
1 2 -1
=10 -1 -2{,
1 0 1
and therefore
12—1(121'1
A= |0 -1 —-2|/{0 -1 2
1 0 1j{1 o0 -1
2 =2 1]
=%—2 -1 2
1 2 2

As in Exercise 31, we begin by finding
two vectors that form a basis for W:
—4 -5
w) = 3 and wy = 0
0 3

39.

41.

Let A be the standard matrix of Ty .
Then, as in Exercise 31, we have

A=[w; wy —v][w; wy v]™!

1 16 -12 -15
=25 -12 9 -20
-15 -20 0

The given matrix does not have 1 as an
eigenvalue. Therefore it is neither a ro-
tation matrix nor the standard matrix
of a reflection operator, both of which
have 1 as an eigenvalue.

(a) Since
1 0 0
det |0 -1 0] =1,
0 0 -1

the matrix is a rotation matrix by
Theorem 6.20.

1
Observe that [0

0
tor of the matrix corresponding to
eigenvalue 1, and therefore this vec-
tor forms a basis for the axis of ro-
tation.

is an eigenvec-

. Let M denote the given matrix.

(a) Since det M = —1, M is not a rota-
tion matrix by Theorem 6.20. We
can establish that M is the stan-
dard matrix of a reflection by show-
ing that M has a 2-dimensional
eigenspace corresponding to eigen-
value 1. For, in this case, it
must have a third eigenvector cor-
responding to eigenvalue —1 be-
cause its determinant equals the
product of its eigenvalues. The re-
duced row echelon form of M — I3




47.

48.

49.

50.
51.
52.

is
1 0 —(1++2)
00 0 ,
00 0

and hence the eigenspace corre-
sponding to eigenvalue 1 is 2-
dimensional. Therefore M is the
standard matrix of a reflection.
The matrix equation (M —I)x =0
is the system

(b)

1 — (1 +v2)z3 =0,

and hence the vector form of its
general solution is

T 0 1++v2
9| =x2 |1| + 23 0
T3 0 1

It follows that

o] [1+v2
1], 0
0 1

is a basis for the 2-dimensional sub-
space about which R3 is reflected.

o= O
-0 O

-1
False, consider P= | 0
0

False, let P be the matrix in the solution

to Exercise 47.
-1 0 0
False,let @ =| 0 0 -1{.
0 1 0

6.9 Rotations of R® and Computer Graphics 163

53. True 54. True 55. True

56. False, for example, if ¢ = 6 = 90°, then

0 01
QdJRO =11 0 0},
010
but
0 -1 0
RyQy = 0 01
-1 0 0
57. True 58. True
59. False, the matrix is
cosf@ 0 sind
Qs = 0 1 0
—sinf 0 cos6

60. True 61. True 62. True

63. False, the rotation, as viewed from vs,
is counterclockwise.

64. False, the determinant is equal to —1.

65. False, the eigenvector corresponds to the
eigenvalue 1.

66. False, any nonzero solution of the matrix
equation (Py — RY)x = 0 forms a basis
for the axis of rotation.

67. True

69. We have

1 0 0
det Pp =det |0 cosf@ —sin6
0 siné cos @
cosf —sinf
= det [sin &  cos 9]

False, consider Is.
True

False, consider the matrix @) in the so-
lution to Exercise 49.

= cos® 0 +sin%8 = 1.

The other determinants are computed in
a similar manner.
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73.

77.

81.
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(a) Clearly, Tw(w) = w for all w
in W, and hence 1 is an eigen-
value of Tw. Let Z denote the
eigenspace corresponding to eigen-
value 1. Then W is contained in
Z. Observe that dimZ < 3, for
otherwise Ty would be the iden-
tity transformation, which it is not.
Since dimW = 2, it follows that
W=7

Since Tw(z) = —z for all z in
W+, —1 is an eigenvalue of Ty
and W+ is contained in the corre-
sponding eigenspace. Because the
eigenspace corresponding to 1 has
dimension 2, the eigenspace corre-
sponding to —1 has dimension 1.
But dim W+ = 1, and hence these
two subspaces are equal.

By Exercise 72, B and C are orthogonal
matrices, and hence BC is an orthogonal
matrix by Theorem 6.10. In addition,
det B = det C = —1 by Exercise 75. So

det BC = (det B)(det C)

and hence BC is a rotation matrix by
Theorem 6.20.

Let Q = CB~!. Then

[Qv: Qv2 Qvi] =QB=CB™'B
=C=[vi vy —v3],

and hence Qv; = vi, Qv2 = vg, and
Qvs = —v3. Since {vi,v2} and {v3}
are bases for W and W, respectively,
we have Qv = v for every vector vin W,
and Qv = —v for every vector v in W,
Therefore Q = CB~! is the standard
matrix of the reflection of R about W.

10.

11.
12.

13.

14.

15.

16.
18.

19.
21.

CHAPTER 6 REVIEW

True 2. True

False, the vectors must belong to R™ for
some n.

True 5. True 6. True

True 8. True

False, if W is a 1-dimensional subspace
of R%, then dim W+ = 2.

False, I,, is an invertible orthogonal pro-
jection matrix.

True

False, let W be the z-axis in R?, and let
v = [;] Then w = [(1)], which is not
orthogonal to v.

False, the least-squares line minimizes
the sum of the squares of the vertical dis-
tances from the data points to the line.

False, in addition, each column must
have length equal to 1.

False, consider which has deter-

1 1}
1 2p
minant 1 but is not an orthogonal ma-
trix.

True 17. True

False, only symmetric matrices have
spectral decompositions.

True

@ lull = V3TF O = VA,
Wl = VB2 = VD

®) a=ta-vi= |23 - v&

c) u-v=0




25.

27.

31.
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(d) The vectors are orthogonal because

their dot product equals 0. )
Therefore an orthogonal basis for S is

Choose a vector [_;J on £ and proceed 1 1 9
as in Example 3 on page 366 to obtain 1l 141y 113
1[-1 . . 11’3 12{’5 1
w = 3 [ 2]. The distance is 0 3 -1
“[ ] — _5_) [ ;] II =1.6V5. 35. We have
w=(v.vi)vi + (Ve v3)Vv
1 -2
(2u+3v)ew =2(u.w) + 3(v.w) _ 51 -9 1
=—=—=2|+—=—47==] 1
=2(5)+3(-3) =1 V55 | 14V14 | 4
The dot product of no pair of vectors in 1
S is 0. Thus S is not orthogonal. =11
Let u;, ug, and us denote the vectors “'27
in S, listed in the same order. Define
Vi = uy,
0 1 Z=V—W
vomup— 22vi, _0f 1)l 1 32 18
[[va]]? L3 |-l - 1 _1
1 0 ol T R d Bl vl
-3 -27 —15
1 i The distance from v to W is
= — 2 y
s ol = V7.
and 39. A vector is in W if and only if it is or-
uge Vs Use Vs tl.logonal to bot.h o.f the vector.s ?n .the
V3 = ug — TAE v — TAE \'Z given set, that is, if and only if it is a
Vi vz solution of the system
1 1 1 _o
2| 3] 1 2\ (1) |1 1T =
1 ’ 3

Thus a basis for W is

—92 -1 0
1 3 -1 0
511 1] |o
-1 0 1
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43.

47.

51.
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Let C be the matrix whose columns are 55.

the vectors in this basis. Then

Py =cC(CTCc)™1cT

1 1 -1 0
_1i1 1 -10
“3|-1 -1 1 0}’
0 0 0 3
and the vector w in W closest to v is

0
0
w=Pyv = 0
2

Let A denote the given matrix. Then

r,_ [058 0.00] 1 0
A A= [0.00 0.58] a [0 1]'

Therefore the matrix is not orthogonal

by Theorem 6.9.
1 3 1
[-ﬁ 1‘=Z(1+3)=1’

the matrix is a rotation matrix. Com-
paring the first column of this matrix

with the first column of the rotation ma-
trix Ag, we see that

Since

1
det =
“3

. 1 ¥3
Ao = cosf —sinf| _ 2 "2
= lsin@ cosd|  |_v3 1|’
2 2

and hence cos8 = % and sinf = ——2—3.

Therefore § = —60°.

The standard matrix of T is

0 -1 0
Q=10 01 3
1 00

Since QTQ = I3, we see that Q is an or-
thogonal matrix. Thus T is an orthogo-
nal operator.

Let ail] = 1, Q9o = 1, and ai2 = ag1 =
(6) = 3, so that

by

The eigenvalues of A are 4 and —2, and
1

{700
V2 [1}'v2 ] 1
is an orthonormal basis of R? consisting
of corresponding eigenvectors. The first
of these basis vectors has both positive
components, and so we construct the ro-
tation matrix with it as its first column

11 -1

=gk )

This matrix is the rotation matrix cor-
responding to an angle of

cos™! (%) = 45°.

Thus if we rotate the z- and y-axes
by 45°, the original equation becomes
4(z')? - 2(y')? = 16. (The coefficients of
(z')? and (y')? are the eigenvalues corre-
sponding to the first and second columns
of P.) The new equation can be written

as
(_.T./_)z_@i=
4 8

and so the conic section is a hyperbola.

L

CHAPTER 6 MATLAB EXERCISES

. Answers are given correct to 4 places af-

ter the decimal point.

(a) The following vectors form an
orthonormal basis for W:




Vi =

Vo =

and

V3 =

L

[—0.1994]

0.1481
—0.1361
—~0.6282
—0.5316
| 0.4924 |

[ 0.1153]
0.0919
—0.5766
0.6366
—0.4565
0.1790

[ 0.3639]
—0.5693
0.5469
0.1493
—0.4271
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(d) If M is a matrix whose columns
form an orthonormal basis for a
subspace W of R™, then by The-
orems 6.8 and 6.9(b),

Py = M(MTM)*MT
= ML) *MT = MMT.

So MMT is the orthogonal projec-
tion matrix for W.

Answers are given correct to 4 places af-
ter the decimal point.

(a) Pw = [B C], where

B =
[ 0.3913  0.0730 —0.1763]
0.0730  0.7180 —0.1688

—0.1763 —0.1688  0.8170
—0.2716 -—0.1481 —0.2042

| 0.1992]

(b) For each of the given vectors u, the
orthogonal projection of u on W is

given by the boxed formula on page
376

(u0V1)V1 + (U-V2)V2 + (UOV3)V3.

These computations produce the
following vectors:

[ 1.3980 1
—1.5378 -2
. 1.4692 . 2
M| o7s504] ) |_g
1.4490 -3
| —1.6574 2
0
0
(iii) |0
0
0

(c) The vectors are the same.

0.2056  0.1328  0.1690
[—0.2929  0.3593  0.1405]

and C =

[-0.2716  0.2056 —0.2929]
—-0.1481  0.1328  0.3593
—0.2042 0.1690  0.1405
0.7594  0.1958  0.0836
0.1958  0.8398 —0.0879
0.0836 —0.0879  0.4744]

(b) same as (a)
(c) Pwv=viorall vinS.

(d) Let A be the matrix whose columns

are the vectors in S. By Exercise 61
of Section 6.3,

W = (Col A)* = Null AT

As described in Table D.2 of Ap-
pendix D, the MATLAB command
null(AT, 't’) yields a matrix whose
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columns form a basis for Wt =
Null AT having ration-al number
entries. The resulting basis is

[-1.75] [ 0.85]
~0.50| |—0.60
~1.00| [-0.10
~1.25( | 0.05

100| | 0.00
| 0.00] [ 1.00]

In each case, Py v = 0.

11. Answers are given correct to 4 places af-
ter the decimal point.

(a) Since A is symmetric, we can use
the command [P D] = eig(A) to
determine the matrices P and D:
pP=

—0.5 —0.5477 —0.5 ¢  0.0000
0.5 —0.5477 0.5 ¢ 0.0000
—-0.5 03651 05 c¢ 0.4082],
0.0 0.3651 0.0 ¢ —0.8165
0.5 0.3651 —0.5 ¢ 0.4082

where ¢ = —0.4472, and

-4 0 00 O

00 00 O

D= 00 -8 0 0
00 05 0

00 0 0 12

(b) The columns of P form an or-
thonormal basis of R® consisting of
eigenvectors of A, and the diagonal
entries of D are the corresponding
eigenvalues (in the same order).

(c) The spectral decomposition of A is
a sum of terms of the form A;F;,
where A; is the jth diagonal entry
of D (that is, the jth eigenvalue
obtained in (b)) and P; = ujuf,
where u; is the jth column of P
(which is the jth eigenvector in the

basis obtained in (bg) For each j,
we can compute u; by entering the
MATLAB expression P(:, j), as de-
scribed in Table D .4 of Appendix D.
The resulting spectral decomposi-
tion is

A=
r 025 -0.25 0.25 0 -0.25
—0.25 025 -0.25 0 0.25
-4 025 -0.25 025 0 —-0.25
0.00 0.00 0.00 O 0.00
L—0.25 025 —-0.25 O 0.25

r .3 .3 —.2000 —.2000 -.2000
3 .3 —.2000 —.2000 -.2000
+0|-2 -2 .1333 .1333 .1333
2 1333 1333 1333

L—.2 -2 1333 1333 .1333

[ 0.25 —0.25 —0.25 0 0.25
-0.25 025 025 0 -0.25
—8|-025 025 025 0 —0.25
0.00 000 0.00 0 0.00

| 0.25 —-0.25 —-0.25 0 0.25

.2 02 02 02 02
02 02 02 02 02
+5(02 02 02 02 0.2
02 02 02 02 02
02 02 02 02 02

0 0.0000 0.0000 0.0000
0 0.0000 0.0000 0.0000
0 0.1667 —0.3333 0.1667
0 —0.3333 0.6667 —0.3333
0

0
0
+12 |0
0
0 0.1667 —0.3333  0.1667

(d) As on pages 433-435, we obtain

2 2 2 0 -2
2 -2 -2 0 2
Ay=1| 2 -2 0 -4 4
0 0 -4 8 —4
-2 2 4 -4 0

(e) || E2|| = 6.4031 and || A|| = 15.7797
(f) The percentage of information lost

by approximating A by A; is

| E2ll

~ 40.58%.
Al




13. The answer is given correct to 4 places
after the decimal point.

Py = [B (], where

[ 0.3913  0.0730 —0.1763]
0.0730  0.7180 —0.1688
p_ (01763 —0.1688  0.8170
—0.2716 —0.1481 —0.2042
0.2056  0.1328  0.1690
|—0.2929  0.3593  0.1405 ]
and
[—0.2716  0.2056 —0.2929]
—0.1481  0.1328  0.3593
0= —-0.2042  0.1690  0.1405
| 07594 0.1958  0.0836
0.1958  0.8398 —0.0879
| 0.0836 —0.0879  0.4744]

17. (a) Observe that

-2 1
11,10
0 1
is a basis for W, and the vector
1
2| is orthogonal to W. So
-1

these three vectors form a basis for
R3 consisting of eigenvectors of Ty
with corresponding eigenvectors 1,
1, and —1, respectively. Let

-2 1 1
P= 1 0 2
01 -1
and
1 0 O
D=|0 1 0
0 0 -1

Then Aw = PDP~L.
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Using the rational format in MAT-
LAB, we obtain the exact matrix

Aw = PDP~!
2/3 —2/3 1/3
=|-2/3 -1/3 2/3
1/3  2/3 2/3

(b) Since Qq3o is a rotation, its de-
terminant is equal to 1. Observe
that det Aw = —1. Since Aw
and (23 are orthogonal matrices,
Aw Q23c Aw is an orthogonal ma-
trix. Furthermore,

det(Aw Q23 Aw )
= (det Aw) (det Qaso ) (det Aw)

= (-))(-1) =1

So Aw Qa30 Aw is a rotation matrix
by Theorem 6.20.

-2
(¢)v = |-11 is an eigenvector of
2

the matrix in (b) corresponding to
eigenvalue 1, and so it is a vector
that lies on the axis of rotation.
The angle of rotation is 23°.

(d) Let R be a rotation matrix and Ay
be the standard matrix of the reflec-
tion of R3 about a two- dimensional
subspace W. If v is a nonzero vec-
tor that lies on the axis of rotation
of R, then a nonzero vector w lies
on the axis of rotation of Aw RAw
if and only if w = Awv. Fur-
thermore, the angle of rotation of
AwRAw is equal to the angle of
rotation of R.




Chapter 7

7.1

Vector Spaces

VECTOR SPACES
AND THEIR SUBSPACES

1. Consider the matrix equation

020 _ [1 21
11 1~ 0 o
[0 0 0
+‘”2_111]
1 0 1
+‘”3_123}'

Comparing the corresponding entries of
the right and left sides of this ma-
trix equation yields the system of linear
equations

1 + x2z3=0
2(1:1 =2
1 + x3=0
To+ z3=1
o +2x3=1
o + 33 =1.

The reduced row echelon form of the
augmented matrix of this system is

10 00
01 00
0010
R_OOOI’
0000
00 00

170

indicating that the system is inconsis-
tent. Thus the matrix equation has no
solution, and so the given matrix does
not lie in the span of the given set.

. As in Exercise 1, the given matrix lies

in the span of the given set if and only
if the matrix equation

2 221 121
111 %o o0 o0

0 0 0
+‘”2[1 1 1]
10 1
+‘”3[1 2 3]

has a solution. Comparing the corre-
sponding entries of the right and left
sides of this matrix equation yields the
system of linear equations

z1 + x3=2
2:1,‘1 =2
Z1 + z3=2
o+ 23 =1
g+ 223 =1
(L‘2+3(L‘3=1.

The reduced row echelon form of the
augmented matrix of this system is the
marix R in the solution to Exercise 1.
Therefore the matrix equation has no so-
lution, and so the given matrix does not
lie in the span of the given set.




13.

Proceeding as in Exercise 1, we obtain
the system of equations

1 + z3=-—

2.’1)1 =-8
Ty + z3=-2
o+ 3= O
To+2z3= T
g+ 3zz3= 9.

This system has the solution z; = —4,
T9 = 3, z3 = 2, and so the given matrix
is a linear combination of the matrices
in the given set:

57 =0l 6 o

00 0
+3[1 1 1]
101
R

Thus the given matrix lies in the span
of the given set.

Suppose that ¢1, ¢z, and c3 are scalars
such that

24+z+z2+23=c;(1-2)
+ 1+ 23 + (142 — ).

Equating the coefficients of like powers
of z on the left and right sides of this
equation produces the following system
of linear equations:

cg+ec+ c3=-2
—C + c3= 1
Cg = 1
—c3= 1

This system has the solution z; = -2,
Ty = 1, z3 = —1. Thus

-2+ z 4224+ 2% = (-2)(1-2)

7.1 Vector Spaces and Their Subspaces
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21.
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+1(1 + %)
+(-1)(1 +z - z?).

So the given polynomial lies in the span
of the given set.

As in Exercise 1, the given matrix is in
the span of the given set if and only if
the matrix equation

1 2] 1o, [o1
-3 4]~ [-1 070 1
1 1
+.’E3 [0 0:|
has a solution. Comparing the right and
left sides of the corresponding entries of

the matrix equation yields the system of
linear equations

T +z3= 1
To+z3= 2

—I1 = —3
Iy = 4,

This system has the unique solution
z1 = 3, 2o = 4, and z3 = —2. Therefore

[ Rl I R
+(-2) [é é]

Thus the given matrix lies in the span
of the given set.

As in Exercise 17, we find that
1 -2 10 01
R EEN LN
11
+(-2) [0 0] .

So the given matrix lies in the span of
the given set.
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29.
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Any vector in a set lies in the span of
that set. So 1+ z lies in the span of the
given set.

A polynomial is a linear combination of
the polynomials in S if and only if has
the form

a(9 + 4z + 52° - 37%)
+b(-3 — 5z — 22% + z)
= (9a — 3b) + (4a — 5b)x
+ (5a — 2b)z? + (—3a + b)23.
for some scalars a and b. Comparing the
coefficients of the given polynomial with

the form above, we obtain the system of
linear equations

9¢ —3b= 12
4a — 5b = —13
56 —2b= 5
—3a+ b= —4.

Since this system has the solution a = 3
and b = 5, the given polynomial is a
linear combination of the polynomials in
S with 3 and 5 as its coefficients:

12 — 13z + 5z% — 4z°
=3(9 + 4z + 522 — 32°)
+5(—3 — 5z — 22 + 2®).

Let W denote the span of the set

{1+z,1—2, 1+2% 1-2%}.
Since

1=.5(1+z)+ .5(1—=z),

we see that 1 is in W. Since

z=.51+z)+(—5)(1~-=z)
we see that z is in W. Since

2% = 5(1 +22) + (—.5)(1 — z?),

33.
34.

35.
36.
37.

38.

39.
42,
44.

45.
48.
51.
54.
55.

we see that 22 is in W. Since {1, z, 2%} is
a generating set for P, that is contained
in W, it follows that W = Px.

True

False, by Theorem 7.2, the zero vector
of a vector space is unique.

False, consider a = 0 and v # 0.
True

False,
added.

any two polynomials can be

False. For example, if p(z) = 1+ z™ and
g(z) = 1 — z", then p(z) and ¢(z) each
have degree n, but p(z)+¢(z) has degree
0. So the set of polynomials of degree n
is not closed under addition.

True 40. True 41. True

True 43. True

False, the empty set contains no zero
vector.

True 46. True 47. True
True 49. True 50. True
True 52. True 53. True
True

Let f, g, and h be in F(S). For any s
in S, we have

[(f +9) +hl(s) = (f + 9)(s) +h(s)
= [f(s) + g(s)] + h(s)
= f(s) + [g(s) + h(s)]
= f(s) + (g + h)(s)
= [f + (g + h)](s),

and hence (f +g)+h=f+(g+h).




59.

63.

67.

71.

Let f be in F(S) and a and b be scalars.
Then for any s in S, we have

[(a +b)f](s) = (a + b)f(s)
= af(s) +bf(s)
= (af)(s) + (bf)(s)
= (af +bf)(s),

and hence (a +b)f =af +bf.

We show that V is a subspace. Since
OB = BO = 0, the zero matrix is in
V. Now suppose that A and C are in V.
Then

(A+C)B=AB+CB=BA+ BC
= B(A+0),

and hence A+ C isin V. So V is closed
under addition. Also, for any scalar c,

(cA)B = ¢(AB) = ¢(BA) = B(cA),

and hence cA is in V. Therefore V is
closed under scalar multiplication.

Because V is not closed under addition,
it is not a subspace. Consider m = 2,
p(z) = 1+ 2% and ¢(z) = —1 + 222
Both p(z) and q(z) are in V', but

p(z) + g(z) = 0+ 32°
isnot in V.

We show that V' is a subspace. Let O
denote the zero function. Then

0(s1)+:+++0(s,)=0+---+0=0,

and hence the zero function isin V. Sup-
pose that f and g are in V. Then

(F+9)(s1) +---+(f +9)(sn)
= f(s1) +- -+ f(sn)
+9(s1) +- -+ 9(sn)

7.1 Vector Spaces and Their Subspaces
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=04+0=0,

and hence f+g¢gisin V. Thus V is closed
under addition. Let ¢ be any scalar.
Then

(ef)(s1) + -+ (cf)(sn)
=c[f(s1) + -+ + f(sn)]
c(0+---40) =0,

and hence ¢f is in V. Thus V is closed
under scalar multiplication.

Let
plz) =ao+ a1z + -+ + apz™
and

q(z) =bo + bz + -+ + bz

be polynomials (not necessarily of the
same degree). With this notation, we
verify two of the axioms of a vector
space. The others are proved similarly.

Axiom 1 We have

p(z) + q(z)
= (a0+b0)++(an+bn)$n
= (b0+a0)+---+(bn+an)z"
= g(z) + p(z).

Axiom 7 Let ¢ be any scalar. Then
clp(z) + q(z)]
=c(ap +bg) + - - - + c(an + bp)z"
= (cag + cbo) + - -+ + (can + cbp)z™
= (cag+ -+ + canz™)
+ (cbo + - - - + cbpz™)

= cp(z) + cq(z).

Suppose that u + v = u + w. Then
v +u = w + u by axiom 1, and hence
v =w by Theorem 7.2(a).
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83. It follows from axioms 8 and 7, respec-
tively, that

87.

91.

(a+b)(u+v)=a(u+v)+bu+v)

=au+av+ bu+bv.

1v)

(=0)(=v) = (=o)((—
)(=Dlv =

=[(=c

Since 0(t) = 0(—t) = 0, the zero
function is even. Suppose that f
and g are even functions. Then

(f+9)@) = ft) +9()
= f(=t) + g(-1)
= (f + g)('—t)7

and hence f + g is even. Further-
more, for any scalar a,

(af)(t) = alf(t)] = a[f(-1)]
= (af)( t),
and hence af is even. Thus the

subset of even functions is closed
under addition and scalar multipli-
cation. Therefore this set is a sub-
space.

Since 0(—t) = —0(t) = 0, the zero
function is odd. Suppose that f
and g are odd functions. Then

(f+9)(=t) = f(—t) + g(-1)
~f(t) —g(t)
(=f-9)@®)
= [-(f +9)l®),

and hence f + g is odd. Further-
more, for any scalar a,

(af)(=t) = a(f(=1)) = a(=f(?))

95.

7.2

1.

= —(af)(t)7

and hence af is odd. Thus the sub-
set of odd functions is closed under
addition and scalar multiplication.
Therefore this set is a subspace.

Suppose that W is a subspace of V.
Then (i) is satisfied. Let w; and ws be
in W, and let a be a scalar. Then aw; is
in W because W is closed under scalar
multiplication, and hence aw; + wy is in
W because W is closed under addition.
Therefore (ii) is satisfied.

Conversely, suppose conditions (i) and
(ii) are satisfied. By (i), the zero vector
lies in V. Let w; and wq be in W. Then
wy+ Wy = 1-w; +Wws, which is in W by
(ii). Hence W is closed under addition.
Furthermore, for any scalar @, aw; =
awy + 0, which is in W by (ii). Hence
W is closed under scalar multiplication.
Therefore W is a subspace of V.

LINEAR TRANSFORMATIONS

Yes, T is one-to-one. First, observe that

1 2f . . .
3 4] is invertible.

Suppose that T(A) = AC = O. Then
A = O0C~! = O. Therefore T is one-to-
one by Theorem 7.5.

the matrix C = [

No, T is not one-to-one. Since
Tl)=z-0=0,

we see that T is not one-to-one by The-
orem 7.5.

Yes, T is onto. Let C = [:1)) Z], and

note that C is invertible. Then for any
matrix A in Msxa,

T(AC™Y) = ACTIC = 4,




and hence A is in the range of T'. 33.

13. No. The constant polynomial 1 is not
the product of z and any polynomial.

1 2
3 4|
Ma«2, and for any scalar s,
T(A+ B)=(A+ B)C = AC + BC
=T(A)+T(B)

17. Let C = For any A and B in

and
T(sA) = (sA)C = s(AC) = sT(A).
Therefore T is linear.
21. For any f(z) and g(z) in Py,
T(f(z) + g(z)) = z[f(z) + g(z)

= z[f'(z) + ¢'(z)]
= 2f'(z) + 29 ()
=T(f(z)) + T(g(x)).

Similarly, T{cf(z)) = ¢T'(f(z)) for any
scalar ¢, and therefore T is linear.

37.
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We show that T" does not preserve scalar
multiplication and hence is not linear.
Let f(z) be any nonzero polynomial.
Then

T(2f(2)) = [2f (2)]*
= 4[f(2)* # 2T(f(x)).
We show that T is linear, but not an

isomorphism. Let f and g be in D(R).
Then

T(f +g) = j (F(8) + g(8)) dt

/f dt+/ g(t)dt

=T(f) +T(g).

Similarly, T'(cf) = ¢T'(f) for any scalar
¢, and hence T is linear. However, T is
not one-to-one. Let f(t) = 2t — 1. Then

1
2 —t
0

:r(f):/0 (2t —1)dt =

25. =0-0=0,
ur | |® b =u(|® bl |1 2 and hence T is not one-to-one by Theo-
c d c d| |3 4
rem 7.5.
_ a+3b 2a+4b
—U([c+3d 2c+4dD 39. True
40. False, it may fail to be onto.
— trace [ 12T 3b 2a+4b
=M lc+3d 2c+4d 41, True 42, True 43. True
=a+ 3b+ 2c + 4d. 44. False, all polynomials are in C*.
29. 45. True
s T+ 46. False, the definite integral of a function
ol el =7(]|5 t|)Y=|% ¢ in C([a, b]) is a real number.
u t u t u
47. True
- [3 t] . 48. False, the zero function is not in the so-
tou lution set.
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Proof of (a): The zero vector of F(N) 53. Let V, W, and Z be vector spaces and

is the function for which the image
of every nonnegative integer is zero.
Clearly this function is in V. Let f
and g be in V. Then f is nonzero
at only finitely many nonnegative inte-
gers ai,a2,...,a-, and g is nonzero at
only finitely many nonnegative integers
b1,ba,...,bs. Then f + g is zero except
possibly at the finitely many nonnega-
tive integers aj, asg, ..., ar, b1,bo,...,bs.
So f+g¢gisin V. Finally, for any scalar c,
the function cf can be nonzero at only
ai,as,...,ar; so c¢f is in V. It follows
that V is a subspace of F(N).

Proof of (b): Let f and g bein V, and let
n be a positive integer such that f(k) =
g(k) =0 for k > n. Then

T(f+9)=(f+9)0)+(f+9)(1)z
+-+(f+9)(n)z"”

)+ f(z+ -+ f(n)z"]
+[9(0) + g(D)z + -+ - + g(n)z"]
T(f) +T(g)

Similarly, T(cf) = ¢T(f) for any scalar
¢, and hence T is linear.

= [£(0

We now show that 7 is an isomorphism.
Suppose that T'(f) = 0, the zero poly-
nomial. Then f(k) = 0 for all k, and
hence f is the zero function. So T is
one-to-one. Now consider any polyno-

mial p(x) = ag + a1z + -+ + apz™. Let
f:V — R be defined by
ag if k <n
k) =
=3 i
Then T(f) = p(z), and hence T is onto.

Therefore T is an isomorphism.

57.

T:V—->Wand U: W — Z be isomor-
phisms. Since T and U are both one-
to-one and onto, UT is one-to-one and

onto. Consider any vectors u and v in
V. Then

UT(u+v)=U(T(u+v))
U(T(u) +T(v))

=UT(u) + UT(v).

Similarly, UT(cu) = cUT(u) for any
scalar ¢. Therefore UT is linear, and
hence it is an isomorphism.

Let z be in Z. Then

UT(T7 U (2)) = U(TT U ()
=UU(2)
= z’
and hence T7U~Y(z) = (UT)~ ()
We conclude that (UT)~! =T-1U!

Since T(0) = 0, it follows that 0 is in
the range of T'. Suppose that w; and wa
are in the range of T and c¢ is a scalar.
Then there exist vectors v; and vg in V

such that T'(v1) = wy and T(v2) = wa.
Thus
T(vi+ve) =T(v1)+T(ve)
= W] + W,
and

T(cvy) = cT(v1) = cwy.

Hence the range of T is closed under vec-
tor addition and scalar multiplication.
We conclude that the range of T is a
subspace of V.
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BASIS AND DIMENSION

Consider the matrix equation

1 2 1 -5
Trlg 1| TP 4 o
3 -1 00
e fa 7= o]
Equating corresponding entries, we ob-
tain the system of linear equations

1+ 2+ 3z3=0
2.’E1—5.’E2— .’E3=0
3xy —4xs + 223 =0
T + 2z3 = 0.

The reduced row echelon form of the
augmented matrix of this system is

1 0 2 0
0110
0 00O
0 00O

Thus the preceding system has nonzero
solutions, for example, x, = -2, 29 =
—1, and z3 = 1, and so the given set of
matrices is linearly dependent.
Consider the matrix equation
1 01 -1 1 2
o1 [—1 2 1]””2[ 2 -1 1]
-1 01
T [ 1 -1 0]
_ {000
0 0 of°

Equating corresponding entries, we ob-
tain the system of linear equations

) — 9 —x3=0

I =0
1+ 22 +x3=0
—z) +2x9 +x3=0
21‘1— 152—1:3:0
1+ Z2 =0.
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The reduced row echelon form of the
augmented matrix of this system is

1000
0100
0010
000 0
0 00 0
0 0 0 o0

So the preceding system has no nonzero
solutions, and thus the given set of ma-
trices is linearly independent.

Consider the polynomial equation
a(l+z) +b(1 —2) +c(1 + z + z?)
+d(1+z -2 =0.
Equating corresponding coefficients, we
obtain the system of linear equations

at+b+c+d=0
a—-b+c+d=0
c—d=0.

The reduced row echelon form of the
augmented matrix of this system is

100 20
010 00
0 01 -1 0

Thus the preceding system has nonzero
solutions, for example, a = —2, b = 0,
¢ =1, and d = 1, and so the given set of
polynomials is linearly dependent.

Consider the polynomial equation
a(z® +22%) + b(—z% + 3z +1)
+e(@® -2 +22—-1)=0.

Equating corresponding coefficients, we
obtain the system of linear equations

a + ¢c=0
20— b—- ¢=0
3b+2c=0
b— ¢=0.
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The reduced row echelon form of the
augmented matrix of this system is

1000
0100
0 010
0 000

Thus the preceding system has no
nonzero solutions, and so the given set
of polynomials is linearly independent.

Assume that {t,fsint} is linearly de-
pendent. Since these are both nonzero
functions, there exists a nonzero scalar
a such that tsint = at for all ¢ in R.
Setting ¢ = 7, we obtain §sin§ = a7,
from which we see that a = 1. Setting
t = %, we obtain Isin% = a%, from

which we see that a = 1/ V2. This is a
contradiction, and it follows that the set
is linearly independent.

‘We show that for any positive integer n,
any subset consisting of n functions is
linearly independent. This is certainly
true for n = 1 because any set consisting
of a single nonzero function is linearly
independent.

Now suppose that we have established
that any subset consisting of k£ func-
tions is linearly independent, where k is
a fixed positive integer. Consider any
subset consisting of k£ + 1 functions

nit _nat n t
{e™® g™t ... e )
Let a1,...,ak+1 be scalars such that
a1e™’ 4+ - + ape™t + ak+1e"‘°+‘t =0

for all t. We form two equations from
the equation above. The first equation
is obtained by taking the derivative of
both sides with respect to ¢, and the sec-
ond equation is obtained by multiplying

25.

both sides of the equation by ngy;. The
results are

nia1e™t + - - + npage™*t

+ Nk+1 ak+1e"‘°+1t =0
and

’nk+1(11€n1t +--+ nk+1ak€nkt

+ nig1ap41e™1 = 0.

Now subtract both sides of the second
equation from both sides of the first
equation to obtain

(n1 = ngt1)are™ + -

+ (ng — nk.,_l)ake"*t = 0.

Since this last equation involves a lin-
ear combination of a set of k functions,
which is assumed to be linearly inde-
pendent, each coefficient (n; — ngy1)a;
is zero. But n; # ngqr for each i,
1 < i < k, and hence each a; = 0.
Thus the original equation reduces to
agy1e™+1t = 0, from which we conclude
that ax41 = 0. It follows that any subset
consisting of k£ + 1 functions is linearly
independent.

Since a set of 1 function is linearly in-
dependent, the preceding paragraph im-
plies that a set of 2 functions is linearly
independent. Repeating this reasoning,
we see that any set of 3 functions is lin-
early independent. Continuing this ar-
gument n — 1 times, we conclude that
any set of n functions is linearly inde-
pendent.

(This proof can also be written using
mathematical induction.)

Let

_(x=1)(x—2)

m(z) = m,




_(z-0)@-2)
and
_ (z—-0)(z—-1)
p3(z) = 2-0(2-1)
Then

p(z) = 1p1(z) + Op2(z) + 3p3(x)

= %(z ~1)(z-2)+ g-a:(a: ~1)
=2z% ~ 3z + 1.
29. Let
pi®) = (—(196——0?)((—961_—11))( ZB——1 2—) 2)’
- é(—ﬁ + 322 — 22)
) = a2
= é(3z3 — 622 — 3z + 6)
e =
- é(—3z3 + 322 + 62)
and
e
_ é(ﬁ — ).
Then

p(z) = 5p1(x) + 2pa(x)
+ (=1)p3(z) + 2pa(z)
=z -4z +2.

31.

32.

33.

34.

35.

36.
39.
40,
42.
43.
45.
46.
48,

49.

7.3 Basis and Dimension 179

False. For example, the infinite set
{1,z,z2,...} is a linearly independent
subset, of P.

False. Only finite-dimensional vector
spaces have finite bases.

False. The dimension of P, is equal to
n+ 1.

False. For example, P; is a 3-
dimensional subspace of the infinite-
dimensional vector space P.

False. Finite-dimensional vector spaces
only have finite bases, and infinite-
dimensional vector spaces only have in-
finite bases.

True 37. True 38. True

False, the set is linearly independent.

True 41, True

False, its dimension is mn.

True 44. True

False, its dimension is mn.

True 47. True

False. For example {1, z, 1+z} is a finite
linearly dependent subset of P, but P is
infinite-dimensional.

This set is linearly dependent. To show
this, we find a nonzero solution of

(af + bg + ch)(n)
=a(n+1)+b+c(2n-1)
=(a+2)n+{a+b—c)=0

for all n. Thus we set the coefficients
equal to zero to obtain the system

a—+ 2c=0
a+b— ¢c=0,
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61.
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which has the nonzero solution ¢ = -2,

b=3,andc=1. So -2f +3g+h=0.

A matrix A = [ml m2] is in W if and
I3 T4

only if z; +z4 = 0. For any such matrix

_ I I _ 1 0
Sl A R R

01 00
+:E2[0 0]+$3[1 O]'

It follows that

1 ol {0 1} |0 O
0 —1{’fo of’|1 o
is a basis for W.

Observe that the polynomials in W have
degrees less than 2. Hence {1,z} is a
basis for W.

(a) Since every entry of C, is i, the
sum of any row, column, and diag-
onal is equal to 1. Therefore C,, is
a magic square with sum 1.

(b) Let A be an nxn magic square with

sum s and B = A — sC,,. Since A g9.

and C, are in V,,, it follows that B
isin V,,, and B has sum s—s-1 = 0.
So Bis in W, and A = B + sC,.
Since B = A—sC,,, it is necessarily
unique.

Consider the system of linear equations
that results from equating the n row
sums, the n column sums, the sum of
the entries of the diagonal, and the sum
of the entries of the secondary diagonal
to 0. The coefficient matrix of this ho-
mogeneous system contains 2n + 2 rows
(because there are 2n+ 2 equations) and
n? columns (because there are n? vari-
ables, which are the n? entries of an nxn

matrix). Add rows 1 through n — 1 to
row n, creating a row with all entries
equal to 1. Now subtract rows n + 1
through 2n from this new nth row of 1s
to obtain a zero row. The other 2n + 1
rows are linearly independent, and hence
the coeflicient matrix has rank 2n 4+ 1.
Therefore the dimension of the solution
space is n? — (2n+1) =n? —2n — 1.

Define &: R™ — My xn by

z11
T12
® . =
Tnn
Ti1 Tiz o Tin
T21 Tz - Top
Tnl Tp2 *°° Tan

This mapping is an isomorphism, and
W, is the image of the solution space
of the homogeneous system described in
the preceding paragraph. Since an iso-
morphism preserves dimensions, it fol-
lows that dimW,, =n? —2n—1.

Choose a basis B for a vector space V
of dimension n, and let ®5: V — R"™ be
the isomorphism defined on page 513.

(a) Consider any subset S of V con-
taining more than n vectors, and
let &' be the set of images of these
vectors under ®z. Then S’ is a sub-
set of R™ consisting of more than
n vectors, and hence is linearly de-
pendent. As a consequence, S is
linearly dependent. For otherwise,
the images of vectors in a linearly
independent set under an isomor-
phism would be linearly dependent,
contrary to Theorem 7.8.

(b) Part (b) follows from (a) and Ex-
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77.
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ercise 68.

Suppose that B = {vi,va,...,v,} isa
basis for a vector space V, and let u
and v be in V. Then there exist unique
scalars ai,asg,...,a, and by, ba,...,b,
such that

u=avy +agve+- -+ a, vy
and

v=bvy+bva+-+b,vy.
Thus

Pp(u+v)
= ®p((a; +b1)vi+---
+ (an + bp)va)
(a1 + by
as + bo

lan + by

ai b1
ag )

an

= ®g(u) + ®5(v).

Similarly ®z(cu) = ¢®g(u) for every u
in V, and hence ®p is linear.

Let T': P, — R be defined by

b
T(7(@) = [ f(@)de.

Then T is linear because the definite in-
tegral of a sum of polynomials is the sum
of the definite integrals, and the definite
integral of a scalar multiple of a polyno-
mial is the same multiple of its definite

81.

7.4

181

integral. Therefore T is in L(P,,R).
By Exercise 76, {To, T1,...,T,} is a ba-
sis for L{P,,R), and hence there exist
unique scalars ¢y, ¢y, - - -, ¢y such that

T=clp+eiThi+---+ ¢, T,

Thus, for any polynomial f(z) in Py,

b
/ﬂmm=ﬂﬂm

= (COTO +aTi+ -+ . Tn)(f(2))

= coTo(f(z)) + a1 Tu(f(2)) + -
+ enTn(f(2))

=cof(0) + 1 f(1) + -+ +enf(n).

As in Exercise 1, the given set of matri-
ces is linearly dependent, and

Mz = (‘—3)M1 + 2M;5 + 0My,

where M; is the jth matrix in the set.

MATRIX REPRESENTATIONS
OF LINEAR OPERATORS

Since
1 2] _.f10 00
s 4=l o] +2fi o
00 01
+4[0 1}+2[0 0},

it follows that

[Als =

N AW
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It is easy to see that

-1 1 1
1 0 0
u=(-3) 0 +2 1] T1 0
0 0 1
-3
Soulg=1| 2|.
1
Since

D(e) = 1e*, D(e?) = 2¢%,
and
D(e3) = 3e*,

we see that

T(1)=1-1"=0-0=0

Tx)=z'-z2"=1=0=1
T(z?) = (z%) - (z?)" =2z -2
T(z%) — (z®) - ()" = 32 - 6z.

Thus the coordinate vectors relative to
B of these images are

OO =

TOls= o], [T@ls=
0

2
T@)s=| 2,
0

and
0
-6
T@)s = |
0
01 -2 0
00 2 -6
Hence [T)|p = 00 o0 3
0 0 0 0

17. (a) Let B={l,z,z2%}. Then, from Ex-
ample 3, we have
0
2y .
0

[Dls = [
So

[p'(@)]s = [D(p(z))]s
= [D]slp(z)]s

10 6
0 2 0
0 0] -4
[0
= -8},
1 0

and hence p'(z) = —8z.

(b) Asin (a),
[p'(z)ls = [D(p(2))ls

O OO
OO -

oo O

-

Thus p’(z) = 3 + 10z.
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25.
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(c) Taking B = {1,z, 72,23}, we have
01 00
0 0 2 0
Pls=15 ¢ 0 3
0 0 0 O
So
[’ (z)ls = [D(p(z))]8

= [D]g[p(=)]s
m 1 0 0]fo

{00 2 of|o

“10 0 0 3| |0
0 0 0 0f |1
[

_ 10

= |3l
_0

Thus p'(z) = 3z2.

Let T = D, the differential operator on
V = Span{et, t%, ¢3'}. By Exercise 9,

[T]s = [D]s =

OO e
O N O
w oo

and hence 1, 2, and 3 are the eigenval-
ues of D with corresponding bases {et},

{e2t}, {63t}.

In Exercise 13, we saw that if B =
{1,z,72, 23}, then

01 -2 0
00 2 —6
[T1s = 00 0 3
00 0 O

Since this is an upper triangular matrix,
its diagonal entries are the eigenvalues
of T. So 0 is the only eigenvalue of T'.

28.

29.

30.

33.

34.

37.

38.
41.
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As in Chapter 5, we find that a basis
for the eigenspace of this matrix corre-
sponding to eigenvalue 0 is {e;}. By the
boxed result on page 527, a basis for the
corresponding eigenspace of 1" consists
of the polynomial whose coordinate vec-
tor relative to B is e, which is the poly-
nomial 1.

False, let T be the 90°-rotation operator
on R2.

False, the vector space on which the
operator is defined must be finite-
dimensional.

True 31. True 32. True

True

False. Let D be the linear operator on
C* defined in Example 2 of Section 7.2.
Then, as is shown in Example 5 of this
section, every real number is an eigen-
value of D.

False, the eigenspace is the set of sym-
melric matrices.

False,
[Tls = [[T(vi)ls ... [T(vn)lsl.

False. As written, this expression may
make no sense. What is true is that

[T(v)]s = [T)s[V]s-
True 39. True

For B = {1,z,2%}, which is a basis for
P2, we see that

[Dls =

(== en R e
OO e
o N O
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(a) Since the eigenvalues of D are the
diagonal entries of [D]g, D has only
one eigenvalue, which is 0.

(b) Since

o {]

is a basis for the eigenspace of [D]z
corresponding to the eigenvalue 0,
it follows that {1} is a basis for the
eigenspace of D corresponding to

the eigenvalue 0.

45. (a) For any matrices A and C in

Maxa,

T(A+ C) = (trace (A+ C))B
= (trace A + trace C)B
= (trace A)B + (trace C)B

=T(A)+T(C).

Similarly, T(cA) = ¢T'(A) for any
scalar ¢, and therefore T is linear.

(b) Let B be as in Example 9. Then

([o o)

=(elo g]) s
|

0 0 0 0
+3] ol +ef 9

"

1 0],.00 1
’l[o 0]”[0 0

1 0

(6 o)

=(tmeelo o)

=ob =l o
([ 3])
=(=ed 3]s

1 2 00
=ofs =[5 o]
and

(lo 3))
= (s ) 3

S el ]
wfd o +4fo 3

Hence

[T]s =

W N =
[ I i e i )
[ e B e R )
W N =

Suppose that A is a nonzero matrix
with trace equal to zero. Then

T(A) = (trace A)B

and hence A is an eigenvector of
T with corresponding eigenvalue
equal to 0.

Suppose that A is an eigenvector
of T with a corresponding nonzero
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eigenvalue A. Then
AA = T(A) = (trace A)B,
and so A = (#2224 B gince A # 0.

Let W be the eigenspace of T corre-
sponding to A. Since T(0) = 0 = MO,
the zero vector is in W. For any u and
vin W,

T(u+v)=T(u)+T(v)
=Au+ v = A(u+v),

and hence u+ v is in W. Similarly, any
scalar multiple of u is in W, and hence
W is closed under addition and scalar
multiplication. Therefore W is a sub-
space of V. For any nonzero vector u in
V, the equation T(u) = Au is satisfied
if and only if u is an eigenvector corre-
sponding to A, and hence if and only if
uis in W.

(a) For any polynomials f(z) and g(z)
in Py,

T(f(2) + 9(2)) = BEBI ;;’Eéi]

- (7)) 6]
= T(f(z)) + T(g(z)).

Similarly T'(cf(z)) = ¢T'(f(z)). So
T is linear.
Since

)= [i]. T@=]}).

and

Tu%=ﬁy

; c
it follows that [T = [1 9 4]

11 1] 11.
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() (i) We have
a+b+ec
T(f(@) = [a +2b+ 4b]

= [T(f(@))le-

a
(ii) Clearly, [f(z)]s = [bJ and

C
a
Tl = |} ﬂ{ﬂ
_|atbte
T la+2b+4b
= [T(f(z))le-
7.5 INNER PRODUCT SPACES
3. We have
2
Lg) = d
o= [ roa0
2
=/ t(t2 + 1) dt
1
R S
= gttt 1
1 1. 21
7. We have

2 2
(f,9)= /1 f(t)g(t)dt = /1 te dt
= tel — et|f

= (2% —€?) — (e —e) = €.

(A, B) = trace (ABT)
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S AR )
:trace([‘lg ;Dzo.

15.
(A, B) = trace (ABT)
= trace 3 214-10
= 1 ~1]| 2 4
1 8
= trace ([_3 _4]> =-3
19. We have
1
(f(z),9(z)) = / (z2 —2)(3z + 5)dz
-1
1
= / (323 + 522 — 6z ~ 10) dz
-1
5 1
=zt 4+ 2% - 322 — 10z
3 -1
__ 31 19 50
-3 3 3
23. We have

(F(2),9(@)) = / @+ - do

1
/ (¥~ 22+ -1)dz

-1

1 1
— 14 _ 1.3 2 _
4:1: 3:1: +2z :v_l
__ 1 _B__8
12 12 3

25. False, it is a scalar.

26. True

40.
41.
43.

45.

False, an inner product has scalar val-
ues.

False, any positive scalar multiple of an
inner product is an inner product.

. True

False, if the set contains the zero vector,
it is linearly dependent.

. True 32. True 33. True

True

False, the indefinite integral of functions
is not a scalar.

True 37. True

False, the norm of a vector equals
Viv,v).

False, the equality must hold for every
vector u.

False, (A, B) = trace(ABT).
True 42, True

False, to obtain the normalized Leg-
endre polynomials, these polynomials
must be normalized.

. False, B must be an orthonormal basis.

Let f, g, and h be in C([a, b]).
Axiom 3 We have

b
(f +9,h) = / (f + 9)(B)h(t) dt
= / ’ FOR() dt
+ /bg(t)h(t) dt

= (f,h) + (g, h) -
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Axiom 4 For any scalar ¢, we have

b
(cfrq) = / (cf (t))a(2) dt

—c/ f®g(t)ydt = c(f,g).
Let u, v, and w be in R*. If u # 0,
then
(u,u) = Au.u

= (Aw)Tu=uT4u >0
because A is positive definite, establish-
ing axiom 1.
We have

(u,v)

= (Au).v = (Au)Tv =uTAv
=u.(Av) = (Av).-u = (v,u),

establishing axiom 2.
Notice that

(u+v,w) = (A(u+v)).w
= (Au+ Av).w
= (Au).w + (Av).w
= (u,w) + (u,w),

establishing axiom 3.

Finally, for any scalar a,

{au,v) =

establishing axiom 4.

We show that the rule is not an inner
product because axiom 1 is not satisfied.
Let f: [0,2] — R be defined by

£) = {f_ .

fo<t<1
fl<t<2.

57.
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Since f is continuous, it isin V. Further-
more, f is not the zero function. How-

ever
1 1
= 2 = = .
f>_/0 F(6)?dt /OOdt 0

This rule defines an inner product, as
shown below.

Axiom 1 Let u be a nonzero vector in

V. Then
(a,u) =a(u,u); +b(u,u), >0
since (u,u); > 0, (u,u), > 0, and

a and b are positive.
Axiom 2 Let u and v be in V. Then

=a(u,v), +b(u,v),
=a (V,u)l +b(v,u),

= (v,u).

(u,v)

Axiom 3 Let u, v, and w be in V.
Then

(u+v,w)
=a{u+v,w), +b(u+v,w),
= ( +a(v, W>1
W)y +b(v, W),
=a(u, +b{u,w),
w

W),

+b(u,

W), )
+a{v,w), +b{v,w),
= (u,w) + (v,w).

Axiom 4 Letuand vbein V, and let
¢ be a scalar. Then

(cu,v) =a(cu,v), +b(cu,v),
=ac(u,v); +bc(u,v),
=c(a(u,v); +5(u,v),)

=c{u,v).




188

61. Let u; = 1, up = €, and us = e~t. 69.
We apply the Gram-Schmidt process to
{u;,u2,u3} to obtain an orthogonal ba-
sis {vy,vo,v3}. Let vi =uy =1,

{v1,va,v3} 1 1 73.
V2 = Uz — (2, v1) 1
[[v]?
i fol etl dt1
=e —0——
Jo 124t
-1
—et— 2 =e'—e+1,
1
and
(a3, v1) (uz, va)
V3 = ug — Vi — Vo 7.
lIval[? l|vall?
1 —t
oy fe ldt1
- BT
Jo 124t
1 ot t
e “(ef—e+1)dt
fol ( ) (" —e+1)
Jolet —e+1)2dt
-1
= e—t —_ ¢
e
2(e? —3e+1)
- (et -e+1)
—1)(e—3
ele -~ 3) oL
s €2—2e—1
= e ————
e(e—3)

Chapter 7 Vector Spaces

2(e*—3e+1) ,
T ee—1)(e—3)°

Thus {vi,vz,v3} is an orthogonal ba-

sis for the subspace generated by
{1,€t, et}

65. We have

{u,0) = (0, u)
= (00,u) = 0(0,u) = 0.

Suppose that (u,v) =0 for all u in V.
Since w is in V, we have (w,w) = 0,
and hence w = 0 by axiom 1.

Observe that

ABT — 011 a2 [bu bo1
a1 G22] |biz bao

_ {@11b11 + a12012 a11b21 + aizb2;
a21b11 + agebiz2 @21b21 + agobaz |’

and hence

(A, B) = trace (ABT)

= a11b11 + a12b12 + a21b21 + azebos.

If u or v is the zero vector, then both
sides of the equality have the value zero.
So suppose that u # 0 and v # 0. Then
there exists a scalar ¢ such that v = cu.
Hence (u,v)? = (u,cu)? = ¢ (u,u)?
and

(a) This is identical to Exercise 72 in
Section 6.6.
(b) Let B be a basis for R™ that is
orthonormal with respect to the
given inner product, let B Dbe
the n x n matrix whose columns
are the vectors in B, and let
A = (B)TB-!. (Although B
is orthonormal with respect to the
given inner product, it need not
be orthonormal with respect to the
usual dot product on R™.) Then A
is positive definite by Exercise 72 in
Section 6.6. Furthermore, by The-
orem 4.11, [u]g = B~!'u for any
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vector u in R™. So, for any vec-
tors u and v in R", we may apply
Exercise 71 to obtain

(u,v) = [u]g-[v]s
= (B~'u).(B"'v)
= (B~ )T (B~1v)
=uT(B~HT(Blv)
=ulAv = (Au)Tv
= (Au).v

Let u and v be in W. By Exercise 84,
u+v={_u+v,wi)wg+---
+(ut+v,w,)w,

= ((u, w1) + (v, w1))ws + - --
+ ((u’ wn) + (V, Wn>)wn

CHAPTER 7 REVIEW

False, for example, C* is not a subset of
R" for any n.

True

False, the dimension is mn.

False, it is an mn x mn matrix.

True

False, for example, let u and w be any
vectors in an inner product space that
are not orthogonal, and let v = 0.

True

Yes, V is a vector space. We verify some
of the axioms of a vector space.

15.

19.
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Axiom 2 Let f, g, and A be in V.
Then, for any z in R,

((f @ 9) ®h)(z) = (f © 9)(2)h(x)
= (f(z)g(x))h(z)
= f(z)(g9(x)h(x))
= f(z)(g ® h)(2)
= (f @ (9@ h))(z).

So(f@g)dh=Fd(g®h).

Axiom 7 Let f and g bein V, and let
a be a scalar. Then, for any z in

R,
(a0 (f®9)(z) = ((f ®g)(z))*
= (f(z)g(=))*
= f(x)*g(z)*
= (a0 f)(z)(a © 9)(z)
=((a® f) & (a©9) (@)
Thus a®(fdg) = (a@ f)B(aGg).

No, W is not a subspace. Since A # 0,
it follows that A is not an eigenvalue of
O, and hence O is not in W. Therefore
W is not a subspace of V.

Consider the matrix equation
1 2 0 1 3
A [1 _1]+x2[20]+x3[ 1 1]

SEN)

Comparing the corresponding entries on
both sides of this equation, we obtain
the system

I - z3= 4
2z1+ 3+ 3z3= 1
z1+2z2 + z3=-2
—I1 + z3=—4,
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23.

27.
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whose augmented matrix has the re-
duced row echelon form

100 3
01 0 -2
001 -1
000 O

Therefore the system has the solution
1 = 3, 22 = —2, and z3 = —1. These
are coefficients of a linear combination
that produces the given matrix.

A polynomial f(z) = a + bz + cz? + dz®
is in W if and only if

FO)+F(0)+ f'(0)=a+b+2=0,
that is,

a=-b-2c
So f(z) is in W if and only if

f(z) = (=b-2¢) + bx + ca? + da®
=b(—1—z) + c(=2 + z?) + da®.

It follows that W is the span of
{-1+z,-2+2% 2.

Since this set is linearly independent, it
is a basis for W. Therefore dim W = 3.

T is both linear and an isomorphism.
Let f(z) and g(z) be in P2. Then

(f +9)(0)
(f+9)'(0)
Jo(F +9)(@) dt

T(f(z) +g(2)) =

f(0) + g(0)
f'(0) + 4'(0)
J f(e)dt+ f) g(t)dt

£(0) 9(0)
=| FO |+]| g0
S Ft) dt S g(t) dt

=T(f(z)) + T(9())-

Thus T preserves addition.
more, for any scalar c,

[ (cf)(0)
(cf)'(0)
| [ ef(t)dt
[ cf(0)
=1 cf(0)
e f f(t)dt

Further-

T(cf(z)) =

f(
£(0)
=c f(0)

[ f(e)dt
= cT(f(z)),

and hence T preserves scalar multiplica-
tion. Therefore T is linear.

To show that T is an isomorphism, it
suffices to show that T is one-to-one be-
cause the domain and the codomain of T
are finite-dimensional vector spaces with
the same dimension. Suppose f(z) =
a + bz + cz? is a polynomial in P, such
that T'(f(z)) = 0, the zero polynomial.
Comparing components in this vector
equation, we have

f0)=0, f(0)=0,

and

/ iyt =0,
0

Since f(0) = a + b0 + c0? = a, we have
a = 0. Similarly, we obtain b = 0 from
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the second equation, and ¢ = 0 from the 35. Using the matrix computed in Exercise

third equation. Therefore f is the zero
polynomial, and so the null space of T
is the zero subspace. We conclude that
T is one-to-one, and hence T is an iso-
morphism.

We have
10 1 o] 1 o]F
(b o) =2[o of +[o o
1 0]
_300_’
r T
01 0 1] Jo 1
T([o 0])’2_0 0 +[0 0]
[0 1] 00
=20 o/ T1]1 0}’
00 0o 0] fo olF
r(l o) =2t o]+ [7 o
[0 0] 01
=20 0_+[0 0]’
[0 1] 00
=1lo 0_+2[1 0]’
and
T
00 00l [oo
(b 5) =2l 1] +[o 3
00
=3)g
Therefore
300 0
0210
[T]s = 01 20
000 3

31, we have

. la
Hence for any matrix [c

- (t

Wi

W =

SO oW

O~ N O

O N = O

N o

0

D,

1

Therefore

~

1

3

A=

1)

-

3

OO O

a

O~ NO

=T s HZ ;

|1—b+2c

O = O

|
—
—_ o oo

-1

w o oo
= o

o N

Q. o

al,

d

w o oo

2b—c]

_ o oo

in M2X2a

Q0 o8

39. Let A = [T]p. By Exercise 31,
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We begin by finding the eigenvalues of
A. The characteristic polynomial of A is
(t—3)3(t—1), and hence the eigenvalues
of A are 3 and 1.

Next, we find a basis for the eigenspace
of A corresponding to the eigenvalue 3.
Since the reduced row echelon form of
A-— 3]4 is

OO
oo o

01
00
00
00 00

a basis for the eigenspace of A corre-
sponding to the eigenvalue 3 is

1 0 0
0 1 0
0’1110
0 0 1

The matrices whose coordinate vectors
relative to B are the vectors in the pre-
ceding basis form the basis

o o0 oo 3}

for the eigenspace of T' corresponding to
the eigenvalue 3.

Finally, we find a basis for the
eigenspace of A corresponding to the
eigenvalue 1. Since the reduced row ech-
elon form of A — 114 is

1 0 00
0110
000 1y’
0 00O

a basis for this eigenspace is

0
1
-1
0

43.

Since [_(1] (1)] is the matrix whose co-

ordinate vector relative to B is the pre-
ceding basis vector, we see that

o}

is a basis for the eigenspace of T' corre-
sponding to the eigenvalue 1.

For any matrix [Z 3] in Maxa,

N 0 1} [a b
et o) |c d
c d
= trace [a b]
=c+b,
and so the matrix is in W if and only if

¢ = —b. Thus the matrix is in W if and
only if it has the form

a b
-b d
1 0 01 00
=a[0 0]+b[_1 0]+d[0 1].
The matrices in this linear combination

form an orthogonal set. If we divide each
matrix by its length, we obtain

1 0 1 [o1
M‘pJ’%‘ELlJ
and

[0 0
-] 7.

So {M;, M3, M3} is an orthonormal ba-
sis for W.

Therefore the orthogonal projection of




2 5 .
A= [9 _3] on W is

(My, A) My + (M, A) M
+ (M, A) M3

SIEREINTE
+a ) 7]

-[> 2

47. We use the orthonormal basis
{wi,wo,w3} from Exercise 45 to
obtain the desired orthogonal pro-
jection. Let w denote the function
w(z) = /z. By equation (2) on page
538, we have

w = (W, W) W] + (W, W2) Wy
+ (w,w3) ws.

Now
! 2
(w,w1) =/O Wzdr = 3
1
(w,w2)=/ V3(2z — 1)z da
0

2V
T
and
<W,W3)
= [} V5622 — 6z + 1)\/T dx
_ -2V5
7105
Thus

W= g(l) + §(2m— 1)
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(=2) . 2
+ 21 (6z* - 6z + 1)
6, 48 4.
35 35 7
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1. The given set contains polynomials from

Py. Let B = {1,z,22, 23, 2*}, which is
a basis for Ps. Then

[ 1

2
M+2c+2*—2>+atg=| 1],

-1

!

[2

1
2+z+23+2Y5= 0],

1

1

1

-1

M-z+2?2+223+ 2= 1},

2

|2

and

1

2

1+22+222 —2°-22%p=| 2
-1

-2

Note that [p(z)]s = ®s(p(x)). Since
®p: Py — R® is an isomorphism, it fol-
lows from Theorem 7.8 that the given set
of polynomials is linearly independent if
and only if the set of coordinate vectors
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of these polynomials is linearly indepen-
dent. So because the reduced row eche-
lon form of

1 2 1 1
21 -1 2
1 0 1 2
-1 1 2 -1
11 2 -2

is [e; e, e3 ey}, the given set is linearly
independent.

Let B = {E11, E12, Ers, E2, Ex, Eas},
where F;; is the 2x3 matrix whose (4, 7)-
entry is 1 and whose other entries are 0.
As explained on page 516, B is a basis
for Max3. For any 2 x 3 matrix A, we
have T(A) = BAC, where

o= ]

and
4 -2 0
C=|3 -1 3
-3 3 1]
Thus
[4 —2 0]
TE =14 g o
3 —1 3]
T(Ew)=|3 _; 3
(-3 3 1]
T(El3)= -3 3 11"
[12 —6 0
T(E21): —4 9 0]7
[ 9 -3 9]
TEn)=| 3 1 -3
and
-9 9 3]
T(Eq3) = ,
| 3 -3 -1

Therefore the respective coordinate vec-
tors relative to B of these matrices are

[ 41 [ 3] [-3] [12] [ 9
-2 |-1 3| |-6f |-3
0 3 1 0 9
4] 3| |-3|’{-4|"1-3]"

-2 |41 3 2 1
L 0f L 3] L 1 [ 0f [-3

and L

-9

9

3

3

-3

_1_

So [T is the 6 x 6 matrix having these
coordinate vectors as its columns.

(a) The characteristic polynomial of

[T]B is
(t —8)(t — 4)%(t + 4)%(t + 8),

and so the eigenvalues of [T]z and
T are 8, 4, —4, and —8.

(b) By using the MATLAB command
null(A, 'r’), we can obtain bases
for each of the corresponding

eigenspaces. The resulting bases
are

{1l

Combining these four eigenspace
bases yields a basis for Maxs con-
sisting of eigenvectors of T'.
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