
Modern Circuit Placement
Best Practices and Results

Series on Integrated Circuits and Systems

Series Editor: Anantha Chandrakasan
Massachusetts Institute of Technology
Cambridge, Massachusetts

Modern Circuit Placement: Best Practices and Results
Gi-Joon Nam and Jason Cong
ISBN 978-0-387-36837-5

CMOS Biotechnology
Hakho Lee, Donhee Ham and Robert M. Westervelt
ISBN 978-0-387-36836-8

SAT-Based Scalable Formal Verification Solutions
Malay Ganai and Aarti Gupta
ISBN 978-0-387-69166-4, 2007

Ultra-Low Voltage Nano-Scale Memories
Kiyoo Itoh, Masashi Horiguchi and Hitoshi Tanaka
ISBN 978-0-387-33398-4, 2007

Routing Congestion in VLSI Circuits: Estimation and Optimization
Prashant Saxena, Rupesh S. Shelar, Sachin Sapatnekar
ISBN 978-0-387-30037-5, 2007

Ultra-Low Power Wireless Technologies for Sensor Networks
Brian Otis and Jan Rabaey
ISBN 978-0-387-30930-9, 2007

Sub-Threshold Design for Ultra Low-Power Systems
Alice Wang, Benton H. Calhoun and Anantha Chandrakasan
ISBN 978-0-387-33515-5, 2006

High Performance Energy Efficient Microprocessor Design
Vojin Oklibdzija and Ram Krishnamurthy (Eds.)
ISBN 978-0-387-28594-8, 2006

Abstraction Refinement for Large Scale Model Checking
Chao Wang, Gary D. Hachtel, and Fabio Somenzi
ISBN 978-0-387-28594-2, 2006

A Practical Introduction to PSL
Cindy Eisner and Dana Fisman
ISBN 978-0-387-35313-5, 2006

Thermal and Power Management of Integrated Systems
Arman Vassighi and Manoj Sachdev
ISBN 978-0-387-25762-4, 2006

Leakage in Nanometer CMOS Technologies
Siva G. Narendra and Anantha Chandrakasan
ISBN 978-0-387-25737-2, 2005

Statistical Analysis and Optimization for VLSI: Timing and Power
Ashish Srivastava, Dennis Sylvester, and David Blaauw
ISBN 978-0-387-26049-9, 2005

Gi-Joon Nam
Jason Cong

Modern Circuit Placement
Best Practices and Results

123

Editors:
Gi-Joon Nam Jason Cong
IBM Austin Research Laboratory University of California, Los Angeles
Austin, TX Los Angeles, CA
USA USA

Series Editor:
Anantha Chandrakasan
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
USA

Library of Congress Control Number: 2007926182

ISBN 978-0-387-36837-5 e-ISBN 978-0-387-68739-1

Printed on acid-free paper.

 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use in this
publication of trade names, trademarks, service marks and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

9 8 7 6 5 4 3 2 1

springer.com

Dedicated to VLSI circuit placement researchers and practitioners
whose creative and persistent efforts made it possible for us to handle

the exponential increase of circuit placement complexity in the past
four decades. –Gi-Joon & Jason

Contents

Foreword . xv

Preface . xvii

Part I Benchmarks

1 ISPD 2005/2006 Placement Benchmarks . 3
1.1 Introduction . 3
1.2 ISPD 2005 Placement Contest and Benchmark 4
1.3 ISPD 2006 Placement Contest and Benchmark 7
1.4 ISPD Placement Contest Results . 8
References . 11

2 Locality and Utilization in Placement Suboptimality 13
2.1 Introduction . 13
2.2 Peko-MC Benchmark Construction . 15

2.2.1 Monotone Chains . 15
2.2.2 The Peko-MC Algorithm . 16

2.3 Peko-MS Benchmark Construction . 17
2.4 Experiments . 22

2.4.1 Nonlocal Nets (Peko-MC) . 23
2.4.2 Parametrized White Space (Peko-MS) 25
2.4.3 Suboptimality Under Both Parametrized White Space

and Nonlocal Nets . 25
2.4.4 Suboptimality of Detailed Placement . 27
2.4.5 HPWL Suboptimality Comparison of Leading Academic

Tools on Peko-MS 2005 . 29
2.4.6 Suboptimality of Routability-Aware Placement 31

2.5 Conclusions . 34
2.6 Acknowledgments . 35

viii Contents

References . 35

Part II Flat Placement Techniques

3 DPlace: Anchor Cell-Based Quadratic Placement with Linear
Objective . 39
3.1 Introduction . 39
3.2 Preliminaries and the Motivation . 41

3.2.1 Quadratic Placement . 41
3.2.2 Force-Directed Quadratic Placement . 42
3.2.3 The Proposed Approach . 44

3.3 Global Placement in DPlace . 45
3.3.1 Diffusion Preplacement . 45
3.3.2 Anchor Cells . 46
3.3.3 Unconstrained Wire Length Minimization 48
3.3.4 HPWL Transformation in a Quadratic System 50
3.3.5 Fixed Blockages . 51
3.3.6 Wire Length Improvement Heuristics 52

3.4 Legalization and Detailed Placement . 53
3.5 Overall Algorithm . 53
3.6 Experiments . 53

3.6.1 Advantages of our New Formulation . 53
3.6.2 ISPD Placement Contest Benchmarks 55
3.6.3 PEKO-MS Benchmarks . 55

3.7 Conclusions . 56
References . 57

4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact
Linear Net Model . 59
4.1 Introduction . 59
4.2 Net Model . 62

4.2.1 Clique Net Model . 63
4.2.2 BoundingBox Net Model . 65
4.2.3 Advantages of the BoundingBox Net Model 66

4.3 Quadratic Placement Methodology . 67
4.3.1 Additional Forces . 68
4.3.2 Proof of Convergence . 71

4.4 Implementation Details . 72
4.4.1 Engineering Change Order . 72
4.4.2 Quality Control . 74
4.4.3 Spring Constants of the Target Points 75
4.4.4 Convergence Plot . 76
4.4.5 Control of the Module Density . 78

4.5 Experimental Results . 81

Contents ix

4.5.1 Clique and BoundingBox Net Model . 82
4.5.2 ISPD 2005 Contest Benchmarks . 82
4.5.3 ISPD 2006 Contest Benchmarks . 83
4.5.4 PEKO-MS ISPD 2005 Benchmarks . 85
4.5.5 PEKO-MS ISPD 2006 Benchmarks . 88
4.5.6 Computational Complexity . 90

4.6 Conclusion . 90
References . 91

Part III Top-Down Partitioning-Based Techniques

5 Capo: Congestion-Driven Placement for Standard-cell and RTL
Netlists with Incremental Capability . 97
5.1 Introduction . 97
5.2 Min-Cut Placement in Capo . 99

5.2.1 Row-Based Placement . 99
5.2.2 Min-Cut Bisection . 99

5.3 Floorplacement . 100
5.3.1 Empirical Boundary Between Placement

and Floorplanning . 103
5.4 Flexible Whitespace Allocation . 104

5.4.1 Uniform Whitespace . 104
5.4.2 Minimum Local Whitespace . 105
5.4.3 Safe Whitespace . 105

5.5 Detail Placement . 107
5.5.1 RowIroning . 107
5.5.2 Optimal Branch-and-Bound Placement 107
5.5.3 Greedy Cell Movement . 108

5.6 Placement for Routability . 110
5.6.1 Optimizing Steiner Wire length . 110
5.6.2 Congestion-Based Cutline Shifting . 112

5.7 Improved RTL Placement . 113
5.7.1 Selective Floorplanning for Multimillion Gate Designs 113
5.7.2 Temporary Macro Deflation . 116
5.7.3 Whitespace Reallocation Using Linear Programming

and Min-Cost Max-Flow . 117
5.8 Incremental Placement . 118

5.8.1 General Framework . 118
5.8.2 Fast Cutline Selection . 119
5.8.3 Scalability . 120
5.8.4 Handling Macros and Obstacles . 122
5.8.5 Relaxing Overfullness Constraints . 122
5.8.6 Satisfying Density Constraints . 124

5.9 Memory Profile . 124

x Contents

5.10 Performance on Publicly Available Benchmarks 125
5.10.1 Routing Benchmarks . 125
5.10.2 Mixed-Size Benchmarks . 126
5.10.3 ISPD Contest Benchmarks . 129

5.11 Conclusions . 131
References . 131

6 Congestion Minimization in Modern Placement Circuits 135
6.1 Introduction . 135
6.2 Overview of Dragon . 136

6.2.1 Framework of Dragon . 137
6.3 Mixed-Size Placement . 138

6.3.1 Macro-Aware Partitioning . 139
6.3.2 Bin-Based Simulated Annealing . 141
6.3.3 Legalization . 142

6.4 Congestion Estimation . 142
6.4.1 Rent’s Rule . 143
6.4.2 Peak Congestion Analysis . 143
6.4.3 Regional Congestion Estimation . 146

6.5 Congestion Removal . 153
6.5.1 Problem Formulation . 154
6.5.2 Row White Space Allocation . 155
6.5.3 Grid White Space Allocation . 157
6.5.4 Placement Flow . 157
6.5.5 Post-Allocation Optimization . 157

6.6 Target Utilization Control . 158
6.7 Experimental Result . 160
References . 162

Part IV Multilevel Placement Techniques

7 APlace: A High Quality, Large-Scale Analytical Placer 167
7.1 Introduction . 167
7.2 Clustering and Unclustering . 169
7.3 Global Placement . 171

7.3.1 Constrained Minimization Formulation 171
7.3.2 Quadratic Penalty Method and Conjugate Gradient Solver . . 174
7.3.3 Multi-Level Algorithm . 174

7.4 Legalization and Detailed Placement . 177
7.4.1 Global Moving . 177
7.4.2 Whitespace Distribution . 178
7.4.3 Cell Order Polishing . 179

7.5 ISPD’06 Contest and APlace3.0 . 181

Contents xi

7.5.1 Exploring Alternative Wirelength Functions 181
7.5.2 Exploring Alternative Density Functions 182

7.6 Experimental Results . 183
References . 189

8 FastPlace: An Efficient Multilevel Force-Directed Placement
Algorithm . 193
8.1 Introduction . 193
8.2 Overview of the Algorithm . 194
8.3 Quadratic Placement Methodology . 196
8.4 Hybrid Net Model . 197

8.4.1 Clique and Star Net Models . 198
8.4.2 Hybrid Net Model . 199

8.5 Cell Shifting . 201
8.5.1 Shifting of Standard-cells . 201
8.5.2 Shifting of Macro-Blocks . 202
8.5.3 Addition of Spreading Forces . 204

8.6 Iterative Local Refinement . 205
8.6.1 Bin Structure for r-ILR . 206
8.6.2 ILR for Simultaneous Spreading and Wirelength

Minimization . 206
8.6.3 ILR for Handling Placement Blockages 206
8.6.4 ILR for Placement Congestion Control 208

8.7 Clustering for Placement . 209
8.7.1 Two-Level Clustering Scheme . 209

8.8 Legalization . 212
8.8.1 Legalization of Macro-Blocks . 212
8.8.2 Legalization of Standard-Cells . 215

8.9 FastDP: Efficient and Effective Detailed Placement 215
8.9.1 Global Swap . 215
8.9.2 Vertical Swap . 219
8.9.3 Local Re-Ordering . 219
8.9.4 Single-Segment Clustering . 220

8.10 Experimental Results and Analysis . 222
8.10.1 Runtime Analysis of the Algorithm . 222
8.10.2 ISPD-2005 Placement Contest Benchmarks 222
8.10.3 ISPD-2006 Placement Contest Benchmarks 224
8.10.4 PEKO-MS Benchmarks . 225

8.11 Conclusions . 226
References . 227

9 mFAR: Multilevel Fixed-Points Addition-Based VLSI Placement 229
9.1 Introduction . 229
9.2 Background . 230
9.3 Fixed Points . 231

xii Contents

9.3.1 Fixed-Points and Force-Equilibrium State 231
9.3.2 Fixed-Points Addition . 233

9.4 Fixed-Points Addition-Based Placement . 235
9.4.1 Fixed Points vs. Constant Forces . 235
9.4.2 Fixed Points in Global Placement . 236
9.4.3 Detailed Placement . 240

9.5 mFAR: Multilevel Fixed-Point Addition-Based Placement 240
9.6 Experimental Results . 242

9.6.1 ISPD05 Placement Contest Benchmarks 242
9.6.2 ISPD06 Placement Contest Benchmarks 242
9.6.3 PEKO 2005 . 243
9.6.4 PEKO 2006 . 243

9.7 Conclusions . 244
References . 244

10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion
Control . 247
10.1 Introduction . 247
10.2 Definitions and Notations . 248
10.3 Problem Formulation . 248
10.4 Multilevel Framework . 249

10.4.1 Coarsening . 250
10.4.2 Relaxation . 253
10.4.3 Interpolation . 253
10.4.4 Multilevel Flow . 255

10.5 Generalized Force-Directed Algorithm . 255
10.5.1 Constrained Minimization Problem Formulation 256
10.5.2 Problem Solver . 260
10.5.3 Analysis and Enhancements of the GFD Algorithm 263

10.6 Legalization and Detailed Placement . 274
10.6.1 Macro Legalization . 276
10.6.2 Cell Legalization . 281
10.6.3 Further Wirelength Reduction . 283

10.7 Numerical Results . 284
References . 285

11 NTUplace3: An Analytical Placer for Large-Scale Mixed-Size Designs 289
11.1 Introduction . 289
11.2 Analytical Placement Model . 290
11.3 Core Techniques . 292

11.3.1 Global Placement . 292
11.3.2 Legalization . 297
11.3.3 Detailed Placement . 298

11.4 Experimental Results . 303
11.4.1 Dynamic Step-Size Control . 303

Contents xiii

11.4.2 Look-Ahead Legalization . 303
11.4.3 HPWL and Runtime Analysis . 303
11.4.4 Wire-Model Comparison . 306
11.4.5 PEKO-MS Benchmarks . 307

References . 308

12 Conclusion and Challenges . 311

Index . 313

Foreword

I have a very clear memory of the first time I ever read anything about placement
algorithms. I was a graduate student, and the research community was crackling
with the excitement and challenges of the early days of the “VLSI” revolution. I
went to my university’s library to track down a copy of the book chapter “Placement
Techniques” by Maurice Hanan and Jerome M. Kurtzberg, in Mel Breuer’s book
on Design Automation of Digital Systems. This was an eye-opening experience for
a young student. The seminal Hanan-Kurtzberg material was a wonderfully clear
review of what was known at the time about placement problems; it was a beautiful
mix of geometry, algorithms, heuristics, optimization, and real experiments on real
(and by today’s standards, really small) designs. Reading this paper was a significant
“Aha!” moment in my own career in the physical design area.

The intervening decades have dramatically broadened the portfolio of success-
ful placer strategies, beyond the simple iterative improvement and partitioning
approaches of those early days. We have more powerful iterative paradigms like
annealing; we have vastly improved partitioning technologies; we have large-scale
analytical solutions that formulate and solve enormous numerical optimization prob-
lems; we have clustering and multi-scale methods; and we have a hierarchy of
geometric models, from coarse initial placement to final legalization. In this vastly
more complex landscape of challenges and solutions, where does the enterprising
student of placement look to figure out what’s what in the placement business today?

This book, I hope.
Based on a set of placers that competed in recent contests sponsored by the ACM

International Symposium on Physical Design (ISPD), and using the tremendously
important sets of common placer benchmarks associated with ISPD, this volume
offers an excellent overview of what we know about placement today. We owe a
great debt to its editors, Gi-Joon Nam of IBM and Jason Cong of UCLA, for orga-
nizing all this material into one accessible and coherent volume. As our problems
continue to grow in size, and we layer ever more constraints like timing, power and
reliability on these tools, it’s clear that people are no less excited about placement
problems today than when I first read about the topic as a student.

Rob A. Rutenbar
Carnegie Mellon University
April 2007

Preface

Research in placement algorithms for VLSI circuits has enjoyed a renaissance in
recent years. Today, there are a number of high quality academic placers that have
been developed in universities. The amount of research on this topic clearly reflects
the importance of the placement as the single most critical component for achiev-
ing timing/design closure in a modern physical synthesis tool. Placement algorithm
itself has been researched for more than three decades. Yet, the problem is still very
challenging for multiple reasons. First, the exponential increase of the circuit den-
sity according to Moore’s Law has led to designs with tens of millions of placeable
objects today. Although such complex designs are composed hierarchically based
on the logic or function hierarchy, multiple studies (e.g. [3]) show that placement
based on the logic hierarchy may lead to considerably inferior results. The preferred
methodology is to place the entire design flat (with millions or tens of millions of
placeable objects) to derive a good physical hierarchy and then use it to guide the
subsequent physical synthesis process. Therefore, the modern placers have to handle
extremely large problem sizes. Second, today’s System-on-Chip (SoC) designs intro-
duce complex constraints, such as routability and timing constraints, as well as the
support of mixed size macros, area I/Os, multi-Vt and multi-Vdd islands for power
optimization. Moreover, recent work on placement optimality studies ([1,2]) suggest
that there exists significant room for improvement even for wire length optimization
alone (details will be discussed in Chap. 2). All these reasons stimulated renewed
interests in research in circuit placement problems, both in academia and industry, in
the past a few years.

To help further stimulate advances in placement research, ISPD (International
Symposium on Physical Design [7]) hosted two placement contests using new, large-
scale benchmark suites based on real industrial designs ([5, 6], see Chap.1 for more
detailed discussion). The common goals of the two ISPD placement contests were:

• To provide new modern placement benchmarks to stimulate new development in
placement research

xviii Preface

• To provide a common basis for quantitative measurements of contemporary
placement algorithms, and help the academic community to publicize their place-
ment tools and results

• To provide an educational forum on a variety of state-of-art placement algorithms
for future placement researchers

These two placement contests were huge success with participation from a
number of academic placers and provided a common platform to evaluate various
placement algorithms on the same set of realistic benchmarks. This book is the prod-
uct of these academic efforts on placement contests and it can be considered as the
year 2006 snapshot of state-of-the-art modern placement techniques employed in the
field. The book provides in-depth description of the best practices of placement algo-
rithms used in the research community today. Each book chapter provides detailed
description of the underlying algorithm and implementation features of a place-
ment tool that participated in the two contests, including the experimental results
on ISPD placement benchmark circuits and the optimality analysis on PEKO-MS
benchmarks.

This book is organized in four parts:

• Part I introduces placement benchmark suites. In Chap. 1, new industry design-
driven ISPD 2005/2006 benchmark circuits are presented with contest results.
Chapter 2 describes the details of PEKO-MS benchmarks that can be used for
placement optimality analysis.

• Part II describes flat placement techniques, which formulate and solve the entire
placement problem directly (although the numerical solvers used in these placers
may use multilevel methods). Chapter 3 describes the most recent analytical
placer DPlace that is an anchor cell-based quadratic placement engine. The
Kraftwerk placement algorithm, the winner of ISPD 2006 placement contest,
is presented in Chap. 4.

• Part III presents top-down partitioning-based placement techniques. It includes
Capo, a congestion driven placer (Chap. 5) and the Dragon placer that combines
simulated annealing optimization with a partitioning algorithm (Chap. 6).

• Part IV is about multilevel placement methods that have attracted significant
attentions recently. It covers APlace (Chap. 7), which was the winner of the
2005 placement contest, the runtime efficient force-directed placer, FastPlace
(Chap. 8), the mFAR fixed-point addition based placer (Chap.9), and the multi-
level non-linear optimization placer mPL (Chap. 10) that produced the highest
quality solutions in the 2006 placement contest. Also, NTUplace3 (Chap. 11), a
new analytical placer for large scale mixed-size designs, is presented here.

The idea of this book emerged in April 2006, right after the ISPD 2006 place-
ment contest, as a way of capturing a technology snapshot of dominant placement
algorithms. We sent out invitations to all placement contest participants, and every
team agreed to contribute to this book. By February 2007, all chapter manuscripts
were submitted. In fact, some of them included the latest progress they made after
the 2006 placement contest. Therefore, the results reported in some of the chapters

Preface xix

are different (better) from the original placement contest results, which we provided
at the end of Chap. 1 for reference.

The editors are well aware of the limitations of placement objectives used in the
two contests. The 2005 contest uses wire length minimization as its sole objective
function, while the 2006 contest uses a combination of wire length minimization, cell
density control and runtime as its objective function (see Chap. 1 for more details).
Real placement problems need to consider a number of other objectives, such as tim-
ing, power, and thermal optimization, as well as interaction with various physical
synthesis operations, such as buffer insertion and gate sizing. A direct comparison
of different placers under all these objectives and constraints may not be possible or
meaningful, as each design has its own emphasis, and the final result is not deter-
mined by the placement algorithm alone. Many other steps, such as timing analysis,
global and detailed routing, and various physical optimization operations can affect
the final result. Therefore, we think that it is appropriate to use rather simple metrics
in the two placement contests to measure the capability of the core wire length opti-
mization engines employed in the different placers. As pointed in [4], a placer with
good wire length minimization engine can be extended to handle other design objec-
tives through weighted wire length minimization using various weighting functions.

This book is intended for graduate students, researchers, and CAD tool develop-
ers in the physical synthesis and physical design area. Each chapter is mostly self-
contained and can be read independently. We hope that the readers can benefit from
this collection of modern placement algorithms and potentially contribute to the field
with new perspective. Please note this book is not intended to provide a comprehen-
sive review of all available placement techniques, but to highlight the most successful
techniques and practices used in modern placers. We refer the reader to [4] for a more
comprehensive survey for the existing placement techniques.

We would like to thank the ISPD organizing committee for sponsoring the two
placement contests, and IBM Corporation for providing the benchmark examples.
We are indebted to the time and efforts of all the chapter authors who made this book
possible. Finally, we would like to thank David Papa at the University of Michigan
for thorough reviews of all chapters.

Gi-Joon Nam
IBM Research
Austin, Texas

Jason Cong
University of California
Los Angeles, California

March 2007

xx Preface

References

1. C.-C. Chang, J. Cong and M. Xie, “Optimality and Scalability Study of Existing Place-
ment Algorithms,” Asia South Pacific Design Automation Conference, 2003, pp. 621–627

2. C.-C. Chang, J. Cong, M. Romesis and M. Xie, “Optimality and Scalability Study of
Existing Placement Algorithms,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits, pp. 537–549, April 2004

3. J. Cong, “An Interconnect-Centric Design Flow for Nanometer Technologies”, Proceed-
ings of the IEEE, vol. 89, No. 4, pp. 505–528, April 2001

4. J. Cong, T. Kong, J. Shinnerl, M. Xie and X. Yuan, “Large Scale Circuit Placement,”
ACM Transaction on Design Automation of Electronic Systems, vol. 10, no. 2, pp. 389–
430, April 2005

5. Gi-Joon Nam, “ISPD 2006 placement contest: Benchmark suite and results,” Proceedings
of the International Symposium on Physical Design, pages 167–167, 2006

6. G.-J. Nam, C.J. Alpert, P. Villarubbia, B. Winter, and M. Yildiz, “The ISPD2005 place-
ment contest and benchmark suite,” Proceedings of the International Symposium on Phys-
ical Design, pages 216–219, 2005

7. http://www.ispd.cc

Part I

Benchmarks

1

ISPD 2005/2006 Placement Benchmarks

Gi-Joon Nam1, Charles J. Alpert1, and Paul G. Villarrubia2

1IBM Austin Research Lab
2IBM EDA
{gnam, alpert, pgvillar}@us.ibm.com

1.1 Introduction

Benchmarks can contribute significantly to algorithm development of many fields
by providing a common basis for quantitative measurement and comparison. The
early MCNC benchmarks and ISPD98 benchmarks [1] helped the academic commu-
nity significantly to measure the advances in physical design in 1990s. While still
being used extensively in placement and floorplanning research, those benchmarks
can no longer be considered representative of today’s physical design challenges. To
further aid future advances in placement, new benchmark suites, dubbed as ISPD
2005/2006 Placement Benchmarks, have been released in conjunction with ISPD
placement contests. There are total 16 benchmark circuits that are directly derived
from modern industrial ASIC designs. These benchmarks include rather unique fea-
tures to represent modern physical design challenges:

• Design size
• I/O objects
• Macros
• Floorplans
• White space
• Density target

Due to scaled technology and requirements of more complex functionality,
modern designs contain more circuit elements than ever. In today’s environment,
several million gate designs are considered a norm and this number will increase
year after year. This situation renders more scalable placement algorithm to design
size preferred in the field. ISPD placement benchmarks provide five circuits with

4 1 ISPD 2005/2006 Placement Benchmarks

more than a million placeable objects. These large circuits serve to test the scalabil-
ity of placement algorithms.

In older technologies, I/O pins usually preside around the chip boundary, and
they are called perimeter I/Os. Modern technologies, however, allow I/O pins to be
populated within chip area to reduce signal propagation delay through I/O pins. This
new technology is called the area-array I/O technology. The new ISPD benchmark
suites have multiple placement instances using the area-array I/O technology.

In today’s design environment, hierarchical design methodology is extremely
popular to reduce the turn-around-time of taping out chips. Due to this, more and
more macro blocks (either fixed or movable) are introduced into modern ASIC
designs. Indeed, these macro blocks can cause serious problems during placement.
For example, legalization becomes extremely tricky with large movable macros. All
ISPD placement benchmarks contain either movable or fixed macros or both, and
serve as a good test set for mixed-size placement algorithms.

Another interesting aspect with macros is that they produce much more variety of
floorplans for modern placement tools. Early decisions of where to put these macros
during global placement have significant impact on the quality of placement solution.
Therefore, modern placement tools have to be more reliable and robust to various
floorplans. ISPD placement benchmarks provide a variety of floorplans with many
macro blocks.

Modern high-performance ASIC designs have abundant white space primarily
due to the needs of potential gate sizing, buffering, and other optimizations that fol-
low the placement process. In global placement algorithm, white space management
has become one of the most important considerations because it could affect the wire
length of placement solution significantly. ISPD 2005/2006 benchmarks have wide
range of white space to emphasize the importance of white space management.

If a placement solution is not routable, there is no point of discussing whether
it is a good or bad solution. In other words, placement solution has to be routable.
Unfortunately, it is extremely difficult to model the routability accurately or measure
congestion during placement without actually running global/detailed router. Density
target forces global/detailed placement algorithm to preserve some amounts of white
space inarbitraryneighborhoodofplacement regions.Theseadditionalwhitespacecan
serve to mitigate local congestion. All ISPD 2006 benchmarks have associated density
targets (ranging from 50% to 90%) to represent different congestion constraints.

Next we briefly review the benchmark statistics and quality measurements of two
placement contests.

1.2 ISPD 2005 Placement Contest and Benchmark1

As an inaugural placement contest, the quality of placement solutions was solely
measured by half-perimeter bounding box wire length (HPWL) with pin loca-
tions respected. HPWL is widely used when comparing results in placement and

1 Portions reprinted from the reference [11] with c© [2005] ACM.

1.2 ISPD 2005 Placement Contest and Benchmark 5

Table 1.1. ISPD 2005 benchmark characteristics.

Circuit #Obj #Mov #Fixed #Net Density (%) Util.(%) # Peri.I/Os
adaptec1 211447 210904 543 221142 76 57 480
adaptec2 255023 254457 566 266009 79 44 407
adaptec3 451650 450927 723 466758 75 34 0
adaptec4 496045 494716 1329 515951 63 27 0
bigblue1 278164 277604 560 284479 54 45 528
bigblue2 557866 534782 23084 577235 62 38 0
bigblue3 1096812 1095519 1293 1123170 86 57 0
bigblue4 2177353 2169183 8170 2229886 65 44 0

floorplanning research. HPWL is easy to measure and still a reasonable first-order
estimation for the routed wire length for small nets. For larger nets, steiner-tree wire
length is necessary to accurately estimate the routed wire length.

Table 1.1 summarizes the characteristics of circuits in ISPD 2005 placement
benchmark suite. The reported statistics are:

• #Obj. The total number of objects of design
• #Mov. The number of movable objects
• #Fixed. The number of fixed objects
• #Net. The number of nets
• Density(%). The total design density defined as the ratio of the area sum of all

objects divided by placement area
• Util.(%). The design utilization defined as the ratio of the area sum of only mov-

able objects divided by available free space. The available free space is defined
as difference between entire placement area and the area sum of fixed objects

• #Peri. I/Os. The number of perimeter I/O objects. If this number is 0, a design
contains only area-array I/Os

Figure 1.1 presents layout figures of benchmarks. To produce these layout fig-
ures, the Capo [14] placer’s utility plotter is used that can be obtained from GSRC
Bookshelf [3]. These circuits include many fixed blocks demonstrating current SoC-
style VLSI design methodology. Big fixed macro blocks basically dictate the over-
all placement footprints while placing movable dust logic around them becomes
the main task of the placement algorithm. It is still a challenging problem because
placement algorithm must be able to cope with large number of objects (scalability),
satisfy timing constraints (timing closure) and produce routable solutions (routabil-
ity/congestion). Each design presents slightly different styles of placement problems.
For example, adaptec2 and adaptec3 have large fixed blocks in the center of place-
ment region, which may cause larger variations in wire lengths depending on which
sides of fixed blocks movable cells are placed. In bigblue1, placing movable objects
at the center region in more compact manner seems to be a more critical task. The
benchmark bigblue2 have relatively large number of pins from regularly placed small
fixed blocks. The design density of bigblue3 is over 85% primarily due to several
large fixed blocks whereas its design utilization is around 55% with abundant free

6 1 ISPD 2005/2006 Placement Benchmarks

adaptec1 #Cells = 211447, #Nets = 219794

10000

8000

6000

4000

2000

2000 4000 6000 8000 10000

adaptec2 #Cells = 255023, #Nets = 260159

14000

12000

10000

8000

6000

4000

2000

2000 4000 6000 8000 10000 12000 14000

adaptec3 #Cells = 451650, #Nets = 466295

20000

15000

10000

5000

5000 10000 15000 200000

adaptec4 #Cells = 496045, #Nets = 515304

20000

15000

10000

5000

5000 10000 15000 200000

bigblue1 #Cells = 278164, #Nets = 282974

10000

8000

6000

4000

2000

2000 4000 6000 8000 10000

bigblue2 #Cells = 557866, #Nets = 576816

18000

16000

14000

12000

10000

8000

6000

4000

2000

2000 4000 6000 8000 10000 12000 14000 16000 18000

bigblue3 #Cells = 1096812, #Nets = 1122340

25000

20000

15000

10000

5000

0 5000 10000 15000 20000 25000

bigblue4 #Cells = 2177353, #Nets = 2228903

30000

25000

20000

15000

10000

5000

5000 10000 15000 20000 25000 300000

Fig. 1.1. Layout figures of ISPD 2005 benchmark suite.

1.3 ISPD 2006 Placement Contest and Benchmark 7

space available. Two benchmarks bigblue3 and bigblue4, with more than one million
placeable objects, are good test cases for testing scalability of placement algorithms.

1.3 ISPD 2006 Placement Contest and Benchmark

To address the routability and congestion mitigation, ISPD 2006 placement contest
benchmarks were released with associated density targets that the placer should obey.
Density target is a constraint that forces a placer to reserve specified white space in
any subregions of placement area. The density target is a floating number that is
larger than or equal to design density that is defined as the total movable cell area
divided by the total available area in the placement region. For example, if density
target is 0.7, any local region should be less than or equal to 70% occupied. The lower
the density target is, the more spreading is required. The idea behind this constraint is
to improve routability and allow space for buffering, gate sizing, and clock tree that
will be inserted later. In other words, this spacing helps make the placement instance
more realistic to the practice in the field.

In 2006 placement contest, the quality of placement solution was measured by
the adjusted HPWL function:

H PW L × (1 + scaled overflow factor + cpu factor). (1.1)

To measure scaled overflow factor, the placement region is divided into a set of
equal-sized bins (10 circuit row heights). For each bin b, bin overflow is calculated
as follows

bin overflow(b) =
∑

movablev∈b

[area(v) − f ree space(b) × densi ty target] (1.2)

where free space(b) is the available white space, i.e., the difference between the sin-
gle bin area and the sum of fixed object areas that belong to the corresponding bin.
The total overflow of a design is simply the sum of bin overflow(b) over all bins.
Then, scaled overflow factor is calculated by

scaled overflow factor = total overflow × single bin area × densi ty target
(
∑

movablev∈design area(v)) × c
(1.3)

where c is a constant. Note that the term
∑

movablev∈design area(v)

single bin area × densi ty target
(1.4)

is the minimum number of bins that can accommodate all movable objects in a design
with a given density target. This term is independent of placement region area. Rather
it is a unique design related factor. Therefore, the scaled overflow flow gives the
(scaled) average overflow over the minimum number of bins required. For ISPD 2006

8 1 ISPD 2005/2006 Placement Benchmarks

Table 1.2. ISPD 2006 benchmark characteristics.

Circuit #Obj #Mov #Fixed #Net Density (%) Util. (%) Density target
adaptec5 843128 842482 646 867798 79 50 0.5
newblue1 330474 330137 337 228901 86 83 0.8
newblue2 441516 330239 1277 465219 86 62 0.9
newblue3 494011 482833 11178 552199 85 26 0.8
newblue4 646139 642717 3422 637051 66 46 0.5
newblue5 1233058 1228177 4881 1284251 75 50 0.5
newblue6 1255039 1248150 6889 1288443 59 39 0.8
newblue7 2507954 2481372 26582 2636820 76 49 0.8

contest, the constant c is set to 400, and to emphasize the importance of overflow
factor, the squared scaled overflow flow term is used.

The purpose of cpu factor is designed to gently encourage CPU performance.
The intention is to encourage placers to get faster but not at the cost of significant
solution quality. The cpu factor is calculated as

cpu factor = 0.04 × ln
placer cputime

median cputime
(1.5)

Therefore, if placer A is 2 times slower (faster) than a median speed placer, it
gets 4% wire length penalty (advantage). If it is 4 times slower (faster), 8% wire
length penalty (advantage) is imposed on placer A. However, cpu factor’s wire
length penalty/advantage is limited to maximum 10%.

Table 1.2 summarizes the characteristics of circuits in ISPD 2006 placement
benchmark suite with associated density targets, and Figure 1.2 shows the layout
figures that were generated with the Capo [14] placer’s utility plotter from GSRC
Bookshelf [3]. Again, each circuit in ISPD 2006 benchmark suite presents different
styles of placement challenges. The density target of adaptec5 is set to 0.5 while its
design utilization is a little bit below 50%. Thus, it forces a placer to spread movable
objects uniformly over the entire placement area. newblue1 has several large mov-
able macro blocks, and test the floorplanning capability of placement algorithm. In
newblue2, all standard cells are inflated by 2× for congestion mitigation. Since cells
are already inflated, a rather high-density target 0.9 is enforced. newblue3 presents
an unique floorplan with large fixed macros on both sides of placement region. The
density targets of newblue4 and newblue5 are both set to 0.5, almost similar value to
design utilization. Therefore, uniform spreading is required for both test cases. Also,
newblue5, newblue6 and newblue7 have more than a million movable objects and the
scalability of placement algorithm is important for these large circuits.

1.4 ISPD Placement Contest Results

Table 1.3 presents the results of 2005 placement contest. Columns 2–7 show the
actual half-perimeter bounding box wire lengths of all placer’s on each circuit and
column 8 is the average ratio of a placer’s wire length over the best wire length of

1.4 ISPD Placement Contest Results 9

adaptec5 #Cells = 843128, #Nets = 867441

20000

15000

10000

5000

0 5000 10000 15000 20000

newblue1 #Cells = 330474, #Nets = 331663

12000

1200010000

10000

8000

8000

6000

6000

4000

4000

2000

2000

newblue2 #Cells = 441516, #Nets = 463213

20000

15000

10000

5000

0
0 5000 10000 15000 20000 25000

newblue3 #Cells = 494011, #Nets = 551667
50000

40000

30000

20000

10000

0
0 5000 10000 15000 20000 25000 30000 35000

newblue4 #Cells = 646139, #Nets = 636195

18000

16000

14000

12000

10000

8000

6000

4000

4000 6000 8000 10000 12000 14000 16000 18000

2000

2000

newblue5 #Cells = 1233058, #Nets = 1257555

25000

20000

15000

10000

5000

5000 10000 15000 20000 250000

newblue6 #Cells = 1255039, #Nets = 1286452

250002000015000100005000

25000

20000

15000

10000

5000

newblue7 #Cells = 2507954, #Nets = 2635625

35000

35000

30000

25000

20000

15000

10000

5000

30000250002000015000100005000

Fig. 1.2. Layout figures of ISPD 2006 benchmark suite.

10 1 ISPD 2005/2006 Placement Benchmarks

Table 1.3. ISPD 2005 contest results.

Placer adaptec2 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4 Ratio
Aplace [9] 87.31 187.65 94.64 143.82 357.89 833.21 1.00
mFar [8] 91.53 190.84 97.70 168.70 379.95 876.28 1.06
Dragon [16] 94.72 200.88 102.39 159.71 380.45 903.96 1.08
mPL [4] 97.11 200.94 98.31 173.22 369.66 904.19 1.09
FastPlace [18] 107.86 204.48 101.56 169.89 458.49 889.87 1.16
Capo [14] 99.71 211.25 108.21 172.30 382.63 1098.76 1.17
NTUplace [6] 100.31 206.45 106.54 190.66 411.81 1154.15 1.21
FengShui [2] 122.99 337.22 114.57 285.43 471.15 1040.05 1.50
Kraftwerk [13] 157.65 352.01 149.44 322.22 656.19 1403.79 1.84

Table 1.4. ISPD 2006 contest results: Scaled HPWL.

Placer ad5 nb1 nb2 nb3 nb4 nb5 nb6 nb7
Kraftwerk 457.92 78.60 208.41 280.93 315.53 569.36 545.94 1170.85
mPL6 [5] 431.14 67.02 200.93 287.05 299.66 540.67 518.70 1082.92
NTUplace3 [7] 432.58 63.49 203.68 291.15 305.79 517.63 532.79 1181.30
mFAR 476.28 77.54 212.90 303.91 324.40 601.27 535.96 1153.76
Aplace3 [10] 520.97 73.31 198.24 273.64 384.12 613.86 522.73 1098.88
Dragon [17] 500.74 80.77 260.83 524.58 341.16 614.23 572.53 1410.54
FastPlace 805.64 84.55 212.30 362.99 429.79 962.06 574.18 1236.34
DPlace 572.98 102.75 329.92 380.14 364.45 752.08 682.87 1438.99
Capo [15] 494.64 98.48 309.53 361.25 362.40 659.57 668.66 1518.75

each circuit. Note that the sole quality metric of 2005 placement contest was the
half-perimeter bounding box wire length, and no CPU time usage limit was applied.

Aplace won the first contest convincingly by producing the best wire length on
all circuits. Generally, analytical placers such as APlace, mFAR, mPL, and FastPlace
produced better placement solutions than other algorithms. However, Kraftwerk,
another analytical placement tool ended up the last place. Placeable objects in
Kraftwerk solutions were spread uniformly over the entire placement regions lead-
ing to worse wire lengths. This turns out to be a critical mistake in low-utilization
circuits. FengShui is a recursive partitioning-based placement tool that participated
only in the first contest. Also, note that NTUplace was implemented as a partitioning-
based placement tool in 2005.

The detailed data of ISPD 2006 placement contest are presented in Tables 1.4 and
1.5 [12]. Note that the scaled HPWLs in Table 1.4 include the bin overflow penalty
factor in wire length calculation while CPU time factor is not included. Thus, the
scaled HPWL is a representative metric for quality of solutions.

In Table 1.5, the reported statistics are:

• Avg. HPWL Ratio. The average ratio of a placer’s HPWL over the best HPWL of
each circuit. The closer to 1.0 this value is, the better a placer’s HPWL is.

• Avg. OV Factor %. The average scaled bin overflow penalty factor to scaled
HPWL calculation in percentage. For example, Kraftwerk got 1.68% increase in

References 11

Table 1.5. ISPD 2006 contest results: HPWL, Bin overflow, and CPU time factor.

Placer Avg. HPWL Ratio Avg. OV Factor (%) Avg. CPU Factor (%) Score Ratio
Kraftwerk 1.09 1.68 −5.04 1.03
mPL6 1.03 1.36 1.58 1.04
NTUplace3 1.02 4.10 1.66 1.05
mFAR 1.11 2.71 −0.12 1.11
Aplace3 1.10 3.82 5.31 1.16
Dragon 1.33 0.12 −5.90 1.24
FastPlace 1.18 22.09 −5.62 1.33
DPlace 1.34 9.32 −4.54 1.36
Capo 1.38 0.32 2.69 1.39

wire length due to its bin overflow penalty. FastPlace, however, was imposed over
22% wire length penalty implying that the density target was not strictly hon-
ored. Note that this penalty was already applied in the scaled HPWLs reported in
Table 1.4.

• Avg. CPU Factor %. The average CPU time factor to wire length calculation
in percentage. Negative value implies that a placer is faster than others and the
contest scoring wire length is reduced by that amount. For example, Kraftwerk,
mFAR, Dragon, FastPlace, and DPlace were rather fast placement tools and got
some wire length advantage from 0.12% to 5.90%.

• Score Ratio. The average ratio of contest’s scoring metric of a placer over the best
one on individual circuit. This value represents the final ranking of the contest.

Overall, the Kraftwerk placer won the 2006 placement contest. The applied con-
test scoring metric with the consideration of HPWL, bin overflow, and runtime was
successfully able to identify three best placers among all participants. The discrep-
ancy between top three teams turned out to be negligible. If only HPWL and bin
scaled factor (i.e., scaled HPWLs) are considered, mPL6, NTUplace3, and Kraftwerk
again remain as top three teams.

References

1. C. Alpert, “The ISPD98 Circuit Benchmark Suite,” in Proc. ACM/IEEE International
Symposium on Physical Design, 1998, pp. 80–85

2. A. Agnihotri, S. Ono and P. Madden, “Recursive Bisection Placement: Feng Shui 5.0
Implementation Details,” in Proc. ACM/IEEE International Symposium on Physical
Design, 2005, pp. 230–232

3. A.E. Caldwell, A.B. Kahng, I.L. Markov, VLSI cad bookshelf. http://vlsicad.
eecs.umich.edu/BK/. See also Caldwell AE, Kahng AB, Markov IL (2002) Toward
cad-ip reuse: the marco gsrc bookshelf of fundamental cad algorithms. IEEE Design and
Test 72–81

4. T.F. Chan, J. Cong, M. Romesis, J.R. Shinnerl, K. Sze and M. Xie, “mPL6: A Robust
Multilevel Mixed-Size Placement Engine,” in Proc. ACM/IEEE International Symposium
on Physical Design, 2005, pp. 227–229

12 1 ISPD 2005/2006 Placement Benchmarks

5. T.F. Chan, J. Cong, J.R. Shinnerl, K. Sze and M. Xie, “mPL6: Enhanced Multilevel
Mixed-Size Placement,” in Proc. ACM/IEEE International Symposium on Physical
Design, 2006, pp. 212–214

6. T.-C. Chen, T.-C. Hsu, Z.-W. Jiang and Y.-W. Chang, “NTUplace: A Ratio Partitioning
Based Placement Algorithm for Large-Scale Mixed-Size Designs,” in Proc. ACM/IEEE
International Symposium on Physical Design, 2005, pp. 236–238

7. Z.-W. Jiang, T.-C. Chen, T.-C. Hsu, H.-C. Chen and Y.-W. Chang, “NTUplace2: A
Hybrid Placer Using Partitioning and Analytical Techniques,” in Proc. ACM/IEEE Inter-
national Symposium on Physical Design, 2006, pp. 215–217

8. B. Hu, Y. Zeng and M. Marek-Sadowska, “mFAR: Fixed-Points-Addtion-Based VLSI
Placement Algorithm,” Proc. ACM/IEEE International Symposium on Physical Design,
2005, pp. 239–241

9. A.B. Kahng, S. Reda, and Q. Wang, “APlace: A General Analytic Placement Frame-
work,” in Proc. ACM/IEEE International Symposium on Physical Design, 2005, pp.
233-235

10. A.B. Kahng, and Q. Wang, “A Faster Implementation of APlace,” in Proc. ACM/IEEE
International Symposium on Physical Design, 2006, pp. 218–220

11. G.-J. Nam, C.J. Alpert, P. Villarrubia, B. Winter and M. Yildiz, “The ISPD2005 Place-
ment Contest and Benchmark Suite,”, in Proc. ACM/IEEE International Symposium on
Physical Design, 2005, pp. 216–220

12. Gi-Joon Nam, “ISPD 2006 placement contest: Benchmark suite and results,” Proceed-
ings of the International Symposium on Physical Design, pages 167–167, 2006

13. B. Obermeier, H. Ranke and F. M. Johannes, “Kraftwerk - A Versatile Placement
Approach,” in Proc. ACM/IEEE International Symposium on Physical Design, 2005,
pp. 242–244

14. J.A. Roy, D.A. Papa, S.N. Adya, H.H. Chan A.N. Ng, J.F. Lu and I.L. Markov,
“Capo: Robust and Scalable Open-Source Min-Cut Floorplacer,” in Proc. ACM/IEEE
International Symposium on Physical Design, 2005, pp. 224–226

15. J.A. Roy, D.A. Papa, A.N. Ng and I.L. Markov, “Satisfying Whitespace Requirements
in Top-down Placement,” in Proc. ACM/IEEE International Symposium on Physical
Design, 2006, pp. 206–28

16. T. Taghavi, X. Yang, B.K. Choi, M. Wang and M. Sarrafzadeh, “DRAGON2005: Large-
Scale Mixed-Size Placement Tool,” in Proc. ACM/IEEE International Symposium on
Physical Design, 2005, pp. 245–247

17. T. Taghavi, X. Yang, B.K. Choi, M. Wang and M. Sarrafzadeh, “DRAGON2006:
Blockage-Aware Congestion-Controlling Mixed-Size Placer,” in Proc. ACM/IEEE Inter-
national Symposium on Physical Design, 2006, pp. 209–211

18. N. Viswanathan, M. Pan and C.C. -N. Chu, “FastPlace: An Analytical Placer for Mixed-
Mode Designs,” in Proc. ACM/IEEE International Symposium on Physical Design, 2005,
pp. 221–223

2

Locality and Utilization in Placement Suboptimality

Jason Cong,1 Michalis Romesis2, Joseph R. Shinnerl3, Kenton Sze4, and Min
Xie1

1UCLA Computer Science
2Magma Design Automation, Inc.
3Tabula, Inc.
4UCLA Mathematics
{cong,xie}@cs.ucla.edu
michalis@magma-da.com
jshinnerl@tabula.com
nksze@math.ucla.edu

2.1 Introduction

Placement is a critical step in VLSI design. Interconnect delay dominates system
performance, and placement determines the interconnect more than any other step
in physical design. The complexity of modern designs, however, makes estimation
of suboptimality difficult [14, 16, 28]. Studies on simplified, synthetic benchmarks
with known optimal-wire length placements (PEKO [7]) initially suggested that many
leading tools may produce solutions with excess wire length from 60% up to 150%
or more. These results have generated wide interest in both industry [13] and acad-
emia [19, 22, 28]. Recent progress in placement [1, 5, 6, 17] has reduced the wire
length gap on PEKO to about 12–40%.

The PEKO benchmarks, however, have well-known limitations. Although their
cell counts, net counts, and net-degree statistics match corresponding quantities in
standard industrial benchmarks [2], the PEKO circuits are simplified in three key
ways, in order to guarantee known optimal solutions. First, all cells are squares of the
same size. Second, the known optimal placements for the PEKO circuits are packed
layouts with zero white space. Third, all nets in an optimal PEKO placement are

14 2 Locality and Utilization in Placement Suboptimality

local – the netlist of a PEKO circuit is defined over cells arranged in a regular array,
with adjacent cells grouped into local nets of minimum HPWL.

Subsequent studies [9, 16] derived useful lower bounds on the HPWL subopti-
mality of placements of circuits with more realistic netlists. The PEKU circuits [9]
add nonlocal nets to packed, uniform-grid PEKO layouts but sacrifice any assurance
of optimality. Zero-change netlist transformations [16] preserve both module shapes
and core utilization, but they quantify the sensitivity of a placement tool to netlist
changes, not the suboptimality of a given placement on a given netlist. It is not known
how close the lower bounds on suboptimality are to the true suboptimality gaps for
either the PEKU circuits or the zero-change netlists.

The benchmarks described in this chapter directly address several of the short-
comings in existing suboptimality benchmarks. Two new sets of placement exam-
ples are constructed, one targeting the role of nonlocal nets in suboptimality, and
another targeting the role of white space and large variations in module sizes. The
first set, PEKO-MC, is a set of standard-cell circuits with nonlocal nets in known
optimal placements. A given netlist is modified so as to render a given placement
for it optimal for the new netlist. Cell dimensions and locations are not changed,
net-degree statistics are matched exactly, and over 60% of the original netlist is
left unchanged. The second set, PEKO-MS, incorporates a parametrized percentage
of white space into a mixed-size placement which precisely matches given macro
dimensions and locations as well as the net-degree distributions of the ISPD 2005
benchmark suite [21]. HPWL for the placements generated for the PEKO-MS circuits
are proven to be less than 3% above optimal for most cases and within 8% of optimal
on all cases.

The concept of a monotone path for a circuit signal has been used in performance-
driven logic synthesis [23, 26], coupled timing-driven placement and logic synthe-
sis [27], performance-driven multilevel partitioning [15], and the analysis of wire
length models in timing-driven placement [24]. The concept is also employed in two
of the three netlist transformations used by Kahng and Reda [16]. To our knowl-
edge, however, the work described here is the first to employ monotone chains in the
construction of netlists with known optimal-wire length placements.

Typically, mixed size placement proceeds in three stages: global placement (GP),
legalization, and detailed placement (DP). The goal of GP is to position each cell
within some relatively small neighborhood of its final position, while eventually
obtaining a sufficiently uniform distribution of cell area over the entire chip. Typ-
ically, large sets of cells are moved simultaneously under some relaxed or incremen-
tal formulation of area density control – scalable algorithms do not strictly enforce
pairwise nonoverlap constraints during this stage. The goal of legalization is, given
a sufficiently good GP Pg, determine positions of all cells so that (1) no two cells
overlap and (2) a given objective, e.g., approximate total wire length or total dis-
placement from Pg, is minimized. During DP, all constraints are strictly enforced.
Typically, DP proceeds by a sequence of refinements made one at a time on small,
contiguous subregions [4, 12] or on individual rows [18].

In practice, GP is terminated when iterations are observed to make little or no
reduction in the objective and the module-area distribution is sufficiently uniform.

2.2 Peko-MC Benchmark Construction 15

How much of the optimality gap left by contemporary methods should be attributed
to deficiencies in global-placement algorithms, and how much to legalization and
DP? On a real circuit, there is no way of knowing how far a cell is from its nearest
optimal location, at any stage. On circuits with known optimal or near-optimal place-
ments, however, it is possible to evaluate precisely the quality of any of the three
engines in isolation from its counterparts. Thus, the benchmark circuits described
here provide a more precise means of quantifying the relative effectiveness of the
methods used in the three stages. Results estimating the separate suboptimality con-
tributions of GP and legalization and DP are described in Sect. 2.4.

2.2 Peko-MC Benchmark Construction

Each PEKO-MC example has an optimal-wirelength placement in which over 50%
of the nets are non-local. Module shapes, core utilization, and net-degree statistics
match corresponding quantities in a given benchmark exactly. The PEKO-MC con-
struction is described in this section.

2.2.1 Monotone Chains

The definition of a monotone chain in a netlist uses simple ideas from both graphs
and hypergraphs. First, consider a path P in a graph G whose vertices lie in the
plane. Let P consist of n consecutive edges (e1, . . . , en) connecting n + 1 vertices
(v0, . . . , vn), vertex vi with coordinates (xi , yi) and edge ei connecting vertices vi−1
and vi . Then P is monotone if and only if, for every i ∈ {1, . . . , n}, |xn − xi | ≤
|xn − xi−1| and |yn − yi | ≤ |yn − yi−1|. Hence, a path in a graph embedded in the
plane is monotone if and only if the Manhattan distance between its two terminal
vertices equals the sum of the Manhattan lengths of its edges.

In a hypergraph, a hyperpath is a finite sequence of hyperedges in which each
hyperedge intersects with its predecessor and successor. We say that a hypergraph
lies in the plane or, equivalently, is placed in the plane, if the nodes (modules) of the
hypergraph (netlist) have been assigned specific locations in the plane. In this case,
the total length of a hyperpath is the sum of the HPWLs of its hyperedges (HPWL
denotes minimum bounding-box half-perimeter). An edge e = (v, w) is called the
equivalent edge of a hyperedge h of a hypergraph in the plane, if (1) its vertices v and
w are in h and (2) e’s minimum-HPWL bounding box is the same as h’s minimum-
HPWL bounding box. A hyperedge in the plane may have zero, one, or two equivalent
edge(s).

A path P is called the equivalent path of a hyperpath H in a hypergraph in the
plane, if there is a one-to-one correspondence between the edges of P and the hyper-
edges of H , such that every edge of P is the equivalent edge of its corresponding
hyperedge in H . A monotone chain is a hyperpath which has an equivalent path that
is monotone.

Assuming that no two vertices can occupy the same location, neighboring hyper-
edges in a monotone chain have exactly one vertex in common. These common ver-
tices form the equivalent monotone path. The two terminal vertices of a monotone

16 2 Locality and Utilization in Placement Suboptimality

chain are the terminal vertices of its equivalent path. Hence, the length of a monotone
chain equals the HPWL of the edge defined by the chain’s two terminals.

Observation 2.2.1 If the terminal vertices of a monotone chain P =(h1, h2, . . . , hn)
of a hypergraph G are fixed in the plane, there is no other planar embedding of
hypergraph G which reduces the length of P.

Given a placement of the hypergraph in the plane, a local net is a hyperedge
the HPWL of which is the minimum possible, subject to some spacing constraints
between vertices. From Observation 2.2.1, it is evident that a placement has opti-
mal HPWL if all its nonlocal nets can be partitioned into netwise-disjoint monotone
chains with fixed endpoints.

2.2.2 The Peko-MC Algorithm

Starting from the placement of the real benchmark, sets of nets are identified that can
be grouped together into netwise-disjoint monotone chains between well-separated
fixed terminals. Initially, these chains are not complete and have gaps called interven-
ing regions. These are later filled by other nets that are modified from the original
netlist. Local nets in the given placement are not modified. The main steps of the
PEKO-MC algorithm are sketched below.

Placement generation. The PEKO-MC generator requires a placement of the orig-
inal netlist. This placement is held fixed, while the netlist is changed so that the
given placement attains the optimal HPWL for the modified netlist. Starting from a
random placement is possible, but experiments show that starting from a placement
computed by a tool increases the final similarity of the original and the derived cir-
cuits, because a real placement has many more locally optimal nets than a random
placement.

Net categorization. The nets of the original hypergraph are divided into three
different categories depending on the placement of their pins:

(1) Locally optimal-HPWL nets
(2) Nets that do not have equivalent edges
(3) Nets with equivalent edges

Nets of Type (2) cannot be members of monotone chains and are therefore modified.
Nets of Type (3) are labeled according to the directions of the monotone chains of
which they can be members: from lower left toward upper right, or from lower right
to upper left. Some of these nets can be members of chains in either direction.

Chain generation. As illustrated in Figure 2.1, sets of nets that can be members
of the same chain are identified along with sets of intervening regions that must later
be filled by nets in order to complete the monotone chains. All nets of Type (3) are
assigned to chains during this step.

Chain removal. In our experiments, the number of intervening regions between
pairs of nets created during chain generation is higher than the number of nets of Type
(2). Hence, to preserve netlist statistics, some of the chains generated are removed in
order to reduce the number of such intervening regions and increase the number of

2.3 Peko-MS Benchmark Construction 17

(c)(b)(a)

R

Net A Net BNet A

R R’

Net BNet A

Empty Region

Fig. 2.1. Example of chain generation. (a) Net A, containing two cells, has already been added
to the chain. A search for a new net takes place in region R. (b) Net B is selected to be added
to the chain. (c) An intervening region is inserted between nets A and B that will be covered
later by a new net. A new search is initiated for nets in region R’.

available nets. Chains with the highest ratios of intervening regions to contained nets
are removed until the number of available nets equals or exceeds the number of gaps
between terminals in chains.

Gap covering. In the final step, empty regions between nets in chains are filled
by new nets. Each new net replaces some available net in the original netlist. The
new net includes the two pins defining the equivalent edge of the bounding box of
its intervening region R as well as additional pins selected from within R in order
to match the degree of the replaced net. The cells whose degree in the current netlist
are smallest compared to their original degree are given priority. In this way, the cell-
degree distribution of the new netlist closely follows the corresponding distribution
of the original circuit. Most intervening regions are covered by one net, but a few
are covered by two nets, when the number of available nets exceeds the number of
empty regions.

Experiments reported in Sect. 2.4 suggest that, on the 2004 FastPlace-IBM
standard-cell circuits with 20% white space, nonlocal nets probably do not represent
a significant source of suboptimality for these tools. In order to amplify the subopti-
mality observed on mixed-size cases as much as possible, the PEKO-MS benchmarks
described next include only local nets by default.

2.3 Peko-MS Benchmark Construction

We refer to our placement suboptimality benchmarks with parametrized white space
as PEKO-MS. As shown in Figure 2.2, the PEKO-MS generator produces a benchmark
closely approximating the following four targets (1) net-degree histogram N#, (2)
given placement Pmac of all macros, (3) number of standard cells Nsc, and (4) white

18 2 Locality and Utilization in Placement Suboptimality

Set grid-resolution limit NG .

input

N# target net-degree histogram
Pmac macro placement in core region R
Nsc target number of standard cells
φws target white-space fraction

φmac :=
(∑

vi ∈Pmac
a(vi)

)
/a(R).

φws := min{φws, 1 − φmac − Nsc/NG }.
φsc := 1 − φmac − φws.
NG := Nsc/φsc.
if (NG > NG) then

NG := NG ; φsc := Nsc/NG ; φws := 1 − φmac − φsc.
end if
Snap Pmac into G, truncating macros as necessary;

mark grid cells assigned to macros.
Nws := φws · NG .
repeat

Randomly select unvisited non-macro grid cell c.
if (the spatial neighbors of c remain spatially

connected in G when c is removed) then
Mark c as white space and decrement Nws.

end if
until (Nws == 0 or

every non-macro grid cell has been examined)
if (Nws > 0) report failure and exit end if
Mark all unmarked grid cells as standard cells;

V := {macros} ∪ {standard cells}.
Following Figure 2.3, generate a minimal netlist

“backbone” EB , a connected set of local nets
consistent with N# which covers V .

while (N# still has nonzero entries and
available locations for local nets still exist)

Randomly select an available location p for a local net
if (no new local net can be generated at p) then

remove p from list of available local-net locations.
else

generate a local net of maximum possible degree k
still represented in N#. Decrement N# [k].

end if
end while
output the placement suboptimality benchmark netlist

Fig. 2.2. The Peko-MS benchmark generator.

2.3 Peko-MS Benchmark Construction 19

space fraction φws. The i th component of vector N# is the target number of nets of
cardinality i . A macro is any module, fixed or movable, with height greater than the
standard-cell row height. The generator places Nsc standard cells between macros and
defines nets locally such that the total HPWL of the given placement is no more than
a small, explicitly computed factor (1.00–1.08) above optimal for the final bench-
mark. Connectivity of the constructed netlist is ensured by inserting white space in
such a way that all remaining cells and macros form a spatially connected set in the
placement region.

As described in Figure 2.2 and later, the PEKO-MS generator proceeds in four
stages:

1. Input target statistics; definition of uniform grid G; definition of mapping fG
which snaps a given macro placement Pmac into G.

2. Designation of white-space grid-cells, leaving cells, and macros spatially con-
nected.

3. Construction of the netlist backbone (Figure 2.3), a minimal connected set of
local, near-optimal-HPWL nets connecting all cells and macros.

4. Construction of additional, optimal-HPWL local nets to match target netlist sta-
tistics as closely as possible.

An optional additional stage for the addition of optimal-HPWL nonlocal nets is
described in Sect. 2.4.

Every legal mixed-size placement induces a complicated partition R = Rmac ∪
Rsc ∪Rws of its placement region R into three disconnected subregions: Rmac occu-
pied by macros, Rsc by standard cells, and Rws left as white space. The PEKO-MS
generator preserves a given macro placement Pmac precisely with respect to a fixed
core region R. Let a(S) denote the area of subregion S. Region R is neither shrunk
nor expanded relative to the macros – both a(R) and a(Rmac) are held fixed. Instead,
standard cells are uniformly shrunk or inflated to attain a higher or lower white-
space targets, respectively. With this fixed-outline and fixed-macro-layout strategy,
φmac ≡ a(Rmac)/a(R) is fixed, and it is evident that white space cannot be increased
beyond the space left to it by the macros and standard cells:

φws ≤ 1 − φmac − φmin
sc

where φmin
sc denotes the minimum fraction of R which can be left for standard cells.

The exact value of φmin
sc is determined by storage and run-time considerations, as

described next.
A tight lower bound on the optimal HPWL of each PEKO-MS benchmark is

obtained by mapping the given macro layout Pmac into a uniform rectangular inte-
ger grid G of square cells over which all nets are defined. The mapping is denoted
by fG : Pmac → Rect(2G), where Rect(2G) denotes the set of all contiguous rectan-
gular subsets of grid cells in G. Each macro is identified by the mapping fG with
a distinct rectangular subset of grid cells in G. A nonoverlapping macro placement
ensures that the grid-cell subsets associated with distinct macros are disjoint. Each
center of each grid cell represents a candidate pin location. Pin locations on macros

20 2 Locality and Utilization in Placement Suboptimality

input C := ∅ = set of vertices contained in nets
B := ∅ = set of vertices not yet in C but spatially

adjacent (in G) to at least one vertex in C.
Create a local net e at a random location.
Insert all v ∈ e into C and all G-neighbors of e into B.
while (B is not empty)

Select an as yet unconnected grid cell b ∈ B and a
connected grid cell c ∈ C such that b and c are
adjacent in G. Cell b may be either a standard cell
or a grid cell assigned to the boundary of an as yet
unconnected macro. Cell c may be either a
standard cell or an as yet unconnected grid cell
assigned to the boundary of a connected macro.

Create a net e containing b and c and containing as
many other standard cells as possible, up to the
maximum target net degree remaining in N#.

if (N# [|e|] > 0) then decrement N# [|e|]
else

k := min{ j | j > |e| and N# [j] > 0}.
decrement N# [k] and increment N# [k − |e|],

end if
for (all v ∈ e)

remove v from B and insert it into C.
for (each grid neighbor w of v)

if (w �∈ e and w �∈ C) insert w into B end if
end for

end for
end while
output minimal connected netlist EB covering all v ∈ V

Fig. 2.3. Peko-MS Netlist backbone generator.

are restricted to grid-cells on macro boundaries and kept distinct. I.e., the center of
each grid-cell along any macro’s boundary can serve as a pin for at most one net. For
simplicity, however, all pins on each standard cell are located at the same point at the
center of that cell; i.e., the center of each standard cell may represent several pins for
several different nets.

With all t pins of a given net placed at distinct grid-cell centers, the minimum
HPWL of a t-pin net in such a grid is r +s −2, where r = ⌈√

t
⌉

and s =
t/r�. This
result is easily derived by packing the t square grid cells of the net into a rectangle
of least possible perimeter. However, as shown in Figure 2.4, the optimal HPWL for
a t-pin net may be attained by pin configurations with bounding boxes of different
shapes.

In order to construct a local net of optimal or near optimal HPWL containing a
small subset of rectilinearly connected seed pin locations, rectangles of gradually
increasing sizes containing the seeds are recursively examined. Each such rectangle
is a rectangular subset of grid-cells containing the seed locations and representing

2.3 Peko-MS Benchmark Construction 21

(a) (b)

Fig. 2.4. On a uniform square grid, the optimal HPWLof a 7-pin net (4 grid units) can be
attained by pin configurations with either of the two bounding boxes shown as dashed line
segments.

a bounding box for a candidate net. In addition to the seeds, it may contain white
space, standard cells, or grid-cells on the boundaries or interiors of macros. Of these,
the available pin locations are the centers of the standard cells and the centers of the
grid-cells on macro boundaries which have not yet been used as pins in other nets.
As long as the number of available, rectilinearly connected pin locations in each such
rectangle R is high enough to ensure optimal HPWL of the corresponding net, four
larger rectangles containing R may also be considered. As shown in Figure 2.5, a
rectangle is enlarged by adding to it a row or column of grid-cells along one of its
four edges. Hence, the candidate rectangles for a given set of seeds form a quad-tree,
the rectangles increasing in size along any path from root to leaf. Rectangles are
enlarged until either optimal-HPWL cannot be obtained or the maximum-degree net
remaining in N# can be formed.1

At each seed location, the highest-degree optimal-HPWL net possible is formed,
subject to the constraint that the number of nets of that degree in N# has not yet been
attained in the benchmark. The reason to form high-degree nets first is simply that
they are the most difficult to construct. As pin locations along macros are gradually
taken, high-degree nets become ever harder to construct. As not all high-degree tar-
gets in N# may be attained during the construction, a compromise is made in the
backbone-construction phase. When the degree db of a large backbone net b is no
longer available in N# but a larger target degree dt > db in N# exists (i.e., N#[dt] > 0
for some (net-degree) index dt > db), then (1) net b is retained in the constructed
netlist, (2) the maximum net-degree target remaining in N# is decremented, and (3)
the difference degree target entry N#[dt −db] is incremented. In this way, the total pin
count of the constructed netlist is typically assured of matching the total pin count in
the original benchmark.

As is suggested by the labeling in Figure 2.5, incremental enumeration of dis-
tinct candidate optimal-HPWL bounding boxes amounts to the enumeration of dis-
tinct finite sequences {di }N

1 , where each di ∈ {n, s, e, w} represents the direction of
enlargement at the i th step, and N = 1, 2, . . . is the total number of enlargements
for a given box. Two sequences of the same length N are distinct if and only if the
numbers of occurrences of all the symbols {n, s, e, w} are not the same for both.

1 To reduce search time, rectangles after a certain level in the quad-tree are enlarged in only
one of the most promising directions, i.e., a direction containing the most available pin
locations.

22 2 Locality and Utilization in Placement Suboptimality

?

?

???

(rs)

(rss)
(rnn)

?

?

?

?? (rw)(re)
(rn)

(r)

(rsw)(rse)
(rnw)(rne)(rns)

Fig. 2.5. The first level of local search for the largest optimal-HPWL net containing a given
5-pin seed. After the first level, many duplicate (e.g., rsn) and suboptimal (e.g., ree) cases at
the subsequent levels can be pruned.

E.g., ns and sn are equivalent and lead to the same bounding box containing the
initial seed box, but nse and nsn are distinct. The number of distinct sequences of
length N is the number of ways p4(N) that the integer N can be expressed as the sum
of four non-negative integers; asymptotically, p4(N) grows with order N 3/6.2 How-
ever, sequences for suboptimal bounding boxes (such as ree and rew in Figure 2.5)
and their descendants can be easily avoided.

Ideally, the resolution of grid G should be high enough to capture all macro and
cell dimensions exactly. Our implementation simplifies the definition of fG in two
ways. First, Pmac is represented in floating point; macro positions and dimensions are
expressed as fractions of chip dimensions prior to their conversion to integer grid
units. Macro dimensions are truncated in G as needed to snap macros into the grid.3

Second, each standard cell is represented by just one of the square grid cells of G –
variations in standard-cell width are ignored. These two assumptions significantly
reduce the size of G necessary to accurately represent Pmac. However, the resolution
of G must still be large enough that:
(1) Each macro has nonzero height and width.
(2) The number of grid cells not used for macros is large enough to form both the
requested number of standard cells Nsc and the requested fraction of white space φws.

2.4 Experiments

Four sets of experiments with leading academic placement tools are reported. The
first is on standard-cell PEKO-MC circuits generated from the 2004 FastPlace-IBM
benchmarks. The second is on mixed-size PEKO-MS circuits derived from the ISPD

2 The precise expression is p4(N) = (N 3 + 6N 2 + 11N + 6)/6, which is the coefficient of
x N in the Taylor series for (1 − x)−4 = (1 + x + x2 + x3 + · · ·)4, assuming |x | < 1 [3].

3 A small fraction of the transformed macros in G may be discarded due to error incurred in
the truncation, e.g., macros mapped to zero-width rectangles in G, or one of a pair abutting
macros in Pmac which overlap in G.

2.4 Experiments 23

2005 suite. The third considers the impact of introducing chains of optimal-HPWL
nets into a PEKO-MS benchmark. The fourth examines the suboptimality of legal-
ization and detailed-placement engines in isolation from their global-placement
counterparts on a parametrized adaptation of the PEKO-MS circuits.

2.4.1 Nonlocal Nets (Peko-MC)

All PEKO-MC benchmarks used in our experiments are generated from the Fast-
Place [8] versions of the 2002 IBM/ISPD benchmarks [2]. The white space in these
test cases is approximately 20%. The FastPlace-IBM benchmarks modify the original
IBM benchmarks by replacing macros with standard cells. However, the PEKO-MC
algorithm can also be applied to examples with macros for the generation of mixed-
size circuits with known optimal placements. Although no new pads are explicitly
inserted, most existing pads are connected to several nets each to allow for more
chains.

The PEKO-MC benchmark generator described in Sect. 2.2 requires as input
both a netlist and an initial “seed” placement of that netlist. Dragon 3.01 [25] and
mPL4 [10] were used to seed separate suites of PEKO-MC benchmarks. Using other
placers as seeds was observed to have negligible impact on final results, even when
the placer used to create the seed placements was run on the resulting PEKO-MC
netlists.

The PEKO-MC suite matches the FastPlace-IBM benchmarks exactly in number
of cells, cell areas, number of nets, and net-degree distribution. Roughly 60–70% of
the nets in the original and synthetic benchmarks are identical, and the distributions
of net lengths in the optimal placement of the synthetic benchmarks are nearly iden-
tical to those of their seed placements on the original netlists. Moreover, the cell-
degree distributions of the original and synthetic benchmarks are very similar (the
degree of a cell is the number of nets containing the cell). Almost 80% of the cells in
an PEKO-MC netlist have a cell-degree difference at most 1 from their corresponding
cells in the original netlist. Detailed statistics are shown in Figures 2.6 and 2.7.

Fig. 2.6. The cell-degree difference (in absolute values) distribution between the cells of mPL-
MC01 and their corresponding cells in FastPlace-ibm01.

24 2 Locality and Utilization in Placement Suboptimality

Fig. 2.7. The wire length distribution (relative to the chip half-perimeter) of the nets in
FastPlace-ibm01 (as placed by mPL4) and the nets in mPL-MC01 (in their optimal place-
ments).

1

1.02

1.04

1.06

1.08

1.1

0 50000 100000 150000 200000 250000

Q
ua

lit
y

R
at

io

#cells

APlace2.0
Capo9.5

mPL6

Fig. 2.8. Results of some leading academic tools on MC Circuits seeded by Dragon 3.01
placements of FastPlace-IBM Benchmarks.

Results for programs APlace 2.0 [17], mPL6 [6, 11], and Capo 9.5 [1] on the
Dragon-MC suite are shown in Figure 2.8. Very similar results (not shown) were
obtained for all the tools on the mPL4-MC suite. The overall results show very good
performance by all tools on all the benchmarks, regardless of which tool generates
the initial placement used to seed the benchmark construction. The worst reported
quality ratio by any of the placers on any benchmark is 1.07. We attribute this result

2.4 Experiments 25

Table 2.1. Peko-MS benchmark circuit statistics, with notation.

circuit Nsc Nmac Nnets φmac φ0
ws φmax

ws ρmax
PWS-A1 216180 63 233982 0.43 0.24 0.30 1.01
PWS-A2 264793 159 299358 0.62 0.21 0.29 1.03
PWS-A3 474287 723 531843 0.62 0.25 0.28 1.03
PWS-A4 531245 1329 563521 0.49 0.37 0.38 1.03
PWS-B1 280141 32 301577 0.17 0.46 0.46 1.01
PWS-B2 583514 23084 624625 0.38 0.38 0.40 1.03
PWS-B3 1137839 3778 1265913 0.67 0.14 0.24 1.08
PWS-B4 2237605 8170 2469988 0.38 0.35 0.40 1.03

Nsc average number of standard cells
Nmac number of macros

Nnets average number of nets
φmac macro-area utilization
φ0

ws original benchmark’s white-space fraction
φmax

ws maximum white-space fraction attained by the generator
ρmax maximum ratio of generated HPWL to its lower bound

Averages and maxima are taken over the 4 different white-space values by which each circuit is
parametrized. Standard deviations of Nsc range from 0.5% to 4.2% of Nsc; standard deviations
of Nnets range from 10% to 16% of Nnets .

to the increased range of optimal locations available to modules in multipin nets of
monotone chains.

2.4.2 Parametrized White Space (Peko-MS)

The PEKO-MS approach gives the user control over the layout of the macros. In the
ISPD 2005 benchmarks, all macro locations are prespecified for all circuits anyway,
except bigblue3. For our construction based on bigblue3, we extracted mov-
able macro locations from the placement generated for it by APlace [17] for the ISPD
2005 placement contest [29].

Each PEKO-MS local net’s construction proceeds by depth-limited local search
from a given subset of adjacent grid cells. A small amount of HPWL suboptimality
is tolerated in some nets to simplify the implementation.4 The optimal and attained
HPWLs of the individual nets are simply added up to determine the limit on the total
HPWL suboptimality in the final benchmark. These limits are shown in Table 2.1.
On some circuits, nets e in the source netlist with more than a few hundred pins are
represented by small subsets of high-degree nets whose pin counts sum to |e|.

Quality ratios of mPL6, APlace 2.0, and Capo 9.5 are listed in Table 2.2. The
results show substantial variation both between tools and across different white-space
values.

2.4.3 Suboptimality Under Both Parametrized White Space and Nonlocal Nets

The preceding results separate the impact of white space and mixed-size modules
from that of nonlocal nets. However, the PEKO-MC and PEKO-MS techniques can

4 However, we still refer to the placements as optimal, because the set of modules in each net
is rectilinearly connected and hence supports an optimal routed wire length of the net.

26 2 Locality and Utilization in Placement Suboptimality

Table 2.2. Results for mPL6, APlace 2.0, and Capo 9.5 on Peko-MS-ISPD2005 suboptimality
benchmarks parametrized by white-space fraction. Displayed are quality ratios of total com-
puted HPWL to near-optimal HPWL upper bounds. Results with uniformly distributed white
space are shown for 5%, 10%, 20%, and the maximum possible white space values. For Peko-
MS-adaptec1–4, quality ratios are also shown for benchmarks with optimal zero-white-space
layouts (“pack”) on the left side of the core region and 10% white space on the right. “mem”
denotes an out-of-memory error. Capo 9.5 was run with option-noHMetis on Peko-MS-a3,
Peko-MS-a4, and all four of the packed benchmarks; otherwise, all tools are in default mode
in all cases.

mPL6 APlace 2.0 Capo 9.5
ckt\ ws pack 5% 10% 20% max pack 5% 10% 20% max pack 5% 10% 20% max

PWS-A1 1.80 1.35 1.48 1.70 1.80 1.33 1.50 1.22 1.15 1.54 6.17 3.33 3.14 3.05 2.67
PWS-A2 2.11 1.48 1.48 1.36 1.54 3.46 fail fail 3.65 2.29 8.06 4.01 3.85 3.53 3.12
PWS-A3 4.32 2.14 1.52 1.41 1.33 2.27 1.23 1.14 1.13 1.10 4.10 2.10 1.93 1.53 1.33
PWS-A4 4.39 1.50 1.32 1.51 1.24 1.70 1.29 1.23 1.34 1.44 3.09 2.08 1.92 1.62 1.35
PWS-B1 – 1.30 1.34 1.30 1.24 – 1.44 1.32 1.17 1.33 – 2.50 2.42 2.08 1.77
PWS-B2 – 2.10 2.16 1.64 1.39 – 1.25 1.26 1.58 1.44 – 2.42 2.13 1.83 1.51
PWS-B3 – 1.54 1.62 1.99 2.02 – 2.14 1.59 2.02 2.23 – 2.49 2.10 1.89 1.91
PWS-B4 – 1.51 1.46 1.71 mem – 1.26 1.21 1.16 1.33 – mem mem mem mem

Averages 3.16 1.61 1.55 1.58 1.51 2.19 1.45 1.28 1.65 1.59 5.35 2.70 2.50 2.22 1.96

be combined into a single set of suboptimality benchmarks supporting parametrized
percentages of both nonlocal nets and white space. A combination derived from the
Peko-MS construction (Figure 2.2) was tested on the mixed-size IBM01 benchmark
from the ICCAD2004 test suite [1], as follows. Following the construction of the
Peko-MS netlist backbone (Figure 2.3), monotone chains of nonlocal nets are con-
structed as follows:

1. The set of all boundary pads and candidate pin locations of fixed macros is parti-
tioned by a simple heuristic into pairs of fixed terminals, such that the terminals
in each pair are relatively far apart.

2. For each pair of terminals, designate one terminal in the pair as the start, and
another as the end. A chain of nonlocal nets is iteratively constructed for the pair
of terminals by the following sequence of steps (compare to Figure 2.1):
(a) Randomly select an available pin location in the bounding box of the end ter-

minal and the net corner pin most recently added to the chain. The selected
location is the next net corner pin.

(b) Randomly select additional pins in the resulting bounding box of that new
net-corner pin location and the preceding net-box corner pin to populate the
net.

Net-box corner-pin locations are selected at randomized distances from one
another approximately 1/10 of the width or height of the placement region, until
the end terminal of the chain is reached.

Results of APlace 2.0, Capo 10, and mPL6, all run in default mode, are shown
for the combined PEKO-MSPEKO-MC IBM01 benchmark in Table 2.3, both without
and with nonlocal nets. Macros larger than ten cell rows high were treated as fixed,

2.4 Experiments 27

Table 2.3. HPWL Suboptimality of APlace 2.0, Capo 10, and mPL6, compared on 10% and
40% white-space versions of a PWS circuit derived from the ICCAD 2004 IBM01 mixed-size
benchmark, both without (top) and with (bottom) the addition of optimal-HPWL nonlocal nets.
Approximately 13,15% of the nets in the second set are nonlocal, accounting for 57%, 68% of
total HPWL.

With Local Nets Only
APlace Capo mPL

ibm01-10WS 1.20 1.88 1.31
ibm01-40WS 1.40 1.96 1.27

Averages 1.30 1.92 1.29

With Chains of Optimal-HPWL Non-local Nets
#nln
#nets

W Lnonloc
W Ltotal

APlace Capo mPL
ibm01-10WS 0.15 0.57 1.11 1.49 1.16
ibm01-40WS 0.13 0.68 1.08 1.67 1.10

Averages 1.10 1.58 1.13

their boundaries thus supplying some additional terminal locations. As expected, the
presence of monotone chains of nonlocal nets decreases all placers’ suboptimality
ratios.

2.4.4 Suboptimality of Detailed Placement

Optimal GPs (OGP) parametrized by bin size were generated from the optimal
PEKO-MS placements as follows. Uniform rectangular bin grids of user-specified
dimensions were superimposed. Cells and macros centered in the same bin were
moved to the bin center, where they were placed concentrically. These OGP place-
ments were then used as benchmarks for the DP engines of mPL6 [6, 11] and
APlace2.0 [17]. Each PEKO-MS circuit can generate several different OGP circuits,
one for each bin size. The DP engines were run on a set of these OGP circuits, and the
rate of degradation in their quality with respect to bin size and white-space value was
observed. For each of the different white-space values, the quality ratios obtained by
the DP engines were averaged over the eight different circuits. The result is illus-
trated in Figure 2.9. The benchmarks reveal opposite trends in these engines with
respect to increasing white space. For these test cases, mPL’s performance degrades
as white space increases, while APlace’s improves. APlace’s cell-swapping strategy
may have some advantage on these benchmarks, because the standard cells in these
test cases are all of uniform size and shape. Under higher white space, the size of the
set of candidate swaps is reduced, making successful swaps more likely to be found.
On the other hand, mPL’s local-window-based refinement is apparently a drawback
on the higher-white-space cases, where larger scale moves are apparently needed.

Results on the OGP benchmark derived from the PEKO-MS-adaptec2 bench-
mark with 10% uniformly distributed white space are summarized in Figure 2.10.
Results are shown for two scenarios: one in which all macros are held fixed, and

28 2 Locality and Utilization in Placement Suboptimality

1

1.1

1.2

1.3

1.4

1.5

max20105

Q
ua

lit
y

R
at

io

% of WS

APlace Movable
APlace Fixed
mPL Movable

mPL Fixed

Fig. 2.9. Average quality ratios of APlace2.0-DP and mPL6-DP over the eight different netlists
of OGP DP benchmarks.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

2 3 4 5 6 7 8

Q
ua

lit
y

R
at

io

Bin Size

APlace Movable
APlace Fixed
mPL Movable

mPL Fixed

Fig. 2.10. Suboptimality of APlace2.0-DP and mPL6-DP on the OGP DP benchmarks gener-
ated from Peko-MS-adaptec2 with 10% white space.

hence only standard cells are aggregated into bin centers, and another in which both
kinds of objects are moved from their locations in the known near-optimal place-
ment to the nearest bin center. The results of these experiments show that the quality
of DP deteriorates fairly rapidly as the bin size increases, even for these uniformly
accurate GPs. For bin sizes up to 4 × 4, macro legalization is not a primary source of
suboptimality, but for larger bin sizes, it is.

2.4 Experiments 29

Table 2.4. Estimated suboptimality of mPL6 global (GP) and detailed placement (DP) engines.
The GP estimate is obtained simply by subtracting the observed DP quality ratio obtained on
the 2 × 2 OGP benchmark from the overall quality ratio observed for the corresponding Peko-
MS benchmark.

%WS GP DP Total
5 51% 10% 61%

10 46% 9% 55%
20 39% 17% 56%
40 29% 22% 51%

The OGP benchmarks provide a means of estimating how much of a placer’s sub-
optimality is attributable to its GP, and how much to legalization and DP. Table 2.4
compares the suboptimality observed for mPL on 2 × 2 OGP cases to that observed
for mPL6, including both GP and DP, on the corresponding PEKO-MS source circuits
from which the OGP cases are derived. Subtracting the observed DP suboptimality
on the 2 × 2 OGP benchmark from the total mPL6 GP+DP suboptimality on the cor-
responding PEKO-MS benchmark gives an estimate of the mPL6 GP suboptimality. It
should be noted, however, that these suboptimality values are not truly additive, for
at least two reasons. First, the starting configuration for DP on the OGP benchmark
is very different from the DP starting configuration on the corresponding PEKO-MS
benchmark. Second, relative module positions in a GP below the resolution of the
2 × 2 OGP grid will typically be used as hints during legalization and DP to improve
results.

Figure 2.11 displays line segments between modules’ placed locations and their
optimal locations in a small PEKO-MS testcase (IBM02) constructed with 5% white
space from the ICCAD2004 mixed-size suite [1]. Results for both global and detailed
placements of APlace 2.0 and mPL6 are shown. From these plots, it is clear that
displacement errors are not at all randomly distributed, and, on the contrary, display
large-scale systematic bias. We observe similar trends in displacement plots for other
tools on other Peko-MS circuits and at other white-space fractions. We conclude that,
even when each cell in a GP is very close to (one of) its optimal location(s), further
reduction in the objective can often only be achieved by moving large subsets of cells
simultaneously by small amounts. Iterative, local, window-based refinement will not
remove the systematic error.

2.4.5 HPWL Suboptimality Comparison of Leading Academic Tools
on Peko-MS 2005

Recent (early 2007) versions of the placers entered in the 2006 ISPD Placement
Contest were run on PEKO-MS adaptations of the ISPD 2005 and ISPD 2006 bench-
mark suites. The ratios of attained HPWL to the known near-optimal HPWL on the
2005 PEKO-MS benchmarks at 80% free-space utilization are shown in Table 2.5.
Summary statistics for these benchmarks are shown in Table 2.6. Notational abbre-
viations are summarized in Table 2.7.

30 2 Locality and Utilization in Placement Suboptimality

APlace 2.0 GP APlace 2.0 DP

mPL6 GP mPL6-DP

Fig. 2.11. Individual module displacements from optimal on the Peko-MS-ICCAD04-IBM02
benchmark with 5% white space. Displacements of both global and detailed placements are
shown for APlace (top) and mPL6-DP (bottom). The HPWL quality ratios observed on this
benchmark are 1.45 for APlace and 1.23 for mPL.

There are at least two ways in which these results may be useful in identifying
weaknesses of the tools. First, the PEKO-MS benchmarks tend to amplify the subopti-
mality associated with local nets. Hence, a relatively high-average suboptimality gap
on these test cases by a given tool (e.g., DPlace, mFar) suggests that tool might ben-
efit from enhancements designed to help it better identify such local nets and reduce
their lengths. Second, detailed investigation of a given tool’s computation on a par-
ticular test case where it exhibits a relatively large gap (e.g., Kraftwerk on bigblue2,
APlace on bigblue1, mPL6 on bigblue3) compared to its own results on other test
cases may be useful in improving the tool’s robustness. Such anomalous gaps may
be particularly useful when the circuits on which they are observed have some distin-
guishing features, e.g., the relatively large number of movable macros in bigblue2,
or the relatively low-area-fraction of fixed objects in bigblue1.

2.4 Experiments 31

Table 2.5. HPWL suboptimality ratios of leading academic placers on Peko-MS ISPD 2005
benchmarks. For notation, see Table 2.7.

PEKO-MS-05 (80% free-space utilization) suboptimality ratios
Circuit DPlace Kraft Capo APlace FastP Mfar NTUPlace3 mPL6 Dragon Averages

adaptec1 1.47 1.19 1.50 1.13 1.58 2.44 1.30 1.27 2.63 1.61
adaptec2 1.62 1.17 1.61 1.12 1.61 2.61 1.61 1.32 3.07 1.75
adaptec3 1.77 1.21 1.60 1.13 1.79 2.50 1.58 1.43 2.95 1.77
adaptec4 1.73 1.23 1.47 1.13 1.71 2.21 1.37 1.29 2.21 1.59
bigblue1 1.52 1.22 1.42 1.31 1.63 2.67 1.24 1.21 2.74 1.66
bigblue2 1.61 1.45 1.57 1.29 1.65 – 1.34 1.34 4.75 1.87
bigblue3 2.49 1.27 2.01 1.19 1.84 3.04 3.01 1.56 6.73 2.57
bigblue4 2.20 1.29 1.48 1.29 2.00 3.61 1.39 1.31 3.03 1.96
Averages 1.80 1.25 1.58 1.20 1.73 2.72 1.60 1.34 3.51 1.85

Table 2.6. Peko-MS ISPD 2005 benchmarks statistics. For notation, see Table 2.7.

PEKO-MS-ISPD2005 statistics (80% free-space utilization)
Circuit #obj #mac a(mac) a(fix) #term # net # pin #pad util HPWL

adaptec1 211977 63 0.431 0.430 542 243402 939918 480 0.80 20056216
adaptec2 261153 159 0.615 0.613 543 290584 1061117 407 0.80 24969764
adaptec3 466560 723 0.615 0.615 723 515720 1864504 0 0.80 40954784
adaptec4 511448 1129 0.486 0.486 1329 558781 1903080 0 0.80 39391712
bigblue1 273708 32 0.172 0.172 559 307892 1136899 528 0.80 20858240
bigblue2 578938 22984 0.384 0.346 3313 634210 2117165 0 0.80 42256768
bigblue3 1122682 3778 0.680 0.668 675 1207133 3791237 0 0.80 94399040
bigblue4 2244173 8169 0.376 0.358 664 2494307 8792369 0 0.80 171477120

2.4.6 Suboptimality of Routability-Aware Placement

The Peko-MS algorithm was adapted to model the 2006 ISPD placement-contest
scaled-HPWL objective, excluding run time, as follows. The scaled HPWL objective
is computed as HPWL × (1 + 0.01 × σ), where σ is the “scaled overflow factor,”
defined by summation of bin-overflow penalties over each bin in a uniform grid
consisting of square bins ten standard-cell rows high. We refer to this uniform grid
as the “utilization evaluation grid.” The utilization penalty for a given bin B is [20],
⎛

⎝
∑

{modules m}
area of m overlapping with B

⎞

⎠− utilization target × free area(B),

where the free area in B is simply the total area in B not occupied by fixed
objects. Although this measure may vary somewhat with the size and position of
the utilization-evaluation grid relative to fixed objects, it does test a placer’s ability
to target area congestion in a specified subregion.

The PEKO-MS generator of Figure 2.2 in Sect. 2.3 was adapted to target user-
specified bin utilizations simply by iterating its random white-space insertion sep-
arately over all bins in the utilization-evaluation grid, terminating when either the

32 2 Locality and Utilization in Placement Suboptimality

Table 2.7. Notation for column labels in this section.

Notation
#obj number of objects, movable and fixed
#mac number of macros, i.e., objects of height greater than 1 row
a(mac) fraction of core area occupied by macros, movable, or fixed
a(fix) fraction of core area occupied by fixed objects
#term number of fixed terminals
net number of nets
pin number of pins
#pad number of perimeter I/O objects
util target utilization in the part of core not occupied by fixed objects
HPWL total HPWL of the given near-optimal placement
Hratio ratio of attained HPWL to near-optimal HPWL
SOV/bin average scaled overflow per bin
SHPWL HPWL, scaled by 1 + 0.01×SOV/bin
Sratio ratio of attained SHPWL to near-optimal SHPWL

Table 2.8. Peko-MS ISPD 2006 benchmarks statistics. For notation, see Table 2.7.

PEKO-MS-06 statistics
Circuit # objs # macs a(mac) a(fix) #term # nets # pins

adaptec5 872276 646 0.572 0.572 646 1029763 3394072
newblue1 385625 64 0.379 0.000 337 334324 1237412
newblue2 461252 5000 0.652 0.636 1171 463382 1772264
newblue3 511413 8756 0.792 0.792 8845 559874 1940730
newblue4 671548 3422 0.359 0.359 3422 711993 2418450
newblue5 1282550 4881 0.495 0.495 4881 1520814 4805020
newblue6 1318990 6505 0.334 0.334 6505 1301252 5305156
newblue7 2641754 25065 0.535 0.535 25065 2651867 10098844

Circuit #pads util (%) hpwl sov/bin shpwl
adaptec5 0 50 81893792 9.99 9.01E+07

newblue1 337 80 20500032 1.73 2.09E+07
newblue2 0 90 32869280 10.29 3.63E+07
newblue3 0 80 73514272 9.55 8.05E+07
newblue4 0 50 49143584 9.26 5.37E+07
newblue5 0 50 102083104 9.58 1.12E+08
newblue6 0 80 90657856 8.36 9.82E+07
newblue7 0 80 206175072 7.07 2.21E+08

utilization target is reached or when a given limit on BFS iterations (from 200 to
800) is reached. Complex fixed-macro geometries often make the precise target dif-
ficult for this simple approach to attain; hence, the final bin-utilization Peko-MS
benchmarks have a low but nonzero and hence suboptimal level of overflow in most
evaluation bins. Characteristics of these benchmarks are described in Table 2.8.

2.4 Experiments 33

Table 2.9. HPWL and SHPWL suboptimality ratios of leading academic placers on Peko-MS
ISPD-2006 benchmarks. For notation, see Table 2.7.

PEKO-MS-06 suboptimality ratios
DPlace Kraftwerk Capo

Circuit Hratio SOV/bin Sratio Hratio SOV/bin Sratio Hratio SOV/bin Sratio
adaptec5 2.53 369.8 10.80 1.17 36.37 1.45 1.58 4.97 1.51

newblue1 2.42 116.1 5.14 1.49 11.6 1.63 2.75 1.53 2.74
newblue2 2.18 124.2 4.42 1.29 50.87 1.76 2.77 1.17 2.54
newblue3 2.19 141.8 4.82 1.10 53.27 1.55 1.65 1.72 1.53
newblue4 2.22 282.5 7.77 1.23 36.26 1.54 1.61 6.43 1.57
newblue5 2.96 360.7 12.45 1.37 66.94 2.09 1.64 6.33 1.60
newblue6 2.28 168.5 5.66 1.23 51.88 1.72 2.15 2.3 2.03
newblue7 3.70 261.0 12.48 1.25 46.07 1.71 2.04 2.11 1.94
Averages 2.56 228.1 7.94 1.27 44.16 1.68 2.02 3.32 1.93

APlace FastPlace MFar
Circuit Hratio SOV/bin Sratio Hratio SOV/bin Sratio Hratio SOV/bin Sratio

adaptec5 1.13 117.2 2.23 2.09 100.3 3.80 3.30 213.1 9.40
newblue1 1.35 89.7 2.51 2.18 13.3 2.43 5.98 39.1 8.18
newblue2 1.43 162.5 3.41 1.61 45.4 2.12 3.72 186.8 9.66
newblue3 1.20 132.6 2.55 1.11 81.3 1.84 2.15 162.8 5.15
newblue4 1.12 75.1 1.80 1.54 98.5 2.80 3.08 219.2 9.00
newblue5 2.61 217.6 7.55 2.05 84.8 3.46 3.16 207.7 8.87
newblue6 1.15 48.4 1.57 1.39 45.6 1.87 2.98 176.5 7.59
newblue7 1.31 119.8 2.68 1.32 45.1 1.79 2.74 177.1 7.10
Averages 1.41 120.34 3.04 1.66 64.28 2.51 3.39 172.78 8.12

NTUPlace3 mPL6 Dragon
Circuit Hratio SOV/bin Sratio Hratio SOV/bin Sratio Hratio SOV/bin Sratio

adaptec5 1.31 7.4 1.28 1.35 17.7 1.44 2.96 0.29 2.69
newblue1 1.26 14.2 1.42 1.50 11.5 1.65 3.11 0.01 3.06
newblue2 1.45 2.6 1.35 1.35 31.5 1.61 4.20 0.13 3.81
newblue3 1.28 5.3 1.23 1.36 20.6 1.50 3.49 0.14 3.19
newblue4 1.26 3.3 1.19 1.37 15.8 1.45 2.64 0.29 2.43
newblue5 1.29 4.7 1.23 1.29 17.0 1.38 2.94 0.30 2.69
newblue6 1.23 2.0 1.16 1.40 18.0 1.53 2.80 0.17 2.59
newblue7 1.36 8.3 1.38 1.54 26.7 1.83 3.76 0.11 3.52
Averages 1.30 6.0 1.28 1.40 19.8 1.55 3.24 0.18 3.00***

Results of the most recent available implementations of the placers entered in
the ISPD 2006 Placement Contest on the 2006 PEKO-MS test cases are shown in
Table 2.9; median results over all the placers are listed in Table 2.10. Overall, the
high-scaled HPWL suboptimality values obtained by most tools on most of the these
benchmarks reveals considerable room for improvement of these tools in the pres-
ence of congestion metrics. As with the other PEKO-MS benchmarks, the utility of
the 2006 PEKO-MS test cases lies primarily in helping to identify particular test
cases where investigation of a given tool’s performance may reveal weaknesses.

34 2 Locality and Utilization in Placement Suboptimality

Table 2.10. Median HPWL and SHPWL suboptimality ratios of all leading academic placers
listed in Table 2.9 on Peko-MS ISPD-2006 benchmarks. For notation see Table 2.7.

Median PEKO-MS-06 Suboptimality Ratios
Circuit Hratio SOV/bin Sratio

adaptec5 1.58 36.37 2.23
newblue1 2.18 13.27 2.51
newblue2 1.61 45.40 2.54
newblue3 1.36 53.27 1.84
newblue4 1.54 36.26 1.80
newblue5 2.05 66.94 2.69
newblue6 1.40 45.61 1.87
newblue7 1.54 45.06 1.94
Medians 1.56 45.23 2.08

E.g., consider (1) Capo on newblue1 and newblue2, and (2) APlace, DPlace, and
FastPlace on newblue5, etc. While such hints might also be obtained simply by com-
paring to results of several tools on the original ISPD 2006 benchmarks, use of the
PEKO-MS test cases may reduce the time needed to identify deficiencies by providing
an absolute measure of suboptimality. In particular, the PEKO-MS test cases facilitate
analysis of the trade-off between routability optimization and HPWL optimization
without the need for comparisons to results of other tools. E.g., on the PEKO-MS
test cases, results suggest that the superior area-congestion reduction of Capo and
Dragon comes at a significant cost in increased HPWL. APlace, on the other hand,
typically attains excellent HPWL reduction but relatively high-bin-overflow values;
this result suggest that its placements may sometimes be difficult to route.

2.5 Conclusions

Two new sets of synthetic benchmark circuits with known optimal-HPWL or near-
optimal-HPWL placements have been presented. The PEKO-MC set quantifies the role
of nonlocal nets in suboptimality; the PEKO-MS set quantifies the role of white space
and modules of mixed size. Experiments with leading academic placement tools sup-
port four main conclusions. First, as shown in Table 2.2, different tools produce
widely varying results on some of the mixed-size PEKO-MS benchmarks. Hence,
these benchmarks can be used to identify deficiencies in tools producing relative
poor results. Second, the presence of netwise-disjoint chains of nets linking pairs
of numerous, well distributed, fixed terminals appears to make wire length-driven
placement by contemporary methods considerably less difficult. Circuits designed
to ensure the existence of monotone paths for all signals [23, 24, 26, 27] might rea-
sonably be expected to have wire lengths far closer to optimal than what leading
placement tools are able to achieve on other circuits. Third, the accumulation of
small but systematic errors in the placement of local nets appears to be a greater
source of suboptimality than the total error in identifying and placing nonlocal nets.

References 35

The corrective action needed to further reduce that suboptimality, whether taken
during global placement, legalization, or detailed placement, must consider simul-
taneous motion of large subsets of objects in order to be effective. Restriction to
subsets localized in an arbitrary way is, in general, insufficient to improve on exist-
ing results. Fourth, the high-scaled HPWL suboptimality values obtained by most
tools on most of the bin-utilization-controlled PEKO-MS benchmarks suggest that
considerable room for improvement of these tools remains, particularly on large
complex test cases, and particularly when bin-area congestion is factored into the
quality evaluation.

2.6 Acknowledgments

Financial support for this work was provided by Semiconductor Research Con-
sortium Contract 2003-TJ-1091 and National Science Foundation Contracts CCF
0430077 and CCF-0528583. The authors thank Editor Gi-Joon Nam for his assis-
tance with final preparation of the PEKO-MS benchmarks and collection of placement
results.

References

1. S.N. Adya, S. Chaturvedi, J.A. Roy, D.A. Papa, and I.L. Markov. Unification of parti-
tioning, placement and floorplanning. In Proc. Int. Conf. on Comp.-Aided Design, pages
12–17, 2004

2. C.J. Alpert. The ISPD98 circuit benchmark suite. In Proc. Int. Symp. on Phys. Design,
pages 80–85, 1998

3. G. Andrews and K. Eriksson. Integer Partitions. Cambridge University Press, 2004
4. U. Brenner, A. Pauli, and J. Vygen. Almost optimum placement legalization by mini-

mum cost flow and dynamic programming. In Proc. Int. Symp. on Phys. Design, pages
2–8, 2004

5. U. Brenner and M. Struzyna. Faster and better global placement by a new transportation
algorithm. In Proc. Design Automation Conf., pages 591–596, 2005

6. T.F. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for circuit
placement. In Proc. Int. Symp. on Phys. Design, pages 185–192, 2005

7. C. Chang, J. Cong, M. Romesis, and M. Xie. Optimality and scalability study of existing
placement algorithms. IEEE Trans. on Comp.-Aided Design of Integrated Circuits and
Sys., pages 537–549, 2004

8. C. Chu and N. Viswanathan. FastPlace: Efficient analytical placement using cell shifting,
iterative local refinement, and a hybrid net model. In Proc. Int. Symp. on Phys. Design,
pages 26–33, April 2004

9. J. Cong, M. Romesis, and M. Xie. Optimality, scalability and stability study of
partitioning and placement algorithms. In Proc. Int. Symp. on Phys. Design, pages
88–94, 2003

10. J. Cong, J.R. Shinnerl, M. Xie, T. Kong, and X. Yuan. Large-scale circuit placement.
ACM Trans. on Design Automation of Electronic Systems, 10(2):389–430, 2005

36 2 Locality and Utilization in Placement Suboptimality

11. J. Cong and M. Xie. A robust detailed placement for mixed-size IC designs. In Proc. Asia
South Pacific Design Automation Conf., pages 188–194, 2006

12. K. Doll, F.M. Johannes, and K.J. Antreich. Iterative placement improvement by network
flow methods. IEEE Trans. on Computer-Aided Design, 13(10), October 1994

13. R. Goering. Placement tools criticized for hampering IC designs. EE Times, February 5,
2003 http://www.eedesign.com/story/OEG20030205S0014

14. L.W. Hagen, D.J.-H. Huang, and A.B. Kahng. Quantified suboptimality of VLSI layout
heuristics. In Proc. Design Automation Conf., pages 216–221, 1995

15. C.-S. Hwang and M. Pedram. PMP: Performance-driven multilevel partitioning by aggre-
gating the preferred signal directions of i/o conduits. In Proc. Asia South Pacific Design
Automation Conf., pages 428–431, January 2005

16. A.B. Kahng and S. Reda. Evaluation of placer suboptimality via zero-change netlist
transformations. In Proc. Int. Symp. on Phys. Design, pages 208–215, April 2005

17. A.B. Kahng, S. Reda, and Q. Wang. Architecture and details of a high quality, large-scale
analytical placer. In Proc. Int. Conf. on Comp.-Aided Design, November 2005

18. A.B. Kahng, P. Tucker, and A. Zelikovsky. Optimization of linear placements for wire-
length minimization with free sites. In Proc. Asia South Pacific Design Automation Conf.,
pages 241–244, 1999

19. Q. Liu and M. Marek-Sadowska. A study of netlist structure and placement efficiency.
In Proc. Int. Symp. on Phys. Design, pages 198–203, 2004

20. G.-J. Nam. The ISPD2006 placement contest and benchmark suite, April 2006
http://www.sigda.org/ispd2006/papers/7-3.pdf

21. G.-J. Nam, C.J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz. The ISPD2005 placement
contest and benchmark suite. In Proc. Int. Symp. on Phys. Design, pages 216–220, April
2005

22. S. Ono and P.H. Madden. On structure and suboptimality in placement. In Proc. Asia
South Pacific Design Automation Conf., January 2005

23. R. Otten, and R. Brayton. Planning for performance. In Proc. Design Automation Conf.,
pages 122–127, 1998

24. S. Ramji, and N. Dhanwada. Design topology aware physical metrics for placement
analysis. In Proc. Great Lakes Symposium on VLSI, pages 186–191, 2003

25. M. Sarrafzadeh, M. Wang, and X. Yang. Modern Placement Techiques. Kluwer, Boston,
2002

26. W. Gosti, A. Narayan, R. Brayton, and A. Sangiovanni-Vincentelli. Wireplanning in logic
synthesis. In Proc. Int. Conf. on Computer-Aided Design, pages 26–33, 1998

27. W. Gosti, S. Khatri, and A. Sangiovanni-Vincentelli. Addressing the timing closure prob-
lem by integrating logic optimization and placement. In Proc. Int. Conf. on Computer-
Aided Design, pages 224–231, 2001

28. Q. Wang, D. Jariwala, and J. Lillis. A study of tighter lower bounds in LP relaxation
based placement. In ACM Great Lakes Symp. on VLSI, pages 498–502, 2005

29. http://www.sigda.org/ispd2005/contest.htm.

Part II

Flat Placement Techniques

3

DPlace: Anchor Cell-Based Quadratic Placement
with Linear Objective

Tao Luo and David Z. Pan
The University of Texas at Austin
{tluo, dpan}@ece.utexas.edu

3.1 Introduction

Although circuit placement has been studied for decades, it continuously attracts
research attentions. The placement problems grow rapidly in both problem size
and complexity. Some industry placement problems contain multimillion gates and
excessive number of blockages [1,2]. In this chapter, we introduce DPlace, an anchor
cell and diffusion spreading-based quadratic placement engine that can handle large-
scale placement problem.

Historically, existing circuit placement algorithms can be roughly classified into
three major categories, i.e., simulated annealing [3], iterative partitioning-based
approach [4–6], and analytical placement approach [7–14].

Among existing placement works, analytical placement has been successful in
recent years and achieved impressive results on wire length, scalability, and the speed
of convergence. A typical analytical placement formulates the wire length optimiza-
tion into a mathematical problem, and minimizes a smooth, continuous, and deriv-
able wire length formulation. According to the reported results of ISPD 2005 and
2006 placement contest [2,15], most of the top ranked placers are analytical placers.

In placement, the Half-Perimeter Wire Length (HPWL) is a common estimation
of the routed wire length. Since HPWL model is not smooth and derivable, quadratic
placement optimizes the quadratic form of HPWL [7–12, 14], and nonlinear model
placement [13, 16, 17] adopts a nonlinear estimation of HPWL model, such as the
log–sum–exponential wire length approximation patented by Naylor et al. [18].

Three placers in the ISPD 2006 placement contest using the log–sum–
exponential wire model have achieved impressive wire length results. It is agreed
that placement uses log–sum–exponential wire model approximates the HPWL
much closer than the quadratic estimation. However, although still controversial,
some researchers believe that the quadratic placement potentially has advantages for
timing driven placement, as the quadratic approximation of the HPWL gives larger
penalty on longer wires.

Most of analytical placements are force directed placement. The initial placement
solution generated in force directed placement has excessive overlap among cells. To
push cells away from congestion, in subsequent iterations, force directed placer adds

40 3 DPlace: Anchor Cell-Based Quadratic Placement with Linear Objective

“spreading force” or density constraints into the original wire length formulation.
In force directed quadratic placement, the density constraints are combined into the
optimization objective either by adding the spreading forces as constant force terms
or by adding fixed points to implement the spreading forces.

We present a new quadratic placement, DPlace, that does not explicitly add
“force” or apply density constraint into the original wire length optimization frame-
work [19]. Different from traditional force directed quadratic placement, we divide
the wire length minimization and density control tasks in two steps. A concept of
anchor cell is presented to split the overlap reduction and wire length optimization
objectives into two problems. DPlace is based on, but not limited to, quadratic place-
ment, and the new framework is applicable for other analytical placements. In brief,
during every iteration in DPlace, we have two steps:

1. A preplacement step to spread cells for better density distribution. The wire
length minimization are not explicitly considered in the preplacement step.

2. An unconstrained wire length minimization step to repair the wire length. In this
step, anchor cells are inserted as the reference of the preplacement result and as
the basis of the new wire length optimization formulation.

In traditional force directed placement, spreading forces are used to estimate
where to push cells. There is no explicit control of the cell movements and a cell
may be pushed to any placement region. However, explicit cell movement control is
important to cope with some challenging placement tasks, such as the ECO place-
ment and timing-driven placement. It is possible to control the cell movement in
DPlace by specifying the cell movement explicitly in the preplacement stage. The
following are a few characteristics of our approach, which differentiates DPlace from
other analytical placement works.

• We propose a global placement framework that uses anchor cells to split a tra-
ditional placement/spreading iteration into two steps, the preplacement step to
reduce the cell overlaping, and the unconstrained wire length minimization step
to reduce the wire length.

• In order to reduce the gap between the quadratic wire length vs. linear wire length
objective, we introduce a net weight linearization strategy that transforms the star
model-based quadratic objective into HPWL objective exactly.

• The framework we propose in DPlace can be used for both the global placement
and ECO placement. The preplacement step can be extended to control the cell
movements explicitly, e.g, we can specify a certain group of cells be moved to a
certain position of the chip. This capability has the advantage for ECO placement
where the placement stability is crucial.

• Our quadratic formulation is efficient for large-scale placement. The Hessian
matrix in our quadratic formulation has much lower dimension as well as
extremely low density. The runtime to solve one iteration of the system of linear
equations is improved by 24 times in our formulation.

In the following, we introduce the preliminaries and current status of the force
directed quadratic placement in Sect. 3.2. The details of our global placement are

3.2 Preliminaries and the Motivation 41

described in Sect. 3.3. The legalization and detailed placement are presented in
Sect. 3.4. We give the overall algorithm of DPlace in Sect. 3.5 and show the experi-
mental results in Sect. 3.6. Finally, the conclusion is presented in Sect. 3.7.

3.2 Preliminaries and the Motivation

To motivate our proposed approach, Sect. 3.2.1 gives an overview of the force-
directed quadratic placement and the analysis of the essential concept in some of
the existing force directed quadratic placement approaches.

3.2.1 Quadratic Placement

In circuit placement, a netlist is normally modeled as a hypergraph with each node
representing an object/cell and each edge representing a net. Let xi and yi denote the
coordinates of each cell, HPWL is used as an estimation of the routed wire length.
Because the equation of HPWL is difficult to optimize mathematically, quadratic
placement minimizes the square of the length and width of the bounding box of a
net, commonly referred as the quadratic wire length.

As multipin nets can not be processed in quadratic placement, each multipin net
is transformed into multiple two pin connections with proper weights. Traditionally,
clique model is used for multipin net transformation and one k-pin net will be trans-
formed into C2

k connections in clique model. For the 4-pin nets in Figure 3.1(a), the
clique model transformation is shown in Figure 3.1(b). The disadvantage of clique
model is that it may increase the number of nonzero entries in the connectivity matrix
significantly, as the example in Figure 3.6, which slows down the quadratic solver.
Another type of transformation is the star model [11,20]. One k-pin net will be trans-
formed into k connections in star model, as shown in Figure 3.1(c). The combination
of the clique and star transformation is also referred as the hybrid model [11].

X1

P1

1.0

1.0

1.0

1.0

1.0

P3 P4

P2

X2

X4X3

(a) A circuit with 5 nets, 4
cells, and 4 fixed pins, one
of the nets is a 4-pin net

X1 X2

P1 P2

P3 P4

X4X3

(b) Clique model transfor-
mation

X1 X2

P1

S

P2

P4P3

X3 X4

(c) Star model transforma-
tion

Fig. 3.1. Transformations of the multipin net into multiple two-pin nets. Only the x coordinates
are showed in these figures.

42 3 DPlace: Anchor Cell-Based Quadratic Placement with Linear Objective

0 1 4 7-1 11

X11.0 1.0
P0

3
−23

9
0

= =
−2

x1 = 3.6, x2 = 5.4

p3

p0
x2

x1
P3X22.0

2 3 5 6 8 9

Fig. 3.2. The quadratic placement formulation of a simple circuit in the x direction. p0 and p3
are the x coordinate of the fixed pins.

For a two pin net ei, j that connects cell i and j , the quadratic wire length is
defined as wi, j ((xi −x j)

2+(yi −y j)
2), where wi, j denotes the weight of net ei, j . The

quadratic placement minimizes the sum of all quadratic wire lengths in the circuit.
The optimization problems in x and y direction are separable and can be treated
independently. Therefore, the cost function in x direction is given by

�(x) = 1
2

xTAx − bTx + const. (3.1)

Assume there are n movable objects in the netlist. Let A denote the Hessian
matrix of the quadratic system, which is essentially the n x n connectivity matrix of
the netlist. A is symmetric and positive definite. x denotes the vector of x coordinates
of all cells. b is the vector encoding all connectivity information between movable
and fixed objects, and the pin offsets are captured in b as well. The minimizer of the
cost function (3.1) can be obtained by taking the gradient of the cost function to zero,
∂(�(x))/∂x = 0, which is determined by the following system of linear equations

Ax = b. (3.2)

Figure 3.2 shows a simple circuit with 2 movable cells and two fixed pins. The
number associated with each net is the net weight. Cell 1 and 2 are in the force equi-
librium status in Figure 3.2, i.e., the sum of the weighted wire length is the minimum.

3.2.2 Force-Directed Quadratic Placement

Solving the unconstrained minimization problem in (3.1) results in a placement with
significant overlap among cells. A placer needs to push cells around to remove over-
lap. Some placers recursively partition the placement region to spread cells, such as
Gordian [7]. The force-directed placers add spreading forces into the system in each
solving process and reduce the overlap iteratively. Figure 3.3 shows that cell 1 and
2 are too close to each other, a force directed placer adds forces to push cells away
from the center.

To apply spreading forces into the optimization framework, there are mainly two
types of strategy to implement the force, the constant f orce addition and the
f i xed point addition approach. In each placement iteration, Kraftwork [8] and
FDP [12] add a constant force vector f to the right-hand side of (3.2). The fixed point-
based approach adds artificial pins and nets to move cells. mFar [9] uses multiple
fixed virtual pins for each cell in every iteration, one is used to maintain a cell’s force

3.2 Preliminaries and the Motivation 43

0 92 3 4 5 6 7-1 11

X1 X21.0 2.0 1.0
P0

f1 = -2 f2 = 2

1 8

P3

Fig. 3.3. Force directed placement: adding forces to push cells out of the region with conges-
tion.

0 91 2 3 4 5 6 7 8-1 11

X1 X2
P0 P3

12-2

1.0 1.02.0 3
−23

11
−2

= =
−2

x1 = 3.2, x2 = 5.8

p3 + f2

p0 + f1
x2

x1

Fig. 3.4. Adding the constant force on a cell is equivalent to shifting its connected objects.

equilibrium state, and others are applied to perturb the cell. FastPlace [11] uses one
fixed virtual pin for both purposes.

Constant Forces

In every iteration, the force for each cell is computed to reduce the overlap. In con-
stant force-based approach, the force vector f is added to vector b in (3.2). The solu-
tion of the modified quadratic system generates a placement with less overlap among
cells. In the i th iteration, the force vectors used in 1 to (i − 1)th iterations are accu-
mulated to prevent cells collapsing back. The modified equation with constant forces
is given by

Ax = b +
i−1∑

k=1

fk + fi (3.3)

In constant force-based approach, the Hessian (connectivity matrix) is not
changed in each iteration unless the net reweighting is involved. In such case,
the Hessian A only needs to be preconditioned once in the beginning, which will
save runtime as the matrix preconditioning is runtime expensive.

The physical meaning of adding a spreading force to one cell is equivalent to
shifting its connected pins and cells. To add the spreading force in Figure 3.3, a force
vector is added into constant vector b in (3.2). To add a force vector is equivalent to
shifting the connected objects of each cell, as shown in Figure 3.4. Pins are shifted
outside of the chip, and cells may “jump” out the chip region if the magnitude and
direction of the spreading forces are not properly adjusted. This tends to happen
in the earlier placement iterations, where spreading forces are large and the force
directions are not evenly distributed. Although such a scenario is not obvious in
ISPD 2005 and 2006 benchmarks, where the initial density distributions are more
even due to a large amount of fixed macros, the force scaling is tricky for placement
with no fixed macros, such as the ISPD02 benchmarks [21].

44 3 DPlace: Anchor Cell-Based Quadratic Placement with Linear Objective

=
− 2

− 2

3 + w2

3 + w1

p3+ w2v2

p0+ w1v1

x2

x1

0 3 91 4 7

1.0 2.0 1.0

V1 V2
W1 W2

X1 X2P0 P3

2 65 8

Fig. 3.5. An example of the fixed point addition formulation, p0, p3, v1, and v2 are the x
coordinate of the fixed real and virtual pins, respectively.

Because the connectivity matrix is not strictly diagonal dominant, and often ill-
conditioned, the solver of the linear system may have stability problem [12], i.e., cells
may jump around when large forces are added. FDP adds a small weight to a portion
of the diagonal terms of the Hessian and the new Kraftwerk [22] adds weight to all
diagonal terms. Such a strategy is equivalent to adding a virtual fixed pin and net to
a cell, as shown in Figure 3.5, which affects the quadratic objective and improves the
stability of the quadratic solver.

Fixed Point Forces

In fixed point methods, the fixed points and nets are added to the original system
of linear equations to perturb the placement. In fixed point-based methods, adding a
virtual fixed point connection to a cell will add a diagonal term in the corresponding
entry of the cell in the Hessian matrix A and the term in the constant vector b. In
Figure 3.5, to add force to each cell, a virtual pin and connection are added to each
cell with proper weight, and we can see the change in the Hessian and the constant
vector in the figure. Therefore, adding a cell will make the corresponding row and
column strictly diagonal dominant in Hessian A, and improve the condition number
of the matrix. As a result, the fixed point addition-based method tends to be more
stable.

The fixed point addition method guarantees cells moving inside the convex hull
defined by the fixed points. If a large weight is used for the virtual nets, cells have
less mobility and tend to move steadily toward force directions. However, the added
large virtual net weights may dominate the actual net connections and affect the
optimization objective. On the contrary, if using very small virtual net weights, fixed
points will be off chip and cells may start to jump out of the boundary. In other words,
the fixed point placement starts to behave similar as the constant force addition-based
method. Furthermore, in fixed point-based approach, the connectivity weights will be
updated in every iteration and the matrix needs to be preconditioned in every solving
iteration.

3.2.3 The Proposed Approach

DPlace does not fall into the above categories. In each iteration in DPlace, the cell
anchoring divides the constrained wire length minimization problem into two steps,

3.3 Global Placement in DPlace 45

the overlap reduction preplacement step and the unconstrained wire length minimiza-
tion step. There is no “force” added to the quadratic system in DPlace, and there is
no need to control the magnitude of forces, which is a nontrivial part in conventional
force directed placements. As a result, no solver stability issue exists in DPlace.

Any smooth cell spreading techniques can be used for the density optimization
preplacement step. We use the diffusion cell spreading [23] for preplacement step.
Anchor cells are used to mark the preplacement result. We use the nets connecting
anchor cells and real cells to formulate an unconstrained wire length minimization
problem.

If a netlist is changed, without explicit cell movement control, the placement
solutions before and after the changes could be completely different. In our approach,
the explicit cell movement control can be naturally applied in preplacement step,
which potentially provides flexibility for ECO placement. Furthermore, the fast
growing of the problem sizes is a challenge to existing quadratic solvers. Our
approach scales well to the problem size. The anchor cells used in quadratic frame-
work significantly reduces the complexity of the problem.

3.3 Global Placement in DPlace

The global placement in DPlace is guided by a density driven preplacement method.
We use the diffusion-based cell spreading technique [23] for the spreading smooth-
ness.

3.3.1 Diffusion Preplacement

The global placement is guided by a diffusion-based cell spreading technique. Dif-
fusion is the flow of particles from a region of highly concentration to a region with
lower concentration, until the concentration on both regions is equal. The cell spread-
ing in placement shares similar philosophy as the natural diffusion process, where
cells are driven from high-density areas to low-density areas. Diffusion in place-
ment is driven by the density gradient, i.e., the steepness of the density difference.
Mathematically, the diffusion process is characterized by the following differential
equation.

∂dx,y(t)
∂t

= D∇2dx,y(t). (3.4)

In the context of placement, dx,y(t) is the cell density at position (x, y) at time t .
D is the diffusivity constant, which determines the speed of the diffusion process.
The discrete approximation method in [23] can be used to solve the diffusion equa-
tion.

In diffusion-based preplacement, the placement region is cut into equal size bins.
The bin density is computed as the total cell area enclosed in the bin divided the
bin area. The discrete solver we use to solve the diffusion equation evens out the
densities between neighboring bins as time proceeds.

46 3 DPlace: Anchor Cell-Based Quadratic Placement with Linear Objective

In every global placement iteration of DPlace, cells are prediffused from high-
density area to low-density area. The diffusion-based preplacement takes k sub-
steps, where k is relatively small in earlier placement iterations and becomes larger
in the later iterations. The cells will not be moved until we placed and locked all
anchor cells.

3.3.2 Anchor Cells

Once a preplacement result is generated, we need to “memorize” the preplacement
solution, in which cells have been spread out. Since the preplacement solution is
often poor on wire length, we need to use the quadratic placement formulation to
repair the wire length. To prevent cells collapsing back to the initial placement,
we can fix a small percentage of cells in preplacement, and let the quadratic solver
rearrange other cells. Another way is that we use virtual cells to mark the preplace-
ment solution and replace some nets with virtual nets connecting the virtual cells
and real cells. By updating the virtual connections into the wire length optimization
objective and solving the unconstrained wire length minimization problem, cells will
be “pulled” toward their anchors due to the wire tensions. In above scenarios, the
fixed real or virtual cells are used as anchors to control the movement of real cells,
and we name them “anchor cells.”

We do not need to use one anchor per cell, which may over-restrict the move-
ments of real cells. Instead, we can use one anchor for several cells, which gives
more freedom for cells to move during the wire length optimization. We use star
model to transform a portion of multipin nets into two-pin connections and use the
star as the anchor of real cells. Compared with the method to use one anchor per cell,
using stars as anchors will have much less impact to the original wire objective and
imposes less constraint on cell movements.

In the hybrid model-based wire length transformation, the multipin nets are con-
verted into star and clique model. All stars will be added back into the Hessian matrix
A as moveable objects, which may increase the dimension of the matrix significantly.
In ISPD 2005 benchmark, by using star model with a pin threshold as 5 will increase
the dimension of the matrix up to 40%. For example, the dimension of the Hessian A
for circuit bigblue4 in ISPD 2005 benchmark grows from 2.2 to 2.8 million. Under
conventional formulation, solving one iteration of the system of linear equations with
a dimension over 2 million will take several minutes.

Figure 3.6 shows the quadratic placement formulation of the circuit in
Figure 3.1(a) by using the clique model. The dimension of the Hessian matrix is
the same as the number of movable cells. Figure 3.7 is the formulation by using the
star model. The dimension of the Hessian increases, but the matrix is more sparse
compared with that by using the clique model. Unlike stars, anchor cells are fixed
objects in our formulation. Therefore, anchor cells will not increase the dimension
of the Hessian A. Furthermore, in the anchor cell-based quadratic formulation in
Figure 3.8, we see that the Hessian matrix is extremely sparse compared with that by
using both the star and clique models.

3.3 Global Placement in DPlace 47

=
− 0.25

− 0.25

− 0.25

− 0.25

− 0.25− 0.25

− 0.25

− 0.25

− 0.25

− 0.25− 0.25

− 0.25

1.25

1.25

1.25

1.25

p4

p3

p2

p1

x4

x3

x2

x1

P1

P3

P2

P4

X4X3

X1 X2

Fig. 3.6. The quadratic placement formulation by using clique model. For simplicity, we
assume the weight of each transformed two-pin net is weight 0.25.

=

01 s

S

− 0.25

− 0.25

− 0.25

− 0.25

− 0.25− 0.25− 0.25− 0.25

1.25

1.25

1.25

1.25

p4

p3

p2

p1

x4

x3

x2

x1

X1 X2

P1

P3

P2

P4

X4X3

Fig. 3.7. The quadratic placement formulation by using star model. S is the x coordinate of
the star, which is a moveable object in the placement. For simplicity, we assume the weight of
each transformed two-pin net is weight 0.25. The dimension of the Hessian matrix A is equal
to the number of cells plus the number of stars.

=

p1+ 0.25C

p2+ 0.25C

p3+ 0.25C

p4+ 0.25C

3

A 1.25

1.25

1.25

1.25

x4

x3

x2

x1
X2

P1

P3

P2

P4

X4X3

X1

Fig. 3.8. The quadratic placement formulation after the anchor cell insertion. C is the x coor-
dinate of the anchor cell, which is a constant. The new Hessian matrix A is extremely sparse
compared with that by using the star or clique formulation.

We assign anchor cells to the nets with a pin degree above th (e.g., 3 as in our
implementation) only. With a small th, more anchor cells will be inserted, which may
over-restrict the movement of cells. However, if the pin threshold th is too large, it
will be more difficult to spread cells.

Let A′ denotes the Hessian matrix in our new formulation. Anchor cells are not
movable objects, thus do not appear in A′. Matrix A′ has the dimension as the num-
ber of movable objects in the netlist. We insert anchors after the completion of pre-
placement stage in each iteration. Once cells are preplaced, anchor cells are inserted
at the gravity centers of their connected cells and locked. In such a way, anchor
cells mark the preplacement result, and act as anchors to pull other cells around in

48 3 DPlace: Anchor Cell-Based Quadratic Placement with Linear Objective

The number of non-zero entries in matrix A and A'

0

20000

40000

60000

80000

100000

120000

1 3 5 7 9 10 11
=>
77

Matrix A

Matrix A'

2 4 6 8

Fig. 3.9. The comparison of nonzero entries in all rows in the sparse matrix A and A
′
. The

x-axis is the number of nonzero entries, the y-axis is the row counts. Note: most of rows in
matrix A′ has only 2–3 nonzero entries.

the subsequent wire length minimization step. The new Hessian A′ has a dimen-
sion much smaller than that in the conventional quadratic placement methods. Most
importantly, the number of nonzero entries in each row of the new formulation A′ is
close to the number of pins on the cell, which is mostly around 2–4. A matrix with
2–4 nonzero entries is extremely sparse, and the linear system is trivial to solve using
the anchor cell formulation.

Figure 3.9 shows the statistics of the number of nonzero entries in old Hessian A
and new Hessian A′ for circuit adaptec2 in ISPD 2005 benchmark. The dimension
of the Hessian A is 354K, while only 254K for the new Hessian A′. In most of
rows, the number of nonzero entries in A are around 3–6, and 1–2 in new Hessian
A′. Circuit bigblue4 in ISPD 2005 benchmark contains 2 million objects. In our
experiments for bigblue4, it takes 200 s for preconditioning and 75 s for solving using
the conventional quadratic formulation, while only 11 s for preconditioning and 4 s
for solving using our anchor cells-based formulation.

3.3.3 Unconstrained Wire Length Minimization

The initial placement seed is generated by solving a conventional quadratic formu-
lation. In each following iteration, cells are diffused to obtain the desired density
distribution, and anchor cells are inserted and locked. In the successive quadratic
formulation, the locked anchor cells will be treated as fixed objects, which will be
added to the constant vector b in (3.2). Therefore, in this step, the quadratic engine
minimizes an unconstrained wire length objective. It is to be noted that anchor cells
are used in hyper-nets decomposition, and no forces or artificial fixed points are used
in our formulation.

Figure 3.10 illustrates the idea of one placement iteration. In Figure 3.10(a), an
initial placement is generated and cells are congested in the middle of the placement

3.3 Global Placement in DPlace 49

n1

n6

n8 n3

n2

n5

n7

n4

(a) Initial placement

n8 n3

n4

n7

n2

n1

n5

n6

(b) After Diffusion

n1
n8 n3

n4

n7
n6

n5 n2

(c) Inserting anchor cells and replacing a
few multi-pin nets with virtual two-pin nets

n8

n1
n3

n4
n2

n5

n6

n7

(d) Solution of the new quadratic system,
cells will not collapse back to the initial sta-
tus due to anchor cells

Fig. 3.10. Anchor cell-based placement illustration (regular nets are not showed for simplic-
ity).

region. After the preplacement, cells are spread, as shown in Figure 3.10(b). But the
wire length after spreading could be very bad. It should be noted that cells have not
actually moved yet in this step.

In Figure 3.10(c), we insert a few anchor cells to convert a few nets into the star
model, one for each high-pin net. All anchor cells are locked once inserted. The
locked anchor cells are used as fixed pins and their positions are updated into the
quadratic system. After solving the new quadratic formulation, cells are rearranged,
but will not collapse back to the initial placement due to the tension from their
anchors, as shown in Figure 3.10(d). We can proceed to next iteration, or we can
go over the anchoring cells insertion and wire length optimization substep multiple
times before proceeding to the next iteration, to further reduce the wire length.

Figure 3.11 plots the first placement iteration of a circuit. In Figure 3.11(a), the
wire length of the initial placement is 0.48 × 106, and cells are congested in the
middle of the placement. After a few iterations of diffusion, cells are spread as shown

50 3 DPlace: Anchor Cell-Based Quadratic Placement with Linear Objective

(a) Initial placement.
HPWL: 0.48×106

(b) After diffusion. HPWL:
2.56×106

(c) Actual HPWL: 1.19
×106

Fig. 3.11. One iteration of the diffusion guided placement.

in Figure 3.11(b). Although the diffusion explicitly controls the cell movement and
improves the density distribution, it is not explicitly wire length aware. The total wire
length increases to 2.56×106 in Figure 3.11(b). Once anchor cells are used. The new
quadratic formulation leads to the placement in Figure 3.11(c), with the new HPWL
1.19×106, which improved significantly compared with that after the preplacement.

3.3.4 HPWL Transformation in a Quadratic System

A major weakness of a quadratic wire formulation is that the quadratic objective is
an approximation of HPWL for a two pin nets. Transforming a multipin net into
multiple two-pin nets may enlarge the gap between HPWL and the actual objective
to optimize. To alleviate such a problem, existing techniques iteratively linearize the
quadratic wire length objective [24]. Recently, the Kra f twerk proposes a method
to linearize the quadratic objective into HPWL in the clique model-based transfor-
mation [22]. Here we propose a method to transform the quadratic objective into
HPWL by using the star model-based transformation, which helps to reduce the gap
between quadratic wire length and HPWL in the DPlace framework.

As the wire length minimization problem is independent in x and y directions,
here we show the formulation in y direction only. Assuming net e is connected with
n cells, and HPWL in direction y is Le. We add a star cell s to decompose the net e
into n two-pin connections. Let li denotes the distance between star s and cell i and
let wi denote the weight of each two-pin connection. We assign all cells into two sets
based on if the cell ni has a y coordinate large than that of star s. As a result, we
have two sets, set A = {ni : yi > ys} and set B = {ni : yi < ys} for each star model
transformation. We define the weight of each two pin net as follows.

wi = Ls A

SAB × |yi − ys | ,∀ni ∈ A

wi = Ls B

SAB × |yi − ys | ,∀ni ∈ B,

3.3 Global Placement in DPlace 51

Le

l4

l1 l3 l2

s

LsA

LsB
n1

n1

n2
n2

n4
n4

n3
n3

net e

Fig. 3.12. Net weights computation. A = {n4}, B = {n1, n2, n3} in this example.

where
SAB = 0.5

∑

ni

|yi − ys |

Ls A = max{yi } − ys

Ls B = ys − max{yi }
Le = Ls A + Ls B (3.5)

The anchor cell s is placed at the gravity center of all cells on net e, and SAB is
defined as the half of the sum of all distances from cell i to the star. Star s splits the
length Le into two parts, Ls A and Ls B , as shown in Figure 3.12.

In the following, we show that the above net weighting strategy transforms the
quadratic wire length objective into HPWL objective exactly.

n∑

i=1

wi (yi − ys)
2 =

∑

i∈A

(yi − ys)
2 × Ls A

|yi − ys | × SAB
+
∑

i∈B

(yi − ys)
2 × Ls B

|yi − ys | × SAB

= Ls A

SAB

∑

i∈A

|yi − ys | + Ls B

SAB

∑

i∈B

|yi − ys |

= Ls A + Ls B = Le (3.6)

Figure 3.12 shows an example of 4-pin nets transformation.

3.3.5 Fixed Blockages

Fixed blockages are obstacles to cell spreading. Modern design may contain a large
number of fixed blockages, which disrupt the cells from smooth spreading. Fixed
blockages are density obstacles to prevent cells to pass over and cells are often placed
on top of the fixed blockages in initial placement. If not properly handled, the wire
length may grow dramatically while push cells passing over or out of blockages.

In DPlace, we use a contour-based density smoothing technique to alleviate the
density obstacles. First, we identify large blockages, which are those fixed macros
with width and height larger than a certain threshold, such as 1% size of the chip size.
In the beginning of the global placement, we adjust the density on bins covered by

52 3 DPlace: Anchor Cell-Based Quadratic Placement with Linear Objective

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
22 23 24 25 26 27 28 29 30 31 32

S1
S3

S5

S7
S9

S11
S13

S15
S17

S19
S21

S23
S25

S27
S29

S31

1

21

(a) Initial adjusted densities for blockages
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S1

S4

S7

S10

S13

S16

S19

S22

S25

S28

S31

(b) Blockage densities increase gradually
during the placement

Fig. 3.13. Dynamic density on blockages.

blockages, and the adjusted density distribution is contour based. For a bin covered
by a big blockage, the bin density is set to be proportional to the distance between
the bin to the blockage boundary. Therefore the highest density is in the bin lying in
the middle of the blockage.

In the earlier stages of the global placement, the adjusted fixed blockage den-
sity is set to a very small value to allow cells to flow over. As the cells spreading
stabilizes, the adjusted density increases gradually, as shown in Figure 3.13(b). The
density in the middle of the fixed blockage rises to push overlapping cells out of
blockages smoothly. The diffusion-based preplacement pushes cells over blockage
easily according to the adjusted density distribution.

3.3.6 Wire Length Improvement Heuristics

Beside the core techniques proposed above, there are more issues that will affect the
quality of the placer. Pushing cells away from a region of congestion often contra-
dicts with wire length optimization objective. To further improve the wire length,
wire length improving heuristics are performed between each iteration. In certain
extent, the wire length improvement heuristics largely determine the quality of the
final HPWL. The inaccuracy of using the quadratic wire length as the objective is
magnified in large-scale ISPD2005 benchmarks, which contains a large amount of
fixed macros.

Therefore, the wire length improvement heuristics are crucial for the HPWL
results in quadratic placement. In DPlace, the quadratic optimization step is fast and
thus most of the CPU time is spent on wire length improving heuristics. In our exper-
iments, the medium improvement heuristics used in FDP [12] was found effective in
the earlier stages of the global placement. Similar technique can also be used in
detailed placement for cell swapping. However, the medium improvement heuris-
tic tends to create a lot of overlap in global placement. We use the iterative local
refinement [11] to improve the density distribution and further reduce the wire length
during the later stages of global placement.

3.6 Experiments 53

3.4 Legalization and Detailed Placement

Legalization and detailed placement are nontrivial for the final wire length quality
of the placer. Before legalization, we divide the placement region into regular bin
structures and analyze the density overflow in each bin. We swap cells out of the
overflowed bins and swap cells between bins if such a swap helps to further reducing
the wire length. Once the bin density overflow is below a threshold, we run a Tetris
[25] like legalization flow. We first legalize all movable macros such that no overlap
exist between macros. Blockages/macros will split the placement region into row
segments. We identify all row segments, sort cells and pack cells into the closet row
segment with the minimum cost.

The detailed placement is based on the technique used in [26] and the standard
cells are moved between different rows to improve the wire length. We use the global
swapping technique to swap cells relatively larger distance to improve the wire length
and we use a fixed window to slide through the placement region and test every cell
pairs inside the window, and greedily swap two cells if such swapping helps reducing
the total wire length.

3.5 Overall Algorithm

The overall algorithm of DPlace is summarized in Algorithm 1. The first iteration
of the global placement stage is illustrated in Figure 3.10. In every global placement
iteration, cells are diffused to reach a specified density distribution, and the anchor
cell-based wire length optimization is performed m times to reduce the wire length.
The larger m, the shorter the wire length, and the worse the density distribution.
Therefore, m is normally less than 3. The legalization and detailed placement stages
are divided in a fashion similar as most of existing placement tools. The placement
is legalized before improving the wire length in the detailed placement.

3.6 Experiments

We test our placer on a Linux server with 3.4 GHz 64-bit Xeon processors. We give
the wire length and runtime results on four set of benchmarks, the ISPD 2005 and
ISPD 2006 placement contest benchmarks [1], and the PEKO-MS 2005/2006 bench-
marks. We tested both the LASPack CG solver [27] and the Hybrid solver [28] as our
quadratic system solver. Our experimental results are reported based on the Hybrid
solver.

3.6.1 Advantages of our New Formulation

Table 3.1 shows the statistics of the new Hessian matrix A′ used in our placer, vs. the
Hessian matrix A in conventional formulation. Column Size shows the dimension of
the Hessian, and column Non−0s shows the nonzero entries in the Hessian. Column

54 3 DPlace: Anchor Cell-Based Quadratic Placement with Linear Objective

Algorithm 1 The DPlace
1: The global placement
2: Build matrix A, and matrix A′
3: Generate an initial quadratic placement with matrix A
4: Repeat
5: Do diffusion-based preplacement for k iterations
6: Do m iterations
7: Generate anchor cells and lock them at the gravity centers
8: Compute HPWL transformations net weights, update A′x = b
9: Solve x = A′−1b

10: end
11: if (In first a few iterations)
12: Use medium improvement heuristic to repair wire length
13: else if (Cells are roughly spread)
14: Use iterative local refinement to repair wire length
15: Until (reaches a desired density distribution)
16: Further diffuse cells to remove remaining overlap
17: The legalization
18: Legalize the macros
19: legalize the standard cells
20: The detailed placement
21: Further check the cell density and congestion
22: Global cell swapping
23: Greedy window-based cell swapping

Table 3.1. Statistics on new Hessian A′ and the Hessian A for conventional formulation, and
the quadratic solver runtime comparisons.

Matrix A Matrix A′ Solver
Size Non-0s Precon(s) Solve (s) Size Non-0s Precon(s) Solve(s) speed-up

adaptec1 243K 196K 15.85 4.65 211K 430K 0.53 0.19 24.5×
adaptec2 355K 2,099K 25.61 7.38 254K 557K 0.90 0.30 24.6×
adaptec3 674K 3,713K 38.18 15.61 494K 1,131K 1.74 0.58 26.9×
adaptec4 508K 3,676K 38.42 15.51 451K 997K 1.97 0.49 31.7×
bigblue1 392K 2,287K 29.78 6.87 278K 603K 1.16 0.36 19.1×
bigblue2 729K 3,937K 47.79 22.78 535K 1,178K 2.29 0.82 27.8×
bigblue3 1,389K 7,290K 103.93 39.32 1,096K 2,714K 4.54 1.70 23.1×
bigblue4 2,831K 16,850K 221.47 75.70 2,169K 5,190K 10.66 3.91 19.4×

24.6×

Precon. shows the CPU time to preconditioning each Hessian matrix. Same precon-
ditioning quality targets are used for the comparison. Column Solve shows the CPU
time to solve one iteration of the quadratic system. Comparing with the conventional
Hessian A, the new Hessian A′ is about 30% smaller on the dimension of the matrix.
Furthermore, because A′ is extremely sparse (Figure 3.9 and Table 3.1), the runtime

3.6 Experiments 55

Table 3.2. Wire length and runtime results for ISPD 2005 benchmarks.

HPWL (×106) GP(s) DP(s) Total(s)
adaptec1 82.56 778 173 951
adaptec2 91.64 952 343 1295
adaptec3 229.63 2219 712 2931
adaptec4 201.42 1591 874 2465
bigblue1 100.14 1412 312 1724
bigblue2 173.51 2451 1114 3565
bigblue3 383.33 4814 1529 6343
bigblue4 926.53 15482 4870 20352

Table 3.3. Wire length and runtime results for ISPD 2006 benchmarks.

HPWL (×106) DHPWL (×106) GP (s) DP (s) Total (s)
adaptec5 433.06 497.56 3276 1474 4750
newblue1 89.18 89.46 1227 578 1805
newblue2 215.12 217.19 1724 768 2492
newblue3 322.39 324.55 1929 1168 3097
newblue4 266.52 324.56 2141 1361 3502
newblue5 578.52 725.12 5233 1852 7085
newblue6 579.86 599.44 4712 2863 7575
newblue7 1089.15 1215.32 13625 4475 18100

to precondition and solve the new quadratic system are improved significantly. The
quadratic solver achieved a 24× speed up on solving time.

3.6.2 ISPD Placement Contest Benchmarks

Table 3.2 gives the HPWL results of DPlace on ISPD 2005 contest benchmarks.
We also show the runtime for the global placement and the detailed placement in
Table 3.2.

The DPlace results on ISPD 2006 contest benchmarks are presented in Table 3.3.
The placement objectives in ISPD 2006 placement contest include both the
wire length and the density distribution. As HPWL stands for the half para-
meter wire length, we use DHPWL representing the density weighted HPWL,
which is H PW L(1 + Density T arget penalty f actor). The Density T arget
penalty f actor is the scaled density overflow used in the placement contest.

3.6.3 PEKO-MS Benchmarks

Tables 3.4 and 3.5 show the HPWL and runtime results of the PEKO-MS 2005 and
2006 benchmarks, which are transformed from ISPD 2005 and 2006 benchmarks
in a way that the optimal wire length is known. Column O PT W L stands for the
known optimal wire length. H PW L/O PT shows the ratio of the generated wire
length against the optimal wire length. G P , D P , and T otal show the runtime of

56 3 DPlace: Anchor Cell-Based Quadratic Placement with Linear Objective

Table 3.4. Wire length and runtime results for PEKO-MS-2005 benchmarks.

OPTWL (×106) HPWL (×106) HPWL/OPT GP(s) DP(s) Total (s)
adaptec1 20.06 29.53 1.47 269 240 509
adaptec2 24.97 40.56 1.62 349 257 606
adaptec3 40.95 72.59 1.77 521 485 1006
adaptec4 39.39 68.13 1.73 689 389 1078
bigblue1 20.86 31.62 1.52 325 247 572
bigblue2 42.26 67.89 1.61 835 312 1147
bigblue3 94.4 235.45 2.49 943 516 1459
bigblue4 171.48 377.94 2.20 2129 2429 4558
Average 1.80

Table 3.5. Wire length and runtime results for PEKO-MS-2006 benchmarks.

OPTWL (×106) HPWL (×106) DHPWL (×106) HPWL/OPT GP (s) DP (s) Total (s)
adaptec5 81.89 207.1 972.96 2.53 1051 599 1650
newblue1 20.5 49.58 107.13 2.42 627 321 948
newblue2 328.69 715.12 1603.56 2.18 1407 313 1720
newblue3 73.51 160.69 388.48 2.19 774 287 1061
newblue4 49.14 109.03 417.07 2.22 1222 295 1517
newblue5 102.08 302.33 1392.88 2.96 1183 811 1994
newblue6 90.66 207.09 556.05 2.28 1482 1140 2622
newblue7 206.18 763.08 2754.53 3.70 4242 2752 6994
Average 2.56

global placement, the detailed placement and the total runtime, respectively. Circuits
in the PEKO benchmark have no global nets and all local nets. As a results, cells
have been roughly spread in the first iteration of the global placement. Therefore,
the runtime on global placement for PEKO-MS 2005/2006 benchmarks is relatively
small compared with that in ISPD 2005/2006. The PEKO-MS benchmarks show that
there exists still obvious gap between the DPlace results and the known optimal wire
length, both in global and detailed placement stage. Due to high percentage of local
nets, the deficiency of the detailed placement is magnified.

3.7 Conclusions

In this chapter, we present a new quadratic placement tool, DPlace. DPlace uses the
diffusion-based spreading technique to generate a golden placement for improved
density distribution, and uses the anchor cells-based formulation to repair the wire
length. Different from existing force directed approaches, we do not add forces or
extra fixed points in the DPlace formulation. An anchor cell is the part of the internal
net model, and the functions of anchor cells include both the net model transforma-
tion and cell movement control.

Furthermore, the Hessian matrix of the anchor cells-based quadratic formula-
tion is extremely sparse. As a result, the runtime to solve such a linear system is
improved by 24 times in our experiments. In DPlace framework, since it is possible

References 57

to affix explicit cell movement control in the preplacement stage, our new formula-
tion has the advantages for ECO and timing driven placement, in which precise cell
movement control is important.

References

1. G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz, “The ispd2005 placement
contest and benchmark suite,” in Proc. Int. Symp. on Physical Design, (New York, NY,
USA), pp. 216–220, ACM, 2005

2. G.-J. Nam, “Ispd 2006 placement contest: Benchmark suite and results,” in Proc. Int.
Symp. on Physical Design, (New York, NY, USA), pp. 167–167, ACM, 2006

3. TimberWolf Systems, Inc., “Timberwolf placement & global routing software package,”
in http://www2.twolf.com/benchmark.html

4. A.E. Caldwell, A.B. Kahng, and I.L.Markov, “Can recursive bisection alone produce
routable, placements?,” in Proc. Design Automation Conf., pp. 477–482, 2000

5. M. Wang, X. Yang, and M. Sarrafzadeh, “Dragon2000: Standard-cell placement tool for
large industry circuits,” in Proc. Int. Conf. on Computer Aided Design, pp. 260–263, 2000

6. M.C. Yildiz and P.H. Madden, “Improved cut sequences for partitioning based place-
ment,” in Proc. Design Automation Conf., (New York, NY, USA), pp. 776–779, ACM,
2001

7. J. Kleinhans, G. Sigl, F.M. Johannes, and K. Antreich, “GORDIAN: VLSI placement
by quadratic programming and slicing optimization,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. CAD-10, pp. 356–365, March 1991

8. H. Eisenmann and F. M. Johannes, “Generic global placement and floorplanning,” in Proc.
Design Automation Conf., pp. 269–274, 1998

9. B. Hu and M. Marek-Sadowska, “Far: fixed-points addition & relaxation based place-
ment,” in Proc. Int. Symp. on Physical Design, (New York, NY, USA), pp. 161–166,
ACM, 2002

10. A.B. Kahng and Q. Wang, “An analytic placer for mixed-size placement and timing-
driven placement,” in Proc. Int. Conf. on Computer Aided Design, pp. 565–572, Novem-
ber 2004

11. N. Viswanathan and C.C.N. Chu, “Fastplace: Efficient analytical placement using cell
shifting, iterative local refinement and a hybrid net model,” in Proc. Int. Symp. on Physical
Design, pp. 26–33, 2004

12. K. Vorwerk, A. Kennings, and A. Vannelli, “Engineering details of a stable force-directed
placer,” in Proc. Int. Conf. on Computer Aided Design, 2004

13. T. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed method for circuit
placement,” in Proc. Int. Symp. on Physical Design, 2005

14. B. Yao, H. Chen, C.-K. Cheng, N.-C. Chou, L.-T. Liu, and P. Suaris, “Unified quadratic
programming approach for mixed mode placement,” in Proc. Int. Symp. on Physical
Design, 2005

15. ISPD 2005 Placement Contest, “http://www.sigda.org/ispd2005/ispd05/slides/10-1-
placement-contest-ispd05.ppt,” 2005

16. A.B. Kahng, S. Reda, and Q. Wang, “Aplace: A general analytic placement framework,”
in Proc. Int. Symp. on Physical Design, pp. 233–235, April 2005

17. T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang, “A high quality ana-
lytical placer considering preplaced blocks and density constraint,” in Proc. Int. Conf. on
Computer Aided Design, 2006

58 3 DPlace: Anchor Cell-Based Quadratic Placement with Linear Objective

18. W.C. Naylor, R. Donelly, and L. Sha”, “Non-linear optimization system and method for
wire length and dealy optimization for an automatic electric circuit placer,” US patent
6,301,693, 2001

19. T. Luo and D.Z. Pan, “Large scale placement with explicit cell movement control,” in
Technical Report UT-CERC-06-01, April 2006

20. F. Mo, A. Tabbara, and R. K. Brayton, “A force-directed macro-cell placer,” in Proc. Int.
Conf. on Computer Aided Design, p. 4, EECS, UC Berkeley, November 2000 A demo can
be found at: http://www-cad.eecs.berkeley.edu/ fanmo/PlacementAlgorithm/index.html

21. ISPD 2002 Benchmark, “http://vlsicad.eecs.umich.edu/bk/ispd02bench/,”
22. P. Spindler and F. M. Johannes, “Fast and robust quadratic placement combined with an

exact linear net model,” in Proc. Int. Conf. on Computer Aided Design, 2006
23. H. Ren, D. Z. Pan, C. J. Alpert, and P. Villarrubia, “Diffusion-based placement migration,”

in Proc. Design Automation Conf., June, 2005
24. G. Sigl, K. Doll, and F. M. Johannes, “Analytical placement: A linear or a quadratic

objective function?,” in DAC ’91: Proc. 28th Conf. on ACM/IEEE Design Automation,
(New York, NY, USA), pp. 427–432, ACM, 1991

25. D. Hill, “Method and system for high speed detailed placement of cells within an inte-
grated circuit design,” US patent 6,370,673, 2002

26. M. Pan, N. Viswanathan, and C.C.N. Chu, “An efficient and effective. detailed placement
algorithm,” in Proc. Int. Conf. on Computer Aided Design, 2005

27. LASpack, “http://www.mgnet.org/mgnet/codes/laspack/html/laspack.html,” 1995
28. H. Qian and S.S. Sapatnekar, “A hybrid linear equation solver and its application in

quadratic placement,” in Proc. Int. Conf. on Computer Aided Design, 2005

4

Kraftwerk: A Fast and Robust Quadratic Placer Using
an Exact Linear Net Model

Peter Spindler and Frank M. Johannes
Institute for Electronic Design Automation, Technische Universitaet Muenchen,
Munich, Germany {peter.spindler, frank.johannes}@tum.de

Summary. This chapter describes the quadratic placer called “Kraftwerk.” Kraftwerk is based
on distributing the modules on the chip by using an additional force. The additional force is
separated in this placer into two forces: hold force and move force. Both of these forces are
determined without any heuristics. This novel systematic force modeling yields the robustness
of our iterative placement algorithm by provably converging to an overlap-free placement.

In addition to Kraftwerk, an exact linear net model is proposed, which can be used by
any quadratic placer. This new net model accurately expresses the half-perimeter wire length
(HPWL) in the quadratic cost function of quadratic placement. The HPWL in general is a
linear metric for the net length and represents a common and efficient estimation for the routed
wire length.

The implementation details of Kraftwerk are presented at length in this chapter. Among
others, a deterministic quality control is described to handle the important trade-off between
CPU time and placement quality. The control of the module density is shown in order to
distribute the modules on the chip according to a given module target density.

The experimental results on various modern benchmarks demonstrate that Kraftwerk
offers both high-quality placements and excellent computational efficiency. Based on the ISPD
2005 contest benchmarks and compared to APlace, which produces the best net lengths in
these benchmarks, Kraftwerk is 35× faster and has just 4% higher net lengths on average.
Using the ISPD 2006 contest benchmarks, which evaluate a placer by its CPU time, net
length, and compliance with a given module density, Kraftwerk provides excellent results.
mPL and APlace are 9% and 22% worse, respectively. In the PEKO-MS ISPD 2005 bench-
marks, Kraftwerk is supposed to be one of the fastest placers and produces placements with
the best net lengths. mPL and APlace have 20% and 27% higher net length, respectively.

4.1 Introduction

As Moore’s law is still valid [1], i.e., circuit sizes are doubled every 18 months, new
fast and efficient placement algorithms with accurate net models will be needed for

60 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

Placement Technique

Stochastic Partitioning Analytical Main Category

Timberwolf PROUD
Capo
Dragon

FengShui

Non-linear Quadratic

Gordian
BonnPlace

hATP

FDP
FAR
mFAR
Fastplace

Kraftwerk

mPL
APlace
NTUPlace

Center-of-Mass
Constraints

Force-Directed

Fig. 4.1. Placement techniques and state-of-the-art placers.

the layout synthesis of next-generation VLSI circuits with tens of millions of stan-
dard cells.

Figure 4.1 displays that state-of-the-art placers can be classified in three main
categories according to their placement technique.

(1) Stochastic Approaches.
Placers based on stochastic approaches often utilize Simulated-Annealing. This
optimization method provably finds the global optimum but suffers from long
run times. The best-known representative of stochastic placers is Timberwolf [2].

(2) Partitioning Approaches.
Another placement approach is to recursively partition the circuit and the place-
ment area. PROUD [3] partitions the circuit based on the locations of the
modules as determined by quadratic placement. The min-cut placers Capo [4],
Dragon [5], and FengShui [6] partition the circuit based on a certain cost func-
tion, e.g., number of wires crossing a boundary of adjacent partitions.

(3) Analytical Approaches.
The core of all analytical placers is an objective function which is minimized by
methods of mathematical analysis. Depending on the kind of objective function,
analytical placers can be subdivided into two categories:
(a) Nonlinear-Optimization-Based Placers. The objective function is nonlinear,

e.g., a log–sum–exponential function [7], which is minimized by nonlinear
optimization techniques like conjugate-gradient optimization [8]. Exam-
ples of nonlinear-optimization-based placers are APlace [9], mPL [10], and
NTUPlace [11].

4.1 Introduction 61

(b) Quadratic Placers. The objective function is quadratic and can therefore
be minimized efficiently by solving a system of linear equations. Quadratic
placers are for instance Gordian [12], Kraftwerk [13], FAR [14], FastPlace
[15], mFAR [16], BonnPlace [17], hATP [18], and FDP [19].

To cope with modern circuits having millions of modules, many placers combine
different optimization techniques with a hierarchical approach, e.g., mFAR, APlace,
mPL, NTUPlace, and hATP. The partitioning approaches PROUD, Capo, Dragon,
and FengShui are per se hierarchical.

Quadratic placers are popular, because they allow good quality results at low
CPU times. But they face two problems: First, a method is needed to model a realistic
objective like a linear net length in the quadratic objective function. Second, a tech-
nique is necessary to reduce the module overlap, which usually exists in quadratic
placement. Both problems are addressed in this chapter.

Depending on the technique to reduce the module overlap, quadratic placers can
be divided into two categories (1) Constraint-based quadratic placers like Gordian,
BonnPlace, and hATP, which achieve an overlap-free placement by center-of-mass
constraints. To refine the center-of-mass constraints, these quadratic placers often
partition the placement area recursively and assign modules to the placement parti-
tions. (2) Force-directed quadratic placers like Kraftwerk, FAR, mFAR, FastPlace,
and FDP, which utilize an additional force to distribute the modules on the chip and
thus reduce the module overlap.

This chapter describes a force-directed quadratic placer. Different approaches
appeared to implement the additional force needed for this category of quadratic
placement. Kraftwerk (1998 version) [13] utilizes the module density to determine
a constant additional force, which drives the modules from high to low-density
regions. Please note that although this chapter has also the title “Kraftwerk,” the
placer described here differs a lot from the 1998 version [13]. FDP utilizes a simi-
lar approach as [13]. FAR calculates the additional force like [13] but models it by
fixed points. mFAR uses two different fixed points to express the additional force.
The “perturbing fixed points” reduce module overlap and are calculated heuristically
by a local bin utilization. The “controlling fixed points” achieve the force equilib-
rium and are determined also by heuristics. FastPlace uses a similar technique for
the additional force as mFAR.

This chapter presents a fast, robust, flat, iterative force-directed quadratic placer,
which is unique because it does not resort to any heuristics and moreover the conver-
gence to an overlap-free placement is guaranteed. In detail, our quadratic placer is
characterized by the following enhancements to other force-directed quadratic place-
ment approaches:

• We separate the additional force into two fundamental components: move force
and hold force:
– We use a generic demand-and-supply formulation of the placement problem

and the potential formulation of [13], to calculate a nonheuristic move force
which is implemented by target points.

62 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

– To decouple the iterations of quadratic placement, we use a constant and
nonheuristic hold force.

• Based on this new systematical force modeling, module positions can be com-
puted efficiently. Moreover we prove that our quadratic placer converges to an
overlap-free placement.

• As a result of the force separation, our placement algorithm can be easily
restarted at any iteration without any initialization. This efficiently supports the
engineering change order (ECO), where the circuit is slightly modified and needs
to be placed again.

• To control the important trade-off between CPU time and quality of placement,
we implement a deterministic quality control with just one single parameter.

• In order not to narrow the design space, we do not utilize a hierarchical approach,
but place all modules simultaneously in each iteration, i.e., our placer is flat.

In addition to the heuristic-free force-directed quadratic placer, we describe a new
linear net model. Quadratic placers usually formulate nets by the clique net model
or by the equivalent star net model. Moreover the net weights are used to adapt the
quadratic objective function to a linear objective. With the number of pins denoted
by P , a common net weight for the clique net model is 1/P in order to adapt its
quadratic cost function to the star net model [20], [15]. For additional linearization,
Vygen et al. [21] use a net weight of 1/(P − 1) and Kleinhans et al. [12] set the
net weight to 2/P . These approximation techniques express the linear net length in
a quadratic cost function in a heuristic manner [22].

In this chapter, we present the new linear BoundingBox net model, which can
be utilized universally in any quadratic placers. The following properties distinguish
our new linear net model from previous net models.

• Exact and deterministic representation of the HPWL in a quadratic objective
function. The HPWL is defined per net by the half-perimeter of the bounding
box enclosing its pins. The HPWL is a linear metric for the net length and an
efficient estimation for the routed wire length.

• Efficient removal of module overlap.
• Lower memory usage and runtime.

The rest of the chapter is organized as follows: Section 4.2 describes the new linear
BoundingBox net model. The force-directed quadratic placer is presented in Section
4.3 then. Section 4.4 deals with the implementation details of our placer. Experi-
mental results in various benchmarks are provided in Section 4.5, followed by the
conclusion in Section 4.6.

4.2 Net Model

Quadratic placers in general are based on two-pin connections and a net model is
necessary to represent the length of one net by just two pin connections. The sum
of the weighted and squared Euclidean distance between the two-pin connections of
one net n then creates the quadratic cost function �n of one net:

4.2 Net Model 63

�n =
∑

e=(i, j)∈En

we,x

2
(xi − x j)

2 + we,y

2
(yi − y j)

2 (4.1)

The set En is the set of two-pin connections representing net n. The sum of the
quadratic cost function of all nets n = 1, 2, 3, ..., N form the quadratic cost function
of the circuit: � = ∑N

n=1 �n .
In this section we will present our new BoundingBox net model in comparison

to the traditional clique net model. This new net model expresses the HPWL of one
net, which is a linear net metric, exactly in the quadratic cost function of one net
�n . We will denote the number of pins of one net by P and the x-coordinate of
pin i = 1, 2, 3, ...P by xi . Since (4.1) can be separated in x and y-direction: �n =
�n,x +�n,y , we will describe the net models only in x-direction. The the y-direction
can be obtained similarly.

4.2.1 Clique Net Model

In the classical clique net model all possible two-pin connections of the net are used:

�n,x = �C,x = wC

2
·

P∑

i=1

P∑

j=i+1

(xi − x j)
2 (4.2)

The net weight wC of the clique model is specified by

wC = 1
P

· 2
P

· λ (4.3)

The factor 1/P adapts the clique model to the star model [20], [15]. The factor
2/P is to adjust number of connections of the clique to the number of connections
in the corresponding spanning tree [12]. The additional net weight λ can be used to
linearize the quadratic clique length �C,x [22].

The number of two-pin connections NCC in the clique model is determined by

NCC = 0.5 · P(P − 1) (4.4)

The squared clique length as expressed in the quadratic cost function (4.2) is one
metric for the net length. Since the placement process should consider the routing
process, the net length should reflect the routed wire length. Since the nets are routed
with horizontal and vertical wires, the minimal routed wire length is the length of
the rectilinear Steiner minimal tree (RSMT) [23]. But the RSMT problem is NP-
hard and a very efficient and lower bound for the routed wire length is the HPWL.
In detail, for a set of circuits the authors of [24] demonstrate that the HPWL differs
from RSMT length by just 8% but is determined 1.4 × 105 times faster. Moreover,
for nets with two or three pins, and most of the nets of a circuit are of this kind, the
RSMT length is equal to the HPWL [23].

The HPWL is defined per net by the half-perimeter of the bounding box enclosing
its pins. If this box has width w and height h

64 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

w = max(xi) − min(xi) h = max(yi) − min(yi) (4.5)

then the HPWL is calculated by

�H PW L = �H PW L , x + �H PW L , y = w + h (4.6)

Since the HPWL is an efficient estimation for the routed wire length, the net
length and thus the quadratic cost function of one net should reflect the HPWL.
Figures 4.2 (a)–(d) illustrate the approximation error

εC,x = �C,x

�HPWL, x
− 1

between the cost function �C,x of the clique net model and the HPWL metric of
randomly generated nets. To linearize the quadratic clique length (4.2), the additional
net weight λ was set to

λ = 10
�HPWL,x + 10

Figures 4.2 (a)–(d) demonstrate the following properties of the approximation
error εC,x of the clique net model:

−100

−50

 0

 50

 100

 150

 1 10

(a) 2 pins

 100 1000

ε C
,x
 a

nd
 ε

B
B

,x
 i
n

P
er

ce
nt

ΓHPWL,x

Clique Net Model
BoundingBox Net Model

−100

−50

0

50

100

150

1 10 100 1000

ε C
,x
 a

nd
 ε

B
B

,x
 i
n

P
er

ce
nt

ΓHPWL,x

Clique Net Model
BoundingBox Net Model

(b) 5 pins

−100

−50

0

50

100

150

1 10 100 1000

ε C
,x
 a

nd
 ε

B
B

,x
 i
n

P
er

ce
nt

ΓHPWL,x

Clique Net Model
BoundingBox Net Model

(c) 10 pins

−100

−50

0

50

100

150

1 10 100 1000

ε C
,x
 a

nd
 ε

B
B

,x
 i
n

P
er

ce
nt

ΓHPWL,x

Clique Net Model
BoundingBox Net Model

(d) 20 pins

Fig. 4.2. Approximation error εC,x and εBB,x of the clique net model and the BoundingBox
net model if their quadratic cost functions �C,x and �BB,x are referred to the HPWL metric
�H PW L , x .

4.2 Net Model 65

• εC,x is not constant over �HPWL, x
• εC,x is up to 150%
• εC,x is spreading at nets with more than two pins
• εC,x is decreasing in proportion to the number of pins in a net

Even if the approximation error depends on the net weight λ, the above statements are
valid in general. Therefore the clique net model approximates the HPWL metric and
thus the routed wire length very inaccurately. Hence a new linear net model called
BoundingBox net model is presented in the following that reproduces the HPWL
without error.

4.2.2 BoundingBox Net Model

In the BoundingBox net model, not all possible two-pin connections of the net are
used, but only a few characteristic ones, as illustrated in Figure 4.3(a): Pin a with
lowest x-coordinate is connected with pin b with highest x-coordinate. This creates
connection 1 with length lx,1 = w. The remaining P − 2 inner pins of the net are
connected with both outer pins a and b. This creates connections j and j + 1 with
j = 2, 4, 6, ..., 2(P − 2) and lx, j + lx, j+1 = w. Considering that the pins a and b
are the bounds of the net’s box, the BoundingBox net model is characterized that all
its connections are joined with the bounds of this box. The number NCBB of two-pin
connections in the BoundingBox net model is

NCBB = 1 + 2(P − 2) (4.7)

Each connection i = 1, 2, 3, ..., NCBB has the weight wx,i . The length of every
connection is squared, weighted, and added to the quadratic cost function �BB,x of
this net model:

�n,x = �BB,x = 1
2

NCBB∑

i=1

wi · l2
x,i (4.8)

With each weight calculated by

wx,i = 2
P − 1

1
lx,i

(4.9)

Pin a Pin blx,1
lx,2

lx,4
lx,6 lx,7

lx,5

lx,3

0 w

x

(a) Bounding Box
0

x

w
(b) Clique

Fig. 4.3. BoundingBox and clique net model of a five pin net in x-direction.

66 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

the quadratic cost function �BB,x of the BoundingBox net model is equal to the width
w of the net’s bounding box in x-direction.
Proof.

�BB,x = 1
2

[
wx,1 · l2

x,1 +
P−2∑

j=1

(
wx,2 j · l2

x,2 j + wx,2 j+1 · l2
x,2 j+1

)]

= 1
P − 1

[
lx,1 +

P−2∑

j=1

(
lx,2 j + lx,2 j+1

)]

= 1
P − 1

[
w + (P − 2) · w

] = w (4.10)

With w = �H PW L,x this yields an approximation error εBB,x = �BB,x
�H PW L,x

− 1 of
zero in the BoundingBox net model as shown in Figs. 4.2 (a)–(d).

Please note that in each iteration of the quadratic placement algorithm as
described in Sect. 4.2.3 (see also Figure 4.4), the weights wx,i as well as the bounds
are determined for each net.

By creating the y-part of the BoundingBox net model similarly to the above
described x-part, the cost function �BB = �BB,x + �BB,y of the BoundingBox net
model is equal to the HPWL �H PW L = w + h of the net.

4.2.3 Advantages of the BoundingBox Net Model

• As the BoundingBox net model is based on two-pin connections, it can be
used in any quadratic placer. Thus, all quadratic placers can now represent the
linear net length measured by the HPWL exactly in the quadratic cost function.
Furthermore, the HPWL is a common and efficient estimation of the routed wire
length. An important disadvantage of quadratic placers compared to nonlinear-
optimization-based placers like APlace [9] and mPL [10] has been eliminated in
this way, while the CPU time advantage of quadratic placers is maintained.

• Next Sect. 4.3 describes that the quadratic cost function � is represented in a
matrix–vector notation (4.12). There, the number of entries in the matrix is pro-
portional to the number NC of two-pin connections. (4.4) describes that NC
depends quadratically on the number P of pins in the clique model. Equation
(4.7) shows that NC depends only linearly on P in the BoundingBox net model.
Thus, NC and therefore the number of matrix entries is much smaller in the new
net model. Therefore the memory usage of the matrix is much smaller and the
matrix–vector multiplication is much faster. The last advantage of the Bounding-
Box net model yields in addition a lower CPU time to determine the minimal net
length (4.13) as the CPU time of the conjugate-gradient solver depends on the
CPU time to execute the matrix–vector multiplication.

• Next Sect. 4.3 will explain that there is usually a lot of overlap between the mod-
ules and quadratic placers reduce this overlap step-by-step by an additional force.

4.3 Quadratic Placement Methodology 67

With two pins fixed and no additional forces, all remaining inner pins are located
at the same position in the clique model. This is because the inner connections
existing in this net model (see Figure 4.3(b)) pull the inner pins together. Hence
the modules connected to the inner pins overlap a lot and the module overlap is
hard to reduce in the clique model. The problematic inner connections do not
exist in the BoundingBox net model and therefore this net model does not tend
to glue the inner pins together, but supports the reduction of the module overlap
much better than the clique model.

4.3 Quadratic Placement Methodology

A placement algorithm in general minimizes the net length under the constraint that
the modules are placed overlap-free on the chip. Section 4.2 explains how the net
length is expressed in the quadratic cost function � of quadratic placement. This
section describes our fast and robust quadratic placer. First, we will discuss the rep-
resentation and the characteristics of the quadratic cost function in general. Then we
will explain how the module overlap is removed.

The quadratic cost function � expresses the net length and is the sum of the
weighted and squared Euclidean distances between the set E of two-pin connections:

� =
∑

e=(i, j)∈E

we,x

2
(xi − x j)

2 + we,y

2
(yi − y j)

2 = �x + �y (4.11)

The set E consists of the sets En (with n = 1, 2, 3, ..., N) of the two-pin connections
of all N nets: E = {E1 ∪ E2 ∪ E3 ∪ · · · ∪ EN }. As (4.11) can be separated in x and
y-direction, we will describe in the following just the x-direction.

For sake of simplicity and without loss of generality, we assume that there is no
offset between the pin position and the module position, i.e., the pin positions can
be expressed directly by the module positions. Splitting all modules in M movable
and F fixed modules, the x-positions of the movable modules can be collected in
vector x = (x1, x2, x3, ..., xM)T and the quadratic cost function �x can be written in
matrix–vector notation [25]:

�x = 1
2

xTCx x + xTdx + const (4.12)

Here the matrix Cx is of dimension M × M and has the entry ci j in row i and
column j . The vector dx is of dimension M and has entry dx,i in row i . To express
the length 0.5 we,x (xi − x j)

2 between two movable modules i and j in the matrix–
vector notation (4.12), the matrix entries cii and c j j are increased by we,x and the
diagonal matrix entries ci j and c ji are decreased by we,x . If one module – let us say
j – is fixed, the matrix entry cii is increased by we,x and the vector entry dx,i is
decreased by we,x · x j . The length between two fixed modules just contributes to the
constant part of (4.12).

68 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

Since the net length is expressed by the cost function �, the module positions for
minimal net length are found by minimizing �. For x-dimension, this is done by dif-
ferentiating � with respect to x and solving the resulting system of linear equations
with respect to x. Denoting the vector differential operator

(
∂

∂x1
,

∂

∂x2
, ... ,

∂

∂xN

)T

by the nabla operator ∇x , the minimization of the net length results in solving the
following system of linear equations with respect to x:

∇x� = ∇x�x = Cx x + dx = 0 (4.13)

Solving (4.13) can be done efficiently as the matrix Cx is highly sparse. A common
and fast iterative method to solve highly sparse linear systems of equations is the
conjugate-gradient technique.

Quadratic placement in general can be compared with a system of elastic springs:
the quadratic cost function �e of one two-pin connection e = (i, j) is equal to the
energy Ee of an elastic spring connecting the two pins i and j :

�e = we,x

2
(xi − x j)

2 + we,y

2
(yi − y j)

2 = Ee = w

2
l2

Here we used the following substitutions: spring constant w = we,x = we,y , squared
Euclidean spring elongation l2 = (xi −x j)

2 +(yi − y j)
2. The quadratic cost function

� is the sum of the quadratic cost functions �e of all two-pin connections: � =∑
e∈E �e. Thus � represents the sum of all spring energies Ee, i.e., � reflects the

total energy of the spring system. In general, the derivative of an energy with respect
to x (or y) is the force in x- (or y-) direction. Therefore the derivative described by
the nabla operator ∇x of the cost function �, which represents the net length, is the
net force in x-direction:

∇x� = Fnet
x = Cx x + dx = 0 (4.14)

This net force is set to zero to find the minimum energy of the elastic spring system,
which is equal to the minimum net length.

4.3.1 Additional Forces

With just net forces acting on the modules, the modules attract each other resulting in
a lot of module overlap. Therefore the force-directed quadratic placement algorithm
applies an additional force and reduces the module overlap in an iterative process.

In this chapter, we represent the module positions from last iteration in vector x′,
the module positions calculated in the current iteration in vector x, and the change in
module position between two iteration in vector 	x:

	x = x − x′ (4.15)

4.3 Quadratic Placement Methodology 69

The additional force to remove the module overlap is separated in our quadratic
placer in two fundamental components: First, a hold force holding the modules in the
current iteration and thus decoupling the iterations of the placement algorithm. Sec-
ond, a move force moving the modules in the current iteration to reduce the module
overlap.

Move Force

The placement problem in general can be formulated as a generic demand-and-
supply system with the demand Ddem(x, y) and the supply Dsup(x, y) determining
the distribution D(x, y):

D(x, y) = Ddem(x, y) − Dsup(x, y) (4.16)

Section 4.4.5 describes in detail how the demand is created from the distribution of
the modules on the chip and how the supply is determined to control the module
density. But the demand-and-supply system of (4.16) can be extended to optimize
e.g., the temperature profile of the chip [26] or the routability of the chip.

The demand-and-supply system in general has to be balanced, e.g., the integral
over the demand has to equal to the integral over the supply:

∞∫

−∞

∞∫

−∞
Ddem(x, y) dx dy =

∞∫

−∞

∞∫

−∞
Dsup(x, y) dx dy (4.17)

This is necessary to guarantee the convergence to a placement where the demand is
adapted completely to the supply at each position (see Sect. 4.3.2). In other words,
(4.17) has to be fulfilled to assure the convergence to an overlap-free placement.

The distribution D(x, y) (4.16) of the demand-and-supply system can be viewed
as a charge distribution [13], which creates an electrostatic potential � based on
Poisson’s equation:

�� = −D(x, y) . (4.18)

The Poisson equation can be solved efficiently by a geometric multigrid solver
[26, 27].

In the electrostatic formulation (4.18), the potential � is high in regions where
the distribution D(x, y) is high, i.e., in high-density regions, and vice versa. Hence
the gradient (

∂�

∂x
,
∂�

∂y

)T

of the potential � can be used to move the modules away from high-density regions
toward low-density regions and thereby reduce the overlap between the modules.

Therefore each module i gets a target point x̊i , which is calculated by the module
position x ′

i and the gradient of the potential �:

x̊i = x ′
i − ∂

∂x
�
∣∣∣
(x ′

i ,y
′
i)

(4.19)

70 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

Moreover, each module i = 1, 2, 3, ..., M is connected to its target point by a spring
with the spring constant ẘi . This spring connection creates the move force Fmove

x,i =
ẘi (xi − x̊i). The move forces of all M movable modules are collected in the move
force vector Fmove

x :
Fmove

x = C̊x
(
x − x̊

)
(4.20)

The matrix C̊x is a diagonal matrix with the spring constants as entries: C̊x =
diag(ẘi). Collecting the gradients of � in x-dimension for all modules in vector �x

�x =
(

∂

∂x
�
∣∣∣
(x ′

1,y
′
1)

,
∂

∂x
�
∣∣∣
(x ′

2,y
′
2)

, ...,
∂

∂x
�
∣∣∣
(x ′

N ,y′
N)

)T

(4.21)

the target point vector x̊ can be calculated by x̊ = x′ − �x .

Hold Force

If the hold force Fhold
x is defined by the negative net force

Fhold
x = − (Cx x′ + dx

)
(4.22)

and the sum of hold force and net force is set to zero, then the modules are held on
their current positions, i.e., x = x′.

Proof.
Fnet

x + Fhold
x = Cx x + dx − Cx x′ − dx = 0 ⇔ x = x′ (4.23)

Since all three components Cx , x′, and dx of the hold force do not depend on x, the
hold force itself is constant.

Total Force

The net force, move force, and hold force add up to the total force Fx. The total
force is then set to zero to get a placement with minimal net length and some overlap
reduction:

Fx = Fnet
x + Fmove

x + Fhold
x = 0 (4.24)

Altogether our systematic nonheuristic force-directed quadratic placement
approach differs significantly from other force-directed quadratic placement
approaches [13–16, 19], all of which either do not separate the additional force
or use various heuristics to obtain the additional force. Contrary to that:

• We separate the additional force in hold force and move force
• We calculate the move force (4.20) nonheuristically by an electrostatic potential

(4.18) and model it by target points (4.19)
• We represent the hold force by a nonheuristic constant force (4.22)

4.3 Quadratic Placement Methodology 71

This results in the simple formulation of the total force (4.24) in our placer:

Fx =
(

Cx + C̊x

)
	x + C̊x�x = 0 (4.25)

The new module positions x = x′ + 	x in x-dimension are efficiently computed by
solving (4.25) for 	x. To obtain the module positions in y-dimension, all described
steps must be executed for y-direction.

4.3.2 Proof of Convergence

Please note that, in general, the placement problem is NP-hard and all placement
approaches model the problem by algorithms which can be executed with polyno-
mial time complexity [28]. In our placement approach we apply the demand-and-
supply formulation (4.16), Poisson’s equation (4.18), and the consequential force
formulation (4.13), (4.20), (4.22), and (4.25). Our placer is unique because it does
not resort to any heuristics. Therefore we can prove that our algorithm converges to
a placement, in which the demand Ddem(x, y) is adapted completely to the supply
Dsup(x, y) in each position (x, y):

Convergence to: Ddem(x, y) = Dsup(x, y) for all (x, y) (4.26)

If the demand Ddem(x, y) is created by the distribution of the modules and the
supply Dsup(x, y) is at most one (as described in Sect. 4.4.5), the placement char-
acterized by (4.26) reflects that there is no module overlap. This means that our
placement algorithm converges to an overlap-free placement.

Sketch of proof:

1. With no move force, the modules are held with the hold force at their current
position. This is shown in Sect. 4.3.1.

2. The distribution D(x, y) creates the potential � (4.18), the gradient of the poten-
tial � is used to calculate the target points (4.19), and the target points form the
move force (4.20). Thus the modules are moved away from high-density regions
toward low-density regions.

3. Assuming that the supply Dsup(x, y) is fixed and the demand Ddem(x, y) is
formed by the modules and thus moved by the move force, we can show that
the demand is better adapted to the supply in each iteration. This iterative adap-
tation is based on (4.18), (4.19), (4.20), (4.22), (4.25), and on the idea of charge
conservation. As the demand reflects the distribution of the modules on the chip,
the statement of the iterative adaptation means that the module overlap is reduced
in each iteration.

4. If the demand is adapted completely to the supply, i.e., (4.26) is fulfilled and the
placement is overlap-free, our placement algorithm will not move the modules
any more, i.e., it has reached its stable state. This is because (4.26) yields a
distribution D(x, y) which is zero at each position. Hence the potential � is

72 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

constant and thus the gradient of the potential � is zero. So (4.25) is transformed
to
(

Cx + C̊x

)
	x = 0. Consequently 	x is zero, reflecting that the modules are

not moved any more. �

Two remarks must be added to the proof of convergence:

• An assumption has to be made: two modules i and j may not have the same
position: (xi , yi) �= (x j , y j). If they have exactly the same position then they
will get the same move force and will probably be moved to the same position
in the next iteration and hence the overlap between these two modules will not
be removed. Practically this assumption has no impact on convergence since the
module positions are calculated numerically and therefore will not be exactly the
same.
Even if two modules i and j have exactly the same position, the modules conn-
ected to these two modules i and j will probably move them to different positions
in the next iteration.

• No theoretical statement to the iteration count of global placement can be made
as this highly depends on the kind of circuit to be placed. But experiments
showed that a practical bound of iteration count is around 5 if a high-spring
constant (e.g., 1,000) of the target points is chosen.

4.4 Implementation Details

Figure 4.4 shows the complete algorithm of our placer. During the initial placement,
a start solution is computed by minimizing the quadratic cost function � over a few
iterations: Iinit ≈ 5. At this stage, the module overlap is not taken into account.

After that the module overlap is reduced iteratively in the global placement.
Although the global placement converges to an overlap-free placement as proven
above, it is stopped at a certain stopping criterion, e.g., module overlap ≤ 20%.

The global placement is terminated in standard-cell placement because it cannot
arrange the modules on the chip rows which is needed to obtain a legal placement.
This task and removing of the remaining module overlap is done during the final
placement by “FindNextBestPlace”: The next best place is sought for each module
according to a certain cost function. This search takes around 10% of the CPU time
of the global placement and therefore is very fast. Using the net length in HPWL
metric as the cost function for “FindNextBestPlace” increases the total HPWL by
around 2% compared to the last iteration of the global placement.

4.4.1 Engineering Change Order

The separation of the additional force in hold force and move force results in decou-
pling one iteration from the previous one. Therefore our global placement algorithm
can be easily restarted at any iteration without special initializations. Thus ECO is

4.4 Implementation Details 73

Initial Placement:
Place all modules in the center of the chip
for i < Iinit do

For x-direction: (similarly for y-direction)
Create Cx , dx (See Note 1 below)
Solve (4.13) for x

i = i + 1
Global Placement:

repeat
Calculate potential � by (4.18)
For x-direction: (similarly for y-direction)

Create Cx (See Note 1 below), C̊x = diag(ẘi), �x
Solve (4.25) for 	x
Update module position x by 	x

Quality control
until Module overlap ≤ 20%

Final Placement:
FindNextBestPlace

Note 1: If the BoundingBox net model is used, determine bound pins
for each net and calculate every connection weight.

Fig. 4.4. Complete placement algorithm.

Table 4.1. Placing the gate sized circuit bigblue1 of the ISPD 2005 contest benchmarks from
scratch and applying the ECO feature at different iterations. Net lengths and CPU times of the
ECO results are compared to the result if the circuit is placed from scratch.

Mode HPWL CPU
From scratch 97.97 m 505 s
ECO at Iter 5 +0.05 % –32%
ECO at Iter 10 +0.02 % –42%
ECO at Iter 15 +0.04 % –57%
ECO at Iter 20 +0.08 % –72%
ECO at Iter 25 +0.07 % –81%

efficiently supported. This means that after a small change in a circuit, e.g., after
gate sizing, the circuit can be placed again without running the whole placement
process from scratch, but starting immediately the placement algorithm from the last
iteration.

Table 4.1 demonstrates the efficient support of ECO by our placement algorithm.
Here we used the circuit bigblue1 of the ISPD 2005 contest benchmarks and changed
it a bit by sizing about 10% of its modules. The first row in Table 4.1 shows the result
in net length and in CPU time of this gate-sized circuit, in the case that our placement
algorithm is run from scratch. The last rows in the table display the results if the ECO
feature is used. Here we restarted the placement algorithm for the gate-sized circuit

74 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

after loading the placement of the original circuit at different iterations: 5, 10, 15, 20,
and 25. The results of Table 4.1 reveals that ECO can be applied at various iterations
without harming the net length (increase below 0.1%) but with great improvement in
the CPU time (up to 80%) compared if the changed circuit is placed from scratch.

4.4.2 Quality Control

In order to control the important trade-off between the quality of placement and the
CPU time, a quality control procedure is called at the end of each iteration in global
placement (see Figure 4.4).

This trade-off presents a challenge in everyday placement usage. On the one hand
the deadline for placement can be near and therefore the chip has to be placed in short
CPU time. On the other hand the quality of placement can be very important with no
limit of CPU time.

Equation (4.11) shows that the quadratic cost function � consists of two-pin con-
nections and each two-pin connection has the weights we,x and we,y . These con-
nection weights are changed in each iteration of global placement in order to adapt
the quadratic cost function � to a realistic objective, e.g., to the net length measured
in HPWL or to fulfill timing requirements. Section 4.2.2 describes the Bounding-
Box net model, which uses the connection weights in order to model the HPWL
in the quadratic cost function �. The authors of [29] show a technique to modify
the connection weights in order to model timing requirements in the quadratic cost
function �.

Hence the more iterations are spent in global placement, the better is the mod-
eling of the real objective and the higher is the quality. On the other hand, the more
iterations the global placement needs, the higher is the CPU time, since every single
iteration takes a fix CPU time.

If the average module movement µ is controlled to be µT in every iteration, then
the iteration count Iglobal of global placement is indirectly proportional to µT. This
is because each module has to move a certain length
 in global placement in order
to get an overlap-free placement and thus following holds true:

 ≈ µT · Iglobal ⇔ Iglobal ∝ 1
µT

. (4.27)

To control the module movement µ to be µT, the target points’ spring constants ẘi
are used, since a target point with a small spring constant attracts its module less than
with a high-spring constant.

Altogether, a certain target movement µT is set for the quality control and the
average module movement µ is compared to µT in each iteration: if µ < µT, then
every wT,i is increased and if µ > µT then every wT,i is decreased. Details about this
scaling process and the spring constants of the target points in general are explained
in Sect. 4.4.3

Figure 4.5 shows that the presented quality control can efficiently govern the
important trade-off between quality of placement and CPU time by using its only

4.4 Implementation Details 75

0.99

0.995

1

1.005

1.01

1.015

1.02

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

no
rm

al
iz

ed
 N

et
le

ng
th

 (
H

P
W

L
)

normalized CPU Time

µ
T
=1

µT=0.5

µ
T
=1.5

(15)

(25)

(41)

Fig. 4.5. Trade-off between quality of placement, measured in HPWL net length, and CPU
time with quality control’s parameter µT. The results are based on six circuits of the ISPD
2005 contest benchmarks. The values in the brackets express the average of iteration count
Iglobal.

parameter µT. Here the quality of placement is measured in the HPWL of all nets.
Compared to µT = 20, the CPU time can be decreased to 50% at µT = 30. At this
point, the quality of placement is less than 2% worse than at the starting point. On
the other side at µT = 10, the quality can be improved by around 0.5% at a CPU
time increase of 70%. With a quality range of less than 2% and a CPU time range
more than 100%, Figure 4.5 also demonstrates that our placement algorithm is very
robust in quality of placement but flexible in CPU time.

4.4.3 Spring Constants of the Target Points

Please note that the following detailed description of the target points’ spring con-
stants does not affect the proof of convergence in Sect. 4.3.2 since this proof is inde-
pendent of the target points’ spring constant.

The spring constants of the target points ẘi are initialized with

ẘi = 1
M

M : Number of movable modules (4.28)

Then a function κ(µ) is used in every iteration to scale the spring constants ẘ′
i of

the last iteration to the spring constants ẘi in the current iteration depending on the
module movement µ, i.e., depending on the change of the modules positions during
the last iteration:

ẘi = κ(µ) · ẘ′i . (4.29)

Figure 4.6 shows this scaling function κ(µ): At a smaller module movement µ
than the target module movement µT, the scaling function κ(µ) is greater than one.
With (4.29) the spring constants of the target points are increased. At a higher module
movement µ than the target movement µT, the scaling function κ(µ) is smaller than
one and the spring constants of the target points are decreased.

76 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 0 0.5 1 1.5 2 2.5 3 3.5 4

κ

µ normalized to µT

Fig. 4.6. Function κ(µ) to scale the target points’ spring constants depending on the module
movement µ.

In detail, the scaling function κ(µ) is defined by the following three equations
(4.30)–(4.32). The scaling function is determined by a lower limit κl, by an upper
limit κu, and by a sensitivity s at µ = µT. Moreover, the offset o in (4.32) defines
that the scaling function κ(µ) has to be one at µ = µT, i.e., the spring constants ẘi
do not change if the modules move with the target movement µT.

In Figure 4.6 showing the scaling function κ(µ) the lower limit is κl = 0.2, the
upper limit is κu = 2, and the sensitivity is s = 1.

κ(µ) = κu + κl

2
+ κu − κl

2
tanh

(
ŝ · ln

µT

µ
− o

)
. (4.30)

Sensitivity s : − ∂

∂µ
κ
∣∣∣
µ=µT

!= s ⇔ ŝ = 2
κu − κl

s. (4.31)

Offset o : κ(µ = µT)
!= 1 ⇔ o = atanh

(
2 − κu − κl

κu − κl

)
. (4.32)

4.4.4 Convergence Plot

Figure 4.7 demonstrates the convergence of the placement algorithm by displaying
the progression of different characteristic values over the iterations.

Progression of the Module Overlap �

At the start, the module overlap is high (almost 100%). Then it is decreasing contin-
uously over the iterations, which demonstrates that step 3 of the convergence proof is
justified by experiments. When the global placement process is stopped the module
overlap is 20%.

4.4 Implementation Details 77

 0

0.5

 1

1.5

2

0 5 10 15 20 25
0.01

0.1

1

10

100

M
od

ul
e

ov
er

la
p

Ω
,

M
od

ul
e

m
ov

em
en

t
µ

(n
or

m
.
to

 µ
T
),

an
d

N
et

le
ng

th
 L

 (
in

 H
P
W

L
,
no

rm
.)

A
ve

ra
ge

 l
en

gt
h

δ
of

 t
he

 g
ra

di
en

ts

of
 t

he
 p

ot
en

ti
al

 Φ
 (

no
rm

.
to

 µ
T
)

Iteration

Avg. length δ of the gradients
 of the potential Φ

Module
 movement µ

Module

Netlength L

overlap Ω

Fig. 4.7. Convergence plot displaying the progression of different characteristic values over
the iterations: module overlap �, average Euclidean length δ of the gradients of the potential
�, module movement µ and net length L . Used circuit: bigblue1 of the ISPD 2005 contest
benchmarks.

Progression of the Average Length δ of the Gradients of the Potential �

The average Euclidean length δ of the gradients of the potential � correlates highly
with the module overlap �: δ is very high at the start and it is then decreasing con-
tinuously over the iterations.

This is because the lower the module overlap � is, the more even is the distrib-
ution D(x, y). As the potential � is determined by the distribution D(x, y), a lower
module overlap � yields also a more even potential �. Since the evenness of the
potential � is represented in the average Euclidean length δ of the gradients of the
potential �, a lower module overlap � results in a lower δ.

Progression of the Module Movement µ

At the start, the module movement µ is low. Then it is rapidly increasing up to 1.5
relative to the target module movement µT. After this peak, the module movement µ
is controlled to be around µT using the spring constants of the target points and the
scaling function κ(µ) as explained in Sect. 4.4.3.

But after around iteration 12, µ cannot be held at µT but is slowly decreasing.
This is because the modules are moved by the target points. These target points are
calculated by the module centers and the gradient of the potential � (4.19). Denoting
the average Euclidean length of the potential � by δ (as done above), the modules
can be moved at most the distance δ in one iteration. This means that δ is an upper
bound for the average module movement µ. Since δ is around µT at iteration 12 and
δ is decreasing at higher iterations, the module movement µ cannot be held at µT
after iteration 12 but is slowly decreasing.

78 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

Progression of the Net Length L

The net length is continuously increasing over the iterations with an almost constant
ascent up to iteration 22. After this, the module movement µ is very low and thus the
change in the net length is almost zero. From start to end, the net length increases by
around 60%.

Robustness

Figure 4.7 also demonstrates the robustness of our placement approach. With con-
tinuously decreasing module overlap µ, the average length δ of the gradients of the
potential � is also continuously decreasing. Since δ is an upper bound for the module
movement µ, the module movement µ has to decrease after a certain iteration (this
is iteration 12 in Figure 4.7) and has to be zero if the module overlap is completely
removed. This means that our placement algorithm is self-controlling for the mod-
ule movement, which is one aspect of our robustness: whatever the spring constants
ẘi of the target point is, i.e., however quality control is implemented, the algorithm
converges to an overlap-free placement. In addition, at the last iterations of the con-
vergence process the modules are moved continuously less until they are not moved
anymore when the algorithm has converged.

4.4.5 Control of the Module Density

Section 4.3.1 describes that the distribution D(x, y) is determined by the demand
Ddem(x, y) and the supply Dsup(x, y): D(x, y) = Ddem(x, y) − Dsup(x, y). There
it is also explained that the distribution D(x, y) creates an electrostatic potential �
and the modules are moved based on the gradient of the potential �.

To remove the module overlap, the demand Ddem(x, y) has to reflect the distrib-
ution of the modules and the supply Dsup(x, y) has to represent the region, in which
the modules should be placed and the density for the modules there.

Module Demand

To compute the module demand, a rectangle function R(x, y; xll, yll, w, h) is needed,
which is defined in the x–y-plane and has the parameters lower left corner (xll, yll),
the width w, and the height h:

R(x, y; xll, yll, w, h) =
{

1 if 0 ≤ x − xll ≤ w ∧ 0 ≤ y − yll ≤ h
0 otherwise

(4.33)

The demand Ddem(x, y) for the M movable and F fixed modules is calculated
using the rectangle function R and the information that a module m has the center
position (xm, ym), width wm , and height hm :

4.4 Implementation Details 79

Ddem(x, y) =
M+F∑

m=1

dm · R
(

x, y; xm − wm

2
, ym − hm

2
, wm, hm

)
(4.34)

The individual module density dm is usually one for each module. To avoid so-called
“halos,” i.e., free space around large modules, the individual module density dm is
scaled down according to the module area Am = wm · hm for large modules.

dm =
{√

Alarge
Am

(1 − td) + td Am > Alarge (i.e., large module)

1 otherwise
(4.35)

td is the given target density for the modules. Alarge is the area, beyond which a
module is said to be large. This threshold area Alarge can be defined for example by
the row height hrow: Alarge = (5 · hrow)2

Module Supply

The sketch of proof in Sect. 4.3.2 states that our algorithm converges to a place-
ment in which the (module) demand Ddem(x, y) is adapted to the (module) sup-
ply Dsup(x, y) in each position (x, y). Thus the module density, represented in the
demand, is determined by the supply.

If the whole chip, which is defined by the lower left corner (xChip, yChip), the
width wChip and the height hChip, is used for the module supply, then the module
supply is

Dsup
intrinsic(x, y) = dintrinsic · R

(
x, y; xChip, yChip, wChip, hChip

)
(4.36)

The demand-and-supply system has to balanced, i.e., (4.17) has to be fulfilled, which
gives

∞∫

−∞

∞∫

−∞
Dsup

intrinsic(x, y) dx dy =
∞∫

−∞

∞∫

−∞
Ddem(x, y) dx dy (4.37)

dintrinsic · AChip =
M+F∑

m=1

dm · Am (4.38)

dintrinsic =
∑M+F

m=1 dm · Am

AChip
(4.39)

Therefore the modules are spread evenly over the whole chip with the intrinsic mod-
ule density dintrinsic if the whole chip placement area AChip = wChip · hChip is used
for the module supply.

Sometimes spreading the modules over the whole chip is not desired because the
chip allows the modules to be packed with a higher target density td than dintrinsic

80 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

x

y
Ddem (x, y) > 0

(a) Module demand Ddem(x, y)

x

Chip

y
Dsup

init (x, y) = td

Dsup
add (x, y) = td

(b) Initial module supply Dsup
init (x, y) and addi-

tional module supply Dsup
add(x, y)

Fig. 4.8. Module supply Dsup(x, y) = Dsup
init (x, y)+ Dsup

add(x, y) to control the module density
to be td.

in order to lower the net length. To control the module density to the given module
target density td, the module supply Dsup(x, y) has to be exactly td in the regions,
where the modules should be placed, and zero elsewhere. The following two steps
explain in detail how this module supply is created (see also Figure 4.8).

1. Create an initial module supply Dsup
init (x, y) with the value td all-around where

there is a module demand:

Ddem(x, y) > 0 → Dsup
init (x, y) = td (4.40)

2. Create an additional module supply Dsup
add(x, y) with the value td around the ini-

tial module supply.

The module supply Dsup(x, y) is then the initial and additional module supply:

Dsup(x, y) = Dsup
init (x, y) + Dsup

add(x, y) (4.41)

The additional module supply is needed in order to get a balanced demand-and-
supply system, i.e., to fulfill (4.17).

∞∫

−∞

∞∫

−∞
Dsup

add(x, y) + Dsup
init (x, y) dx dy !=

∞∫

−∞

∞∫

−∞
Ddem(x, y) dx dy (4.42)

Figure 4.9 (c) shows the module density td vs. net length. The lowest net length
is at the highest density td = 1. With decreasing module density, the modules are
spread more over the chip and hence the net length is increasing. At the intrinsic
module density td = dintrinsic = 0.44, the modules are spread evenly over the chip
and the net length has the highest value.

Figures 4.9 (a), (b), and (d) display the module congestion at different module
densities td = 0.44, 0.7, and 1, respectively. In each of the three module congestion

4.5 Experimental Results 81

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

0.4 0.5 0.6 0.7 0.8 0.9 1

N
et

le
ng

th

(n
or

m
al

iz
ed

 H
P
W

L
)

Module Density

(a) (b)

(d)(c)

Fig. 4.9. Module density vs. net length (c). Module congestion of the final placements at
different module target densities (a), (b), (d). White represents zero density, black represents
a density of one. Used circuit: bigblue1 of the ISPD 2005 contest benchmarks.

plots, the region containing all the modules has a constant color which exactly rep-
resents the module density td. This demonstrates that the modules are spread with
the given module density td. Therefore the above described two steps to create the
module supply yields a precise control of the module density td.

4.5 Experimental Results

All presented results in this chapter were determined on an AMD Athlon Opteron
248 with 8 GB RAM and running at 2.2 GHz. Please note that 3.5 GB RAM were
enough for the biggest circuit and that for a fair CPU time comparison, we used only
one of the two available CPU cores. The net length of all circuits is measured by the
HPWL representing a fast and accurate estimation for the routed wire length.

Please note that the results presented in this chapter are about 2% better in net
length and 60% better in CPU time than the results presented in [30] and in [31].
This is because the recent version of our placer uses a greedy module swapping after

82 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

Table 4.2. The BoundingBox net model compared to the clique net model based on the eight
circuits of the ISPD 2005 contest benchmarks.

Clique Net Model BoundingBox Net Model
Circuit HPWL [m] CPU [s] HPWL [m] CPU [s]
adaptec1 90.11 374 82.67 256
adaptec2 101.55 460 93.03 344
adaptec3 251.88 641 229.36 687
adaptec4 218.66 829 200.85 714
bigblue1 108.79 679 97.97 505
bigblue2 171.21 1070 155.43 551
bigblue3 386.21 4078 344.94 2072
bigblue4 961.85 9682 859.18 4180
Average 1.000 1.000 0.907 0.696
Improvement to Clique 9.93% 30.4%

the final placement, which improves the net length, and it utilizes a cache optimized
solver for the linear system of equations (4.25), which reduces the CPU time.

4.5.1 Clique and BoundingBox Net Model

Table 4.2 shows the comparison between the traditional clique net model and our
new linear BoundingBox net model based on the eight circuits of the ISPD 2005
contest benchmarks. Since the number of connections is much smaller in our net
model, the memory usage is about 75% lower and the CPU time is 30% lower using
our net model.

In contrast to the clique net model, our new linear net model reflects the net
length measured by the HPWL exactly in the quadratic cost function. Therefore net
length is about 9% better in the BoundingBox net model than in the clique net model.

4.5.2 ISPD 2005 Contest Benchmarks

The results of our placer and other state-of-the-art placers on the ISPD 2005 contest
benchmarks are given in Table 4.3. The results of the other placers are taken from
[32]. The quality of placement for each placer is described in the column “Average”
being the average ratio between the placer’s HPWL of all five circuits compared
to APlace’s HPWL. Since the authors of [32] just mention that they use a 1.6 GHz
machine, we scaled their CPU time results according to the ratio between the CPU
frequencies: 1.6/2.2. Only the CPU times of APlace and Capo are given for the ISPD
2005 contest benchmarks in [32].

The leading APlace is on average 4% better than our placement approach but
needs 35× more CPU time. Looking at single results reveals that our placer has the
best result at bigblue3 circuit. Compared with Capo our placer is 12% better and 12×
faster.

The presented results of our placer are based on the quality control parameter
µT = 20. As it is shown by the trade-off Figure 4.5, which is based on the same

4.5 Experimental Results 83

Table 4.3. Results of our placer Kraftwerk compared to other state-of-the-art placers based on
six contest-relevant circuits of the ISPD 2005 contest benchmarks [33].

Circuit
Placer adaptec2 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4 Average CPU [h]
APlace 87.31 187.65 94.64 143.82 357.89 833.21 1.000 82.33

Kraftwerk 93.03 200.85 97.97 155.43 344.94 859.18 1.041 2.32
mFAR 91.53 190.84 97.70 168.70 379.95 876.26 1.064 n/a
Dragon 94.72 200.88 102.39 159.71 380.45 903.96 1.083 n/a

mPL 97.11 200.94 98.31 173.22 369.66 904.19 1.091 n/a
FastPlace 107.86 204.48 101.56 169.89 458.49 889.87 1.155 n/a

Capo 99.71 211.25 108.21 172.30 382.63 1098.76 1.166 27.49
NTUPlace 100.31 206.45 106.54 190.66 411.81 1154.15 1.206 n/a
FengShui 122.99 337.22 114.57 285.43 471.15 1040.05 1.494 n/a

circuits, the CPU time could be improved by 50% at a quality loss of 2%. On the
other hand, the quality could be improved by 0.5% at a CPU time increase of 70%.

4.5.3 ISPD 2006 Contest Benchmarks

In the ISPD 2005 contest benchmarks, the modules were allowed to be packed at a
density of 100%. This results in the lowest net length (see also Figure 4.9 (c)), but
routing may not be feasible because of too high-wire density. Therefore each cir-
cuit of the ISPD 2006 contest benchmarks has an individual module density given,
which has to be respected by the placement of the modules on the chip. Section 4.4.5
describes an efficient method to place the modules according to a given density by
using the generic demand-and-supply system of our placer. In addition to the pos-
sibility that the modules can be packed with 100% density, the ISPD 2005 contest
benchmarks also do not account for the CPU time needed to place the modules.

Therefore the ISPD 2006 contest benchmarks utilize three different quality fac-
tors: the net length measured in HPWL, the overflow of the module density beyond
the given density, and the CPU time needed for placement.

The overflow factor is expressed in percent and reflects how good the given mod-
ule density is respected by the placer. An overflow factor of 0% represents that
the given module density is respected everywhere on the chip. The CPU factor is
expressed in percent and is calculated by the logarithmic ratio of the placer’s CPU
time to the median1 CPU time of all placers.

These three quality factors are combined to three different scoring functions to
express the quality of a placer: HPWL, HPWL+Overflow, and HPWL+Overflow+
CPU. All these three scoring functions are normalized to the best (minimal) achieved
value.

1 Please note that “median” is not equal to “average.” Only for normal distributions they are
the identical.

84 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

Table 4.4. Results of Kraftwerk in the ISPD 2006 contest benchmarks.

Score

HPWL
HPWL+
Overflow

HPWL+
Overflow+
CPU

Circuit
HPWL
(m)

Overflow
factor (%)

CPU (s)
CPU
factor (%)

adaptec5 433.84 3.606 1618 −9.35 1.071 1.032 0.939
newblue1 65.92 0.415 603 −8.38 1.057 1.043 0.956
newblue2 203.91 1.286 508 −10.00∗ 1.033 1.082 0.975
newblue3 278.51 0.382 526 −10.00∗ 1.018 1.067 0.961
newblue4 304.24 1.709 1553 −8.63 1.068 1.033 0.945
newblue5 548.38 2.694 2622 −9.50 1.109 1.054 0.957
newblue6 528.59 1.702 2579 −9.89 1.048 1.036 0.936
newblue7 1126.58 3.155 4828 −9.06 1.053 1.051 0.958
Average 1.869 −9.35 1.057 1.050 0.953
∗As required in these benchmarks, we limited the CPU factor to ±10%. The “raw”

CPU-factors are −13.50% and −10.98%, respectively

Table 4.4 displays detailed results of our placer in the ISPD 2006 contest bench-
marks. Please note that our values of the three scoring functions are normalized to the
original best values as described in [31]. Therefore our placement approach achieves
in the scoring function HPWL+Overflow+CPU a value below one in some circuits.
On the average, our placer has an overflow factor of 1.87%, which demonstrates that
the given module density is respected in a very good manner.

The original results of the ISPD 2006 contest benchmarks are based on using an
AMD Athlon Opteron 252 running at 2.6 GHz. Our results as presented in Table 4.4
are based on an Opteron 248 running at 2.2 GHz. The ratio in the SPEC CPU 2000
benchmarks [34] of those two machines is 0.84 on average. Therefore we scaled our
CPU times with the factor 0.84 to determine our CPU factors. The average CPU
factor of −9.4% reflects that our placer is in the median more than 4× faster than the
other placers.

The average values of other state-of-the-art placers in the three scoring func-
tions are shown in Table 4.5. For comparison between the placers, the scoring
function HPWL can be ignored because it does not take into account if the given
module density is respected. The scoring function HPWL+Overflow is more of
theoretical issue because it does not consider the CPU time needed for placement.
Therefore the most realistic scoring function to compare the quality of a placer is
HPWL+Overflow+CPU, because it reflects all important facts of a placer in every
days usage.

Based on the most realistic scoring function HPWL+Overflow+CPU, our placer
is the best. The next best placer mPL has a 9% higher value in this scoring function.
Using the more theoretical scoring function HPWL+Overflow, our placer is the third
best. mPL and NTUPlace are 2.8% and 2% better, mFAR and APlace are both 5.4%
worse.

Therefore Tables 4.3 and 4.5 demonstrate the same characteristic of our placer:
Under practical issues, i.e., considering net length, module density, and CPU time,

4.5 Experimental Results 85

Table 4.5. Results of our placer Kraftwerk and other state-of-art placers in the ISPD 2006
contest benchmarks. Please note that our results as published in the original contest results are
slightly different because they are based on an older version of our placer.

Placer HPWL
HPWL+
Overflow

HPWL+
Overflow+
CPU

Kraftwerk 1.057 1.050 0.953
mPL 1.035 1.020 1.040

NTUPlace 1.016 1.029 1.049
mFAR 1.108 1.107 1.108
APlace 1.097 1.107 1.165
Dragon 1.331 1.300 1.232

Fastplace 1.177 1.392 1.329
DPlace 1.343 1.414 1.364
Capo 1.375 1.344 1.385

our placer is the best. Ignoring the CPU time and hence accounting a more theoretical
quality, our placer is almost the best.

4.5.4 PEKO-MS ISPD 2005 Benchmarks

The authors of [35] present a set of netlist transformations called “monotone chains”,
which can be utilized to create circuits with known optimal or provably near-optimal
placements.

Based on precomputed placements of the ISPD 2005 contest benchmarks and the
monotone chains of [35], the PEKO mixed size ISPD 2005 benchmarks are created,
which have provably near-optimal placements. These benchmarks have the attribute
“mixed size” (MS), because they consists of millions of small movable modules as
well as of some big movable modules. Furthermore the white space of the PEKO-
MS ISPD 2005 benchmarks can be parametrized, i.e., the module density can be
adjusted.

In our results of the PEKO-MS ISPD 2005 benchmarks, we set white space to the
maximal value, i.e., the module density is minimal and the modules are spread over
the whole chip. We use the maximal value of white space because the placements on
which the PEKO-MS ISPD 2005 benchmarks are based have the same property, i.e.,
their modules are also spread over the whole chip.

Table 4.6 presents detailed results of our placer in the PEKO-MS ISPD 2005
benchmarks. The last column “Optimal” in this table shows the ratio of the net
length between our final placements and the probably near-optimal final placements.
On average we are 25.2% away from the provably near-optimal net length.

Table 4.7 displays that our placer produces placements with the best published
net length in the PEKO-MS ISPD 2005 benchmarks. The other placers mPL, APlace
and Capo have a 20%, 27%, and 57% higher net lengths, respectively. Unfortunately,
the CPU times of the other placers are yet unknown. But we believe that our placer

86 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

Table 4.6. Results of Kraftwerk in the original and the PEKO-MS version of the ISPD 2005
contest benchmarks.

ISPD 2005 PEKO-MS ISPD 2005
Initial
Spread

CPU
(s)

Initial
Spread

CPU
(s)

HPWL
(m)

Optimal

Adaptec1 0.319 256 0.978 175 23.79 1.186
Adaptec2 0.540 344 0.976 225 29.21 1.170
Adaptec3 0.615 687 0.970 410 49.51 1.209
Adaptec4 0.474 714 1.008 357 48.59 1.234
Bigblue1 0.154 505 1.024 231 25.40 1.218
Bigblue2 0.701 551 0.898 471 61.07 1.445
Bigblue3 0.577 2072 0.842 1311 119.49 1.266
Bigblue4 0.714 4180 0.843 4092 221.43 1.291
Average 1.000 1.000 2.395 0.670 1.252

Table 4.7. Results of our placer Kraftwerk and other state-of-the-art placers in the PEKO-MS
ISPD 2005 benchmarks. Results other than of Kraftwerk are taken from [35].

Placer
Average
HPWL

Kraftwerk’s
Improve-
ment
(%)

Kraftwerk 1.252
mPL 1.510 20.61

APlace 1.590 27.00
Capo 1.960 56.55

maintained to be one of the fastest as our CPU times placing the PEKO-MS ISPD
2005 benchmarks is 33% lower than placing the ISPD 2005 contest benchmarks and
we have one of the lowest CPU times in the ISPD 2005 contest benchmarks.

This outstanding result of our placer in the net length may be surprising since the
results in the ISPD 2005/06 contest benchmarks (see Tables 4.3 and 4.5) reveal that
our placer usually is one of the fastest but does not have quite the best net length.
Therefore we will discuss in the following some insights of our placer and the dif-
ferences of the original and the PEKO-MS ISPD 2005 benchmarks.

Figure 4.4 shows that our placement algorithm computes an initial placement by
just minimizing the net length. This usually results in a lot of module overlap because
the modules are concentrated highly somewhere on the chip. Therefore the module
are spread over the chip in global placement by utilizing the additional move and
hold forces. If the module overlap is low enough, the spreading is stopped and the
final placement is done by “FindNextBestPlace.”

Hence the more the modules are spread already in the initial placement, the less
the modules have to be moved during global placement and the better is the final
placement in terms of net length. Therefore one key issue of our placement algorithm
is the modules’ spread in the initial placement.

Figure 4.10 (a) demonstrates that in the initial placement of circuit bigblue1 of
the ISPD 2005 contest benchmarks, the modules are concentrated highly at the center

4.5 Experimental Results 87

(a) Initial placement in the original version. (b) Initial placement in the PEKO-MS
Spread = 0.154 version. Spread = 1.024

Fig. 4.10. Initial placements of the circuit bigblue1 at the original and the PEKO-MS version
of the ISPD 2005 benchmarks. Modules are black, nets are gray. Spread is calculated by (4.43).

of the chip, i.e., they are spread not very well on the chip. Considering the same
circuit of the PEKO-MS ISPD 2005 benchmarks, the modules are evenly spread
over the whole chip in the initial placement, as displayed in Figure 4.10 (b).

To measure the spread of the modules, we use the following formula:

Spread =
√√√√

var(X) + var(Y)

1
12

(
w2

Chip + h2
Chip

) . (4.43)

The terms var(X) and var(Y) are the variances of the module positions in x- and
y-direction. wChip and hChip represent the width and the height of the chip. Thus
Spread is one if the modules are spread evenly over the whole chip area and Spread
is smaller than one if the modules are concentrated somewhere on the chip.

Table 4.6 displays in the column “Initial Spread” the modules’ spread in the ini-
tial placements of the circuits of the original and the PEKO-MS version of the ISPD
2005 contest benchmarks. On average, the modules are spread 2.4× more in PEKO-
MS ISPD 2005 benchmarks. Thus the global placement has to move the modules
very little and the final placements are almost the same as the initial placements,
whereas the initial placements are based on just minimizing the net length. There-
fore the net lengths of our final placements in the PEKO-MS ISPD 2005 benchmarks
are amazingly good and better than in the ISPD 2005 contest benchmarks (compared
to the net lengths of other placers).

But why are the initial placements in the PEKO-MS ISPD 2005 benchmarks
that good, i.e., why are the modules spread so highly there? We believe that this
depends mainly on the “monotone chains” presented in [35]. These sets of netlist

88 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80 90 100

F
re

qu
en

cy

Pins per Net (Netdegree)

ISPD 2005 org.

ISPD 2005 Peko

Fig. 4.11. Net statistic of the original and the PEKO-MS version of the ISPD 2005 bench-
marks.

transformations are used beside other methods to convert the original ISPD 2005
contest benchmarks to the PEKO-MS versions. Figure 4.11 shows the net statistic,
i.e., the frequency of nets with a certain net degree, of the original and the PEKO-MS
ISPD 2005 benchmarks. The comparison between both net statistics reveals that the
PEKO-MS version differs much in the frequency of nets with more than five pins.
Moreover the PEKO-MS version has no nets with 40 or more pins. Therefore the
“monotone chains” make big changes in the netlist and the circuits based on these
netlist transformations have the property that just minimizing the net length (as done
in our initial placement) yields an almost even module spreading. This property of
the PEKO-MS ISPD 2005 benchmarks is much in favor of our placement algorithm.

4.5.5 PEKO-MS ISPD 2006 Benchmarks

Similar to the PEKO-MS ISPD 2005 benchmarks, the PEKO-MS ISPD 2006 bench-
marks are created based on the ISPD 2006 contest benchmarks and the netlist trans-
formation described in [35].

One difference between the PEKO-MS ISPD 2006 benchmarks and the 2005
version is that there are nets with up to 1,000 pins in the 2006 version. However
both PEKO benchmarks are characterized that the net frequency is not continuously
decreasing with the number of pins, as in the original ISPD 2005 and 2006 bench-
marks, but there are big peaks. This is displayed in Figures 4.11 and 4.12.

The detailed results of our placer for the PEKO-MS ISPD 2006 benchmarks are
represented in Table 4.8. The comparison in “Initial Spread” and “CPU” is the same
as in the 2005 version: around 2.3× higher spread and 18% lower CPU time in the
PEKO-MS ISPD 2006 benchmarks than in the original versions. The optimality gap
of Kraftwerk in the net length using PEKO-MS ISPD 2006 benchmarks is 26.7% on
average, as displayed in “Optimal.” This is comparable to that in the 2005 version.

The ISPD 2006 contest benchmarks reflect in the “overflow” factor the quality,
how good a placer respects a given module density. Therefore we also determined the

4.5 Experimental Results 89

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

 0 10 20 30 40 50 60 70 80 90 100

F
re

qu
en

cy

Pins per Net (Netdegree)

.

ISPD 2006 Peko

ISPD 2006 org.

Fig. 4.12. Net statistic of the original and the PEKO-MS version of the ISPD 2006 bench-
marks.

Table 4.8. Results of Kraftwerk in the original and the PEKO-MS version of the ISPD 2005
contest benchmarks.

ISPD 2006 PEKO-MS ISPD 2006
Initial
Spread

CPU (s)
Initial
Spread

CPU (s) HPWL (m) Optimal
Overflow

Circuit Kraftwerk (%) Optimal (%)
Adaptec5 0.583 1618 1.032 995 95.89 1.171 36.37 9.99
Newblue1 0.131 603 0.877 602 30.51 1.488 11.60 1.73
Newblue2 0.505 508 0.825 518 42.37 1.289 50.87 10.29
Newblue3 0.677 526 0.822 513 81.20 1.105 53.27 9.55
Newblue4 0.516 1553 0.952 850 60.58 1.233 36.26 9.26
Newblue5 0.516 2622 0.963 2738 140.04 1.372 66.94 9.58
Newblue6 0.571 2579 0.979 1329 111.12 1.226 51.88 8.36%
Newblue7 0.833 4828 0.989 4168 258.13 1.252 46.07 7.07
Average 1.000 1.000 2.239 0.823 1.267 44.16 8.23

overflow for the PEKO-MS ISPD 2006 benchmarks. The high value of 44.2% is not
typical for Kraftwerk, as our placer has on average an overflow of 1.87% in the orig-
inal ISPD 2006 contest benchmarks (see Table 4.4). We computed the overflow of
the optimal placements of the PEKO-MS ISPD 2006 benchmarks and detected con-
siderably high-overflow values. Thus this strange behavior of overflow is not due to
the placer but more due to characteristics of the PEKO-MS benchmarks. Especially
all standard cells have the same height and width in the PEKO-MS benchmarks and
the row grid, on which the modules can be placed, is the same as the width of the
standard cells. Hence the coarse row grid makes it hard to respect the module density
everywhere on the chip and accordingly the “overflow” factor is bigger than in the
original benchmarks.

In summary, the results in initial spread, CPU time, and overflow are totally
different between both PEKO-MS benchmarks (2005 and 2006) and the original
benchmarks. The same holds true for the characteristics in net statistics, module
dimensions, and row grid. Thus the PEKO-MS benchmarks are somewhat artificial

90 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

100

1000

10000

100000 1e+06 1e+07

C
P
U

 t
im

e
in

 s
ec

on
ds

N: Number of movable modules

CPU time=Θ(N1.18)

Fig. 4.13. Average computational complexity �. Results are based on 16 circuits of the ISPD
2005 and 2006 contest benchmarks.

and do not reflect the behavior of real benchmarks. Therefore the benefit of the
netlist transformations, which the PEKO-MS benchmarks are based on and which
are described in [35], is not clear.

4.5.6 Computational Complexity

To estimate the CPU time to place the next generation circuits by our placer, we
determined the average computational complexity of our placer. This was done by
placing the circuits of the ISPD 2005 contest benchmarks and ISPD 2006 contest
benchmarks. The module density was set to 100% in both benchmarks, because it
has an effect on the CPU time: the higher the module density, the less the modules
have to be spread over the chip by global placement, and thus the lower is the CPU
time.

Figure 4.13 shows the CPU time vs. the number N of movable modules in a
double logarithmic scale. The regression line through the results of the 16 circuits of
the ISPD2005/06 contest benchmarks gives an average computational complexity of
�(N 1.18). This represents that our placer has an almost linear complexity. Therefore
the CPU times of future circuits will increase nearly linearly with the number of
modules.

4.6 Conclusion

This chapter presented the force-directed quadratic placer Kraftwerk, which is based
on two fundamentals. One fundamental is a novel nonheuristic force modeling,
which gives robustness by the guaranteed convergence to an overlap-free placement.
In addition, the introduced force separation yields an efficient support of the ECO.
The other fundamental of Kraftwerk is the usage of an exact linear net model, which
can be utilized by all quadratic placers and which expresses the net length measured

References 91

in HPWL precisely in the quadratic cost function. Here the HPWL is a linear net
metric and an efficient estimation of the routed wire length.

Beside the fundamentals of Kraftwerk, a detailed insight in its implementation
was given in this chapter. So the quality control was presented and the control of the
module density was shown. The control of the module density represents the basic
placement problem. As Kraftwerk is based on a general demand-and-supply system,
our placement approach can be easily extended to solve not only the basic placement
but complexer placement problems like the optimization of the temperature profile
of a chip or the routability of a chip.

The overall high quality and the low CPU time of Kraftwerk were demonstrated
in this chapter by using various realistic and state-of-the-art benchmarks. To explain
Kraftwerk’s outstanding good net length in the PEKO-MS ISPD 2005 benchmarks,
the characteristics of these benchmarks were discussed.

Having an almost linear computational complexity, Kraftwerk will remain one of
the fastest placers in the future.

References

1. International technology roadmap for semiconductors. http://public.itrs.net
2. W.-J. Sun and C. Sechen. Efficient and effective placement for very large circuits.

In IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
170–177, 1993

3. R.-S. Tsay, E.S. Kuh, and C.-P. Hsu. PROUD: A sea-of-gates placement algorithm.
ieeedesigntest, pages 44–56, December 1988

4. J.A. Roy, D.A. Papa, S.N. Adya, H.H. Chan, A.N. Ng, J.F. Lu, and I.L. Markov. Capo:
Robust and scalable open-source min-cut floorplacer. In ACM/SIGDA International Sym-
posium on Physical Design (ISPD), pages 224–226, 2005

5. T. Taghavi, X. Yang, and B.-K. Choi. Dragon2005: Large-scale mixed-size place-
ment tool. In ACM/SIGDA International Symposium on Physical Design (ISPD), pages
245–247, 2005

6. A.R. Agnihorti, S. Ono, C. Li, M.C. Yildiz, A. Khathate, C.-K. Koh, and P.H. Madden.
Mixed block placement via fractional cut recursive bisection. IEEE Transactions on
Computer-Aided Design of Circuits and Systems, 24(5):748–761, May 2005

7. W. Naylor, R. Donelly, and L. Sha. Non-linear optimization system and method for
wire length and delay optimization for an automatic electric circuit placer. U.S. Patent
6301693, October 2001

8. K.G. Murty and F.-T. Yu. Linear complementary, linear and nonlinear pro-
gramming. http://ioe.engin.umich.edu/people/fac/books/murty/
linear complementarity webbook/

9. A.B. Kahng and Q. Wang. Implementation and extensibility of an analytic placer. IEEE
Transactions on Computer-Aided Design of Circuits and Systems, 24(05):734–747, May
2005

10. T. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for circuit
placement. In ACM/SIGDA International Symposium on Physical Design (ISPD), pages
185–192, 2005

92 4 Kraftwerk: A Fast and Robust Quadratic Placer Using an Exact Linear Net Model

11. T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang. A high-quality mixed-
size analytical placer considering preplaced blocks and density constraints. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 187–192, 2006

12. J.M. Kleinhans, G. Sigl, F.M. Johannes, and K.J. Antreich. GORDIAN: VLSI placement
by quadratic programming and slicing optimization. IEEE Transactions on Computer-
Aided Design of Circuits and Systems, CAD-10(3):356–365, March 1991

13. H. Eisenmann and F.M. Johannes. Generic global placement and floorplanning. In ACM/
IEEE Design Automation Conference (DAC), pages 269–274, June 1998

14. B. Hu and M. Marek-Sadowska. FAR: Fixed-points addition & relaxation based place-
ment. In ACM/SIGDA International Symposium on Physical Design (ISPD), pages
161–166, 2002

15. N. Viswanathan and C. C.-N. Chu. Fastplace: Efficient analytical placement using
cell shifting, iterative local refinement and a hybrid net model. IEEE Transactions on
Computer-Aided Design of Circuits and Systems, 24(5):722–733, May 2005

16. B. Hu and M. Marek-Sadowska. Multilevel fixed-point-addition-based vlsi place-
ment. IEEE Transactions on Computer-Aided Design of Circuits and Systems,
24(8):1188–1203, August 2005

17. U. Brenner and M. Struzyna. Faster and better global placement by a new transporta-
tion algorithm. In ACM/IEEE Design Automation Conference (DAC), pages 591–596,
June 2005

18. G.-J. Nam, S. Reda, C.J. Alpert, P.G. Villarrubia, and A.B. Kahng. A fast hierarchical
quadratic placement algorithm. IEEE Transactions on Computer-Aided Design of Circuits
and Systems, 25(4):678–691, April 2006

19. A. Kennings and K.P. Vorwerk. Force-directed methods for generic placement. IEEE
Transactions on Computer-Aided Design of Circuits and Systems, 25(10):2076–2087,
October 2006

20. M.C. Van Lier and R.H.J.M. Otten. Planarization by transformation. IEEE Transactions
on Circuits and Systems CAS, 20(2):169–171, March 1973

21. J. Vygen. Algorithms for large-scale flat placement. In ACM/IEEE Design Automation
Conference (DAC), pages 746–751, 1997

22. G. Sigl, K. Doll, and F.M. Johannes. Analytical placement: A linear or a quadratic objec-
tive function? In ACM/IEEE Design Automation Conference (DAC), pages 427–432, San
Francisco, 1991

23. M. Hanan. On Steiner’s problem with rectiliner distance. SIAM Journal of Applied Math-
emetics, 14(2):255–265, 1966

24. C. Chu. FLUTE: Fast lookup table based wirelength estimation technique. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 696–701, 2004

25. K.M. Hall. An r-dimensional quadratic placement algorithm. Management Science,
17(3):219–229, November 1970

26. B. Obermeier and F.M. Johannes. Temperature-aware global placement. In Asia and
South Pacific Design Automation Conference, volume 1, pages 143–148, Yokohama,
Japan, January 2004

27. M. Kowarschik and C. Weiß. DiMEPACK – A Cache-optimized multigrid library. In
H.R. Arabnia, editor, Proceedings of the International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA, pages 425–430. CSREA Press,
June 2001

28. W.E. Donath. Complexity theory and design automation. In ACM/IEEE Design Automa-
tion Conference (DAC), volume 19, pages 412–419, 1980

References 93

29. B. Obermeier and F. M. Johannes. Quadratic placement using an improved timing
model. In ACM/IEEE Design Automation Conference (DAC), pages 705–710, San Diego,
June 2004

30. P. Spindler and F.M. Johannes. Fast and robust quadratic placement based on an accurate
linear net model. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2006

31. International symposium on physical design. http://www.ispd.cc
32. A.B. Kahng, S. Reda, and Q. Wang. Architecture and details of a high quality, large-scale

analytical placer. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 890–897, 2005

33. G.-J. Nam, C.J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz. The ISPD2005 place-
ment contest and benchmark suite. In ACM/SIGDA International Symposium on Physical
Design (ISPD), pages 216–219, May 2005

34. Standard Performance Evaluation Corporation. SPEC CPU 2000. http://www.
spec.org/cpu2000

35. J. Cong, M. Romesis, J.R. Shinnerl, K. Sze, and M. Xie. Locality and utilization in
placement suboptimality. Technical report, UCLA Computer Science Department, 2006

Part III

Top-Down Partitioning-Based Techniques

5

Capo: Congestion-Driven Placement for Standard-cell
and RTL Netlists with Incremental Capability

Jarrod A. Roy, David A. Papa and Igor L. Markov
The University of Michigan, Department of EECS, 2260 Hayward Ave., Ann Arbor,
MI 48109-2121
{royj, iamyou, imarkov}@eecs.umich.edu

Summary. In this chapter, we describe the robust and scalable academic placement tool
Capo. Capo uses the min-cut placement paradigm and performs (a) scalable multiway par-
titioning, (b) routable standard-cell placement, (c) integrated mixed-size placement, (d) wire
length-driven fixed-outline floorplanning as well as (e) incremental placement.

5.1 Introduction

The success of min-cut techniques in fixed-die placement is based on the speed and
strength of multilevel hypergraph partitioners, the convenient top-down framework
that efficiently captures available on-chip resources, and the fact that modern VLSI
circuits admit a large number of good placements, which include slicing placements.
The recent trend for large amounts of whitespace, clearly visible in the ISPD05 and
ISPD06 contest benchmarks, particularly increases the flexibility in the placement
problem.

The earliest work describing the Capo placer was a paper from ISPD 1999
describing the end-case placers and optimal partitioners as well as terminal propa-
gation with inessential nets used in Capo [13]. The Capo placer, first released at DAC
2000 [11], sought to produce routable placements with a pure min-cut algorithm. To
this end, Capo 8.0 was successful for most industrial benchmarks evaluated, even
though it did not build or use congestion maps. For example, it produced a routable
placement of an industrial design with 200K cells in 1.5 h on a single-processor
workstation. Capo’s routability was evaluated with a full-fledged router and demon-
strated that early estimators of routability may produce misleading results [11].

Capo’s overall performance was on par with commercial tools, however an
ISPD 2002 paper [40] proposed a new set of benchmarks on which Capo was less

98 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

successful compared to a newer tool, Dragon. Dragon found routable placements in
most cases by building congestion maps and biasing the placement process accord-
ingly. This suggested that congestion-driven placement was far from solved and seve-
ral papers in 2003–2005 and later reported even better results [1, 5, 23, 27].

Earlier versions of Capo distributed whitespace approximately uniformly,
according to the hierarchical whitespace distribution formula from [15]. However
more recent work [4] introduces tunable whitespace distribution for improved wire
length, while preserving a minimum amount of local whitespace in most regions
to ensure routability. Whitespace allocation and detail placement have been fur-
ther improved by analyzing the performance of Capo on feature benchmarks [32]
designed to stress different aspects of placers.

Unlike Dragon and FengShui [5], Capo does not explicitly use multiway parti-
tioning. The addition of placement feedback [24] counteracts this potential limita-
tion. Additionally, cutline shifting in recursive bisection adds flexibility in partition
shapes and sizes, as well as whitespace allocation; this is not readily available in
direct min-cut multiway partitioning.

The most recent work on Capo has been on improving Capo’s performance on
routing benchmarks and difficult instances of floorplanning and mixed-size place-
ment, and transforming Capo into an incremental placement tool. As of Fall 2006,
Capo produces the best published routed wire length on several suites of routing
benchmarks by directly optimizing Steiner wire length (StWL) and cutline shift-
ing based on congestion [35]. Capo also performs efficiently with good solution
quality on difficult instances of floorplacement which are not legally placeable by
several other academic techniques [31]. Incremental placement in Capo consists of
simulating the decisions a min-cut placer may have made to produce a given initial
placement [36]. For each decision that is made, Capo chooses to accept or reject the
decision. Accepting a particular decision means continuing the simulation of deci-
sions whereas rejecting a decision results in replacement of a part of the design from
scratch. Empirical results show that Capo’s incremental placement moves objects
minimally, produces solutions with good HPWL, and runs faster than other available
legalization techniques [36].

Using the min-cut floorplacement algorithm from [34] and improvements
introduced in [31, 35, 36], Capo 10 performs (a) scalable multiway partitioning,
(b) routable standard-cell placement, (c) integrated mixed-size placement, (d) wire
length-driven fixed-outline floorplanning, and (e) incremental placement. Capo was
used by Synplicity in the Amplify ASIC product. In particular, Amplify ASIC RC
targeted LSI Logic’s RapidChip architecture. Most RapidChip designs produced
were placed with Capo, and successful customers include companies such as HP,
SGI, CISCO, Nortel Networks, Raytheon, Seagate, 3COM, Alcate, Hitachi, Fujitsu,
IP Wireless, Cryptek, etc. Source code and executables of Capo 10 are available at
http://vlsicad.eecs.umich.edu/BK/PDtools/.

5.2 Min-Cut Placement in Capo 99

5.2 Min-Cut Placement in Capo

5.2.1 Row-Based Placement

Internally, Capo’s placement representation closely resembles the LEF/DEF and
Bookshelf [14] file formats, which represent row information in standard-cell lay-
out. Configurations of rows supply constraints for cell placement. Each row consists
of nonoverlapping subrows aligned to the coordinate of the row. All subrows in a row
share the same coordinate, height, site width, and site spacing. Placement instances
in the Bookshelf format consist of several rows composed of one or more subrows.

Fixed objects may displace sites in the core region. Since fixed objects prevent
standard cells from being placed in those sites, they are obstacles. To prevent the
placer from using sites occupied by obstacles, one solution is to remove the sites
beneath all fixed objects. Capo accomplishes this by fracturing the rows contain-
ing the occupied sites into subrows, excluding the sites beneath the obstacle [11,
Sect. 4.2]. The result is a row-based placement structure containing only legal loca-
tions for placing standard cells.

5.2.2 Min-Cut Bisection

Top-down placement algorithms seek to decompose a given placement instance into
smaller instances by subdividing the placement region, assigning modules to sub-
regions and cutting the netlist hypergraph [11] (see Figure 5.1). Min-cut placers gen-
erally use either bisection or quadrisection to divide the placement area and netlist.
Capo uses bisection as it allows for greater flexibility in cutline shifting to adapt to
changing partition sizes [11, Sect. 3.2].

etc

Variables:
A queue of blocks

Initialization:
A single block represents
the original placement
problem

Algorithm:
while (queue not empty)
dequeue a block
if (small enough) consider
endcase
else {
bipartition into smaller
blocks
enqueue each block
}

Fig. 5.1. High-level outline of the top-down partitioning-based placement process [13]. c©
2000 IEEE.

100 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

Each hypergraph partitioning instance is induced from a rectangular region, or
bin, in the layout. In this context a placement bin represents (a) a placement region
with allowed module locations (sites), (b) a collection of circuit modules to be placed
in this region, (c) all signal nets incident to the modules in the region, and (d) fixed
cells and pins outside the region that are adjacent to modules in the region (termi-
nals). Top-down placement can be viewed as a sequence of passes where each pass
examines all bins and divides some of them into smaller bins.

Capo implements three types of min-cut partitioners – optimal (branch-and-
bound [13]), middle-range (Fiduccia–Mattheyses [12]) and large-scale (multilevel
Fiduccia–Mattheyses partitioner MLPart [10]). Bins with seven or fewer cells use an
optimal end-case placer. This variety of algorithms facilitates partitioning with small
tolerance, allowing Capo to distribute the available whitespace uniformly [15] so
as to facilitate routing. This provides a convenient baseline for further wire length
improvement [4] by nonuniform distribution (this configuration is now used by
default).

The efficiency of the partitioners and placers implemented in Capo as well as the
min-cut placement framework are directly responsible for Capo’s speed and scala-
bility. To this end, large-scale partitioning is performed in O(P log P) time, where
P is the number of pins in the hypergraph. The overall run-time spent on middle-
range partitioning (FM) scales linearly, and so do cumulative run-times of all calls to
optimal partitioning and placement. Further complexity analysis shows that Capo’s
asymptotic run-time scales as O(P log2 P) on standard-cell designs.

5.3 Floorplacement

From an optimization point of view, floorplanning and placement are very similar
problems – both seek nonoverlapping placements to minimize wire length. They
are mostly distinguished by scale and the need to account for shapes in floorplan-
ning, which calls for different optimization techniques. Netlist partitioning is often
used in placement algorithms, where geometric shapes of partitions can be adjusted.
This considerably blurs the separation between partitioning, placement, and floor-
planning, raising the possibility that these three steps can be performed by one CAD
tool. The authors of [34] develop such a tool and term the unified layout optimization
floorplacement following Steve Teig’s keynote speech at ISPD 2002.

Min-cut placers scale well in terms of runtime and wire length minimization,
but cannot produce nonoverlapping placements of modules with a wide variety of
sizes. On the other hand, annealing-based floorplanners can handle vastly differ-
ent module shapes and sizes, but only for relatively few (100–200) modules at a
time. Otherwise, either solutions will be poor or optimization will take too long
to be practical. The loose integration of fixed-outline floorplanning and standard-
cell placement proposed in [3] suffers from a similar drawback because its single
top-level floorplanning step may have to operate on numerous modules. Bottom-up
clustering can improve the scalability of annealing, but not sufficiently to make it
competitive with other approaches. The work in [34] applies min-cut placement as

5.3 Floorplacement 101

much as possible and delays explicit floorplanning until it becomes necessary. In
particular, since min-cut placement generates a slicing floorplan, it is viewed as an
implicit floor planning step, reserving explicit floorplanning for “local” nonslicing
block packing.

Placement starts with a single placement bin representing the entire layout region
with all the placeable objects initialized at the center of the bin. Using min-cut par-
titioning, the bin is split into two bins of similar sizes, and during this process the
cutline is adjusted according to actual partition sizes. Applying this technique recur-
sively to bins (with terminal propagation) produces a series of gradually refined slic-
ing floorplans of the entire layout region. In very small bins, all cells can be placed
by a branch-and-bound end-case placer [13]. However, this scheme breaks down on
modules that are larger than their bins. When such a module appears in a bin, recur-
sive bisection cannot continue, or else will likely produce a placement with overlap-
ping modules. Indeed, the work in [26] continues bisection and resolves resulting
overlaps later. In this technique, one switches from recursive bisection to “local”
floorplanning where the fixed outline is determined by the bin. This is done for two
main reasons (a) to preserve wire length [9], congestion [8] and delay [21] estimates
that may have been performed early during top-down placement, and (b) avoid legal-
izing a placement with overlapping macros.

While deferring to fixed-outline floorplanning is a natural step, successful fixed-
outline floorplanners have appeared only recently [2]. Additionally, the floor planner
may fail to pack all modules within the bin without overlaps. As with any constraint-
satisfaction problem, this can be for two reasons: either (a) the instance is unsatis-
fiable, or (b) the solver is unable to find any of existing solutions. In this case, the
technique undoes the previous partitioning step and merges the failed bin with its sib-
ling bin, whether the sibling has been processed or not, then discards the two bins.
The merged bin includes all modules contained in the two smaller bins, and its rec-
tangular outline is the union of the two rectangular outlines. This bin is floorplanned,
and in the case of failure can be merged with its sibling again. The overall process is
summarized in Figure 5.2 and an example is depicted in Figure 5.3.

It is typically easier to satisfy the outline of a merged bin because circuit modules
become relatively smaller. However, Simulated Annealing takes longer on larger bins
and is less successful in minimizing wire length. Therefore, it is important to floor-
plan at just the right time, and the algorithm determines this point by backtracking.
Backtracking does incur some overhead in failed floorplan runs, but this overhead
is tolerable because merged bins take considerably longer to floorplan. Furthermore,
this overhead can be moderated somewhat by careful prediction.

For a given bin, a floorplanning instance is constructed as follows. All connec-
tions between modules in the bin and other modules are propagated to fixed termi-
nals at the periphery of the bin. As the bin may contain numerous standard cells,
the number of movable objects is reduced by conglomerating standard cells into
soft placeable blocks. This is accomplished by a simple bottom-up connectivity-
based clustering [25]. The existing large modules in the bin are usually kept out of
this clustering. To further simplify floor planning, soft blocks consisting of standard
cells are artificially downsized, as in [4]. The clustered netlist is then passed to the

102 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

Variables: queue of placement bins
Initialize queue with top-level placement bin

1 While (queue not empty)
2 Dequeue a bin
3 If (bin has large/many macros or is marked as merged)
4 Cluster std-cells into soft macros
5 Use fixed-outline floorplanner to pack

all macros (soft+hard)
6 If fixed-outline floorplanning succeeds
7 Fix macros and remove sites underneath the macros
8 Else
9 Undo one partition decision. Merge bin with sibling
10 Mark new bin as merged and enqueue
11 Else if (bin small enough)
12 Process end case
13 Else
14 Bi-partition the bin into smaller bins
15 Enqueue each child bin

Fig. 5.2. Min-cut floorplacement [34]. Bold-faced lines 3–10 are different from traditional
min-cut placement. c© 2006 IEEE.

0

 500

1000

1500

2000

0 500 1000 1500 2000

IBM01 HPWL=2.574e+06, #Cells=12752, #Nets=14111

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

IBM01 HPWL=2.574e+06, #Cells=12752, #Nets=14111

Fig. 5.3. Progress of mixed-size floorplacement on the IBM01 benchmark from
IBM-MSwPins [34]. The picture on the left shows how the cutlines are chosen during the
first six layers of min-cut bisection. On the right is the same placement but with the floorplan-
ning instances highlighted by “rounded” rectangles. Floorplanning failures can be detected by
observing nested rectangles. c© 2006 IEEE.

fixed-outline floorplanner Parquet [2], which sizes soft blocks and optimizes block
orientations. After suitable locations are found, the locations of all large modules
are returned to the top-down placer and are considered fixed. The rows below those
modules are fractured and their sites are removed, i.e., the modules are treated as
fixed obstacles. At this point, min-cut placement resumes with a bin that has no large
modules in it, but has somewhat nonuniform row structure. When min-cut placement
is finished, large modules do not overlap by construction, but small cells sometimes
overlap (typically below 0.01% by area). Those overlaps are quickly detected and
removed with local changes.

5.3 Floorplacement 103

Since the floorplacer includes a state-of-the-art floorplanner, it can natively han-
dle pure block-based designs. Unlike most algorithms designed for mixed-size place-
ment, it can pack blocks into a tight outline, optimize block orientations, and tune
aspect ratios of soft blocks. When the number of blocks is very small, the algo-
rithm applies floorplanning quickly. However, when given a larger design, it may
start with partitioning and then call fixed-outline floorplanning for separate bins. As
recursive bisection scales well and is more successful at minimizing wire length than
annealing-based floorplanning, the proposed approach is scalable and effective at
minimizing wire length.

5.3.1 Empirical Boundary Between Placement and Floorplanning

By identifying the characteristics of placement bins for which the algorithm calls
floorplanning, one can tabulate the empirical boundary between placement and floor-
planning. Formulating such ad hoc thresholds in terms of dimensions of the largest
module in the bin, etc., allows one to avoid unnecessary backtracking and decrease
the overhead of floorplanning calls that fail to satisfy the fixed outline constraint
because they are issued too late. In practice, issuing floorplanning calls too early
(i.e., on larger bins) increases final wire length and sometimes runtime. To improve
wire length, the ad hoc tests for large modules in bins (that trigger floorplanning) are
deliberately conservative.

These conditions shown in Table 5.1 were derived by closely monitoring the
legality of floorplanning and min-cut placement solutions. When a partitioned bin
yields an illegal placement solution it is clear that the bin should have been floor-
planned and a condition should be derived. When a call to floorplanning fails to
satisfy the fixed outline constraint the placer has to backtrack. To avoid paying this
penalty, a condition should be derived to allow for floorplanning the parent bin and
prevent the failure.

Table 5.1. Floorplanning conditions used in floorplacement [34]. Test 1 is the most funda-
mental, for if a bin meeting test 1 were not floorplanned, a failure would be guaranteed at the
next level. Tests 2–6 detect bins dominated by large macros. Test 7 is a base case where only
one module exists, but it is large.

Floorplanning conditions for floorplacement
N , n: The numbers of large modules and movable objects in a given bin.
A(m): The area of the m largest modules in a given bin, m ≤ n.
C : The capacity of a given bin.
Test 1. At least one large module does not fit into a potential child bin.
Test 2. N ≤ 30 and A(N) < 0.80 ∗ A(n) and A(n) > 0.6 ∗ C .
Test 3. N ≤ 15 and A(N) < 0.95 ∗ A(n) and A(n) > 0.6 ∗ C .
Test 4. A(50) < 0.85 ∗ C .
Test 5. A(10) < 0.60 ∗ C .
Test 6. A(1) < 0.30 ∗ C and N = 1.
Test 7. N = n = 1.

104 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

These conditions are refined to prevent floorplanning failure by visual inspection
of a plot of the resulting parent bin and formulating a condition describing its com-
position. An example of such a plot is shown in Figure 5.3. Floorplanned bins are
outlined with rounded rectangles. Nested rectangles indicate a failed floorplan run,
followed by backtracking and floorplanning of the larger parent bin. In our experi-
ence, these tests are strong enough to ensure that at most one level of backtracking
is required to prevent overlaps between large modules.

5.4 Flexible Whitespace Allocation

The min-cut bisection-based placement framework offers much flexibility in
whitespace allocation. This section describes uniform allocation of whitespace
for min-cut bisection placement and two more sophisticated whitespace allocation
techniques, minimum local whitespace and safe whitespace, that can be used for
nonuniform whitespace allocation and satisfying whitespace constraints [37].

5.4.1 Uniform Whitespace

A natural scheme for managing whitespace in top-down placement, uniform white-
space allocation, was introduced and analyzed in [15]. Let a placement bin which
is going to be partitioned have site area S, cell area C , absolute whitespace W =
max{S − C, 0} and relative whitespace w = W/S. A bipartitioning divides the bin
into two child bins with site areas S0 and S1 such that S0 + S1 = S and cell areas
C0 and C1 such that C0 + C1 = C . A partitioner is given cell area targets T0 and
T1 as well as a tolerance τ for a particular bipartitioning instance. In many cases of
bipartitioning, T0 = T1 = C/2, but this is not always true [6]. τ defines the maximum
percentage by which C0 and C1 are allowed to differ from T0 and T1, respectively.

The work in [15] bases its whitespace allocation techniques on whitespace dete-
rioration: The phenomenon that discreteness in partitioning and placement does not
allow for exact uniform whitespace distribution. The whitespace deterioration for
a bipartitioning is the largest α, such that each child bin has at least αw relative
whitespace. Assuming nonzero relative whitespace in the placement bin, α should
be restricted such that 0 ≤ α ≤ 1 [15]. The authors note that α = 1 may be
overly restrictive in practice because it induces zero tolerance on the partitioning
instance but α = 0 may not be restrictive enough as it allows for child bins with zero
whitespace, which can improve wire length but impair routability [15].

For a given block, feasible ranges for partition capacities are uniquely determined
by α. The partitioning tolerance τ for splitting a block with relative whitespace w
is (1 − α)w/1 − w [15]. The challenge is to determine a proper value for α. First
assume that a bin is to be partitioned horizontally n times more during the place-
ment process. n can be calculated as
log2 R� where R is the number of rows in
the placement bin [15]. Assuming end-case bins have α = 0 since they are not fur-
ther partitioned, w, the relative whitespace of an end-case bin, is determined to be
τ/τ + 1 where τ is the tolerance of partitioning in the end-case bin [15].

5.4 Flexible Whitespace Allocation 105

Assuming that α remains the same during all partitioning of the given bin gives a
simple derivation of α = n

√
w/w [15]. A more practical calculation assumes instead

that τ remains the same over all partitionings. This leads to τ = n
√

1 − w/1 − w − 1
[15]. w can be eliminated from the equation for τ and a closed form for α based only
w and n is derived to be [15]

α =
n+1√1 − w − (1 − w)

w(n+1√1 − w)
.

If a bin has a user-defined “small” amount of whitespace or less, Capo attempts
to divide the cell area approximately in half, within a given tolerance. The appropri-
ate partitioning tolerance is chosen based on whitespace deterioration as calculated
above. After a partitionment (i.e., a partitioning solution) is computed, the geometric
cutline for the bin is positioned so that each side of the cutline has an equal percent-
age of whitespace. As tolerance is calculated assuming a fixed cutline, the cutline
is shifted to make whitespace more uniform. Such whitespace allocation generally
produces routable placements, at the cost of increased wire length.

5.4.2 Minimum Local Whitespace

If a placement bin has more than a user-defined minimum local whitespace
(minLocalWS), partitioning will define a tentative cutline that divides the bin’s
placement area in half. Partitioning targets an equal division of cell area, but is
given more freedom to deviate from its target. Tolerance is computed so that with
whitespace deterioration, each descendant bin of the current bin will have at least
minLocalWS [37].

The assumption that the whitespace deterioration, α, in end-case bins is 0 made
in [15] and presented in Sect. 5.4 no longer applies, so the calculation of α must
change. Since we want all child bins of the current bin to have minLocalWS relative
whitespace, in particular end-case bins must have at least minLocalWS and thus we
may set w = minLocalWS, instead of a function of τ . Using the assumption that α
remain constant during partitioning, α can be calculated directly as α = n

√
w/w [15].

With the more realistic assumption that τ remain constant, τ can be calculated as
τ = n

√
1 − w/1 − w − 1 [15]. Knowing τ , α can be computed as [15]

α = (τ + 1) − τ

w
.

After a partitionment is calculated, the cutline is shifted to ensure that
minLocalWS is preserved on both sides of the cutline. If the minimum local
whitespace is chosen to be small, one can produce tightly packed placements which
greatly improves wire length.

5.4.3 Safe Whitespace

The last whitespace allocation mode is designed for bins with “large” quantities of
whitespace. In safe whitespace allocation, as with minimum local whitespace alloca-
tion, a tentative geometric cutline of the bin is chosen, and the target of partitioning

106 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

adaptec1 Uniform Whitespace

10000

8000

6000

4000

2000

0
0 2000 4000 6000 8000 10000

adaptec1 Non-Uniform whitespace

10000

8000

6000

4000

2000

0
0 2000 4000 6000 8000 10000

Fig. 5.4. The top row shows Capo 10 global placements of the contest benchmark adaptec1
with uniform whitespace allocation (left) and nonuniform whitespace allocation (right). Fixed
obstacles are drawn with double lines. The middle and bottom rows depict the local utilization
the placements. Lighter areas of the placement signify regions that violate the target placement
density whereas darker areas have utilization below the target. Areas with no placeable area
(such as those with fixed obstacles) are shaded as if they exactly meet the target density. The
target placement density for the middle row is 90% and the bottom row is 60% (adaptec1 has
57.34% utilization). The HPWL for the uniform and nonuniform placements are 10.7e7 and
9.0e7, respectively. As the intensity maps show, when 60% utilization is the target, uniform
whitespace allocation is much more appropriate than 12% minimum local whitespace. On the
other hand, 12% minimum local whitespace has much better wire length is appropriate when
the target is 90% utilization.

5.5 Detail Placement 107

is an equal bisection of the cell area. The difference in safe whitespace allocation
mode is that the partitioning tolerance is much higher. Essentially, any partitioning
solution that leaves at least safeWS on either side of the cutline is considered legal.
This allows for very tight packing and reduces wire length, but is not recommended
for congestion-driven placement [37].

Figure 5.4 illustrates uniform and nonuniform whitespace allocation. The top
row shows global placements with uniform (left) and nonuniform (right) whitespace
allocation on the ISPD 2005 contest benchmark adaptec1 (57.34% utlization) [30].
In the nonuniform placement shown, the minimum local whitespace is 12% and safe
whitespace is 14%. The middle and bottom rows show intensity maps of the local
utilization of each placement. Lighter areas of the intensity maps signify violations
of a given target placement density; darker areas have utilization below the target.
Regions completely occupied by fixed obstacles are shaded as if they exactly meet
the target density. The target densities for the middle and bottom rows are 90% and
60%, respectively. Note that uniform whitespace produces almost no violations when
the target is 90% and relatively few when the target is 60%. The nonuniform place-
ment has more violations as compared to the uniform placement especially when the
target is 60%, but remains largely legal with the 90% target density.

5.5 Detail Placement

Capo uses several different techniques to further reduce HPWL after global place-
ment such as the sliding window optimizer RowIroning and a greedy cell movement
scheme described below. In addition, Capo 10 performs optimal whitespace alloca-
tion using min-cost network flows without changing relative cell ordering [7, 38].

5.5.1 RowIroning

In RowIroning, optimal placers based on branch-and-bound and dynamic program-
ming techniques replace windows of cells and whitespace chosen from the placement
area [12]. These placers pack cells, and whitespace is represented by fake cells. To
model whitespace accurately, one fake cell per site is needed, but Capo evenly divides
contiguous regions of whitespace into at most three fake cells to limit runtime. This
window of local improvement moves over all cells in left-to-right and top-to-bottom
order (or the opposite directions).

5.5.2 Optimal Branch-and-Bound Placement

In the top-down partitioning-based placement approach, the original placement prob-
lem (considered as a “bin”) is partitioned into two subproblems (sub-bins) and then
recursively into smaller and smaller subproblems (recall Figure 5.1). Eventually, wire
length can be directly optimized for bins with few nodes. We now describe optimal
placers that operate on arbitrary single-row end-case instances given by1:

1 End-cases have only one row because Capo preferentially splits small multirow blocks
between rows.

108 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

• A hypergraph with nodes (cells) having (x, y)-dimensions. All cell heights are
assumed equal to the row height.

• Every hyperedge has a bounding box of fixed pin locations corresponding to the
external terminals incident to that net.

• Each hyperedge-to-node connection has a pin offset relative to the cell origin.
• A placement region, i.e., a subrow of a certain length.2

Additionally assuming the uniform distribution of whitespace, we can consider
placement solutions as permutations of hypergraph nodes. The end-case placement
problem thus naturally lends itself to enumeration and branch-and-bound. Imple-
mentations based on enumeration do not appear competitive in this context and will
not be covered further.

In our branch-and-bound placer, nodes are added to the placement one at a time,
and the bounding boxes of incident edges are extended to include the new pin loca-
tions. The branch-and-bound approach relies on computing, from a given partial
placement, a lower bound on the wire length of any completion of the placement.
Extensions of the current partial solution are considered only as long as this lower
bound is smaller than the cost of the best seen complete solution.

One difficulty in applying branch-and-bound to end-case placement is varying
cell widths. We restrict cells in the small instance to be packed with a fixed-size space
between neighbors, i.e., whitespace is distributed equally between them. Replacing
a cell with a cell of different width will change the location of at least one neighbor,
triggering bounding box recompilations for incident nets. To simplify maintenance,
the nodes are packed from left to right and always added to or removed from the
right end of the partially-specified permutation. Such a lexicographic ordering nat-
urally leads to a stack-driven implementation, where the states of incident nets are
“pushed” onto stacks when a node is appended on the right side of the ordering, and
“popped” when the node is removed. Bounding entails “popping” nodes at the end
of a partial solution before all lexicographically greater partial solutions have been
visited. Pseudocode is provided in Figure 5.5.

5.5.3 Greedy Cell Movement

Capo makes use of a gridded greedy movement technique to improve both wire
length and whitespace distribution. A grid is imposed on the placement region to
analyze local placement density. For cells that are in regions with density violations,
candidate legal new locations are found in areas of lower density violation. Candi-
date moves are ranked by how well they alleviate the violations and how they affect
wire length. Moves are made until a threshold of improvement is reached. We have
found this to be a fast and effective method of removing density violations without
adversely affecting wire length.

2 For unfortunately short subrows that cannot accommodate all cells without overlaps, our
end-case placer first minimizes overlap, then wire length

5.5 Detail Placement 109

Single Row Placement Branch-and-Bound
Input and Data Structures

cellWidth[0..N] width of each cell
Input pinOffsets[cellId][netId] pin-offsets for each cell-pin pair

terminalBoxes[netId] bounding boxes of net terminals
RowBox bounding box of the row
nodeQueue =[0....N-1] inverse initial ordering

Data nodeStack=< empty > placement ordering
Struct counterArray=< empty > loop counter array

idx=N − 1 index
costSoFar= 0 cost of the current placement
bestYetSeen = Infinite cost of best placement yet found
nextLoc = row’s left edge location to place next cell at

Single-Row Placement with Branch-and-Bound : Algorithm
1 while(idx < numCells)
2 {
3 s.push(q.dequeue()) // add a cell at nextLoc (the right end)
4 c[idx] = idx
5 costSoFar = costSoFar + cost of placing cell s.top()
6 nextLoc.x = nextLoc.x + cellWidth[s.top()]
7
8 if(costSoFar ≤ bestCostSeen) bound
9 c[idx] = 0

10
11 if(c[idx] == 0) // the ordering is complete or has been bounded
12 {
13 if(idx == 0 and costSoFar < bestCostSeen)
14 {
15 bestCostSeen = costSoFar
16 save current placement
17 }
18 while(c[idx] == 0)
19 {
20 costSoFar = costSoFar - cost of placing cell s.top()
21 nextLoc.x = nextLoc.x - cellWidth[s.top()]
22 q.enqueue(s.pop()) // remove the right-most cell
23 idx++
24 c[idx]- -
25 }
26 }
27 idx- -
28 }

Fig. 5.5. Branch-and-Bound algorithm for single-row placement is produced from a lexico-
graphic enumeration of placement orderings by adding code for bounding in lines 8 and 9
(in bold) [13]. c© 2000 IEEE.

110 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

5.6 Placement for Routability

With uniform whitespace allocation, Capo typically produces routable placements,
but some congested areas remain. Capo 10 implements a whitespace allocation
scheme described in [35] to improve placement routability. This technique uses a
congestion map to estimate routing congestion after each layer of min-cut place-
ment. Based on the congestion estimates, whitespace is allocated preferentially to
areas of high congestion through cutline shifting. Coupled with other techniques
from ROOSTER [35], Capo 10 outperforms best published routed wirelengths and
via counts as of Fall 2006.

5.6.1 Optimizing Steiner Wire length

Weighted terminal propagation as described in [17] is sufficiently general to account
for objectives other than HPWL such as StWL [35]. StWL is known to correlate
with final rWL more accurately than HPWL and the authors of [35] hypothesize that
if StWL could be directly optimized during global placement, one may be able to
enhance routability and reduce rWL.

When bipartitioning a bin, the pins for a particular net may all fall into one par-
tition (leaving the net uncut) or be split amongst both partitions (cutting the net). We
will refer to the two possible partitions as partition 1 and partition 2. When using
weighted terminal propagation from [17], one must calculate three costs per net per
partitioning instance: w1, w2, and w12. These costs represent the cost of the pins of
a net all being placed in partition 1, partition 2, or split between both, respectively.

The points required to calculate w1 for a given net are the terminals on the net
(pins not allowed to move) plus the center of partition 1. Similarly, the points required
to calculate w2 are the terminals plus the center of partition 2. Lastly, the points to
calculate w12 are the terminals on the net plus the centers of both partitions. See
Figure 5.6 for an example of calculating these three costs. Clearly the HPWL of the
set of points necessary to calculate w12 is at least as large as that of w1 and w2 since it
contains an additional point. By the same logic, StWL also satisfies this relationship
since RSMT length can only increase with additional points. Since StWL is a valid

Fig. 5.6. Calculating the three costs for weighted terminal propagation with StWL: w1 (left),
w2 (middle), and w12 (right) [35]. The net has five fixed terminals: four above and one
below the proposed cutline. For the traditional HPWL objective, this net would be considered
inessential. Note that the structure of the three Steiner trees may be entirely different, which
is why w1, w2 and w12 are evaluated independently. c© 2007 IEEE.

5.6 Placement for Routability 111

cost function for these weighted partitioning problems, this is a framework whereby
it can be minimized [35].

The simplicity of this framework for minimizing StWL is deceiving. In particular,
the propagation of terminal locations to the current placement bin and the removal of
inessential nets [13] – standard techniques for HPWL minimization – cannot be used
when minimizing StWL. Moving terminal locations drastically changes Steiner-tree
construction and can make StWL estimates extremely inaccurate. Nets that are con-
sidered inessential in HPWL minimization (where the x- or y-span of terminals, if
the cut is vertical or horizontal respectively, contains the x- or y-span of the centers of
child bins) are not necessarily inessential when considering StWL because there are
many Steiner trees of different lengths that have the same bounding box. Figure 5.6
illustrates a net that is inessential for HPWL minimization but essential for StWL
minimization. Not only computing Steiner trees, but even traversing all relevant nets
to collect all relevant point locations can be very time-consuming. Therefore, the
main challenge in supporting StWL minimization is to develop efficient data struc-
tures and limit additional runtime during placement [35].

Pointsets with Multiplicities

Building Steiner trees for each net during partitioning is a computationally expensive
task. To keep runtime reasonable when building Steiner trees for partitioning, the
authors of [35] introduce a simple yet highly effective data structure – pointsets with
multiplicities. For each net in the hypergraph, two lists are maintained. The first list
contains all the unique pin locations on the net that are fixed. A fixed pin can come
from sources such as terminals or fixed objects in the core area. The second list
contains all the unique pin locations on the net that are movable, i.e., all other pins
that are not on the fixed list. All points on each list are unique so that redundant
points are not given to Steiner evaluators which may increase their runtime. To do so
efficiently, the lists are kept in a sorted order. For both lists, in addition to the location
of the pin, the number of pins that correspond to a given point is also saved [35].

Maintaining the number of actual pins that correspond to a point in a pointset
(the multiplicity of that point) is necessary for efficient update of pin locations dur-
ing placement. If a pin changes position during placement, the pointsets for the net
connected to the pin must be updated. First, the original position of the pin must be
removed from the movable pointset. As multiple pins can have the same position,
especially early in placement, the entire net would need to be traversed to see if any
other pins share the same position as the pin that is moving. Multiplicities allow to
know this information in constant time. To remove the pin, one performs a binary
search on the pointset and decreases the multiplicity of the pin’s position by 1. If this
results in the position having a multiplicity of 0, the position can be removed entirely.
Insertion of the pin’s new position is similar: first, a binary search is performed on
the pointset. If the pin’s position is already present in the pointset, the multiplicity
is increased by 1. Otherwise, the position is added in sorted order with a multiplic-
ity of 1. Empirically, building and maintaining the pointset data structures takes less
than 1% of the runtime of global placement [35].

112 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

Performance

We compared three Steiner evaluators in terms of runtime impact and solution qual-
ity. They chose the FastSteiner [22] evaluator for global placement based on its rea-
sonable runtime and consistent performance on large nets. Empirical results show
the use of FastSteiner leads to a reduction of StWL by 3% on average on the IBMv2
benchmarks [40] (with a reduction of routed wirelength up to 7%) while using less
than 30% additional runtime [35].

5.6.2 Congestion-Based Cutline Shifting

One of the most important reasons that we use bisection instead of quadrisection is
the flexibility that it allows in choosing the cutline of a partitioned bin. Before parti-
tioning, we first choose a direction for the cutline, usually based upon the geometry
of the bin. We then choose a tentative cutline in that direction to split the bin roughly
in half.

After the partitioner returns a solution, we have the flexibility to keep the cutline
as it was chosen before partitioning or to change it to optimize an objective. The
WSA [27] technique, applied after placement, geometrically divides the placement
area in half and estimates the congestion in both halves of the layout. It then allo-
cates more area to the side with greater routing demand, i.e., shifts the cutline, and
proceeds recursively on the two halves of the design. In WSA, cells must be replaced
after the whitespace allocation. However, we can avoid this replacement because our
cells have not yet been placed and will be taken care of naturally during the min-cut
process.

Cutline shifting used to handle congestion necessitates a slicing floorplan. The
only work in the literature that describes top-down congestion estimates and uses
them in placement assumes a grid structure [8]. Therefore we develop the following
technique: Before each round of partitioning, we overlay the entire placement region
on a grid. We choose the grid such that each placement bin is covered by 2–4 grid
cells. We then build a congestion map using the last updated locations of all pins. We
choose the mapping technique from [39] as it shows good correlation with routed
congestion.

When cells are partitioned and their positions are changed, the congestion values
for their nets are updated. Before cutline shifting, the routing demands and supplies
for either side of the cutline are estimated with the congestion map. Given the bound-
ing box of a region, we estimate its demand and supply by intersecting the bounding
box with the grid cells of the congestion map. Grid cells that partially overlap with
the given bounding box contribute only a portion of their demand and supply based
on the ratio of the area of the overlap to the area of the grid cell. Using these, we shift
the cutline to equalize the ratio of demand to supply on either side of the cutline.

To show the effectiveness of this dynamic version of WSA, we plot conges-
tion maps of placements of ibm01h produced with and without our technique in
Figure 5.7. The left plot illustrates uniform whitespace allocation and the right
plot congestion-driven whitespace allocation. Our whitespace allocation technique

5.7 Improved RTL Placement 113

Fig. 5.7. Congestion maps for the ibm01h benchmark: Uniform whitespace allocation
(produced with Capo-uniformWS) is illustrated on the left, congestion-driven allocation
in ROOSTER is illustrated on the right [35]. The peak congestion when using uniform
whitespace is 50% greater than that for our technique. When routed with Cadence WarpRoute,
uniform whitespace produces 3.95% overfull global routing cells and routes in just over 5 h
with 120 violations. ROOSTER’s whitespace allocation produces 3.18% overfull global rout-
ing cells and routes in 22 min without violations. c© 2007 IEEE.

reduces the maximum congestion by 50% and the number of overfull global routing
cells from 3.9% to 3.18% (as reported by an industrial router).

5.7 Improved RTL Placement

Industrial floorplacement problems are increasingly difficult due to factors such as an
increasing number of movable modules and a wide variation of module sizes. There
is also insufficient cohesion for whitespace allocation between top-down methods
and macro-placement algorithms. For example, a partitioner may misapproximate
the area required by a set of macros and incorrectly allocate whitespace. To address
these issues, we have integrated into Capo 10 the SCAMPI (SCalable Advanced
Macro Placement Improvements) work [31]. The top-down partitioning flow is mod-
ified to selectively place large macros, while smaller macros are clustered into soft
modules that will be placed later (Figure 5.8). The robustness of the flow is also
improved by employing fast look-ahead Simulated Annealing on large macros of
newly created bins. This allows early detection of bins difficult to floorplan, and
alerts the placer to backtrack and seek a different partitioning solution.

5.7.1 Selective Floorplanning for Multimillion Gate Designs

One case that is not considered by either the original floorplacement techniques [34]
or those introduced in SCAMPI [31] is where there are an extreme number of

114 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

movable modules and an extreme ratio between the largest and smallest macro. An
example of this is the newblue1 benchmark from the ISPD’06 placement contest
suite. The newblue1 benchmark contains 64 macros and 330073 standard cells. As
we show below, such a configuration is problematic for floorplacement tools.

Recall that a floorplacer utilizes a floorplanner to place macros. As the floorplan-
ner uses Simulated Annealing to pack blocks, clustering is performed on the netlist to
improve scalability. However, a very large number of small modules may stress clus-
tering algorithms, which, in the absence of refinement, may undermine the overall
solution quality.3

Variables: queue of placement partitions
Initialize queue with top-level partition

1 While (queue not empty)
2 Dequeue a partition
3 If (partition is not marked as merged)
4 Perform look-ahead floorplanning on partition
5 If look-ahead floorplanning fails
6 Undo one partition decision
7 Merge partition with sibling
8 Mark new partition as merged and enqueue
9 Else if (partition has large macros or

is marked as merged)
10 Mark large macros for placement after floorplanning
11 Cluster remaining macros into soft macros
12 Cluster std-cells into soft macros
13 Use fixed-outline floorplanner to pack

all macros (soft+hard)
14 If fixed-outline floorplanning succeeds
15 Fix large macros and remove sites beneath
16 Else
17 Undo one partition decision
18 Merge partition with sibling
19 Mark new partition as merged and enqueue
20 Else if (partition is small enough and

mostly comprised of macros)
21 Process floorplanning on all macros
22 Else if (partition small enough)
23 Process end case std cell placement
24 Else
25 Bi-partition netlist of the partition
26 Divide the partition by placing a cutline
27 Enqueue each child partition

Fig. 5.8. Our modified min-cut floorplacement flow [31]. Bold-faced lines are new compared
to [34].

3 Refinement algorithms would need to operate on very large netlists and may require long
runtimes.

5.7 Improved RTL Placement 115

Figure 5.9 shows the newblue1 benchmark placed with SCAMPI, before and after
our most recent improvements. In the original SCAMPI flow, the large block was des-
ignated for floorplanning by Parquet at the top level. Parquet precedes annealing with
clustering to reduce the size of the netlist. However, given the large number of small
modules, the simple-minded clustering algorithm in Parquet ended up taking 16% of
total runtime, whereas annealing took only 4%. Additionally, even if clustering were
more scalable, clustering such a large number of small macros into large, soft macros
can lead to unnatural or unrepresentative netlists. In the original SCAMPI flow, the
clusters formed by the standard cells in newblue1 became large enough to artificially
constrain the movement of the large macro during floorplanning. This is mainly a
limitation of Simulated Annealing as it becomes impractical in solution quality and
runtime for over 100 modules.

Therefore, we propose the following method. Whenever a bin is designated for
floorplanning and the largest real module is smaller in area than the largest soft macro
built from clustering (this area can be estimated without actually performing cluster-
ing), we do not use Simulated Annealing. Instead, a simple analytical placement
technique, such as (Successive Over-Relaxation) (SOR), is used to determine rea-
sonable locations for the large macros.4 It has been shown that analytical techniques
are good at finding general areas where objects should be placed [6], so this is a rea-
sonable and efficient solution for placing a large macro or macros in this situation. As
such, this technique may also be useful in regions with large amounts of whitespace
as block-packing often overlooks good solutions in such situations. Objectives other
than HPWL, such as routing congestion and timing, are also important, and any

Fig. 5.9. The newblue1 benchmark placed by SCAMPI before (left) and after (right) our
recent modifications. Before our improvements to SCAMPI, the clusters formed by the smaller
modules at the top-level constrain the movement of the largest module and result in it being
placed in the bottom-left corner of the core. After our improvements, the largest macro is
placed using Successive Over-Relaxation (SOR).

4 Any analytical placement technique can be used, but SOR may be sufficient since we are
not necessarily looking for a nonoverlapping placement. For example, we have also used
a linearized version of the SOR technique as well and seen improvements in HPWL at the
expense of moderately increased runtime.

116 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

analytical placer used in this context should place macros with respect to the most
relevant objective(s). Our key observation is that placing such macros early is help-
ful.

When there is only one large macro to be placed, the solution of the analytical
tool is used and the macro is fixed in its desired location. To place a small number of
large macros with this method, we again compute macro locations with the analytical
tool, but must legalize the macro locations to maintain the correct-by-construction
paradigm of floorplacement. Overlaps can be legalized in several ways. One way is
to use a greedy macro legalization technique such as the macro legalizer described
in [34, Sect. 3.3]. Another method for removing macro overlap is the constraint-based
floorplan repair algorithm FLOORIST [29]. Following legalization, one can shift
the macros so that their center of mass coincides with their center of mass before
legalization in keeping with the spirit of the analytical placement. This technique
contributed to HPWL improvement over the ISPD 2006 Placement Contest results
of Capo by 17% on newblue1, with an overall improvement in the contest score on
the ISPD 2006 benchmark suite by 10%, moving Capo three positions higher.

5.7.2 Temporary Macro Deflation

Low-whitespace conditions in block-packing instances formed during floorplace-
ment can worsen solution quality significantly. In such cases, the block-packing
engine focuses mainly on finding legal solutions rather than those that have good
wire length. In addition, a legal solution may not be found which leads to back-
tracking and increased runtime as well. To improve the solution quality of block-
packing instances created during floorplacement, we prevent these low-whitespace
conditions.

To account for standard cells in the floorplacement framework, standard cells
are clustered into soft blocks for instances of block-packing [1]. To improve the
likelihood of finding a legal fixed-outline solution, these soft blocks representing
standard cells are reduced in size [1]. We propose extending this deflation to include
hard blocks in addition to soft blocks. When a block-packing instance is formed, we
adjust the sizes of hard blocks to maintain a minimum amount of whitespace. All
blocks in the instance are sized in the same way and aspect ratios are maintained.
The resized instance, made easier by the addition of whitespace, is placed using
Simulated Annealing as normal.

Resizing the hard blocks in this way has the positive effect of making fixed-
outline block-packing easier, which allows the block-packing engine to focus on
HPWL minimization rather than mere legality in cases where whitespace is limi-
ted, but removes the correct-by-construction property upon which floorplacement is
built. To alleviate this problem, we apply legalization to macros after packing. We
use the fast and robust constraint-based floorplan repair algorithm FLOORIST [29]
after each layer of placement where block-packing took place. FLOORIST moves
macros minimally when repairing macro overlaps, so the reduced HPWL found in
easier block-packing instances is preserved.

5.7 Improved RTL Placement 117

Empirically we find that the overhead of running FLOORIST for legalization is
mitigated by the fact that block-packing is easier and therefore faster. In terms of
solution quality, we find that temporary macro deflation reduces HPWL by 2–3%.

5.7.3 Whitespace Reallocation Using Linear Programming and Min-Cost
Max-Flow

As we have noted earlier, in order to avoid cases of backtracking which can dramati-
cally increase both HPWL and runtime, Capo allocates whitespace uniformly during
partitioning when macros are present. We have shown in Figure 5.10 this whitespace
allocation scheme can lead to HPWL that is much larger than a tighter packing. In
order to reclaim some of the HPWL lost due to uniform distribution during global
placement, we propose a technique to reallocate whitespace during detail placement.

Our technique builds upon the well-known linear programming formulations
used, e.g., in [38] and [33] in that we impose linear constraints for movable objects
based on their relative positions with respect to core boundaries and other mova-
ble objects. More details on the linear programming formulation such as types of
constraints and the objective function are given below. We include additional linear
inequalities to account for fixed obstacles and region constraints. One major differ-
ence from previous work is that we guarantee that the x and y locations found align
to legal sites and rows, as explained later in this section.

We handle reallocation of whitespace separately for the horizontal and verti-
cal directions, and preserve local relative ordering of movables in each direction.
In other words, movable objects may not jump over each other or any fixed obstacles
when whitespace is being reallocated. Unlike in global placement [33], we start with
legal or nearly legal locations. This simplifies our selection of relative constraints to
include into the LP formulation as follows. In the horizontal case, we examine each
row individually. For each cell or macro that intersects the row, we determine its
immediate neighbors to the left and to the right (those objects with which the current
object could feasibly overlap if it would slide to the left or right). These neighbors can

0

 500

 1000

 1500

 2000

 2500

0 500 1000 1500 2000 2500

HPWL = 3.372e+06, #Cells = 1157, #Nets = 5829

0

 500

 1000

 1500

 2000

 2500

0 500 1000 1500 2000 2500

HPWL = 3.22e+06, #Cells = 1157, #Nets = 5829

Fig. 5.10. A placement of the ibm-HB01 benchmark produced by Capo 9.4 that exhibits an
overly generous whitespace allocation scheme in Capo. After reallocating whitespace with a
min-cost max-flow technique, we decrease HPWL by 4.5%.

118 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

include movable objects, row or region boundaries as well as fixed obstacles. After
the neighborhood relations are determined, we constrain an object to lie between its
left- and right-hand neighbors. Construction of constraints for the vertical case is
analogous where rows are replaced with columns and site width is replaced by row
height. Unlike the formulation from [33], ours guarantees an overlap-free placement
and needs to be solved only once. In contrast with [38], we include only several con-
straints per movable object rather than a quadratic number of constraints read from
a sequence-pair. This significantly improves scalability and allows one to pack more
tightly.

In addition to the constraints above, we minimize HPWL. This is done by
adding xmin, xmax, ymin, ymax variables for each net, and the terms (xmax − xmin)
and (ymax − ymin) to the objective function. To solve the entire LP efficiently, we
dualize it as in [38] and cast the dual as a min-cost max-flow instance. The latter is
solved using the scaling push-relabeling algorithm of Goldberg [19]. An important
feature of our technique is the use of integrality of the solutions found by this algo-
rithm – we scale the coordinates so that integer x values correspond to legal sites and
integer y values correspond to standard-cell rows. Figure 5.10 illustrates whitespace
reallocation in the horizontal and vertical directions applied to a placement of the
ibm-HB01 benchmark. HPWL is improved by 4.5% while runtime of the technique
is less than 1% of placement runtime.

5.8 Incremental Placement

To develop a strong incremental placement tool, ECO-system, we build upon an
existing global placement framework and must choose between analytical and top
down. The main considerations include robustness, the handling of movable macros
and fixed obstacles, as well as consistent routability of placements and the handling
of density constraints. Based on recent empirical evidence [31,35,37], the top-down
framework appears a somewhat better choice. Indeed the 2 out of 9 contestants in
the ISPD 2006 Competition that satisfied density constraints were top-down plac-
ers. However, analytical algorithms can also be integrated into our ECO-system
when particularly extensive changes are required. ECO-system favorably compares
to recent detail placers in runtime and solution quality and fares well in high level
and physical synthesis.

5.8.1 General Framework

The goal of ECO-system is to reconstruct the internal state of a min-cut placer that
could have produced a given placement without the expense of global placement.
Given this state, we can choose to accept or reject previous decisions based on our
own criteria and build a new placement for the design. If many of the decisions of
the placer were good, we can achieve a considerable runtime savings. If many of the
decisions are determined to be bad, we can do no worse in terms of solution quality

5.8 Incremental Placement 119

Variables: queue of placement bins
Initialize queue with top-level placement bin

1 While(queue not empty)
2 Dequeue a bin
3 If(bin not marked to place from scratch)
4 If(bin overfull)
5 Mark bin to place from scratch, break
6 Quickly choose the cutline which has

the smallest net cut considering
cell area balance constraints

7 If(cutline causes overfull child bin)
8 Mark bin to place from scratch, break
9 Induce partitioning of bin’s cells from cutline
10 Improve net cut of partitioning with

single pass of Fiduccia–Mattheyses
11 If(% of improvement > threshold)
12 Mark bin to place from scratch, break
13 Create child bins using cutline and partitioning
14 Enqueue each child bin
15 If(bin marked to place from scratch)
16 If(bin small enough)
17 Process end case
18 Else
19 Bi-partition the bin into child bins
20 Mark child bins to place from scratch
21 Enqueue each child bin

Fig. 5.11. Incremental min-cut placement [36]. Bold-faced lines 3–15 and 20 are different
from traditional min-cut placement. c© 2007 IEEE.

than placement from scratch. An overview of the application of ECO-system to an
illegal placement is depicted in Figure 5.12. See the algorithm in Figure 5.11.

To rebuild the state of a min-cut placer, we must reconstruct a series of cutlines
and partitioning solutions efficiently. To extract a cutline and partitioning solution
from a given placement bin, we examine all possible cutlines as well as the partitions
they induce. We start at one edge of the placement bin (left edge for a vertical cut
and bottom edge for a horizontal cut) and move towards the opposite edge. For each
potential cutline encountered, we maintain the cell area on either side of the cutline,
the partition induced by the cutline and the net cut.

5.8.2 Fast Cutline Selection

For simplicity, assume that we are making a vertical cut and are moving the cut-
line from the left to the right edge of the placement bin (the techniques necessary
for a horizontal cut are analogous). Pseudocode for choosing the cutline is shown in
Figure 5.13. To find the net cut for each possible cutline efficiently, we first calcu-
late the bounding box of each net contained in the placement bin from the original

120 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

Fig. 5.12. Fast legalization by ECO-system [36]. The image on the left illustrates choosing
a vertical cutline from an existing placement. Nets are illustrated as red lines. Cells are indi-
vidually numbered and take two or three sites each. Cutlines are evaluated by a left-to-right
sweep (net cuts are shown above each line). A cutline that satisfies partitioning tolerances and
minimizes cut is found (thick green line). Cells are assigned to left and right according to the
center locations. On the right, placement bins are subdivided using derived cutlines until (1)
a bin contains no overlap and is ignored for the remainder of the legalization process or, (2)
the placement in the bin is considered too poor to be kept and is replaced from scratch using
min-cut or analytical techniques. c© 2007 IEEE.

placement. We create two lists with the left and right x-coordinates of the bounding
boxes of the nets and sort them in increasing x-order. While sliding the cutline from
left to right (in the direction of increasing x-coordinates), we incrementally update
the net cut and amortize the amount of time used to a constant number of opera-
tions per net over the entire bin. We do the same with the centers of the cells in the
bin to incrementally update the cell areas on either side of the cutline as well as the
induced partitioning. While processing each cutline, we save the cutline with small-
est cut that is legal given partitioning tolerances. An example of finding the cutline
for a partitioning bin is shown in Figure 5.12.

Once a partitioning has been chosen, we accept or reject it based on how much
it can be improved by a single pass of a Fiduccia–Mattheyses partitioner with early
termination (which takes only several seconds even on the largest ISPD’05 circuit).5

The intuition is that if the constructed partitioning is not worthy of reuse, a sin-
gle Fiduccia–Mattheyses pass could improve its cut nontrivially. If the Fiduccia–
Mattheyses pass improves the cut beyond a certain threshold, we discard the solution
and bisect the entire bin from scratch. If this test passes, we check legality: if a child
bin is overfull, we discard the cutline and bisect from scratch.

5.8.3 Scalability

Pseudocode for the cutline location process used by ECO-system is shown in
Figure 5.13. The runtime of the algorithm is linear in the number of pins incident
to the bin, cells incident contained in the bin, and possible cutlines for the bin. Since

5 We do not assume that the initial placement was produced by a min-cut algorithm.

5.8 Incremental Placement 121

Input: placement bin, balance constraint
Output: x-coord of best cutline
1 numCutlines =

1 + �(rightBinEdgeX−leftBinEdgeX)/cellSpacing�
2 Create three arrays of size numCutlines:

LEFT, RIGHT, AREA
3 Set all elements of LEFT, RIGHT, and AREA to 0
4 Foreach net
5 Calculate x-coord of left- and right-most pins
6 leftCutlineIndex =

max(0,
(leftPinX−leftBinEdgeX)/cellSpacing�)
7 rightCutlineIndex =

max(0,
(rightPinX−leftBinEdgeX)/cellSpacing�)
8 if(leftCutlineIndex < numCutlines)
9 LEFT[leftCutlineIndex]+ = 1
10 if(rightCutlineIndex < numCutlines)
11 RIGHT[rightCutlineIndex]+ = 1
12 Foreach cell
13 Calculate x-coord of the center of the cell
14 cutlineIndex =

max(0,
(centerX−leftBinEdgeX)/cellSpacing�)
15 if(cutlineIndex < numCutlines)
16 AREA[cutlineIndex]+ =cellArea
17 Set X = leftBinEdge, CURCUT = 0, BESTCUT = ∞

BESTX = ∞, LEFTPARTAREA = 0
18 For(I = 0;I < numCutlines;I+ =1,X+ =cellSpacing)
19 CURCUT+ =LEFT[I]
20 CURCUT− =RIGHT[I]
21 LEFTPARTAREA+ =AREA[I]
22 If(CURCUT < BESTCUT and

LEFTPARTAREA satisfies balance constraint)
23 BESTCUT = CURCUT
24 BESTX = X
25 Return BESTX

Fig. 5.13. Algorithm for finding the best vertical cutline from a placement bin. Finding the
best horizontal cutline is largely the same process. Note that the runtime of the algorithm is
linear in the number of pins incident to the bin, cells incident contained in the bin, and possible
cutlines for the bin. c©2007 IEEE.

a single Fiduccia–Mattheyses pass takes also takes linear time [18], the asymptotic
complexity of our algorithm is linear. If we let P represent the number of pins inci-
dent to the bin, C represent the number of cells in the bin, and L represent the number
of potential cutlines in the bin, the cutline selection process runs in O(P + C + L)
time. In the vast majority of cases, P > C and P > L , so the runtime estimate
simplifies to O(P).

The number of bins may double at each hierarchy layer, until bins are small
enough for end-case placement. End-case placement is generally a constant amount

122 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

of runtime for each bin, so it does not affect asymptotic calculations. Assume that
ECO-system is able to reuse all of the original placement. Since ECO-system per-
forms bisection, it will have O(log C) layers of bisection before end-case place-
ment. At layer i , there will be O(2i) bins, each taking O

(
P/2i) time. This gives

a total time per layer of O(P). Combining all layers gives O(P log C). Empiri-
cally, the runtime of the cutline selection procedure (which includes a single pass of
a Fiduccia–Mattheyses partitioner) is much smaller than partitioning from scratch.
On large benchmarks, cutline selection requires 5% of ECO-system runtime time
whereas min-cut partitioning generally requires 50% or more of ECO-system run-
time.

5.8.4 Handling Macros and Obstacles

With the addition of macros, the flow of top-down placement becomes more com-
plex. We adopt the technique of “floorplacement” which proceeds as traditional
placement until a bin satisfies criteria for block-packing [31, 34]. If the criteria sug-
gest that the bin should be packed rather than partitioned, a fixed-outline floorplan-
ning instance is induced from the bin where macros are treated as hard blocks and
standard cells are clustered into soft blocks. The floorplanning instance is given to
a Simulated Annealing-based floorplanner to be solved. If macros are placed legally
and without overlap, they are considered fixed. Otherwise, the placement bin is
merged with its sibling bin in the top-down hierarchy and the merged bin is floor-
planned. Merging and re-floorplanning continues until the solution is legal.

We add a new floorplanning criterion for our legalization technique. If no macros
in a placement bin overlap each other, we generate a placement solution for the
macros of the bin to be exactly their placements in the initial solution. If some of
the macros overlap with each other, we let other criteria for floorplanning decide. If
block-packing is invoked, we must discard the placement of all cells and macros in
the bin and proceed as described in [34].

During the cutline selection process, some cutline locations are considered
invalid – namely those that are too close to obstacle boundaries but do not cross
the obstacles. This is done to prevent long and narrow slivers of space between cut-
lines and obstacle boundaries. Ties for cutlines are broken based on the number of
macros they intersect. This helps to reduce overfullness in child bins allowing deeper
partitioning, which reduces runtime.

5.8.5 Relaxing Overfullness Constraints

One of the primary objectives of ECO-system is to reuse as much relevant placement
information as possible from a given placement. As described above, it is possible to
find a cutline which has a good cut but is not legal due to space constraints. In these
cases, ECO-system must discard these good solutions and partition from scratch.

In order to make better use of the given placement, we propose the follow-
ing addition to ECO-system. In these situations, we allow ECO-system to shift
the cutline to legalize the derived partition with respect to area. Cutline shifting is

5.8 Incremental Placement 123

Fig. 5.14. Shifting a cutline chosen during ECO cutline selection. Unlike the WSA tech-
nique [27, 28], cutline shifting during ECO is not done on geometric cutlines but instead on
those cutlines which are chosen during fast cutline selection. The image on the left shows a
placement that has been divided into bins during the course of ECO-system. In the image on
the right, the chosen cutline of the bottom-right bin is shifted to the right. The density of ver-
tical lines represents the initial placement and its scaling around the moving cutline (shown
in red). c© 2007 IEEE.

a technique commonly used in the top-down min-cut placement for allocation of
whitespace [4, 27, 28, 35, 37]. The cutline is shifted as little as possible to make the
derived partitioning legal with respect to area. If it is impossible to find an area-
legal cutline, the derived partitioning must be discarded and ECO-system proceeds
normally.

If cutline shifting is successful in correcting the illegality, the original placement
must be modified for purposes of consistency. To do so, cells are scaled proportion-
ately within the placement bin based on their original positions, the position of the
originally chosen cutline and the position of the shifted cutline in a manner similar
to that in the WSA technique [27,28]. As the centers of cells are used to determine in
what partitions cells belong during fast cutline selection, we shift cell locations based
on center locations as well to ensure that cutline shifting will not change derived
partitions. We seek to shift cell locations and maintain the following property: The
relative position between cells before and after shifting is maintained. Also, if a cell
were in the middle of a partition before shifting, it should remain in the middle of
a partition after shifting. Let xL and xR represent the x-coordinates of the left and
right sides of the placement bin, xcut

orig and xcut
new the x-coordinates of the original and

new cuts, and, lastly, xcell
orig and xcell

new the x-coordinates of the center of a particular
cell before and after shifting. We wish to maintain the following ratios (for vertical
partitioning):

xcell
orig−xL

xcut
orig−xL

= xcell
new−xL

xcut
new−xL

, xcell
orig ≤ xcut

orig,

xR−xcell
orig

xR−xcut
orig

= xR−xcell
new

xR−xcut
new

, xcell
orig > xcut

orig.

124 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

Solving for xcell
new :

xcell
new =

⎧
⎪⎨

⎪⎩

xL +
(

xcell
orig − xL

)
xcut

new−xL
xcut

orig−xL
, xcell

orig ≤ xcut
orig,

xR −
(

xR − xcell
orig

)
xR−xcut

new
xR−xcut

orig
, xcell

orig > xcut
orig.

The new y-coordinates of cells shifted during horizontal partitioning are calculated
analogously.

Figure 5.14 illustrates the scaling involved when a cutline is shifted. In the figure,
the cutline of the bottom-right bin is shifted to the right. All objects to the left and
right of the cutline are scaled appropriately. Objects that were to the left of the origi-
nal cutline remain to the left and are spread out and objects on the right are packed
closer together.

Shifting proportionately in this way maintains the relative ordering of all the
cells within the current placement bin. Also the partitioning induced by the cutline
remains unchanged so ECO-system can proceed as normal. Shifting the cutline in
this manner can allow deeper ECO partitioning which can reduce both runtime and
cell displacement.

5.8.6 Satisfying Density Constraints

A common method for increasing the routability of a design is to inject whitespace
into regions that are congested [4, 27]. One can also require a minimum amount of
whitespace (equivalent to a maximum cell density) in local regions of the design to
achieve a similar effect [37]. As one of ECO-system’s legality checks is essentially
a density constraint (checking to see if a child bin has more cell area assigned to it
than it can physically fit), this legality check is easy to generalize. The new criterion
for switching from using the initial placement and partitioning from scratch is based
on a child bin having less than a threshold percent of relative whitespace, which is
controlled by the user.

The cutline shifting feature of ECO-system can also be used to satisfy density
constraints. As ECO-system proceeds, cutlines can be shifted as described above to
implement a variety of whitespace allocation schemes [27, 28, 35, 37]. Specifically,
ECO-system can implement the hierarchical whitespace injection of WSA [27, 28].
WSA chooses cutlines based only on the geometry of a placement bin and shifts these
cutlines from the top down. ECO-system chooses cutlines that are more natural to
the original placement, shifts cutlines top down, and also supports fixed objects, and
movable macros.

5.9 Memory Profile

Capo’s nonuniform whitespace allocation techniques tend to produce unbalanced
partitionments at the top layers. As peak memory usage grows with partitioning
problem size, memory consumption can stay near the peak for longer periods of

5.10 Performance on Publicly Available Benchmarks 125

time during placement. To counteract the increased possibility of thrashing, Capo 10
has several memory improvements which include the slimming down of data struc-
tures and carefully choosing the lifetimes of major data structures so that fewer need
to be in main memory simultaneously. The most radical of these changes involves
removing the netlist hypergraph from main memory during the largest partitioning
instances and rebuilding it from scratch afterwards. These changes reduce peak
memory consumption by 2× compared to Capo 9.1 but slow down global placement
by 10%.

5.10 Performance on Publicly Available Benchmarks

To illustrate Capo’s ability to handle a wide range of placement instances, we eval-
uate Capo on benchmarks with routing information, mixed-size benchmarks and the
extremely large benchmarks with generous amounts of whitespace from the ISPD
2005 and 2006 placement competitions.

5.10.1 Routing Benchmarks

To show Capo’s performance on placement instances with routing information, we
show results for the IBMv2 [40], IWLS [20] and Faraday suites of benchmarks [1]

Table 5.2. A comparison of ROOSTER to the most recent version of mPL-R + WSA and
APlace 2.04 on the IBMv2 benchmarks [40]. All routed wirelengths (rWL) are in meters.
“Time” represents routing runtime in minutes. Note that while APlace 2.04 achieves overall
smaller wire length than ROOSTER, it routes with violations on 2 of the 16 benchmarks. Best
legal rWL and via counts are in bold.

ROOSTER Latest mPL-R + WSA APlace 2.04 -R 0.5
rWL #Vias #Vio.Time rWL #Vias #Vio.Time rWL #Vias #Vio.Time

ibm01e 0.733 122286 0 42 0.718 123064 0 11 0.790 158646 85 132
ibm01h 0.746 124307 0 32 0.691 213162 0 11 0.732 161717 2 121
ibm02e 2.059 259188 0 13 1.821 250527 0 11 1.846 254713 0 9
ibm02h 2.004 262900 0 14 1.897 260455 0 13 1.973 268259 0 14
ibm07e 4.075 476814 0 17 4.130 492947 0 21 3.975 500574 0 17
ibm07h 4.329 489603 0 19 4.240 516929 0 26 4.141 518089 0 23
ibm08e 4.242 559636 0 17 4.372 579926 0 23 3.956 588331 0 18
ibm08h 4.262 574593 0 20 4.280 599467 0 26 3.960 595528 0 18
ibm09e 3.165 466283 0 11 3.319 488697 0 17 3.095 502455 0 11
ibm09h 3.187 475791 0 11 3.454 502742 0 19 3.102 512764 0 12
ibm10e 6.412 749731 0 22 6.553 777389 0 30 6.178 782942 0 23
ibm10h 6.602 775018 0 27 6.474 799544 0 33 6.169 801605 0 28
ibm11e 4.698 605807 0 15 4.917 633640 0 22 4.755 648044 0 18
ibm11h 4.697 618173 0 16 4.912 660985 0 25 4.818 677455 0 24
ibm12e 9.289 918363 0 36 10.185 995921 0 57 8.599 921454 0 32
ibm12h 9.289 938971 0 43 9.724 976993 0 50 8.814 961296 0 50
Ratio 1.000 1.000 1.007 1.069 0.968 1.073

126 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

Table 5.3. A comparison of Capo with ROOSTER extensions to Cadence AmoebaPlace on
the IWLS 2005 Benchmarks [20]. All routed wirelengths (rWL) are in meters. “Time” rep-
resents routing runtime in minutes. ROOSTER outperforms AmoebaPlace by 12.0% in rWL
and 1.1% in via counts. Best rWL and via counts are in bold.

ROOSTER + NanoRoute AmoebaPlace + NanoRoute
Benchmark rWL #Vias #Vio. Time rWL #Vias #Vio. Time

aes core 1.339 125939 2 32 1.657 131049 1 28
ethernet 7.287 467777 1 27 7.745 471800 1 28
mem ctrl 1.061 87276 0 22 1.224 90067 0 21

pci bridge32 1.336 114880 0 35 1.598 117326 2 35
usb funct 0.995 84717 0 19 1.106 85739 0 19
vga lcd 25.906 1131591 2 57 25.405 1076178 2 90
Ratio 1.000 1.000 1.120 1.011

Table 5.4. Routing results on the Faraday benchmarks with movable macro blocks fixed [1].
All routing wirelengths (rWL) are in meters. “Time” represents routing runtime in minutes.
Best rWL and via counts are highlighted in bold.

Bench- ROOSTER Silicon Ensemble Ultra v5.4.126
mark rWL #Vias #Vio.Time rWL #Vias #Vio Time
DMA 0.554 116414 0 3 0.644 125328 0 3
DSP1 1.110 209274 0 5 1.224 204863 0 6
DSP2 1.067 194971 0 6 1.230 207521 0 6
RISC1 1.868 328699 5 9 1.957 345615 4 6
RISC2 1.786 324278 5 7 1.959 347515 2 5
Ratio 1.000 1.000 1.112 1.048

in Tables 5.2–5.4. Capo with ROOSTER extensions consistently produces routable
placements with the best published routed wirelength on several benchmarks and
best via counts overall.

5.10.2 Mixed-Size Benchmarks

To show Capo’s performance on difficult mixed-size placement instances, we show
results on difficult floorplanning instances identified by the authors of [31]. Com-
parisons of Capo with other tools on two difficult benchmark suites are shown in
Tables 5.5 and 5.6. Most other tools are unable to place these benchmarks legally
within the time limit, but Capo with SCAMPI extensions completes all of these
benchmarks quickly and legally. Considering the designs successfully placed by
PATOMA 1.0 and Capo 9.4, Capo with SCAMPI extensions produces placements
with smaller HPWL by 31% and 13%.

5.10 Performance on Publicly Available Benchmarks 127

Ta
bl

e
5.

5.
R

un
s

of
C

ap
o

w
ith

SC
A

M
PI

ex
te

ns
io

ns
an

d
ot

he
rt

oo
ls

on
re

ce
nt

de
si

gn
s

fr
om

C
al

yp
to

D
es

ig
n

Sy
st

em
s,

In
c.

[3
1]

.

PA
TO

M
A

1.
0

C
ap

o
9.

4
-f

as
te

r
A

Pl
ac

e
2.

0
Fe

ng
Sh

ui
5.

1
SC

A
M

PI
ca

l
H

PW
L

ov
lp

tim
e

H
PW

L
ov

lp
tim

e
H

PW
L

ov
lp

tim
e

H
PW

L
ov

lp
tim

e
H

PW
L

ov
lp

tim
e

be
nc

h
(e

+0
4)

(%
)

(s
)

(e
+0

4)
(%

)
(s

)
(e

+0
4)

(%
)

(s
)

(e
+0

4)
(%

)
(s

)
(e

+0
4)

(%
)

(s
)

vs
.

PA
TO

M
A

(H
PW

L
)

vs
.

C
A

PO
(H

PW
L
)

04
0

17
7.

2
0.

0
9.

6
18

.7
0.

0
45

.4
20

.7
0.

3
⊗

23
9.

0
20

.6
0.

0
37

.9
17

.7
0.

0
39

.5
0.

10
x

0.
94

x
09

8
52

.3
0.

0
11

.2
31

.8
1.

3
78

8.
2

22
.6

0.
3

27
1.

6
24

.0
0.

0
⊗

6.
0

26
.9

0.
0

26
4.

4
0.

51
x

-
33

6
2.

8
0.

0
1.

2
3.

5
9.

1
22

.5
2.

2
0.

1
⊗

83
.5

7.
6

0.
0

0.
2

2.
8

0.
0

11
.4

0.
99

x
-

35
3

7.
6

0.
0

1.
0

6.
5

0.
5

52
.6

4.
6

0.
3

21
1.

8
31

.5
1.

6
⊗

0.
8

5.
5

0.
0

26
.0

0.
73

x
-

52
3

12
3.

7
0.

0
3.

4
34

.7
0.

3
24

0.
2

27
.5

0.
3

92
0.

3
34

8.
7

0.
0

2.
8

30
.3

0.
0

15
7.

2
0.

24
x

-
54

2
0.

9
0.

0
0.

1
0.

8
0.

0
3.

3
0.

7
0.

1
42

.8
×

×
×

0.
8

0.
0

2.
0

0.
85

x
0.

96
x

56
6

83
.6

0.
0

4.
9

63
.8

1.
9

22
5.

7
46

.9
0.

5
34

1.
1

49
3.

6
3.

8
⊗

3.
2

71
.6

0.
0

18
8.

5
0.

86
x

-
58

3
47

.0
0.

0
2.

3
26

.1
0.

6
19

0.
6

20
.6

0.
2

42
1.

2
×

×
×

21
.5

0.
0

14
1.

3
0.

46
x

-
58

8
8.

8
0.

0
0.

7
6.

3
1.

1
60

.4
4.

8
0.

5
41

.5
×

×
×

5.
6

0.
0

26
.4

0.
63

x
-

64
3

4.
9

0.
0

0.
6

3.
8

0.
9

18
.8

3.
0

0.
4

29
.3

15
.3

0.
2

⊗
0.

5
3.

4
0.

0
11

.5
0.

68
x

-
D

C
T

×
×

×
×

×
>

18
00

33
.1

1.
7

⊗
71

9.
4

18
4.

7
0.

0
8.

0
37

.2
0.

0
12

3.
5

-
-

A
ve

ra
ge

0.
51

x
0.

95
x

×
in

di
ca

te
s

tim
e-

ou
t,

cr
as

h,
or

a
ru

n
co

m
pl

et
ed

w
ith

ou
tp

ro
du

ci
ng

a
so

lu
tio

n;
⊗

in
di

ca
te

s
an

ou
t-

of
-c

or
e

so
lu

tio
n.

B
es

tl
eg

al
so

lu
tio

ns
ar

e
em

ph
as

iz
ed

in
bo

ld
.

128 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

Ta
bl

e
5.

6.
R

un
s

of
C

ap
o

w
ith

SC
A

M
PI

ex
te

ns
io

ns
an

d
ot

he
rt

oo
ls

on
th

e
IB

M
-H

B
+

be
nc

hm
ar

ks
[3

1]
.

ib
m

PA
TO

M
A

1.
0

C
ap

o
9.

4
-f

as
te

r
A

Pl
ac

e
2.

0
Fe

ng
Sh

ui
5.

1
SC

A
M

PI
-H

B
+

H
PW

L
ov

lp
tim

e
H

PW
L

ov
lp

tim
e

H
PW

L
ov

lp
tim

e
H

PW
L

ov
lp

tim
e

H
PW

L
ov

lp
tim

e
be

nc
h

(e
+0

6)
(%

)
(s

)
(e

+0
6)

(%
)

(s
)

(e
+0

6)
(%

)
(s

)
(e

+0
6)

(%
)

(s
)

(e
+0

6)
(%

)
(s

)
vs

.
PA

TO
M

A
(H

PW
L
)

vs
.

C
A

PO
(H

PW
L
)

01
3.

9
0.

0
5.

6
5.

4
1.

4
65

1.
5

2.
7

2.
7

68
.0

3.
0

0.
2

⊗
16

.6
3.

2
0.

0
57

.6
0.

83
x

–
02

×
×

×
19

.1
0.

0
15

39
.7

5.
0

2.
6

10
1.

5
8.

7
0.

9
⊗

43
.6

6.
9

0.
0

18
5.

4
–

0.
36

x
03

×
×

×
×

×
>

18
00

7.
4

2.
1

10
1.

3
×

×
×

10
.1

0.
0

17
9.

9
–

–
04

×
×

×
×

×
>

18
00

8.
2

2.
8

11
3.

9
10

.8
0.

2
⊗

41
.4

11
.1

0.
0

14
5.

8
–

–
06

×
×

×
×

×
>

18
00

8.
2

1.
0

12
2.

5
10

.7
1.

4
⊗

36
.0

9.
3

0.
0

20
1.

7
–

–
07

16
.8

0.
0

13
.6

15
.8

0.
0

11
5.

31
13

.7
1.

4
21

8.
4

37
.1

0.
0

5.
1

16
.1

0.
0

90
.7

0.
96

x
1.

02
x

08
×

×
×

×
×

>
18

00
16

.6
1.

0
⊗

29
4.

2
21

.8
0.

5
⊗

60
.6

18
.8

0.
0

24
0.

0
–

–
09

×
×

×
20

.2
0.

2
18

8.
9

15
.1

0.
9

22
2.

4
20

.6
1.

2
⊗

42
.9

20
.9

0.
0

18
5.

7
–

–
10

×
×

×
45

.9
2.

7
26

3.
7

39
.9

0.
4

54
4.

8
×

×
×

55
.2

0.
0

31
9.

9
–

–
11

25
.3

0.
0

49
.2

28
.1

0.
0

14
0.

5
24

.5
1.

1
27

0.
3

30
.4

0.
2

⊗
63

.8
26

.9
0.

0
13

7.
3

1.
06

x
0.

96
x

12
×

×
×

63
.4

0.
0

48
2.

2
×

×
>

18
00

52
.3

0.
0

⊗
39

.2
64

.0
0.

0
39

7.
6

-
1.

01
x

13
37

.5
0.

0
34

.7
39

.6
0.

0
22

1.
5

31
.7

0.
5

24
0.

4
×

×
×

39
.7

0.
0

15
9.

8
1.

06
x

1.
00

x
14

68
.7

0.
0

70
.9

68
.2

0.
0

32
0.

7
57

.1
1.

0
⊗

39
2.

9
74

.0
2.

7
89

.7
63

.8
0.

0
23

8.
8

0.
93

x
0.

94
x

15
×

×
×

×
×

>
18

00
87

.5
1.

5
42

2.
2

90
.6

0.
0

⊗
10

0.
3

86
.4

0.
0

50
8.

3
–

–
16

10
0.

3
0.

0
74

.4
10

6.
9

0.
0

43
1.

5
89

.8
0.

3
52

8.
1

×
×

×
10

1.
8

0.
0

25
4.

2
1.

01
x

0.
95

x
17

14
1.

4
0.

0
95

.9
15

2.
6

0.
1

39
7.

1
13

3.
9

0.
5

79
9.

3
×

×
×

14
6.

3
0.

0
38

0.
0

1.
03

x
–

18
72

.6
0.

0
67

.2
75

.9
0.

7
22

0.
1

69
.1

0.
6

34
4.

0
×

×
×

74
.7

0.
0

18
1.

9
1.

03
x

–
A

ve
ra

ge
0.

99
x

0.
85

x
×

in
di

ca
te

s
tim

e-
ou

t,
cr

as
h,

or
a

ru
n

co
m

pl
et

ed
w

ith
ou

tp
ro

du
ci

ng
a

so
lu

tio
n;

⊗
in

di
ca

te
s

an
ou

t-
of

-c
or

e
so

lu
tio

n

B
es

tl
eg

al
so

lu
tio

ns
ar

e
em

ph
as

iz
ed

in
bo

ld
.

5.10 Performance on Publicly Available Benchmarks 129

5.10.3 ISPD Contest Benchmarks

The ISPD 2005 and 2006 Placement Contests introduced 16 new benchmarks into
the public domain based on industrial designs. These designs have many movable
objects, an abundance of fixed obstacles and relatively low utilizations. Tables 5.7
and 5.8 compare Capo’s performance at the contests to Capo’s current performance
on the 2005 and 2006 contest benchmarks, respectively. Since the contests, Capo

Table 5.7. Comparison of Capo’s current performance to that at the ISPD 2005 Placement
Contest. Capo was run using the commandline options “-ispd05” and “-tryHarder.” The results
for Capo at the ISPD 2005 Placement Contest were the best placements produced over the
period of 1 week. Current Capo results are the best of three independent runs of Capo.

ISPD 2005 Current
Benchmark HPWL HPWL Runtime HPWL

(e8) (e8) (m) Ratio
adaptec1 - 0.863 95 -
adaptec2 0.997 1.001 128 1.004
adaptec3 - 2.340 274 -
adaptec4 2.113 2.071 257 0.980
bigblue1 1.082 1.071 152 0.990
bigblue2 1.723 1.624 291 0.943
bigblue3 3.826 4.006 984 1.047
bigblue4 10.988 9.470 1335 0.862
Average 0.969

Table 5.8. Comparison of Capo’s current performance to that at the ISPD 2006 Placement
Contest. “Overflow” represents the HPWL penalty for not effectively enforcing density con-
straints on the benchmarks. Results at the ISPD06 contest were the result of a single run of
Capo. Current results are the median of three independent runs of Capo. Using the SCAMPI
improvements, Capo’s HPWL is reduced by 6.3% overall.

ISPD 2006 Current
Benchmark HPWL Over- Runtime HPWL Over- Runtime HPWL

(e8) flow% (m) (e8) flow% (m) Ratio
adaptec5 4.916 0.62 162 4.836 0.42 153 0.984
newblue1 0.984 0.13 43 0.850 0.12 47 0.864
newblue2 3.086 0.29 94 2.866 0.21 125 0.929
newblue3 3.612 0.01 101 3.299 0.01 92 0.913
newblue4 3.583 1.15 115 3.512 0.83 96 0.980
newblue5 6.574 0.33 348 6.391 0.26 212 0.972
newblue6 6.683 0.05 308 6.522 0.05 251 0.976
newblue7 15.185 0.02 916 13.482 0.01 525 0.888
Average 0.937

130 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

has been able to improve its solution quality by 3.1% on the ISPD 2005 benchmarks
(while using considerably less runtime than the week allowed for the original contest)
and 6.3% for the ISPD 2006 benchmarks.

Since the ISPD 2005 and 2006 contests, variants of the contest benchmarks have
been proposed with known optimal or near-optimal wire lengths in order to gauge
how much room for improvement is left with state-of-the-are placement methods. In
the original work on placements with known optimal solutions, Capo 8.6 placements
had nearly twice the HPWL of optimal placements [16]. As shown in Table 5.9,
Capo placements are less than 60% from optimal which represents a significant

Table 5.9. Comparison of Capo’s current performance on the PEKO-ISPD 2005 benchmarks
to optimal results. Capo results are the best of three independent runs of Capo. These results
represent an improvement in Capo’s performance vs. optimal since the original work on place-
ments with know optimal solutions where Capo placements had nearly twice optimal wire
length [16].

Optimal Capo
Benchmark HPWL HPWL Runtime HPWL

(e8) (e8) (m) Ratio
adaptec1 0.201 0.301 35 1.498
adaptec2 0.250 0.401 42 1.604
adaptec3 0.410 0.657 376 1.602
adaptec4 0.394 0.578 455 1.467
bigblue1 0.209 0.296 51 1.416
bigblue2 0.423 0.664 141 1.570
bigblue3 0.944 1.898 321 2.011
bigblue4 1.714 2.533 889 1.478
Average 1.572

Table 5.10. Comparison of Capo’s current performance on the PEKO-ISPD 2006 benchmarks
to optimal results. Capo results are the best of three independent runs of Capo.

Optimal Capo
Benchmark HPWL HPWL Over- Runtime HPWL

(e8) (e8) flow% (m) Ratio
adaptec5 0.611 1.295 4.97 322 2.119
newblue1 0.195 0.563 1.53 29 2.887
newblue2 0.273 0.910 1.17 46 3.333
newblue3 0.303 1.210 1.72 136 3.993
newblue4 0.436 0.792 6.43 196 1.817
newblue5 0.858 1.679 6.33 615 1.957
newblue6 0.800 1.952 2.30 578 2.440
newblue7 1.510 4.196 2.11 1439 2.779
Average 2.580

References 131

improvement, especially on such challenging benchmarks as the ISPD 2005 contest
benchmarks. The focus of the ISPD 2006 benchmarks is less on HPWL and more on
satisfying the required density constraints, and on these benchmarks Capo achieves
the density constraint requirements but, as Table 5.10 shows, at the expense of HPWL
were Capo produces solutions with more than twice the optimal wire length on
average.

5.11 Conclusions

In this chapter, we have described in detail the workings of the robust and scal-
able academic placement tool Capo. Capo is a min-cut floorplacer that provides
(1) scalable multiway partitioning, (2) routable standard-cell placement, (3) inte-
grated mixed-size placement, (4) wire length-driven fixed-outline floorplanning as
well as (5) incremental placement. Capo produces best published results on several
publicly available benchmark suites for routability as well as difficult instances of
floorplacement. Capo has been used as part of Synplicity’s Amplify ASIC product
and is freely available for all uses as part of the UMpack (http://vlsicad.
eecs.umich.edu/BK/PDtools/).

References

1. Adya SN, Chaturvedi S, Roy JA, Papa DA, Markov IL (2004) Unification of partitioning,
placement and floorplanning. In Proc ICCAD 550–557

2. Adya SN, Markov IL (2003) Fixed-outline floorplanning: enabling hierarchical design.
IEEE Trans on VLSI 11(6):1120–1135

3. Adya SN, Markov IL (2005) Combinatorial techniques for mixed-size placement. ACM
Trans on Design Auto of Elec Sys 10(5)

4. Adya SN, Markov IL, Villarrubia PG (2006) On whitespace and stability in physical
synthesis. Integration: the VLSI J 25(4):340–362

5. Agnihotri A et al. (2003) Fractional cut: improved recursive bisection placement. In Proc
ICCAD 307–310

6. Alpert CJ, Nam G-J, Villarrubia PG, (2003) Effective free space management for
cut-based placement via analytical constraint generation. IEEE Trans on CAD
22(10):1343–1353

7. Brenner U, Vygen J (2000) Faster optimal single-row placement with fixed ordering. In
Proc DATE 117–121

8. Brenner U, Rohe A (2003) An effective congestion driven placement framework. IEEE
Trans. on CAD 22(4):387–394

9. Caldwell AE, Kahng AB, Mantik S, Markov IL, Zelikovsky A (1999) On wirelength
estimations for row-based placement. IEEE Trans on CAD 18(9):1265–1278

10. Caldwell AE, Kahng AB, Markov IL (2000) Improved algorithms for hypergraph bipar-
titioning. In Proc ASPDAC 661–666

11. Caldwell AE, Kahng AB, Markov IL (2000) Can recursive bisection alone produce
routable placements? In Proc DAC 477–482

132 5 Capo: Congestion-Driven Placement for Standard-cell and RTL Netlists

12. Caldwell AE, Kahng AB, Markov IL (2000) Design and implementation of move-based
heuristics for vlsi hypergraph partitioning. ACM J of Experimental Algorithms 5

13. Caldwell AE, Kahng AB, Markov IL (2000) Optimal partitioners and end-case placers
for standard-cell layout. IEEE Trans on CAD 19(11):1304–1314

14. Caldwell AE, Kahng AB, Markov IL. VLSI cad bookshelf. http://vlsicad.
eecs.umich.edu/BK/. See also Caldwell AE, Kahng AB, Markov IL (2002) Toward
cad-ip reuse: the marco gsrc bookshelf of fundamental cad algorithms. IEEE Design and
Test 72–81

15. Caldwell AE, Kahng AB, Markov IL (2003) Hierarchical whitespace allocation in
top-down placement. IEEE Trans on CAD 22(11):716–724

16. Chang C-C, Cong J, Romesis M, Xie M (2004) Optimality and scalability study of
existing placement algorithms. IEEE Trans on CAD 23(4):537–549

17. Chen TC, Chang YW, Lin SC (2005) IMF: interconnect-driven multilevel floorplanning
for large-scale building-module designs. In Proc ICCAD 159–164

18. Fiduccia CM, Mattheyses RM (1982) A linear-time heuristic for improving network
partitions. In Proc DAC 175–181

19. Goldberg AV (1997) An efficient implementation of a scaling minimum-cost flow
algorithm. ACM J. Algorithms 22:1–29

20. IWLS 2005 Benchmarks, http://iwls.org/iwls2005/benchmarks.html
21. Kahng AB, Mantik S, Markov IL, (2002) Min–max placement For large-scale timing

optimization. In Proc ISPD 143–148
22. Kahng AB, Mandoiu II, Zelikovsky A (2003) Highly Scalable Algorithms for rectilinear

and octilinear steiner trees. In Proc ASPDAC 827–833
23. Kahng AB, Wang Q (2005) Implementation and extensibility of an analytic placer. IEEE

Trans on CAD 25(5):734–747
24. Kahng AB, Reda S (2004) Placement feedback: a concept and method for better min-cut

placement. In Proc DAC 143–148
25. Karypis G, Aggarwal R, Kumar V, Shekhar S (1997) Multilevel hypergraph partitioning:

applications in vlsi domain. In Proc DAC 526–629
26. Khatkhate A, Li C, Agnihotri AR, Yildiz MC, Ono S, Koh C-K, Madden PH (2004).

Recursive bisection based mixed block placement. In Proc ISPD 84–89
27. Li C, Xie M, Koh C-K, Cong J, Madden PH (2004) Routability-driven placement and

whitespace allocation. In Proc ICCAD 394–401
28. Li C, Koh C-K, Madden PH (2005) Floorplan management: incremental placement for

gate sizing and buffer insertion. In Proc ASPDAC 349–354
29. Moffitt MD, Ng AN, Markov IL, Pollack ME (2006) Constraint-driven floorplan repair.

In Proc DAC 1103–1108
30. Nam G-J, Alpert CJ, Villarrubia P, Winter B, Yildiz M (2005) The ISPD 2005 placement

contest and benchmark suite. In Proc ISPD 216–220
31. Ng AN, Markov IL, Aggarwal R, Ramachandran V (2006) Solving hard instances of

floorplacement. In Proc ISPD 170–177
32. Papa DA, Adya SN, Markov IL (2004) Constructive benchmarking for placement. In

Proc GLSVLSI 113–118 http://vlsicad.eecs.umich.edu/BK/FEATURE/
33. Reda S, Chowdhary A (2006) Effective linear programming based placement methods.

In Proc ISPD 186–191
34. Roy JA, Adya SN, Papa DA, Markov IL (2006) Min-cut floorplacement. IEEE Trans on

CAD 25(7):1313–1326
35. Roy JA, Markov IL (2007) Seeing the forest and the trees: steiner wirelength optimization

in placement. To appear in IEEE Trans on CAD

References 133

36. Roy JA, Markov IL (2007) ECO-system: embracing the change in placement. To appear
IEEE Trans on CAD

37. Roy JA, Papa DA, Ng AN, Markov IL (2006) Satisfying whitespace requirements in
top-down placement. In Proc ISPD 206–208

38. Tang X, Tian R, Wong MDF (2005) Optimal redistribution of whitespace for wirelength
minimization. In Proc ASPDAC 412–417

39. Westra J, Bartels C, Groeneveld P (2004) Probabilistic congestion prediction. In Proc
ISPD 204–209

40. Yang X, Choi B-K, Sarrafzadeh M (2002) Routability driven whitespace allocation for
fixed-die standard-cell placement. IEEE Trans on CAD 22(4):410–419

6

Congestion Minimization in Modern
Placement Circuits

Taraneh Taghavi1, Xiaojian Yang2, Bo-Kyung Choi3, Maogang Wang4

and Majid Sarrafzadeh1

1Computer Science Department, UCLA, {taghavi, majid@cs.ucla.edu}@cs.ucla.edu
2Magma Design Automation Inc., {bkchoi}@magma-da.com
3Synplicity Inc., {xiaojian}@synplicity.com
4Blaze DFM, Inc., {mwang}@blaze-dfm.com

6.1 Introduction

In this chapter, we propose a placement tool called Dragon which deploys hierarchi-
cal techniques to place large-scale mixed size designs that may contain thousand of
macro blocks and millions of standard cells [1–3]. Min-cut-based top-down approach
is taken to handle the large complexity of designs and simulated annealing is used to
minimize the total wire length. Min-cut partitioning should be aware of large macro
cells and may result in bins with different sizes. During simulated annealing, diff-
erent bin sizes have to be considered. The techniques discussed in this work can
be easily incorporated into any hierarchical placement flow and effectively produce
legal final layouts with a short runtime.

As VLSI circuits are growing in both size and complexity, not only the half-
perimeter wire length but also congestion need to be emphasized at the placement
stage. Congestion is one of the main optimization objectives in global routing.
However, the optimization performance is constrained because the cells are already
fixed at this stage. A highly congested region in the placement often leads to routing
detors around the region, in turn results in a larger routed wire length. Congested
areas can also downgrade the performance of global router and, in the worst case,
create an unroutable placement in the fix-die regime [12].

Congestion can be modeled as the summation of linear [15] or quadratic [10]
function of difference between routing demand and routing resource. Existing

136 6 Congestion Minimization in Modern Placement Circuits

congestion reduction techniques include incorporating congestion into cost function
of simulated annealing [10], combining a regional router into placement tool [26] and
performing a post placement processing step [15,16]. While congestion reduction at
late or post placement stage is empirically effective, congestion estimate achieved at
early placement stages would be equally valuable. First, a congestion driven place-
ment tool guided by early congestion information might be more powerful. Such a
tool could use techniques like white space allocation to relieve layout congestion.
Second, early congestion estimates could be utilized by combined logic and layout
optimization to improve design convergence. For example, when logic designers are
given a number of different netlists, they can estimate the congestion by running
only several steps of placement. The netlists with bad estimated congestion will be
discarded much earlier.

The use of white space in fixed-die standard-cell placement is an effective way
to improve routability. In this work, we present a white space allocation approach
that dynamically assigns white space according to the congestion distribution of the
placement. Experimental results show that the proposed allocation approach, com-
bined with a multilevel placement flow, significantly improves placement routability
and layout quality.

Target utilization is another metric to estimate the capability of a placement tool
to generate routable designs. Target utilization is defined as a constraint to force
the placement tool to produce designs with utilization close to the design utilization
which is an inherit feature of the design.

To tackle the problem of controlling the target utilization, we incorporated two
methods into our placement tool, Dragon. Dragon beats all the other contestants
with quite a big margin on generating placements with very low penalty of violating
the design utilization in ISPD2006 Placement Design Contest which was held by
International Symposium on Physical Design in conjunction with IBM Corporation.

6.2 Overview of Dragon 1

A typical top-down hierarchical placement approach can be generalized as follows:
At a given hierarchical level, the layout area is partitioned into several global bins. All
the cells of the circuit are distributed into these global bins to minimize a certain
placement objective. This cell distribution problem is called a hierarchical place-
ment problem. If a cell is distributed into a particular global bin, it will be placed
within the area of this bin in the final layout. As we proceed to more refined levels,
the number of global bins increases and the physical size of global bins decreases.
Thus we can get more and more detailed information about physical locations of
cells as we proceed. The top-down approach terminates when there are only a few
cells in each global bin. Dragon is divided into two phases, global placement (GP)
and detailed placement (DP). A top-down hierarchical approach is used in the GP
phase. We recursively solve the hierarchical placement problem and quadrisect each

1 Portions reprinted, with permission, from [1–3, 5]. c© [2006, 2005, 2001, 2000] IEEE.

6.2 Overview of Dragon 137

global bins at each level. Overlap between cells are allowed in the GP phase. The DP
phase takes the output from GP and produces an overlap free layout. Then it itera-
tively improves the legal layout using a greedy heuristic. Due to the computational
complexity, the DP heuristic is only capable of performing optimization locally. Thus
it is expected that the top-down hierarchical GP phase should finish the majority of
work in placement.

6.2.1 Framework of Dragon

Figure 6.1 shows our placement flow. The circuit is recursively partitioned alter-
natively along horizontal and vertical cut lines. The subcircuits after partitioning
are assigned to rectangular bins. At some points a bin-based simulated annealing
where the objects that are moved are the subcircuits in the bins, is performed to
improve the current placement. Such a procedure terminates when a certain stop
criteria (e.g. average number of cells per bin is less than a given number) is met.
An adjustment step is then executed to fit the current bin-based placement into row
structures. The next step is a cell-based simulated annealing. The bin structure still
exists and the cells are moved between the centers of bins. The locations of these
centers can be changed during the annealing procedure. The final step simply spreads
overlapped cells and makes local improvements to obtain the detailed placement.

Legalization

Bin-based
Annealing

Min-cut
bipartitioning

Local Impr.

Fig. 6.1. Overall flow of proposed mixed-size placement.

138 6 Congestion Minimization in Modern Placement Circuits

Partitioning

To handle the high complexity of the problem, the input netlist is recursively divided
into two partitions using a state-of-the-art min-cut partitioner, hMetis [23]. Two
things have to be considered during partitioning. One is the number of cuts across
the partitions and the other is the balance in the sizes of two partitioned sets. hMetis
is shown to be able to get very good solutions in terms of both the cutsize and the
balance [27].

Simulated Annealing

A weakness of pure min-cut type placement is its irreversibility. Once a cell is
assigned to one side of the cut line, it will never move to the other side to improve
the placement. Combining simulated annealing in this flow helps placements move
out of the local minima. We use multilevel simulated annealing in this placement
flow. The key idea is to reduce the number of movable objectives in annealing. The
difference between our flow and hierarchical annealing is instead of using a single
cooling schedule through three hierarchical levels, we use low temperature annealing
at each level and do not fix the number of levels. Moreover, we avoid using simulated
annealing at the final placement stage and use a fast greedy improvement instead.
Both bin annealing and cell annealing use total wire length as the cost function. Also
they adopt the same cooling schedule. Swapping is the main move in both types of
annealing, and shifting is used a little bit in cell annealing. The disadvantage of sim-
ulated annealing is its expensive runtime cost. Although our flow tries to reduce this
cost by bin-based approach, annealing is still the most time consuming part.

6.3 Mixed-Size Placement 2

In this section, we propose hierarchical techniques to place large-scale mixed size
designs that may contain thousand of macro blocks and millions of standard cells.
Min-cut-based top-down approach is taken to handle the large complexity of designs
and simulated annealing is used to minimize the total wire length. Min-cut partition-
ing should be aware of large macro cells and may result in different size bins. During
simulated annealing, different bin sizes have to be considered.

To build a mixed-size placement tool that can handle macro cells as well as
standard cells, we follow the basic flow a min-cut and simulated annealing-based
placer [3], that is believed to be very successful [28], and add functionalities that can
resolve the problems caused by the presence of macro cells of various sizes.

The input circuit netlist is recursively bipartitioned, and bin-based simulated
annealing is done after each bipartitioning. Once the number of cells in a bin is less
than some threshold, we stop partitioning and annealing processes and the detailed
placement starts. During detailed placement, legalization has to be done to remove
overlaps between the cells. After legalization, a greedy local improvement step is
performed by switching adjacent standard cells or flipping them.

2 Portions reprinted, with permission, from [1–3, 5]. c© [2006, 2005, 2001, 2000] IEEE.

6.3 Mixed-Size Placement 139

6.3.1 Macro-Aware Partitioning

To handle the high complexity of the problem, the input netlist is recursively divided
into two partitions using a state-of-the-art min-cut partitioner, hMetis [23]. Two
things have to be considered during partitioning. One is the number of cuts going
across the partitions and the other is the balance in the sizes of two partitioned sets.
hMetis is shown to be able to get very good solutions in terms of both the cutsize and
the balance [27].

Min-cut-based hierarchical approaches run into trouble in mixed-size placement,
when there is a large macro cell that is bigger than the bin size at a certain hierarchical
level. Figure 6.2 illustrates this problem. In Figure 6.2 (a), we are trying to vertically
cut the bin. The size of both sub-bins have to be equal to have a regular bin structure.
However, the macro is too large to fit into any of the sub-bins, even though the actual
area of the macro is equal to the half of the bin are that is being cut. Since each
cell has to be assigned to only one bin, we have to put the macro either the left of
the right sub-bin. If we put the macro into the one sub-bin and the rest standard
cells into the other sub-bin, the resulting layout will be extremely illegal. Figure 6.2
(b) shows a possible placement solution, which can never be obtained by traditional
min-cut-based approaches.

In order to deal with macro cells, we give up the regularity of bin structure,
meaning that bins can have different sizes. For example, we are now vertically parti-
tioning the bin in Figure 6.3. By scanning all the cells in the bin, we can identify
the largest cell in the bin that has the width which is larger than the half of the
current bin width. We cannot partition this bin into equal size sub-bins. Instead, we
do unbalanced partitioning. Let α and β be the ratio of the macro width and height,
to the bin width and height, respectively. (In case of horizontal partitioning, α and β
are defined conversely.)

(b)

macro cell

macro cell

(a)

Fig. 6.2. (a) A macro cell is too large to fit into a sub-bin. (b) Possible placement solution for
the bin, which can never be obtained by traditional approaches.

140 6 Congestion Minimization in Modern Placement Circuits

partition 1partition 0

1−β

β

1−αα

macro cell

Fig. 6.3. Partitioning when a bin contains a large macro.

α = width of macro
width of bin

(0 < α < 1)

β = height of macro
height of bin

(0 < β < 1)

Let us denote the partition that the macro will be assigned to as partition 0 and the
other as partition 1. The ratio in partition sizes in terms of area will be α(1 − β) :
(1 − α), excluding the macro. Therefore, we perform min-cut partitioning such that
the ratio of areas is

α(1 − β) : (1 − α) = α(1 − β)

1 − αβ
: 1 − α

1 − αβ

and assign the resulting partitions to the sub-bins.
We use hMetis [23] as the partitioner. hMetis does not support the function to

control the ratio of resulting partitions, neither do most other partitioners. In order to
make r : (1 − r) partitioning

r = min
(

α(1 − β)

1 − αβ
,

1 − α

1 − αβ

)

using hMetis, we preassign a dummy node with area 1 − 2r to the smaller partition,
and do balanced partitioning(0.5:0.5). The resulting partitions excluding the dummy
node will be r : (1 − r).

If there are more than one macros in the bin being partitioned, we preassign
macros so that they can fit in the sub-bins they will belong to, and perform parti-
tioning for the rest of standard cells. If a macro can fit in neither of the sub-bins, it
is preassigned to a sub-bin that minimizes the violation. When a bin contains only
one cell/macro, the bin is no longer partitioned but still can move around during
simulated annealing to minimize wire length.

6.3 Mixed-Size Placement 141

6.3.2 Bin-Based Simulated Annealing

After each bipartition, bin-based simulated annealing takes place to find a good
location for each partition to be placed in, minimizing the total wire length.

Because the bin structure is irregular due to unbalance partitioning, we have to
take care of different bin sizes during simulated annealing. There are three types
of moves in bin-based simulated annealing: horizontal switch, vertical switch, and
diagonal switch. These moves switch two adjacent bins. If the bin structure is regular,
we can freely choose any type of move. However, we now have constraints for these
moves: Diagonal switches are allowed only when the two bins have the same size
(both width and height), vertical switches are allowed only when the widths of both
bins are the same, and horizontal switches occur only when the heights are the same.
The moves that do not satisfy these constraints are automatically rejected.

When we accept a move, the size and the position of bins have to be updated
accordingly to keep the bin structure correct. Figure 6.4 shows an example of hori-
zontal switching. We keep the center position, the width and the height of bins to
maintain the irregular bin structure. The coordinates of the center and the widths
have to be updated as

x ′
0 = x0 − w0/2 + w1/2

x ′
1 = x1 + w1/2 − w0/2

w′
0 = w1

w′
1 = w0

(assuming that h0 = h1, y0 = y1, x0 < x1).
By restricted bin-based simulated annealing, macro cells can still move around

to find a better location to improve the quality. Also, the solution space is limited
because of the constraints, resulting in speed-up. The speed-up of simulated anneal-
ing by limiting the moves within some boundary is well discussed in [29].

(x0’, y)(x0, y) (x1’, y)

h0 = h1

w1w0

(x1, y)

(b)(a)

w1’ = w0w0’ = w1

Fig. 6.4. Example of horizontal switch in irregular bin structure.

142 6 Congestion Minimization in Modern Placement Circuits

6.3.3 Legalization

Once average number of cells in a bin gets less than a certain number, recursive parti-
tioning and simulated annealing is stopped and we proceed to the detailed placement
step.

First, overlaps between cells have to be resolved to get a legal placement. This
step is called legalization. Without macro cells, this stage is very simple. All that has
to be done is just to place cells next to each other in a row from left to right. However,
with the presence of macro cells that spans through multiple rows, the problem is no
longer straightforward. Since we have tried to put macro cells inside bin boundaries
during the previous steps, we expect that macro cell do not cause much problem, but
simply placing the cells next to each other will easily end up with having cells outside
of the chip boundary. When placing cell to remove overlaps, we have to consider two
factors: The degradation in placement quality and the legality of result, which usually
conflict with each other. To address this conflict, we use a cost function for placing
each cell that combines the two factors. For macro cells, the cost function of putting
cell c into row r is :

cost(c, r) = α · (position offset) + (1 − α) · xfinal

and for standard cells

cost(c, r) = α · (wirelength change) + (1 − α) · xfinal

where position offset is the distance from the original position to the final position,
wire length change is the change in wire length caused by moving the cell (that
can be negative when wire length decreases), and xfinal is the x-coordinate of the
cell after legalization. α is a coefficient to control the importance of each term.
By selecting the row that minimizes cost (c, r), we try to minimize both the wire
length (displacement in case of macros) and x-coordinate of cells. Minimizing xfinal
helps increase the chance to get a legal solution, leaving room for the rest of cells to
be placed.

6.4 Congestion Estimation 3

In this section we are going to estimate both peak congestion and congestion distri-
bution at early top-down placement stages. Specifically, we quantitatively estimate
the maximum congestion prior to placement stage. Also we give a congestion distri-
bution picture of the chip layout at coarse levels of hierarchical placement flow. Both
estimates are made based on Rent’s rule – a well-known stochastic model for real
circuits.

3 Portions reprinted, with permission, from [5, 11]. c© [2001, 2000] IEEE.

6.4 Congestion Estimation 143

Congestion is a function of routing demand and routing resource. Once the tech-
nology feature and chip characteristics (die size, number of layers, position of pre-
placed macros) are fixed, the routing resource is roughly determined 4 Congestion
and routing demand are so closely related that it is straightforward to convert one to
the other. In this work, we will focus on the estimation for routing demand.

During the global routing, the chip is divided into bins. The bin is small enough
that each placement region covers an integral number of bins. All the nets will
be routed by connecting the cells of each net using grid wires. For each boundary of
the bins b, the routing demand d(b) is the number of wires that cross this boundary;
the routing supply s(b) is the number of wires that are allowed to cross the bound-
ary. The overflow of a boundary c(b) is max(d(b) − s(b), 0). The congestion of a
placement region is the summation of the overflow over all the boundaries within
this placement region. The peak congestion of a placement is the maximum overflow
over all the bin boundaries.

6.4.1 Rent’s Rule

Rent’s rule is an empirical observation first described by Landman and Russo [17].
It states the relationship between the number of elementary blocks G in a subcircuit
of a partitioned design, and the number of external connections T of the subcircuit.
Specifically,

T = tG p (6.1)

where t is the average number of interconnections per block, and p is the Rent expo-
nent (0.4 < p < 0.8 in real circuits). The Rent exponent p can be computed by
plotting the T vs. G relation in a log–log diagram for every value of G in a top-down
partitioning process, and then fitting a line on the plotted points. The slope p of this
line represents the Rent exponent.

Rent’s rule has been widely used to estimate interconnect wire length [18,20,21].
In general, a higher Rent exponent will result in a longer average wire length, which
in turn implies a larger wiring area and more congested layout [22].

6.4.2 Peak Congestion Analysis

Cut Ratio in Recursive Bipartitioning

In order to analyze peak congestion over all the bin boundaries of the layout, we
assume that the circuit is an ideal circuit which strictly obeys Rent’s rule. This ideal
circuit is placed using a hierarchical placement flow which is based on recursively
bipartitioning. On each hierarchical level of the top-down placement, each subcircuit

4 Accurate available routing resource can only be obtained after placement and global routing
with the consideration of the layer area occupied by placed cells and the number of routing
layers.

144 6 Congestion Minimization in Modern Placement Circuits

C2
C2

C2C2

C1

C1
C1

C2

First Cut

Second Cuts
C1+C2

Nc

u

v

b

b

(c)(b)(a)

Fig. 6.5. Relationship between net cut and congestion. (a) Recursive bipartitioning and cut.
(b) Worst case routing demand analysis. (c) Average case routing demand analysis.

is quadrisectioned into four smaller subcircuits. A quadrisection step consists of a
vertical bipartitioning followed by a horizontal one [5].

Let C1 be the net cut of the first bipartitioning by a vertical cut line. Let C2,1 and
C2,2 be the net cuts of the second horizontal bipartitioning (Figure 6.5(a)). Similarly,
the net cuts of the i th bipartitioning are Ci,1, . . . , Ci,2i−1 . For an ideal circuit,

Ci,1 ≈ Ci,2 ≈ Ci,3 ≈ . . . for i = 1, . . . 2H

where H is the number of hierarchical levels in the top-down recursive quadrisection
placement. For simplicity, all the cuts on the same level i are denoted as Ci for
i = 1, . . . 2H .

Theorem 6.1. In a recursive bipartitioning approach on an ideal circuit, the ratio
between the net cut of the (i + 1)th bipartitioning Ci+1 and the net cut of the i th
bipartitioning Ci is 2−p, where p is the Rent exponent of the circuit.

Proof. Consider the subcircuits to be bipartitioned at each hierarchical level. Let Gi
be the size of subcircuit at the i th level. Thus the size of subcircuit at the (i + 1)th
bipartitioning is Gi+1 = Gi/2. For and ideal circuit, all the subcircuits have the same
Rent exponent p and Rent coefficient t . According to equation (6.1), the number
of external interconnects for subcircuits at i th level is Ti = tG p

i , and the number
of external interconnects for subcircuits at (i + 1)th level is Ti+1 = tG p

i+1. At a
given level i , the interconnects between two subcircuits that are split from one of
the i th bipartitionings, are a subset of the external interconnects of each of these two
subcircuits. Let k (0 < k < 1) be the ratio between the number of cut nets of the
i th bipartitioning and the number of external nets for subcircuit at i th level. We have
Ci = kTi . For an ideal circuit, assuming k is fixed through all the hierarchical levels,
we have,

Ci+1

Ci
= kTi+1

kTi
= kt (Gi+1)

p

kt (Gi)p = (Gi/2)p

(Gi)p = 2−p

6.4 Congestion Estimation 145

Worst Case Analysis

The top-down placement flow terminates at the H = log4 Nc level where Nc is
the number of cells of the circuit. In the final placement each cell occupies one bin.5

The global router uses L-shape routing model, in which a net is routed using either
the upper or the lower part of the bounding box of this net. This is not a good routing
method but it gives a general picture of wire distribution.

Now we want to find out the maximum routing demand over all the bin bound-
aries without placing the circuit. First we discuss the worst case. Let us denote the
maximum routing demand of a bin boundary as Cmax.

Theorem 6.2. In a recursive bipartitioning approach on an ideal circuit, the maxi-
mum routing demand over all the bin boundaries

Cmax < C1
1 − α2H

1 − α

where C1 is the net cut of the first bipartitioning and α = Ci+1/Ci is the ratio
between net cuts of two consecutive partitionings.

Proof. In Figure 6.5(b), the circuit is partitioned into two parts with a net cut C1.
It follows that there are C1 nets crossing between left half and right half. Let us
look at a bin boundary located at the right half. In the worst case, all these C1 nets
pass this specific boundary. Hence the first bipartitioning contributes C1 to the rout-
ing demand of this boundary. Similarly, the i th bipartitioning contributes Ci to the
routing demand. Thus, for any boundary, the upper bound of the routing demand is

2H∑

i=1

Ci = C1

2H−1∑

i=0

αi

= C1
1 − α2H

1 − α

Uniform Distribution of Cut Nets

In the previous discussion we assume that all the nets that are cut in a bipartitioning
cross a particular bin boundary. That is, obviously, not the general case. However,
once we construct a framework like the model in the earlier subsection, we can study
the congestion behavior using different cut net distribution models.

We continue the analysis using a uniform distribution model, in which the cut
nets of a bipartitioning are uniformly distributed over all the subcircuit area. In other
words, the cells in the partitioned subcircuit have equal probabilities to be connected
to a cut net.

5 A bin has unit width and height.

146 6 Congestion Minimization in Modern Placement Circuits

Theorem 6.3. In a recursive bipartitioning approach on an ideal circuit, assuming
cut nets are uniformly distributed, the expected maximum routing demand over all
the bin boundaries is,

Cmax = C1√
Nc

(
1
2

+ 2α

) √
Ncα

2H − 1
2α2 − 1

where C1 is the net cut of the first bipartitioning and α = Ci+1/Ci is the ratio
between net cuts of two consecutive partitioning operations.

Proof. In Figure 6.5(c), the first bipartitioning result C1 means that there are C1 nets
connecting the left half and right half of the design. We know that the number of final
bins on either half is Nc/2. Since the cut nets are uniformly distributed, for each
final bin, the average number of cut nets connected to this bin is 2C1/Nc. Among
all the horizontal bin boundaries, the ones on the center horizontal line of the chip
accommodate the maximum number of net crossing caused by those C1 nets. Note
that for a specific horizontal bin boundary b at the center line, only the nets which
connect to the bins at the same column could cross b. This is because we are using
the L-shape routing model. There are

√
Nc bins at the same column with boundary

b. For each of them, if the connected bin in the other half is located at the different
upper/lower part (half of the connections of this bin have this property), like bin v and
u in Figure 6.5(c), the probability that this route crosses boundary b is 1/2 (because
of L-shape routing). Therefore the first cut contributes on average C1

√
Nc/(2Nc)

crossings to b. The case for the second bipartitioning is relatively simple. Since there
are C2 nets crossing

√
Nc/2 boundaries, on average each boundary is crossed by

C2/(
√

Nc/2) nets. Using the same approach for the third, fourth, etc. bipartitioning,
we have the expected maximum number of crossings over all the boundaries:

Cmax = 1
2

C1√
Nc

+ 2
C2√
Nc

+ C3√
Nc

+ 4
C4√
Nc

+ · · · (6.2)

According to Theorem 6.1 we have Ci = C1α
i−1, plug it into (6.2), we obtain

Cmax = C1√
Nc

(
1
2

+ 2α

) H−1∑

i=0

(2α)2i

= C1√
Nc

(
1
2

+ 2α

) √
Ncα

2H − 1
2α2 − 1

6.4.3 Regional Congestion Estimation

In Sect. 6.4.2 we have discussed the peak congestion estimation problem. Another
estimation requirement, regional congestion estimation, appears at early placement
stages. In this section, we propose a routing demand estimation approach in the
context of top-down placement.

6.4 Congestion Estimation 147

Definition 1 For a given region r in a globally routed design, the routing demand
D(r) is the summation of the number of net crossings over all the bin boundaries
within region r .

Note that the region in the definition is a common term in top-down placement.
It is called placement region in [12] or global bin in [3]. A region contains a number
of adjacent global routing bins. Estimating the routing demand for all the regions
during the placement will give us a rough congestion map, which is valuable for
early design evaluation.

Given a placement region, the nets which cause the edge crossings can be classi-
fied into two types: the internal nets which connect cells within this region and the
external nets which span toward other regions or cross this region while connecting
no cells. Thus we give the following terms:

Definition 2 For a given region r in a design, the internal routing demand I D(r) is
the summation of the number of crossings caused by internal nets for all bin bound-
aries; the external routing demand E D(r) is the summation of the number of cross-
ings caused by external nets for all bin boundaries.

The total routing demand D(r) for a region r can be calculated by:

D(r) = I D(r) + E D(r)

Figure 6.6 shows the concepts of internal routing demand and external routing
demand at a top-down placement stage. The original circuit is divided into subcircuits
and each subcircuit is assigned into a region. The dashed lines are internal nets. The
thicker, solid lines represent external nets. The routing demand in a region consists
of two parts: net crossings caused by the internal nets and those by the external nets.

At the very coarse placement stage, the subcircuits are loosely coupled, i.e. the
number of external nets is much smaller than the number of internal nets. The routing
demand of a region is primarily determined by the interconnect complexity of the
subcircuit which belongs to the region. As the top-down placement flow goes into

Internal nets

External nets

Placement
regions

Fig. 6.6. Internal and external routing demand.

148 6 Congestion Minimization in Modern Placement Circuits

deeper levels, the routing demand of a placement region is determined by not only the
internal complexity of the subcircuit in this region, but also the geometrical locations
of other subcircuits and the interconnects between them.

Internal Routing Demand

In a typical top-down placement scheme, e.g., min-cut placement, the cells of a par-
titioned subcircuit will eventually be placed within the area that is assigned for this
subcircuit. Therefore, estimating the internal routing demand becomes feasible. For
a certain region in a top-down placement, the internal routing demand is proportional
to the total routed wire length after global routing [15]. 6

The wire length estimation problem has been studied for many years. There are
several successful estimation techniques based on Rent’s rule: Donath’s classical
method [18], its extension [20] and a more recent model [21]. In these methods the
wire length distribution of the entire design is predicted before place and route.

Most of the research done on wire length estimation is based on regularly placed
circuits such as standard cell designs. With the trend toward IP-block-based design,
macro cells as blockage (sometimes referred to as obstacle), are more likely to be
present in the circuit. The presence of the IP blocks may significantly increase wire
length and cause congestion [19]. Since the presence of blockage makes the tradi-
tional wire length estimations far from reality, new techniques should be derived to
address the problem of wire length estimation. In this section, starting from Donath’s
hierarchical technique [18] , his approach is extended to be able to consider obstacles
in the placement area.

Similar to [18], our technique to estimate the average wire length is based on a
top-down hierarchical placement of the circuit into a square Manhattan grid in the
presence of obstacles [4, 6]. The circuit is partitioned hierarchically into four sub-
circuits. This hierarchical partitioning is continued until the number of the standard
cells in all of the subcircuits is equal or less than β, where β is a predefined constant.
At each level of hierarchy, we deduce the average number nh of interconnections and
the average length Lh of interconnections between each two subcircuits belonging to
the same h + 1 level of hierarchy, but different h level of hierarchy. Given the above
model for the circuit, the feature parameter of the circuit P which is given by Rent’s
rule, and the above partitioning scheme, we want to estimate the total interconnec-
tion length of the circuit in the presence of obstacles. This is done by calculating
the average number of interconnections nh and the average length of the intercon-
nections Lh at every hierarchical level h. The total interconnection length over all
hierarchical levels is then obtained from

L =
H∑

h=0

nh Lh (6.3)

where H is the finest level of hierarchy. Since at every step of partitioning, each
subcircuit is divided by four, and in the last level of hierarchy the number of cells

6 We assume that the global routing bins are square.

6.4 Congestion Estimation 149

inside each subcircuit is less than the factor β, the number of levels can be calculated
from

H = log4

(
C
β

)

The average number of interconnections between the subcircuits in each level of
hierarchy is extracted based on Rent’s exponent which is experimentally proven to
be a good indicator of the complexity of the circuit. Using a similar type of analysis
as [19], the average length of interconnection between the subcircuits is calculated in
each level of hierarchy. Then, using formula 6.3, we estimate the total wire length by
multiplying the average number of interconnections by the average length of inter-
connections for each level of hierarchy and summing out all these values over all the
hierarchical levels.

The average number of interconnections at each hierarchical level can be calcu-
lated using Rent’s rule as in [18] to be

nh = αAC(1 − 4p−1)4L(p−1) (6.4)

The Average Length of Interconnections at Each Level of Hierarchy

To start analyzing average wire length at each level of hierarchy, we need to define
some terminologies and deploy some assumptions at first.

Assumption 1 To compute Lh we assume that all of the nets have two terminals.
This simplification is based on the knowledge that these nets are much more than
all the other nets in the circuit and that multiterminal nets can be modeled as a
collection of two-terminal nets.

The effect of multiterminal nets is incorporated into our estimation by using higher
values for in the calculation of the average number of interconnections nh as shown
in the earlier section.

Assumption 2 We assume that the available routing layers are such that the block-
ages are obstructions for both placement and routing. This model is based on what
commercial tools support for placement and routing of large-scale circuits.

Definition 3 In level h of hierarchy an intrabin wire is the wire that its terminals
belong to the same bin, i.e. same part of the chip area.

Definition 4 An interbin wire is the wire that its terminals belong to different bins
in level h of hierarchy, but to one bin in the level (h + 1) of hierarchy.

Definition 5 In the presence of the obstacles, the transparent-block wire length,
LTB, is defined as the wire length when the obstacle is assumed to be transparent
and wires can pass through it. For two-terminal nets, transparent-block wire length
is the Manhattan distance between them.

Definition 6 Detor wire length, LDT, is the detor length needed in a routing wire in
the presence of the obstacles.

150 6 Congestion Minimization in Modern Placement Circuits

Fig. 6.7. Definition of intrabin transparent-block and detor wire length.

In other words, LTB = L − LDT, where L is the steiner minimal length of the net
such that no part of the wire is routed inside any of the obstacles. Figure 6.7 shows
the intrabin transparent-block and detor definitions.

Assumption 3 We assume that the entire possible terminal pairs P1 = (x1, y1) and
P2 = (x2, y2) for a two-terminal net have equal probability to occur. It means that
the probability distribution of the terminals is uniform inside the nonblocked area of
the chip.

To obtain the average wire length, we decompose it into three parts, namely
i transparent-block and detor in X and Y directions such that

L = LTB + L
h
DT + L

v
DT (6.5)

where L
h
DT and L

v
DT are the average detor in X and Y direction and LTB is the

average transparent-block wire length.
If there is no obstacle in the bin area, the average intrabin wire length can be

easily obtained from 6.6, considering a uniform probability distribution for all the
terminals [19].

L intra =
∫ M

0

∫ M
0

∫ N
0

∫ N
0 (|x1 − x2| + |y1 − y2|)dx1dx2dy1dy2
∫ M

0

∫ M
0

∫ N
0

∫ N
0 dx1dx2dy1dy2

= N + M
3

(6.6)

where N is width and M is height of a bin. Moreover, subscript intra denotes that
the average is taken over all intrabin nets (nets that both of their terminals are in
one bin), in contrast with the interbin nets which will be discussed later. In the pres-
ence of an obstacle, however, the average intrabin wire length would be different.
To obtain the average wire length in this case, let us assume the obstacle’s cen-
ter is at position (a, b) and its width and height are, respectively, W and H (see

6.4 Congestion Estimation 151

Figure 6.7). It should be noticed that in this case P1 and P2 must be placed outside
of the obstacle, i.e. , where A is the set of all the points inside the bin and S is the
set of all the points inside the obstacle. With the same type of analysis as for for-
mula 6.6, we can calculate the average transparent-block wire length [19], LTB,intra,
ψ(N , M, W, H, a, b)/(NM-WH)2 where

ψ(N , M, W, H, a, b) =
∫ ∫ ∫ ∫

P1,P2∈A−S
(|x1 − x2| + |y1 − y2|)dx1dx2dy1dy2 (6.7)

Basically, in (6.7), we get the integral over the nonblocked area of the bin.
By that, we mean that the terminals can be everywhere except the blocked i part
of the bin, but the interconnections can pass through the blockage. Analyzing the
intrabin average detor wire length [19] is more complicated and is omitted here for
brevity. It can be shown that the average detor wire length in X direction is

L
h
DT,intra = 2

3
W

W (M − b − H/2)W (b − H/2)

(M N − W H)2 (6.8)

Similar formula holds for the average detor wire length in Y direction.
In the presence of an obstacle in the adjacent bins, the formulas for calculating

wire length is complicated. The wire length in this case, consists of both transparent-
block and detor parts.

Horizontally adjacent bins are shown in Figure 6.8. In this case, the average
transparent-block wire length can be computed as:

LTB,inter = ψ(2N , M, W, H, a, b) − ψ(N , M, W1, H, a1, b1) − ψ(N , M, W2, H, a2, b2)

(N M − W1 H)(N M − W2 H)
(6.9)

where W = W1 + W2, b1 = b2 = b, a1 = a − W/2 + W1/2, and a2 = W2/2 and ψ
is the same function as in (6.7). The average detor wire length in Y direction can be
expressed as

L
v
DT,inter = Pr v

DT.Lv
DT,inter (6.10)

Fig. 6.8. Two horizontal adjacent bins.

152 6 Congestion Minimization in Modern Placement Circuits

where PrvDT is the probability of occurring a detor in Y direction. Moreover, Lv
DT,inter

is the average detor length in Y direction given that a detor occurred in this direction.
Similar to the analysis in (6.8), Lv

DT,inter equals to 1
3 H . The average detor wire length

in X direction can be found in similar way.
Having had LTB, L

h
DT and L

v
DT as the average transparent-block and detor wire

length of horizontal adjacent bins A and B, Lh(A, B) in this case can be extracted
from (6.5).

Calculating the average interbin wire length in the case of two diagonally adja-
cent bins is i somewhat similar is omitted here for brevity.

Having had the average interbin wire length for horizontally, vertically and diag-
onally adjacent bins, the average interbin wire length can be obtained for every level
of hierarchy h. For every level of hierarchy, the average interbin wire length can be
written as

L inter = 1
6
(Lh

inter(A, B) + Lh
inter(C, D) + Lv

inter(A, C) + Lv
inter(B, D) +

Ld
inter(A, D) + Ld

inter(B, C))

where h, v , and d, respectively, denote that the corresponding bins are horizontally,
vertically, or diagonally adjacent.

The analysis of interbin average wire length in the presence of multiple blockages
can be performed by using the analysis for average wire length in the presence of
a single blockage. The interbin average wire length for vertically and diagonally
adjacent bins use the same type of analysis as horizontally adjacent bins and are
omitted here for brevity.

As shown in Figure 6.9, in the presence of multiple blockages, the average
transparent-block wire length can be calculated from:

Fig. 6.9. Horizontal adjacent bins with multiple blockages.

6.5 Congestion Removal 153

ψ

(
A −

∑

i

Ai , B −
∑

i

Bi

)

= ψ(A, B) −
⎛

⎝
∑

i

ψ(Ai , B) +
∑

i

ψ(A, Bi) −
∑

j

∑

i

ψ(Ai , B j)

⎞

⎠ (6.11)

It is shown by Cheng et al. [19] that if the obstacles do not overlap neither in X
span nor in Y span, the effect of the obstacles on the average detor wire length is addi-
tive and this problem can be treated as a combination of single blockage problems.
This assumption, however, seems to be too simplifying for real circuits. So, instead
of making an assumption on the geometry of the blockages, we use the look-up table
(LUT) estimation method based on numerous experiments. This LUT is indexed by
two parameters; number of blockages and percentage of blocked area over the whole
chip area where the indices of the latter are from 5 to 70% in the steps of 5%. The
indices of the number of blockage are 4n where 1 ≤ n ≤ 6 . Each entry of the LUT
is obtained by generating some random circuit instance and performing the GP and
routing for each instance. The total detor wire length for each instance is measured
as the difference between the HPWL and the routed wire length.

6.5 Congestion Removal 7

Achieving autoroutability is one of the main goals in modern standard-cell place-
ment. Total estimated wire length, or bounding box wire length, was widely used as
an objective function to optimize routability. It is commonly believed that a shorter
total wire length implies better routability. Wire length optimization has been exten-
sively studied during the past two decades. Successful placement techniques include
min-cut [8, 9], simulated annealing [13], and analytical approach [14, 24].

Congestion is another important indicator of routability in placement, and it has
become dominant for large, tight designs. Previous works address the congestion
problem using various methods. Mayrhofer and Lauther [25] combine congestion
function in cut minimization. Cheng [10] employs a congestion model in simulated
annealing approach. Wang et al. [11] propose a postprocessing step to remove con-
gestion for a wire length optimized placement. These methods attempt to reduce
congestion by obtaining a placement with less gathered wires and are successful for
improving routability.

White space allocation is another way to alleviate congestion in placement
orthogonal to above congestion management techniques. White space is a term asso-
ciated with fixed-die placement, which is the common design style in current industry
practice. For fixed-die designs, chip area, core area, rows and available sites are given
before placement and routing. White space, or the empty space that is not occupied
by the standard-cells, varies from 0.1 to 30% for real designs. In fixed-die place-
ment with large white space, purely minimizing wire length tends to place all the

7 Portions reprinted, with permission, from [7]. c© [2002] IEEE.

154 6 Congestion Minimization in Modern Placement Circuits

cells close to each other. But the congestion of this “packed” placement is worse
than a spread-out placement. Fixed-die placement tool has to take white space into
consideration to improve routability.

Since congestion originates from the discrepancy between routing demand and
routing supply, increasing supply, as well as reducing demand, is a natural way to
reduce congestion. However, the problem of allocating white space without much
loss of placement quality (e.g., wire length) is not trivial.

6.5.1 Problem Formulation

In top-down placement flow, white space is allocated at later levels, where the con-
gestion information acquired from the current placement can be used to guide allo-
cation. Basically, we tend to allocate more white space to congested areas [7].

In an m × n grid mesh, assuming that the congestion of each grid is known, we
want to determine the white space of each grid. Let ci j be the congestion of the grid
at column i and row j , and wi j be the white space to be assigned into this grid.
Assuming that the total white space of the design is W , we have,

m∑

i=1

n∑

j=1

wi j = W (6.12)

In addition, the total white space assigned to each row should be balanced, i.e.,
there is no row containing too much or too little white space. Let wmin and wmax be
the minimum and maximum total white space for rows, respectively. We then have
the following constraints:

wmin ≤
m∑

i=1

wi j ≤ wmax j = 1, ..., n (6.13)

The problem of allocating white space is to find a mapping function f from
congestion to white space for each grid. The function should be monotone, i.e.,

wi j = f (ci j) and
wi j ≤ wuv if ci j ≤ cuv

1 ≤ i, u ≤ m, 1 ≤ j, v ≤ n (6.14)

It is not hard to find a feasible solution (function f) to meet constraint (6.12)–
(6.14). However, we require a smooth mapping function for a reasonable allocation.
In this work, instead of directly solving this problem, we solve two alternative prob-
lems. We first allocate white space to each row of the grid mesh, then allocate white
space to each grid within rows. We will describe them in Sects. 6.5.2 and 6.5.3.

6.5 Congestion Removal 155

6.5.2 Row White Space Allocation

To allocate white space for each row, we are dealing with a similar problem to the
global white space allocation. Assume that there are n rows in the design and the
total congestion for row j is c j . Let w j be the white space to be allocated to row j .
The capacity constraint is,

n∑

j=1

w j = W (6.15)

Without loss of generality, we assume that the congestions of the rows are in a
nondecreasing order, i.e.,

c1 ≤ c2 ≤ · · · ≤ cn

Hence,
wmin ≤ w1 ≤ w2 ≤ · · · ≤ wn ≤ wmax

If we fix w1 = wmin and wn = wmax, the problem can be understood as finding an
increasing curve on a plane such that point (c1, wmin) and (cn, wmax) are on the curve,
and the integral of the function on [c1, cn] is W. We have the following constraints:

f (c1) = wmin (6.16)
f (cn) = wmax (6.17)∫ cn

c1

f (x)dx = W (6.18)

where f (x) is the function of the curve.
The linear function determined by the two points does not meet the integration

constraint (6.18). A quadratic curve fits well in this situation. Let f (x) be in the form
f (x) = a1x2 + a2x + a3. According to the constraints (6.15)–(6.17),

a1c2
1 + a2c1 + a3 = wmin (6.19)

a1c2
n + a2cn + a3 = wmax (6.20)

a1

n∑

i=1

c2
i + a2

n∑

i=1

ci + a3n = W (6.21)

where ci , wi , i = 1, ..., n are known and a1,a2 and a3 are unknown parameters.
The unique solution of equation (6.19)–(6.21) determines function f (x).

However, the curve f (x) may have extremum inside [c1, cn], as shown in
Figure 6.10(a), (b). This happens when c1 < −a2/(2a1) < cn . In these cases, the
curve is no longer monotone within [c1, cn]. We need to relax either w1 = wmin or
wn = wmax to satisfy the capacity constraint.

156 6 Congestion Minimization in Modern Placement Circuits

wmin

c1

White Space

cn Congestion

wmax

0

(a)

wmin

c1

White Space

cn Congestion

wmax

0

(b)

wmin

c1

White Space

cn Congestion

wmax

wmin

original

adjusted

0

(c)

wmin

c1

White Space

cn Congestion

wmax

original

(d)

w’max

adjusted

0

Fig. 6.10. The quadratic curves with extremum inside [c1, cn] ((a), (b)), and adjusted curves
that are strictly increasing within [c1, cn] (c, d).

In the case a1 < 0 (Figure 6.10(a)), we relax the constraint w1 = wmin to w1 ≥
wmin and take the point (cn, wmax) as the extremum of the quadratic curve. Therefore,
the following equation is used to replace (6.20),

cn = − a2

2a1
(6.22)

The solution of (6.19), (6.21), and (6.22) corresponds to the adjusted curve shown
in Figure 6.10(c). In the white space allocation problem, wmax is the maximum white
space for a row, i.e., wmax > W/n. Thus there exists a w′

min such that point (c1, w
′
min)

is on the adjusted curve (w′
min = f (c1)) and w′

min < wmax, i.e., the new curve is
monotone within [c1, cn].

Similarly, in the case a1 > 0 (Figure 6.10(b)), we relax the constraint wn = wmax
to wn ≤ wmax and take the point (c1, wmin) as the extremum of the quadratic curve.
The following equation is used to replace (6.19),

c1 = − a2

2a1
(6.23)

6.5 Congestion Removal 157

The solution of (6.20), (6.21), and (6.23) corresponds to the adjusted curve shown
in Figure 6.10(d). Since wmin < W/n, there exists a w′

max such that point (cn, w′
max)

is on the adjusted curve (w′
max = f (cn)) and w′

max > wmin, i.e., the new curve is
monotone within [c1, cn].

The obtained quadratic function is used to compute white space for each row
according to the congestion of this row. The white space of the row is then assigned
to each grid.

6.5.3 Grid White Space Allocation

Unlike row white space allocation, there is no maximum or minimum white space
limitation for grid white space allocation. The white space for a grid can be zero, if
the grid is not congested. If a grid is highly congested, its neighbor grid is likely to be
congested as well. This prevents one congested grid from being assigned too much
white space.

For each grid, it is reasonable to allocate white space proportional to the ratio
of the congestion to the total congestion, i.e., wi j = w j ci j/c j . Other ratios can be
used, for instance, the ratio of the grid congestion square to the total square of the grid
congestion. The specific model used to allocate grid white space varies and should
takes congestion model into consideration.

6.5.4 Placement Flow

In general, placement quality (e.g. wire length) degrades after white space allocation,
since the locations of the cells are changed without considering the wire length.
Therefore, the allocation must not be the final step of the placement. A detailed
placement optimization, usually a low temperature annealing step, is a good solution
to the loss of quality in white space allocation. On the other hand, if the placement
flow does not contain such a detailed optimization step, it is better to start allocating
white space at earlier top-down levels and do multiple allocations. This is because the
loss of wire length quality by allocating white space will be less severe by multiple
uses of allocation.

For our top-down hierarchical placement flow, we use the white space allocation
two times in the placement, both are in the detailed placement stage. The congestion
information at this stage is more accurate. The first allocation is made after grid
adjustment. At this moment, the number of rows in the grid mesh is the same as the
number of standard-cell rows for the design. The second allocation is made after the
annealing improvement step, and before the overlap removal. The entire placement
flow with white space allocation steps is shown in Figure 6.11.

6.5.5 Post-Allocation Optimization

The optimization steps after two allocations are crucial for the successful allocation,
as white space allocation changes the current placement and results in loss of place-
ment quality. We use a simulated annealing-based step after the first allocation, and

158 6 Congestion Minimization in Modern Placement Circuits

recursive
bisection

cluster
annealing

cell annealing
with white

space in bins

second allocation
overlap removal
local improvement

row adjustment
white space
allocation

Fig. 6.11. Our placement flow with two white space allocations.

white space

cells

(a) Bin width is determined by (c) Swapping cells between
two binsbin center with overlap

(b) Cells are placed at the
cell width and white space

Fig. 6.12. Simulated annealing after white space allocation.

a fast greedy algorithm after the second allocation. Both steps improve the total wire
length by swapping or moving cells. We describe the first approach in this section.

As shown in Figure 6.12, after the white space allocation, each grid is assigned
some white space. The width of a grid is determined by the white space of this
grid, and the total widths of cells in this grid. A grid spreading step is performed
before simulated annealing to determine the location of every grid. This step will be
repeated periodically in simulated annealing. All the cells are placed at the centers
of the grids with overlaps. For each move in annealing, cells are either swapped
between two grids or are moved from one grid to another. The calculation of row
overflow penalty should take the white space of this row into consideration, i.e.,
penalizing the rows for which the total cell width plus white space is greater than the
row capacity.

6.6 Target Utilization Control

Another metric for estimationg the routability of a circuit is by measuring its target
utilization. The target utilization (or density) can be defined as a constraint for the
placement tool. The target utilization should be set higher than the design utilization
which is a characteristic of the designed circuit. In ISPD 2006 contest, there was a
general placement solution scoring function defined which considered target utiliza-
tion along with wire length to emphasis on routability as well as optimizing the wire
length. That scoring function was defined as

HPWL × (1 + Scaled Over f lowFactor + C PU Factor) (6.24)

6.6 Target Utilization Control 159

To compute the Scaled Overflow Factor, a bin grid is imposed over the whole circuit,
with each bin width and height equal to 10 circuit row height. The bin overflow is
defined as:

BOF = �Movable Area Bin - Bin Free Space × Target Density (6.25)

and total overflow is defined as �B O F . Thus, the Scaled Overflow Factor is
defined as

Scaled Overflow Factor =
(

TOF × Bin Area × Target Density
�Movable Object Area

)2

(6.26)

We used two methods to control the target utilization of the placed circuits gen-
erated by Dragon considering the above cost function. In the first method, the key
idea is to redistribute cells inside a region around a highly utilized bin to decrease the
utilization level of each bin inside the region to the target utilization constraint. This
region should be determined big enough so that its utilization is not more than the
target utilization constraint. To redistribute cells inside that region we use the min-cut
partitioning algorithm. The details of this algorithm is given in the Figure 6.13.

In the second method, the key idea is to move cells out of a bin which is highly
utilized. This move would be accepted if it helps in reducing the total cost function
composed of wire length and density factors. This process continues till there is no
more bins left which is highly utilized. Figure 6.14 describes this method in details.

Input: Placement of m × n bin structure with some over-utilized bins, Target utilization
constraint T UC
Output: Placement of m × n bin structure; Utilization of all bins are less than target
utilization

repeat
Pick the bin B with highest density
Initial working region W R = B
repeat

Add low-utilized bins to W R in an m × n structure
until W R utilization ≤ T UC
Collect all the cells in the WR into CellSet
repeat

Alternatively do horizontal and vertical min-cut on CellSet considering cells current
location
Balance the cell area in the cut according to the cut area

until Each cut size = bin size
Assign the cells to their bins
Update each cell coordinate

until All bins utilization ≤ T UC

Fig. 6.13. Utilization Control by cell redistribution.

160 6 Congestion Minimization in Modern Placement Circuits

Input: Placement of m × n bin structure with some over-utilized bins, Target utilization
constraint T UC
Output: Placement of m × n bin structure; Utilization of all bins are less than target
utilization

repeat
Pick the bin B with highest density
Sort all cells attached to B by their area in descending order
repeat

Pick the first cell C from the sorted list
Move C to the closed bin with utilization ≤ T UC
Compute the scoring function from (6.24)
if scoring function is ≤ previous scoring function then

accept the move
else

Reject the move
end if

until Bin B utilization ≤ T UC
until All bins utilization ≤ T UC

Fig. 6.14. Utilization Control by cell migration.

Table 6.1. Pure Wire length Optimization; ISPD 2005 Suite.

Circuit Wire length Run Time (h)
Adaptec1 83.2768 2.05
Adaptec2 94.7201 5.5
Adaptec3 231.0787 4.7
Adaptec4 200.8822 8.8
Bigblue1 102.3929 10.6
Bigblue2 159.7095 19.5
Bigblue3 380.4462 20
Bigblue4 903.9639 41.1

6.7 Experimental Result

Our proposed placement tool, Dragon, has been implemented in C under Linux envi-
ronment. We have conducted two sets of experiments to show the capabilities of
Dragon for minimizing the wire length and congestion. To verify our theoretical
results on real-world circuits, all the experiments are done on ISPD 2005, ISPD
2006, Peko 2005, and Peko 2006 Suites [30].

In the first set of experiments, to emphasis the strength of Dragon to minimize
the wire length, pure wire length minimization has been used on all the benchmarks
from ISPD 2005 and Peko 2005 suites. The results are shown in Tables 6.1 and 6.2.

Since pure wire length minimization cannot necessarily generate routable designs
which is a key concern in real world, the second set of experiments uses the scoring
function presented in ISPD 2006 design contest as the metric. For ISPD 2006 suite,

6.7 Experimental Result 161

Table 6.2. Wire length Optimization; Peko 2005 Suite.

Circuit Design Util (%) WL Run Time (h)
Adaptec1 60.02 52.754 1.0
Adaptec2 60.04 76.666 1.2
Adaptec3 60.11 120.988 4.5
Adaptec4 60.19 87.1832 4.5
Bigblue1 60.01 57.1388 1.3
Bigblue2 59.15 200.7992 2.6
Bigblue3 56.84 635.1079 1
Bigblue4 60 520.0035 15.9

Table 6.3. Concurrent Wire length and Congestion Optimization; Peko 2006 Suite.

Circuit Design Util (%) Target Util (%) WL Overflow (%) Run Time (h) Scaled WL
Adaptec5 51.27 51.27 242.02 0.29 2691 242.72
newblue1 87.00 87.00 63.75 0.008 1413 63.76
newblue2 91.27 91.27 137.99 0.13 2470 138.17
newblue3 81.23 81.23 256.75 0.14 2228 257.11
newblue4 51.22 51.22 129.84 0.29 1862 130.22
newblue5 51.24 51.24 300.04 0.3 3988 300.94
newblue6 81.15 81.15 254.07 0.17 8328 254.50
newblue7 80.00 81.00 776.07 0.11 10556 776.96

Table 6.4. Concurrent Wire length and Congestion Optimization; ISPD 2006 Suite.

Circuit Design Util (%) Target Util (%) WL Overflow (%) Run Time (h) Scaled WL
Adaptec5 49.98 60 435.9676 0.04 5.2 436.1419
newblue1 39.83 80 79.8244 0.01 2.1 79.8323
newblue2 57.58 90 251.6102 0.14 1.8 251.9624
newblue3 26.31 80 437.5762 0.01 1.8 437.6199
newblue4 46.45 50 336.9413 0.06 2.3 337.1434
newblue5 49.56 50 609.2434 0.07 4.5 609.6698
newblue6 38.78 80 562.8104 0.03 5.7 562.9792
newblue7 49.31 80 377.5833 0.05 13.2 1378.2720

all the target densities are picked to be the same as or close to the ISPD 2006 design
contest

As it can be seen in Tables 6.3 and 6.4, the overflow penalty used in design contest
is very low in all of the designs, even the ones with very close target and design
utilizations. The results on these tables verify that the methods presented in Sects. 6.5
and 6.6 are very successful in alleviating the congestion over the whole design.

162 6 Congestion Minimization in Modern Placement Circuits

References

1. Taghavi T, Yang X, Choi B.K, Wang M, Sarrafzadeh M (2006) Dragon2006:
Blockage-Aware Congestion-Controlling Mixed-Sized Placer. International Symposium
on Physical Design 209–211

2. Taghavi T, Yang X, Choi B.K, Wang M, Sarrafzadeh M (2005) Dragon2005: Large-Scale
Mixed-Sized Placement Tool. International Symposium on Physical Design 245–247

3. Wang M, Yang X, Sarrafzadeh M (2000) Dragon2000: Fast standard-cell placement for
large circuits. International Conference on Computer-Aided Design 260–263

4. Taghavi T, Amelifard B, Sarrafzadeh M (2006) Hierarchical Wirelength Estimation for
Large-Scale Circuits in the Presence of IP Blocks. Submitted to IEEE Transaction on
Very Large Scale Integration Systems, Special Section on System Level Interconnect
Prediction

5. Yang X, Kastner R, Sarrafzadeh M (2001) Congestion Estimation during Top-Down
Placement International Symposium on Physical Design(ISPD) 164–169

6. Taghavi T, Sarrafzadeh M (2006) Blockage-Oriented Placement. IEEE Electronic Design
Process Workshop

7. Yang X, Choi B.K, Sarrafzadeh M (April 2002) Routability-Driven White Space Alloca-
tion for Fixed-Die Standard-Cell Placement. ACM International Symposium on Physical
Design 42–47

8. Breuer M.A (1977) A Class of Min-cut Placement Algorithms. IEEE/ACM Design
Automation Conference 284–290

9. Dunlop A.E, Kernighan B.W (Jan. 1985) A Procedure for Placement of Standard Cell
VLSI Circuits. IEEE Transactions on Computer Aided Design 4(1):92–98

10. Cheng C.E (1994) RISA: Accurate and Efficient Placement Routability Modeling. Inter-
national Conference on Computer-Aided Design 690–695

11. Wang M, Yang X, Sarrafzadeh M (2000) Congestion Minimization During Placement.
IEEE Transactions on Computer Aided Design 19(10):1140–1148

12. Caldwell A.E, Kahng A.B, Markov I.L (June 2000) Can Recursive Bisection Alone Pro-
duce Routable Placements?. IEEE/ACM Design Automation Conference 477–482

13. Sechen C, Sangiovanni-Vincentelli A (1986) TimberWolf3.2: A New Standard Cell
Placement and Global Routing Package. IEEE/ACM Design Automation Conference
432–439

14. Sigl G, Doll K, Johannes F.M (1991) Analytical Placement: A Linear or a Quadratic
Objective Function. IEEE/ACM Design Automation Conference 427–432

15. Wang M, Sarrafzadeh M (April 1999) “Behavior of Congestion Minimization During
Placement”. ACM International Symposium on Physical Design pages 145–150

16. Wang M, Yang X, Eguro K, Sarrafzadeh M (April 2000) Multi-Center Congestion Esti-
mation and Minimization During Placement. ACM International Symposium on Physical
Design 147–152

17. Landman B, Russo R. (1971) On a Pin Versus Block Relationship for Partitions of Logic
Graphs. IEEE Transactions on Computers c-20:1469–1479

18. Donath W.E (April 1979) Placement and Average Interconnection Lengths of Computer
Logic. IEEE Transactions on Circuits and Systems 26(4):272–277

19. Cheng C.-K, Kahng A.B, Liu B. L, Stroobandt D (Feb 2001) Toward Better Wireload
Models in the Presence of Obstacles. Asia and South Pacific Design Automation Conf.
527-532.

20. Stroobandt D, Campenhout J.V (1999) Accurate Interconnection Length Estimations for
Predictions Early in the Design Cycle. VLSI Design, Special Issue on Physical Design
in Deep Submicron 10(1):1–20

References 163

21. Davis J.A, De V.K, Meindl J (March 1998) A Stochastic Wire-Length Distribution for
Gigascale Integration(GSI) - Part I: Derivation and Validation. IEEE Transactions on
Electron Devices 45(3):580–589

22. Hagen L, Kahng A.B, Kurdahi F.J, Ramachandran C (Jan 1994) On the Intrinsic Rent
Parameter and Spectra-Based Partitioning Methodologies. IEEE Transactions on Com-
puter Aided Design 13(no.1):27–37

23. Karypis G, Aggarwal R, Kumar V, Shekhar S (1997) Multilevel Hypergraph Partitioning:
Application in VLSI Domain. IEEE/ACM Design Automation Conference 526–529

24. Kleinhans J.M, Sigl G, Johannes F.M, Antreich K.J (1991) GORDIAN: VLSI Placement
by Quadratic Programming and Slicing Optimization. IEEE Trans. on Computer Aided
Design 10(3):365–365

25. Mayrhofer S, Lauther U (1990) Congestion-Driven Placement Using a New Multi-
partitioning Heuristic. International Conference on Computer-Aided Design 332–335

26. Parakh P.N, Brown R.B, Sakalleh K.A (June 1998) Congestion Driven Quadratic Place-
ment. IEEE/ACM Design Automation Conference 275–278

27. Cong J, Romesis M, Xie M (Apr 2003) Optimality, scalability and stability study of par-
titioning and placement algorithms. International Symposium on Physical Design 88–94

28. Madden P.H. (Apr. 2001) Reporting of standard cell placement results. ACM Interna-
tional Symposium on Physical Design 30–35

29. Xu H, Wang M, Choi B.-K., Sarrafzadeh M (Nov. 2003) Toop: A trade-off oriented place-
ment tool. International Conference on Computer-Aided Design 467–471

30. http://www.ispd.cc

Part IV

Multilevel Placement Techniques

7

APlace: A High Quality, Large-Scale Analytical Placer

Andrew B. Kahng1, Sherief Reda2 and Qinke Wang1

1Univeristy of California, San Diego
2Brown University, Division of Engineering
{abk, qinke}@cs.ucsd.edu, {Sherief Reda}@brown.edu

Modern design requirements have brought additional complexities to netlists and
layouts. Millions of components, whitespace resources, and fixed/movable blocks
are just a few to mention in the list of complexities. With these complexities in mind,
placers are faced with the burden of finding an arrangement of placeable objects
under strict wirelength, timing, and power constraints. In this chapter, we describe
the architecture and novel details of our high quality, large-scale analytical placer
APlace2 (and the subsequent APlace3) [26–28]. The performance of APlace2, has
been recognized in the recent ISPD-2005 placement contest, and in this paper we
disclose many of the technical details that we believe are key factors to its perfor-
mance. We describe (1) a new clustering architecture, (2) a dynamically adaptive
analytical solver, and (3) better legalization schemes and novel detailed placement
methods. We also provide extensive experimental results on a number of benchmark
sets, including the IBM ISPD’04, IBM-PLACE 2.0, ICCAD’04, ISPD’05, PEKO’05,
ISPD’06, PEKO’06 as well as using the zero-change netlist transformation bench-
marking framework.

7.1 Introduction

Beside enormous sizes, modern VLSI circuits exhibit a wide range of features that
require careful handling by physical design tools. These features include thousands
of fixed as well as movable blocks, a large number of I/O pads that are not neces-
sary on the peripheral of the layout, millions of standard cells, and a large amount

1 c© [2005] IEEE. Reprinted, with permission, from “Architecture and details of a high
quality, large-scale analytical placer,” published in International Conference on Computer-
Aided Design. pp. 891–898.

168 7 APlace: A High Quality, Large-Scale Analytical Placer

of whitespace for routing and timing requirements. These features are challenging
to handle with existing placers, as has been demonstrated in the recent ISPD-2005
placement contest [36].

To tackle these challenges, modern placers combine a wide range of techniques
and components. For instance, (1) clustering is routinely used to cut down runtime
and enable scalable implementations [5,19,42], (2) core placement engines are based
on min-cut [4,10,48] and/or analytical solvers [11,16,46], (3) legalization component
[7, 21, 33] (4) iterative improvement heuristics [17, 40], and (5) detailed placers and
whitespace distributers [8, 15, 21, 25, 47]. All these techniques must readily handle
the presence of blocks – whether fixed or movable – and whitespace. Furthermore,
all components have to be carefully tuned to squeeze out every possible increment
of Quality of Result (QOR).

In this paper we describe the architecture and details of our placer APlace
[26–28]. The outline architecture of our placement tool is given in Figure 7.1. Clus-
tering is used as an initial pre-processing step to condense the netlist in a multi-level
fashion to just around a couple of thousand components. Global placement works on
the clustered netlist until a “decent” spreading is achieved. At that point, unclustering

clustering

global
moving

whitespace
distribution

global placer

legalization

cell order
polishing

unclustering

Fig. 7.1. The outline of our placement flow.

7.2 Clustering and Unclustering 169

breaks down the clusters to reveal the next level of clustering. The process of global
placement and unclustering is iterated until the original flat netlist is well spread.
Then, legalization assigns valid positions for all movable components with no over-
laps. Legalization typically incurs an increase in wirelength of the placement. The
ensuing detailed placement phase attempts to recover any loss of quality due to legal-
ization. Detailed placement is comprised of three phases (1) global moving where
cells are moved globally to reduce wirelength, (2) whitespace distribution where
whitespace is optimally distributed to minimize wirelength while maintaining the
relative cell ordering in every layout row, and (3) cell order polishing where suc-
cessive small windows of cells are optimally re-ordered. The three phases of detailed
placement may be iterated until negligible improvements in wirelength are observed.

The organization of this paper is as follows. Section 7.2 gives the details of the
clustering and unclustering phases. Section 7.3 discusses various global placement
ideas and details. Section 7.4 provides the details of our legalization scheme and var-
ious phases of detailed placement. Section 7.5 gives experimental results for various
benchmark sets.

7.2 Clustering and Unclustering

Executing an analytical global placer on a flat cell design might give the best place-
ment results – depending on how scalable the placer is – but nevertheless can incur
extremely long runtimes. Clustering offers an attractive choice to reduce runtime,
and with careful tuning this can have no impact on placement quality. Our clustering
approach can be viewed as a middle-ground between the top-down multi-level para-
digm of MLPart [6] and hMetis [31] on one side, and fine-grain clustering [19] and
semi-persistent clustering [5] on the other side.

Our clustering pre-processes the input netlist to reduce its size to only a couple
of thousand clusters. However, this clustering is executed in a multi-level paradigm,
where each clustering level is about tenth the size of the previous clustering level.
For example, if the input size is around two million objects – roughly the size of the
largest circuit in the IBM ISPD’05 benchmark set – then the clustering hierarchy is
around four levels with vertex cardinalities: 2M, 200k, 20k, and 2k. After clustering,
the pre-processed netlist is given to the global analytical placer to operate on. The
global placer keeps on solving the netlist until it achieves a non-overlapping, or a
“sufficiently” small overlapping placement. At this point, unclustering is triggered
and the components of the next clustering hierarchy level replace the existing com-
ponents. The components of an unclustered object are initially placed at the center
location of their component with a slight random perturbation.

To move from one clustering level to the next during the initial pre-processing
step, we use the best choice heuristic [5] with tight control on cluster area and
using lazy updates. This can be summarized as follows. Initially, the affinity of every
object u to its neighbors is calculated and the neighbor object with largest affinity is
declared the closest; its affinity becomes the score of node u. The affinity between a
pair of objects u and v is the total weight of the hyperedges joining them divided by

170 7 APlace: A High Quality, Large-Scale Analytical Placer

Input: Flat netlist.
Output: Clustered netlist.

until number of clusters < 2000:
target number of clusters = current number of clusters

clustering ratio=10
.

target cluster area (CA) = total cell area
target number of clusters ∗ 1.5.

for each object u:
calculate the most affine neighbor to u and u’s score.

sort all objects by their score descendingly using a heap.
until the target number of clusters is met:

if (i) top of the heap u is not marked invalid and
(ii) clustering does not violate CA
then cluster u with its most affine neighbor.

else if u is marked invalid
then recalculate its score, insert in heap and mark valid.

else remove u from the heap and continue.
update netlist and calculate the new clustered object score.
insert the new object into the heap.
mark the neighbors of the new object invalid.

Fig. 7.2. Clustering algorithm.

their area (similar to first choice clustering [32]), where the weight of a hyperedge is
inversely proportional to its cardinality. After the scores of all nodes are calculated,
they are inserted in a priority queue that is sorted in a descending order. Clustering
then proceeds as follows: (1) cluster the best node – essentially the one with highest
score – with its closest neighbor, unless the node is marked “invalid” or clustering
violates the area constraints, (2) update the netlist and insert the score of the new
clustered node in the proper position in the priority queue, and (iii) mark the neigh-
bors of the new node as invalid. The clustering algorithm is given in Figure 7.2.

The interaction between the best choice clustering heuristic with the multi-level
paradigm in the presence of different cell areas creates an unbalanced cluster hierar-
chy at each level, and the boundaries of such a hierarchy must be clearly marked to
allow correct unclustering. For example, Figure 7.3 gives a possible clustering hier-
archy, where we label each node with its level. We can clearly see that a node might
take part in a number of clusterings during the same level – as long as area constraints
are not violated. Thus, during clustering it is important to remember the boundaries
of the clustering hierarchy to allow exact reversal of the clustering process.

Another concern during clustering is what we call clustering saturation. In
netlists with large numbers of fixed blocks and I/O pads, it is possible that clustering
is not able to meet its final target number of clusters since a large number of clus-
ters are just connected to fixed components. These fixed components slow down the
clustering, causing saturation. In this case, we can bypass the fixed objects – espe-
cially the small ones – to allow further clustering. This bypassing can be achieved by
adding an artificial net connecting all the neighbors of a fixed object together.

7.3 Global Placement 171

2

0 0 0 0 0 0 00

1 1 1

1

0/1

2

2

0

1

Fig. 7.3. A multi-level clustering hierarchy, with a clustering ratio of 2 and a required final
target number of clusters equal to 2. Each node is labelled with its position in the clustering
hierarchy.

7.3 Global Placement

7.3.1 Constrained Minimization Formulation

We regard global placement as a constrained nonlinear optimization problem: We
divide the placement area into uniform grids, and seek to minimize total half-
perimeter wirelength (HPWL) under the constraint that total module area in every
grid is equalized. The problem is expressed using the following formulation:

min HPWL(x, y)
s.t. Dg(x, y) = Dg for each grid g (7.1)

where (x, y) is the center coordinates of modules, HPWL(x, y) is the total HPWL
of the current placement, Dg(x, y) is a density function that equals the total module
area in grid g and Dg is the expected total module area in grid g, which is usually a
constant denoting the average module area over all grids.

To solve the problem using nonlinear optimization techniques, first we need to
have smooth wirelength and density functions.

LOG–SUM–EXP Wirelength Function

While wirelength and overall placement quality is typically evaluated according to
HPWL, this “linear wirelength” function can not be efficiently minimized. In our
placer, we use a log–sum–exp method to capture the linear HPWL while simul-
taneously obtaining the desirable characteristic of continuous differentiability. The
log–sum–exp formula picks the most dominant terms among pin coordinates; it is
proposed for wirelength approximation in [37] and applied in recent academic plac-
ers [13,22,24]. For a net e with pin coordinates {(x1, y1), (x2, y2), ... (xn, yn)}, the
smooth wirelength function is

WL(e) = α · (log(
∑

exi /α) + log(
∑

e−xi /α))
+α · (log(

∑
eyi /α) + log(

∑
e−yi /α))

(7.2)

where α is a smoothing parameter. WL(e) is strictly convex, continuously differen-
tiable and converges to H PW L(e) as α converges to 0 [37].

172 7 APlace: A High Quality, Large-Scale Analytical Placer

−10 −5 0 5 10
−1

5

0

5

1

P
ar

tia
l G

ra
di

en
t o

f x
1

(x1 - x2)/α

Fig. 7.4. Partial wirelength gradient for x1 as a function of (x1 − x2)/α.

Intuitively, for the overall placement problem, the smoothing parameter α can
be regarded as a “significance criterion” for choosing nets with large wirelength to
minimize. For example, for a two-pin net with pin coordinates {(x1, y1), (x2, y2)},
the partial gradient of the wirelength function WL for x1 is

∂WL
∂x1

= 1/(1 + e(x1−x2)/α) − 1/(1 + e(x2−x1)/α) (7.3)

As shown in Figure 7.4, when the net length |x1 − x2| is relatively small compared
to α, the partial gradient is close to 0; otherwise, the gradient is close to 1 or −1. It
means that the length of long nets (relative to α) will be minimized more efficiently
than short nets when optimizing the wirelength function for the whole netlist. Our
placer uses this important characteristic to facilitate the multi-level algorithm that
will be described in Sect. 7.3.3.

Bell-Shaped Potential Function

The density function Dg(x, y) in (7.1) is also not smooth or differentiable. Function
Dg(x, y) can be expressed as the following form:

Dg(x, y) = ∑
v Px (g, v) · Py(g, v) (7.4)

where functions Px (g, v) and Py(g, v) denote the overlap between the grid g and
module v along the x and y directions, respectively. For example, suppose we have
a grid g with width wg and a standard cell c. Since the size of cell c is usually small
relative to the grid size, we ignore the cell size and assume it to be a dot with unit
area. Then function Px (g, c) is a 0/1 function as shown in Figure 7.5(a): Px (g, c) is
1 when the horizontal distance between grid g and cell c, dx = |xc − xg| is less than
wg/2, and is 0, otherwise.

Naylor et al. [37] propose to replace the above “rectangle-shaped” function with
a “bell-shaped” function px (g, c) as shown in Figure 7.5(b)

px (g, c) =
{

1 − 0.5d2
x /w2

g (0 ≤ dx ≤ wg)

0.5(dx − 2wg)
2/w2

g (wg ≤ dx ≤ 2wg)
(7.5)

This function is implemented in our original placer and has been proved effective.
Since the function decides an “area potential” exerted by a cell to its nearby grids,
we call it area potential function.

7.3 Global Placement 173

xc

xg

Px(g,c)

xg+wg/2

xc

xg

px(g,c)

xg+wg
(a) (b)

Fig. 7.5. (a) “Rectangle-shaped” function Px (g, v); and (b) “Bell-shaped” smooth function
px (g, v).

We follow the above idea and apply a similar “bell-shaped” area potential func-
tion in our current placer. Unlike the above potential function, our potential function
also takes care of large blocks, as well as standard cells, and extends the scope of
area potential according to the block size so that a larger block will have non-zero
potential with respect to more nearby grids.

Suppose a module v has a large width wv . The scope of this module’s x-potential
is wv/2 + 2wg , i.e., every grid within horizontal distance of wv/2 + 2wg from the
module’s center has a non-zero x-potential from this module. Therefore, the area
potential function for the x-direction px (g, v) becomes

px (g, v) =
{

1 − a ∗ d2
x (0 ≤ dx ≤ wv/2 + wg)

b ∗ (dx − 2wg)
2 (wv/2 + wg ≤ d ≤ wv/2 + 2wg)

(7.6)

where
a = 4(wv + 4w2

g)/((wv + 8w2
g)(wv + 2wg)

2)

b = 4/(wv + 8w2
g)

(7.7)

so that the function is continuous when dx = wv/2 + wg .
Similarly, we define a smooth y-potential function py(g, v) and the non-smooth

function Dg(x, y) in (7.1) is replaced by a continuous function:

SDg(x, y) = ∑
v Cv · px (g, v) · py(g, v) (7.8)

where Cv is a normalization factor so that
∑

g Cv · px (g, v) · py(g, v) = Av , i.e.,
each module v has a total area potential equal to its area Av .

Congestion-Directed Placement

To improve routability of placement results, we have integrated congestion informa-
tion into the objective functions to direct cell distribution. We use Kahng and Xu’s
accurate bend-based congestion estimation method [29] in our placer. The blockage-
aware method takes into account (1) the impact of the number of bends in a routing
path on the probability of the path’s occurrence; and (2) the impact of neighbor-
ing nets on a path’s probability. If a particular grid is determined to be congested

174 7 APlace: A High Quality, Large-Scale Analytical Placer

(respectively, uncongested), the expected total cell potential of the grid in (7.1) is
reduced (respectively, increased) accordingly. The sum of expected area potential
over all grids is kept constant, and equal to the total cell area. Specifically, expected
cell potential is adjusted as follows:

Dg ∝ 1 + γ

(
1 − 2

Congestion(g)

maxg{Congestion(g)}
)

(7.9)

where γ is the congestion adjustment factor and decides the extent of congestion-
directed placement.

7.3.2 Quadratic Penalty Method and Conjugate Gradient Solver

In the current version of our placer, we solve the constrained optimization problem
in (7.1) using the simple quadratic penalty method. That is, we solve a sequence of
unconstrained minimization problems of the form

min WL(x, y) + 1
2µ

∑
g(SDg(x, y) − Dg)

2 (7.10)

for a sequence of values µ = µk ↓ 0 and use the solution of the previous uncon-
strained problem as an initial guess for the next one.

Empirical studies show that the values of µ is very important to the solution
quality. Theoretically, when the optimal solution of the unconstrained problem in
(7.10) is reached, the gradients derived from the wirelength term are opposite to those
derived from the density penalty term. Therefore, we decide the initial µ according
to the absolute values of wirelength and density gradients

µ0 = 1
2

∑
xi ,y j

∑
g |SDg−Dg |·

(
| ∂SDg

∂xi
|+| ∂SDg

∂y j
|
)

∑
xi ,y j

(
| ∂W L

∂xi
|+| ∂W L

∂y j
|
) (7.11)

After that, µ decreases by half: µk+1 = 0.5µk .
We solve the unconstrained problem in (7.10) using the Conjugate Gradient (CG)

method, as shown in Figure 7.6. The conjugate gradient method is quite useful in
finding an unconstrained minimum of a high-dimensional function, even though the
function is not convex. Also the memory required is only linear in the problem size,
which makes it adaptable to large-scale placement problems.

7.3.3 Multi-Level Algorithm

Our placer applies a multi-level algorithm to improve scalability in a similar way as
in [11,13]. We use two different multi-level methods in the placer: (1) multiple levels
of placeable objects and (2) multiple levels of grids.

Multiple Levels of Clusters

Before global placement, our placer builds up a hierarchy of clusters as described
in Sect. 7.2, performs placement for each level of clusters and use the solution of

7.3 Global Placement 175

Conjugate Gradient Algorithm
Input:

A high dimensional function f (x)
Initial solution x0
Minimum step length ε
Initial maximum step length γ0
Maximum number of iterations N

Output:
Local minimum x∗

Algorithm:
01. Initialize # iterations k = 1, step length α0 = ∞

gradients g0 = 0 and conjugate directions d0 = 0
02. For (k < N and step length αk−1 > ε)
03. Compute gradients gk = ∇ f (xk)

04. Compute Polak–Ribiere parameter βk = gT
k (gk−gk−1)

||gk−1||2
05. Compute conjugate directions dk = −gk + βkdk−1
06. Compute step length αk within γk−1

using Golden Section line search algorithm
07. Update new solution xk = xk−1 + αkdk
08. Update maximum step length γk =MAX{γ0, 2γk−1}
17. Return minimum x∗ = xk

Fig. 7.6. Conjugate Gradient Algorithm.

the current level cluster placement as an initial guess for the next level placement
problem.

Clustering reduces the number of placeable objects and thus speeds up the cal-
culation of density penalty. For each level in the cluster hierarchy, we compute the
density penalty by regarding a cluster as a square block with area equal to the total
module area of the cluster. Moreover, the decrease of the number of variables also
greatly reduces the number of conjugate gradient iterations required to obtain a good
solution of the unconstrained optimization problem. For wirelength calculation, we
assume modules to be located at the center of the cluster and only consider the inter-
cluster parts of nets, which speeds up the wirelength calculation.

Multiple Levels of Grids

Beside the commonly used method of multiple cluster levels, our placer also employs
multiple levels of grids to achieve better scalability and global optimization.

Various grid sizes provide different levels of relaxation for the constrained wire-
length minimization problem in (7.1). For example, in the optimal solution of the
constrained minimization problem with a larger grid size, modules in the same grid
are expected to cluster together instead of spread evenly over the grid in order to
reduce total wirelength, although total module area in each grid is equal. However,
this solution can be used as the initial solution for the placement problem constrained
with finer grids, to obtain a more even module placement.

176 7 APlace: A High Quality, Large-Scale Analytical Placer

We adaptively modify the smoothing parameter α according to the grid size,
instead of using a small constant value. For a wirelength minimization problem con-
strained with coarser grids, minimization of short nets (relative to the grid size) leads
to undesirably clustered cells. Therefore, the value of α should be comparable to the
grid size, so that only long nets (probably connecting modules in different grids) are
“chosen” to be minimized and short nets (probably connecting modules in the same
grid) are “ignored”. Empirical studies show that better placement quality is obtained
by setting α to half of the grid size.

Using an initial larger grid size and wirelength smoothing parameter in our placer
not only leads to better global optimization, but also greatly speeds up the placer.
As shown in (7.6), the scope of modules’ potential is proportional to the grid size.
Therefore, a larger grid size helps to spread cells faster than a smaller grid size.

Top-Down Multi-Level Algorithm

Combining the two methods discussed in Sects. 7.3.3 and 7.3.3, our top-down
multi-level algorithm is described in Figure 7.7. Notations used are summarized as
follows:

α wirelength smoothing parameter
ε minimum step length of CG solver
f unconstrained objective function

Nl the number of clusters at level l
L the number of cluster levels

{Gradientl(i)} a vector of conjugate gradients
{Cluster Posi tionl(i)} a vector of cluster positions

Subscript ranges, where not explicit, are: l = 0, . . . , L; and i = 1, . . . , Nl .
Initially, the global placements of all modules is initialized to be at the center of

the placement area. Unlike most analytical placers, our placer can also place circuits
without fixed pads, or simultaneously place modules and peripheral/area I/O pads.
In this case, the placeable objects are initially placed randomly close to the center.

For each level in the cluster hierarchy, the grid size is determined according to
the number of clusters, assuming the total module area of each cluster is similar. We
then decide most important control parameters according to the grid size.

After that, the global placer basically uses the CG optimizer to solve the con-
strained wirelength minimization problem. Note that when α is small, the wirelength
approximation in Sect. 7.3.1 is close to the HPWL. Thus for flat placement, we use
the actual HPWL instead of the approximation in the line search algorithm, in order
to reduce runtime. We define discrepancy within a window of area Aw as the max-
imum ratio of total module area within the window to the window area over all
windows of area Aw. We stop global placement when the discrepancy is less than a
user specified target value, which is 1.0 at default.

7.4 Legalization and Detailed Placement 177

Top-Down Multi-Level Algorithm
Input:

User-defined target density discrepancy T arget Disc
User-defined max #iterations per optimization Max I ters

Output:
Global placement

Algorithm:
01. Construct a hierarchy of clusters
02. For (each cluster level l from top to down)
03. Set initial placement {Cluster Posi tionl (i)}
04. Grid Si ze ∝ 1/sqrt (Nl)
05. α = 0.5 · Grid Si ze
06. ε = 0.1 · Grid Si ze
07. µ = 0.5 T otal AbsoluteDensi tyGradient

T otal AbsoluteWirelengthGradient
08. While (Discrepancy > T arget Disc)
09. While (#I ter < Max I ters)
10. f = W L + 1

2µ · QuadraticPenalty
11. Compute conjugate gradients Gradientl
12. StepLength = LineSearch(f, Gradientl)
13. Cluster Posi tionl+ = StepLength ∗ Gradientl
14. If (StepLength < ε)
15. µ = 0.5µ
16. break
17. Return module placement {Cluster Posi tion0(i)}

Fig. 7.7. Top-down multi-level algorithm.

7.4 Legalization and Detailed Placement

Our legalization scheme is based on the schemes of [18] and [33] with few modifica-
tions. In the basic scheme, cells are first sorted according to their horizontal locations,
and then they are processed in order from left to right, where each cell is assigned to
the closest available position. We then repeat the above procedure except that cells
are processed in the reverse order from right to left this time. We pick the better of
the two legalization results.

Detailed placement is composed of three phases that can be iterated a number of
times until a negligible threshold of improvement is attained. The three stages are (1)
global cell moving, (2) whitespace distribution, and (3) cell order polishing. We start
by describing global cell moving.

7.4.1 Global Moving

The objective of global moving is to move each cell to the optimal location among
available whitespace without changing other modules’ positions. Global moving is
applied in our placer to improve placement quality for designs with a low utilization

178 7 APlace: A High Quality, Large-Scale Analytical Placer

ratio. However, for designs without plenty of whitespace, since the global placer is
already quite strong, the effect of global moving could be negligible.

We design an efficient heuristic to find a suboptimal available location for each
cell. For each cell, we first traverse all the nets connected to the cell, and decide the
optimal region for the cell’s placement based on the median idea of [17]. Then we
search for an available location in the optimal region, if the current placement is not
already in it.

If the optimal region is already filled up, we divide the placement area into uni-
form bins, choose a “best” bin according to available whitespace in the bin and the
cost (wirelength difference) of moving the module to the center of the bin, and then
search for a best available location in the candidate bin. To quickly estimate if it is
possible for a bin to have a continuous whitespace wider than the cell, we assume a
normal distribution of whitespace with respect to its width, and obtain the average µ
and standard deviation σ at the beginning of global moving. Therefore the number
of whitespaces in a bin with total whitespace s that can hold a cell with width w is
s · 1

2 · erfc
(

w−u√
2σ

)
.

7.4.2 Whitespace Distribution

The objective of whitespace distribution is to optimally place the whitespace within
each row to minimize the wirelength while reserving the cell order [21, 25]. We
briefly sketch our procedure1. We define a subrow Si as sequence of ordered sites
Si = {s1, s2, . . . , sn} starting from a left fixed boundary – layout periphery or a fixed
object – and ending at a right fixed boundary. Let Ci = {c1, c2, . . . , cm} denote the
set of m cells residing at subrow Si , x(.) indicates the leftmost site occupied by a cell
and w(·) the width of a cell. To optimally redistribute the whitespace in subrow Si ,
we construct a directed acyclic graph G = (V, E) as shown in Figure 7.8 with vertex
set V = {0, . . . , n} × {0, . . . , m}, and edge set

E = {(j, k − 1) → (j, k) | 0 ≤ j ≤ m, 1 ≤ k ≤ n} ∪ {(j − 1, k)

→ (j, k + w(c j)) | 0 ≤ j ≤ m, 1 ≤ k ≤ n − w(c j)}.
The set of edges E is composed of the union of horizontal edges and diagonal

edges in G. A diagonal edge indicates the placement of a cell at its tail, while a hor-
izontal edge indicates no placement. Thus to minimize HPWL, each diagonal edge
starting at (j − 1, k) is labelled by the cost (wirelength difference) of placing a cell
c j in position k, and all horizontal edges are labelled by zero. Finding an arrange-
ment of the cells that optimally distributes whitespace corresponds to calculating the
shortest path in G from the start node to the end node. Since G is a directed acyclic
graph, the shortest path can be calculated using topological traversal of G in O(mn)
steps.

1 While it is possible to use faster methods such as the CLUMPING algorithm [25], we use
the method described since it is more convenient with cell order polishing described in next
Sect. 7.4.3.

7.4 Legalization and Detailed Placement 179

n

end

0

start

Cell 2

Cell 3

Cell m

Cell 1

1 2 3 4 5 6 n−1

Fig. 7.8. The directed acyclic graph G for finding the optimal whitespace distribution.

A dynamic programming algorithm is applied to find the shortest path from the
start node to the end node in G as shown in Figure 7.8. The algorithm uses a table of
size mn, computes the shortest distance from the start node to the node (j, k) row by
row from left to right and marks for each node whether the shortest path comes from
the left node (j, k − 1) in the same row or the node (j − 1, k − w(c j)) in the upper
row. In the table, the element at (j, k) is the minimum cost (total HPWL difference)
of placing the first j cells in the first k sites. After the calculation is finished for all
the nodes, the shortest path can be traced from the end node back to the start node,
and the optimal placement is obtained.

We also speed up the algorithm by constantly comparing the total size of non-
placed cells to available whitespace. Suppose the algorithm is currently computing
the element (j, k). Let t be the total size of the remaining m − j cells. If t < n − k,
i.e., there is no enough whitespace left for placing the rest of the cells, the dynamic
programming algorithm stops calculating the remaining elements for the j th row of
the table, meaning that the remaining n − k sites cannot be occupied by the first j
cells in a valid placement.

7.4.3 Cell Order Polishing

The idea of cell order polishing is to permute a small window of cells in order to
improve wirelength. Similar techniques are commonly applied in academic plac-
ers. For example, Capo applies a detailed placement improvement technique based
on the optimal placement [9], RowIroning, which permutes several cells in one row
assuming equal whitespace distribution between cells. FengShui’s cell ordering tech-
nique [2] permutes six objects in one or more rows regarding whitespace as pseudo
cells.

In this section, we present a branch-and-bound algorithm that permutes the order
of a few nearby cells in one row or multiple rows, and simultaneously considers

180 7 APlace: A High Quality, Large-Scale Analytical Placer

the optimal placement for each permutation in a small window. Thus, our algo-
rithm allows more accurate, overlap-free permutations and does not have to shift
other cells.

Ordering for Intra-Row Cells

For a few consecutively placed cells in one row, we define a small window of
available sites, which includes all the sites occupied by the cells and neighboring
whitespace. The algorithm permutes the cells, finds the optimal placement for each
permutation within the window using the dynamic programming algorithm described
in Sect. 7.4.2, and selects the best permutation and the correspondent optimal place-
ment as the solution.

An important fact is that the cost of placing the first j cells of a permutation is not
related to the order of the rest of the cells, because they will be definitely placed to the
right of the first j cells. E.g., given a net incidental to the j th cell, it is clear whether
the cell is the rightmost or leftmost terminal of the net and the cost in x-wirelength
can be accurately calculated.

Therefore, the dynamic programming algorithm can be easily combined with
permutation of cells to speed up the process. We construct the permutations of cells
in lexicographic order, so that the next permutation has a same prefix as the previous
one, and thus the beginning rows in the table calculated by the dynamic programming
algorithm for the previous permutation can be reused for the next one as possible.
When constructing a new permutation that has the same prefix of j − 1 cells as
the previous one and selecting a different j th cell, we keep the first j − 1 rows of
the table in the dynamic programming algorithm and recompute the j th row for the
costs of placing the new cell.

Note that in the dynamic programming algorithm, after we select the first j cells
for a permutation, we already know the minimum cost of placing the first j cells
within the window. Therefore, if the best placement for the first j cells of the per-
mutation is already worse than the current best solution of the cell order polishing
problem, we will discard all the permutations that have the same prefix of length j .
This can be easily implemented in our algorithm.

Ordering for Inter-Row Cells

Similarly, we can design a dynamic programming algorithm for permutating a few
nearby cells in multiple rows. Here, the window of available sites will include neigh-
bor sites among multiple rows. The algorithm first decides how many cells will be
assigned to each row from up to down, and then finds the optimal placement within
the window for each permutation of cells, which also tells which row that each cell
is assigned to.

We use the same method as in Sect. 7.4.3 to combine the dynamic programming
algorithm with the lexicographic way of constructing permutations. Note that when
we construct a new permutation that has the same prefix of j −1 cells as the previous
one by selecting a j th cell, and compute the j th row of the table, we only know that

7.5 ISPD’06 Contest and APlace3.0 181

the rest of the cells will be placed in the same row as the j th cell or in lower rows.
However, whether the remaining cells will be placed to the left or right of the j th
cell is not clear. Therefore, the cost in y-wirelength can be accurately calculated, and
if there is a net connecting to the j th cell and another non-placed cell, the cost in
x-wirelength for the net is inaccurate. Because of the exponential time complexity of
the algorithm, in practice, cell order polishing can only be applied to a small subset
of cells at one time, and empirical studies show that the method is still very effective.

7.5 ISPD’06 Contest and APlace3.0

The ISPD’06 contest [35] emphasized the important of placement runtime. While
APlace2 produces the highest quality results for the ISPD’05 benchmarks, it was not
necessarily the fastest. Thus, we have developed APlace3 that is 2–2.5× faster than
APlace2. We also investigated the use of alternative formulations for the wirelength
objective function and the density constraints. In this section, we summarize our
technical efforts in APlace3.0.

7.5.1 Exploring Alternative Wirelength Functions

While placement quality is typically evaluated according to HPWL, this “linear wire-
length” function can not be efficiently minimized. Smooth linear wirelength objec-
tives have been proposed in many works. In this section, we examine three important
wirelength approximation functions, LOG–SUM–EXP [37], GORDIAN-L [41] and
L p-NORM [30], and propose to use them in a hybrid way in order to speed up the
placer without losing wirelength quality.

The LOG–SUM–EXP approximation of HPWL was first proposed in [37] and
recently applied in mPL [13] and APlace. The horizontal wirelength of a net e is
written as

WL(e) = α · log(
∑

i exi /α) + α · log(
∑

i e−xi /α) (7.12)

where α is a smoothing parameter: The LOG–SUM–EXP approximation is strictly
convex, continuously differentiable and converges to HPWL as α converges to 0.
In APlace, we adaptively modify the smoothing parameter α according to the grid
spacing Wg , instead of using a small constant value. Thus, long nets (probably con-
necting cells in different bins) are “chosen to be minimized” and short nets (probably
connecting cells in the same bin) are “ignored.” Empirical results show that not only
speedup of the placer, but also better global optimization and hence better placement
quality, can be achieved in this way.

We are now able to compare the other two wirelength functions against the
LOG–SUM–EXP approximation within the APlace framework. The method of
GORDIAN-L is proposed in [41] to minimize a linear wirelength objective using
iterated quadratic minimizations. The horizontal wirelength of a net e is formu-
lated as

WL(e) = ∑
i, j (xi − x j)

2/γi, j (7.13)

182 7 APlace: A High Quality, Large-Scale Analytical Placer

where the factor γi, j = max{r0, |xi − x j |}, which is constantly updated, and r0 is
the minimum value that γi, j can take in order to prevent overflow. However, in our
implementation, we use r0 to choose long nets for more accurate minimization, and
we decide the value of r0 according the grid spacing Wg .

Our empirical studies show that the value of r0 significantly affects the placer
performance. We have implemented GORDIAN-L using the clique net model with
edge weight equal to 1/q2 for a q-pin net, and obtained results on, e.g., the IBM
ISPD04 benchmark set. We observe that when the value of r0 is small, although the
GORDIAN-L function is closer to linear wirelength, this does not necessarily lead
to a better result. A proper value of r0 can dramatically reduce average WL increase
from 25.9% when r0 = 0.1Wg to only 4.1% when r0 = 2Wg . We have also compared
the two functions using the more realistic IBM ISPD05 benchmark circuits, and have
found that the smallest average wirelength increase is 3.6%.

Last, we have also implemented the L p-NORM approximation of HPWL that
was proposed in [30]. The horizontal wirelength of a net e is expressed as

WL(e) = (
∑

i, j (xi − x j)
p + β)1/p (7.14)

where β is the smoothing parameter and the approximation converges to HPWL as β
converges to 0 and p converges to ∞. In APlace3, similar to with the other wirelength
functions, we adaptively increase p with cluster and grid levels during the placement
and decide the value of β according to grid spacing. The average wirelength increase
of the L p-NORM function is 1.5% on the IBM ISPD05 circuits.

The very similar wirelength quality of the three approximation functions suggests
that we may alternate them to achieve specific advantages. For a faster implemen-
tation of APlace, we may choose to apply GORDIAN-L with star net model during
cluster-level placement to speed up the placer, but then apply the LOG–SUM–EXP
approximation during flat-level placement to maintain the placement quality.

We also find out that most of the runtime of APlace is consumed by the line
search algorithm of the CG solver. The wirelength function needs to be executed
several times per CG iteration to decide the step length in the conjugate direction.
Since the LOG–SUM–EXP approximation is very close to HPWL with fine grids and
small smoothing parameters during flat-level placement, we only apply the LOG–
SUM–EXP approximation to compute the wirelength derivatives for each iteration,
but apply the actual HPWL function during line search, in order to reduce runtime.

7.5.2 Exploring Alternative Density Functions

Density function Dg(x, y) in (7.1), which is the total cell area in bin g, can be
expressed in the form

Dg(x, y) = ∑
v Px (g, v) · Py(g, v) (7.15)

where functions Px (g, v) and Py(g, v) denote the overlap between the grid bin g and
cell v along the x and y directions, respectively. Figure 7.5 shows the trapezoidal-
shaped Px (g, v) when the cell width Wv is larger than the bin width Wb and when
Wv < Wb, as a function of the horizontal distance between cell and bin.

7.6 Experimental Results 183

Naylor et al. [37] proposed to use a bell-shaped function px (d) in quadratic form
to approximate the overlap function as

px (d) =
{

Wv (1 − 2d2/W 2
b) (0 ≤ d ≤ Wb/2)

2Wv (d − Wb)
2/W 2

b (Wb/2 ≤ d ≤ Wb)
(7.16)

for standard-cell placement. APlace2 follows this idea, but extends the function to
handle large blocks for the purpose of mixed-size placement.

We compare the quadratic function with two other approximations with Gaussian
function and ERFC function, as captured, respectively, by

px (d) = min{Wb, Wv } · e−4d2/(max{Wb,Wv })2
(7.17)

and
px (d) = (d − a) · erfc((d − a)/θ)/2

−(d − b) · erfc((d − b)/θ)/2 (7.18)

where 0 ≤ d ≤ Wb, a = |Wv − Wb|/2 and b = (Wv + Wb)/2. The second func-
tion provides a more flexible approximation of the step function in Figure 7.5, with
smoothness controlled by the factor θ : The approximation converges to the step func-
tion when θ converges to 0. In our implementation, the value of θ is set to grid spac-
ing Wg , which gives a smoother approximation for standard cells but a more accurate
approximation for large macro blocks.

Benchmarking with IBM ISPD04 circuits shows roughly equal (within 1% error)
wirelength quality for standard-cell placement using each of the three approximation
functions. However, the Gaussian approximation leads to an average of 7.4% wire-
length increase on IBM ISPD05 circuits, compared to APlace2, while the ERFC
function slightly reduces the wirelength results.

For a faster implementation, we apply the ERFC approximation for flat-level
placement; i.e., we only use the ERFC approximation to compute the partial deriva-
tives related to density terms for each CG iteration, but apply the actual cell density
function during line search, in order to speed up the placer.

7.6 Experimental Results

In this section, we report the performance of our placer on the different bench-
mark sets: IBM ISPD’04, ICCAD’04, ISPD’05, and ISPD’06. We use APlace2.0
to report the results of the IBM ISPD’04, ICCAD’04, ISPD’05 benchmarks, and
use APlace3.0 to report the results of ISPD’06 benchmarks. We also compare the
performance of various placers and APlace2.0 using the Zero-Change Netlist Trans-
formations (ZCNT) benchmarking framework [23]. These benchmarks feature dif-
ferent characteristics, all of which are helpful in testing the placer’s capabilities: IBM
ISPD’04 benchmarks [44] are composed of standard cells and test basic placer per-
formance without worry about other “extras” such as whitespace distribution, mov-
able blocks and fixed blocks. IBM-PLACE 2.0 benchmarks [49] are also composed

184 7 APlace: A High Quality, Large-Scale Analytical Placer

of standard cells, but designed to evaluate routability of placements. IBM ICCAD’04
benchmarks [1] contain large movable macros and assess the performance of a placer
in simultaneous floorplanning and standard cell placement. IBM ISPD’05 bench-
marks [36] contain large amount of whitespace, and fixed blocks and I/Os, as well as
designs with over two million components. These benchmarks are directly derived
from industrial ASIC designs, and preserve the physical structure of the designs,
unlike other benchmark suites. Thus, they test a placer’s ability to handle modern
layout features such as whitespace and fixed blocks, and represent the current and
future physical design challenges.

In all of our experiments, we use a Linux machine with 1.6 GHz CPU and 2 GB
of memory. In the first set of experiments, we report our results for the ISPD’05
benchmarks in Table 7.1. We report the results of other placers as published in the
contest results [36]. The first column of the table shows the nine placers participating
in the ISPD-2005 placement contest [36]. The HPWL for each of the six benchmarks
obtained by the placers are shown in the next six columns.2 We normalize each wire-
length result based on the HPWL obtained by our placer. The last column in Table 7.1
shows the average normalized ratio for each placer. Our placer gives the best results
on all six benchmarks and on average is better than the best of all other placers by
6%. The entire benchmark set takes 113.2 h of runtime to complete. Executing Capo
v9.1 [1] on our machines takes around 37.8 h to complete. Thus, on the average, our
placer is 3× slower than Capo.

In the second set of experiments, we evaluate the performance of our placer on
the IBM ICCAD’04 mixed-size benchmarks [1]. These recent mixed-size circuits
contain large movable blocks with non-ignorable aspect ratios and I/Os placed at
the blocks’ periphery, and thus are more realistic than the previously widely used
IBM ISPD’02 mixed-size benchmarks. Our results are summarized in Table 7.2
and compared to FengShui and Capo. The first five columns of Table 7.2 show the

Table 7.1. Results of all placers on the ISPD-2005 contest benchmarks. The results of other
placers are from the ISPD 2005 paper by Nam et al.

Placer Benchmark Av.
adaptec2 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4

Ours 87.31 187.65 94.64 143.82 357.89 833.21 1.00
mFAR [20] 91.53 190.84 97.70 168.70 379.95 876.28 1.06
Dragon [43] 94.72 200.88 102.39 159.71 380.45 903.96 1.08

mPL [12] 97.11 200.94 98.31 173.22 369.66 904.19 1.09
FastPlace [45] 107.86 204.48 101.56 169.89 458.49 889.87 1.16

Capo [39] 99.71 211.25 108.21 172.30 382.63 1098.76 1.17
NTUP [14] 100.31 206.45 106.54 190.66 411.81 1154.15 1.21

FengShui [3] 122.99 337.22 114.57 285.43 471.15 1040.05 1.50
Kraftwerk+Domino [38] 157.65 352.01 149.44 322.22 656.19 1403.79 1.84

2 Due to the contest setup, the results are obtained after five days of tuning of the placers
with the circuits.

7.6 Experimental Results 185

Table 7.2. Results on the IBM ICCAD’04 mixed-size benchmarks. Results of Capo and
FengShui are from the ICCAD 2004 paper by Adya et al.

bench Placer
Ours FS Capo

gpWL CPU legWL dpWL CPU dpWL dpWL
(e6) (s) (e6) (e6) (s) (e6) (e6)

ibm01 2.17 436 2.20 2.14 28 2.56 2.67
ibm02 4.83 949 4.73 4.61 57 6.05 5.54
ibm03 6.94 1078 6.93 6.72 67 8.77 8.67
ibm04 7.70 1169 7.83 7.60 73 8.38 9.79
ibm05 9.82 915 9.90 9.70 61 9.94 10.82
ibm06 6.31 988 6.17 5.99 87 6.99 7.35
ibm07 10.04 1445 10.35 10.02 124 11.37 11.23
ibm08 12.65 1328 12.64 12.34 149 13.51 16.02
ibm09 12.56 2515 12.63 12.15 170 14.12 15.51
ibm10 30.32 3518 29.82 28.55 354 41.96 34.98
ibm11 19.62 4253 19.41 18.67 236 21.19 22.31
ibm12 34.51 3598 34.56 33.51 314 40.84 40.78
ibm13 24.28 4869 24.07 23.03 308 25.45 28.70
ibm14 37.51 4878 36.87 35.90 479 39.93 40.97
ibm15 49.97 5337 48.93 46.82 708 51.96 59.19
ibm16 57.15 6244 57.02 54.58 905 62.77 67.00
ibm17 67.39 6495 69.01 66.49 834 69.38 78.78
ibm18 44.40 9159 43.11 42.14 797 45.59 50.39

Average 0.86 1.00 1.05

HPWL after global placement, runtime of global placement, HPWL after legaliza-
tion, HPWL after detailed placement and runtime of detailed placement, respectively,
for our placer. According to the table, the legalization and detail placement steps
reduce the wirelength by 4% on average, which indicates a strong global placement
and effective post-processing. We report the results of FengShui v2.6 and Capo v9.0
as recently published in [1] in the last two columns. The last row in Table 7.2 shows
the average normalized wirelength ratio based on FengShui’s results. The results
show that our placements are better than FengShui and Capo for all the circuits, and
the average improvement is around 14% over FengShui and 19% over Capo. We
also believe it is possible to further improve our results if cell flipping is applied –
an improvement executed by Capo. The runtime of the entire benchmark set takes
18.0h of runtime. The total runtime of FengShui and Capo on a Linux machine with
2.4 GHz CPU are 8.7 h and 14.0 h respectively, as reported in [1].

The focus of our third set of experiments is on the IBM ISPD’04 standard cell
benchmark suite. Wirelength after global placement, wirelength after detail place-
ment, and total runtime of our placer are shown in the second to fourth columns
of Table 7.3. We also report the latest wirelength results of mPL v5.0 (in the fifth
column), as well as the normalized wirelength ratio with respect to mPL’s results
of Capo v9.0, Dragon v3.01, FastPlace v1.0 and FengShui v5.0 (in the sixth to ninth

186 7 APlace: A High Quality, Large-Scale Analytical Placer

Table 7.3. Results on the IBM ISPD’04 benchmarks. Results of Capo, Dragon, FastPlace,
FengShui and mPL are from the ISPD 2005 paper by Chan et al.

bench Placer
Ours mPL5 Capo Dragon FP FS

gpWL dpWL CPU dpWL nWL nWL nWL nWL
(e6) (e6) (s) (e6)

ibm01 1.60 1.63 333 1.67 1.08 1.02 1.09 1.08
ibm02 3.54 3.48 649 3.62 1.09 1.02 1.06 1.02
ibm03 4.46 4.51 874 4.57 1.10 1.05 1.12 1.03
ibm04 5.56 5.61 996 5.75 1.06 1.00 1.04 1.05
ibm05 9.63 9.49 1245 9.92 1.02 0.98 1.05 1.00
ibm06 4.73 4.78 951 5.10 1.11 0.98 1.04 1.02
ibm07 7.97 7.90 1892 8.23 1.11 1.04 1.08 1.09
ibm08 9.16 9.46 1296 9.38 1.05 0.96 1.02 -
ibm09 8.84 8.93 2104 9.33 1.08 1.07 1.12 1.06
ibm10 17.20 16.95 3089 17.3 1.10 1.04 1.07 1.07
ibm11 13.22 13.38 2936 14.0 1.09 1.03 1.09 1.04
ibm12 21.83 21.47 3124 22.3 1.11 1.03 1.08 1.07
ibm13 16.46 16.60 3702 16.6 1.10 1.05 1.11 1.09
ibm14 30.55 30.76 4648 31.6 1.10 1.05 1.11 1.04
ibm15 38.38 38.81 7364 38.5 1.09 1.04 1.13 1.07
ibm16 41.36 41.32 7181 43.0 1.10 1.05 1.07 1.09
ibm17 60.82 59.22 10261 61.3 1.09 1.08 1.08 1.08
ibm18 39.32 38.98 10127 41.0 1.09 1.02 1.10 1.04

Average 0.97 1.00 1.09 1.03 1.08 1.06

columns, respectively), as published in [13]. The last row in Table 7.3 shows the aver-
age normalized ratio with respect to mPL’s results for each placer. The results show
that our placements are better than other placers for most of the circuits. On average,
our placer is better than the best of all other placers, mPL, by 3%, and better than
Capo, Dragon, FastPlace, and FengShui by 11%, 6%, 10%, and 8% respectively. The
entire benchmark set takes 17.4h to place. The total runtime of mPL5, Capo, Dragon,
FastPlace, and FengShui on a Linux machine with 2.4 GHz CPU are 3.2, 7.2, 39.2,
0.6, and 6.4 h respectively, as reported in [13].

Our fourth set of experiments is on the IBM-PLACE 2.0 standard cell benchmark
suite for routability. Wirelength after global placement, wirelength after detail place-
ment and the runtime of our placer are shown in the second to fourth columns of
Table 7.4. After placement, we use WarpRoute (v2.4.44) to perform routing with the
existing grids for global routing (-grouteGrid existing). Routed final wirelength, the
number of vias, the number of violations, the over capacity gcells in percentage and
total runtime of WarpRoute are shown in the fifth to ninth columns. We also report
the latest routed wirelength results of mPL-R+WSA (in the last column), as pub-
lished in [34]. We observe that almost all of our placements are successfully routable
with good wirelength; finished routings with a small number of violations can be

7.6 Experimental Results 187

manually fixed. The last row in Table 7.4 shows the average normalized ratio with
respect to mPL-R+WSA’s results for our placer. On average, our placer is better than
mPL-R+WSA by 12%.

The fifth set of experiments report the results of APlace3.0 on the ISPD’06
benchmarks [35]. The reports results is calculated by using a weighted combina-
tion of the wirelength, runtime, and the final density of the layout. Table 7.5 gives
the results normalized to the best placer in the ISPD’06 contest.

Finally, we conduct a sixth experiment on benchmarks with known pre-calculated
wirelength placements. We tabulate our results for the PEKO-MS’05 benchmarks in
Table 7.6 and the PEKO-MS’06 benchmarks in Table 7.7. In Table 7.7, SOV/bin
overflow per bin (i.e., penalty %). SHPWL is the scaled bin overflow adjusted
HPWL, i.e., SHPWL = HPWL ×(1 + SOV/bin). We also compare the results of

Table 7.4. Results on the IBM-PLACE 2.0 benchmarks. Results of mPL-R+WSA are from
the ICCAD 2004 paper by Li et al. vio. give the number of routing violations.

bench Placer
Ours mPL-R+WSA

gpWL dpWL CPU route vias vio. over CPU route WL
(e6) (e6) (s) WL (e6) (cap%) (mm:ss) (e6)

ibm01-e 0.480 0.509 650 0.700 125062 1 1.66% 19:57 0.772
ibm01-h 0.476 0.515 434 0.721 126655 0 2.05% 35:18 0.751
ibm02-e 1.355 1.389 1097 1.804 243595 0 0.43% 11:03 1.890
ibm02-h 1.330 1.373 917 1.855 251958 0 1.60% 13:39 1.940
ibm07-e 3.083 3.182 2857 3.746 478611 1 0.72% 22:57 4.290
ibm07-h 2.977 3.223 2916 3.903 498805 1 1.92% 35:00 4.430
ibm08-e 3.240 3.330 3286 3.980 576366 1 0.20% 27:05 4.580
ibm08-h 3.074 3.222 2327 3.953 574481 1 0.23% 24:08 4.490
ibm09-e 2.658 2.809 3901 3.023 495073 2 0.01% 18:16 3.500
ibm09-h 2.606 2.757 2112 3.027 503410 2 0.02% 17:15 3.650
ibm10-e 5.193 5.340 7529 5.977 758598 3 0.07% 28:37 6.840
ibm10-h 4.889 5.258 5471 5.931 772744 1 0.09% 28:12 6.760
ibm11-e 4.151 4.295 3064 4.577 638523 3 0.05% 22:58 5.160
ibm11-h 4.044 4.218 3645 4.654 656525 4 0.17% 23:31 5.150
ibm12-e 7.203 7.299 7816 8.337 892915 2 0.09% 44:06 10.520
ibm12-h 7.089 7.210 8640 8.317 902465 0 0.15% 42:51 10.130
Average 0.88 1.00

Table 7.5. APlace3 results using the ISPD 2006 contest scoring function (combining wire-
length, runtime, and utilization). Results are normalized to the best scoring placer.

Placer Benchmark Av.
adaptec5 nblue1 nblue2 nblue3 nblue4 nblue5 nblue6 nblue7

APlace3 1.26 1.20 1.05 1.13 1.35 1.21 1.06 1.05 1.16

188 7 APlace: A High Quality, Large-Scale Analytical Placer

Table 7.6. Results of APlace on Peko-MS’05 benchmarks with known optimal HPWL.

PEKO-MS-05 Peko opt APlace Ratio
adaptec1 20056216 22.64 1.13
adaptec2 24969764 27.90 1.12
adaptec3 40954784 46.20 1.13
adaptec4 39391712 44.38 1.13
bigblue1 20858240 27.24 1.31
bigblue2 42256768 54.41 1.29
bigblue3 94399040 112.11 1.19
bigblue4 171477120 221.41 1.29

Table 7.7. Results of APlace on Peko-MS’06 benchmarks with known optimal HPWL and
with constrained bin densities. SOV/bin is the scaled bin overflow per bin (i.e., penalty %).
SHPWL is the scaled bin overflow adjusted HPWL, i.e., SHPWL=HPWL × (1 + SOV/bin).

PEKO Peko opt HPWL SOV SHPWL APlace SOV SHPWL Hratio Sratio
MS’06 /bin HPWL /bin

adaptec5 81893792 81.89 9.99 90.07 92.37 117.16 200.59 1.13 2.23
newblue1 20500032 20.50 1.73 20.86 27.63 89.69 52.41 1.35 2.51
newblue2 32869280 32.87 10.29 36.25 47.09 162.49 123.61 1.43 3.41
newblue3 73514272 73.51 9.55 80.54 88.18 132.61 205.11 1.20 2.55
newblue4 49143583 49.14 9.26 53.69 55.19 75.07 96.62 1.12 1.80
newblue5 102083104 102.08 9.58 111.87 266.11 217.56 845.07 2.61 7.55
newblue6 90657856 90.66 8.36 98.24 104.22 48.37 154.63 1.15 1.57
newblue7 206175072 206.18 7.07 220.74 269.08 119.79 591.40 1.31 2.68

different placers using the Zero-Change Netlist Transformation (ZCNT) benchmark-
ing approach [23]. In the ZCNT framework, given a circuit and a placer, the placer
is executed on the circuit to get a initial placement with some wirelength. Then the
given circuit and the initial placement are used to produce a new circuit that is struc-
turally different from the original circuit but yet has two key properties: (1) both cir-
cuits have the same wirelength with the respect to the given placement; and (2) the
unknown optimal wirelength for the new circuit is greater than or equal to the original
circuit. By executing the placer on the new circuit, we can interpret any deviation in
wirelength (with respect to the initial placement) as a measure of suboptimality. Fig-
ure 7.9 gives the performance of various placers on the IBM (version 1) benchmarks
in response to the ZCNTs. Clearly, APlace displays the least amount of suboptimal-
ity.

The excellent performance of our placer on all benchmark sets clearly show that
our placement methods are: (1) scalable, (2) deliver high quality placements, and (3)
capable of handling various netlist and layout features such as movable/fixed blocks
and whitespace.

References 189

Fig. 7.9. Deviations in wirelength when benchmarking the different placers using the Zero-
Change Netlist Transformations (ZCNT) approach [23]. We report results for the largest cir-
cuits of the IBM version 1.0 benchmarks.

References

1. S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa and I. L. Markov, “Unification of
Partitioning, Placement and Floorplanning,” in Proc. IEEE International Conference on
Computer-Aided Design, 2004, pp. 550–557

2. A. R. Agnihotri, S. Ono, C. Li, M. C. Yildiz, A. Khatkhate, C.-K. Koh and P. H. Madden,
“Mixed Block Placement via Fractional Cut Recursive Bisection,” IEEE Transactions on
Computer-Aided Design, vol. 24(5), 2005

3. A. Agnihotri, S. Ono and P. Madden, “Recursive Bisection Placement: Feng Shui 5.0
Implementation Details,” in Proc. ACM/IEEE International Symposium on Physical
Design, 2005, pp. 230–232

4. A. Agnihotri, M. Yildiz, A. Khatkhate, A. Mathur, S. Ono and P. Madden, “Fractional
Cut: Improved Recursive Bisection Placement,” in Proc. IEEE International Conference
on Computer-Aided Design, 2003, pp. 307–310

5. C. Alpert, A. Kahng, G.-J. Nam, S. Reda and P. Villarrubia, “A Semi-Persistent Cluster-
ing Technique for VLSI Circuit Placement,” in Proc. ACM/IEEE International Sympo-
sium on Physical Design, 2005, pp. 200–207

6. C. J. Alpert, J. H. Huang and A. B. Kahng, “Multilevel Circuit Partitioning,” in Proc.
ACM/IEEE Design Automation Conference, 1997, pp. 530–533

7. U. Brenner, A. Pauli and J. Vygen, “Almost Optimum Placement Legalization by Mini-
mum Cost Flow and Dynamic Programming,” in Proc. ACM/IEEE International Sympo-
sium on Physical Design, 2004, pp. 2–9

8. U. Brenner and J. Vygen, “Faster Optimal Single-Row Placement with Fixed Ordering,”
in Proc. Design, Automation and Test in Europe, 2000, pp. 117–121

9. A. E. Caldwell, A. B. Kahng and I. L. Markov, “Optimal Partitioners and End-Case Plac-
ers for Standard-Cell Layout,” in Proc. ACM/IEEE International Symposium on Physical
Design, 1999, pp. 90–96

10. A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can Recursive Bisection Alone
Produce Routable Placements?” in Proc. ACM/IEEE Design Automation Conference,
2000, pp. 477–482

190 7 APlace: A High Quality, Large-Scale Analytical Placer

11. T. F. Chan, J. Cong, T. Kong and J. R. Shinnerl, “Multilevel Optimization for Large-Scale
Circuit Placement,” in Proc. IEEE International Conference on Computer-Aided Design,
2000, pp. 171–176

12. T. F. Chan, J. Cong, M. Romesis, J. R. Shinnerl, K. Sze and M. Xie, “mPL6: A Robust
Multilevel Mixed-Size Placement Engine,” in Proc. ACM/IEEE International Symposium
on Physical Design, 2005, pp. 227–229

13. T. F. Chan, J. Cong and K. Sze, “Multilevel Generalized Force-directed Method for
Circuit Placement,” in Proc. ACM/IEEE International Symposium on Physical Design,
2005, pp. 185–192

14. T.-C. Chen, T.-C. Hsu, Z.-W. Jiang and Y.-W. Chang, “NTUplace: A Ratio Partitioning
Based Placement Algorithm for Large-Scale Mixed-Size Designs,” in Proc. ACM/IEEE
International Symposium on Physical Design, 2005, pp. 236–238

15. K. Doll, F. Johannes and K. Antreich, “Iterative Placement Improvement by Network
Flow Methods,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 13(10), pp. 1189–1200, 1994

16. H. Eisenmann and F. M. Johannes, “Generic Global Placement and Floorplanning,” in
Proc. ACM/IEEE Design Automation Conference, 1998, pp. 269–274

17. S. Goto, “An Efficient Algorithm for the Two-Dimensional Placement Problem in Elec-
trical Circuit Layout,” IEEE Transactions on Circuits and Systems, vol. 28(1), pp. 12–18,
1981

18. D. Hill, “Method and System for High Speed Detailed Placement of Cells Within an
Integrated Circuit Design,” US Patent 6370673, 2001

19. B. Hu and M. Marek-Sadowska, “Fine Granularity Clustering-Based Placement,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23(4),
pp. 527–536, 2004

20. B. Hu, Y. Zeng and M. Marek-Sadowska, “mFAR: Fixed-Points-Addtion-Based VLSI
Placement Algorithm,” Proc. ACM/IEEE International Symposium on Physical Design,
2005, pp. 239–241

21. A. B. Kahng, I. Markov and S. Reda, “On Legalization of Row-Based Placements,” in
Proc. IEEE Great Lakes Symposium on VLSI, 2004, pp. 214–219

22. A. B. Kahng and Q. Wang, “Implementation and Extensibility of an Analytic Placer,” in
Proc. ACM/IEEE International Symposium on Physical Design, 2004, pp. 18–25

23. A. B. Kahng and S. Reda, “Zero-Change Netlist Transformations: A New Technique for
Placement Benchmarking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25(121), pp. 2806–2819, 2006

24. A. B. Kahng and S. Reda, “An Analytic Placer for Mixed-Size Placement and Timing-
Driven Placement,” in Proc. IEEE International Conference on Computer-Aided Design,
2004, pp. 565–572

25. A. B. Kahng, P. Tucker and A. Zelikovsky, “Optimization of Linear Placements for
Wirelength Minimization with Free Sites,” in Proc. IEEE Asia and South Pacific Design
Automation Conference, 1999, pp. 241–244

26. A. B. Kahng and Q. Wang, “Implementation and Extensibility of an Analytic Placer,”
IEEE Transactions on Computer-Aided Design 24(5) (2005), pp. 734–747

27. A. B. Kahng, S. Reda, and Q. Wang, “APlace: A General Analytic Placement
Framework,” in Proc. ACM/IEEE International Symposium on Physical Design, 2005,
pp. 233–235

28. A. B. Kahng, S. Reda, and Q. Wang, “Architecture and Details of a High Quality, Large-
Scale Analytical Placer,” in Proc. International Conference Computer-Aided Design,
2005, pp. 891–898

References 191

29. A. B. Kahng and X. Xu, “Accurate Pseudo-Constructive Wirelength and Congestion Esti-
mation,” in Proc. ACM International Workshop on System-Level Interconnect Prediction,
2003, pp. 61–68

30. A. A. Kennings and I. L. Markov, “Analytical Minimization of Half-Perimeter Wire-
length”, Proc. IEEE/ACM Asia and South Pacific Design Automation Conference, Jan.
2000, pp. 179–184

31. G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, “Multilevel hypergraph partitioning:
Application in VLSI domain,” in Proc. ACM/IEEE Design Automation Conference, 1997,
pp. 526–529

32. G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,” in Proc.
ACM/IEEE Design Automation Conference, 1999, pp. 343–348

33. A. Khatkhate, C. Li, A. R. Agnihotri, M. C. Yildiz, S. Ono, C.-K. Koh and P. H. Madden,
“Recursive Bisection Based Mixed Block Placement,” in Proc. ACM/IEEE International
Symposium on Physical Design, 2004, pp. 84–89

34. C. Li, M. Xie, C.-K. Koh, J. Cong and P. H. Madden, “Routability-Driven Placement and
White Space Allocation,” in Proc. IEEE International Conference on Computer-Aided
Design, 2004, pp. 394–401

35. G.-J. Nam, “ISPD 2006 Placement Contest: Benchmark Suite and Results,” in Proc.
ACM/IEEE International Symposium on Physical Design, 2006, pp. 167–167

36. G.-J. Nam, C. Alpert, P. Villarrubia, B. Winter and M. Yildiz, “The ISPD2005 Place-
ment Contest and Benchmark Suite,” in Proc. ACM/IEEE International Symposium on
Physical Design, 2005, pp. 216–219

37. W. Naylor, “Non-Linear Optimization System and Method for Wire Length and Delay
Optimization for an Automatic Electric Circuit Placer,” US Patent 6301693, 2001

38. B. Obermeier, H. Ranke and F. M. Johannes, “Kraftwerk – A Versatile Placement
Approach,” in Proc. ACM/IEEE International Symposium on Physical Design, 2005,
pp. 242–244

39. J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan A. N. Ng, J. F. Lu and I. L. Markov,
“Capo: Robust and Scalable Open-Source Min-Cut Floorplacer,” in Proc. ACM/IEEE
International Symposium on Physical Design, 2005, pp. 224–226

40. C. Sechen and K. W. Lee, “An Improved Simulated Annealing Algorithm for Row-Based
Placement,” in Proc. IEEE International Conference on Computer-Aided Design, 1987,
pp. 478–481

41. G. Sigl, K. Doll and F. M. Johannes, “Analytical Placement: A Linear or a Quadratic
Objective Function?,” in Proc. ACM/IEEE Design Automation Conference, 1991,
pp. 427–431

42. W.-J. Sun and C. Sechen, “Efficient and Effective Placement for Very Large Circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
14(5), pp. 349–359, 1995

43. T. Taghavi, X. Yang, B. K. Choi, M. Wang and M. Sarrafzadeh, “DRAGON2005: Large-
Scale Mixed-Size Placement Tool,” in Proc. ACM/IEEE International Symposium on
Physical Design, 2001, pp. 245–247

44. N. Viswanathan and C. Chu, “FastPlace: Efficient Analytical Placement Using Cell
Shifting, Iterative Local Refinement and a Hybrid Net Model,” in Proc. ACM/IEEE Inter-
national Symposium on Physical Design, 2004, pp. 26–33

45. N. Viswanathan and C. Chu, “FastPlace: An Analytical Placer for Mixed-Mode Designs,”
in Proc. ACM/IEEE International Symposium on Physical Design, 2005, pp. 221–223

46. J. Vygen, “Algorithms for Large-Scale Flat Placement,” in Proc. ACM/IEEE Design
Automation Conference, 1997, pp. 746–751

192 7 APlace: A High Quality, Large-Scale Analytical Placer

47. J. Vygen, “Algorithms for Detailed Placement of Standard Cells,” in Design, Automation
and Test in Europe, 1998, pp. 321–324

48. M. Wang, X. Yang and M. Sarrafzadeh, “DRAGON2000: Standard-Cell Placement Tool
for Large Industry Circuits,” in Proc. IEEE International Conference on Computer-Aided
Design, 2001, pp. 260–263

49. X. Yang, B.-K. Choi and M. Sarrafzadeh, “Routability Driven White Space Allocation
for Fixed-Die Standard-Cell Placement,” in Proc. ACM/IEEE International Symposium
on Physical Design, 2002, pp. 42–47

8

FastPlace: An Efficient Multilevel Force-Directed
Placement Algorithm

Natarajan Viswanathan, Min Pan and Chris Chu
Department of Electrical and Computer Engineering, Iowa State University, Ames,
IA 50011-3060
{nataraj, panmin, cnchu}@iastate.edu

8.1 Introduction

Placement is a critical component in the physical synthesis design flow of large-scale
integrated circuits and is a major contributor to timing closure results. It is often run
multiple times during various stages of the physical synthesis flow. In addition, cir-
cuit sizes that need to be handled by placement algorithms are steadily increasing to
over tens of millions of modules. Hence, it is necessary to have efficient and scalable
placement algorithms that can produce high-quality solutions satisfying a variety of
design objectives.

An important constraint that needs to be handled by current placers is that of
placement congestion. Placement is typically run in an iterative manner along with
timing optimization transforms like buffer insertion and gate sizing. Additionally, it
has a major impact on the subsequent routing stage. Hence, placement algorithms
should be congestion aware so as to provide space for the subsequent timing opti-
mization and routing stages.

In this chapter, we describe FastPlace an efficient congestion aware multilevel
force-directed placement algorithm for large-scale mixed-size designs. The key fea-
tures of FastPlace are:

• A multilevel framework [24] within the global placement stage to handle large-
scale placement circuits. This is achieved by employing a two-level clustering
scheme – an initial netlist based fine-grain clustering, followed by a netlist and
physical based coarse-grain clustering that uses information from an initial place-
ment of the fine-grain clusters.

194 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

• A Hybrid net model [22] to speed up the quadratic program solver. The Hybrid
net model is a combination of the traditional clique and star net models. It results
in a substantial reduction in the number of nonzero entries in the connectivity
matrix as compared to the clique model thereby resulting in a significant speed-
up of the quadratic program solver.

• An efficient Cell Shifting technique [22, 23] to spread the modules during the
early stages of the placement flow. This technique roughly maintains the rela-
tive order of the modules obtained by solving the quadratic program in both the
horizontal and vertical directions.

• An Iterative Local Refinement technique [22, 24] to reduce the wirelength based
on the half-perimeter measure. This technique is applied on a coarse global place-
ment and is highly effective in simultaneously reducing the wirelength while
spreading the modules. It can also effectively handle placement blockages and
placement congestion constraints.

• A macro-block legalization technique [23] to resolve overlaps among the macro-
blocks present in the circuit. For any representation specifying the relative posi-
tions of the macros, the legalizer uses an optimal Iterative Clustering Algorithm
to place the macros with minimum perturbation from their global placement posi-
tions.

• An efficient and robust standard-cell legalization technique [23] that operates on
the segments created in the placement region due to the presence of placement
blockages. This technique satisfies segment capacities and legalizes the standard-
cells within the segments.

• A fast and effective detailed placement algorithm [19] that can work on both row-
based standard-cell placement and placement in the presence of fixed macros.
This algorithm consists of four techniques – Global Swap, Vertical Swap, Local
Cell Re-ordering and Single-segment Clustering and is highly effective in further
reducing the placement wirelength.

The rest of this chapter is organized as follows: In Sect. 8.2 we give an overview of
our algorithm with emphasis on the global placement flow. Section 8.3 describes the
generic quadratic placement methodology. Sections 8.4–8.9 describe the individual
components of FastPlace in detail. Experimental results are presented in Sect. 8.10
followed by the conclusions in Sect. 8.11

8.2 Overview of the Algorithm

The entire flow of our placement algorithm is summarized in Figure 8.1. It is divided
into three stages (1) congestion aware global placement using a multilevel frame-
work, (2) legalization of the macro-blocks followed by legalization of the standard-
cells and (3) detailed placement. In this section, we give an overview of the multilevel
global placement framework and describe the individual components of the flow in
more detail in the subsequent sections.

The multilevel global placement framework used within FastPlace is summa-
rized in Figure 8.2. It follows the classical hierarchical flow that has been used in

8.2 Overview of the Algorithm 195

Stage 1: Global Placement
Level 1: Initial Placement

1. Construct fine-grain clusters using netlist based clustering
2. Solve initial quadratic program
3. Repeat

a. Perform regular Iterative Local Refinement on fine-grain clusters
4. Until the placement is roughly even

Level 2: Coarse Global Placement
5. Construct coarse-grain clusters using netlist and physical based clustering
6. Repeat

a. Solve the convex quadratic program
b. Perform cell-shifting on coarse-grain clusters and add spreading forces

7. Until the placement is roughly even
8. Repeat

a. Perform density-based Iterative Local Refinement on coarse-grain clusters
b. Perform regular Iterative Local Refinement on coarse-grain clusters
c. Perform cell-shifting on coarse-grain clusters

9. Until the placement is quite even

Level 3: Refinement of fine-grain clusters
10. Un-cluster coarse-grain clusters
11. Perform density-based Iterative Local Refinement on fine-grain clusters
12. Perform regular Iterative Local Refinement on fine-grain clusters

Level 4: Refinement of flat netlist
13. Un-cluster fine-grain clusters
14. Perform density-based Iterative Local Refinement on flat netlist
15. Perform regular Iterative Local Refinement on flat netlist

Stage 2: Legalization
16. Legalize and fix movable macro-blocks using Iterative Clustering Algorithm
17. Move standard-cells among segments to satisfy segment capacities
18. Legalize standard-cells within segments

Stage 3: Detailed Placement

Fig. 8.1. Outline of the placement algorithm (Source: [24] c© 2007 IEEE).

Netlist based Fine-grain Clustering

Preliminary Placement of
Fine-grain Clusters

Netlist and Physical based
Coarse-grain Clustering

Global Placement of
Coarse-grain Clusters

Placement Refinement of
Fine-grain Clusters

Placement Refinement of
flat Netlist

Un-cluster

Un-cluster

Level 1

Level 2

Level 3

Level 4

Fig. 8.2. Multilevel global placement framework (Source: [24] c© 2007 IEEE).

196 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

many existing placement algorithms [2, 3, 5, 10, 12, 18]. In Level 1 of the multilevel
flow, we create fine-grain clusters using a netlist-based connectivity score and per-
form a fast initial placement of the fine-grain clusters. In Level 2 we perform a second
level of clustering in which we use a netlist- and physical-based clustering score to
generate coarse-grain clusters. We then perform global placement on the coarse-grain
clustered netlist until the clusters are evenly distributed over the placement region.
Since the number of modules at this level is significantly less as compared to the
original flat netlist, this step is quite fast and greatly contributes to the overall effi-
ciency of the placement algorithm. After the placement of the coarse-grain clusters,
we perform a series of un-clustering and placement refinements in Levels 3 and 4,
finally yielding a global placement solution of the original flat netlist.

8.3 Quadratic Placement Methodology

The quadratic placement approach uses the analogy of springs to model the connec-
tivity between the modules of a circuit. During quadratic placement, the total poten-
tial energy of the springs, which is a quadratic function of their length, is minimized
to produce a placement solution. This is equivalent to a force equilibrium state in the
spring system.

The circuit netlist that describes the connectivity between the modules is a
weighted hypergraph G = (V, E), where V = {v1, v2, . . . , vm} is the set of vertices
representing the modules to be placed and E = {e1, e2, . . . , en} is the set of hyper-
edges representing the connections or nets between the modules. Each net e ∈ E has
a weight we that reflects the criticality of this net.

In order to model the circuit by a spring system, the hypergraph needs to be
transformed into a graph by using a suitable net model. This is equivalent to saying
that each net in the hypergraph needs to be transformed into a set of two-pin nets.
To perform this transformation we use the Hybrid net model which is described in
Sect. 8.4. For the following discussion on quadratic placement we assume that this
transformation has been applied.

Let m be the total number of movable modules in the circuit and (xi , yi) the
coordinates of the center of module i . A placement of the circuit is given by the two
m-dimensional vectors x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym).

Consider a net between two movable modules i and j in the circuit. Let Wi j be
its weight. Then the cost of the net between the two modules is

1
2

Wi j [(xi − x j)
2 + (yi − y j)

2] (8.1)

If a movable module i is connected to a fixed module f with coordinates (x f , y f),
then the cost of the net is given by

1
2

Wi f [(xi − x f)
2 + (yi − y f)

2] (8.2)

The objective function that sums up the cost of all the nets can be written in matrix
notation as [8]

8.4 Hybrid Net Model 197

�(x, y) = 1
2

xTCx + dT
x x + 1

2
yTCy + dT

y y + constant (8.3)

where C is an m×m symmetric positive definite matrix and dx , dy are m-dimensional
vectors. Since (8.3) is separable into �(x, y) = �(x) + �(y), only the x-dimension
is considered for subsequent discussion, which is

�(x) = 1
2

xTCx + dT
x x + constant (8.4)

From (8.1), the cost in the x-direction between two movable modules i and j is

1
2

Wi j (x2
i + x2

j − 2xi x j) (8.5)

If ci j is the entry in row i and column j of matrix C , then the first and second
terms in expression (8.5) contribute Wi j to cii and c j j , respectively. The third term
contributes −Wi j to ci j and c ji . From expression (8.2), the cost in the x-direction
between a movable module i and a fixed module f is

1
2

Wi f (x2
i + x2

f − 2xi x f) (8.6)

The first term in expression (8.6) contributes Wi f to cii . The third term contributes
−Wi f x f to the vector dx at row i and the second term contributes to the constant
part of (8.4).

The objective function (8.4) is then minimized by solving the system of linear
equations represented by

Cx + dx = 0 (8.7)

Equation (8.7) thus gives the solution to the unconstrained problem of minimizing
the quadratic objective function in (8.4).

8.4 Hybrid Net Model

Since matrix C is sparse, symmetric and positive definite, we solve (8.7) by the
pre-conditioned Conjugate Gradient method using the Incomplete Cholesky Factor-
ization of matrix C as the preconditioner [1, 15]. It is well-known that the runtime
of the solver is directly proportional to the number of non-zero entries in matrix C .
This in turn, is equal to the number of two-pin nets in the circuit. Hence, a suitable
net model is required to transform the netlist hypergraph into a graph (or a set of
two-pin nets) so as to have minimal number of non-zero entries in matrix C .

In this respect, we propose a Hybrid net model that is a combination of the clique
and star net models. In the subsequent discussion we prove the equivalence of the
clique and star models, and hence the validity of using the Hybrid net model in
quadratic placement.

198 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

8.4.1 Clique and Star Net Models

The clique model is the traditional model used in analytical placement algorithms.
In the clique model, a k-pin net is replaced by k(k − 1)/2 two-pin nets forming a
clique. If the weight of the k-pin net is W , then some commonly used values for the
two-pin nets of the clique are W/(k − 1), 2W/k, etc. The clique model for a 5-pin
net is illustrated in Figure 8.3(a).

In the star model, each net has a star node to which all the pins of the net are
connected. Hence, a k-pin net will yield k two-pin nets. The star model for a 5-pin
net is illustrated in Figure 8.3(b).

In [16] Mo et al. use the star net model within a macro-cell placer on the
MCNC92 macro block benchmarks. They report an average reduction of 30% in
the number of two-pin nets as compared to using the clique model. Vygen [26] also
switches to a star model for very large nets to reduce the number of terms in the
objective function, but has not shown the validity of mixing the clique and star mod-
els in quadratic placement. In addition, neither paper has discussed the method to set
the weight of the nets introduced by the star model.

Equivalence of the Clique and Star Net Models

We now prove that for a k-pin net of weight W , if we set the weight of the two-pin
nets introduced, to γ W in the clique model and kγ W in the star model for any γ , the
clique model is equivalent to the star model in quadratic placement. Therefore, the
two models can be used interchangeably.

Lemma 8.1. For any net in the star model, the star node under force equilibrium is
at the center of gravity of all the pins of the net.

Proof. Consider a k-pin net. Let xs be the x-coordinate of the star node and let Ws
be the weight of the two-pin nets introduced. Then the total force on the star node by
all the pins is given by

F =
k∑

j=1

Ws(x j − xs)

(b) Star Model

Star Node

(a) Clique Model (c) Hybrid Net Model

pins
Net

Model
2 Clique
3 Clique
4 Star
5 Star
6 Star
… …

Fig. 8.3. Net models (Source: [22] c© 2005 IEEE).

8.4 Hybrid Net Model 199

Under force equilibrium, the total force F = 0. Therefore,

xs =
∑k

j=1 x j

k
(8.8)

Hence the lemma follows.

Theorem 8.2. For a k-pin net, if the weight of the two-pin nets introduced is set to
Wc in the clique model and kWc in the star model, the clique model is equivalent to
the star model in quadratic placement.

Proof. For the clique model, the total force on a pin i by all the other pins is given by

Fclique
i = Wc

k∑

j=1, j �=i

(x j − xi) (8.9)

For the star model, all the pins of the net are connected to the star node. The force on
a pin i due to the star node is given by

Fstar
i = kWc (xs − xi)

= kWc

(∑k
j=1 x j

k
− xi

)
by Lemma 1

= Wc

⎛

⎝
k∑

j=1

x j − kxi

⎞

⎠

= Wc

k∑

j=1, j �=i

(x j − xi)

= Fclique
i

As the forces are same in the two models, they are equivalent.

8.4.2 Hybrid Net Model

The Hybrid net model that we propose uses a clique model for two-pin and three-
pin nets, and a star model for nets with four or more pins. Within FastPlace we set
γ = 1/(k − 1) as it works well experimentally.

By using the star model for nets with four or more pins, we will generate signifi-
cantly less two-pin nets and consequently fewer non-zero entries in the matrix C as
compared to the clique model. We use the clique model for two-pin nets so as to not
introduce one extra net and one extra variable (corresponding to the star node) per
two-pin net as in [16]. We choose to use the clique model as opposed to the star for

200 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

three-pin nets because (a) if two modules are connected by more than one two-pin or
three-pin net in the original netlist, then the resulting two-pin nets generated by the
clique model between them can be combined and will only introduce a single non-
zero entry in the matrix C ; (b) it will not introduce an extra variable corresponding
to the star node.

Comparing the Hybrid net model with the clique model for a k-pin net, we see
that the clique model introduces k(k − 1)/2 non-zero entries in matrix C . This is
quadratic to the number of pins in the net. Whereas, the Hybrid net model will only
introduce k non-zero entries in the matrix. This is linear to the number of pins in the
net. This reduction in the non-zero entries in matrix C not only results in a significant
speed-up of the conjugate gradient solver, but also results in a significantly lower
memory usage to store the matrix.

In Table 8.1 we compare the clique and Hybrid net models in terms of the number
of non-zero entries introduced in the connectivity matrix C and the runtime of the
conjugate gradient solver. We use the ISPD 2005 placement contest benchmarks for
our comparison. From Table 8.1 it can be seen that on average, the Hybrid net model
leads to 10.26× fewer non-zero entries in the matrix and results in a 5.45× speed-up
in the conjugate gradient solver.

In this section, we have described the method to set the weights of the two-pin
nets introduced by the clique and star models. Consequently, we have proven the
equivalence of the two models and hence the validity of mixing them in quadratic
placement. Based on the proof, the main novelty of the Hybrid net model is that
we can use the star model even for nets with just four or more pins. We no longer
have to restrict its usage to only high-degree nets. If a combination of the clique and
star models are used within quadratic placement, the Hybrid net model will give the
minimum possible non-zero entries in matrix C . To the best of our knowledge, the
aforementioned proof and treatment of the star model has not been reported in prior
literature.

Table 8.1. Clique net model vs. Hybrid net model.

Non-zero Entries Non-zero Entries Solver Runtime
Circuit (Clique/ (Clique/

(Clique) (Hybrid) Hybrid) Hybrid)
adaptec1 7189306 1851871 3.88 2.78
adaptec2 10728119 2040590 5.26 4.05
adaptec3 22241459 3624646 6.14 3.12
adaptec4 25252138 3630561 6.96 4.25
bigblue1 10279652 2247013 4.57 3.40
bigblue2 124232100 3848452 32.28 10.69
bigblue3 68052887 7187232 9.47 5.15
bigblue4 225504129 16666571 13.53 10.16

Average 10.26 5.45

8.5 Cell Shifting 201

8.5 Cell Shifting

Solving (8.7) essentially minimizes the quadratic objective function. However, it
does not consider the overlap among modules. Therefore, the resulting placement
has a lot of overlap and is not spread over the placement region. To resolve over-
laps among the modules and spread them over the placement region we employ an
efficient Cell Shifting technique.

During Cell Shifting, the placement region is divided into equal sized bins, such
that on average, each bin can accommodate about four modules. We call this the reg-
ular bin structure. Based on the current placement, the utilization of each bin (Ui) is
then computed. Ui is defined as the ratio of the total area of all the modules overlap-
ping with bin i to the bin area. The modules are then shifted around the placement
region based on their respective bins and its current utilization. Since Cell Shifting is
independent and similar in the x and y dimensions, we only describe the case where
the modules are shifted in the x-dimension.

8.5.1 Shifting of Standard-cells

Shifting of cells is a two step process. In the first step, based on the utilization of
all the bins in a particular row of the regular bin structure, an irregular bin structure
reflecting the current bin utilization is constructed. As an example, let the utilization
of all the bins in one of the rows be as depicted in Figure 8.4(a). Then the irregular
bin structure constructed from the regular bin structure is as shown in Figure 8.4(b).
To get the equation for the irregular bin structure, from Figure 8.4 let:

• OBi : Coordinate of the boundary of bin i in the regular bin structure.
• NBi : Coordinate of the boundary of bin i in the irregular bin structure.

(b) Distribution
 After
 Spreading

Bin i

Bin i+1

OBiOBi−1 OBi+1

NBi

(a) Distribution
 Before
 Spreading Utilization

Fig. 8.4. (a) Regular bin structure (b) irregular bin Structure and utilization after shifting
(Source: [22] c© 2005 IEEE).

202 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

Then,

NBi = OBi−1(Ui+1 + δ) + OBi+1(Ui + δ)

Ui + Ui+1 + 2δ
(8.10)

The idea behind Cell Shifting is to even out the utilization among adjacent bins.
Hence, (8.10) constructs the new bin such that it averages the utilization of bin i
and bin i + 1. The reason for having the parameter δ is as follows: Let, δ = 0
and Ui+1 = 0, then from equation (8.10) it can be seen that, NBi = OBi+1 and
NBi+1 = OBi . This results in a cross-over of bin boundaries in the irregular bin
structure which results in an improper mapping of the cells. To avoid this problem,
we experimentally set the parameter δ to a value of 1.5.

In the second step, every cell present in a particular bin in the regular bin structure
is then linearly mapped to the corresponding bin in the irregular bin structure. As a
result of this mapping, cells in bins with a high utilization will shift in a manner so as
to reduce the utilization of the bin and the overlap among themselves. For performing
the linear mapping of cells, If

• x j : x-coordinate of cell j in bin i before mapping.
• x ′ j : x-coordinate of cell j in bin i after mapping.

Then,

x ′ j = NBi (x j − OBi−1) + NBi−1(OBi − x j)

OBi − OBi−1
(8.11)

To control the actual distance moved by any cell during shifting, we introduce
two movement control parameters αx and αy (<1) for the x and y dimensions.
Hence, once the coordinates of cell j after mapping have been obtained from (8.11),
the actual distance moved by the cell is αx |x ′ j − x j |. The movement control para-
meters are increasing functions that are inversely proportional to the maximum bin
utilization and have a very small value during the early stages of placement. As a
result, cells will move by a very small distance during the initial placement itera-
tions. When the placement is spread out, the cells will not have a tendency to shift
over large distances. αx and αy can then take a larger value to accelerate convergence.

8.5.2 Shifting of Macro-Blocks

For standard-cells, the width of the bins in the regular bin structure is greater than
the average width of the cells. Hence, the movement of any cell has an influence on
the utilization of only the adjacent bins. On the other hand, the movement of a macro
will influence the utilization of all the bins spanned by it. Therefore, to move a macro
during Cell Shifting we consider a larger region that is proportional to the size of the
macro.

Shifting of the macros follows the same two-step process as the standard-cells.
The only difference being the construction of the irregular bin structure. Figure 8.5
illustrates the construction of the irregular bin structure for horizontal shifting. From
Figure 8.5(a), for the regular bin structure, let

• N : Total number of bins spanned by the macro.
• x span: Total number of columns spanned by the macro.

8.5 Cell Shifting 203

• OBL : x-coordinate of the left boundary of the leftmost bins spanned by the
macro.

• OBR : x-coordinate of the right boundary of the rightmost bins spanned by the
macro.

• UC : Sum of the utilizations of the N bins spanned by the macro (shaded region
with lines to the bottom right).

• UL : Sum of the utilizations of N bins to the left of the macro. (shaded region
with lines to the bottom left).

• UR : Sum of the utilizations of N bins to the right of macro. (shaded region with
lines to the bottom left).

From Figure 8.5(b), for the unequal bin structure, let:

• NBL : x-coordinate of the left boundary of the leftmost bins spanned by the
macro.

• NBR : x-coordinate of the right boundary of the rightmost bins spanned by the
macro.

Then,

NBL = (OBL − x span)(UC + δ) + OBR(UL + δ)

UL + UC + 2δ
(8.12)

x_span

OBL–
x_span

OBROBL

NBL NBR

UL URUC

Macro Block

OBR +
x_span

(a)

(b)

Regular Bin Structure

Fig. 8.5. (a) Regular bin structure; (b) irregular bin structure for macro shifting (Source: [23]
c© 2006 IEEE).

204 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

NBR = OBL(UR + δ) + (OBR + x span)(UC + δ)

UR + UC + 2δ
(8.13)

For performing the linear mapping, if:

• x : x-coordinate of the macro before mapping.
• x

′
: x-coordinate of the macro after mapping.

Then,

x
′ = NBR(x − OBL) + NBL(OBR − x)

OBR − OBL
(8.14)

8.5.3 Addition of Spreading Forces

Once the modules have been shifted, additional forces need to be added to them so
that they do not collapse back to their previous positions during the next quadratic
program step. This is achieved by connecting each module to a corresponding
pseudo-pin added at the boundary of the placement region. The pseudo-pin and
pseudo-net addition is illustrated in Figure 8.6.

Let (x f
j , y f

j) be the target position of module j after Cell Shifting. At the target
position, the module will experience a force due to its connections with the other
modules in the netlist. This force can also be viewed as the force required to move
the module from its original position (before Cell Shifting) to the target position.
The spreading force added to the module corresponds to this force experienced by
the module in its target position.

To illustrate the addition of the spreading force, consider Figure 8.6. When mod-
ule j (solid circle) is moved to its target position, it will experience a force due to
the other modules connected to it (empty circles). When determining this force, we
assume that the modules connected to j are still in their original positions prior to
Cell Shifting. The resultant force due to the modules connected to j is then given

Pseudo net

Spreading Force

Pseudo pin

Target Position

Original
Position

Resultant Force

pFy

pFx

Fig. 8.6. Pseudo-pin and pseudo-net addition (Source: [22] c© 2005 IEEE).

8.6 Iterative Local Refinement 205

by the “Resultant Force” vector. The spreading force has the same magnitude as the
“Resultant Force” but is in the opposite direction.

To determine the position of the pseudo-pin and the spring constant of the
pseudo-net, If:

• pFx : x-component of the spreading force.
• pFy : y-component of the spreading force.
• pD: Distance between the pseudo-pin and the target position of module j .

Then, the position of the pseudo-pin is determined by the intersection of the “Spread-
ing Force” vector with the chip boundary. A pseudo-net for module j is one that
connects it from its target position to its pseudo-pin. The spring constant for the
pseudo-net is then given by β =

√
pF2

x + pF2
y /pD. During each iteration of place-

ment, the spreading force and pseudo-pin of the previous iteration are discarded and
a new spreading force and corresponding pseudo-pin position is determined for each
module.

Since the pseudo-pin is a fixed pin present at the boundary, we know from expres-
sion (8.2) and the subsequent analysis in Sect. 8.3, that only the diagonal of matrix
C and the dx and dy vectors need to be updated for every module. Hence, it takes
only a single pass of O(m) time, where m is the total number of movable modules in
the circuit, to regenerate the connectivity matrix for the next quadratic program step.
Thus we have incorporated an extremely fast Cell Shifting technique to spread the
cells over the placement region.

8.6 Iterative Local Refinement

Since the quadratic objective function is only an indirect measure of the linear wire-
length, it does not yield the best possible result in terms of the linear wirelength. To
offset this disadvantage, some form of linearization needs to be introduced within
the quadratic placement methodology. We achieve this by incorporating an Iterative
Local Refinement (ILR) technique within FastPlace.

The ILR technique is a key component of our placement flow. This technique uses
the actual position of a module and the half-perimeter bounding rectangle measure of
all the nets connected to the module to move it around the placement region. It acts on
a coarse global placement and is highly effective in minimizing the wirelength while
simultaneously spreading the modules over the placement region. In addition, it can
also seamlessly handle placement blockages and placement congestion constraints.

To handle placement congestion constraints, we separate the ILR technique into
two components: (a) a density-bin-based ILR (d-ILR) and (b) the regular ILR (r-ILR).
The core algorithm to move the modules, within both the components is the same and
hence we only describe it in the context of the r-ILR.

206 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

8.6.1 Bin Structure for r-ILR

The r-ILR also employs a regular bin structure to estimate the utilization of a place-
ment region and move the modules. During the first step of the r-ILR the width and
height of each bin is set to 5× that of the bin used during Cell Shifting. Such large
bins are constructed to have a global view of the current placement and enable mod-
ules to move over long distances. This is done to minimize the wirelength of long
nets that might span a large part of the placement region. During subsequent steps,
the width and height of the bins are gradually brought down to the values used in
the Cell Shifting step. As a result, the movement of the modules gets progressively
localized.

8.6.2 ILR for Simultaneous Spreading and Wirelength Minimization

During any iteration of the ILR, once the placement region has been binned, we tra-
verse through all the modules and determine their respective source bins. For every
module present in a bin, we compute eight scores that correspond to moving the mod-
ule to its nearest eight neighbouring bins. For calculating the score, we assume that
a module is moving from its current position in a source bin to the same relative
position in the target bin. The score for each move is a weighted sum of two compo-
nents: the first being the change in the wirelength for the move and the second being
a function of the change in the bin utilization.

The wirelength component is computed as the sum of the half-perimeter of the
bounding rectangle (HPWL) of all the nets connected to the module. Since it directly
takes the HPWL into account, it is more accurate than the quadratic objective func-
tion. For the utilization component to accurately reflect the placement distribution,
we define a utilization weight for each bin in the placement region. This weight is a
function of the bin utilization and is constantly updated based on the current place-
ment distribution. Hence, a sparse bin will have a low utilization weight so that more
modules can be moved into it, whereas a dense bin will have a higher utilization
weight so that modules can be moved out of the bin. As the weights are a function
of the bin utilization, they are constantly updated and prevent oscillations in terms of
the movement of the modules.

If all eight scores are negative, the module will remain in the current bin. Oth-
erwise it is moved to the target bin with the highest score for the move. During one
iteration of the ILR, we go through all the modules in the placement region and fol-
low the above steps for moving the module. Subsequently, this iteration is repeated
until there is no significant improvement in the wirelength.

8.6.3 ILR for Handling Placement Blockages

Most circuits contain a number of placement blockages in the form of fixed macros.
Analytical placement techniques often place a lot of movable modules on top of the
fixed macros. These modules have to be moved out of the fixed macros in an effective
manner with minimal increase in the wirelength.

8.6 Iterative Local Refinement 207

"contour" matrix
1

 0.8
 0.6
 0.4
 0.2

0 5 10 15 20 25 30 35 40 45 50 0
5

 10
 15

 20
 25

 30
 35

 40
 45

 50

0

0.2

0.4

0.6

0.8

1

Fig. 8.7. Initial contour map depicting placement blockages (Source: [24] c© 2007 IEEE).

To handle fixed macros during placement, using the ILR bin structure, we con-
struct a contour map of the placement region. Based on the fixed macros, each bin
in the contour map has a value of either 1 in case it overlaps with a fixed macro or 0
otherwise. The initial contour map for one of the placement benchmarks is shown in
Figure 8.7. We then use a 3×3 Laplacian as a smoothing filter to transform the entire
contour map. This transformation smoothes the sharp edges in the original contour
map creating the modified map as shown in Figure 8.8. During the initial steps of
ILR, the smoothing transform is run for a large number of iterations so that modules
can easily move over and cross a fixed macro if required. During the final steps of
ILR, the smoothing transform is run for lesser number of iterations so that the edges
are quite steep. This will enable the modules to slide down the slope and be moved
out of the fixed macro. As a result of the smoothing each bin will now have a contour
height associated with it.
More precisely, for a cell i currently in bin m, we use the following notations:

• α: Weight for the wirelength component.
• wli (m): Half-perimeter wirelength when i is in bin m
• wli (n): Half-perimeter wirelength when i is in bin n
• β(m): Weight of the utilization component for bin m.
• β(n): Weight of the utilization component for bin n.
• U (m): Utilization function for bin m
• U (n): Utilization function for bin n
• γ : Weight for the contour component.
• C(m): Contour height of bin m
• C(n): Contour height of bin n

208 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

"contour" matrix
1

0.8
0.6
 0.4
0.2

0 5 10 15 20 25 30 35 40 45 50 0
5

 10
 15

 20
 25

 30
 35

 40
 45

 50

0

 0.2

 0.4

 0.6

 0.8

1

Fig. 8.8. Contour map after smoothing transform (Source: [24] c© 2007 IEEE).

Then the consolidated score for the move from bin m to bin n accounting for
wirelength, bin utilization and placement blockage is given by

si (m, n) = α[wli (m) − wli (n)] + [β(m)U (m) − β(n)U (n)] + γ [C(m) − C(n)]

8.6.4 ILR for Placement Congestion Control

To reduce placement congestion, designers often run placement algorithms with spe-
cific placement target density values. To determine the placement density, the place-
ment region is binned using a pre-defined grid. Usually, the grid is square with the
dimensions being a multiple of the standard-cell row height. The density of a bin is
then defined as the ratio of the total area of movable objects within the bin to the total
available free space within the bin. The placement target density basically specifies
the maximum allowed occupation for any bin in the placement region. Satisfying the
placement target density constraint means that the density of all the bins should be
less than or equal to the placement target density value.

To handle the placement target density constraint, we use the d-ILR or the
density-bin-based ILR along with the r-ILR. The d-ILR uses the global pre-defined
grid structure used for placement density computation to calculate the score and
move a module from its source to target bin. Once the d-ILR is performed, we then
run the r-ILR as before in which the bin sizes are set and changed as described in
Sect. 8.6.1. The interaction between the d-ILR and the r-ILR can be seen in Figure 8.9
which shows the decrease in the size of the bins from the d-ILR stage to the end of
the r-ILR stage.

8.7 Clustering for Placement 209

regular ILR
Bin structure

density ILR
Bin structure

Fig. 8.9. Bin Structure for Iterative Local Refinement (Source: [24] c© 2007 IEEE).

8.7 Clustering for Placement

The circuit sizes that need to be handled by current placement algorithms are steadily
increasing towards tens of millions of modules. In such a scenario, a flat placement
methodology may not be effective in producing a good quality solution within a rea-
sonable amount of runtime. Hence, for efficient and scalable placement algorithm
design, a hierarchical approach is beneficial. To this effect many placers follow a
hierarchical or multilevel approach for placement [2, 3, 10, 12, 18, 21]. Circuit clus-
tering is an attractive method to reduce the placement problem size for large- scale
VLSI designs. If clustering is performed in a careful manner, it can also yield better
wirelength along with faster runtime as compared to flat placement approaches.

In our multilevel global placement framework we use clustering in a persistent
context as defined by [18]. In other words, we use clustering at the beginning of
the placement flow to pre-process the input netlist so as to reduce the placement
problem size.

8.7.1 Two-Level Clustering Scheme

To facilitate the description of the clustering, we define:

• M : The total number of modules before clustering.
• α: The clustering ratio which is defined as the ratio of the number of modules

before and after clustering.
• target number of modules: M/α.

210 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

• ai : The area of module i .
• average cluster area: �M

i=1ai /target number of modules

To reduce the circuit size for global placement, we follow a two-level clustering
scheme as shown in Figure 8.2. For each level we set α = 2 resulting in a 4× reduc-
tion in the number of movable modules in the final coarse-grain clustered netlist.

During the first level of clustering we create fine-grain clusters of about 2–3
modules per cluster. This clustering is solely based on the connectivity informa-
tion between the modules in the original flat netlist. Since it is performed at the
beginning of placement, we restrict it to fine-grain clustering to minimize any loss
in placement quality due to incorrect clustering. In fact, it was demonstrated in [9]
that fine-grain clustering can improve placement efficiency with negligible loss in
placement quality.

We then perform a fast, initial placement of the fine-grain clusters. The purpose
of this step is to get some placement information for the next clustering level. Since
each cluster in the first level has only around 2–3 modules, the initial placement
of the clusters closely resembles an initial placement of the original flat netlist. We
then create coarse-grain clusters by performing a second level of clustering. In this
level, we consider both, the connectivity information between the clusters and their
physical locations as obtained from the initial placement. We believe that generating
coarse-grain clusters based on actual placement information, is better than gener-
ating them by a solely netlist-based approach; and such an approach would further
minimize any loss in (or even improve) the final placement wirelength.

The key difference between our clustering scheme and the ones followed in
[2, 4, 12, 18] is that we use actual placement information while forming coarse-grain
clusters, whereas the other approaches generate coarse-grain clusters solely based
on the netlist information1. Our approach closely resembles that of [10]. The differ-
ence being that [10] uses two-levels of netlist-based clustering followed by physical
clustering, whereas we only use one level of fine-grain netlist-based clustering.

After experimenting with a variety of clustering techniques, we chose to use the
Best-Choice clustering technique described in [18] for both the levels of clustering.
In Figure 8.10, we summarize the modified version of the Best-Choice clustering
algorithm using Lazy-Update speed-up technique that is employed within our two-
level clustering scheme.
From Figure 8.10 there are three key parameters within our clustering scheme:

• s(j, k): The netlist-based clustering score between two modules j and k.
• max cluster area: The upper-bound on the cluster area.
• distance threshold: The distance threshold used for the physical clustering.

Within our clustering scheme, the netlist-based clustering score between two mod-
ules j and k is given by

s(j, k) = �ν∈N wν

a j + ak

1 Note that in [3, 4], placement information is used for clustering during the second V-cycle.

8.7 Clustering for Placement 211

Algorithm Clustering

Phase 1: Construct Initial Priority-queue (PQ)
For each module j

1. Find closest module k and clustering score s(j, k)

2. Insert triple (j, k, s) into PQ with s as the key

Phase 2: Form Clusters
while (number_of_modules > target_number_of_modules)

1. Pick top triple (j, k, s) from PQ
2. if j is marked invalid

3. Re-calculate closest module k� and clustering score s�(j, k�)

4. Insert triple (j, k � , s �) into PQ
5. else

6. if fine-grain clustering
7. if (a(j) + a(k)< max_cluster_size) cluster j and k into new module j �

8. if netlist+physical clustering
9. Calculate d(j, k)the distance between j and k

10. if (d(j, k)< distance_threshold and a(j)+a(k)< max_cluster_size)
cluster j and k into new module j�

11. Update netlist based on the clustering
12. For module j � find closest module k � and clustering score s � (j � , k �)
13. Insert triple (j �, k � , s �) into PQ with s � as the key
14. Mark neighbours of j � as invalid

Fig. 8.10. Best-choice clustering algorithm with placement information (Source: [24] c© 2007
IEEE).

where N is the set of nets connecting the two modules and wν = 1/|k| where k is
the degree of net ν.

Controlling the area of the clusters is highly imperative. Otherwise, a cluster
can get progressively larger by absorbing smaller clusters around it. This is often
detrimental and leads to bad solution quality. Having an area term in the denominator
of the clustering score biases the clustering technique to pick modules that will not
result in forming huge clusters. In addition, we also impose an upper-bound on the
cluster area using the max cluster area parameter. Within our clustering scheme the
max cluster area is set to 5× average cluster area. This results in the formation of
balanced clusters.

It is quite possible that two modules that have a very high connectivity score
do not actually end up being close to each other in the final placement. This can
happen because of the influence of the other nets/modules connected to them. Hence,
during the second level of clustering, even though we rank and pick the modules
based on their connectivity score we cluster the modules only if the distance between
them, as obtained from the initial global placement is within a certain threshold. In
our clustering scheme we experimentally set the distance threshold to 10% of the
maximum chip dimension.

212 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

8.8 Legalization

The global placement solution of force-directed placers typically has overlaps among
the modules that need to be resolved. Our legalization stage is divided into two steps.
In the first step we ignore the standard-cells and resolve overlaps among the macro-
blocks and assign them to legal positions. In the next step we fix all the macros and
legalize the standard-cells.

8.8.1 Legalization of Macro-Blocks

Since the movement of the macro-blocks has a significant impact on the wirelength,
the aim of the macro-block legalization is to maintain the global placement positions
of the macros as much as possible. If we denote the global placement position of a
macro as its target position, then the macro block legalization problem is to resolve
overlaps among all the macros while minimizing the total perturbation of the macros
from their target positions.

We formulate this problem as a minimum-perturbation fixed-outline floorplan-
ning problem. We use the sequence-pair [17] to represent the floorplan and enforce
the non-overlapping constraints among the macros. Any other floorplanning repre-
sentation can also be easily incorporated within our approach. Formally, the mini-
mum perturbation placement problem can be described as:

Minimum Perturbation Floorplan Realization (MPFR) Problem:

Given: n macros with target coordinates (x∗
i , y∗

i) for i = 1, . . . , n and a sequence
pair (p, q).

Determine: Legalized coordinates (xi , yi) s.t.
∑n

i=1 |xi − x∗
i | + |yi − y∗

i | is mini-
mized.

In the following sections, we first describe the Iterative Clustering Algorithm
that is used to generate a placement of the macros for a given sequence-pair. We then
describe the top-level flow for macro-block legalization using simulated annealing.
Since the horizontal and vertical non-overlapping constraints can be handled inde-
pendently, we only discuss the horizontal problem.

Iterative Clustering Algorithm

The basic idea behind the Iterative Clustering Algorithm is that if we know which
macros abut with each other to form a cluster in the optimal solution, then the posi-
tion of the cluster is easy to find. In Figure 8.11 we give the pseudo-code of the
Iterative Clustering Algorithm.

For horizontal placement, we first find the immediate left and right neighbours of
the macros. These neighbours are associated with the non-transitive edges in the hor-
izontal constraint graph and can be found in O(n2) time. We then place the macros
one at a time from left to right according to the sequence p. In case a macro overlaps

8.8 Legalization 213

Iterative Clustering Algorithm:
1. Find the immediate left and right neighbours of all macros
2. for i = 1 to n
3. Place macro pi in its target position
4. Let C be a new cluster consisting of pi
5. while C overlaps with other clusters do
6. Merge C with the closest cluster on its left
7. Let C be the new cluster formed
8. Shift C to its optimal position
9. if macro m in C is at its target position do
10. Detach m from C if necessary

and goto step 8
11. endwhile
12. endfor

Fig. 8.11. Iterative clustering algorithm (Source: [23] c© 2006 IEEE).

with an existing cluster then the clustering is updated according to steps 5–11. The
condition in step 5 and the closest cluster in step 6 can be determined by considering
the constraints of the immediate left neighbours of modules in C . The shifting in step
8 is easy according to the following lemma.

Lemma 8.3. For a cluster C, its position is optimal if the number of macros per-
turbed to the left from their target positions is equal to the number perturbed to the
right.

Since we add macros from left to right, macros will always be added to the right
of a stationary cluster. So the clusters will always shift left. Therefore, it is very easy
to find the correct shift amount of the newly formed clusters. In step 9, after shifting
a cluster C , a macro m ∈ C may potentially reach its target position. If m does not
have any right neighbours belonging to cluster C , then it should be detached from
the cluster. Otherwise, it will move with the cluster during subsequent steps and will
not be in its optimal position. The condition to detach m can be checked by looking
at its immediate right neighbours.

Although the while loop in steps 5–11 looks complicated, we can show with care-
ful implementation and analysis that the runtime complexity of the Iterative Cluster-
ing Algorithm is O(n2).

Macro-block Legalization by Simulated Annealing

The aim of the top-level simulated annealing framework is to obtain a sequence
pair such that the corresponding placement obtained from the Iterative Clustering
Algorithm will resolve overlaps among the macros with minimum perturbation from
their global placement positions. Another factor to be considered during placement
is that the macros have to be placed in legal positions within the core region. Hence,

214 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

the cost function for simulated annealing is a weighted sum of the total perturbation
along with a penalty for being out of bound.

Let (p, q) represents the sequence pair. Then, the initial sequence for p/q is
generated by sorting the macros in ascending order according to the Manhattan dis-
tance from the upper left/lower left corner to their target positions. This sequence
pair closely corresponds to the original placement and is usually quite good. Hence, a
low-temperature annealing is sufficient to generate a good result. Besides, we restrict
each annealing move to randomly exchange two adjacent macros in one of the two
sequences so as to not disturb the current solution significantly.

In Figures 8.12 and 8.13 we plot the placement of the macros before and after
legalization for the circuit ibm06-HB. From the two figures, we can see that the
macros have moved by a very small amount from the global placement solution.

0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 500 1000 1500 2000 2500 3000 3500

"HB06-before"

Fig. 8.12. Circuit ibm06-HB before legalization of macro-blocks.

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500

"HB06-after"

Fig. 8.13. Circuit ibm06-HB after legalization of macro-blocks.

8.9 FastDP: Efficient and Effective Detailed Placement 215

8.8.2 Legalization of Standard-Cells

Once the overlaps among the movable macros have been resolved, we fix their posi-
tions for all subsequent steps and treat them as placement blockages. We then divide
each row in the core region into placement segments based on the overlap of the
blockages with the row. A placement segment is defined as the maximal part of a
row that is not covered by a placement blockage. We then move the standard-cells
among the segments to satisfy their respective capacities. Finally, we legalize the
standard cells within the segments.

To move the cells among the segments, we use a greedy heuristic similar to the
Iterative Local Refinement technique. For every cell present in a segment, we com-
pute eight scores based on moving the cell to its nearest eight neighbouring segments.
For calculating the score, we assume that a cell is moving from its current position in
a source segment to the nearest possible position in the target segment. Each score
is a weighted sum of two components: The first being the half-perimeter wirelength
reduction for the move. The second being a function of the utilization of the source
and target segments. Since the legalization technique is mainly used to even out the
placement and bring all the segments within capacity, a higher weight is assigned to
the second component. If all the scores are negative, the cell will remain in the cur-
rent segment. Otherwise, it will move to the target segment with the highest score for
the move. During one iteration, we traverse through all the segments that are above
capacity and follow the above steps for cell movement. Subsequently, this iteration is
repeated until all the segments are within their respective capacities. We then assign
the cells to legal positions within each segment.

8.9 FastDP: Efficient and Effective Detailed Placement

To further reduce the wirelength of a legalized global placement, we use an efficient
and effective detailed placer called FastDP. Our detailed placer works only on the
standard-cells in a legalized row-based standard-cell placement or a placement in
which the macro-blocks have been fixed.

FastDP consists of four key techniques: Global Swap, Vertical Swap, Local
Re-ordering, and Single-Segment Clustering. The flow of our detailed placement
algorithm is summarized in Figure 8.14. We first apply the Single-Segment Clus-
tering technique to obtain a relatively good starting solution for the main loop of the
algorithm. In the main loop, Global Swap, Vertical Swap, and Local Re-ordering are
employed to reduce the wirelength until there is no significant improvement. Finally,
we re-apply the Single-Segment clustering to get better positions for the cells within
the segments without changing their order.

8.9.1 Global Swap

Given that all the other cells in the circuit are fixed, the “optimal region” for a cell i
is defined as the region to place i where the wirelength is optimal. Accordingly, the

216 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

Detailed Placement Algorithm

Perform Single-Segment Clustering

Repeat

Perform Global Swap

Perform Vertical Swap

Perform Local Re-ordering

Until no significant improvement in wirelength

Repeat

Perform Single-Segment Clustering

Until no significant improvement in wirelength

Fig. 8.14. Detailed placement flow (Source: [19] c© 2005 IEEE).

idea behind Global Swap is to find the “optimal region” for a cell i in the placement
region and swap i with a cell j or a space s in its “optimal region”. In the following
sections, we first describe the method to find the “optimal region” for any cell. We
then discuss the method to consider the effect of overlap during a swap operation.
Finally, we describe the Global Swap technique based on the “optimal region” and
the penalty method to deal with overlap. We then provide experimental results to
show the effectiveness of the Global Swap technique.

Optimal Region

The “optimal region” for a cell is determined based on the median idea of [7] as
follows.

For a cell i , we traverse all the nets connecting to it (noted as Ni) and find their
bounding boxes. Here, cell i is excluded from the nets when computing their bound-
ing boxes. For each net p ∈ Ni , we find its bounding box (xl [p], xr [p], yl [p],
yu[p] – the left, right, lower, and upper boundaries). From [7], the optimal posi-
tion for i is given by (xopt , yopt), where xopt and yopt are the medians of the x
series (xl [1], xr [1], xl [2], xr [2], . . . ,) and y series (yl [1], yu[1], yl [2], yu[2], . . . ,) of
bounding boxes. In general, the optimal position is a rectangular region rather than
a point as the total number of elements in the x and y series are even. This region
is defined as the “optimal region” for cell i . In some cases, the “optimal region” can
degrade to a point/line when the two medians of the x and/or the y series carry the
same value.

Figure 8.15 shows the optimal region for cell 1. There are three nets connecting
to cell 1 (Net1, Net2 and Net3). The nets are denoted by closed dashed lines. The
bold rectangles are the bounding boxes for the nets excluding cell 1. The light lines
are the grids constructed by the x series (xl [1], xr [1], xl [2], xr [2], xl [3], xr [3]) and
y series (yl [1], yu[1], yl [2], yu[2], yl [3], yu[3]). The shadowed region is the optimal
region for cell 1.

8.9 FastDP: Efficient and Effective Detailed Placement 217

yl2]

yl[3]

yu[2]

yl[1]

yu[3]

yu[1]

xr[3]xl[3]xr[1] xr[2]

Net2

Net1

Net3

1

2

3

4

5

6

7

8

xl[2]xl[1]

Optimal
Region

Fig. 8.15. Optimal region for cell 1 (Source: [19] c© 2005 IEEE).

Modelling the Effect for Overlap

After finding the optimal region for a cell i , we want to move i into the region. How-
ever, overlaps may be created if we swap i with a cell/space in the optimal region.
This may happen because of the difference in the sizes of i and the cell/space that is
picked for swap. Since no overlap is allowed in the placement solution, a consequent
legalization has to be done. Therefore, before performing Global Swap, we need to
consider the effect of any possible overlap on the wirelength. Usually, overlaps are
resolved by shifting the neighbouring cells in the segment with the overlap. In case
we need to shift the neighbouring cells, we introduce a penalty for this shifting effect.

In order to characterize the penalty more accurately, we have two types of penal-
ties: P1 and P2. P1 is the penalty on shifting the closest two cells to resolve overlap.
P2 is the penalty on shifting cells other than the closest two cells. Figure 8.16 illus-
trates two examples to compute P1 and P2. The bold boxes are the cells and the light
boxes are segments. The dashed boxes show the positions of the swapped cells after
swap. Consider the case where we swap cell i (width wi) in segment segi with cell
j (width w j) in segment seg j that is in the optimal region of i . Assume wi > w j .
The two cells left and right to j are j1 and j2. The widths of the two closest spaces
left to j are s1 and s2, and the widths of two closest spaces right to j are s3 and s4.
The total width of spaces s1, s2, s3, s4 is S1.

P1 is the wirelength penalty caused by shifting j1 and j2. If S1 ≥ (wi − w j),
the total shift of j1 and j2 to resolve overlap is (wi − w j) − (s2 + s3). We make P1

218 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

P1=(wi– s) × wt1
P2=(wi–S1) × wt2

Penalty on swapping two cells i and j :

j

Segi

Segi

i

j1 j2s1 s4s2 s3

i

s1 s2s

S1 = ws1+ws2+ws3+ws4

S1 = ws1+ws+ws2

Segs

Penalty on swapping a cell i with a space s :

Segj

P1=((wi–wj)–(s2+s3))×wt1
P2=((wi–wj)–S1)×wt2

Fig. 8.16. Penalty on swapping two cells and swapping a cell with a space (Source: [19] c©
2005 IEEE).

proportional to this shift. If S1 ≤ (wi − w j), only shifting j1 and j2 cannot resolve
the overlap and we need to shift more cells in seg j . P2 is the penalty of shifting cells
other than j1 and j2 in seg j . In this case P2 is proportional to the shift on cells other
than j1 and j2, which is (wi − w j) − S1. Hence, we set P1 and P2 as follows:

P1 = ((wi − w j) − (s2 + s3)) × wt1
P2 = ((wi − w j) − S1) × wt2 (8.15)

where wt1 and wt2 are weights. For the case where we swap i with a space s,
the method to get the penalty is similar to that for swapping two cells. The only
difference is that the width difference is wi −0 = wi and S1 is the sum of the widths
of s, the closest space left to s and the closest space right to s.

Since the shifts in P1 and P2 have the dimension of length, the two weights wt1
and wt2 are just constants with no dimension. Because we do not want to disturb the
original placement too much by legalization, large overlap is discouraged by setting
wt2 higher than wt1.

Global Swap Based on Optimal Region

Based on the optimal region and the penalty on overlap, we develop a Global Swap
technique. Since there could be several cells and spaces in the optimal region, we
have many choices. We use a term “benefit” B as a measurement for selecting the

8.9 FastDP: Efficient and Effective Detailed Placement 219

cell or space in the optimal region. The “benefit” for a swap has two components:
one is the difference between the total wirelength before and after the swap, the other
is the penalty charged on the created overlap. If the wirelength before and after the
swap are W1 and W2, respectively, the “benefit” can be obtained by (8.16).

B = (W1 − W2) − P1 − P2 (8.16)

If B > 0, it means that we can benefit from the swap. Otherwise, the resulting
placement could be worse than original. Of course, the “benefit” we compute is not
accurate because the real wirelength change due to resolving the overlap is hard to
measure. Based on this “benefit”, we perform the swap as follows. For each standard-
cell i , we find its optimal region and try to swap it with every cell j and space s in the
optimal region of i . We measure the “benefit” for each tentative swap and pick the j
or s with the best “benefit” to perform the swap. If the best “benefit” has a value less
than zero, we do not perform a swap on i .

8.9.2 Vertical Swap

During Global Swap, it is possible to not find a good candidate cell or space in the
optimal region of cell i to perform a swap. This could be because of two reasons.
First, the size of i is large and the optimal region of i is congested. Hence, the seg-
ments that span the optimal region do not have enough space to hold i . Second,
in order to hold i , many cells have to be shifted to remove the overlap created by
swapping, which introduces a high penalty.

To increase the possibility for a good swap and reduce the vertical wirelength
locally, we have a Vertical Swap technique similar to the Global Swap. The idea of
Vertical Swap is to move a cell vertically towards its optimal region. This technique
is not as greedy as Global Swap and only moves a cell up or down by one row. For a
cell i , if the optimal region is above/below its current position, then a few cells in the
segment above/below i are considered to be the candidates. We use the same penalty
as in Global Swap to estimate the effect of overlap and pick the best candidate for
the swap. We observed that interleaving the Vertical Swap with Global Swap results
in a much faster decrease in the wirelength as compared to only applying the Global
Swap. We believe the reason for this is because the Vertical Swap is not very greedy
and has more flexibility in moving the cells. At the same time, it may aid the Global
Swap. In addition, this technique is much faster than Global Swap as the number of
candidate cells considered for the swap are much less than in Global Swap.

8.9.3 Local Re-Ordering

With Vertical Swap fixing local vertical errors, we need a technique to fix local hor-
izontal errors. Therefore, we propose a very fast Local Re-ordering technique to
handle this problem. For any n consecutive cells within a segment, we try all pos-
sible left-right ordering of the cells and pick the order giving the best wirelength.
To determine the positions of the cells, we consider them as a group and make the

220 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

left(right) boundary of the group as the left(right) boundary of the first(last) cell in
the original order. Then for each order, we distribute the cells evenly within the left
and right boundaries. Hence, in each order, all the cell positions are fixed and the
wirelength evaluation is much faster than considering multiple choices for the cell
positions.

In our implementation, we set n = 3. The reason being that n = 2 which is pair-
wise swapping is too constrained whereas, n = 4, will be four times slower and we
also do not observe any significant improvement as compared to n = 3. Compared
to the conventional window-based technique, Local Re-ordering has a 3-cell window
in one row/segment and is very local.

8.9.4 Single-Segment Clustering

After the main loop of FastDP, we fix the cells and their ordering within each seg-
ment. We now further reduce the wirelength by moving the cells within the segments.
For a legalized placement, if we fix the order of the cells in one segment and the
positions of the cells in all other segments, the problem becomes a fixed-order single
segment problem described later.

Fixed-Order Single Segment Placement Problem

Given a segment S in the placement region with n standard-cells C1, C2, . . . , Cn ,
whose left-to-right order is fixed (Ci is left to C j if i < j), with all cells not in S
being fixed. Find a non-overlapping placement for the segment S so that the total
half-perimeter wirelength is minimized.

This problem is basically the same as the Single-Row Problem in [13], where
an optimal dynamic programming algorithm is proposed to solve the problem. In
this section, we describe a more efficient algorithm that can also find the optimal
solution.

First, we define some terms used in our algorithm. A cluster is a cell or a group of
cells abutted together (retaining the original order of cells). Clustering is the opera-
tion to abut two clusters to form a new cluster (the width of the new cluster is the sum
of the widths of the original clusters). The wirelength function of the x-coordinate
of a cluster is a convex piecewise linear function W (x) when all other objects are
fixed. The slopes for the linear pieces are . . . ,−3,−2,−1, 0, 1, 2, 3, . . . The slope 0
part is the optimal region in x-direction for the cluster. The points where the function
changes slope are called bounds. These bounds are the left and right boundaries of
the bounding boxes for the nets connecting to the cluster but excluding the cluster
itself. Optimal Region Center of a cluster is the middle point of the optimal region
in x-direction when all the objects (standard-cells and macro-blocks) not part of the
cluster are fixed.

In order to find the optimal region for a cluster C in segment S, we need to
fix the positions of all the other objects except the cells in S. Therefore, if C has
connections to any cells in S, the bounds for C cannot be determined. However,
since we fix the order of the cells in S, we know the left-right orders between the

8.9 FastDP: Efficient and Effective Detailed Placement 221

cells. We use this information to get the bounds so that the optimality of the solution
will not be affected. The method to get the bounds is as follows. When computing
the bounding box for any net N connecting to C , if N is connecting to a cell C ′ in
S, we will assume C ′ at the end of the segment S, i.e., if C ′ is left to C , we assume
C ′ is at the left end of segment S; otherwise, C ′ is at the right end of segment S.
Although we are not using the real position for C ′, we will not affect the optimality
of the position of C because the left–right order of C and C ′ has to be maintained.

The main idea of the algorithm is to put every cluster at its Optimal Region Cen-
ter. If there is overlap between two clusters, we perform clustering and form a new
cluster. The new cluster will not be broken at any later stage. Then we put the new
cluster at its Optimal Region Center. We iteratively perform clustering until all the
clusters are put at their Optimal Region Center without any overlap. If any optimal
region boundary is out of the segment range, we will assign it to the closest segment
boundary. In this way, no cell will be put out of the segment.

Theorem 8.4. The Single-Segment Clustering Algorithm finds the optimal solution
for the Fixed-Order Single Segment Placement Problem.

Proof. First, we prove that if the clusters are formed correctly, the solution obtained
by our algorithm is optimal. Since all the clusters are located at their optimal posi-
tions in the end, if there is no overlap between any clusters, the solution is optimal.
However, if some clusters overlap with each other, they should be clustered together,
a contradiction to our assumption that the clusters are formed correctly.

Then, we prove that the clusters are formed correctly by our algorithm. To show
this, assume on the contrary that the clustering in the optimal solution is different
from our solution. Consider a gap in the optimal solution surrounded by a pair of
cells a and b that are in the same cluster in our solution. Suppose a and b are clus-
tered together when we merge clusters A and B in some step of our algorithm. See
Figure 8.17 for an illustration. Without loss of generality, we can assume there is no
gap within cluster A and within cluster B in the optimal solution. Otherwise, we can
consider the gap within cluster A or cluster B instead. Since we merge cluster A and
cluster B together at some point, A and B cannot be at the optimal region at the same

a
A

b
B

a
A

b
B

b
B

a
A

Our solution

Optimal solution

Better solution

Fig. 8.17. Proof of optimality of Single-segment Clustering Algorithm (Source: [19] c© 2005
IEEE).

222 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

time if their order is not changed. For any solution, either A wants to move right or
B wants to move left (or both) to reduce the wirelength. We can always generate a
better wirelength than the optimal solution by moving either A or B towards the gap
without creating any overlap. A contradiction. Thus, our solution is optimal.

We now analyze the complexity of the algorithm. There are n cells in total, and
the maximum number of clustering operation is n − 1. In the clustering operation,
every step needs constant time except merging the two bounds lists. The merge takes
linear time to the number of bounds m. The complexity of the algorithm is O(nm).
However, in practice, it can be much better. In our implementation, we are not keep-
ing all the bounds for the clusters. Instead, we only keep a small constant number
of bounds for every cluster. Therefore, the merge also takes constant time. The total
complexity of the algorithm is O(n). Of course, it will compromise the optimality,
but experiments show that even using a small constant will not degrade the solution
appreciably. In our implementation, the constant we choose is 16.

Although this algorithm can find optimal solution, we still need to run it itera-
tively as it is only optimal when all cells not in the current segment are fixed. Since
we are changing the cell positions segment by segment, we need to run several iter-
ations to find good positions for all the cells.

8.10 Experimental Results and Analysis

FastPlace is implemented in C and the executables of the latest release are available
for download from [25]. The current version of our algorithm – FastPlace3.0 was
tested on the ISPD-2005, ISPD-2006, PEKO-MS ISPD-2005 and PEKO-MS ISPD-
2006 benchmark suites. All the experiments were run using a 64-bit binary on a
2.5 GHZ AMD Opteron 252 machine with 8 GB RAM.

8.10.1 Runtime Analysis of the Algorithm

In Table 8.2 we give a break-up of the total runtime of the algorithm on the ISPD-
2005 and ISPD-2006 placement contest benchmarks. It can be seen that even for
circuits with over two million movable modules (bigblue4, newblue7), FastPlace3.0
takes less than 1 1/2 h to generate a placement solution. This demonstrates the effi-
ciency and scalability of the placement algorithm.

8.10.2 ISPD-2005 Placement Contest Benchmarks

In Table 8.3, we compare the half-perimeter wirelength of our placer with mPL6,
APlace 2.0 and Capo10.2. APlace 2.0 [12, 14] is a faster version of the placer [11]
used in the ISPD-2005 placement contest, mPL6 [4] comprises of enhanced versions
of the placers described in [3, 6] and Capo10.2 is the latest version of the placer
described in [20]. It can be seen that on average, we are 4% better in terms of half-
perimeter wirelength as compared to APlace 2.0, 1% higher as compared to mPL6
and 11% better as compared to Capo10.2, respectively.

8.10 Experimental Results and Analysis 223

Table 8.2. Break-up of total runtime (all values in seconds).

Global Placement Detailed
Circuit Clustering QP Cell ILR Post- Leg’n Placement Total

Solver Shifting Process
adaptec1 10 4 3 154 9 11 89 282
adaptec2 13 5 6 220 14 11 139 411
adaptec3 24 12 29 611 31 35 494 1248
adaptec4 22 10 17 494 26 24 219 823
bigblue1 13 7 4 230 16 10 162 445
bigblue2 44 11 9 451 24 38 508 1092
bigblue3 48 28 88 1731 63 101 919 2993
bigblue4 144 62 135 2245 112 163 1877 4757
adaptec5 49 25 55 1339 43 189 145 1848
newblue1 27 20 16 263 0 44 804 1175
newblue2 22 11 7 459 22 67 338 928
newblue3 56 6 28 381 32 20 1249 1783
newblue4 38 21 38 762 29 108 115 1112
newblue5 92 45 94 1601 62 386 270 2555
newblue6 145 43 56 1706 81 87 683 2805
newblue7 130 78 234 2494 126 257 430 3760

Table 8.3. HPWL Comparison of FastPlace3.0 with mPL6, APlace2.0 and Capo10.2 on the
ISPD-2005 benchmark suite.

Half-Perimeter Wirelength

Circuit FastPlace3.0
m P L6
F P3.0

APlace2.0
F P3.0

Capo10.2
F P3.0

adaptec1 77536552 1.00 1.01 1.18
adaptec2 93331216 0.99 1.03 1.08
adaptec3 212891104 1.01 1.03 1.07
adaptec4 197050832 0.99 1.06 1.06
bigblue1 95618032 1.01 1.05 1.14
bigblue2 153419088 0.99 1.00 1.06
bigblue3 362728672 0.95 1.13 1.10
bigblue4 831285312 1.00 1.05 1.16

Average 0.99 1.04 1.11

In Table 8.4 we compare the wirelength results of FastPlace3.0 in default mode
with that of other placers reported during the ISPD 2005 placement contest. For the
contest, all the placers were given the benchmark circuits in advance. There was no
limit on the CPU time and the placers were allowed to have separate parameters
for each individual circuit to obtain the best possible wirelength. From Table 8.4,
the contest version of APlace is on average 3.3% better than our placer in terms of

224 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

Table 8.4. HPWL Comparison of FastPlace3.0 with other academic placers on the ISPD-2005
benchmark suite.

Placer Circuit Average
adaptec2 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4

APlace 0.94 0.95 0.99 0.94 0.99 1.00 0.967
FastPlace 3.0 1.00 1.00 1.00 1.00 1.00 1.00 1.000

mFAR 0.98 0.97 1.02 1.10 1.05 1.05 1.029
Dragon 1.01 1.02 1.07 1.04 1.05 1.09 1.047

mPL 1.04 1.02 1.03 1.13 1.02 1.09 1.054
Capo 1.07 1.07 1.13 1.12 1.05 1.32 1.129

NTUplace 1.07 1.05 1.11 1.24 1.14 1.39 1.167
Fengshui 1.32 1.71 1.20 1.86 1.30 1.25 1.440
Kraftwerk 1.69 1.79 1.56 2.10 1.81 1.69 1.773

Table 8.5. Comparison of FastPlace3.0 with other academic placers on the ISPD-2006 bench-
mark suite using the ISPD-2006 placement contest scoring function.

Placer Circuit Avg
ad5 nb1 nb2 nb3 nb4 nb5 nb6 nb7

Kraftwerk 1.01 1.19 1.00 1.00 1.01 1.04 1.00 1.00 1.03
mPL6 1.00 1.06 1.07 1.17 1.00 1.02 1.00 1.00 1.04

FastPlace3.0 1.07 1.18 0.99 1.09 0.99 1.12 0.97 0.90 1.04
NTUPlace2 1.02 1.00 1.07 1.16 1.03 1.00 1.04 1.07 1.05

mFAR 1.09 1.23 1.09 1.16 1.09 1.13 1.03 1.04 1.11
APlace3 1.26 1.20 1.05 1.13 1.35 1.21 1.06 1.05 1.16
Dragon 1.08 1.21 1.29 1.90 1.05 1.13 1.03 1.23 1.24
DPlace 1.26 1.55 1.77 1.36 1.14 1.35 1.23 1.25 1.36
Capo 1.16 1.57 1.64 1.44 1.22 1.28 1.32 1.46 1.39

half-perimeter wirelength. Whereas, our results are better than the reported results of
all the other placers.

8.10.3 ISPD-2006 Placement Contest Benchmarks

In Table 8.5 we compare our placement results with that of other placers reported
during the ISPD 2006 placement contest. We use the same scoring function as the
contest which is a weighted function of the wirelength, placement congestion and
runtime. On average, our score is only 1% higher than the best reported results during
the placement contest. Looking at individual results, on 4 of the 8 circuits we obtain
the best results among all the placers.

In Table 8.6 we report the half-perimeter wirelength, scaled-overflow, and scaled
half-perimeter wirelength of FastPlace3.0 on the ISPD-2006 placement contest
benchmarks. To determine the scaled half-perimeter (S HPWL) values on these cir-
cuits, we use the same function as the ISPD-2006 placement contest, which is

S HPWL = HPWL × (1 + 0.01 × Scaled overflow per bin) (8.17)

8.10 Experimental Results and Analysis 225

Table 8.6. HPWL, scaled-overflow per bin, and scaled HPWL on the ISPD-2006 benchmark
suite.

Circuit HPWL SO/Bin S HPWL
adaptec5 440638720 13.6210 500658247
newblue1 77234368 0.8070 77857680
newblue2 207180096 0.5333 208284948
newblue3 291394656 0.5289 292935881
newblue4 297285504 9.2112 324669094
newblue5 581120768 11.7824 649590908
newblue6 541387840 1.3056 548456045
newblue7 1087625344 1.2011 1100689254

Table 8.7 gives the runtime comparison of our placer with other placers reported
during the ISPD 2006 placement contest. This is a direct comparison of the run-
time as the machine specifications for the contest were the same as the one on
which we ran our experiments. On average, the runtime of our placer is the least
among all the placers.

Table 8.7. Runtime comparison of FastPlace3.0 with other academic placers on the ISPD-
2006 benchmark suite.

Placer Circuit Avg
ad5 nb1 nb2 nb3 nb4 nb5 nb6 nb7

FastPlace 3.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kraftwerk 1.78 0.97 1.09 0.51 2.49 2.91 1.91 1.99 1.70

mPL6 4.47 1.92 6.56 5.44 5.23 4.83 4.29 7.55 5.04
NTUplace2 5.68 1.84 4.77 3.73 6.72 8.00 4.94 5.71 5.17

mFAR 3.72 2.16 3.12 1.66 5.72 4.47 4.33 5.18 3.80
APlace3 10.97 3.66 5.96 7.01 13.48 12.84 10.38 14.59 9.86
Dragon 1.22 0.84 1.76 0.66 1.34 1.38 1.38 2.63 1.40
DPlace 1.56 0.87 6.89 0.58 1.48 1.78 1.44 2.53 2.14
Capo 5.26 2.18 6.08 3.41 6.23 8.16 6.59 14.62 6.57

8.10.4 PEKO-MS Benchmarks

In Table 8.8 we report the wirelength and runtime results of FastPlace3.0 on the
PEKO-MS ISPD-2005 benchmarks. From column 3, it can be seen that on average,
we are 1.73× higher than the optimal wirelength reported on these benchmarks.

Finally, in Table 8.9, we report the wirelength, scaled-overflow, and runtime
results of our placer on the PEKO-MS ISPD-2006 benchmarks. From column 3,
it can be seen that on average, we are 2.11× higher than the optimal half-perimeter
wirelength reported on these benchmarks. Looking at the scaled half-perimeter wire-
length, from column 6, we are on average, 3.25× higher than the scaled half-
perimeter wirelength of the optimal placement.

226 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

Table 8.8. HPWL and Runtime on the PEKO-MS ISPD-2005 benchmark suite.

HPWL Runtime (s)

Circuit FastPlace3.0
F P3.0
opt wl

Global Legalization Detailed Total

(×10e6) Placement Placement
adaptec1 31.62 1.58 91 8 77 176
adaptec2 40.13 1.61 117 3 88 207
adaptec3 73.25 1.79 265 19 178 463
adaptec4 67.53 1.71 304 22 148 474
bigblue1 34.06 1.63 193 2 100 295
bigblue2 69.92 1.65 351 26 167 543
bigblue3 173.36 1.84 655 57 424 1136
bigblue4 343.14 2.00 2042 134 947 3123

Average 1.73

Table 8.9. HPWL, Scaled-overflow per bin and runtime on the PEKO-MS ISPD-2006 bench-
mark suite.

HPWL SO/Bin S HPWL Runtime (s)

Ckt FP3.0
F P3.0
opt wl

FP3.0 optimal
F P3.0

opt
GP Leg’n DP Total

(×10e7)

ad5 17.09 2.79 100.291 9.988 5.09 413 176 51 640
nb1 4.47 2.18 13.267 1.734 2.43 193 131 46 371
nb2 5.28 1.89 45.400 10.294 2.50 271 135 77 483
nb3 8.15 2.61 81.334 9.552 4.33 269 105 71 444
nb4 7.57 1.72 98.478 9.260 3.12 278 128 67 473
nb5 20.95 2.43 84.804 9.584 4.10 493 11 66 571
nb6 12.59 1.53 45.613 8.361 2.06 820 298 354 1472
nb7 27.22 1.75 45.055 7.065 2.36 1586 922 527 3035

Average 2.11 3.25

8.11 Conclusions

In this chapter, we describe FastPlace an efficient and scalable force-directed place-
ment algorithm for large-scale mixed-size circuits. The global placement stage of
FastPlace relies on quadratic wirelength optimization and uses a multilevel frame-
work to improve the scalability of the algorithm. It uses a Hybrid Net Model to
speed-up the quadratic program solver, an efficient Cell-Shifting technique to spread
the modules and an efficient linearization technique – Iterative Local Refinement to
minimize the half-perimeter wirelength. The legalization stage uses an optimal Iter-
ative Clustering Algorithm for macro-block legalization and a robust segment-based
standard-cell legalization technique. The detailed placement stage uses a variety of
transforms like Global Swap, Vertical Swap, Local Cell Re-ordering, and Single-
segment Clustering for further wirelength improvement.

References 227

FastPlace can effectively handle placement blockages and placement congestion
constraints. It produces competitive results as compared to other state-of-the-art aca-
demic placers but at a much lesser runtime. Such an ultra-fast placer is very much
needed in present day iterative physical synthesis flows to achieve timing closure
without a significant runtime overhead.

References

1. R. Barrett et al. Templates for the Solution of Linear Systems: Building Blocks for Itera-
tive Methods. SIAM, 2nd edition, 1994

2. T. Chan, J. Cong, T. Kong, and J. Shinnerl. Multilevel optimization for large-scale circuit
placement. In Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, pages 171–176, 2000

3. T. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for circuit
placement. In Proc. Int. Symp. Phys. Design, pages 185–192, 2005

4. T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie. mPL6: Enhanced multilevel
mixed-size placement. In Proc. Int. Symp. Phys. Design, pages 212–214, 2006

5. C. C. Chang, J. Cong, and X. Yuan. Multi-level placement for large-scale mixed-size IC
designs. In Proc. Asia and South Pacific Design Automat. Conf., pages 325–330, 2003

6. J. Cong and M. Xie. A robust detailed placement for mixed-size ic designs. In Proc. Asia
and South Pacific Design Automat. Conf., pages 188–194, 2006

7. S. Goto. An efficient algorithm for the two-dimensional placement problem in electrical
circuit layout. IEEE Trans. Circuits and Systems, CAS-28(1):12–18, 1981

8. K. M. Hall. An r-dimensional quadratic placement algorithm. Manage. Sci., 17:219–229,
1970

9. B. Hu and M. Marek-Sadowska. Fine granularity clustering for large scale placement
problems. In Proc. Int. Symp. Phys. Design, pages 67–74, 2003

10. B. Hu and M. Marek-Sadowska. Multilevel fixed-point-addition-based VLSI placement.
IEEE Trans. Comput.-Aided Design, 24(8):1188–1203, August 2005

11. A. B. Kahng, S. Reda, and Q. Wang. APlace: A general analytic placement framework.
In Proc. Int. Symp. Phys. Design, pages 233–235, 2005

12. A. B. Kahng, S. Reda, and Q. Wang. Architecture and details of a high quality, large-
scale analytical placer. In Proc. IEEE/ACM Int. Conf. on Comput.-Aided Design, pages
890–897, 2005

13. A. B. Kahng, P. Tucker, and A. Zelikovsky. Optimization of linear placements for wire-
length minimization with free sites. In Proc. Asia and South Pacific Design Automat.
Conf., pages 241–244, 1999

14. A. B. Kahng and Q. Wang. Implementation and extensibility of an analytic placer. IEEE
Trans. Comput.-Aided Design, 24(5):734–747, May 2005

15. D. S. Kershaw. The Incomplete Cholesky-Conjugate Gradient method for the iterative
solution of systems of linear equations. J. Comp. Phys., 26:43–65, 1978.

16. F. Mo, A. Tabbara, and R. Brayton. A force-directed macro-cell placer. In Proc.
IEEE/ACM Intl. Conf. on Computer-Aided Design, pages 177–180, 2000

17. H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI module placement based
on rectangle-packing by the sequence pair. IEEE Trans. Comput.-Aided Design,
15(12):1518–1524, December 1996

18. G.-J. Nam, S. Reda, C. J. Alpert, P. G. Villarrubia, and A. B. Kahng. A fast hierarchi-
cal quadratic placement algorithm. IEEE Trans. Comput.-Aided Design, 25(4):678–691,
April 2006

228 8 FastPlace: An Efficient Multilevel Force-Directed Placement Algorithm

19. M. Pan, N. Viswanathan, and C. Chu. An efficient and effective detailed placement
algorithm. In Proc. IEEE/ACM Intl. Conf. on Comput.-Aided Design, pages 48–55, 2005

20. J. A. Roy, S. N. Adya, D. A. Papa, and I. L. Markov. Min-cut floorplacement. IEEE
Trans. Comput.-Aided Design, 25(7):1313–1326, July 2006

21. T. Taghavi, X. Yang, B.-K. Choi, M. Wang, and M. Sarrafzadeh. Dragon2005: Large-
scale mixed-size placement tool. In Proc. Intl. Symp. Phys. Design, pages 245–247, 2005

22. N. Viswanathan and C. C.-N. Chu. FastPlace: Efficient analytical placement using cell
shifting, iterative local refinement and a hybrid net model. IEEE Trans. Comput.-Aided
Design, 24(5):722–733, May 2005

23. N. Viswanathan, M. Pan, and C. Chu. Fastplace 2.0: An efficient analytical placer for
mixed-mode designs. In Proc. Asia and South Pacific Design Automat. Conf., pages
195–200, 2006

24. N. Viswanathan, M. Pan, and C. Chu. Fastplace 3.0: A fast multilevel quadratic place-
ment algorithm with placement congestion control. In Proc. Asia and South Pacific
Design Automat. Conf., pages 135–140, 2007

25. N. Viswanathan, M. Pan, and C. Chu. FastPlace: An Analytical Placer for Large-scale
VLSI Circuits.
url=http://www.public.iastate.edu/̃ nataraj/FastPlace.html.

26. J. Vygen. Algorithms for large-scale flat placement. In Proc. ACM/IEEE Design Automat.
Conf., pages 746–751, 1997

9

mFAR: Multilevel Fixed-Points Addition-Based VLSI
Placement

Bo Hu1 and Malgorzata Marek-Sadowska2

1Velogix Inc.
2Department of Electrical and Computer Engineering, University of California,
Santa Barbara
hu@velogix.com, mms@ece.ucsb.edu

9.1 Introduction

The rapid advance of VLSI technology has created an increasing demand for high-
quality placement tools. A placer has to deliver solutions that meet all the design
requirements in a rapid fashion without wasting any computational resources. The
nanometer technology makes it possible to integrate billions of transistors in a single
chip. Such a design complexity, combined with the increasingly stringent market
pressure, requires a very efficient implementation of the placement algorithms. A
modern design scenario usually involves several iterations between the logic synthe-
sis and physical design before timing closure can be achieved. From a design itera-
tion point of view, an efficient placement algorithm is essential. Moreover, shrinking
feature sizes introduce a full spectrum of deep submicron effects, such as intercon-
nect dominance, crosstalk, IR drop, etc., which challenge the chip designers more
than ever before. A placer needs to address explicitly timing, congestion, signal
integrity, etc., so that the design can be signed off in a timely manner to meet the
shrinking market window.

For more than three decades, quadratic programming has been attracting interest
from researchers in academia and industry. A direct application of a nonconstrained
quadratic programming formulation to placement often results in excessive cell over-
lapping. To solve this problem, we introduce fixed points into the unconstrained
quadratic-programming formulation. Fixed points act as pseudo cells located at fixed
positions. They can be used to pull out cells from the dense regions to reduce the
cell-overlapping. We present an in-depth study of the placement technique based on
fixed-points addition and theoretically prove that fixed points are a generalization of
the constant additional forces in [4]. We developed a multilevel placer based upon
the fixed-point technique, and we demonstrate that it produces competitive place-
ment results compared to the existing state-of-the-art placers.

The rest of the chapter is organized as follows. In Sect. 9.2, we present back-
ground knowledge on quadratic placement. In Sect. 9.3, we present the concept of
fixed points and fixed-points addition. In Sect. 9.4, we discuss the application of

230 9 mFAR: Multilevel Fixed-Points Addition-Based VLSI Placement

fixed-points addition in the quadratic placement flow. In Sect. 9.5, we introduce
a multilevel placement flow based on the fixed-points technique. In Sect. 9.6, we
present the experimental results on various academic benchmarks. Then this chapter
is summarized in Sect. 9.7.

9.2 Background

Let N denote the number of movable cells in a circuit and denote the coordinates of
the center point of a cell i . A net is modeled as a clique whose edges are assigned
weights of 1

k−1 , where k is the degree of the net. The weight of an edge is also
referred to as an edge-strength.

A connection c(i, j) is a pair of cells that share at least one net. The weight on a
connection is the summation of all edge-weights introduced by the nets incident to a
pair of cells. We use wi, j to denote the weight on a connection c(i, j). In this work,
we use the terms nets, interconnects, and wires interchangeably.

A nonconstrained quadratic placement problem minimizes the cost function,
which is a summation of the squares of connection lengths as stated in (9.1):

c f =
∑

i, j

wi, j

(
(xi − x j)

2 + (yi − y j)
2
)

(9.1)

Each connection c(i, j) in the circuit contributes two weighted quadratic terms in
(9.1), wi, j (xi − x j)

2 in the x direction, and wi, j (y j − y j)
2 in the y direction.

Let p̄ denote the coordinate vector (x1, x2, . . . , xn, y1, y2, . . . , yN), (9.1) can be
rewritten in a matrix form:

cf = 1
2

p̄T C p̄ + d̄T p̄ + const (9.2)

where d̄ is introduced by the connections between movable cells and fixed IO pads.
To minimize cf, we must solve a system of linear equations:

C p̄ + d̄ = 0 (9.3)

Traditionally, quadratic formulation as shown above is also referred to as a force-
directed approach. If we model the movable cells and fixed input/output (IO) pads as
objects and nets as springs, we can consider the netlist as a system of objects con-
nected by springs with different strengths (weights). Minimizing (9.1) is equivalent
to putting the system in a force-equilibrium state. In this state, the force applied on
each movable cell by all the connected springs is equal to zero.

Placements achieved by minimizing (9.1) result in excessive overlapping among
cells. This issue was addressed by Proud [11] and Gordian [9] by adopting a par-
titioner in the quadratic placement flow. In [4], an additional constant force related
to cell density was introduced to eliminate the overlaps and to evenly distribute the
cells. With that formulation, placement can be obtained by solving a sequence of
modified linear equation systems:

C p̄ + d̄ + ē = 0 (9.4)

9.3 Fixed Points 231

In (9.4), ē is the vector of forces that remain constant while solving (9.4).
The force-equilibrium state is now maintained not only by the strings connecting
the movable cells but also by the constant forces ē. In the attractor-and-repeller
approach [5], the authors present a formulation that includes a target spreading dis-
tance between cells and the fixed dummy cells used as attractors. In FAR [6], we
generalized the idea of additional forces in [4] and removed the target distances that
might result in excessive net stretching in [5]. FastPlace [12] enhances the fixed-
points addition-based approach with a new cell-spreading strategy and a local refine-
ment procedure. We should mention that the quadratic formulation does not exactly
match the placement objective of total linear wirelength-minimization. As a result, it
may produce a suboptimal placement even if the optimal quadratic solution is found.
There have been attempts to incorporate linear wirelength into quadratic formula-
tion. In [10], the authors proposed to weigh the quadratic wirelength in such a way
that they approximate the linear wirelengths.

9.3 Fixed Points

In this section, we begin with definitions of concepts related to fixed-points and
force-equilibrium state, followed by discussion of fixed-points addition in the con-
text of quadratic placement. In the following, ī denotes the coordinate vector of a cell
i and f̄ denotes a fixed point f . In addition, (xi , yi) denotes a point or a location,
and (xi , yi) is a vector directed from the coordinate origin (0, 0) to (xi , yi).

9.3.1 Fixed-Points and Force-Equilibrium State

Definition 1 Fixed point f is a dimensionless pseudo cell on a chip plane positioned
at (x f , y f). H(f) denotes the cell connected to f . We assume that each fixed point
has one and only one host.

Definition 2 The connection c(f, H(f)) between a fixed point f and its host cell
H(f) is a pseudo connection, since it does not exist in the original design. Each
pseudo connection is assigned a weight wH(f), f . The length of a pseudo connec-
tion, lH(f), f , is a distance between H(f) and f . In vector algebra, lH(f), f =∣∣∣H(f) − f̄

∣∣∣.

Definition 3 The force introduced by a fixed point f acts as an attracting force
F(H(f), f) on H(f) · F(H(f), f) is defined as

F(H(f), f) = wH(f), f ·
(

f̄ − H(f)
)

. (9.5)

The force F(H(f), f) points from H(f) to f and its magnitude is equal to the
distance between H(f) and f , weighted by wH(f), f . If more than one fixed point is
connected to a cell i , FF(i) denotes the total force introduced from all fixed points.

232 9 mFAR: Multilevel Fixed-Points Addition-Based VLSI Placement

f(8, 8)

m(0, 2)

 = 0.5wm f,

H(f) = m

F m f,() wm f, f m–() 4 3,()= =n(-2, 4)

k(-4, 6)

1

 1

CF m() 2– 5–,()=

Fig. 9.1. An example of a fixed point, constant force, and force-equilibrium state.

Figure 9.1 gives an example. The fixed point f at (8,8) is connected to its host
cell m at (0, 2). Suppose the weight on c(m, f) is 0.5, the attracting force F(m, f)
is equal to 0.5 × ((8, 8) − (0, 2)) = (4, 3). Since f is the only fixed point connected
to m, FF(m) is also equal to (4, 3).

Definition 4 A real connection is a connection between two real cells.

Definition 5 An intrinsic force I (i, j) on a cell i is the attracting force that cell
j exerts on i . IF(i) denotes all the intrinsic forces applied on the cell i by real
connections incident to i . The intrinsic force I (i, j) is defined as

I (i, j) = wi, j · (j̄ − ī). (9.6)

For example, in Figure 9.1, m has only one real connection c(m, n) (wm,n = 1)
with the cell n at (−2, 4). IF(m) = I (m, n) = 1 × ((−2, 4) − (0, 2)) = (−2, 2).

Definition 6 A constant force, CF(i), is the force externally applied on a real cell i .
CF(i) is defined as

CF(i) = c̄ (9.7)

In (9.7), c̄ is a constant vector. By definition, CF(i) does not depend on the location
of the cell i . For example, in Figure 9.1, a constant force c̄ = (−2,−5) is applied
on the cell m. Even if m moves to another location, CF(m) remains the same. In
contrast, F(m, f) and I (m, n) changes as m is relocated.

Definition 7 A cell i is in a force-equilibrium state if FF(i) + IF(i) + CF(i) = 0,
otherwise, it is in disequilibrium. A placement is in a force-equilibrium state if and
only if all the movable cells are in their equilibrium states.

In Figure 9.1, the cell n at (−2, 4) is in force-equilibrium state because FF(n) +
IF(n) + CF(n) = (0, 0) + IF(n, k) + IF(n, m) + (0, 0) = (0, 0). The cell m is also
in force-equilibrium state since FF(m) + IF(m) + CF(m) = (4, 3) + (−2, 2) +
(−2,−5) = (0, 0). The vector (0, 0) above indicates that the total forces applied in

9.3 Fixed Points 233

both x and y directions are zero. If we change the constant force applied on a cell m
from (−2,−5) to (−2,−15), we compute that FF(m)+IF(m)+CF(m) = (0,−10).
Vector (0,−10) indicates that there is no force acting on the cell m in the x direction,
but a force of magnitude 10 is applied in the y direction. Consequently, cell m is in
disequilibrium state.

9.3.2 Fixed-Points Addition

Fixed points are added to the existing placement to:

1. Achieve the force-equilibrium state
2. Perturb the placement toward a specific direction

We present the following two theorems related to the point (1) above.

Theorem 9.1. Any given initial placement with fixed IO pads and movable standard
cells can be transformed into a force-equilibrium state by adding one fixed point to
each movable cell.

Proof. For any cell in disequilibrium state, we can always add one fixed point to
cancel the total intrinsic forces. Specifically, for each movable cell i , we first com-
pute the IF(i). Then we introduce a fixed-point f connected to the cell i such that
F(i, f) = −IF(i). Obviously, F(i, f) and IF(i) cancel each other and so the cell i
is in force-equilibrium state.

Theorem 9.2. Any initial placement can be transformed to a force-equilibrium state
in an infinite number of ways.

The proof of Theorem 9.2 follows from the fact that there are infinite number of
combinations of f̄ − H(f) and wH(f), f that produce exactly the same F(H(f), f)

required to achieve the force-equilibrium state. For example, suppose that F(i, f) =
(5, 5) is required to cancel an intrinsic force I F(i) = (−5,−5). We may either make
f̄ − H(f) = (5, 5) and wi, f = 1, or f̄ − H(f) = (10, 10) and wi, f = 0.5.

Fixed points that keep the current placement in a force-equilibrium state are
called the controlling fixed points. Theorem 9.1 tells us that we need is only to add
one controlling fixed point per cell, if we want to transform a placement into force-
equilibrium state. Theorem 9.2 says that for each fixed point, we have a flexibility
of choosing different combinations of lengths and strengths, as long as the attracting
force and the intrinsic forces cancel each other out.

Once all the cells are in the force-equilibrium state, more fixed points can be
added to perturb the current placement. These are the perturbing fixed points that
disrupt the balance and cause redistribution of cells toward a new equilibrium state.

For example, in Figure 9.2(a), we show two movable cells, i and j , and a
controlling fixed point f . The forces acting on cell i are I (i, f) + F(i, f) =
(0, 4) + (0,−4) = (0, 0). The controlling fixed point f at (2,−4) holds the cell

234 9 mFAR: Multilevel Fixed-Points Addition-Based VLSI Placement

i(2,0)

j(2,4)

f (2,-4)

(a) (b)

1

1

i(1,0)

j(2,4)

f (2,-4)

f’(-1,0)

1

1

1

Fig. 9.2. Controlling fixed-point and perturbing fixed-point.

i in a force-equilibrium state. In Figure 9.2(b), we add a perturbing fixed point f ′ at
(−1, 0). If the cells i and j stayed at their original locations, i would be in disequi-
librium because I (i, f) + F(i, f) + F(i, f ′) = (−3, 0). But the force acting on i
moves it to the left to a new force-equilibrium state, as illustrated in Figure 9.2(b).

Similarly to fixed points, the constant additional forces CF(i) introduced in [4]
can be also used to maintain a force-equilibrium state and to perturb the current
placement. In fact, the constant forces can be used in exactly the same way as the
fixed points. Suppose that an intrinsic force IF(i) is acting on i . A constant force
CF(i) = −IF(i) can be added to i . As CF(i) and IF(i) cancel each other, the cell
i is in force-equilibrium state. To perturb the cell location, another constant force is
applied on the cell in the same way as demonstrated in Figure 9.2(b).

With the addition of fixed points, the quadratic formulation in (9.9) is modified
as follows:

f =
∑

i, j

(
(xi − x j)

2 + (yi − y j)
2
)

(9.8)

+
∑

f

WH(f), f

(
(xH(f) − x f)

2 + (yH(f) − y f)
2
)

where each fixed point f introduces two weighted quadratic terms, namely wH(f), f
(xH(f) − x f)

2 and wH(f), f (yH(f) − y f)
2, into the original formulation. Since f

is fixed at (x f , y f), it behaves exactly the same as the fixed IO pads. Consequently,
only diagonal elements of matrix C and vector d̄ in (9.3) need to be updated to reflect
the changes in (9.8).

However, because of the similarity between fixed points and IO pads, the pseudo-
connections introduced by fixed points cannot be distinguished from real connections
by a quadratic solver. It is possible that the solver may favor optimization of the
pseudoconnections instead of the real ones. Applying fixed points into the placement
should be carefully studied.

9.4 Fixed-Points Addition-Based Placement 235

9.4 Fixed-Points Addition-Based Placement

In this section, we compare the fixed-points and constant forces in the context of
quadratic placement and prove that the fixed points are a generalization of the con-
stant forces. Fixed-point-based placement will be discussed next.

9.4.1 Fixed Points vs. Constant Forces

We will compare fixed points and constant forces in the following categories:
Flexibility. The following theorem characterizes the flexibility of the fixed points

as related to the constant forces.

Theorem 9.3. Fixed point is a generalization of a constant force.

Proof. A fixed point f is able to mimic the constant force CF(i) applied on a cell
i by using the combination of an infinitely large length

∣∣ f̄ − ī
∣∣ and infinitely small

weight wi, f while making F(i, f) = w f,i · (f̄ − ī) = CF(i). Since
∣∣ f̄ − ī

∣∣ is
infinitely large, that is, f is infinitely far away from i , the movement of a cell i within
the chip’s boundary has no effect on F(i, f), thus F(i, f) = w f,i · (f̄ − ī) = CF(i)
does not depend on the position of a cell i and remains constant.

Controllability. Fixed points guarantee that in the force-equilibrium state all
movable cells stay within a predefined boundary (for example, the chip boundary).

Theorem 9.4. Using only fixed points guarantees that in the force-equilibrium state
all the movable cells will be located in the area bounded by a box containing the
fixed points and IO pads.

Proof. Let the bounding box formed by the fixed points and IO pads be denoted
by (xl , yb) (the left-bottom) and (xr , yt) (the right-top) coordinates. In the follow-
ing, we prove that in the force-equilibrium state no movable cell is placed outside
the x-direction bounds [xl , xr]. Suppose that this is not true and that in a force-
equilibrium state, there are cells i on the right side of the right bound xr . For those
cells xi > xr , let j correspond to a cell with the largest x j . This cell is connected
to some cells to its left. Since j is the right-most cell, it is impossible for it to be in
a force-equilibrium state because there are no right-bound forces required to cancel
the attaching forces induced by the cells on its left side. This contradicts the condi-
tion that the current placement is in a force-equilibrium state. So the assumption that
some cells are located on the right side of the right bound xr is invalid. Similarly,
we can prove that the cells cannot be located on the left side of the left bound xl in
the force-equilibrium state. Therefore all the cells are located within the bound of
[xl , xr]. With the same reasoning, we can prove that cells will not be placed outside
of the y-direction bounds [yb, yt].

By Theorem 9.3, constant forces are such fixed points whose lengths are infinitely
large. So the bounding box in Theorem 9.4 is the whole 2D plane. As a result, with
constant forces acting on cells, there is no guarantee that in the equilibrium state the
cells will be placed in a finite-bounded region.

236 9 mFAR: Multilevel Fixed-Points Addition-Based VLSI Placement

9.4.2 Fixed Points in Global Placement

We will consider global placement as a sequence of transformations, each composed
of the following three stages.

First Stage – Adding Controlling Fixed Points

The first stage is to transform the present placement, which either was obtained
as a result of previous transformation or was an initial placement, to a force-
equilibrium state by introducing one controlling fixed point per cell. For a cell i ,
we add the controlling fixed point f to balance the intrinsic force, IF(i), therefore
F(i, f) = −IF(i). After deciding the weight wi, f , we obtain the corresponding
f̄ − ī = F(i, f)/wi, f . The location of f is f̄ = ī + F(i, f)/wi, f , where ī is
the coordinate vector of the cell i . Obviously, different selections of wi, f result in
different f̄ − ī and different locations of f .

Second Stage – Adding Perturbing Fixed Points

Now we add perturbing fixed points to eliminate overlapping. We adopt a cell-
spreading strategy similar to that in [12] but with a more global view of the present
cell distribution.

We impose a Hg × Wg global bin structure on the placement area as shown in
Figure 9.3. Hg is the number of global bins in vertical direction and Wg is the number
of global bins in horizontal direction. A global bin is referred to as br,c, where r is
its row index and c the column index. A bin may hold approximately 4–5 standard
cells of average size. We denote by C(b) the capacity of a global bin b. A(b) denotes
the total area of the cells inside b. A bin b has a cell overflow if A(b) > C(b).
An evenly distributed global placement implies that no significant cell overflow (or
none) occurs. To achieve this, we should move cells from those bins with overflow
to those without. We should add perturbing fixed points in such a way that after the
transformation, cells can be moved out of the dense bins. We describe below the
procedure of adding the perturbing fixed points based on virtual boundary shift.

Let us consider a vertical boundary between the global bins br,c and br,c+1 and
compute the minimum number of cells that have to be transferred across this bound-
ary to achieve balanced cell distribution in the row r . Let Cr,(0,c) and Cr,(c+1,Wg)

c-1 c c+1 c+2

r-1

r

r+1

br c,

x
br c 1+,

Fig. 9.3. Global bin structure for placement transformation.

9.4 Fixed-Points Addition-Based Placement 237

be the total row capacity on the left and right sides of the boundary; let Ar,(0,c) and
Ar,(c+1,Wg) be the total actual cell area in the row r on the left and right sides of the
boundary. The minimum cell flow xr,(c,c+1) across the boundary between br,c and
br,c+1 can be computed as follows:

Ar,(0,c) − xr,(c,c+1)

Cr,(0,c)
= Ar,(c+1,Wg) + xr,(c,c+1)

Cr,(c+1,Wg)
(9.9)

Note that when computing the minimum flow xr,(c,c+1) using (9.9), we consider
the balance of the entire row r .

A positive xr,(c,c+1) indicates that cells should be moved from left to right across
the boundary, while negative value indicates movement in the reverse direction. If the
boundary is virtually movable, positive xr,(c,c+1) suggests that the boundary shifts to
the right to introduce more capacity and decrease the cell density. The distance a
boundary virtually shifts is decided by the magnitude of xr,(c,c+1) as follows:

sr,(c,c+1) = xr,(c,c+1)

h(br,c)
(9.10)

where h(br,c) is the height of the global bin br,c. We refer to the boundary shift
as virtual because those shifts are not executed, but instead are used to introduce
perturbing fixed points.

The virtual boundary shift sr,(c,c+1) is proportional to xr,(c,c+1). In the case when
xr,(c,c+1) is large, (this happens in the early stages of quadratic placement when a
large number of cells overlap in a few global bins), the shift could be dramatic. In
practice, we impose a limit on the maximum boundary shift to prevent the placement
from drastic changes in one transformation. The limits on shifts in either direction
is set to a half of the global bin’s dimensions. After determining the amounts of
virtual shifts for all the boundaries, we compute the new target cell locations (x ′, y′)
by mapping the present locations of cells according to the shifted bin boundary as
follows:

x ′ = x ′
min + x − xmin

xmax − xmin

(
x ′

max − x ′
min
)

(9.11)

y′ = y′
min + y − ymin

ymax − ymin

(
y′

max − y′
min
)

(9.12)

The (xmin, ymin) and (xmax, ymax) are left-bottom and right-top coordinates of a
global bin; (x ′

min, y′
min) and (x ′

min, y′
min) are the new coordinates after the bound-

ary shift. It can be seen that if a global bin is expanding (the boundaries shift away
from the bin center), the cell density (or equivalent cell overlapping after the map-
ping) will decrease because the mapping will increase the distance between cells.

Moving the cells to their target locations (x ′, y′) determined by the boundary
shifts and the mappings will decrease the cell overlaps. The perturbing fixed points
are added in such a way as to attract the cells to their corresponding target locations.
Specifically, for a cell i we introduce the perturbing fixed point f with F(i, f) = αd̄
where d̄ is a vector (x ′ − x, y′ − y) and α is a design-specific parameter used to con-
trol the overall strength of the placement perturbation. In general, α is a function of

238 9 mFAR: Multilevel Fixed-Points Addition-Based VLSI Placement

the interconnect complexity of the design. High interconnect complexity (e.g., a large
Rent’s exponent [3]) suggests more global and semiglobal connections among cells
and stronger attraction in quadratic formulation. As a result, the quadratic approaches
(constant force or fixed-point) find it relatively more difficult to spread the cells for
the designs with higher interconnect complexity than for those with low complexity.
As the Rent’s exponent of the design increases, α tends to be larger. For the IBM
benchmark suites (which have a relatively large Rent’s exponent) used in our exper-
iments, α is set to 2.5, and for PEKO benchmarks [2] (which have a relatively small
Rent’s exponent), α is set to 0.5. Since similar designs can be treated by the same or
similar α (we use the same α for all IBM benchmarks), in practice, designers may
decide a good α based on their previous knowledge of similar designs.

Another approach to determine a good α is to start the placement with a small
α and gradually modify/increase it based on the overlapping situation during place-
ment. Since a quadratic solver with fixed-point addition can be very fast as indicated
in [12], a smaller starting α does not necessarily compromise the placement effi-
ciency. Furthermore, if we maintain different α for every cell/module in the circuit,
we can deal with designs of nonuniform interconnect complexity. Note that at this
point, we are only determining the force vector F(i, f). The location of f is not yet
decided.

From the discussion above, we know how to determine the force induced by a
controlling or perturbing fixed point. In the controlling fixed-points case, F(i, f) =
−IF(i); in the perturbing fixed-points case, F(i, f) = αd̄. There is a flexibility of
selecting proper combinations of f̄ − ī and wi, f such that F(i, f) = wi, f (f̄ − ī).

We classify fixed points into two categories: on-chip and off-chip. On-chip fixed
points are those located inside the chip boundary; off-chip fixed points are those
outside the chip boundary. Compared to off-chip fixed-points, on-chip fixed-points
have an obvious advantage of controllability, which ensures that all the cells in the
force-equilibrium state are inside the chip’s boundary according to Theorem 9.4. But
the disadvantage of the on-chip fixed-points is that with the same force magnitude
F(i, f), the weights wi, f of on-chip fixed-points are usually larger than those of
off-chip fixed-points. If wi, f is large enough to be comparable to the weight of real
connections, placement quality may be compromised. This is because the pseudo
connections behave exactly the same as real connections and so the optimizer may
favor pseudo connections instead of real ones. In the following, we use one example
to illustrate this analysis.

In Figure 9.4, we show three standard cells A, B, and C with horizontal coor-
dinates. Since x direction is independent of y direction in our force formulation,
we only consider horizontal direction in the following discussion. An on-chip fixed-
point f is attached to cell A. In the figure, the strengths are labeled above every
connection. Note that wA, f = 1 is 5 times larger than wA,B(= 0.2). As can be easily
computed, cell A and B are both in force-equilibrium state. Now suppose, because
of some reason, cell C is moved from x = 7 to x = 8. The movement breaks the
force-equilibrium state of cell B and thus causes B to move in order to enter the new
equilibrium state. In addition, the movement of B will also cause the displacement
of cell A. By simple computation, we obtain the new force-equilibrium state where

9.4 Fixed-Points Addition-Based Placement 239

A is located at x = 1.14 while B is at x = 6.86. If we calculate the wirelength of
real connections, we get (C − B) + (B − A) = 6.86.

Now let us replace the on-chip fixed-point f with an off-chip fixed point that has
the same force magnitude but much smaller weight (Now wA, f is 0.1 instead of 1 in
Figure 9.4, and repeat the experiment above. As can be seen in Figure 9.5, f is placed
at x = −9 due to the decreased wA, f . If we calculate the new force-equilibrium
state after C’s movement, we obtain the new location for A and B, which are 1.6 and
6.94, respectively. The wirelength at new equilibrium state is (C − B) + (B − A) =
8 − 1.6 = 6.4, which is less than that in Figure 9.4. So from a total-wirelength-
optimization point of view, the fixed-point in Figure 9.5 is a better choice than that
in Figure 9.4.

The discussion above suggests that with the same force magnitude, the weight on
the pseudo connection introduced by a fixed-point should be as small as possible to
minimize interference with the real connections. But as the weights decrease, all the
fixed points will eventually evolve into off-chip fixed-points. As Theorem 9.4 states,
off-chip fixed-points cannot guarantee that all cells in the equilibrium state stay
inside the chip boundary. When cells are pulled outside the chip boundary because
of the introduced off-chip fixed-points, we say that cell explosion has occurred. Even
if the forces introduced by particular fixed points are small, a large number of such
fixed-points pointing in the same direction may still cause cell explosion (this hap-
pens often in the early placement stages when a large number of overlapping cells are

A: x=1 B: x=6
0.2f: x=0 1

C: x=7

C moves to x=8

 1

A: x=1.14 B: x=6.86
0.2f: x=0 1

C: x=8
 1

wire length on real connections after move
= (C - B) + (B - A) = 6.86

Fig. 9.4. The impact of on-chip fixed-point.

A: x=1 B: x=6
0.2

f: x=-9
 0.1

C: x=7

C moves to x=8

 1

A: x=1.6 B: x=6.94
0.2

C: x=8
 1

f: x=-9
 0.1

wire length on real connections after move
= (C - B) + (B - A) = 6.4

Fig. 9.5. Impact of off-chip fixed-point.

240 9 mFAR: Multilevel Fixed-Points Addition-Based VLSI Placement

heading toward the same sparse region). If cell explosion happens, fitting the cells
back into the chip boundary distorts the optimum solution produced by the quadratic
solver, which leads to bad placement results.

After introducing the controlling and perturbing fixed points, we update matrix
C and vector d̄ accordingly and use a quadratic solver to find the optimum placement
solutions – that is, the force-equilibrium states – for all the movable cells.

Third Stage – Refinement

The third stage is an optional local cost optimization procedure similar to the pro-
cedure described in [12]. Each cell is selected to move around its neighborhood to
improve placement quality, as measured by different objectives such as total wire-
length, timing, etc. After the cell movement, the placement transits from the force-
equilibrium state achieved after stage 2 to a new disequilibrium state.

The placement is conducted by iterating the three-stage transformation discussed
above until the cells are evenly distributed over the chip area. This is measured by
the standard deviation of cell distributions over the global bin structure.

9.4.3 Detailed Placement

Detailed placement includes two phases. The first phase takes the evenly distributed
global placement result, which may have a certain degree of cell overlapping, and
find the legal placement for all movable macros and standard cells. In our current
implementation, we first find the legal locations for all movable large macros, and
then fit the cells into standard-cell-rows not occupied by either fixed or movable
macros. The second phase is an optimization procedure that moves cell or swaps
cells in the neighborhood if the cost decreases until no improvement is possible.

9.5 mFAR: Multilevel Fixed-Point Addition-Based Placement

Multilevel implementation of fixed-point addition-based placement (mFAR) is based
on the classical V-cycle structure, which has been successfully demonstrated in var-
ious multilevel placers such as [1] and multilevel partitioners like hMetis [8].

mFAR consists of the following five major steps:

1. Fine-granularity clustering
2. Multilevel general clustering
3. Global placement and refinement of general clusters
4. Detailed placement of fine clusters
5. Detailed placement of original standard cells

mFAR starts with the fine-granularity clustering [7] whose purpose is to improve
the overall efficiency of the placement flow. Fine-granularity clustering generates
very small clusters with no more than three standard cells. In [7], we demon-
strated that these small clusters can be determined based on the local connectivity

9.5 mFAR: Multilevel Fixed-Point Addition-Based Placement 241

information, and they are very useful in boosting placement efficiency. The clustering
algorithm is a mutual contraction-based greedy algorithm described in [7]. The
mutual contraction is a metric used to measure how strongly two circuit elements
are connected. It is defined as follows:

cp(u, v) = wu,v∑
x

wu,x

wv,u∑
y

wv,y
(9.13)

In (9.13),
∑
x

wu,x is the sum of the weights on all connections incident to cell u

and
∑
y

wv,y denotes the same for the cell v . The larger the mutual contraction is, the

more likely it is that corresponding cells will be placed together. So the algorithm
in [7] always looks for a clustering connection with the largest contraction and does
it until the target upper limit for the cluster size is reached. The aspect ratio of a fine
cluster is determined as follows: the height of a fine cluster is the same as normal
standard cell height, while the cluster width is the width-summation of all the cells
inside the cluster. With this aspect ratio, a legal cell placement can be easily achieved
once a legal placement of fine clusters is obtained.

The step 2 creates multiple levels of clusters (general clusters), from the fine
clusters. We use the same clustering algorithm as in step 1, but determine the aspect
ratio of a general cluster differently. Specifically, the aspect ratio of a general cluster
is set to 1; the cluster area is equal to the total cell area inside the cluster.

In both fine-granularity clustering and general clustering, the resulting number
of clusters is roughly half of the original number of cells (fine-granularity clustering)
or general clusters (general clustering). mFAR usually constructs 4 to 5 levels of
clusters and so the number of top-level clusters is roughly 1/20 of original number
of movable cells.

In mFAR, the step 3 performs placement transformations for general clusters as
described in Sect. 9.5, and declustering alternatively until it reaches the fine-cluster
level. During declustering, all the cells/clusters belonging to a higher-level cluster are
placed at the center of the higher-level cluster. After each level of declustering, we
iterate the same transformations as those used in the global placement, and distribute
the cells/clusters.

After the global placement of fine clusters is obtained, step 4 executes the detailed
placement on fine clusters. To make the flow flexible, we also embed an optional sim-
ulated annealing-based placement optimization in this step. The user can turn it on if
a placement with even better quality is desired. The initial temperature is adjustable
depending on how much time the user wants to allocate for placement improvement.
The higher the temperature is, the better the placement quality is. Higher temperature
always comes at the cost of more CPU time.

The final step is to decluster fine clusters and perform final optimization. Since
the placement of fine clusters is legal after the previous step, declustering fine-
clusters does not cause any illegal placement.

242 9 mFAR: Multilevel Fixed-Points Addition-Based VLSI Placement

9.6 Experimental Results

In this section, we present experimental results on four sets of academic benchmarks:
ISPD05, ISPD06, PEKO05, and PEKO06.

9.6.1 ISPD05 Placement Contest Benchmarks

Each ISPD05 Placement benchmark contains a number of fixed large macros that
occupy a significant portion of placement region. As a result, the placer has to
consider the location of macros and optimize the placement of movable cells accord-
ingly. In mFAR, fixed macros are handled naturally by computing their density con-
tributions but not applying perturbing fixed points on them. As they are involved in
density computation, the perturbing fixed points induced from density distribution
are consequently affected by the locations of fixed macros. As a result, perturbing
fixed points are pulling movable cells away from the area occupied by macros.

Table 9.1 shows the mFAR results on all ISPD05 benchmarks. The results are
obtained on the machine with Dual Xeon 2.8 GHz processor, 8G memory, and Redhat
Enterprise Linux 3.0 OS. In the table, HPWL denotes half-perimeter wirelength and
is given in meters. CPU times are reported in seconds. It can be noted that the results
differ slightly from ISPD05 Placement contest results because the contest results are
obtained by tuning the placer for each individual benchmark while the results here
came from the same running settings.

9.6.2 ISPD06 Placement Contest Benchmarks

ISPD06 benchmarks share many common features with ISPD05: large number of
movable instances and fixed large macros. In addition, ISPD06 also imposes a new
requirement for the placer: target cell density. That is, the cell density at feasible
cannot exceed a predefined number. In other words, the placer has to intentionally
leave some white space for routability and/or buffer insertion in the later design stage.

To handle target cell density constraint, mFAR employs a straightforward cell-
inflation approach. After the fine-granularity clustering, mFAR inflates each fine
cluster horizontally by 1/d. As a result, once the legal placement for fine cluster

Table 9.1. mFAR results on ISPD05 benchmarks.

HPWL CPU
Adaptec1 82.50 2,081
Adaptec2 92.79 2,761
Adaptec3 217.56 4,725
Adaptec4 197.9 4,216
Bigblue1 98.8 2,543
Bigblue2 160.4 5,654
Bigblue3 368.7 10,549
Bigblue4 865.4 18,551

9.6 Experimental Results 243

is obtained. Deflation of fine-clusters automatically reserve the required white space
at all places.

Table 9.2 lists mFAR results on ISPD06 benchmarks. The results are obtained on
the machine with two 2.6 GHz AMD OpteronTM Processor, 8G memory, and Linux
OS 2.4.21-37.ELsmp. As can be seen that newblue4 and newblue5 exhibit large over-
flow numbers (5.42 and 5.92 respectively). This is due to the fact that mFAR does not
explicitly enforce overflow control during greedy wirelength optimization at step 5.

9.6.3 PEKO 2005

Table 9.3 lists mFAR results on PEKO 2005 benchmarks. The results are obtained on
the machine with Dual Xeon 2.8 GHz processor, 8G memory, and Redhat Enterprise
Linux 3.0 OS. In the table, HPWL denotes half-perimeter wirelength and is given in
meters. CPU times are reported in seconds.

9.6.4 PEKO 2006

Table 9.4 lists mFAR results on PEKO 2006 benchmarks. The results are obtained on
the machine with Dual Xeon 2.8 GHz processor, 8G memory, and Redhat Enterprise
Linux 3.0 OS. In the table, HPWL denotes half-perimeter wirelength and is given in
meters.

Table 9.2. mFAR results on ISPD06 benchmarks.

HPWL Overflow CPU
Adaptec5 448.43 6.21 6,875
Newblue1 77.36 0.22 2,538
Newblue2 211.65 0.59 2,891
Newblue3 303.58 0.11 2,957
Newblue4 307.72 5.42 6,362
Newblue5 567.65 5.92 11,426
Newblue6 527.36 1.63 12,154
Newblue7 1135.80 1.58 19,483

Table 9.3. mFAR results on PEKO 2005 benchmarks.

HPWL CPU
Adaptec1 48.8 1,346
Adaptec2 65.1 1,623
Adaptec3 99.3 2,975
Adaptec4 87.3 3,251
Bigblue1 55.3 1,747
Bigblue2 * *
Bigblue3 287.4 7,245
Bigblue4 618.4 17,840

*: mFAR crashed because of floating nodes

244 9 mFAR: Multilevel Fixed-Points Addition-Based VLSI Placement

Table 9.4. mFAR results on PEKO 2005 benchmarks.

HPWL Overflow penalty
Adaptec5 275 209
Newblue1 136 555
Newblue2 122 183
Newblue3 161 164
Newblue4 153 208
Newblue5 323 196
Newblue6 269 176
Newblue7 566 177

9.7 Conclusions

In this chapter, we have presented an in-depth study of the fixed-point addition
placement technique. We demonstrate both theoretically and empirically that fixed-
point yield a useful generalization of the constant force, and a placer based on
this technique produces good results on netlists of standard cells. We present
mFAR, a multilevel, fixed-points-based placer and demonstrate its ability to produce
competitive placement results.

References

1. Chang C, Cong J, Pan Z, Yuan X (2002) Physical hierarchy generation with routing con-
gestion control. Proc. International symposium on physical design, pp 36–41

2. Chang C, Cong J, Romesis M, Xie M (2004) Optimality and scalability study of exist-
ing placement algorithms. J IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 23, pp 537–549

3. Donath WE (1979) Placement and average interconnection lengths of computer logic.
J IEEE Transactions on Circuits and Systems, vol. CAS-26, pp 272–277

4. Eisenmann H, Johannes FM (1998) Generic global placement and floor planning. Proc.
Design Automation Conference, pp 269–274

5. Etawil H, Areibi S, Vannelli A (1999) Attractor-repeller approach for global placement.
Proc. International Conference on Computer-Aided Design, pp 20–24

6. Hu B, Marek-Sadowska M (2002) FAR: fixed point addition and relaxation based place-
ment. Proc. International Symposium on Physical Design, pp 161–166

7. Hu B, Marek-Sadowska M (2003) Wire length prediction based clustering and its appli-
cation in placement. Proc. Design Automation Conference, pp 800–805

8. Karypis G, Aggarwal R, Kumar V, Shekhar S (1997) Multilevel hypergraph partitioning:
application in VLSI domain. Proc. Design Automation Conference, pp 526–529

9. Kleinhans JM, Sigl G, Johannes FM, Antreich KJ (1991) GORDIAN: VLSI placement
by quadratic programming and slicing optimization. J IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol 10, issue 3, pp 356–365

10. Sigl G, Doll K, Johannes F (1991) Analytical placement: a linear or a quadratic objective
function. Proc. Design Automation Conference, pp 427–432

References 245

11. Tsay RS, Kuh E, Hsu CP (1988) PROUD: A sea-of-gates placement algorithm. J IEEE
Design & Test of Computers, vol. 5, issue 6, pp 44–56

12. Viswanathan N, Chu CN (2005) FastPlace: efficient analytical placement using cell shift-
ing, iterative local refinement and a hybrid net model. J IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 24, issue 5, pp 722–733

10

mPL6: Enhanced Multilevel Mixed-Size Placement
with Congestion Control

Tony F. Chan1, Jason Cong2, Joseph R. Shinnerl2, Kenton Sze1 and Min Xie2

1UCLA Mathematics Department, Los Angeles, CA 90095-1555
2UCLA Computer Science Department, Los Angeles, CA 90095-1596
{chan, nksze}@math.ucla.edu, {cong, shinnerl, xie}@cs.ucla.edu

10.1 Introduction

mPL6 consists of three basic ingredients: global placement by multilevel nonlinear
programming [21], discrete graph-based macro legalization followed by linear-time
scan-based standard-cell legalization [26], and detailed placement [26]. It is designed
for speed and scalability, low wirelength results, adaptability to complex constraints,
and robustness under low white space. Compared to the 2005 implementation [19],
the main improvements to mPL6 are:

1. Improved clustering by the “best-choice” heuristic [5]
2. 2× reduction in the number of levels of clusters
3. More aggressive weighting of wirelength relative to overlap removal during opti-

mization at each level
4. A faster single-V-cycle iteration flow
5. Gradual determination of the locations of large objects earlier in the multilevel

flow
6. Density-sensitive legalization and detailed placement
7. Improved handling of unconnected filler cells supporting convergence to nonuni-

form module-area distributions

The organization of this chapter is as follows. In Sect. 10.2, we present some
definitions and notations that are used in the chapter. In Sect. 10.3, we give the
problem formulation of placement. In Sect. 10.4, we discuss the multilevel frame-
work for placement. In Sect. 10.5, we present the core optimization engine –
generalized force-directed algorithm, for our global placement. Following the global

248 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

placement algorithm, we discuss our legalization and detailed placement algorithms
in Sect. 10.6. Finally, numerical results are presented in Sect. 10.7.

10.2 Definitions and Notations

In this section, definitions and notations are presented which are used in the later
sections.

Definition 10.1. Given a real-valued m × n matrix A with ai j as its i j -th entry, the
transpose of A, denoted as AT, is an n × m matrix defined as:

AT ≡
⎛

⎜⎝
a11 a21 · · · am1
...

...
a1n a2n · · · amn

⎞

⎟⎠

Definition 10.2. A[n] is denoted for a real n × n square matrix A with each i j-th
entry denoted by A[n]i j .

Definition 10.3. The i j-th entry, C[n]i j , of a discrete cosine matrix C[n] is
defined by:

C[n]i j ≡
√

2 − δi1

n
cos

(
(i − 1)(2 j − 1)π

2n

)

where 1 ≤ i, j ≤ n, δi1 = 1 if i = 1 and δi1 = 0 otherwise.

Definition 10.4. The tensor product of two matrices, A[m] and B[n] with ai j and bi j
as the i j th entry respectively, is defined as

A[m] ⊗ B[n] ≡
⎛

⎜⎝
a11 B[n] a12 B[n] · · · a1m B[n]

...
...

am1 B[n] am2 B[n] · · · amm B[n]

⎞

⎟⎠

which is an mn × mn matrix.

10.3 Problem Formulation

Circuit placement can be characterized as an optimization problem on a hypergraph
H = (V, E). Let V = {v1, v2, . . . , vN , vN+1, . . . , vN+P } represents the set of cells
and E = {e1, e2, . . . , em} represents the set of nets. A net with degree k is called a
k-pin net. The set {vN+1, . . . , vN+P } represents fixed objects or terminals, e.g., pads
along the perimeter of the rectangular placement region R in which cells v ∈ V are
to be positioned. Each ei is a subset of V specifying a connection called a net or
hyperedge among the cells it contains.

10.4 Multilevel Framework 249

Let (xk, yk) be the center coordinate of the cell vk . The pin-to-pin half-perimeter
wirelength (HPWL) of a net e, given by:

l(e) = max
vi ,v j ∈e,i< j

|(xi +pe
xi

)−(x j +pe
x j

)|+ max
vi ,v j ∈e, i< j

|(yi +pe
yi
)−(y j +pe

y j
)| (10.1)

where (pe
xi

, pe
yi
) is the relative pin position on cell vi connecting by net e. The total

HPWL ∑

e∈E

l(e)

is a standard estimate of wirelength used to measure the quality of the results (QoR)
obtained from the placement algorithm. Throughout the chapter, we use HPWL or
WL to denote the half-perimeter wirelength of a net or a circuit. For simplicity, many
placement algorithms consider the center-to-center HPWL

max
vi ,v j ∈e,i< j

|xi − x j | + max
vi ,v j ∈e,i< j

|yi − y j | (10.2)

for each net e, in which all the aforementioned pin offsets (pe
xi

, pe
yi
) are set to zero.

Our objective is to place the cells subject to constraints such that the total wire-
length ∑

e∈E

l(e)

is minimized. The constraints include the challenging requirement that no two cells
in the placement overlap. We consider both the standard-cell and mixed-size place-
ment problems, in both of which all movable standard cells must be placed in given
rows of R without overlapping.

Typically, placement is divided into three distinct stages: global placement,
legalization, and detailed placement. During global placement, cells are spread out
in the placement region R. Many global placers, including mPL6, require that the
total cell area in each subregion of a given partition of R does not exceed preset
limits. These bin-density constraints are a weakened approximation of the pairwise
nonoverlap constraints. The result of global placement is then legalized by a discrete
scheme [26, 42]; i.e., all cells are assigned discrete locations in R in such a way that
no two cells overlap. The legalization scheme starts from the result of the global
placement and generally attempts to perturb it as little as possible in order to obtain
its strictly feasible, i.e., overlap-free, result. After legalization, the wirelength is fur-
ther reduced by feasible iterative improvement, e.g., local cell swapping, in which
no move is allowed to incur any constraint violation.

10.4 Multilevel Framework

Multigrid and algebraic multigrid have been successfully applied to solve partial
differential equations and linear system of equations, respectively, [10,13,14,52,55].
They are highly effective and scalable. Similar ideas have been applied to large-scale
optimization problems [12]. Many studies [3,15–17,22,35] show that the multilevel
metaheuristic is a promising approach to large-scale global optimization in the VLSI

250 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

Intermediate Level

Intermediate Level

Solve Nonlinear Programming
Formulation.

etc. ...

Initial Fine-Grain Problem Final Fine-Grain Problem

aggregate

aggregate

aggregate

aggregate interpolate

Relaxation
Intermediate Level

interpolate

etc. ...
interpolate

Relaxation
Intermediate Level

interpolate

 Relaxation; Detailed
 Placement.

Coarse-Grain Problem

Fig. 10.1. Multilevel optimization V-cycle. c© ACM, 2006. This is the author’s version of
the work. It is posted here by permission of ACM for your personal use. Not for redis-
tribution. The definitive version was published in Proceedings of the 2005 International
Symposium on Physical Design, pp. 185–192, April 2005 (ISPD’05) http://doi.acm.org/
10.1145/1055137.1055177.

domain. It is not only used for speed-up, but also for improved solution quality. In
this section, the general multilevel framework on which mPL6 is built is presented.

Figure 10.1 shows an example of the V-cycle variant of multilevel optimization
for placement, as used in [15, 16, 21, 58]. The main idea of multilevel algorithms
is to build a sequence of coarser-level or simplified problems to approximate the
original problem (the finest level problem). Each coarse problem is an approximated
and simplified problem of the finer level problem such that a good solution obtained
from optimizing the coarse-level problem serves as a good starting point for optimiz-
ing the adjacent finer-level problem. The main components of multilevel algorithms
are (a) coarsening (clustering), to build the coarse level problems; (b) interpolation,
to transfer variables, solutions, objectives, and constraints between levels; (c) relax-
ation, improvement of a given solution at a given level; and (d) multilevel iteration
flow, the order in which subproblem levels are visited and relaxation to them is
applied. Each of these components is discussed in the following sections.

10.4.1 Coarsening

The purpose of coarsening or clustering is to build a hierarchy of approximate prob-
lem formulations. Due to the physical meaning of placement, a natural way to reduce
the problem size is by recursively grouping cells into clusters and clusters into larger
clusters until the number of clusters is small enough. Each level of the recursion
defines a level in the cluster hierarchy to which iterative improvement is applied.
Nets connecting cells within each cluster are ignored, and at each level we consider

10.4 Multilevel Framework 251

placement only of the clusters defined at that level. In this way, a hierarchy of
coarsened, i.e., simplified problems of the original problem is constructed.

Whether clustered netlists are good approximations of the original netlist
depends on the way the cells are clustered. Hence, there are many studies on
clustering scheme [5, 23, 34, 35]. In general, most clustering schemes for placement
consist of two steps. The first step is to define the affinity between two connected
cells, the larger the affinity the higher the chance to cluster the cells. The next step
is to decide the sequence in which cells are selected and clustered with other cells or
clusters. The coarsened hypergraph is thus constructed as follows. An affinity graph
is constructed by joining each vertex to exactly one of its neighbors for which it
has maximal affinity. Each group of joined vertices is called a cluster and becomes
a coarser level vertex. The cluster size equals the sum of the sizes of the cells it
contains. Hyperedges are defined on the clusters in the obvious way: each hyperedge
on the finer level becomes a hyperedge at the coarser level defined simply as the set
of all coarser-level clusters containing finer-level vertices in the original finer-level
hyperedge. Because singleton hyperedges are simply ignored, a smaller hypergraph
is obtained at the coarser level.

A clustering scheme for hypergraph coarsening, called First Choice, is proposed
in [35]. It first transforms the hypergraph into a clique model weighted graph (see
Figure 10.2). Given a hypergraph H = (V, E), the weight or affinity between any
two vertices v and w in the clique model weighted graph is defined as:

rvw =
∑

e∈E |v,w∈e

1
(|e| − 1)

(10.3)

First Choice traverses the list of vertices in an arbitrary order. Each visited vertex is
then clustered with a neighbor for which it has largest affinity (10.3). The clustering
algorithm stops when the number of clusters has reached the target.

From (10.3), affinity increases with connectivity between the cells. Also, smaller
net degree |e| contributes increased affinity between the cells. The intuition is that
cells with high affinity should stay close together in a good placement solution. In the
following sections, two clustering schemes, modified First Choice and Best Choice,
for placement problem are presented.

Fig. 10.2. Transformation from hypergraph to clique model weighted graph. c© ACM, 2006.
This is the author’s version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in Proceedings of
the 2005 International Symposium on Physical Design, pp. 185–192, April 2005 (ISPD’05)
http://doi.acm.org/10.1145/1055137.1055177.

252 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

Modified First Choice Clustering

For placement, the affinity between vertices or cells v and w is defined as:

rvw =
∑

{e∈E | v,w∈e}

1
(|e| − 1)area(e)

(10.4)

where area(e) denotes the sum of the areas of the cells in e. The additional term
area(e) is an indirect way to control the cluster size. Unlike the affinity defined in
(10.3), which is proposed mainly for hypergraph partitioning, the modified affinity
(10.4) targets placement. By controlling the cluster size, the coarsened hypergraph
has less variation in cluster size. Unlike First Choice, cells are visited in ascending
order of cell area (with preference to smaller cell degree in order to break ties). This
ordering is observed to balance clusters’ areas better, because (i) smaller clusters are
merged first, making them larger, and (ii) merging two large clusters is less likely.

If a good initial placement is provided, the spatial information of the cells’ loca-
tions can be incorporated into the affinity between cells as follows,

rvw =
∑

e∈E |v,w∈e

1
(|e| − 1)area(e)dist(v, w)

(10.5)

where dist(v, w) is the Euclidean distance between v and w. That is, vertices in close
proximity have increased affinity for each other.

Best Choice Clustering

Best Choice, as proposed in [5], is a greedy clustering scheme. The affinity between
any two cells v and w used in Best Choice is defined as:

rvw =
∑

e∈E |v,w∈e

1
(|e|)(area(v) + area(w))

(10.6)

where area(v) and area(w) denote the areas of cell v and cell w, respectively. In
addition to the indirect control of the cluster size, Best Choice imposes a hard upper
limit for cluster size. Clusters larger in area than this predefined upper bound are not
formed.

Best Choice first computes the maximum affinity or score (10.6) each cell has for
any of its neighbors. Symmetry of the score function (10.6) implies that the score can
be associated with pairs of vertices rather than individual vertices. The pair with the
largest score is clustered before the others, and, in principle, the netlist is immediately
updated before the next cluster is formed. Hence, Best Choice is a greedier heuristic
than First Choice, which makes a clustering pass through the entire vertex list before
updating the affinity graph.

In principle, Best Choice uses the immediately updated coarsened hypergraph
to compute affinities for subsequent candidate clusters after every cluster is formed.

10.4 Multilevel Framework 253

However, as the immediate updating of all affected vertices in the hypergraph after
each clustering operation is time consuming, lazy updating is instead used to reduce
runtime. Instead of explicitly recomputing affinities of vertex pairs affected by a
given vertex merge, the algorithm marks the affected vertex pairs as invalid and
updates them only after they have been selected for merging based on their invalid
score. Thus, each time a vertex pair is selected based on its invalid score, its cor-
rect updated score is computed before deciding whether to merge the vertices or not.
Although the decision to merge them occasionally incurs errors, because updated
scores are sometimes compared to other still invalid scores, the overall clustering
error is demonstrated to be small and well worth the dramatic reduction in run time.

As with the modified affinity (10.5), a given good initial placement of the cells
can be incorporated into the Best Choice affinity between cells:

rvw =
∑

e∈E |v,w∈e

1
(|e|)(area(v) + area(w))dist(v, w)

(10.7)

where dist(v, w) is the Euclidean distance between v and w. That is, closer neighbors
share increased affinity.

10.4.2 Relaxation

The optimization process for a given problem is referred to as relaxation. In the
multilevel framework, the ideal complexity for relaxation at each level is linear time
in terms of the number of variables at that level, so that the overall complexity for a
V-cycle (cf. Figure 10.1) optimization is also linear.1

At the coarsest level where the problem size is small enough, the relaxation
should be good enough to find a good solution or nearly optimal solution. At the
other levels, an initial solution is given or transferred from the coarser level and
serves as a starting point for the relaxation scheme. The initial solution at each level
is iteratively improved by the relaxation scheme. The generalized force-directed for-
mulation of relaxation used by mPL6 is described below in Sect. 10.5.

10.4.3 Interpolation

Interpolation is used to transfer solutions from level to level. For example, given a
candidate placement at a coarse level, we compute from it a corresponding candidate
placement at the adjacent finer level by interpolation.

A simple interpolation scheme, called constant interpolation, is to simply assign
each cluster’s location to its component subclusters. This interpolation gives an

1 Under the mild assumption that the number of variables at each level is at most r times the
number of variables at the adjacent finer level, for fixed fraction r ∈ (0, 1) independent of
level number, the total number of variables at all levels is linear in the number variables at
the finest level, as 1 + r + r2 + · · · + r L < 1/(1 − r) for any positive number of levels L .
Typical values of r in practice are below 1/2.

254 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

immediate solution for the finer-level problem. However, for placement, constant
interpolation puts all the subclusters on top of each other at the same location. This
approach creates significant overlapping between cells which may not serve as a
good initial solution for some particular placement techniques.

A more sophisticated interpolation scheme, called weighted or AMG-based inter-
polation, is proposed in [15]. It creates less overlap than constant interpolation.
A graph model of connectivity (cf. Figure 10.2) is employed to define the interpo-
lation; the weight of edge ei j is

w(ei j) =
∑

{e∈E | i, j∈e}

1
(|e| − 1)

(10.8)

For efficiency, only edges with weights above a certain threshold (currently 1/4) are
used; all other edges are ignored. Finer-level vertices vi within each cluster with
the highest vertex degree (using cell area to break tie) are designated as “C-points”
(C-points are finer-level vertices serving as coarser-level representatives) and are
given the positions of their parent clusters. C-point locations are fixed during inter-
polation. The remaining points are designated as “F-points” (finer-level representa-
tives) and are placed at the weighted average of the positions of the C-points to which
they are connected. Once an F-point has been placed, it can be treated like a C-point
and used to influence the positioning of other F-points to which it has connections
(cf. Figure 10.3). Moreover, since the process depends on the vertex order, iterations
are used to allow all interconnected nodes to influence each others’ positions. For
this purpose, the nodes are ordered by decreasing connectivity w(vi) = ∑

j w(ei j),
following (10.8).

If an initial solution is given for the original problem, it must be transferred to
coarse levels so that it can be utilized and further improved through coarse-level
optimization. The interpolation of a solution to a coarser level is relatively simple –
the coarser level vertex or cluster position is determined by the average positions of
its component subclusters.

Fig. 10.3. AMG-based weighted interpolation. c© ACM, 2006. This is the author’s ver-
sion of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in Proceedings of the 2005 Interna-
tional Symposium on Physical Design, pp. 185–192, April 2005 (ISPD’05) http://doi.acm.org/
10.1145/1055137.1055177.

10.5 Generalized Force-Directed Algorithm 255

Fig. 10.4. Iterated multilevel flow alternatives. c© ACM, 2006. This is the author’s ver-
sion of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in Proceedings of the 2006 Conference
on Asia South Pacific Design Automation (ASP-DAC’06), pp. 188–194 http://doi.acm.org/
10.1145/1118299.1118353.

10.4.4 Multilevel Flow

Multilevel flow defines the sequence of problem levels along which solutions are
computed and propagated. Figure 10.4 shows three different flow sequences. The
simplest multilevel flow is V-cycle optimization. In a V-cycle, coarse level problems
are constructed recursively until the problem size is small enough for the relaxation to
find a good solution. The solution at the coarsest level is then recursively interpolated
and relaxed back to the the original problem at the finest level.

The F-cycle (Figure 10.4) is a more extensive flow sequence based on recursive
V-cycles. In an F-cycle flow, a complete V-cycle is applied to every coarse level prob-
lem, in order from the coarsest level to the finest. Hence, the solution at the coarsest
level is continually refined as new improvements at finer levels are propagated back
to it. F-cycles provide extensive relaxation at the expense of added runtime. A back-
tracking V-cycle flow (Figure 10.4) is a trade-off between speed and quality and may
be viewed as a compromise between the V-cycle and F-cycle flows.

The multilevel flow can be iterated to further improve the quality of the solution.
The solution from the previous multilevel flow can be incorporated into the clustering
scheme affinity (10.5) and (10.7) to speed up convergence.

10.5 Generalized Force-Directed Algorithm

In this section, an effective constrained-minimization algorithm for a smooth approx-
imation of placement is proposed. Accurate smooth approximations to both the
wirelength objective and the pairwise nonoverlap constraints are described. A
nonlinear-programming algorithm derived as a generalized force-directed (GFD)
algorithm is presented. GFD is based on the well-known Uzawa algorithm [4] for
mathematical programming, i.e., constrained numerical optimization.

256 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

As practical placement problems may have tens of millions of cells and require
solutions in fast runtime (close to linear complexity), several heuristic techniques are
incorporated to accelerate convergence. GFD can be viewed as a generalization
of the Poisson-based force-directed method first proposed in [28]. The GFD
algorithm is embedded in multilevel framework for better scalability and better
global optimization.

10.5.1 Constrained Minimization Problem Formulation

In this section we present smooth approximations to the wirelength objective (10.2)
and pairwise nonoverlapping constraint of the placement problem.

Smooth Wirelength Approximation

Since (10.2) is not differentiable and the constraints are highly nonconvex, a globally
optimal placement is hard to locate. In order to employ advanced numerical solution
methods, continuous differentiable functions are used to approximate (10.2) Many
studies, for example [16,28,39], use a quadratic wirelength approximation given by:

∑

e∈E

⎛

⎝
∑

vi ,v j ∈e,i< j

|xi − x j |2 +
∑

vi ,v j ∈e,i< j

|yi − y j |2
⎞

⎠ (10.9)

The advantage of using the quadratic wirelength objective is that its unique2 uncon-
strained minimizer can be obtained by solving a positive definite linear system of
equations. However, the quadratic model overpenalizes long nets and in so doing
may produce a highly suboptimal half-perimeter wirelength placement solution.

In mPL6, we use the following more accurate half-perimeter wirelength approxi-
mation objective [9, 21, 40, 48] given by:

η
∑

e∈E

(log
∑

vk∈e

exp(xk/η) + log
∑

vk∈e

exp(−xk/η)

+ log
∑

vk∈e

exp(yk/η) + log
∑

vk∈e

exp(−yk/η))
(10.10)

where the smaller η, the more accurate the approximation. It is a smooth convex
function. Also, the number of terms in (10.10) is significantly less than that in (10.9).
However, it is more costly to compute the exponential function, and η cannot be set
too small, due to machine precision and numerical stability. In our experiments, we
scale the placement problem so that all the cell locations are between 0 and 1. The
value of η is then set to 0.01.

2 Uniqueness of an optimal quadratic-wirelength solution is ensured if and only if at least
one fixed terminal exists.

10.5 Generalized Force-Directed Algorithm 257

We have also proposed and studied another accurate approximation to (10.2)
using L p-norm:

∑

e∈E

⎛

⎝
(
∑

vk∈e

x p
k

)1/p

−
(
∑

vk∈e

x−p
k

)−1/p

+
(
∑

vk∈e

y p
k

)1/p

−
(
∑

vk∈e

y−p
k

)−1/p
⎞

⎠

(10.11)
since the first term and the second term tend to max{xk} and min{xk}, respectively,
as p tends to infinity. We set p = 32 in experiments so that x p and x1/p can be
computed efficiently. A slightly different approximation using L p-norm is proposed
in [37].

Smooth Constraints Approximation

As the pairwise cells nonoverlap constraints are highly nonconvex and difficult to
satisfy during global placement, we relax the constraints by using the bin density
constraints described below.

We divide the placement region R into m×n uniform nonoverlapping subregions
(bins) Bi j , 1 ≤ i ≤ m, 1 ≤ j ≤ n such that ∪i, j Bi j = R. Let hx and hy be the bin
width and bin height, respectively. Define Di j to be the average density in the bin
Bi j which is given by:

Di j (x, y) =
∑

k=1

ai j (vk)/(hx hy) (10.12)

where ai j (vk) is the fractional area of cell vk lying inside bin Bi j (see Figure 10.5).

Fig. 10.5. Illustration of fractional cell area in a 3 × 4 bins region. c© ACM, 2006. This
is the author’s version of the work. It is posted here by permission of ACM for your per-
sonal use. Not for redistribution. The definitive version was published in Proceedings of the
2006 Conference on Asia South Pacific Design Automation (ASP-DAC’06), pp. 188–194
http://doi.acm.org/10.1145/1118299.1118353.

258 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

We consider the constrained minimization problem:

min W (x, y)
s.t. Di j = K , 1 ≤ i ≤ m, 1 ≤ j ≤ n (10.13)

where Di j is the average density in Bi j defined through (10.12) and K (≤ 1) is
the total cells area divided by the area of the placement region R. In the follow-
ing discussions, we assume that K = 1, that is, total cells area equals the area of the
placement region. This assumption is reasonable, because artificial movable “filler”
cells unconnected to any real cells can always be added to the problem to increase
total cell area.

In general we can have different density target Ki j (≤ K) for each bin Bi j to
reflect uneven density requirement due to preplaced blocks etc. The nonuniform den-
sity requirements problem can be reduced to the uniform density case if dummy fixed
density Fi j is prepositioned in each bin Bi j so that Ki j + Fi j = K . This fact is stated
formally in the following theorem.

Theorem 10.5. A global optimal solution of the following constrained minimization
problem

min W (x, y)
s.t. Di j = Ki j , 1 ≤ i ≤ m, 1 ≤ j ≤ n (10.14)

can be obtained from a global optimal of (10.13).

Proof. Let Fi j be the amount of fixed density added to each bin Bi j such that
Fi j + Ki j = K . Then a global optimal solution of (10.13) is satisfying the con-
straints in (10.14). It is also the global optimal solution for (10.14) because any
solution satisfying the constraints in (10.14) with smaller objective value contradicts
the optimality of the solution we obtained in (10.13).

The current problem is to find a placement that minimizes the wirelength W (x, y)
such that cells are evenly distributed over the region. However, it is difficult to solve
the above problem, because the density function is not differentiable. To make the
problem easier to solve, we use the inverse Laplace transformation [29] to smooth
the density function. The smoothing operator 	−1

ε d(x, y) is defined by solving the
following Helmholtz equation:

{
	ψ(x, y) − εψ(x, y) = d(x, y), (x, y) ∈ R

∂ψ
∂ν = 0, (x, y) ∈ ∂ R

(10.15)

where ε > 0, ∂ R is the boundary of R, ν is the outer unit normal vector pointing
outside the boundary, d(x, y) is the continuous density function obtained from the
distribution of cell area, and 	 is a differential operator given by:

	 ≡ ∂2

∂x2 + ∂2

∂y2 (10.16)

The inverse operator 	−1
ε d(x, y) is well defined, as (10.15) has a unique solution for

any ε > 0 [29]. Because the solution of (10.15) gains two more derivatives [29] than

10.5 Generalized Force-Directed Algorithm 259

d(x, y), ψ is a smoothed version of the density function. In other words, any solution
to (10.15) must be at least twice differentiable.

We use the finite difference method [45] to discretize the problem (10.15) using
the bin grids we defined earlier. Neumann boundary conditions are used in the
discretization scheme. Let ψi, j denote the value of ψ at the center of Bin Bi j . The
approximation equations of (10.15) are given by:

ψi+1, j − 2ψi, j + ψi−1, j

h2
y

+ ψi, j+1 − 2ψi, j + ψi, j−1

h2
x

− εψi, j = Di j

∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n (10.17)

where

ψ0, j = ψ1, j ∀ 1 ≤ j ≤ n

ψm+1, j = ψm, j ∀ 1 ≤ j ≤ n

ψi,0 = ψi,1 ∀ 1 ≤ i ≤ m

ψi,n+1 = ψi,n ∀ 1 ≤ i ≤ m (10.18)

and Di j is the average density in Bi j . Let Lε[mn] be the matrix corresponding to the
earlier linear system. Then � = (ψ11, ψ12, . . . , ψmn)T can be computed by solving
the following linear system

Lε[mn]� = D (10.19)

where D = (D11, D12, . . . , Dmn)T. Problem (10.19) can be solved in O(mn log mn)
by fast discrete cosine transform [18]. The matrix Lε[mn] can be diagonalized by
discrete cosine matrix, that is,

Lε[mn] = (C[m] ⊗ C[n])T
ε[mn](C[m] ⊗ C[n]) (10.20)

where C[n]) is the n × n discrete cosine matrix and
ε[mn] is a diagonal matrix
with diagonal entries being the eigenvalues of Lε[mn]. The eigenvalues of Lε[mn]
can be computed analytically and are given by:

− 4
h2

y
sin2

(
(i − 1)π

2m

)
− 4

h2
x

sin2
(

(j − 1)π

2n

)
− ε 1 ≤ i ≤ m, 1 ≤ j ≤ n

(10.21)
Since (C(m) ⊗ C[n])−1 = (C[m] ⊗ C[n])T and the multiplication (C[m] ⊗

C[n])D or (C[m] ⊗ C[n])TD can be computed in O(mn log mn) time [30, 53], the
solution of (10.19) is given by:

� = (C[m] ⊗ C[n])T
−1
ε [mn](C[m] ⊗ C[n])D (10.22)

which can be computed in O(mn log mn) time.
Now we can reformulate the problem (10.13) as:

min W (x, y)

s.t. ψi j (x, y) = K̄ε 1 ≤ i ≤ m, 1 ≤ j ≤ n
(10.23)

where � = Lε[mn]−1D and K̄ε1 = Lε[mn]−1 K 1 = −K/ε1 is a constant vector
where 1 = (1, . . . , 1)T. We have smooth objective function and constraints, making
(10.23) solvable by mathematical programming, as discussed next.

260 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

10.5.2 Problem Solver

In this section, a generalization of the force-directed method [28], called GFD
algorithm, is presented to solve (10.23).

GFD Algorithm

Many nonlinear programming techniques might be used to solve (10.23). We use the
Uzawa algorithm [4], because (i) it does not require a Hessian inversion to find a min-
imizer satisfying the KKT condition [9], and (ii) it can be viewed as a generalization
of the force-directed method [28].

Applying the Uzawa algorithm to (10.23) gives the following iterative scheme:
⎧
⎨

⎩

∇W (xk+1, yk+1) +∑
i, j

λk
i j∇ψi j (xk, yk) = 0

λk+1
i j = λk

i j + α(ψi j (xk+1, yk+1) − K̄ε)
(10.24)

where λk is the vector of Lagrange multipliers estimates at the kth iteration, α is
a parameter to control the rate of convergence, and xk and yk are the cells center
locations at the kth iteration.

The gradient of ψi j with respect to the center location of cell vk is approximated
by the forward difference scheme [45]

∇xk ψi j (x, y) = ψi, j+1 − ψi, j

hx
and ∇yk ψi j (x, y) = ψi+1, j − ψi, j

hy
(10.25)

if the center location of cell vk is inside Bi j and zero otherwise. Using a backward
difference scheme or a central difference scheme [45] instead of forward difference
scheme (10.25) gives similar results.

In each step of the iterative scheme (10.24), we solve a nonlinear equation by
applying a time marching scheme [2, 51] to a corresponding ordinary differential
equation (ODE):

⎧
⎪⎨

⎪⎩

(
∂x(t)

∂t
∂y(t)

∂t

)
= −(∇W (x(t), y(t)) +∑

i, j
λi j∇ψi j (x(t), y(t)))

(x(0), y(0)) is a given initial placement
(10.26)

where (x(t), y(t)) denotes the placement at time t . The solution of the nonlinear
equation is just the steady-state solution of the above ODE. This method can be
considered a gradient descent scheme for the Lagrangian function

L(x(t), y(t),λ) ≡ W (x(t), y(t)) +
∑

i, j

λi j (ψi j − K̄ε) (10.27)

because
dL(x(t), y(t),λ)

dt
= −

∣∣∣∣

∣∣∣∣
∂L(x(t), y(t),λ)

∂t

∣∣∣∣

∣∣∣∣
2

2
< 0 (10.28)

10.5 Generalized Force-Directed Algorithm 261

One can also think of this approach as minimizing the sum of the wirelength objec-
tive and violated-constraint penalty at each iteration. We solve the above ODE by the
explicit Euler method [45], which gives the following iterative scheme:

⎧
⎨

⎩

(
xk+1

yk+1

)
=
(

xk

yk

)
− τ(∇W (xk, yk) +∑

i, j
λi j∇ψi j (xk, yk))

(x0, y0) is a given initial placement,
(10.29)

where (xk, yk) are the locations of cells at the kth step, and τ is the time step. The
time step τ has to be small enough to guarantee convergence. An analytical upper
bound for τ depends on the Hessian of the Lagrangian function (10.27) and is hard
to determine. In practice, the initial value of τ is reduced by a constant ratio and the
previous solution is restored, if the iterative scheme (10.29) does not converge.

The GFD (Generalized Force-directed) algorithm used to solve (10.23) is given
in Table 10.1. The algorithm takes in the number of outer iterations and the stopping

GFD(outer i ters, stop percent)
if initial placement not given

use the unconstrained minimizer of the quadratic
wirelength objective as an initial solution.

endif
compute nnb = number of nonzero density bins.
set P = the set of pads and fixed cells.
set M = the set of movable cells.
set inner i ters = |M |.
set µ = 1.5. (Experiments show that it is a good
trade-off between runtime and wirelength)
for i = 1 to outer i ters

set α =
√

max{|P|,1}
hx hy log |M| .

κ = min{ 100i
outer i ters , stop percent}.

λ = 0.
for j = 1 to inner i ters

if nnb not increased
α = µα.

endif
λ = λ − α(� − Kε).
solve the ODE (10.26) by explicit Euler method (10.29).
compute nnb.
if more than κ% nonzero density bins

break.
endif

endfor
call detailed placement.
endfor

Table 10.1. GFD algorithm. c© ACM, 2006. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for redistribution. The defini-
tive version was published in Proceedings of the 2005 International Symposium on Physical
Design, pp. 185–192, April 2005 (ISPD’05) http://doi.acm.org/10.1145/1055137.1055177.

262 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

criterion for inner iteration. Parameter α is used to speed up convergence. Parameter
µ is the factor by which α is increased, as needed, in order to spread cells into
empty bins. Parameter κ is the percentage of the number of nonzero density bins for
the stopping criterion. M is the set of movable cells, and P is the set of pads and
fixed cells. Since one can only get a local minimizer by solving (10.24), the initial
solution is important. The outer iterations can be considered a continuation method,
where the solution at each outer iteration is used as an initial solution for the next
outer iteration.

We use uniform bin grids, and the number of bins is roughly equal to the number
of cells. Since the global placement produced by the GFD algorithm contains over-
lapping cells, a discrete algorithm is used to legalize the solution which is discussed
in more details in Sect. 10.6.

Comparisons with APlace and Kraftwerk

In this section, we compare the GFD algorithm with well-known analytical placers
APlace [40] and Kraftwerk [28].

APlace [40] is an analytical placer based on [48]. The problem formulation con-
sidered in [40] is the same as (10.13) but it uses a bell-shaped function [48] to smooth
the density constraint locally. In our case, however, the inverse Laplace transforma-
tion (10.15) smooths the density function globally and the smoothed function can be
computed very efficiently. APlace uses a penalty method, in which the constrained
problem (10.13) is recast as a sequence of unconstrained problems formed by adding
weighted squared constraint violations to the wirelength objective. Each value of
the weight defines a distinct unconstrained subproblem in the sequence. Each such
unconstrained subproblem is approximately solved by nonlinear conjugate gradients.
As the weight on the constraint violations is increased, the total constraint violation
in computed placements is reduced, and the sequence of unconstrained solutions
gradually converges to a feasible placement [31].

Kraftwerk is an analytical placement algorithm utilizing the force-directed
method proposed in [28]. In [28], the divergence of the forces f(x, y) = (f1, f2)

T is
assumed to be proportional to the density; that is,

∂ f1

∂x
+ ∂ f2

∂y
= c · d(x, y) (10.30)

where c is a constant. Assuming that the forces do not form closed loops, there exists
a scalar function φ(x, y) satisfying

∇φ(x, y) = f(x, y) (10.31)

Combining (10.30) and (10.31) gives the following equation

	φ(x, y) = c · d(x, y) (10.32)

10.5 Generalized Force-Directed Algorithm 263

with boundary conditions that the magnitude of the forces ∇φ(x, y) is zero at
infinity.

Comparing (10.15) with (10.32), the main difference is the boundary condition,
if we choose small ε. The boundary condition in our GFD formulation (10.15) says
that the forces pointing outside the boundary are zero. This GFD formulation is more
useful computationally than assuming the forces are zero at infinity, because we want
to place the cells inside a finite region.

Moreover, the force-directed method in Kraftwerk [28] can be considered a spe-
cial case of GFD (10.24). Kraftwerk uses a quadratic-wirelength objective (10.9) for
W (x, y) and iteratively solves

(
C 0
0 C

)(
xk+1

yk+1

)
+
(

px
py

)
+ τk

(
f k
x

f k
y

)
= 0 (10.33)

until all cells are well distributed over the chip region. C , px and py are derived
from ∇W (x, y). The τk is a scalar to control the movement of cells in each itera-
tion. The horizontal force fk

x and the vertical force fk
y acting on the cells are given

by
∑

(∇x1φi j , . . . ,∇xN φi j)
T and

∑
(∇y1φi j , . . . ,∇yN φi j)

T, respectively, computed
based on the placement solution at the kth iteration. Clearly, this is a particular case
of (10.24) by setting λk

i j = τ k . One can expect the above fixed point iteration requires
a small enough τk for convergence. But we know that λk is the Lagrange multiplier
for (10.23) which has to be large enough to get a well-distributed placement. Also,
the λk is a vector in (10.24) and has each of its components acting as a scaling fac-
tor for the forces induced in the corresponding bins. These arguments show that (i)
the GFD algorithm is more general and more robust than Kraftwerk, and (ii) GFD
overcomes the well-known [59] shortcoming of ad hoc force scaling used in [28].

10.5.3 Analysis and Enhancements of the GFD Algorithm

In this section, analysis and enhancements of the GFD algorithm are presented. Due
to the high complexity of the placement problem — up to millions of cells must
be placed subject to pairwise nonoverlap constraints — heuristics are necessary in
building a highly scalable placement algorithm. Several important heuristic enhance-
ments to the GFD algorithm are discussed below which make it much more robust
and stable.

Multilevel Implementation

It is well known that the constrained minimization problem (10.23) has myriad local
minima. For a good local optimal solution to be found by the nonlinear program-
ming GFD algorithm, a good initial solution is necessary. The multilevel optimiza-
tion framework presented in Sect. 10.4 provides not only a scalable framework but
also a good initial placement for the GFD algorithm at each level. The recursive
coarsening ensures that the coarsest-level problem is small enough for the GFD algo-
rithm to find a good solution, which is then recursively interpolated and iteratively
improved to finer levels.

264 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

Fig. 10.6. Two V-cycle multilevel framework makes use of GFD algorithm. c© ACM, 2006.
This is the author’s version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in Proceedings of
the 2006 Conference on Asia South Pacific Design Automation (ASP-DAC’06), pp. 188–194
http://doi.acm.org/10.1145/1118299.1118353.

• Set the stop percent = 95
• Increase α in the GFD algorithm whether nnb is increased or not
• Reduce the number of bins to half of the default
• Reduce the amount of cell swapping in the detailed placement

Table 10.2. mPL5-fast overview. c© ACM, 2006. This is the author’s version of the work. It
is posted here by permission of ACM for your personal use. Not for redistribution. The defin-
itive version was published in Proceedings of the 2005 International Symposium on Physical
Design, pp. 185–192, April 2005 (ISPD’05) http://doi.acm.org/10.1145/1055137.1055177.

In our multilevel framework, the cluster ratio ranges from 0.1 to 0.4, where clus-
ter ratio is the number of clusters created at the current level divided by the number
cells at the finer level. The coarsest-level problem size is less than around 1% of the
original problem size or 500, whichever is smaller.

Figure 10.6 shows an example of multilevel optimization framework making use
of the GFD algorithm. It is a two V-cycle placement in which each V-cycle consists
of three levels. Level 3 in the figure represents the original problem and Level 1
represents the coarsest level problem. In practice, the relaxation at the finest level
in the first V-cycle is skipped to reduce the computations, which is found to be a
good trade-off between quality and speed. A more detailed algorithm is shown in
Table 10.3. It is named mPL5.

A fast mode of mPL5, named mPL5-fast, has also been developed and it has the
runtime reduction features described in Table 10.2.

10.5 Generalized Force-Directed Algorithm 265

use modified FC (cf. (10.4)) to coarsen the hypergraph,
with cluster ratio 0.4, until the number of cells reaches target.
set nl = number of levels.
set stop percent = 97
% suppose level nl is the finest level corresponding
% to the original hypergraph.
for i = 1 to nl − 1

set distri percent = min(50 + 50 ∗ i/nl, 90).
call GFD(1, distri percent) for level i .
interpolate placement from level i to level i + 1.

endfor
% start the second V-cycle.
use modified geometric-based FC (cf. (10.5))
to coarsen the hypergraph until the number of
cells reaches target.
placement from first V-cycle is interpolated to coarse
levels during the coarsening.
set nl = number of levels.
for i = 1 to nl − 1

set distri percent = min(50 + 50 ∗ i/nl, 90).
call GFD(1, distri percent) for level i .
interpolate placement from level i to level i + 1.

endfor
call GFD(1, stop percent) for level nl.
call detailed placement.

Table 10.3. mPL5 algorithm.

Effects of Density Smoothing

Density-based constraints are used to approximate the pairwise cells nonoverlap con-
straints, significantly reducing the complexity of these from O(n2) to O(n). This
formulation is critical to the algorithm’s scalability.

However, the bin-density function is not differentiable, which makes the prob-
lem (10.13) difficult to be solved by standard mathematical programming. Smooth
approximation (10.15) of the density function is necessary. The ε in (10.15) plays an
important role in the smoothing process. It not only makes the smoothing process
well defined but also controls the smoothness of the smoothed density function.
Figure 10.7 shows the density function of a one-dimensional placement and the
smoothed density functions under ε = 10, 1, 0.1. We see that the smaller ε, the
more global the smoothing of the density function. In experiments, we observe that
the larger the ε the slower the convergence of the GFD algorithm. The reason is that
the larger the ε the less smoothness of the density function causes forces to act on
cells more locally, leading to slower spreading. Hence, the choice of smaller ε gives
faster convergence, however, at the expense of worse wirelength quality. Clearly, ε
provides a knob for trading between speed and quality of the placement algorithm.
In experiments, ε = 1 is found to be a good trade-off.

266 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

Fig. 10.7. Smoothness of the density function under different epsilon (ε) = 10, 1, 0.1. c© ACM,
2006. This is the author’s version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in Proceedings of
the 2006 Conference on Asia South Pacific Design Automation (ASP-DAC’06), pp. 188–194
http://doi.acm.org/10.1145/1118299.1118353.

Weighting of Forces

The gradients of the constraints with respect to cell center locations are approximated
by (10.25), which not only speeds up the computations but also leads to faster con-
vergence of the algorithm. The approximations (10.25) are viewed as cells spread-
ing forces in [28]. Recently, a more stable implementation [59] of [28] shows that
weighting of the forces acting on cell by the corresponding cell area gives a more
stable spreading of the cells. The intuition is that each unit area of the cell should
be getting the forces. Similar ideas were developed independently and used in our
approximations (10.25). A more general form to approximate the gradient of the
constraint with respect to cell vk is given by:

∇xk ψi j = ψi, j+1 − ψi, j

hx
∗ w(area(vk)), ∇yk ψi j = ψi+1, j − ψi, j

hy
∗ w(area(vk))

(10.34)
if the center of cell vk is inside Bi j and zero otherwise, where w(x) is a monotone
increasing function and area(vk) denotes the area of cell vk . In our experiments,
w(x) = cx0.8 is used. The weighted approximation (10.34) significantly improves
the quality of placement, especially for the circuits with huge variations in cell area.
Also, the value of the scalar c > 0 in w(x) provides a trade-off between speed and
quality: the larger c, the faster the convergence or spreading of cells.

10.5 Generalized Force-Directed Algorithm 267

Gradual Legalization and Fixing of Large Cells

The weighting of forces (cf. (10.34)) does improve the placement quality; however, it
may cause instability for the spreading of large cells when most of the cells are well
spread over the placement region. Equation (10.34) shows that larger cells3 have
larger forces acting on them, which may cause large perturbations of the large cells.
It is therefore a good idea to fix the large cells once they are well placed. Fixing
the large cells means that those large cells are first legalized [26] (no overlapping
between those large cells) then their positions are fixed during the subsequent place-
ment of smaller cells.

In the multilevel framework, the placement solutions at coarse levels provide
good intermediate steps for fixing the relatively large cells. Similar ideas of fixing
the large cells during coarse level placement has been used in [22]. Fixing large cells
at coarser levels not only makes the GFD algorithm more stable but also accelerates
the convergence, as it creates more connections to fixed cells.

Moreover, earlier legalization of the large cells also helps detailed placement
[20]. In Figure 10.8, the left placement plot shows the global placement obtained
without fixing the large cells during placement. The small amount of overlapping
between large cells that global placement allows could create great difficulty in
detailed placement. The right-hand side placement plot in Figure 10.8 shows that
huge perturbations of the largest cells are produced after legalization which then
causes huge perturbations during legalization of standard cells. Those huge perturba-
tions created after legalization consistently lead to significantly increased wirelength
of the placement.

Fig. 10.8. Global placement is shown in the left figure and the placement after legalization
of macros is shown in the right figure. c© ACM, 2006. This is the author’s version of the
work. It is posted here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version was published in Proceedings of the 2006 Conference on Asia
South Pacific Design Automation (ASP-DAC’06), pp. 188–194 http://doi.acm.org/10.1145/
1118299.1118353.

3 In this section, the word “cell” is used generically for macros and standard cells.

268 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

In our experiments, macros with area 100× larger than the average cell area are
legalized relative to one another and set fixed at all levels (excluding the coarsest
level) just before the GFD algorithm is applied.

Wirelength Weighting

Proper weighting for spreading forces is crucial; otherwise, they may create signifi-
cant degradation of placement quality. From the GFD algorithm (cf. Table 10.1) and
the iterative scheme (10.29), the scaling factor α for the forces

∑

i, j

λi j∇ψi j

is increased while cells are not spreading. The τ in the iterative scheme (10.29) is
decreased when the scheme does not converge. In the case when τ is too small and
force scalar α is too large, the term ∇W (xk, yk) in (10.29), which corresponds to the
wirelength objective, is diminishing. This causes the degradation of the placement
quality. Hence weighting for the term ∇W (xk, yk) in (10.29) is introduced, giving
the following iterative scheme:

⎧
⎨

⎩

(
xk+1

yk+1

)
=
(

xk

yk

)
− τ(β∇W (xk, yk) +∑

i, j
λi j∇ψi j (xk, yk))

(x0, y0) is a given initial placement,
(10.35)

where β > 0 is increased at the outer iterations of the GFD algorithm (cf. Table
10.4). Experiments show that the wirelength weighting significantly improves the
placement wirelength in many testcases, at the expense of increased run time. The
increased weighting of the wirelength increases attractions between cells and hence
slows down cell spreading.

Fig. 10.9. Global placement with macros legalized and fixed after coarse levels placement.

10.5 Generalized Force-Directed Algorithm 269

Pin-to-Pin Half-Perimeter Wirelength Minimization

Half-perimeter wirelength in (10.2) is measured in terms of center locations of
the cells. That is, each cell’s pins are assumed located at the center of the cell.
In real designs, pins of a cell are usually located on the boundary of the cell.
Therefore, the center-to-center half-perimeter wirelength (10.2) may not a good
approximation of the pin-to-pin wirelength (10.1). Because each net connects a
unique set of pins, it is more costly to evaluate and hence to minimize (10.1).
However, if (10.1) is approximated by log–sum–exp function (10.10), the complex-
ity of minimizing center-to-center half-perimeter wirelength is the same as that of
minimizing pin-to-pin half-perimeter wirelength, thanks to the equality exp(xi +
pe

xi
) = exp(pe

xi
) exp(xi), where exp(pe

xi
) is a constant that can be computed before

the optimization steps. The same technique applies to the y-direction.

Whitespace Handling by Filler Cells

In the formulation (10.13), we have assumed the placement region has zero
whitespace, that is, K = 1. In practie, there is usually 10 − 40% whitespace
which is reserved for post placement purpose. Also, cells cannot be packed too
closely. Sufficient space around cells for routing the wires is necessary. However,
setting K is significantly less than one would cause trouble to the GFD algorithm
due to the following reasons.

First, Figure 10.10 shows a placement problem with total cells area much less
than the placement region. One can easily see that the density equality cannot be
satisfied, because the cells cannot be broken into pieces. Second, due to the fact that
the forces are driven by the density constraint, cells are spread to occupy the whole
placement region, causing excessive separation between cells and hence degrada-
tion of wirelength. Figure 10.11 shows the global placement on a testcase with 60%
whitespace. The cells are evidently placed evenly throughout the region and very
likely too far apart from each other to produce a result with competitive wirelength.

Fig. 10.10. A small example of circuit with low utilization.

270 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

Fig. 10.11. Global placement on a testcase (#cells = 12506) with utilization = 0.4. The half-
perimeter wirelength is 2.2024 × 106.

Fig. 10.12. Global placement on a testcase (#cells = 12506) with utilization = 0.4, with place-
ment region shrunken from left and right boundary such that the utilization = 1 during the
placement. The half-perimeter wirelength is 1.9250 × 106.

One simple fix is to shrink the placement region, from either directions of the
chip boundary, so that the utilization ratio is close to one. Figure 10.12 shows the
global placement of the same testcase as used in Figure 10.11. During placement, the
placement region is shrunk by the same amount from both left and right boundary
such that the utilization is one in the center subregion. This artificial region shrink-
age significantly improves the wirelength, near 13%. However, it is easy to see that
shrinking the region or trim away the excess whitespace has certainly limited the
solution space. Also, there are several other possible directions to shrink the region.
Picking the best from the placement solutions produced by different ways of region
shrinking is not runtime efficient.

10.5 Generalized Force-Directed Algorithm 271

A reasonable way to handle whitespace is to reformulate (10.13) as an inequality-
constrained minimization problem:

min W (x, y)
s.t. Di j <= 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n (10.36)

However, the Uzawa algorithm [4] is developed for solving an equality-constrained
optimization problem. The GFD algorithm (cf. Table 10.1), based on the Uzawa
algorithm, cannot be applied to solve (10.36). Whitespace handling by adding extra
dummy cells or filler cells to the netlist is proposed in [7] for min-cut based
placement algorithms. The idea gives a way to transform (10.36) into an equal-
ity constrained minimization problem. A set of artificial cells, named “dummy”
or “filler” cells, with total area equal to the total amount of whitespace, is added
to the netlist. Hence, the utilization is increased to one, and the problem becomes
an equality-constrained minimization problem which can be solved by the GFD
algorithm.

As there are no nets connecting dummy cells, their movements are driven by
density only (cf. (10.29)). Initial placement of dummy cells is based on the density
distribution of the initial placement of the cells from the original netlist. Recursive,
top-down, four-way spatial partitioning of the dummy cells is used to distribute them
throughout the placement region. The number of dummy cells assigned to each par-
tition is proportional to the whitespace available in the region. The idea is to place
dummy cells to low density regions initially. In addition to using forces to drive the
dummy cells, frequent redistribution of dummy cells is carried out during intermedi-
ate stage of placement. This is to avoid dummy cells occupying the regions where the
cells can move in to get a better placement wirelength. Figure 10.13 shows the global

Fig. 10.13. Global placement on a testcase (#cells = 12506) with utilization = 0.4, with dummy
cells added such that the utilization = 1 during the placement. The half-perimeter wirelength
is 1.7203 × 106.

272 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

placement by using dummy cells to handle whitespace. It improves the wirelength
by 12% over the method of region shrinking.

Stopping Criterion of GFD

The stopping criterion in the GFD algorithm (cf. Table 10.1), measured in terms of
the percentage of nonempty bins, is not robust enough to guarantee a decent global
placement, especially in the case where there are many large cells. Since each large
cell automatically covers a significant number of bins, total overlap between small
cells can be large, even when every bin has nonzero density. Also, GFD is not able
to achieve the stopping criterion if the circuit has sufficiently low utilization (see
Figure 10.10). A better stopping criterion is proposed in this section.

The new stopping criterion for a global placement is measured in terms of the
average bin overflow. The amount of overflow for a bin is the amount of bin density
exceeding the bin capacity. The average overflow for a set of cells Vc is defined as:

OVL(Vc) ≡
m∑

i=1

n∑

j=1

max(D(Vc)i j − 1, 0)hx hy/area(Vc) (10.37)

where D(Vc)i j is the density of i j th bin and the density function is measured in
terms of the area of the cells in Vc, area(Vc) the total area of the cells in Vc. Under
sufficiently small size of bins and small overflow, the global placement is guaran-
teed little overlapping between cells and can be legalized without much increase in
wirelength.

Minimum Perturbation Formulation

It is expected that the GFD algorithm is in slow convergence when the cells are well
distributed. Slow reduction of overflow (cf. (10.37)) happens during the last few steps
of the GFD algorithm, because the forces acting on cells diminish as the density in
each bin becomes more even. To accelerate convergence and reduce computation,
(10.23) is reformulated as

min
∑

vi ∈M
{(xi − xo

i)2 + (yi − yo
i)2}

s.t. ψi j = K̄ε, 1 ≤ i ≤ m, 1 ≤ j ≤ n
(10.38)

where M is the set of movable cells and (xo
i , yo

i) is the initial center location of cell
vi . The idea is to minimize the displacement from a given placement subject to the
density constraint. The objective in (10.38) is easier and faster to minimize than that
in (10.10). It is more runtime efficient to switch to solve (10.38) when progress slows
in the GFD algorithm. The GFD algorithm can be terminated earlier, and the place-
ment solution is a good starting point for (10.38). It also gives a smoother transition
from global placement to legalization and detailed placement. Experiments show that
it is a good trade-off between quality and speed.

10.5 Generalized Force-Directed Algorithm 273

Enhanced GFD Algorithm

In this section, an enhanced GFD algorithm combining the techniques described in
the previous sections is presented. Table 10.4 shows the new enhancement GFD algo-
rithm, named EGFD.

In Table 10.4, P is the set of pads, F is the set of fixed cells, M is the set of
movable cells not including dummy cells, and H is the set of dummy cells added
to the netlist (cf. Sect. 10.5.3). EGFD takes in a percentage of overflow (cf. (10.37))
as stopping criterion. The algorithm terminates when both overflow of movable cells
and overflow of total cells (excluding pads and dummy cells) is less than a target
overflow.

Similar to the GFD algorithm (Table 10.1), EGFD uses the unconstrained mini-
mizer of the quadratic wirelength (10.9) as the starting point, if an initial placement

EGFD(stop percent ovl)
set P = the set of pads.
set F = the set of fixed cells inside the placement region.
set M = the set of movable cells.
set H = the set of dummy cells added to the netlist.
set η = 100.
set µ = 1.5.

set α =
√

max{|P|+|F |,1}
hx hy log |M| .

set β = 1.
set κ = stop percent ovl/100.
set λ = 0.
if initial placement not given

use the unconstrained minimizer of the quadratic
wirelength objective as an initial solution.

endif
Hierarchical distribution of dummy cells.
set old std ovl = curr std ovl = OVL(M).
for j = 1 to |M |

λ = λ − α(ψ − Kε).
solve the iterative scheme (10.35).
set old std ovl = curr std ovl.
set curr std ovl = OVL(M).
if curr ovl ≤ κ and OVL(M ∪ F) ≤ κ

break.
endif
if curr std ovl ≥ old std ovl

α = µα.
endif
β = β + η.
redistribution of dummy cells for every 3% reduction of OVL(M).

endfor

Table 10.4. Enhanced GFD algorithm.

274 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

use Best Choice (cf. (10.6)) to coarsen the hypergraph,
with cluster ratio 0.25, until the number of cells reaches target
set nl = number of levels created.
set stop percent ovl = 15
% suppose level nl is the finest level corresponding
% to the original hypergraph.
for i = 1 to nl − 1

call EGFD(stop percent ovl + 5) for level i .
interpolate placement from level i to level i + 1.
legalize and fix macros with area > 4X the average area at level i .

endfor
call EGFD(stop percent ovl + 5) for level nl.
call EGFD(stop percent ovl) by minimizing (10.38) for level nl.
call detailed placement.

Table 10.5. mPL6 algorithm.

is not given. In EGFD, the scaling factor α for forces is guided by the overflow of the
movable cells instead of the number of nonzero density bins as in GFD. Also, there is
a scaling factor β for the wirelength term in the iterative scheme (10.35). In addition,
dummy cells are added to the netlist, and the dummy cells are hierarchically redis-
tributed after every 3% reduction in the overflow of the movable cells. EGFD pro-
ceeds to (10.38) once the overflow is less than 5% away from the stop percent ovl
(the percentage for stopping criterion).

The multilevel algorithm using EGFD as relaxation is named mPL6 and is shown
in Table 10.5. It uses Best Choice clustering [5] with cluster ratio 0.25. With Best
Choice clustering, one V-cycle with cluster ratio 0.25 is usually enough to get a
decent placement. mPL6 uses one V-cycle instead of the two V-cycles used in mPL5.
Also, relatively large macros are fixed after their placement at coarse levels, as
described in Sect. 10.5.3.

10.6 Legalization and Detailed Placement

Following global placement, the next step is to remove the overlap between macros
and standard cells and further optimize the wirelength while keeping all constraints
strictly satisfied.

A number of algorithms have been proposed for mixed-size placement, and they
can be divided into two classes. The first class of algorithms removes the overlap
between placeable objects during global placement, leaving detailed placement with
only the task of further wirelength reduction. The examples in this class include
Capo [1, 49], mPG-ms [22], Dragon2005 [57] and PolarBear [24]. Capo combines a
recursive min-cut-based placer with a fixed-outline floorplanner, Parquet [6]. Macros
are first shredded into pieces and placed by the standard cell placer. The locations of
macros are subsequently derived by reassembling the component pieces, and residual
overlap is removed by the floorplanner. The second pass places standard cells with all
macros fixed. A top-down “correct-by-construction” approach used in Capo [1, 49]

10.6 Legalization and Detailed Placement 275

invoke Parquet at intermediate levels, with clustering of both small macros and stan-
dard cells used to reduce floorplanning run time. Another algorithm in this class is
mPG-ms [22], which uses simulated annealing to gradually legalize macros and fix
them in the intermediate levels of the multilevel optimization. Dragon2005 [57] is a
two-pass simulated annealing-based placer. Standard cells and macros are placed
together in the first pass. In the second pass, the macros are held fixed, and the
standard cells are placed again. To further reduce wirelength, it shifts cells when
swapping cells from different rows during detailed placement. PolarBear [24] com-
bines recursive min-cut with fast wirelength-blind look-ahead legalization for every
placement subproblem generated by the partitioning. The look-ahead step provides
a fall-back legalized placements for subregions as they are defined and allows Polar-
Bear to aggressively reduce wirelength even on low-whitespace test cases. Limited
wirelength-aware look-ahead floorplanning on simplified subproblems has also been
incorporated into Capo [49].

The second class of algorithms may leave overlap between macros and cells after
global placement. Most analytical placers, including Kraftwerk [28], BonnPlace [11,
60, 61], Aplace [40], FDP [59], mPL5 [21], UPlace [63], and some min-cut-based
placers, such as Fengshui [8, 36], belong to this category. In this case, the detailed
placement is expected both to remove overlap and to reduce wirelength. BonnPlace
uses a quadratic programming-based approach coupled with quadri-section [60]. To
legalize macros, a bottom-up branch-and-bound search with linear programming
(LP) is proposed. Standard cells are evened out between placement regions with a
min-cost–max-flow formulation. Further wirelength reduction is achieved by solving
an LP formulation on each row. Fengshui [8, 36] uses a greedy scheme that consid-
ers simultaneously perturbation of macros and wirelength minimization for legaliza-
tion. Windows spanning multiple rows for cell permutation are used for wirelength
reduction. Domino [27] iteratively improves wirelength by shredding cells into uni-
form pieces and solving a min-cost–max-flow formulation. UPlace [63] applies zone
refinement for both legalization and wirelength reduction purposes. The objective it
considers combines wirelength and zone height.

Most macro legalization schemes used in the second class suffer from two limi-
tations. First, they may not produce a legal placement in the end. Second, they may
cause a large perturbation to the global placement during legalization, resulting in
longer wirelength. Figures 10.14 and 10.15 show an example of applying Fengshui’s
legalization scheme on a global placement generated by mPL6, the global placer pre-
sented in Sect. 10.5 (but without gradual macro fixing). The legalized wirelength is
increased by more than 10% compared to the global placement wirelength.

In this section, we present a three-step approach, named XDP, for mixed-size
detailed placement. First, a combination of constraint graph and linear programming
is used to legalize macros. Then, an enhanced scan-based method is used to legalize
the standard cells. Finally, a sliding-window-based cell swapping is applied to further
reduce wirelength.

The remainder of this section is organized as follows: Sect. 10.6.1 describes
the macro-legalization step, Sect. 10.6.2 describes the cell legalization step, and
Sect. 10.6.3 presents the wirelength reduction step.

276 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

ibm10 HPWL = 2.8184e+07, #Cells = 69429, #Nets = 75196
8000

8000

7000

7000

6000

6000

5000

5000

4000

4000

3000

3000

2000

2000

1000

1000

0

0
−1000

−1000

Fig. 10.14. An example global placement generated by mPL6 [19].

ibm10 HPWL = 3.2984e+07, #Cells = 69429, #Nets = 75196
8000

7000

6000

5000

4000

3000

2000

1000

0

−1000
−1000 0 1000 2000 3000 4000 5000 6000 7000 8000

Fig. 10.15. Legalization by applying Fengshui’s greedy method. The wirelength increases by
more than 10%.

10.6.1 Macro Legalization

The first step of our algorithm removes the overlap between macros in the global
placement, which can be formulated as the following problem:

Given a set of rectangular blocks, M = {m1, m2, . . . , mn}, pack the blocks
within a rectangular region R without overlap. The objective is to minimize the per-
turbation, i.e., total movement of the blocks from their original locations.

Before a detailed description, we introduce some notation.
Let mi be the i th macro. Its center coordinate in global placement is (xi , yi).

Its width and height is wi and hi , respectively. The coordinate of mi after macro
legalization is denoted as (x ′

i , y′
i).

10.6 Legalization and Detailed Placement 277

Let the lower left corner of the placement region R be (0, 0), the top right corner
be (W, H).

Let Gh be a directed acyclic graph (DAG). For each macro mi , vhi is the corre-
sponding node in Gh . Gh has a source node vhs and a sink node vht .

To represent the constraint that mi should be on the left of m j , a directed edge
from vhi to vh j is inserted into Gh . The edge weight is set to be (wi + w j)/2. Our
graph definition is similar to those widely used in floorplaning [43].

For each node in Gh , we calculate two values, L(vhi) and R(vhi), using (10.39).

L(vhs) = 0
L(vh j) = max(L(vhi) + weight(ei j)) ∀ei j ∈ Gh
R(vht) = max(L(vht), W)
R(vhi) = min(R(vh j) − weight(ei j)) ∀ei j ∈ Gh

(10.39)

For each edge ei j in Gh , we calculate slack(ei j) using (10.40).

slack(ei j) = R(vh j) − L(vhi) − weight(ei j) ∀ei j ∈ Gh (10.40)

It can be seen that the definition of slacks are analogous to those defined for timing
analysis. For each node, we also calculate value disp(vhi) using (10.41). This is to
model the potential displacement for each macro.

disp(vhi) =
⎧
⎨

⎩

L(vhi) − xi if L(vhi) ≥ xi
xi − R(vhi) if R(vhi) ≤ xi
0 otherwise.

(10.41)

In the end the total displacement of a constraint graph is defined using (10.42).

disp (Gh) =
∑

v∈Gh

disp(v) (10.42)

Similarly, we can define Gv and the corresponding values for the vertical direction.

Initial Constraint Graph Generation

Given a global placement, we examine each pair of macros mi and m j , and cre-
ate a constraint edge between them. The edge can be either horizontal or vertical,
depending on the relative locations of mi and m j . Figure 10.16 gives three relative
locations that we consider. The type of the constraint edges is such that the macros
are given the most flexibility in the constraint graphs. The edge weights are assigned
accordingly.

Constraint Graph Adjustment

After the constraint graph construction, we traverse each graph and calculate the
longest path.4 If the longest path exceeds the chip dimension, some of the edges

4 In case the graph thus constructed has cycles, we first derive a sequence-pair representation
of the macros, and construct the constraint graphs according to the representation.

278 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

(4,3)
mi

mj

(a)
mi

mj

(b)
mi

mj

(c)

3
4

Fig. 10.16. Three types of relative macro locations which are used to determine the constraint
type between each pair of macros. Constraint edge weight is assigned accordingly.

m7(6,6)

m1(4,4)

m2(2,4)

m3(3,4)

m4(9,6)
m5(4,6)

m6(3,6)

Fig. 10.17. An example of macros with overlap.

need to be adjusted to reduce the longest path. By adjustment we mean change an
edge’s direction from horizontal to vertical while keeping its head and tail,5 or vice
versa. In the following discussion, we assume the longest path in Gh exceeds the
chip width, while the path in Gv is within the chip height.6

Formally, we need to solve the following subproblem:
Given Gh with L(vht) greater than W , select a subset of constraint edges in

Gh to move the Gv , so that the L(vht) after adjustment is reduced, subject to the
constraint that L(vvt) after adjustment should not be greater than H . The objective
is to minimize disp(Gv) after the adjustment.

This problem needs to be addressed since identifying the right set of edges for
adjustment may not be trivial under certain circumstances. Figure 10.17 presents a
global placement of macros with dimensions. The dimension of the placement region
is 25 × 10. Figure 10.18a presents the Gh corresponding to Figure 10.17. Edges in
the critical path are highlighted with weights. Since macro 2 and 3 have the same
width, we have two converging paths with the same length. Figure 10.18b gives the
corresponding Gv . A straightforward method that examines one edge at a time will
not pick e12, e13, e24, or e34 for adjustment, since the final longest path will not

5 We also investigated the alternative of swapping the head and tail of the constraint edge,
depending on the global placement. Overall, we do not observe significant improvement in
the final quality.

6 In case the longest path in Gv exceeds the chip height already, we temporarily lift the chip
height to be the same as the longest path in Gv .

10.6 Legalization and Detailed Placement 279

1

2

3

4

5 7

6

vhtvhs

(a)

vvs

1

3

6

4

2

5

7

vvt

2
4

4

5

5

6

6
3

(b)

s t

+inf

+inf
+inf +inf+inf +inf

2

3

4 5

mincut

1

(c)

2

4
7

Fig. 10.18. (a) Constraint graph Gh . (b) Constraint graph Gv . (c) Corresponding Gc with
edge capacity assigned. The min-cut identifies the set of edges which will be transformed
from horizontal to vertical.

change. This leaves us with only the choice of e45 or e57. However, adjusting either
of them will make the longest path on the Y direction exceed the chip height.

To solve this problem, we extract a subgraph of Gh , consisting of edges with zero
slack. This graph is similar to that used for timing optimization in logic synthesis [41,
44, 54, 62]. We name this subgraph the zero-slack network of Gh . According to this
network, another DAG, Gc, will be constructed. Each edge and node in the zero-slack

280 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

network have a corresponding counterpart in Gc. For an edge ei j in the network, if
adjusting causes the longest path in the Y direction to exceed the chip height, the
corresponding edge capacity in Gc will be set to +∞. Otherwise, the capacity is set
using (10.43).

max
(

yi − R(v j) + hi +h j
2 , 0

)
+ max

(
L(vi) + hi +h j

2 − y j , 0
)

(10.43)

The first component is the potential perturbation on mi ’s x coordinate because of the
constraint edge under consideration. The second component is the potential pertur-
bation on m j ’s x coordinate because of the constraint edge adjustment. To reduce the
complexity, we use L(vi) and R(v j) before the adjustment, rather than those values
after the adjustment. All edges incident on vhs or vht will be assigned a capacity +∞.
It can be seen that the definition of edge capacity is set to encourage choosing edges
with potentially large slack on the orthogonal direction. A min-cut is then calculated
on Gc. For each edge in the cut, the corresponding edge in Gh will be adjusted.
Compared to [47], instead of permuting the sequence pair and evaluating the impact
of the constraint graphs, we operate directly on the graphs, giving us more flexibility
and finer granularity in the operations. Furthermore, our basic operations are more
targeted to meeting the packing constraints.

Figure 10.18(c) gives the Gc for Gh with edge capacity assigned. The solution
for this instance is the min-cut formed by e12 and e13. Adjusting this increases the
longest path on the Y direction to 9, but is still within the chip height. Figure 10.19
gives the final constraint graphs after the adjustment.

The adjustment process iterates until the longest paths in both graphs are shorter
than the chip dimension, indicating we have found a set of nonoverlapping con-
straints that can be satisfied. Empirically, it terminates after a few iterations. 7

Macro Coordinate Determination

The constraint graphs and the subsequent adjustment are essentially used to find a set
of nonoverlapping constraints that can be satisfied. Our next stage is to determine the
exact locations of the macros so that the total perturbation to macros is minimized.
This can be formulated as the following linear programming problem:

min
n∑

i=1

(
wxi × dxi + wyi × dyi

)

s.t. −dxi ≤ x ′
i − xi ≤ dxi

−dyi ≤ y′
i − yi ≤ dyi

x ′
j − x ′

i ≥ wi +w j
2 if ∃ei j ∈ Gh

y′
j − y′

i ≥ yi +y j
2 if ∃ei j ∈ Gv

wi
2 ≤ x ′

i ≤ W − wi
2

hi
2 ≤ y′

i ≤ H − hi
2

(10.44)

7 It is possible that the iterations may not find a feasible solution. In reality, we have not
observed any instance of failure on the example we tested, even with only 2 − 3% of white
space.

10.6 Legalization and Detailed Placement 281

1

2

3

4

5 7

6

vhtvhs

(a)

vvs

4

3

6

1 2

5

7

vvt

(b)

Fig. 10.19. (a) Constraint graph Gh after adjustment. (b) Constraint graph Gv after adjust-
ment.

Here, the dxi and dyi are used to quantify the perturbation to mi . Values wxi and
wyi are positive weights that can be set to either one or the number of connections
on each macro. The next two inequalities are derived from the edges in Gh and Gv .
The last two constraints force the macros to stay with the chip region. Although the
formulation is similar to that in [50, 60], we do not go through the bottom up branch
and bound process, as proposed in [60] to exam both X and Y separation between
each pair. Our constraint-graph-based method helps to prune the search space by
following the relative order in the global placement. Furthermore, we only solve
the LP after a legal packing of macros is guaranteed, while an LP may be tried for
every possible combination of nonoverlapping constraints [60] in the worst case.
The objective can also be enhanced to consider wirelength by the formulation of
Mongrel [33], as in [56]. To solve the LP, we used a public domain interior-point LP
solver, BPMPD [25].

10.6.2 Cell Legalization

Following macro legalization, the second step removes the overlap between standard
cells. This step is to solve the following problem:

282 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

Given a placement where overlap only exists between cells, or cells and macros,
remove the overlap between all objects and obtain a legal placement. The objective
is still minimization of wirelength.

A greedy heuristic has been proposed for this purpose in [36], as an extension
of [32] for mixed-size placement. A front-end contour designating the leftmost empty
site on each row is maintained. Movable objects are traversed in ascending order
of the x coordinate. The location of each object is determined by considering the
combination of incident wirelength and displacement penalty. The front-end contour
is updated after each object is placed. Although it gives a satisfactory result, this
method cannot guarantee that all the macros can fit within the chip boundary when
the legalization finishes. To mitigate this drawback, the global placement of Fengshui
takes a conservative approach, packing the macros and cells very tightly to increase
the chance of success during legalization [36]. Another alternative by APlace is to
iteratively “squeeze” the cell locations and restart cell legalization until a legal soltion
is obtained [38]. However, this strategy may not find a legal solution either.

We enhanced the method of [36] by introducing a back-end contour, which is
initialized as the left contour of macros if they are packed to the right. Figure 10.20a
illustrates the initialization of a back-end contour.

Before legalization, all the movable objects are sorted in ascending order of their
left boundary. The placeable objects are examined one at a time. If the object is a cell,
we scan each row and pick the site between the two contours that gives the shortest
wirelength for the nets connected with it. The front-end on the target row is updated.
If no site can be found for a cell, it will temporarily be put at its original location with

Front Back

m

Front Back

m

(a) (b)

Fig. 10.20. (a) Front-end designates the leftmost site that can be occupied without overlap with
already legalized objects. Back-end designates the rightmost site that can be occupied without
overlapping with macros that have not been legalized yet. Back-end contour is initialized as
the contour of macros if they are packed to the right boundary. (b) In addition to updating the
front-end contour, the back-end contour of rows crossed by a macro will be updated after the
macro is legalized.

10.6 Legalization and Detailed Placement 283

Fig. 10.21. Network flow based formulation to even out cells.

its physical dimension ignored. This will result in cell area overflow in certain regions
of the chip, which will be dealt with in the additional step that follows. If the object
is a macro, it will only be considered for movement between the interval determined
by the two contours. This restriction guarantees legality of macros obtained from
Sect. 10.6.1. An additional step after each macro legalization is to update the back-
end contour of rows that the macro crosses, as shown in Figure 10.20(b).

Depending on the global placement, if cell area overflow remains in a certain
part of the chip, we partition the chip into regions, and use the min-cost–max-flow
formulation in [11, 60] to even out cells between different regions. Each region is
represented as a node in a graph. A bidirectional edge is set up between each pair of
adjacent regions, as illustrated by Figure 10.21. The node capacity is the difference
between the region area and the total cell area in the region. The unit cost of an
edge is the center-to-center distance between the two regions it connects. Since the
edge cost is positive, the final solution has no cycles. A dynamic programming-based
method is used to select the cells to move between regions. The occurrence of this
situation depends partly on the global placement.

10.6.3 Further Wirelength Reduction

After a legal placement is obtained, the last step of our algorithm is to further reduce
the wirelength. Here, we use a window spanning a single row or multiple rows and
slide it across the chip. We enumerate all the possible configurations and pick the
one giving the shortest wirelength of nets connected with the cells. After each such
permutation is selected, the window is slid by half its width. This process is iterated
until no further wirelength reduction is possible. This is the same process as that
described in [36].

284 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

10.7 Numerical Results

In this section, we evaluate our placer mPL6 using four sets of circuits, including
ISPD05, ISPD06, PEKO05, PEKO06. Tables 10.6 and 10.7 give the experimental
results of our placer on ISPD05 and PEKO05 circuits, respectively. These bench-
marks are used to evaluate placer’s capability of minimizing the half-perimeter wire-
length subject to nonoverlapping constraint. For PEKO05, the optimal placement
solution is known, hence it can be used to evaluate the performance of a placer. In
Table 10.7, we can see our placer can produce solutions which are around 30% away
from optimal. Also, the run time of mPL6 is reasonably fast and highly scalable.

In Tables 10.8 and 10.9, we present the results of mPL6 on ISPD06 and PEKO06
circuits, respectively. These benchmarks are used to evaluate placer’s capability of
handling additional density constraints. In Table 10.8, we can see mPL6 is able to
produce a placement solution with very low scaled bin overflow.8 It demonstrates
its ability to address the density constraint. The huge number of scaled bin over-
flow for newblue1 is due to the presence of many large movable macros, where
they occupy more area than a bin can hold. For PEKO06, the optimal placement
solution is known. In this benchmark, mPL6’s HPWL is around 40% away from
optimal HPWL. The degradation in the wirelength quality is reasonable, as it pays
more effort on reducing the scale bin overflow. Note that the average overflow of the

circuit
GP DP

WL runtime WL runtime
adaptec1 8.00E+07 2109 77911923 768
adaptec2 9.36E+07 2210 91963774 771
adaptec3 2.15E+08 7804 2.14E+08 1572
adaptec4 1.97E+08 7280 1.94E+08 1528
bigblue1 1.02E+08 2696 96787268 917
bigblue2 1.56E+08 7440 1.52E+08 2846
bigblue4 8.79E+08 22963 8.29E+08 7536
bigblue3 3.59E+08 9996 3.44E+08 3493

Table 10.6. Experiment results on ISPD05 suite.

circuit WL WL / OPT WL runtime
adaptec1 2.54E+07 1.27 4499
adaptec2 3.30E+07 1.32 4181
adaptec3 5.87E+07 1.43 9945
adaptec4 5.07E+07 1.29 7743
bigblue1 2.53E+07 1.21 4996
bigblue2 5.67E+07 1.34 8798
bigblue3 1.47E+08 1.55 17238
bigblue4 2.25E+08 1.31 38583

Table 10.7. Experiment results on PEKO05 suite.

8 Detailed description of how the scaled overflow is computed can be found in [46].

References 285

circuit WL overflow runtime
adaptec5 4.25E+08 1.42 8265.22
newblue1 6.69E+07 0.18 2251.67
newblue2 1.98E+08 1.72 6088.53
newblue3 2.84E+08 1.14 9695.73
newblue4 2.94E+08 1.77 5814.56
newblue5 5.31E+08 1.88 12348.67
newblue6 5.10E+08 1.62 12035.16
newblue7 1.07E+09 1.18 28384.81

Table 10.8. Experiment results on ISPD06 suite.

circuit WL WL / OPT WL Overflow runtime
adaptec5 1.08E+08 1.32 16 18478
newblue1 2.91E+07 1.42 151 6908
newblue2 4.49E+07 1.37 31 9174
newblue3 1.01E+08 1.38 21 15251
newblue4 6.83E+07 1.39 15 17361
newblue5 1.39E+08 1.36 15 25163
newblue6 1.29E+08 1.42 18 20153
newblue7 3.29E+08 1.59 26 63670

Table 10.9. Experiment results on PEKO06 suite.

optimal placement solution is around 10. That means we need to reduce the overflow
at the expense of a wirelength increase.

To conclude, mPL6 can produce high quality placement solutions in a reason-
able runtime. And it is highly scalable. It is also able to handle additional density
constraint with little degradation in wirelength.

Acknowledgement. Financial supports from Semiconductor Research Consortium Contract
2003-TJ-1019, National Science Foundation grants ACI-0072112, CCF-0430077, and MSPA-
MCS: 0528583 are gratefully acknowledged.

References

1. S.N. Adya, S. Chaturvedi, D.A. Papa J.A. Roy, and I.L. Markov. Unification of parti-
tioning, floorplanning and placement. In Proceedings of the International Conference on
Computer Aided Design, pages 550–557, Nov 2004

2. C.R. Anderson and C. Elion. Accelerated solutions of nonlinear equations using stabi-
lized runge–kutta methods. Report, UCLA CAM, Apr 2004

3. C. Alpert, J.-H. Huang, and A.B. Kahng. Multilevel circuit partitioning. In Proceedings
of the Design Automation Conference, pages 627–632, 1997

4. K. Arrow, L. Huriwicz, and H. Uzawa. Studies in Nonlinear Programming. Stanford
University Press, 1958

5. C. Alpert, A.B. Kahng, G. Nam, S. Reda, and P. Villarrubia. A semi-persistent clustering
technique for vlsi circuit placement. In Proceedings of the International Symposium on
Physical Design, pages 200–207, Apr 2005

286 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

6. S.N. Adya and I.L. Markov. Consistent placement of macro-blocks using floorplanning
and standard-cell placement. In Proceedings of the International Symposium on Physical
Design, pages 12–17, Apr 2002

7. S.N. Adya, I.L. Markov, and P. G. Villarrubia. On whitespace and stability in mixed-size
placement. In Proceedings of the International Conference on Computer Aided Design,
pages 311–318, Nov 2003

8. A.R. Agnihotri, S. Ono, and P.H. Madden. Recursive bisection placement: Feng shui
5.0 implementation details. In Proceedings of the International Symposium on Physical
Design, pages 230–232, Apr 2005

9. D.P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic
Press, New York, 1982

10. W.L. Briggs, S.F. McCormick, and V.E. Henson. A Multigrid Tutorial. SIAM,
Philadelphia, second edition, 2000

11. Ulrich Brenner, Anna Pauli, and Jens Vygen. Almost optimum placement legalization
by minimum cost flow and dynamic programming. In Proceedings of the International
Symposium on Physical Design, pages 2–9, April 2004

12. A. Brandt and D. Ron. Multigrid Solvers and Multilevel Optimization Strategies, chapter
1 of Multilevel Optimization and VLSICAD. Kluwer Academic Publishers, Boston, 2002

13. A. Brandt. Algebraic multigrid theory: The symmetric case. Appl. Math. Comp., 19:
23–56, 1986

14. A. Brandt. Multiscale scientific computation: Review 2001. In T. Barth, R. Haimes, and
T. Chan, editors, Multiscale and Multiresolution Methods. Springer Verlag, 2001

15. T.F. Chan, J. Cong, T. Kong, J. Shinnerl, and K. Sze. An enhanced multilevel algorithm
for circuit placement. In Proceedings of the International Conference on Computer Aided
Design, pages 299–306, San Jose, CA, Nov 2003

16. T.F. Chan, J. Cong, T. Kong, and J. Shinnerl. Multilevel optimization for large-scale
circuit placement. In Proceedings of the International Conference on Computer Aided
Design, pages 171–176, San Jose, CA, Nov 2000

17. T.F. Chan, J. Cong, T. Kong, and J. Shinnerl. Multilevel Circuit Placement, chapter 4 of
Multilevel Optimization in VLSICAD. Kluwer Academic Publishers, Boston, 2003

18. R. Chan, T. Chan, M.K. Ng, and A. Yip. Cosine transform preconditioner for high reso-
lution image reconstruction. Linear Algebra and its Applications, 316:89–104, 2000

19. T.F. Chan, J. Cong, M. Romesis, J.R. Shinnerl, K. Sze, and M. Xie. mPL6: a robust
multilevel mixed-size placement engine. In Proceedings of the International Symposium
on Physical Design, pages 227–229, Apr 2005

20. T. Chan, J. Cong, J. Shinnerl, K. Sze, and M. Xie. Enhanced robustness in multilevel
mixed-size placement. In SRC TECHCON, Oct 2005

21. T. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for circuit
placement. In Proceedings of the International Symposium on Physical Design, pages
185–192, Apr 2005

22. C.C. Chang, J. Cong, and X. Yuan. Multi-level placement for large-scale mixed-size ic
designs. In Proceedings of the Asia South Pacific Design Automation Conference, pages
325–330, 2003

23. J. Cong and S.K. Lim. Edge separability-based circuit clustering with application to
multi-level circuit partitioning. IEEE Tran. on Computer-Aided Design of Integrated
Circuits and Systems, 23(3):346–357, 2004

24. Jason Cong, Michail Romesis, and Joseph Shinnerl. Robust mixed-size placement
under tight white-space constraints. In Proceedings of the International Conference on
Computer Aided Design, pages 165–173, November 2005

References 287

25. Meszaros Csaba. Fast cholesky factorization for interior point methods of linear
programming. Computers and Mathematics with Applications, 31:49–51, 1996

26. J. Cong and M. Xie. A robust detailed placement for mixed-size ic designs. In
Proceedings of the Asia South Pacific Design Automation Conference, pages 188–194,
Jan 2006

27. K. Doll, F.M. Johannes, and K.J. Antreich. Iterative placement improvement by network
flow methods. IEEE Transactions on Computer-Aided Design, 13(10), October 1994

28. Hans Eisenmann and Frank M. Johannes. Generic global placement and floorplanning.
In Proceedings of the Design Automation Conference, pages 269–274, 1998

29. L.C. Evans. Partial Differential Equations. American Mathematical Society, 2002
30. http://momonga.t.u-tokyo.ac.jp/˜ooura/fft.html
31. A.V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained

Minimization Techniques. John Wiley and Sons, Inc., New York, London, Sydney and
Toronto, 1968

32. Dwight Hill. Method and system for high speed detailed placement of cells within an
integrated circuit design. US Patent No. 6,370,673, 2002

33. S.-W. Hur and J. Lillis. Mongrel: Hybrid techniques for standard-cell placement. In
Proceedings of the International Conference on Computer Aided Design, pages 165–170,
San Jose, CA, Nov 2000

34. B. Hu and M. Marek-Sadowska. Fine granularity clustering for large scale placement
problems. IEEE Tran. on Computer-Aided Design of Integrated Circuits and Systems,
23(4):527–536, 2004

35. G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partitioning:
Application in vlsi domain. In Proceedings of the Design Automation Conference, pages
526–529, 1997

36. Ateen Khatkhate, Chen Li, Ameya R. Agnihotri, Mehmet C. Yildiz, Satoshi Ono,
Cheng-Kok Koh, and Patrick H. Madden. Recursive bisection based mixed block place-
ment. In Proceedings of the International Symposium on Physical Design, pages 84–89,
April 2004

37. A. Kennings and I.L. Markov. Analytical minimization of half-perimeter wirelength. In
Proceedings of the Asia South Pacific Design Automation Conference, pages 179–184,
Jan 2000

38. Andrew Kahng, Sherief Reda, and Qinke Wang. Architecture and details of a high qua-
lity, large-scale analytical placer. In Proceedings of the International Conference on
Computer Aided Design, pages 891–899, Nov 2005

39. J.M. Kleinhans, G. Sigl, F.M. Johannes, and K.J. Antreich. Gordian: Vlsi placement
by quadratic programming and slicing optimization. IEEE Trans. on Computer-Aided
Design, CAD-10:356–365, 1991

40. A.B. Kahng and Q. Wang. Implementation and extensibility of an analytic placer. In
Proceedings of the International Symposium on Physical Design, pages 18–25, 2004

41. Singh K, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli. Timing optimization of
combinatorial logic. In Proceedings of the International Conference on Computer Aided
Design, pages 282–285, Nov 1988

42. C.Li and C.-K. Koh. On improving recursive bipartitioning-based placement. Report
tr-ece-03-14, Purdue University ECE, 2003

43. H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Rectangle-packing-based module
placement. In Proceedings of the International Conference on Computer Aided Design,
pages 472–479, 1995

44. G.D. Micheli. Performance-oriented synthesis of large-scale domino cmos circuits. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 6:751–765, 1987

288 10 mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control

45. K.W. Morton and D.F. Mayers. Numerical Solution of Partial Differential Equations.
Cambridge University Press, 1994

46. Gi-Joon Nam. Ispd 2006 placement contest: Benchmark suite and results. In Proceedings
of the International Symposium on Physical Design, pages 167–167, 2006

47. Sudip Nag and Kamal Chaudhary. Post-placement residual-overlap removal with mini-
mal movement. In Proceedings of the Design Automation and Test in Europe, pages
581–586, 1999

48. W. Naylor, R. Donelly, and L. Sha. Non-linear optimization system and method for wire
length and delay optimization for an automatic electric circuit placer. US Patent 6301693,
Oct 2001

49. A.N. Ng, I.L. Markov, R. Aggarwal, and V. Ramachandran. Solving hard instances of
floorplacement. In Proceedings of the International Symposium on Physical Design,
pages 170–177, New York, NY, USA, 2006. ACM Press

50. R. Okuda, T. Sato, H. Onodera, and K. Tamaru. An efficient algorithm for layout
compaction problem with symmetry constraints. In Proceedings of the International
Conference on Computer Aided Design, pages 148–153, November 1989

51. L.I. Rudin, S.J. Osher, and E. Fatermi. Nonlinear total variation based noise removal
algorithms. Physica D, 60:259–268, 1992

52. J. Ruge and K. Stüben. Algebraic multigrid. In S.F. McCormick, editor, Multigrid
Methods, pages 73–80. SIAM, Philadelphia, 1987

53. H.V. Sorensen and C.S. Burrus. Fast dft and convolution algorithms. In S.K. Mitra and
J.F. Kaiser, editors, Handbook for Digital Signal Processing. John Wiley and Sons, New
York, 1993

54. K.J. Singh. Performance Optimization for Digital Circuits. PhD thesis, Computer
Science Department, University of California Berkeley, 1992

55. U. Trottenberg, C.W. Oosterlee, and A. Schüller. Multigrid. Academic Press, London,
2000

56. Xiaoping Tang, Ruiqi Tian, and Martin D.F. Wong. Optimal redistribution of white space
for wire length minimization. In Proceedings of the Asia South Pacific Design Automa-
tion Conference, pages 412–417, January 2005

57. Taraneh Taghavi, Xiaojian Yang, and Bo-Kyung Choi. Dragon 2005: Large-scale mized-
size placement tool. In Proceedings of the International Symposium on Physical Design,
April 2005

58. K.P. Vorwerk and A. Kennings. An improved mulit-level framework for force-directed
placement. In Proceedings of the Design Automation and Test in Europe, volume 2, pages
240–245, 2005

59. K.P. Vorwerk, A. Kennings, and A. Vannelli. Engineering details of a stable force-
directed placer. In Proceedings of the International Conference on Computer Aided
Design, pages 573–580, Nov 2004

60. Jens Vygen. Algorithms for large-scale flat placement. In Proceedings of the Design
Automation Conference, pages 746–751, 1997

61. J. Vygen. Algorithms for detailed placement of standard cells. In Proceedings of the
Design Automation and Test in Europe, pages 321–324, 1998

62. Songjie Xu. Synthesis for Hign-Density and High-Performance FPGA. PhD thesis,
Computer Science Department, University of California, Los Angeles, 2000

63. Bo Yao, Hongyu Chen, Chung-Kuan Cheng, Nan-Chi Chou, Lung-Tien Liu, and Peter
Suaris. Unified quadratic programming approach for mixed mode placement. In Proc.
Int. Symposium on Physical Design, April 2005

11

NTUplace3: An Analytical Placer for Large-Scale
Mixed-Size Designs

Tung-Chieh Chen1, Zhe-Wei Jiang1, Tien-Chang Hsu1,
Hsin-Chen Chen2, and Yao-Wen Chang1,2
1Graduate Institute of Electronics Engineering
2Department of Electrical Engineering
National Taiwan University, Taipei 106, Taiwan
{donnie, crazying, tchsu, indark}@eda.ee.ntu.edu.tw; ywchang@cc.ee.ntu.edu.tw

11.1 Introduction

This chapter is focused on NTUplace3 [6], a large-scale mixed-size analytical placer that
can handle modern placement considerations such as wirelength, preplaced blocks, and den-
sity. Like many modern placers, NTUplace3 consists of three major stages: global placement,
legalization, and detailed placement. Global placement evenly distributes blocks and finds the
best position for each block to minimize the target cost (e.g., wirelength). Then, legalization
removes all overlaps among blocks and places standard cells row by row. Detailed placement
further refines the solution.

The global placement of NTUplace3 is based on the multilevel framework which applies a
two-stage technique of bottom-up coarsening followed by top-down uncoarsening. The coars-
ening stage iteratively clusters blocks based on connectivity/block size to reduce the problem
size until the problem size is below a given threshold. Then, an initial placement is computed.
In the uncoarsening stage, it iteratively declusters the blocks and refine the block positions to
reduce the wirelength. The declustering process continues until the final placement is found.

During the uncoarsening stage, NTUplace3 applies the analytical model for the global
placement. The objective function is based on the log–sum–exp wirelength model proposed
by Naylor et al. [18]. To handle preplaced blocks, NTUplace3 applies a two-stage smooth-
ing technique, Gaussian smoothing followed by level smoothing, to facilitate block spreading
during global placement. The density is controlled mainly by cell spreading during global
placement and cell sliding during detailed placement. We further use the conjugate gradient
method with dynamic step-size control to speed up the global placement and apply macro
shifting to find better macro positions.

During legalization, we remove the overlaps and place all standard cells row by row using
a priority-based scheme based on block sizes and locations. We also incorporate a look-ahead
legalization scheme into global placement to facilitate the legalization process. During detailed
placement, we adopt cell matching and cell swapping to minimize the wirelength and cell slid-
ing to optimize the density. We shall detail the techniques and evaluate them in the following.

290 11 NTUplace3: An Analytical Placer for Large-Scale Mixed-Size Designs

11.2 Analytical Placement Model

Circuit placement can be formulated as a hypergraph H = (V, E) placement problem. Let
vertices V = {ν1, v2, ..., vn} represent blocks and hyperedges E = {e1, e2, ..., em} represent
nets. Let xi and yi be the respective x and y coordinates of the center of the block vi , and
ai be the area of the block vi . The circuit may contain some preplaced blocks which have
fixed x and y coordinates and are not movable. We intend to determine the optimal positions
of movable blocks so that the total wirelength is minimized and there is no overlap among
blocks.

To evenly distribute the blocks, we divide the placement region into uniform nonoverlap-
ping bin grids. Consequently, the global placement problem can be formulated as a constrained
minimization problem as follows:

min W (x, y)
s.t. Db(x, y) ≤ Mb, for each bin b

(11.1)

where W (x, y) is the wirelength function, Db(x, y) is the potential function that is the total
area of movable blocks in bin b, and Mb is the maximum area of movable blocks in bin b. Mb
can be computed by Mb = tdensity(wbhb−Pb), where tdensity is a user-specified target density
value for each bin, wb (hb) is the width (height) of bin b, and Pb is the base potential that
equals the preplaced block area in bin b. Note that Mb is a fixed value as long as all preplaced
block positions are given and the bin size is determined. Figure 11.1 gives the notation used
in this chapter.

The wirelength W (x, y) is defined as the total half-perimeter wirelength (HPWL) given
by

W (x, y) =
∑

net e

(
max

vi ,v j ∈e
|xi − x j | + max

vi ,v j ∈e
|yi − y j |

)
(11.2)

Since W (x, y) is nonconvex, it is hard to minimize it directly. Thus, several smooth wirelength
approximation functions are proposed in the literature, such as quadratic wirelength [8, 16],

∑

e∈E

⎛

⎝
∑

vi ,v j ∈e,i< j

wi j (xi − x j)
2 +

∑

vi ,v j ∈e,i< j

wi j (yi − y j)
2

⎞

⎠ (11.3)

L p-norm wirelength [3, 14],

∑

e∈E

⎛

⎝
(
∑

vk∈e
x p

k

) 1
p

−
(
∑

vk∈e
x−p

k

)− 1
p

+
(
∑

vk∈e
y p

k

) 1
p

−
(
∑

vk∈e
y−p

k

)− 1
p
⎞

⎠ (11.4)

xi , yi center coordinate of block vi
wi , hi width and height of block vi
wb, hb width and height of bin b
Mb maximum area of movable blocks in bin b
Db potential (area of movable blocks) in bin b
Pb base potential (preplaced block area) in bin b
tdensity target placement density

Fig. 11.1. Notation used in this chapter.

11.2 Analytical Placement Model 291

and log–sum–exp wirelength [2, 13, 18],

γ
∑

e∈E

(
log

∑

vk∈e
exp

(
xk
γ

)
+ log

∑

vk∈e
exp

(−xk
γ

)
+

log
∑

vk∈e
exp

(
yk
γ

)
+ log

∑

vk∈e
exp

(−yk
γ

))
(11.5)

The log–sum–exp wirelength model, proposed in [18], achieves the best results among these
three models [3]. When γ is small, log–sum–exp wirelength gives a good approximation to
the HPWL [18]. However, due to the intrinsic precision limitation of a computer, we can only
choose a reasonably small γ , say 1% length of the chip width, so that it will not cause any
arithmetic overflow.

The function Db(x, y) can be expressed as

Db(x, y) =
n∑

v∈V

Px (b, v)Py(b, v) (11.6)

where Px and Py are the overlap functions between bin b and block v along the x and y
directions. Since density Db(x, y) is neither smooth nor differentiable, mPL [3] uses inverse
Laplace transformation to smooth the density, while APlace [13] uses bell-shaped functions
px and py for each block to smooth the density Px and Py , respectively. In [13], the bell-
shaped potential function px is defined by:

px (b, v) =
⎧
⎨

⎩

1 − ad2
x , 0 ≤ dx ≤ wv/2 + wb

b(dx − 2wb − 2wg)2, wv/2 + wb ≤ dx ≤ wv/2 + 2wb
0, wv/2 + 2wb ≤ dx

(11.7)

where
a = 4/((wv + 2wb)(wv + 4wb))
b = 2/(wb(wv + 4wb))

(11.8)

Here, wb is the bin width, wv is the block width, and dx is the x direction difference between
the block v and the center of the bin b. The range of block’s potential is wv + 2wb in the x
direction. The smooth y-potential function py(b, v) can be defined similarly.

By doing so, the nonsmooth function Db(x, y) can be replaced by the smooth one,
D̂b(x, y) = ∑n

v∈V cv px (b, v)py(b, v), where cv is a normalization factor so that the total
potential of a block equals its area.

A quadratic penalty method is used to solve (11.1), implying that we solve a sequence of
unconstrained minimization problems of the form

min W (x, y) + λ
∑

b

(D̂b(x, y) − Mb)2 (11.9)

with increasing λ’s. The solution of the previous problem is used as the initial solution for
the next one. We solve the unconstrained problem in (11.9) by the conjugate gradient (CG)
method. We observe that CG with line search in [13] is not efficient enough since the line
search spends most running time on the minimization process. Therefore, we further use CG
with a dynamic step size to minimize (11.9). The dynamic step-size control leads to signifi-
cantly better efficiency.

292 11 NTUplace3: An Analytical Placer for Large-Scale Mixed-Size Designs

11.3 Core Techniques

We describe the underlying techniques used in the global placement, legalization, and detailed
placement of NTUplace3 in this section.

11.3.1 Global Placement

As mentioned earlier, the global placement is based on the multilevel framework and the log–
sum–exp wirelength model. A two-stage smoothing technique is used to handle preplaced
blocks, and cell spreading is performed to optimize the density. We further use the conjugate
gradient method with dynamic step-size control to speed up the global placement and apply
macro shifting to find better macro positions.

Multilevel Framework

We use the multilevel framework for global placement to improve the scalability. Our algo-
rithm is summarized in Figure 11.2. The multilevel framework applies a two-stage technique
of bottom-up coarsening followed by top-down uncoarsening. Lines 1–4 give the coarsening
stage. The initial placement is generated in line 5. Lines 6–22 give the uncoarsening stage.
The details of each step are explained in the following.

During coarsening, we cluster blocks level by level to reduce the problem size, based on
the first-choice (FC) clustering algorithm [3,15]. For the FC clustering algorithm, we examine
the blocks in the circuit one by one, identify the blocks with the highest connectivity, and clus-
ter the two blocks with the highest connectivity. After all blocks are processed once, we obtain
a level of the clustered circuit. The FC clustering algorithm is then applied iteratively until the
number of blocks in the resulting clustered circuit is less than a user-specified threshold.

After clustering, we solve an analytical placement problem by using the conjugate gradi-
ent method at each level of the uncoarsening stage. The conjugate gradient method requires
an initial placement for the coarsest level, and this initial placement significantly affects the
final placement quality and convergence speed. Therefore, we apply quadratic programming
proposed by [16] and solve it by using an efficient solver [4].

The placement for the current level provides the initial placement for the next level. In
each level, the bin grid size is set according to the number of clusters, the base potential Pb for
each bin is computed, and the maximum area of movable blocks Mb is updated accordingly.
Then, the value of λ is initialized according to the strength of wirelength and density gradients,

λ =
∑ |∂W (x, y)|
∑ |∂ D̂b(x, y)| (11.10)

A conjugate gradient solver with dynamic step-size control is then used to solve the con-
strained minimization problem in (11.1) (in lines 10–17).

Macro shifting is then applied between uncoarsening levels to remove macro overlaps.
After macro shifting, blocks are declustered, providing the initial placement for the next level.

We define the overflow ratio as the total overflow area in each bin over the area of total
movable blocks as follows:

overflow ratio =
∑

Bin b max{Db(x, y) − Mb, 0}∑
total movable area

(11.11)

where overflow ratio ≥ 0.

11.3 Core Techniques 293

Algorithm: Multilevel Global Placement
Input:

hypergraph H0: mixed-size circuit
nmax : the maximum block number in the coarsest level

Output:
(x∗, y∗): optimal block positions

01. level = 0;
02. while (Block Number(Hlevel) > nmax)
03. level++;
04. Hlevel = FirstChoiceClustering(Hlevel−1);
05. Initialize block positions by SolveQ P(Hlevel);
06. for current Level = level to 0
07. Initialize bin grid size nbin ∝ √

nx ;
08. Initialize base potential for each bin;
09. Initialize λ0 =

∑ |∂W (x,y)|∑ |∂ D̂b(x,y)| ; m = 0;

10. do
11. Solve min W (x, y) + λm

∑
(D̂b(x, y) − Mb)2;

12. m + +;
13. λm = 2λm−1;
14. if (current Level == 0 & over f low ratio < 10%)
15. Call Look Ahead Legali zation() and save the best result;
16. Compute over f low ratio;
17. until (spreading enough or no further reduction in over f low ratio)
18. if (current Level == 0)
19. Restore the best look-ahead result;
20. else
21. Call MacroShi f ting();
22. Decluster and update block positions.

Fig. 11.2. Our global placement algorithm.

Our placer uses the overflow ratio to measure the evenness of block distribution instead of
the discrepancy as in [13], where the discrepancy is defined as the maximum ratio of the actual
total block area to the maximum allowable block area among all windows within the chip.
The overflow ratio has a more global view since it considers all overflow areas in the place-
ment region while discrepancy considers only the maximum density of a window in the
placement region. The global placement stage stops when the overflow ratio is less than a
user-specified target value, which is 0 by default.

Base Potential Smoothing

Preplaced blocks predefine the base potential, which significantly affects block spreading.
Since the base potential Pb is not smooth, it incurs mountains that prevent movable blocks
from passing through these regions. Therefore, we shall smooth the base potential to facili-
tate block spreading. We first use the Gaussian function to smooth the base potential change,

294 11 NTUplace3: An Analytical Placer for Large-Scale Mixed-Size Designs

Fig. 11.3. The density profile of newblue2.

Fig. 11.4. Base potential using the bell-shaped function. The z-coordinate gives the value of
Pb/(wbhb). For a region with the potential level > 1.0, it means that the base potential in the
region is larger than the bin area.

remove the rugged regions in the base potential, and then smooth the base potential level so
that blocks can spread to the whole placement region.

The base potential of each block can be calculated by the bell-shaped function. How-
ever, we observe that the potential generated by the bell-shaped function has “valleys” among
the adjacent regions of preplaced blocks. Figure 11.3 shows the density profile for the cir-
cuit newblue2, and Figure 11.4 illustrates the corresponding base potential generated by the

11.3 Core Techniques 295

bell-shaped function. The z-coordinate gives the value of Pb/(wbhb). If a bin has z > 1, it
means that the potential in the bin is larger than the bin area. There are several valleys in the
bottom-left regions as shown in the figure, and these regions do not have any free space but
their potentials are so low that a large number of blocks may spread to these regions. To avoid
this problem, we calculate the exact density as the base potential, and then use the Gaussian
function to smooth the base potential. The two-dimensional Gaussian has the form

G(x, y) = 1
2πσ 2 e−(x2+y2)/2σ 2

(11.12)

where σ is the standard deviation of the distribution. Applying convolution to the Gaussian
function G with the base potential P , P ′(x, y) = G(x, y)∗ P(x, y), we can obtain a smoother
base potential P ′. Gaussian smoothing works as a low-pass filter, which can smooth the local
density change. The value σ defines the smoothing range; a larger σ leads to a smoother
potential. In global placement, the smoothing range gradually decreases so that the smoothed
potential approaches the exact density gradually. Figure 11.5 shows the resulting potential
with σ being 0.25 times of the chip width.

After the Gaussian smoothing, we apply another landscape smoothing function [9, 12] to
reduce the potential levels. The smoothing function P ′′(x, y) is defined as follows:

P ′′(x, y) =
{

P ′ + (P ′(x, y) − P ′)δ if P ′(x, y) ≥ P ′
P ′ − (P ′ − P ′(x, y))δ if P ′(x, y) ≤ P ′ (11.13)

where δ ≥ 1. δ decreases from a large number (say 5) to 1, and a series of level-smoothed
potentials are generated. Smoothing potential levels reduces “mountain” (high potential
regions) heights so that blocks can spread to the whole placement area smoothly. Figure 11.6
shows the resulting level-smoothed potential of Figure 11.5 using δ = 2.

Fig. 11.5. Base potential using exact density and Gaussian smoothing results in a better
smoothing potential.

296 11 NTUplace3: An Analytical Placer for Large-Scale Mixed-Size Designs

Fig. 11.6. Base potential of Figure 11.5 after level smoothing with δ = 2. Note that the
potential level ranges from 0.4 to 0.75, while the original potential level is between 0 and 1.1.

Conjugate Gradient Search with Dynamic Step Sizes

We use the conjugate gradient (CG) method to minimize (11.9). APlace uses the golden sec-
tion line search to find the optimal step size, which spends most running time on the minimiza-
tion process. Instead, our step size is computed by a more efficient and effective method. After
computing the conjugate gradient direction dk , the step size αk is computed by αk = s/||dk ||2,
where s is a user-specified scaling factor. By doing so, we can limit the step size of block
spreading since the total quadratic Euclidean movement is fixed,

∑

vi ∈V

(x2
i + 	y2

i) = ||αkdk ||22 = s2 (11.14)

where 	xi and 	yi are the respective amounts of the movement along the x and y directions
for the block vi in each iteration.

The value of s significantly affects the solution quality; a smaller s value leads to a better
wirelength but a longer running time. In our implementation, we set s between 0.2 and 0.3
times of the bin width to obtain a good tradeoff between the running time and quality.

Figure 11.7 summarizes our conjugate gradient algorithm for minimizing the placement
objective during global placement. The gradient and conjugate directions are initialized in line
1. The objective function is then iteratively optimized in lines 2–8 until no further improve-
ment is found. To optimize the objective function f (xk), we first compute the gradient, the
Polak–Ribiere parameter, and the conjugate directions in lines 3–5. Then, we can obtain the
dynamic step size from equation (11.14) in line 6. Finally, we update the placement solution
in line 7.

Macro Shifting

In the global placement stage, it is important to preserve legal macro positions since macros
are much bigger than standard cells and illegal macro positions typically make legalization

11.3 Core Techniques 297

Algorithm: Conjugate Gradient Algorithm
with Dynamic Step-Size Control

Input:
f (x): objective function
x0: initial solution
s: step size

Output:
optimal x∗

01. Initialize g0 = 0 and d0 = 0;
02. do
03. Compute gradient directions gk = ∇ f (xk);

04. Compute the Polak–Ribiere parameter βk = gT
k (gk−gk−1)

||gk−1||2 ;

05. Compute the conjugate directions dk = −gk + βkdk−1;
06. Compute the step size αk = s/||dk ||2;
07. Update the solution xk = xk−1 + αkdk ;
08. until (f (xk) > f (xk−1))

Fig. 11.7. Our conjugate gradient algorithm for the global placement optimization.

much more difficult. To avoid this, we apply macro shifting at each declustering level of the
global placement stage. Macro shifting moves macros to the closest legal positions.

Integrating within the multilevel framework, only macros with sizes larger than the aver-
age cluster size of the current level are processed. Then, the legal macro positions provide
a better initial solution for the next declustering level, and those macros are still allowed to
spread at subsequent declustering levels.

11.3.2 Legalization

After global placement, legalization removes all overlaps and places standard cells in rows.
Since the global placement gives the best positions for macros and standard cells without
considering their overlaps, we shall remove the overlaps with minimal total displacement.
We extend the standard-cell legalization method in [10] to solve the mixed-size legalization
problem. The legalization order of macros and cells are determined by their x coordinates
and sizes (widths and heights). Larger blocks get the priority for legalization. Therefore, we
legalize macros earlier than standard cells. After the legalization order is determined, macros
are placed to their nearest available positions and cells are packed into rows with the smallest
wirelength. Despite its simplicity, we find this macro/cell legalization strategy works well on
all benchmarks.

Recall that we performed block spreading during global placement. It is important to
determine when to terminate the block spreading. If blocks do not spread enough, the wire-
length may significantly be increased after legalization since blocks are over congested. If
blocks spread too much, the wirelength before legalization may not be good even though the
legalization step only increases wirelength a little. This situation becomes even worse when
the density is also considered, since the placement objective is more complicated.

To improve the legalization quality, we use a look-ahead legalization technique during
globe placement to make the subsequent legalization process easier. At the finest level of
the multilevel placement, we apply legalization right after placement objective optimization

298 11 NTUplace3: An Analytical Placer for Large-Scale Mixed-Size Designs

in each iteration and record the best result with the minimum cost (wirelength and density
penalty). Although the look-ahead legalization may take longer running time due to more iter-
ations of legalization, we can ensure that blocks do not over spread and thus obtain a better
legal placement. As a result, the look-ahead legalization significantly alleviates the difficulty
in removing the macro and standard-cell overlaps during the later legalization stage, and even-
tually leads to a more robust placement result.

11.3.3 Detailed Placement

In the detailed placement stage, we work on the standard cells to further improve the placement
quality. To preserve the prototype of the placement obtained from the legalization stage, we fix
all macros and treat them as placement blockages in this stage. The objective of our detailed
placement algorithm is to find a better position for each standard cell in the available free
spaces.

The detailed placement stage consists of two stages: the wirelength minimization stage
and the density optimization stage. In the wirelength minimization stage, we apply cell match-
ing and cell swapping to reduce the total wirelength. In the density optimization stage, we
apply the cell sliding technique to reduce the density overflow in congested regions. The flow
of our detailed placement is summarized in Figure 11.8. In the following, we explain the cell-
matching, cell-swapping, and cell-sliding algorithms.

Cell Matching

We extend the cell-matching algorithms used in our previous NTUplace versions [5, 11] to
optimize the wirelength cost for a group of cells simultaneously. The cells in each matching
step are chosen from a subregion in the placement region. Here we refer to the subregion as
a window. Our algorithm formulates a weighted bipartite matching problem by matching the
cells to the empty slots inside the window. To handle all cells inside the placement region R,
our algorithm divides R into an array of overlapped windows and iteratively rearranges the

Algorithm: Detailed Placement
Input:

Legalized global placement
Target density tdensity

Output:
Optimal block positions

1. do /*Wirelength minimization stage*/
2. Cell Matching
3. Cell Swapping
4. until no significant improvement in wirelength
5. do/*Density optimization stage*/
6. Cell Sliding
7. until no significant improvement in solution quality

Fig. 11.8. Our detailed placement flow.

11.3 Core Techniques 299

Algorithm: Cell Matching
Input:

Legalized global placement
Initial window size w
Initial sweep direction d

Output:
Optimal block positions

01. do
02. Divide R into windows according to w
03. for all windows in R
04. Select all cells inside the window
05. Calculate the bipartite matching weights
06. Solve the weighted bipartite matching problem
07. Move the cells to their new position
08. Perturb the window size
09. Perturb the sweep direction
10. until no significant improvement in wirelength

Fig. 11.9. The cell-matching algorithm.

Fig. 11.10. Illustration of the cell-matching process.

cells inside each window to reduce the total wirelength. Figure 11.9 summarizes the flow of
our cell-matching algorithm.

Figure 11.10 illustrates our cell-matching process. The dashed line denotes the boundary
of the window. The set of cells V1 = {v1, v2, v3, v4} are selected, and the space occupied
by those cells becomes a set of empty slots V2 = {s1, s2, s3, s4}. With this set of cells and
those empty slots, we formulate the cell placement as a weighted bipartite matching problem.
To construct the bipartite graph G = (V1 ∪ V2, E), we add an edge e(vi , s j) between every
vi ∈ V1 and every s j ∈ V2. We assign the weight of edge e(vi , s j), c(vi , s j), by computing
the wirelength cost of placing cell vi in slot s j . In order to keep the legality of our placement

300 11 NTUplace3: An Analytical Placer for Large-Scale Mixed-Size Designs

Fig. 11.11. The calculation of space of each slot. ta is the slot space in Mode I, and t ′a is the
slot space in Mode II.

solution, we remove edge e(vi , s j) when wi , the width of the cell vi , is greater than t j , the
available space of slot s j .

Now we further discuss the calculation of the space of each slot. In order to ensure the
legality, our cell-matching algorithm has two modes: Mode I and Mode II. Figure 11.11 illus-
trates the definition of space in Mode I and Mode II. In Mode I, ta , the space of slot sa is
calculated by

ta =
(

xr − wr

2

)
−
(

xa − wa

2

)
(11.15)

and in Mode II the space of slot sa is given by:

t ′a =
(

xa + wr
2

)
−
(

xl + wl
2

)
(11.16)

Here vr is the cell right to va , and vl is the cell left to va . (xi − wi
2) is the x-coordinate of the

left boundary of cell vi , and (xi + wi
2) is that of the right boundary. Mode I and Mode II are

used alternately in our cell-matching algorithm. Figure 11.12 gives the Mode-I and Mode-II
formulations for the circuit of Figure 11.10. With the above formulation, our algorithm can
handle a circuit with different sizes of cells and ensure the legality of the resulting placement
solution. Compared with the Domino [7] detailed placer, we can handle more cells at one time
because we do not cut the cells into subcells. Consequently, we can handle a bigger window
size and thus obtain a more global view.

In addition to exchanging the positions of the cells inside the window, the cell-matching
algorithm has the ability to move the cells to other empty regions. If t j , the available space of
slot s j , is large enough, our algorithm breaks s j into several slots. We first find the maximum
cell width wmax by

wmax = max
vi ∈ν

{wi } (11.17)

and then we can divide s j into �t j /wmax� slots. The excess �t j /wmax� − 1 empty slots can
be considered in the bipartite matching formulation, and thus the cells v ∈ V1 have the chance
to move to sparer slots. Figure 11.13 illustrates this process with Mode I formulation. The
set of cells inside the window is given by V1 = {v1, v2, v3}, and from the figure we get
wmax = max{w1, w2, w3} = 3. We can see that t2 = 6 and t3 = 10. Thus s2 is split into
{s2, s4}, and s3 is split into {s3, s5, s6}, where V + = {s4, s5, s6} is the set of spare slots. Now
the formulation of bipartite matching becomes G = (V1 ∪ V2 ∪ V +, E).

Cell Swapping

The cell swapping technique selects k adjacent cells each time to find the best ordering by enu-
merating all possible orderings using the branch-and-bound method. Here, k is a user-specified

11.3 Core Techniques 301

Fig. 11.12. Illustration of cell-matching formulation in Mode I and Mode II.

Fig. 11.13. Illustration of the cell-matching formulation with spare slots.

302 11 NTUplace3: An Analytical Placer for Large-Scale Mixed-Size Designs

parameter. In our implementation, we set k = 3 for a good tradeoff between the running time
and solution quality. This process repeats until all standard cells are processed.

Cell Sliding

The objective of cell sliding is to reduce the density overflow in the congested area. We divide
the placement region into uniform nonoverlapping bins, and then iteratively reduce the densi-
ties of overflowed bins by sliding the cells horizontally from denser bins to sparser bins, with
the cell order being preserved. Figure 11.14 illustrates the cell sliding process. Each iteration
consists of two stages: left sliding and right sliding. In each stage, we calculate the density of
each bin and then compute the area flow fbb′ between bin b and its left or right neighboring
bin b′. Here, fbb′ denotes the desired amount of cell area to move from bin b to b′. Recall
that we define Db as the total movable cell area in bin b and Mb as the maximum allowable
block area in bin b. If bin b has no area overflow or the area overflow ratio of b is smaller than
b′, that is Db ≤ Mb or Db/Mb ≤ Db′/Mb′ , we set fbb′ = 0. Otherwise we calculate fbb′
according to the capacity of b′. If bin b′ has enough free space, we move the overflow area
of bin b to b′. Otherwise, we evenly distribute the overflow area between b and b′. Therefore,
fbb′ is defined by

fbb′ =
{

Db − Mb, if (Mb′ − Db′) ≥ (Db − Mb)
Db Mb′−Db′ Mb

Mb+Mb′ , otherwise
(11.18)

where the second condition of (11.18) is derived from

Db −
(

Mb + (Db − Mb + Db′ − Mb′)Mb
Mb + Mb′

)
= Db Mb′ − Db′ Mb

Mb + Mb′
(11.19)

Fig. 11.14. Illustration of the cell-sliding process. This shows a right-sliding stage, where the
cells are slid from left to right, and the density of each bin is balanced.

11.4 Experimental Results 303

After the area flow fbb′ is computed, we sequentially slide the cells across the boundary
between b and b′ until the amount of sliding area reaches fbb′ or there is no more area for cell
sliding. Then we update Db and Db′ . In the right sliding stage, we start from the left-most bin
of the placement region, and b′ is right to b. In the left sliding stage, we start from the right-
most bin, and b′ is left to b, accordingly. We iteratively slide the cells from the area overflow
regions to sparser regions until no significant improvement can be obtained (Figure 11.14).

11.4 Experimental Results

We conducted extensive experiments on the platform with an AMD Opteron 2.4 GHz CPU
to examine the proposed techniques. We first show the effectiveness of the dynamic step-size
control and the look-ahead legalization. Then, we give the HPWL and runtime breakdowns
of our placer for the ISPD’05 and ISPD’06 benchmark suites. We also report the HPWLs and
runtimes obtained from the L p-norm wire model for both benchmark suites. Finally, we eval-
uate our results based on the PEKO-MS benchmarks which have known optimal wirelengths.

11.4.1 Dynamic Step-Size Control

To show the effectiveness of the dynamic step-size control, we performed experiments on
adaptec1 with different step sizes. In Figure 11.16, the CPU times and HPWLs are plotted as
functions of the step sizes. As shown in Figure 11.16, the CPU time decreases as the step size
s becomes larger. In contrast, the HPWL decreases as the step size s gets smaller. The results
show that the step size significantly affects the running time and the solution quality.

11.4.2 Look-Ahead Legalization

Table 11.1 lists the HPWLs after the legalization stage with (w/) and without (w/o) look-
ahead legalization based on the ISPD-2005 benchmark suite. The table is divided into three
parts. The first part gives the numbers of the applied legalizations (LG #), HPWLs, and the
CPU times of the global placement with the look-ahead legalization. The second part gives
the HPWLs and the CPU times of the global placement without the look-ahead legalization.
The third part gives the HPWL and CPU-time ratios, computed by dividing the results without
the look-ahead legalization by those with the look-ahead legalization. The results show that
the look-ahead legalization can significantly reduce the wirelength by 24%, with even 2%
reduction in the CPU time on average.

11.4.3 HPWL and Runtime Analysis

Table 11.2 gives the HPWLs and CPU times of the global placement (GP), the legalization
(LG), and the detailed placement (DP) stages for the ISPD-2005 benchmark suite. On aver-
age, the legalization stage increases the wirelength by 7% while the detailed placement stage
decreases the wirelength by 5%. For the CPU time, global placement spends 72% of the total
runtime, which is much more than that of the legalization and the detailed placement stages.

Table 11.3 gives the HPWLs, DHPWLs (combined cost with wirelength and density), and
the CPU times of each placement stage for the ISPD-2006 benchmark suite. Similar to the
results for the ISPD-2005 benchmark suite, the legalization stage increases 7% wirelength

304 11 NTUplace3: An Analytical Placer for Large-Scale Mixed-Size Designs

Fig. 11.15. The global placement processes of newblue1.

11.4 Experimental Results 305

2500

2000

1500

1000C
P

U
 (

se
c)

500

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

9.8E+07

9.6E+07

9.4E+07

9.2E+07

9.0E+07

8.8E+07

8.6E+07

8.4E+07

8.2E+07

8.0E+07

CPU

HPWL

Fig. 11.16. The CPU times and HPWLs resulting from different step sizes based on the circuit
adaptec1.

Table 11.1. The HPWLs and CPU times w/ and w/o the look-ahead legalization (LAL).

w/ LAL w/o LAL ratio
circuit LG # HPWL (× e6) CPU (s) HPWL (× e6) CPU (s) HPWL CPU

adaptec1 3 83.94 810 86.93 814 1.04 1.01
adaptec2 1 93.09 887 110.50 1025 1.19 1.16
adaptec3 3 228.67 1803 244.31 1592 1.07 0.88
adaptec4 2 206.51 2150 219.06 2369 1.06 1.10
bigblue1 2 100.02 1499 102.24 1468 1.02 0.98
bigblue2 2 159.77 2856 167.84 2974 1.05 1.04
bigblue3 5 409.79 9362 999.92 8738 2.44 0.93
bigblue4 3 897.57 7995 941.07 8714 1.05 1.09
average 1.24 1.02

Table 11.2. HPWL and runtime results for the ISPD-2005 benchmark suite.

HPWL (× e6) CPU (s)
circuit GP LG DP GP LG DP total

adaptec1 82.10 83.92 80.93 608 105 80 803
adaptec2 90.39 93.07 89.85 640 36 135 824
adaptec3 207.09 227.12 214.20 1308 199 237 1767
adaptec4 196.63 203.28 193.74 1637 150 303 2114
bigblue1 92.19 100.54 97.28 1268 139 103 1523
bigblue2 152.24 161.04 152.20 2414 167 439 3047
bigblue3 331.35 382.72 348.48 2793 2122 723 5687
bigblue4 812.62 884.10 829.16 6127 2089 1957 10280

ratio 1.00 1.07 1.02 72% 14% 13% 100%

306 11 NTUplace3: An Analytical Placer for Large-Scale Mixed-Size Designs

Table 11.3. HPWL and runtime results for the ISPD-2006 benchmark suite.

HPWL (× e6) DHPWL CPU (s)
circuit GP LG DP (× e6) GP LG DP total

adaptec5 373.84 402.38 375.05 448.58 8366 821 700 9971
newblue1 59.68 62.41 60.36 68.10 821 89 262 1194
newblue2 186.33 213.41 198.63 203.39 1961 1178 198 3380
newblue3 291.03 295.98 278.87 278.89 1107 53 690 1883
newblue4 274.52 287.98 271.01 301.19 5775 388 595 6812
newblue5 511.67 511.67 469.95 509.54 15601 1044 1159 17899
newblue6 474.83 511.02 482.19 521.65 13558 459 1105 15426
newblue7 1037.43 1126.88 1051.13 1099.66 23464 3006 1860 28734
average 1.00 1.07 1.01 1.08 79% 10% 11% 100%

Table 11.4. Wire-model comparisons based on the ISPD-2005 benchmark suite.

circuit HPWL (× e6) vs. LSE CPU (s) vs. LSE
adaptec1 80.90 1.00 1097 1.37
adaptec2 90.40 1.01 1043 1.27
adaptec3 216.06 1.01 3292 1.86
adaptec4 198.00 1.02 3542 1.68
bigblue1 97.15 1.00 2180 1.43
bigblue2 152.96 1.01 3962 1.30
bigblue3 353.03 1.01 12516 2.20
bigblue4 839.03 1.01 16521 1.61
average 1.01 1.59

Table 11.5. Wire-model comparisons based on the ISPD-2006 benchmark suite.

circuit DHPWL (× e6) vs. LSE CPU (s) vs. LSE
adaptec5 458.59 1.02 9971 2.11
newblue1 69.53 1.02 1194 1.02
newblue2 202.24 0.99 3380 1.23
newblue3 280.65 1.01 1883 1.13
newblue4 307.99 1.02 6812 1.88
newblue5 522.88 1.03 17899 1.00
newblue6 528.46 1.01 15426 1.59
newblue7 1103.20 1.00 28734 1.41
average 1.01 1.42

and the detailed placement stage decreases 6% wirelength on average. It should be noted that
the detailed placement result incurs only 7% density penalty. Again, most CPU time was spent
on global placement (79%).

11.4.4 Wire-Model Comparison

In Tables 11.4 and 11.5, we compare the log–sum–exp (LSE) and the L p-norm wire models
based on the ISPD-2005 and -2006 benchmark suites, respectively. As reported in Table 11.4,

11.4 Experimental Results 307

Table 11.6. Results of the PEKO-MS-2005 benchmarks without density optimization.

HPWL (× e6) CPU (s)
circuit GP LG DP LB GP LG DP total

adaptec1 23.35 32.82 25.44 20.05 187 2 357 560
adaptec2 37.49 47.90 32.91 24.96 445 2 570 1035
adaptec3 52.50 79.67 57.18 40.95 448 4 979 1463
adaptec4 49.37 74.19 52.16 39.39 352 4 1104 1497
bigblue1 22.13 32.38 25.95 20.85 193 2 340 554
bigblue2 48.84 71.68 53.19 42.25 467 5 1130 1646
bigblue3 118.29 181.73 131.92 94.39 6838 9 2440 9366
bigblue4 195 50 291 01 224 59 171.47 3268 20 3388 6802
average 1.23 1.78 1.31 1.00 38.37% 0.27% 58.08% 100%

Table 11.7. Results of the PEKO-MS-2006 benchmarks without density optimization.

HPWL (× e6) CPU (s)
circuit GP LG DP LB GP LG DP Total

adaptec5 98.81 146.39 107.57 61.10 1327 7 2012 3346
newblue1 19.96 32.00 25.85 19.50 307 3 1991 2301
newblue2 40.53 66.56 47.62 27.30 1020 3 2157 3180
newblue3 88.43 121.62 94.14 30.30 1014 4 2017 3035
newblue4 55.96 82.83 61.81 43.60 486 6 1506 1998
newblue5 124.49 181.64 131.39 85.80 1349 11 2902 4262
newblue6 104.71 149.52 111.28 50.00 1091 11 8358 9460
newblue7 231.94 352.16 280.91 151.00 3824 19 12658 16501
average 1.58 2.34 1.77 1.00 26.15% 0.17% 73.68% 100%

the log–sum–exp wire model leads to smaller wirelength than that obtained by the L p-norm
one by about 1%, and better CPU times by about 59% for the ISPD-2005 benchmark suite.

For the ISPD-2006 benchmark suite, the objective is to optimize both wirelength and
density, i.e., the density HPWL (DHPWL for short). The DHPWL is defined as follows [1,17]:

DHPWL = HPWL × (1 + density penalty) (11.20)

To compute density penalty, we make the width and height of the bin grid equal to 10 circuit
row height, and define density penalty by

density penalty = (overflow ratio × bin area × density target)2 (11.21)

where over f low ratio is defined by (11.11).
As reported in Table 11.5, the log–sum–exp wire model again leads to smaller wirelenth

than that obtained by the L p-norm one by about 1%, and better CPU times by about 42% for
the ISPD-2006 benchmark suite. It is clear that the log–sum–exp wire model is slightly more
effective and significantly more efficient than the L p-norm one, based on the ISPD-2005 and
-2006 benchmark suites.

11.4.5 PEKO-MS Benchmarks

Tables 11.6 and 11.7 give the breakdowns of HPWLs and CPU times, based on the PEKO-MS
benchmark suite with known wirelength lower bounds under wirelength optimization alone

308 11 NTUplace3: An Analytical Placer for Large-Scale Mixed-Size Designs

Table 11.8. Results of the PEKO-MS-2005 benchmarks with density optimization.

HPWL (× e6) CPU (s)
circuit GP LG DP LB DHPWL GP LG DP total

adaptec1 19.99 33.28 26.16 20.05 27.84 200 2 407 609
adaptec2 31.56 56.85 40.21 24.96 44.70 423 2 460 885
adaptec3 48.67 92.33 64.75 40.95 72.73 536 3 806 1345
adaptec4 54.52 79.49 53.90 39.39 56.58 455 3 837 1295
bigblue1 22.21 32.54 25.77 20.85 26.28 226 2 261 489
bigblue2 48.77 75.63 56.60 42.25 57.99 947 4 985 1936
bigblue3 142.61 453.07 283.81 94.39 328.42 7870 7 2632 10509
bigblue4 225.67 336.29 238.19 171.47 242.73 6859 17 4047 10923
average 1.24 2.29 1.60 1.00 48.56% 0.23% 51.21% 100%

Table 11.9. Results of the PEKO-MS-2006 benchmarks with density optimization.

HPWL (× e6) CPU (s)
circuit GP LG DP LB DHPWL GP LG DP total

adaptec5 87.57 164.03 117.29 61.10 125.88 1990 7 1678 3675
newblue1 20.92 32.46 25.68 29.37 29.53 405 3 1700 2108
newblue2 45.05 68.80 47.39 27.30 48.58 1298 3 2165 3466
newblue3 99.15 132.99 98.85 30.30 104.01 1538 4 1995 3537
newblue4 53.44 85.86 65.59 43.60 67.46 1380 4 995 2379
newblue5 142.81 206.14 141.14 85.80 146.96 2816 10 1913 4739
newblue6 105.35 153.05 112.71 50.00 114.99 1284 9 6089 7372
newblue7 241.87 394.20 305.33 151.00 328.72 5987 18 13653 19658
average 1.65 2.52 1.85 1.00 39.95% 0.14% 59.91% 100%

(without considering the density cost). The columns “GP,” “LG,” and “DP” give the resulting
wirelengths and the required CPU times from the respective global placement, legalization,
and detailed placement stages. The column “LB” gives such wirelength lower bound for each
circuit. As shown in Tables 11.6 and 11.7, our placer obtains about 1.31 and 1.77 times of the
wirelength lower bounds on average for the PEKO-MS-2005 and PEKO-MS-2006 benchmark
suites, respectively.

We also performed experiments for both wirelength and density optimization on the
PEKO-MS benchmark suite. Tables 11.8 and 11.9 report the breakdowns of HPWLs and CPU
times during the placement process, considering both wirelength and density costs, and the
density HPWLs (DHPWLs) after the detailed placement stage. As reported in the tables, our
placer obtains longer wirelengths than optimizing wirelength alone, which are about 1.6 and
1.85 times of the wirelength lower bounds on average for the PEKO-MS-2005 and PEKO-
MS-2006 benchmark suites, respectively.

References

1. ISPD 2006 Program. http://www.ispd.cc/program.html.
2. T. Chan, J. Cong, J. Shinnerl, K. Sze, and M. Xie. mPL6: Enhanced multilevel mixed-size

placement. In Proceedings of ACM International Symposium on Physical Design, pages
212–214, 2006.

References 309

3. T. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for circuit
placement. In Proceedings of ACM International Symposium on Physical Design, pages
185–192, April 2005. Best paper award at ISPD’2005

4. H. Chen, C.-K. Cheng, N.-C. Chou, A. B. Kahng, J. F. MacDonald, P. Suaris, B. Yao,
and Z. Zhu. An algebraic multigrid solver for analytical placement with layout based
clustering. In Proceedings of ACM/IEEE Design Automation Conference, pages 794–799,
2003

5. T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang. NTUplace: a ratio partitioning
based placement algorithm for large-scale mixed-size designs. In Proceedings of ACM
International Symposium on Physical Design, pages 236–238, 2005

6. T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, and Y.-W. Chang. A high-quality mixed-size ana-
lytical placer considering preplaced blocks and density constraints. In Proceedings of
IEEE/ACM International Conference on Computer-Aided Design, 2006

7. K. Doll, F.M. Johannes, and K. Antreich. Iterative placement improvement by network
flow methods. IEEE Transations on Computer-Aided Design of Integrated Circuits and
Systems, 13:1189–1200, 1994

8. H. Eisenmann and F.M. Johannes. Generic global placement and floorplanning. In Pro-
ceedings of ACM/IEEE Design Automation Conference, pages 269–274, 1998

9. J. Gu and X. Huang. Efficient local search with search space smoothing: A case study of
the traveling salesman problem (TSP). IEEE Transaction on Systems, Man and Cyber-
netics, 24(5):728–735, 1994

10. D. Hill. US patent 6,370,673: Method and system for high speed detailed placement of
cells within an intergrated circuit design. 2002

11. Z.-W. Jiang, T.-C. Chen, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang. NTUplace2: A hybrid
placer using partitioning and analytical techniques. In Proceedings of ACM International
Symposium on Physical Design, pages 215–217, 2006

12. A. B. Kahng, S. Reda, and Q. Wang. APlace: A general analytic placement framework. In
Proceedings of ACM International Symposium on Physical Design, pages 233–235, 2005

13. A.B. Kahng and Q. Wang. Implementation and extensibility of an analytic placer. IEEE
Transations on Computer-Aided Design of Integrated Circuits and Systems, 24(5), May
2005

14. A.B. Kahng and Q. Wang. A faster implementation of APlace. In Proceedings of ACM
International Symposium on Physical Design, pages 218–220, 2006

15. G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In Proceedings of
ACM/IEEE Design Automation Conference, pages 343–348, 1999

16. M. Kleinhans, G. Sigl, F.M. Johannes, and K. J. Antreich. Gordian: VLSI placement by
quadratic programming and slicing optimization. IEEE Transations on Computer-Aided
Design of Integrated Circuits and Systems, 10(3):356–365, 1991

17. G.-J. Nam, C.J. Aplert, and P.G. Villarrubia. The ISPD 2006 placement contest and
benchmark suite. In Slides presented at ISPD’06, 2006

18. W.C. Naylor, R. Donelly, and L. Sha. US patent 6,301,693: Non-linear optimization
system and method for wire length and dealy optimization for an automatic electric circuit
placer. 2001

12

Conclusion and Challenges

Placement is one of the most important steps in the RTL-to-GDSII synthesis process, as it
directly optimize the interconnects, which have become the bottleneck in circuit and system
performance in the nanometer process technologies.

This book highlights the most dominant placement algorithms and implementation tech-
niques up to year 2006, as demonstrated in the 2005 and 2006 ISPD placement contests. Given
the exponential increase of the placement problem sizes, hierarchical or multilevel methods
are typically needed for scalability. The hierarchical placement method traces back thirty years
ago when min-cut based placement algorithms were first introduced, but have been refined a
great deal in recent years as in Capo (Chap. 5). The multilevel placement method is much
more recent, to a large extent promoted by the authors of the mPL placer in a sequence of
publications since 2000. It has been adopted by a number of other analytical placers in recent
years, including APlace (Chap. 7), FastPlace (Chap. 8), mFAR (Chap. 9), and NTUPlace3
(Chap. 11). Nevertheless, it might be surprising and puzzling to see that the flat placement
tool Kraftwerk (Chap. 3) exhibits excellent scalability. The secret is that it uses a simplified
quadratic wire length formulation, which can be solved by an efficient linear system solver
using a multigrid (multilevel) method. Therefore, it uses the multilevel method implicitly to
achieve the scalability.

Although the contest benchmarks provide numerical comparisons of various algorithms
presented in this book, the editors would like to warn the reader that relying solely on a few
benchmarking results to judge the merits of the underlying placement algorithms may not be
totally reliable. Many implementation details, such as the choice of data structures, memory
accessing patterns and various heuristics used by tie-breaking or placement refinements, may
affect the final placement results. It is possible that a promising idea or algorithm does not
achieve its full potential due to suboptimal implementations. Therefore, the reader needs to go
beyond the numerical results to form deeper understanding of the scalability and optimization
capability of various algorithms used in the placement contests. We sincerely hope that this
book, with detailed algorithm and implementation description of each placement tool, helps
the reader to achieve such level of understanding.

As we pointed in Preface of the book, the primary objective in both placement contests
was wire length minimization (with some consideration of routability in the second contest).
While we believe wire length minimization is very important, as the weighted wire length
minimization provides a general framework for performance and routability optimization in
placement, we also would like to encourage the researcher to apply and extend the wire length

312 12 Conclusion and Challenges

optimization formulation to address other placement constraints and/or objectives. Here are
some examples for further improvements.

Congestion Control for Routability. Wire length minimization directly translates into aver-
age congestion minimization. This global objective function, however, may not be enough to
mitigate local congestion. Modern circuits tend to have abundant white space. Management
of available white space remains as essential consideration in congestion mitigation. Over-
spreading cells (e.g., to achieve globally uniform white space distribution) might be good for
routability but only at the cost of significant wire length degradation. More effective conges-
tion prediction and reduction techniques are required.

Timing-aware Placement for Timing Closure. Placement is part of the physical synthesis
process whose goal is to achieve timing closure (i.e. achieve the performance target deter-
mined in design specification). In fact, placement is positioned at the driver seat of the physi-
cal synthesis flow. Not only it can affect solution quality metrics (timing, routability, etc.) of
physical synthesis, but also virtually all physical synthesis optimizations must communicate
with the placer to maintain the legality of solutions. Placement and other physical optimization
operations, such as buffering or gate sizing, may compete for the available chip area for tim-
ing optimization. How to seamlessly integrate placement with various physical optimization
operations for timing closure is still an open problem.

Mixed-size Placement for System-on-Chip (SoC) designs. In order to reduce the design
turn-around time, hierarchical designs and design reuse are practiced whenever possible,
resulting in a lot more movable/fixed macro blocks in today’s SoC designs. Simply, the capa-
bility of handling these large macros is a must in modern placement algorithm. In many cases,
macros are placed manually by designers as demonstrated in placement contest benchmark
circuits. Since those macros may have a huge influence on placement solutions, more auto-
mated and effective ways to handle those blocks at different stages of placement (for example,
during floorplanning, global placement and legalization etc.) are needed.

3-Dimensional Placement for 3D ICs. The recent advances in packaging technology allow
wafers to be stacked and connected together using through-silicon vias so that more functional
blocks and circuit elements can be integrated into a single package. This new technology,
called 3D IC design, introduces a new optimization dimension for placement. Straightforward
extension of 2D placement formulation into 3D versions would not be enough because several
technology issues must be addressed seamlessly in 3D placement. Thermal distribution, ther-
mal/signal via placement, signal propagation delays between different wafer layers, and the
possible need of supporting 3D macros, are some of the most important concerns. It remains
to be seen what is the most efficient and effective placement engine to support such new 3D
technology.

Other Placement Constraints and Objectives. In addition to wire lengths, congestion and
timing, modern circuits have to address various other issues and constraints. For example,
aggressive power minimization needs to be supported where the design may have multiple
voltage islands. Thermal constraints, power/ground issues with IR drops, clocking, crosstalk
and signal integrity, DFM (Design for Manufacturability) etc., all have strong implications to
circuit placement and need to be addressed in the near future.

Given these challenges, we believe that circuit placement is a still an open and active
research topic. More exciting development and progress is waiting for us.

Index

A
adaptec2/3/5, 5, 8, 48
Algebraic multigrid, 249
AMD Athlon Opteron, 81, 84
AMG-based weighted interpolation, 254
Amplify ASIC RC, 98
Analytical placement algorithms, 198
Analytical placement model, 290, 291
Anchor cells, 46–48, 51
APlace

clustering and unclustering, 169–171
and GFD algorithm, 262
global placement of, 171–174
HPWL of, 188
and IBM ICCAD’04 benchmarks, 184,

185
and IBM ISPD’04 benchmarks, 186
and IBM-PLACE 2.0 benchmarks, 183
and ISPD-2005 contest benchmarks, 184
legalization and detailed placement of,

177–179
and Peko-MS 2005 and 2006 benchmarks,

188
placement flow of, 168

APlace 2.0, 222, 223
APlace3.0

density functions of, 182, 183
and ISPD’06 Contest, 181
wirelength functions of, 181

APlace3 and ISPD 2006 contest scoring
function, 187

Area-array I/O technology, 4

ASIC designs, ISPD placement benchmarks
and, 3, 4

Average CPU time factor, 11
Average length δ of gradients of potential �,

77

B
Bell-shaped potential function, 172
Best-Choice clustering algorithm, 210, 211.

See also Clustering algorithm
Best Choice clustering in clustering scheme,

252, 253
bigblue1/2/3/4, 5, 7, 25, 48, 87
Bin-based simulated annealing, 137, 141
Bin overflow factor, 159
Bin structure, irregular, horizontal switch in,

141
BonnPlace, 61
BoundingBox net model, 65, 66

advantages of, 66, 67
clique net model and, 82

C
CAD tool, 100
Capo, 5, 8, 24, 60, 61, 97

detail placement, 107–109
flexible whitespace allocation, 104–107
floorplacement, 100–104
incremental placement, 118–124
memory profile, 124, 125
min-cut placement in, 98–100
publicly available benchmarks and,

125–131

314 Index

Capo (Continued)
routability, placement for, 109–113
RTL placement, improved, 113–118

Capo 8.0, 97
Capo10.2, 222, 223
Cell-based simulated annealing, 137
Cell-degree difference (in absolute values)

distribution, 23
Cell legalization, 281–283
Cell-matching process

in mode I and mode II, 299–301
with spare slots, 301

Cell order polishing, for intra-row and
inter-row cells, 179, 180

Cell shifting technique
addition of spreading forces, 204
bin structure and utilization, 201, 203
of FastPlace, 194, 201
macro-blocks, shifting of, 202–204
standard-cells, shifting of, 201

Cell-sliding process, 302
Cell swapping technique, 300
Circuit placement

characterization, 248
stages, 249

Clique model weighted graph, hypergraph
transformation, 251

Clique net model, 41, 46, 63–65, 198
and BoundingBox net model, 82
quadratic placement formulation by, 47
vs. hybrid net model, 200

Clustering algorithm, 170
Clustering and unclustering, of APlace,

169–171
Clustering for placement, two-level

clustering scheme, 209
Clustering saturation, 170
Coarse-grain clusters, 210
Coarsened hypergraph construction, 251
Coarsening or clustering in multilevel

optimization, 250–253
Computational complexity, 90
Congestion, and routing demand, 143
Congestion-based cutline shifting, 112, 113
Congestion control, for routability, 312
Congestion-directed placement, 173
Congestion estimation, 142. See also

Peak congestion analysis; Regional
congestion estimation

Congestion removal, 136, 153
grid white space allocation, 157
placement flow, 157
post-allocation optimization, 157, 158
problem formulation, 154
row white space allocation, 155–157

Conjugate gradient method, 174, 175, 292,
296, 297

Constant forces, 43, 44
Constant interpolation, in interpolation

scheme, 253, 254
Constrained wire-length minimization

problem, 175, 290
Convergence plot, 76–78
cpu factor, 8

D
DAC 2000, 97
Density-bin-based ILR (d-ILR), 205, 208.

See also Iterative Local Refinement
(ILR) technique

Density HPWL (DHPWL), 55, 307
Density smoothing effects, in GFD

algorithm, 265, 266
Density target, 7
Density Target penalty factor, 55
Design for Manufacturability, 312
Detailed placement, 14, 15, 240

of Dragon, 136
greedy cell movement, 108, 109
legalization and, 53
optimal branch-and-bound placement,

107, 108
rowironing, 107
suboptimality of, 27–29

Detailed placement, of Aplace
cell order polishing, 179
global cell moving, 177
whitespace distribution, 178

Detailed placement, of NTUplace3
cell matching, 298–300
cell-sliding process, 302
cell swapping technique, 300

Detailed placer. See FastDP
Detor wire length, 149–153
DFM. See Design for Manufacturability
Diffusion preplacement, 45, 46
3-Dimensional Placement, for 3D ICs, 312
DP. See Detailed placement

Index 315

DPlace, anchor cell-based quadratic
placement and, 39

experiments, 53–56
global placement in, 45–52
legalization and detailed placement, 53
overall algorithm, 53
preliminaries and motivation, 41–45

Dragon
detailed placement of, 136
framework of, 137
global placement of, 136
and ISPD 2006 Suite, 161
legalization of, 142
mixed-size placement flow of, 137–142
partitioning, 138
and Peko 2005 and 2006 Suite, 161
simulated annealing, 138
target utilization control of (see Target

utilization control)
Dragon-MC suite, 24, 60, 61, 98
Dynamic programming algorithm, 180
Dynamic step-size control, 303

E
ECO placement, 40, 45
ECO system, 118, 119, 122–124

fast legalization by, 119, 120
Engineering change order (ECO), 62, 72–74
Enhanced GFD Algorithm (EGFD), 273,

274

F
FastDP

detailed placement flow of, 216
global swap technique of, 215–219
local re-ordering technique of, 219
single-segment clustering of, 220
vertical swap technique of, 219

FastPlace, 61
cell shifting technique, 194, 201
clustering for placement, 209
detailed placement algorithm of, 194, 195
hybrid net model, 194, 197
iterative local refinement technique, 194,

205
legalization stage of, 212–215
macro-block legalization technique, 194,

212

multilevel global placement framework,
193, 195

quadratic placement methodology of, 196
standard-cell legalization technique, 194,

215
FastPlace3.0. See also FastPlace

HPWL comparison of, 223, 224
and ISPD-2005 and 2006 placement

contest benchmarks, 222–225
and PEKO-MS benchmarks, 225, 226
runtime analysis and comparison of, 222,

223, 225
scaled half-perimeter wirelength of, 224,

225
FastPlace-IBM benchmarks, 23, 24
FastPlace-IBM standard-cell circuits, 17
F-cycle optimization, in multilevel flow, 255
FengShui

greedy method for legalization, 275, 276,
282

partitioningbased placement tool, 10, 60,
98

Fiduccia–Mattheyses partitioner, 100, 120
Filler cells, whitespace handling, 269–272
FindNextBestPlace, 72
Fine clusters, 210, 241
Fine-granularity clustering, 240
First choice clustering, in clustering scheme,

251, 252
First-choice (FC) clustering algorithm, 292.

See also Clustering algorithm
Fixed blockages, 51, 52
Fixed-order single segment placement

problem, optimal solution for,
220–222

Fixed-points, 231, 232
categories of (see Off-chip fixed points;

On-chip fixed points)
controllability of, 235
control of, 234
flexibility of, 235
forces, 44
vs. constant forces, 235

Fixed-points addition-based placement
detailed placement, 240
fixed points vs. constant forces, 235
global placement, 236

316 Index

Fixed-points in global placement, stages of
adding controlling, 236
adding perturbing, 236–240
refinement, 240

Flat placement tool, 311
FLOORIST, constraint-based floorplan

repair algorithm, 116, 117
Floorplacement, 100

fixed-outline floorplanning, 101
floorplanning and placement, empirical

boundary between, 103, 104
min-cut, 102

Floorplans, 101, 112, 116
ISPD placement benchmarks and, 4
with large fixed macros, 8

Force-directed placement algorithm. See
FastPlace

Force-directed quadratic placement, 42–44
Force-equilibrium state, 231, 232

G
Gaussian smoothing, 295
Generalized force-directed (GFD) algorithm

constrain minimization, 256–259
density smoothing effects, 265, 266
enhanced, 273, 274
large cells fixing and gradual legalization,

266–268
multilevel implementation, 263–265
pin-to-pin wirelength minimization and

whitespace handling, 269–272
smooth constraints approximation,

257–259
smooth wirelength approximation, 256,

257
in solving problem, 260–263
stopping criterion in, 272
weighting of forces, 266
wirelength reduction in, 282
wirelength weighting, 268

Global cell moving, 177
Global placement, 14, 15

of Dragon, 136
fixed-points in, 236
of newblue1, 304

Global placement, in DPlace
anchor cells, 46–48
diffusion preplacement, 45, 46
fixed blockages, 51, 52

HPWL transformation, in quadratic
system, 50, 51

wire length improvement heuristics, 52
wire length minimization, unconstrained,

48–50
Global placement, of APlace

constrained minimization formulation,
171–174

multi-level algorithm (see Multi-level
algorithm)

quadratic penalty method and conjugate
gradient solver, 174

Global placement, of NTUplace3
base potential smoothing, 293–295
conjugate gradient method, 296
macro shifting, 296
multilevel framework for, 292, 293

Global swap technique
based on optimal region, 215–219
effect for overlap, 217

Gordian, 42, 61
GORDIAN-L function, 181, 182
GP. See Global placement
Greedy cell movement, 108, 109
Grid-cells, 19–21, 112
GSRC Bookshelf, 5, 8

H
Half-perimeter wirelength (HPWL), 4, 5, 17,

19, 52, 59, 82, 110, 111, 117, 118,
171, 178, 215, 249, 290

of APlace, 188
clique net model and, 63–65
of FastPlace3.0, 223, 224
GORDIAN-L approximation of, 181, 182
Lp-NORM approximation of, 182
on Peko-MS 2005 and, 29–31
in placement, 39
routed wire length, 41
transformation, in quadratic system, 50,

51
“Halos,” 79
hATP, 61
Hessian matrix A, 43, 44, 46–48, 53, 54
Hessian matrix A’, 53, 54
Hierarchical design methodology, 4
Hierarchical placement method, 311
hMetis, 138, 139, 169
Hold force, 70

Index 317

HPWL. See Half-perimeter wirelength
HPWL function, 7
HPWL/OPT, 55
HPWL+Overflow+CPU, scoring function,

84
Hybrid net model

clique and star net models, equivalence of,
198

of FastPlace, 194, 197, 199
Hybrid solver, 53
Hyperedge, in hypergraph, 248, 249, 251

I
IBM01 benchmark, 102
IBM ICCAD’04 benchmarks and APlace,

184, 185
IBM ISPD’04 benchmarks and APlace, 185,

186
IBM-PLACE 2.0 benchmarks and APlace,

183, 186, 187
ICCAD2004, 26, 28
Incremental placement

density constraints, satisfying, 125
fast cutline selection, 119, 120
general framework, 118, 119
handling macros and obstacles, 122
overfullness constraints, relaxing,

122–124
scalability, 120–122

Interconnect complexity, 238
Interconnect wire length, 143, 149
I/O pins, 4
IP-block-based design, 148
ISPD-2005 and 2006 benchmark suite,

NTUplace3 results on
HPWL and runtime results for, 305, 306
wire-model comparisons based on, 306

ISPD05 and ISPD06 circuit, in mPL6
evaluation, 284, 285

ISPD-2005 and 2006 placement contest
benchmarks, 4–8

and APlace, 181, 184, 187
and FastPlace3.0, 222–225
and mFAR, 242, 243

ISPD 2005/2006 benchmark, 25, 46, 48, 52
PEKO-MS version of, 89
wire length and runtime results for, 55

ISPD02 benchmarks, 43
ISPD98 benchmarks, 3

ISPD contest benchmarks, Capo and,
129–131

ISPD 2005/2006 contest benchmarks
DPlace on, 55
placer Kraftwerk and, 82–85

ISPD placement benchmarks
ASIC designs and, 3, 4
floorplans and, 4
ISPD 2005/2006 placement contest and

benchmark, 4–8
placement contest results, 8–11

ISPD 2006 Suite and Dragon, 161
Iterative clustering algorithm, 212, 213
Iterative Local Refinement (ILR) technique

bin structure for, 206, 209
of FastPlace, 194, 205
for handling placement blockages,

206–208
for placement congestion control, 208
for simultaneous spreading and wirelength

minimization, 206
smoothing transform, 207

K
Kraftwerk, 10, 50, 59

experiments, 81–90
and GFD algorithms, 262, 263
implementation details, 72–81
net model, 62–67
quadratic placement methodology,

67–72

L
Large cells legalization and fixing, in GFD

algorithm, 267, 268
LASPack CG solver, 53
Legalization, 14, 15

of Aplace, 177
detailed placement and, 53
of Dragon, 142
of macro-blocks (see Macro-block

legalization)
of NTUplace3, 297
of standard-cells (see Standard-cell,

legalization)
Linear programming, 275
Linear wirelength-minimization, 231
Log-sum-exp wirelength function,

171, 181

318 Index

Log-sum-exp wirelength model, of
NTUplace3, 291

Look-ahead legalization (LAL), 303
LP. See Linear programming
Lp-NORM approximation, 182

M
Macro-aware partitioning, 139, 140
Macro-block legalization

for circuit ibm06-HB, 214
of FastPlace, 194, 212
by simulated annealing, 213

Macro graph generation
initial constraints and adjustment,

277–280
location determination, 280, 281

Macro legalization schemes, 275–281
MCNC benchmarks, 3
MCNC92 macro block benchmarks, 198
mFAR

and ISPD05 and ISPD06 placement
contest benchmarks, 242, 243

and PEKO 2005 and PEKO 2006, 243,
244

steps of, 240, 241
Min-cut based placement algorithms, 311
Min-cut partitioner. See hMetis
Min-cut partitioning, 138
Min-cut placement in Capo

min-cut bisection, 99, 100
row-based placement, 99

Minimum local whitespace, min-cut
bisection placement and, 105

Minimum perturbation floorplan realization
(MPFR) problem, 212

Minimum perturbation formulation, in GFD
algorithm, 272

Mixed-size placement
algorithms, 274, 275
for system-on-chip (SoC) designs, 312
tool, 138

MLPart, 169
Module demand, 78, 79
Module density, control of, 78–81
Module movement µ, progression of, 77
Module overlap �, progression of, 76, 77
Module supply, 79–81
Monotone chain, in netlist, 15, 16
Monotone path, concept of, 14

Moore’s law, 59, 60
Move force, 69, 70
Movement control parameters, 202
mPL6, 222, 223
mPL4-MC suite, 24
mPL6 multilevel placement package

definition and notations, 248
evaluation, 284, 285
GFD algorithm, 255–260
legalization and detailed placement

cell legalization, 281–283
macro legalization, 276–281
wirelength reduction, 283

multilevel framework, 249–255
problem in formulation, 248, 249
types and improvements, 247

Multigrid, in multilevel framework, 249
Multi-level algorithm, 176, 177

multiple cluster levels, 174
multiple grid levels, 175

Multi-level clustering hierarchy, 171
Multilevel fixed-point addition-based

placement. See mFAR
Multilevel flow in multilevel optimization,

255
Multilevel implementation, in GFD

algorithm, 263–265
Multilevel metaheuristic, in VLSI domain,

249, 250
Multilevel optimization V-cycle for circuit

placement
coarsening or clustering, 250–253
multilevel flow, 255
relaxation and interpolation, 253–255

Multilevel placement method, 311

N
Nabla operator ∇x , 68
Nanometer process technology, 311
Net length L , progression of, 78
Netlist-based clustering, 210
Netlist partitioning, 100
newblue1/2, 8

density profile of, 294
global placement processes of, 304

Nonconstrained quadratic placement
problem, 230

Nonlinear-optimization-based placers, 60
Nonlocal Nets (Peko-MC), 23–25

Index 319

Nonzero entries comparison, 48
NTUplace3, 289

coarsening and uncoarsening stage of, 289
detailed placement of, 298–303
global placement of, 292
HPWL and CPU times of, 303–306
and ISPD-2005 and 2006 benchmark

suite, 305, 306
legalization of, 297
log-sum-exp wirelength model of, 291
and PEKO-MS-2005 and 2006 bench-

marks, 307, 308
NTUplace, partitioning based placement

tool, 10, 60, 61, 84

O
Off-chip fixed points, 238, 239
On-chip fixed points, 238, 239
Optimal branch-and-bound placement, 107,

108
Optimal GPs (OGP) circuits, 27–29
Optimal-HPWL net, 21, 22
Optimal region, for cell, 216, 217
Optimal-wire length placements, 13, 14
Overall algorithm, of DPlace, 53

P
Parametrized White Space (Peko-MS), 25

and nonlocal nets, suboptimality under,
25–27

Peak congestion analysis
cut ratio in recursive bipartitioning, 143
uniform distribution of cut nets, 145, 146
worst case analysis, 145

PEKO 2005 and PEKO 2006
and Dragon, 161
and mFAR, 243, 244

PEKO05 and PEKO06 circuit, in mPL6
evaluation, 284, 285

PEKO benchmarks, limitations of, 13
PEKO circuits, 13, 14
Peko-MC algorithm, 16, 17, 23
Peko-MC benchmark construction

algorithm, 16, 17
monotone chains, 15, 16

PEKO-MS-adaptec2 benchmark, 27
Peko-MS algorithm, 31
PEKO-MS-2005 and 2006 benchmarks, 53

and APlace, 188

and FastPlace3.0, 225, 226
Kraftwerk and, 85–90
NTUplace3 results on, 307, 308
statics, 32

PEKO-MS benchmarks, 55, 56
construction, 17–22

PEKO-MS generator, 19
PEKO-MSPEKO-MC IBM01 benchmark,

26, 27
PEKO-MS testcase (IBM02), 29
k-pin net in circuit placement, 248
Pin-to-pin half-perimeter wirelength

minimization, 269
Placement algorithms, 311
Placement blockages, 206–208, 215
Placement congestion control, 208
Placement region R, 19, 21
Placement target density value, 208
Placement transformation, global bin

structure for, 236
Poisson’s equation, 69, 71
Pseudo-pin and pseudo-net addition, 204
Publicly available benchmarks, Capo and

ISPD contest benchmarks, 129–131
mixed-size benchmarks, 126–128
routing benchmarks, 125, 126

Q
Quadratic cost function �n , 62, 63, 67, 72,

74
Quadratic penalty method, 174
Quadratic placement, 41, 42, 67

additional forces, 68–71
by clique model, 47
convergence, proof of, 71, 72
force-directed, 42–44
by star model, 47

Quadratic placement flow, 230
fixed-points addition in, 233, 234
fixed-points and force-equilibrium state

in, 231
Quadratic placement methodology, of

FastPlace, 196, 197
Quadratic placers, 61, 62
Quadratic system, HPWL transformation in,

50, 51
Quadratic wire length, 42

320 Index

R
RapidChip, 98
Rectangle-shaped potential function, 173
Rectilinear Steiner minimal tree (RSMT), 63
Recursive bipartitioning approach, 143, 144
Regional congestion estimation, 146–148
Regular ILR (r-ILR), 205, 208. See also

Iterative Local Refinement (ILR)
technique

Rent’s rule, 143, 148
Robustness, of placement approach, 78
ROOSTER, 110, 113, 125
Routability-Aware Placement, suboptimality

of, 31, 32
Routability, placement for

congestion-based cutline shifting, 112,
113

Steiner wire length, optimizing, 110–112
Routing benchmarks, 125, 126
Rowironing, 107
RTL placement, improved

multimillion gate designs, selective
floorplanning for, 113–116

temporary macro deflation, 116, 117
whitespace reallocation, 117, 118

RTL-to-GDSII synthesis process, placement
in, 311

S
Safe whitespace, min-cut bisection

placement and, 105–107
SCalable Advanced Macro Placement

Improvements (SCAMPI) work,
113–115, 126–128

Scaled overflow factor, 159
measurement, 7, 8

SHPWL/HPWL suboptimality ratios, 33, 34
Simulated annealing, 101, 122, 138. See

also Bin-based simulated annealing;
Cell-based simulated annealing

after white space allocation, 158
Single-segment clustering technique, 215,

220, 221
Smooth wirelength function, 171
SoCstyle VLSI design methodology, 5
SPEC CPU 2000 benchmarks, 84
Spring constants, of target points, 75, 76
Standard-cell

legalization, 215, 297

placement, autoroutability in, 153
and RTL Netlists, congestion-driven

placement for, 102
Star model, 46, 198

quadratic placement formulation by,
47

transformation, 50
State-of-the-art placers, placement

techniques and, 60, 61
Steiner wire length (StWL), 98

optimizing, 110–112
Successive Over-Relaxation (SOR), 115

T
Target points, spring constants of, 75, 76
Target utilization control, 158–160

by cell migration, 160
by cell redistribution, 159

Temporary macro deflation, 116, 117
Transparent-block wire length, 149–153

U
Unconstrained minimization problems, 291
Uniform whitespace, min-cut bisection

placement and, 104, 105
Uzawa algorithm, for mathematical

programming, 255, 260, 271

V
V-cycle optimization in multilevel flow, 255
Vertical swap technique, 219
VLSI circuits, 60, 97

features of, 167
VLSI design, 13

W
Weighted or AMG-based interpolation, in

interpolation scheme, 254
White space allocation, 155–157

placement flow with, 158
simulated annealing after, 158

Whitespace allocation techniques, min-cut
bisection placement and

minimum local whitespace, 105
safe whitespace, 105–107
uniform whitespace, 104, 105

Whitespace distribution, 178, 179
Whitespace reallocation, linear program-

ming and min-cost max-flow, 117,
118

Index 321

Wirelength
change, 142
distribution of net, 24
minimization, unconstrained, 48–50,

311, 312
transformation, hybrid model-based, 46

Wirelength function, partial gradient of, 172.
See also Smooth wirelength function

Wirelength improvement heuristics, 52
Wirelength smoothing parameter, 176

Wire-model comparison, based on ISPD-
2005 and -2006 benchmark suites,
306

WSA technique, 112

Z
Zero-Change Netlist Transformations

(ZCNT) benchmarking framework,
183, 188, 189

