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Preface 

This book specializes in surveying for engineers, treating the subject as field metrology. 
The emphasis throughout is to develop in the reader a clear understanding of the 

basic concepts of each topic in order that they may be correctly utilized and applied to 
the many different 'on-site' situations as they arise. To reinforce these concepts, each 
chapter contains a great many 'worked examples', carefully selected from a wide variety 
of representative examination sources, followed by student exercises complete with 
answers. 

Throughout the book, various topics are dealt with in relation to modern surveying 
techniques and instrumentation, and with due regard to the impact of information 
technology on data capture and processing. 

Chapter 1: a new chapter dealing with the overall basic concepts of surveying 
procedure and showing the application of the fundamental measure of angle and length 
in the surveying process. It utilizes a simple model to illustrate the importance of 
reconnaissance; of working from the whole to the par t ; of the careful consideration of 
all error sources and independent checks. 
Chapter 3 (Earthworks): has been expanded and includes an extremely useful program, 
written in basic, for the computation of areas, volumes, mass-haul ordinates and slope 
stake cutting points, in route construction. 
Chapter 4: completely reorganized and containing much new material on centring 
errors and errors affecting steep sights, which are of importance to the engineering 
surveyor. 
Chapter 5 deals with optical distance measurement and concentrates on those areas 
which it is felt will not be rendered obsolete by the advent of EDM. Also, the reader is 
introduced to the standard treatment of small errors by partial differentiation. 
Chapter 6 deals with the design and setting out of circular, transition and vertical curves 
plus the principle and use of the osculating circle and the very latest design procedures 
which, at the time of writing, are not yet available in other texts. 
Chapter 7: a unique chapter dealing exhaustively with the specialist procedures 
required by the tunnelling and mining engineer. It also includes an introduction to 
hydrographic surveying, sufficient for most in-shore surveys required of engineers. 
Chapter 8: another new chapter which extensively covers the many varied aspects of 
setting out (dimensional control) on site. It includes much detail on the application of 
lasers, the law and hazards appertaining to their use and the responsibilities and 
organization required on site to ensure prompt, accurate and economic setting-out. 



Whilst the book is a work of reference for practitioners it is also aimed at easy student 
assimilation of theory and its eventual application in the field; thus the importance of 
examination success in the subject has not been overlooked. A careful study of the 
worked examples and diligent completion of all the set exercises will equip the student 
for this task. 

The book should prove useful not only to technician and undergraduate students of 
surveying, civil mining and municipal engineering, but also to those studying for the 
various professional examinations which cover this subject. 
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Basic concepts of surveying 

The aim of this Chapter is to introduce the reader to the basic concepts of surveying. It 
is therefore the most important Chapter and worthy of careful study and consideration. 

1.1 DEFINITION 

Surveying may be defined as 'the science of determining the position, in three 
dimensions, of natural and man-made features on or beneath the surface of the Earth'. 
These features may then be represented in analogue form as a contoured map, plan or 
chart, or in digital form as a three-dimensional mathematical model stored in the 
computer. This latter format is referred to as a digital ground model (DGM). 

In engineering surveying, either or both of the above formats may be utilized in the 
planning, design and construction of works, both on the surface and underground. At a 
later stage, surveying techniques are used in the dimensional control or setting out of 
the designed constructional elements and also in the monitoring of deformation 
movements. 

In the first instance, surveying requires management and decision-making in 
deciding the appropriate methods and instrumentation required for satisfactory 
completion of the task to the specified accuracy and within the time limits available. 
Only after very careful and detailed reconnaissance of the area to be surveyed can this 
initial process be properly executed. 

When this is complete, the field work—involving the capture and storage of field 
data—is carried out with the aid of instruments and techniques appropriate to the task 
in hand. 

The next step in the operation is that of data processing. Most, if not all, of the 
computation will be carried out on computers which may range in size from pocket 
calculators to large main-frame computers. The methods adopted will depend upon the 
size and precision of the survey, as well as the manner of its recording whether this be in 
a field book or a data logger. 

Data representation in analogue or digital form may now be carried out by 
conventional cartographic plotting or through a totally-automated system using a 
computer-driven flat-bed plotter. 

In engineering, the plan or D G M is used for the planning and design of a 
construction project, which might be a railroad or a highway, dam, bridge, or even a 
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2 Basic concepts of surveying 

Since most engineering surveys are carried out in fairly small areas, the assumption of 
plane surveying is acceptable. The assumption is that the Earth's surface is flat, 
therefore the lines of gravity (plumb-lines) from all points on the surface are parallel and 
all measured angles are plane angles. In a triangle of approximately 120 k m

2
 on the 

Earth's surface, the difference between the sum of the spheroidal angles and the plane 
angles would be about 1" of arc. The above assumption is therefore quite legitimate, 
and points located on the irregular surface of the Earth may be projected vertically on 
to a plane surface in their presentation on a plan (Figure 1.1). 

Figure 1.1 Projection onto a plane surface 

An examination of Figure 1.1 shows clearly the basic surveying measurements 
needed to locate points A, B and C and to plot them orthogonally as A,B' and C. In the 
first instance the measured slant distance AB will fix the position of B relative to A. 
However, the vertical angle from A to B will also be required in order to reduce AB to its 
equivalent horizontal distance AB' for the purposes of plotting. Similar measurements 
will fix C relative to A, but to fix C relative to B requires the horizontal angle BAC 
{BAC). The vertical distances defining the relative elevations of the three points may 
also be obtained either from the slant distance and vertical angle (trigonometrical 
levelling), or by direct levelling (Chapter 2) relative to a specific reference datum. The 
five measurements mentioned above comprise the basis of plane surveying and are 
illustrated in Figure 1.2, i.e. AB is the slant distance, AB' the horizontal distance, B'B 
the vertical distance, BAB' the vertical angle (a) and BAC the horizontal angle (6). 

1.2 BASIC MEASUREMENTS 

B 

new town complex. N o matter what the work is, or how complicated, it must be set out 
on the ground in its correct place and to its correct dimensions, within the tolerances 
specified. To this end, surveying procedures and instrumentation of varying precision 
and complexity are used, the choice depending upon the nature of the project in hand. 

Since surveying is indispensable to the engineer in the planning, design and 
construction of a project, all engineers should have a thorough understanding of the 
limits of accuracy possible in the construction and manufacturing processes. This 
knowledge, combined with an equal understanding of the limits and capabilities of 
surveying instrumentation and techniques, will enable the engineer to complete his 
project successfully in the most economical manner and the shortest possible time. 
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A B 

•c 
• 

A B' 

c 
Figure 1.2 Basic measurements 

It can be seen from the above that the only measurements needed in plane surveying 
are angles and distances. Nevertheless, the full impact of modern technology has been 
brought to bear in the acquisition and processing of this simple data. Angles are now 
easily resolved to single-second accuracy by using optical and electronic theodolites; 
electromagnetic distance-measuring (EDM) equipment can obtain distances of several 
kilometers to sub-millimetre precision; lasers and north-seeking gyroscopes are 
virtually standard equipment for tunnel surveys; orbiting satellites and inertia! survey 
systems (spin-offs from the space programme) are being used for position fixing off-
shore as well as on-shore; continued improvement in aerial and terrestrial photo-
grammetric equipment and remote sensors makes photogrammetry an invaluable 
surveying tool; finally, data loggers and computers enable the most sophisticated 
procedures to be adopted in the processing and automatic plotting of field data. 

1.3 CONTROL NETWORKS 

The establishment of two- or three-dimensional control networks is the most 
fundamental operation in the surveying of an area whether it is of large or small extent. 
Their concept can best be illustrated by considering the survey of a relatively small area 
of land, as shown in Figure 1.3. 

The processes involved in carrying out the survey can be itemized as follows: 

(1) A careful reconnaissance of the area is first carried out in order to establish the most 
suitable positions for the survey stations (or control points) A, £ , C, D, E and F. The 
stations should be intervisible and so positioned as to afford easy and accurate 
measurement of the distances between them. They should form 'well-conditioned' 
triangles with all angles greater than 45°, and the sides of the triangles should lie close to 
the topographic detail to be surveyed. Adopting this procedure eliminates the problems 
of measuring up, over or around obstacles. 

The survey stations themselves may be stout wooden pegs driven well down into the 
ground, with a fine nail in the top accurately depicting the survey position. 
Alternatively, for longer life, concrete blocks may be set into the ground with some form 
of fine mark to pin-point the survey position. 
(2) The distances between the survey stations are now obtained to the required 
accuracy. Steel tapes or chains may be laid along the ground to measure the slant 
lengths, whilst vertical angles may be measured by using hand-held clinometers or 
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Figure 13 Linear survey 

B 

Figure 1,4 Stepped measurement 

Abney levels to reduce the lengths to their horizontal equivalents. Alternatively, the 
distances may be measured in horizontal steps as shown in Figure 1.4. The steps are 
short enough to prevent sag in the tape, and their end positions at 1,2 and B are fixed 
with a plumb bob and an additional assistant. The steps are then summed to give the 
horizontal distance. 

Thus by measuring all the distances, the relative positions of the survey stations are 
located at the intersections of the straight lines and the network possesses shape and 
scale. The surveyor has thus established in the field a two-dimensional horizontal 
control network whose nodal points are accurately fixed at known positions. 

It must be remembered, however, that all measurements, no matter how carefully 
carried out, contain error. Thus, as the three sides of a triangle will always plot to give a 
triangle, regardless of the error in the sides, some form of independent check should be 
introduced to reveal the presence of error. In this case (Figure 1.3) the horizontal 
distance from D to a known position D' on the line EC is measured. If this distance will 
not plot correctly within the plotted triangle CDE, then error is present in one or all of 
the sides of the triangle. Similar checks should be introduced throughout the network 
to prove its reliability. 
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(3) The proven network can now be used as a reference framework or huge template 
from which further measurements can be taken to the topographic detail. For instance, 
in the case of line FA, its position may be physically established in the field by aligning a 
tape or chain between two survey stations. Now, offset measurements taken at right 
angles to this line at known distances from F , say, 20 m, 40 m and 60 m, will locate the 
position of the hedge. Similar measurements from the remaining lines will locate the 
positions of the remaining detail. 

The method of booking the data for this form of survey is illustrated in Figure 1.5. 
The centre column of the book is regarded as the survey line FA with distances along it 
and offsets to the topographic details drawn in their relative positions, as shown in 
Figure 1.3. 

Note the use of oblique offsets to the trees to fix their positions more accurately by 
intersection, thereby eliminating the error of estimating the right-angle in the other 
offset measurements. 

The network is now plotted to the required scale, the offsets are plotted from the 
network and the relative positions of all the topographic detail are established to form a 
plan of the area. 
(4) As the aim of this particular survey was the production of a plan, the accuracy of the 
survey is governed largely by the scale of the plan. For instance, if the scale was, say, one 

Figure 1.5 Field book 
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F 

C 

D 
Figure 1.6 

part in 1000, then a plotting accuracy of 0.1 mm would be equivalent to 100 mm on the 
ground and it would not be economical or necessary to take the offset measurements to 
any greater accuracy than this. However, as the network forms the reference base from 
which the measurements are taken, its position would need to be fixed to a much 
greater accuracy. 

The foregoing comprises the steps necessary to carry out this particular form of 
survey, which is generally referred to as a chain or linear survey. It is a process naturally 
limited to quite small areas, due to the difficulties of measuring with tapes or chains and 
the rapid accumulation of error involved in the process. For this reason it is a surveying 
technique not widely used, although it does serve to illustrate in a simple, easy-to-
understand manner the basic concepts of all surveying. 

Had the area been much greater in extent, the distances could have been measured by 
E D M equipment; such a network is called a trilateration. A further examination of 
Figure 1.3 shows that the shape of the network could be established by measuring all 
the horizontal angles, with its scale or size being fixed by the measurement of one side. 
This network would be a triangulation. If all the sides and horizontal angles are 
measured the network is a triangulateration. Finally, if the survey stations are located 
by measuring the adjacent angles and lengths, as shown in Figure 1.6 (thereby 
constituting a polygon ABCDEF), then the network is called a traverse (see Chapter 4). 

These then constitute all the basic methods of establishing a horizontal control 
network, and they are dealt with, in detail, in Volume 2 of this work. 
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1.4 LOCATING POSITION 

The method of locating the position of topographic detail by right-angled offsets from 
the sides of the control network has been mentioned above (see Figure 1.3). However, 
this method would have errors in establishing the line FA, in setting out the right-angle 
(usually by eye), and in measuring the offset. It would, therefore, be more accurate to 
locate position directly from the survey stations. The most commonly-used method of 
doing this is by polar co-ordinates, as shown in Figure 1.7. A and B are survey stations of 
known position in a control network, from which the measured horizontal angle BAP 
and the horizontal distance AP will fix the position of point P. There is no doubt that 

A B 

Figure 1.7 Polar co-ordinates 

this is the most popular method of fixing position, particularly since the advent of E D M 
equipment. Indeed, the method of traversing is a repeated application of this process. 

An alternative method is by intersection where P is fixed by measuring the horizontal 
angles BAP and ABP, as shown in Figure 1.8. This method forms the basis of 
triangulation. Similarly, P may be fixed by the measurement of horizontal distances AP 
and BP, and this forms the basis of the method of trilateration. In both these instances 
there is no independent check as a position for P (not necessarily the correct one) will 
always be obtained. Thus, at least one additional measurement is required either by 
combining the angles and distances (triangulateration), by measuring the angle at P as 
a check on the angular intersection, or by producing a trisection from an extra control 
station. 

The final method of position fixing is by resection, Figure 1.9. This is done by 
observing the horizontal angles at P to at least three control stations of known position. 
The position of P may be obtained by either a graphical or mathematical solution, as 
illustrated in Volume 2, Chapter 2. 

A B 

P 

P 

Figure 1.8 Intersection 
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B 

P 

Figure 1.9 Resection 

1.5 ERRORS IN MEASUREMENT 

It should now be apparent that position-fixing involves simply the measurement of 
angles and distance. However, no matter how carefully executed, all measurements will 
contain error, and so the true value of a measurement is never known. It follows from 
this that if the true value is never known, then the true error can never be known either. 

The sources of error fall into three broad categories, namely: 

(1) Natural errors caused by variable or adverse weather conditions; refraction; 
gravity effects, etc. 

(2) Instrumental errors caused by imperfect construction and adjustment of the 
surveying instruments used. 

(3) Personal errors caused by the inability of the individual to make exact 
observations due to the limitations of human sight, touch and hearing. 

1.6 TYPES OF ERROR 

Ignoring mistakes or blunders caused largely by carelessness or total inexperience, 
errors of observation fall into two categories, (a) systematic errors, and (b) random 
errors (or variates). 

(1) Systematic errors: These conform to mathematical and physical laws; thus it is 
argued that to reduce their effect appropriate corrections can be computed and applied. 
A simple example of such an error is the expansion of a steel tape due to increase in its 
temperature above its standard temperature. Thus, if the standard temperature is 
known (usually 20°C) and the temperature at the time of measurement is measured by 
thermometer, the expansion can be calculated and the correction applied. Whilst in 
theory this appears correct, it is doubtful if all systematic error is ever removed from the 
measuring process. For instance, the thermometer may have an index error, whilst the 
air temperature measured may not be that of the tape material. Therefore the effect of 
systematic error can be reduced but never entirely eliminated. Also, as they can be 
entirely positive or entirely negative and not random in nature, repeated observations 
will only increase their effect. Systematic errors then are the most difficult to deal with 
and worthy of very careful consideration prior to, during and after the survey. 
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(2) Random errors: Those variates which remain after mistakes and systematic errors 
have been minimized. They are beyond the control of the observer, and are caused by 
the human inability of the observer to make exact measurements for reasons already 
indicated in Section 1.5. These errors are assumed to obey the law of probability and 
have a normal distribution. It is these errors alone therefore that can be statistically 
analysed and their effect evaluated. 

The main characteristics of random errors as indicated by a typical bell-shaped 
probability curve are: 

(a) Small errors occur more frequently than large ones; that is, they are more 
probable. 

(b) Positive and negative errors of equal magnitude occur with equal frequency; that 
is, they are equally probable. 

(c) Large errors occur infrequently; that is, they are less probable and are more 
likely to be mistakes or untreated systematic errors. 

There is no ideal method of dealing with the random errors which occur in the 
observation of control networks. The methods used vary from the simple non-
mathematical to the more complex methods based on the statistical theory of least 
squares. Yet regardless of their mathematical rigor the error distribution is frequently 
at variance with the law of probability and the common-sense logic of the observer. For 
this reason the greatest care should be given to meticulous observation and field 
procedures until future research produces more viable methods of error adjustment. 

1.7 SUMMARY 

In the preceding paragraphs an attempt has been made to outline the basic concepts of 
surveying. Because of their importance these concepts are now summarized as follows: 

(1) Reconnaissance is the first and most important step in the surveying process. Only 
after a careful and detailed reconnaissance of the area can the surveyor decide upon 
the techniques and instrumentation required to complete the work economically 
and meet the accuracy specifications. 

(2) Control networks form not only a reference framework for locating the position of 
topographic detail and setting-out constructions, they may also be used as a base 
for minor control networks containing a greater number of control stations at 
shorter distances apart and to a lower order of accuracy, i.e. a, b, c, d in Figure 1.6. 
These minor control stations may be more judicially placed for the purpose of 
locating the topographic detail. 

This process of establishing the major control first to the highest order of 
accuracy, as a framework on which to connect the minor control, which is in turn 
used as a reference framework for detailing, is known as working from the whole to 
the part and forms the basis of all good surveying procedure. 

(3) Errors are contained in all measurement procedures and a constant battle must be 
waged by the surveyor to minimize their effect. 

It follows from this that the greater the accuracy specifications the greater the 
cost of the survey, for it results in more observations, taken with greater care, over a 
longer period of time, using more precise (and therefore more expensive) 
equipment. It is for this reason that major control networks contain the minimum 
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number of stations necessary and surveyors adhere to the economic principle of 
working to an accuracy neither greater than, nor less than, that required. 

(4) Independent checks should be introduced not only into the field work, but also into 
the subsequent computation and reduction of field data. In this way, major errors 
can be quickly recognized and dealt with. 

(5) Commensurate accuracy is advised in the measuring process; that is, that the angles 
should be measured to the same degree of accuracy as the distances and vice versa. 
The following rule is advocated by most authorities for guidance—1" of arc 
subtends 1 mm at 200 m. 

This means that if distance is measured to, say, 1 in 200 000, the angles should be 
measured to 1" of arc, and so on. 

The author 's experience of commensurate accuracy is that distances are twice as 
strong as angles. For instance, measurement of the three angles in a triangle gives 
only its shape, whilst measurement of its three lengths gives shape and scale. Thus, 
whilst the above rule is a useful guide, it is no more than that. 

This then constitutes the overall basic approach to the surveying concepts used in the 
ultimate production of a plan. 
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Simple and precise levelling 

2.1 BASIC CONCEPTS 

Levelling is the process of obtaining the vertical heights of specific points on the Earth's 
surface above or below a datum plane. 

The basic concept of levelling can be clearly illustrated using a very simple example. 
Consider Figure 2.1(a) in which it is required to find the vertical height of the filing 
cabinet above the table. This can be easily resolved to a given accuracy by measuring 
the vertical height H, as shown, with a steel tape. However, the problem is more 
complex if the table and cabinet are in separate rooms (Figure 2.1(b)). It may be 
resolved, by measuring the heights Hl and H2 to the tops of the table and cabinet 
respectively, assuming that the floor on which they stand is horizontal. That is, the 
vertical heights are measured relative to a common datum. Such heights are then 
termed spot levels. For instance, if Hx = 1 m and H2 = 1.5 m, then the 'level' of the table 
is 1 m and of the cabinet 1.5 m, and the difference in levels is 0.5 m, which is the 
difference in height required. This then is the basic concept of levelling, the process of 
obtaining vertical heights above or below a given datum. 

If one considers levels over the ground surface of a small island such as the UK, one 
naturally considers using mean sea level (MSL) as a common datum. In order to make 
this common datum easily accessible to all users throughout the UK, permanent 
marks, whose levels relative to MSL are known, are established throughout the 
country. These marks, termed bench marks (BM), are set up by the Ordnance Survey 
(OS), the national survey organization for the UK. 

Thus, to be more specific, the da tum for levelling in the U K is known as the ordnance 
datum (OD) and is the mean of continuous sea-level observations taken over a period of 
six years at a tidal observatory in Newlyn, Cornwall. On many engineering schemes a 
local datum of purely arbitrary value is used. A permanent mark is fixed in a stable 
situation and allotted such a value that the lowest level on the site will still possess a 
positive value. For example, if the local datum is assigned to be 100 m and the vertical 
depth to the lowest point 30 m, then the level of the lowest point would be 70 m. Had 
the vertical depth been 115 m, then the level would have been —15 m. Minus signs can 
be misinterpreted, erased or simply left off, thereby resulting in serious mistakes. They 
should therefore be avoided by using an adequate value for the adopted datum. 

As already stated, ordnance da tum (OD) is made easily accessible to everyone by the 
establishment throughout the U K of a network of marks whose heights above O D 
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( a ) 

( b ) 

F l o o r 
— 

WW/ 

Figure 2.1 

F loo r 

have been fixed by the OS. These marks are called bench marks (BM), and their 
positions and values are shown on OS maps at the 1/2500 and 1/1250 scales. The most 
common type of BM to be found in the U K is the broad-arrow symbol cut into stable, 
vertical surfaces such as walls, as shown in Figure 2.2(a). Another, less common, type is 
shown in Figure 2.2(b). 

The values of OS BM are quoted and guaranteed only to the nearest 10 mm. Any BM 
established by persons other than the OS are referred to as temporary bench marks 
(TBM). These may have been tied into the O D or they may have purely arbitrary 
values. 

The majority of engineering work does not require its heights relative to MSL and so 
the use of an arbitrary datum may be expedient as long as the relative level values are 
accurate. However, use of O D generally affords the engineer abundant BM for the 
checking of his levelling circuits and ensures that the site levels are relative to adjoining 
land which may have been contoured by the OS. 

2.2 EQUIPMENT 
The equipment used in the levelling process comprises optical levels and graduated 
staffs. Basically an optical level consists of a telescope fitted with a spirit bubble, or 
automatic compensator to ensure long horizontal sights on to the graduated, 
vertically-held staff, as shown in Figure 2.3. Thus, by reference to Figure 2.10 it can be 
seen that the horizontal plane of sight swept out by the level, is itself another datum 
plane from which vertical distances are measured. 

2.2.1 Staffs 

The levelling staff is of either wood or metal and calibrated in metres and decimals 
thereof. The British Standards Institution (BSI) have adopted the E-pattern staff, the 
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Figure 2.4 Metric staffs, (a) British Standard E-pattern interval, (b) Sopwith 10-mm 
interval, (c) 5-mm interval 

smallest division of which is 10 mm, but it is read by estimation to the nearest 
millimetre, e.g. 1.103 m. Also used is the Sopwith metric staff which differs only in the 
pattern of the graduations. Other metric staffs graduated to 5 mm are available. The 
author 's experience of all three types shows that many more reading errors occur with 
the 5-mm type, and that the 10-mm E-pattern type is preferred (British Standard metric 
staff) {Figure 2.4). 

2.2.2 Levels 

Although there is a variety of makes, there are only three basic types of level, as follows: 

(1) Dumpy level 

The telescope of the dumpy level (Figure 2.5) is rigidly fixed to the tribrach or levelling 
plate. Movement of the footscrews against the trivet stage enables the tribrach to be set 
horizontal. A sensitive bubble attached to the side or top of the telescope ensures a 
horizontal line of sight when the instrument is in adjustment and the bubble is at mid-
run. A modern instrument will have internal focusing and a Ramsden eyepiece, giving 
an inverted image. The diaphragm, in addition to the cross-hairs, will carry stadia hairs 
for three-wire levelling or for roughly ascertaining the length of sight. 

Once the dumpy has been set up and levelled it should remain so for all sights taken 
at that point. It is thus considered ideal for contouring or any work involving many 
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Figure 2.5 Dumpy level. (N.B. Line of sight passes through centre of object lens and mid-

cross-hair) 

sights taken radially at each set-up. Undue activity around the instrument, tripod 
settlement, vibration on site, etc. will obviously disturb the verticality of the instrument 
and require a re-levelling of the bubble. Several such re-levellings will eventually alter 
the height of the line of sight and result in error. It is thus less accurate than the tilting 
level with which each line of sight is levelled. 

(2) Tilting level 

With this instrument (Figure 2.6) the telescope is not rigidly fixed to the tribrach but is 
pivoted, usually about its centre. A small circular spirit level on the tribrach allows 
approximate levelling of the instrument. Accurate levelling of the telescope for each line 
of sight is by means of a tilting screw and sensitive longitudinal bubble. The tilting level 
may be set up more quickly than the dumpy level for a set-up involving just two or 
three sights, and these readings will generally be more accurate; it is thus better for fly 
or sectional levelling. 

A reversible level is a tilting level which may be rotated about its line of sight to give 
bubble left and bubble right readings, the average being free of collimation error. It also 
permits an easy method of adjustment. 

Bubble 

Central 
pivot 

Figure 2.6 Tilting level 

Hinged mirror for^ viewing bubble 

^Telescope as for dumpy 

Capstan adjusting 
Pivot screws 

Circular bubble 

Tilting screw 

(3) Automatic or self-aligning level 

This instrument (Figure 2.7(a)) is like the dumpy in that the telescope is rigidly fixed to 
the tribrach. A small circular spirit bubble allows approximate levelling with the final 
accurate levelling being completed automatically by a 'stabilizer' inside the telescope. 
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Damper 

Figure 2.7(a) Automatic level. A, B and C are reflectors giving an erect image 

Figure 2.7(b) Reflectors remaining fixed 

Figure 2.7(c) Reflectors A and C moving clockwise through a 

The advantages of this level over the previous two are: 

(a) Much simpler to use, as it gives an erect image. 
(b) Very rapid operation giving greater economy. 
(c) N o chance of bubble setting error. 
(d) N o chance of reading staff without setting bubble first. 

One disadvantage is that it is impossible to use on a site where there is great vibration 
from, say, wind or piling operations. 

2.2.3 Principle of the automatic level 

In the auto-level, the stabilizer ensures that the entering ray of light passes through the 
cross-hairs, even though the telescope is slightly tilted. In practice: 

(1) The entering ray is horizontal. 
(2) The telescope, and thus the fixed prism at B, are tilted due to initial approximate 

levelling. 
(3) The freely suspended surfaces at A and C remain at the same angle to the 

horizontal plane. 

Horizontal line of sight 
Diverging ray 

Cross-hair 
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2.3 INSTRUMENT ADJUSTMENT 

In order for equipment to give the best possible results it should be frequently tested 
and adjusted. Such adjustments are called permanent adjustments, and these are 
described below. 

2.3.1 Dumpy level 
(1 ) Plate bubble test 

To ensure that the axis of the bubble is perpendicular to the vertical axis of the 
instrument. 

Test 

(a) Set bubble parallel to two footscrews. Centralize it, turn it through 90° in the 
horizontal plane until over the third footscrew, and re-centralize the bubble using this 
footscrew only. Repeat until bubble remains central for both positions. 
(b) Now re-set bubble parallel to two footscrews and very carefully centralize it. 

In order to illustrate the principle it is imagined that : 

(4) The entering ray enters at an angle equal to the tilt of the telescope. 
(5) The telescope and prism B remain horizontal. 
(6) The surfaces at A and C tilt through the same angle as the entering ray. 

Figure 2.7(b) shows the ray of light OA entering the telescope when it is perfectly 
horizontal and being deflected at A, B and C to emerge horizontally through the cross-
hairs. 

Assume now that the telescope is only approximately levelled and ray OA' enters at 
an angle a, the reflectors at A,B, C remaining fixed. Then from Figure 2.7(b): 

Angle of incidence at A' = (j? + a) = angle of reflection at A' 
Angle B'A'D = (2j8 + a) = angle of incidence at B' 

= angle of reflection B' 
.'. Angle of incidence at C = (/? + a) = angle of reflection at C 

Thus the ray of light will diverge from the horizontal by a and fail to meet at the cross-
hair. 

In Figure 2.7(c), if the telescope is tilted through a, substitute the situation outlined in 
(4), (5) and (6). 

Angle of incidence at A' = /? = angle of reflection at A' 
from which: 

Angle of incidence at B' = (2/J — a) = angle of reflection at B'. 

Inspection of Figure 2.7(c) shows that the angle of incidence at C is (/? — 2a), equal to 
the angle of reflection. Thus the ray of light now converges on the horizontal by 3a, the 
spacing of the stabilizer relative to the reticule ensuring that it passes through the cross-
hairs. 
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(a) " (b) " 

Figure 2.8 (a) With bubble horizontalized. (b) When turned through 180° 

Assuming that the bubble axis is not at right-angles to the vertical axis but is in error by 
an amount e, then the situation will be as in Figure 2.8(a). 
(c) Turn the bubble about the instrument axis through 180° in the horizontal plane; the 
amount by which it moves off centre is equal to twice the instrument error (2e) (Figure 
2.8(b)). 

Adjustment 

Bring the bubble half-way back to a central position using the two footscrews. This 
makes the vertical axis of instrument move through e and coincide with the true 
vertical, thus the level is now usable if no adjusting tools are immediately available. 
However, the bubble will still be inclined at e to the horizontal, so bring the bubble to 
the centre of its run by raising or lowering one end of the bubble by means of the 
capstan adjusting screws. 

(2) Collimation error 

To ensure that the line of sight is perpendicular to the vertical axis when the instrument 
is truly levelled. 

Two-peg test 

(a) Set up the instrument mid-way between two pegs, A and B, about 60 m apart, giving 
staff readings of, say, 3 m at A and 2 m at B, as in Figure 2.9(a). Assuming that the line of 
sight is inclined down from the horizontal by e\ as this error is proportional to the 
length of sight and the sights are equal, then the errors at A and B will be equal and 
cancel each other out. Thus the information obtained here is simply that 'A is lower than 
B by 1 m \ (Note that e is called the collimation error.) 
(b) Now move the instrument to D, in line with A and B and, say, 15 m from B (Figure 
2.9(b)). As the sights to A and B are no longer equal, the error will be greater at A than at 
B. Assume the readings at A and B to be 4 m and 3.5 m respectively; thus A appears 
lower than B by 0.5 m. Knowing that this is not the true difference in level, it is 
immediately apparent that collimation error is present. If one now constructs a 
horizontal line from the reading 3.5 m at B, it will give a reading of 4.5 m at A, as A is 
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truly lower than B by 1 m. Thus it can be seen that the collimation error e' is 0.5 m in 
60 m pointing down. Therefore the amount of error from the instrument position at D is 
(0.5/60) x 75 = 0.625 m. 

True reading on A from D = 4 + 0.625 = 4.625 m. 
A rule for finding the direction of collimation error is Tf the false difference in level is 

greater than the true difference then the direction is up, and vice versa'. 

Adjustment 

The instrument is set to read 4.625 m at A by raising or lowering (in this case lowering) 
the cross-hairs by use of the capstan adjusting screws. Note. The two-peg test frequently 
forms an exam question and students are recommended to use the above method, thus 
eliminating the need to remember formulae. In using the method, only the second 
sketch need be drawn and with practice, this too can be dispensed with. Regardless of 
whether or not the collimation error is up or down, it can always be drawn down, the 
figures will clearly indicate its direction later. A further example will now be worked to 
illustrate this. 

Example on two-peg test 

Assuming the same distances as in the previous example, the readings at A and B with 
the level mid-way are 2.85 m and 1.55 m respectively. With the level at D, the readings 
were A = 3.75 m and B = 1.85 m. Calculate the amount and direction of collimation 
error, also the true reading at A from D. 

(a) From mid-readings, A is lower than B by 1.3 m (true). 
(b) From D readings, A is lower than B by 1.9 m (false), thus collimation error is 

present. 

Figure 2.9 
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(c) Difference between (a) and (b) is the amount of collimation error = 0.6 m. 
(d) From the above rule the direction is up. Thus line of sight is too high by 0.6 m in 

60 m. Collimation error in 75 m (distance AD) = 0.75 m. True reading on A from 
D = 3.75 - 0.75 = 3 m. 

As shown the question is answered without any sketches. The difference between the 
' true' and 'false' readings gives the amount of collimation error. The 'rule' provides the 
direction. 

2.3.2 Tilting level 

(1) The first test as described for the dumpy level should, theoretically, be carried out 
on the small circular bubble of this level, but it is generally ignored. 
(2) The two-peg test is carried out in exactly the same way as for the dumpy but the 
method of adjustment is different. The level is set to read the true value on the staff by 
using the tilting screw to raise or lower the line of sight. This causes the sensitive 
longitudinal bubble to move off centre and this is then corrected by turning the capstan 
screws. (Note the difference in adjustment compared with dumpy.) 
(3) A third adjustment is to ensure that the tilting screw is in the centre of its run when 
the main spirit level is central and the vertical axis is truly vertical. This is carried out as 
follows: 

(a) Set main spirit level parallel to two footscrews and centralize it. 
(b) Turn through 180° and remove any movement off centre, half by the footscrews and 

half by the capstan adjusting screws. 
(c) Repeat the procedure over the third footscrew until the bubble remains central for 

any position of the telescope. 
(d) Now slacken off the locking nut of the tilting screw which can then be moved up or 

down its sleeve until the mid-run position is reached; tighten locking nut. The mid-
run position is usually indicated by the coincidence of graduation marks. 

This test is carried out only when necessary and on such occasions it should be done 
prior to the two-peg test. 

2.3.3 Automatic level 

The first test as described for the dumpy should be carried out on the circular bubble of 
the automatic level, half the error being eliminated by the footscrews and half by the 
capstan screws of the bubble. 

In this case it is very important that the bubble be kept in adjustment otherwise the 
stabilizer may stick or give inaccurate readings. The stabilizer gives the most accurate 
results near the centre of its movement, thus the circular bubble needs to be in 
adjustment to keep the movement of the stabilizer to a minimum. In precise levelling 
the bubble must be very accurately centred. 

The plane of the pendulum swing of the freely-suspended surfaces should be parallel 
to the line of sight, otherwise a slight error in compensation occurs. Thus, if the circular 
bubble is in error transversely and the telescope is always pointed in the same direction 
at each set up , the backsight (BS) will always contain a certain error and the foresight 
(FS) the same error but of opposite sign. Assuming BS error is + e and FS error — e, as 
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the FS is always subtracted from the BS the error becomes +e — ( — e) = 2e. To avoid 
this accumulation of systematic error, the telescope should be levelled pointing to the 
BS and the BS and FS readings taken. It is now re-levelled pointing to the FS and the 
readings repeated. The mean of the results is free from stabilizer error. This procedure is 
necessary only for precise work. 

The two-peg test is carried out as described and the line of sight adjusted by moving 
the cross-hair up or down, in exactly the same way as for the dumpy level. 

2.4 PRINCIPLE OF LEVELLING 

The instrument is set up at A (as in Figure 2.10) from which point a horizontal line of 
sight is possible to the TBM at IA. The first sight to be taken is to the staff held 
vertically on the TBM and this is called a backsight (BS) the value of which (1.5 m) 
would be entered in the appropriate column of a levelling book. Sights to points 2 A and 
3A where further levels relative to the TBM are required, are called intermediate sights 
(IS), again entered in the appropriate column of the levelling book. The final sight from 
this instrument set up at 4A and is called the foresight (FS). It can be seen from the 
Figure, that this is as far as one can go with this sight. If for instance the staff had been 
placed at X, it would not have been visible and would have had to be moved down the 
slope, towards the instrument at A, until it was visible. As foresight 4A is as far as one 
can see from A, then it is also called the change point (CP), signifying a change of 
instrument position to B. To achieve continuity in the levelling the staff must remain at 
exactly the same point 4A although it must be turned to face the instrument at B. It now 
becomes the BS for the new instrument set up and the whole procedure is repeated as 
before. 

Thus, one must remember that all levelling commences on a BS and finishes on a FS 
with as many IS in between as are required; and that change points are always FS/BS. 
Also, it must be closed back into a known BM to ascertain the misclosure error. 

2.4.1 Reduction of levels 

From Figure 2.10, realizing that the line of sight from the instrument at A is truly 
horizontal, it can be seen that the higher reading of 2.5 at point 2A indicates that the 
point is lower than the TBM by 1.0, giving 2A a level therefore of 59.5. This can be 
written as follows: 

1.5 - 2.5 = - 1 . 0 , indicating a fall of 1.0 from IA to 2A 
Level of 2A = 60.5 - 1.0 = 59.5 

Similarly between 2A and 3A, the higher reading on 3A shows it is 1.5 below 2A, thus: 

2.5 - 4.0 = - 1 . 5 (fall from 2A to 3A) 
Level of 3A = level of 2A - 1.5 = 58.0 

Finally the lower reading on 4A shows it to be higher than 3A by 2.0, thus: 

4.0 - 2.0 = +2.0, indicating a rise from 3 A to 4A 
Level of 4A = level of 3A + 2.0 = 60.0 

Now, knowing the reduced level (RL) of 4,4, i.e. 60.0, the process can be repeated for the 
new instrument position at B. This method of reduction is called the rise-and-fall (R-
and-F) method. 
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2.4.2 Methods of booking 

(1) Rise-and-fall 

Simple a n d precise level l ing 23 

BS IS FS Rise Fall RL Distance Remarks 

1.5 60.5 0 TBM (60.5) \A 
2.5 1.0 59.5 30 2A 
4.0 1.5 58.0 50 3A 

3.0 2.0 2.0 60.0 70 CP 4A (IB) 
5.5 2.5 57.5 95 IB 

6.0 1.0 4.5 62.0 120 CP 3B (1C) 
3.0 3.0 65.0 160 TBM (65.1) 2C 

10.5 6.0 9.5 5.0 65.0 checks 
6.0 5.0 60.5 misclosure 0.1 

4.5 4.5 4.5 correct 

The above extract of booking is largely self-explanatory. Students should note: 

(a) Each reading is booked on a separate line except for the BS and FS at change 
points. The BS is booked on the same line as the FS because it refers to the same point. 
As each line refers to a specific point it should be noted in the remarks column. 
(b) Each reading is substracted from the previous one, i.e. 2A from \A, then 3 A from 
2A, 4A from 3A and stop; the procedure re-commencing for the next instrument 
station, 2B from IB and so on. 
(c) Three very important checks must be applied to the above reductions, namely: 

the sum of BS - the sum of FS = sum of rises — sum of falls 
= last reduced level — first reduced level 

These checks are shown in the above Table. It should be emphasized that they are 
nothing more than checks on the arithmetic of reducing the levelling results, they are in 
no way indicative of the accuracy of the fieldwork". 
(d) It follows from the above that the first two checks should be carried out and verified 
before working out the reduced levels (RL). 
(e) Closing error = 0.1, and can be assessed only by connecting the levelling into a BM 
of known and proven value or connecting back into the starting BM. 

(2) Height of collimation 

This is the name given to an alternative method of booking. The reduced levels are 
found simply by subtracting the staff readings from the reduced level of the line of sight 
(plane of collimation). In Figure 2.10, for instance, the height of the plane of collimation 
(HPC) at A is obviously (60.5 + 1.5) = 62.0; now 2A is 2.5 below this plane, thus its 
level must be (62.0 - 2.5) = 59.5; similarly for 3A and 4A to give 58.0 and 60.0 
respectively. Now the procedure is repeated for B. The tabulated form shows how 
simple this process is: 
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BS IS FS HPC RL Remarks 

1.5 62.0 60.5 TBM (60.5) IA 
2.5 59.5 2A 
4.0 58.0 3A 

3.0 2.0 63.0 60.0 change pt 4A (IB) 
5.5 57.5 IB 

6.0 1.0 68.0 62.0 change pt 3B (1C) 
3.0 65.0 TBM (65.1) 2C 

10.5 12.0 6.0 65.0 checks 
6.0 60.5 misclosure 0.1 

4.5 4.5 correct 

Thus it can be seen that: 

(a) BS is added to RL to give H P C , i.e., 1.5 + 60.5 = 62.0. 
(b) Remaining staff readings are subtracted from H P C to give the RL. 
(c) Procedure repeated for next instrument set up at £ , i.e., 3.0 + 60.0 = 63.0. 
(d) Two checks same as R-and-F method, i.e.: 

sum of BS - sum of FS = last RL - first RL. 

(e) The above two checks are not complete; for instance, if when taking 2.5 from 62 to 
get RL of 59.5, one wrote it as 69.5, this error of 10 would remain undetected. Thus 
the intermediate sights are not checked by those procedures in (d) above and the 
following cumbersome check must be carried out: 

sum of all the RL except the first = (sum of each H P C multiplied by the number 
of IS or FS taken from it) — (sum of IS and FS). 

e.g. 362.0 = [(62.0 x 3.0) + (63.0 x 2.0) + (68.0 x 1.0)] 
- [12.0 + 6.0] = 362.0 

2.4.3 Inverted sights 

Figure 2.11 shows inverted sights at B, C and D to the underside of a structure. It is 
obvious from the drawing that the levels of these points are obtained by simply adding 
the staff readings to the H P C to give B = 65.0, C = 63.0 and D = 65.0; E is obtained in 
the usual way and equals 59.5. However, the problem of inverted sights is completely 
eliminated if one simply treats them as negative quantities and proceeds in the usual 
way: 

2-0 H F O 6 2 - 0 
11 

30 1-0 3-0 2-5 

B 

60-0 

Figure 2.11 Inverted sights 
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BS IS FS Rise Fall HPC RL Remarks 

2.0 62.0 60.0 TBM A 

- 3 . 0 5.0 65.0 B 
- 1 . 0 2.0 63.0 C 

- 3 . 0 2.0 65.0 D 
2.5 5.5 59.5 TBM E (59.55) 

2.0 - 7 . 0 2.5 7.0 7.5 60.0 checks 
2.0 7.0 59.5 misclosure 0.05 

0.5 0.5 0.5 correct 

R-and-F method H P C method 

2.0 - ( - 3.0) = + 5.0 = Rise 62.0 - ( - 3.0) = 65.0 
- 3 . 0 - ( - 1 . 0 ) = - 2 . 0 = Fall 62.0 - ( - 1 .0 ) = 63.0 
- 1 . 0 - ( -3 .0 ) = +2.0 = Rise 62.0 - ( -3 .0 ) = 65.0 
- 3.0 - 2.5 = - 5.5 = Fall 62.0 - ( + 2.5) = 59.5. 

In the checks inverted sights are treated as negative quantities; e.g. check for IS in 
H P C method gives: 

252.5 = (62.0 x 4.0) - ( - 7 . 0 + 2.5) 
= 248.0 - ( -4 .5 ) = 248.0 + 4.5 = 252.5 

2.4.4 Comparison of methods 
In the author 's opinion the R-and-F method should be used at all times because of the 
very simple but complete arithmetical checks involved. The R-and-F columns also give 
a visual indication of the topography. Although the H P C method involves slightly less 
arithmetic, particularly where there are numerous IS, as in grid levelling, its one great 
failing is the cumbersome IS check. However, it is useful when setting out levels as 
described in Section 2.6.1(1). 

It is significant that the report 'Survey Standards, Setting Out and Earthworks 
Measurement' produced in 1982 by a joint working party of the Institutions of 
Highway and Civil Engineers, recommends the use of the R-and-F method of booking. 

2.5 SOURCES OF ERROR 

(1) The main source of error is the residual collimation error of the instrument. From 
the two-peg test it should be apparent that this error would be eliminated by equalizing 
the lengths of the BS and FS. This could be done quite adequately by using the stadia 
hairs of the level, as in tacheometry, although in simple levelling balancing of the 
lengths of sights is not always possible. Theoretically equalization of the sums of the 
lengths of BS and FS will eliminate collimation error, but variations in focusing may 
affect this. 

(2) Staff not held vertical; eliminated by fitting a spirit bubble to the staff, or by swaying 
the staff backwards and forwards in the direction of the level until a minimum reading is 
obtained. 
(3) Error in reading staff; minimized by reducing the length of sight so that readings are 
easily defined. 
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(4) Mistake in reading staff, such as reading '6' for '9 ' ; have the booker read figures back 
and check them. May also be used to reduce booking error. 
(5) Staff moving off position at C P when turned to face the new instrument setting; use a 
levelling plate on soft ground, and clearly mark the C P on hard ground. 
(6) Instrument settlement; set up on firm ground, dig tripod legs well into the ground 
and avoid excessive movement about instrument. 
(7) Errors due to refraction from warm layers of air at ground level; keep readings at 
least 1 m above ground. 
(8) Errors due to staff not being fully extended. This may be due either to carelessness 
on the staff-holder's part or to wear on the joints or retaining spring. 
(9) Finally, it is important to eliminate parallax in the instrument by bringing the cross-
hair into sharp focus using the eye-piece focusing screw. 

Students should also note the errors eliminated by the use of automatic levels. The 
procedure should always be carried out before commencing the levelling. 

2.5.1 Accuracy 

The error in levelling can be found only by closing the circuit back to its starting point 
or by tying in to another established BM. This latter method should be regarded with 
caution because the BM themselves contain error, e.g. in levelling from one OS BM to 
another, one may get a final RL agreeing with that of the B M ; indicating no error in the 
levelling. However, the OS will only guarantee the values of adjacent BM to within 
10 mm. Generally, the error E should not exceed 12(K)

1 /2
 mm, although in hilly terrain 

with frequent short sights a more realistic value may be twice the above amount , i.e. 
E = 24(K)

1/2
 mm (K is the distance levelled in kilometres). 

2.6 CONTOURING 

A simple definition of a contour is that it is a line joining all points of equal level. Thus 
contour lines on a plan illustrate the conformation of the ground. For instance, when 
contour lines are close together they represent steeply-sloping ground, and vice versa. 
Contours are used by the engineer in a variety of ways, as the following sample shows: 

(1) In the computation of volumes. 
(2) In the construction of lines of constant gradient. 
(3) In delineating the limits of construction work. For example, the points of 

intersection, of the contours (strike lines) of a constructed or proposed slope, with 
ground contours of equal elevation, when joined up show the limits or slope stake 
positions of the construction. 

(4) In the delineation and measurement of drainage areas. 

The constant vertical distance between contours is termed the contour interval. The 
appropriate interval to adopt in any particular instance is dependent upon: 

(1) Cost: The smaller the interval adopted the greater the amount of work involved, 
resulting therefore in higher costs. 

(2) Purpose and extent of the survey: Where a plan is required for detailed design 
and/or the measurement of earthworks, the interval may be as low as 0.5 m or 
up to 2 m on larger sites. For general topographic mapping the interval may range 
from 5 to 20 m depending upon the scale of the plan and the nature of the terrain. 
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2.6.1 Methods of contouring 

For general contouring work, vertical-staff tacheometry is probably the most popular 
method (Chapter 5). However, when greater accuracy is required a level and staff may 
be used in the following procedures: 

(1) Direct contouring: In this method the actual contour is pegged out on the ground 
and its planimetric position surveyed. A back sight is taken to an appropriate TBM and 
the H P C of the instrument obtained, say 34.800 m O D . Then a reading of0.800 m on the 
staff would indicate that the foot of the staff was at the 34 m level. In this way the 34-m 
contour could be located and pegged out at regular intervals over the terrain. Similarly 
a reading of 1.800 m gives the 33-m contour, and so on. Contours are established one at a 
time and their position surveyed using an appropriate technique. As the accuracy of the 
contour depends not only upon the accuracy of levelling but also upon the accuracy of 
its position, this may be the controlling factor in the method of survey adopted to fix its 
position. It may be done by chain surveying, plane tabling or by offsets, polars or 
intersection from traverse lines. 

This technique is usually adopted on sites where the construction is related to a 
specific contour line, such as excavation work up to a given contour. 
(2) Indirect contouring: This involves establishing a grid over the area and obtaining 
levels at the corners of the grid squares. The grid interval will be dependent upon the 
rugosity of the terrain and the purpose for which the information is required. This latter 
factor may also control the accuracy to which the grid is established. For instance if the 
grid is also to be used for dimensional control, it may need to be established to a very 
high degree of accuracy. Linear interpolation between the levels, on the assumption of 
uniform slope between them is then used to locate the contours. Where the work in 
question is for route alignment, levels are taken at regular intervals each side of the 
route centre-line, along lines normal to the centre-line. The levels are then interpolated 
for contours and also used direct in computing the areas of cross-sections for earthwork 
quantities. 

Worked examples 

Example 2.1. The positions of the pegs which need to be set out for the construction of 
a sloping concrete slab are shown in Figure 2.12. Because of site obstructions the tilting 

Figure 2.12 (N.B. Dotted line H F and station E' are not part of the question) 
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level which is used to set the pegs at their correct levels can only be set up at station X 
which is 100 m from the TBM. The reduced level of peg A is to be 100 m and the slab is 
to have a uniform diagonal slope from A towards J of 1 in 20 downwards. 

T o ensure accuracy in setting out the levels it was decided to adjust the instrument 
before using it, but it was found that the correct adjusting tools were missing from the 
instrument case. A test was therefore carried out to determine the magnitude of any 
collimation error that may have been present in the level, and this error was found to be 
0.04 m per 100 m downwards. 

Assuming that the backsight reading from station X to a staff held on the TBM was 
1.46 m, determine to the nearest 0.01 m the staff readings which should be obtained on 
the pegs at A, F and if, in order that they may be set to correct levels. 

Describe fully the procedure that should be adopted in the determination of the 
collimation error of the tilting level. (ICE) 

The simplest approach to this question is to work out the true readings atv4, F and H 
and then adjust them for collimation error. Allowing for collimation error the true 
reading on TBM = 1.46 + 0.04 = 1.50 m 

H P C = 103.48 + 1.50 = 104.98 m 

True reading on A to give a level of 100 m = 4.98 m 
Dist AX = 50 m (AAXB = 3,4, 5) 
.*. Collimation error = 0.02 m per 50 m 
Allowing for this error, actual reading at A = 4.98 — 0.02 = 4.96 m 
Now referring to Figure 2.12, line HF through E will be a strike line 
.'. H and F have the same level as E' 
Dist AE' = (60

2
 + 6 0

2
)

1 /2
 = 84.85 m 

Fall from A to E' = 84.85 20 = 4.24 m 
.*. Level at E' = level at F and H = 100 — 4.24 = 95.76 m 
Thus true stafT readings at F and H = 104.98 - 95.76 = 9.22 m 
Dist XF = (70

2
 + 4 0

2
)

1 /2
 = 80.62 m 

Collimation error % 0.03 m 
Actual reading at F = 9.22 - 0.03 = 9.19 m 
Dist XH = 110 m, collimation error « 0.04 m 
Actual reading at H = 9.22 - 0.04 = 9.18 m. 

Example 2.2. The following readings were observed with a level: 1.143 (BM 112.28), 
1.765, 2.566, 3.820 C P 1.390, 2.262, 0.664, 0.433 C P 3.722, 2.886, 1.618, 0.616 TBM. 

(1) Reduce the levels by the R-and-F method. 
(2) Calculate the level of the TBM if the line of collimation was tilted upwards at an 

angle of 6' and each BS length was 100 m and FS length 30 m. 
(3) Calculate the level of the TBM if in all cases the staff was held not upright but 

leaning backwards at 5° to the vertical. (LU) 

(1) The answer here relies on knowing once again that levelling always commences on 
a BS and ends on a FS, and that C P are always FS/BS (see Table opposite). 
(2) Due to collimation error 

the BS readings are too great by 100 tan 6' 
the FS readings are too great by 30 tan 6' 
net error on BS too great by 70 tan 6' 

The student should note that the IS are unnecessary in calculating the value of the 
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A Line of sight 

V q * 

\ 5 ° l 

\ B Figure 2.13 

T B M ; he can prove it for himself by simply covering up the IS column and calculating 
the value of TBM using BS and FS only. 

There are three instrument set-ups, therefore the total net error on BS = 
3 x 70 tan 6' = 0.366 m (too great). 

Level of TBM = 113.666 - 0.366 = 113.300 m 

(3) F rom Figure 2.13 it is seen that the true reading AB = actual reading CB x cos 5°. 
Thus each BS and FS needs to be corrected by multiplying it by cos 5°; however, this 
would be the same as multiplying the ZBS and ZFS by cos 5°, and as one subtracts BS 
from FS to get the difference, then 

True difference in level = actual difference x cos 5° 
= 1.386 cos 5° = 1.381m 

Level of TBM = 112.28 + 1.381 = 113.661 m 

BS IS FS Rise Fall RL Remarks 

1.143 112.280 BM 
1.765 0.622 111.658 
2.566 0.801 110.857 

1.390 3.820 1.254 109.603 
2.262 0.872 108.731 
0.664 1.598 110.329 

3.722 0.433 0.231 110.560 
2.886 0.836 111.396 
1.618 1.268 112.664 

0.616 1.002 113.666 TBM 

6.255 4.869 4.935 3.549 113.666 
4.869 3.549 112.280 

1.386 1.386 1.386 checks 

Example 2.3. One carriageway of a motorway running due N is 8 m wide between kerbs 
(Figure 2.14) and the following surface levels were taken along a section of it, the 
chainage increasing from S to N. A concrete bridge 12 m in width and having a 
horizontal soffit, carries a minor road across the motorway from S W to N E , the centre-
line of the minor road passing over that of the motorway carriageway at a chainage of 
1550 m. 
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BS IS FS Chainage 
(m) 

Location 

1.591 1535 west channel 
1.490 1535 crown 
1.582 1535 east channel 

- 4 . 5 6 6 bridge soffit* 
1.079 1550 west channel 

0.981 1550 crown 
1.073 1550 east channel 

2.256 0.844 CP 
1.981 1565 west channel 
1.884 1565 crown 

1.975 1565 east channel 

* Staff inverted. 

Taking crown (i.e. centre-line) level of the motorway carriageway at 1550 m chainage 
to be 224.000 m 

(a) Reduce the above set of levels and apply the usual arithmetical checks. 

Figure 2.14 
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(b) Assuming the motorway surface to consist of planes, determine the minimum 
vertical clearance between surface and the bridge soffit. (LU) 

The H P C method of booking is used because of the numerous IS. 

BS IS FS HPC RL Remarks 

1.591 223.390 1535 W channel 
1.490 223.491 1535 crown 
1.582 223.399 1535 E channel 

- 4 . 5 6 6 229.547 bridge soffit 
1.079 223.902 1550 W channel 
0.981 224.981* 224.000 1550 crown 
1.073 223.908 1550 E channel 

2.256 0.844 226.393 224.137 CP 
1.981 224.412 1565 W channel 
1.884 224.509 1565 crown 

1.975 224.418 1565 E channel 

3.847 5.504 2.819 224.418 
2.819 223.390 

1.028 1.028 checks 

* Permissible to start here because this is the only known RL; also, in working back to 1535 m one still subtracts from HPC in the usual way. 

Intermediate sight check 

2245.723 = [(224.981 x 7) + (226.393 x 3) - (5.504 + 2.819)] 
1574.867 + 679.179 - 8.323 = 2245.723 

The student should now draw a sketch of the problem and add to it all the pertinent 
data as shown in Figure 2.14. 

Examination of Figure 2.14 shows the road to be rising from S to N at a regular grade 
of 0.510 m in 15 m. This infers then that the most northerly point (pt B on east channel) 
should be the highest; however, as the crown of the road is higher than the channel one 
should also check pt A on the crown; all other points can be ignored. Now, from the 
illustration the distance 1550 to A on the centre-line 

= 6 x ( 2 )

1 /2
 = 8.5 m 

.'. Rise in level from 1550 to A = (0.509/15) x 8.5 = 0.288 m 
Level at A = 224.288 m giving a clearance of (229.547 - 224.288) = 5.259 m 
Distance 1550 to B along east channel = 8.5 + 4 = 12.5 m 

.'. Rise in level from 1550 to B = (0.510/15) x 12.5 = 0.425 m 
Level at B = 223.908 + 0.425 = 224.333 m 

/ . Clearance at B = 229.547 - 224.333 = 5.214 m 
.'. Minimum clearance occurs at the most northerly point on the east channel, i.e. 

at B. 
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Exercises 

(2.7) The following readings were taken with a level and a 4.25-m staff: 

0.683, 1.109, 1.838, 3.398 [3.877 and 0.451] CP, 1.405, 1.896, 2.676 BM 
(102.120 AOD), 3.478 [4.039 and 1.835] CP , 0.649, 1.707, 3.722 

Draw up a level book and reduce the levels by 

(a) R-and-F. 
(b) Height of collimation. 

What error would occur in the final level if the staff had been wrongly extended and a 
plain gap of 12 mm occurred at the 1.52-m section jo in t? (LU) 

Parts (a) and (b) are self checking. Error in final level = zero. 
(Hint: all readings greater than 1.52 m will be too small by 12 mm. Error in final level 

will be calculated from BM only.) 

(2.2) The following staff readings were observed (in the order given) when levelling up a 
hillside from a TBM 135.2 m AOD. Excepting the staff position immediately after the 
TBM, each staff position was higher than the preceding one. 

1.408, 2.728, 1.856, 0.972, 3.789, 2.746, 1.597, 0.405, 3.280, 2.012, 0.625, 4.136, 2.664, 
0.994, 3.901, 1.929, 3.478, 1.332 

Enter the readings in level-book form by both the R-and-F and collimation systems 
(these may be combined into a single form to save copying). (LU) 

(2.3) The following staff readings in metres were obtained when levelling along the 
centre-line of a straight road ABC. 

BS IS FS Remarks 

2.405 pt A (RL = 250.05 m AOD) 
1.954 1.128 CP 
0.619 1.466 pt B 

2.408 pt D 
- 1 . 5 1 5 pt E 

1.460 2.941 CP 
2.368 

pt c 

D is the highest point on the road surface beneath a bridge crossing over the road at 
this point and the staff was held inverted on the underside of the bridge girder at £ , 
immediately above D. Reduce the levels correctly by an approved method, applying the 
checks, and determine the headroom at D. If the road is to be re-graded so that AC is a 
uniform gradient, what will be the new headroom at D ? The distance AD = 240 m and 
DC = 60 m. (LU) 

(Answer: 3.923 m, 5.071 m) 

(2.4) Distinguish, in construction and method of use, between dumpy and tilting 
levels. State in general terms the principle of an automatic level. (ICE) 
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(2.5) The following levels were taken with a metric staff on a series of pegs at 
100-m intervals along the line of a proposed trench. 

BS IS FS Remarks 

2.10 TBM 28.75 m 
2.85 peg A 

1.80 3.51 p e g B 
1.58 peg C 
2.24 peg D 

1.68 2.94 peg E 
2.27 
3.06 

3.81 TBM 24.07 m 

If the trench is to be excavated from peg A commencing at a formation level of 26.5 m 
and falling to peg £ at a grade of 1 in 200; calculate the height of the sight rails in metres 
at A, B, C, D and £ , if a 3-m boning rod is to be used. 

(Answer: 1.50, 1.66, 0.94, 1.10, 1.30 m) 

Briefly discuss the techniques and advantages of using laser beams for the control of 
more precise work. (KP) 

Refer to Chapter 8 for details of 'sight rails' and 'lasers'. 

2.7 PRECISE LEVELLING 

The difference between precise and simple levelling lies in the use of more refined 
instruments and techniques for the former to attain much greater accuracy. 

2.7.1 Definitions 

In addition to the definitions for simple levelling the following are required: 

(1) Level line: Imagine two points, A and B, some distance apart on the Earth's surface 
but having exactly the same level (Figure 2.15). Ignoring the effects of refraction and 
assuming the Earth to be a perfect sphere, the readings from X' on both staffs held at A 
and B would be identical. Fo r this to be so, the line of sight would need to be curved 
parallel to the Earth's surface, giving readings at A' and B'. Such a line is called a level 
line and is at all points at right-angles to the direction of gravity. 
(2) Horizontal line: In the above case, however, the line of sight would be from X' to 
B", and this is called a horizontal line. The reading at B" would result in the level of B 
appearing too low by the amount B'B". This error is due to the curvature of the Earth, 
and results in a positive correction of the amount B'B" to the apparent level of B. 

The line X'B" does not, however, remain horizontal but is subject to refraction, and 
gives the actual staff reading at 7, the curvature correction is thus reduced by 
approximately one seventh. 
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E a r t hfs 
c e n t r e 

Figure 2.15 

B" 

^ / A c t u a l r e a d i n g on s t a f f 

' E r r o r d u e to c u r v a t u r e 

Figure 2.16 

2.7.2 Curvature and refraction 
(1 ) Curvature 

From Figure 2.16 (XB")

2
 = (CB"f - (CX)

2
 = (R + h)

2
 - R

2 

= R

2
 + 2Rh + h

2
- R

2
 = (2Rh + h

2
) 

Now, as the geodetic distance XB is small compared with R it can be taken as equal to 
XB" = D. 

.-. D = (2Rh + h

2
)

112 

or h = D

2
/(2R + h) 

(2.1) 
(2.2) 

In practice, h is small compared with R, therefore h

2
 in equation (2.1) may be neglected, 

thus: 

D = (2Rh)

1/2 

h = D

2
/2R 

(2.3) 
(2.4) 
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Worked example 

Example 2.4. In extending a triangulation survey of the mainland to a distant off-lying 
island, observations were made between two trig stations, the one 3000 m and the other 
1000 m above sea level. If the ray from one station to the other grazed the sea, what was 
the approximate distance between stations, (a) neglecting refraction, and (b) allowing 
f o r k ? (R = 6400km). (ICE) 

Refer Figure 2.17. 

(a) D, = (IRh,)

112
 = (2 x 6400 x i)

1
'

2
 = 113 km 

D2 = (2Rh2)
1/2
 = (2 x 6400 x 3 )

1 /2
 = 196 km 

Total Distance = 309 km 

(b) From equation (2.6): D, = (7/6 x 2 ^ i )

1 / 2
, D2 = (7/6 x 2Rh2)

1/2
. 

By comparison with the equation in (a) above, it can be seen that the effect of refraction 
is to increase distance by (7 /6)

1 /2 

D = 309 x ( 7 / 6 )

1 /2
 = 334km 

Figure 2.17 

(2) Refraction 

This is a variable quantity changing with temperature, pressure, position on the Earth's 
surface, etc. It is generally taken as being one seventh of curvature and acting in the 
opposite direction. 

Thus the combined correction for curvature and refraction 

(BY) = (h-r) = (h- fe/7) = 6h/l = 6D

2
/\4R (2.5) 

and D = (\4Rh/6)

1/2
 = [7(2K/i) /6]

1 /2
 (2.6) 

Consider now the curvature correction for D km taking R = 6370 km. 

D

2
 (D x 1000)

2 

h = — = „ „ „ „ ' = 0.0785D

2
 m (2.7) 

2R 2 x 6 3 7 0 x1000

 v ; 

where D is in kilometres. 
The combined correction for curvature and refraction is 

* x h = 0.0673D

2
 m (2.8) 

Although our main concern here is for the value of h, questions frequently arise 
involving the calculation of distance D. 
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Instrument 

r = correction due to refraction 
h — correction due to curvature 

xx = BS reading on peg A 
x2 = FS reading on peg B 

dAB = difference in level between A and B 
Figure 2.18(a) 

Instrument PLAN VIEW 

yx — BS reading on peg B 

y2 = FS reading on peg A 

Figure 2.18(b) 

2.7.3 Reciprocal levelling 

In precise levelling the lengths of the sights are kept equal to within 0.5 m. This has the 
effect of eliminating residual collimation error and errors due to curvature, and 
minimizing errors due to refraction. 

When one needs to cross a wide gap in the process of levelling it becomes impossible 
to equalize the BS and FS lengths and so the method of reciprocal levelling is used. 

With instrument near A (Figure 2.18(a)), the difference in level between 

„ S ta f f 
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A and B = dAB = x2 - xi - (h ~ r) (2.9) 

With instrument near B (Figure 2.18(b)), 

dAB = yi~ |>2 - (h ~ r)] = yx - y2 + (h - r) (2.10) 

Now, (x2 — xx) is the difference in the staff readings from A = X and (yx — y2) is the 
difference in the staff readings from B = Y Therefore, adding equations (2.9) and (2.10) 

gives 2dAB = X+Y dAB = (2.11) 

Thus, reciprocal levelling eliminates the effects of curvature and refraction, the 
difference in level between A and B simply being the mean of the difference in 
observations from each bank. 

The above equation assumes the value of r equal in both cases. However, if only one 
level is used there will be a time lag in transferring it to the opposite bank, during which 
the value of r may change. Thus to ensure better results two levels, one on each bank 
should be used and the sights taken simultaneously. Although this will give better 
results than when using one level, each level may have a different collimation error. 
They should therefore be interchanged and the whole procedure repeated, the mean of 
the four values will then be the most probable difference in level between the two points. 

Worked examples 

Example 2.5. Obtain, from first principles, an expression giving the combined 
correction for the Earth's curvature and atmospheric refraction in levelling, assuming 
that the Earth is a sphere of 12740 km diameter. Reciprocal levelling between two 
points Y and Z 730 m apart on opposite sides of a river gave the following results: 

Instrument at Height of instrument Staff at Staff reading 
(m) (m) 

Y 1.463 Z 1.688 
Z 1.436 Y 0.991 

Determine the difference in level between Y and Z and the amount of any collimation 
error in the instrument. (ICE) 

6D

2 

(1) (h - r) = = 0.0673D

2
 m (Refer Section 2.7.2) 

(2) With instrument at 7, Z is lower by (1.688 - 1.463) = 0.225 m 
With instrument at Z , Z is lower by (1.436 - 0.991) = 0.445 m 

0.225 + 0.445 
True height of Z below Y = = 0.335 m 

Instrument height at Y = 1.463 m; knowing now that Z is lower by 0.335 m, then a 
truly horizontal reading on Z should be (1.463 + 0.335) = 1.798 m; it was, however, 
1.688 m, i.e. — 0.11 m too low ( —ve indicates low). This error is due to curvature and 
refraction (h — r) and collimation error of the instrument (e). 
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Example 2.6. A and B are 2400 m apart. Observations with a level gave: 

A, height of instrument 1.372 m, reading at B 3.359 m 
B, height of instrument 1.402 m, reading at A 0.219 m 

Calculate the difference of level and the error of the instrument, if refraction 
correction is one seventh that of curvature. (LU) 

Instrument at A, B is lower by (3.359 - 1.372) = 1.987 m 
Instrument at B, B is lower by (1.402 - 0.219) = 1.183 m 

True height of B below A = 0.5 x 3.170 m = 1.585 m 

Combined error due to curvature and refraction 
= 0.0673Z)

2
 m = 0.0673 x 2.4

2
 = 0.388 m 

Now using same procedure as in Example 2.5. 

Instrument at A = 1.372, thus true reading at B = (1.372 + 1.585) 
= 2.957 m 

Actual reading at B v = 3.359 m 
Actual reading at B too high by +0.402 m 

Thus (h-r) + e = +0.402 m 
e = +0.402 - 0.388 = +0.014 m in 2400 m 

Collimation error e = +0.001 m up in 100 m. 

Exercises 

1(a) Determine from first principles the approximate distance at which correction for 
curvature and refraction in levelling amounts to 3 mm, assuming that the effect of 
refraction is one seventh that of the Earth's curvature and that the Earth is a sphere of 
12 740 km diameter. 
(b) Two survey stations A and B on opposite sides of a river are 780 m apart, and 
reciprocal levels have been taken between them with the following results: 

Instrument at Height of instrument Staff at Staff reading 
(m) (m) 

A 1.472 B 1.835 
B 1.496 A 1.213 

Compute the ratio of refraction correction to curvature correction, and the difference 
in level between A and B: ((a) 210 m (b) 0.14 to 1; £ lower by 0.323 m). 

Thus: (h-r) + e = - 0 . 1 1 0 m 

6D

2
 6 x 730

2 

Now (h - r) = — = — — — - — — — = 0.036 m 
14R 1 4 x 6 3 7 0 x 1 0 0 0 

/ . e = - 0 . 1 1 0 - 0 . 0 3 6 = - 0 . 1 4 6 m in 730 m 
.*. Collimation error e = 0.020 m down in 110 m. 
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2.8 PRECISE LEVELLING EQUIPMENT 

2.8.1 Staffs 

Precise levelling staffs have a wooden frame carrying graduations on a strip of invar 
fixed at the bottom, but free to move along the remainder of the frame, thus allowing for 
thermal expansion. Some staffs have two invar strips, one graduated in reverse to 
eliminate gross reading errors. A built-in spirit bubble ensures verticality, and 
steadying rods are also supplied. The strip is divided into 10-mm or 5-mm intervals. 

Adjustments 

(1) The staff should be tested for verticality at least once a week, using a plumb bob and 
with the circular bubble adjusted if necessary. 

(2) Weekly tests should also be made for warping by stretching a fine wire from end to 
end. Maximum error should not be greater than 6 mm. 

(3) Graduat ion errors should be known and thus corrected by standardizing the staff 
against an invar tape. This is particularly important when two staves, each with a 
different graduation error, are used. 

2.8.2 Levels 

Precise levels are either tilting or automatic types, their accuracy depending mainly on 
the sensitivity of the bubble or the compensator and the magnification and resolution 
properties of the lenses. 

(1) Bubbles: The greater the radius of curvature of the bubble tube the more sensitive 
is the bubble. Thus the bubble has a greater horizontal movement per degree of tilt. 
This makes any movement off centre more easily discernible. 

Bubbles are best horizontalized when viewed through a split-bubble system. This 
method is claimed to be eight times more accurate than when the bubble is viewed 
openly. 
(2) Magnification: Directly increases the accuracy of readings on the staff. It also 
increases the sighting distance. 

2.8.3 Parallel-plate micrometer 

For precise levelling, the estimation of 1 mm is not sufficiently accurate. A parallel-plate 
glass micrometer in front of the object lens enables readings to be made direct to 
0.1 mm, and estimated to 0.01 mm. 

The principle of the attachment is seen from Figure 2.19. Had the parallel plate been 
vertical the line of sight would have passed through without deviation and the reading 
would have been 1.026 m, the final figure being estimated. However, by manipulating 
the micrometer the parallel plate is tilted until the line of sight is displaced to the nearest 
indicated reading, which is 1.02 m. The amount of displacement s is measured on the 
micrometer and added to the exact reading to give 1.026 47 m, only the last decimal 
place being estimated. 
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Figure 2.19 

It can be seen from the figure that the plate could equally have moved in the opposite 
direction, displacing the line of sight up. To avoid the difficulty of whether to add or 
subtract 5 , the micrometer is always set to read zero before each sight. This will tilt the 
plate to its maximum position opposite to that shown in Figure 2.19 and so displace the 
line of sight upwards. This will not affect the levelling provided that it is done for every 
sight. In this position the micrometer screw will move only from zero to ten, and the line 
of sight is always displaced down so s is always added. 

Parallel-plate micrometers (PPM) are also manufactured for use with 5-mm 
graduations. 

2.9 SOURCES OF ERROR 

In addition to the sources of error already mentioned for both ordinary and precise 
work the following must be considered: 

(1) To reduce errors due to staff and instrument sinking when levelling on soft ground, 
use levelling plates particularly on change points and obtain the sights quickly. To 
facilitate this, use two staffs and always sight to the same one first, as in Figure 2.20. 

A B A B 

1 2 3 6 
4 5 

Figure 2.20 

(2) Equalize lengths of sights to reduce the effects of curvature and refraction. In this 
case equalizing the sums of the lengths of BS and FS will not eliminate the error, as 
it is proportional to the distance squared. 

(3) Lines of levels should be run forward in the morning and back in the evening, on the 
assumption that ground is colder in the morning and warmer in the evening, thus 
reducing refraction effects. 
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(4) Shield instrument from Sun's heat to reduce errors resulting from differential 
expansion of its parts. 

(5) All circuits should be adjusted by the method of least squares. (Refer Volume 2, 
Chapter 1) 

2.10 ACCURACY 

As a guide to the acceptability or otherwise of the work, the variation in level obtained 
from two separate runs should not exceed + 4 ( K )

1 /2
 mm, where K is the distance 

levelled in kilometres. 
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Earthworks 

Estimation of areas and volumes is basic to most engineering schemes such as route 
alignment, reservoirs, tunnels, etc. The excavation and hauling of material on such 
schemes is the most significant and costly aspect of the work, on which profit or loss 
may depend. 

Areas may be required in connection with the purchase or sale of land, with the sub-
division of land or with the grading of land. 

Earthwork volumes must be estimated to enable route alignment to be located at 
such lines and levels that cut and fill are balanced as far as practicable; and to enable 
contract estimates of time and cost to be made for proposed work; and to form the basis 
of payment for work carried out. 

The tedium of earthwork computation has now been removed by the use of micro 
and main-frame computers. Digital ground models (DGM), in which the ground 
surface is defined mathematically in terms of x, y and z co-ordinates, are now stored in 
the computer memory. This data bank may now be used with several alternative design 
schemes to produce the optimum route in both the horizontal and vertical planes. In 
addition to all the setting-out data, cross-sections are produced, earthwork volumes 
supplied and mass-haul diagrams drawn. Quantities may be readily produced for 
tender calculations and project planning. The data banks may be updated with new 
survey information at any time and further facilitate the planning and management not 
only of the existing project but of future ones. 

However, before the impact of modern computer technology can be realized, one 
requires a knowledge of the fundamentals of areas and volumes, not only to produce 
the software necessary, but to understand the input data required and to be able to 
interpret and utilize the resultant output properly. 

3.1 AREAS 

The computation of areas may be based on data scaled from plans or drawings; or 
direct from the survey field data. 

3.1.1 Plotted areas 

(1) It may be possible to sub-divide the plotted area into a series of triangles, measure 
the sides a, b, c, and compute the areas using: 

4 2 
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Area = [s(s - a)(s - b)(s - c ) ]

1 /2
 where s = (a + b + c)/2 

The accuracy achieved will be dependent upon the scale error of the plan and the 
accuracy to which the sides are measured. 
(2) Where the area is irregular, a sheet of gridded tracing material may be 
superimposed over it and the number of squares counted. Knowing the scale of the plan 
and the size of the squares, an estimate of the area can be obtained. Port ions of squares 
cut by the irregular boundaries can be estimated. 
(3) Alternatively, irregular boundaries may be reduced to straight lines using give-and-
take lines, in which the areas ' taken' from the total area balance out with the extra areas 
'given' (Figure 3.1). 

(4) If the area is a polygon with straight sides it may be reduced to a triangle of equal 
area. Consider the polygon ABCDE shown in Figure 3.2. 

Take AE as the base and extend it as shown. Join CE and from D draw a line parallel 
to CE on to the base at F. Similarly, join CA and draw a line parallel from B on to the 
base at G. Triangle GCF has the same area as the polygon ABCDE. 
(5) The most common method of measuring areas from plans is to use an instrument 
called a planimeter (Figure 3.3(a)). This comprises two arms, JF and J P , which are free 
to move relative to each other through the hinged joint at J but fixed to the plan by a 
weighted needle at F. M is the graduated measuring wheel and P the tracing point. As P 
is moved around the perimeter of the area the measuring wheel partly rotates, partly 
slides over the plan with the varying movement of the tracing point (Figure 3.3(b)). The 

Figure 3.1 

C 

Figure 3.2 
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Figure 3.3(a) Amsler's polar planimeter 

Figure 3.3(b) 

measuring wheel is graduated circumferentially into 10 divisions, each of which is 
further sub-divided by 10 into one-hundredths of a revolution, whilst a vernier enables 
readings to one thousandth of a revolution. The wheel is connected to a dial which 
records the numbered revolutions up to 10. On a fixed-arm planimeter one revolution 
of the wheel may represent 100 m m

2
 on a 1:1 basis; thus, knowing the number of 

revolutions and the scale of the plan, the area is easily computed. In the case of a sliding-
arm planimeter the sliding arm JP may be set to the scale of the plan, thereby facilitating 
more direct measurement of the area. 

In the normal way, needle point F is fixed outside the area to be measured, the initial 
reading noted, the tracing point traversed around the area and the final reading noted. 
The difference of the two readings gives the number of revolutions of the measuring 
wheel, which is a direct measure of the area. If the area is too large to enable the whole of 
its boundary to be traversed by the tracing point P when the needle point F is outside 
the area, then the area may be sub-divided into smaller more manageable areas, or the 
needle point can be transposed inside the area. 

As the latter procedure requires the application of the zero circle of the instrument, 
the former approach is preferred. 

The zero circle of a planimeter is that circle described by the tracing point P , when the 
needle point F is at the centre of the circle, and the two arms JF and JP are at right-
angles to each other. In this situation the measuring wheel is normal to its path of 
movement and so slides without rotation, thus producing a zero change in reading. The 
value of the zero circle is supplied with the instrument. 

If the area to be measured is greater than the zero circle (Figure 3.4(a)) then only the 
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tinted area is measured, and the zero circle value must be added to the difference 
between the initial and final wheel readings. In such a case the final reading will always 
be greater than the initial reading. If the final reading is smaller than the initial reading, 
then the situation is as shown in Figure 3.4(b) and the measured area, shown tinted, 
must be subtracted from the zero circle value. 

Example 3.1 
(a) Forward movement 
Initial reading 2.497 
Final reading 6.282 

(b) Backward movement 
Initial reading 2.886 
Final reading 1.224 

Difference 3.785 revs Difference 1.662 revs 
Add zero circle 18.546 Subtract from 

zero circle 18.546 
Area = 22.231 revs 

Area = 16.884 revs 

If one revolution corresponds to an area of (A), then on a plan of scale 1 in M , the actual 
area in (a) above equals 22.331 x A x M

2
. 

(6) If the shape of the area is defined in terms of plane rectangular co-ordinates, its area 
can be computed precisely, as shown in Section 4.7 (Chapter 4). 
(7) If the area can be divided into strips then the area can be found using either (a) the 
trapezoidal rule or (b) Simpson's rule, as follows (Figure 3.5). 

( a ) ( b ) 

Figure 3.4 

Figure 3.5 Trapezoidal and Simpson's rules 
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(a) Trapezoidal rule 

Area of 1st trapezoid ABCD = ^* ^ ^

2
 x w 

Area of 2nd trapezoid BEFC = — - — x w and so on. 

.*. Total area = sum of trapezoids 

= A = w ^

1
 *

 Hl
 + h2 + h3 + ft4 + h5 + h^j (3.1) 

N.B. (i) If the first or last ordinate is zero, it must still be included in the equation, 
(ii) The formula represents the area bounded by the broken line under the 

curving boundary; thus, if the boundary curves outside then the 
computed area is too small, and vice versa. 

(b) Simpson's rule 

A = wKh, + fc7) + 4(h2 + K + h6) + 2(h3 + fc5)]/3 (3.2) 

i.e. one third the distance between ordinates, multiplied by the sum of the first and last 
ordinates, plus four times the sum of the even ordinates, plus twice the sum of the odd 
ordinates. 

N.B. (i) This rule assumes a curved boundary and is therefore more accurate than the 
trapezoidal rule. If the boundary was a parabola the formula would be exact, 

(ii) The equation requires an odd number of ordinates and consequently an even 
number of areas. 

The above equations are also useful for calculating areas from chain survey data. The 
areas enclosed by the chain lines are usually in the form of triangles, whilst the offsets to 
the irregular boundaries become the ordinates for use with the equations. 

3.1.2 Cross-sections 

Finding the areas of cross-sections is the first step in obtaining the volume of earthwork 
to be handled in route alignment projects (road or railway), or reservoir construction, 
for examples. 

In order to illustrate more clearly what is meant by the above statement, let us 
consider a road construction project. In the first instance an accurate plan is produced 
on which to design the proposed route. The centre-line of the route, defined in terms of 
rectangular co-ordinates at 10- to 30-m intervals, is then set out in the field. Ground 
levels are obtained along the centre-line and also at right-angles to the line (Figure 
3.6(a)). The levels at right-angles to the centre-line depict the ground profile, as shown 
in Figure 3.6(b), and if the design template, depicting the formation level, road width, 
camber, side slopes, etc. is added, then a cross-section is produced whose area can be 
obtained by planimeter or computation. The shape of the cross-section is defined in 
terms of vertical heights (levels) at horizontal distances each side of the centre-line, thus 
no matter how complex the shape, these parameters can be treated as rectangular co-
ordinates and the area computed using the rules given in Chapter 4. The areas may now 
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( b ) 

Figure 3.6(b) Cross-sectional area of cutting 

be used in various rules (see later) to produce an estimate of the volumes. Levels along, 
and normal to, the centre-line may be obtained by standard levelling procedures, by 
optical or electromagnetic tacheometry, or by aerial photogrammetry. The whole 
computational procedure, including the road design and optimization, would then be 
carried out on the computer to produce volumes of cut and fill, accumulated volumes, 
areas and volumes of top-soil strip, side widths, etc. Where plotting facilities are 
available the program would no doubt include routines to plot the cross-sections for 
visual inspection. 

An example of an earthworks program, written in standard basic, is given in 
Appendix A on page 286. 

Where there are no computer facilities the cross-sections may be approximated to 
the ground profile to afford easy computation. The particular cross-section adopted 
would be dependent upon the general shape of the ground. Typical examples are 
illustrated in Figure 3.7. 

Whilst equations are available for computing the areas and side widths they tend to 
be over-complicated and the following method using 'rate of approach ' is recom-
mended (Figure 3.8). 

Given: height x and grades AB and CB in triangle ABC. 
Required: to find distance yv 
Method: Add the two grades, using their absolute values, invert them and multiply by x. 

i.e. (1/5 + l / 2 ) -

1
x = 10x77 = ^ 

Figure 3.6(a) 

(a) 
^Cross-section levels 

, Formation/ 
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Road level 

w i 

b 

( c ) (d) 

b — finished road width at road or formation level 
H = centre height 

WltW2= side widths, measured horizontally from the centre-line and depicting the limits 
of the construction 

1 in S = side slope of 1 vertical to S horizontal 
1 in G = existing ground slope 

Figure 3.7 (a) Cutting, (b) embankment, (c) cutting and (d) hillside section 

Figure 3.8 Rate of approach 

Similarly, to find distance y2 in triangle ADS. Subtract the two grades, invert them and 
multiply by x. 

e.g. (1/5 - l / 2 ) "

1
x = 10x/3 = y2 

The rule, therefore, is: (
1) When the two grades are running in opposing directions (as in ABC), add (signs 

opposite + —). 
(2) When the two grades are running in the same direction (as in ABD), subtract (signs 

same). 
N.B. Height x must be vertical relative to the grades (see Worked example 3.8, p. 65). 

X 

A 

ID 

c 
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Figure 3.10 

Proof 

From Figure 3.9 it is seen that 1 in 5 = 2 in 10 and 1 in 2 = 5 in 10, thus the two grades 
diverge from B at the rate of 7 in 10. Thus, if AC = 7 m then EB = 10 m, i.e. x x 10/7 = 
7 x 1 0 / 7 = 10m. 

Two examples will now be worked to illustrate the use of the above technique. 

Worked examples 

Example 3.2. Calculate the side widths and cross-sectional area of an embankment 
(Figure 3.10) having the following dimensions: 

Road width = 20 m existing ground slope = 1 in 10 
Side slopes = 1 in 2 centre height = 10 m 

As horizontal distance from centre-line to AE is 10 m and the ground slope is 1 in 10, 
then AE will be 1 m greater than the centre height and BD 1 m less. Thus, AE — 11 m 
and BD = 9 m, area of ABDE = 20 x 10 = 200 m

2
. Now, to find the areas of the 

remaining triangles AEF and BDC one needs the perpendicular heights yx and y2, as 
follows: 

(1) 1/2 - 1/10 = 4/10, then yx = ( 4 / 1 0 )

_1
 x AE = 11 x 10/4 = 27.5 m 

(2) 1/2 + 1/10 = 6/10, then y2 = (6/10)"

1
 x BD = 9 x 10/6 = 15.0 m 

AE 11 
.*. Area triangle AEF = — x yx = — x 27.5 = 151.25 m 2 

BD 9 

Area triangle BDC = — x y2 = - x 15.0 = 67.50 m 2 

Total area = (200 + 151.25 + 67.5) = 418.75 m 2 

Side width vvx = 10 m + y t = 37.5 m 
Side width w 2 = 10 m + y2 = 25.0 m 

Example 3.3. Calculate the side widths and cross-sectional areas of cut and fill on a 
hillside section (Figure 3.11) having the following dimensions: 

Road width = 20 m existing ground slope = 1 in 5 
Side slope in cut = 1 in 1 centre height in cut = l m 
Side slope in fill = 1 in 2. 

Figure 3.9 
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Figure 3.11 

As ground slope is 1 in 5 and centre height 1 m, it follows that the horizontal distance 
from centre-line to B is 5 m; therefore, AB = 5 m, BC = 15 m. From these latter 
distances it is obvious that AF = 1 m and GC = 3 m. 

.*. Side width w x = 10 m + y1 = 13.3 m 
Side width w2 = 10 m + y2 = 13.75 m 

Now, as side slope AE is 1 in 2, then hY — yJ2 = 1.65 m and as side slope CD is 1 in 1, 
then h2 = y2 = 3.75 m 

BC 15 
Area of cut (BCD) = — xh2 = — x 3.75 = 28.1 m

2 

Area of fill (ABE) = ^-xhx=
5
-x 1.65 = 4.1 m

2 

The student is now advised to compute the area and side widths of Figure 3.12, using 
the above techniques. 

(yt = 23.3, wx = 33.3, y2 = 15, w2 = 25, area = 387.3) 

3.1.3 Dip and strike 

On a tilted plane there is a direction of maximum tilt, such direction being called the line 
of full dip. Any line at right-angles to full dip will be a level line and is called a strike line 

Figure 3.12 
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(Figure 3.13(a)). Any grade between full dip and strike is called apparent dip. An 
understanding of dip and strike is occasionally necessary for some earthwork 
problems. F rom Figure 3.13(a) 

ac de (de be\ 
tan = — = — = ( — x — = tan 6 cos <p 

be be \be be J 

i.e. tan (apparent dip) = tan (full dip) x cos (included angle) (3.3) 

Worked example 

Example 3.4. On a stratum plane, an apparent dip of 1 in 16 bears 170°, whilst the 
apparent dip in the direction 194° is 1 in 11; calculate the direction and rate of full dip. 

Draw a sketch of the situation (Figure 3.13(b)) and assume any position for full dip. 
Now, using equation (3.3) 

tan 6t = tan 6 cos 4> 

-4 = tan 0 cos (24° - 8) 
16 

t a n
^ 1 6 c o s ( 2 4 ° - ^ )

 ( a) 

Figure 3.13 

(a) 

( b ) (c) 
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A
 £ - - L 

Figure 3.14 Prism 

Similarly, ^ - = tan 9 cos 3 

tan 6 = —i— (fc) 
11 cos 5 

Equating (a) and (b) 

16 cos (24° - (5 ) = 11 cos 3 

16(cos 24° cos 3 + sin 24° sin 3) = 11 cos 3 

16(0.912 cos 3 + 0.406 sin 3) = 11 cos 5 

14.6 cos (5 + 6.5 sin 3 = 11 cos <5 

3.6 cos 3 = —6.5 sin<5 

„ t . - sin 5 3.6 
Cross multiply = tan 3 = —— 

cos 5 6.5 
/ . 5 = - 29° 

The minus sign indicates that the initial position for full dip in Figure 3.13(b) is 
incorrect, and that it lies outside the apparent dip. As the grade is increasing from 
1 in 16 to 1 in 11, the full dip must be as in Figure 3.13(c). 

Direction of full dip = 223° 

Now, a second application of the formula will give the rate of full dip. That is 

I 1 
— = - c o s 29° 

I I x x = 11 cos 29° = 9.6 

Rate of full dip = 1 in 9.6 

3.2 VOLUMES 

The importance of volume assessment has already been outlined. Many volumes 
encountered in civil engineering appear, at first glance, to be rather complex in shape. 
Generally speaking, however, they can be divided into prisms, wedges or pyramids, each 
of which will now be dealt with in turn. 

(1 ) Prism 

The two ends of the prism (Figure 3.14) are equal and parallel, the resulting sides 
thus being parallelograms. 

Vol = AL (3.4) 
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Figure 3.15 Wedge Figure 3.16 Pyramid 

(2) Wedge 

Volume of wedge (Figure 3.15) = — (sum of parallel edges x vertical height of base) 
6 

when a = b = c: 

= - [(a + b + c) x h] 
6 

K = AL/1. 

(3.5a) 

(3.5b) 

(3) Pyramid 

Volume of pyramid (Figure 3.16) = 
AL 

(3.6) 

Equations (3.4) to (3.6) can all be expressed as the common equation: 

V = j{Ax+4Am + A2) (3.7) 

where Ax and A2 are the end areas and Am is the area of the section situated mid-
way between the end areas. It is important to note that Am is not the arithmetic 
mean of the end areas, except in the case of a wedge. 

To prove the above statement consider 

(1 ) Prism 

In this case Ax = Am = A2 (Figure 2.10) 

L Lx6A 
V = -(A + 4A + A) = —— = AL 

6 6 

(2) Wedge 

In this case Am is the mean of Ax and A2, but A2 = 0. Thus Am = A/2 

. L (. „ A \ Lx3A AL 
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(3) Pyramid 

In this case Am = — and A2 = 0 

Thus, any solid which is a combination of the above three forms and having a 
common value for L, may be solved using equation (3.7). Such a volume is called a 
prismoid and the formula is called the prismoidal equation. It is easily deduced by simply 
substituting areas for ordinates in Simpson's rule. The prismoid differs from the prism 
in that its parallel ends are not necessarily equal in area; the sides are generated by 
straight lines from the edges of the end areas (Figure 3.17). 

Figure 3.17 

The prismoidal equation is correct when the figure is a true prismoid. In practice it 
is applied by taking three successive cross-sections. If the mid-section is different from 
that of a true prismoid, then errors will arise. Thus in practice sections should be chosen 
in order to avoid this fault. Generally, the engineer elects to observe cross-sections at 
regular intervals assuming compensating errors over a long route distance. 

3.2.1 End-area method 

Consider Figure 3.18, then 

v = A ± ^ A L xL ( 3 g) 

i.e. the mean of the two end areas multiplied by the length between them. This equation 
is correct only when the mid-area of the prismoid is the mean of the two end areas. It is 
correct for wedges but in the case of a pyramid it gives a result which is 50% too great 

, r >4 + 0 AL j AL 
Vol of pyramid = — - — x L = — instead of — 

Although this method generally over-estimates, it is widely used in practice. The 
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Figure 3.18 

main reasons for this are its simplicity and the fact that the assumptions required for a 
good result using the prismoidal method are rarely fulfilled in practice. Strictly, 
however, it should be applied to prismoids comprising prisms and wedges only; such is 
the case where the height or width of the consecutive sections is approximately equal. It 
is interesting to note that with consecutive sections, where the height increases as the 
width decreases, or vice versa, the end-area method gives too small a value. 

The difference between the prismoidal and end-area equations is called prismoidal 
excess and may be applied as a correction to the end-area value. It is rarely used in 
practice. 

Summing a series of end areas gives: 

V = L ^

l +

2

An
 +A2+A3+--- + AK.^ (3.9) 

called the trapezoidal rule for volumes. 

3.2.2 Comparison of end-area and prismoidal equations 

In order to compare the methods, the volume of Figure 3.18 will be computed as 
follows: 

Dimensions of Figure 3.18. 

Centre heights: hx = 10 m, h2 = 20 m, hm = 18 m 
Road widths: bt = b2 = bm = 20 m 
Side slopes: 1 in 2 
Horizontal distance between sections: / = 30 m, L = 60 m 
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N.B. For a true prismoid hm would have been the mean of hx and h2, equal to 15 m. The 
broken line indicates the true prismoid, the excess area of the mid-section is 
shown tinted. 

The true volume is thus a true prismoid plus two wedges, as follows: 

60 + 20 
(1) A, = — I — x 10 = 400 m

2 

100 + 20 
A2 = ^ — x 20 = 1200 m

2 
2
 2 

80 + 20 Am = —J—x 15 = 750 m 2 

Vol of prismoid = Vx = ^ (400 + 4 x 750 + 1200) = 46 000 m

3 

6 

L 30 
Vol of wedge 1 = - [(a + b + c) x hi] = — [(92 + 80 + 60) x 3] = 3480 m

3 

6 6 

30 
Vol of wedge 2 = — [(92 + 80 + 100) x 3] = 4080 m

3 

6 

Total true volume = 53 560 m

3 

(2) Volume by prismoidal equation (Am will now have a centre height of 18 m) 

92 + 20 
Am = — - — x 18 = 1008 m

2 

Vol = ^ (400 + 4032 + 1200) = 56 320 m

3 

6 

Error = 56 320 - 53 560 = +2760 m

2 

This error is approximately equal to the area of the excess mid-section multiplied by 
L ^\rea abed x L 
—, i.e. , and is so for all such circumstances; it would be — ve if the mid-
6 6 
area had been smaller. 
(3) Volume by end area 

400 + 1008 
K = ^ x 30 = 21 120 m

3 
1
 2 

1008 + 1200 
V2 = J x 30 = 33 120 m

3 
2
 2 

Total vol = 54 240 m

3 

Error = 54 240 - 53 560 = +680 m

3 

Thus, in this case the end-area method gives a better result than the prismoidal 
equation. However, if we consider only the true prismoid, the volume by end areas is 
46 500 m

3
 compared with the volume by prismoidal equation of 46000 m

3
, which, in 

this case, is the true volume. 
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Therefore, in practice, it can be seen that neither of these two methods is satisfactory. 
Unless the ideal geometric conditions exist, which is rare, both methods will give errors. 
To achieve greater accuracy, the cross-sections should be located in the field, with due 
regard to the formula to be used. If the cross-sections are approximately equal in size 
and shape, and the intervening surface roughly a plane, then end areas will give an 
acceptable result. Should the sections be vastly different in size and shape, with the mid-
section contained approximately by straight lines generated between the end sections, 
then the prismoidal equation will give the better result. 

3.2.3 Contours 

Volumes may be found from contours using either the end-area or prismoidal method. 
The areas of the sections are the areas encompassed by the contours. The distance 
between the sections is the contour interval. This method is commonly used for finding 
the volume of a reservoir, lake or spoil heap (refer to Exercise (3.3), p. 67). 

3.2.4 Spot heights 

This method is generally used for calculating the volumes of excavations for basements 
or tanks, i.e. any volume where the sides and base are planes, whilst the surface is 
broken naturally (Figure 3.19(a)). Figure 3.19(b) shows the limits of the excavation with 
surface levels in metres at A, B, C and D. The sides are vertical to a formation level of 
20 m. If the area ABCD was a plane then the volume of excavation would be: 

V = plan area ABCD x mean height (3.11) 

However, as the illustration shows, the surface is very broken and so must be covered 
with a grid such that the area within each 10-m grid square is approximately a plane. It 
is therefore the ruggedness of the ground that controls the grid size. If, for instance, the 
surface Aaed was not a plane, it could be split into two triangles by a diagonal (Ae) if this 
would produce better surface planes. 

Natural surface 

(a) 

10m 

d 
31-00: 

( b ) 

a 30-00 

Figure 3.19 (a) Section, and (b) plan 

32-00' 

/////// 
ii-bo; 

H b • */////, 
28-00' 

W///< c F 

Formation Level 20-00m 

,B 
30-00 

29 00 
C 
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1 Figure 3.20 

A' <- x •» AO m 

20 m 

y 

/ -

B' 

Ac

1 

E Figure 3.21 

Vertical height at A and D is 10 m. 
As AB = 40 m and surface slopes at 1 in 10, then vertical heights at B and C must be 4 m 
greater, i.e. 14 m. 

Consider splitting the shape into two wedges by a plane connecting AD to HE. 

Considering square Aaed only: 

V = plan area x mean height 

= 100 x J (12 + 11 + 8 + 11) = 1050 m

3 

If the grid squares are all equal in area, then the data is easily tabulated and worked as 
follows: 

Considering AEFG only, instead of taking each grid square separately, one can treat 
it as a whole. 

.'. V=™[hA+hE + hF + hG + 2(ha + hb + hc + hd) + 4fcJ 

If one took each grid separately it would be seen that the heights of AEFG occur only 
once, whilst the heights of abed occur twice and he occurs four times; one still divides by 
four to get the mean height. 

The above formula is very useful for any difficult shape consisting entirely of planes, 
as the following example illustrates (Figures 3.20 and 3.21). 
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In AABB' (Figure 3.20): 

By rate of approach: y = ^1 - x 14 = 15.56 m = B'H = CE 

/. HE = 20 + 15.56 + 15.56 = 51.12 m. 

Area of AABB' normal to AD, BC, HE 

40 
= — x 15.56 = 311.20 m

2 

2 
311.20 

Vol = area x mean height = — - — (AD + BC + HE) 

= 103.73(20 + 20 + 51.12) = 9452 m

3 

Similarly in AAA'B': 

x = + ^ x 10 = 9.09 m = A'G = D'F. 

GF = 20 + 9.09 + 9.09 = 38.18 m. 

Area of AAA'B' normal to AD, GF, HE 

(x + AB + y) ^ 64.65 ^ i 
= - - - — x 10 = — - x 10 = 323.25 m

2 

2 2 

323 25 
Vol = - ^ — ( 2 0 + 38.18 + 51.12) = 11 777 m

3 

Total vol = 21229 m

3 

Check 
40 

Wedge ABB' = — [(20 + 20 + 51.12) x 15.56] = 9452 m

3 

6 

Wedge AA'B' = [(20 + 38.18 + 51.12) x 10] = 11 777 m

3 

6 

3.2.5 Effect of curvature on volumes 

The application of the prismoidal and end-area formulae has assumed, up to this point, 
that the cross-sections are parallel. When the excavation is curved (Figure 3.22), the 
sections are radial and a curvature correction must be applied to the formulae. 

Pappus's theorem states that the correct volume is where the distance between the 
cross-sections is taken along the path of the centroid. 

Consider the volume between the first two sections of area Ax and A2\ 

Distance between sections measured along centre-line = X'Y' = D. 
Angle S subtended at the centre = D/R radians. 

Now, length along path of centroid = XY = 6 x mean radius to path of centroid where 
mean radius 

= R-(dx+ d2)/2 = (R-d) 

:. XY = 8(R -d) = D(R - d)/R. 



Figure 3.23 

60 

Figure 3.22 
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Vol by end areas =

 l
- (Ax + A2)XY = ^ (Ax + A2)D(R - d)/R. 

=

 1
-(A1+A2)D(l-d/R) 

In other words, one corrects for curvature by multiplying the area Ax by( l — dl/R), and 
area A2 by (1 — d2/R\ the corrected areas then being used in either the end-area or 
prismoidal formulae, in the normal way, with D being the distance measured along the 
centre-line. If the centroid lay beyond the center-line, as in section A3, then the 
correction is (1 + d3/R). 

This correction for curvature, is again, never applied to earthworks in practice. 
Indeed it can be shown that the effect is cancelled out on long earthwork projects. 
However, it may be significant on small projects or single curved excavations. 

Worked examples 

Example 3.5. Figure 3.23 illustrates a section of road construction to a level road width 
of 20 m, which includes a change from fill to cut. F rom the data supplied in the 
following field book extract, calculate the volumes of cut and fill using the end-area 
method and correcting for prismoidal excess. (KP) 

Chainage Left Centre Right 

10.0 20.0 8.8 
7500 

~ 2 2 0 
7500 

~36X) 0 ~ ~ 2 2 0 
0 6.0 14.0 

7600 
~24k6 

7600 

To 0 ~24k6 
16.0 4.0 0 

7650 — — 7650 
2 1 0 0 10 

7750 
13.5 22.0 8.6 

7750 
2 4 0 IT 26X) 

N.B. (1) Students should note the method of booking and compare it with the cross-
sections in Figure 3.24. 

(2) The method of splitting the sections into triangles for easy computation 
should also be noted. 

Area of cross-section 75 + 00 

50 m

2 

360 m

2 

220 m

2 

44 m

2 

674 m

2 

area Al 

area A2 

area A3 

area A4 

10 x 10 

2 

36 X 20 

2 

22 X 20 

2 

8.8 X 10 

2 

Total area 
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T 
1 0 - 0 , 

10 

T 
20 

10 

3 6 - 0 - - 2 2 - 0 -

C h n 7 5 0 0 

T 
8-8 

10 10 

C h n 7 6 5 0 

Figure 3.24 

10 10 

C h n 7 7 5 0 

Similarly, area of cross-section 76 + 00 = 173.8 m

2 

674 + 173.8 
Vol by end area = x 100 = 42 390 m

3 
J
 2 

The equation for prismoidal excess varies with the shape of the cross-section. In this 
particular instance it equals 

^(Hl-H2)(Wl-W2) 

where L = horizontal distance between the two end areas 
H = centre height 
W = the sum of the side widths per section, i.e. (wj + w2) 

100 
Thus, prismoidal excess = — (20 - 6)(58 - 34.6) = 2 730 m 3 

Corrected volume = 39 660 m

3 

Vol between 76 + 0 0 and 76 + 50 

Line XY in Figure 3.23 shows clearly that the volume of fill in this section forms a 
pyramid with the cross-section 76 + 00 as its base and 50 m high. It is thus more 
accurate and quicker to use the equation for a pyramid. 

„ , AL 173.8 x 50 , 
Vol = — = - = 2897 m

3 

3 3 
Total vol of fill = (39 660 + 2897) = 42 557 m 3 

The student should now calculate for himself the volume of cut. 

(Answer: 39 925 m

3
) . 

Example 3.6. The access to a tunnel has a level formation width of 10 m and runs into 
a plane hillside, whose natural ground slope is 1 in 10. The intersection line of this 
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Figure 3.25 (a) Section, and (b) plan 

formation and the natural ground is perpendicular to the centre-line of the tunnel. The 
level formation is to run a distance of 360 m into the hillside, terminating at the base of a 
cutting of slope 1 vertical to 1 horizontal. The side slopes are to be 1 vertical to 1.5 
horizontal. 

Calculate the amount of excavation in cubic metres. Marks will be deducted if 
calculations are not clearly related to diagrams. (LU) 

Figure 3.25 illustrates the question which is solved by the methods previously 
advocated. 

Height AB = 36 m as ground slope is 1 in 10 

By rate of approach 

As the side slopes are 1 in 1.5 and D' is 40 m high, then D'G = 40 x 1.5 = 60 m = E'H. 
Therefore GH = 130 m 

Area of ABCD' (in section above) normal to GH, DE, CF 

= ^ x 40 = 7200 m

2 

2 

7200 
Vol = - y - (130 + 10 + 10) = 360 000 m

3 

Check 

Wedge BCD' = — [(130 + 10 + 10) x 40] = 360 000 m

3 

6 

Example 3.7. A solid pier is to have a level top surface 20 m wide. The sides are to have 
a batter of 2 vertical in 1 horizontal and the seaward end is to be vertical and 
perpendicular to the pier axis. It is to be built on a rock stratum with a uniform slope of 
1 in 24, the direction of this maximum slope making an angle whose tangent is 0.75 with 

( b ) 

(a) 
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A B 

E 

Figure 3.26 

the direction of the pier. If the maximum height of the pier is to be 20 m above 
the rock, diminishing to zero at the landward end, calculate the volume of material 

Figure 3.26 illustrates the question. Students should note that not only is the slope in 
the direction of the pier required but also the slope at right-angles to the pier. 

By dip and strike 

tan apparent slope = tan max slope x cos included angle 

i = i- cos 36° 52' where tan "

1
 0.75 = 36° 52' 

x 24 

x = 30 

.'. Grade in direction of pier = 1 in 30, .'. AB = 20 x 30 = 600 m 

Grade at right-angles: - = ^ - cos 53° 08' 
y 24 

y = 40. Grade = 1 in 40 as shown on Figure 3.26(a) 

DD' = 19.5 m and DC = 19.5 x 30 = 585 m 

From Figure 3.26(b) 

required. (LU) 

.'. Area AEAA' 
20 x 10.1 

2 
101 m

2 

Area ADFD' 
19.5 x 9.6 

2 
93.6 m

2 

600 m 

=lan 

585m 
S

e
a

w
a

rd
 

e
n

d
 

7

Q (c) (b) 

(a) 



Earthworks 65 

Now, vol ABCD = plan area x mean height 

x 20 j x - (20 + 19.5 + 0 + 0) = 117 315 m

3 

101 x 600 

3 

= 20 200 m

3 

Vol of pyramid DFC 
area DFD' x DC 

3 

93.6 x 585 

3 

= 18 252 m

3 

Total vol = (117 315 4- 20 200 + 18 252) = 155 767 m

3 

Alternatively, finding the area of cross-sections at chainages 0, 585/2 and 585 and 
applying the prismoidal rule plus treating the volume from chainage 585 to 600 as a 
pyramid, gives an answer of 155 525 m

3
. 

Example 3.8. A 100-m length of earthwork volume for a proposed road has a constant 
cross-section of cut and fill, in which the cut area equals the fill area. The level formation 
is 30 m wide, transverse ground slope is 20° and the side slopes in cut-and-fill are j 
horizontal to 1 vertical and 1 horizontal to 1 vertical, respectively. Calculate the volume 
of excavation in the 100-m length. (LU) 

If the student turns Figure 3.27 through 90°, then the l-in-2.75 grade (20°) becomes 
2.75 in 1 and the 2-in-l grade becomes 1 in 2, then by rate of approach: 

h, = ( 2 . 7 5 - l ) "

1
( 3 0 - x ) = 

3 0 - x 

1.75 

Now, area AAt 
3 0 - x 

~~2 
x ht = 

(30 - x )

2 

3.5 

area AA2 

Figure 3.27 
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But area Ax — area A2 
(30 - x )

2
 _ x

2 

1 5 " 4 5 

3.5 7 
(30

 -
 x )2

 =
 ^

 x

2
 = - x

2 fro
m

 which
 x =

 16
 m 

16

2 

.'. Area A2 = = 56.5 m

2
 = area Ax 

Vol in 100 m length = 56.5 x 100 = 5650 m

3 

Example 3.9. A length of existing road of formation width 20 m lies in a cutting having 
side slopes of 1 vertical to 2 horizontal. The centre-line of the road forms part of a 
circular curve having a radius of 750 m. For any cross-section along this part of the 
road the ground surface and formation are horizontal. At chainage 5400 m the depth to 
formation at the centre-line is 10 m, and at chainage 5500 m the corresponding depth is 
18 m. 

The formation width is to be increased by 20 m to allow for widening the carriageway 
and for constructing a parking area. The whole of the widening is to take place on the 
side of the cross-section remote from the centre of the arc, the new side slope being 1 
vertical to 2 horizontal. Using the prismoidal rule, calculate the volume of excavation 
between the chainages 5400 m and 5500 m. Assume that the depth to formation 
changes uniformly with distance along the road. (ICE) 

From Figure 3.28 it can be seen that the centroid of the increased excavation lies 
(20 4- x) m from the centre-line of the curve. The distance x will vary from section to 
section but as the side slope is 1 in 2, then: 

<>
 h

 u 
x = 2 x - = h 

2 
horizontal distance of centroid from centre-line = (20 + h) 

At chainage 5400 m, hx = 10 m .'. (20 + h) = 30 m = dx 
At chainage 5450 m, h2 = 14 m .\ (20 + h) = 34 m = d2 
At chainage 5500 m, h3 = 18 m . \ (20 + h) = 38 m = d3 
Area of extra excavation at 5400 m = 10 x 20 = 200 m

2
 = At 

Area of extra excavation at 5450 m = 14 x 20 = 280 m

2
 = A2 

Area of extra excavation at 5500 m = 18 x 20 = 360 m

2
 = A3 

Figure 3.28 
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The above areas are now corrected for curvature: A^l + ^ 

At chainage 5400 m = 200^1 + = 208 m

2 

At chainage 5450 m = 280^1 + = 292.6 m

2 

At chainage 5500 m = 360^1 + = 378 m

2 

Vol = ^ (208 + 4 x 292.6 + 378) = 29 273 m

3 

6 

Exercises 

(3.1) An access road to a quarry is being cut in a plane surface in the direction of strike, 
the full dip of 1 in 12.86 being to the left of the direction of drive. The road is to be 
constructed throughout on a formation grade of 1 in 50 dipping, formation width 20 m 
and level, side slopes 1 in 2 and a zero depth on the centre-line at chainage 0 m. 

At chainage 400 m the direction of the road turns abruptly through a clockwise angle 
of 40°; calculate the volume of excavation between chainages 400 m and 600 m. 

(KP) 

(Answer: 169 587 m

3
) 

(3.2) A road is to be constructed on the side of a hill having a cross fall of 1 in 50 at right-
angles to the centre-line of the road; the side slopes are to be 1 in 2 in cut and 1 in 3 in fill; 
the formation is 20 m wide and level. Find the position of the centre-line of the road 
with respect to the point of intersection of the formation and the natural ground. 

(a) To give equality of cut and fill. 
(b) So that the area of cut shall be 0.8 of the area of fill, in order to allow for bulking. 

(LU) 

(Answer: (a) 0.3 m in cut. (b) 0.2 m in fill) 

(3.3) A reservoir is to be formed in a river valley by building a dam across it. The entire 
area that will be covered by the reservoir has been contoured and contours drawn at 
1.5 m intervals. The lowest point in the reservoir is at a reduced level of 249 m above 
datum, whilst the top water level will not be above a reduced level of 264.5 m. The area 
enclosed by each contour and the upstream face of the dam is shown in the Table 
overleaf. 

Estimate by the use of the trapezoidal rule the capacity of the reservoir when full. 
What will be the reduced level of the water surface if, in a time of drought, this volume is 
reduced by 25%? (ICE) 

(Answer: 294 211 m

3
; 262.3 m) 

(3.4) The central heights of the ground above formation at three sections 100 m apart 
are 10 m, 12 m, 15 m, and the cross-falls at these sections are respectively 1 in 30,1 in 40 
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Contour Area enclosed 
(m) (m

2
) 

250.0 1 874 
251.5 6 355 
253.0 11070 
254.5 14152 
256.0 19 310 
257.5 22 605 
259.0 24 781 
260.5 26 349 
262.0 29 830 
263.5 33 728 
265.0 37 800 

and 1 in 20. If the formation width is 40 m and sides slope 1 vertical to 2 horizontal, 
calculate the volume of excavation in the 200-m length: 

(a) If the centre-line is straight. 

(b) If the centre-line is an arc of 400 m radius. (LU) 

(Answer: (a) 158 367 m

3
. (b) 158 367 ± 1070 m

3
) 

3.3 MASS-HAUL DIAGRAMS 

Mass-haul diagrams (MHD) are used to compare the economy of various methods of 
earthwork distribution on road or railway construction schemes. By the combined use 
of the M H D plotted directly below the longitudinal section of the survey centre-line, 
one can find 

(1) The distances over which cut and fill will balance. 
(2) Quantities of materials to be moved and the direction of movement. 
(3) Areas where earth may have to be borrowed or wasted and the amounts 

involved. 
(4) The best policy to adopt to obtain the most economic use of plant. 

3.3.1 Definitions 

(1) Haul refers to the volume of material multiplied by the distance moved and was 
expressed in 'station yards'. 
(2) Station yard (stn yd) is 1 y d

3
 of material moved 100 ft. At the time of writing there is 

no SI equivalent of this term, although it may be decided to use 1 m

3
 moved 100 m. 

Thus, 20 m

3
 moved 1500 m is a haul of 20 x 1500/100 = 300 stn m. 

N.B. Hereafter the term station metre (stn m) will be used and defined as above. 
(3) Freehaul and overhaul can best be defined by example. A contractor may offer to 
haul material a distance of say 150 m at 50 p per m

3
, but thereafter for any distance 

hauled beyond 150 m the contractor may require an extra 5 p per stn m, i.e. 5 p per m

3 

moved per 100 m. The distance of 150 m is called the freehaul distance and is based on 
the economical hauling distance of the earthmoving plant used. It may range from 
100 m for a bulldozer to 3000 m for self-propelled scrapers. The haul beyond the 
freehaul distance is termed the overhaul. 
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(4) Waste is the material excavated from cuts but not used for embankment fills. 
(5) Borrow is the material needed for the formation of embankments, secured not from 
roadway excavation but from elsewhere. It is said to be obtained from a 'borrow pit'. 
(6) Limit of economical haul is the maximum overhaul distance plus the freehaul 
distance. When this limit is reached it is more economical to waste and borrow 
material. For example assume: 

Freehaul distance = 500 m 
Overhaul = 10 p per stn m (i.e. 10 p per m

3
 per 100 m) 

Borrow = 30 p per m

3 

From these figures it can be seen that to overhaul 1 m

3
 a distance of 300 m would cost 

30 p, equal to the cost of borrow; this then is the maximum overhaul distance. 
However, before overhaul comes into operation, one may move earth through the 
freehaul distance of 500 m. Thus the limit of economical haul = (300 + 500) = 800 m. 

3.3.2 Bulking and shrinkage 
Excavation of material causes it to loosen, thus its excavated volume will be greater 
than its in situ volume. However, when filled and compacted, it may occupy a less 
volume than when originally in situ. For example, ordinary earth is less by about 10% 
after filling, whilst rock bulks by some 20% to 30%. To allow for this a correction factor 
is generally applied to the cut or fill volumes. 

3.3.3 Construction of the MHD 

A M H D is a continuous curve, whose vertical ordinates, plotted on the same distance 
scale as the longitudinal section, represent the algebraic sum of the corrected volumes 
(cut +,f i l l - ) . 

3.3.4 Properties of the MHD 

Consider Figure 3.29(a) in which the ground XYZ is to be levelled off to the grade line 
A'B'. Assuming that the fill volumes, after correction, equal the cut volumes, the M H D 
would plot as shown in Figure 3.29(b). Thus : 

Longitudinal section 

Figure 3.29 Mass-haul diagram 
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(1) Since the curve of the M H D represents the algebraic sums of the volumes, then any 
horizontal line drawn parallel to the base AB will indicate the volumes which balance. 
Such a line is called a balancing line and may even be represented by AB itself, indicating 
that the total cut equals the total fill. 
(2) The rising curve, shown broken, indicates cut ( + ve), the falling curve indicates fill 
( - v e ) . 
(3) The maximum and minimum points of a M H D occur directly beneath the 
intersection of the natural ground and the formation grade; such intersections are 
called grade points. 
(4) As the curve of the M H D rises above the balance line AB, the haul is from left to 
right. When the curve lies below the balance line, the haul is from right to left. 
(5) The total cut volume is represented by the maximum ordinate CD. 
(6) In moving earth from cut to fill, assume the first load would be from the cut at X to 
the fill at Y; the last load from the cut at Y to the fill at Z. Thus the haul distance would 
appear to be from a point mid-way between X and 7, to a point mid-way between Y and 
Z. However, as the section is representative of volume not area, the haul distance is 
from the centroid of the cut volume to the centroid of the fill volume. The horizontal 
positions of these centroids may be found by bisecting the total volume ordinate CD 
with the horizontal line EF. 

Now, since haul is volume x distance, the total haul in the section is total vol x total 
haul distance = CD x £F/100 stn m. 

3.3.5 Balancing procedures 

In order to illustrate the use of freehaul distance consider Figure 3.30. 

(1) Assuming a freehaul distance of 100 m; move this scaled distance up and down the 
M H D , keeping it parallel to the base AB' until it cuts the curve at E and F. 
(2) EF indicates on the longitudinal section that the cut volume LMY equals the fill 

Figure 3.30 

(a) 

( b ) 

Freehaul distance 
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volume YNP. The amount of the volume is CC and it obviously falls within the 
freehaul distance. 
(3) The remaining cut volume XLMA' is represented by the ordinate EG and is the 
overhaul volume. 
(A) The overhaul volume XLMA' has now to be filled into NPZB', the average distance 
being from centroid to centroid. The positions of the centroids are found by bisecting 
EG and FH, giving the horizontal distance between centroids JK. 
(5) Assuming JK = 250 m, the overhaul volume has to be moved through this 
distance. However, the first 100 m of the movement is still within the freehaul contract, 
thus the overhaul distance is (250 — 100) = 150 m. 
(6) From (5) it is obvious that the total volume (CC + EG) = CD falls within the 
freehaul contract. 
(7) Thus, the overhaul = overhaul vol x overhaul distance = EG(JK — EF). 

Worked examples 

Example 3. JO. The following notes refer to a 1200-m section of a proposed railway, 
and the earthwork distribution in this section is to be planned without regard to the 
adjoining sections. The table shows the stations and the surface levels along the centre-
line, the formation level being at an elevation above datum of 43.5 m at chainage 70 and 
thence rising uniformly on a gradient of 1.2%. The volumes are recorded in m

3
, the cuts 

are plus and fills minus. 

(1) Plot the longitudinal section using a horizontal scale of 1:1200 and a vertical 
scale of 1:240. 

(2) Assuming a correction factor of 0.8 applicable to fills plot the M H D to a vertical 
scale of 1000 m

3
 to 20 mm. 

(3) Calculate total haul in stn. m and indicate the haul limits on the curve and section. 
(4) State which of the following estimates you would recommend 

(a) N o freehaul at 35 p per m

3
 for excavating, hauling and filling 

(b) A freehaul distance of 300 m at 30 p per m

3
 plus 2 p per stn m for overhaul. 

(LU) 

Chn Surface 
level 

Vol Chn Surface 
level 

Vol Chn Surface 
level 

Vol 

70 52.8 
+ 1860 

74 44.7 
- 1 0 8 0 

78 49.5 
- 2 3 7 

71 57.3 
+ 1525 

75 39.7 
- 2 0 2 5 

79 54.3 
+ 362 

72 53.4 
+ 547 

76 37.5 
- 2 1 1 0 

80 60.9 
+ 724 

73 47.1 
- 238 

77 41.5 
- 1 1 2 0 

81 62.1 
+ 430 

74 44.7 78 49.5 82 78.5 

For answers to parts (1) and (2) see Figure 3.31 and the values in the Table on p. 73. 



Figure 3.31 
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Chainage Volume Mass ordinate 
(algebraic sum) 

70 0 0 
71 + 1860 + 1860 
72 + 1525 + 3385 
73 + 547 + 3932 
74 - 238 x 0 . 8 = - 190.4 + 3741.6 
75 - 1 0 8 0 x 0.8 = - 864 + 2877.6 
76 - 2 0 2 5 x 0 . 8 = - 1 6 2 0 + 1257.6 
77 - 2 1 1 0 x 0 . 8 = - 1 6 8 8 - 430.4 
78 - 1 1 2 0 x 0 . 8 = - 896 - 1 3 2 6 . 4 
79 - 237 x 0 . 8 = - 189.6 - 1 5 1 6 
80 + 362 - 1 1 5 4 
81 + 724 - 430 
82 + 430 0 

N.B. (1) The volume at chainage 70 is zero. 
(2) The mass ordinates are always plotted at the station and not between them. 
(3) The mass ordinates are now plotted to the same horizontal scale as the 

longitudinal section and directly below it. 
(4) Check that maximum and minimum points on the M H D are directly below 

grade points on the section. 
(5) Using the datum line as a balancing line indicates a balancing out of the 

volumes from chainage 70 to XY and from XY to chainage 82. 

Total haul (taking each loop separately) = total vol x total haul distance. The total 
haul distance is from the centroid of the total cut to that of the total fill and is found by 
bisecting AB and A'B\ to give the distances CD and CD'. 

^ lf f ABxCD A'B'xCD' 
Total haul = — — 1 -— 

100 100 

3932 x 4 5 0 1516 x 320 
= ™ + ~T~T = 22 545 stn m 

100 100 
(a) If there is no freehaul, then all the volume is moved regardless of distance for 35 p 

per m
3
. 

Estimate costs: {AB + AB) x 35 p = 5448 x 35 = 190 680 p 

(b) The purpose of plotting the freehaul distance on the curve is to assess the overhaul. 

From M H D : 

Cost of freehaul = (AB + A'B') x 30 p per m
3
 (see Section 3.3.5(6)) 

= 163 440 p 

t , EG(JK — EF) E'G'U'K' - E'F') ^ 
Cost of overhaul = 1 QQ - + - x 2 p 

= 13 628 p 

Total cost = 163 440 + 13 628 = 177 068 p 

.*. Second estimate is cheaper b y l 3 6 1 2 p = £136.12 

N.B. All the dimensions in the above solution are scaled from the M H D . 
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Example 3.11. The volumes between sections along a 1200-m length of proposed road 
are shown below, positive volumes denoting cut, and negative volumes denoting fill: 

Chainage {m) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 

Vol between 
sections +2.1 +2 .8 + 1 . 6 - 0 . 9 - 2 . 0 - 4 . 6 - 4 . 7 - 2 . 4 +1 .1 + 3 . 9 + 3 . 5 +2 .8 
(m

3
 x 10

3
) 

Plot a M H D for this length of road to a suitable scale and determine suitable 
positions of balancing lines so that there is 

(1) A surplus at chainage 1200 but none at chainage 0. 
(2) A surplus at chainage 0 but none at chainage 1200. 
(3) An equal surplus at chainage 0 and chainage 1200. 

Hence, determine the cost of earth removal for each of the above conditions based on 
the following prices and a freehaul limit of 400 m. 

Excavate, cart and fill (freehaul) 60 p / m

3 

Excavate, cart and fill (overhaul) 85 p / m

3 

Removal of surplus to tip from chainage 0 125 p / m

3 

Removal of surplus to tip from chainage 1200 150 p / m

3
 (ICE) 

For plot of M H D see Figure 3.32. 

Mass ordinates = 0, + 2 . 1 , +4.9 , +6.5 , +5.6 , +3.6 , - 1 . 0 , 
- 5 . 7 , - 8 . 1 , - 7 . 0 , - 3 . 1 , +0.4, +3.2 • 
(obtained by algebraic summation of vols) 

(1) Balance line AB gives a surplus at chainage 1200 but none at 0. 
(2) Balance line CD gives a surplus at chainage 0 but none at 1200. 
(3) Balance line EF situated mid-way between AB and CD will give equal surpluses 

at the ends. 

Figure 3.32 
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In the second part of the question the prices are quoted in an unusual manner. 
Excavating, carting and filling within a distance of 400 m, is at 60 p / m

3
. Carrying on 

beyond that distance gives a total price of 85 p / m

3
; thus the overhaul is 25 p / m

3
. 

The question is now tackled in the usual way but it is not necessary to find overhaul 
distance. 

(1) Taking AB as base 
Freehaul plots at GH and JK. 

Cost of freehaul = (LM + LM') x 60 p 
= (6500 + 8100) x 60 = 876 000 p 

brought forward 876 000 p 

Cost of overhaul = (GG' + J J') x 25 p 
= (2800 + 2200) x 25 = 125 000 p 

Cost of surplus removal = DD' x 150 p 
= 3200 x 150 p = 480 000 p 

Total cost = 1 481 000 p 

= £14810 

(2)(3) The technique is the same for these situations working to different balancing 
lines CD and EF respectively. The student should now attempt this for himself, the 
answers being (2) £14130, (3) £14 380. 
N.B. As the freehaul lines remain fixed, there is no overhaul on line CD in the first loop 

of the M H D . 

Example 

Example 3.12. Volumes in m

3
 of excavation ( + ) and fill ( —) between successive 

sections 100 m apart on a 1300-m length of a proposed railway are given 

Section 0 1 2 3 4 5 6 7 

Volume (m

3
) - 1 0 0 0 - 2 2 0 0 - 1 6 0 0 - 5 0 0 + 2 0 0 + 1 3 0 0 + 2 1 0 0 

Section 1 8 9 10 11 12 13 

Volume (m

3
) + 1 8 0 0 + 1 1 0 0 + 3 0 0 - 4 0 0 - 1 2 0 0 - 1 9 0 0 

Draw a M H D for this length. If earth may be borrowed at either end, which 
alternative would give the least haul ? Show on the diagram the forward and backward 
freehauls if the freehaul limit is 500 m, and give these volumes. (LU) 

Adding the volumes algebraically gives the following mass ordinates 

Section 0 1 2 3 4 5 6 7 

Volume (m

3
) - 1 0 0 0 - 3 2 0 0 - 4 8 0 0 - 5 3 0 0 - 5 1 0 0 - 3 8 0 0 - 1 7 0 0 

Section 8 9 10 11 12 13 

Volume (m

3
) + 1 0 0 + 1 2 0 0 + 1 5 0 0 + 1 1 0 0 - 1 0 0 - 2 0 0 0 

These are now plotted to produce the M H D of Figure 3.33. Balancing out from the zero 
end permits borrowing at the 1300 end. 
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^ . . . ( A B x C £ ) ) O 4' 5' x cry) (!) Total haul - L - ^ - J + 1 (W stn m 

_ (5300 > 475, + ( . 500^282) _ 2 9 4 0 5 g | nm 

Note: CD bisects and CD' bisects A'B'. 

(2) Balancing out from the 1300 end (EF) permits borrowing at the zero end. 

^ lf t (GBxHJ) (G'B'xH'T) 
Total haul = - — — — - + - — 

100 100 
(3300 x 385) , (3500 x 430) =

 100 + 100 =

 2 7 7 5 5 s t nm 

Thus, borrowing at the zero end is the least alternative. 

Backward freehaul = MB = 2980 m

3 

Forward freehaul = M'B' = 2400 m

3 

3.3.6 Auxiliary balancing lines 

A study of the material on M H D plus the worked examples should have given the 
reader an understanding of the basics. It is now appropriate to illustrate the application 
of auxiliary balancing lines. 

Consider in the first instance a M H D as in Worked example 3.10, p. 71. In Figure 3.34 
the balance line is ABC and the following data are easily extrapolated 

Cut AD balances fill DB vol moved = DE 
Cut CJ balances fill BJ vol moved = HJ 

Consider now Figure 3.35; the balance line is AB, but in order to extrapolate the 
above data one requires an auxiliary balancing line CDE parallel to AB and touching 
the M H D at D: 

Figure 3.33 



Cut AC balances fill EB Vol moved = GH 
Cut CF balances fill FD Vol moved = FG 
Cut DJ balances fill JE Vol moved = JK 

Thus the total volume moved between A and B is FH + JK 

Finally, Figure 3.36 has a balance from A to B with auxiliaries at CDE and FGH, 
then 

Fill AC balances cut BE Vol moved = JK 
Fill C F balances cut DH Vol moved = JfCL 
Fill FM balances cut GM Vol moved = LM 

Earthworks 77 

Figure 3.34 

Figure 3.35 

Figure 3.36 
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Fill GO balances cut HO Vol moved = NO 
Fill DQ balances cut EQ Vol moved = PQ 

The total volume moved between A and B is JM + NO + PQ 

The above data become apparent only when one introduces the auxiliary balancing 
lines. 

Exercises 

(3.5) The volumes in m

3
 between successive sections 100 m apart on a 900-m length of a 

proposed road are given below (excavation is positive and fill negative): 

Section 0 1 2 3 4 5 6 7 

Volume (m

3
) + 1 7 0 0 - 1 0 0 - 3 2 0 0 - 3 4 0 0 - 1 4 0 0 + 1 0 0 + 2 6 0 0 

Section 7 8 9 

Volume (m

3
) + 4600 + 1 1 0 0 

Determine the maximum haul distance when earth may be wasted only at the 900-m 
end. Show and evaluate on your diagram the overhaul if the freehaul limit is 300 m. 

(LU) 

(Answer: 558 m, 5500 stn m) 

(3.6) Volumes of cut (+ve) and fill ( - ve) along a length of proposed road are as follows: 

Chainage (m) 0 100 200 300 400 480 

Volume (m

3
) + 2 9 0 + 7 6 0 + 1 6 8 0 + 6 2 0 + 1 2 0 - 2 0 

Chainage (m) 500 600 700 800 900 1000 

Volume (m

3
) - 1 1 0 - 3 5 0 - 6 0 0 - 7 8 0 - 6 9 0 - 4 0 0 

Chainage (m) 1100 1200 

Volume (m

3
) - 1 2 0 

Draw a M H D and, excluding the surplus excavated material along this length, 
determine the overhaul if the freehaul distance is 300 m. (ICE) 

(Answer: 350 stn m) 
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The theodolite and its application 

As was shown in Chapter 1, two of the five basic measurements in plane surveying are 
the horizontal angle and the vertical angle. The standard instrument used in the 
measurement of these values is the theodolite. 

Although there is a large variety of theodolites produced by various manufacturers, 
the instruments all have the same basic components arranged in the same geometric 
relationship. Thus, mastery of one particular instrument enables an operator to master 
easily any other make encountered on site. 

Theodolites are normally classified by the precision to which they resolve angles and 
vary from 1 minute of arc (1') to 0.1 second {0.1"), depending upon accuracy 
requirements of the work in hand. In engineering survey, the finesse of selecting a 
particular instrument appropriate to the accuracy of the survey is no longer the 
practice. For obvious commercial reasons, a 1" theodolite is used for all surveys, even 
vertical-staff tacheometry, regardless of the accuracy requirements. 

It is not intended here to deal with the practical aspects of setting up, centering over a 
survey station and carrying out the observations. These procedures can be properly 
learned only by practical work in the laboratory or field. However, the procedures 
necessary to maintain the instrument in good adjustment and the errors that result 
from maladjustment, are dealt with here in detail; along with the application of the 
theodolite in establishing horizontal control networks by the method of traversing. 

4.1 BASIC CONCEPTS 

There are basically two types of theodolite, (a) the vernier type, and (b) the modern 
glass-arc type which has largely superseded the vernier model. The terms used describe 
their mode of construction: in (a) the manner of reading the horizontal and vertical 
scales is by means of a vernier; in (b) the horizontal and vertical circles are made of glass 
on which the divisions have been photographically etched. 

Although the vernier type is virtually obsolete, it is used in Figure 4.1 to illustrate the 
basic features of all types of theodolite. 

(1) The trivet stage, forming the base of the instrument, connects the theodolite to the 
tripod. 

(2) The tribrach supports the rest of the instrument and, with reference to the plate 
bubble, can be levelled using the footscrews acting against the fixed trivet stage. 

79 
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Point at which all 
observations are reduced 

Vertical axis 

Vertical circle rigidly fixed to 
telescope and in face left 
position 

Upper plate (horizontal 
"circle vernier) 

1 4 * ^ - ^ — Upper plate bubble 

-Centra l pivot 

Lower plate (graduated 
horizontal circle) 

Hollow pivot 

Tribrach 

Footscrews 

Base plate or trivet stage 

Figure 4.1 Simplified vernier theodolite 

(3) The lower plate is graduated clockwise from 0° to 360° and may be regarded as a 
simple circular protractor for measuring horizontal angles. 

(4) The upper plate fits concentric with the lower plate and may be regarded as the 
index against which the lower plate is read. Even though in modern theodolites the 
lower plate is a glass arc read via a complicated optical train of lenses and prisms, 
the above simple concept still holds true. 

Thus, to measure the horizontal angle ABC in Figure 4.2 the theodolite is set up, 
levelled and carefully centred over Station B. The telescope is backsighted (BS) to 
bisect the target at A and the horizontal circle reading (20°) noted. With the lower 

A
li
d

a
d

e
 

-^Altitude bubble rigidly ^ 
fixed to vertical circle vernier 

-Vert ical circle vernier o r index 

-A l t i tude bubble screw 

-Standards 
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A 

Figure 4.2 

plate held fixed, the upper plate is rotated to C, the foresight (FS) target carefully 
bisected and the reading (100°) noted. Thus, the measured angle is (100° — 20°) = 
80°. Similarly, a BS reading to A of, say, 350° and a FS reading to C of 70°, produces 
an angle of (70° — 350°) = 80°. This is the basic concept of measuring horizontal 
angles with a theodolite. 

(5) The standards support the vertical circle and telescope by the transit axis. The 
standards must be high enough to permit rotation of the telescope in the vertical 
plane. 

(6) The vertical circle (used in the measurement of vertical angles) is rigidly fixed to, and 
rotates with, the telescope. 

(7) The vertical circle vernier or index remains fixed relative to the vertical circle and is 
the da tum from which vertical angles are measured. 

(8) The altitude bubble is attached to the vertical circle index and when centralized 
establishes the vertical circle index horizontal. Thus vertical angles must only be 
read off the vertical circle when the index has been set to form a horizontal da tum 
(Figure 4.3). In this instance the zenith of the vertical circle reads 0°, thus a reading 
of, say, 120° as shown, represents a vertical angle (a) of +30° . 

Many theodolites possess automatic vertical circle indexing which does not require 
the setting of an altitude bubble, thereby eliminating the possibility of forgetting to do 

To ensure the best possible results when observing, the primary axes of the instrument 
should have the following relationship (as illustrated in Figure 4.1): 

(a) The vertical axis of the instrument should be truly vertical when the plate level 
bubble is central. 

(b) The transit axis should be perpendicular to the line of sight in the horizontal plane 
and the instrument axis in the vertical plane. 

so. 

4.2 TESTS AND ADJUSTMENTS 

.Vertical circle 
Vertical circle index 

Figure 4.3 

Lower plate of theodolite 
(circular protractor) ^ 

Horizontal 
datum 
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(c) When the telescope is horizontal and the altitude bubble central, the vertical circle 
should read zero or the equivalent (depending upon the manner of graduating the 
circle). 

In order to establish the above relationships, the instrument should be tested and, if 
necessary, adjusted at regular intervals. The procedures for these are now given in the 
order in which they should be carried out. 

(1 ) Plate level test 

The purpose of this test is stated in Section 4.2(a). The vertical axis of the instrument is 
perpendicular to the horizontal plate which carries the plate bubble. Thus to ensure 
that the vertical axis of the instrument is truly vertical, as defined by the bubble, it is 
necessary to align the bubble axis parallel to the horizontal plate. 

Test: Assume the bubble is not parallel to the horizontal plate but is in error by angle e. 
It is set parallel to a pair of footscrews, levelled approximately, then turned through 90° 
and levelled again using the third footscrew only. It is now returned to its former 
position, accurately levelled using the pair of footscrews, and will appear as in Figure 
4.4(a). The instrument is now turned through 180° and will appear as in Figure 4.4(b), 
i.e. the bubble will move off centre by an amount representing twice the error in the 
instrument (2e). 

Truly 
vertical 

axis 

\e 

a 
|L 

Truly 
vertical 

axis 

Figure 4.4 (a) W h e n l eve l l ed o v e r t w o f o o t s c r e w s . (b) W h e n t u r n e d t h r o u g h 180° 

Adjustment: The bubble is brought half-way back to the centre using the pair of 
footscrews. This will cause the instrument axis to move through e thereby making it 
truly vertical and, in the event of there being no adjusting tools available, the 
instrument may be used at this stage. The bubble will still be off centre by an amount 
proportional to e, and should now be centralized by raising or lowering one end of the 
bubble using its capstan adjusting screws. 

(2) Collimation in azimuth 

The purpose of this test is to ensure that the line of sight is perpendicular to the transit 
axis. 
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T r a n s i t A L 

9 0 - e 
A 

5 0 nn 

Figure 4.5 Collimation in azimuth 

Test: The instrument is set up, levelled, and the telescope directed to bisect a fine mark 
at A, situated at instrument height about 50 m away {Figure 4.5). If the line of sight is 
perpendicular to the transit axis, then when the telescope is rotated vertically through 
180°, it will intersect at Av However, assume that the line of sight makes an angle of 
(90° — e) with the transit axis, as shown dotted in the face left (FL) and face right (FR) 
positions. Then in the F L position the instrument would establish a fine mark at AL. 
Change face, re-bisect point A, transit the telescope and establish a fine mark at AR. 
From the sketch it is obvious that distance ALAR represents four times the error in the 
instrument (4e). (Looking through the telescope of the theodolite with the vertical circle 
on the left is termed a face left observation, and vice versa.) 

Adjustment: The cross-hairs are now moved in azimuth using their horizontal capstan 
adjusting screws, from AR to a point mid-way between AR and Ax; this is one-quarter of 
the distance ALAR. 

This movement of the reticule carrying the cross-hair may cause the position of the 
vertical hair to be disturbed in relation to the transit axis; i.e. it should be perpendicular 
to the transit axis. It can be tested by traversing the telescope vertically over a fine dot. If 
the vertical cross-hair moves off the dot then it is not at right angles to the transit axis 
and is corrected with the adjusting screws. 

This test is frequently referred to as one which ensures the verticality of the vertical 
hair, which will be true only if the transit axis is truly horizontal. However, it can be 
carried out when the theodolite is not levelled, and it is for this reason that a dot should 
be used and not a plumb line as is sometimes advocated. 

(3) Spire test (transit axis test) 

This test ensures that the transit axis is perpendicular to the vertical axis of the 
instrument. 

Test: The instrument is set up and carefully levelled approximately 50 m from a well-
defined point of high elevation, preferably greater than 30° (Figure 4.6). The well-
defined point A is bisected and the telescope then lowered to its horizontal position and 
a further point made. If the transit axis is in adjustment the point will appear at Ax 
directly below A. If, however, it is in error by the amount e (transit axis shown dotted in 
F L and FR positions), the mark will be made at AL. The instrument is now changed to 
FR, point A bisected again and the telescope lowered to the horizontal, to fix point AR. 
The distance ALAR is twice the error in the instrument (2e). 
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A 

F R 

-Transit axis 

F L 

T h e o d o l i t e Figure 4.6 Spire test (transit axis test) 

Adjustment: Length ALAR is bisected and a fine mark made at Ax. The instrument is 
now moved in azimuth, using a plate tangent screw until Ax is bisected. The student 
should note that no adjustment of any kind has yet been made to the instrument. Thus, 
when the telescope is raised back to A it will be in error by the horizontal distance 
ALAR/2. By moving one end of the transit axis using the adjusting screws, the line of 
sight is made to bisect A. This can only be made to bisect A when the line of sight is 
elevated. Movement of the transit axis when the telescope is in the horizontal plane 
ALAR, will not move the line of sight to Al9 hence the need to incline steeply the line of 
sight. 

(4) Vertical circle index test 

To ensure that when the telescope is horizontal and the altitude bubble central, the 
vertical circle reads zero (or its equivalent). 

Test: Centralize the altitude bubble using the clip screw (altitude bubble screw) and, by 
rotating the telescope, set the vertical circle to read zero (or its equivalent for a 
horizontal sight). 

Note the reading on a vertical staff held about 50 m away. Change face and repeat 
the whole procedure. If error is present, a different reading on each face is obtained, 
namely AL and AR in Figure 4.7. 

Staff 

Theodolite 

Figure 4.7 Vertical circle index test 
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Adjustment: Set the telescope to read the mean of the above two readings, thus making 
it truly horizontal. The vertical circle will then no longer read zero, and must be 
brought back to zero without affecting the horizontal level of the telescope. This is done 
by moving the verniers to read zero using the clip screw. 

Movement of the clip screw will cause the altitude bubble to move off centre. It is re-
centralized by means of its capstan adjusting screws. 

4.2.1 Alternative approach 

(1 ) Plate level test 

The procedure for this is as already described in Section 4.2(1). 

(2) Collimation in azimuth 

With the telescope horizontal and the instrument carefully levelled, sight a fine mark 
and note the reading. Change face and repeat the procedure. If the instrument is in 
adjustment, the two readings should differ by exactly 180°. If not, the instrument is set 
to the corrected reading as shown below using the upper plate slow-motion screw; the 
line of sight is brought back on to the fine mark by adjusting the cross-hairs. 

e.g. F L reading 01° 30' 20" 
FR reading 181° 31 ' 40" 

Difference = 2e = 01 ' 20" 
e=±40" 

Corrected reading = 181° 31 ' 00" or 01° 31 ' 00" 

(3) Spire test 

With instrument carefully levelled, sight a fine point of high elevation and note the 
horizontal circle reading. Change face and repeat. If error is present, set the horizontal 
circle to the corrected reading, as above. Adjust the line of sight back on to the mark by 
raising or lowering the transit axis. It is worth noting here that not all modern 
instruments are capable of this adjustment. 

(4) Vertical circle index test 

Assume the instrument reads 0° on the vertical circle when the telescope is horizontal 
and in F L position. Carefully level the instrument, horizontalize the altitude bubble 
and sight a fine point of high elevation. Change face and repeat. The two vertical circle 
readings should sum to 180°, any difference being twice the index error. 

e.g. F L reading (Figure 4.8(a)) 09° 58' 00" 
FR reading (Figure 4.8(b)) 170° 00' 20" 

s u m = 179° 58 '20" 
correct sum = 180° 00' 00" 

2e= - O r 40" 
e = - 50" 
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(a) (b) 

Figure 4.8 (a) Face left, and (b) face right 

Thus with target still bisected, the vernier is set to read 170° 00' 20" + 50" = 
170° Or 10" by means of the clip or altitude bubble screw. The altitude bubble is then 

centralized using its capstan adjusting screws. If the vertical circle reads 90° and 270° 
instead of 0° and 180°, the readings sum to 360°. 

These alternative procedures have the great advantage of using the theodolite's own 
scales, rather than external scales, and can therefore be carried out by one person. 

4.2.2 Effect of instrument errors 

Adjustments are never perfect, small residual errors always remain in the instrument. 
Their effect will now be considered in detail. A careful study of this section will clearly 
show the reasons for always observing angles more than once, on alternate faces of the 
instrument. 

(1 ) Eccentricity of centres 

This error is due to the centre of the central pivot carrying the alidade (upper part of the 
instrument) not coinciding with the centre of the hollow pivot carrying the graduated 
circle (Figures 4.1 and 4.9). 

The effect of this error on readings is periodic. If B is the centre of the graduated circle 
and A is the centre about which the alidade revolves, then distance AB is interpreted as 
an arc ab in seconds on the graduated circle and is called the error of eccentricity. If a 
vernier is at £>, on the line of the two centres, it reads the same as it would if there were 
no error. If, at b, it is in error by ba = E, the maximum error. In an intermediate 
position d, the error will be de = BC = AB sin 6 = E sin 0,6 being the horizontal angle 
of rotation. 

The horizontal circle is graduated clockwise, thus the vernier supposedly at b will be 
at a, giving a reading too great by +E. The opposite vernier supposedly at b' will be at 

b 
a 

D 

b' 

D' 

Figure 4.9 
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a\ thereby reading too small by - E. Similarly for the intermediate positions at d and d\ 
the errors will be + E sin 8 and - E sin 6. Thus the mean of the two verniers 180° apart, 
will be free of error. 

Modern glass-arc instruments in the 20" class, can be read on one side of the 
graduated circle only, thus producing an error which varies sinusoidally with the angle 
of rotation. Readings on both faces of the instrument would establish verniers 180° 
apart. Thus the mean of readings on both faces of the instrument will be free of error. 
With 1-in theodolites the readings 180° apart on the circle are automatically averaged 
and so are free of this error. 

Manufacturers claim that this source of error does not arise in the construction of 
modern glass-arc instruments. 

(2) Collimation in azimuth error 

If the line of sight in Figure 4.10 is at right-angles to the transit axis it will sweep out the 
vertical plane VOA when the telescope is depressed through the vertical angle a. 

Transit-

9 u %
° Transit axis 

Plan view 

Figure 4.10 

If the line of sight is not at right-angles but in error by an amount e, the vertical plane 
swept out will be VOB. Thus the pointing is in error by — </> ( —ve because the 
horizontal circle is graduated clockwise). 

tan </> 
AB 

VA 

OA tan e 
but 

OA 
= sec a 

VA ' VA 

.*. tan <j) = sec a tan e 

as </> and e are very small, the above may be written 

</> = e sec a (4.1) 

On changing face VOB will fall to the other side of A and give an equal error of opposite 
sign, i.e. + </>. Thus the mean of readings on both faces of the instrument will be free of 
error. 

(a) 

(b) 
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(j> is the error of one sighting to a target of elevation a. An angle, however, is the 
difference between two sightings; therefore the error in an angle between two objects of 
elevation, a1 and a2, will be e(sec al — sec a2) and will obviously be zero if a1 = a2, or if 
measured in the horizontal plane, (a = 0). 

On the opposite face the error in the angle simply changes sign to — e(sec a2 — 
sec a2) , indicating that the mean of the two angles taken on each face will be free of error 
regardless of elevation. 

Vertical angles: It can be illustrated that the error in the measurement of the vertical 
angles is sin a = sin ax cos e where a is the measured altitude and ax the true altitude. 
However, as e is very email, cos e & 1, hence a t « a, proving that the effect of this error 
on vertical angles is negligible. 

(3) Effect of transit axis dislevelment 

If the transit axis is set correctly at right-angles to the vertical axis, then when the 
telescope is depressed it will sweep out the truly vertical plane VOA (Figure 4.11). 
Assuming the transit axis is inclined to the horizontal by e, it will sweep out the plane 
COB which is inclined to the vertical by e. This will create an error — <j> in the horizontal 
reading of the theodolite ( —ve as the horizontal circle is graduated clockwise). 

If a is the angle of inclination then 

From Figure 4.11 it can be seen that the correction <f) to the reading at B, to give the 

sin (f) = 

AB VC OV 

Now, as <\> and e are small, (j) = e tan a (4.2) 

A B Figure 4.11 
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correct reading at A, is positive because of the clockwise graduations of the horizontal 
circle. Thus, when looking through the telescope towards the object, if the left-hand end 
of the transit axis is high, then the correction to the reading is positive, and vice versa. 

On changing face, COB will fall to the other side of A and give an equal error of 
opposite sign. Thus, the mean of the readings on both faces of the instrument will befree of 
error. 

As previously, the error in the measurement of an angle between two objects of 
elevations <xx and a 2 will be 

e(tan OLX — tan a2) 

which on changing face becomes — e(tan OLX — tan a2) indicating that the mean of two 
angles, taken one on each face, will be free of error regardless of elevation. Also if OLX = a2, 
or the angle is measured in the horizontal plane (a = 0), it will be free of error. Note if OLX 
is positive and a 2 negative, then the correction is e[tan ax — (— tan a2) ] = e(tan OLX + 
tan a2) . 

Vertical angles: Errors in the measurement of vertical angles can be shown to be 
sin a = sin OLX sec e. As e is very small sec e % 1, thus OLX = a, proving that the effect of 
this error on vertical angles is negligible. 

(4) Effect of non-verticality of the vertical axis 

If the plate levels of the theodolite are not in adjustment, then the instrument axis will 
be inclined to the vertical, hence measured azimuth angles will not be truly horizontal. 
Assuming the transit axis is in adjustment, i.e. perpendicular to the vertical axis, then 
error in the vertical axis of e will cause the transit axis to be inclined to the horizontal by 
e, producing an error in pointing of <f> = e tan a as in the previous case. Here, however, 
the error is not eliminated by double-face observations {Figure 4.12), but varies on 
different pointings of the telescope. Fo r example, Figure 4.13(a) shows the instrument 
axis truly vertical and the transit axis truly horizontal. Imagine now that the instrument 
axis is inclined through e in a plane at 90° to the plane of the paper {Figure 4.13(b)). 
There is no error in the transit axis. If the alidade is now rotated clockwise through 90° 
into the plane of the paper, it will be as in Figure 4.13(c), and when viewed in the 
direction of the arrow, will appear as in Figure 4.13(d) with the transit axis inclined to 
the horizontal by the same amount as the vertical axis, e. Thus, the error in the transit 
axis varies from zero to maximum through 90°. At 180° it will be zero again, and at 270° 
back to maximum in exactly the same position. 

If the horizontal angle between the plane of the transit axis and the plane of 
dislevelment of the vertical axis is 8, then the transit axis will be inclined to the 
horizontal by e cos 5. For example, in Figure 4.13(b), 8 = 90°, therefore as cos 90° = 0, 
the inclination of the transit axis is zero, as shown. 

For an angle between two targets at elevations OLX and a2, in directions 8X and 82, the 
correction will be e(cos 8X tan OLX — cos S2 tan a2) . When 8X = S2, the correction is a 
maximum when <xx and a 2 have opposite signs. When 8X = — <52, that is in opposite 
directions, the correction is maximum when OLX and a 2 have the same sign. 

If the instrument axis is inclined to the vertical by an amount e and the transit axis 
further inclined to the horizontal by an amount i, both in the same plane, then the 
maximum dislevelment of the transit axis on one face will be (e + i), and (e — i) on the 
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F L F R 

Figure 4.12 

Figure 4.13 

reverse face [Figure 4.14). Thus, the correction to a pointing on one face will be 
(e + i) tan a and on the other (e — i) tan a, resulting in a correction of e tan a to the 
mean of both face readings. 

As shown, the resultant error increases as the angle of elevation a increases and is not 
eliminated by double-face observations. As steep sights frequently occur in mining and 
civil engineering surveys, it is very important to recognize this source of error and adopt 
the correct procedures. 

Thus, as already illustrated, the correction for a specific direction 5 due to non-
verticality (e) of the instrument axis is e cos S tan a. The value of e cos 6 = E can be 
obtained from 

(4.3) 

I n s t r u m e n t a x i s _ 
t ru ly ve r t i ca l 

I ns t rumen t a x i s -
n o n - v e r t i c a l 

(a) (b) 

H o r i z o n t a l 
p l a t e 

H o r i z o n t a l 
p l a te 

(c) 

(d) 



where S" = the sensitivity of the plate bubble in sees of arc per bubble division 
L and R — the left- and right-hand readings of the ends of the plate bubble when 

viewed from the eye-piece end of the telescope 

Then the correction to each horizontal circle reading is C" — E" tan a, and is plus when 
L> R and vice versa. 

For high-accuracy survey work, the accuracy of the correction C will depend upon 
how accurately E can be assessed. This, in turn, will depend on the sensitivity of the 
plate bubble and how accurately the ends can be read. For very high accuracy involving 
extremely steep sights, an Electrolevel attached to the theodolite will measure axis tilt 
direct. This instrument has a sensitivity of 1 scale division equal to 1" of tilt and can be 
read to 0.25 div. The average plate bubble has a sensitivity of 20" per div. 

Assuming that one can read each end of the plate bubble to an accuracy of ±0 .5 mm, 
then for a bubble sensitivity of 20" per (2 mm) div, on a vertical angle of 45°, the error in 
levelling the instrument (i.e. in the vertical axis) would be ±0.35 x 20" tan 45° = ± 7 " . 
It has been shown that the accuracy of reading a bubble through a split-image 
coincidence system is ten times greater. Thus, if the altitude bubble, usually viewed 
through a coincidence system, was used to level the theodolite, error in the axis tilt 
would be reduced to ±0.7". 

Modern theodolites are rapidly replacing the altitude bubble with automatic vertical 
circle indexing with stabilization accuracies of ±0 .3" , which may therefore be used for 
high-accuracy levelling of the instrument as follows: 

(1) Accurately level the instrument using its plate bubble in the normal way. 
(2) Clamp the telescope in any position, place the plane of the vertical circle parallel 

to two footscrews and note the vertical circle reading. 
(3) With telescope remaining clamped, rotate the alidade through 180° and note 

vertical circle reading. 
(4) Using the two footscrews of (2) above, set the vertical circle to the mean of the two 

readings obtained in (2) and (3). 
(5) Rotate through 90° and by using only the remaining footscrew obtain the same 

mean vertical circle reading. 

The instrument is now precisely levelled to minimized axis tilt and virtually 
eliminates this source of error on steep sights. 

Figure 4.14 (a) Face left, and (b) face right 

( a ) ( b ) 
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( a ) ( b ) 

Figure 4.15 (a) Face left, and (b) face right 

(5) Vertical circle index error 

This form of error (illustrated in Figure 4.15) is the result of the vertical circle index not 
being exactly horizontal but having an index error of V as shown. It produces an equal 
but opposite error on alternate faces of the instrument and is therefore eliminated by 
taking the mean of double-face readings. 

(6) Plate graduation errors 

Periodic errors in the graduation of the horizontal and vertical circles of a theodolite 
occur due to the manufacturing processes involved. The production of error curves for 
some instruments indicated maximum errors in the region of ±0^3". Thus, for all 
practical considerations, reading on different parts of the circle and taking the mean, 
should be sufficient treatment for this particular error. 

Plate graduation errors combined with optical and mechanical defects in the 
micrometer system produced optical micrometer errors which exhibit a cyclic 
variation. Their effect can be reduced by using different micrometer settings. 

It is obvious from a consideration of all these error sources, that not only should the 
observations be made several times on alternate faces of the instrument, but that the 
instrument should be handled with extreme care and delicacy. 

A study of the following booking form will reveal the procedure adopted and the 
manner in which perambulations about the instrument are reduced to a minimum, 
when observing horizontal angle ABC (see Figure 4.2). 

Sight to Face Reading 

o / „ 

Angle 

A L 020 46 28 80 12 06 

C L 100 58 34 

C R 280 58 32 80 12 08 

A R 200 46 24 

A R 292 10 21 80 12 07 

C R 012 22 28 

C L 192 22 23 80 12 04 

A L 112 10 19 

Mean = 80 12 06 

Note the built-in checks supplied by changing face, i.e. the reading should change by 180°. 
Note that to obtain the clockwise angle one always deducts BS (A) reading from the FS (C) reading, regardless of the order in which they are 
observed. 
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Examples 

N o answers are given to these questions as it would be a repetition of information 
already supplied. Students are advised to write out the answers for themselves. 

Example 1. A modern theodolite is offered for sale on seven days' approval. 
Superficially it appears to be in good condition. List the tests you would carry out to 
determine whether or not the instrument was fit for immediate use. Against each test 
indicate the defects that would be revealed and state whether these can be corrected by 
either observation techniques or field adjustments, or only by the manufacturer. Also 
describe in detail the procedure involved in making two of the field adjustments in your 
list. 
Note: Field adjustments are those for which the manufacturer normally provides a 
tool kit in the instrument case. (LU) 

Example 2. The trunnion axis of a theodolite is set at an angle of (90° — i) to the vertical 
axis of the instrument, where i is small. Derive an expression for the error in measuring 
the horizontal angle subtended by two objects whose angles of elevation are a and ]?. 

The trunnion axis of a certain theodolite is 80 mm long and has one end 0.005 mm 
higher than the other. Evaluate the error in the observed azimuth angle between a star 
at an elevation of 65° and a reference object at a depression of 5° if the observations are 
made on one face only. (LU) 

Example 3. Show that the effect of an eccentricity of the horizontal circle of a 
theodolite is to produce an error in reading one side only, which varies sinusoidally 
with the angle of rotation of the telescope. Show also that, where only one side of the 
circle may be read, provided that the azimuth of the circle remains unchanged, the 
mean of the F L and FR readings gives the correct angle. (LU) 

Example 4. Two stations at elevations of <xx and <x2 are sighted by a theodolite in which 
the line of collimation is inclined to the trunnion axis at an angle of (90° — i) where i is 
small. 

(1) Derive an expression for the error in the horizontal angle between the two 
stations, as given by this instrument. 

(2) Show by a diagram the effect of the collimation error on the vertical circle reading 
to one station. 

(3) What is the effect of measuring the horizontal and vertical angles on both faces? 
(LU) 

4.3 THEODOLITE TRAVERSING 

Horizontal control networks (as outlined in Chapter 1) can be established by a variety 
of methods, the method under consideration here is that of traversing. The positions of 
the control points (survey stations) are fixed by measuring the horizontal angles, at each 
station, subtended by the adjacent stations and the horizontal distance between 
consecutive pairs of stations, as shown in Figure 4.16. The angles define the shape of the 
network, whilst the lengths establish the scale. 
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To a reference station 

Figure 4.16 Types of traverse: (a) open, (b) polygonal and (c) link 

In engineering, traverse networks are used: 

(1) As control for topographic detail surveying. 
(2) As control for dimensional control (setting out) on site. 
(3) As control for aerial surveys. 

4.3.1 Types of traverse 
( 1 ) Open traverse 

This type of traverse (Figure 4.16(a)) neither returns to its starting point nor connects in 
to any other known point. Because of this, there is no automatic check on the field data, 
and open traverses should therefore be avoided where possible. 

Open traverses are used mainly in tunnelling work where the physical situation 
prevents closure. It is important therefore that the measured angles, distances and 
instrument centring, be very carefully checked by independent means, wherever 
possible. 

Check measures 
(a) 

( b ) 

To a reference station 
A 
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(2) Closed traverse 

A closed polygonal traverse is one which closes back on to its starting point (Figure 
4.16(b)). 

A closed traverse which commences from a point (X) of known value and connects 
into a second point (Y) of known value, is called a link traverse (Figure 4.16(c)). 

The advantage of a closed traverse is that the amount of angular and linear 
misclosure can be detected and so distributed throughout the traverse, thereby 
rendering it geometrically correct. 

It is worth noting that if the sides of a polygonal traverse are measured with a tape 
which is too long or too short, the polygon will be too small or too large, but will appear 
to close satisfactorily. Also, if the first line of the traverse is in error by, say, 0°, the whole 
network will swing through 0° but will still appear to close satisfactorily. Both types of 
gross error will be immediately apparent in a link traverse. 

4.4 TRAVERSE COMPUTATION 

4.4.1 Distribution of angular error 

On the measurement of the horizontal angles of the traverse, the majority of the 
systematic errors are eliminated by repeated double-face observation. The remaining 
random errors are distributed equally around the network, as follows. 

In a polygon the sum of the internal angles should equal (2n — 4)90°, the sum of the 
external angles should equal (2n + 4)90°. 

n 

.". Angular misclosure = W= £ a* — (2n ± 4)90° 
; = i 

where a = mean observed angle 

n = number of angles in the traverse 

The angular misclosure Wis now distributed by equal amounts on each angle, thus: 

Correction per angle = W/n (refer Table 4.1, p. 96) 
However, before the angles are corrected, the angular misclosure W must be 

considered to be acceptable. If W w a s too great, and therefore indicative of poor 
observations, the whole traverse may need to be re-measured. A method of assessing 
the acceptability or otherwise of Wis given in Section 4.4.2. 

4.4.2 Acceptable angular misclosure 

The following procedure may be adopted provided that there is evidence of the 
variance of the mean observed angles, i.e. 

where a\n = variance of the mean observed angle 

ol, = variance of the sum of the angles of the traverse 
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TABLE 4.1 

Angle Observed value 
O 1 II 

Corrn Corrected angle 
Q l II 

WCB 
O 1 

Line 

0 00 00 AB 
ABC 120 20 00 + 5 120 20 05 300 20 05 BC 
BCD 86 00 40 + 5 86 00 45 206 20 50 CD 
CDE 341 34 20 + 5 341 34 25 07 55 15 DE 
DEF 60 22 00 + 5 60 22 05 248 17 20 EF 
EFA 100 28 20 + 5 100 28 25 168 45 45 FA 
FAB 11 14 10 4-5 11 14 15 0 00 00 AB 

719 59 30 + 30 720 00 00 check 

(2,i - 4)90° = 720 00 00 
+ 30" 

= +5" Error - 3 0 Correction per angle 
6 

= +5" 

Assuming that each angle is measured with equal precision: 

then ol, = n.o* and 

ow = n

1 , 2
. a A (see Chapter 1, Volume 2) 

n 

Angular misclosure =W= £ <xi-[(2n± 4)90°] 
i= 1 

where a = mean observed angle 

n = number of angles in traverse 

then for 95% confidence 

P(-1 .96<rw < W< + 1 . 9 6 < 7 J = 0.95 

and for 99.73% confidence 

P ( - 3 ( 7 W < W< + 3 < t J = 0.9973 

e.g. Consider a closed traverse of nine angles. Tests prior to the survey showed that the 
particular theodolite used had a standard error (aA) of + 3". What would be considered 
an acceptable angular misclosure for the traverse ? 

<rw = 9

1 / 2
. 3 " = ± 9 " 

P ( - 1 . 9 6 x 9" < W< +1.96 x 9") = 0.95 

= P ( - 1 8 " < * y < + 1 8 " ) = 0.95 

Similarly P ( - 2 7 " < W< +27") = 0.9973 

Thus, if the angular misclosure Wis greater than + 1 8 " there is evidence to suggest 
unacceptable error in the observed angles, provided the estimate for aA is reliable. If W 
exceeds + 27" there is definitely angular error present of such proportions as to be quite 
unacceptable. 
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0 ° N 

1 8 0 ° S 

(a) (6) 

Figure 4.17 

Research has shown that a reasonable value for the standard error of a double-face 
observation, taken with a 1" theodolite, is in the region of ±2.5" . 

4.4.3 Whole-circle bearings 

The next step in the computational procedure is that of finding the whole-circle 
bearings (WCB) from the corrected angles. 

WCB are illustrated in Figure 4.17(a). The angles are always measured clockwise 
from the zero axis and range from 0° to 360°, thus: 

WCB of PA = 40° 
WCB o f P £ = 120° 
WCB of PC = 250° 
WCB of PD = 330° 

Purely as a matter of historical interest, the above WCB are here expressed as 
equivalent quadrant bearings (QB) in Figure 4.17(b): 

QB of PA = N 40° E 
QB of PB = S 60° E 
QB of PC = S 70° W 
QB of PD = N 30° W 

The universal use of electronic calculators has now rendered the quadrantal-bearing 
system obsolete. 

The WCB of the traverse lines are obtained by adding the measured angles to the 
previous WCB. The starting leg of a traverse is generally given a local arbitrary WCB of 
0° 00' 00", unless it commences from existing surveys. Students should become familiar 
with the reduction of angles to bearings and vice versa, from first principles. The 
following approach is suggested. 

Example 1. Find the WCB of PB, given: 

WCB of AP = 0° 00' 00", clockwise angle APB = 120° 00' 00" 
WCB of AP = 89° 35' 36", clockwise angle APB = 104° 10' 10" 
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WCB of AP = 348° 20' 20", clockwise angle APB = 300° 00' 00" 
WCB of AP = 08° 10' 10", clockwise angle APB = 285° 50' 40" 

Method 

(1) Always work from the point about which the angle is measured, namely P. If WCB 
of AP is 0°, then the reverse bearing PA is 180°; now simply add the clockwise angle 
APB to give the WCB of PB, i.e. 180° + 120° = 300°. At first a sketch is very useful (see 
Figure 4.18(a)). 

0 ° 0 ° B 0 ° 

(a) (b) (c) 

Figure 4.18 

(2) Figure 4.18(b): Reverse bearing AP = (89° 35' 36" + 180°) = 269° 35' 36". .\ 
WCB of PB = (269° 35' 36" + 104° 10' 10") = 373° 45' 46" = 13° 45' 46". 
(3) Figure 4.18(c): Reverse bearing AP = (348° 20' 20" — 180°) = 168° 20' 20". 
WCB of PB = (168° 20' 20" + 300° 00' 00") = 468° 20' 20" = 108° 20' 20". 

Note: In the above two instances PB swings through 360° to give, say, 373°; as the 
bearing cannot be greater than 360°, it has swung to position (373° - 360°) = 
13°. 

(4) The student should attempt this for himself, the result being WCB of 
PB = 114° 00' 50". 

In the same way, students should be able to calculate angles when given the WCB of 
two lines. Using WCB, the method is simply the reverse of the previous approach. 

Example 2. Find the clockwise angle, given: 

WCB of AP = 0° 00' 00", of PB = 300° 00' 00" 
WCB of AP= 89° 35'36", of PB = 13° 45 '46" 
WCB of AP = 348° 20' 20", of PB = 108° 20' 20" 
WCB of AP = 08° 10' 10", of PB = 114° 00' 50" 

Method 

Again work from the angle point P; thus if AP = 0° thenP,4 = 180° and PB = 300°. / . 
angle APB — (300° - 180°) = 120°. 

Students should now work the rest for themselves, obtaining the answers as given in 
the previous questions. 

It will now be apparent that to carry out the above for a traverse of many stations 
would be extremely tedious, and the following method is used. From Figure 4.19 the 
following information may be deduced: 
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WCB of AB = 6A 
Measured angle ABC = a 

WCB of BC = 6B 
.-. 0B = eA + a - 180° i.e. 

WCB of BC = WCB of AB + measured angle - 180° giving the following rules which 
the student should memorize: 

If the sum of the previous WCB and the measured angle is greater than 180°, then 
subtract 180°: if less than 180° add 180°. If the sum is greater than 540° subtract 540°. 

Example 3. The internal clockwise angles of a closed polygonal traverse are as shown in 
Table 4.1. Correct them and tabulate the bearings, given WCB of AB = 0° 00' 00". 

The WCB are deduced as follows, using the given rule: 

WCB of AB = 0° 00' 00" 
Angle ABC= 120° 20' 05" 

WCB of BC 
Angle BCD 

120° 20' 05" 
+ 180° 

300° 20' 05" 
86° 00' 45" 

386° 20' 50" 

- 1 8 0 ° 

WCB of CD = 206° 20' 50" 
Angle CDE= 341° 34' 25" 

547° 55' 15" 
- 5 4 0 ° 

WCB of DE = 07° 55' 15" 
Angle DEF = 60° 22' 05" 

68° 17' 20" 
+ 180° 

WCB of EF = 248° 17' 20" 
Angle EFA = 100° 28' 25" 

348° 45 ' 45" 
- 1 8 0 ° 

WCB of FA = 168° 45' 45" 
Angle FAB= 11° 14 '15" 

180° 00' 00" 
- 1 8 0 ° 

WCB of AB 0° 0' 0" (Check) 
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A 
C 

Figure 4.19 

4.4.4 Plane rectangular co-ordinates 

Using the WCB and the horizontal lengths of the traverse legs, the plane rectangular 
co-ordinates of each traverse station are now computed. The co-ordinate values are 
then used 

(1) In the adjustment of the traverse. 
(2) To plot accurately the positions of the stations on a precisely-constructed grid. 
(3) To carry out setting-out computations. 

For surveys of limited extent, plane rectangular co-ordinates are used. With reference 
to Figure 4.20 the positions of the traverse stations A, B, C and D are fixed by 
perpendicular measurements from a rectangular axis. 

Distances along the horizontal axis (X-axis) are termed eastings (E). Distances along 
the vertical axis (in pure maths the Y-axis) are termed northings (N). The usual 
mathematical sign convention is used, that is, distances to the north and east of the 
origin are positive; to the south and west negative. Students used to the normal 
mathematical convention of defining polar co-ordinates by the angle measured from 
the + E axis, must remember that the WCB of a line is measured from the + N axis. 

On Figure 4.20, the difference in co-ordinates of B relative to A are obtained from the 
right-angled triangle AaB, i.e. 

aB = AE = L sin a (4.4) 

Aa = AN = L cos a (4.5) 

a 
b • 92m +100 m 

c 

Figure 4.20 



The theodolite and its application 101 

where L is the horizontal distance and a the WCB of the line. Algebraic addition of the 
co-ordinate differences produces the total co-ordinates, E and N, of the points relative to 
the origin. The above operation using equations (4.4) and (4.5) is known as computing 
the polar. 

From Figure 4.20 it can be seen that the co-ordinates of D relative to A are 4-263 E 
and — 25 N, from which it is possible to compute the join, i.e. the length and bearing of 
AD. 

Since the computation of the join and polar are fundamental to surveying, they will 
now be illustrated in detail. To facilitate understanding of the procedures, students 
should study Figure 4.21(a) and Table 4.2, noting that the signs of the co-ordinates 
define the quadrant in which the WCB lies, and vice versa. 

( a ) 

+ 

\ \ \ 
I V ^ 

N 
0° 

+e / 

270° 
\ 

\ \ • E 
/ 

/ \ 90* 

in / +e 

180° 

270 

( b ) 

\ 
\ 

-02 
c o s all 

I / 
V 
/ 

/ 
/ 

/ tan 

/ 
/ 

/ s i n e 

180 

- 9 0 

Figure 4.21 

TABLE 4.2 

Bearing E N 

Quadrant I + + 
Quadrant II + -
Quadrant III - -
Quadrant IV - + 

(1) The join is the length (L) and bearing of a line obtained from the difference in co-
ordinates of its ends. 

Consider two points A and B whose co-ordinates are EA, NA and EB, NB, then: 

AEAB = (EB-EA) and ANAB = (NB — NA) 

and, from the basic equations (4.4) and (4.5): 

, AE _.AN a
- = t a n " — - c o t — (4.6) 

LAB = (AE

2
 + AN

2
)

112
 = -^r— = (4.7) 

sin a cos a 

In the following computations, it is assumed that a scientific pocket calculator is 
used. 
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EA = 48964.38 m NA= 69866.75 m 

Example 
EA = 4 

EB = 48988.66 m NB= 62583.18 m 

AEAB = + 24.28 m ANAB = - 7283.57 m 

aAB = t a n "

1
 = - ° °

 ir 2r AB
 -7283.57 

From the signs of AE, AN ( H — ) , the bearing lies in quadrant II 

/ . WCB of AB = 180° - 0° 11' 27" == 179° 48' 33" 

Check: 
, -7283.57 

aAB = c o t "

1
 — — = - 0 ° 11' 27" 

AB
 +24.28 

, AE 
Alternatively, c o t "

1
 — - = 89° 48' 33" 
AN 

/ . WCB of AB = 90° + 89° 48' 33" = 179° 48' 33" 

In this case, it is easier to add a to 90° than subtract from 180° as in the first instance. 

LAB = (AE

2
 + A N

2
)

1 /2
 = (24.28

2
 + 7283.57

2
)

1 /2
 = 7283.61 m 

= AN/cos a = 7283.57/cos 179° 48' 33" = 7283.61 m 
= A£/sin a = 24.28/sin 179° 48' 33" = 7289.84 m (error = 6.23 m) 

The sines and tangents of small angles ( < 1 ° 20') and the cosines of large angles 
(>88° 40') vary greatly and erratically, thus any rounding-off error will have a greater 
effect on the sine value above than on the cosine. This then is the reason for the large 
error in distance when using A£/sin a. Thus the use of Pythagoras is recommended 
with calculators, or, when using either of the latter equations, choose the one which has 
the largest co-ordinate difference, i.e. AN > AE; therefore, in this instance, use 
AN/cos a. 
(2) The polar is the co-ordinates of point B given the co-ordinates of A and the length 
and bearing of AB, thus: 

EB = EA+ AEAB 
NB = NA + AN^B 

where AE = L sin a 
AN = L cos a 

e.g. EA = 48 964.38 m, NA = 69 866.75 m 

WCB of A - B = 299° 58' 46" 
LAB = 1325.64 m 

As AB is in quadrant IV, then the signs of AE and AN are — and + respectively 

/. AEAB = 1325.64 sin 299° 58' 46" = -1148.28 m 
ANAB = 1325.64 cos 299° 58' 46" = +662.41 m 
EB = EA + AEAB = 47 816.10 m 
NB = NA + ANAB = 70 529.16 m 
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As pocket calculators obey that well-known law of trigonometry illustrated by 
Figure 4.21(b), the correct signs of the AE, AN values will be automatically supplied in 
the readout. Whilst correctly-working and fully-charged pocket calculators do not 
make computational mistakes there is still a need to check the input operation. To this 
end the 'auxiliary bearings' check can be used, as follows: 

x Ls in (a + 45°) = AN + AE 
V2 x L c o s (a + 45°) = AN - AE 

.'. x 1325.64 sin 344° 58' 46" = -485 .87 = AN + AE 
72 x 1325.64 cos 344° 58' 46" = +1810.69 = AN - AE 

Adding: + 2 x AN = +1324.82 / . AN = +662.41 m 
Subtract: + 2 x AE = -2296.56 / . AE = -1148.28 m 

It is worth noting that if the calculator possesses the polar and rectangular co-
ordinate keys, generally denoted by —>P and —>R, then inputting rectangular co-
ordinates of the III and IV quadrants and changing to polars, will give as the angular 
value — 0l and — 02 as shown in Figure 4.21 (b). Thus, to obtain the WCB one must add 
360°. The reverse operation is not affected. 

However, if the normal trig function (tan "

1
 AE/AN) is used, the angular values will 

be given as in Figure 4.21(a) and must be treated accordingly, in quadrants II, III and 
IV, to convert them to WCB. 

Similarly, in computer programming, the use of ATN (AE/AN) produces the 
situation as in Figure 4.21(a). One should therefore use ATN2(AE,AN) which produces 
the much easier situation as in Figure 4.21(b). 

As a guide to the number of decimal places to use when computing, the following is 
usual: 

4.4.5 Traverse adjustment 

The final step in the computational procedure is the adjustment of the co-ordinate 
differences (AE, AN) in order to make the network geometrically correct. 

In the case of the polygon the algebraic sum of the AE and AN values should, 
theoretically, equal zero, if not, the discrepancies (A'E, A'N) are distributed throughout 
the network. 

In the case of the link traverse, the algebraic sum of the AE and AN values relative to 
the origin, should, theoretically, equal the co-ordinate values of the station into which 
the traverse is connected. 

The methods of adjustment in popular use vary from the very elementary to the very 
advanced. However, regardless of the mathematical rigour used, there is no ideal 
method of adjustment. Of the elementary methods, the most popular is the Bowditch 
method which states: 

21° 21 ' 00" 
21° 21 ' 10" 
21° 21 ' 11" 
21° 21 ' 11.1 

4 dec places 
5 dec places 
6 dec places 
7 dec places 

(1) SEt = -
A'E A'N 

(2) SN, = 
n 

• Lt = K2.L; 

i=l 
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C D 

Figure 4.22 

TABLE 4.3 

Line AE AN 

AB — + 155.00 
BC - 1 7 2 . 4 4 + 101.31 
CD - 2 4 9 . 0 0 — 
DE - 18.87 - 1 8 9 . 0 6 
EA +439.76 - 68.08 

Sum - 0.55 - 0.83 

The measured field data are shown in Table 4.5 where the angles have been corrected 
and reduced to WCB. Using the WCB and horizontal lengths the co-ordinate 
differences are computed using equations (4.4) and (4.5) and they are shown in Table 4.3. 

Algebraic summation of the co-ordinates shows the errors 

A'£ = - 0 . 5 5 ; A'N = —0.83 

which are distributed throughout the traverse using the Bowditch rule, as shown in 

where, SEi9 8N( = the co-ordinate corrections 

A'£, A'N = the co-ordinate misclosure (constant) 

Lf = the horizontal length of the ith traverse leg 
n 

£ Lf = the sum of the lengths (constant) 
i = 1 

Kx & K2 = the resultant constants 

This method, although devised by Nathaniel Bowditch as long ago as 1807 for the 
adjustment of compass traverses, nevertheless remains the most popular method in use 
today. 

The application of the method to a polygonal traverse (Figure 4.22) will now be 
demonstrated. 
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Corrections to AE Correction to AN 

AB 
+0.55 +0.83 

AB = x 155 x 155 
1239 1239 

= K, x 155 = +0.07 = K2 x 155 = +0 .10 
BC = Ki x 200 = +0.09 = K2 x 200 = +0 .13 
CD = Kx x 249 = +0.11 = K2 x 249 = +0.17 
DE = Kx x 190 = +0.08 = K2 x 190 = +0 .13 
EA = KY x 445 = +0 .20 = iC2 x 445 = +0 .30 

Sum = +0.55 Sum = +0.83 

Table 4.4. Note that as the co-ordinate misclosure is negative, the corrections are 
positive. 

The above corrections are added algebraically to the co-ordinate differences to 
produce the corrected values shown within the thick blocks of Table 4.5. 

Finally, algebraic summation of the corrected AE and AN values gives the total co-
ordinates (E and N) of the survey stations B, C, D and E relative to the origin A. 

The total amount of misclosure, AA', is termed the error vector. Its length and 
bearing are calculated using equations (4.7) and (4.6), and it is shown in Table 4.5. 
Expressing the error vector as a proportion of the total length of the traverse is the 
manner of expressing the accuracy of the traverse, i.e. 1 in 1239. Engineering surveys 
may range in accuracy from 1 in 5000 to 1 in 50 000, depending upon the project 
specifications. 

The total co-ordinates may now be plotted on an accurately-constructed grid and 
used as a reference framework from which the topographic detail is plotted. 

An examination of the Worked examples will show the application of co-ordinate 
computations in typical engineering situations. 

4.4.6 Computational accuracy 

In carrying out computation, it should be realized that computation cannot improve 
the accuracy of the captured field data. 

For instance, in the previous examples, angles were measured to the nearest 10" and 
distances to the nearest 0.01 m; thus the co-ordinate differences should not be 
computed to any greater accuracy than two places of decimals. With pocket 
calculators, accuracy may be to eight or nine places of decimals, in which case the 
answer must be rounded down to two places. The final computations can only be as 
accurate as the least accurate data used. 

Also, when rounding-off numbers a set procedure should be adhered to. For 
example, 103.5 may be rounded up to 104, whilst 102.5 is rounded down to 102. This 
results in the round-off error being randomized. If one always rounds up from 0.5, the 
error becomes systematic and accumulative. Thus the rule is: If the number to be 
rounded-off is odd—round up, if even—round down. 



T A B L E 4.5. A Bowditch adjustment of closed polygonal traverse 

Differences in co-ordinates 

Angle Observed Corrn Corrected Line WCB 
horizontal horizontal 
angle angle 

ABC 120 25 50 +10" 120 26 00 AB 0 00 00 
(assumed) 

Hori-
zontal 
length 

(m) 

155 

AE AN 

+ - + -

+ Corrn ± Corrn + Corrn + Corrn 

Corrected Corrected Corrected Corrected 

- - 155.00 — 

+ 0.07 + 0 . 1 0 

Total co-ordinates 

Stns 

0.0 0.0 

0.07 155.10 
+ 0.07 +155 .10 B 

172.44 101.31 

BCD 149 33 50 + 10" 149 34 00 BC 300 26 00 200 + 0.09 + 0.13 

172.35 101.44 - 1 7 2 . 2 8 +256 .54 C 

— 249.00 -

CDE 95 41 50 + 10" 95 42 00 CD 270 00 00 249 + 0.11 + 0.17 

248.89 0.17 - 4 2 1 . 1 7 +256.71 D 

18.87 189.06 

DEA 93 05 50 + 10" 93 06 00 DE 185 42 00 190 + 0.08 + 0.13 

18.79 188.93 - 4 3 9 . 9 6 +67.78 E 

439.76 68.08 

EAB 81 11 50 + 10" 81 12 00 EA 98 48 00 445 + 0.20 + 0.30 

439.96 67.78 0.00 0.00 A 

Sum 539 59 10 + 50" 540 00 00 AB 0 00 00 
Sum = 1239 

Sum + 439.76 - 4 4 0 . 3 1 + 256.31 - 2 5 7 . 1 4 Check 

{In - 4)90° 540 00 00 Check Check 
Sum = 1239 

Error - 0 . 5 5 - 0 . 8 3 

Error - 5 0 Error vector = (0.55

2
 + 0 . 8 3

2
)

1 /2
 = 1 m (213° 32') Corrn 

Proportional error = 1 in 1239 
+ 0.55 + 0.83 

106 
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E B= 3 8 5 A . 2 8 m 

N B= 9 3 7 2 . 9 8 m 

Figure 4.23 

4.4.7 Link traverse adjustment 

A link traverse (Figure 4.23) commences from known stations (AB) and connects into 
known stations (CD). Stations A,B,C, P, are usually fixed to a higher order of accuracy, 
with values which remain unaltered in the subsequent computation. 

The method of computation and adjustments proceeds as follows: 

Angular adjustment 

(1) Compute the WCB of CD through the traverse from AB and compare it with the 
known bearing of CD. The difference (A) of the two bearings is the angular misclosure. 
(2) As a check on the value of A the following rule may be applied. Computed WCB of 
CD = (Sum of observed angles + initial bearing (AB)) — n. 180° where n is the number 
of angles and is 4-even, —odd. If the result is negative, add 360°. 
(3) The correction per angle would be A/n, which is distributed accumulatively over the 
WCB as shown in the example. 

Co-ordinate adjustment 

(1) Compute the total co-ordinates of C through the traverse from B as origin. 
Comparison with the known co-ordinates of C gives the co-ordinate misclosure A'£, 
and A'N. 
(2) As the computed co-ordinates are total values, distribute the misclosure 
accumulatively over stations EA to C. 

Now study the example given in Table 4.6. 

4.5 SOURCES OF ERROR 
At this stage the reader should have a clearer understanding of the field data required 
for the fixing of control stations by the measurement of horizontal and vertical angles 
and distances; i.e., theodolite traversing. 

To obtain the angles the instrument and targets must be carefully centred over their 
respective survey stations. 

The distances may be obtained by electromagnetic processes, by optical processes, or 
by direct taping with a steel band. Since the electromagnetic processes are dealt with in 



TABLE 4.6 Bowditch adjustment of a link traverse 

Stns Observed Line WCB Corrn Adjusted 
WCB 
o / 

Dist Unadjusted Corrn Adjusted Stn 

angles 
o " 

0 
" 

Adjusted 
WCB 
o / " (m) E N <SE <5N E N 

A A-B 151 27 38 151 27 38 3854.28 9372.98 3854.28 9372.98 B 

B 143 54 47 B-El 115 22 25 - 4 115 22 21 651.16 4442.63 9093.96 +0 .03 - 0 . 0 5 4442.66 9093.91 E.l 

E.l 149 08 11 E1-E2 84 30 36 - 8 84 30 28 870.92 5309.55 9177.31 +0.08 - 0 . 1 1 5309.63 9711.20 E.2 

E.2 224 07 32 E2-E3 128 38 08 - 1 2 128 37 56 522.08 5171.38 8851.36 +0.11 - 0 . 1 5 5171.49 8851.21 E.3 

E3 157 21 53 E3-E4 106 00 01 - 1 6 105 59 45 1107.36 6781.87 8546.23 +0.17 - 0 . 2 2 6782.04 8546.01 E.4 

EA 167 05 15 E4-C 93 05 16 - 2 0 93 04 56 794.35 7575.35 8503.49 +0.21 - 0 . 2 8 7575.56 8503.21 C 

C 74 32 48 C-D 347 38 04 - 2 3 347 37 41 

D C-D 347 37 41 Sum = 3946.15 7575.56 8503.21 

Sum 916 10 26 A + 23 A E , A'N - 0 . 2 1 + 0.28 

Initial 

bearing 151 27 38 

i 

Total 1067 38 04 
- 6 x 180° 1080 00 00 

- 1 2 21 56 Error vector = (0.21

2
 + 0.2S)

112
 = 0.35 

+ 360 00 00 0 35 
CD (comp) 347 38 04 Proportional error = = 1/11 300 

CD (known) 347 37 41 

A Check 

108 
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Volume 2, and the optical processes are dealt with in the next Chapter, only the errors 
of taping will be dealt with here. 

The sources of error in traversing, therefore, are: 

(1) Angular errors. 
(2) Centring errors. 
(3) Linear errors. 

4.5.1 Angular errors 

Instrumental errors have already been dealt with in detail. It was shown that, with the 
exception of plate bubble error, double-face observations would eliminate the majority 
of these error sources. 

(1) Sighting: due to imperfections of human sight and touch, target bisections are 
rarely perfect. These errors are just as likely to be positive as negative. Their effect is 
reduced by taking the mean of several measurements. 

(2) Reading and setting verniers: this again is a human error, and can be reduced by 
taking the mean of several readings. 

(3) Instrument operation such as turning the wrong tangent screw, failure to eliminate 
parallax, leaving lower plate undamped , tripod movement. All these errors should 
become apparent when booking the observations. 

(4) Booking error can be eliminated by the booker reading the observation back to the 
observer. 

(5) Natural causes such as the effect of shimmer, refraction, wind, and differential 
expansion of the instrument's parts. Little can be done in the first two instances, but 
in the latter two, the instrument tripod should be very firmly established and 
shielded from wind and sun. 

4.5.2 Centring errors 

Errors in the centring of the theodolite and targets directly affect the measured 
horizontal angle. 

The effect of defective centring of the theodolite is clearly illustrated in Figure 4.24. If 
the theodolite was centred at B' instead of B, the angle ABC would be measured instead 

a ' c' 

Figure 4.24 Centring error 
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of the required angle ABC. The error would be equal to the sum of the angles subtended 
by BB' (the centring error) at A and C and is positive in sign, i.e. + (ea + ec\ If B' falls in 
sector a'Bc\ the error is — (ea + ec). If B' falls within sectors aBa' and cBc\ the error is 
the difference of the subtended angles and is positive or negative depending on which 
side of an arc through ABC it falls. 

In a similar way, the defective centring of the targets at A and C can be considered, 
although their combined effect is only half that of the theodolite error. 

If AB = 200 m, then a centring error of 1 mm (BB') would subtend an angle of V\ea) 
at A. However, if AB was 20 m then ea = 10", and assuming AB = BC and so ea = ec, 
the angular error would be 20". This shows that the effect increases as the length of the 
traverse leg decreases. 

The combined effect of target and theodolite centring errors are shown in Figure 4.25 
for centring errors of g — + 4 mm, + 2 mm and Hh 1 mm and various combinations of 
traverse leg lengths (Ll9L2) subtending the angle. 

o

1
————i 1 1 1 1 1 

Li = 10 20 30 40 50 60 
L2 = 1 10 100 90 80 70 60 

Leg lengths (m) 
Figure 4.25 

The inclusion of short lines cannot be avoided in many engineering surveys, 
particularly in underground tunnelling work. In order therefore to minimize the 
propagational effect of centring error, a constrained centring system called the three-
tripod system (TTS) is used. 

The TTS uses interchangeable levelling heads or tribrachs and targets, and works 
much more efficiently with a fourth tripod. 

Consider Figure 4.26; tripods are set up at A, B, C and D with the detachable 
tribrachs carefully levelled and centred over each station. Targets are clamped into the 
tribrachs at A and C, whilst the theodolite is clamped into the one at B. When the angle 
ABC has been measured, the target A is clamped into the tribrach at B9 the theodolite 
into the tribrach at C and that target into the tribrach at D. Whilst the angle BCD is 
being measured, the tripod and tribrach is removed from A and set up at E in 
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T a r g e t T a r g e t 

^ ^ T h e o d o l i t e ; ? T r i p o d a n d l e v e l l i n g 
B

 u
 h e a d or t r i b rach 

Figure 4.26 

preparation for the next move forward. This technique not only produces maximum 
speed and efficiency, but also confines the centring error to the station at which it 
occurred. Indeed, the error in question here is not one of centring in the conventional 
sense, but one of knowing whether or not the central axis of the targets and theodolite, 
when moved forward, occupy exactly the same positions as did their previous 
occupants. 

The confining of centring errors using the above system can be explained by reference 
to Figure 4.27. Consider first the use of the TTS. The target erected at C, 100 m from B, 
is badly centred resulting in a displacement of 50 mm to C. The angle measured at B 
would be ABC in error by e. The error e is 1 in 2000 « 2 min (N.B. If BC was 10 m long 
then e = 20 min.) 

The target is now removed from C and replaced by the theodolite which measures 
angle BCD, thus bringing the survey back onto D. The only error would therefore be a 
co-ordinate error at C equal to the centring error and would obviously be much less 
than the grossly exaggerated 50 mm used here. 

Consider now conventional equipment using one tripod and theodolite and sighting 
to ranging rods. Assume the rod at C due to bad centring or tilting appears to be at C, 
the wrong angle ABC would be measured. Now, when the theodolite is moved it would 
this time be correctly centred over the station at C and the correct angle BCD measured. 
However, this correct angle would be added to the previous computed bearing, which 
would be that of BC, giving the bearing CD'. Thus the error e is propagated from the 
already incorrect position at C producing a further error at D

f
 of the traverse. Centring 

of the instrument and targets precisely over the survey stations is thus of paramount 
importance. 

4.5.3 Linear errors 

The first step in the taping process when measuring a line AB is to fix measuring marks 
exactly in line with A and B at intervals less than a tape length. These intervals are 
sometimes referred to as bays. 

To measure a bay, the tape is laid between the two marks, carefully aligned and 

Figure 4.27 
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tensioned. At the instant of standard tension being applied, both ends of the tape are 
read against the pre-set marks. The difference of the two readings is the measured 
length. The process is repeated several times until a satisfactory set of data is obtained. 

Most steel tapes and bands are standardized at 20°C and 10 kgf; i.e. they measure 
their prescribed length under these conditions. Thus for very high accuracy the tape 
temperature will need to be measured and a correction applied for temperature 
variations above or below standard. 

The error sources are as follows: 

(1 ) Standardization 

Tapes may be stretched due to continual over-tensioning or shortened due to kinks or 
defective repairs. If too long or too short by an amount SL, then a systematic error 
equal to this amount will occur each time the tape is laid down. 

The amount of this error can be ascertained by comparing the working tape with a 
new tape kept especially for this purpose. Some government agencies will also carry out 
this standardization procedure, using very sophisticated procedures such as laser 
interferometry, on steel or invar bands. 

For example, a tape found on standardization to be 30.01 m in length will still record 
30 m when laid down, but the recorded measurement of 30 m will require a positive 
correction of 0.01 m. Therefore, the rule is that when the tape is too long the correction 
is positive, and vice versa. 

(2) Temperature 

If the tape temperature is recorded during measurement and found to differ from the 
standard (20°C) a correction may be computed from 

CT = L.K.AT 

where L = measured length (m) 
K = co-efficient of expansion (steel — 11.2 x 1 0 "

6
 per °C) 

AT = temperature difference from standard (°C) 

(3) Tension 

If the correct tension is applied, with either a tension handle or a spring balance, no 
correction is necessary. It may sometimes be necessary to over-tension, however, and 
the correction may be calculated using: 

Ct = L.At/A.E 

where At = difference in tension from standard 
A = cross-sectional area of tape 
E = Young's modulus of elasticity 

In the above formula, the units must be compatible; thus, for Ct in metres, L 2 must be in 
metres (m), At in newtons (N), A in m m

2
 and E in N / m m

2
. 
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(5) Slope 

If the distance is measured on the slope it may be reduced to the horizontal using 
Pythagoras, if the difference between the heights of the ends is known; or by using 
L(l — cos 9) if the vertical angle 6 is known. 

(6) Faulty alignment 

This results in too long a measurement with a systematic error of d

2
/2L, where d is the 

displacement per length L. Careful alignment by eye is generally sufficient. 

(7) Surface irregularities 

This results in a vertical deformation producing a systematic error of 2h

2
/L, where h is 

the maximum deformation at the centre. The tape may be laid along planks of wood, 
carefully placed in position, or over-tensioned, to reduce this error. 

(8) Errors in reading and marking the tape 

These are of a random nature and are minimized by taking the mean of several 
measurements. 

(9) Errors in booking data 

Also of a random nature, but easily recognized when several measures of the same 
length are obtained. (For a more detailed discussion on taping, refer to Volume 2.) 

4.6 LOCATION OF GROSS ERROR 

In the case of a single gross error or mistake in either angle or distance, its position may 
be located and re-measured in the field. 

(4) Sag 

If the tape is not supported throughout its length it will sag. If the sag cannot be 
eliminated by field procedure, i.e. building support, etc., a correction may be computed 
from: 

Cs = co

2
L

3
/24t

2 

where co = mass per unit length 
t = applied tension 

The units must be compatible. 
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A' 

B C Figure 4.28 

4.6.1 Gross error in distance 

Occurs in the bay having approximately the same bearing as the error vector. For 
instance, in Figure 4.28 the gross error resulting in the error vector A A' has obviously 
occurred in line CD. Thus reducing line CD by the amount AA' would cause A' to 
approach A. 

4.6.2 Gross error in angle 

Can be detected by calculating the co-ordinate values of the stations twice; once by 
commencing from the known bearing AB, as in Figure 4.23, say, and then using the 
bearing CD and working back to A. The error will most probably have occurred at the 
station where the co-ordinate values approximately agree. The unadjusted angles are 
used in the computation. Alternatively, the traverse may be plotted in both directions 
to locate the necessary station. 

Where there is more than one error these techniques will not function. Students 
should not confuse these gross errors with the normal accidental errors which are 
distributed by adjustment. 

4.7 AREAS BY CO-ORDINATES 

The area enclosed by the traverse ABCDA in Figure 4.20 can be found by taking the 
area of the rectangle a'cDd and subtracting the surrounding triangles, etc.,as follows: 

Area of rectangle a'cDd = a'c x a'd 
= 263 x 173 = 45 499 m

2 

Area of rectangle a'bBa = 77 x 71 = 5 467 m

2 

Area of triangle AaB = 71 x 35.5 = 2 520.5 m

2 

Area of triangle BbC = 77 x 46 = 3 542 m

2 

Area of triangle CcD = 173 x 50 = 8 650 m

2 

Area of triangle DdA = 263 x 12.5 = 3 287.5 m

2 

Total = 23 467 m

2 

.'. Area ABCDA = 45 499 - 23 467 = 22 032 m

2
 % 22 000 m

2 

The following rule may be used when the total co-ordinates only are given. Multiply 
the algebraic sum of the northing of each station and the one following by the algebraic 
difference of the easting of each station and the one following. The area is half the 
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TABLE 4.7 

Stns E N Difference Sum of Double area 
ofE N + 

A 0.0 0.0 - 7 1 71 5 041 
B 71 71 - 9 2 219 20148 
C 163 148 - 1 0 0 123 12 300 
D 263 - 2 5 263 - 2 5 6 575 
A 0.0 0.0 — 

£ 44 064 

Area ABCD A = 22 032 m

2
 ^ 22 000 m

2 

algebraic sum of the products. Thus, from Table 4.7, Figure 4.20 

Area ABCD A = 22 032 m

2
 « 22 000 m

2 

The value of 22 000 m

2
 is more correct considering the number of significant figures 

involved in the computations. 
This latter rule is the one most commonly used and is easily remembered if written as 

follows: 

X X X X X (4.8) E
D

 E
A

 E
B

 E
C

 E
D

 E
A 

Thus A = 0.5[NA(EB - ED) + NB(EC - EA) 4- NC(ED - EB) 
+ N D( £ , - £ c) ] 

= 0.5[0 + 71(163) + 148(263 - 71) + - 2 5 ( 0 - 163)] 
= 0.5[11573 + 28416 + 4 0 7 5 ] = 22032 m

2 

4.8 PARTITION OF LAND 

This task may be carried out by an engineer when sub-dividing land either for large 
building plots or for sale purposes. 

4.8.1 To cut off a required area by a line through a given point 

With reference to Figure 4.29, it is required to find the length and bearing of the line GH 
which divides the area ABCDEFA into the given values. 

Method 

(1) Calculate the total area ABCDEFA. 
(2) Given point G, draw a line GH dividing the area approximately into the required 

portions. 
(3) Draw a line from G to the station nearest to H, namely F. 
(4) From co-ordinates of G and F, calculate the length and bearing of the line GF. 
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B B C 

A 

E A 

Figure 4.29 {above) (b ) 

Figure 4.30 {right) 
Y H J Z 

(5) Find the area of GDEFG and subtract this area from the required area to get the 
area of triangle GFH. 

(6) Now area GFH = 0.5HF x FG sin 9, distance FG is known from (4) above, and 9 is 
the difference of the known bearings FA and FG, thus length HF is calculated. 

(7) As the bearing FH = bearing FA (known), then the co-ordinates of H may be 
calculated. 

(8) From co-ordinates of G and H, the length and bearing of GH are computed. 

4.8.2 To cut off a required area by a line of given bearing 

With reference to Figure 4.30(a), it is required to fix line HJ of a given bearing, which 
divides the area ABCDEFGA into the required portions. 

(1) From any station set off on the given bearing a trial line that cuts off approximately 
the required area, say AX. 

(2) Compute the length and bearing of AD from the traverse co-ordinates. 
(3) In triangle ADX, length and bearing AD are known, bearing AX is given and 

bearing DX = bearing DE; thus the three angles may be calculated and the area of 
the triangle found. 

(4) From co-ordinates calculate the area ABCDA, thus total area ABCDXA is known. 
(5) The difference between the above area and the area required to be cut off, is the area 

to be added or subtracted by a line parallel to the trial line A X. Assume this to be the 
trapezium AXJHA whose area is known together with the length and bearing of 
one side (AX) and the bearings of the other sides. 

(6) With reference to Figure 4.30(b), as the bearings of all the sides are known, the 
angles 9 and (f) are known. F rom which YH = x tan 9 and JZ = x tan </>, now: 

Method 

(a) 

Trial line 
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Area of AXJHA = area of rectangle AXZYA 

— (area of triangle AHY+ area of triangle XZJ) 

fx x \ 
= AX x x - I - x x tan 0 + - x x tan 0 1 

= AX x x - j ^ y (tan 0 + tan </>)J (4.9) 

from which the value of x may be found. 
(7) Thus, knowing x the distances AH and XJ can easily be calculated and used to set 

out the required line HJ. 

Worked examples 

Example 4.1. The following table gives the co-ordinates of the sides of a traverse 
ABCDEFA. 

Side AE(m) AN (m) 

AB - 76.35 - 1 3 8 . 2 6 
BC 145.12 - 67.91 
CD 20.97 109.82 
DE 187.06 31.73 
EF - 1 6 2 . 7 3 77.36 
FA - 87.14 - 25.24 

It is apparent from these values that an error of 30 m has occurred, and is most likely 
to be in either BC or EF. Explain the reasons for these statements. 

Tacheometric readings were taken from A to a vertical staff at D. The telescope angle 
was 24° below horizontal and stadia readings of 1.737,2.530 and 3.322 m were recorded. 
Use these readings to decide which length should be re-measured and also find the 
difference in level between stations A and D if the instrument height was 1.463 m above 
the station at A. (LU) 

Summing the above co-ordinates gives an error of -1-26.93 (£), —12.5 (N), the error 
vector being (26.93

2
 + 1 2 . 5

2
)

1 /2
 = 30 m. 

Thus, inspection of the above co-ordinates indicates the lines BC or EF as being the 
only possible sources of the error. 

• r _ < 26.9 2 
Bearing of error vector = tan % -

„ . r r_ 145.12 2 
Bearing of BC — tan 

Bearing of EF = tan" 

67.91 1 

162.73 2 

77.36 1 

Thus, the error could lie in either line as they are both parallel to the error vector. One 
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Line WCB Measured Remarks 
O 1 distance (m) 

AB 70 30 00 150.00 Rising 1 in 10 
BC 0 00 00 200.50 Level 
CD 154 12 00 250.00 Level 
DE 90 00 00 400.56 Falling 1 in 30 

If the two shafts are to be connected by a straight tunnel, calculate the bearing A to E 
and the grade. 

If a theodolite is set up at A and backsighted to B9 what is the value of the clockwise 
angle to be turned off, to give the line of the new tunnel? (KP) 

150 
Horizontal distance AB = ^ ^ 1 /2 x 10 = 149.25 m 

Rise from A to B = 150 (101)

1 /2
 = 14.92 m 

^ , i r ~ ^ 400.56 4_ 
Fall from D to E = — — = 13.34 m 

(901)

1 /2 

400.56 
Horizontal distance DE = ^ ^ 1 /2 x 30 = 400.34 m 

Co-ordinates (AE, AN) 0 0 A 

149.25

 Sm
 70° 30' 00" 

cos 
140.69 49.82 B 

200.50 due N 0 200.50 C 

250.00

 Sm
 154° 12'00" 

cos 
108.81 - 2 2 5 . 0 8 D 

400.34 due E 400.34 0 E 

Total co-ords of E (E) 649.84 (N) 25.24 

must therefore utilize the tacheometric data as follows in order to isolate the line in 
question. 

Distance AD = 100S cos

2
 6 

= 100 x 1.585 c o s

2
 24° = 132.3 m 

Distance AD from co-ordinates = (96.35

2
 + 89 .74

2
)

1 /2
 = 131.7 m 

Thus, the error of 30 m cannot be in the line BC and must be in EF. An inspection of the 
co-ordinates indicates that EF should be increased by 30 m. 

Vertical height by tacheometry = 132.3 tan 24° = 58.90 m 

/ . Difference in level of A and D = 1.463 - 58.90 - 2.530 = 59.97 m 

Example 4.2. The following survey was carried out from the bot tom of a shaft at A, 
along an existing tunnel to the bot tom of a shaft at E. 



The theodolite and its application 119 

Tunnel is rising from A to E by (14.92 - 13.34) = 1.58 m 

, +649.84 
/ . Bearing AE = t a n -1 — — — = 87° 47' 

+ 25.24 
Length = 649.84/sin 87° 47' = 652.33 m 

Grade = 1.58 in 652.33 = 1 in 413 

Angle turned off = BAE = (87° 47' - 70° 30') = 17° 17' 00" 

Example 4.3. A level railway is to be constructed from A to D in a straight line, passing 
through a large hill situated between A and D. In order to speed the work, the tunnel is 
to be driven from both sides of the hill {Figure 4.31). 

Figure 4.31 

The centre-line has been established from A to the foot of the hill at B where the 
tunnel will commence, and it is now required to establish the centre-line on the other 
side of the hill at C, from which the tunnel will be driven back towards B. 

To provide this data the following traverse was carried out around the hill: 

Side Bearing Horizontal 
distance (m) 

Remarks 

AB 88 00 00 Centre-line of railway 
BE 46 30 00 495.8 m 

Centre-line of railway 

EF 90 00 00 350.0 m 
FG 174 12 00 — Long sight past hill 

Calculate: 

(1) The horizontal distance from F along FG to establish point C. 
(2) The clockwise angle turned off from CF to give the line of the reverse tunnel 

drivage. 
(3) The horizontal length of tunnel to be driven. (KP) 
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Find total co-ordinates of F relative to B 

AE (m) AN (m) Stn 

495.8

 Sm
 46° 30' 00" 

cos 
E 359.6 N 341.3 BE 

350.0 90° 00 '00" - V E 350.0 — EF 

Total co-ords of F E 709.6 N 341.3 F 

WCB of BF = t a n "

1
 = 64° 18' 48" 

341.30 

Distance BF = 709.60/sin 64° 18' 48" = 787.42 m 

Solve triangle BFC for the required data 

The bearings of all three sides of the triangle are known, from which the following 
values for the angles are obtained: 

FBC= 23° 41 '12" 
BCF= 86° 12'00" 
CFB= 70° 06 '48" 

180° 00 '00" (check) 

By sine rule 

, x BF sin FBC 787.42 sin 23° 41 ' 12" „ mM ( a) FC =
 - ^ B C T - sin 86° 12'00" '

3 l 7 Mm 

, x —

 B F s in C FB 7 8 7 42 S i l1 7 0
°

 0 6
'

 4 8
" « « . « ( C) BC =

 -^BCF~

=
 sin 86° 12'00" "

 7 4 2 10 m 

(b) 360° - BCF = 273° 48' 00" 

Example 4.4. The following Table shows details of a traverse ABCDEFA. 

Line Length (m) WCB AE (m) AN (m) 

AB 560.5 0 - 5 6 0 . 5 
BC 901.5 795.4 - 4 2 4 . 3 
CD 557.0 - 2 4 3 . 0 501.2 
DE 639.8 488.7 412.9 
EF 679.5 293° 59' 
FA 467.2 244° 42' 

Adjust the traverse by the Bowditch method and determine the co-ordinates of the 
stations relative to A (0.0). What are the length and bearing of the line BE? (LU) 
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Complete the above Table of co-ordinates 

679.5

 Sm
 293° 59'-

cos 

sin 
467.2 244° 42'-

cos 

Line A E (m) A N (m) 

EF - 6 2 0 . 8 + 2 7 6 . 2 

FA - 4 2 2 . 4 - 1 9 9 . 7 

Now refer Table 4.8. 

TABLE 4.8 

Line Lengths 
(m) 

A E 

(m) 

A N 

(m) 

Corrected 
A E 

Corrected 
A N 

E N Stns 

A 0.0 0 .0 A 

AB 560 .5 0 - 5 6 0 . 5 0.3 - 5 6 1 . 3 0.3 - 5 6 1 . 3 B 

BC 9 0 1 . 5 7 9 5 . 4 - 4 2 4 . 3 7 9 5 . 5 - 4 2 5 . 7 7 9 6 . 2 - 9 8 7 . 0 C 

CD 5 5 7 . 0 - 2 4 3 . 0 5 0 1 . 2 - 2 4 2 . 7 5 0 0 . 3 553 .5 - 4 8 6 . 7 D 

DE 639 .8 4 8 8 . 7 4 1 2 . 9 4 8 9 . 0 4 1 1 . 9 1042 .5 - 7 4 . 8 E 

EF 6 7 9 . 5 - 6 2 0 . 8 2 7 6 . 2 - 6 2 0 . 4 2 7 5 . 2 422 .1 2 0 0 . 4 F 

FA 4 6 7 . 2 - 4 2 2 . 4 - 1 9 9 . 7 - 4 2 2 . 1 - 2 0 0 . 4 0 .0 

C h e c k 

0 .0 

C h e c k 

A 

S u m 3 8 0 5 . 5 - 2 . 1 5.8 0 .0 0 .0 

C o r r e c t i o n t o 2.1 —5.8 

c o - o r d i n a t e s 

The Bowditch corrections (<5£, 8N) are computed as follows, and added algebraically 
to the co-ordinate differences, as shown in Table 4.8. 

Line <5E(m) <5N (m) 

2.1 - 5 . 8 

3 8 0 5 . 5

 X 5 6
° '

5 g l V mg 
x 560 .5 

3 8 0 5 . 5 
g i v i n g 

AB K2 x 5 6 0 . 5 = 0.3 Kx x 560 .5 = - 0.8 
BC K2 x 9 0 1 . 5 = 0.5 K, x 9 0 1 . 5 = -- 1 . 4 

CD K2 x 5 5 7 . 0 = 0.3 Kx x 5 5 7 . 0 = - 0.9 
DE K2 x 6 3 9 . 8 = 0.3 Kx x 639 . 8 = -•1.0 
EF K2 x 6 7 9 . 5 = 0 .4 Kx x 6 7 9 . 5 = - 1.0 
FA K2 x 4 6 7 . 2 = 0.3 K{ x 4 6 7 . 2 = - 0.7 

S u m = 2.1 S u m = - 5.8 
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Point E N 

A 0 0 
B 0 - 8 9 3 . 8 
C 634.8 - 7 2 8 . 8 
D 1068.4 699.3 

D 

Figure 4.32 

Find the area of the figure by calculation. 
If E is the mid-point of AB, find, either graphically or by calculation, the co-ordinates 

of a point F on the line CD, such that the area AEFD equals the area EBCF. (LU) 

The above co-ordinates are total co-ordinates, therefore the appropriate rule is used. 

Stn E N Difference 
ofE 

Sum of 
N 

Double 

+ 

Area 

A 0 0 0 - 8 9 3 . 8 
B 0 - 8 9 3 . 8 - 6 3 4 . 8 - 1 6 2 2 . 6 1 030 026 

C 634.8 - 7 2 8 . 8 - 4 3 3 . 6 - 2 9 . 5 12 791 
D 1068.4 699.3 1068.4 699.3 747 132 

A 0 0 

I 1 789 949 

Area 894 974 m

2 

Rounding off the above values to the correct number of significant figures gives 
895 000 m

2
. 

To find the length and bearing of BE: 

AE = 1042.2 AN = 486.5 
1042 2 

Bearing BE = t a n " 1 ' = 64° 59' 

Length BE = 1042.2/sin 64° 59' = 1150.1 m 

Example 4.5. In a quadrilateral ABCD (Figure 4.32), the co-ordinates of the points, in 
metres, are as follows: 
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Stn E N Difference 
ofE 

Sum of 
N 

Double 

+ 

Area 

A 0 0 0 - 4 4 6 . 9 
E 0 - 4 4 6 . 9 - 1 0 6 8 . 4 252.4 269 700 
D 1068.4 699.3 1068.4 699.3 747 100 

Z 477 400 

Area 238 700 m

2 

By co-ordinates, as above, area of triangle AED is found. 

895 000 
Area of triangle EDF = — 238 700 = 208 800 m

2 

From co-ordinates 

, +1068.4 
Bearing ED = t a n "

1

 4 4„ ^ = 42° 59' 
+ 1146.2 

Length = 1146.2 cos 42° 59' = 1567.0 m 

Bearing DC = t a n "

1
 "All'6, = 196° 54' 

-1428 .1 

.'. 6 = (42° 59' - 16° 54') = 26° 05' 

Now: Area of triangle EDF = %DE x DF sin 9 = 208 800 m

2 

/. DF = 208 800/(0.5 x 1567 x sin 26° 05') = 606 m 

Thus co-ordinates of F relative to D are 

606

 Sm
 196° 54' = - 176.2(AE) - 579.9(AN) 

cos 

Total co-ords of F = 892.2 E 119.4 N 

Exercises 

(4.1) In a closed traverse ABCDEFA the angles and lengths of sides were measured, 
and, after the angles had been adjusted, the traverse sheet shown overleaf was prepared. 

It became apparent on checking through the sheet that it contained mistakes. Rectify 
the sheet where necessary and then correct the co-ordinates by Bowditch's method. 
Hence, determine the co-ordinates of all the stations. The co-ordinates of A are 
E - 235.5, N + 1070.0. 

To find the co-ordinates of F by calculation 

From co-ordinate geometry it is easily shown that the co-ordinates of E are the mean 
of A and B. 
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Line Length WCB Reduced bearing AE AN 
(m) ° o (m) (m) 

AB 355.52 58 30 00 N 58 30 00 E 303.13 185.75 
BC 476.65 185 12 30 S 84 47 30 W - 4 7 4 . 7 0 - 43.27 
CD 809.08 259 32 40 S 79 32 40 W - 7 9 5 . 6 8 - 1 4 6 . 8 2 
DE 671.18 344 35 40 N 15 24 20 W - 6 4 7 . 0 8 178.30 
EF 502.20 92 30 30 S 87 30 30 E 501.72 - 21.83 
FA 287.25 131 22 00 s 48 38 00 E 215.58 - 1 8 9 . 8 4 

(Mistakes: Bearing BC to S 5° 12' 30" W, hence AE and AN interchange. AE and AN of 
DE interchanged. Bearing EF to S 87° 29' 30" E, giving new AN of - 21.97 m. Co-ords: 
(B) E67.27, N 1255.18; (C) E23.51, N781.19; (D) E - 7 7 3 . 0 0 , N634.50; (E) 
E -951 .99 , N 1281.69; (F) E -450 .78 , N 1259.80) 

(4.2) In a traverse ABCDEFG, the line BA is taken as the reference meridian. The co-
ordinates of the sides AB, BC, CD, DE and EF are: 

Line AB BC CD DE EF 

AN - 1 1 9 0 . 0 - 5 6 5 . 3 590.5 606.9 1017.2 

AE 0 736.4 796.8 - 4 6 8 . 0 370.4 

If the bearing of FG is 284° 13' and its length is 896.0 m, find the length and bearing of 
GA. (LU) 

(Answer: 947.8 m, 216° 45') 

(4.3) The following measurements were obtained when surveying a closed traverse 
ABCDEA: 

Line EA AB BC 
Length (m) 793.7 1512.1 863.7 

Included angles DEA EAB ABC BCD 
93° 14' 112° 36' 131° 42' 95° 43 ' 

It was not possible to occupy D, but it could be observed from C and E. Calculate the 
angle CDE and the lengths CD and DE, taking DE as the datum, and assuming all the 
observations to be correct. (LU) 

(Answer: CDE = 96° 45', DE = 1847.8 m, CD = 1502.0 m) 

(4.4) An open traverse was run from A to E in order to obtain the length and bearing of 
the line AE which could not be measured direct, with the following results: 

Line AB BC CD DE 
Length (m) 1025 1087 925 1250 
WCB 261° 41 ' 09° 06' 282° 22' 71° 31 ' 

Find, by calculation, the required information. (LU) 

(Answer: 1620.0 m, 339° 46') 
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(4.5) A traverse ACDB was surveyed by theodolite and chain. The lengths and bearings 
of the lines AC, CD and DB are given below. 

Line AC CD DB 
Length (m) 480.6 292.0 448.1 
Bearing 25° 19' 37° 53' 301° 00' 

If the co-ordinates of A are x = 0, y = 0 and those of B are x = 0, y = 897.05, adjust the 
traverse and determine the co-ordinates of C and D. The co-ordinates of A and B must 
not be altered. (LU) 

(Answer: Co-ord error: x = 0.71, y = 1.41, (C) x = 205.2, y = 434.9, (D) x = 179.1, 
y = 230.8) . 
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Optical distance-measurement 

Optical distance-measurement is rapidly being superseded by electromagnetic 
distance-measuring (EDM); therefore only those methods still viable will be dealt with 
here in any detail. 

Vertical-staff tacheometry is viable largely because the equipment required (a 
theoeolite and levelling staff) is usually available. 

The subtense bar has a unique place in the measuring processes available, affording 
high accuracy over short distances regardless of terrain conditions. Also, the concept of 
subtense measurement is still a valuable one. 

In optical distance measurement, two basic techniques are used: 

(1) Using a fixed parallactic angle and variable staff intercept. 
(2) Using a fixed intercept and variable parallactic angle. 

In both cases, the staff may be held either vertically or horizontally. In the UK, optical 
distance-measurement is generally termed tacheometry. 

5.1 VERTICAL-STAFF TACHEOMETRY 

The principle of this form of tacheometry, in which the parallactic angle 2a remains 
fixed and the staff intercept S varies with distance D, is shown in Figure 5.1. The 
parallactic angle is defined by the position of the stadia hairs, c and e, each side of the 
main cross-hair b, then by similar triangles: 

AB Ab 

CE^~ce 

put ce = i 

then D = (f/i)S = KlS (5.1) 

In modern telescopes / and i are so arranged that Kt = 100. 
Equation (5.1) is basically correct for horizontal sights taken with any modern 

instrument. The telescope will now be examined in more detail. In Figure 5 .2 , / is the 
focal length of the object lens system, d is the distance from the object lens to the centre 
of the instrument, ce is the stadia interval, i and Z), the distance from the staff to the 

126 



Optical distance-measurement 127 

C 

Figure 5.1 

View of staff 

t

 D 

Vertical axis 
of instrument 

Figure 5.2 On right, view through telescope illustrating the stadia lines at C and E 

centre of the instrument, then by similar triangles: 

CE~M -

B p
-

S
{ i ) 

Now D = Bp + (f+d) = S(f/i) + (f+d) 

The value ( / + d) is called the additive constant, K2, and ( / / i ) is called the multiplying 
constant, Kv Thus for horizontal sights: 

D = KlS + K2 (5.2) 

Tacheometry would have very little application if it was restricted to horizontal 
sights; thus the general formula will now be deduced. Figure 5.3 illustrates an inclined 
sight. 

By the sine rule in triangle PCB: 

xx y cot a y cot a 

sin a " sin [90° - (9 + a)] ~ cos (0 + a) 

Cross multiply. 

y cos a sin a 
X i cos (9 + a) = y cot a sin a = : = y cos a 

sin a 

from which y = xx cos 9 — x x sin 9 tan a (a) 

Object lens 
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Similarly in triangle PBE 

x2 y cot a y cot a 

sin a sin [90° + (0 - a)] cos (0 - a) 

x2 cos (9 — a) = y cot a sin a = y cos a 

and y = x 2 cos 9 + x 2 sin 0 tan a (b) 

Adding (a) and (b) 

2y = (xj + x 2) cos 0 — (xj — x 2) sin 9 tan a 

i.e. C ' F = S cos 9 — (xx — x 2) sin 0 tan a (c) 

The maximum value for sin 9 would be 0.707 (9 = 45°) and for tan a, 0.005 (a = 
1/200), whilst for the majority of work in practice x x % x 2. Thus, the second term may 

be neglected for all but the steepest sights. 
Now, from Figure 5.3 

AB = K^CE') + K2 = KtS cos 9 + K2 
AF = D = AB cos 0- = KjS c o s

2
 fl + K2 cos 0 (d) 

Similarly FB = H = AB sin 9 = KXS cos 9 sin 0 + X 2 sin 0 (e) 

Alternatively H = D tan 0 (f) 

In 1823, an additional anallactic lens was built into the telescope, which reduced all 
observations to the centre of the instrument and thus eliminated the additive constant 
K2. All modern internal focusing telescopes, although not strictly anallactic may be 
regarded as so. Equations (d) and (e) therefore reduce to 

D = KtScos

2
 9 (g) 

and H = KXScos 9 sin 9 (h) 

Figure 5.3 

Instrumerii^xis level 
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Axis level 

Figure 5.4 

show that 

RL* = R L y + hi-H-BX (5.6) 

where ht = instrument height 
BY or BX = mid-staff reading 

H is positive when vertical angle is positive and vice versa. 
Students should not attempt to commit formula (5.5) and equation (5.6) to memory, 

relying, if in doubt, on a quick sketch. Note that H is always the vertical height from the 
centre of the transit axis to the mid-staff reading. 

Thus, in general: 

RL* = ( R Ly + ht) ± if—mid-staff reading (5.7) 

where (RLy + ht) = axis level 

5.1.1 Inclined-staff tacheometry 

Using the same equipment, the staff is fitted with a small sighting device to enable it to 
be held at right-angles to the line of sight (Figure 5.5): 

but cos 9 sin 9 = ^ sin 29 (j) 

H = ^ X 1S s i n 2 0 
2

 1 

and where Kl = 100 

D = 1005 cos

2
 9 (5.3) 

H = 50S sin 29 (5.4) 

With reference to Figure 5.3 it can be seen that, given the reduced level of X (RL*), 
then the level of Y is 

RL* + ht + H — BY (5.5) 

If the sight had been from Yto X then a simple sketch as in Figure 5.4 will serve to 
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C 

F —r 

H 

7 
h 

1 
X 

Figure 5.5 

AB = K1S + K2 and JG = B7s in 0 

:. D = AJ + JG = AB cos 0 + BYsin 0 

= KXS cos 0 + K 2 cos 0 4- £ 7 s i n 0 

For an angle of depression term B Ysin 0 would be negative. Where there is no additive 
constant and Kx — 100, the expression becomes: 

D = 1005 cos 0 + BYsin 0 (5.8) 

Similarly H = AB sin 0 = A^S sin 0 + iC2 sin 0 

when K x 100 and K2 = 0, 

f/ = 100S sin 0 (5.9) 

5.1.2 Measurements of tacheometric constants 

Set up the instrument on fairly level ground giving horizontal sights to a series of pegs at 
known distances, D, from the instrument. Now, using the equation D = X 1S + K 2 and 
substituting values for D and 5, the equations may be solved: 

(1) Simultaneously in pairs and the mean taken. 
(2) As a whole by the method of least squares. For example: 

Measured distance (m) 30 60 90 120 150 (D values) 
Staff intercept (m) 0.301 0.6 0.899 1.202 1.501 (S values) 

from which X x = 100 and K2 = 0 by either of the above methods. 

5.1.3 Errors in staff holding 

Method (1) Consider first the vertical-staff technique for which the basic equation is 

D = X 15 c o s

2
0 

I nst ru me nt a ^ i e v e I 
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This equation is better expressed as 

D = K1S cos cos 02 
where (in Figure 5.3) 0X is the angle of inclination BAF and 02 is the angle CBC, which, 
if there is error in the verticality of the staff (<502), will be in error by the same amount. 

Then, adopting the usual procedure for the treatment of small errors, the above 
expression is differentiated with respect to 02, giving 

3D = -K^cos 0X sin 02 <502 
3D -KXS cos el sin 02 <502 
D KtS cos 0X cos 02 

tan 02 <502 (5.10) 

Using the above expression the following table may be drawn up assuming 
02 « 0X = angle of inclination = 0: 

Table 5.1 illustrates the following points: 

Column 1 shows that if the staff is held reasonably plumb this source of error may be 
ignored. 

Column 2 shows that the accuracy falls off rapidly as the angle of inclination increases. 
Column 3 shows that where the staff is used carelessly, the accuracy is radically 

reduced, even on fairly level sights. It is obvious from this that all 
tacheometric staves should be fitted with a bubble and regularly checked. 

TABLE 5.1 

0 se2 = io ' S62 = 1° S62 = 2° 

3° 1/6670 1/1090 1/550 
5° 1/4000 1/650 1/330 

10° 1/1960 1/325 1/160 
15° 1/1280 1/215 1/110 
20° 1/940 1/160 1/80 
25° 1/740 1/120 1/60 
30° 1/600 1/100 1/50 

Method (2) Consider now the inclined-staff technique for which the basic equation is 
Z) = K cos 0. Any error (30) in holding the staff normal to the line of sight will result 
in an increase in the stadia intercept 5 to 5 sec 36, as shown in Figure 5.6. 

Figure 5.6 
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TABLE 5.2 

SD/D 

10' 1/238100 
i° 1/6560 
2° 1/1650 
3° 1/730 

In comparing the two methods, it would appear that method (2) has all the 
advantages, including a simpler formula. However, method (1) is the one most used due 
to its easier method of staff holding. It is obvious though that where steep sights are 
involved, such as in open-cast mining or quarrying, method (2) should be used. 

5.1.4 Errors in horizontal distances 

(1) Careless staff holding, which has already been discussed. 
(2) Error in reading the stadia intercept, which is immediately multiplied by 100 (Xx) , 

thereby making it significant. This source of error will increase with the length of 
sight. The obvious solution is to limit the length of sight to ensure good resolution 
of the graduations. 

(3) Error in the determination of the instrument constants Kx and K2, resulting in an 
error in distance directly proportional to the error in the constant Kx and directly 
as the error in K2. 

(4) Effect of differential refraction on the stadia intercept. This is minimised by keeping 
the lower reading 1 to 1.5 m above the ground. 

(5) Random error in the measurement of the vertical angle. This has a negligible effect 
on the staff intercept and consequently on the horizontal distance. 

In addition to the above sources of error, there are many others resulting from 
instrumental errors, failure to eliminate parallax, and natural errors due to high winds, 
heat shimmer, etc. The lack of statistical evidence makes it rather difficult to quote 
standards of accuracy; however, the usual treatment for small errors will give some 
basis for assessment. 

In triangle CCE as a is small, angle CCE « 90° 

/. CE = CE sec 36 = S sec 36 

.'. Incorrect horizontal distance Z)e = i ^ S sec <50cos 0 

Thus the error in the distance = 3D = De — D 

= Kx cos 0 S(sec 36 - 1) 

^ = (sec 5 0 - 1) (5.11) 

Using the above expression 7aWe 5.2 may be drawn up indicating 

(a) The error due to incorrect holding of the staff is entirely independent of the angle 
of inclination. 

(b) Even gross errors of 2° may be considered to have a negligible effect. 
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Taking the equation for vertical staff tacheometry only, as in Section 5.7.7, and 
differentiating with respect to each of the sources of error, in turn gives 

D = KiS cos 0X cos 0 2 
thus, SD = S cos 0X cos 62 SKX 

SD _S cos fj1 cos 92 SK1 SKX 
" ~D~ S cos 0! cos 62 Kl ~ X7 

Similarly, differentiating with respect to 5, and 02, in turn gives 

SD/D = SS/S 

SD/D = - tan 0X ^ 

<5D/Z) = - tan 62 S62 
from the theory of errors, the sum effect of the above errors will give a fractional or 
proportional standard error (PSE) of 

SD/D = ± + (yj + (

tan 0
i W + (

tan 0
2 <502)

2
 J " (5.13) 

Assuming now the following values: D = 200 m, S = 2.015 m, 0 t = 02 = 5°, <5S = 
± ( 2

2
 + 2

2
)

1 /2
 = ± 3 mm, 8KJK2 = 1/1000, = ±20" (error in vertical angle); 

SO2 = ± 1° (error in staff holding). 

N.B. <50x and <502 must always be expressed in radians (1 rad = 206 265") 

[ / 0 0 0 3 \

2
 ~ 1

1 /2 

(0.001)

2
 + (2015) + (

t an
 5°.20")

2
 + (tan 5°. 1°)

2 

= ±[(100 x 10~

8
) + (225 x 10"

8
) + zero + (234 x 10"

8
)]

1 /2 

8D = - 0 . 4 8 m and SD/D = 1 in 420 

It is obvious that the most serious sources of error lie in careless staff holding and 
stadia intercept error, the error in vertical angles being negligible. Reading to the 
nearest 10 mm gives a maximum error of ± 5 mm and an average error of ±2 .5 mm. 
The average error in the value of the inercept would therefore be (2.5

2
 + 2 . 5

2
)

1 /2
 = 

± 3.5 mm. Using this value an accuracy of 1 in 400 is obtained, but this will fall off 
rapidly, with increase in distance and elevation. For most engineers, an accuracy of 1 in 
250 is more realistic under normal field conditions, considering that the work is not 
generally carried out by expert users. 

5.1.5 Errors in elevations 

The main sources of error in elevation are (1) error in vertical angles, (2) additional 
errors arising from errors in the computed distance. Figure 5.7 clearly shows that whilst 
the error resulting from (1) remains fairly constant, that resulting from (2) increases with 
increased elevation. 

H = D tan 0 

<5# = <5Dtan0 
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I Figure 5.7 

3H = D sec

2
 6 36 

.'. SH = ±[(3D tan 6)

2
 + (D sec

2
 636)

2
]

l/2 

= ±[(0.48 tan 5°)

2
 + (200 sec

2
 5° x 20" sin 1 " )

2
]

1 /2 

= ±0.046 m 

This result indicates that elevations need be quoted only to the nearest 10 mm. 
Accuracies of 1 in 1000 may be still achieved in tacheometric traversing, due to the 

compensating effect of accidental errors, reciprocal observation of the lines and a 
general increase in care taken. 

5.2 APPLICATION 

The method is easy to use in the field but, unless a direct-reading tacheometer (refer 
Section 5.4.1) is used, the resultant computation for many 'spot-shots' can be extremely 
tedious, even with the use of a computer program. 

The very low order of accuracy and its short range limit its application to detail 
surveys in rural areas or contouring. 

5.2.1 Detail survey 

The method of fixing the position of topographic detail (in three dimensions) is by polar 
co-ordinates. 

The theodolite is set up at a control station A (Figure 5.8) and oriented to any other 
control station (RO) with the horizontal circle set to 0°00

/
. Thereafter the bearing 

(relative to A — RO) and horizontal length to each point of detail (PI , P2, P 3 , etc.) are 
obtained by observing the stadia readings on a staff held there, the horizontal circle 
reading (<l>1, <t>2, <t>^ etc.) and the vertical angle. The cross-hair reading is also required 
to compute the reduced level of the points. 

The field data is booked as shown in Table 5.3 and reduced using equations (5.3), (5.4) 
and (5.7). Note that the angles are required to the nearest minute of arc only. 

It is worth noting that the staff-man should be the most experienced member of the 
survey party who would appreciate the error sources, the limited accuracy available 
and thus the best and most economic staff positions required. 
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Figure 5.8 

5.2.2 Contouring 

Contouring is carried out in exactly the same manner as above, but with many more 
spot-shots along each radial arm (Figure 5.9). The arms are turned off at regular 
angular intervals, with the staff-man obtaining levels at regular paced intervals along 
each arm and at each distinct change in gradient. Subsequent computation of the field 
data will fix the position and level of each point along each arm, which may then be 
interpolated for contours. 

5.3 SUBTENSE TACHEOMETRY 

This method uses a horizontal subtense bar with targets at each end precisely 2 m apart. 
Although the bar is of steel construction, the targets are connected to an invar wire in 
such a way as to compensate for temperature changes. The bar can be set up 
horizontally on a normal theodolite tribrach and set at 90° to the line of sight by means 
of a small sighting device at its centre (Figure 5.10). 

5.3.1 Principle of operation 

The principle is illustrated by Figure 5.11. Regardless of the elevation, the angle 6 
subtended by the bar is measured in the horizontal plane by the theodolite. The 
horizontal distance TB is then given by 

Z) = ft/2 cot 0/2 (5.14) 

= cot 0/2 when b = 2 m 



TABLE 53 

At station A 

Grid ref E 400, N 300 

Stn level (RL) 30.48 m O D 

Ht of inst (ht) 1-42 m 

Survey Canbury Park 

Weather Cloudy, cool Axis level (RL + ht) 31.90 m (Ax) 

Surveyor J. SMITH 

Date 12.12.83 

Staff 
point 

Horizontal 

Angles observed 

Vertical 
circle 

Vertical 
angle 

+e 

Staff 
readings 

Staff Horizontal Vertical 
intercept distance height 

K.S. c o s

2
 6 —.S.s in20 

2 

Reduced 
level Remarks 

± H Ax ± H - m 

R0 0 00 Station B 

PI 48 12 

1.942 

95 20 - 5 20 m 1.404 1.076 106.67 - 9 . 9 6 20.54 Edge of pond 

0.866 

P2 80 02 93 40 -3 40 

0.998 

m 0.640 

0.281 

0.717 71.41 - 4 . 5 8 26.68 Edge of pond 

P3 107 56 83 20 + 6 40 

1.610 

m 1.216 0.788 77.74 +9.09 39.77 Edge of pond 

0.822 

136 I 
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Figure 5.9 Radiation method 

Sight ing 

_ ^ device . , 

a m:\ a 
Levelling head Target 

> Tripod 

Figure 5.10 

( b ) P l a n 

(c) S e c t i o n 

(a) 

Figure 5.11 
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Errors 

The three sources of error in the distance D are 

(1) Variation in the length of the subtense bar. 
(2) Error in setting the bar at 90° to the line of sight, and horizontally. 
(3) Error in the measurement of the subtense angle. 

To simplify the differentiation of each variable the basic formula is reduced to a form 
as follows: 

D = b/2 cot 0/2, but since 6/2 is very small 
tan 0/2 « 0/2 rad, thus cot 0/2 = 2/0 

D = (b/2)(2/0) = b/6 

It can be shown that the error in this approximation is roughly 1 in 3 D

2
 and should 

therefore never be used for the reduction of sights; e.g. when D = 40 m, b/9 is accurate 
to only 1 in 4800. 

(7) Error in bar length 

D = b/9 

CF% 5b J SD 8b 0 
.'. SD = — and — = - -

0 D 0 b 

SD Sb 
Thus — = - (5.16) 

Manufacturers of the various subtense bars claim a value of 1/100 000 for Sb/b due to 
a 20°C change in temperature. This source of error may therefore be ignored. 

(2) Error in bar setting 

Failure to align the bar at 90° to the line of sight results in the length AC being reduced 
to A'C « b cos (j) (Figure 5.12). Misalignment in the vertical plane, however, shows 
A'C = b cos </>. Thus, the error in the bar length = b — b cos (f> in both cases 

i.e. Sb = b(l — cos 0), then from equation (5.16) above 
SD/D = Sb/b = (1 - cos 0) 

but cos0 = l - 0
2
/ 2 ! + 0

4
/ 4 ! . . . 

.'. SD/D = (f>

2
/2 (5.17) 

The vertical distance is given by 

H = D t a n a (5.15) 

and the level of B relative to T, would therefore be 

Level of B = level of T + hx + H - h2 
showing that in the computation of levels, one would require the instrument heights. 
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(b) Sect ion 

(a) P lan 

Figure 5.12 

If SD/D is not to exceed 1/20 000 then 

</> = (^A?^) ' = VlOO rad « 0° 34' 
w
 V20 000/

 1 

Alignment to this accuracy is easily obtained by using the standard sighting devices. 
This source of error may therefore be ignored. 

(3) Error in the measurement of the subtense angle 

D = e ''-SD = lrse = irT = -DJ 
5D 86 

• • I f - 7 ( 5 - 1 8 ) 

Using the above relationship Table 5.4 may de deduced, assuming a 2-m bar and an 
error of ± 1" in the measurement of 0, illustrating that the accuracy falls off rapidly with 
increase in distance. By further manipulation of the above equation it can be shown 
that the error in D varies as the square of the distance: 

SD = - (b/6

2
) 30 but 0

2
 = b

2
/D

2 

SD=(D

2
/b)60 (5.19) 

Thus, an error of ± 1" produces four times the error at 80 m than it does at 40 m. This 
can be further clarified from Table 5.4 where 40/10000 = 40 mm, 80/5000 = 16 mm. 

To achieve a PSE of 1/10 000 the distance must be limited to 40 m and an accuracy of 

TABLE 5.4 

D(m) 20 40 60 80 100 

SD/D 1 in 20 626 1 in 10 313 1 in 6875 1 in 5106 1 in 4125 
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± 1" attained in the measurement of the angle. This is possible only with a Threading 
theodolite. 

Research has proved that the subtense angle should be measured at least eight times 
to achieve the necessary accuracy. As a 1" instrument would be used, there is no need to 
change face between observations to eliminate instrumental errors, as each end of the 
bar is at the same elevation. However, to eliminate graduation errors they should be 
observed on different parts of the horizontal circle. 

5.3.2 Serial measurement 

In order to extend the range of the equipment and still have a comparable accuracy, the 
method called serial measurement may be used [Figure 5.13). The error in one sub-
section d from equation (5.19) is 

Sd = (d

2
/b)S0 

d 2 

Figure 5.13 

From the theory of errors, the standard error in the total distance is 

8Dn = [(Sdrf + (Sd2)
2
 + (8d3)

2
 +... + (8dn)

2
Y'

2 

Assuming dt — d2 = d„ and 6t = 62 = d„ then 

, d

2
86n

1
'

2 

8Dn = 8d:n

1
'

2
 r 

b Now D = n.d :. d 2 — D 2/n 2 which on substituting above gives 

CIN D

2

 S6n

112

 D

2

86 „ ^ S D
^ - ^ r -

=
t ^

 ( 5 2 0) 

but from equation (5.19) 5D = (D

2
/b) 86 

:. 8Dn = 8Dlin

3
)

112
 (5.21) 

Splitting the line into two bays only (n = 2), and assuming a standard error of ± 1", the 
maximum distance at which the accuracy of 1 in 10 000 is maintained can be found by 
expressing equation (5.20) as follows: 

8Dn D86 

~F ~ b(n

3
)

112 

N.B. The small angles in the equation (86) must always be expressed in radians 
(1 rad = 206 265"). Thus: 
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5.3.3 Auxiliary base measurement 

Beyond two bays serial measurement becomes uneconomical and the auxiliary base 
technique should be adopted for distances in excess of 117 m. In Figure 5.14 the 
distance required is AB. The auxiliary base BC is established at 90° to AB and measured 

Figure 5.14 

with the subtense bar at C. Measurement of the angle ft at A, enables AB to be obtained 
from AB = D = h cot j8. 

The following analysis of the errors enables optimum distances for h and D to be 
calculated. 

h x b/6 and D*h/p*b/0.p 

Differentiating with respect to 9 and /? in turn gives 

3D = - (b/9

2
p) 69 and 3D = - (b/9p

2
) 8p 

:. 3D 

It is logical to assume that the proportional standard error in each angle would be the 
same, thus 

3D T (89\

2
1

112 

± \ 2 \ - \ I (5.22) D 

or ± [ j ( « Y 
1/2 

(5.23) 

Now as 9 « ft/ft and /? « /i/D formulae (5.22) and (5.23) may be shown respectively as 
follows: 

1 D x 1" 

10 0 0 0 " 2 x ( 2

3
)

1 /2
 x 206 265 

.'. D = 117m 
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3d rMse2!1'2 hse^.l2 

7 f - ± | - H = ± - T ( 2 ) 1 / 2 ^ 

and ^ = ± ^ ( 2 ) - (5 ,5 ) 

Assuming once again that the required accuracy is 1 in 10 000, and the standard error is 
± 1", using a 2-m bar. 

- 1 — A _ ( 2 ) . , a 
10 000 2 x 206 265 

from which h = 29 m 

Now using the above data 

1 D 

10 000 29 x 206 265 

from which D — 425 m 

(2) 1/2 

Finally, there will be error in the setting out of the 90° angle at B; however, as this 
source of error can be shown to be proportional to the cotangent, the error will be zero, 
if the angle is 90°. 

Further to the above, the length of D may be extended by having the auxiliary base at 
the centre (as shown in Figure 5.75), then: 

as shown previously. 

D = fr/0(l//?! + l/jS2) which on differentiating with respect to 9, pt and j?2 g i

v es 

It is logical to assume that the angular errors throughout would be equal 

Figure 5.15 



144 Opt i ca l d i s t a n c e - m e a s u r e m e n t 

11/2 ~b
2
2

2
 de

2
 b

2
se

2
 b

2
se

2
' 

' = ± -

= ^V

2
 (5.26) 

Equation (5.26) may be written as 

e
2
 e [ 2 - e

2
 e [2 

now assuming 

2ft _ 2b 
£>! x D2, D = — = ^

 t n en
 ^ becomes 

50 / 3 \

1 /2
 b 

SD = D — [ - ) and as 0 = -
0 \ 2 / h 

Using equation (5.27) and assuming 3D/D = 1 in 10000 and 58 = + 1", 

then /i = 34 m 

Similarly, from equation (5.26), i.e. 

which on substitution gives 

i rk b366

1/2
D

3/2 

3D _b366

1/2
D

112 

" ~D ~ (Sb

3
)

1
'

2 

Substituting the same values as above: 

1 2 x T x 6

1 / 2
D

1 /2 

10 000 " ( 8 x 2

3
)

1 /2
 x 206 265 

^ fix 206265 V 
^ = h ^ 7 ^ — 7 T 7 2 = H 3 2 m 

\ 2 0 000 x 6

1 / 2
/ 

This basic approach to small errors can be used to build up different procedures 
which maintain the same accuracy but increase the distance measured. For instance, 
Figure 5.16 indicates a procedure which enables a distance of 3400 m (D) to be 
measured to an accuracy of 1 in 10 000, provided that h1 = 25 m, h2 = 280 m and 38 = 
± 1 " . 

These various techniques may also be incorporated into traversing using three 
tripod equipment, and for sights up to, say, 400 m, the procedure may be as illustrated 
in Figure 5.17. 

file:///20
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C Figure 5.16 

5.4 FURTHER OPTICAL DISTANCE-MEASURING EQUIPMENT 

5.4.1 Direct-reading tacheometers 

Direct-reading tacheometers, or self-reducing tacheometers as they are also called, have 
curved lines replacing the conventional stadia lines. Figure 5.18 illustrates one 
particular make in which the outer lines are curves to the function cos

2
 0 and the inner 

curves are to the function sin 0 cos 0. Thus the outer curve staff intercept is not just S 
but S co s

2
 6, hence one need only multiply the intercept reading by Kx = 100 to obtain 

the horizontal distance. Similarly, the inner curve staff intercept is S sin 0 cos 0, and 
need only be multiplied by Kx to produce the vertical height H. The separation of the 
curves varies with variation in the vertical angle. 

There are other makes of instrument which have different methods of solution; 
however, the objective remains the same, i.e., to eliminate computation. It should be 
noted that there is no improvement in accuracy. 

Figure 5.18 

Jmage of staff 
Figure 5.17 
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5.4.2 Distance-measuring optical wedge 

The distance-measuring wedge is an achromatic wedge of glass accurately ground to 
refract rays of light by an amount equal to 1 in 100 of the slant distance from the 
instrument to the staff. It attaches to the object end of the theodolite telescope (with a 
counterweight at the eyepiece) and is used with a specially-graduated horizontal staff, 
to measure distances of up to 150 m to an accuracy of 1 in 5000 to 7500. The wedge 
covers only the mid-section of the object lens; thus the horizontal staff is viewed direct 
through the uncovered portions of the lens, whilst the deflected image is viewed 
through the wedge. The amount of deviation is read direct from the staff as the slope 
distance to the nearest 0.1 m, finer setting to 0.01 m being obtained by an incorporated 
parallel-plate micrometer. 

This attachment is difficult to use in hot, sunny conditions, due to heat shimmer and 
refraction. It is rapidly being superseded by E D M equipment. 

5.4.3 Horizontal-staff precision tacheometer 

The horizontal-staff tacheometer utilizes an extension of the above wedge principle to 
produce the horizontal distance from instrument to staff. In this case two achromatic 
wedges are used, each ground to refract rays of light by an amount equal to 1/200 of the 
slant distance. When the two wedges are together, the telescope is horizontal and the 
amount of deviation is 1/100. As the telescope is rotated through a vertical angle of, say, 
0, the wedges move in opposite directions through the same angle and the resultant 
displacement vector is reduced in proportion to cos 0. The horizontal distance may 
then be read direct from a special horizontal staff. Figure 5.19 shows AB is the 
displacement equivalent to the horizontal distance required. With a maximum range of 
250 m, an accuracy of 1 in 10 000 is claimed for these instruments. 

These instruments are also extremely difficult to use in hot, sunny conditions. They 
are very idiosyncratic and require careful and regular calibration. It is felt they are 
rapidly being rendered obsolete by E D M equipment. 

x c o s 6 x c o s 0 

Figure 5.19 Wedges rotating in opposite directions through angle of elevation 0 
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5.4.4 Vertical-staff precision tacheometer 

The vertical-staff tacheometer, as produced by Kern and named the Kern DK—RV, has 
a moveable diaphragm which varies with the inclination of the telescope, the amount of 
variation being controlled by a gear-and-cam mechanism. It is used with a specially-
graduated vertical staff giving horizontal distances to an accuracy of 1 in 5000 over a 
maximum range of 150 m. Figure 5.20 illustrates a portion of the special staff as viewed 
through the instrument. By rotating the telescope in the vertical plane, the horizontal 

4 d2 
' i 

Figure 5.20 Figure 5.21 

reticule A is made to bisect the zero wedge. Rotation of the instrument in azimuth is 
carried out until the sloping reticule B bisects a small circular dot on the left-hand scale. 
The instrument now reads as follows: 

Reticule B = 15.00 m 
Vertical reticule C = 0.88 m 

Horizontal distance = 15.88 m 

The same comments apply to this instrument as to the horizontal-staff precision 
tacheometer. 

5.4.5 Zeiss BRT006 

The Zeiss BRT006 is an improved version of the well-known Teletop, the principle of 
which is illustrated in Figure 5.21. Using a constant parallactic angle 0 and a variable 
base along the bar, the distance D is obtained by shifting the moveable prism along the 
bar until the two images of dx are coincident. Slant and/or horizontal distance is then 
read direct from the bar. The error in measurement is directly proportional to the 
distance, the normal range being limited to 60 m, accurate to 1 in 1600, but by using 
special targets the range can be extended to 180 m. The instrument is ideal for detail 
surveying in busy urban areas and, used in conjunction with the Plotting Table Karti 
attachment, affords direct semi-automatic plotting of points to an accuracy of 
±0 .1 mm. 

Fixed 
pentaprism 'Moveable 

pentaprism 
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This instrument provides a unique solution to the problem of accurate fixing of 
position using remote methods and has a special place in the catalogue of equipment 
available to the surveyor. 

Worked examples 

Example 5.1. Consider a distance of 500 m. To what accuracy would it be measured 
using a 2-m bar and assuming a standard error of ± 1 " in the subtense angle? 

0 = 2/500 rad = 0.004 x 206 265 = 825" 

now as (50/0 = SD/D = 1/825 (606 mm) 

Example 5.2. If the above distance was required to an accuracy of 1 in 1000, to what 
accuracy must the angle be measured? 

1/1000 = (50"/825 / . (50 = ±0 .8" 

Example 5.3. If the above distance was split into two equal bays what accuracy might 
be expected using the same equipment ? 

SD2 = SD/n

3/2
 where from e.g.l. 3D = 606 mm and n = 2 

606 
£ / ) - _ _ = 214 mm in 500 m = 1 in 2338 

2 gl/2 
Example 5.4. How many bays would be required to increase the accuracy to 1 in 10 000 ? 

500 m _ 
SDn = —— = 50 mm 

n
 10 000 

.'. 50 = from which n = 5.3 bays 

Example 5.5. As the use of five bays would be uneconomical, what length of auxiliary 
base would give the required accuracy ? 

SD_DSP 1 /2 
D h 

1 500 x 1" x ( 2 )
1 /2 

2
1 

from which h = 34 m 
" 10 000 206 265/r 

Example 5.6. A theodolite has a tacheometric constant of 100 and an additive constant 
of zero. The centre reading on a vertical staff held on a point B was 2.292 m when 
sighted from A. If the vertical angle was +25° and the horizontal distance AB 
190.326 m, calculate the other staff readings and thus show that the two intercept 
intervals are not equal. Using these values calculate the level of B if A was 37.95 m and 
the height of the instrument 1.35 m. (LU) 

F rom basic equation (5.3) CD = 1005 cos
2
 0 

190.326 = 1005 c o s
2
 25° 

5 = 2.316 m 
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A Figure 5.22 

From Figure 5.22: HJ = S cos 25° = 2.1 m 

Inclined distance CE = CD sec 25° = 210 m 

2a = Q rad = 0° 34' 23" 

.*. a = 0° 1 7 11" 

Now, by reference to Figure 5.22: 

DG = CD tan (25° - a) = 87.594 
DE = CD tan 25° = 88.749 
DF = CD tan (25° + a) = 89.910 

It can be seen that the stadia intervals are 

from which it is obvious that the 

upper reading = (2.292 + 1.161) = 3.453 
lower reading = (2.292 - 1.155) = 1.137 

Vertical height DE = H = CD tan 25° = 88.749 (as above) 

/ . Level of B = 37.95 + 1.35 4- 88.749 - 2.292 = 125.757 m 

Example 5.7. The following observations were taken with a tacheometer, having 
constants of 100 and zero, from a point A to B and C. The distance BC was measured as 
157 m. Assuming the ground to be a plane within the triangle ABC, calculate the 
volume of filling required to make the area level with the highest point, assuming the 
sides to be supported by vertical concrete walls. Height of instrument was 1.4 m, the 
staff held vertically. (LU) 

At To Staff readings (m) Vertical angle 

A B 
C 

1.48, 2.73, 3.98 
2.08, 2.82, 3.56 

+ 7° 36' 
- 5 ° 24' 
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Horizontal distance AB = 100 x S co s

2
 6 

= 100 x 2.50 cos

2
 7° 36' = 246 m 

Vertical distance AB = 246 tan 7° 36' = +32.8 m 

Similarly 

Horizontal distance AC = 148 c o s

2
 5° 24' = 147 m 

Vertical distance AC = 147 tan 5° 24' = - 1 3 . 9 m 
Area of triangle ABC = [S(S - a) x (S - b) x (S - c ) ]

1 /2 

where S = ^ (157 + 246 + 147) = 275 m 

Area = [275(275 - 157) x (275 - 147) x (275 - 2 4 6 ) ]

1 /2 

= 10 975 m

2 

Assume level Of A = 100 m 
then level of B = 100 + 1.4 + 32.8 - 2.73 = 131.47 m 
then level of C = 100 + 1.4 - 13.9 - 2.82 = 84.68 m 

.*. Depth of fill at A = 31.47 m 
Depth of fill at C = 46.79 m 

Vol of fill = plan area x mean height 

= 10 975 x i (31.47 + 46.79) = 286 300 m

3 

Example 5.8. In order to find the radius of an existing road curve, three suitable points A, 
B and C were selected on its centre-line. The instrument was set at B and the following 
readings taken on A and C, the telescope being horizontal and the staff vertical. 

Staff at Horizontal bearing Stadia readings (m) 

A 0° 00' 1.617 1.209 0.801 
C 195° 34' 2.412 1.926 1.440 

If the instrument has a constant of 100 and 0, calculate the radius of the circular arc 
A, B, C. If the trunnion axis was 1.54 m above the road at B, find the gradients AB and 
BC. (LU) 

Note: As the theodolite is a clockwise-graduated instrument the angle ABC as shown 
in Figure 5.23 equals 195° 34'. 

The angular relationships shown in the figure are from the geometry of angles at the 
centre being twice those at the circumference. It is therefore required to find angles BAC 
and BCA (a and j8). F rom the formula for horizontal sights: D = KXS + K2 

AB = 81.6 m and BC = 97.2 m 
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195° 34' 

Figure 5.23 

Assuming AB is 0°, then BC = 15° 34' for 97.2 m 

sin 
.*. Co-ords of BC = 97.2 15° 34' = +26.08(AE), +93.63(AN) 

cos 

Total co-ords of C relative to A = 26.08 E; (81.6 + 93.63) N = 175.23 N 

, 26.08 
Bearing AC = t a n "

1
 =

 8
°

 2 8
' 

/ . a = 8° 28' and j? = (15° 34' - 8° 28') = 7° 06' 

In triangle DCO, R = 48.6/sin 8° 28' = 330 m 

Arc AB = R x 2p rad = 330 x 14° 12' rad = 81.78 m 

Arc BC = R x 2a rad = 330 x 16° 56' rad = 97.53 m 

Grade AB = (1.54 - 1.209) in 81.78 = 1 in 250 falling from A to B 
Grade BC = (1.926 - 1.54) in 97.53 = 1 in 250 falling from B to C 

An alternative method of finding a and /? would have been to use the equation: 

A — C a-c A + C 
tan — - — = tan — - — 

2 a + c 2 

However, using co-ordinates involves less computation and precludes the memorizing 
of equation in this case. This is particularly so in the next question where the above 
equation plus the sine rule would be necessary to find CD. 

Example 5.9. The following readings were taken by a theodolite from station B on to 
stations A, C and D. 

Stadia readings (m) 

Sight Horizontal angle Vertical angle Top Centre Bottom 

A 301° 10' 
C 152° 36' - 5 ° 00' 1.044 2.283 3.522 
D 205° 06' + 2 ° 30' 0.645 2.376 4.110 

The line BA in Figure 5.24 has a bearing of 28° 46' and the instrument constants are 100 
and 0. Find the slope and bearing of line CD. (LU) 
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Figure 5.24 

Distance BC = 100S c o s

2
 6 = 247.8 cos

2
 5° = 246 m 

Height BC = 246 tan 5° = - 2 1 . 5 1 m 
Distance BD = 346.5 cos

2
 2° 30' = 345.9 m 

Height BD = 345.9 tan 2° 30' - 15.1 m 
(28° 4 6 ' + 211° 26') = 240° 12' 
(240° 12' + 52° 30') = 292° 42' 

Bearing BC 
Bearing BD 

sin 
.*. Co-ords of BC = 246 240° 12' = - 2 1 3 . 5 (AE); - 1 2 2 . 2 (AN) 

cos 

Co-ords of BD = 345.9

 Sm
 292° 42' = - 319.2 (AE); +133.5 (AN) 

cos 

Co-ords of C relative to D = - 105.7 (AE); +255.7 (AN) 
, - 1 0 5 . 7 

Bearing CD = t a n " 1 + 2 5 5? = 327° 32' 

Length CD = 255.7/cos 22° 28' = 276.75 m 

Difference in level between C and D = - (21 .51 + 2.283) - (15.1 - 2.376) 
36.52 m 

.*. Grade CD = 36.52 in 276.75 = 1 in 7.6 rising 

Example 5.W. Describe the essential features of a subtense bar and show how it is used in 
the determination of distance by a single measurement. Allowing for a 1" error in the 
measurement of the angle, calculate from first principles the accuracy of the 
measurement of a distance of 60 m if a 2-m subtense bar is used. Show how the accuracy 
of such measurement varies with distance, and outline the method by which maximum 
accuracy will be obtained if subtense tacheometry is used in the determination of the 
distance between points situated on opposite banks of a river about 180 m wide. 

(ICE) 

Refer to Section 5.3 for answer to first part of the question. 

2 x 206 265 
Subtense angle 0" — 

60 
= 6876" 

accuracy = 1 in 6876 
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Refer equation (5.19) for variation of error with distance. Maximum accuracy may be 
obtained by the auxiliary base method. Refer Section 5.3.3. 

Example 5.11. Specify briefly the apparatus required for subtense measurement giving a 
short description of the subtense bar. What accuracy could be expected in a length of a 
line measured in this way ? 

The following data refer to a subtense measurement between two stations: 
Length of subtense bar (placed horizontally), 2 m with a standard error of 0.1 mm. 
Angles subtended by ends of bar (from theodolite) 0° 32' 15" (10") (12") (18") (16") (14") 
with a standard error of 4" in each value. 
Vertical circle readings, above horizontal 12° 10' 20" (18") (25") (21") (21") (17") with a 
standard error of 4" in each reading. The figures in brackets are the numbers of seconds 
obtained in five repeated readings, the degrees and minutes remaining unchanged. The 
standard error in the horizontality of the vertical circle index was 6". 
Determine: (1) The horizontal distance between the instrument axis and the mid-

point of the subtense bar. 
(2) The difference in level between these two points. 
(3) The standard error in the level difference calculated in (2). (LU) 

(1) Mean horizontal angle 0 = 0° 32' 14.2" 

D = b/2 cot 0/2 = cot 0° 16' 07.1" = 213.28 m 
(2) Mean vertical angle = 12° 10' 20" 

/. H = D tan a = 213.28 tan 12° 10' 20" = 46.00 m 
(3) Standard error in length of bar b = 6b = ±0 .1 mm 

Standard error in angle 0 = 69 = ± 4 " / ( 6 )

1 /2
 = ± 1.6" 

Standard error in reading vertical angle a = 6a = as above ± 1.6" 
It is logical to assume that the vertical angles would be measured on each face of the 

instrument, thus cancelling out the vertical circle index error of 6". 
Now, differentiating with respect to each variable, the basic formula H = D tan a 

gives 

dH = 6D tan a and 6H = D sec

2
 a 6a 

6H = ± [ t a n

2
 a 6D

2
 + D

2
 sec

4
 a <5a

2
]

1 /2 

but 6D is unknown and must first be found as follows: 

D = b/0 

c Sb t I D ^ D6b 
:-SD-T b u t ~o = ~b — 

-b , b

2
 D

2
60 

6D = i r6 0 but D

2
 = ¥ ; m SD = - — 

.-. SH = ± [ t a n

2
 (12° 10' 20") x 0.18

2
 + 2 1 3

2
 sec

4
 (12° 10' 20") x 1 . 6

2
]

1 /2 

= ±0.04 m 
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Student note 

(1) All small angles in error computations (86, SOL) must be changed to radians. 
(2) The quantities involved need not be taken to any great accuracy as the relationship 

of the errors to the measured quantity is very small. 
(3) For students unfamiliar with the theory of errors, the standard error in the angles is 

deduced as follows: 

6 is the arithmetic mean of six measures 

i.e. 6 = (6, + 62 + 03 + #4 + #5 + 06)/6 

each measure is affected by an error e of ± 4 " 

9±e = 1(6, + ex) + (62 + e2) + (03 ± e3) + (04 ± ej + (05 ± e5) + (06 ± e6)]/6 

Subtracting ±e = (±ex ± e2 ± e3 ± e± ± e5 ± e6)/6 

assuming ex = e2 = e3, etc. = es 

2 6e

2
 (el\i

2
 es 

Exercises 

(5J) In order to survey an existing road, three points A, B, and C were selected on its 
centre-line. The instrument was set at A and the following observations were taken. 

Staff Horizontal angle Vertical angle Stadia readings (m) 

B 0° 00' - 1 ° 11' 20" 1.695 1.230 0.765 
C 6° 29' - 1 ° 04' 20" 2.340 1.500 0.660 

If the staff was vertical and the instrument constants 100 and 0, calculate the radius of 
the curve ABC. If the instrument was 1.353 m above A, find the falls A to B and B to C. 

(LU) 

(Answer: R = 337.8 m, A - B = 1.806 m, B - C = 1.482 m) 

(5.2) Readings were taken on a vertical staff held at points A, B and C with a tacheometer 
whose constants were 100 and 0. If the horizontal distances from instrument to staff 
were respectively 45.9,63.6 and 89.4 m, and the vertical angles likewise +5° , 4-6° and 
— 5°, calculate the staff intercepts. If the mid-hair reading was 2.100 m in each case, 
what was the difference in level between A, B and C ? (LU) 

(Answer: SA = 0.462, SB = 0.642, Sc = 0.900, B is 2.670 m above A, C is 11.835 m below 
A) 

(5.3) A theodolite has a multiplying constant of 100 and an additive constant of zero. 
When set 1.35 m above station B, the following readings were obtained. 
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Stn Sight Horizontal circle Vertical circle Stadia readings (m) 

B 
B 

A 
C 

28° 21' 00" 
82° 03' 00" 20° 30' 1.140 2.292 3.420 

The co-ordinates of A are E 163.86, N 0.0, and those of 5 , E 163.86, N 118.41. Find the 
co-ordinates of C and its height above datum if the level of B is 27.3 m AOD. (LU) 

(Answer: E 2.64 N 0.0, 101.15 m AOD) 

(5.4) (a) The following observations were made to a 2-m subtense bar set 1.372 m above 
the ground: 

Mean horizontal angle = 0° 20' 30" 
Mean vertical angle = +05° 20' 00" 

Determine: (1) The horizontal distance between theodolite and bar. 
(2) The level of the subtense bar station, if the theodolite was set 1.524 m 

above the ground station whose level was 56.58 m O D . 

(b) If the standard error in the measurement of the horizontal angle between the ends of 
the bar was ± 1", what is the fractional error in the above distance ? Using the same 
equipment, into how many bays would you split the distance to increase the accuracy 
to 1 in 500? (KP) 

(Answer: D = 335.40 m, 88.04 m OAD, 1 in 1230, three bays) 
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Curves 

In the geometric design of motorways, railways, pipelines, etc., the design and setting 
out of curves is an important aspect of the engineer's work. 

The initial design is usually based on a series of straight sections whose positions are 
defined largely by the topography of the area. The intersections of pairs of straights are 
then connected by horizontal curves (refer Section 6.2). In the vertical design, 
intersecting gradients are connected by curves in the vertical plane. 

Curves can be listed under three main headings, as follows: 

(1) Circular curves of constant radius. 
(2) Transition curves of varying radius (spirals). 
(3) Vertical curves of parabolic form. 

6.1 CIRCULAR CURVES 

Two straights, Dx Tx and D2 T2 in Figure 6.1, are connected by a circular curve of radius 
R: 

(1) The straights when projected forward, meet at J: the intersection point. 
(2) The angle A at J is called the angle of intersection or the deflection angle, and equals 

the angle Tt0T2 subtended at the centre of the curve 0. 
(3) The angle 0 at J is called the apex angle, but is little used in curve computations. 
(4) The curve commences from Tx and ends at T2; these points are called the tangent 

points. 
(5) Distances TXI and T2I are the tangent lengths and are equal to R tan A/2. 
(6) The length of curve TiAT2 is obtained from: 

Curve length = jRA where A is expressed in radians, or 

A°.100 
Curve length = ——— where degree of curve is used (see Section 6.1.1) 

(7) Distance 7i T2 is called the main chord (C), and from the Figure 

. A TXB £ chord (C) ^ . A 
sm - - - J — = - - — — C = 2R sin -

2 TjO R 2 

156 
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Figure 6.1 

(8) IA is called the apex distance and equals 

70 - R = R sec A/2 - R = 7*(sec A/2 - 1) 

(9) AB is the rise and equals K - OB = R - R cos A/2 

.'. AB = R(l - cos A/2) 

These equations should be deduced using a curve diagram (Figure 6.1) and not 
necessarily committed to memory. 

6.1.1 Curve designation 

Curves are designated either by their radius (R) or their degree of curvature (D°). The 
degree of curvature is defined as the angle subtended at the centre of a circle by an arc of 
100 m (Figure 6.2). 

100 m 100 x 180° 
Thus R = D rad D° x n 

n 5729.578 

•'•

 R
= Do

 m (6
.1) 

Thus a 10° curve has a radius of 572.9578 m. 

100 m 

Figure 6.2 
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6.1.2 Through chainage 

Through chainage is the horizontal distance from the start of a construction scheme. 
For instance, in Figure 63 if the distance measured from 0 to T3 is 2115.5 m, then it is 
said that the chainage of T3 is 2115.5 m. If it was decided to set out the curve T3T4 using 
10-m chords, the first chord would be a sub-chord of 4.5 m. In this way the chainage at 
the end of the sub-chord would be in round figures, i.e. 2115.5 + 4.5 = 2120 m. 

Frequently questions supply the chainage at I2 and require the chainage at T3 and TA, 
say. The chainage at T3 is obtained by subtracting the tangent length I2T3 from the 
chainage of I2, whilst the chainage at T4 is obtained by adding the curve length to the 
newly found chainage at T3. This is logical as the curve is the route being constructed 
and the point I2 is simply an established position to help curve setting out. 

6.2 SETTING OUT CURVES 

This is the process of establishing the centre-line of the curve on the ground by means of 
pegs at 10-m to 30-m intervals. In order to do this the tangent and intersection points 
must first be fixed in the ground, in their correct positions. 

Consider Figure 63. The straights 01\, J 2, 1 2I $ , etc., will have been designed on the 
plan in the first instance. Using railway curves, appropriate curves will now be designed 
to connect the straights. The tangent points of these curves will then be fixed making 
sure that the tangent lengths are equal, i.e. TJX = T2IX and T3I2 = TAI2. The co-
ordinates of the origin, point 0, and all the intersection points only will now be carefully 
scaled from the plan. Using these co-ordinates, the bearings of the straights are 
computed and, using the tangent lengths on these bearings, the co-ordinates of the 
tangent points are also computed. The difference of the bearings of the straights 
provides the deflection angles (A) of the curves which, combined with the tangent 
length, enables computation of the curve radius, through chainage and all setting-out 
data. Now the tangent and intersection points are set out from existing control survey 
stations and the curves ranged between them using the methods detailed below. 

6.2.1 Setting out with theodolite and tape 

The following method of setting out curves is the most popular and it is called Rankings 
deflection or tangential angle method, the latter term being more definitive. 

In Figure 6.4 the curve is established by a series of chords Tt X, XY, etc. Thus, peg 1 at 

Figure 6.3 
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Figure 6.4 

X is fixed by sighting to / with the theodolite reading zero, turning off the angle <5X and 
measuring out the chord length TXX along this line. Setting the instrument to read the 
second deflection angle gives the direction Tt Y, and peg 2 is fixed by measuring the 
chord length ATfrom X until it intersects at Y. The procedure is now continued, the 
angles being set out from TXI, and the chords measured from the previous station. 

It is thus necessary to be able to calculate the setting out angles 8 as follows: 

Assume OA bisects the chord T tX at right-angles, then 

Af10 = 90° - 8 l9 but 7 ^ = 9 0 ° 
.'. 1 ^ = 8, 

By radians arc length TXX = R28x 
arc 7; X ^ chord TtX 

8X rad = 
2R 2R 

e . chord T j l x 180° x 60 . . . _ A chord 
Sx mm = — = 1718.9 

2R.n R 

or 8° = 
D° x chord 

200 
where degree of curve is used 

(6.2a) 

(6.2b) 

An example will now be worked to illustrate these principles. 
The centre-line of two straights is projected forward to meet at 7, the deflection angle 

being 30°. If the straights are to be connected by a circular curve of radius 200 m, 
tabulate all the setting-out data, assuming 20-m chords on a through chainage basis, 
the chainage of 7 being 2259.59 m. 

Tangent length = R tan A/2 = 200 tan 15° = 53.59 m 

Chainage of Tx = 2259.59 - 53.59 = 2206 m 
.*. 1st sub-chord = 14 m 

Length of circular arc = RA = 200(30°) rad = 104.72 m 
From which the number of chords may now be deduced 

i.e. 1st sub-chord = 14 m 
2nd, 3rd, 4th, 5th chords = 20 m each 

Final sub-chord = 10.72 m 
Total = 104.72 m (Check) 
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Chord Chord Chainage Deflection Setting-out Remarks 
number length angle angle 

(m) (m) o 
° 

1 14 2220.00 2 00 19 2 00 19 peg 1 
2 20 2240.00 2 51 53 4 52 12 Peg 2 
3 20 2260.00 2 51 53 7 44 05 peg 3 
4 20 2280.00 2 51 53 10 35 58 peg 4 
5 20 2300.00 2 51 53 13 27 51 peg 5 
6 10.72 2310.72 1 32 08 14 59 59 peg 6 

the error of 1" is, in this case, due to the rounding-off of the angles to the nearest second 
and is negligible. 

6.2.2 Setting out with two theodolites 

Where chord taping is impossible, the curve may be set out using two theodolites at Tx 
and T2 respectively, the intersection of the lines of sight giving the position of the curve 
pegs. 

The method is explained by reference to Figure 6.5. Set out the deflection angles from 

Figure 6.5 

Chainage of T2 = 2206 m + 104.72 m = 2310.72 m 

Deflection angles: 

For 1st sub-chord = 1718.9 - ^ = 120.3 min = 2° 00' 19" 
200 

Standard chord = 1718.9 ^ - = 171.9 min = 2° 51 ' 53" 
200 

Final sub-chord = 1718.9 = 92.1 min = 1° 32' 08" 
200 

Check: The sum of the deflection angles = A/2 = 14° 59' 59" % 15° 
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TJ in the usual way. From T2, set out the same angles from the main chord T2TV The 
intersection of the corresponding angles gives the peg position. 

If Tx cannot be seen from T2, sight to / and turn off the corresponding angles 
A / 2 - * ! , A /2 -<52, etc. 

6.2.3 Setting out with two tapes (method of offsets) 

Theoretically this method is exact, but in practice errors of measurement propagate 
round the curve. It is therefore generally used for minor curves. 

In Figure 6.6 line OE bisects chord TXA at right-angles, then ETxO = 90° - 8, 
:. CTXA = 8, and triangles CTXA and ETxO are similar, thus 

Figure 6.6 

From Figure 6.6, assuming lengths TXA = AB = AD 

chord

2 

then angle DAB = 28, and so offset DB = 2CA = — - — (6.4) 
R 

The remaining offsets round the curve to T2 are all equal to DB whilst, if required, the 
offset HJ to fix the line of the straight from T2, equals CA. 

The method of setting out is as follows: 
It is sufficient to approximate distance Tx C to the chord length TXA and measure this 

distance along the tangent to fix C. From C a right-angled offset CA fixes the first peg at 
A. Extend TXA to D so that AD equals a chord length; peg B is then fixed by pulling out 
offset length from D and chord length from A, and where they meet is the position B. 
This process is continued to T2. 

The above assumes equal chords. When the first or last chords are sub-chords, the 
following Section 6.2.4 should be noted. 

(6.3) 
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Figure 6.7 

6.2.4 Setting out by offsets with sub-chords 

In Figure 6.7 assume TyA is a sub-chord of length x, from equation (6.3) the offset 
CA = Ol= x

2
/2R. 

As the normal chord AB differs in length from TXA, the angle subtended at the centre 
will be 26 not 26. Thus, as shown in Figure 6.6, the offset DB will not in this case equal 
2CA. 

Construct a tangent through point A, then from the figure it is obvious that angle 
EAB = 0, and if chord AB = y9 then offset EB = y

2
/2R. 

Angle DAE = 6, therefore offset DE will be directly proportional to the chord length, 
thus: 

x

 y
 2Rx 2R 

Thus the total offset DB = DE + EB 

= 2 ^ (* + >>) (6.5) 

Chord 

i.e. = ——— (sub-chord + chord) 

Thus having fixed B, the remaining offsets to T2 are calculated as y

2
/R and set out in the 

usual way. 
If the final chord is a sub-chord of length x u however, then the offset will be 

^ (*i+>>) (6.6) 

Students should note the difference between formulae (6.5) and (6.6). 
A more practical approach to this problem, is actually to establish the tangent 

through A in the field. This is done by swinging an arc of radius equal to CA, i.e. x

2
/2R 

from Tv A line tangential to the arc and passing through peg A will then be the required 
tangent from which offset EB, i.e. y

2
/2R, may be set off. 
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Bui ld ing 

Figure 6.8 

6.2.5 Setting out with inaccessible intersection point 

In Figure 6.8 it is required to fix Tt and T2, and obtain the angle A, when I is inaccessible. 
Project the straights forward as far as possible and establish two points A and B on 

them. Measure distance AB and angles BAC and DBA then: 

angle IAB = 180° - BAC and angle IBA = 180° - DBA, from which angle BIA is 
deduced and angle A. The triangle AIB can now be solved for lengths IA and IB. 
These lengths, when subtracted from the computed tangent lengths (R tan A/2), give 
ATX and BT2, which are set off along the straight to give positions Tx and T2 
respectively. 

6.2.6 Setting out with theodolite at an intermediate point on the 
curve 

Due to an obstruction on the line of sight (Figure 6.9) or difficult communications and 
visibility on long curves, it may be necessary to continue the curve by ranging from a 

Figure 6.9 

Tangent 
through 
p e g 3 
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point on the curve. Assume that the setting-out angle to fix peg 4 is obstructed. The 
theodolite is moved to peg 3, backsighted to Tt with the instrument reading 180°, and 
then turned to read 0°, thus giving the direction 3 - 7 . The setting-out angle for peg 4, 
<54, is turned off and the chord distance measured from 3. The remainder of the curve is 
now set off in the usual way, that is, S5 is set on the theodolite and the chord distance 
measured from 4 to 5. 

The proof of this method is easily seen by constructing a tangent through peg 3, then 
angle . 4 3 ^ = AT^ = <53 = T3B. If peg 4 was fixed by turning off S from this tangent, 
then the required angle from 3 T would be <53 + 8 = <54. 

6.2.7 Setting out with an obstruction on the curve 

In this case (Figure 6.10) an obstruction on the curve prevents the chaining of the chord 
from 3 to 4. One may either 

(1) Set out the curve from T2 to the obstacle. 
(2) Set out the chord length Tt4 = 2R sin <54. 

Figure 6.10 

6.2.8 Passing a curve through a given point 

In Figure 6.11 it is required to find the radius of a curve which will pass through a point 
P , the position of which is defined by the distance IP at an angle of <j> to the tangent. 

Consider triangle IPO: 

angle jS = 90° - A/2 - <j> (right-angled triangle IT20) 
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Figure 6.11 

by sine rule: sin a = sin B but 10 = R sec — 
PO

 H
 2 

. K sec A/2 A 
. . sin a = sin p — = sin /? sec — 

then 6 = 180° - a - j?, and by the sine rule: K = IP-
sin /? 

sin 0 

6.3 COMPOUND AND REVERSE CURVES 

Although equations are available which solve compound curves (Figure 6.12) and 
reverse curves (Figure 6.13), they are difficult to remember and students are advised to 

Figure 6.12 
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Figure 6.13 

treat the problem as two simple curves with a common tangent point t. 
In the case of the compound curve, the total tangent lengths TJ and T2I are found as 

follows: 

Rt tan AJ2 = Tltl = txt and R2 tan A2/2 = T2t2 = t2t as txt2 = M + t2t 

then triangle r 1/ r 2

 m a
Y be solved for lengths rx7 and t2I which, if added to the known 

lengths 7 ^ and T2t2 respectively, give the total tangent lengths. 
In setting out this curve, the first curve Rx is set out in the usual way to point t. The 

theodolite is moved to t and backsighted to Tx, with the horizontal circle reading 
(180° — Ax/2). Set the instrument to read zero and it will then be pointing to t2. Thus the 
instrument is now oriented and reading zero, prior to setting out curve R2. 

In the case of the reverse curve, both arcs can be set out from the common point t. 

6.4 SHORT AND/OR SMALL-RADIUS CURVES 

Short and/or small-radius curves such as for kerb lines, bay windows or for the 
construction of large templates, may be set out by the following methods. 

6.4.1 Offsets from the tangent 

The position of the curve (in Figure 6.14) is located by right-angled offsets Yset out from 
distances X, measured along each tangent, thereby fixing half the curve from each side. 

The offsets may be calculated as follows for a given distance X. Consider offset Y3, for 

example. 

In &ABO, A0

2
 = OB

2
-AB

2
 (R - Y3)

2
 = R

2
 - X

2
 and 

Y3 = R-(R

2
-X

2
)

112 

thus for any offset Yt at distance Xt along the tangent 

Yt = R — (R

2
 — X

2
)

1
'

2
 (6.7) 
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Figure 6.14 

B 

Yi 

w V \ 
/ \ 

E I Long chord 

C / 2 * C / 2

 > 

Figure 6.15 

6.4.2 Offsets from the long chord 

In this case {Figure 6.15) the right-angled offsets Fare set off from the long chord C, at 
distances X to each side of the centre offset Y0. 

An examination of Figure 6.15 shows the central offset Y0 equivalent to the distance 
TXA on Figure 6.14, thus: 

Y0 = R — [R

2
 — ( C / 2 )

2
]

1 /2 

Similarly, DB is equivalent to DB on Figure 6.14, thus: DB = R — {R

2
 — Xj)

1
'

2 

and offset ^ = 7o ~ DB .'. Yx = Y0 - [R - (R

2
 - X

2
)

1
'

2
] 

and for any offset Yt at distance Xt each side of the 

mid-point of TxT2: Yt = Y0 - [R - (R

2
 - X

2
)

1/2
 (6.8) 
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Figure 6.16 

Therefore, after computation of the central offset, further offsets at distances Xi9 each 
side of Y0, can be found. 

6.4.3 Halving and quartering 

Referring to Figure 6.16: 

(1) Join Tx and T2 to form the long chord. Compute and set out the central offset Y0 to A 
from B (assume Y0 = 20 m), as in Section 6.4.2. 

(2) Join Tx and A, now halve this chord and quarter the offset. That is, from mid-point 
E set out offset Yx = 20/4 = 5 m to D. 

(3) Repeat to give chords TXD and DA; the mid-offsets FG will be equal to Yx/4 = 
1.25 m. 

Repeat as often as necessary on both sides of the long chord. 

Worked examples 

Example 6.1. The tangent length of a simple curve was 202.12 m and the deflection 
angle for a 30-m chord 2° 18'. 

Calculate the radius, the total deflection angle, the length of curve and the final 
deflection angle. (LU) 

2° 18' = 138' = 1718.9 ^ :. R = 373.67 m 

202.12 = R tan A/2 = 373.67 tan A/2 .'. A = 56° 49' 06" 

Length of curve = RA rad = 373.67 x 0.991 667 rad = 370.56 m 
Using 30-m chords, the final sub-chord = 10.56 m 

138' x 10.56 
.*. final deflection angle = — = 48.58' = 0° 48' 35" 

Example 6.2. The straight lines ABI and CDI are tangents to a proposed circular curve 
of radius 1600 m. The lengths AB and CD are each 1200 m. The intersection point is 

B
 u 

L o n g c h o r d 
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inaccessible so that it is not possible directly to measure the deflection angle; but the 
angles at B and D are measured as 

ABD = 123° 48', BDC = 126° 12' and the length BD is 1485 m 

Calculate the distances from A and C of the tangent points on their respective 
straights and calculate the deflection angles for setting out 30-m chords from one of the 
tangent points. (LU) 

Referring to Figure 6.17: 

Al = 180° - 123° 48' = 56° 12', A2 = 180° - 126° 12' = 53° 48' 
A = Ax + A2 = 110° 
4> = 180° - A = 70° 

Tangent lengths ITX and IT2 = R tan A/2 = 1600 tan 55° = 2285 m 
By sine rule in triangle BID: 

BD sin A2 1485 sin 53° 48' 4 „ 
BI = — ; — = — - = 1275.2 m 

sm <p sm 70 

^ B D s i n A i 1485 sin 56° 15' _ „ 
ID = — :— —

1
 = — - = 1314 m 

sin <p sin 70 

Thus Al = AB + BI = 1200 + 1275.2 = 2475.2 m 
CI = CD + ID = 1200 + 1314 = 2514 m 

ATX = Al- 1TX = 2475.2 - 2285 = 190.2 m 
CT2 = CI - IT2 = 2514 - 2285 = 229 m 

Deflection angle for 30-m chord = 1718.9 x 30/1600 = 32.23' 
= 0° 32' 14" 

Example 6.3. A circular curve of 800 m radius has been set out connecting two straights 
with a deflection angle of 42°. It is decided, for construction reasons, that the mid-point 

l Figure 6.17 
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Figure 6.18 

of the curve must be moved 4 m towards the centre, i.e. away from the intersection 
point. The alignment of the straights is to remain unaltered. 

Calculate: 

(1) The radius of the new curve. 
(2) The distances from the intersection point to the new tangent points. 
(3) The deflection angles required for setting out 30-m chords of the new curve. 
(4) The length of the final sub-chord. (LU) 

Referring to Figure 6.18: 

IA = U^sec A/2 - 1) = 800(sec 21° - 1) = 56.92 m 
.'. IB = IA + 4 m = 60.92 m 

(1) Thus, 60.92 = K2(sec 21° - 1), from which R2 = 856 m 
(2) Tangent length = ITX = R2 tan A/2 = 856 tan 21° = 328.6 m 

30 
(3) Deflection angle for 30-m chord = 1718.9 C/R min = 1718.9 — = 1° 00' 14" 

856 

„ i * •

 8 56 X 4 2
°

 X 3 6 00
 r 

(4) Curve length = RA rad = _ _ r . _ c = 627.5 m 
206 265 

.*. Length of final sub-chord = 27.5 m 

Example 6.4. The centre-line of a new railway is to be set out along a valley. The first 
straight AI bears 75°, whilst the connecting straight IB bears 120°. Due to site 
conditions it has been decided to join the straights with a compound curve. 

The first curve of 500 m radius commences at Tl9 situated 300 m from I on straight 
AI, and deflects through an angle of 25° before joining the second curve. 

Calculate the radius of the second curve and the distance of the tangent point T2 from 
I on the straight IB. (KP) 

Referring to Figure 6.12: 

A = 45°, Ax = 25° A2 = 20° 
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J t i S i n A j 189.2 sin 25° 
J*2 = • a = r - ^ — = 233.8 m 2

 sm A 2 sm 20° 
.'. " 2 = hh ~

 T
ih = 391.2 - 110.8 = 280.4 m 

.'. 280.4 = R2 tan A2/2 = R2 tan 10°; R2 = 1590 m 

Distance IT2 = It2 + t2T2 = 233.8 + 280.4 
= 514.2 m 

Example 6.5. Two straights intersecting at a point B have the following bearings, BA 
270°, BC 110°. They are to be joined by a circular curve which must pass through a 
point D which is 150 m from B and the bearing of BD is 260°. 

Find the required radius, tangent lengths, length of curve and setting-out angle for a 
30-m chord. (LU) 

Referring to Figure 6.19: 

From the bearings, the apex angle = (270° - 110°) = 160° 

/ . A = 20° 

and angle DBA = 10° (from bearings) 

OBD = p = 70° 

In triangle BDO by sine rule 

. ^ OB . n R sec A/2 . n A . „ 
sin 8 = —— sin B = sin B = sec — sin p 

OD R

 P
 2

 p 

sin 0 = sec 10° x sin 70° 
9 = sin "

1
 0.954 190 = 72° 35' 25" or 

(180° - 72° 35' 25") = 107° 24' 35" 

Figure 6.19 

Tangent length Tlti = Rx tan AJ2 = 500 tan 12° 30' = 110.8 m. In triangle tjt2 
Angle t2lt1 = 180° - A = 135° 
Length Itl = TJ - Tltl = 300 - 110.8 = 189.2 m 

By sine rule 
It, sin ult* 189.2 sin 135° _ ^ 

hh = * a = r - r ^ : = 391.2 m 1 2
 sin A, sin 20° 
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Example 6.6. The co-ordinates in metres of two points B and C with respect to A are: 

B 470 E 500 N 
C 770 E 550 N 

Calculate the radius of a circular curve passing through the three points, and the co-
ordinates of the intersection point 7, assuming that A and C are tangent points. 

(KP) 

Referring to Figure 6.20: 

By co-ordinates 

, +470 E Bearing AB = tan " 1 ^ = 43° 14' 

, +770 E 
Bearing AC = tan " 1 = 54° 28' 

, + 3 0 0 E 

Bearing BC = t a n "

1

 + 5Q N = 80° 32' 

Figure 6.20 

An examination of the figure shows that 8 must be less than 10°, 

6 = 107° 24' 35" 
<5 = 1 8 O ° - ( 0 + j8) = 2° 35' 25" 

„ . , _ „ DB sin P 150 sin 70° 
By sine rule DO = R = ——— = , 

J
 sin 8 sin 2° 35' 25" 

/. R = 3119 m 

Tangent length = R tan A/2 = 3119 tan 10° = 550 m 

n. , 3119 x 20° x 3600 f A OA 
Length of curve = RA rad = ^

 1 0 89 m 

206 265 
30 

Deflection angle for 30-m chord = 1718.9 x = 0° 16' 32" 
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Distance AB = 500/cos 43° 14' = 686 m 

From bearings of AB and AC, angle BAC = 9 = 11° 14' 
F rom bearings of CA and CB, angle BCA = = 26° 04' 

as a check, the remaining angle, calculated from the bearings of BA and BC = 142° 42', 
summing to 180°. 

In right-angled triangle DOB: 

DB 343 
OB = R = ^— = , ^ o t X AI = 781 m 

sin <f> sin 26° 04' 

This result could now be checked through triangle OEC. 

A = 2(</> + 6) = 74° 36' 

.'. AI = R tan A/2 = 781 tan 37° 18' = 595 m 

Bearing AI = bearing AC - A/2 = 54° 82' - 37° 18' 
= 17° 10' 

.*. Co-ordinates of I equal: 

sin 
595 17° 1 0 ' = +176 E, +569 N 

cos 

Example 6.7. Two straights AEI and CFJ, whose bearings are respectively 35° and 335°, 
are connected by a straight from E to F. The co-ordinates of E and F in metres are: 

E E 600.36 N 341.45 
F E 850.06 N 466.85 

Calculate the radius of a connecting curve which shall be tangential to each of the 
lines AE, EF and CF. Determine also the co-ordinates of I, Tx, and T2, the intersection 
and tangent points respectively. (KP) 

Referring to Figure 6.21: 

Bearing AI = 35°, bearing IC = (335° - 180°) = 155° 
.'. A = 155° - 35° = 120° 

Figure 6.21 
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By co-ordinates 

Bearing E F = t a n - = 63° 20' 

Length E F = 249.7/sin 63° 20' = 279.42 m 

From bearings Al and EF, angle IEF = A t = (63° 20' - 35°) 
= 28° 20' 

F rom bearings CI and EF, angle 1FE = A 2 = (155° - 63° 20') 

= 91° 40' check (At + A2) = A = 120° 

In triangle EFO 

Angle FEO = (90° - Aj/2) = 6 = 15° 50' 
Angle EFO = (90° - A2/2) = <f> = 44° 10' 

EG = GO cot 9 = i? cot 9 
GF = GO cot $ = R cot </> 

.-. EG + GF = E F = K(cot 0 + cot 0) 

_ E F 279.42 

~ (cot 9 + cot <f>) ~ cot 75° 50' + cot 44° 10' 
= 217.97 m 

ETx = R tan A t/ 2 = 217.97 tan 14° 10' = 55.02 m 
FT2 = R tan A2/ 2 = 217.97 tan 45° 50' = 224.4 m 

bearing ETX = 215° 
bearing FT2 = 155° 

.-. Co-ordinates of T, = 55.02

 Sm
 215° = - 3 1 . 5 6 E, - 4 5 . 0 7 N 

cos 

.-. Total co-ordinates of Tt = E 600.36 - 31.56 = E 568.80 m 
= N 341.45 - 45.07 = N 296.38 m 

Similarly 

sin 
Co-ordinates of T2 = 224.4 155° = +98.84 E, -203 .38 N 

cos 

.-. Total co-ordinates of T2 = E 850.06 + 94.84 = E 944.90 m 

= N 466.85 - 203.38 = N 263.47 m 

TtI = R tan A/2 = 217.97 tan 60° = 377.54 m 

Bearing of TJ = 35° 

sin 
/ . Co-ordinates of / = 377.54 35° = +216.55 E, +309.26 N 

cos 

Total co-ordinates of / = E 586.20 + 216.55 = E 802.75 
= N 321.23 + 309.26 = N 630.49 

The co-ordinates of / can be checked via T2I. 
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Exercises 

(6.1) In a town planning scheme, a road 9 m wide is to intersect another road 12 m wide 
at 60°, both being straight. The kerbs forming the acute angle are to be joined by a 
circular curve of 30 m radius and those forming the obtuse angle by one of 120 m 
radius. 

Calculate the distances required for setting out the four tangent points. 
Describe how to set out the larger curve by the deflection angle method and tabulate 

the angles for 15-m chords. (LU) 

(Answer: 75, 62, 72, 62 m. 8 = 3° 35') 

(6.2) A straight BC deflects 24° right from a straight AB. These are to be joined by a 
circular curve which passes through a point P, 200 m from B and 50 m from AB. 

Calculate the tangent length, length of curve and deflection angle for a 30-m chord. 
(LU) 

(Answer: R = 3754 m, IT = 798 m, curve length = 1572 m, 0° 14') 

(6.3) A reverse curve is to start at a point A and end at C with a change of curvature at B. 
The chord lengths AB and BC are respectively 661.54 m and 725.76 m and the radii 
likewise 1200 and 1500 m. Due to irregular ground the curves are to be set out using 
two theodolites and no tape or chain. 

Calculate the data for setting out and describe the procedure in the field. (LU) 

(Answer: Tangent lengths: 344.09,373.99; curve length: 670.2,733, per 30-m chords: 
St = 0° 42' 54", 52 = 0° 34' 30") 

(6.4) Two straights intersect making a deflection angle of 59° 24', the chainage at the 
intersection point being 880 m. The straights are to be joined by a simple curve 
commencing from chainage 708 m. 

If the curve is to be set out using 30-m chords on a through chainage basis, by the 
method of offsets from the chord produced, determine the first three offsets. 

Find also the chainage of the second tangent point, and with the aid of sketches 
describe the method of setting out. (KP) 

(Answer: 0.066, 1.806, 2.985 m, 864.3 m) 

(6.5) A circular curve of radius 250 m is to connect two straights, but in the initial setting 
out it soon becomes apparent that the intersection point is in an inaccessible position. 
Describe how it is possible in this case to determine by what angle one straight deflects 
from the other, and how the two tangent points may be accurately located and their 
through chainages calculated. 

On the assumption that the chainages of the two tangent points are 502.2 m and 
728.4 m, describe the procedure to be adopted in setting out the first three pegs on the 
curve by a theodolite (reading to 20") and a steel tape from the first tangent point at 30-
m intervals of through chainage, and show the necessary calculations. 

If it is found to be impossible to set out any more pegs on the curve from the first 
tangent point because of an obstruction between it and the pegs, describe a procedure 
(without using the second tangent point) for accurately locating the fourth and 
succeeding pegs. N o further calculations are required. (ICE) 

(Answer: 03° 11' 10", 06° 37' 20", 10° 03' 40") 
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6.5 TRANSITION CURVES 

The transition curve is a curve of constantly changing radius. If used to connect a 
straight to a curve of radius R, then the commencing radius of the transition will be the 
same as the straight (oo), and the final radius will be that of the curve R (see Figure 6.26). 

Consider a vehicle travelling at speed (V) along a straight. The forces acting on the 
vehicle will be its weight W, acting vertically down, and an equal and opposite force 
acting vertically up through the wheels. When the vehicle enters the curve of radius R at 
tangent point Tl9 an additional centrifugal force (P) acts on the vehicle, as shown in 
Figures 6.22 and 6.23. If P is large the vehicle will be forced to the outside of the curve 
and may skid or overturn. In Figure 6.23 the resultant of the two forces is shown as N, 

Figure 6.22 Figure 6.23 

and if the road is super-elevated normal to this force, there will be no tendency for the 
vehicle to skid. It should be noted that as 

P = WV

2
/Rg (6.9) 

super-elevation will only cancel the effect of P at a constant design speed V. 

6.5.1 Principle of the transition 

The purpose then of a transition curve is to : 

(1) Achieve a gradual change of direction from the straight (radius oo) to the curve 
(radius R). 

(2) Permit the gradual application of super-elevation to counteract centrifugal force. 

Since P cannot be eliminated, it is allowed for by permitting it to increase uniformly 
along the curve. From equation (6.9), as P is inversely proportional to R, the basic 
requirement of the ideal transition curve is that its radius should decrease uniformly 
with distance along it. This requirement also permits the uniform application of super-
elevation, thus at distance / along the transition the radius is r and rl = c(constant) 

l/c = l/r 

( b ) 
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Figure 6.24 

From Figure 6.24, ttx is an infinitely small portion of a transition 81 of radius r thus: 

8l = r8(t> 
:. l/r = 8</>/8l which on substitution above gives 

l/c = 8<j>/8l 

integrating: <f> = l

2
/2c .*. / = (2c<£)

1 /2 

putting a = (2c )

1 /2 

/ = a(<t>)

1/2
 (6.10) 

when c = RL,a = (2RL)

l/2
 and (6.10) may be written: 

/ = (2RL<t>)

1/2
 (6.11) 

the above expressions are for the clothoid curve, sometimes called the Euler spiral, 
which is the one most used in road design. 

6.5.2 Curve design 

The basic requirements in the design of transition curves are: 

(1) The value of the minimum safe radius (R), and 
(2) The length (L) of the transition curve. Sections 6.5.5 or 6.5.6. 

The value R may be found using either of the approaches Sections 6.5.3 or 6.5.4. 

6.5.3 Centrifugal ratio 

Centrifugal force is defined as P = WV

2
/Rg; however, this 'overturning force' is 

counteracted by the mass (W) of the vehicle, and may be expressed as P/W, termed the 
centrifugal ratio. Thus, centrifugal ratio: 

P/W= V

2
/Rg (6.12) 

where V is the design speed in m/s, g is acceleration due to gravity in m / s

2
 and R is the 

minimum safe radius in metres. 
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6.5.4 Coefficient of friction 

The alternative approach to find R is based on Road Research Laboratory (RRL) 
values for the coefficient of friction between the car tyres and the road surface. 

Figure 6.25(a) illustrates a vehicle passing around a correctly super-elevated curve. 
The resultant of the two forces is JV. The force F acting towards the centre of the curve is 
the friction applied by the car tyres to the road surface. These forces are shown in 
greater detail in Figure 6.25(b) from which it can be seen that 

F2 = cos 0, and Fx = Wcos (90 - 9) = Wsin 9 

WV

2 

;. F = F2- F* = — — cos 9 - Wsm 9 
Rg 

wv2 

Similarly N2 = —— sin 9, and Nx = Wcos 9 

Figure 6.25 

When Vis expressed in km/h, the expression becomes 

P/W= V

2
j\21R (6.13) 

Commonly-used values for centrifugal ratio are 

0.21 to 0.25 on roads, 0.125 on railways 

Thus, if a value of P/W= 0.25 is adopted for a design speed of V= 50 km/h then 

50

2 

R = ———- = 79 m 
127 x 0.25 

The minimum safe radius R may be set either equal to or greater than this value. 
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then 

WV

2 

N WV

2
 V

2 

— — sin 9 + Wcos 9 — tan 9 + 1 
Rg Rg 

For Department of Transport (DoT) requirements, the maximum value for tan 0 = 1 
in 14.5 = 0.069, and as V

2
/Rg cannot exceed 0.25 the term in the denominator can be 

ignored and 

F V

2
 V

2 

- = — - tan 0 = — — - tan 9 (6.14) 
N Rg 127R 

To prevent vehicles slipping sideways F/N must be greater than the coefficient of 
friction \i between tyre and road. The RRL quote values for \i of 0.15, whilst 0.18 may be 
used up to 50 km/h, thus: 

V

2
l\21R > tan 9 + p (6.15) 

For example, if the design speed is to be 100 km/h, super-elevation limited to 1 in 14.5 
(0.069) and \i = 0.15, then 

100

2 

— — = 0.069 + 0.15 
Y11R 

:. R = 360 m 

It can be seen that, provided that the super-elevation is always taken as 1 in 14.5, this 
approach is identical to the previous one. 

6.5.5 Rate of application of super-elevation 

It is recommended that on motorways super-elevation should be applied at a rate of 1 
in 200, on all-purpose roads at 1 in 100, and on railways at 1 in 480. Thus, if on a 
motorway the super-elevation is computed as 0.5 m, then 100 m of transition curve 
would be required to accommodate 0.5 m at the required rate of 1 in 200, i.e. 0.5 in 
100 = 1 in 200. In this way the length Lof the transition is found. 

The amount of super-elevation is obtained as follows: 
F rom the triangle of forces in Figure 6.25(a) 

tan 9 = V

2
/Rg = 1/H = 1 in H 

thus H = Rg/V

2
 = 127R/K

2
, where Kis in km/h 

However, the D o T requirements for super-elevation are that it should 

(1) Normally balance out 40% of the centrifugal force, thus 127 becomes 314 and 

super-elevation = 1 in 314R/V

2
 (6.16) 

(2) No t normally be greater than 1 in 14.5 (7%). 
(3) Conform with the relationship expressed in formula (6.15). 

N = N2+Nl= -——sin 9 + Wcos 9 
Rg 

WV
2
 V

2 

„ — — cos 9 - Wsin 9 — - tan 8 
F Rg Rg 
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6.5.6 Rate of change of radial acceleration 

An alternative approach to finding the length of the transition is to use values for 'rate 
of change of radial acceleration' which would be unnoticeable to passengers when 
travelling by train. The appropriate values were obtained empirically by W. H. Shortt, 
an engineer working for the railways; hence it is usually referred to as Shortfs Factor. 

Radial acceleration = V

2
/R 

Thus, as radial acceleration is inversely proportional to R it will change at a rate 
proportional to the rate of change in R. The transition curve must therefore be long 
enough to ensure the rate of change of radius, and hence radial acceleration is 
unnoticeable to passengers. 

Acceptable values for rate of change of radial acceleration (q) are 0.3 m/s

3
,0 .45 m / s

3 

and 0.6 m/s

3
. 

Now, as radial acceleration is V

2
/R and the time taken to travel the length L of the 

transition curve is L/V, then 

V

2
 L V

3 

Rate of change of radial acceleration = q = — -r — = — 

V3 V3 

•L=rq-i<nri ,617) 

where the design speed (V) is expressed in km/h 
Although this method was originally devised for railway practice, it is also applied to 

road design. 

6.6 SETTING-OUT DATA 

Figure 6.26 indicates the usual situation of two straights projected forward to intersect 
at / with a clothoid transition curve commencing from tangent point Tx and joining the 
circular arc at t x. The second equal transition commences at t2 and joins at T2. Thus the 
composite curve from Tx to T2 consists of a circular arc with transitions at entry and 
exit. 

(1 ) Fixing the tangent points and T2 

In order to fix Tx and T2 the tangent lengths TJ and T2I are measured from / back 
down the straights, or they are set out direct by co-ordinates. 

TtI = T2I = (R + S) tan A/2 + C (6.18) 

where S = shift = L

2
/24R - L

4
/ 3 ! x 7 x 8 x 2

3
R

3
 + L

6
/F ! x 11 x 12 

x 2

5
R

5
 - L

8
/7! x 15 x 16 x 2

7
R

7
 . . . 

Thus from formula (6.16) the rate of cross-fall is computed and, knowing the road 
width, the vertical amount of super-elevation is obtained. This amount , applied at a 
given rate, enables the length L of the transition to be found. 



C u r v e s 181 

Figure 6.26 

and C = L/2 - L

3
/2! x 5 x 6 x 2

2
R

2
 + L

5
/4! x 9 x 10 x 2

4
K

4 

- L

7
/ 6 ! x 13 x 14 x 2

6
K

6
 . . . 

The values of S and C are abstracted from the Highway Transition Curve Tables 
(Metric) (see Table 6.2, p. 190). 

(2) Setting out the transitions 

Referring to Figure 6.27: 

The theodolite is set at Tx and oriented to / with the horizontal circle reading zero. 
The transition is then pegged out using deflection angles (9) and chords (Rankine's 
method) in exactly the same way as for a simple curve. 

The data are calculated as follows: 

(a) The length of transition L is calculated (see design factors in Sections 6.5.5 and 
6.5.6), assume L = 100 m. 

Figure 6.27 
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TABLE 6.1 Interpolated deflection angles 

F o r a n y p o i n t o n a spiral w h e r e a n g l e c o n s u m e d = 0 , t h e true de f l ec t ion a n g l e is 0 / 3 m i n u s t h e c o r r e c t i o n 
t a b l e d b e l o w . 

T h e b a c k a n g l e is 2 0 / 3 p l u s the s a m e c o r r e c t i o n . 

Angle <j)/3 Deduct Deflection Angle 4>/3 Deduct Deflection 
con- N angle con- N angle 
sumed - sumed 
4> , <t> 

2 0 4 0 N I L 4 0 0 4 5 15 0 0 4 4 6 . 2 14 55 13.8 
3 1 0 0 0.1 59 59.9 4 6 15 2 0 5 6.0 15 14 54 .0 
4 1 2 0 0 .2 1 19 59.8 4 7 15 4 0 5 26 .6 15 3 4 33 .4 

5 1 4 0 0 .4 1 39 59 .6 4 8 16 0 0 5 48 .1 15 5 4 11.9 
6 2 0 0 0.7 1 59 59 .3 4 9 16 2 0 6 10.6 16 13 4 9 . 4 
7 2 2 0 1.0 2 19 59 .0 5 0 16 4 0 6 34.1 6 33 25 .9 

C o n t i n u e d at 1° in terva l s o f 0 

41 13 4 0 3 35 .9 13 3 6 24.1 8 4 2 8 0 0 3 2 14 .4 2 7 2 7 45 . 6 
4 2 14 0 0 3 52.1 13 56 7.7 8 5 2 8 2 0 33 26.9 27 4 6 33.1 
4 3 14 2 0 4 9 .4 14 15 50 .6 8 6 28 4 0 3 4 41 .3 28 5 18.7 

4 4 14 4 0 4 2 7 . 4 14 35 32 .6 

Reproduced by kind permission of the County Surveyors' Society 

(b) It is then split into say 10 arcs, each 10 m in length (ignoring through chainage), the 
equivalent chord lengths being obtained from: 

A

3
 A

5 

A — r r ^ r + < r\r\s\ r»A. ? where A is the arc length 
24R

2
 1920R

4 5 

(c) The setting out angles 0l902 ... 0H are obtained as follows: 

Basic formula for clothoid: / = ( 2 R L 0 )

1 /2 

•'• *

 =
 = k

 w h en / = L ( 6 1 9) 

(/ is any distance along the transition other than total distance L) 

then 0 = <D/3 - 80

3
/2835 - 32<D

5
/467 775 . . . (6.20) 

= 0 /3 - AT, where N is taken from Tables and ranges in value from 0.1" when O = 3°, 
to 34' 41.3" when Q> = 86° (see Table 6.1). 

N ow
 ~ i = i

2 ( 6 2 1) 

.*. (f>1 = O ~ where lx = chord length = 10 m, say 
La 
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and 0X = - Nx (where Nx is the value relative to (j) in Table 6.1) 

Similarly $ 2 = $ — where l2 = 20 m 

and 02

 =
 0 2 / 3 — N 2

 a n
d

 so o n
-

Students should note: 

(a) The values for ll9 /2, etc. are accumulative. 
(b) Thus the values obtained for 0l9 62 etc. are the final setting-out angles and are 

obviously not to be summed. 
(c) Although the chord length used is accumulative, the method of setting out is still 

the same as for the simple curve. 

(3) Setting out circular arc t^t2 

In order to set out the circular arc it is first necessary to establish the direction of the 
tangent ttB [Figure 6.26). The theodolite is set at tx and backsighted to Tx with the 
horizontal circle reading [180° — (O — 0)]. Setting the instrument to zero will now 
orient it in the direction txB with the circle reading zero, prior to setting out the simple 
circular arc. The angle (Q> — 0) is called the back-angle to the origin and may be 
expressed as follows: 

0 = <X>/3 — N 
(* - 0) = O - (0/3 — N) = 2/3<D + N (6.22) 

and is obtained direct from tables. 
The remaining setting-out data are obtained as follows: 

(a) As each transition absorbs an angle <J>, then the angle subtending the circular 
arc = (A - 20). 

(b) Length of circular arc = R(A — 20) , which is then split into the required chord 
lengths C. 

(c) The deflection angles <5 min = 1718.9 C/R are then set out from the tangent txB 
in the usual way. 

The second transition is best set out from T2 to t2. Setting out from t2 to T2 involves 
the 'osculating-circle' technique (refer Section 6.9). 

The preceding formulae for clothoid transitions are specified in accordance with the 
latest Highway Transition Curve Tables [Metric) compiled by the County Surveyors' 
Society. As the equations involved in the setting-out data are complex, the information 
is generally taken straight from tables. However, approximation of the formulae 
produces two further transition curves, the cubic spiral and the cubic parabola (see 
Section 6.7). 

In the case of the clothoid, Figure 6.26 indicates an offset Y at the end of the 
transition, distance X along the straight, where 

X = L - L

3
/5 x 4 x 2! R

2
 + L

5
/9 x 4

2
 x 4! R

4 

- L

7
/ 1 3 x 4

3
x 6 ! ^

6
+ . . . (6.23) 

Y = L

2
/3 x 2R - Lf/1 x 3! x 2

3
R

3
 x L

6
/ H x 5! x 2

5
R

5 

- L

8
/ 1 5 x 7! x 2

7
R

7
 + . . : (6.24) 
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The clothoid is always set out by deflection angles, but the values for X and Y are 
useful in the large-scale plotting of such curves, and are taken from tables. 

Refer Appendix B, p. 289, for derivation of clothoid formulae. 

6.7 CUBIC SPIRAL AND CUBIC PARABOLA 

Approximation of the clothoid formula produces the cubic spiral and cubic parabola, 
the latter being used on railway and tunnelling work because of the ease in setting out 
by offsets. The cubic spiral can be used for minor roads, as a guide for excavation prior 
to the clothoid being set out, or as a check on clothoid computation. 

Approximating equation (6.24) gives 

Y= L

2
/6R, which when L = /, Y= y, becomes 

y = l

3
/6RL (the equatiort-fbr-a~cubic spiral) (6.25) 

Approximating equation (6.23) gives 

X = L, thus x = / 

.'. y = x

3
/6RL (the equation for a cubic parabola) (6.26) 

In both cases: 

Tangent length TJ = (R + S) tan A/2 + C 
where S = L

2
/24R (6.27) 

and C = L/2 (6.28) 
0 = L/2R = /

2
/2RL (6.29) 

and 6 = 0 / 3 (6.30) 
The deflection angles for these curves may be obtained as follows (the value of N 

being ignored): 

Oje = 11/13 where / is the chord/arc length (6.31) 

When the value of % 24°, the radius of these curves starts to increase again, which 
makes them useless as transitions. 

Refer to Worked examples (p. 191 etc.) for application of the above equations. 

6.8 CURVE TRANSITIONAL THROUGHOUT 

A curve transitional throughout (Figure 6.28) comprises two transitions meeting at a 
common tangent point t. 

Tangent length TXI = X + Y tan <D (6.32) 

where X and Y are obtained from equations (6.23) and (6.24) and O = A/2 = L/2R. 

A = L/R (6.33) 

6.9 THE OSCULATING CIRCLE 

Figure 6.29 illustrates a transition curve TXPE. Through P , where the transition radius 
is r, a simple curve of the same radius is drawn and called the osculating circle. 
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Figure 6.29 

At the transition has the same radius as the straight TXI, that is, oo, but diverges 
from it at a constant rate. Exactly the same condition exists at P with the osculating 
circle, that is, the transition has the same radius as the osculating circle, r, but diverges 
from it at a constant rate. Thus if chords Txt = Pa = Pb = /, then 

angle ITxt = aPb = 0X 
This is the theory of the osculating circle, and its application is described in the 

following Sections. 

6.9.1 Setting out with the theodolite at an intermediate point 
along the transition curve 

Figure 630 illustrates the situation where the transition has been set out from Tx to P 3 
in the normal way. The sight TXP4 is obstructed and the theodolite must be moved to P 3 
where the remainder of the transition will be set out. The direction of the tangent P 3£ is 
first required from the back-angle (<£3 — 03). 

F rom the Figure it can be seen that the angle from the tangent to the chord P3P'± on 
the osculating circle is <5X = 1718.9//r3 min. The angle between the chord on the 
osculating circle and that on the transition is P'4P3P4 = 0X9 thus the setting-out angle 
from the tangent to P 4 = (Sx + 0X), to P5 = (<52 + 02) and to P6 = (<53 + 03) , etc. 

For example, assuming A = 60°, L = 60 m, / = chord = 10 m, R = 100 m and 
T^Pz = 30 m, calculate the setting-out angles for the remainder of the transition 
from P3. 

Figure 6.28 
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Figure 6.30 

From basic formula: 

<t>3 = ~ = ~ — ^ — 7 7 T = 4° 17' 50" ( - J V 3, if clothoid) 
r 3

 2RL 2 x 100 x 60

 v 3
 ' 

or, if curve is defined by its 'degree of curvature' = D, then 

^3 = ^ ^ ( - ^ 3 , if clothoid) 

thus the back-angle to the origin is found (2/3)03, and the tangent established as 
already shown. 

Now from O = L/2R and 0 = 0 / 3 , the angles 01? 02, and 03 are found as normal. In 
practice these angles would already be available having been used to set out the first 
30 m of the transition. 

Before the angles to the osculating circle can be found the value of r 3 must be known, 
thus, from rl = RL 

r 3 = RL/l3 = 100 x 60/30 = 200 m 

D 
or 'degree of curvature' at P3 30 m from Tx = — x /3 La 

J. bx = 1718.9 (J^j = 85.945 min = 1° 25' 57" 

82 = 2^! and <53 = 38x as for a simple curve 

The setting-out angles are then (81 + 0^, (d2 + 02), (83 + 03). 

6.9.2 Setting out transition from the circular arc 

Figure 631 indicates the second transition in Figure 6.26 to be set out from t2 to T2. The 
tangent t2D would be established by backsighting to tx with the instrument reading 
[180° — (A — 20) /2] , setting to zero to fix direction r2D. It can now be seen that the 
setting-out angles here would be (Si - 0X), (<52 - Q2\ etc. computed in the usual way. 
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6.9.3 Transitions joining arcs of different radii (compound 
curves) 

Figure 6.12 indicates a compound curve requiring transitions at Tx, t and T2. To permit 
the entry of the transitions the circular arcs must be shifted forward as indicated in 
Figure 6.32 where 

St = LJ/24R, and S2 = L

2

2/24R2 
The lengths of transition at entry (Lx) and exit (L2) are found in the normal way, 

whilst the transition connecting the compound arcs is 

bc = L = (Ll- L2) 

The distance PXP2 = (Sx — S2) is bisected by the transition curve at P 3. The curve 

Figure 6.32 

Figure 6.31 
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itself is bisected and length bP$ = Pzc. As the curves at entry and exit are set out in the 
normal way, only the fixing of their tangent points T[ and T2 will be considered. In 
triangle txIt2 

hh =

 t
\

t
 +

 n
i = (

R
i +

 s
i ) tan Ax/2 + (R2 4- S2) tan A2/2 

from which the triangle may be solved for txI and t2L 

Tangent length T[I = Tx'tx + txI = (Rx + Sx) tan Ax/2 + Lx/ 2 + r x/ 
and T2'I = T2r2 4- t2I = (R2 + S2) tan A2/2 + L2/ 2 + t2I 

The curve be is drawn enlarged in Figure 6.33, from which the method of setting out, 
using the osculating circle, may be seen. 

Figure 6.33 

Setting out from b, the tangent is established from which the setting-out angles would 
be (Si - 6X), (S2 — 02) , etc. as before, where 6X, the angle to the osculating circle, is 
calculated using Rx. 

If setting out from C, the angles are obviously (Sx + 9X), etc., where St is calculated 
using R2. 

Alternatively, the curve may be established by right-angled offsets from chords on 
the osculating circle, using the following equation: 

x

3
 x

3
L

2

 t L

2
 _ y = ~rznr = T T — where — = 45 

• y = ~j3~ (Si - S2) 
(6.34) 

6RL L?6R 6R 

4X

3 

L

3 

It should be noted that the osculating circle provides only an approximate solution, 
but as the transition is usually short, it may be satisfactory in practice. In the case of a 
reverse compound curve, Figure 6.34: 

4 x

3 

S = (Sx + S2), L = (LX+ L2) and y = (Sx + S2) 

otherwise it may be regarded as two separate curves. 
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Figure 6.34 

6.10 HIGHWAY TRANSITION CURVE TABLES (METRIC) 

An examination of the complex equations defining the clothoid transition spiral 
indicates the obvious need for tables of prepared data to facilitate the design and setting 
out of such curves. These tables have been produced by the County Surveyors' Society 
under the title Highway Transition Curve Tables (Metric), and contain a great deal of 
valuable information relating to the geometric design of highways. A very brief sample 
of the Tables is given here simply to convey some idea of the format and information 
contained therein. 

As shown in Section 6.63, 8 = 0/3 — N and the 'back-angle' is 20/3 + N, all this 
information for various values of 0 is supplied in Table 6.1 and clearly shows that for 
large values of 0, N cannot be ignored. 

Par t only of Table 6.2 is shown and it is the many tables like this that provide the bulk 
of the design data. Much of the information and its application to setting out should be 
easily understood by the student, so only a brief description of its use will be given here. 

Use of tables 

(1) Check the angle of intersection of the straights (A) by direct measurement in the 
field. 

(2) Compare A with 2 0 , if A ^ 2 0 , then the curve is wholly transitional. 
(3) Abstract (R + S) and C in order to calculate the tangent lengths = 

(R + S) tan A/2 + C. 
(4) Take O from tables and calculate length of circular arc using R(A — 20) , or, if 

working in 'degree of curvature' D, use 

100(A - 2fl>) 

D 

(5) Derive chainages at the beginning and end of both transitions. 
(6) Compute the setting-out angles for the transition 8X ... 8 from 0X/O = l\/l3 from 

which 8X = 0x/3 — Nl9 and so on, for accumulative values of /. 
(7) As control for the setting out, the end point of the transition can be fixed first by 

turning off from Tx (the start of the transition) the 'deflection angle from the origin' 
8 and laying out the 'long chord' as given in the Tables. Alternatively, the right-
angled offset Y distance X along the tangent may be used. 



TABLE 6.2 

Gain of accn, m / s

3
: 0.30, 0.45, 0.60 

Speed value, km/h: 84.4, 96.6, 106.3 
Increase in degree of curve per metre = D/L = 0° 8' 0" 
RL constant = 42 971.835 
Degree of curvature based on 100 m standard arc 

Radius Degree Spiral Angle Shift R + S C Long Co-ordinates Deflection Back-angle 

R of curve length consumed s chord — angle from to origin 

D L X Y origin 

(m) o (m) 

0 
" (m) (m) (m) (m) (m) (m) ° 

8594.3669 0 40 0 5 0 1 0 0.0001 8594.3670 2.5000 5.0000 5.0000 0.0005 0 0 20 0 0 40 

4297.1835 1 20 0 10 0 4 0 0.0010 4297.1844 5.0000 10.0000 10.0000 0.0039 0 1 20 0 2 40 

2864.7890 2 0 0 15 0 9 0 0.0033 2864.7922 7.5000 15.0000 15.0000 0.0131 0 3 0 0 6 0 

2148.5917 2 40 0 20 0 16 0 0.0078 2148.5995 10.0000 20.0000 20.0000 0.0310 0 5 20 0 10 40 

1718.8374 3 20 0 25 0 25 0 0.0152 1718.8885 12.5000 24.9999 24.9999 0.0606 0 8 20 0 16 40 
1432.3945 4 0 0 30 0 36 0 0.0262 1432.4207 14.9999 29.9999 29.9997 0.1047 0 12 0 0 24 0 

1227.7667 4 40 0 35 0 49 0 0.0416 1227.8083 17.4999 34.9997 34.9993 0.1663 0 16 20 0 32 40 

1074.2959 5 20 0 40 1 4 0 0.0621 1074.3579 19.9998 39.9994 39.9986 0.2482 0 21 20 0 42 40 

Continued for increasing values of D up to 36° 00' 00

// 

Reproduced by kind permission of the County Surveyors' Society 
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(8) When the first transition is set out, set up the theodolite at the end point and with 
the theodolite reading (180° - (fO + N)), backsight to Tv Turn the theodolite to 
read 0° when it will be pointing in a direction tangential to the start of the circular 
curve prior to its setting out. This process has already been described. 

(9) As a check on the setting out of the circular curve take (R + S) and S from the 
Tables to calculate the apex distance = (R + S) (sec A/2 — 1) + S, from the 
intersection point / of the straights to the centre of the circular curve. 

(10) The constants RL and D/L are given at the head of the Tables and can be used as 
follows: 

(a) Radius at any point P on the transition = rp = RL/lp 
(b) Degree of curve at P = Dp = [D/L) x lp9 where lp is the distance to P 

measured along the curve from Tx. 

Similarly: 
I

2
 I

2
 D 

(c) Angle consumed at P = 4>p = ^ or ^ x -

(d) Setting out angle from Tx to P = 6p = -

 N

P

 or 

Worked examples 

Example 6.8. Part of a motorway scheme involves the design and setting out of a simple 
curve with cubic spiral transitions at each end. The transitions are to be designed such 
that the centrifugal ratio is 0.197, whilst the rate of change of centripetal acceleration is 
0.45 m / s

3
 at a design speed of 100 km/h. 

If the chainage of the intersection of the straights is 2154.22 m and the angle of 
deflection 50°, calculate: 

(a) The length of transition to the nearest 10 m. 
(b) The chainage at the beginning and the end of the total composite curve. 
(c) The setting-out angles for the first three 10-m chords on a through chainage 

Briefly state where and how you would orient the theodolite in order to set out the 

basis. 

circular arc. (KP) 

Referring to Figure 6.26: 

Centrifugal ratio P/W= V

2
, V

2
I\21R 

100

2 (6.13) 

R = 
127 x 0.197 

= 400 m 

Rate of change of centripetal acceleration = q = 
3.6

3
RL 

(6.17) 

(a) L = 
100

3 

= 120 m 
3.6

3
 x 400 x 0.45 
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.-. 0t = 0-±= 10 313" x T ^ 2 = 0 ° 00' 06.5" 

62 = 10 313" x r^r = 0° 02' 01" 

2 3

2 

120" 

For final part of answer refer to Section 6.6(3). 

0 3 = 10 313" x = 0° 06' 19" 

Example 6.9. A transition curve of the cubic parabola type is to be set out from a straight 
centre-line. It must pass through a point which is 6 m away from the straight, measured 
at right-angles from a point on the straight produced, 60 m from the start of the curve. 

Tabulate the data for setting out a 120-m length of curve at 15-m intervals. 
Calculate the rate of change of radial acceleration for a speed of 50 km/h. 

(LU) 

The above question may be read to assume that 120 m is only a part of the total 
transition length, thus L is unknown. 

(b) T o calculate chainage: 

o & 120

2 

S = — = 0, A nn = 1.5 m (6.27) 
24R 24 x 400 

Tangent length = (R + S) tan A/2 + L/2 (6.18) 

= (400 + 1.5) tan 25° + 60 = 247.22 m 

.*. Chainage at Tx = 2154.22 - 247.22 = 1907 m 

To find length of circular arc: 

length of circular arc = R(A - 20) where 0 = L/2R 

L 120 
thus 2<D = - = — = 0.3 rad 

R 400 

and A = 50° = 0.872 665 rad 

.'. R(A - 20) = 400(0.872 665 - 0.3) = 229.07 m 

Chainage at T2 = 1907.00 + 2 x 120 + 229.07 = 2376.07 m 

(c) To find setting-out angles from equation (6.31) QJQ = 

* = A = J 2 0 _ 

3 6R 6 x 400 

120 x 206 265 

6 x 400 

as the chainage of Tt = 1907, then the first chord will be 3 m long to give a round 
chainage of 1910 m. 

Z

2
 3

2 

— = 10 313" x 
L

2 1 U JU
 120

2 

120

2 
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From expression for a cubic parabola: y = x

3
/6RL = cx

3 

y = o m , x = 6 0 m .. c — 
36 000 6RL 

The offsets are now calculated using this constant 

15

3 

yi = = 0094 m 
yx

 36 000 

3 0

3 

y2 = T ^ — = 0.750 m 
yi

 36 000 

y3 =
 3 ^ 0 0

 = 1 5 31 m a n d S
° °

n 

Rate of change of radial acceleration = q = K

3
/ 3 .6

3
RL 

1 1 1 1 
now 

6RL 36 000 " RL 6000 

5 0

3 

.'. q = —~ ——- = 0.45 m / s

3 
4
 3.6

3
 x 6000 ' 

Example 6.10. Two straights of a railway track of gauge 1.435 m have a deflection angle 
of 24° to the right. The straights are to be joined by a circular curve having cubic 
parabola transition spirals at entry and exit. The ratio of super-elevation to track gauge 
is not to exceed 1 in 12 on the combined curve, and the rate of increase/decrease of 
super-elevation on the spirals is not to exceed 1 cm in 6 m. If the through chainage of the 
intersection point of the two straights is 1488.8 m and the maximum allowable speed on 
the combined curve is to be 80 km/h, determine 

(a) The chainages of the four tangent points. 
(b) The necessary deflection angles (to the nearest 20") for setting out the first four 

pegs past the first tangent point, given that pegs are to be set out at the 30-m 
points of the through chainage. 

(c) The rate of change of radial acceleration on the curve when trains are travelling 
at the maximum permissible speed. (ICE) 

(a) Referring to Figure 6.26, the four tangent points are T ut u t2, T2. 

Referring to Figure 6.25(a), as the super-elevation on railways is limited to 0.152 m, 
then AB = 1.435 m & CB 

1.435 
.". Super-elevation = AC = — — = 0.12 m = 12 cm 

12 

The rate of application = 1 cm in 6 m 
.'. Length of transition = L = 6 x 12 ^ 7 2 m 

V

2
 1 From Section 6.5.5 tan 0 = - = — 

127R 12 
8 0

2

 1 127R 12 
= _ / . R = 604.72 m 
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;2 c o2 

6l = 6 -~ = 4093" x — T = 27" = 0° 00' 27" peg 1 

35 8

2 

92 = 4093 x - ^ j - = 1012" = 0° 16' 52" peg 2 

65.8

2 

7 2

2 
03 = 4093 x = 3418" = 0° 56' 58" peg 3 

6>4 = 4093" = 6 (end of transition) = 1° 08' 10" peg 4 

V

3
 8 0

3 

{ C)
 ^

 =
 3 ^ L

 =
 3.63 x 604.72 x 72

 =
° -

2 5 m / s3 

Example 6.11. A compound curve AB, BC is to be replaced by a single arc with transition 
curves 100 m long at each end. The chord lengths AB and BC are respectively 661.54 
and 725.76 m and radii 1200 m and 1500 m. Calculate the single arc radius: 

(a) If A is used as the first tangent point. 
(b) If C is used as the last tangent point. (LU) 

Referring to Figure 6.12, assume Tt — A, t = B, T2 = C, Rt = 1200 m and 
R2 = 1500 m. The requirements in this question are the tangent lengths AI and CI. 

A, 
chord AB = 2Rx sin 

L

2
 7 2

2 

Shift = S = — = - — = 0.357 m 
2AR 24 x 604.72 

Tangent length = (R + S) tan A/2 + L/2 = 605.077 tan 12° + 36 
= 164.6 m 

/ . Chainage 7i = 1488.8 - 164.6 = 1324.2 m 
Chainage tx = 1324.2 + 72 = 1396.2 m (end of transition) 

To find length of circular curve: 

20) = ^ = —
1
1— = 0.119 063 rad 

R 604.72 

A = 24° = 0.418 879 rad 

.'. Length of curve = R(A - 20) = 604.72(0.418 879 - 0.119 063) 

= 181.3 m 

/ . Chainage t2 = 1396.2 + 181.3 = 1577.5 m 

Chainage T2 = 1577.5 + 72 = 1649.5 m 

(b) From chainage of Tx the first chord = 5.8 m 

L 72 x 206 265 
9 = ±L x 206 265 = - — - = 4093" 

6R 6 x 604.72 
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. A, 661.54 

sin —- = 2 2 x 1200 

Ax = 32° 

o- -i i •

 A
2 725.76 

Similarly, sin - = w 

.'. A 2 = 28° 

Ai 
Distance AtY = t^B = Rx tan -~- = 1200 tan 16° = 344 m 

A , 
and Bt2 = t2C = R2 tan —- = 1500 tan 14° = 374 m 

/. txt2 = 718 m 

By sine rule in triangle tlIt2 

r 718 sin 28° ^ 
t l = . = 389 m 1

 sin 120° 

y 718 sin 32° A^ 
and t2I = . = 439 m 

2
 sin 120° 

.'. AI = ^4^ + tj = 733 m 

C/ = Ct2 + t2I = 813 m 

To find single arc radius 

(a) From tangent point A 

AI = (R + S) tan A /2 + L/2 

where 5 = L

2
/24R and A = A x + A 2 = 60°, L = 100 m 

then 733 = | ^ + tan 30° + 50 from which 

R = 1182 m 

(b) From tangent point C 

CJ = (R + S) tan A/2 + L/2 
813 = (R + L

2
/24R) tan 30° + 50 from which 

R = 1321 m 

Example 6.12. Two straights with a deviation angle of 32° are to be joined by two 
transition curves of the form k = a ( 0 )

1 /2
 where X is the distance along the curve, 0 the 

angle made by the tangent with the original straight and a as a constant. 
The curves are to allow for a final 150 mm cant on a 1.435 m track, the straights being 

horizontal and the gradient from straight to full cant being 1 in 500. 
Tabulate the data for setting out the curve at 15-m intervals if the ratio of chord to 

curve for 16° is 0.9872. Find the design speed for this curve. (LU) 
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0! = ( 5 ° 20') —2 = 12' 48" 

02 = (5° 2 0 ' ) - y = 51 ' 12" 

Exercises 

(6.6) The centre-line of a new road is being set out through a built-up area. The two 
straights of the road TXI and T2I meet giving a deflection angle of 45° and are to be 
joined by a circular arc with spiral transitions 100 m long at each end. The spiral from 
7i must pass between two buildings, the position of the pass point being 70 m along the 
spiral from Tx and 1 m from the straight measured at right-angles. 

Calculate all the necessary data for setting out the first spiral at 30-m intervals; 
thereafter find: 

(a) The first three angles for setting out the circular arc, if it is to be set out by 10 
equal chords. 

(b) The design speed and rate of change of centripetal acceleration, given a 
centrifugal ratio of 0.1. 

(c) The maximum super-elevation for a road width of 10 m. (KP) 

(data R = 572 m, TJ = 237.23 m, 0X = 9' 01", 02 = 36' 37", 03 = 1° 40' 10") 

(Answer: (a) 1° 44' 53", 3° 29' 46", 5° 14' 39", (b) 85 km/h, 0.23 m / s

3
, (c) 1 m) 

Referring to Figure 6.28: 

Cant = 0.15 m, rate of application = 1 in 500, 

therefore L = 500 x 0.15 = 75 m 

As the curve is wholly transitional O = A/2 = 16° 

from d> = R = 134.3 m 
2R 

From ratio of chord to curve 

Chord Txt = 75 x 0.9872 = 74 m 
/. X = Txt cos 0 = 73.7 m (0 = 0>/3) 

7 = 7;* sin 0 = 6.9 m 
.*. Tangent length = X + Y tan O = 73.7 + 6.9 tan 16° = 75.7 m 

Setting-out angles 

15_

2 

7 5

2 

30

2 

and so on to 05 
Design speed 

AC 0 1 5 V

2 

From Figure 6.25(a) tan 0 % — = — = — 
CB 1.435 Kg 

from which V = 11.8 m/s = 42 km/h 
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(6.7) A circular curve of 1800 m radius leaves a straight at through chainage 2468 m, 
joins a second circular curve of 1500 m radius at chainage 3976.5 m, and terminates on 
a second straight at chainage 4553 m. The compound curve is to be replaced by one of 
2200 m radius with transition curves 100 m long at each end. 

Calculate the chainages of the two new tangent points and the quarter point offsets of 
the transition curves. (LU) 

(Answer: 2114.3 m, 4803.54 m; 0.012, 0.095, 0.32, 0.758 m) 

(6.8) A circular curve must pass through a point P which is 70.23 m from / , the 
intersection point and on the bisector of the internal angle of the two straights AI, IB. 
Transition curves 200 m long are to be applied at each end and one of these must pass 
through a point whose co-ordinates are 167 m from the first tangent point along AI and 
3.2 m at right angles from this straight. IB deflects 37° 54' right from AI produced. 

Calculate the radius and tabulate the data for setting out a complete curve. 
(LU) 

(Answer: R = 1200 m , , 4 / = IB = 512.5 m, setting-out angles or offsets calculated in 

usual way) 

(6.9) The limiting speed around a circular curve of 667 m radius calls for a super-
elevation of 1/24 across the 10-m carriageway. Adopting the Department of Transport 
recommendations of a rate of 1 in 200 for the application of super-elevation along the 
transition curve leading from the straight to the circular curve, calculate the tangential 
angles for setting out the transition curve with pegs at 15-m intervals from the tangent 
point with the straight. (ICE) 

(Answer: L = 83 m, 2' 20", 9' 19", 20' 58", 37' 16", 58' 13", 1° 11' 18") 

(6.10) A circular curve of 610 m radius deflects through an angle of 40° 30'. This curve is 
to be replaced by one of smaller radius so as to admit transitions 107 m long at each 
end. The deviation of the new curve from the old at their mid-points is 0.46 m towards 
the intersection point. 

Determine the amended radius assuming the shift can be calculated with sufficient 
accuracy on the old radius. Calculate the lengths of track to be lifted and of new track to 
be laid. (LU) 

(Answer: R = 590 m, new track = 521 m, old track = 524 m) 

(6.11) The curve connecting two straights is to be wholly transitional without 
intermediate circular arc, and the junction of the two transitions is to be 5 m from the 
intersection point of the straights which deflects through an angle of 18°. 

Calculate the tangent distances and the minimum radius of curvature. If the super-
elevation is limited to 1 vertical to 16 horizontal, determine the correct velocity for the 
curve and the rate of gain of radial acceleration. (LU) 

(Answer: 95 m, 602 m, 68 km/h, 0.06 m/s

3
) 

6.11 VERTICAL CURVES 

Vertical curves (VC) are used to connect intersecting gradients in the vertical plane. 
Thus, in route design they are provided at all changes of gradient. They should be of 
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+
 9i°/o 

Figure 6.35 

sufficiently large curvature to provide comfort to the driver, that is, they should have a 
low 'rate of change of grade'. In addition, they should afford adequate 'sight distances' 
for safe stopping at a given design speed. 

The type of curve generally used to connect the intersecting gradients gx and g2 is the 
simple parabola. Its use as a sag or crest curve is illustrated in Figure 635. 

6.11.1 Gradients 

In vertical-curve design the gradients are expressed as percentages, with a — ve for a 
downgrade and a + v e for an upgrade. 

e.g. A downgrade of 1 in 20 = 5 in 100 = - 5 % = -gx% 
An upgrade of 1 in 25 = 4 in 100 = + 4 % = +g2% 

The angle of deflection of the two intersecting gradients is called the grade angle and 
equals A in Figure 635. The grade angle simply represents the change of grade through 
which the vertical curve deflects and is the algebraic difference of the two gradients 

A% = (<?!% - g2%) 

In the above example A% = ( — 5% — 4%) = — 9% ( —ve indicates a sag curve). 

6.11.2 Permissible approximations in vertical-curve computation 

In civil engineering, road design is carried out in accordance with the following 
documents: 

(1) Layouts of Roads in Rural Areas. 
(2) Roads in Urban Areas. 
(3) Motorway Design Memorandum. 
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However, practically all the geometric design in the above documents has been 
replaced by Department of Transport Standard T D 9/81, hereafter referred to simply 
as T D 9/81. 

In T D 9/81 the desirable maximum gradients for vertical curve design are 

Motorways 3% 
Dual carriageways 4% 
Single carriageways 6% 

Due to the shallowness of these gradients, the following VC approximations are 
permissible, thereby resulting in simplified computation (Figure 636). 

(1) Distance TXD = TXBT2 = TXCT2 = (TJ + JT2) , without sensible error. This is very 
important and means that all distances may be regarded as horizontal in both the 
computation and setting out of vertical curves. 

(2) The curve is of equal length each side of J. Thus TXC = CT2 = TJ = IT2 = L/2, 
without sensible error. 

(3) The curve bisects BI at C, thus BC = CI = Y (the mid-offset). 
(4) F rom similar triangles TXBI and T^J^ifBI = 2y,then T2J = 4K47represents the 

vertical divergence of the two gradients over half the curve length (L/2) and 
therefore equals AL/200. 

(5) The basic equation for a simple parabola is 

y = C.l

2 

where y is the vertical offset from gradient to curve, distance / from the start of the 
curve and C is a constant. Thus, as the offsets are proportional to distance squared, 
the following equation is used to compute them: 

Y {L/2)

2 
(6.35) 

where 7 = the mid-offset = 4L/800 (refer 'VC computation' , Section 6.11.7). 

Figure 6.36 
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TABLE 6 3 

Design speed (km/h) 

A Stopping sight distance (SSD), m 
AI Desirable minimum 
A2 Absolute minimum 

B Horizontal curvature, m 
Bl Minimum R* without elimination of adverse 

camber and transitions 
B2 Minimum R* with super-elevation of 2.5% 
B3 Minimum R* with super-elevation of 3.5% 
B4 Desirable minimum R super-elevation of 5% 
B5 Absolute minimum R super-elevation of 7% 
B6 Limiting radius super-elevation of 7% 

at sites of special difficulty 
(category B design speeds only) 

C Vertical curvature 
CI F O S D overtaking crest K-value 
C2 Desirable minimum* crest K-value 
C3 Absolute minimum crest X-value 
C4 Absolute minimum sag JC-value 

D Overtaking sight distance 
D l Full overtaking sight distance (FOSD), m 

120 100 85 70 60 50 V

2
/R 

300 225 165 125 95 70 
225 165 125 95 70 50 

2880 2040 1440 1020 720 510 5 

2040 1440 1020 720 510 360 7.07 
1440 1020 720 510 360 255 10 
1020 720 510 360 255 180 14.14 

720 510 360 255 180 127 20 
510 360 255 180 127 90 28.28 

* 400 285 200 142 100 
185 105 59 33 19 11 
105 59 33 19 11 6.5 

37 26 20 20 20 13.5 

* 580 490 410 345 290 

* Not recommended for use in the design of single carriageways (see Part C, Paras 2.7-2.8) 
(Reproduced with permission of the Controller of Her Majesty's Stationery Office) 

6.11.3 Vertical-curve design 

In order to set out a vertical curve in the field, one requires levels along the curve at 
given chainage intervals. Before the levels can be computed, one must know the length 
L of the curve. The value of L is obtained from parameters supplied in Table 3 of 
T D 9/81 (reproduced below as Table 6.3) and the appropriate parameters are X-values 
for specific design speeds and sight distances, then 

L = KA (6.36a) 

where A = the difference between the two gradients (grade angle) 

e.g. A + 4 % gradient is linked to a — 3% gradient by a crest curve. What length of 
curve is required for a design speed of 100 km/h ? 

A = (4% - ( -3%)) = + 4 % ( + ve for crest) 

From Table 6.3 

C2 Desirable minimum crest X-value = 105 
C3 Absolute minimum crest K-value = 59 

.*. from L = K.A 
Desirable minimum length = L = 105 x 7 = 735 m 
Absolute minimum length = L = 5 9 x 7 = 4 1 3 m 

Wherever possible the vertical and horizontal curves in the design process should be 
co-ordinated so that the sight distances are correlated and a more efficient overtaking 
provision is ensured. 

The various design factors will now be dealt with in more detail. 
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(1 ) l v a l u e 

Rate of change of gradient (r) is the rate at which the curve passes from one gradient 
(#i%)t0

 the

 n e xt
 (02%)

 a n
d is similar in concept to rate of change of radial acceleration 

in horizontal transitions. When linked to design speed it is termed rate of vertical 
acceleration and should never exceed 0.3 m/sec

2
. 

A typical example of a badly-designed vertical curve with a high rate of change of 
grade, is a hump-backed bridge where usually the two approaching gradients are quite 
steep and connected by a very short length of vertical curve. Thus one passes through a 
large grade angle A' in a very short time, with the result that often a vehicle will leave the 
ground and/or cause great discomfort to its passengers. 

Commonly-used design values for r are 

3%/100 m on crest curves 
1.5%/100 m on sag curves 

thereby affording much larger curves to prevent rapid change of grade and provide 
adequate sight distances. 

Working from first principles if gx = - 2 % and g2 = + 4 % (sag curve), then the 
change of grade from - 2% to + 4 % = 6% (A), the grade angle. Thus, to provide for a 
rate of change of grade of 1.5%/100 m, one would require 400 m (L) of curve. If the curve 
was a crest curve, then using 3%/100 m gives 200 m (L) of curve 

.'. L = 100.X/r (6.36b) 

Now, expressing rate of change of grade as a single number we have 

K = 100/r (6.36c) 

and as shown previously, L = KA. 

(2) Sight distances 

Sight distance is a safety design factor which is intrinsically linked to rate of change of 
grade, and hence to K values. 

Consider once again the hump-backed bridge. Drivers approaching from each side 
of this particular vertical curve cannot see each other until they arrive, simultaneously, 
almost on the crest; by which time it may be too late to prevent an accident. Had the 
curve been longer and flatter, thus resulting in a low rate of change of grade, the drivers 
would have had a longer sight distance and consequently more time in which to take 
avoiding action. 

Thus, sight distance, i.e. the length of road ahead that is visible to the driver, is a 
safety factor, and it is obvious that the sight distance must be greater than the stopping 
distance in which the vehicle can be brought to rest. 

Stopping distance is dependent upon 

(a) Speed of the vehicle. 
(b) Braking efficiency. 
(c) Gradient. 
(d) Coefficient of friction between tyre and road. 
(e) Road conditions. 
(f) Driver's reaction time. 
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(3) Sight distances on crests 

Sight distances on crests are defined as follows: 

(a) Stopping sight distance {SSD) (Figure 637(a)) 
The SSD is measured from a driver's eye height of between 1.05 m and 2 m to an 
object of between 0.26 m and 2 m above the road surface. It should be checked in both 
the horizontal and vertical planes, between any two points in the centre of the lane, on 
the inside of the curve. Values per design speed are shown at AI and A2 of Table 63. At 
least A2 should be provided on all single and dual carriageways. 

(b) Full overtaking sight distance (FOSD) (Figure 637(b)) 
The above sight distance is for overtaking vehicles on single carriageways, since 
sufficient visibility for overtaking is required on as much of the road as possible. F O S D 

2 m 

2 m. 

Envelope of visibility 

Figure 6.37(a) 

2m 2m 

Envelope of visibility 

1.05 m 1.05 m 

\ 
Figure 6.37(b) 

In order to cater for all the above variables, the height of the driver's eye above the 
road surface is taken as being only 1.05 m; a height applicable to sports cars whose 
braking efficiency is usually very high. Thus, other vehicles, such as lorries, with a much 
greater eye height would have a much longer sight distance in which to stop. 
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Figure 6.38 

should also be checked in both the horizontal and vertical planes as specified for SSD. 
D l in Table 63 shows the appropriate distances for specific design speeds. 

Although equations are unnecessary when using design tables, they can be developed 
to calculate curve lengths L for given sight distances 5, as follows: 

(i) When S < L (Figure 638) 

From basic equation y = CI

2 

Y=C(L/2)

2
, h^CQt)

2
 and 

then 

thus 

and 
Y (L/2)

2
 L

2 

,2 u • l{ — —rrr but since 

and 

4Y 

200/iiL 

Y 

4Y--

h2 = C(l2)
2 

4/f 

L

2 

AL 

200 

Similarly l2 

S - (h + /,) = [(h J '
2
 + (hjn^WLJ'2 

and 

when 

S

2
A 

2 0 0 [ ( / I l)
1 /2

 + ( f e 2)
1 / 2

]

2 

h1 = h2 = h 

S

2
A 

L = 
800ft 

(ii) When S > L it can similarly be shown that 

L = 2S-™[(hl)U
2
 + (h2)U

2
¥ 

and when hl=h2 = h 

L = 2S — 

(6.37) 

(6.38) 

(6.39) 

(6.40) 

(6.41) 
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When S = L, substituting in either of equations (6.39) or (6.41) will give the correct 
solution. 

,

 s 2a
 ^

a mh 
e g ( 6

-

3 9) L=
 800/T 800/T "T" 

and (6.41) L = 2 S -

8
° ^ = 2 L -

8
^ = ^ 

A A A 

N.B. If the relationship of 5 to L is not known then both cases must be considered; one 
of them will not fulfil the appropriate argument S < L or S > L and is therefore 
wrong. 

(4) Sight distances on sags 

Visibility on sag curves is not obstructed as it is in the case of crests; thus sag curves are 
designed for at least absolute minimum comfort criteria of 0.3 m/sec

2
. However, for 

design speeds of 70 km/h and below in unlit areas, sag curves are designed to ensure 
that headlamps illuminate the road surface for at least absolute minimum SSD. The 
relevant K values are given in C4, Table 6.3. 

The headlight is generally considered as being 0.75 m above the road surface with its 
beam tilted down at 1° to the horizontal. As in the case of crests, equations can be 
developed if required. 

Consider Figure 6.39 where L is greater than S. F rom the equation for offsets: 

£ C _ ^ . S

2
(T2D) 

T2D " L

2
 * '

 C
 " L

2 

but T2D is the vertical divergence of the gradients and equals 

A.L . _ A.S

2 

100.2 " " 200L

 ( U) 

also BC = h + 5 tan x° (b) 

Equating (a) and (b): L = S

2
A(200h + 200S tan x T

1
 (6.42) 

Figure 6.39 
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Figure 6.40 

putting x° = 1° and h = 0.75 m 

S
2
A 

L = — — (6.43) 
150 + 3.5S

 V
 ' 

Similarly, when S is greater than L (Figure 6.40) 
B
C = ^ ( s - ^ ] ^ h + S t a n x° 

100 V 2 J 

equating: L = 2S — (200/i + 200S tan x°)/A (6.44) 

when x° = 1° and h = 0.75 m 

L = 2S — (150 + 3.5S)/A (6.45) 

6.11.4 Passing a curve through a point of known level 

In order to ensure sufficient clearance at a specific point along the curve it may be 
necessary to pass the curve through a point of known level. Fo r example, if a bridge 
parapet or road furniture were likely to intrude into the envelope of visibility, it would 
be necessary to design the curve to prevent this. 

This technique will be illustrated by the following example. A downgrade of 4% 
meets a rising grade of 5% in a sag curve. At the start of the curve the level is 123.06 m at 
chainage 3420 m, whilst at chainage 3620 m there is an overpass with an underside level 
of 127.06 m. If the designed curve is to afford a clearance of 5 m at this point, calculate 
the required length (Figure 6.41). 

To find the offset distance CE. 

From chainage horizontal distance T x£ = 200 m at - 4 % 

Level at E = 123.06 - 8 = 115.06 m 

Level at C = 127.06 - 5 = 122.06 m 

.*. Offset CE = 7 m 

CE (T,E)
2 

From offset equation — = ^ 



206 Curves 

D 1 2 7 - 0 6 0 
3 6 2 0 

A L 
butT2B = the vertical divergence = —, where A = 9 

_ AL 200

2
 _ 1800 

2 0 0 ~ Z T " ~ L ~ 

L = 2 5 7 m 

6.11.5 To find the chainage of highest or lowest point on the 
curve 

The position and level of the highest or lowest point on the curve is frequently required 
for drainage design. 

With reference to Figure 6.41, if one considers the curve as a series of straight lines, 
then at Tx the grade of the line is — 4% gradually changing throughout the length of the 
curve until at T2 it is + 5%. There has thus been a change of grade of 9% in distance L. At 
the lowest point the grade will be horizontal, having just passed through — 4% from Tv 
Therefore, the chainage of the lowest point from the start of the curve is, by simple 
proportion 

D =
 W o

 X
 4 % = I X 9 1 ^ 

257 
which in the previous example is — - x 4% = 114.24 m from Tv 

Knowing the chainage, the offset and the curve level at that point may be found. 
This simple approach suffices as the rate of change of grade is constant for a 

parabola, i.e. y = CI

2
, ;. d

2
y/dl

2
 = 2C. 

6.11.6 Vertical-curve radius 

Due to the very shallow gradients involved in VC design, the parabola may be 
approximated to a circular curve. In this way vertical curves may be expediently drawn 
on longitudinal sections using railway curves of a given radius, and vertical 
accelerations (V

2
/R) easily assessed. 

Figure 6.41 
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In circular curves (Section 6.1) the main chord from 7i to T2 = 2R sin A/2, where A is 
the deflection angle of the two straights. In vertical curves, the main chord may be 
approximated to the length (L) of the VC and the angle A to the grade angle A, i.e. 

A * A% 
.'. sin A/2 % A/2 rads % A/200 

L « 2RA/200 = AR/100 (6.47) 

and as K = L/A = R/100, then: 

R = 100L/A = 100X (6.48) 
It is important to note that the reduced levels of VC must always be computed. 

Scaling levels from a longitudinal section, usually having a vertical scale different from 
the horizontal, will produce a curve that is neither parabolic nor circular. The use of 
railway curves is simply to indicate the position and extent of the curve on the section. 

Thus, having obtained the radius R of the VC, it is required to know the number of 
the railway curve necessary to draw it on the longitudinal section. 

If the horizontal scale of the section is 1 in H and the vertical scale is 1 in V, then the 
number of the railway curve required to draw the VC is: 

Number of railway curve in mm = R. V/H

2

9 with JR in mm 

e.g. If horizontal scale is 1 in 500, vertical scale 1 in 100 and curve radius is 200 m, 
then 

Number of railway curve in mm = 200 000 x 100/500

2
 = 80 

6.11.7 Vertical-curve computation 

The computation of a vertical curve will now be demonstrated using an example. 
A '2nd difference' (8

2
y/8l

2
) arithmetical check on the offset computation should 

automatically be applied. The check works on the principle that the change of grade of 
a parabola (y = C. I

2
) is constant, i.e. S

2
y/Sl

2
 = 2C. Thus, if the first and last chords are 

sub-chords of lengths different from the remaining standard chords, then the change of 
grade will be constant only for the equal-length chords. , 

For example, a 100-m curve is to connect a downgrade of 0.75% to an upgrade of 
0.25%. If the level of the intersection point of the two grades is 150 m, calculate: 

(1) Curve levels at 20-m intervals, showing the second difference (d

2
y/dl

2
); check on 

the computations. 
(2) The position and level of the lowest point on the curve. 

Method 

(a) Find the value of the central offset Y. 
(b) Calculate offsets. 
(c) Calculate levels along the gradients. 
(d) Add/subtract (b) from (c) to get curve levels. 
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From equation (6.35): yx = 7 x 

7i = 0 m 

(L/2)

2 

1st diff 2nd diff 

0.02 

yx = 0.125 = 0.02 m 0.04 

0.06 

y2 = 0.125 = 0.08 m 0.04 

0.10 
60 2 

v 3 = 0.125 — y = 0.18 m 0.04 
'

3
 50

2 

0.14 
QQ2 

J 4 = 0.125 ^ y = 0.32 m 0.04 

0.18 
y2 = T2J = 4 7 = 0.50 m 

The 2nd difference arithmetical check, which works only for equal chords, should be 
applied before any further computation. 

(c) First find level at Tx from known level at / . 

Distance from J to Tx = 50 m, grade = 0.75% (0.75 m per 100 m) 

0.75 
Rise in level from / to T* = - — = 0.375 m 

2 

(a) Referring to Figure 636 

Grade angle A = ( - 0 . 7 5 - 0.25) = - 1 % (this is seen automatically). 
L/2 = 50 m, thus as the grades IT2 and IJ are diverging at the rate of 1% (1 m per 

100 m) in 50 m, then 

T2J = 0.5 m = 4 7 and 7 = 0.125 m 

The computation can be quickly worked mentally by the student. Putting the above 
thinking into equation form gives 

4 7 = — - / . 7 = — (6.49) 
100 2 800

 V
 ' 

(b) Offsets from equation (635) 

There are two methods of approach. 

(1) The offsets may be calculated from one gradient throughout; i.e. yu y2, EK9 GM, 
T2J, from the grade TXJ. 

(2) Calculate the offsets from one grade, say, Tt / , the offsets being equal on the other 
side from the other grade IT2. 

Method (1) is preferred due to the smaller risk of error when calculating curve levels 
at a constant interval and grade down Tx J. 
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Level at Tx = 150.000 + 0.375 = 150.375 m 

Levels are now calculated at 20-m intervals along Tx J , the fall being 0.15 m in 20 m. 
Thus, the following table may be made. 

Chainage Gradient Offsets Curve Remarks 
(m) levels levels 

0 150.375 0 150.375 Start of curve Tt 
20 150.225 0.02 150.245 
40 150.075 0.08 150.155 
60 149.925 0.18 150.105 
80 149.775 0.32 150.095 

100 149.625 0.50 150.125 End of curve T2 

Position of lowest point on curve = x 0.75% = 75 m from Tx 

Offset at this point = y2 = 0.125 x 7 5

2
/ 5 0

2
 = 0.281 m 

Tangent level 75 m from Tx = 150.375 - 0.563 = 149.812 m 

/ . Curve level = 149.812 + 0.281 = 150.093 m 

6.11.8 Drawing-office practice 
(1) Design 

(a) Obtain grade angle (algebraic difference of the gradients) A. 
(b) Extract the appropriate K-value from Design Table in T D 9/81. 
(c) Length (L) of vertical curve = KA. 
(d) Compute offsets and levels in the usual way. 

(2) Drawing 

To select the correct railway curve for drawing the vertical curve on a longitudinal 
section. 

100.L 
(a) Find equivalent radius (R) of vertical curve from R = — - — = 100. K. 

A 
(b) Number of railway curve in mm = R mm x V/H

2
. 

If horizontal scale of section is say 1/500, then H = 500. 
If vertical scale of section is say 1/200, then V= 200. 
If the railway curves used are still in inches, simply express R in inches. 

Worked examples 

Example 6.13. An existing length of road consists of a rising gradient of 1 in 20, 
followed by a vertical parabolic crest curve 100 m long, and then a falling gradient of 1 
in 40. The curve joins both gradients tangentially and the reduced level of the highest 
point on the curve is 173.07 m above datum. 

Visibility is to be improved over this stretch of road by replacing this curve with 
another parabolic curve 200 m long. 

Find the depth of excavation required at the mid-point of the curve. Tabulate the 
reduced levels of points at 30-m intervals on the new curve. 
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yx = 1.876 x ~ = 0.169 0.337 yi
 100

2 

0.506 
6 0

2 

y2 = 1.876 x — T = 0.675 0.339 
yi

 100

2 

0.845 

y 2 = 1.876 x ~ = 1.520 0.336 yi
 100

2 

120

2 

y4 = 1.876 x ^ = 2.701 0.339 

1.181 

1.520 
150 |2 y5 = 1.876 x — y = 4.221 0.337 
100 * Note change due to change in 

1.857 chord length from 20 m to 30 m. 
180

2 

y6 = 1 .876

 x
 JQQT

 = 6 0 78
 ° -

4 3 1
' 

1.426 

yn = 4y = 7 . 5 0 4 

What will be the minimum visibility on the new curve for a driver whose eyes are 
1.05 m above the road surface? (ICE) 

The first step here is to find the level of the start of the new curve; this can only be 
done from the information on the highest point P , Figure 6.42. 

Old curve A = 7.5%, L = 100 m 

100 
Chainage of highest point P from Tx = — — x 5% = 67 m 

Distance T2C is the divergence of the grades (7.5 m per 100 m) over half the length of 
curve (50) = 7.5 x 0.5 = 3.75 m = 4 7 

.*. Central offset 7 = 3.75/4 = 0.938 m 

6 7

2 

Thus offset PB = 0.938 • — T = 1.684 m 
50

2 

Therefore the level of B on the tangent = 173.07 + 1.684 = 174.754 m. This point is 
1 7 m from / , and as the new curve is 200 m in length, it will be 117 m from the start of the 
new curve T3 

.'. Fall from B to T3 of new curve = 5 x 1.17 = 5.85 m 
/ . Level of T3 = 174.754 - 5.85 = 168.904 m 

It can be seen that as the value of A is constant, when L is doubled, the value of 7, the 
central offset to the new curve, is doubled giving 1.876 m. 

.'. Amount of excavation at mid-point = 0.938 m 

New curve offsets 1st diff 2nd diff 

0.169 
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New curve O ld curve 

Figure 6.42 

Levels along the tangent T3C are now obtained at 30-m intervals. 

Chainage Tangent Offsets Curve Remarks 
(m) levels levels 

0 168.904 0 168.904 T3 of new curve 
30 170.404 0.169 170.235 
60 171.904 0.675 171.229 
90 173.404 1.520 171.884 

120 174.904 2.701 172.203 
150 176.404 4.221 172.183 
180 177.904 6.078 171.826 
200 178.904 7.504 171.400 TA of new curve 

From Figure 6.42 it can be seen that the minimum visibility is half the sight distance 
and could thus be calculated from the necessary equation. However, if the driver's eye 
height of h = 1.05 m is taken as an offset then 

h D

2

 t 1.05 D

2 

thus 
Y (L/2)

29
 ° 1.876 " 1 0 0

2 

D = 7 5 m 

Example 6.14. A rising gradient gx is followed by another rising gradient g2 (g2 less 
than gx). The gradients are connected by a vertical curve having a constant rate of 
change of gradient. Show that at any point on the curve the height y above the first 
tangent point A is given by 

(0i - Git*

2 

y = (hX 2T~ 
where x is the horizontal distance of the point from A, and L is the horizontal distance 
between the two tangent points. 

Draw up a table of heights above A for 100-m pegs from A when gx = + 5%, g2 = 
+ 2% and L = 1000 m. 

At what horizontal distance from A is the gradient + 3 % ? (ICE) 
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Figure 6.43 from equation for offsets. = /r ^ 2 

.:BC=Y
4
4 but y = ^ s t a t i o n s - ^ L Z ^ 

L o o 

Now = 

Thus, as y = BD — BC = gfxx — 

Using the above formula (which is correct only if horizontal distances x and L are 
expressed in stations, i.e. a station = 100 m) 

3 x l

2 

* « 5 - — = 4.85m 

3 x 2

2 

>>2 = 1 0 - - ^ - = 9 .4m 

3 x 3

2 

y 3 = 15 —— = 13.65 m and so on 73
 20 

Grade angle = 3% in a 1000 m 
Change of grade from 5% to 3% = 2% 

1000 
.'. Distance = —— x 2% = 667 m 

Example 6.15. A falling gradient of 4% meets a rising gradient of 5% at chainage 
2450 m and level 216.42 m. At chainage 2350 m the underside of a bridge has a level of 
235.54 m. The two grades are to be joined by a vertical parabolic curve giving 14 m 
clearance under the bridge. List the levels at 50-m intervals along the curve. 

To find the offset to the curve at the bridge [Figure 6.44) 

Level on gradient at chainage 2350 = 216.42 + 4 = 220.42 m 
Level on curve at chainage 2350 = 235.54 — 14 = 221.54 m 

Offset at chainage 2350 = y2 = 1.12 m 

Figure 6.43 
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y2 

From equation for offsets — • 

AL 
where Y= —- and A 

800 

1.12 x 800 _ / _ 200V 

9 x L "V T)9 

Figure 6.44 

(L/2 - 100)

2 

(L/2)

2 

9% 

and putting 
200 

x = 

1.12 x 4x = 9(1 - x )

2 

from which x

2
 - 2.5x + 1 = 0 , giving 

x = 2 or 0.5 .*. L = 400 m (as x = 2, is not possible) 

9 x 400 
Now 7 = 

800 
= 4.5 m from which the remaining offsets are found as follows: 

50

2 

at chainage 50 m offset yx = 4.5 = 0.28 m 

100

2 

at chainage 100 m offset y2 = 4.5 — - y = 1.12 m 

150

2 

at chainage 150 m offset y3 = 4.5 ——y = 2.52 m 200

2 

at chainage 200 m offset 7 = 4.50 m 

To illustrate the alternative method, these offsets may be repeated on the other 
gradient at 250 m = y3, 300 m = y2, 350 m = yv The levels are now computed along 
each gradient from / to Tx and T2 respectively. 

Chainage 

(m) 
Gradient 
levels 

Offsets Curve 
levels 

Remarks 

0 224.42 224.42 Start of curve T 
50 222.42 0.28 222.70 

100 220.42 1.12 221.54 
150 218.42 2.52 220.94 
200 216.42 4.50 220.92 Centre of curve J 
250 218.92 2.52 221.44 
300 221.42 1.12 222.54 
350 223.92 0.28 224.20 
400 226.42 226.42 End of curve T2 
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Example 6.16. A vertical parabolic curve 150 m in length connects an upward gradient 
of 1 in 100 to a downward gradient of 1 in 50. If the tangent point Tx between the first 
gradient and the curve is taken as datum, calculate the levels of points at intervals of 
25 m along the curve until it meets the second gradient at T2. Calculate also the level of 
the summit giving the horizontal distance of this point from Tv 

If an object 75 mm high is lying on the road between Tx and T2 at 3 m from T2, and a 
car is approaching from the direction of Tl9 calculate the position of the car when the 
driver first sees the object if his eye is 1.05 m above the road surface. (LU) 

To find offsets 

A = 3% ••• 4 7 = A x 3% = 2.25 m 

and Y= 0.562 m 

2 5

2
 100

2 

.-. yi = 0.562 x

 = 0 0 62
 y* =

 0 5 62 x
 J$T =

 1 0 00 

50

2
 125

2 

y2 = 0.562 x = 0.250 ys = 0.562 x = 1.562 

7 5

2 

y 3 = 0.562 x

 =
 ° -

5 62
 y 6 = 4y = 2.250 

Second difference checks will verify these values. 
With Tt at datum, levels are now calculated at 25-m intervals for 150 m along the 1 in 

100 (1%) gradient. 

Chainage Gradient Offsets Curve Remarks 
(m) levels levels 

0 100.00 0 100.000 Start of curve 7] 
25 100.25 0.062 100.188 

Start of curve 7] 

50 100.50 0.250 100.250 
75 100.75 0.562 100.188 

100 101.00 1.000 100.000 
125 101.25 1.562 99.688 
150 101.50 2.250 99.250 End of curve T2 

Distance of highest point from Tx = x 1% = 50 m 

Sight distance (S < L) 

From expression (6.37), p. 203. 

5 = [(h^

112
 + ( h 2)

1 / 2
] f — j — J when h, = 1.05 m, h2 = 0.075 m 

.'. S = 130 m, and the car is 17 m from Tx and between Tx and T2 

Example 6.17. A road gradient of 1 in 60 down is followed by an up gradient of 1 in 30, 
the valley thus formed being smoothed by a circular curve of radius 1000 m in the 
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0 

Figure 6.45 

vertical plane. The grades, if produced, would intersect at a point having a reduced level 
of 299.65 m and a chainage of 4020 m. 

It is proposed to improve the road by introducing a longer curve, parabolic in form, 
and in order to limit the amount of filling it is decided that the level of the new road at 
chainage 4020 m shall be 3 m above the existing surface. 

Determine: 

(a) The length of new curve. 
(b) The levels of the tangent points. 
(c) The levels of the quarter points. 

(d) The chainage of the lowest point on the new curve. (LU) 

To find central offset Y to new curve (Figure 6.45) 

From simple curve data A = cot 60 + cot 30 = 2° 51' 51" 

Now BI = R(sqc A/2 - 1) = 0.312 m 

Central offset AI = 7 = 3.312 m and T2C = 4 7 = 13.248 m 

To find length of new curve 

Grade 1 in 60 = 1.67%, 1 in 30 = 3.33% 

.*. Grade angle A = 5% 

13.248 
(1) Then from T2IC, L/2 = — y — x 100 

, \ L = 530 m 

(2) Rise from / to Tx = 1.67 x 2.65 = 4.426 m 

/ . Level at Tx = 299.65 + 4.426 = 304.076 m 

Rise from / to T2 = 3.33 x 2.65 = 8.824 m 

/ . Level at T2 = 299.65 + 8.824 = 308.474 m 

299-650m 
4 0 2 0 ' 0 m 
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(3) Levels at quarter points 

1st quarter point is 132.5 m from Tx 
Level on gradient = 304.076 - (1.67 x 1.325) = 301.863 m 

l

2 

Offset = 3.312 x 22 = 0.828 m 

Curve level = 301.863 + 0.828 = 302.691 m 

2nd quarter point is at 397.5 m 

.*. Level on gradient = 304.076 - (1.67 x 3.975) = 310.714 m 

3 2 
Offset = 3.312 x ~ r = 7.452 m 

2 2 
Curve level = 310.714 + 7.452 = 318.166 m 

530 
(4) Position of lowest point on curve from Tx = — x 1.67% = 177 m 

Chainage at Tt = 4020 - 265 = 3755 m 

Chainage of lowest point = 3755 + 177 = 3932 m 

Exercises 

(6.12) A vertical curve 120 m long of the parabola type is to join a falling gradient of 1 
in 200 to a rising gradient of 1 in 300. If the level of the intersection of the two gradients 
is 30.36 m give the levels at 15-m intervals along the curve. 

If the headlamp of a car was 0.375 m above the road surface, at what distance will the 
beam strike the road surface when the car is at the start of the curve ? Assume the beam 
is horizontal when the car is on a level surface. (LU) 

(Answer: 30.660, 30.594, 30.504, 30.486, 30.477, 30.489, 30.516, 30.588; 103.8 m) 

(6.13) A road having an up gradient of 1 in 15 is connected to a down gradient of 1 in 20 
by a vertical parabolic curve 120 m in length. Determine the visibility distance afforded 
by this curve for two approaching drivers whose eyes are 1.05 m above the road surface. 

As part of a road improvement scheme a new vertical parabolic curve is to be set out 
to replace the original one so that the visibility distance is increased to 210 m for the 
same height of driver's eye. 

Determine: 

(a) The length of new curve. 
(b) The horizontal distance between the old and new tangent points on the 1 in 5 

gradient. 
(c) The horizontal distance between the summits of the two curves. 

(ICE) 

(Answer: 92.94 m, (a) 612 m, (b) 246 m, (c) 35.7 m) 

(6.14) A vertical parabolic sag curve is to be designed to connect a down gradient of 1 
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in 20 with an up gradient of 1 in 15, the chainage and reduced level of the intersection 
point of the two gradients being 797.7 m and 83.544 m respectively. 

In order to allow for necessary headroom, the reduced level of the curve at chainage 
788.7 m on the down gradient side of the intersection point is to be 85.044 m. 

Calculate: 

(a) The reduced levels and chainages of the tangent points and the lowest point on 
the curve. 

(b) The reduced levels of the first two pegs on the curve, the pegs being set at the 30-m 
points of through chainage. (ICE) 

(Answer: Tx = 745.24 m, 86.166 m, T2 = 850.16 m, 87.042 m, lowest pt = 790.21 m, 
85.041 m, (b) 85.941 m, 85.104 m) 

(6.15) The surface of a length of a proposed road consists of a rising gradient of 2% 
followed by a falling gradient of 4% with the two gradients joined by a vertical 
parabolic summit curve 120 m in length. The two gradients produced meet a reduced 
level of 28.5 m O D . 

Compute the reduced levels of the curve at the ends, at 30-m intervals and at the 
highest point. 

What is the minimum distance at which a driver, whose eyes are 1.125 m above the 
road surface, would be unable to see an obstruction 100 mm high ? (ICE) 

(Answer: 27.300, 27.675, 27.600, 27.075, 26.100 m; highest pt, 27.699 m, 87 m) 
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Underground and hydrographic surveying 

7.1 UNDERGROUND SURVEYING 

The essential problem in underground surveying is that of orientating the underground 
surveys to the surface surveys, the procedure involved being termed a correlation. 

In an underground transport system, for instance, the tunnels are driven to connect 
inclined or vertical shafts (points of surface entry to the transport system) whose 
relative locations are established by surface surveys. Thus the underground control 
networks must be connected and oriented into the same co-ordinate system as the 
surface networks. To do this, one must obtain the co-ordinates of at least one 
underground control station and the bearing of at least one line of the underground 
network, relative to the surface network. 

Another prime example of orientation is that of the National Coal Board (NCB) of 
the UK, all of whose underground surveys are required, by law, to be orientated and 
connected to the Ordnance Survey national grid (NG) system. 

If entry to the underground tunnel system is via an inclined shaft, then the surface 
survey may simply be extended and continued down that shaft and into the tunnel, 
usually by the method of traversing. Extra care would be required in the measurement 
of the horizontal angles due to the steeply-inclined sights involved (refer Section 4.2.2) 
and in the temperature corrections to the taped distances due to the thermal gradients 
encountered. 

If entry is via a vertical shaft, then optical, mechanical or gyroscopic methods of 
orientation are used. 

7.1.1 Optical methods 

Where the shaft is shallow and of relatively large diameter the bearing of a surface line 
may be transferred to the shaft bottom by theodolite (Figure 7.1). 

The surface stations A and B are part of the control system and represent the 
direction in which the tunnel must proceed. They would usually be established clear of 
ground movement caused by shaft sinking or other factors. Auxiliary stations c and d 
are very carefully aligned with A arid B using the theodolite on both faces and with due 
regard to all error sources. The relative bearing of A and B is then transferred to AB' at 

218 
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Theodolite Theodolite 

A Surface 

Figure 7.1 

the shaft bot tom by direct observations. Once again these observations must be carried 
out on both faces with the extra precautions advocated for steep sights. 

If the co-ordinates of d are known then the co-ordinates of B' could be fixed by 
measuring the vertical angle and distance (EDM) to a reflector at B'. 

It is important to understand that the accurate orientation bearing of the tunnel is 
infinitely more critical than the co-ordinate position. For instance, a standard error of 
± T in transferring the bearing down the shaft to AB' would result in a positional error 
at the end of 1 km of tunnel drivage of ± 300 mm and would increase to ± 600 mm after 
2 km of drivage. 

7.1.2 Mechanical methods 

Although these methods, which involve the use of wires hanging vertically in a shaft, are 
rapidly being superseded by gyroscopic methods, they are still widely used and are 
described herewith. 

The basic concept is that wires hanging freely in a shaft will occupy the same position 
underground that they do at the surface, hence the bearing of the wire plane will remain 
constant throughout the shaft. 

7.1.2.1 Weisbach triangle method 

This appears to be the most popular method in civil engineering. Two wires, Wx and W2, 
are suspended vertically in a shaft forming a very small base line (Figure 7.2). The 
principle is to obtain the bearing and co-ordinates of the wire base relative to the 
surface base. These values can then be transferred to the underground base. 

In order to establish the bearing of the wire base at the surface, it is necessary to 
compute the angle WsW2Wl in the triangle as follows: 

As the Weisbach triangle is formed by approximately aligning the Weisbach station 
Ws with the wires, the angles at Ws and W2 are very small and equation (7.1) may be 
written: 

sin W2 = — sin Ws (7.1) 
w, 

(7.2) 



220 Underground and hydrographic surveying 

Figure 7.2 (a) Section, and (b) plan 

(The expression is accurate to seven figures when Ws < 18' and to six figures when 
Ws < 45'.) 

From equation (7.2), it can be seen that the observational error in angle Ws will be 
multiplied by the fraction w2/ws. 

Its effect will therefore be reduced if w 2/ w s is less than unity. Thus the theodolite at Ws 
should be as near the front wire Wx as focusing will permit and preferably at a distance 
smaller than the wire base Wx W2. 

The following example, using simplified data, will now be worked to illustrate the 
procedure. With reference to Figure 7.2(b), the following field data is obtained: 

(1) Surface observations 

Angle BAWS = 90° 00 '00" 

Angle A Ws W2 = 260° 00' 00" 

Angle WlWsW2 = 0° 01 ' 20" 

(2) Underground observations 

Angle W2WSWX = 0° 01 ' 50" 

Angle Wx WUX = 200° 00' 00" 

WUXY = 2 4 0 ° 00 '00" 

Distance WXW2 = ws = 10.000 m 

Distance Wx Ws = w2 = 5.000 m 

Distance W,WK = w, = 15.000 m 

Distance W2WU = y= 4.000 m 

Distance WUWX = x = 14.000 m 

Pulleys 

Theodolite 
Wi re 
reel ^ 

77?7? 

I 
V

e
rt

ic
a

l 
s

h
a

ft
 

Barrel of water 

or f ine oi l 

(a) 

Tunnel Shaft 
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Solution of the surface Weisbach triangle: 

Angle WtWiWl=^x 80" = 40" 

Similarly, underground 

4 

Angle W2WtWu = — x 110" = 44" 

The bearing of the underground base XY, relative to the surface base AB is now 
computed in a manner similar to a traverse: 

Assuming WCB of AB = 89° 00 '00" 

then, WCB of A Ws = 179° 00' 00" (using angle BA Ws) 

Angle A Ws W2 = 260° 00' 00" 

sum = 439° 00' 00" 

- 1 8 0 ° 

WCB of Ws W2 = 259° 00' 00" 

the reverse bearing W2WS = 79° 00 '00" 

Angle WsW2W^ = + 0° 00' 40" 

WCB W2Wl = 79° 00 '40" (wire base) 

reverse WCB W2 = 259° 00' 40" 

Angle W2W^WU = - 0 ° 00 '44" 

WCB Wi Wu = 258° 59' 56" 

Angle Wt WUX = 200° 00' 00" 

sum = 458° 59' 56" 

- 1 8 0 ° 

WCB WUX = 278° 59' 56" 

Angle WUXY = 240° 00' 00" 

sum = 518° 59' 56" 

- 1 8 0 ° 

WCB XY = 338° 59' 56" (underground base) 

The transfer of bearing is of prime importance; the co-ordinates can be obtained in the 
usual way by incorporating all the measured lengths AB, AWS, WUX, XY. 
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w2 cos Ws c /. SW2 = — T^SWs ws cos W2 
(2) with respect to w2 

sin WK „ 
cos W2SW2 = -<5w2 

sin W. , 

W« COS Wo 

(3) with respect to ws 
— vv2 sin W. 

cos W7 SW7 =

 2
—, - <5n> 

.'. SW2 = 
— w2 sin Ws 
w

2
 cos Wj 

8w< 

then: 

SW2 

sin W cos W 
but cos W< = r-7r,—- = sin Ws cot Ws, which on substitution gives: sin W. 

, w2 sin t . 
by sine rule = sin W2, therefore substituting 

(7.3) 

7.1.2.2 Shape of the Weisbach triangle 

As already indicated, the angles W2 and Ws in the triangle are as small as possible. The 
reason for this can be illustrated by considering the effect of accidental observation 
errors on the computed angle W2. 

w2 
From the basic equation: sin W2 = — sin Ws 

differentiate with respect to each of the measured quantities in turn: 

(1) with respect to Ws 

cos W25W2 = — cos Ws SWS 
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Thus to reduce the standard error (8W2) to a minimum: 

(1) tan W2 must be a minimum; therefore the angle W2 should approach 0°. 
(2) As W2 is very small, Ws will be very small and so cot Ws will be very large. Its effect 

will be greatly reduced if 8 Ws is very small; the angle Ws must therefore be measured 
with maximum precision. 

7.1.2.3 Sources of error 

The standard error of the transferred bearing eB, is the combined effect of: 

(1) Errors in connecting the surface base to the wire base, es. 
(2) Errors in connecting the wire base to the underground base, eu. 
(3) Errors in the determination of the verticality of the wire plane, ep giving: 

eB=±(e

2
+e

2

u + e

2

pyt

2
 (7.4) 

The errors es and eu can be obtained in the usual way from an examination of the 
method and type of instruments used. The source of error ep is vitally important in view 
of the extremely short length of the wire base. 

Given random errors ex and e2, of deflected wires Wx and W2 equal to 1 mm, then 
ep = 100 sec for a wire base of 2 m. The N C B specifies a value of 2' 00" for eB, then from 
equation (7.4) assuming es = eu = ep: 

2! 00" 

e = = 70" p
 ( 3 )

1 /2
 ' 

which for the same wire base of 2 m permits a deflection of the wires of only 0.7 mm. 
These figures serve to indicate the great precision and care needed in plumbing a shaft, 
in order to minimize orientation errors. 

7.1.2.4 Verticality of the wire plane 

The factors affecting the verticality of the wires are: 

(1) Ventilation air currents in the shaft 
All forced ventilation should be shut off and the plumb bob protected from natural 
ventilation. 

(2) Pendulous motion of the shaft plumb 
The motion of the plumb bob about its suspension point can be reduced by 
immersing it in a barrel of water or fine oil. When the shaft is deep, complete 
elimination of motion is impossible and clamping of the wires in their mean swing 
position may be necessary. 
The amplitude of wire vibrations, which induce additional motion to the swing, 
may be reduced by using a heavy plumb bob, with its point of suspension close to 
the centre of its mass, and fitted with large fins. 

(3) Spiral deformation of the wire 
Storage of the plumb wire on small diameter reels gives a spiral deformation to the 
wire. Its effect is reduced by using a plumb bob of maximum weight. This should be 
calculated for the particular wire using a reasonable safety factor. 

These sources of error are applicable to all wire surveys. 
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A B 

Figure 7.3 

7.1.2.5 Co-planing 

The principles of this alternative method are shown in Figure 7.3. The triangle of the 
previous method is eliminated by aligning the theodolite at Ws exactly with the wires Wx 
and W2. This alignment is easily achieved by trial and error, focusing first on the front 
wire and then on the back. Both wires can still be seen through the telescope even when 
in line. The instrument should be set up within 3 to 4 m of the nearer wire. Special 
equipment is available to prevent lateral movement of the theodolite affecting its level, 
but if this is not used, special care should be taken to ensure that the tripod head is level. 

The movement of the focusing lens in this method is quite long. Thus for alignment to 
be exact, the optical axis of the object lens should coincide exactly with that of the 
focusing lens in all focusing positions. If any large deviation exists, the instrument 
should be returned to the manufacturer. The chief feature of this method is its simplicity 
with little chance of gross errors. 

7.1.2.6 Weiss quadrilateral 

This method may be adopted when it is impossible to set up the theodolite, even 
approximately, on the line of the wire base Wx W2 (Figure 7.4). Theodolites are set up at 
C and D forming a quadrilateral CDWXW2. The bearing and co-ordinates of CD are 
obtained relative to the surface base, the orientation of the wire base being obtained 
through the quadrilateral. Angles 1,2, 3 and 8 are measured direct, angles 4 and 7 are 

To surface base A B 

C 

Figure 7.4 

) Co-planed station 

Surface base 

Shaft 

Sha f t 
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7.1.2.7 Single wires in two shafts 

The above methods have dealt with orientation through a single shaft, which is the 
general case in civil engineering. Where two shafts are available, orientation can be 
achieved via a single wire in each shaft. This method gives a longer wire base, and wire 
deflection errors are much less critical. 

The principles of the method are outlined in Figure 7.5. Single wires are suspended in 
each shaft at A and B and co-ordinated into the surface control network, most probably 
by multiple intersection from as many surface stations as possible. F rom the co-
ordinates of A and B, the bearing AB is obtained. 

A traverse is now carried out from A to B via an underground connecting tunnel 
(Figure 7.5(a)). However, as the angles at A and B cannot be measured it becomes an 
open traverse on an assumed bearing for AX. Thus, if the assumed bearing for AX 
differed from the ' true' (but unknown) bearing by a, then the whole traverse would 
swing to apparent positions X\ Y\ Z' and B' (Figure 7.5(b)). 

The value of a is the difference of the bearings AB and AB' computed from surface 
and underground co-ordinates respectively. Thus if the underground bearings are 
rotated by the amount a this will swing the traverse almost back to B. There will still be 
a small misclosure due to linear error and this can be corrected by multiplying each 
length by a scale factor equal to length >4B/length AB'. Now, using the corrected 
bearings and lengths the corrected co-ordinates of the traverse fitted to AB can be 
calculated. These co-ordinates will be relative to the surface co-ordinate system. 

obtained as follows: 

Angle 4 = [180° - (I + 2 + 3)] 

Angle 7 = [ 1 8 0 ° - ( 1 + 3 + 8)] 

The remaining angles 6 and 5 are then computed from 

sin I sin 3 sin 5 sin 1 = sin 2 sin 4 sin 6 sin § 

sin 3 sin 2 sin 4 sin § 
thus - r - j = . r . $ . = x (a) 

sin 6 sin 1 sin 3 sin 7 

and (5 + g) = (1 + 2) = j ; 

5 = ( y - §) (fc) 

from (a) sin 5 = x sin 6 .'. sin (j? — 6) = x sin S 

and sin y cos § — cos y sin 6 = x sin 6 

from which sin y cot 6 — cos y = x 

~ x + cos j ; 
and cot 6 = — . A

 y
 (7.5) 

sin y 
Having found angle 6 from equation (7.5), angle 5 is found by substitution in (b). 
Error analysis of the observed figure indicates 

(1) The best shape for the quadrilateral is a square. 
(2) Increasing the ratio of the length CD to the wire base increases the standard error 

of orientation. 
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Shaft Shaft 

(a) Underground 
tunnel 

Assumed bSFiSg 
Surface bearing 

(b) Figure 7.5 

Alternatively, the corrected co-ordinates can be obtained directly by mathematical 
rotation and translation of the 'assumed' values. Therefore, with A as origin, a rotation 
equal to a and a translation of AB/AB', the corrected co-ordinates are obtained from 

where E09 N0 = co-ordinates of the origin (in this case A) 
E'i9 Nl = co-ordinates of the traverse points computed on the assumed 

bearing 
Ei9 Nt = transformed co-ordinates of the underground traverse points 

K = scale factor (length Afl/length AB) 

There is no doubt that this is the most accurate and reliable method of surface-to-
underground orientation. The accuracy of the method is dependent upon 

(a) The accuracy of fixing the position of the wires at the surface. 
(b) The accuracy of the underground connecting traverse. 

The influence of errors in the verticality of the wires, so critical in single-shaft work, is 
practically negligible owing to the long distance separating the two shafts. Provided 
that the legs of the underground traverse are long enough, then modern single-second 
theodolites integrated with E D M equipment would achieve highly accurate surface 
and underground surveys, resulting in final orientation accuracies of a few seconds. As 
the whole procedure is under strict control there is no reason why the final accuracy 
cannot be closely predicted. 

7.1.2.8 Alternatives 

In all the above methods the wires could be replaced by autoplumbs or lasers. 
In the case of the autoplumb, stations at the shaft bot tom could be projected 

Et = E0 + K(E'i cos a — N't sin a) 

Nt = N0 + K(N'i cos a + E\ sin a) 

(7.6a) 

(7.6b) 

Surface bearing 
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vertically up to specially arranged targets at the surface and appropriate observations 
taken direct on to these points. 

Similarly, lasers could be arranged at the surface to project the beam vertically down 
the shaft to be picked up on optical or electronic targets. The laser spots then become 
the shaft stations correlated in the normal way. 

The major problems encountered by using the above alternatives are: 

(1) Ensuring the laser beam is vertical. 
(2) Ensuring correct detection of the centre of the beam, and 
(3) Refraction in the shaft (applies also to autoplumb). 

In the first instance a highly-sensitive spirit level or automatic compensator could be 
used; excellent results have been achieved using arrangements involving mercury 
pools, or photo-electric sensors. 

Detecting the centre of the laser is more difficult. Lasers having a divergence of 10" to 
20" would give a spot of 10 mm and 20 mm diameter respectively at 200 m. This spot 
also tends to move about due to variations in air density. It may therefore require an 
arrangement of photocell detectors to solve the problem. 

Due to the turbulence of air currents in shafts the problem of refraction has not 
proved too dangerous. 

7.2 GYRO-THEODOLITE 

An alternative to the use of wire methods is the gyro-theodolite. This is a north-seeking 
gyroscope integrated with a theodolite, and can be used to orient underground base 
lines relative to true north. 

The main type is the suspended gyroscope used by the Wild GAK. l . The essential 
elements of the suspended gyro-theodolite are shown in Figure 7.6. 

7.2.1 Theory 

The gyroscope is basically a rapidly-spinning flywheel with the spin axis horizontal. 
The gyro spins from west to east, as does the Earth, the horizontal component of the 
Earth's rotation causing the spin axis to oscillate about the true north position. 

Before commencing an explanation of the theory of the north-seeking gyroscope, a 
revision of Newton's Laws of Motion may prove useful. If the force F increases the 
velocity of a mass m from Vx to V2 in time t then 

F oc {mV2 - mVt)/t 

as [V2 — V^/t = acceleration = a, then F oc ma. 
The constant of proportionality C in the equation F — Cma can be made unity by 

suitably defining the units of F. Using SI units, C does in fact become unity. 

.'. F = (mV2 — mVx)/t = rate of change of linear momentum. 

Similarly, T = (IQ2 — ISl^/t = rate of change of angular momentum 

thus T oc F (I = moment of inertia, Q = angular velocity of spin) 



228 U n d e r g r o u n d a n d hydrographic surveying 

-Tape zero 
adjustment screws 

Suspension tape 

Precession-
axis 

Gyro spinner 
Gyro's spin 
axis 
Torque axis is 
normal to the 
precession and 
spin axes 

Attaches to top 
of theodolite 

Suspended 
gyro housing 

Telescope for viewing 
gyro oscillation against 
gyro scale 

Reticule plate 
with gyro scale 

Figure 7.6 

The theory may be itemized as follows: 

(1) Figure 7.7(a) indicates a spinning flywheel in which the angular velocity of 
spin = Q. 

(2) The angular velocity of spin results in an angular momentum vector (AMV) OA 
(similar to that on a RH screw as it enters). 

(3) Consider now the AMV changing position to OB in the horizontal plane AOB 
during time t. 

(4) This results in a change in angular momentum of AB = (JQ2 — IQt), which for a 
small displacement may be regarded as a vector change at 90° to OA. 

(5) For the angular momentum vector to change position from A to B, an additional 
vector quantity must be superimposed on the system. Such a quantity is the 
reactive torque effect T along the axis parallel to AB (torque axis). Thus 
T= (IQ2 - iax)/t. 

(6) A force F acting vertically down on the spin axis will produce the reactive torque 
effect T, i.e. T = FR. 

Thus to summarize: 
The effect of a force F acting vertically down on the spin axis of a spinning gyro, is to 

cause the spin axis to precess in a horizontal plane about the vertical axis of precession. 
Precession will continue, and resistance to the couple likewise, until the plane of the 

gyro rotor coincides with the plane of the applied couple. Precession then ceases and 
with it all resistance to the applied couple. 

The effect of the Earth's rotation on the gyro fulfills the stated summary as follows: 
Consider Figure 7.7(b) with the gyro at Oh having its spin axis E-W. Due to the 

phenomenon of gyroscopic inertia it will maintain its plane of rotation in space while 
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the Earth's horizon turns in space. Thus, although maintaining its plane, it appears to 
turn with respect to the Earth at the rate of one revolution per 24 hours. 

At A (Figure 7.7(c)) consider a weight in the form of a pendulum attached to the gyro 
axle, it will point to the centre of the Earth, and render the spin axis horizontal. Assume 
the axis is E-W. 

At B, the Earth's rotation causes the axis to show an apparent tilt as described in 
Figure 7.7(b). The pendulum weight is now no longer evenly supported so that the effect 
of gravity is felt mainly by the upper end of the axis. The effect of this downward force F 
is to cause precession as shown at C. 

At Z), precession has swung the spin axis into the N - S meridian. In this position the 
direction of the rotor spin is the same as the Earth's and so has no effect on the 
pendulum weight. Thus, theoretically, the spin axis will point N - S and all movement 
ceases. In practice, however, the inertia of the system causes the spin axis to over-shoot 
the N - S meridian which results in oscillations of the spin axis about the meridian. 

From the theory of the spinning wheel, provided that the total angular rotation is 
small, the motion of the horizontal spin axis about the vertical may be represented by: 

K 16 + K 26 + K 36 = 0 (1.1) 

where 6 = angle between spin axis and true north, and K1,K2, K3 are constants. 

(a) 

(b) 

Figure 7.7 
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Location of true north, therefore, involves fixing the axis of symmetry of the gyro 
oscillation as it precesses about true north. However, as it would be time-wasting and 
uneconomical to allow the spin axis to steady in the direction of true north, various 
methods have been devised to compute the necessary direction from observations of 
the damped harmonic oscillation. 

7.2.2 Observational techniques 

Basically, all the techniques used measure the amplitude or the time of the oscillation 
about its axis of symmetry. 

(1) Reversal-point method: In the first instance the instrument is orientated so that the 
spin axis of the gyroscope is within a few degrees of north. The power is switched on and 
the spinner brought to full speed, at which point it is gently uncaged; it will then 
oscillate to and fro about its vertical axis. The oscillation is then tracked, using the slow-
motion screws of the theodolite, by keeping the image of the spin axis in the centre of the 
'gyro scale' (Figure 7.8(b)). The magnitude of the oscillation, which is a damped simple 
harmonic motion about true north, is then measured on the horizontal scale of the 
theodolite. 

Horizontal circle readings are taken each time the gyro reaches its maximum 
oscillation east or west of the meridian; these positions (r) are called reversal points. The 
minimum number of readings required is three, the mean of which gives the direction of 
true north (JV). 

±2.5°. 

N 

(a ) ( b ) 

Figure 7.8 (a) Gyro precession, (b) Gyro-scale 

Solution of the equation is a damped simple harmonic motion in which 9 converges 
exponentially to zero, with a period of several minutes and an amplitude of about 
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Various methods exist for finding the mean, the most popular being Schuler's Mean, 
which is explained by reference to Figure 7.8(a). 

1 / r , + r 3 \ 1 N l =
2
 + H

)
 =

 4
( ri + 2 + r s) ( 7 , 8) 

an additional observation r4, enables a second mean to be computed, thus: 

N2=\ (^Y^ + r*) = \ ^ +

 2 r
3 + U) (7.9) 

The direction of true north (N) is then more accurately obtained from 
JV = i ( N x + N2). 

Dr T. L. Thomas (Proc, 3rd South African Nat. Survey Conf, January 1967) 
advocates the symmetrical four-point method, using two observations to the east, and 
two to the west. This formula is simply the mean of (Nx + iV2) 

i.e. N = (rx + 3r2 + 3 r3 + r4) /8 (7.10) 

In this method, as the theodolite moves with the spinner, the suspension tape should 
not twist and untwist with reference to it, hence there should be no tape zero error. 
However, tests have proved that a small tape zero error due to torque in the suspension 
system, does require a correction (refer Section 7.2.3(2)). Thus, if 

N = the horizontal circle reading of gyro north 
Z = the tape zero correction, and 

N0 = the horizontal circle reading of true north, 

then N0 = (N-Z) (7.11) 

Further corrections also are required for the instrument constant (refer Section 
7.2.3(1)). 

(2) Transit method: This method, as originally devised for the Wild GAK. l gyro-
theodolite, assumed the damping effect was zero and that within ± 15' of north (N) the 
oscillation curve was linear and hence proportional to time. 

In this method the theodolite remains clamped and the magnitude of the oscillation 
is measured against the gyro scale, as shown in Figure 7.9. As the moving mark, which 
depicts the oscillation, passes through the central graduation of the gyro scale, its time 
is noted by means of a stop watch (with lap-timing facilities). 

F rom Figure 7.9, as the moving mark passes the zero of the gyro scale, the time is zero 
(tx) and the stop watch is started. When it reaches its western elongation its scale 
reading is noted (Aw). As it returns to the zero mark, the time (t2) is noted. Thus 
t2 — tx = T w, is the time taken for the gyro to reach its western reversal point and 
return and is called the half oscillation time of the western elongation. The eastern 
elongation reading (AE) is noted and the return transit time t3, from which t3 — t2 = TE. 

The correction AN, to transform the approximate north reading AT to true north N, 
is given by 

AN = CAAT (7.12) 

where A = the amplitude = ( 4 W + i 4 E) / 2 
C = the proportionality constant, which changes with change in latitude 

AT = the difference in 'swing' time = algebraic sum of times TE and T w (by 
convention TE is positive and T w negative) 



It is obvious from the diagrams that if AE> Aw, then AT is west of N and the 
correction AN is positive, and vice versa. 

The value of C need be obtained only once for each instrument, as follows. With 
alidade oriented first east and then west of true north, the usual transit observations are 
taken, giving two equations: 

N = N[ + CAlATi 
N = N2 + CA2AT2 

th C ~~

 m
*

nS
 °^

 a r c
^ ^

v
 (713) 

A2AT2 — AlAT1 of scale/sec of time. 

As this method has the theodolite in the clamped mode, the harmonic motion of the 
spin axis is affected by torque due to precession and torque due to twisting and 
untwisting of the suspension system. 

Figure 7.9 
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A 0 

Figure 7.10 

Also, in the case of the Wild G A K . l , the gyro scale intervals are 10' and therefore 
cannot be read to the accuracy inherent in the gyro itself. The Royal School of Mines 
(RSM) recommended the introduction of an optical micrometer which enabled 
readings to 1/100 of the scale readings with an accuracy of about ±4" . 

(3) Transit method using the Wild modified GAK.l: This method (Figure 7.10) was 
devised at the RSM and involves timing the moving mark as it passes any graduation 
on the gyro scale, i.e. time t0 at graduation A0, then reading the reversal point rl9 and 
then recording the time tx when the mark returns to the selected gyro scale graduation 
A0. This process is continued until sufficient readings are available. The value AT, of the 
centre of the oscillations, may be found as follows: 

T = period of oscillation = ^ (t2 - t0) + (t3 - tx) + (t4 - t2) (7.14) 

u = — (h - t0) 

P = 2 s in

2
 u 

N = A0 + rx(P-l) 

P 

Further values of T can be obtained for different values of A0. 

(4) The amplitude method: This method (Figure 7.10) was also devised at the RSM and 
uses the modified instrument in the clamped mode within a few degrees of true north. 
The improved accuracy of reading on the gyro scale enables reversal point readings (r„) 
to be made satisfactorily, then 

(7.15) 

(7.16) 

(7.17) 
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AT = Ci + 3r2 + 3 r3 -f r4) /8 

and if F = the fixed reading on the horizontal circle of the theodolite at the period of 
observation then the horizontal circle reading of true north N0 is obtained from 

N0 = F- sN(l + Q - Z (7.18) 

where C = proportionality constant 
Z = tape zero correction (Csr0) (refer Section 7.2.3(2)) 
s = the value of 1 div on the gyro scale. 

It can be seen that methods (3) and (4) could be (and usually are) combined. Other 
methods of observation exist and may be referred to in The Six Methods of Finding 
North Using a Suspended Gyroscope by D r T. L. Thomas (Survey Review, Vol. 26,203, 
January 1982 and 204, April 1982). 

7.2.3 Instrumental errors 

(1) Instrument calibration constant 

The scale on which the oscillation of the gyroscope is observed, as in the amplitude 
method, is usually not exactly aligned with the north seeking vector of the gyroscope. 
Also, the line defined by the gyro scale may not be aligned with the axis of the 
theodolite. These errors therefore constitute an instrument constant K which can be 
ascertained only by carrying out observations on a base line of known azimuth. 

Then N = NG 4- K 

where N = true or geographical north 
No = gyro north (i.e. the apparent N established by the gyroscope) 

K = instrument calibration constant 

Thus: Azimuth of known base = 30° 25' 30" 
Gyro azimuth of base = 30° 28' 30" 

K-value = - 0 ° 0 3 ' 0 0 " 

Tests have shown that the K-value is not a constant but changes slowly over a period 
of time. Frequent calibration checks are therefore necessary to obtain optimum results 
when using a gyro-theodolite, and should certainly be carried out just before and 
immediately after underground observations. 

(2) Tape zero error 

The tape zero position is defined as the position of rest of the oscillating system relative 
to the instrument, with the gyro in the non-spin mode. In the zero position any torquing 
forces on the suspension tape holding the gyro-system, due to twist in the tape, are 
eliminated and the gyro mark coincides with the zero of the gyro scale. 

In order to find the tape zero correction (Z), the gyro oscillations (rn) in the non-spin 
mode are read against the gyro scale as follows: r

B — (

r
i + 3

r
2 + 3

r
3 + r4) /8 (amplitude readings before spin up) r

A = (

r
i + 3r'2 + 3 r3 + r3) /8 (amplitude readings after spin up) 
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then the weighted mean r0 is formed from 

r0 = (rB + 3rA)/4 (7.19) 

The correction (Z) to normal north-finding observations due to tape zero error is 

where C = the proportionality constant and is equal to (torque due to tape/ torque due 
to precession) (refer Section 7.2.2(2)). 

s = value of one gyro scale unit in angular measure 

It should be noted, that if the tape zero correction Z is not applied to the 
observations for the instrument calibration constant K, then it will become part of K 
and a further cause of variation in its value. 

(3) Circle drift 

This is movement of the horizontal circle caused possibly by vibration of the gyro. Thus 
the RO of the base line should be observed before and after the gyro observations, and 
the mean taken. 

(4) Change of collimation and eccentricity of collimation 

Difficult to eliminate as one cannot change face with some types of gyro-theodolite. 
Observational procedures can be adopted to reduce this error. 

(5) Circle eccentricity 

This form of error has already been discussed in Chapter 4 and can be reduced in gyro 
work by rotating the circle through 180° relative to the RO between sets of observation. 

7.2.4 Convergence of meridians 

Since gyroscopes establish true north, the underground base line bearing must be 
corrected before it can be related to a local or national grid. The correction 3 can be 
illustrated from Figure 7.11 on which the surface base AB has a grid bearing due east, 
the origin of the grid being a point 0 on the Greenwich meridian. Assuming the 
underground base is parallel to the surface base, its bearing if fixed gyroscopically from 
C will be (90° — <5), the direction of true north being CN. It can be seen from the 
illustration that the error 5 is due to the convergence of meridians. 

If the engineering project is based on the British national grid, the correction d can be 
calculated using the OS Projection Tables for the Transverse Mercator Projection 
(TMP) of GB. At (t — T) correction would be required only on very long lines, and 
therefore need not be considered for underground work. A similar correction would 
also be necessary if the survey was of small extent and based on a local grid (refer to 
Engineering Surveying, Volume 2, Chapter 2). 

Z = - Csr{ o (7.20) 
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Figure 7.11 

7.2.5 Observation procedures 

Examples of the two basic methods of observation with a gyro-theodolite will now be 
given to illustrate more clearly the theory already covered. 

(1) Reversal point method 

The spin axis is brought approximately to north, the rotor accelerated to full speed and 
carefully suspended. As the gyro, as indicated on the gyro scale, starts to move away 
from the centre-line of the scale it is followed and kept on the centre-line of the scale, by 
rotating the tangent screws of the theodolite. As it reaches, say, its left reversal point 
Figure 7.8(a)) movement ceases for a few seconds and the theodolite horizontal circle is 
read. The gyro is then tracked back, keeping it on the zero of the gyro scale, to its right 
reversal point r 2 and the theodolite again read. Thus the movement of the gyro is 
followed by simply keeping it on the centre-line of the gyro index, whilst the amplitude 
of its movement is measured by the theodolite. 

Reversal Horiz circle reading 

rx (left) 42° 00' 31" 
r2 (right) 49° 40' 32" 
r3 (left) 42° 04' 02" 
r4 (right) 49° 37' 21" 

Schuler's mean Nt = ^ (r1 + 2r2 + r3) 

=
 l
- (42° 00' 31" + 99° 21 ' 04" + 42° 04' 02") 

= 45° 51 '24" 

^ 2 = ^ ( ^ + 2 r 3+ r 4) = 4 5
0
 51 '29" 

.'. N = (Nt + N2)/2 = 45° 51 ' 26" (horizontal circle reading of gyro north). 
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Assuming a tape zero correction (Z) of —10", then 

N 0 = N - Z = 45° 51 ' 26" - 10" = 45° 51 ' 16" 

A check on the computation can be applied by combining Nt and N 2 to give 

N = ^ ( r 1 + 3 r 2 + 3 r 3 + r 4) 

Assume that the theodolite is now sighted along the base line and the mean 
horizontal circle reading was, say, 55° 51 ' 16", then the base is obviously 10° clockwise 
of gyro north and its bearing relative to gyro north is therefore 10°. 

The application of the instrument constant K equal to, say, —03' 00" will reduce the 
bearing of the base line to its correct geographical azimuth, i.e. 09° 57' 00" relative to 
true north. 

If the survey is to be connected into the British national grid then a correction (5) for 
convergence of meridians (i.e. the difference between grid north and true north) must be 
made and possibly a (t — T) correction (i.e. the difference between an observed bearing 
and its corresponding grid bearing). In some instances a Laplace correction may need 
to be applied where the 'deviation of the vertical' is very high; however, in most cases 
this correction is usually less than 3" of arc. (Students should refer to Volume 2 of this 
work for details of the above corrections and worked examples.) 

In the case of local surveys, of limited extent, on a rectangular Cartesian grid, only the 
convergence of meridians need be considered. 

Figure 7.12 shows the relationship of the various corrections. 

Gyro bearing AB = j8 = 10° 00' 00" 
Instrument constant K = - 0° 03 ' 00" 

Geographical azimuth 9 = 
Convergence of meridians <5 = 
(t-T) 

09° 57' 00" 
+ 43' 09" computed from 
+ 00' 04" geodetic tables 

N G bearing of base-line AB = 10° 40' 13" = <$> 

(N.B. Z is the tape zero correction = - Csr0.) 

Grid N 

Figure 7.12 
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(2) Transit method 

In this method the gyroscope is set approximately to north (N') and the whole 
instrument clamped. Oscillation of the gyro index about the gyro scale is noted and 
timed. For instance, with the gyro on the centre-line of the scale the reading is zero and 
the time is zero. As the gyro reaches its left reversal point (Aw) the gyro-scale reading is 
noted; as it returns to zero the time t2 is noted (refer Figure 7.9). Similarly, the gyro-
scale reading of the right reversal is noted (AE) and the time 13, when the gyro once again 
returns to the zero of the gyro index. The field data are reduced as follows: 

Transit Oscillation Time Reversal Horizontal AN 
time time difference readings AE) circle 
t T 'AT' AW/AE 'A' AT 

0 m 00.0 s 
- 3 m 16.1s - 1 1 . 8 (Aw) 

45° 47' 00" 

3 m 16.1s 
+ 3 m 23.3 s 

+ 7.2s 
+ 12.9 (AE) 

12.35 + 4.25' 

6 m 39.4 s 
- 3 m 15.6 s 

+ 7.7 s 
- 1 1 . 8 

12.35 + 4.55' 

9 m 55.0 s 
+ 3 m 23.2 s 

+ 7.6 s 
+ 12.9 

12.35 +4.49' 

13 m 18.2 s Mean +4.43' 

AN = CM A 7 

where C = proportionality constant = 0.047 8 min of arc/div of gyro scale x sec of 
time 

A = ^(AW + AE) = ^(U.S+ 12.9) = 12.35 

AT = algebraic sum of times = ( —3 m 16.1s + 3 m 23.3 s) 
= +7 .2 s (Tw is - ve, TE is + ve) 

then AN = 0.0478 x 12.35 x 7.2 = 4.25' 

Horizontal circle reading of gyro N = N ' + AN = 45° 51 ' 26" 

which is now corrected for Z and/or K, as previously. 
The value of C is easily obtained using the above method with the instrument 

oriented say west of north, then east of north. Thus 

N = N'W + CA1ATl =N'E + CA2AT2 
from which 

c = N'w- N'E 
A2AT2 — A1ATl 

The main point to be emphasized about gyro observations is that they can be carried 
out on a line situated anywhere in the underground workings. 
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7.3 LINE AND LEVEL 

7.3.1 Line 

The line of the tunnel, having been established by wire survey or gyro observations, 
must be fixed in physical form in the tunnel. Fo r instance, in the case of a Weisbach 
triangle (Figure 7.13) the bearing WUW1 can be computed; then, knowing the design 
bearing of the tunnel, the angle 6 can be computed and turned off to give the design 
bearing, offset from the true by the distance XWU. This latter distance is easily obtained 
from right-angled triangle WiXWu. 

The line is then physically established by carefully lining in three plugs in the roof 
from which weighted strings may be suspended as shown in Figure 7.14(a). The third 
string serves to check the other two. These strings may be advanced by eye for short 
distances but must always be checked by theodolite as soon as possible. 

S h a f t 

Tunne l 

W2_ _ _ X _ De_si^n_( t 

O f f s e t 

Figure 7.13 Plan view 

Figure 7.14 (a) Section, and (b) plan 

( b) Lef t 

- R i n g s 

R i g h t 

The gradient of the tunnel may be controlled by inverted boning rods suspended 
from the roof and established by normal levelling techniques. 

Where tunnel shields are used for the drivage, laser guidance systems may be used for 
controlling the position and attitude of the shield. A laser beam is established parallel to 
the axis of the tunnel (i.e. on bearing and gradient) whilst a position-sensing system is 
mounted on the shield. This latter device contains the electro-optical elements which 
sense the position and attitude of the shield relative to the laser datum. Immunity to 
vibrations is achieved by taking 300 readings per second and displaying the average. 
Near the sensing unit is a monitor which displays the displacements in mm 
automatically corrected for roll. Additionally, roll, lead and look-up are displayed on 
push-button command along with details of the shield's position projected 5 m ahead. 
When the shield is precisely on line a green light glows in the centre of the screen. All the 
above data can be relayed to an engineers' unit several hundred metres away. 
Automatic print-out of all the data at a given shield position is also available to the 
engineers. The system briefly described here is the TG-26 system, designed and 
manufactured by Z E D Instruments Ltd, Twickenham. 
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In addition to the above, 'square marks ' are fixed in the tunnel by taping equilateral 
triangles from the centre-line or, where dimensions of the tunnel permit, turning off 90° 
with a theodolite, Figure 7.14(b). Measurements from these marks enable the amount 
of lead in the rings to be detected. For instance, if Dx > D2 then the difference is the 
amount of left-hand lead of the rings. The gap between the rings is termed creep. In the 
vertical plane, if the top of the ring is ahead of the bot tom this is termed overhang, the 
reverse is look-up. All this information is necessary to reduce to a minimum the amount 
of 'wriggle' in the tunnel alignment. 

Laser installation 

In general the power output of commercial lasers is of the order of 5 m W and the 
intensity at the centre of a 2-cm diameter beam approximately 13 m W / c m

2
. This may 

be compared with the intensity of sunlight received in the tropics at noon on a clear day, 
i.e. 100 m W / c m

2
. Thus, as with the Sun, protective goggles should be worn when 

viewing the laser. 
Practically all the lasers used in tunnelling work are wall- or roof-mounted, hence 

their setting is very critical. This is achieved by drilling a circular hole in each of two 
pieces of plate material, which are then fixed precisely on the tunnel line by 
conventional theodolite alignment. The laser is then mounted a few metres behind the 
first hole and adjusted so that the beam passes through the two holes and thereby 
establishes the tunnel line. Adjustment of the holes relative to each other in the vertical 
plane would then serve to establish the grade line. 

An advantage of the above system is that the beam will be obscured should either the 
plates or laser move. In this event the surveyor/engineer will need to 'repair' the line, 
and to facilitate this, check marks should be established in the tunnel from which 
appropriate measurements can be taken. 

In order to avoid excessive refraction, when installing the laser the beam should not 
graze the wall. Earth curvature and refraction limit the laser line to a maximum of 
600 m, after which it needs to be moved forward. To minimize alignment errors, the 
hole farthest from the laser should be about one third of the total beam distance from 
the laser (refer Sections 8.7.2 et seq). 

7.3.2 Level 

In addition to transferring bearing down the shaft, the correlation of the surface level to 
underground must also be made. 

One particular method is to measure down the shaft using a 30-m standardized steel 
band. The zero of the tape is correlated to the surface BM as shown in Figure 7.15, and 
the other end of the tape precisely located using a bracket fixed to the side of the shaft. 
This process is continued down the shaft until a level reading can be obtained on the 
last tape length at B. The standard tension is applied to the tape and tape temperature 
recorded for each bay. A further correction is made for elongation of the tape under its 
own weight using: 

Elongation (m) = WL/2AE 

where E = modulus of elasticity of steel (N/mm

2
) 

L = length of tape (m) 
A = cross-sectional area of tape (mm

2
) 

W = mass of tape (N) 
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Figure 7.15 

Then the corrected distance AB is used to establish the value of the underground BM 
relative to the surface BM. 

If a special shaft tape (1000 m long) is available the operation may be carried out in 
one step. 

The operation should be carried out at least twice and the mean value accepted. 
Using the 30-m band, accuracies of 1 in 5000 are possible, the shaft tape gives accuracies 
of 1 in 10 000. 

Electromagnetic distance-measuring (EDM) equipment has also been used to 
measure shaft depths. A special reflecting mirror at the top of the shaft is aligned with 
the E D M instrument and then rotated in the vertical plane until the measuring beam 
strikes a reflector at the shaft bottom. In this way the distance from the instrument to 
the reflector is obtained and subsequently adjusted to give the distance from mirror to 
reflector. By connecting the mirror and reflector to surface and underground BM 
respectively, their values can be correlated. With top-mounted E D M a reflecting 
mirror is unnecessary and the distance to a reflector at the shaft bot tom could be 
measured direct. 

7.4 HYDROGRAPHIC SURVEYING 

Hydrographic surveys are carried out in connection with harbour and dock 
construction, coastal defence work, sewage disposal, etc. Therefore, the engineer who 
works on such sites requires a knowledge of tide and wave theory in addition to basic 
surveying techniques. 

7.4.1 Tidal theory 

Both Newton and Laplace investigated tidal activity, but neither of their theories can 
account for the many variables such as irregular land masses, differing depths of water, 
etc., which are involved. 

The main tide-producing forces are the gravitational attractions of the Moon and, to 
a lesser extent, the Sun, the ratio being 2.34:1. 

U n d e r g r o u n d 
. B M 

R e a d i n g 
on t a p e 

- B r a c k e t s 
S h a f t

 1 
S u r f a c e B M 
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resolved into two components, the horizontal one being called the tractive force. These 
tractive forces serve to move the water from Nx and N2 towards Ex and E2, having their 
greatest intensity at points A1A1BlB2- In this way high tides are formed at £ x and E2, 
and low tides at Nx and N2. 

In practice, tidal predictions are based on the harmonic analysis of past records, 
commencing with an analysis of tidal curves obtained from self-registering tide gauges. 
These data are then used to prepare a predicting machine for future tidal information. 

7.4.2 Tidal nomenclature 

(1) Spring tides are the highest of the month and occur when the joint effect of the Sun's 
and Moon's attractions is at maximum (new or full Moon). In practice, the tide occurs 
some small interval (1 to 2 days) after the theoretical time; this is called the age of the 
tide. 
(2) Equinoctial spring tides are exceptionally high, occurring during the equinoxes 
when the Sun and Moon are vertically over the Equator. 
(3) Neap tides are the lowest of the month, occurring when the Sun's and Moon's 
attractions are in opposition to each other. 

The average interval between corresponding tides on successive days is 24 h 50 min, 
thus each tide occurs 50 min later each day. 
(4) Lowest astronomical tide is the sounding datum used for Admiralty charts and is the 
level of the lowest predicted tide. 

N2 
Figure 7.16 

Considering a particle of water on the Earth's surface, the Moon will exert an 
attraction on this particle directly proportional to the mass of the two bodies and 
inversely proportional to the square of the distance between them. However, as the 
Earth itself will also be subject to this attraction, the resultant force acting on the 
particle is the difference between the two and is called a tide generating force. This 
differential attraction is very small, 9 x 1 0 "

7
, and therefore has no effect upon the 

Earth's crust. 
Considering the Moon's attraction on the Equator (Figure 7.16), the direct 

attractions at Ex and E2 will produce corresponding depressions at Nt and N2, with 
intermediate directions between the two. The tide-generating forces can be further 



U n d e r g r o u n d a n d hydrograph ic surveying 243 
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Figure 7.17 

7.4.3 Survey techniques 

Broadly the work may be divided into on-shore and off-shore. The former is carried out 
by the usual processes of triangulation, traversing, tacheometry, etc., while off-shore 
may be categorized as follows: 

(A) Vertical measurement of depths by sounding. 
(B) Horizontal control of the sounding position. 
(C) Reduction of soundings to a datum (Ordnance or tidal datum). 

(A) Soundings 

This is the practice of measuring the vertical depth from the water surface to the bed 
level. 

In shallow depths of 5 m or less, a graduated wooden pole may be used. The pole is 
sometimes fitted with a cup to prevent it from sticking in the bed material. The method 
is slow and in a moving boat requires a certain skill. 

In greater depths a sounding line is used. This is a wire, chain or hemp line with a cup-
shaped lead weight attached. To sound a vertical depth, it is thrown ahead of the boat, 
so that the weight touches bot tom when the boat is directly overhead. The weights vary 
from 2 to 5 kg depending upon the depth of water. The maximum length of line is 60 m, 
though for harbour soundings 20 m would suffice. 

The personnel required for such work would consist of boat crew, leadsman, booker 
and, if the position was being fixed by three-point resection, a further two on sextants. 
The data booked would be number, depth and time of sounding, plus sextant angles if 
necessary. 

For large areas requiring a continuous profile, echo-sounding apparatus would be 
used. This apparatus consists essentially of a transmitter, a receiver and a recorder. A 
sound pulse transmitted from the bot tom of the ship at T (Figure 7.18(a)), is reflected at 
A and received at R, the time of travel being recorded. As the velocity of sound through 
water is known then the depth can be found. In practice, the returning echoes are picked 
up on an oscillator and converted from sound waves to high-frequency oscillations. 
These oscillations are amplified and transformed into a suitable current for operating a 
stylus on a travelling roll of paper. 
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Boat 

Figure 7.18 

The apparatus is generally standardized for a mean velocity of sound through water 
equal to 1500 m/s. However, as the velocity varies with salinity, temperature and 
pressure, a correction may have to be applied either to the equipment or the results. 
Slight error will also occur due to the separation of T and R, and this may be corrected 
by Pythagoras. 

On hard rock bottoms most of the pulse energy is reflected back and produces a well-
defined trace. On muddy bottoms the energy is absorbed, and the trace less clear. In this 
way bed material may be recognized. The equipment is accurate to about 1 in 200. 

The transducer of the echo-sounder is reversible and used for the transmission and 
reception of the sound waves. The sound waves may be directed in either a wide beam 
or a narrow beam, i.e. a 55° cone or 6° to 2° cone. The narrow beam gives greater 
accuracy and is less prone to reflections from other sources; it must, however, be 
stabilized at extra cost. The wider beam gives greater coverage of an area resulting in 
fewer sounding lines. Indeed, the diameter of the area covered by the cone of sound, 
which will increase with depth, controls the separation of the sounding lines. A 
disadvantage of the wide beam is that it measures minimum depth which, due to the 
large area covered, may not be the depth directly below the ship; hence, interpretation 
of the echogram may be difficult. In practice a 30° cone is the one most commonly used. 

As stated, most echo-sounders are calibrated for an average velocity of sound 
through water at 1500 m/s, by a controlled speed of 3000 rev/min. However, as velocity 
varies with water temperature, salinity and density, the apparatus must be adjusted to 
meet local conditions. The methods employed, in order of popularity, are: 

(1) By direct calibration using a bar or target set horizontally below the transducer at 
known depths. The echo-sounder recorder is then adjusted to record those depths. 

(2) By computation of the local velocity using measurements of temperature and 
salinity. This local velocity may then be used to calculate the operational rev/min of 
the apparatus. Calibration curves to facilitate this procedure are frequently 
supplied with the echo-sounder. 

It should be noted that neither method is entirely satisfactory. 
Apparatus used in conjunction with the echo-sounder is the transit sonar which 

makes an acoustic sweep of lanes 200 m in width. As lines of echo soundings may be 30 
to 100 m apart, the presence of underwater obstacles may easily be missed. Using the 
sonar, a beam is emitted at right-angles to the path of the vessel, echoes from which 
produce an acoustic picture of the sea bed showing the presence of obstacles and 
changes in bed texture. The information is purely qualitative, but can be used to 
facilitate the interpretation of underwater contours, the study of pipeline routes and the 
inspection of areas of proposed construction. 

Sweeping is normally carried out using a wire drag suspended at a known depth, H, 
between two vessels 100 m apart and moving in parallel paths (Figure 7.18(b)). When 

(a) 
(b) 
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an obstruction is touched, the boats stop and the angle 9 is measured. In this way a fix is 
made on the obstruction. 

(B) Horizontal control of the sounding position 

(1) Inshore methods 

(a) Cross-rope method is used where the river or channel is narrow enough to permit a 
rope to be slung across (maximum width 300 m). The boat is pulled to a measured 
position on the rope and soundings taken. The method is relatively accurate and is 
essential where high velocities are encountered, such as near a waterfall. It is important 
that the position of the cross-rope is correlated to existing surveys. 
(b) Tacheometry may be used in placid water, the staff being held in the boat. 
(c) Range and shore angle method is indicated in Figures 7.19 and 7.20. The ranges are 
steering lines defined by objects on the shore; if the boat is kept on this line, then one 
angle from a base line will serve to fix its position. The method in Figure 7.20 will give 
denser soundings near the shore. 

Figure 7.19 Figure 7.20 

(d) Range and boat angle is the reverse of the range and shore angle method, the angle 
being measured by sextant from the boat. 
(e) Simultaneous angles from the shore as shown in Figure 7.21 will establish position 
where no ranges exist. The boat is steered in an approximately straight line, the angles 
being measured on a pre-arranged signal or radio contact at the instant of sounding. An 
excellent check is obtained by using observations from three shore stations. 
(f) Simultaneous angles from the boat requires two observers using sounding sextants to 
measure the angles to three known shore stations (Figure 7.22), and this is probably the 
most popular method. 

The position of the boat may be fixed mechanically with the use of a station pointer. 
This is a circular protractor with three long straight-edge arms radiating from its 
centre. The two outer ones are movable so that the angles a and /? may be set. When the 
instrument is laid flat on the plan with the three arms passing through the three shore 
stations, the centre of the protractor gives the boat 's position. 

The same result may be achieved by constructing the three lines on tracing paper and 
applying the paper to the plan in the same way. 

R e a r s ight 
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Figure 7.21 Figure 7.22 

In practice, however, the most popular method is by plotting circle charts, the 
principle of which is shown in Figure 7.23. The intersection of two circles passing 
through shore stations A, B and C gives the position of the boat at P. It can be clearly 
seen that the radius of circle BC is \BC cosec /?; thus for various values of a and p & 
chart can be produced of a large number of such circles having their respective centres 
on the perpendicular bisector of the chords AB and BC. Interpolation between the 
circles for the measured angles an, jSn, will fix the boat 's position. 

If by chance P should fall on the circumference of a circle passing rhrough A9 B and C, 
no solution is possible. This is referred to as the danger circle and should be carefully 
avoided. 

The range of the sextant is from 200 to 5000 m with an accuracy of about ± 4 m. 
(g) Subtense methods are widely used in harbour work. The horizontal method involves 
measuring the angle to both ends of a fixed horizontal distance whilst travelling along a 
range normal to the middle of the horizontal base; thus the angle will vary with distance 
from the base. The vertical method uses a vertical board marked in intervals 

Figure 7.23 

-C i r c l e p lo t t i ng c h a r t 

Sounding boat 
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representing a known horizontal distance relative to a prefixed vertical angle. The zero 
of the board is established on the eye level of the sextant observer in the boat. With a 
fixed vertical angle on the sextant the observer views the zero mark, when the first 
interval mark comes into view on the sextant, the distance Dx from the board is known 
and if the boat is kept on a fixed range in line with the board, its off-shore position is 
fixed. The method is quite accurate for the relatively short distances involved. 

These methods constitute the optical systems commonly in use for what might be 
termed inshore work. 

In such work the distance apart of the lines of soundings will vary with the diameter 
of the cone of the echo-sounder and the depth of sounding. A system used by the Royal 
Navy specifies that on the scale of the plan: 

(i) Sounding lines should not exceed 10 mm apart. 
(ii) Fixes of the boat on the lines should not exceed 25 mm. 

Using these specifications, combined with a knowledge of depth and angle of echo 
cone, the operation can be carefully planned and carried out. 

(2) Offshore methods {electromagnetic position fixing) 

(a) Short range: The equipment is portable, microwave equipment, comprising two 
on-shore 'remote' units which form a base line and give continuous distances to a 
receiver system on board ship. The ship's position is thus at the apex of a triangle whose 
three sides are known. 

Two well-known systems are the Decca Trisponder 202A (range 80 km, accuracy 
± 3 m) and the Tellurometer Hydrodist MRB 201 (range 50 km, accuracy ±1 .5 m). 
The systems operate at speeds up to 30 knots and can be linked to dynamic position-
fixing systems capable of automatic operation and fitted with full data output facilities 
for the operation of computers, plotters, data recorders, etc. 
(b) Medium range: Figure 7.24 shows a 'master' station A, combined with two 'slaves' 
B and C, which, in effect, generate a hyperbolic lattice of electromagnetic wave pattern 
over the area. With the aid of on-board phase meters, the ship's position within the 
lattice can be defined by hyperbolic co-ordinates. Correlation of the on-shore units into 
an appropriate survey system enables the hyperbolic co-ordinates to be converted to 
geographical or rectangular. 

A well-known example of such a system is the Decca Hi-Fix 6 (range 300 km, 
accuracy a = 0.01 lanes). The lane width along the base lines AB and AC is 75 m giving 
an accuracy of ±0.75 m, but this falls off rapidly as the lines diverge from each other. 
This fault can be eliminated by using two on-shore 'slaves' and a 'master' on board ship, 
resulting in a lattice of intersecting circles with a constant lane width. The disadvantage 
is that only one ship at a time may operate in this latter arrangement. 
(c) Satellite doppler: Position-fixing on a world-wide basis, by the use of artificial 
satellites, became generally available in 1967 when the US Navy Navigational Satellite 
System-Transit, was brought into operation. At present the system has an absolute 
positioning accuracy of 1 to 2 m, and sub-metre accuracy in the relative positioning of 
points. 

When a sound source and receiver are in motion relative to each other, the frequency 
of a transmitted wave at the receiver will differ from the frequency at the source 
according to a definite mathematical form. This is called the Doppler effect and is the 
principle used in satellite fixation. The orbiting satellites are tracked from accurately-
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Figure 7.24 

located ground stations and their position continuously updated. Thus the satellite 
becomes a navigational beacon which regularly transmits information defining its 
position. A vessel possessing the appropriate equipment receives the transmitted data, 
measures the doppler shift and converts the information into geographical co-
ordinates defining the ship's position. 

For more details of all these systems, reference should be made to specialist texts, 
(d) Acoustic techniques: These particular techniques are useful for the precise 
position-fixing necessary in coring surveys, rig positioning, pipeline work, dynamic 
position of vessels, and the setting out of underwater construction. 

Having established the position of the site using the aforementioned techniques, one 
may then require the equivalent of an accurate setting-out grid correctly positioned 
within the site area. This is done by putting down a pattern of sea-bed acoustic 
transformers (Figure 7.25) which can be positioned relative to each other to an accuracy 
of about 1 in 1000. The absolute position of the transponders is fixed by the methods 
already outlined, i.e. Decca Hi-Fix (only daytime operation possible), Aqua-Fix or Sat 
Nav. Several passes over the transponders will be made and their positions accurately 
assessed from all available data. 

To position a vessel within the pattern area, the transponders are interrogated as 
shown. The time taken for the vessel to receive the return pulse from a particular 
beacon is a measure of the range. Position can be fixed to an accuracy of ± 4.5 m from a 
minimum of two ranges. For stationary situations, such as fixing the position of a 
drilling vessel, repeated observations can be made to give an improved accuracy of 
about ±2 .5 m. 

The pattern of acoustic transponders can be varied according to requirements. For 
instance, a single transponder placed over an old drilling head is all that is required to 
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Figure 7.25 

position a vessel directly over it. On the other hand, a series of transponders along the 
route of a pipeline would be necessary for its location. 

The advantages of the acoustic system are: 

(i) N o shore-based transmitting sites are required once the transponder positions 
have been fixed. 

(ii) The system can be used continuously. 
(hi) The system can be used anywhere and, once established, it is available anytime, 

for it can be left on location indefinitely and survey can be resumed at any time 
without loss of accuracy. 

(C) Reduction of soundings 

In order to reduce soundings, it is necessary to know the level of the water surface, 
relative to some datum, at the instant of sounding. To achieve this a tide gauge is used. 

In its simplest form this gauge consists of a graduated post fixed either on the shore, 
or on the side of a quay wall. Such a gauge is called a staff gauge (Figure 7.26(a)) and is 
generally related to O D by direct levelling. 

Where the whole tidal range requires investigation, it may be necessary to establish a 
series of gauges from high-water level to low-water level. The same applies along the 
shore line where there is a variation in water level (Figure 7.26(b)). 

Where a continuous record of the tides is required self-registering gauges are used 
(Figure 7.27). These are generally situated in tidal observatories throughout the 
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Figure 7.27 

country and consist of a float hung in a well, with a pipe outlet to the sea set well below 
low water level. The float is connected by a flexible wire, through a series of pulleys and 
gears, to a stylus. The change of water level on the float is recorded by a fine line on a 
travelling roll of paper. 

Alternative tide gauges may be used, such as the float gauge (Figure 7.28) in which 
the graduated staff is attached to a float and enclosed within a box. The box is 
perforated at its lower end to allow the sea access and thus acts as a stilling chamber. As 
the staff is graduated from zero at sea-level, the depth to sea-level is read off against an 
index mark which has a value relative to O D . Thus the level of the sea at any instant of 
time is known. 

As staff gauges require constant observation, a self-registering gauge of the type 
already mentioned is generally used. However, typical of modern developments in this 
area, a recording tide gauge capable of operating on the sea-bed at depths of 200 m in 

Figure 7.28 
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remote locations, has been developed at the National Institute of Oceanography. The 
instrument consists of a 560-mm diameter sphere which houses electronic systems and 
batteries. This is mounted in a tubular tripod that sits on the sea bed. External to the 
sphere are a pressure transducer, temperature sensor and acoustic command and 
transmit beacons. On command from the surface the sphere assembly floats to the 
surface for retrieval. The basic principal of the equipment is based on the measurement 
of flexure of a diaphragm under varying hydrostatic pressure. 

If tide prediction over a local area is required, tide gauge readings should be taken 
over a minimum period of two weeks so as to include spring and neap tides. The 
readings may be at hourly intervals, increasing to 5-minute intervals about the time of 
high or low water. For the reduction of soundings they should be at 5 to 10-minute 
intervals over the period of sounding. 

As the variation of the water level is not linear, a graph should be plotted of tide 
gauge reading against time. In this way% values can be interpolated for the instant of 
sounding as follows. Assume the zero of the tide gauge is 1 m O D (obtained by direct 
levelling), and tide gauge readings at 9.00 a.m. and 9.10 a.m. were 1.08 and 1.1m 
respectively. At sea a sounding of 10 m was recorded for point A at 9.05 a.m. 

By interpolation from the graph the reading at 9.05 a.m. is 1.09 m. 
Therefore the water level, at this instant, relative to O D = 1 -1-1.09 = 2.09 m O D . 
As the sounding was 10 m, the level of point A would be (2.09 — 10) = — 7.91 m O D . 
To eliminate the use of negative signs, it would be advisable to assume a value of 

100 m for mean sea level, in which case the level of A = 92.09 m. 

7.4.4 Sextant 

A sounding sextant (Figure 7.29), as used in position fixing, is a more robust version of 
an ordinary sextant and has a greater sighting range. Its principles are as follows: 

To measure the angle AOB, the target at A is viewed direct through the unsilvered 
glass at E. The image of target B is brought into coincidence with A in the silvered 
portion of the mirror at E, by manipulating the mirror arm CF to position CG. Now: 

B 

A-

Figure 7.29 
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angle BOA = 2a - 20 = 0 

angle CDE = FCG = (a - fi) = $ 

: . 6 = 2(f) 

The scale of the sextant is so graduated that the double angle <j> = 9 , can be read 
direct. Thus the 75° arc permits angles up to 150° to be resolved to 1 minute of arc. 

It should be noted that the angle A OB is measured in the plane of the objects viewed. 
Thus if A and B are at greatly differing elevations the observed angle would need to 

be reduced to the horizontal using the spherical trig equation (Figure 7.30) 

cos 9 — cos a cos B 
cos 9 H = : — — 7 . 2 1 

sin a sin /} 

where 9 H is the horizontal equivalent of the measured angle 9 , and a, /? are vertical 
angles measured from the vertical, i.e. 

a = (90° ± <5A) and fi = (90° ± SB) 

This can be avoided by keeping the terrain stations at shore level. 

7.4.5 Direction and velocity of currents 

This information is very necessary to the engineer, particularly in the case of sewage 
disposal. The simplest solution is to note the position and time of a float as it is carried 
through the water (Figure 7.31), although the surface does not behave in the same way 
as the main body of water. This is due to wind, the effect of cross-currents, and the fact 
that fresh-water streams entering sea water do not readily mix, and travel uppermost at 
a different velocity for some distance. Also, in any body of water the maximum velocity 
occurs some distance below the surface. In view of these considerations, the floats used 
should be so constructed that they extend well below the surface, with just the indicator 
at the surface. The position of the float can be fixed by any of the methods already 
outlined. 

Figure 7.30 
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Figure 7.31 

7.4.6 Engineering applications 

Apart from the more obvious applications of pipeline operations, rig positioning and 
coring surveys in which the electromagnetic systems are continually used, the following 
serve to illustrate their smaller-scale use: 

(1) Trailer suction dredging in which position-fixing is very critical—used in 
conjunction with track plotter to avoid over-dredging (low spots) or under-dredging 
(high spots). Receiver sited directly over suction head. 
(2) Precision dredging by grab barge: It is frequently necessary to remove hard spots 
left by suction methods. This requires precision survey to locate the spots, and then 
precision positioning to remove them, finally post dredging surveys to confirm the 
work. 
(3) Obstacle and wreck sweeping: In busy waterways in particular, the location and 
pin-pointing of obstacles is vitally important, as it would be to many engineering 
projects. Using an echo-sounder with a particularly wide cone and Hi-Fix track plotter 
to obtain lines about 5 m apart , it is possible to ensure that no gaps are left. If the search 
is unsuccessful, it is possible to 'interline' the previously searched lines using the track 
plotter, thus giving lines 2.5 m apart. 
(4) Float tracking to determine the rate and direction of currents. This information may 
be required at certain depths below the surface, in which case 'kites' are suspended at 
the requisite depth below the buoy floats. For shallow depths, a pole of uniform cross-
section is made to float vertically, with only sufficient of its upper end visible to allow 
observation. One method of tracking the floats is to utilize a Hi-Fix receiver in a small 
launch, with the receiving antenna mounted on an overside boom. A pointer, vertically 
beneath the antenna, enables it to be positioned directly over the buoy. 
(5) Isotope tracking is used to investigate the subsequent movement of deposited 
dredged spoil, and that of effluent from sewer outfalls. 

Ground glass is prepared to the grain size of the dumped spoil and exposed to radio-
active isotopes. 

Detection of the radio-active trace is made by towing a scintillation counter over the 
sea-bed. This is also done prior to dumping to correct for any existing radio-active 
count in the area. Radio-active tracer distribution contour charts are prepared from 
scintillation count surveys using a position-fixing system like Hi-Fix. 

The radio-active life may be short or long, depending upon the period of 
investigation envisaged. 

__Shore l ine 

F l o a t d e f i n i n g c u r r e n t 
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Figure 7.32 

Worked examples 

Example 7.1. The national grid (NG) bearing of an underground base-line, CD (Figure 
7.32), is established by co-planning at the surface on to two wires, Wx and W2, hanging 
in a vertical shaft, and then using a Weisbach triangle underground. 

The measured field data is as follows: 

N G bearing AB 
N G co-ords of A 
Horizontal angles: 

BAWS 
AWSW2 
w2wnwx 

wxwuc 
WUCD 

Horizontal distances: 
WJV2 
WnW, 

74° 28' 34" 
E 304625 m , N 511612 m 

284° 32' 12" 
102° 16' 18" 

0° 03 ' 54" 
187° 51 ' 50" 
291° 27' 48" 

3.625 m 
2.014 m 

In order to check the above correlation, a gyro-theodolite is set up at C and the 
following horizontal scale theodolite readings to the reversal points of the gyro 
recorded: 

Left reversal point 
Right reversal point 
Left reversal point 

336° 25' 18" 
339° 58' 52" 
336° 02' 44" 

The mean horizontal scale reading on to CD is 20° 51 ' 26" 

Given: Convergence of meridians ± 0 ° 17' 24" 
(t — T) correction 
Instrument constant 

± 0 ° 00' 06" 
- 2 ° 28 '10" 

compute the difference between the bearings of the underground base as fixed by the 
wire survey and by the gyro-theodolite. (KP) 
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Grid bearing of AWS = 359° 00' 46" 
Angle AWSW2 = 102° 16'18" 

S u m = 461° 17' 04" 
- 1 8 0 

Grid bearing WXW2 = 281° 17'04" (refer Figure 7.32) 

Now, using the Weisbach triangle calculate the bearing of the underground base 
from the wire base: 

From a solution of the Weisbach triangle 

234" x 2.014 
Angle W2WXW^ = = 130" = 0° 02' 10" 

Grid bearing Wx W2 = 281° 17' 04" 
Angle W2WxWn= 0 ° 0 2 ' 1 0 " 

Grid bearing WXWU = 281° 14' 54" 
Angle WXWUC = 187° 51 '50" 

Sum = 469° 06' 44" 
- 1 8 0 

Grid bearing WUC = 289° 06' 44" 
Angle WUCD = 291° 27 '48" 

Sum = 580° 34' 32" 
- 5 4 0 

Grid bearing CD = 40° 34' 32" (underground base; 

Compute the grid bearing of CD using gyro data : 

Horizontal circle reading of gyro north = ^ ^

l
 *

 r
* + r2̂ j 

1 
= - [(336° 25' 18" + 336° 02' 44")/2 + 339° 58' 52"] = 338° 06' 26" 

Horizontal circle reading of base CD = 20° 51 ' 26" 
.*. Bearing of CD relative to gyro north = 42° 45' 00" 

Bearing of CD relative to true north = 42° 45' 00" - instr constant 
= 40° 16' 50" = $ (Figure 7.33) 

With reference to Figure 7.33, it can be seen how the 'convergence of meridians' (36) 

The first step is to calculate the bearing of the wire base using the measured angles at 
the surface: 

Grid bearing of AB = 74° 28' 34" (given) 
Angle BAWS = 284° 32 '12" 
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and (t — T) are applied to transform true N to grid N (refer Volume 2, Chapter 2 for 
details). 

/ . National grid bearing CD = 40° 16' 50" + 0° 17' 24" + 0° 00' 06" 
= 40° 34' 20" 

Difference in bearings = 12". 

Example 7.2. The centre-line of the tunnel AB shown in Figure 7.34 is to be set out to a 
given bearing. A short section of the main tunnel has been constructed along the 
approximate line and access is gained to it by means of an adit connected to a shaft. 
Two wires C and D, are plumbed down the shaft, and readings are taken on to them by a 
theodolite set up at station E slightly off the line CD produced. A point F is located in 
the tunnel, and a sighting is taken on to this from station E. Finally a further point G is 
located in the tunnel and the angle EFG measured. 

From the survey initially carried out, the co-ordinates of C and D have been 
calculated and found to be E 375.78 m and N 1119.32 m, and E 375.37 m and 
N 1115.7 m respectively. 

Figure 7.34 
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Calculate the co-ordinates of F and G. Without making any further calculations 
describe how the required centre-line could then be set out. (ICE) 

Given data: CD = 3.64 m DE = 4.46 m 
EF = 13.12 m FG = 57.5 m 
Angle DEC = 38" 
Angle CEF^ 167° 10' 20" 
Angle EFG= 87° 2 3 ' 4 1 " 

Solve Weisbach triangle for ahgle ECD 

. ED ~ 4.46 
C = — £ = — x 3 8 " = 47" 

DC 3.64 

By co-ordinates 

, - 0 . 4 1 
Bearing of wire base CD = t a n "

1
 — — = 186° 27' 19" 

— 3.62 

/ . WCB of CE = 186° 27' 42" - 47" = 186° 26' 55" 
WCB of CE = 186° 26' 55" 
Angle CEF = 167° 10' 20" 

WCB of EF = 173° 37 '15" 
Angle EFG = 87° 23 ' 41" 

WCB of FG = 81° 00 '56" 

Line Length WCB Co-ordinates Total co-ordinates 
(m) 

AE AN E N Station 

375.78 1119.32 C 
CE 8.10 186° 26'55" - 0 . 9 1 - 8.05 374.87 1111.27 E 
EF 13.12 173° 37' 15" 1.46 - 1 3 . 0 4 376.33 1098.23 F 
FG 57.50 81° 00'56" 56.79 8.99 433.12 1107.22 G 

Several methods could be employed to set out the centre-line; however, since bearing 
rather than co-ordinate position is critical, the following approach would probably 
give the best results. 

Set up at G, the bearing of GF being known, the necessary angle can be turned off 
from GF to give the centre-line. This is obviously not on centre but is the correct line; 
centre positions can now be fixed at any position by offsets. 

Example 7.3. Two vertical wires A and B hang in a shaft, the bearing of AB being 
55° 10' 30" (Figure 7.35). A theodolite at C, to the right of the line AB produced, 
measured the angle ACB as 20' 25". The distances ,4C and BC were 6.4782 m and 
3.2998 m respectively. 

Calculate the perpendicular distance from C to AB produced, the bearing of CA and 
the angle to set off from BC to establish CP parallel to AB produced. 

Describe how you would transfer a line AB above ground to the bot tom of a shaft. 
(LU) 
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Figure 7.35 

AB*AC-BC = 3.11S4m 

3 2998 
Angle BAC = - x 1225" = 1272" = 21 ' 12" = 0 

3.1784 

By radians CD = AC x 6 rad = ' ^ * — = 0.0399 m 
206 265 

Bearing = 55° 10' 30" 
Angle BAC = 21 ' 12" 

Bearing AC = 55° 31 ' 42" 
/ . Bearing CA = 235° 31 ' 42" 
Angle to be set off from BC = ABC = 180° - (21' 12" + 20' 25") 

= 179° 18 '23" 

Example 7.4. In order to survey the bed of a channel, soundings were taken at 30-m 
intervals on a square grid system, during the incoming tide, the boat proceeding in the 
directions ABCD-K and the soundings obtained were as shown below. The time when 
starting at A was 10 a.m. and when finishing at K 11.36 a.m. At these times the tide 
gauge readings were 6 and 12 m respectively. 

If the zero of the gauge was 2 m O D find the reduced levels of the channel at the 25 
sounding points, assuming uniform rate of rise of water level and uniform rate of 
operation from A to K. 

A 3.0 3.2 3.3 3.5 3.6 B 
D 1.1 7.3 7.0 6.6 6.3 C 
E 8.5 8.7 8.8 9.0 9.1 F 
H 10.1 9.7 9.3 9.0 8.7 G 
J 7.8 8.0 8.1 8.3 8.4 K 

Write brief notes on the equipment required and the methods of operation. If the 
method here is open to criticism suggest improvements. (LU) 

Interval between first and last soundings = 96 min 
.'. Interval between each sounding = 96 -r 24 = 4 min 
Tidal range during soundings period = 6 m 

6 x 4 
.*. Rise per 4-minute interval = = 0.25 m 

96 

Consider sounding A 
Level of water surface at 10 a.m. = 6 + 2 = 8 m O D 
Depth of sounding = 3 
.'. Reduced level of channel = 8 — 3 = 5 m O D 

The remaining levels are completed in the same manner: 
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Station Tide gauge Level of water Depth of RLof 
reading surface sounding channel 

(m OD) 

A 6.0 8.0 3.0 5.00 
1 6.25 8.25 3.2 5.05 
2 6.50 8.50 3.3 5.20 
3 6.75 8.75 3.5 5.25 
B 7.00 9.00 3.6 5.40 
C 7.25 9.25 6.3 2.95 
1 7.50 9.50 6.6 2.90 
2 7.75 9.75 7.0 2.75 
3 8.00 10.00 7.3 2.70 
D 8.25 19.25 7.7 2.55 
E 8.50 10.50 8.5 2.00 

k 12.00 14.00 8.4 5.60 

Criticism (1) For the best results, the work should be carried out during slack water at 
high or low tide. During incoming tide the conditions are much less stable. 

(2) Rate of rise of tide is not uniform; more tide-gauge readings required. 

Exercises 

(7.1) (a) Describe fully the surveying operations which have to be undertaken in 
transferring a given surface alignment down a shaft in order to align the construction 
work of a new tunnel. 

(b) A method involving the use of the three-point resection is often employed in 
fixing the position of the boat during off-shore sounding work. 

Describe in detail the survey work involved when this method is used and discuss any 
precautions which should be observed in order to ensure that the required positions are 
accurately fixed. (ICE) 

(7.2) Describe how you would transfer a surface bearing down a shaft and set out a line 
underground in the same direction. 

Two plumb lines A and B in a shaft are 8.24 m apart and it is required to extend the 
bearing AB along a tunnel. A theodolite can only be set up at C 19.75 m from B and a 
few millimetres off the line AB produced. 

If the angle BCA is 09' 54" what is the offset distance of C from AB produced? 
(ICE) 

(Answer: 195 mm) 

(7.3) Soundings were taken from a boat P whilst observations were made by sextant onto 
three shore signals A, B and C having co-ordinates (0,0), (0,850) and (325,1375) m 
respectively. For one of the soundings the horizontal angles APB and BPC were 
41° 30', and 28° 20' respectively, the boat being to the north-west of the area ABC. 

Calculate the distance of the boat from station £ , and check your calculation by a 
graphical construction. (ICE) 

(Answer: 1220 m) 

(7.4) The surface currents around a proposed sewer outfall into the sea are to be studied 
by plotting the drift of a float released at the appropriate times. 
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If it is practical to follow the float by a boat and remain in sight of several prominent 
features on shore, all identifiable on the 6"-scale Ordnance sheet of the area, how would 
you fix and plot the drift of the float ? (ICE) 

(7.5) In order to determine the cross-sectional profile of the bed of a tidal river, readings 
were taken from a theodolite fitted with stadia hairs onto a vertical staff held in a boat 
at the same time as readings of a sounding rod were observed in the boat and tide gauge 
readings were made on the shore. The base of the staff was not necessarily at the same 
level as the water surface. The reading on the tide gauge of 3.05 m has a reduced level of 
4 m above datum. 

The following observations were recorded: 

Point Staff at Stadia readings (m) Vertical Sounding Tide 
angle rod gauge 

upper middle lower (m) (m) 

1 HWM 2.844 2.761 2.679 - 5 ° - -

2 Boat 2.094 1.957 1.820 - 5 ° 2.08 2.50 
3 Boat 1.375 1.189 1.003 - 5 ° 3.56 2.46 
4 Boat 0.744 0.503 0.262 - 5 ° 3.79 2.42 
5 Boat 2.804 2.527 2.249 - 2 ° 3.29 2.38 
6 Boat 2.618 2.304 1.990 - 2 ° 2.22 2.35 
7 Boat 2.393 2.033 1.673 - 2 ° 0.99 2.29 
8 HWM 1.874 1.487 1.100 - 2 ° - -

- 3.05 m mark on 4.160 3.978 3.795 0° - -
tide gauge 

In the above table all the numbered points lie on a straight line across the river, 
points 1 and 8 being at high water mark. The theodolite was placed at one end of this 
line. 

Calculate the reduced levels of the eight points on the bed of the river and plot the 
required cross-sectional profile on graph paper. (ICE) 

[Answer: 1 = 3.75, 2 = 1.32, 3 = - 0 . 1 8 , 4 = - 0 . 4 6 , 5 = 0, 6 = 1.04, 7 = 2.21, 8 = 3.75) 

Hint: Use reading '3.05 m mark on tide gauge' to find the RL of the centre of theodolite 
in order to find RL of point 1. 
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Setting out (dimensional control) 

In engineering the production of an accurate large-scale plan is usually the first step in 
the planning and design of a construction project. Thereafter the project, as designed on 
the plan, must be set out on the ground in the correct absolute and relative position and 
to its correct dimensions. Thus, surveys made in connection with a specific project 
should be planned with the setting-out process in mind and a system of three-
dimensional control stations conveniently sited and adequate in number, should be 
provided to facilitate easy, economical setting out. 

It is of prime importance that the establishment and referencing of survey control 
stations should be carried out at such places and in such a manner that they will survive 
the construction processes. This entails careful choice of the locations of the control 
stations and their construction relative to their importance and long- or short-term 
requirements. For instance, those stations required for the total duration of the project 
may be established in concrete or masonry pillars with metal plates or bolts set in on 
which is punched the station position. Less durable are stout wooden pegs set in 
concrete or driven directly into the ground. A system of numbering the stations is 
essential, and frequently pegs are painted different colours to denote the particular 
functions for which they are to be used. 

8.1 PROTECTION AND REFERENCING 

Most site operatives have little concept of the time, effort and expertise involved in 
establishing setting out pegs. For this reason the pegs are frequently treated with 
disdain and casually destroyed in the construction process. A typical example of this is 
the centre-line pegs for route location which are the first to be destroyed when earth-
moving commences. It is important , therefore, that control stations and BM should be 
protected in some way (usually as shown in Figure 8.1) and site operatives, particularly 
earthwork personnel, impressed with the importance of maintaining this protection. 

Where destruction of the pegs is inevitable, then referencing procedures should be 
adopted to re-locate their positions to the original accuracy of fixation. Various 
configurations of reference pegs are used and the one thing that they have in common is 
that they must be set well outside the area of construction and have some form of 
protection, as in Figure 8.1. 

A commonly-used method of referencing is from four pegs (A, B, C, D) established 
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Figure 8.2 

such that two strings stretched between them intersect to locate the required position 
(Figure 8.2). Distances AB, BC, CD, AD, AC, BD should all be measured as checks on 
the possible movement of the reference pegs, whilst distances from the reference pegs to 
the setting-out peg will afford a check on positioning. Intersecting lines of sight from 
theodolites at say A and B may be used where ground conditions make string lining 
difficult. 

Where ground conditions preclude taping, the setting-out peg may be referenced by 
trisection from three reference pegs. The pegs should be established to form well-
conditioned triangles of intersection (Figure 8.3), the angles being measured and set out 
on both faces of a 1" theodolite. 

All information relating to the referencing of a point should be recorded on a 
diagram of the layout involved. 

Control station/BM set IN concrete 

Figure 8.1 

100mm guard rails 
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B 
Figure 8.3 

8.2 BASIC SETTING-OUT PROCEDURES USING 
CO-ORDINATES 

Plans are generally produced on a plane rectangular co-ordinate system, hence salient 
points of the design may also be defined in terms of rectangular co-ordinates on the 
same system. For instance, the centre-line of a proposed road may be defined in terms of 
co-ordinates at, say, 30-m intervals, or alternatively, only the tangent and intersection 
points may be so defined. The basic methods of locating position when using co-
ordinates is by either polar co-ordinates, or intersection. 

8.2.1 By polar co-ordinates 

In Figure 8.4, A, B and C are control stations whose co-ordinates are known. It is 
required to locate point IP whose design co-ordinates are also known. The 
computation involved is as follows: 

(1) From co-ordinates compute the bearing BA (this bearing may already be known 
from the initial control survey computations). 

(2) F rom co-ordinates compute the horizontal length and bearing of B — IP. 
(3) F rom the two bearings compute the setting-out angle AB(IP), i.e. p. 
(4) Before proceeding into the field, draw a neat sketch of the situation showing all 

the setting-out data. Check the data from the plan or by independent 
computation. 

Figure 8.4 

i 

Route centre-line 
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The field work involved is as follows: 

(1) Set up theodolite at B and backsight to A, note the horizontal circle reading. 
(2) Add the angle p to the circle reading BA to obtain the circle reading B — IP. Set 

this reading on the theodolite to establish direction B — IP and measure out the 
horizontal distance L. 

If this distance is set out by steel tape careful considerations must be given to all the 
error sources such as standardization, slope, tension and possibly temperature if the 
setting-out tolerances are very small. It should also be carefully noted that the sign of 
the correction is reversed from that applied when measuring a distance. For example, if 
a 30-m tape was in fact 30.01 m long, when measuring a distance the recorded length 
would be 30 m for a single tape length, although the actual distance is 30.01 m; hence a 
POSITIVE correction of 10 mm is applied to the recorded measurement. However, if it 
is required to set out 30 m, the actual distance set out would be 30.01 m; thus this length 
would need to be reduced by 10 mm; i.e., a NEGATIVE correction. 

The best field technique when using a steel tape is carefully to align pegs at X and Y 
each side of the expected position of IP (Figure 8.5). Now, as carefully, measure the 

distance BX and subtract it from the known distance to obtain distance X — IP. which 
will be very small, possibly less than one metre. Stretch a fine cord between X and yand 
measure X — IP along this direction to fix point IP. 

Modern EDM, such as the Aga Geodimeter 122, displays horizontal distance, so the 
length B — IP may be ranged direct to a reflector fixed to a setting-out pole. The use of 
short-range E D M equipment has made this method of setting out very popular. 

8.2.2 By intersection 

This technique, illustrated in Figure 8.6, does not require linear measurements; hence, 
adverse ground conditions are immaterial and one does not have to consider tape 
corrections. 

The computation involved is as follows: 

(1) From the co-ordinates of A, B and IP compute the bearings AB, A — IP and 
B - IP. 

(2) From the bearings compute the angles a and p. 

The relevant field work, assuming two theodolites are available, is as follows: 

(1) Set up a theodolite at A, backsight to B and turn off the angle a. 
(2) Set up a theodolite at B, backsight to A and turn off the angle p. 

Figure 8.5 
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I P 

Figure 8.6 

The intersection of the sight lines A - IP and B - IP locates the position of IP. The 
angle S is measured as a check on the setting out. 

If only one theodolite is available then two pegs per sight line are established, as in 
Figure 8.5, then string lines connecting each opposite pair of pegs locate position IP, as 
in Figure 8.2. 

8.3 TECHNIQUE FOR SETTING OUT A DIRECTION 

It can be seen that both the basic techniques of position fixing require the turning-off of 
a given angle. To do this efficiently the following approach is recommended: 

In Figure 8.6, consider turning off the angle p equal to 20° 36' 20" using a Watts No. 1 
(20") theodolite (Figure 8.7(a)). 

(1) With theodolite set at B, backsight to A and read the horizontal circle—say, 
02° 55' 20". 

(2) As the angle /? is clockwise of BA the required reading on the theodolite will be 
equal to (02° 55' 20" + 20° 36' 20"), i.e. 23° 31 ' 40". 

- f 191 190\ 
I I I HI I IJ

N 

(TTTTTT 
[24 23 

(a) 

-Main-scale reading 23° 20' 00" 

Micrometer reading 00° 1 1' 40" 

Total reading 23° 31' 40" 

3 0 94 
5 4 3 2 1 0 

2'4a* 
, \ h m | m, 

2'50* 
in..i..„; 

( b ) 

-Mam-scale reading 94* 10' OO" 

— Micrometer reading 00' 02' 44* 

Total reading 94° 12' 44" 

Figure 8.7 (a) Watts N o . 1—20" theodolite, (b) Wild T2—1" theodolite 
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Assuming the observer's line of sight passes at 90° through the parallel plate glass, the 
reading is 23° 20' + S. The parallel plate is rotated using the micrometer screw until 
an exact reading (23° 20') is obtained on the main scale, as a result of the line of sight 
being refracted towards the normal and emerging on a parallel path. The distance 5, 
through which the viewer's image was displaced, is recorded on the micrometer scale 
(11' 40") and is a function of the rotation of the plate. Thus it can be seen that rotating 
the micrometer screw in no way affects the pointing of the theodolite, but back-sets 
the reading so that rotation of the theodolite is through the total angle of 20° 36' 20". 

As practically all setting-out work involves the use of the theodolite and/or level, the 
user should be fully conversant with the various error sources and their effects, as well 
as the methods of adjustment. Information to this end is available in Chapters 2 and 4. 

The use of co-ordinates is now universally applied to the setting out of pipelines, 
motorways, general road works, power stations, offshore piling and jetty works, 

Figure 8.8 

Parallel -sided glass 

Micrometer screw 
\ 

(3) As the minimum main scale division is equal to 20' anything less than this will 
appear on the micrometer (Figure 8.7(a)). Thus, set the micrometer to read 
11' 40", now release the upper plate clamp and rotate theodolite until it reads 
approximately 23° 20' on the main scale; using the upper plate slow-motion 
screw, set the main scale to exactly 23° 20'. This process will not alter the 
micrometer scale and so the total reading is 23° 31 ' 40", and the instrument has 
been swung through the angle /? = 20° 36' 20". 

If the Wild T.2 (Figure 8.7(b)) had been used, an examination of the main scale shows 
its minimum division is equal to 10'. Thus, to set the reading to 23° 31 ' 40" one would 
set only 01 ' 40" on the micrometer first before rotating the instrument to read 23° 30' on 
the main scale. 

Therefore, when setting out directions with any make of theodolite, the observer 
should examine the reading system to find out its minimum main scale value, anything 
less than which is put on the micrometer first. 

Basically the micrometer works as shown in Figure 8.8, and, if applied to the Watts 
theodolite, is explained as follows: 
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housing and high-rise buildings, etc. Thus it can be seen that although the project may 
vary enormously from site to site the actual setting out is completed using the basic 
measurements of angle and distance. 

There are many advantages to the use of co-ordinates, the main one being that the 
engineer can set out any part of the works as an individual item, rather than wait for the 
overall establishment of a setting-out grid. 

8.4 USE OF GRIDS 

Many structures in civil engineering consist of steel or reinforced concrete columns 
supporting floor slabs. As the disposition of these columns is inevitably that they are at 
right-angles to each other, the use of a grid, where the grid intersections define the 
position of the columns, greatly facilitates setting out. It is possible to define several 
grids as follows. 

(1) Survey grid: the rectangular co-ordinate system on which the original topographic 
survey is carried out and plotted (Figure 8.9). 

(2) Site grid: defines the position and direction of the main building lines of the 
project, as shown in Figure 8.9. The best position for such a grid can be determined by 
simply moving a tracing of the site grid over the original plan so that its best position 
can be located in relation to the orientation of the major units designed thereon. 

In order to set out the site grid, it may be convenient to translate the co-ordinates of 

Figure 8.9 
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the site grid to those of the survey grid using the well-known transformation formula 

E = AE + Ex cos 9 - Nx sin 9 

N = AN + Nx cos 9 + £ x sin 0 

where A£, AN = difference in easting and northing of the respective grid origins 
El9N1 = the co-ordinates of the point on the site grid 

9 = relative rotation of the two grids 
E,N = the co-ordinates of the point transformed to the survey grid 

Thus, selected points, say X and Y (Figure 8.9) may have their site-grid co-ordinate 
values transformed to that of the survey grid and so set-out by polars or intersection 
from the survey control. Now, using ATas a base-line, the site grid may be set out using 
theodolite and steel tape, all angles being turned off on both faces and grid intervals 
carefully fixed using the steel tape under standard tension. 

When the site grid has been established, each line of the grid should be carefully 
referenced to marks fixed clear of the area of work. As an added precaution, these marks 
could be further referenced to existing control or permanent, stable, on-site detail. 

(3) Structural grid: used to locate the position of the structural elements within the 
structure and is physically established usually on the concrete floor slab (Figure 8.9). 

8.5 SETTING OUT BUILDINGS 

For buildings with normal strip foundations the corners of the external walls are 
established by pegs located direct from the survey control or by measurement from the 
site grid. As these pegs would be disturbed in the initial excavations their positions are 
transferred by theodolite on to profile boards set well vlear of the area of disturbance 
(Figure 8.10). Prior to this their positions must be checked by measuring the diagonals 
as shown in Figure 8.11. 

The profile boards must be set horizontal with their top edge at some pre-determined 
level such as damp proof course (DPC) or finished floor level (FFL). Wall widths, 
foundation widths, etc. can be set out along the board with the aid of a steel tape and 
their positions defined by saw-cuts. They are arranged around the building as shown in 
Figure 8.11. Strings stretched between the appropriate marks clearly define the line of 
construction. 

In the case of buildings constructed with steel or concrete columns, a structural grid 
must be established to an accuracy of about ± 2 to 3 mm, otherwise the prefabrication 
beams and steelwork will not fit together without some distortion. 

The position of the concrete floor slab may be established in a manner already 
described. Thereafter the structural grid is physically established by hilty nails or small 
steel plates set into the concrete. Due to the accuracy required a 1" theodolite and 
standardized steel tape corrected for temperature and tension should be used. 

Once the bases for the steel columns have been established, the axes defining the 
centre of each column should be marked on and, using a template oriented to these 
axes, the positions of the hooding-down bolts defined (Figure 8.12). A height mark 
should be established, using a level, at a set distance (say, 75 mm) below the underside of 
the base-plate, and this should be constant throughout the structure. It is important 
that the base-plate starts from a horizontal base to ensure verticality of the column. 
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Figure 8.11 

8.6 CONTROLLING VERTICALITY 
8.6.1 Using a plumb bob 

In low-rise construction a heavy plumb bob (5 to 10 kg) may be used as shown in Figure 
8.13. If the external wall was perfectly vertical then, when the plumb bob coincides with 
the centre of the peg, distance d at the top level would equal the offset distance of the peg 

Figure 8.10 
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Height mark 

Bol t pos i t ions 
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B u d d i n g 

Peg 

Figure 8.13 

at the base. This concept can be used internally as well as externally, provided that holes 
and openings are available. 

8.6.2 Using a theodolite 

If two centre-lines at right-angles to each other are carried vertically up a structure as it 
is being built, accurate measurement can be taken off these lines and the structure as a 
whole will remain vertical. Where site conditions permit, the stations defining the 'base 
figure' (four per line) are placed in concrete well clear of construction (Figure 8.14(a)). 
Lines stretched between marks fixed from the pegs will allow offset measurements to 
locate the base of the structure. As the structure rises the marks can be transferred up on 
to the walls by theodolite, as shown in Figure 8.14(b), and lines stretched between them. 
It is important that the transfer is carried out on both faces of the instrument. 

Where the structure is circular in plan the centre may be established as in Figure 
8.14(a) and the radius swung out from a pipe fixed vertically at the centre. As the 
structure rises the central pipe is extended by adding more lengths. Its verticality is 
checked by two theodolites (as in Figure 8.14(b)) and its rigidity ensured by supports 
fixed to scaffolding. 

The vertical pipe may be replaced by laser beam or autoplumb, but the laser would 
still need to be checked for verticality by theodolites. 

Steel and concrete columns may also be checked for verticality using the theodolite. 
By string lining through the columns, positions A-A and B-B may be established for 
the theodolite (Figure 8.15); alternatively, appropriate offsets from the structural grid 

tigure 6.1/ 

^Ca l i b ra ted spir i t level 
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Figure 8.15 

lines may be used. With instrument set up at A, the outside face of all the uprights 
should be visible. Now cut the outside edge of the upright at ground level with the 
vertical hair of the theodolite. Repeat at the top of the column. Now depress the 
telescope back to ground level and make a fine mark, the difference between the mark 
and the outside edge of the column is the amount by which the column is out of plumb. 
Repeat on the opposite face of the theodolite. The whole procedure is now carried out 
at B. If the difference exceeds the specified tolerances the column will need to be 
corrected. 

Figure 8.14 (a) Plan, and (b) section 

Columns 

Marks at ground level 
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8.6.3 Using optical plumbing 

For high-rise building the instrument most commonly used is an autoplumb (Figure 
8.16). This instrument provides a vertical line of sight to an accuracy of ± 1 second of 
arc (1 mm in 200 m). Any deviation from the vertical can be quantified and corrected by 
rotating the instrument through 90° and observing in all four quadrants ; the four 
marks obtained would give a square, the diagonals of which would intersect at the 
correct centre point. 

A base figure is established at ground level from which fixing measurements may be 
taken. If this figure is carried vertically up the structure as work proceeds, then identical 
fixing measurements from the figure at all levels will ensure verticality of the structure 
(Figure 8.17). 

To fix any point of the base figure on an upper floor, a Perspex target is set over the 
opening and the centre point fixed as above. Sometimes these targets have a grid etched 
on them to facilitate positioning of the marks. 

The base figure can be projected as high as the eighth floor, at which stage the 
finishing trades enter and the openings are closed. In this case the uppermost figure is 
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def ines vert ical 

I ines 

Upward field of v iew 

PENTAGONAL PRISM 
/ 

COMPENSATOR 

Upward-s ight ing 

te lescope 

D o w n w a r d -sighting 

te lescope 
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Figure 8.16 The optical system of the autoplumb 
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(a) (b) 

Figure 8.17 (a) Elevation, and (b) plan 

carefully referenced, the openings filled, then the base figure re-established and 
projected upwards as before. 

The shape of the base figure will depend upon the plan shape of the building. In the 
case of a long rectangular structure a simple base line may suffice but Tshapes and Y 
shapes are also used. 

8.7 CONTROLLING GRADING EXCAVATION 

This type of setting out generally occurs in drainage schemes where the trench, bedding 
material and pipes have to be laid to a specified design gradient. Manholes (MH) will 
need to be set out at every change of direction or at least every 100 m on straight runs. 
The M H (or inspection chambers) are generally set out first and the drainage courses 
set out to connevt into them. 

The centre peg of the M H is established in the usual way and referenced to four pegs, 
as in Figure 8.2. Alternatively, profile boards may be set around the M H and its 
dimensions marked on them. If the boards are set out at a known height above 
formation level the depth of excavation can be controlled, as in Figure 8.18. 
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8.7.1 Use of sight rails 

Sight rails (SR) are basically horizontal rails set a specific distance apart and to a 
specific level such that a line of sight between them is at the required gradient. Thus they 
are used to control trench excavation and pipe gradient without the need for constant 
professional supervision. 

Figure 8.19 illustrates SR being used in conjunction with a boning rod (or traveller) 
to control trench excavation to a design gradient of 1 in 200 (rising). Pegs A and B are 
offset a known distance from the centre-line of the trench and levelled from a nearby 
TBM. 

Figure 8.19 

Assume peg A has a level of 40 m and the formation level of the trench at this point is 
to be 38 m. It is decided that a reasonable height for the SR above ground would be 
1.5 m, i.e. at a level of 41.5; thus the boning rod must be made (41.5 — 38) = 3.5 m long, 
as its cross-head must be on level with the SR when its toe is at formation level. 

Consider now peg B, with a level of 40.8 m at a horizontal distance of 50 m from A. 
The proposed gradient is 1 in 200, which is 0.25 m in 50 m, thus the formation level at B 
is 38.25 m. If the boning rod is 3.5 m, the SR level at B is (38.25 + 3.5) = 41.75 m and is 
set (41.75 — 40.8) = 0.95 m above peg B. The remaining SRs are established in this way 
and a line of sight or string stretched between them will establish the trench gradient 
3.5 m above the required level. Thus, holding the boning rod vertically in the trench will 
indicate, relative to the sight rails, whether the trench is too high or too low. 

Where machine excavation is used the SR are as in Figure 8.20, and offset to the side 
of the trench opposite to where the excavated soil is deposited. 

Knowing the bedding thickness, the invert pipe level may be calculated and a second 
cross-head added to the boning rod to control the pipe laying, as shown in Figure 8.21. 

Due to excessive ground slopes it may be necessary to use double sight rails with 
various lengths of boning rod as shown in Figure 8.22. 
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Figure 8.21 
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Double SR 

Figure 8.22 

8.7.2 Use of lasers 

The word laser is an acronym for Light Amplification by Stimulated Emission of 
Radiation and is the name applied to an intense beam of highly monochromatic, 
coherent light. Because of its coherence the light can be concentrated into a narrow 
beam and will not scatter and become diffused like ordinary light. 

In controlling trench excavation the laser beam simply replaces the line of sight or 
string in the SR situation. It can be set up on the centre-line of the trench, over a peg of 
known level, and its height above the peg measured to obtain the reduced level of the 
beam. The instrument is then set to the required grade and used in conjunction with an 
extendable traveller set to the same height as that of the laser above formation level. 
When the trench is at the correct level, the laser spot will be picked up on the centre of 
the traveller target, as shown in Figure 8.23. A levelling staff could just as easily replace 
the traveller, the laser spot being picked up on the appropriate staff reading. 

Where machine excavation is used the beam can be picked up on a photo-electric cell 
fixed at the appropriate height on the machine. The information can be relayed to a 
console within the cabin, which informs the operator whether he is too high or too low 
[Figure 8.24). 

At the pipe-laying stage, a target may be fixed in the pipe and the laser installed on 
the centre-line in the trench. The laser is then oriented in the correct direction (by 
bringing it on to a centre-line peg, as in Figure 8.25) and depressed to the correct grade 

Figure 8.23 
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Figure 8.24 

Figure 8.25 

of the pipe. A graduated rod, or appropriately-marked ranging pole, can also be used to 
control formation and sub-grade level (Figure 8.25). For large-diameter pipes the laser 
is mounted inside the pipe using horizontal compression bars. 

Where the M H is constructed, the laser can be oriented from within using the system 
illustrated in Figure 8.26. The centre-line direction is transferred down to peg B from 
peg A and used to orient the direction of the laser beam. 

Figure 8.26 
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8.8 ROTATING LASERS 

Rotating lasers are instruments which are capable of being rotated in both the 
horizontal and vertical planes, thereby generating reference planes or datum lines. 

When the laser is established in the centre of a site over a peg of known level, and at a 
known height above the peg, a datum of known reduced level is permanently available 
throughout the site. 

Using a vertical staff fitted with a photo-electric detector, levels at any point on the 
site may be instantly obtained and set out, both above and below ground, as illustrated 
in Figure 8.27. 

Figure 8.27 1—Rotating laser; 2—Laying sub-grade to laser control; 3—Checking formation level; 
4—Fixing wall levels; 5—Taking ground levels; 6—Staff with photoelectric detector fixing foundation 
levels; 7—Laser plane of reference 

Since the laser reference plane covers the whole working area, photo-electric sensors 
fitted at an appropriate height on earthmoving machinery enables whole areas to be 
excavated and graded to requirements by the machine operator alone. 

Other uses of the rotating laser are illustrated in Figure 8.28. 
From the above applications it can be seen that basically the laser supplies a 

reference line at a given height and gradient, and a reference plane similarly disposed. 
Realizing this, the user may be able to utilize these properties in a wide variety of 
setting-out situations such as off-shore channel dredging, tunnel guidance (as 
mentioned in the previous chapter), shaft sinking, etc. 

8.9 LASER HAZARDS 

The potential hazard in the use of lasers is eye damage. There is nothing unique about 
this form of radiation damage; it can also occur from other, non-coherent, light 
emitted, for example, by the Sun, arc lamps, projector lamps and other high-intensity 
sources. If one uses a magnifying lens to focus the Sun's rays on to a piece of paper, the 
heat generated by such concentration will cause the paper to burst into flames. 
Similarly with a laser producing a concentrated, powerful beam of light which the eye's 
lens will further concentrate by focusing it on the retina, thus causing an almost 
microscopic burn or blister which can cause temporary or permanent blindness. When 
the beam is focused on the macula (critical area of the retina) serious damage can result. 
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Figure 8.28 A—Height control; B—Setting out of dividing walls; C—Use of the vertical beam for 
control of elevator guide rails, and slip-forming structures; D—Setting out and control of suspended 
ceiling 

Since there is no pain or discomfort with a laser burn, the injury may occur several 
times before vision is impaired. A further complication in engineering surveying is that 
the beam may be acutely focused through the lens system of a theodolite or other 
instrument, or may be viewed off a reflecting or refracting surface. It is thus imperative 
that a safety code be adopted by all personnel involved with the use of lasers. 

Under the Health and Safety at Work Act (1974) most sites will be required to adopt 
the recommendations of the British Standards Institution guide to the safe use of lasers 
(BS4803). The BSI classifies five types of laser, but only three of these are relevant to on-
site working: 

Class 2 A visible radiant power of 1 mW. Eye protection is afforded by the blink-
reflex mechanism. 

Class 3 A Has a maximum radiant power of 1 to 5 mW, with eye protection afforded by 
the blink-reflex action. 

Class 3B Has a maximum power of 1 to 500 mW. Eye protection is not afforded by 
blink-reflex. Direct viewing, or viewing of specular reflections, is highly 
dangerous. 

For surveying and setting-out purposes the BSI recommends the use of Classes 2 and 
3A only. Class 3B may be used outdoors, if the more stringent safety precautions 
recommended are observed. 

The most significant recommendation of the BSI document is that on sites where 
lasers are in use there should be a laser safety officer (LSO), who the document defines 
as 'one who is knowledgeable in the evaluation and control of laser hazards, and has the 

IS/ .0-
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8.10 ROUTE LOCATION 

Figure 8.29 shows a stretch of route location for a road or railway. In order to control 
the construction involved, the pegs and profile boards shown must be set out at 
intervals of 10 to 30 m along the whole stretch of construction. 

The first pegs located would be those defining the centre-line of the route (peg E), and 
the methods of locating these on curves has been dealt with in Chapter 6. The straights 
would be aligned between adjacent tangent points. 

The shoulder pegs C and D , defining the road/railway width, can be set out by 
appropriate offsets at right-angles to the centre-line chords. 

Pegs A and B which define the toe of the embankment (fill) or top edge of the cutting 
are called slope stakes. The side widths from the centre-line are frequently calculated 
and shown on the design drawings or computer print-outs of setting-out data. This 
information should be used only as a rough check or guide; the actual location of the 
slope stake pegs should always be carried out in the field, due to the probable change in 

responsibility for supervision of the control of laser hazards'. Whilst such an individual 
is not specifically mentioned in conjunction with the Class 2 laser, the legal 
implications of eye damage might render it advisable to have an LSO present. Such an 
individual would not only require training in laser safety and law, but would need to be 
fully conversant with the RICS' Laser Safety Code produced by a working party of 
certain members of the Royal Institution of Chartered Surveyors. 

The RICS code was produced in conjunction with BS4803 and deals specifically with 
the helium-neon gas laser (He-Ne) as used on site. Whilst the manufacturers of lasers 
will no doubt comply with the classifications laid down, the modifications to a laser by 
mirrors or telescopes may completely alter such specifications and further increase the 
hazard potential. The RICS code presents methods and computations for assessing the 
possible hazards which the user can easily apply to his working laser system, in both its 
unmodified and modified states. Recommendations are also made about safety 
procedures relevant to a particular system from both the legal and technical aspects. 
The information within the RICS code enables the user to compute such important 
parameters as 

(1) The safe viewing time at given distances. 
(2) The minimum safe distance at which the laser source may be viewed directly, for a 

given period of time. 

Such information is vital to the organization and administration of a 'laser site' from 
both the health and legal aspects, and should be combined with the following 
precautions: 

(1) Ensure that all personnel, random visitors to the site, and where necessary 
members of the public, are aware of the presence of lasers and the potential eye 
damage involved. 

(2) Using the above-mentioned computations, erect safety barriers around the laser 
with a radius greater than the minimum safe viewing distance. 

(3) Issue laser safety goggles where appropriate. 
(4) Avoid, wherever possible, the need to view the laser through theodolites, levels or 

binoculars. 
(5) Where possible, position the laser either well above or well below head height. 
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Figure 8.29 

ground levels since the information was initially compiled. These pegs are established 
along with the centre-line pegs and are necessary to define the area of top-soil strip. 

8.10.1 Setting out slope stakes 

In Figures 8.30(a) and (b\ points A and B denote the positions of pegs known as slope 
stakes which define the points of intersection of the actual ground and the proposed 
side slopes of an embankment or cutting. The method of establishing the positions of 
the stakes is as follows: 

(1) Set up the level in a convenient position which will facilitate the setting out of the 
maximum number of points therefrom. 

(2) Obtain the height of the plane of collimation (HPC) of the instrument by 
backsighting on to the nearest TBM. 

(3) Foresight on to the staff held where it is thought point A may be and obtain the 
ground level there. 

(4) Subtract 'ground level' from 'formation level' and multiply the difference by N to 
give horizontal distance x. 

(5) Now tape the horizontal distance (x -1- b) from the centre-line to the staff. If the 
measured distance to the staff equals the calculated distance (x + b), then the staff 
position is the slope stake position. If not, the operation is repeated with the staff in 
a different position until the measured distance agrees with the calculated distance. 

The above 'trial-and-error' approach should always be used on site to avoid errors of 
scaling the positions from a plan, or accepting, without checking, a computer print-out 
of the dimensions. 

For example, if the side slopes of the proposed embankment are to be 1 vertical, 2 
horizontal, the formation level 100 m O D and the ground level at A, say, 90.5 m O D . 
T h e n x = 2(100 - 90.5) = 19 m, and if the formation width = 20 m, then/? = 10 m and 
(x -h b) = 29 m. Had the staff been held at Ax (which had exactly the same ground level 
as A) then obviously the calculated distance (x + b) would not agree with the measured 
distance from centre-line to Ax. They would agree only when the staff arrived at the 
slope stake position A, as x is dependent upon the level at the toe of the embankment, or 
top of the cutting. 
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Staff <£_ 

id) V 

Figure 8.30 

8.10.2 Controlling earthworks 

Batter boards, or slope rails as they are sometimes called, are used to control the 
construction of the side slopes of a cutting or embankment (see Figures 8.30(c) and (d), 
and 8.29). 

Consider Figure 8.30(c), if the stake adjacent to the slope stake is set 0.5 m away, 
then, for a grade of 1 vertical to 2 horizontal, the level of point X will be 0.25 m higher 
than the ground level at A. F rom X, a batter board is fixed at a grade of 1 in 2, using a 1 
in 2 template and a spirit level. Stakes X and Y are usually no more than 1 m apart. 
Information such as chainage, slope and depth of cut are marked on the batter board. 

(b) 

(a) i 

(c) 
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In the case of an embankment, Figure 8.30(d), a boning rod is used in the control of 
the slope. Assuming that a boning rod 1 m high is to be used, then as the near stake is, 
say, 0.5 m from the slope stake, point xx will be 0.25 m lower than the ground level at A, 
hence point x will be 0.75 m above the ground level of A. The batter board is then fixed 
from x in a similar manner to that already described. 
The formation and sub-base, which usually have setting-out tolerances in the region of 
± 2 5 mm, can be located with sufficient accuracy using profiles and travellers. Figure 
8.31 shows the use of triple profiles for controlling camber, whilst different lengths of 
traveller will control the thickness required. 

Figure 8.31 

Pin 
Verge Carriageway Verge 

125 mm x 150 mm pre-cast kerb 

Figure 8.32 

T—100 mm 
WEAR I NG~f /COURSE 40 mi 

BASE //COURSE 60mm 

B A S 250 mm 

SUB-BASE 200mm 

Laying of the base course (60 mm) and wearing course (40 mm) calls for much 
smaller tolerances, and profiles are not sufficiently accurate; the following approach 
may be used: 

Pins or pegs are established at right-angles to the centre-line at about 0.5 m beyond 
the kerb face (Figure 8.32). The pins or pegs are accurately levelled from the nearest 
TBM and a coloured tape placed around them at 100 mm above finished road level; 
this will be at the same level as the top of the kerb. A cord stretched between the pins will 
give kerb level, and with a tape the distances to the top of the sub-base, top of the base 
course and top of the wearing course, can be accurately fixed (or dipped). 

The distance to the kerb face can also be carefully measured in from the pin in order 
to establish the kerb line. This line is sometimes defined with further pins and the level 
of the kerb top marked on. 

8.11 RESPONSIBILITY ON SITE 

Responsibility with regard to setting out is defined in Clause 17 of the ICE Conditions 
of Contract : 

Red 

White 
Blue" 
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8.12 RESPONSIBILITY OF THE SETTING-OUT ENGINEER 

The setting-out engineer should establish such a system of work on site that will ensure 
the accurate setting out of the works well in advance of the commencement of 
construction. To achieve this, the following factors should be considered: 

(1) A complete and thorough understanding of the plans, working drawings, setting-
out data, tolerances involved and the time scale of operations. Checks on the setting-
out data supplied should be immediately implemented. 
(2) A complete and thorough knowledge of the site, plant and relevant personnel. 
Communications between all individuals is vitally important. Field checks on the 
survey control already established on site, possibly by contract surveyors, should be 
carried out at the first opportunity. 
(3) A complete and thorough knowledge of the survey instrumentation available on 
site, including the effect of instrumental errors on setting-out observations. At the 
first opportunity, a base should be established for the calibration of tapes, E D M 
equipment, levels and theodolites. 

The contractor shall be responsible for the true and proper 
setting out of the works, and for the correctness of the position, 
levels, dimensions, and alignment of all parts of the works, and 
for the provision of all necessary instruments, appliances, and 
labour in connection therewith. If, at any time during the 
progress of the works, any error shall appear or arise in the 
position, levels, dimensions, or alignment of any part of the 
works, the contractor, on being required so to do by the 
engineer, shall, at his own cost, rectify such error to the 
satisfaction of the engineer, unless such error is based on 
incorrect data supplied in writing by the engineer or the 
engineer's representative, in which case the cost of rectifying the 
same shall be borne by the employer. The checking of any setting 
out, or of any line or level, by the engineer or the engineer's 
representative, shall not, in any way, relieve the contractor of his 
responsibility for the correctness thereof, and the contractor 
shall carefully protect and preserve all bench-marks, sight rails, 
pegs, and other things used in setting out the works. 

The clause specifies three persons involved in the process, namely, the employer, 
the engineer and the agent, whose roles are as follows: 

The employer, who may be a government department, local authority or private 
individual, requires to carry out and finance a particular project. To this end, he 
commissions an engineer to investigate and design the project, and to take 
responsibility for the initial site investigation, surveys, plans, designs, working 
drawings, and setting-out data. On satisfactory completion of his work he lets the 
contract to a contractor whose duty it is to carry out the work. 

On site the employer is represented by the engineer or his representative, referred to 
as the resident engineer (RE), and the contractor's representative is called the agent. 

The engineer has overall responsibility for the project and must protect the 
employer's interest without bias to the contractor. The agent is responsible for the 
actual construction of the project. 
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(4) A complete and thorough knowledge of the stores available, to ensure an 
adequate and continuing supply of pegs, pins, chalk, string, paint, timber, etc. 
(5) Office procedure should be so organized as to ensure easy access to all necessary 
information. Plans should be stored flat in plan drawers, and those amended or 
superseded should be withdrawn from use and stored elsewhere. Field and level 
books should be carefully referenced and properly filed. All setting-out 
computations and procedures used should be clearly presented, referenced and filed. 
(6) Wherever possible, independent checks of the computation, abstraction, and 
extrapolation of setting-out data and of the actual setting-out procedures should be 
made. 

It can be seen from this brief itinerary of the requirements of a setting-out engineer, 
that such work should never be allocated, without complete supervision, to junior, 
inexperienced members of the site team. 
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Earthworks program 

10 REM: CUT AND FILL CALCULATIONS 
20 REM: BY BRIAN MERRONY, SCHOOL OF CIVIL ENGINEERING 
30 REM: KINGSTON POLYTECHNIC 
40 DIM GY(50) GX(50),RY(50),RX(50),S(2) 
50 L$=" " \ PRINT L$ 
60 PRINT"EARTHWORKS" \ PRINT L$ 
70 REM START OF SECTION DATA 
80 INPUT"FILL SLOPE ";FS 
90 INPUT"CUT SLOPE " CS 
100 INPUT "NO OF GROUND POINTS ";NG 
110 PRINT"ENTER GROUND OFFSETS AND LEVELS (IN PAIRS)" 
120 FOR 1=0 TO NG-1 
130 PRINT"POINT";I+l; \ INPUT GX(I),GY(I) 
140 NEXT I \ PRINT L$ 
150 INPUT "NO OF ROAD POINTS ";NR 
160 PRINT"ENTER ROAD OFFSETS AND LEVELS (IN PAIRS)" 
170 FOR 1=1 TO NR 
180 PRINT"POINT";I; \ INPUT RX(I),RY(I) 
190 NEXT I \ PRINT L$ 
200 REM ***** CHECK THAT GROUND SPANS ROAD ***** 
210 IF GX(0)<=RX(1) AND GX(NG-1)>=RX(NR) THEN 230 
220 PRINT "GROUND DOES NOT SPAN ROAD" \ GOTO 1110 
230 REM *****TREAT LEFT HAND SIDE ***** 
240 P=0 
250 P=P+1 \ IF GX(P)<RX(1) THEN 250 
260 A=l \ B-0 \ Q-l \ GOSUB 940 
270 REM *****TREAT RIGHT HAND SIDE***** 
280 P=NG-1 
290 P=P-1 \ IF GX(P)>RX(NR) THEN 290 
300 A=-l \ B=NG-1 \ Q=NR \ GOSUB 940 
310 REM ***** START OF MAIN PASS ***** 
320 P=0 \ Q=0 \ F=l 
330 AA=GY(0) \ BB=RY(0) \ HH=ABS(AA-BB) 
340 A=l \ IF AA<BB THEN A=2 
350 EE=GX(0) 
360 REM START OF LOOP 
370 P=P+1 \ Q=Q+1 \ X1=EE 
380 RX=RX(Q) \ GX=GX(P) 
390 IF GX>RX THEN 470 
400 IF GX*RX THEN 530 
410 REM *****CONDITION GX<RX***** 
420 FG=GX \ CC=GY(P) 
430 Yl-BB \ Y2=RY(Q) \ X2=RX \ XX=GX 
440 DD=(Y2-Y1)*(XX-X1)/(X2-Xl)+Yl 
450 Q=Q-1 
460 GOTO 560 
470 REM *****GX>RX CONDITION***** 
480 FG=RX \ DD=RY(Q) 
490 Y1=AA \ Y2=GY(P) \ X2=GX \ XX=RX 
500 CC=(Y2-Y1)*(XX-X1)/(X2-X1)+Y1 
510 P=P-1 
520 GOTO 560 
530 REM *****GX=RX CONDITION***** 
540 FG=GX \ CC=GY(P) \ DD=RY(Q) 
550 Y1=AA \ Y2=CC \ X2=GX 

560 REM EVALUATE AREAS 
570 B=l \ IF CC<DD THEN B=2 
580 II=ABS(CC-DD) 
590 GG=FG-EE 
600 IF A=B THEN 750 
610 REM TWO TRIANGLES 
620 Y=GG*HH/(HH+II) 
630 XX=EE+Y 
640 JJ=Y*HH/2 
650 IF F=l THEN F=0 \ JJ=0 
660 S(A)=S(A)+JJ 
670 S3=S3+S(1) \ S(1)=0 
680 S4=S4+S(2) \ S(2)=0 
690 KK=GG*II*II/(2*(HH+II)) 
700 S(B)=S(B)+KK 
710 Y=(Y2-Y1)*(XX-X1)/(X2-X1)+Y1 
720 PRINT "INTERSECTION" 
730 PRINT XX Y 
740 GOTO 770 
750 REM TRAPEZIUM 
760 IF F=0 THEN S(A)=S(A)+(HH+II)*GG/2 
770 REM TEST FOR END OF CROSS-SECTION 
780 IF P=NG-1 AND Q=NR+1 THEN 810 
790 AA=CC \ BB=DD \ EE=FG \ HH=II \ A=B 
800 GOTO 360 
810 REM CALCULATE VOLUMES AND UPDATE FOR NEXT SECTION 
820 PRINT"CUT AREA, FILL AREA" \ PRINT S3,S4 
830 S(1)=0 \ S(2)=0 
840 V1=(S5+S3)*.5*LL \ V2=(S6+S4)*.5*LL 
850 S5=S3 \ S6=S4 \ S3=0 \ S4=0 
860 PRINT"CUT VOLS, INCREMENT AND TOTAL" 
870 V3=V3+V1 \ PRINT VI,V3 
880 PRINT"FILL VOLS, INCREMENT AND TOTAL" 
890 V4=V4+V2 \ PRINT V2.V4 \ PRINT L$ 
900 PRINT"CHAINAGE INTERVAL (INSERT ZERO TO TERMINATE RUN)" 
910 INPUT LL 
920 IF LL=0 THEN 1110 
930 GOTO 70 
940 REM DECIDE CUT OR FILL AND EXTRAPOLATE IF NECESSARY 
950 XX=RX(Q) 
960 Y1=GY(P-A) \ X1=GX(P-A) \ Y2=GY(P) \ X2=CX(P) 
970 Y=(Y2-Y1)*(XX-X1)/(X2-X1)+Y1 
980 F=0 \ IF RY(Q)<Y THEN F=l 
990 IF RY(Q)=Y THEN RY(Q)=Y+0.0001 
1000 S=-FS \ IF F=l THEN S=CS 
1010 Y1=GY(B) \ X1=GX(B) \ Y2=CY(B+A) \ X2=GX(B+A) 
1020 XX=GX(B) 
1030 Y=RY(Q)+ABS(RX(Q)-XX)*S 
1040 IF (F=0 AND GY(B)>Y) OR (F=l AND GY(B)<Y) THEN 1100 
1050 XX=XX-100*A \ Y=Y+100*S 
1060 GY(B)=(Y2-Y1)*(XX-X1)/(X2-X1)+Y1 
1070 GX(B)=XX 
1080 IF (F=0 AND GY(B)>Y) OR (F=l AND GY(B)<Y) THEN 1100 
1090 PRINT "EXTRAPOLATION FAILED" \ GOTO 1110 
1100 RX(Q-A)=GX(B) \ RY(Q-A)=Y \ RETURN 
1110 END 

286 
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EARTHWORKS PROGRAM: BASIC 

The program is used for earthwork computation and mass-haul data. 
F rom offsets and levels of existing ground cross-sections and proposed road cross-

sections at successive chainage points along the centre-line of a route location; cut and 
fill volumes are computed, accumulated volumes for mass haul produced and the 
chainage and level of the intersection of the side slopes and existing ground are found. 

Input data (the program is interactive and will request input 
data) 

(1) Side slope in F I L L ; e.g. for 1 in 2, enter 0.5. 

(2) Side slope in C U T ; this may be the same as or different from that adopted for fill. 

(3) The number of points defining the EXISTING G R O U N D in the cross-section. 

(4) The distance from the centre-line and level of the G R O U N D POINTS. Distances 
to the left of the centre-line are negative, those to the right are positive. N.B. They are 
entered into the computer IN S E Q U E N C E F R O M T H E EXTREME L E F T T O 
RIGHT, of the cross-section. 

(5) The number of points defining the proposed R O A D formation. 

(6) As in (4), but for road points. 

(7) The chainage interval to the next cross-section. If there are no further cross-sections 
the entry of a zero chainage interval terminates the run. (Refer example overleaf.) 

Output data 

(1) Ground/road intersection points 

The distance from the centre-line and level at which the road side-slopes intersect the 
existing ground; i.e. the top of the cutting or toe of the embankment (the slope stake 
position). 

(2) Areas 

Areas of the cross-sections. 

(3) Volumes 

The volume at each cross-section and the accumulated volume. The latter is used for 
mass haul construction. 

An example of the input and output for a hill-side section in cut-and-fill is given 
overleaf. 



A p p e n d i x A 

EARTHWORKS 

FILL SLOPE ? 0.5 
CUT SLOPE ? 1.0 
NO OF GROUND POINTS ? 7 
ENTER GROUND OFFSETS AND LEVELS (IN PAIRS) 
POINT 1 
POINT 2 
POINT 3 
POINT 4 
POINT 5 
POINT 6 
POINT 7 

-30, 100 
-20, 95.5 
-10, 102 
0, 103 
10, 105.6 
20, 106.8 
30, 106.9 

NO OF ROAD POINTS ? 3 
ENTER ROAD OFFSETS AND LEVELS (IN PAIRS) 
POINT 1 ? -18, 103.7 
POINT 2 ? 0, 104 
POINT 3 ? 18, 103.7 

INTERSECTION 
-27.5789 98.9105 
INTERSECTION 
3.61445 103.94 

INTERSECTION 
21.1111 106.811 

CUT AREA, FILL AREA 
28.7184 92.2913 

CUT VOLS, INCREMENT AND TOTAL 
0 0 

FILL VOLS, INCREMENT AND TOTAL 
0 0 

CHAINAGE INTERVAL (INSERT ZERO TO TERMINATE RUN) 
? 30 
FILL SLOPE ? 0.5 
CUT SLOPE ? 1.0 
NO OF GROUND POINTS ? 7 
ENTER GROUND OFFSETS AND LEVELS (IN PAIRS) 
POINT 1 ? 

etc, etc. . . . 

INPUT DATA OF 

CROSS-SECTION 

GROUND LEVELS 

INPUT DATA OF 

PROPOSED ROAD 

LEVELS 

288 

OUTPUT 
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Derivation of clothoid spiral formulae 

AB is an infinitely small portion (51) of the transition curve 7 ^ . (Figure B.l) 
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(6.24) 

The basic equation for a clothoid is / = a(0)"% where / = L, <p = <P and L = a(9y", 
then squaring and dividing gives 
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Let x = — (<f>

2
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Figure B.l 
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When 0 = maximum, 0 = 0 and 

O 
e = - - N 3 

From Figure B.2 
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Dtl=Rsm<t> = RU>- —+ — . . ] 

but <t> = L/2R 
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AMV angular momentum vector 
A O D above ordnance datum 
BM bench mark 
BS back sight 
BSI British Standards Institution 
C P change point 
D G M digital ground model 
D o T Department of Transport 
D P C damp-proof course 
E D M electromagnetic distance-measuring 
F F L finished floor level 
F L face left 
F O S D full overtaking sight distance 
FR face right 
FS fore sight 
H P C height of the plane of collimation 
H W M high-water mark 
ICE Institution of Civil Engineers 
IS intermediate sight 
K P Kingston Polytechnic 
LAT lowest astronomical tide 
LSO laser safety officer 
L U London University 
L W M low-water mark 
M H manhole 
M H D mass-haul diagram 
MSL mean sea level 
NCB National Coal Board 
N G national grid 
O D ordnance datum 
OS Ordnance Survey 
P P M parallel-plate micrometer 
PSE proportional standard error 
QB quadrant bearing 
RE resident engineer 
R-and-F rise-and-fall 
RL reduced level 
RO reference object 
RRL Road Research Laboratory 
RSM Royal School of Mines 
SR sight rail 
SSD stopping sight distance 
TBM temporary bench mark 
T M P transverse Mercator projection 
TTS three-tripod system 
VC vertical curve 
WCB whole-circle bearing 

Abbreviations 
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Acceleration, radial, 180 
Acoustics, in position fixing, 248-249 
Amplitude method, 233-234 
Areas, plotted, 42-46 
Automatic levels, 15-17 
Autoplumbs, 226-227, 272-273 
Auxiliary base measurement, 142-145 

Balancing lines, auxiliary, 76-78 
Balancing procedures, 70-71 
Bearings, whole circle, 97-100 
Booking 

height of collimation, 23-24 
inverted sights, 24-25 
rise-and-fall, 23, 25-26 

Buildings, setting out, 268-269 
Bulking, of materials, 69 

Centrifugal ratio, 177-178 
Circle drift, 235 
Circle eccentricity, 235 
Circular curves, 156-157 
Clothoid spiral formula, 185 

derivation, 289-292 
Coefficient of friction, 178-179 
Collimation 

change and eccentricity, 235 
errors, 18-20, 87-88 
height of, 23-24 
theodolites, 82-83, 85 

Compound curves, 165-166 
Computer program, earthworks, 

286-288 
Contouring, 26 -27 ,135 
Contours, volume assessment from, 57 
Control networks, 3-7 
Convergence of meridians, 235-236 
Co-ordinates 

areas, 114-115 
plane rectangular, 100-103 
polar, 134-135, 263-264 

Co-planing, 224 
Cross-sections, earthworks, 46-49 
Cubic parabola, 183 
Cubic spiral, 185 

Currents, direction and velocity, 252 
Curvature 

effect on precise levelling, 34 
effect on volumes, 59-61 

Curves 
circular, 156-157 
compound and reverse, 165-166 
designation, 157 
osculating circle, 185-186 
reverse and compound, 165-166 
setting out, 158-165 
small radius, 166-168 
tables, 182-183, 190-191 
transition, 176-180, 185-191 
vertical, 197-209 
worked examples, 168-174, 

191-196, 209-217 

Datum, levelling, 11-12 
Digital ground model, 1, 42 
Dip, full and apparent, 50-51 
Direct-reading tacheometers, 145 
Directions, setting-out, 265-267 
Distance-measuring optical wedge, 146 
Drawing-office practice, 209 
Dumpy levels, 14-15 

adjustment, 17-20 

Earthworks 
areas, 42-46 
computer program, 286-288 
cross-sections, 46-49 
setting out, 282-283 
volume assessment, 52-61 
worked examples, 49-52, 61-67 

Eccentricity of centres, 86-87 
Electromagnetic position fixing, 

247-249 
End-area method, volume assessment, 

54-57 
Engineers, setting-out, 

responsibilities, 284-285 
Errors, of measurement, 8-9 
Eye damage, lasers, 278-280 

294 
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Float gauges, 250 
Float tracking, 253 
Freehaul, 69-71 

Gauges, tide, 249-251 
Gradients 

rate of change, 201 
vertical curve design, 198 

Grading excavation, 273-277 
Grids, setting-out, 267-268 
Gyro-theodolites 

instrument errors, 234-235 
observation methods, 235-238 
observation techniques, 230-234 
theory, 227-230 

Haul, 69-71 
Height of collimation, booking, 23-24 
Horizontal control networks, 93 
Horizontal lines, 33 
Horizontal-staff tacheometer, 146 
Hydrography, 241-245 

worked examples, 254-259 

Instrument calibration constant, 234 
Intersection 

position fixing, 7 
setting out, 264-265 

Inverted sights, booking, 24-25 
Isotope tracking, 253 

Land, partition, 115-117 
Lasers, 227 

hazards, 278-280 
rotating, 278 
setting-out, 276-280 
tunnelling work, 240 

Levelling, precise 
definitions, 33-34 
errors, 40-41 
reciprocal, 36-37 
working examples, 35, 37-38 

Levelling, simple, 11-12 
accuracy, 26 
principles, 21-26 
reduction, 21-22 
worked examples, 27-31 

Levelling staffs, British Standard, 12, 14 
precise, 39 
Sopwith, 14 

Level lines, 33 
Levels, 12, 13 

adjustments, 17-21 
automatic, 15-17 
dumpy, 14-15 
precise, 39 
tilting, 15, 20 

Linear surveys, 4, 5 
Lines, of tunnels, 239-240 
Link traverse adjustment, 107 

Manholes, 273, 277 
Mass-haul diagrams 

bulking and shrinking, 69 
construction, 69 
defintions, 68-69 
properties, 69-70 

Materials, bulking and shrinking, 69 
Measurement 

auxiliary base, 142-145 
basic, 2-3 
errors, 8-9 
serial, 141-142 
stepped, 4 

Meridians, convergence of, 235-236 
Micrometers, parallel, 39-40 

Optical distance-measurement 
see Tacheometry 

Optical plumbing, 272-273 
Ordnance datum, 11-12 

Parallel-plate micrometers, 39-40 
Partition of land, 115-117 
Plane surveying, assumptions, 2-3 
Planimeters, 43-44 
Plans, surveying, 1 
Plate bubble test, 17-18, 20 
Plate graduation errors, 92 
Plate level tests, 82, 85 
Plumb bobs, 269-270 
Polar co-ordinates, 134-135 

position fixing, 7 
setting-out, 263-264 

Position fixing, 7-8, 265-267 
electromagnetic, 247-249 

Precise levelling 
definitions, 33-34 
errors, 40-41 
reciprocal, 36-37 
worked examples, 35, 37-38 

Prismoidal formula, 54, 55-56 

Radial acceleration, 180 
Rankine's deflection, 

setting-out curves, 158-160 
Reconnaisance, surveying, 1 
Referencing, setting-out, 261-263 
Refraction, precise levelling, 34 
Resection, position fixing, 7-8 
Reverse curves, 165-166 
Rise-and-fall booking, 23, 25-26 
Route location, setting-out, 280-281 
Reversal-point method, 230, 236-237 
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Self-aligning levels, 15-17 
Self-reducing tacheometers, 145 
Self-registering gauges, 249-250 
Serial measurement, 141-142 
Setting out 

buildings, 268-269 
control of verticality, 269-273 
curves, 158-161 
directions, 265-267 
earthworks, 282-283 
grading excavation, 273-277 
optical plumbing, 272-273 
protection and referencing, 

261-263 
responsibilities, 283-285 
route location, 280-281 
use of grids, 267-268 
use of lasers, 276-280 
using co-ordinates, 263-265 

Sextants, 251-252 
Safety, lasers, 278-280 
Satellite doppler, 247-248 
Shortt's factor, 180 
Shrinkage, of materials, 69 
Sight distances, 201-205 
Sight rails, 274-275 
Sights, inverted, 24-25 
Simple levelling, 11-12 

accuracy, 26 
worked examples, 27-31 

Simpson's rule, 45-46 
Slope stakes, 280-282 
Soundings, 243-245 

horizontal control, 245-249 
reduction, 249-251 

Spire test, theodolites, 83-84, 85 
Spot heights, volume assessment, 

strike line, 50-51 
Super-elevation, 179-180, 57-59 
Surface levels, correlation with 

underground, 240-241 

Tacheometers, 145-148 
Tacheometric constants, 130 
Tacheometry 

application, 134-135 
errors, 130-134, 139-141 
inclined staff, 129-130 
subtense, 135-145 
vertical staff; 127-129 
worked examples, 148-154 

Tangential angle method, setting out 
curves, 158-160 

Taper zero error, 234-235 

Theodolites, 
errors, 86-92 
setting out curves, 158-161 
testing and adjustment, 81-93 
traversing, 93-95 
types, 79-81 
worked examples, 117-123 

Through chainage, 158 
Tide gauges, 249-251 
Tides, theory and nomenclature, 

241-243 
Transit axis 

dislevelment, 88-89 
theodolites, 83-84 

Transit method, 231-233, 238 
Transition curves, 176-180 
Trapezoidal rule, 45-46 
Traverses 

adjustment, 103-105, 106-107 
angular error, 95-97 
computation, 95-107 
errors, 107-114 
gross error location, 113-114 
types, 94-95 

Tunnels, line and level, 239-241 
Two-peg test, 18-20 

Underground curveying 
mechanical methods, 219-227 
optical methods, 218-219 
worked examples, 254-259 

Vertical axis, non-verticality, 89-91 
Vertical circle index error, 92 
Vertical circle index test, 84-86 
Vertical curves, 197-209 

computation, 198-199, 207-209 
design, 200-205 
passing through a point, 205-206 
radius, 206-207 
worked examples, 209-217 

Vertical-staff tacheometer, 147 
Verticality, control, 269-273 
Volume assessment 

earthworks, 52-60 
effect of curvature, 59-61 

Weisbach triangle, 220-223 
Weiss quadrilateral, 224-225 
Wild GAK. l , 233 
Wires 

single in two shafts, 225-226 
verticality of, 223 

Zeiss BRT 006, 147-148 


